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Abstract

Models that involve intractable normalising constants represent a major computational
challenge to statistical inference, since the computation of intractable normalising constants
requires numerical integration of complex functions over large or possibly infinite sets,
which can be impractical. In particular, Bayesian inference for intractable models demands
a specially tailored algorithm to bypass evaluation of two nested intractable normalising
constants originating from posterior and model simultaneously. This thesis addresses
this computational challenge through the development of a novel generalised Bayesian
inference approach built on a Stein discrepancy, called SD-Bayes. Generalised Bayesian
inference updates prior beliefs using a loss function, rather than a likelihood, and can
therefore be used to confer desirable properties to resulting generalised posteriors, such as
robustness to model misspecification. In this context, the Stein discrepancy selected as
the loss function circumvents evaluation of normalising constants of models and produces
generalised posteriors that are accessible using standard Markov chain Monte Carlo
algorithms. On a theoretical level, we show posterior consistency, asymptotic normality,
and global bias-robustness of generalised posteriors. It is shown that generalised posteriors
equipped with global bias-robustness demonstrate a strong insensitivity to an irrelevant
outlier mixed in data, that is, a simple yet common setting of model misspecification.
For intractable models in continuous domains, we derive a useful special case of the
Stein discrepancy, called kernel Stein discrepancy, to be combined with SD-Bayes. The
resulting SD-Bayes demonstrates strong global bias-robustness and enables fully conjugate
inference for exponential family models. We provide numerical experiments on a range
of intractable distributions, including applications to kernel-based exponential family
models and non-Gaussian graphical models. For intractable models in discrete domains,
we establish another useful special case of the Stein discrepancy, called discrete Fisher
divergence, to be combined with SD-Bayes. The resulting SD-Bayes benefits from its
efficient computational cost and absence of user-specified hyperparameters that can be
difficult to choose in the discrete case. In addition, a new approach to calibration of
generalised posteriors through optimisation is considered, independently of SD-Bayes.
Applications are presented on lattice models for discrete spatial data and on multivariate
models for count data, where in each case the methodology facilitates generalised Bayesian
inference at efficient computational cost.
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Chapter 1. Introduction

Bayesian analysis has been adopted in diverse academic and industrial fields as a framework
for coherent decision-making based on observations and one’s belief expressed as a model
to describe a phenomenon of interest. Over the last few decades, rapid growth in compu-
tational capacity has broadened the subjects of statistical modelling to highly complex
phenomena. For example, it has become increasingly ubiquitous to replace some (or all)
parts of decision-making procedures with certain predictive models—even in sensitive
domains such as healthcare (Topol, 2019)—and to deploy enhanced engineering systems
predicated on the use of data-driven models (e.g. Girolami, 2020). An accurate descrip-
tion of sensitive, intricate phenomena often necessitates the use of complex models that
are highly structured and high dimensional. A heavy computational burden of complex
models is placed especially on inference of them, which correspondingly emphasises a
computational challenge of Bayesian inference. A number of cases has emerged where
Markov Chain Monte Carlo (MCMC) algorithms—the gold standard computation tools
for Bayesian inference to date since the 1990s—are hard to run in realistic time, unless
a gigantic computation cluster is available, or even technically impossible to apply in
the first place. In the “computer” age that has been further elevated today, Bayesian
statisticians appear to embark on new horizons of inference for highly complex models, as
represented by such directions as approximate Bayesian computation (Marin et al., 2012)
and more broadly approximate Bayesian inference (Martin et al., 2023). The aim of this
thesis is to advance the quest for the emerging frontier of inference for complex models in
the particular context of intractable models.

A considerable portion of complex models falls into a class called intractable model,
that is, a model whose likelihood is analytically and computationally hard to access. To be
exact, there exists two major levels of intractability: (i) the explicit form of the likelihood
is not available entirely; (ii) the explicit form of the likelihood is partly available up to the
normalising constant. In the former case, a model is essentially black-box with only its
parameter space known and its sampling feasible. Inference in this case is often referred
to as simulator-based inference (Cranmer et al., 2020), in which samples from the model
are leveraged as an alternative means to the inaccessible likelihood. A focus of this thesis
is on the latter case, in which a modeller explicitly designs a model, but it is too complex
to keep the normalising constant analytical. A model pθ typically admits a decomposition
pθ(x) = qθ(x)/Z(θ) based on some non-normalised function qθ and the normalising constant
Z(θ) =

∫
X qθ(x)dx. For a modeller, the design of the model pθ is then reduced to the

1



design of the function qθ with a desideratum for the associated normalising constant Z(θ)
to be analytically known. It is, however, immediately deduced that Z(θ) is only empirically
known if a complex form of qθ is necessitated to describe an intricate phenomenon. In
addition, it readily becomes difficult to estimate the integral Z(θ) when qθ is complex or x

is high dimensional. Such intractable models pθ appear in many important applications,
including spatial models (Besag, 1974, 1986; Diggle, 1990), exponential random graph
models (Park and Haran, 2018a), gene expression models (Jiang et al., 2021), hidden Potts
models for satellite data (Moores et al., 2020), count data models (Inouye et al., 2017),
and energy-based models versatile in machine learning (Lecun et al., 2006).

For most inference methodologies, the normalising constant Z(θ) is essential because
Z(θ) is, in fact, a function of the parameter θ despite its designation as “constant”. For
example, the maximum likelihood estimator of the model pθ requires the normalising
constant Z(θ) to be explicitly available. The intractability of the model pθ causes a critical
challenge, particularly in Bayesian inference, by turning its posterior doubly intractable
(Murray et al., 2006). Given data D = {xi}n

i=1, a posterior πn of a model pθ is defined by

πn(θ) = 1
Z(D) exp

(
n∑

i=1
log pθ(xi)

)
π(θ) = 1

Z(D) exp
(

n∑
i=1

log qθ(xi) − log Z(θ)
)

π(θ)

where π denotes a prior over the parameter space Θ and Z(D) denotes a normalising
constant of the posterior itself. In general, the normalising constant Z(D) of the posterior
is intractable—i.e. not analytical and hard to compute—regardless of intractability of the
model pθ, unless any conjugate prior exists. Standard MCMC algorithms are designed
to sample from the posterior πn while circumventing an evaluation of the normalising
constant Z(D). However, if the model pθ is intractable, the posterior πn includes another
intractable component Z(θ), the normalising constant of the model pθ. Standard MCMC
algorithms cannot be used in this setting, since they require explicit evaluation of all
the components dependent on θ. It may be possible to run them in an ad-hoc manner
by substituting some estimate for Z(θ) at each θ, but such an ad-hoc approach easily
becomes unrealistic due to the need of an accurate estimation of Z(θ) at every iterative
step of MCMC over different θ, which can be tens of thousands in total. For these reasons,
Bayesian inference for intractable models typically entails a certain elegant algorithm that
circumvents evaluation of both Z(D) and Z(θ) simultaneously.

A classical approach to inference for intractable models, called pseudo-likelihood ap-
proach, was pioneered by Besag (1974). Certain types of model structures admit the mean
field approximation of the original likelihoods, where the original model is approximated by
the product of multiple conditional p.d.f.s that are all tractable. In the pseudo-likelihood
approach, inference is performed using such a closed-form approximation of the intractable
likelihood. In the 1990s starting with e.g. Gelfand and Smith (1990), Bayesian statistics
underwent a major shift from conjugate inference to flexible inference powered by MCMC
algorithms, whose original invention may be further traced back to Metropolis et al. (1953).
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As entering into the age where computational capacity started blooming, advanced designs
of MCMC algorithms geared towards inference of complex models were naturally driven.
In the 2000s, multiple new classes of MCMC algorithms tailored to intractable models were
proposed, where the high-level approach is to incorporate either sampling from models
or unbiased estimation of likelihoods into the MCMC procedures (Andrieu and Roberts,
2009; Lyne et al., 2015; Murray et al., 2006; Møller et al., 2006). Despite the ingenuous
convergence theories that underpin these MCMC algorithms, the need of sampling from
models or unbiased estimation of likelihoods at every step of MCMC can, however, become
impractical for today’s ever-evolving models. The practical utility of approximate Bayesian
computation based fully on simulation also came to gain attention in wide application
domains (e.g. Beaumont et al., 2002). Its theoretical understanding has been one of the
central topics in approximate Bayesian inference to date (Frazier et al., 2018, 2020).

In the 2010s, Bissiri et al. (2016) coined a term, generalised Bayesian inference, as a
designation of approaches that define a pseudo-posterior using an arbitrary loss function
Dn(θ) of a model pθ in lieu of the likelihood:

πD
n (θ) ∝ exp (−βDn(θ)) π(θ)

where β ∈ (0, ∞) is a hyperparameter commonly used to adjust the scale of the loss
Dn(θ). The standard posterior πn is recovered by selecting a negative log-likelihood loss
Dn(θ) = −∑n

i=1 log pθ(xi) with β = 1. Studies on generalised Bayesian inference have
been motivated independently of intractable models, and it has rarely been considered
in that context. Our focus is to establish a novel Bayesian approach to intractable
models based on generalised Bayesian inference. Concretely, we define a novel generalised
posterior built upon a loss called Stein discrepancy, which has a number of appealing
properties to intractable models. Strikingly, the resulting posterior is no longer doubly
intractable despite the use of intractable models, and can therefore be efficiently computed
by any standard MCMC algorithms. In contrast to existing works, this requires neither
approximation of models nor sampling from them by the virtue of the Stein discrepancy
that measures a fit of a model pθ without knowing the normalising constant Z(θ).

Chief concerns associated with the use of complex models are not limited to just
computation. The high intricacy of interested phenomena means the difficulty of modelling,
by which one’s model involves an increased risk of describing only some aspects of the
phenomenon well and the others poorly, deviating from the ideal description of the
phenomenon. Indeed, statistical modelling often deviates from the idealised approach of
fine-tuned, expertly-crafted descriptions of real-world phenomena, in favour of default
models fitted to a large dataset. If the default model is a good approximation to the
data-generating mechanism, this strategy can be successful, but otherwise things can
quickly go awry (Grünwald, 2012). Consequently, the reliability of outcomes of Bayesian
inference, which has been a long-standing subject of study (Insua and Ruggeri, 2000), has
become even more critical today. A better understanding of when outcomes of Bayesian
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inference can be unreliable, and establishing robust Bayesian methodologies for that
cases, are pressing issues for complex models in tandem with the computational challenge.
Generalised Bayesian inference (Bissiri et al., 2016) was originally motivated in this context
of model misspecification, and in particular using divergence-based loss has been shown
to mitigate some of the risks involved when a model is misspecified (Jewson et al., 2018).
Unlike other robust modelling strategies, these methods do not change the statistical
model. Instead, they change how the model’s parameters are scored, affecting how “good”
parameter values are discerned from “bad” ones. This is a key practical advantage, as
it implies that such strategies do not require precise knowledge about how the model is
misspecified.

This thesis aims to contribute to the frontier of Bayesian methodologies to intractable
models, adding a new line of approach based on generalised Bayesian inference and Stein
discrepancy. This is the first generalised Bayesian approach considered in the context
of intractable likelihoods. Stein discrepancy is a nascent class of statistical divergences,
and there exists a number of different forms of Stein discrepancies to use. We begin with
constructing our generalised posterior using a Stein discrepancy in the most abstract form.
We then establish useful theoretical underpinnings of generalised posteriors in the aim of
providing certain types of assurance for them to operate well. Subsequently, we derive novel
concrete forms of the Stein discrepancy that are particularly useful for intractable models
in continuous and discrete domains, respectively. The generalised posteriors resulting from
these concrete Stein discrepancies are assessed both theoretically and empirically. The
detailed contributions of this thesis are summarised as follows:

Chapter 3. Generalised Bayesian Inference for Intractable Models

1. We propose a novel generalised Bayesian inference framework, called SD-Bayes, that
selects a Stein discrepancy as the loss.

2. We establish posterior consistency and the Bernstein-von Mise theorem of generalised
posteriors. These results confer an appealing regularity of generalised posteriors in
the limiting regime. In particular, the former implies that a generalised posterior
concentrates at the same limiting point as the corresponding frequentist estimator.
The latter further implies that a generalised posterior is asymptotically normal.

3. We establish a rigorous criterion of generalised posteriors to be robust against model
misspecification, called global bias-robustness, in a simplified yet common setting
where model misspecification is caused by an outlier mixed in data. Any generalised
posterior with this property is equipped with a guaranteed insensitivity to outliers.

4. It is a standard practice to calibrate the scaling parameter β to adjust the scale of
credible regions of generalised posteriors. We discuss a novel calibration algorithm of
β based on minimisation of a statistical divergence between a generalised posterior and
an approximated sampling distribution of the corresponding frequentist estimator.
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Chapter 4. Case I: Approach to Continuous Intractable Models

1. We consider a particular Stein discrepancy, called the kernel Stein discrepancy
(KSD), with a new widely applicable formulation derived. We propose the SD-Bayes
methodology resulting from the use of KSD, called KSD-Bayes, that is (not limited
to but) appealing to intractable models in continuous domains such as Rd. It is
demonstrated that KSD-Bayes is computable by any standard MCMC algorithms.

2. We show that KSD-Bayes, strikingly, achieves fully conjugate inference for intractable
models in exponential family, so MCMC algorithms are not required.

3. We illustrate that KSD-Bayes satisfies all the theoretical properties established in
Chapter 3. In particular, KSD-Bayes can be highly robust to an outlier mixed in
data under an appropriate choice of kernel, suggested by our theoretical analysis.

4. KSD-Bayes and its robustness are assessed by four distinct experiments of continuous
intractable models, including random graph models.

Chapter 5. Case II: Approach to Discrete Intractable Models

1. We derive a novel formulation of a discrete version of the Fisher divergence, called
the discrete Fisher divergence (DFD), and establish that DFD is a Stein discrepancy.
We then consider the SD-Bayes methodology resulting from the use of DFD, called
DFD-Bayes accordingly, as an appealing approach to intractable models in discrete
spaces. DFD-Bayes is computable by any standard MCMC algorithms.

2. We present a set of practical advantages of DFD over KSD that is attractive especially
in the discrete case, including the computational cost and the independence of kernel.

3. We demonstrate posterior consistency and the Bernstein–von Mises theorem for
DFD-Bayes. Furthermore, we establish a theoretical connection between DFD and
KSD though the lens of Stein discrepancy.

4. DFD-Bayes and its difference from the other posteriors are assessed by three distinct
experiments of discrete intractable models, including the multivariate count data.

The rest of this thesis is structured as follows: Chapter 2 introduces preliminary notions
used in this thesis. Chapter 3 establishes SD-Bayes and provides a set of the aforementioned
theoretical underpinnings. Chapter 4 concretises the SD-Bayes methodology with KSD in
case of continuous intractable models, followed by Chapter 5 that considers DFD as a main
choice in case of discrete intractable models. The theoretical and empirical assessments
are provided in both cases. This thesis is concluded by Chapter 6 that recaps our main
contributions and open avenues for future research.
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Chapter 2. Preliminary

In this chapter, we briefly recap existing Bayesian methodologies for intractable models,
and introduce the main tools to construct our methodology. Section 2.1 introduces
main notations used in the rest of this thesis. Section 2.2 categorises existing Bayesian
methodologies for intractable models into four classes. Section 2.3 describes the framework
of generalised Bayesian inference, which forms the methodological basis of our approach,
SD-Bayes, in Chapter 3. Section 2.4 then introduces Stein discrepancy, which plays a
central role in SD-Bayes. Finally, Section 2.5 recaps the notion of reproducing kernel
Hilbert space (RKHS) used to construct KSD in Chapter 4.

2.1. Setting and Notation

Let X be a locally compact Hausdorff space. Let P(X ) denote a set of all Borel probability
measures P on X . A Dirac measure at x is denoted δx ∈ P(X ). If X is equipped
with a reference measure, we abuse notation for a p.d.f. p by writing p ∈ P(X ) to
indicate that the corresponding distribution P is in P(X ). The Euclidean norm on Rm is
denoted ∥ · ∥. Let PS(Rd) be the set of all Borel probability measures P supported on Rd,
admitting a positive p.d.f. p and continuous partial derivatives x 7→ (∂/∂x(i))p(x). For
P ∈ P(X ), denote by Lq(X ,P) the Lebesgue space of measurable functions f : X → R
s.t. ∥f∥Lq(X ,P) := (

∫
X |f |qdP)1/q < ∞ in which two elements f, g ∈ Lq(X ,P) are identified

if they are P-almost everywhere equal. The set of continuous functions f : X → R is
denoted C(X ). We denote by C1

b (Rd) the set of functions f : Rd → R such that both f

and the partial derivatives x 7→ (∂/∂x(i))f(x) are bounded and continuous on Rd. We
also denote by C1,1

b (Rd × Rd) the set of bivariate functions f : Rd × Rd → R such that
both f and the partial derivatives (x, x′) 7→ (∂/∂x(i))(∂/∂x′

(j))f(x, x′) are bounded and
continuous on Rd × Rd. For an arbitrary set S(X ) (or S(X ,P)) of functions f : X → R,
denote by S(X ;Rk) (or S(X ,P,Rk)) the set of Rk-valued functions whose components
belong to S(X ) (or S(X ,P)). We abbreviate a domain X of the Lebesgue space if X is
clear from context, e.g., Lq(P). Let ∇ and ∇· be the gradient and the divergence operators
in Rd. For functions with multiple arguments, we sometimes use subscripts to indicate the
argument to which the operator is applied, e.g., ∇xf(x, y). For f an Rd-valued function,
[∇f(x)](i,j) := (∂/∂x(i))f(j)(x) and ∇ · f(x) := ∑d

i=1(∂/∂x(i))f(i)(x). For f an Rd×d-valued
function, [∇f(x)](i,j,k) := (∂/∂x(i))f(j,k)(x) and [∇ · f(x)](i) := ∑d

j=1(∂/∂x(j))f(i,j)(x).
Hereafter X is used to denote a space in which data are contained. Let Θ ⊆ Rp be Borel,
in which a parameter of interest θ is contained.
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2.2. Intractable Models and Bayesian Methodologies

A model pθ typically admits a decomposition pθ(x) = qθ(x)/Z(θ) based on some non-
normalised function qθ and the normalising constant Z(θ) =

∫
X qθ(x)dx. A focus of

this thesis is on intractable models whose non-normalised function qθ is available but
normalising constant Z(θ) =

∫
X qθ(x)dx admits neither any analytical solution nor any

sufficiently accurate approximation. Such intractability of a model pθ causes a severe
challenge in Bayesian inference due to explicit dependence of the posterior πn on the model
normalising constant Z(θ):

πn(θ) ∝ exp
(

n∑
i=1

log qθ(xi) − log Z(θ)
)

π(θ).

Standard MCMC algorithms require Z(θ) to be explicitly evaluated at each iterative step
over different values of θ. Thus, Bayesian inference for intractable models typically entails
a tailored algorithm to circumvent evaluation of the inaccessible component Z(θ). The
aim of this section is to briefly review existing Bayesian methodologies for intractable
models. Frequentist methodologies for intractable models are not discussed, where we
refer the reader to e.g Hyvärinen (2005); Takenouchi and Kanamori (2017).

Approximate Likelihood Faced with an intractable model, a pragmatic approach
is simply to employ standard Bayesian inference with a tractable approximation to the
likelihood (e.g. Bhattacharyya and Atchade, 2019). A classical example of approximate
likelihood is the pseudo-likelihood of Besag (1974), which replaces the joint probability
mass function of the data with a product of conditional probability mass functions, each of
which is sufficiently low-dimensional (or otherwise tractable enough) to permit normalising
constants to be computed. Generalisations of this approach are sometimes referred to as
composite likelihood (Varin et al., 2011). These approximations are usually model-specific,
and analysis of the approximation error may be difficult in general (Lindsay et al., 2011).

Simulation-Based Methods One class of intractable statistical models that has been
explored in detail are models for which it is possible to simulate data x conditional on the
parameter θ. A well-known approach to inference in this class of models is the exchange
algorithm of Møller et al. (2006) and Murray et al. (2006), which constructs a Markov chain
on an extended state space for which the standard Bayesian posterior occurs as a marginal.
Simulation of the Markov chain requires both exact simulation from the statistical model
and evaluation of p̃θ(x). Further methodological development has been focused on removing
the requirement to evaluate p̃θ(x), with approximate Bayesian computation (Frazier et al.,
2018; Marin et al., 2012), Bayesian synthetic likelihood (Frazier et al., 2022; Price et al.,
2018), MMD-Bayes (Cherief-Abdellatif and Alquier, 2020; Pacchiardi and Dutta, 2021)
and the posterior bootstrap (Dellaporta et al., 2022) emerging as likelihood-free methods,
which require only that data can be simulated. Unfortunately, for many statistical models
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of discrete data for example, exact simulation (the state-of-the-art being e.g. Propp and
Wilson, 1998) from the model is impractical.

Markov Chain-Based Methods Another pragmatic approach is to substitute exact
simulations with approximate simulations, such as obtained from a Markov chain that
leaves the posterior invariant. This idea has been demonstrated to work in specific instances;
see Caimo and Friel (2011); Everitt (2012); Liang (2010) or the review of Park and Haran
(2018b). The main drawback of these approaches, as far as this thesis is concerned, is that
they require the design of a rapidly mixing Markov chain on a possibly large or infinite
set. As such, these methods require bespoke implementations for each class of statistical
model considered, and for many models of interest appropriate Markov chains have yet to
be developed. Thus, Markov chain-based methods do not represent a general solution to
intractable likelihoods.

Plugin-Based Methods The pseudo-marginal approach justifies replacing the in-
tractable likelihood pθ(x) with a positive unbiased estimator p̂θ(x) of the likelihood in the
context of a Metropolis–Hastings algorithm (Andrieu and Roberts, 2009). The practical
difficulty of this approach is to construct a positive unbiased estimator. Lyne et al. (2015)
proposed the Russian roulette estimator for intractable statistical models, a simulation
technique from the physics literature (Carter and Cashwell, 1975) which involves random
truncation of the sum (or of an integral in the continuous context) defining the normalising
constant. The Russian roulette estimator is unbiased but is not guaranteed to be positive,
meaning that post hoc re-weighting of the Markov chain sample path is required. The
ergodicity of Russian roulette has not, to the best of our knowledge, been theoretically
studied (see the discussion in Wei and Murray, 2017). Further, the mixing time of the
Markov chain is known to be sensitive to the variance of p̂θ(x), which can be large for
estimators based on random truncation (especially when there is no clear a priori ordering
for the summands, which can occur in the discrete context). As such, the pseudo-marginal
approach does not at present represent a general computational solution to intractable
likelihood.

This thesis aims to add a novel approach based on generalised Bayesian inference to
these lines of existing Bayesian methodologies for intractable models.

2.3. Generalised Bayesian Inference

Consider a dataset consisting of independent random variables {xi}n
i=1 generated from a

data-generating distribution P ∈ P(X ). Consider also a statistical model Pθ ∈ P(X ), with
the p.d.f. form pθ, indexed by a parameter of interest θ ∈ Θ. The Bayesian statistician
elicits a prior π ∈ P(Θ), which may reflect a priori belief about the parameter θ ∈ Θ, and
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determines a posteriori belief according to

πn(θ) ∝
(

n∏
i=1

pθ(xi)
)

π(θ) = exp
(

n∑
i=1

log pθ(xi)
)

π(θ). (2.1)

If one’s model is well-specified, i.e., there exists θ0 ∈ Θ for which P = Pθ0 , the Bayesian
belief updating is optimal from an information-theoretic perspective (Williams, 1980;
Zellner, 1988). Simply put, it is posited in this case that the model family {Pθ | θ ∈ Θ}
contains the correct data-generating mechanism P. Optimal processing of information
is a desirable property, but the assumption of adequate prior and model specification is
often violated in real-world applications. If one’s model is misspecified, i.e., there exists
no such θ0 ∈ Θ that P = Pθ0 , the optimality of the Bayesian belief updating is no longer
guaranteed. It has been long recognised in this case that outcomes of the Bayesian belief
updating can become unreliable (Grünwald, 2012). This has inspired several lines of
research, including strategies for the robust specification of prior belief (Berger et al.,
1994), the so-called safe Bayes approach (de Heide et al., 2020; Grünwald, 2011, 2012),
power posteriors (e.g. Holmes and Walker, 2017), coarsened posteriors (Miller and Dunson,
2019), bagged posteriors (Huggins and Miller, 2020), ρ-posteriors (Baraud and Birgé, 2020)
and Bayesian inference based on scoring rules (Giummolè et al., 2019).

A particularly versatile approach to robustness to model misspecification, which
encompasses most of the above, is generalised Bayesian inference (Bissiri et al., 2016);
see also the earlier work of Chernozhukov and Hong (2003). This approach constructs a
posterior πD

n ∈ P(Θ) using an arbitrary loss function Dn : Θ → R of a model Pθ, which
may be data-dependent, and a scaling parameter β > 0, according to

πD
n (θ) ∝ exp (−βDn(θ)) π(θ). (2.2)

The so-called generalised posterior πD
n coincides with the standard posterior πn when the

loss function is the negative log-likelihood Dn(θ) = − 1
n

∑n
i=1 log pθ(xi) with β = 1. As

discussed in Bissiri et al. (2016); Knoblauch et al. (2022), generalised Bayesian inference is
underpinned by an optimisation-centric interpretation:

πD
n = arg min

ρ∈P(Θ)

{
β Eθ∼ρ [Dn(θ)] + KL(ρ∥π)

}
(2.3)

where KL(ρ∥π) denotes the Kullback–Leibler (KL) divergence between two distributions
ρ, π ∈ P(Θ). This perspective reveals that the standard Bayesian posterior is an implicit
commitment to a particular loss function—the negative log-likelihood—and that the
weighting constant β controls the influence of this loss relative to the prior π. In particular,
under mild conditions, the negative log-likelihood converges to KL(P∥Pθ) up to some
constant independent of θ, which reveals that standard Bayesian posterior concentrates
around the value of θ that minimizes the KL divergence between the data-generating
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distribution P and the model Pθ. In the setting of misspecified models, such concentration
is problematic, often leading to over-confident predictions (Bernardo and Smith, 2009).

The use of alternative, divergence-based loss functions has been demonstrated to
mitigate the negative consequences of a misspecified statistical model, as pioneered in
the work on α- and β-divergences in Ghosh and Basu (2016); Hooker and Vidyashankar
(2014) and extended to γ-divergence in Nakagawa and Hashimoto (2020). See also Baraud
and Birgé (2020). The properties of the divergence, including any potentially undesirable
pathologies associated with it, determine the properties of the generalised posterior (Jewson
et al., 2018; Knoblauch et al., 2022). These compelling theoretical results have led to
considerable interest in generalised Bayesian inference with divergence-based loss functions,
yet the divergences that have been considered to-date cannot be computed in the important
setting of intractable model. The aim of this thesis is to open up a new avenue of generalised
Bayesian inference for intractable models, capitalising on a nascent class of loss called
Stein discrepancy that is appealing to intractable models.

Calibration It is a common practice in the context of generalised Bayesian inference
to calibrate the scaling parameter β > 0 in (2.2) to adjust the gross scale of credible
regions produced by generalised posteriors. If a model is misspecified, there is essentially
no known optimal way to quantify uncertainty associated with the parameter. If so, it is
beneficial to use a credible region that is at least approximately equipped with certain nice
properties, such as frequentist coverage. Such a high-level approach was also considered in
the context of non-informative prior (Robert, 2007). A typical approach to the calibration
is to select β so that a credible region of a generalised posterior approximately resembles
a confidence interval of its frequentist counterpart. Lyddon et al. (2019) proposed to align
the trace of an asymptotic covariance of a generalised posterior with that of the frequentist
counterpart. Denoting by V̂B an estimated value of the asymptotic covariance of the
generalised posterior and by V̂F that of the frequentist counterpart in finite n, the value
of β is then selected by β = tr(VF )/tr(VB). The approach by Lyddon et al. (2019) is one
of the most straightforward approach with theoretical explicitness. However, estimation
of the asymptotic covariance can be highly unstable in high dimensional or small data
applications. See also Syring and Martin (2019) for a recent review on the calibration and
an alternative approach based on a stochastic sequential update algorithm.

2.4. Stein Discrepancy

In an independent line of research of generalised Bayesian inference, a Stein discrepancy
was proposed in Gorham and Mackey (2015) to provide statistical divergences that are
both computable and capable of providing various forms of distributional convergence
control. Since its introduction, Stein discrepancy has demonstrated utility over a range of
statistical applications, including hypothesis testing (Chwialkowski et al., 2016; Liu et al.,
2016), parameter estimation (Barp et al., 2019), variational inference (Duncan et al., 2023;
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Liu and Wang, 2016), Monte Carlo sampling (Chen et al., 2019), and post-processing of
Markov chain Monte Carlo (Riabiz et al., 2022); see Anastasiou et al. (2021) for a recent
review.

The approach of Stein discrepancy is based on the method of Stein (1972), which
requires the identification of a linear operator SQ : U → L1(X ,Q), depending on a
probability distribution Q ∈ P(X ) and acting on an arbitrary Banach space U , such that

EX∼Q[SQ[h](X)] = 0 ∀h ∈ U . (2.4)

Such an operator SQ is called a Stein operator and U is called a Stein set. Given a
distribution Q ∈ P(X ), there exists infinitely many operators SQ satisfying (2.4). A
convenient example is the Langevin Stein operator (Gorham and Mackey, 2015), defined
for Q ∈ PS(Rd) and a Banach space U of differentiable functions h : Rd → Rd, as

SQ[h](x) = h(x) · ∇ log q(x) + ∇ · h(x) (2.5)

where q is the p.d.f. of Q. Under suitable regularity conditions on ∇ log q and U , the
Langevin Stein operator satisfies the zero-identity of (2.4) (Gorham and Mackey, 2015,
Proposition 1). Given P,Q ∈ P(X ) and a Stein operator SQ : U → L1(X ,Q) whose image
is contained in L1(X ,P), the most abstract form of Stein discrepancy is defined as

SD(Q∥P) := sup
∥h∥U ≤1

∣∣∣∣EX∼P [SQ[h](X)] − EX∼Q [SQ[h](X)]
∣∣∣∣ = sup

∥h∥U ≤1

∣∣∣∣EX∼P [SQ[h](X)]
∣∣∣∣,

(2.6)

where the last equality follows directly from the zero-identity (2.4). Under mild assumptions,
the Stein discrepancy defines a statistical divergence between two probability distributions
P,Q ∈ P(X ), meaning that SD(Q∥P) ≥ 0 with equality if and only if P = Q; see
Proposition 1 and Theorem 2 in Barp et al. (2019) for example. Under slightly stronger
assumptions, the Stein discrepancy provides convergence control, meaning that a sequence
(Pn)∞

n=1 ⊂ P(X ) converges in a specified sense to Q whenever SD(Q∥Pn) → 0; see Gorham
and Mackey (2015, Theorem 2, Proposition 3) and Gorham and Mackey (2017, Theorem
8, Proposition 9).

In this thesis, the Stein discrepancy is used as a loss SD(Pθ∥Pn) between a model Pθ

and an empirical distribution Pn. An important property of the Stein discrepancy that we
exploit in this context is that, unlike other divergences, the Stein discrepancy can often be
computed without a normalising constant of Pθ. For example, in case of continuous domain
Rd, the Langevin Stein operators in (2.5) depend on Pθ only through the log-derivative
∇ log pθ, which can be computed even when pθ is an intractable model. This is because
∇ log pθ(x) = ∇pθ(x)/pθ(x) cancels out the normalising constant Z(θ) by the fraction.
The suitability of the Stein discrepancy for use in generalised Bayesian inference has not
previously been considered, and this is our focus.
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In order that the Stein discrepancy is fully useful in practice, the supremum term over
the unit ball of U in (2.6) should be efficiently computable. Remarkably, the supremum
term in (2.6) is attained in closed-form by choosing an appropriate set for U together with
a Stein operator SQ. For example, the Fisher divergence, developed before the introduction
of Stein discrepancy, is an example of Stein discrepancies that are available in closed-form.
The Fisher divergence for distributions Q,P ∈ PS(Rd) is defined by

FD2(Q∥P) = EX∼P[∥∇ log q(X) − ∇ log p(X)∥2]. (2.7)

The form of (2.7) can be further translated into a more computationally convenient form
that is well-known as the score matching objective (Hyvärinen, 2005):

FD2(Q∥P) +C= SM2(Q∥P) := EX∼P
[
∥∇ log q(X)∥2 + 2 Tr

(
∇2 log q(X)

)]
(2.8)

where +C= denotes equality that holds up to a Q-independent constant. The form of (2.8)
is mostly used in practice because it is computable even when P is set to an empirical
distribution Pn. The Fisher divergence can be derived from (2.6) by selecting the Langevin
Stein operator (2.5) for SQ and a unit ball of L2 space of Rd-valued functions for U
(Barp et al., 2019). The Stein discrepancies leveraged in this thesis—KSD and DFD—are
each derived in Chapter 4 for continuous intractable models and Chapter 5 for discrete
intractable models.

2.5. Reproducing Kernel Hilbert Space

The construction of KSD, a special case of Stein discrepancies whose supremum term in
(2.6) are available in closed-form, requires the notion of kernel and RKHS. This section
contains background on kernel and the matrix-valued extension. Our main references for
the matrix-valued extension are Caponnetto et al. (2008); Carmeli et al. (2006, 2010). We
begin with the scalar-valued case and define a scalar-valued kernel:

Definition 1 (Scalar-valued kernel). A bivariate function k : X × X → R is called a
(scalar-valued) kernel if

(i) k is symmetric; i.e. k(x, x′) = k(x′, x) for all x, x′ ∈ X ,

(ii) k is positive semi-definite; i.e. ∑n
i=1

∑n
j=1 cicjk(xi, xj) ≥ 0 for any number n ∈ N,

scalars c1, . . . , cn ∈ R and points x1, . . . , xn ∈ X .

One of the most fundamental facts in kernel methods is that every kernel k can be uniquely
associated with some Hilbert space H of functions h : X → R. Such a Hilbert space is
called the RKHS of kernel k (Paulsen and Raghupathi, 2016, Theorem 2.14).

Definition 2 (Reproducing kernel Hilbert space). A Hilbert space H is called a reproducing
kernel Hilbert space of a kernel k : X × X → R if
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(i) k(x, ·) ∈ H for all x ∈ X ,

(ii) ⟨h, k(x, ·)⟩H = h(x) for all x ∈ X and h ∈ H.

Item (ii) is called the reproducing property of k in H.

The unique association between a kernel k and the RKHS H is extremely convenient
because the property of the RKHS H as a function space is entirely determined and
analysed through the kernel k, intuitively speaking. For example, the benefit of this
association is crystallised when computing a supremum over a set of functions in the
RKHS H. In several settings, such a supremum can be translated into a closed-form
quantity dependent only on the kernel k (Gretton et al., 2012).

We next consider the matrix-valued extension of a scalar-valued kernel. The definitions
provided above can be generalised in the form of a matrix-valued kernel K : X ×X → Rm×m

for an arbitrary dimension m ∈ N.

Definition 3 (Matrix-valued kernel). A bivariate function K : X × X → Rm×m, m > 1,
is called a (matrix-valued) kernel if

(i) K is symmetric; i.e. K(x, x′) = K(x′, x) for all x, x′ ∈ X ,

(ii) k is positive semi-definite; i.e. ∑n
i=1

∑n
j=1 ci · k(xi, xj)cj ≥ 0 for any number n ∈ N,

vectors c1, . . . , cn ∈ Rm and points x1, . . . , xn ∈ X .

As a direct generalisation of the scalar-valued case, there exists a uniquely associated Hilbert
space H of functions h : X → Rm to every matrix-valued kernel K : X × X → Rm×m.
Notice that the Hilbert space H is now a space of Rm-valued functions on X and the
inner produce ⟨·, ·⟩H : H × H → R is a bivariate functional of two Rm-valued functions.
To see this Hilbert space H as RKHS, some additional notation is required: Let F be
a Rm×m-valued function and let Fi,− denote the vector-valued function Fi,− : X → Rm

defined by the i-th row of F . Similarly, let G be a Rm×m-valued function and let G−,j

denote the vector-valued function G−,j : X → Rm defined by the j-th column of G. With
Rm-valued functions f, g : X → Rm, define the symbols ⟨F, g⟩H, ⟨f, G⟩H and ⟨F, G⟩H by

⟨F, g⟩H :=


⟨F1,−, g⟩H

...
⟨Fm,−, g⟩H

 ∈ Rm,

⟨f, G⟩H :=


⟨f, G−,1⟩H

...
⟨f, G−,m⟩H

 ∈ Rm,

⟨F, G⟩H :=


⟨F1,−, G−,1⟩H · · · ⟨F1,−, G−,m⟩H

... ...
⟨Fm,−, G−,1⟩H · · · ⟨Fm,−, G−,m⟩H

 ∈ Rm×m,
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where these are to be interpreted as compound symbols only (i.e. we are not attempting
to define an inner product on matrix-valued functions). Then, the generalisation of the
reproducing property (item (ii) in Definition 2) to a matrix-valued kernel K is

h(x) = ⟨h, K(x, ·)⟩H =


⟨h, K−,1(x, ·)⟩H

...
⟨h, K−,m(x, ·)⟩H

 ∈ Rm

for all x ∈ X and h ∈ H (Carmeli et al., 2010). The generalisation of the symmetry
property (item (i) in Definition 2) is straight-forward; K(x, x′) = K(x′, x) for all x, x′ ∈ X .
A Hilbert space H for which these two properties are satisfied is called a vector-valued
RKHS that we say is reproduced by the matrix-valued kernel K. Matrix-valued kernels and
their associated vector-valued RKHS have recently been exploited in the context of Stein’s
method (e.g. Barp et al., 2019; Wang et al., 2019). Since we mainly use matrix-valued
kernels to construct KSD in this thesis, matrix-valued kernel and vector-valued RKHS are
simply called kernel and RKHS when it is clear.
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Chapter 3. Generalised Bayesian Inference for Intractable Models

Highly structured data, or data belong to a high-dimensional domain X , are often associated
with an intractable model. Moreover, the difficulty of modelling such data means that
models will typically be misspecified. Thus, there is a pressing need for Bayesian methods
that are both robust and compatible with intractable models. To this end, we introduce
SD-Bayes, a generalised Bayesian procedure based on a Stein discrepancy as a loss function.
There exists numerous choices of Stein discrepancies that can be used in SD-Bayes and
each Stein discrepancy equips SD-Bayes with different properties. Building SD-Bayes
upon a specific Stein discrepancy is deferred to Chapters 4 and 5, where we will derive
concrete Stein discrepancies particularly useful for (i) models in continuous domains and
(ii) models in discrete domains, respectively. In this chapter, leaving a choice of the Stein
discrepancy arbitrary, we will establish useful theoretical underpinnings of generalised
Bayesian procedures. The aim of this chapter is to provide certain types of assurance
that generalised Bayesian procedures operate well, in advance of giving a specific shape to
SD-Bayes in Chapters 4 and 5. Typically, generalised Bayesian procedures benefit from
“calibration” of the posteriors to adjust their credible regions. Independently of the use of
a Stein discrepancy in SD-Bayes, we will also consider a novel calibration algorithm based
on a Stein discrepancy, illuminating the striking computational advantages in the context
of the calibration.

This chapter is structured as follows: Section 3.1 presents SD-Bayes with a form of a
Stein discrepancy kept abstract. The SD-Bayes methodology will become concrete once a
specific Stein discrepancy is selected, as considered later in Chapters 4 and 5. Section 3.2
establishes asymptotic properties—posterior consistency and the Bernstein–von Mises
theorem—of generalised posteriors that ensure their appealing regularities as the number
of data increases. Section 3.3 establishes a condition of generalised posteriors to be robust
to model misspecification caused by an outlier, formulating a qualitative criterion called
global bias-robustness of generalised posteriors. Finally, a new approach to calibrating
generalised posteriors using a Stein discrepancy is discussed in Section 3.4. Note that all
the results in Sections 3.2 to 3.4 can apply to any generalised posteriors that are not limited
to SD-Bayes, and may hence be of independent interest. It is also worth highlighting that
the asymptotic results in Section 3.2 hold regardless of whether a model is well-specified
or misspecified. The results thus cover practical cases under model misspecification where
the use of generalised Bayesian inference is usually motivated.
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3.1. SD-Bayes Framework

Suppose we are given a prior p.d.f. π ∈ P(Θ) and a statistical model {Pθ | θ ∈ Θ} ⊂ P(X ).
Let {xi}n

i=1 be independent observations generated from a population distribution P ∈ P(X )
and let Pn := 1

n

∑n
i=1 δxi

be the empirical measure associated to this dataset. In this context,
the framework of SD-Bayes can now be defined as follows:

Definition 4 (SD-Bayes). For a model Pθ, select a Stein operator SPθ
and a Stein set U .

Denote the associated Stein discrepancy by SD(Pθ∥Pn) for a given data distribution Pn.
The SD-Bayes posterior is defined by

πD
n (θ) ∝ exp (−βn SDγ(Pθ∥Pn)) π(θ) (3.1)

where β, γ ∈ (0, ∞).

Comparing (3.1) to (2.2) confirms that SD-Bayes is a generalised Bayesian methodology
given the loss function Dn(θ) = n SDγ(Pθ∥Pn), where n is the default scaling of the
loss SDγ(Pθ∥Pn) to induce concentration of the posterior as n increases. There is an
arbitrariness to using the γ-powered discrepancy, but γ = 2, which is our default choice,
turns out to be appropriate for all Stein discrepancies considered in this thesis, ensuring
that concentration of SD2(Pθ∥Pn) around its population value SD2(Pθ∥P) occurs at a rate
O(n−1/2) analogous to the standard Bayesian inference case. It also permits tractable
computation of (3.1) and enables concrete analysis of the SD-Bayes posterior, whose
details are described in Chapters 4 and 5. We hence focus on our default choice γ = 2
entirely in this thesis. A discussion of how the weighting constant β should be selected is
provided in Section 3.4.

There exists appealing Stein discrepancies that attain a closed-form solution of the
supremum term in (2.6). Such Stein discrepancies, that are analytically computable
without the inconvenient need of approximating the supremum term, are useful in practice
and capitalised in this thesis. Table 3.1 summarises three major Stein discrepancies
available in closed-form. It is worth highlighting that our construction of KSD generalises
the original formulations (Chwialkowski et al., 2016; Liu et al., 2016; Wang et al., 2019),
accepting any arbitrary Stein operator SP and any general domain X . Furthermore, our
construction of DFD permits a wider class of discrete domains than the existing studies
(Yang et al., 2018). Their details are deferred to Chapters 4 and 5 as aforementioned.
A few other computable Stein discrepancies are not listed above; for example, diffusion
KSD (Barp et al., 2019) is a special case of KSD under our general construction, and
diffusion score matching (Barp et al., 2019) is a straightforward variant of FD replacing
the Langevin Stein operator with its extension called diffusion Stein operator.

Next, we turn our attention to establishing several theoretical underpinnings of gen-
eralised Bayesian procedures. All the arguments in the remainder of this chapter are
not limited to SD-Bayes. In what follows, Dn(θ) denotes an arbitrary loss function for
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name domain X Stein operator SP Stein set U closed form
KSD arbitrary arbitrary unit ball of RKHS of kernel K (4.1)
DFD discrete (5.5) unit ball of L2(Q;Rd) (5.2)
FD continuous (2.5) unit ball of L2(Q;Rd) (2.7)

Table 3.1 A list of major Stein discrepancies computable in closed form.

a model Pθ dependent of a dataset {xi}n
i=1 and D(θ) denotes its population counterpart

dependent of a data-generating distribution P of the dataset. These results will be applied
to SD-Bayes in Chapters 4 and 5, given specific Stein discrepancies. Note that all the main
results presented below are general enough to permit a loss Dn(θ) to be arbitrary, a model
Pθ to be misspecified, and data {xi}n

i=1 to be non-i.i.d. However, non-i.i.d. data setting
causes difficulty in verifying the derived conditions in each application, and therefore
non-i.i.d. data are not focused in this thesis. It is demonstrated in the subsequent chapters
that i.i.d. case includes a number of interesting applications.

3.2. Posterior Consistency and Bernstein–von Mises Theorem

Posterior consistency and the Bernstein–von Mises theorem are long-studied theoretical
underpinnings of Bayesian methodologies to justify them from the frequentist perspective.
A posterior distribution is said to be consistent if it concentrates around an “optimal”
parameter θ∗, that is, a minimiser of a population loss D(θ). For example, D(θ) =
− 1

n
EX∼P[log pθ(X)] in standard Bayesian inference. This guarantees that a posterior

identifies the optimal parameter in the limit n → ∞, placing all the probability mass
at the same limiting point θ∗ as the frequentist estimator θn = arg minθ∈Θ Dn(θ). On
the other hand, the Bernstein–von Mises theorem tells us the asymptotic rate at which
this convergence happens, suggesting that a re-scaled posterior by a factor of

√
n is

asymptotically normal around the optimal parameter θ∗. This implies that inconvenient
properties of a posterior, such as multi-modality, can diminish at an asymptotic rate

√
n

given a sufficient amount of data. These two fundamental results ensure that a posterior
is well-regulated in the limit and that Bayesian methodologies function aptly even under
the circumstance where data continuously and almost infinitely increase.

Posterior consistency and the Bernstein–von Mises theorem, which were originally
formulated for standard Bayesian inference, can be extended to generalised Bayesian
inference of arbitrary loss Dn(θ), conferring the above underpinning from the frequentist
perspective. The classical result developed for standard Bayesian inference often requires
a model to be well-specified. In contract, our extension to generalised Bayesian procedures
holds regardless of whether a model is well-specified or misspecified. Thus, the results in
this section are practical because the use of generalised Bayesian procedures is (not only
but) often considered in applications of misspecified models.
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3.2.1. Posterior Consistency

First, we establish posterior consistency of generalised posteriors. The term “posterior
consistency” generally refers to concentration of a posterior to a point mass at the optimal
parameter θ∗ in the limit n → ∞. Nonetheless, it is also possible to derive a non-asymptotic
rate of the concentration with respect to the data number n. Such rates, often referred to
as posterior concentration rate, is a more precise version of posterior consistency (Rousseau,
2016). For example, posterior concentration rate in the context of generalised posteriors
was considered by Cherief-Abdellatif and Alquier (2020) for a specific case where the loss
is set to the maximum mean discrepancy (Gretton et al., 2012). Inspired by their analysis,
we establish an analogous result for generalised posteriors with general losses.

First of all, our consistency result requires a prior mass condition similar to that
of Cherief-Abdellatif and Alquier (2020). It specifies the amount of prior mass in a
neighbourhood around the optimal parameter θ∗ that is required.

Assumption 1 (Prior Mass Condition). For any θ∗ ∈ arg infθ∈Θ D(θ), a prior is assumed
to

1. admit a p.d.f. π that is continuous at θ∗, with π(θ∗) > 0;

2. satisfy
∫

Bn(α1) π(θ)dθ ≥ e−α2
√

n for some constants α1, α2 > 0,

where we define Bn(α1) := {θ ∈ Θ : |D(θ) − D(θ∗)| ≤ α1/
√

n}.

This is not a strong condition because the required prior mass over Bn(α1) decays expo-
nentially as n grow. However, it often needs to be directly assumed rather than verified
due to the condition depending on a population loss D(θ) that is inaccessible in practice.
Our consistency result also requires a convergence rate of the empirical loss Dn(θ) to the
population loss D(θ) in expectation with respect to realisation of the datasets:

Assumption 2 (Convergence Rate). At each θ ∈ Θ, there exists 0 < σ(θ) < ∞ s.t.

EX1,...,Xn [|Dn(θ) − D(θ)|] ≤ σ(θ)√
n

. (3.2)

If the loss Dn(θ) is additive—i.e., Dn(θ) = 1
n

∑n
i=1 l(θ, xi) for some function l—and data

are i.i.d., Assumption 2 holds immediately given a finite variance of l. The following
proposition verifies Assumption 2 for any additive loss.

Proposition 1. Suppose that data are i.i.d. generated from a distribution P. Suppose that
there exists l : Θ × X → R s.t. Dn(θ) = 1

n

∑n
i=1 l(θ, xi) and VX∼P[l(θ, X)] < ∞ at each

θ ∈ Θ. Then Assumption 2 holds for σ(θ) =
√
VX∼P[l(θ, X)].

The proof is provided in Section 3.5.1. Interestingly, the additivity does not hold for some
choice of the Stein discrepancy, such as KSD whose data-dependent form corresponds
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to a double summation rather than a single summation. In spite of that, it is shown in
Chapter 4 that KSD satisfies Assumption 2.

For a posterior distribution, denoted by Πn, its posterior concentration rate is often
expressed in a form, given some metric d on Θ and some sequence {ϵn}∞

n=1,

P ( Πn ({θ ∈ Θ | d(θ, θ∗) > ϵn}) > ϵ ) → 0 as n → ∞ for all ϵ > 0, (3.3)

where the probability P is taken with respect to realisations of data {Xi}n
i=1 used in the pos-

terior distribution Πn. More simply, this is equivalent to say: Πn ({θ ∈ Θ | d(θ, θ∗) > ϵn}) →
0 in P-probability. The sequence {ϵn}∞

n=1 corresponds to the non-asymptotic concentration
rate of the posterior Πn. It follows from the Markov inequality that

Πn ({θ ∈ Θ | d(θ, θ∗) > ϵn}) ≤ Eθ∼Πn [d(θ, θ∗)]
ϵn

. (3.4)

Then, this inequality implies that Πn ({θ ∈ Θ | d(θ, θ∗) > ϵn}) → 0 in P-probability if
the expectation Eθ∼Πn [d(θ, θ∗)] decays faster than ϵn in P-probability. In other words,
if we find any concentration rate ϵ′

n of the expectation Eθ∼Πn [d(θ, θ∗)] that holds in P-
probability, the original posterior concentration rate in (3.3) immediately holds by choosing
any ϵn s.t. ϵ′

n/ϵn → 0. Thus, it suffices to find a concentration rate of the expectation
Eθ∼Πn [d(θ, θ∗)] in P-probability to show a concentration rate of the posterior Πn. We
use the former as a simplified representation of posterior consistency in this thesis. This
representation of posterior consistency is now established under d(θ, θ∗) = |D(θ) − D(θ∗)|.

Theorem 1 (Posterior Consistency). Suppose that Assumptions 1 and 2 hold. Suppose
that supθ∈Θ σ(θ) < ∞ for σ(θ) in 2. Then, for all δ ∈ (0, 1],

P
(∫

Θ
|D(θ) − D(θ∗)| πD

n (θ)dθ <
α1 + α2 + 2 supθ∈Θ σ(θ)

δ
√

n

)
≥ 1 − δ

where the probability is with respect to realisations of data {Xi}n
i=1.

The proof is contained in Section 3.5.2. This result provides an additional intuitive
implication of posterior consistency. By the Jensen’s inequality,∣∣∣∣∫

Θ
D(θ)πD

n (θ) − D(θ∗)
∣∣∣∣ ≤

∫
Θ

|D(θ) − D(θ∗)| πD
n (θ) (3.5)

The right-hand side converges to 0 in P-probability by Theorem 1, so does the left-hand
side because of the inequality above. This means that the expected loss Eθ∼πD

n
[D(θ)] with

respect to the posterior πD
n converges to the minimiser D(θ∗) in P-probability as n grows.

3.2.2. Bernstein–von Mises Theorem

Next, we derive a Bernstein–von Mises result, that is nothing but asymptotic normality
of a posterior. The Bernstein-von Mises Theorem was originally formulated for standard
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posteriors of well-specified models. Over the past decade, it was extended to cases of
misspecified models Kleijn and van der Vaart (2012a) and further to cases of generalised
posteriors Ghosh and Basu (2016); Hooker and Vidyashankar (2014); Miller (2021). The
pioneering work of Hooker and Vidyashankar (2014) and Ghosh and Basu (2016) established
Bernstein–von Mises results for generalised posteriors built upon α- and β-divergences.
Unfortunately, the form of Stein discrepancy is rather different and alternative theoretical
tools are required to tackle it. Recently, Miller (2021) introduced the most general
approach to deriving Bernstein–von Mises results for essentially any generalised posteriors,
demonstrating how their assumptions can be verified for several additive loss functions Dn.

The conditions of Miller (2021) can be refined into more applicable forms. We introduce
the convenient conditions to draw on the argument of Miller (2021) below.

Assumption 3 (BvM Condition). Let Θ ⊆ Rp be Borel. Let Hn(θ) := ∇2
θDn(θ). Suppose

that there exists some bounded convex open set U ⊆ Θ s.t. the following hold:

C1 Dn a.s. converges pointwise to D;

C2 Dn is r times continuously differentiable in U and lim supn→∞ supθ∈U ∥∇r
θDn(θ)∥ <

∞ a.s. for r = 1, 2, 3;

C3 for all n sufficiently large, there exists arg minθ∈Θ Dn(θ) in U , i.e., any θn ∈
arg minθ∈Θ Dn(θ) satisfies θn ∈ U a.s., and there exists θ∗ ∈ U that uniquely attains
D(θ∗) = infθ∈Θ D(θ).

C4 Hn(θ∗) a.s.→ H∗ for some nonsingular matrix H∗;

C5 π is continuous and positive at θ∗.

The existence of U implies that, for large enough n, we can essentially restrict our
theoretical analysis to the bounded subset U ⊆ Θ. This part of the assumption is not
restrictive: it can be enforced by re-parameterising the model pθ so that its new parameter
space is bounded and convex.1 The existence of θn and θ∗ is more difficult to assess in
practice, since the true data generating distribution is unknown. That being said, assuming
their existence is common in the asymptotic analysis of Bayesian procedures (see e.g.
van der Vaart, 1998, Section 10). In most cases, the condition C3 and the nonsingularity
of H∗ in the condition C4 have to be directly assumed due to their difficulty to guarantee
a priori without knowing the true data generating distribution. The rest of the conditions
can be verified (or simplified) for each loss Dn and prior π.

Before showing that Assumption 3 are sufficient for (Miller, 2021, Theorem 4), we
introduce two lemmas that are useful for the main result. The first lemma is on a.s. uniform
convergence of a loss Dn.

1For example, we can re-parameterise any unbounded parameter κ through the logistic function and
define the invertible transformation θ = (1 + e−κ)−1 ∈ [0, 1].
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Lemma 1 (a.s. Uniform Convergence). Suppose that the preconditions C1 and C2 in As-
sumption 3 holds for r = 1. Then Dn a.s. converges uniformly to D on U in Assumption 3.

The proof is contained in Section 3.5.3. The second lemma is on strong consistency of an
estimator θn that minimises a loss Dn.

Lemma 2 (Strong Consistency). Suppose that the preconditions C1, C2, and C3 in
Assumption 3 holds for r = 1. Then, for a point θ∗ = arg minθ∈Θ D(θ) and any sequence
{θn}∞

n=1 s.t. θn ∈ arg minθ∈Θ Dn(θ) for all n sufficiently large, it holds that θn
a.s.→ θ∗.

The proof is contained Section 3.5.4.
We are in a position to present the following Bernstein–von Mises result that holds

under the refined, convenient conditions provided in Assumption 3.

Theorem 2 (BvM Theorem). Suppose Assumption 3 holds. Let (θn)∞
n=1 ⊂ Θ be a sequence

s.t. θn minimises Dn for all n sufficiently large. Denote by π̃D
n a density on Rd of the

random variable
√

n(θ − θn), where θ ∼ πD
n . Then

∫
Rd

∣∣∣∣∣π̃D
n (θ) − 1

det(2πH−1
∗ )1/2 exp

(
−1

2θ · H∗θ
)∣∣∣∣∣ dθ

a.s.−→ 0

where the a.s. convergence is with respect to realisations of data {Xi}n
i=1.

The proof is provided in Section 3.5.5. The Bernstein–von Mises result ensures an appealing
regularity of generalised posteriors to be asymptotically normal. For example, the regularity
of generalised posteriors can underpin the use of Laplace’s approximation to them when
the number of data is sufficiently large. Beyond the scope of this thesis, intriguingly, there
also exists several advanced settings where posteriors converge to non-normal asymptotic
distributions. See Bochkina and Green (2014) for the case of standard Bayesian inference
whose optimal parameter θ∗ lies in the boundary of the closed parameter space Θ and
Frazier et al. (2020) for the case of approximate Bayesian computation under model
misspecification.

3.3. Bayesian Robustness to Model Misspecification by Outlier

It is crucial to formulate rigorously in what sense generalised Bayesian procedures are
robust to model misspecification. In this thesis, we limit our focus to a simple yet common
setting where model misspecification are caused by an outlier contaminating data. We
define a property termed global bias-robustness that indicates a strong insensitivity of
generalised posteriors to outliers mixed with data. We then derive an explicit sufficient
condition for generalised posteriors with arbitrary loss Dn to satisfy global bias-robustness.
Our analysis reveals that generalised posteriors under the derived condition can limit
a negative influence of an extreme outlier on their inference outcomes, in contrast to a
standard posterior that often fails to do so.
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The notion and formulation of robustness in the context of statistics were originally
formalised for frequentist estimators (Huber and Ronchetti, 2009). One of the classical
concerns was robustness of estimators in the presence of outliers. A criterion called
bias-robustness (also referred to as gross error sensitivity) was developed to analyse a
qualitative insensitivity of frequentist estimators to an outlier mixed in data. Consider
a mixture distribution Pn,ϵ,y = (1 − ϵ)Pn + ϵδy for an empirical distribution Pn of any
data {xi}n

i=1 and a point y ∈ X , typically called the ε-contamination model (Huber and
Ronchetti, 2009). The point y is considered to be contaminating the dataset {xi}n

i=1 and
the mixture proportion ϵ controls the level of contamination. Let T : P(X ) → Θ be a
statistical estimator viewed as a map from a given probability distribution to a quantity
of interest. For example, a sample mean estimator is a map from an empirical distribution
of data to its mean value. Define the influence function of the estimator T by

IF(y,Pn) := d
dϵ

T (Pn,ϵ,y)|ϵ=0 = lim
ϵ→0

T (Pn,ϵ,y) − T (Pn)
ϵ

. (3.6)

The estimator T is then said bias-robust if supy∈X ∥ IF(y,Pn)∥ < ∞ (Barp et al., 2019).
Intuitively speaking, if an extreme outlier is mixed with data and one’s estimator is not
bias-robust, values of the estimator can change drastically even by an infinitesimally small
level of contamination. Our aim is to extend bias-robustness of frequentist estimators to
generalised posteriors, proposing a Bayesian analogue of bias-robustness.

Several robustness properties were considered for specific choices of generalised posteri-
ors in Ghosh and Basu (2016); Hooker and Vidyashankar (2014); Nakagawa and Hashimoto
(2020). In particular, Ghosh and Basu (2016); Hooker and Vidyashankar (2014) defined
an analogue of the influence function for their α, β-divergence posteriors. We define a
similar quantity to Ghosh and Basu (2016) for any generalised posterior, which we call
the posterior influence function to distinguish it from the standard influence function. In
what follows, we write a loss Dn(θ) = D(θ;Pn) and its associated generalised posterior
πD

n (θ) = πD
n (θ;Pn) to make explicit the dependence on data Pn. Consider a generalised

posterior based on a loss D(θ;Pn,ϵ,y) dependent on contaminated data Pn,ϵ,y, denoted by
πD

n (θ;Pn,ϵ,y). The posterior influence function of πD
n is then defined by

PIF(y, θ,Pn) := d
dϵ

πD
n (θ;Pn,ϵ,y)|ϵ=0 = lim

ϵ→0

πD
n (θ;Pn,ϵ,y) − πD

n (θ;Pn)
ϵ

. (3.7)

The generalised posterior πD
n is said globally bias-robust if supθ∈Θ supy∈X | PIF(y, θ,Pn)| <

∞. This means that change in values of the generalised posterior by the extreme con-
taminant y will be limited uniformly over Θ. The following lemma establishes a sufficient
condition for generalised posteriors to satisfy global bias-robustness.

Lemma 3. Let πD
n be a generalised posterior with a loss D(θ;Pn) and a prior π. Suppose

D(θ;Pn) is lower-bounded and π(θ) is upper-bounded over θ ∈ Θ, for any Pn. Denote
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D0(y, θ,Pn) := (d/dϵ)D(θ;Pn,ϵ,y)|ϵ=0. Then πD
n is globally bias-robust if, for any Pn,

1. sup
θ∈Θ

sup
y∈X

|D0(y, θ,Pn)| π(θ) < ∞ and 2.
∫

Θ
sup
y∈X

|D0(y, θ,Pn)| π(θ)dθ < ∞.

The proof is provided in Section 3.5.6.
Note that standard Bayesian inference can easily violate the conditions of Lemma 3 in

general. Indeed, when D(θ;Pn) is the negative log likelihood, D0(y, θ,Pn) is derived as
D0(y, θ,Pn) = log pθ(y) − ∑n

i=1 log pθ(xi), which contains the term log pθ(y) that can be
easily unbounded in case of X = Rd for example. The term log pθ(y) can be unbounded
even when a model is light-tailed, e.g., consider a log-likelihood of a normal location
model. In contrast, appropriate Stein discrepancies, such as KSD, provides a degree of
freedom which can be leveraged to ensure the conditions of Lemma 3. The SD-Bayes
posterior resulting from such Stein discrepancies will be conferred strong robustness to
model misspecification by an outlier. This will be demonstrated in Chapter 4.

3.4. Posterior Calibration via Bootstrapping and Divergence Minimisation

Selecting an appropriate value of β is critical to ensure that generalised posteriors are
calibrated. To date, two existing approaches stand out. One approach was proposed in the
recent review paper of Syring and Martin (2019). It consists of a new stochastic sequential
update algorithm for choosing β, such that the 95% highest posterior density region
coincides with a 95% confidence interval. Unfortunately, this approach leads to a large
computational cost and is therefore often impractical. Another approach is due to Lyddon
et al. (2019) and consists in setting β such that the trace of an asymptotic covariance
matrix of a generalise posterior coincides with that of the frequentist counterpart. See also
Frazier et al. (2023) who proposed a novel class of generalised posteriors whose asymptotic
covariance exactly coincides with that of the frequentist counterpart. For selection of
β, the algorithm by Lyddon et al. (2019) appears to be one of the most straightforward
approaches if estimation of the asymptotic covariance at finite n is accurate. We will
adopt the approach by Lyddon et al. (2019) when a reliable estimate of the asymptotic
covariance is available. However, it will be demonstrated in Chapter 5 that estimation of
the asymptotic covariance can be numerically—sometimes excessively—unstable when X
or Θ is high dimensional. In such cases, selection of β benefits from a more efficient and
stable approach that aims at the same objective to match the scale of the credible region
with that of the confidence interval in an approximate sense.

We propose a novel calibration algorithm of β that exploits the advantages of a Stein
discrepancy and bootstrapping. Note that the use of a Stein discrepancy in selecting
β here is independent of the use of a Stein discrepancy in SD-Bayes. The calibration
algorithm is applicable to generalised posteriors of any loss Dn(θ). In short, our approach
consists of two steps: (i) computing minimisers of B “bootstrapped” versions of a loss
Dn(θ) and (ii) estimating an optimal value of β using the closed-form expression provided
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in subsequent Theorem 3. In contrast to the stochastic iterative approach of Syring and
Martin (2019), step (ii) is non-iterative and exact. Additionally, computation of each
minimiser in step (i) is embarrassingly parallel. In contrast to the approach of Lyddon
et al. (2019), our approach relies on the bootstrap sampling distribution of the frequentist
estimator, circumventing the use of the asymptotic covariance whose estimation can be
highly unstable when X or Θ is high-dimensional. It is also worth highlighting that our
approach takes a prior π into account, in another contrast to the approach of Lyddon et al.
(2019) that depends only on the asymptotic covariance.

To describe our methodology in detail, we denote a generalised posterior πD
n by πD

n,β

making the dependence on β explicit. In step (i), B bootstrap datasets {x
(b)
i }n

i=1 for
b = 1, . . . , B are generated by sampling each x

(b)
i uniformly with replacement from the

original dataset {xi}n
i=1. We then compute a minimiser θ(b)

n = arg minθ∈Θ D(b)
n (θ) for the

loss D(b)
n associated with each b-th bootstrap dataset. This leads to an empirical measure

δB
θ = 1

B

∑B
b=1 δ(θ(b)

n ) which approximates the sampling distribution of the frequentist
estimator θn = arg minθ∈Θ Dn(θ) for the original loss Dn. In step (ii), we choose β that
minimises a statistical divergence between πD

n,β and δB
θ . However, this is not straight-

forward, since the majority of statistical divergences (e.g. Kullback–Liebler divergence)
require the normalising constant of πD

n,β for every β. Interestingly, this is the same
computational challenge posed by intractable model. Our proposal, called the Stein
posterior calibration, is therefore to employ a Stein discrepancy that circumvents evaluation
of the normalising constant.

Definition 5 (Stein Posterior Calibration). Given a Stein discrepancy SD for probability
distributions on Θ, the Stein posterior calibration selects β ∈ (0, ∞) by a solution β∗ to
the following optimisation

β∗ ∈ arg min
β>0

SD(πD
n,β∥δB

θ ). (3.8)

Strikingly, some specific choice of Stein discrepancies leads to a closed-form solution
of β∗ in (3.8). Selecting the score matching objective (2.8) as the Stein discrepancy in
Definition 5 leads to the following form of the optimisation objective (3.8):

β∗ ∈ arg min
β>0

1
n

B∑
b=1

∥∥∥∇ log πD
n,β

(
θ(b)

n

)∥∥∥2
+ 2 Tr

(
∇2 log πD

n,β

(
θ(b)

n

))
. (3.9)

This allows us to establish a closed-form solution of β∗ below.

Theorem 3. Let loss Dn : Θ → R be twice differentiable with respect to θ. Suppose that∑B
b=1 ∇θDn(θ(b)

n ) · ∇θ log π(θ(b)
n ) + Tr(∇2

θDn(θ(b)
n )) > 0 and that there exists at least one θ(b)

n

s.t. ∇θDn(θ(b)
n ) ̸= 0. Then, β∗ in (3.9) admits a unique analytical solution

β∗ =
∑B

b=1 ∇θDn(θ(b)
n ) · ∇θ log π(θ(b)

n ) + Tr(∇2
θDn(θ(b)

n ))∑B
b=1 ∥∇θDn(θ(b)

n )∥2
. (3.10)

26



The proof is provided in Section 3.5.7.
Note that (3.10) is straightforward to compute whenever the loss Dn is amenable to

automatic differentiation. This approach offers a substantial computational advantage by
the closed-form solution. However, rigorous theoretical analysis of the approach, such as
the asymptotic property in the limit and the advantage in high dimension, is left for future
research. We hence use the approach of Lyddon et al. (2019) for theoretical explicitness if
the asymptotic covariance can be reliably estimated. It will turn out that the asymptotic
covariance can be stably estimated to a feasible degree in applications of Chapter 4, where
β will be then selected by the approach of Lyddon et al. (2019). Our approach will be
leveraged in Chapter 5, where estimation of the asymptotic covariance is exceedingly
unstable in some high-dimensional applications. It will be demonstrated in Chapter 5 that
our approach produces a sensible value of β with strong stability even for applications in
which the approach of Lyddon et al. (2019) severely fails.

3.5. Proofs of Chapter 3

This section contains all the deferred proofs of theoretical results in Chapter 3.

3.5.1. Proof of Proposition 1

Proof. By the Jensen’s inequality, the following bound holds

√
(EX1,...,Xn [|Dn(θ) − D(θ)|])2 ≤

√
EX1,...,Xn

[
(Dn(θ) − D(θ))2

]
.

Recall Dn(θ) = 1
n

∑n
i=1 l(θ, xi) to see that

(Dn(θ) − D(θ))2 =
(

1
n

n∑
i=1

l(θ, xi) − EX∼P[l(θ, X)]
)2

= 1
n2

n∑
i=1

n∑
j=1

(l(θ, xi) − EX∼P[l(θ, X)]) (l(θ, xj) − EX∼P[l(θ, X)]) .

Let (∗i,j) := (l(θ, xi) − EX∼P[l(θ, X)]) (l(θ, xj) − EX∼P[l(θ, X)]) for better presentation.
We take an expectation with respect to X1, . . . , Xn

i.i.d.∼ P. The expectation of the term
(∗i,j) is zero if i ̸= j because X1, . . . , Xn are i.i.d. and EXi

[l(θ, Xi) − EX∼P[l(θ, X)]] = 0.
Therefore, only the expectation of the term (∗i,i) for i = 1, . . . , n remains non-zero:

EX1,...,Xn

[
(Dn(θ) − D(θ))2

]
= EX1,...,Xn

[
1
n2

n∑
i=1

n∑
j=1

(∗i,j)
]

= 1
n2

n∑
i=1

EXi

[
(l(θ, Xi) − EX∼P[l(θ, X)])2

]
= 1

n
VX [l(θ, X)] .

Plugging this equality in the first inequality at the top completes the proof.

27



3.5.2. Proof of Theorem 1

Proof. The following preliminary inequality is required, which takes inspiration from
Alquier et al. (2016); Cherief-Abdellatif and Alquier (2020): for all δ ∈ (0, 1], with
probability at least 1 − δ,

∫
Θ

D(θ)πD
n (θ)dθ ≤ D(θ∗) +

(
α1 + α2 + 2 supθ∈Θ σ(θ)

δ

)
1√
n

where the probability is with respect to realisations of random data {Xi}n
i=1.

First of all, we show the inequality above. By the Markov inequality and the assumption
that EX1,...,Xn [|Dn(θ) − D(θ)|] ≤ σ(θ)√

n
, we have a concentration inequality

P (|Dn(θ) − D(θ)| ≥ δ) ≤ σ(θ)
δ
√

n
≤ supθ∈Θ σ(θ)

δ
√

n
(3.11)

for each θ ∈ Θ, where the probability is taken with respect to random data {Xi}n
i=1.

Taking the complement and re-scaling δ, (3.11) is equivalent to

P
(

|Dn(θ) − D(θ)| ≤ supθ∈Θ σ(θ)
δ
√

n

)
≥ 1 − δ. (3.12)

Notice that by virtue of the absolute value, the following inequalities hold simultaneously
with probability at least 1 − δ:

D(θ) ≤ Dn(θ) + supθ∈Θ σ(θ)
δ
√

n
. (3.13)

Dn(θ) ≤ D(θ) + supθ∈Θ σ(θ)
δ
√

n
. (3.14)

Taking an expectation with respect to the generalised posterior on both side of (3.13)
yields, with probability at least 1 − δ,

∫
Θ

D(θ)πD
n (θ)dθ ≤

∫
Θ

Dn(θ)πD
n (θ)dθ + supθ∈Θ σ(θ)

δ
√

n

In order to apply the identity (2.3), we add the term (1/n) KL(πD
n ∥π) ≥ 0 in the right-hand

side and see that, with probability at least 1 − δ,

∫
Θ

D(θ)πD
n (θ)dθ ≤

{∫
Θ

Dn(θ)πD
n (θ)dθ + 1

n
KL(πD

n ∥π)
}

+ supθ∈Θ σ(θ)
δ
√

n
.

Then from the identity (2.3), the right-hand side coincides with the solution to the following
variational problem over P(Θ):

∫
Θ

D(θ)πD
n (θ)dθ ≤ inf

ρ∈P(Θ)

{∫
Θ

Dn(θ)ρ(θ)dθ + 1
n

KL(ρ∥π)
}

+ supθ∈Θ σ(θ)
δ
√

n
. (3.15)
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Plugging (3.14) in (3.15), we have with probability at least 1 − δ,

∫
Θ

D(θ)πD
n (θ)dθ ≤ inf

ρ∈P(Θ)

{∫
Θ

D(θ)ρ(θ)dθ + 1
n

KL(ρ∥π)
}

+ 2 supθ∈Θ σ(θ)
δ
√

n
. (3.16)

Plugging the trivial bound D(θ) ≤ D(θ∗) + |D(θ) − D(θ∗)| into (3.16), we have

(3.16) ≤ D(θ∗) + inf
ρ∈P(Θ)

{∫
Θ

|D(θ) − D(θ∗)| ρ(θ)dθ + 1
n

KL(ρ∥π)
}

+ 2 supθ∈Θ σ(θ)
δ
√

n
.

Notice that the infimum term can be upper bounded by any choice of ρ ∈ P(Θ). Letting
Π(Bn) :=

∫
Bn

π(θ)dθ, we take ρ(θ) = π(θ)/Π(Bn) for θ ∈ Bn and ρ(θ) = 0 for θ ̸∈ Bn.
Then Assumption 1 part (2) ensures that

∫
Bn

|D(θ) − D(θ∗)|ρ(θ)dθ ≤ α1/
√

n and that
KL(ρ∥π) =

∫
Θ log (ρ(θ)/π(θ)) ρ(θ)dθ =

∫
Bn

− log(Π(Bn))π(θ)dθ/Π(Bn) = − log Π(Bn) ≤
α2

√
n. Thus

∫
Θ

D(θ)πD
n (θ)dθ ≤ D(θ∗) +

(
α1 + α2 + 2 supθ∈Θ σ(θ)

δ

)
1√
n

, (3.17)

with probability at least 1 − δ, as claimed.
Next, we complete the main proof. It follows from (3.17) and the simple upper bound

α1 + α2 + 2 supθ∈Θ σ(θ)
δ

≤ α1+α2+2 supθ∈Θ σ(θ)
δ

for 0 < δ < 1 that

∫
Θ

D(θ)πD
n (θ)dθ − D(θ∗) ≤ α1 + α2 + 2 supθ∈Θ σ(θ)

δ
√

n
.

Since θ∗ minimises f , the left-hand side is non-negative. With the absolute value of the
left-hand side taken, the same concentration inequality holds as follows:

P
(∣∣∣∣∫

Θ
D(θ)πD

n (θ)dθ − D(θ∗)
∣∣∣∣ ≤ α1 + α2 + 2 supθ∈Θ σ(θ)

δ
√

n

)
≥ 1 − δ.

Finally, since D(θ) − D(θ∗) ≥ 0 for any θ ∈ Θ as D(θ∗) is the minimum of f , it holds that
∣∣∣∣∫

Θ
D(θ)πD

n (θ)dθ − D(θ∗)
∣∣∣∣ =

∣∣∣∣∫
Θ

D(θ) − D(θ∗)πD
n (θ)dθ

∣∣∣∣ =
∫

Θ
|D(θ) − D(θ∗)| πD

n (θ)dθ.

Therefore, the last concentration inequality above holds for the quantity of the right-hand
side, which completes the proof.

3.5.3. Proof of Lemma 1

Proof. Davidson (1994, Theorem 21.8) showed that Dn
a.s.−→ D uniformly on U if and only

if (a) Dn
a.s.−→ D pointwise on U and (b) {Dn}∞

n=1 is strongly stochastically equicontinuous
on U . The condition (a) is implied by the precondition C1 of Assumption 3 and hence the
condition (b) is shown in the remainder. By Davidson (1994, Theorem 21.10), {Dn}∞

n=1 is
strongly stochastically equicontinuous on U if there exists a stochastic sequence {Ln}∞

n=1
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independent of θ s.t.

|Dn(θ) − Dn(θ′)| ≤ Ln∥θ − θ′∥2, ∀θ, θ′ ∈ U and lim sup
n→∞

Ln < ∞ a.s.

Since Dn is continuously differentiable on the set U by the precondition C2 of Assumption 3
with r = 1, the mean value theorem yields that

|Dn(θ) − Dn(θ′)| ≤ sup
θ∈U

∥∇θDn(θ)∥2∥θ − θ′∥2, ∀θ, θ′ ∈ U.

Again by the precondition C2 of Assumption 3 with r = 1, we have lim supn→∞ supθ∈U ∥∇θDn(θ)∥2 <

∞ a.s. Therefore, setting Ln = supθ∈U ∥∇θDn(θ)∥2 concludes the proof.

3.5.4. Proof of Lemma 2

Proof. The strong consistency θn
a.s.→ θ∗ is shown by an argument similar to van der Vaart

(1998, Theorem 5.7). First, it follows from Lemma 1 that Dn
a.s.→ D uniformly on U under

assumption. Thus, for all n sufficiently large, we can take δ > 0 s.t. |Dn(θ) − D(θ)| < δ/2
a.s. over θ ∈ U , which in turn leads to (a) D(θ) < Dn(θ)+δ/2 and (b) Dn(θ) < D(θ)+δ/2
a.s. over θ ∈ U . Then applying both (a) and (b), the following bound on D(θn) holds for
all n sufficiently large:

D(θn)
(a)
< Dn(θn) + δ/2

(∗)
≤ Dn(θ∗) + δ/2

(b)
< D(θ∗) + δ a.s. (3.18)

where the second inequality (∗) follows from the fact that θn is the minimiser of Dn. Since
infθ∈Θ D(θ) is uniquely attained at θ∗ ∈ U by the precondition C3 of Assumption 3, we
can take any ϵ > 0 to see that D(θ) − D(θ∗) > 0 for all θ ∈ Θ \ Bϵ(θ∗). Given an arbitrary
ϵ > 0, define Bϵ(θ∗) := {θ ∈ Θ : ∥θ − θ∗∥ < ϵ} and let δ = infθ∈Θ\Bϵ(θ∗) D(θ) − D(θ∗) > 0.
It then follows from (3.18) with this δ plugged-in that, for all n sufficiently large,

D(θn) < inf
θ∈Θ\Bϵ(θ∗)

D(θ) a.s.

This implies that θn ∈ Bϵ(θ∗) a.s. for any ϵ > 0 arbitrary small for all n sufficiently large.
Therefore θn

a.s.→ θ∗ by definition of convergence.

3.5.5. Proof of Theorem 2

Proof. We show that (Miller, 2021, Theorem 4) holds a.s. under the preconditions C1-C5
of Assumption 3. In order to apply (Miller, 2021, Theorem 4), we first extend π and Dn

from Θ to Rp by setting π(θ) = 0 and Dn(θ) = supθ∈Θ |Dn(θ)| + 1 for all θ ∈ Rp \ Θ, so
that we have π : Rp → R, Dn : Rp → R and πD

n : Rp → R. Note that, in (Miller, 2021,
Theorem 4), {Dn}∞

n=1 is regarded as a sequence of deterministic functions, while here
{Dn}∞

n=1 is a sequence of stochastic functions dependent on random data {Xi}n
i=1. It will

be shown that (Miller, 2021, Theorem 4) holds a.s. for the stochastic sequence {Dn}∞
n=1.
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We hence verify that the following prerequisites (1)–(6) of (Miller, 2021, Theorem 4) hold
a.s., where we define Bϵ(θ∗) := {θ ∈ Θ : ∥θ − θ∗∥ < ϵ} and recall Hn(θ) = ∇2

θDn(θ) and
H∗ = limn→∞ Hn(θ∗) from Assumption 3:

1. the prior density π is continuous at θ∗ and π(θ∗) > 0.

2. θn
a.s.→ θ∗.

3. the Taylor expansion Dn(θ) = Dn(θn) + (1/2)(θ − θn) · Hn(θn)(θ − θn) + rn(θ − θn)
holds on U a.s. where rn is the reminder term.

4. the remainder rn of the Taylor expansion satisfies that |rn(θ)| ≤ C∥θ∥3
2, ∀θ ∈ Bϵ(0)

a.s. for all n sufficiently large and some ϵ > 0.

5. Hn(θn) a.s.→ H∗, Hn(θn) is symmetric for all n sufficiently large and H∗ is positive
definite.

6. lim infn→∞

(
infθ∈Rp\Bϵ(θn) Dn(θ) − Dn(θn)

)
> 0 a.s. for any ϵ > 0.

Part (1): The precondition C5 of Assumption 3.

Part (2): Lemma 2.

Part (3): From the precondition C2 of Assumption 3, Dn is 3 times continuously
differentiable over U . Noting that ∇θDn(θ) = 0 at a minimiser θn of Dn, the Taylor
expansion of Dn around the minimiser θn gives that Dn(θ) = Dn(θn) + 1

2(θ − θn) ·
Hn(θn)(θ − θn) + rn(θ − θn) where rn is the remainder of the Taylor expansion.

Part (4): Since rn is the remainder of the Taylor expansion, we have an upper bound

|rn(θ − θn)| ≤ 1
6 sup

θ∈U
∥∇3

θDn(θ)∥2∥θ − θn∥3
2, ∀θ ∈ U.

The precondition C2 of Assumption 3 guarantees that lim supn→∞ supθ∈U ∥∇3
θDn(θ)∥2 < ∞

a.s. It is thus possible to take some positive constant C s.t. (1/6) supθ∈U ∥∇3
θDn(θ)∥2 ≤ C

a.s. for all n sufficiently large. For all n sufficiently large, there exists some open ϵ-
neighbour Bϵ(θn) contained in the open set U since θn ∈ U . Combining these two facts
concludes that

|rn(θ − θn)| ≤ C∥θ − θn∥3
2, ∀θ ∈ Bϵ(θn) =⇒ |rn(θ)| ≤ C∥θ∥3

2, ∀θ ∈ Bϵ(0)

holds for some ϵ > 0.

Part (5): We first show that ∥Hn(θn) − H∗∥2
a.s.→ 0. By the triangle inequality,

∥Hn(θn) − H∗∥2 ≤ ∥Hn(θn) − Hn(θ∗)∥2 + ∥Hn(θ∗) − H∗∥2 .
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For the first term, it follows from the mean value theorem that

∥Hn(θn) − Hn(θ∗)∥2 ≤ sup
θ∈U

∥∇θHn(θ)∥2∥θn − θ∗∥2 = sup
θ∈U

∥∇3
θDn(θ)∥2∥θn − θ∗∥2.

The precondition C2 of Assumption 3 guarantees that lim supn→∞ supθ∈U ∥∇3
θDn(θ)∥2 < ∞

a.s. It is thus possible to take some positive constant C ′ s.t. ∥Hn(θn) − Hn(θ∗)∥2 ≤
C ′∥θn − θ∗∥2 for all n sufficiently large. Then we have ∥Hn(θn) − Hn(θ∗)∥2

a.s.→ 0 by
the preceding part (2) θn

a.s.→ θ∗. For the second term, it is directly implied by the
precondition C4 of Assumption 3 that ∥Hn(θ∗) − H∗∥2

a.s.→ 0. Combining these two facts
concludes that ∥Hn(θn) − H∗∥2

a.s.→ 0. We next show that Hn(θn) is symmetric. The
(i, j) entry of Hn(θ) = ∇2

θDn(θ) is given by the partial derivative (∂2/∂θi∂θj)Dn(θ) with
respect to i-th and j-th entry of θ. Since Dn is twice continuously differentiable by the
precondition C2 of Assumption 3, the Schwartz’s theorem implies that the commutation
(∂2/∂θi∂θj)Dn(θ) = (∂2/∂θj∂θi)Dn(θ) holds and therefore Hn(θ) is symmetric for any
θ ∈ Θ. Finally, we show positive definiteness of H∗. For all n sufficiently large, Hn(θn) is
positive semi-definite by the fact that θn is the minimiser of Dn and accordingly the limit
H∗ is positive semi-definite. Then H∗ is positive definite since H∗ is nonsingular by the
precondition C4 of Assumption 3.

Part (6): It holds for any sequence an, bn ∈ R that lim infn→∞(an − bn) ≥ lim infn→∞ an +
lim infn→∞(−bn). Furthermore, from the property that lim infn→∞(−bn) = − lim supn→∞ bn,
we have lim infn→∞(an − bn) ≥ lim infn→∞ an − lim supn→∞ bn. Applying this, we have

lim inf
n→∞

(
inf

θ∈Rp\Bϵ(θn)
Dn(θ) − Dn(θn)

)
= lim inf

n→∞
inf

θ∈Rp\Bϵ(θn)
Dn(θ)︸ ︷︷ ︸

=:(∗1)

− lim sup
n→∞

Dn(θn)︸ ︷︷ ︸
=:(∗2)

.

For the first term (∗1), it is obvious from the way of extending Dn from Θ to Rp that

(∗1) = lim inf
n→∞

inf
θ∈Rp\Bϵ(θn)

Dn(θ) ≥ lim inf
n→∞

inf
θ∈Θ\Bϵ(θn)

Dn(θ) a.s.

For any set A ⊂ Rp and function g : Rp → R, define infθ∈A\Bϵ(θn) g(θ) := supθ∈A g(θ) if
A \ Bϵ(θn) is empty. Decomposing Θ into two sets U and Θ \ U leads to

(∗1) ≥ lim inf
n→∞

inf
θ∈Θ\Bϵ(θn)

Dn(θ) ≥ min
(

lim inf
n→∞

inf
θ∈U\Bϵ(θn)

Dn(θ)︸ ︷︷ ︸
=:(∗11)

, lim inf
n→∞

inf
θ∈Θ\(U∪Bϵ(θn))

Dn(θ)︸ ︷︷ ︸
=:(∗12)

)
a.s.

For the term (∗11), since Dn
a.s.→ D uniformly on U by Lemma 1 and θn

a,s.→ θ∗ by the
preceding part (2),

(∗11) = lim inf
n→∞

inf
θ∈U\Bϵ(θn)

Dn(θ) = lim
n→∞

inf
θ∈U\Bϵ(θn)

Dn(θ) = inf
θ∈U\Bϵ(θ∗)

D(θ) a.s.

32



For the term (∗12), since the global minimiser θn of Dn is contained in U a.s. for all n

sufficiently large by the precondition C3 of Assumption 3,

(∗12) = lim inf
n→∞

inf
θ∈Θ\(U∪Bϵ(θn))

Dn(θ) > lim inf
n→∞

inf
θ∈U

Dn(θ) = inf
θ∈U

D(θ) = D(θ∗) a.s.

where the second equality follows from the a.s. uniform convergence of Dn on U by
Lemma 1. For the second term (∗2), again since Dn

a.s.→ D uniformly on U and θn
a,s.→ θ∗,

we have

(∗2) = lim sup
n→∞

Dn(θn) = lim
n→∞

Dn(θn) = D(θ∗) a.s.

The original term (∗1)−(∗2) is lower bounded by (∗1)−(∗2) ≥ min((∗11)−(∗2), (∗12)−(∗2))
a.s., and both the term (∗11) − (∗2) and (∗12) − (∗2) are then further lower bounded by

(∗11) − (∗2) = inf
θ∈U\Bϵ(θ∗)

D(θ) − D(θ∗) > 0 and (∗12) − (∗2) > D(θ∗) − D(θ∗) = 0 a.s.,

where the first inequality follows from the precondition C3 of Assumption 3 indicating
that infθ∈Θ D(θ) is uniquely attained at θ∗ ∈ U . Therefore, we have (∗1) − (∗2) ≥
min((∗11) − (∗2), (∗12) − (∗2)) > 0 a.s., which concludes the proof.

3.5.6. Proof of Lemma 3

Proof. First of all, it holds as demonstrated in (17) of Ghosh and Basu (2016) that

PIF(y, θ,Pn) = βnπD
n (θ)

(
−D0(y, θ,Pn) +

∫
Θ

D0(y, θ′,Pn)πD
n (θ′)dθ′

)
.

By Jensen’s inequality, we have an upper bounded

sup
θ∈Θ

sup
y∈X

| PIF(y, θ,Pn)| ≤ βn sup
θ∈Θ

πD
n (θ)

(
sup
y∈X

|D0(y, θ,Pn)| +
∫

Θ
sup
y∈X

|D0(y, θ′,Pn)| πD
n (θ′)dθ′

)
.

Recall that πD
n (θ) = π(θ) exp(−βnD(θ;Pn))/Z where 0 < Z < ∞ is the normalising

constant. An upper bound πD
n (θ) ≤ π(θ) exp(−βn infθ∈Θ D(θ;Pn))/Z =: Cπ(θ) holds for

some 0 < C < ∞, since D(θ;Pn) is lower bounded by assumption and n is fixed. From
this upper bound, we have

sup
θ∈Θ

sup
y∈X

| PIF(y, θ,Pn)| ≤ βnC sup
θ∈Θ

π(θ)
(

sup
y∈X

|D0(y, θ,Pn)| + C
∫

Θ
sup
y∈X

|D0(y, θ′,Pn)| π(θ′)dθ′
)

≤ βnC sup
θ∈Θ

(
π(θ) sup

y∈X
|D0(y, θ,Pn)|

)
+ βnC2

(
sup
θ∈Θ

π(θ)
)∫

Θ
sup
y∈X

|D0(y, θ′,Pn)| π(θ′)dθ′.

Since supθ∈Θ π(θ) in the second term is finite by assumption, the conditions 1 and 2 in the
statement are sufficient for supθ∈Θ supy∈X | PIF(y, θ,Pn)| < ∞, as claimed.
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3.5.7. Proof of Theorem 3

Proof. We first calculate the Fisher divergence between the generalised posterior πD
n and

an empirical distribution δB
θ of the bootstrap minimisers {θ(b)

n }B
b=1, and then minimise

it as a function of the weighting constant β. Recall that the score-matching divergence
(Hyvärinen, 2005) is given by

D(πD
n ∥δB

θ ) = 1
B

B∑
b=1

∥∥∥∇θ log πD
n (θ(b)

n )
∥∥∥2

+ 2 Tr
(

∇2
θ log πD

n (θ(b)
n )
)

.

The score function of πD
n is given by ∇θ log πD

n (θ) = −β∇θDn(θ) + ∇θ log π(θ), which
is independent of the normalising constant of πD

n . Similarly, the second derivative is
∇2

θ log πD
n (θ) = −β∇2

θDn(θ) + ∇2
θ log π(θ). Therefore, the derivative terms in the Fisher

divergence is written as

∇θ log πD
n (θ(b)

n ) = β2∥∇θDn(θ(b)
n )∥2 − 2β∇θDn(θ(b)

n ) · ∇θ log π(θ(b)
n ) + ∥∇θ log π(θ(b)

n )∥2,

∇2
θ log πD

n (θ(b)
n ) = −β Tr

(
∇2

θDn(θ(b)
n )
)

+ Tr
(
∇2

θ log π(θ(b)
n )
)

.

Now consider minimising the Fisher divergence D(πD
n ∥δB

θ ) with respect to the weighting
constant β. Plugging the derivative terms in the Fisher divergence, we have

D(πD
n ∥δB

θ ) = 1
B

B∑
b=1

β2∥∇θDn(θ(b)
n )∥2 − 2β∇θDn(θ(b)

n ) · ∇θ log π(θ(b)
n ) − 2β Tr

(
∇2

θDn(θ(b)
n )
)

+ C

where we denote any term independent of β by C in this proof. Exchanging the order
of the summation and the constant β, the Fisher divergence turns out to be a quadratic
function of β:

D(πD
n ∥δB

θ ) = β2 1
B

B∑
b=1

∥∇θDn(θ(b)
n )∥2

︸ ︷︷ ︸
=(a)

−2β
1
B

B∑
b=1

∇θDn(θ(b)
n ) · ∇θ log π(θ(b)

n ) + Tr
(

∇2
θDn(θ(b)

n )
)

︸ ︷︷ ︸
=(b)

+C

= aβ2 − 2bβ + C = a

(
β − b

a

)2

− b2

4a2 + C

where the last equality follows from completing the square. Therefore, the Fisher divergence
D(πD

n ∥δB
θ ) is minimised at β∗ = b/a, that is,

β∗ =

∑B
b=1 ∇θDn(θ(b)

n ) · ∇θ log π(θ(b)
n ) + Tr

(
∇2

θDn(θ(b)
n )
)

∑B
b=1 ∥∇θDn(θ(b)

n )∥2
,

as claimed, where the denominator and numerator are positive immediately from the first
and second assumption respectively, which assures that β∗ > 0.
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Chapter 4. Case I: Approach to Continuous Intractable Models

In this chapter, we consider the SD-Bayes approach to intractable models in continuous
domains, such as X = Rd. Specifically, the methodology is developed for a particular Stein
discrepancy called kernel Stein discrepancy (KSD), and we call the resulting generalised
Bayesian approach KSD-Bayes. This is the first generalised Bayesian approach to inference
for models that involve an intractable likelihood. It is shown that KSD-Bayes (1) provides
robustness to model misspecification; (2) produces a generalised posterior that is tractable
for any standard MCMC algorithms, or even closed-form when an appropriate conjugate
prior (which we identify) is used together with an exponential family model; (3) satisfies
several desirable theoretical properties, including a Bernstein–von Mises result which holds
irrespective of whether the model is correctly specified. These results appear to represent a
compelling case for the use of KSD-Bayes as an alternative to standard Bayesian inference
with intractable likelihood. However, KSD-Bayes is no panacea and caution must be taken
to avoid certain pathologies of KSD-Bayes, which we highlight in Section 4.2.3.

The chapter is structured as follows: Section 4.1 provides the construction of KSD.
In addition, guidance for a choice of kernel to use in KSD-Bayes is contained. Sec-
tion 4.2 presents the KSD-Bayes methodology, including the fully conjugate inference
achieved by KSD-Bayes for exponential family models and the computational aspect of
the non-conjugate inference. Section 4.3 establishes asymptotic properties and global
bias-robustness of KSD-Bayes. Empirical assessment of KSD-Bayes with four distinct
experiments are outlined in Section 4.4. Finally, Section 4.6 contains all deferred proofs of
theoretical results presented in this chapter.

4.1. Kernel Stein Discrepancy

Compared to other Stein discrepancies, KSDs are attractive because they enable the
supremum in (2.6) to be be explicitly computed. To define KSD, we require the concept
of a (matrix-valued) kernel K : X × X → Rd×d; the precise definition was introduced in
Chapter 2. For our purposes in this section, it suffices to point out that any kernel K

has a uniquely associated Hilbert space of functions f : X → Rd, called a vector-valued
reproducing kernel Hilbert space (RKHS). This RKHS constitutes the Stein set in KSD,
and we therefore denote this RKHS as H. The associated norm and inner product will
respectively be denoted ∥ · ∥H and ⟨·, ·⟩H.
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4.1.1. Construction

Let SQ be a Stein operator and denote the action of SQ on both the first and second
argument1 of a kernel K as SQSQK. The following result is a generalisation of the original
construction of KSD (Chwialkowski et al., 2016; Liu et al., 2016; Wang et al., 2019) to
general Stein operators SQ and general domains X .

Assumption 4. Let H be a RKHS with kernel K : X × X → Rd×d. For Q ∈ P(X ), let
SQ be a Stein operator with domain H. For each fixed x ∈ X , we assume h 7→ SQ[h](x) is
a continuous linear functional on H. Further, we assume that EX∼P [SQSQK(X, X)] < ∞.

Proposition 2 (Closed Form of Stein Discrepancy). Under Assumption 4, we have

SD2(Q∥P) = KSD2(Q∥P) := EX,X′∼P [SQSQK(X, X ′)] (4.1)

where X and X ′ are independent.

The proof is contained in Section 4.6.1. Proposition 2 shows that the supremum term in
(2.6) is attained in closed-form by the expectation of SQSQK(x, x′), which is the definition
of the KSD. In our context, KSD is used for inference of a parametric model Pθ. It is
clear from Proposition 2 that KSD between between a parametric model Q = Pθ and an
empirical distribution P = Pn is available in closed form as

KSD2(Pθ∥Pn) = 1
n2

n∑
i=1

n∑
j=1

SPθ
SPθ

K(xi, xj). (4.2)

The explicit form of SPθ
SPθ

K depends on the Stein operator SPθ
. We advocate the default

use of the Langevin Stein operator SPθ
in (2.5) for the case X = Rd, which leads to

SPθ
SPθ

K(x, x′) = ∇ log pθ(x) · K(x, x′)∇ log pθ(x′) + ∇x · (∇x′ · K(x, x′))
+ ∇ log pθ(x) · (∇x′ · K(x, x′)) + (∇x · K(x, x′)) · ∇ log pθ(x′) (4.3)

where pθ is a p.d.f. for Pθ ∈ PS(Rd). Clearly, this expression is straightforward to
evaluate whenever we have access to derivatives of the kernel and the log density. If
the derivatives are analytically tedious, the expression above is amenable to the use of
automatic differentiation tools (Baydin et al., 2018) in practice. For maximum clarity, the
vector calculus notation is expanded as follows:

SPθ
SPθ

K(x, x′) =
d∑

i,j=1

∂

∂x(i)
log pθ(x) [K(x, x′)](i,j)

∂

∂x(j)
log pθ(x) + ∂2

∂x(i)∂x′
(j)

[K(x, x′)](i,j)

+ ∂

∂x(i)
log pθ(x) ∂

∂x′
(j)

[K(x, x′)](i,j) + ∂

∂x′
(j)

log pθ(x′) ∂

∂x(i)
[K(x, x′)](i,j)

1More precisely, denoting the j-th column of K(x, x′) ∈ Rd×d by K−,j(x, x′) ∈ Rd, we define
SQK(x, x′) := [SQK−,1(x, x′), . . . , SQK−,d(x, x′)] ∈ Rd where SQK−,j(x, x′) := SQ[K−,j(·, x′)](x) is an
action of SQ for the Rd-valued function K−,j(·, x′) at each x′ ∈ X . We further define SQSQK(x, x′) :=
SQ[ SQK(x, ·) ](x′) as an action of SQ for the Rd-valued function SQK(x, ·) at each x ∈ X .
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where we recall that K is a matrix-valued kernel.
Note that it is straightforward to verify the assumption that h 7→ SQ[h](x) is a

continuous linear functional for each fixed x ∈ X once the form of SQ is specified; see
Section 4.6.2 to verify this for the case of the Langevin Stein operator.

4.1.2. Recommended Choice of Kernel Function

Any methodology based on RKHS entails an appropriate choice of kernel K that determines
underlying properties of the methodology. Conveniently, for Euclidean domains X = Rd,
there exists guiding results that motivate a specific choice of kernel K in KSD-Bayes. To
use KSD in SD-Bayes, we advocate the default use of a kernel of the form

K(x, x′) = M(x)M(x′)⊤

(1 + (x − x′)⊤Σ−1(x − x′))γ , (4.4)

where γ ∈ (0, 1) is a constant, Σ is a positive definite matrix, and M ∈ C1
b (Rd;Rd×d)

will be called a matrix-valued weighting function2. For M(x) = Id, (4.4) is called an
inverse multi-quadratic (IMQ) kernel. A pair of the IMQ kernel K and the Langevin Stein
operator SQ has several appealing properties in the context of KSD. Firstly, under mild
conditions on Q, the convergence KSD(Q||Pn) → 0 implies that Pn converges weakly to
Q (Chen et al., 2019, Theorem 4). This convergence control ensures that small values
of KSD(Pθ∥Pn) imply similarity between Pθ and Pn in the topology of weak convergence,
so that minimising KSD is meaningful. Note that other common kernels (e.g., Gaussian
or Matérn kernels) fail to provide such convergence control (Gorham and Mackey, 2017,
Theorem 6). Secondly, and on a more practical level, the combination of Stein operator
and IMQ kernel, with γ = 1/2, was found to work well in previous studies (Chen et al.,
2019; Riabiz et al., 2021); we therefore also recommend γ = 1/2 as a default.

The weighting function M(x) facilitates a trade-off between efficiency and robustness
of inference. Recall that Section 3.3 established the global bias-robustness property of
generalised posteriors. Subsequently Section 4.3 in this chapter derives a condition for
KSD-Bayes to be globally bias-robust that depends on the choice of the weighting function
M(x). If global bias robustness is not required, then we recommend setting M(x) = Id as
a default, which enjoys the aforementioned properties of KSD. If global bias-robustness is
required, then we recommend selecting M(x) such that the derived condition in subsequent
Theorem 4 are satisfied; see the worked examples in Section 4.4.

The theoretical analysis of Section 4.3 assumed that K is fixed, but in our experiments
we follow standard practice in the kernel methods community and recommend a data-
adaptive choice of the matrix Σ for better performance especially in high dimensional cases.
All experiments we report used the ℓ1-regularised sample covariance matrix estimator of

2The use of a non-constant weighting function is equivalent to replacing the Langevin Stein operator
with a diffusion Stein operator whose diffusion matrix is M(x); see Gorham et al. (2019).
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Ollila and Raninen (2019). The sensitivity of KSD-Bayes to the choice of kernel parameters
is investigated in Section A.1.

4.2. KSD-Bayes Methodology

We select KSD in SD-Bayes as a default choice of Stein discrepancy for continuous
intractable likelihoods. The resulting generalised posterior will be referred to as the
KSD-Bayes posterior. KSD is particularly attractive for SD-Bayes since it enables the
generalised posterior in Definition 6 to be explicitly computed.

Definition 6 (KSD-Bayes). Given a Stein operator SPθ
and a kernel K : X × X →

Rd×d, select KSD2(Pθ∥·) for the Stein discrepancy in SD-Bayes. We define the resulting
generalised posterior as the KSD-Bayes posterior:

πD
n (θ) ∝ exp

(
−βn KSD2(Pθ∥Pn)

)
π(θ) (4.5)

where π is a prior p.d.f. over θ ∈ Θ.

This is clearly a special case of SD-Bayes given SDγ(Pθ∥Pn) = KSD2(Pθ∥Pn). Whether
KSD-Bayes is reasonable or not hinges crucially on whether KSD is a meaningful way to
quantify the difference between the empirical distribution Pn and the parametric model
Pθ. As mentioned in Section 4.1.2, sufficient conditions for convergence control have been
established for the Langevin Stein operator, under which the convergence of KSD(Pθ∥Pn)
implies the weak convergence of Pn to Pθ (Gorham and Mackey, 2017, Theorem 8). This
provides some preliminary assurance that KSD-Bayes may work. We present formal
theoretical guarantees based on posterior consistency, BvM theorem, and global bias-
robustness in Section 4.3. The specific choices of K for use in KSD-Bayes in Section 4.1.2
was motivated by these theoretical results.

4.2.1. Conjugate Inference for Exponential Family Models

The generalised posterior can be exactly computed in the case of an natural exponential
family model when a conjugate prior is used. Let η : Θ → Rk and t : X → Rk be any
sufficient statistic for some k ∈ N and let a : Θ → R and b : X → R. An exponential
family model has p.m.f. or p.d.f. (with respect to an appropriate reference measure on X )
of the form

pθ(x) = exp(η(θ) · t(x) − a(θ) + b(x)). (4.6)

This includes a wide range of distributions with an intractable normalisation constant
exp(a(θ)), used in statistical applications such as random graph estimation (Yang et al.,
2015), spin glass models (Besag, 1974) and the kernel exponential family model (Canu and
Smola, 2006). The model in (4.6) is called natural when the canonical parametrisation
η(θ) = θ is employed.
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Proposition 3. Consider X = Rd and the Langevin Stein operator SPθ
in (2.5), where Pθ

is the exponential family in (4.6), and a kernel K ∈ C1,1
b (Rd × Rd;Rd×d). Given a prior

p.d.f. π, the KSD-Bayes posterior has a p.d.f. of the form

πD
n (θ) ∝ exp (−βn{η(θ) · Λnη(θ) + η(θ) · νn}) π(θ),

where Λn ∈ Rk×k and νn ∈ Rk are defined as

Λn := 1
n2

n∑
i,j=1

∇t(xi) · K(xi, xj)∇t(xj),

νn := 1
n2

n∑
i,j=1

∇t(xi) · (∇xj
· K(xi, xj)) + ∇t(xj) · (∇xi

· K(xi, xj)) + 2∇t(xi) · K(xi, xj)∇b(xj).

For a natural exponential family under η(θ) = θ, the prior π(θ) ∝ exp(−1
2(θ−µ)·Σ−1(θ−µ))

leads to a generalised posterior of the closed-form

πD
n (θ) ∝ exp

(
−1

2(θ − µn) · Σ−1
n (θ − µn)

)
,

where Σ−1
n := Σ−1 + 2βnΛn and µn := Σ−1

n (Σ−1µ − νn).

The proof is in Section 4.6.3. That the Gaussian distribution will be conjugate in
KSD-Bayes, even in the presence of intractable model, is remarkable and notably different
from the classical Bayesian case, albeit at a O(n2) computational cost of Λn and νn.
Strategies to further reduce this computational cost are discussed in Section 4.2.2. It is
well known that certain minimum discrepancy estimators, such as the score matching
estimator (Hyvärinen, 2005) and the minimum KSD estimator (Barp et al., 2019), have
closed forms in the case of an exponential family models; it is similar reasoning that has
led us to Proposition 3.

4.2.2. Non-Conjugate Inference and Computation

To access the generalised posterior in the non-conjugate case, essentially any existing
MCMC algorithms for tractable distributions can be used. For example, the Gaussian form
of the data-dependent term in Proposition 3 suggests that elliptical slice sampling may work
well when the natural parametrisation of the exponential family is employed (Murray et al.,
2010). Efficient gradient-based samplers, such as the Langevin Monte Carlo algorithm, can
also be used whenever the gradient of (4.5) is available. The per-iteration computational
cost appears to be O(n2) since, for each state θ visited along the sample path, the KSD in
(4.2) must be evaluated. However, various strategies enable this computational cost to be
mitigated. For concreteness of the discussion that follows, we consider the Langevin Stein
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operator, for which

KSD2(Pθ∥Pn) +C= 1
n2

n∑
i=1

n∑
j=1

∇ log pθ(xi) · K(xi, xj)∇ log pθ(xj)

+ ∇ log pθ(xi) · (∇xj
· K(xi, xj)) + (∇xi

· K(xi, xj)) · ∇ log pθ(xj)

where the equality holds up to a θ-independent constant.

Memoisation: The above expression depends on θ only through the terms {∇ log pθ(xi)}n
i=1,

of which there are O(n), while all other terms involving K, of which there are O(n2),
can be computed once and memoised. The double summation still necessitates O(n2)
computational cost but this operation is embarrassingly parallel.

Finite rank kernel: Computational cost can be reduced from O(n2) to O(n) using a
finite rank kernel. A useful and important example is the rank one kernel K(x, x′) = Id,
which reduces the KSD in (4.2) to

(4.2) +C=
∥∥∥∥∥ 1

n

n∑
i=1

∇ log pθ(xi)
∥∥∥∥∥

2

and is closely related to divergences used in score matching (Hyvärinen, 2005). Random
finite rank approximations of the kernel can also considered in this context (Huggins and
Mackey, 2018).

Stochastic approximation: The construction of low-cost unbiased estimators for (4.2)
is straight-forward via sampling mini-batches from the dataset. This enables a variety of
exact and approximate algorithms for posterior approximation to be exploited (e.g. Ma
et al., 2015). Alternatively, Gorham et al. (2020); Huggins and Mackey (2018) argued for
stochastic approximations of KSD that could be used.

4.2.3. Limitations of KSD-Bayes

A divergence D(Q||P) induces an information geometry (Amari, 1997), encoding a particular
sense in which Q can be considered to differ from P. As such, all divergence exhibit
pathologies, meaning that certain characteristics that distinguish Q from P are less easily
detected. A documented pathology of gradient-based discrepancies, including the KSD, is
their insensitivity to the existence of high-probability regions which are well-separated;
see Gorham et al. (Section 5.1 2019) and Wenliang and Kanagawa (2021). To see this,
consider a Gaussian mixture model

pθ(x) = θ√
2π

exp
(

−(x − µ)2

2

)
+ (1 − θ)√

2π
exp

(
−(x + µ)2

2

)
(4.7)

where θ ∈ [0, 1] specifies the mixture ratio and µ ∈ R controls the separation between
the two components. If the two components are well-separated i.e. µ ≫ 1, the gradient
∇ log pθ becomes insensitive to θ and hence a gradient-based divergence such as KSD will
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(a) θ = 0.2, µ = 5 (b) θ = 0.5, µ = 5 (c) θ = 0.8, µ = 5 (d) KSD2 for µ = 5

(e) θ = 0.2, µ = 2 (f) θ = 0.5, µ = 2 (g) θ = 0.8, µ = 2 (h) KSD2 for µ = 2

Figure 4.1 Illustrating the insensitivity to mixture proportions of KSD. Panels (a-c,e-g) display
the density function pθ(x) from (4.7) together with the gradient ∇ log pθ(x), the latter rescaled
to fit onto the same plot. Panels (d,h) display the discrepancy KSD2(Pθ∥Pn), where Pn is an
empirical distribution of n = 1000 samples from the model with θ = 0.5.

be insensitive to θ, as demonstrated in Figure 4.1. For this reason, caution is warranted
when gradient-based discrepancies are used. However, in practice direct inspection of
the dataset and knowledge of how Pθ is parametrised can be used to ascertain whether
either distribution is multi-modal. Our applications in Section 4.4 are not expected to be
multi-modal (with the exception of the kernel exponential family in Section 4.4.3 which
was selected to demonstrate the insensitivity to mixing proportions of KSD-Bayes).

A second limitation of KSD-Bayes is non-invariance to a change of coordinates in
the dataset. This is a limitation of loss-based estimators in general. In Section 4.1.2
we recommend a data-adaptive choice of kernel, which serves to provide approximate
invariance to affine transformations of the dataset. As usual in statistical analyses, we
recommend post-hoc assessment of the sensitivity of inferences to perturbations of the
dataset. A third limitation of KSD-Bayes is the loss of efficiency that can occur in settings
where the data are high-dimensional. Sliced versions of KSD have been proposed to address
the curse of dimension for KSD (Gong et al., 2021), but to limit scope we do not consider
the combination of sliced discepancies and KSD-Bayes in this work.

Despite these limitations, KSD-Bayes represents a flexible and effective procedure for
generalised Bayesian inference in the context of an intractable likelihood. Our attention
turns next to theoretical analysis of KSD-Bayes.

4.3. Theoretical Assessment

This section contains a comprehensive theoretical treatment of KSD-Bayes. The main
results are posterior consistency and the Bernstein–von Mises theorem in Section 4.3.2,
and global bias-robustness of the generalised posterior in Section 4.3.3. In obtaining these
results we have developed novel intermediate results concerning an important V-statistic
estimator for KSD; these are anticipated to be of independent interest, so we present these
in Section 4.3.1. Note that all theory is valid for the misspecified regime where P need not
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be an element of {Pθ : θ ∈ Θ}. Moreover, the results in Section 4.3.1 and Section 4.3.2
hold for general data domains X . For the entirety of this section we set β = 1, with all
results for β ̸= 1 immediately recovered by replacing K with βK. We use the following
standing assumptions and additional notations.

Standing Assumptions: The dataset {xi}n
i=1 consists of independent samples generated

from P ∈ P(X ), with empirical distribution denoted Pn := (1/n)∑n
i=1 δxi

. The set Θ ⊆ Rp

is open, convex and bounded3. Assumption 4 holds with Q = Pθ for every θ ∈ Θ.

Notation: For shorthand, let ∂1, ∂2 and ∂3 denote the partial derivatives (∂/∂θ(h)),
(∂2/∂θ(h)∂θ(k)) and (∂3/∂θ(h)∂θ(k)∂θ(l)) for h, k, l ∈ {1, . . . , p}, where to reduce notation
the indices (h, k, l) are left implicit.

4.3.1. Minimum KSD Estimators

First we present novel analysis of the V-statistic KSD2(Pθ∥Pn). A related U-statistic
estimator of KSD was analysed in Barp et al. (2019) but this is only an estimate of
KSD2(Pθ∥P), rendering it unsuitable for generalised Bayesian inference, which requires
losses to be lower-bounded (Jewson et al., 2018). Furthermore, our results for the V-
statistic do not depend on a specific form of SPθ

, in contrast to Barp et al. (2019) who
considered the diffusion Stein operator, and may hence be of independent interest.

Despite the bias present in a V-statistic, our standing assumptions are sufficient to
derive the following consistency result:

Lemma 4 (a.s. Pointwise Convergence). For each θ ∈ Θ,

KSD2(Pθ∥Pn) − KSD2(Pθ∥P) a.s.−→ 0.

The proof is contained in Section 4.6.4. If we impose further regularity, we can obtain a
uniform convergence result. It will be convenient to introduce a collection of assumptions
that are indexed by rmax ∈ {0, 1, 2, . . . }, as follows:

Assumption 5 (rmax). For all integers 0 ≤ r ≤ rmax, the following conditions hold:

(1) the map θ 7→ ∂rSPθ
[h](x) exists and is continuous, for all h ∈ H and x ∈ X ;

(2) the map h 7→ (∂rSPθ
)[h](x) is a continuous linear functional on H, for each x ∈ X ;

(3) EX∼P[supθ∈Θ((∂rSPθ
)(∂rSPθ

)K(X, X))] < ∞,

where (∂0SPθ
) := SPθ

; note that (2) with r = 0 is implied from Standing Assumption 2.

In the expression above, the first and second operations of (∂rSPθ
) are applied, respectively,

to the first and second argument of K, as with SPθ
SPθ

K(x, x). These assumptions become
3The assumption that Θ is bounded is used only to simplify the statement of our results. For the case

where Θ is not bounded, it is sufficient for Assumptions 5 and 6 to hold on an open, convex and bounded
subset U ⊂ Θ. Then Lemmas 5 and 6 hold on the bounded subset U , and all the other results hold on Θ.
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concrete when considering a specific Stein operator. In the case of the Langevin Stein
operator,

∂rSPθ
[h](x) = ∂r

(
∇x log pθ(x) · h(x)

)
+ ∂r

(
∇x · h(x)

)
=
(
∂r∇x log pθ(x)

)
· h(x). (4.8)

The operator ∂rSPθ
in (4.8) is therefore well-defined and θ 7→ ∂rSPθ

[h](x) is continuous
whenever θ 7→ ∇x log pθ(x) is r-times continuously differentiable over Θ. For each fixed
x ∈ X , it is clear that h 7→ (∂rSPθ

)[h](x) is a continuous linear functional on H. Then the
term (∂rSPθ

)(∂rSPθ
)K(x, x) in the final part of Assumption 5 takes the explicit form

(∂rSPθ
)(∂rSPθ

)K(x, x) =
(
∂r∇x log pθ(x)

)
· K(x, x)

(
∂r∇x log pθ(x)

)
(4.9)

where the regularity of (4.9) depends on K and Pθ. The uniform convergence result is
presented as follows.

Lemma 5 (a.s. Uniform Convergence). Suppose Assumption 5 (rmax = 1) holds. Then

sup
θ∈Θ

∣∣∣KSD2(Pθ∥Pn) − KSD2(Pθ∥P)
∣∣∣ a.s.−→ 0.

The proof is contained in Section 4.6.5.
Our next results concern consistency and asymptotic normality of an estimator θn that

minimises the V-statistic in (4.2).

Assumption 6. There exist minimisers θn of KSD(Pθ∥Pn) for all sufficiently large n ∈ N,
and there exists a unique θ∗ = infθ∈Θ KSD(Pθ∥P).

Lemma 6 (Strong Consistency). Suppose Assumptions 5 (rmax = 1) and 6 hold. Then

θn
a.s.−→ θ∗.

The proof is contained in Section 4.6.6. For the well-specified case where ∃θ0 s.t. Pθ0 = P,
the uniqueness of θ∗ holds automatically if KSD is a proper divergence i.e. KSD(P∥Q) =
0 ⇐⇒ P = Q. For example, if the preconditions of Barp et al. (2019, Proposition 1) are
satisfied and the parametrisation θ 7→ Pθ is injective, the minimum is uniquely attained.
Let H∗ := ∇2

θ KSD2(Pθ∥P)|θ=θ∗ and J∗ := EX∼P[S(X, θ∗)S(X, θ∗)⊤], where we define the
column vector S(x, θ) := EX∼P[∇θ(SPθ

SPθ
K(x, X))]. Asymptotic normality of θn can be

established if further regularity is imposed:

Lemma 7 (Asymptotic Normality). Suppose Assumptions 5 (rmax = 3) and 6 hold. If H∗

is non-singular,
√

n (θn − θ∗) d→ N (0, H−1
∗ J∗H

−1
∗ )

where d→ denotes the convergence in distribution.

The proof is contained in Section 4.6.7. Our main theoretical results on KSD-Bayes are
presented next.
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4.3.2. Posterior Consistency and Bernstein–von Mises

Armed with the results of Section 4.3.1, we now establish posterior consistency and the
Bernstein–von Mises theorem of KSD-Bayes. In Section 3.2, we derived these for generalised
posteriors of an abstract class. We apply the results in Section 3.2 for KSD-Bayes by
verifying the provided preconditions.

It was established in Section 3.2 that posterior consistency of generalised posteriors
holds under Assumption 1 (prior mass condition) and Assumption 2 (convergence rate).
In most cases, Assumption 1 has to be directly posited due to the difficulty to the pre-
diagnosis although it is not restrictive. We verify Assumption 2 for Dn(θ) = KSD2(Pθ∥Pn)
and D(θ) = KSD2(Pθ∥P). We previously showed in Section 3.2 that, if a loss is additive,
Assumption 2 can be verified by Proposition 1. KSD is no longer an additive loss because
of the “double summation” but it nonetheless elegantly satisfies Assumption 2 as follows.

Lemma 8. For each θ ∈ Θ, with σ(θ) = 4EX∼P[SPθ
SPθ

K(X, X))],

EX1,...,Xn

[
| KSD2(Pθ∥Pn) − KSD2(Pθ∥P)|

]
≤ σ(θ)√

n
. (4.10)

The proof is contained in Section 4.6.8. We establish posterior consistency of KSD-Bayes:

Proposition 4. Suppose Assumption 1 holds under D(θ) = KSD2(Pθ∥P) and σ(θ) :=
4EX∼P [SPθ

SPθ
K(X, X)] is bounded in Θ. Then, for all δ ∈ (0, 1],

P
(∫

Θ

∣∣∣KSD2(Pθ∥P) − KSD2(Pθ∗∥P)
∣∣∣ πD

n (θ)dθ > δ
)

≤ α1 + α2 + 2 supθ∈Θ σ(θ)
δ
√

n

where the probability is with respect to realisations of the dataset {Xi}n
i=1

i.i.d.∼ P.

Proof. The proof is a direct consequence of Theorem 1 that holds under Assumption 1
and Assumption 2. The former is assumed and the latter holds as Lemma 8.

Next, we derive a Bernstein–von Mises result of KSD-Bayes built on the general result
of Theorem 2. The following result is established by showing that Assumption 5 for
KSD-Bayes implies all the conditions of Theorem 2.

Proposition 5. Suppose Assumption 5 (rmax = 3) and 6 holds. Suppose that a prior
π is positive and continuous at θ∗. Denote by π̃D

n a density on Rp of a random variable
√

n(θ − θn) for θ ∼ πD
n . If H∗ := ∇2

θ KSD(Pθ∥P)|θ=θ∗ is nonsingular,

∫
Rp

∣∣∣∣∣π̂D
n (θ) − 1

det(2πH−1
∗ )1/2 exp

(
−1

2θ · H∗θ
)∣∣∣∣∣ dθ

a.s.−→ 0,

where the a.s. convergence is with respect to realisations of the dataset {xi}n
i=1.

Proof. We verify the precondition C1–C5 of Assumption 3. The precondition C1 follows
from Lemma 4, C3 from the standing assumption and Assumption 6, C5 from part (1)

44



of Assumption 1. The precondition C2 is used for Lemma 5 and proven in intermediate
Lemma 10 in subsequent Section 4.6. Finally, the precondition C4 is used for Lemma 7
and proven in intermediate Lemma 11 in subsequent Section 4.6.

These positive results are encouraging, as they indicate the limitations of KSD-Bayes
described in Section 4.2.3 are at worst a finite sample size effect. However, we note that
the asymptotic precision matrix H∗ from Proposition 5 differs to the precision matrix
H∗J

−1
∗ H∗ of the minimum KSD estimator from Lemma 7; This is analogous to the case of

standard Bayesian inference under model misspecification, where Bayesian credible sets can
have asymptotically incorrect frequentist coverage if the statistical model is misspecified
(Kleijn and van der Vaart, 2012b; Müller, 2013).

Remark 1. The analysis in Sections 4.3.1 and 4.3.2 covers general domains X and Stein
operators SP. Henceforth, in this chapter, we restrict attention to X = Rd.

4.3.3. Global Bias-Robustness of KSD-Bayes

An important property of KSD-Bayes is that, through a suitable choice of kernel K, the
generalised posterior can be made robust to contamination in the dataset. Consider the
ε-contamination model Pn,ϵ,y = (1 − ϵ)Pn + ϵδy, where y ∈ X and ϵ ∈ [0, 1] (Huber and
Ronchetti, 2009), where the datum y is considered to be contaminating the dataset {xi}n

i=1.
In Section 3.3, we defined the global bias-robustness property of generalised posteriors that
indicates a strong insensitivity to outliers in the dataset; see Lemma 3 for the condition
to satisfy global bias-robustness. This global bias-robustness of KSD-Bayes will now be
established.

Note again that standard Bayesian inference does not satisfy the conditions of Lemma 3
in general when X = Rd. Indeed, when D(θ) is the negative log likelihood, the quantity
D0(y, θ,Pn) defined in Lemma 3 is given by D0(y, θ,Pn) = log pθ(y) − ∑n

i=1 log pθ(xi),
where the term log pθ(y) can easily violate the condition of Lemma 3 for a large class of
models, including a light-tailed one such as a normal location model. In contrast, the
kernel K in KSD-Bayes provides a degree of freedom which can be leveraged to ensure that
the conditions of Lemma 3 are satisfied. The specific form of D0(y, θ,Pn) for KSD-Bayes
is derived as

D0(y, θ,Pn) = 2EX∼Pn [SPθ
SPθ

K(X, y)] − 2EX,X′∼Pn [SPθ
SPθ

K(X, X ′)].

See Section 4.6.9 for the derivation. This enables us to derive sufficient conditions on K

for global bias-robustness of KSD-Bayes, which we now present.

Theorem 4 (Global Bias-Robustness of KSD-Bayes). For each θ ∈ Θ, let Pθ ∈ PS(Rd)
and let SPθ

denote the Langevin Stein operator in (2.5). Let K ∈ C1,1
b (Rd × Rd;Rd×d).
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Suppose that π is bounded over Θ. If there exists a function γ : Θ → R such that

sup
y∈Rd

(
∇y log pθ(y) · K(y, y)∇y log pθ(y)

)
≤ γ(θ) (4.11)

and supθ∈Θ |π(θ)γ(θ)| < ∞ and
∫

Θ π(θ)γ(θ)dθ < ∞, then KSD-Bayes is globally bias-
robust.

The proof is contained in Section 4.6.10. The preconditions of Theorem 4 can be satisfied
through an appropriate choice of kernel K. In Section 4.1.2 we recommended the choice
of kernel K of the form

K(x, x′) = M(x)M(x′)⊤

(1 + (x − x′)⊤Σ−1(x − x′))γ .

Then the main quantity to use in checking the condition turns out to be

sup
y∈Rd

(
∇y log pθ(y) · K(y, y)∇y log pθ(y)

)
= sup

y∈Rd

∥M(y)∇y log pθ(y)∥2.

It can be observed from the equation above that it suffices to ensure global bias-robustness
of KSD-Bayes if we choose a function M that decays fast enough to cancel the growth of
∇ log pθ. The difference in performance of robust and non-robust instances of KSD-Bayes is
explored in detail in Section 4.4. A comparison of KSD-Bayes to existing robust generalised
Bayesian methodologies for tractable likelihood can be found in Section A.4.

This completes our methodological and theoretical development, and next we turn to
empirical performance assessment.

4.4. Empirical Assessment

In this section four distinct experiments are presented. The first experiment, in Sec-
tion 4.4.1, concerns a normal location model, allowing the standard posterior and our
generalised posterior to be compared and confirming our robustness results are meaningful.
Section 4.4.2 presents a two-dimensional precision estimation problem, where standard
Bayesian computation is challenging but computation with KSD-Bayes is trivial. Then,
Section 4.4.3 presents a 25-dimensional kernel exponential family model, and Section 4.4.4
presents a 66-dimensional exponential graphical model. The kernel exponential family
model allows us to explore a multi-modal dataset and to understand the potential limita-
tions of KSD-Bayes in that context (c.f. Section 4.2.3). For all experiments, the default
settings of kernel K in Section 4.1.2 were used. The approach of Lyddon et al. (2019) was
adopted to select the weight β. For a well-specified normal location model in Section 4.4.1,
the asymptotic variance of the KSD-Bayes posterior with β = 1 is theoretically never
smaller than that of the standard posterior. This provides a heuristic motivation to
restrict β to (0, 1]. We used this restriction as a safeguard against over-confidence of the
KSD-Bayes posterior in the experiments in this section. The full detail of the selection of β
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Figure 4.2 Posteriors and generalised posteriors for the normal location model. The true
parameter value is θ = 1, while a proportion ϵ of the data were contaminated by noise of the
form N (y, 1). In the top row y = 10 is fixed and ϵ ∈ {0, 0.1, 0.2} are considered, while in the
bottom row ϵ = 0.1 is fixed and y ∈ {1, 10, 20} are considered.

is provided in Section A.5. Source code to reproduce these experiments can be downloaded
from https://github.com/takuomatsubara/KSD-Bayes.

4.4.1. Normal Location Model

For illustrative purposes, we first consider fitting a normal location model Pθ = N (θ, 1) to
a dataset {xi}n

i=1. Our aim is to illustrate the robustness properties of KSD-Bayes, and
we therefore generated the dataset using a contaminated data-generating model where,
for each index i = 1, . . . , n independently, with probability 1 − ϵ the datum xi was drawn
from Pθ with “true” parameter θ = 1, otherwise xi was drawn from Py = N (y, 1), so that
y and ϵ control, respectively, the nature and extent of the contamination in the dataset.
The task is to make inferences for θ based on a contaminated dataset of size n = 100. The
prior on θ was N (0, 1).

The standard Bayesian posterior is depicted in the leftmost panels of Figure 4.2, for
varying ϵ (top row) and varying y (bottom row). Straightforward calculation shows that
the expected posterior mean is n

n+1 [θ + ϵ(y − θ)], which increases linearly as either y or ϵ

are increased, with the other fixed. This behaviour is evident in the leftmost panels of
Figure 4.2. The generalised posterior from KSD-Bayes is depicted in the central panels of
Figure 4.2. This generalised posterior is slightly less sensitive to contamination compared
to the standard posterior. Moreover, the variance slightly increases whenever either ϵ or y

are increased, as a result of estimating β. In the rightmost panels of Figure 4.2 we display
the robust generalised posterior using the weighting function M(x) = (1+x2)−1/2, intended
to bound the influence of large values in the dataset. This choice of M(x) vanishes just
fast enough as |x| → ∞ to ensure that the bias-robustness conditions of Theorem 4 are
satisfied; see Section A.3. The effect is clear from the bottom right panel of Figure 4.2,
where even for y = 20 (and ϵ fixed to a small value, ϵ = 0.1) the robust generalised
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(a) θ 7→ | PIF(y = 2.0, θ,Pn)| (b) θ 7→ | PIF(y = 20, θ,Pn)|

Figure 4.3 Posterior influence function for the normal location model.

posterior remains centred close to the true value θ = 1. While our theoretical results
relate to y and do not guarantee robustness when ϵ is increased, the top right panel in
Figure 4.2 suggests that the robust generalised posterior is indeed robust in this regime
as well. Figure 4.3 displays the posterior influence function (3.7) for this normal location
model. This reveals that the standard Bayesian posterior is not bias-robust, since the tails
of the posterior are highly sensitive to the contaminant y. In contrast, the tails of the
generalised posterior are insensitive to the contaminant. This appears to be the case for
both weighting functions, despite only one weighting function satisfying the conditions of
Theorem 4.

4.4.2. Precision Parameters in an Intractable Likelihood Model

Our second experiment is a toy model due to Liu et al. (2019); an exponential family
model pθ(x) = exp(θ · t(x) − a(θ) + b(x)) where θ ∈ R2 are parameters to be inferred and
x ∈ R5. The model specification is completed with

t(x) = (tanh(x(4)), tanh(x(5))), b(x) = −0.5∑5
i=1 x2

(i) + 0.6x(1)x(2) + 0.2∑5
i=3 x(1)x(i).

Despite the apparent simplicity of this model, the term a(θ), which determines the
normalisation constant, is analytically intractable and exact simulation from this data-
generating model is not straightforward (excluding the case θ = 0). In sharp contrast, the
generalised posterior produced by KSD-Bayes is available in closed form for this model.
Our aim here is to assess robustness of the generalised posterior, focusing on the setting
where y is fixed and ϵ is increased, since this is the regime for which our theoretical
results do not hold. A dataset of size n = 500 was generated from the model Pθ with true
parameter θ = (0, 0), so that Pθ has the form N (0, Σ) and can be exactly sampled. Each
datum xi was, with probability ϵ, shifted to xi + y where y = (10, . . . , 10). The prior on θ

was N (0, 102I).
The left column in Figure 4.4 displays the standard posterior4, which is seen to be

sensitive to contamination in the dataset, in much the same way observed for the normal
4To obtain these results, the intractable normalisation constant was approximated using a numer-

ical cubature method. To do this, we recognise that pθ(x) = N (x; 0, Σ)rθ(x)/Cθ where rθ(x) =
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Figure 4.4 Posteriors and generalised posteriors for the Liu et al. (2019) model. The true
parameter value is θ = 0, while a proportion ϵ of the data were contaminated by being shifted by
an amount y = (10, 10).

location model in Section 4.4.1. The generalised posterior with M(x) = Id is depicted
in the middle column of Figure 4.4, and is seen to be more sensitive to contamination
compared to the standard Bayesian posterior, in that the mean moves further from 0 as ϵ

is increased. Finally, in the right column of Figure 4.4 we display the robust generalised
posterior obtained with weighting function

M(x) = diag
(
(1 + x2

(1) + · · · + x2
(5))−1/2, (1 + x2

(1) + x2
(2))−1/2, . . . , (1 + x2

(1) + x2
(5))−1/2

)
,

which ensures the criteria for bias-robustness in Theorem 4 are satisfied. From the figure, we
observe that the robust generalised posterior remains centred close to the data-generating
value θ = 0, even for the largest contamination proportion considered (ϵ = 0.2), with a
variance that increases as ϵ is increased. At ϵ = 0, the spread of the robust generalised
posterior is almost twice that of the standard posterior, which reflects the trade-off between
robustness and efficiency.

4.4.3. Robust Nonparametric Density Estimation

Our third experiment concerns density estimation using the kernel exponential family, and
explores the performance of KSD-Bayes when the dataset is multi-modal (c.f. Section 4.2.3).

exp(θ1 tanh(x4)+θ2 tanh(x5)). Then Cθ =
∫

rθ(x)dN (x; 0, Σ), which was approximated using (polynomial
order 10) Gauss-Hermite cubature in 2D.
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Let q denote a reference p.d.f. on Rd, and let κ : Rd × Rd → R be a reproducing kernel.
The kernel exponential family model (Canu and Smola, 2006)

pθ(x) ∝ q(x) exp(⟨f, κ(·, x)⟩H(κ)) (4.12)

is parametrised by f , an element of the RKHS H(κ). The implicit normalisation constant
of (4.12), if it exists, is typically an intractable function of f . There appears to be no
Bayesian or generalised Bayesian treatment of (4.12) in the literature, which may be due
to intractability of the likelihood. As the theory in this paper is finite-dimensional, we
consider a finite-rank approximation of elements in H(κ) of the form f(x) = ∑p

i=1 θ(i)ϕ(i)(x),
with coefficients θ(i) ∈ R and basis functions ϕ(i) ∈ H(κ), where we will take θ to be
p = 25 dimensional. Finite rank approximations have previously been considered for
frequentist learning of kernel exponential families in Strathmann et al. (2015); Sutherland
et al. (2018). In our case, the finite rank approximation ensures that any prior we induce
on f via a prior on the coefficients θ(i) will be supported on H(κ). If one is interested in a
well-defined limit as p → ∞ then one will need to ensure a.s. convergence of the sum in
this limit. If the ϕi are orthonormal in H(κ), and if the θ(i) are a priori independent, then
E[∥f∥2

H(κ)] = ∑p
i=1 E[θ2

(i)] so a sufficient condition, for example, is E[θ2
(i)] = O(n−1−δ) for

some δ > 0.
Our interest is in the performance of KSD-Bayes applied to a multi-modal dataset, and

to explore these we considered the galaxy data of Postman et al. (1986); Roeder (1990),
comprising n = 82 velocities in km/sec of galaxies from 6 well-separated conic sections
of a survey of the Corona Borealis. The data were whitened prior to computation, but
results are reported with the original scale restored. For the kernel exponential family, we
use q(x) = N (0, 32) and the kernel κ(x, y) = exp(−(x − y)2/2), which ensures that (4.12)
is normalisable due to Proposition 2 of Wenliang et al. (2019). For basis functions we use
ϕ(i+1)(x) = (xi/

√
i!) exp(−x2/2), i = 0, . . . , 24, which are orthonormal in H(κ) (Steinwart

et al., 2006). For our prior, we let θ(i) ∼ N (0, 102i−1.1), which is weakly informative within
the constraint of having a well-defined p → ∞ limit. Our contamination model replaces a
proportion ϵ of the dataset with values independently drawn from N (y, 0.12), with y = 5,
shown as black bars in the top row of Figure 4.5.

The generalised posterior with M(x) = 1 is displayed in the second row of Figure 4.5,
with the bottom row presenting a robust generalised posterior based on the weighting
function M(x) = (1 + x2)−1/2, which ensures the conditions of Theorem 4 are satisfied.
The results we present are for fixed y and increasing ϵ, since this regime is not covered by
Theorem 4. The generalised posterior mean is a uni-modal density, which we attribute to
the insensitivity of KSD to mixture proportions discussed in Section 4.2.3, but multi-modal
densities are evident in sampled output. Our results indicate that the robust weighting
function reduces sensitivity to contamination in the dataset (note how the mass in the
central mode of the generalised posterior decreases when ϵ = 0.2, when the identity
weighting function is used). Whether this insensitivity of KSD to well-separated regions in
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Figure 4.5 Generalised posteriors for the kernel exponential family model. A proportion ϵ of
the data (top row) were contaminated. Samples from the generalised posteriors correspond to
probability density functions, shown as dotted curves.

the dataset is desirable or not will depend on the application, but in this case it happens
to be beneficial.

4.4.4. Network Inference with Exponential Graphical Models

Our final example concerns an exponential graphical model, representing negative condi-
tional relationships among a collection of random variables W = (W1, . . . , Wd), described
in Yang et al. (2015, Sec. 2.5). The likelihood function is

pW |θ(w|θ) ∝ exp
(

−
∑

i

θ(i)w(i) −
∑
i<j

θ(i,j)w(i)w(j)

)
, (4.13)

where w ∈ (0, ∞)d and θ(i) > 0, θ(i,j) ≥ 0. The total number of parameters is p = d(d+1)/2.
Simulation from this model is challenging and the normalisation constant is an intractable
integral, so in what follows a standard Bayesian analysis is not attempted. Our aim is
to fit (4.13) to a protein kinase dataset, mimicking an experiment presented by Yu et al.
(2016) in the score-matching context. This dataset, originating in Sachs et al. (2005),
consists of quantitative measurements of d = 11 phosphorylated proteins and phospholipids,
simultaneously measured from single cells using a fluorescence-activated cell sorter, so the
parameter θ is 66-dimensional. Nine stimulatory or inhibitory interventional conditions
were combined to give a total of 7, 466 cells in the dataset. The data were square-root
transformed and samples containing values greater than 10 standard deviations from their
mean were judged to be bona fide outliers and were removed. The remaining dataset
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Figure 4.6 Exponential graphical model; estimated protein signalling networks as a function of
the proportion ϵ of contamination in the dataset.

of size n = 7, 449 was normalised to have unit standard deviation. In most cases the
measurement reflects the activation state of the kinases, and scientific interest lies in the
mechanisms that underpin their interaction5. These mechanisms are often summarised as
a protein signalling network, whose nodes are the d proteins and whose edges correspond
to the pairs of proteins that interact. An important statistical challenge is to estimate
a protein signalling network from such a dataset (Oates, 2013). However, it is known
that existing approaches to network inference are non-robust, in a general sense, with
community challenges regularly highlighting the different conclusions drawn by different
estimators applied to an identical dataset (Hill et al., 2016). Our interest is in whether
networks estimated using KSD-Bayes are robust.

For our experiment, the variables w(i) were re-parametrised as x(i) := log(w(i)), in order
that they are unconstrained and Pθ ∈ PS(Rd). For the contamination model, a proportion
ϵ of the data were replaced with the fixed value y = (10, . . . , 10) ∈ Rd. Parameters were
a priori independent with θ(i) ∼ NT(0, 1), θ(i,j) ∼ NT(0, 1), where NT is the Gaussian
distribution truncated to the positive orthant of Rp. This prior is conjugate to the
likelihood, as explained in Section 4.2.1, and allows the generalised posterior to be exactly
computed. Generalised posteriors were produced both without and with the exponential
weighting function [M(x)](i,i) = exp(−x(i)), the latter aiming to reduce sensitivity to large
values in the dataset and coinciding with the identity weighting function at x = 0. From
these, protein signalling networks were estimated using the s most significant edges, defined
as the s largest values of θ̄(i,j)/σ(i,j), where the generalised posterior marginal for θ(i,j) is

5There is no scientific basis to expect only negative conditional dependencies in the dataset; in this
sense the model is likely to be misspecified. Our interest is in assessing the robustness properties of
KSD-Bayes only, and no scientific conclusions will be drawn using this model.
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NT(θ̄(i,j), σ2
(i,j)). Results are shown in Figure 4.6; to optimise visualisation we report results

for s = 5, though for other values of s similar conclusions hold. It is interesting to observe
little agreement between the networks returned when the identity weighting function is
used, which may reflect the difficulty of the network inference task. Reduced sensitivity
to ϵ was observed when the exponential weighting function was used. In Figure 4.6 we
report the number of edges that are consistent with the network reported in Sachs et al.
(2005, Fig. 3A); the use of the exponential weighting function resulted in more edges being
consistent with this benchmark network.

4.5. Concluding Remark

In this chapter, we proposed KSD-Bayes, that is, the SD-Bayes methodology resulting
from the use of KSD. Strikingly, KSD-Bayes is computable by any standard MCMC
algorithms even if intractable models are used, further admitting fully conjugate inference
for exponential family models. Moreover, an appropriate choice of kernel, provided in
Section 4.1.2, confers strong robustness against outliers on KSD-Bayes. The simultaneous
attainment of the computational efficiency and robustness makes KSD-Bayes a distinctive
Bayesian methodology for intractable models. The robustness cannot be achieved if,
for example, the score matching objective (2.8) is used in SD-Bayes as an alternative
Stein discrepancy that is available in closed form. If the loss Dn is the score matching
objective (2.8), the quantity D0(y, θ,Pn) defined in Lemma 3 is given by D0(y, θ,Pn) =
SM2(Pθ∥δy) + SM2(Pθ∥Pn), where the term SM2(Pθ∥δy) can easily violate the condition of
Lemma 3 for a large class of models. It is straightforward to verify that with a normal
location model. On the other hand, the degree of freedom in the form of KSD introduced
by a choice of kernel creates room for the condition in Lemma 3 to be satisfied for any
given model. The computational cost of KSD is O(n2) because the data-dependent form
corresponds to a double summation, in contrast to e.g. the score matching objective
whose data-dependent form corresponds to a single summation. However, if the conjugate
inference of KSD-Bayes is available, the quadratic cost O(n2) occurs only once when
computing a mean and covariance of the KSD-Bayes posterior in the Gaussian form.
The conjugate inference significantly suppresses the computational cost of KSD-Bayes
compared to cases where MCMC algorithms are required.

4.6. Proofs of Chapter 4

This section contains all the deferred proofs of theoretical results in Chapter 4. The proofs
of posterior consistency and the Bernstein–von Mises theorem of KSD-Bayes are placed in
the main text since they are immediate from Theorems 1 and 2 in Chapter 3 provided the
results in Section 4.3.1. The proofs of other results and useful lemmas are contained in
this section. Set Dn(θ) = KSD2(Pθ∥Pn) and D(θ) = KSD2(Pθ∥P) throughout this section.
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4.6.1. Proof of Proposition 2

The following properties of the Stein operator SQ will be useful:

Lemma 9. Under Assumption 4, we have, for all x, x′ ∈ X and h ∈ U ,

(i) SQK(x, ·) ∈ H ,

(ii) SQ[h](x) = ⟨h(·), SQK(x, ·)⟩H ,

(iii) |SQSQK(x, x′)| ≤
√

SQSQK(x, x)
√

SQSQK(x′, x′) .

Proof. First of all, since h 7→ SQ[h](x) is a continuous linear functional on H for each fixed
x ∈ X by assumption, from the Riesz representation theorem (Steinwart and Christmann,
2008, Theorem A.5.12) there exists a representer gx ∈ H for each fixed x ∈ X s.t.

SQ[h](x) = ⟨h, gx⟩H.

Second of all, the reproducing property h(x′) = ⟨h(·), K(·, x′)⟩H holds for any h ∈ H,
where we recall that the inner product between h ∈ H and a matrix-valued function K(x, ·)
is defined in Section 2.5. By the reproducing property, for all x, x′ ∈ X ,

gx(x′) = ⟨gx, K(·, x′)⟩H = SQ [K(·, x′)] (x) = SQK(x, x′). (4.14)

In particular, SQK(x, ·) ∈ H since gx ∈ H, establishing item (i). Based on these two
observations, we can rewrite SQ[h](x) at each fixed x ∈ X as

SQ[h](x) = ⟨h, gx⟩H = ⟨h(·), SQK(x, ·)⟩H, (4.15)

establishing item (ii). We now apply (4.15) with h(·) = SQK(x′, ·) to deduce that

SQSQK(x′, x) = SQ [SQK(x′, ·)] (x) = ⟨SQK(x′, ·), SQK(x, ·)⟩H. (4.16)

Applying the Cauchy-Schwarz inequality,

|SQSQK(x, x′)| = |⟨SQK(x, ·), SQK(x′, ·)⟩H| ≤ ∥SQK(x, ·)∥H∥SQK(x′, ·)∥H.

Here for each x ∈ X the norm term can computed using (4.16):

∥SQK(x, ·)∥H =
√

⟨SQK(x, ·), SQK(x, ·)⟩H =
√

SQSQK(x, x)

Therefore for all x, x′ ∈ X we have

|SQSQK(x, x′)| ≤
√

SQSQK(x, x)
√

SQSQK(x′, x′),

establishing item (iii).
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We now move on to the main proof of Proposition 2.

Proof. From item (ii) of Lemma 9, for each x ∈ X , h ∈ H, we have

SQ[h](x) = ⟨h(·), SQK(x, ·)⟩H.

Taking the expectation of both sides,

EX∼P [SQ[h](X)] = EX∼P [⟨h(·), SQK(X, ·)⟩H] = ⟨h(·),EX∼P [SQK(X, ·)]⟩H . (4.17)

Here since the inner product is continuous liner operator, the expectation and inner product
can be exchanged if the function x 7→ SQK(x, ·) is Bochner P-integrable (Steinwart and
Christmann, 2008, A.32). This is indeed the case, since from item (ii) of Lemma 9 again,
and Jensen’s inequality,

EX∼P [∥SQK(X, ·)∥H] = EX∼P

[√
⟨SQK(X, ·), SQK(X, ·)⟩H

]
= EX∼P

[√
SQSQK(X, X)

]
≤
√
EX∼P [SQSQK(X, X)] < ∞

where the last term is finite by Assumption 4. A standard argument based on the
Cauchy–Schwarz inequality gives

sup
∥h∥H≤1

∣∣∣〈h(·),EX∼P

[
SQK(X, ·)

]〉
H

∣∣∣ =
∥∥∥EX∼P

[
SQK(X, ·)

]∥∥∥
H

=
√〈

EX∼P [SQK(X, ·)] ,EX′∼P [SQK(X ′, ·)]
〉

H

=
√
EX,X′∼P

[〈
SQK(X, ·), SQK(X ′, ·)

〉
H

]
=
√
EX,X′∼P [SQSQK(X, X ′)] (4.18)

where X and X ′ are independent, and we again appeal to Bochner P-integrability to
interchange expectation and inner product. Thus from (4.17) and (4.18) we have

KSD2(Q∥P) =
(

sup
∥h∥H≤1

∣∣∣∣EX∼P [SQ[h](X)]
∣∣∣∣
)2

= EX,X′∼P [SQSQK(X, X ′)] ,

as claimed.

4.6.2. Assumption 4 for the Langevin Stein operator

We demonstrate how to verify the assumption that h 7→ SQ[h](x) is a continuous linear
functional on H for each fixed x ∈ X in the case where SQ is the Langevin Stein operator
(2.5) for Q ∈ PS(Rd). Since a linear functional is continuous if and only if it is bounded, we
aim to show that, for each fixed x ∈ X , there exist a constant Cx s.t. |SQ[h](x)| ≤ Cx∥h∥H
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for all h ∈ H. For each fixed x ∈ Rd, the Langevin Stein operator SQ is given as

SQ[h](x) = ∇ log q(x) · h(x) + ∇ · h(x).

From the reproducing property h(x) = ⟨h, K(x, ·)⟩H for any h ∈ H, we have

SQ[h](x) = ∇ log q(x) · ⟨h, K(x, ·)⟩H + ∇x · ⟨h, K(x, ·)⟩H

= ⟨h, K(x, ·)∇ log q(x)⟩H + ⟨h, ∇x · K(x, ·)⟩H

where the order of inner product and other operators is exchangeable by the continuity
of ⟨h, ·⟩H : H → R (Steinwart and Christmann, 2008, Corollary 4.36). Then by the
Cauchy–Schwarz inequality,

|SQ[h](x)| ≤
(

∥K(x, ·)∇ log q(x)∥H + ∥∇x · K(x, ·)∥H

)
∥h∥H

=
(√

∇ log q(x) · K(x, x)∇ log q(x) +
√

∇ · (∇ · K(x, x))
)

∥h∥H =: Cx∥h∥H.

where the first and second gradient of ∇ · (∇ · K(x, x)) are taken each with respect to the
first and second argument of K. For the constant Cx to exist, it is sufficient to require
that ∇ log q(x), K(x, x) and ∇ · (∇ · K(x, x)) exist. This is the case when, for example,
Q ∈ PS(Rd) and K ∈ C1,1

b (Rd × Rd;Rd×d), as assumed in Gorham and Mackey (2017).

4.6.3. Proof of Proposition 3

Proof. From (4.3), SPθ
SPθ

K is given by

SPθ
SPθ

K(x, x′) +C= ∇ log pθ(x) · K(x, x′)∇ log pθ(x′)︸ ︷︷ ︸
(∗1)

+ ∇ log pθ(x) · (∇x′ · K(x, x′))︸ ︷︷ ︸
(∗2)

+ ∇ log pθ(x′) · (∇x · K(x, x′))︸ ︷︷ ︸
(∗3)

,

where +C= indicates equality up to an additive term that is θ-independent. The exponential
family model in (4.6) satisfies ∇ log pθ(x) = ∇t(x)η(θ) + ∇b(x). For term (∗1), we have

n∑
i=1

n∑
j=1

(∗1) =
n∑

i=1

n∑
j=1

(∇t(xi)η(θ)) · K(xi, xj)∇t(xj)η(θ) + ∇b(xi) · K(xi, xj)∇t(xj)η(θ)

+ (∇t(xi)η(θ)) · K(xi, xj)∇b(xj) + ∇b(xi) · K(xi, xj)∇b(xj)

+C= η(θ) ·

 n∑
i=1

n∑
j=1

∇t(xi)⊤K(xi, xj)∇t(xj)
 η(θ)

+ η(θ) ·

2
n∑

i=1

n∑
j=1

∇t(xi)⊤K(xi, xj)∇b(xj)
 (4.19)
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where the last equality follows from symmetry of K. For terms (∗2) and (∗3),

n∑
i=1

n∑
j=1

(∗2) =
n∑

i=1

n∑
j=1

(∇t(xi)η(θ)) · (∇x′ · K(xi, xj)) + ∇b(xi) · (∇x′ · K(xi, xj))

+C= η(θ) ·

 n∑
i=1

n∑
j=1

∇t(xi)⊤(∇x′ · K(xi, xj))
 , (4.20)

n∑
i=1

n∑
j=1

(∗3) =
n∑

i=1

n∑
j=1

(∇t(xi)η(θ)) · (∇x · K(xi, xj)) + ∇b(xj) · (∇x · K(xi, xj))

+C= η(θ) ·

 n∑
i=1

n∑
j=1

∇t(xj)⊤(∇x · K(xi, xj))
 . (4.21)

From Equation (4.2), the KSD-Bayes posterior is

πD
n (θ) ∝ π(θ) exp

−βn

 1
n2

n∑
i=1

n∑
j=1

(∗1) + (∗2) + (∗3)

 ,

so we may collect together terms in Equations (4.19) to (4.21) to obtain the expressions in
Proposition 3.

4.6.4. Proof of Lemma 4 (a.s. Pointwise Convergence)

Proof. Decomposing the double summation of Dn(θ) into the diagonal term (i = j) and
non-diagonal term (i ̸= j),

Dn(θ) = 1
n2

n∑
i=1

SPθ
SPθ

K(xi, xi) + 1
n2

n∑
i=1

n∑
j ̸=i

SPθ
SPθ

(xi, xj)

= 1
n

1
n

n∑
i=1

SPθ
SPθ

K(xi, xi)︸ ︷︷ ︸
(∗a)

+n − 1
n

1
n(n − 1)

n∑
i=1

n∑
j ̸=i

SPθ
SPθ

K(xi, xi)︸ ︷︷ ︸
(∗b)

.

Fix θ ∈ Θ. From the strong law of large number (Durrett, 2010, Theorem 2.5.10),

(∗a) = 1
n

n∑
i=1

SPθ
SPθ

K(xi, xi) a.s.−→ EX∼P [SPθ
SPθ

K(X, X)] ,

provided that EX∼P [|SPθ
SPθ

K(X, X)|] < ∞. From the positivity of SPθ
SPθ

K(x, x), we
have EX∼P [|SPθ

SPθ
K(X, X)|] = EX∼P [SPθ

SPθ
K(X, X)], which has been assumed to exist.

The form of (b) is called an unbiased statistic (or U-statistic for short) and Hoeffding
(1961) proved the strong law of large numbers

(∗b) = 1
n(n − 1)

n∑
i=1

n∑
j ̸=i

SPθ
SPθ

K(xi, xj) a.s.−→ EX,X′∼P [SPθ
SPθ

K(X, X ′)] ,
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whenever EX,X′∼P [|SPθ
SPθ

K(X, X ′)|] < ∞. From item (iii) of Lemma 9 and Jensen’s
inequality, we have EX,X′∼P [|SPθ

SPθ
K(X, X ′)|] ≤ EX∼P [SPθ

SPθ
K(X, X)] where the right

hand side is again assumed to exist. Therefore, since 1/n → 0 and (n − 1)/n → 1,

Dn(θ) = 1
n

(∗a) + n − 1
n

(∗b) a.s.−→ EX,X′∼P [SPθ
SPθ

K(X, X ′)] = D(θ),

where the argument holds for each fixed θ ∈ Θ.

4.6.5. Proof of Lemma 5 (a.s. Uniform Convergence)

Similarly to ∇2
θ, we let ∇3

θ := ∇θ ⊗ ∇θ ⊗ ∇θ denote the tensor product ⊗ where each
component is given by ∂3

h,k,l. We first see in the following lemma that Assumption 5 implies
the precondition C2 of Assumption 3. The proof of the following lemma uses technical
results presented later in Section A.6.

Lemma 10 (Derivatives a.s. Bounded). Suppose Assumption 5 (rmax = 3) holds. Then
lim supn→∞ supθ∈Θ ∥∇r

θDn(θ)∥2 < ∞ a.s. for r = 1, 2, 3. If instead Assumption 5 (rmax =
1) holds, then the result holds for r = 1.

Proof. First of all, for finite n we have

∇r
θDn(θ) = ∇r

θ

1
n2

n∑
i=1

n∑
j=1

SPθ
SPθ

K(xi, xj) = 1
n2

n∑
i=1

n∑
j=1

∇r
θ

(
SPθ

SPθ
K(xi, xj)

)
.

From the triangle inequality and Lemma 17, we further have

sup
θ∈Θ

∥∇r
θDn(θ)∥2 = 1

n2

n∑
i=1

n∑
j=1

sup
θ∈Θ

∥∥∥∇r
θ

(
SPθ

SPθ
K(xi, xj)

)∥∥∥
2

≤ 1
n2

n∑
i=1

n∑
j=1

M r(xi, xj).

It follows from Lemma 19 that (1/n2)∑n
i=1

∑n
j=1 M r(xi, xj) a.s.−→ EX,X′∼P[M r(X, X ′)] < ∞.

Therefore, a.s. lim supn→∞ supθ∈Θ ∥∇r
θDn(θ)∥2 < ∞. Inspection of the proof reveals that

the argument still holds for r = 1 if Assumption 5 (rmax = 1) holds instead.

Now we move on to the main proof.

Proof. It directly follows from Lemma 1, which holds under the precondition C1 and C2
of Assumption 3 for r = 1. The precondition C1 follows from Lemma 4 and C2 for r = 1
follows from Lemma 10.

4.6.6. Proof of Lemma 6 (Strong Consistency)

Proof. It directly follows from Lemma 2, which holds under the preconditions C1, C2, and
C3 in Assumption 3 for r = 1. The precondition C1 follows from Lemma 4, C2 for r = 1
follows from Lemma 10, and C3 is assumed.
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4.6.7. Proof of Lemma 7 (Asymptotic Normality)

We first introduce the two following lemmas that facilitate the main proof. The proof of
the following lemma uses technical results presented later in Section A.6.

Lemma 11 (A.S. Convergence of Derivatives). Suppose Assumption 5 (rmax = 3) and 6
hold. Then we have ∇r

θDn(θ∗) a.s.→ ∇r
θD(θ∗) for r = 1, 2, 3.

Proof. The argument is analogous to that used to prove Lemma 4, based on the decompo-
sition

∇r
θDn(θ) = ∇r

θ

1
n2

n∑
i=1

n∑
j=1

SPθ
SPθ

K(xi, xj) = 1
n2

n∑
i=1

n∑
j=1

∇r
θ

(
SPθ

SPθ
K(xi, xj)

)
.

Let F (x, x′) := ∇r
θ

(
SPθ

SPθ
K(x, x′)

)
to see that

∇r
θDn(θ) = 1

n

1
n

n∑
i=1

F (xi, xi)︸ ︷︷ ︸
(∗1)

+n − 1
n

1
n(n − 1)

n∑
i=1

n∑
j ̸=i

F (xi, xj)︸ ︷︷ ︸
(∗2)

.

It follows from the strong law of large number (Durrett, 2010, Theorem 2.5.10) that
(∗1) a.s.→ EX∼P[F (X, X)] provided EX∼P[∥F (X, X)∥2] < ∞. Similarly, it follows from the
strong law of large number for U-statistics (Hoeffding, 1961) that (∗2) a.s.→ EX,X′∼P[F (X, X ′)]
provided EX,X′∼P[∥F (X, X ′)∥2] < ∞. Both the required conditions holds by Lemma 18 and
the fact that ∥F (x, x′)∥2 ≤ supθ∈Θ ∥∇r

θ(SPθ
SPθ

K(x, x′))∥2 ≤ M r(x, x′) from Lemma 17.
Thus

∇r
θDn(θ) a.s.−→ EX,X′∼P[F (X, X ′)] = EX,X′∼P[∇r

θ

(
SPθ

SPθ
K(xi, xj)

)
].

Since EX,X′∼P[∥F (X, X ′)∥2] < ∞, we may apply the dominated convergence theorem to
interchange expectation and differentiation:

EX,X′∼P[∇r
θ(SPθ

SPθ
K(X, X ′))] = ∇r

θEX,X′∼P[SPθ
SPθ

K(X, X ′)] = ∇r
θD(θ).

Therefore, setting θ = θ∗, we conclude that ∇r
θDn(θ∗) a.s.→ ∇r

θD(θ∗).

Lemma 12 (Moment Condition for Asymptotic Normality). Suppose that Assumption 5
(rmax = 3) holds. Let F (x, x′) := ∇θ(SPθ

SPθ
K(x, x′)) for any fixed θ ∈ Θ. Then we have

EX,X′∼P

[
∥F (X, X ′)∥2

2

]
< ∞ and EX∼P [∥F (X, X)∥2] < ∞.

Proof. First of all, it follows from Lemma 17 that for any x, x′ ∈ X ,

∥F (x, x′)∥2 ≤ sup
θ∈Θ

∥∇θ

(
SPθ

SPθ
K(x, x′)

)
∥2 ≤ M1(x, x′).

Thus for the first moment we have EX∼P [∥F (X, X)∥2] ≤ EX∼P[M1(X, X)] < ∞ from
Lemma 18. For the second moment, EX,X′∼P

[
∥F (X, X ′)∥2

2

]
≤ EX,X′∼P [M1(X, X ′)2] =: (∗).
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By definition,

(∗) = EX,X′∼P

[(
m1(X)m0(X ′) + m0(X)m1(X ′)

)2
]

= 4EX∼P
[
m1(X)2

]
EX∼P

[
m0(X)2

]
.

Each of these latter expectations is finite by Lemma 18, which completes the proof.

Now we move on to the main proof.

Proof. It was assumed that, for any h ∈ H and x ∈ X , the map θ 7→ SPθ
[h](x) is

three times continuously differentiable, from which it follows that fn is three times
continuously differentiable as well. Since θn minimises fn for all sufficiently large n, we
have ∇θDn(θn) = 0. Hence a second order Taylor expansion around θ∗ yields

0 = ∇θDn(θn) = ∇θDn(θ∗) + ∇2
θDn(θ∗)(θn − θ∗) + (θn − θ∗) · ∇3

θDn(θ′
n)(θn − θ∗)

where θ′
n = αθ∗ + (1 − α)θn for some α ∈ [0, 1]. By transposing the terms properly and

scaling the both side by
√

n, we have

√
n(θn − θ∗) =

(
∇2

θDn(θ∗)︸ ︷︷ ︸
(∗1)

+ (θn − θ∗) · ∇3
θDn(θ′

n)︸ ︷︷ ︸
(∗2)

)−1(
−

√
n∇θDn(θ∗)︸ ︷︷ ︸

(∗3)

)
.

In the remainder, we show the convergence of (∗1), (∗2) and (∗3), and apply the Slutsky’s
theorem to see the convergence in distribution of

√
n(θ − θn).

Term (∗1): First of all, by the triangle inequality,
∥∥∥∇2

θDn(θn) − ∇2
θD(θ∗)

∥∥∥
2

≤
∥∥∥∇2

θDn(θn) − ∇2
θDn(θ∗)

∥∥∥
2︸ ︷︷ ︸

(∗∗1)

+
∥∥∥∇2

θDn(θ∗) − ∇2
θD(θ∗)

∥∥∥
2︸ ︷︷ ︸

(∗∗2)

.

By the mean value theorem applied to (∗∗1) and Lemma 10 (i.e. limn→∞ supθ∈Θ ∥∇3
θDn(θ)∥2 <

∞ a.s.), there a.s. exists a constant 0 < C < ∞ s.t., for all sufficiently large n,

(∗∗1) =
∥∥∥∇2

θDn(θn) − ∇2
θDn(θ∗)

∥∥∥
2

≤ sup
θ∈Θ

∥∇3
θDn(θ)∥2∥θn − θ∗∥2 ≤ C∥θn − θ∗∥2.

Then applying Lemma 6 (i.e. ∥θn − θ∗∥2
a.s.→ 0), we have (∗∗1) a.s.→ 0. Further the preceding

Lemma 11 implied that (∗∗2) a.s.→ 0. Therefore, we conclude that ∇2
θDn(θn) a.s.→ ∇2

θD(θ∗) =
H∗, where the Hessian H∗ is semi positive definite since θ∗ is the minimiser of D from
Assumption 6.

Term (∗2): From the Cauchy–Schwarz inequality and auxiliary result Lemma 10,

lim sup
n→∞

∥∥∥(θn − θ∗) · ∇3
θDn(θ′

n)
∥∥∥

2
≤ lim sup

n→∞
sup
θ∈Θ

∥∇3
θDn(θ)∥2∥θn − θ∗∥2

≤ lim sup
n→∞

sup
θ∈Θ

∥∇3
θDn(θ)∥2︸ ︷︷ ︸

<∞ a.s.

× lim sup
n→∞

∥θn − θ∗∥2
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Since Lemma 6 implies that ∥θn − θ∗∥2
a.s.→ 0, we have (∗2) a.s.→ 0.

Term (∗3): Let F (x, x′) := ∇θ(SPθ
SPθ

K(x, x′))|θ=θ∗ ∈ Rp and recall that S(x, θ∗) =
EX∼P [F (x, X)] ∈ Rp. Then

√
n∇θDn(θ∗) =

√
n

 1
n2

n∑
i=1

F (xi, xi) + 1
n2

n∑
i=1

n∑
j ̸=i

F (xi, xj)


= 1√
n

1
n

n∑
i=1

F (xi, xi)︸ ︷︷ ︸
(∗a)

+n − 1
n

√
n

n(n − 1)

n∑
i=1

n∑
j ̸=i

F (xi, xj)︸ ︷︷ ︸
(∗b)

.

First, it follows from the strong law of large number (Durrett, 2010, Theorem 2.5.10)
that (∗a) a.s.→ EX∼P[F (X, X)] whenever EX∼P[∥F (X, X)

)
∥2] < ∞. Second, since (∗b) is a

U-statistic multiplied by
√

n, it follows from van der Vaart (1998, Theorem 12.3) that
(∗b)

p→ (1/
√

n)∑n
i=1 S(xi, θ∗) whenever EX,X′∼P[∥F (X, X ′)∥2

2] < ∞. (Here p→ denotes
convergence in probability.) Both the required conditions indeed hold from the auxiliary
result Lemma 12. Thus we have

√
n∇θDn(θ∗) = 1√

n
(∗a) + n − 1

n
(∗b)

p−→ 1√
n

n∑
i=1

S(xi, θ∗).

This convergence in probability implies that
√

n∇θDn(θ∗) and (1/
√

n)∑n
i=1 S(xi, θ∗) con-

verge in distribution to the same limit. Therefore we may apply the central limit theorem
for (1/

√
n)∑n

i=1 S(xi, θ∗) to obtain the asymptotic distribution of
√

n∇θDn(θ∗). Again
from van der Vaart (1998, Theorem 12.3), we have

1√
n

n∑
i=1

S(xi, θ∗) d−→ N (0, J∗) , J∗ = EX∼P

[
S(X, θ∗)S(X, θ∗)⊤

]

whenever EX,X′∼P [∥F (X, X ′)∥2
2] < ∞, which implies the existence of the covariance matrix

J∗. Hence
√

n∇θDn(θ∗) d→ N (0, J∗).

Collecting together these results, we have shown that

(∗1) a.s.−→ H∗, (∗2) a.s.−→ 0, (∗3) d−→ N (0, J∗) .

Since H∗ is guaranteed to be at least positive semi-definite, it is in fact strictly positive
definite if H∗ is non-singular, as we assumed. Finally, Slutsky’s theorem allows us to
conclude that

√
n(θ − θn) d→ N (0, H−1

∗ J∗H
−1
∗ ) as claimed.
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4.6.8. Proof of Lemma 8

Proof. Since |a2 − b2| = |(a + b)(a − b)| = (a + b)|a − b| for all a, b ∈ [0, ∞), we have an
equality
∣∣∣KSD2(Pθ∥Pn) − KSD2(Pθ∥P)

∣∣∣︸ ︷︷ ︸
=:(∗)

= (KSD(Pθ∥Pn) + KSD(Pθ∥P))︸ ︷︷ ︸
=:(∗1)

|KSD(Pθ∥Pn) − KSD(Pθ∥P)|︸ ︷︷ ︸
=:(∗2)

.

In what follows E denotes the expectation EX1,...,Xn with respect to the dataset {Xi}n
i=1

i.i.d.∼
P for better presentation. Applying the Cauchy–Schwarz inequality, we have

E[(∗)] = E[(∗1)(∗2)] ≤
√
E[(∗1)2]

√
E[(∗2)2]. (4.22)

To conclude the proof, we bound the two expectations on the right hand side.

Bounding E[(∗1)2]: From the fact that (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R,

E[(∗1)2] ≤ 2E
[
KSD2(Pθ∥Pn) + KSD2(Pθ∥P)

]
= 2

(
E
[
KSD2(Pθ∥Pn)

]
+ KSD2(Pθ∥P)

)
.

The preconditions of Lemma 9 holds due to Standing Assumption 2. Thus, from Lemma 9
part (iii), together with Jensen’s inequality, we have the two bounds KSD2(Pθ∥Pn) ≤
(1/n)∑n

i=1 SPθ
SPθ

K(xi, xi) and KSD2(Pθ∥P) ≤ EX∼P[SPθ
SPθ

K(X, X)]. Plugging these
into the previous inequality, and exploiting independence of xi and xj whenever i ̸= j, we
have

E[(∗1)2] ≤ 2
(
E
[

1
n

n∑
i=1

SPθ
SPθ

K(Xi, Xi)
]

+ EX∼P[SPθ
SPθ

K(X, X)]
)

= 2
(
EX∼P[SPθ

SPθ
K(X, X)] + EX∼P[SPθ

SPθ
K(X, X)]

)
= 4σ(θ),

where existence of σ(θ) for all θ ∈ Θ is ensured by Standing Assumption 2.

Bounding E[(∗2)2]: Recall that KSD(Pθ∥Pn) = sup∥h∥H≤1

∣∣∣ 1
n

∑n
i=1 SPθ

[h](xi)
∣∣∣ by original

definition of the Stein discrepancy, where H is set to the RKHS. From the fact | supx |f(x)|−
supy |g(y)|| ≤ supx |f(x) − g(x)| for functions f and g, the term (∗2) is upper bounded by

(∗2) =
∣∣∣∣∣∣ sup
∥h∥H≤1

∣∣∣∣∣ 1n
n∑

i=1
SPθ

[h](xi)
∣∣∣∣∣− sup

∥h∥H≤1

∣∣∣∣∣∣EX∼P[SPθ
[h](X)]

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
∥h∥H≤1

∣∣∣∣∣ 1n
n∑

i=1
SPθ

[h](xi) − EX∼P[SPθ
[u](X)]

∣∣∣∣∣ = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
f(xi) − EX∼P[f(X)]

∣∣∣∣∣ .
where F := {SPθ

[h] | ∥h∥H ≤ 1}. We can see from this expression that standard arguments
in the context of Rademacher complexity theory can be applied. Noting that | · |2 is a
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convex function, Proposition 4.11 in Wainwright (2019) gives that

E
[
(∗2)2

]
≤ E

(sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
f(Xi) − EX∼P[f(X)]

∣∣∣∣∣
)2
 ≤ EEϵ

22
(

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
ϵif(Xi)

∣∣∣∣∣
)2


where {ϵi}n
i=1 are independent random variables taking values in {−1, +1} with equiprob-

ability 1/2 and Eϵ is the expectation over {ϵi}n
i=1. From the essentially same derivation as

Proposition 2, the following equality holds:

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
ϵif(xi)

∣∣∣∣∣ = sup
∥h∥H≤1

∣∣∣∣∣ 1n
n∑

i=1
ϵiSPθ

[h](xi)
∣∣∣∣∣ = sup

∥h∥H≤1

∣∣∣∣∣
〈

h,
1
n

n∑
i=1

ϵiSPθ
K(xi, ·)

〉
H

∣∣∣∣∣
=
∥∥∥∥∥ 1

n

n∑
i=1

ϵiSPθ
K(xi, ·)

∥∥∥∥∥
H

=
√√√√ 1

n2

n∑
i=1

n∑
j=1

ϵiϵjSPθ
SPθ

K(xi, xj).

Plugging this equality into the upper bound of E [(∗2)2], we have

E
[
(∗2)2

]
≤ 4EEϵ

 1
n2

n∑
i=1

n∑
j=1

ϵiϵjSPθ
SPθ

K(Xi, Xj)


= 4E
[

1
n2

n∑
i=1

SPθ
SPθ

[K(Xi, Xi)]
]

= 4
n
EX∼P[SPθ

SPθ
K(X, X)] = 4σ(θ)

n
.

Finally, combining both the bounds complete the proof.

4.6.9. The Form of D0(y, θ,Pn) for KSD

The following lemma clarifies the form of D0(y, θ,Pn) for KSD:

Lemma 13. For D(θ;Pn,ϵ,y) = KSD2(Pθ∥Pn,ϵ,y), we have

D0(y, θ,Pn) = 2EX∼Pn

[
SPθ

SPθ
K(X, y)

]
− 2EX,X′∼Pn

[
SPθ

SPθ
K(X, X ′)

]
. (4.23)

Proof. From the definition of the ϵ-contamination model as a mixture model, and using
the symmetry of K, we have

KSD2(Pθ∥Pn,ϵ,y) = EX,X′∼Pn,ϵ,y [SPθ
SPθ

K(X, X ′)]
= (1 − ϵ)2EX,X′∼Pn [SPθ

SPθ
K(X, X ′)] + 2(1 − ϵ)ϵEX∼Pn [SPθ

SPθ
K(X, y)]

+ ϵ2SPθ
SPθ

K(y, y).

Direct differentiation then yields

D0(y, θ,Pn) = d
dϵ

KSD2(Pθ∥Pn,ϵ,y)
∣∣∣∣∣
ϵ=0

= 2EX∼Pn

[
SPθ

SPθ
K(X, y)

]
− 2EX,X′∼Pn

[
SPθ

SPθ
K(X, X ′)

]
,
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as claimed.

4.6.10. Proof of Theorem 4

Proof. From Lemma 3 with X = Rd, it is sufficient to show that

(i) sup
θ∈Θ

(
π(θ) sup

y∈Rd

|D0(y, θ,Pn)|
)

< ∞ and (ii)
∫

Θ
sup
y∈Rd

|D0(y, θ,Pn)| π(θ)dθ < ∞.

To establish (i) and (ii) we exploit the expression for D0(y, θ,Pn) in Lemma 13. This
furnishes us with the bound

∣∣∣D0(y, θ,Pn)
∣∣∣ ≤ 2EX∼Pn

[
|SPθ

SPθ
K(X, y)|︸ ︷︷ ︸

=:(∗1)

]
+ 2EX,X′∼Pn

[
SPθ

SPθ
K(X, X ′)

]
︸ ︷︷ ︸

=:(∗2)

. (4.24)

From Lemma 9, (∗1) ≤
√

SPθ
SPθ

K(y, y)
√

SPθ
SPθ

K(X, X) and (∗2) ≤ EX∼Pn [SPθ
SPθ

K(X, X)].
Plugging these bounds into (4.24) and using Jensen’s inequality gives

(4.24) ≤ 2
√

SPθ
SPθ

K(y, y)
√
EX∼Pn [SPθ

SPθ
K(X, X)] + 2EX∼Pn [SPθ

SPθ
K(X, X)] . (4.25)

Now, observing that

EX∼Pn

[
SPθ

SPθ
K(X, X)

]
≤ EX∼Pn

[
sup
y∈Rd

(SPθ
SPθ

K(y, y))
]

= sup
y∈Rd

SPθ
SPθ

K(y, y) (4.26)

and taking a supremum over y in (4.25), we obtain the bound

sup
y∈Rd

|D0(y, θ,Pn)| ≤ 4 sup
y∈Rd

SPθ
SPθ

K(y, y). (4.27)

Therefore, from (4.27), it suffices to verify the conditions

(I) sup
θ∈Θ

(
π(θ) sup

y∈Rd

SPθ
SPθ

K(y, y)
)

< ∞ and (II)
∫

Θ
sup
y∈Rd

SPθ
SPθ

K(y, y)π(θ)dθ < ∞,

which imply the original conditions (i) and (ii). To this end, in the remainder we (a)
exploit the specific form of SPθ

to derive an explicit upper bound on supy∈Rd SPθ
SPθ

K(y, y),
then (b) verify the conditions (I) and (II) based on this upper bound.

Part (a): By the reproducing property of K, the definition of the diffusion Stein operator
SPθ

, and the fact (a1 + a2)2 ≤ 2(a2
1 + a2

2) for a1, a2 ∈ R, we have the bound

SPθ
SPθ

K(y, y) = ∥SPθ
K(y, ·)∥2

H = ∥∇y log pθ(y) · K(y, ·) + ∇y · K(y, ·)∥2
H

≤ 2∥∇y log pθ(y) · K(y, ·)∥2
H + 2 ∥∇y · K(y, ·)∥2

H .
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For the first term, the reproducing property of K gives that

∥∇y log pθ(y) · K(y, ·)∥2
H = ∇y log pθ(y) · K(y, y)∇y log pθ(y),

while for the second term, and letting R(x, x′) := ∇x · (∇x′ · K(x, x′)), the reproducing
property gives that

∥∇yK(y, ·)∥2
H =

〈
∇y · K(y, ·), ∇y · K(y, ·)

〉
H

= R(y, y).

Thus, taking the supremum with respect to y ∈ Rd yields the upper bound,

sup
y∈Rd

SPθ
SPθ

K(y, y) ≤ 2 sup
y∈Rd

(
∇y log pθ(y) · K(y, y)∇y log pθ(y)

)
+ 2 sup

y∈Rd

R(y, y).

Since K ∈ C1×1
b (Rd × Rd) by assumption, it follows that CMK := supy∈Rd R(y, y) < ∞.

Thus, we have arrived at

sup
y∈Rd

SPθ
SPθ

K(y, y) ≤ 2γ(θ) + 2CMK , (4.28)

where γ(θ) was defined in the statement of Theorem 4.

Part (b): Now we are in a position to verify conditions (I) and (II). For condition (I), we
use (4.28) to obtain

sup
θ∈Θ

(
π(θ) sup

y∈Rd

SPθ
SPθ

K(y, y)
)

≤ 2 sup
θ∈Θ

π(θ)γ(θ) + 2CMK sup
θ∈Θ

π(θ)

which is finite by assumption. Similarly, for condition (II), we use (4.28) to obtain
∫

Θ
sup
y∈Rd

SPθ
SPθ

K(y, y)π(θ)dθ ≤ 2
∫

Θ
π(θ)γ(θ)dθ + 2CMK

∫
Θ

π(θ)dθ,

which is also finite by assumption. This completes the proof.
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Chapter 5. Case II: Approach to Discrete Intractable Models

In this chapter, we turn our attention to the SD-Bayes approach to intractable models
in discrete domains X . We present DFD-Bayes, the first generalised Bayesian inference
approach tailored to inference for discrete intractable models. The approach is based on a
novel discrete extension of the Fisher divergence, termed discrete Fisher divergence (DFD),
which is a special case of Stein discrepancy. DFD-Bayes achieves several properties that
render it particularly attractive for discrete intractable models. First, independence of
DFD-Bayes on user-specified hyperparameters, such as kernel in KSD, is appealing in
discrete domains X , where a natural choice of kernel often does not exist for given X or
can be highly impractical due to the computational cost. For example, one natural choice
of kernel in finite cardinality domains is the heat kernel, which originates in spectral graph
theory (Chung and Graham, 1997), but evaluation of the heat kernel requires a O(D3) cost
for D = card(X ). Second, DFD-Bayes enjoys efficient computation at cost O(nd) linear in
the size of the dataset, in contrast to quadratic cost O(n2d) of KSD-Bayes. Applications
of discrete intractable likelihoods often involve a relatively high dimensional domain X
and requires a relatively large volume of data for reliable inference. DFD-Bayes offers the
improved computational capacity to handle a large amount of data.

This chapter is structured as follows: Section 5.1 presents the construction of DFD,
verifying that it is indeed a Stein discrepancy. Our formulation is a generalisation of the
existing discrete extension of the Fisher divergence, in which X is no longer restricted
to finite cardinality or one dimensional sets. DFD-Bayes is introduced in Section 5.2
with detail discussions on its computational advantages. Section 5.3 derives posterior
consistency and the Bernstein–von Mises theorem of DFD-Bayes. We also establish a
theoretical connection between DFD-bayes and KSD-Bayes in this section. Section 5.4
contains empirical assessment of DFD-Bayes based on three distinct intractable models in
discrete domains. Finally, Section 5.6 contains all deferred proofs of theoretical results in
Chapter 5.

Notations Development of DFD entails an operator acting on each coordinate of the
input variable. In Chapter 5 only, we denote the input variable by x in bold to distinguish
the i-th coordinate of arbitrary input x, denoted by xi, from the i-th point xi of dataset
{xi}n

i=1. In discrete domain X , we identify probability distributions on X with their
probability mass functions with respect to the counting measure on X . Thus, probability
distributions in Chapter 5 are denoted by lower case letters, e.g. q.
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5.1. Discrete Fisher Divergence

The Fisher divergence underpins several frequentist estimators for intractable models,
most notably score matching (Hyvärinen, 2005), and has been used in the context of
Bayesian model selection (Dawid and Musio, 2015) for example. Classically, it is defined
for sufficiently regular densities p and q on continuous domains such as Rd by

FD2(p∥q) = EX∼q[∥∇ log p(X) − ∇ log q(X)∥2] (5.1)

where ∇ denotes the gradient operator in Rd. Its main advantage is that it can be computed
without knowledge of the normalising constant1 of p and, furthermore, expectations with
respect to p are not required. In Chapter 4, we considered the use of KSD in SD-
Bayes because it achieves the robustness, which the Fisher divergence cannot, and the
computational cost can be significantly suppressed when the conjugate inference is available,
as discussed in Section 4.5. However, the use of KSD becomes less appealing in the discrete
case because the conjugate inference is no longer available and a natural choice of kernel
is often impractical to compute, as discussed later. The Fisher divergence was extended to
discrete domains in Lyu (2009); Xu et al. (2022). The existing work focuses on domains
X of finite cardinality or one-dimensional models. A technical contribution in this section,
which may be of independent interest, is to present an extension of Fisher divergence to
discrete domains that can be a countably infinite set in multiple dimensions.

5.1.1. Discrete Domain and Difference Operators

First, we introduce a discrete domain X to be considered and a discrete analogue of the
gradient operator in Rd used to develop DFD.

Standing Assumption 1. Let X = S1 × · · · × Sd, where for each i = 1, . . . , d there is an
order isomorphism Si

∼= Ii ⊆ Z, and d ∈ N.

Simply put, Si is an ordered set of any states that we can assign indices of counting
numbers. This setting is general enough to include diverse data types, such as multivariate
count data, or network data with a fixed vertex set. For any set S ∼= I ⊆ Z, precisely
one of the following must hold: (i) no smallest or largest elements of S exist; (ii) both a
smallest element, smin, and a largest element, smax, exist; (iii) only smin exists; (iv) only
smax exists. Without loss of generality, we will identify the case (iv) with (iii) by reversing
the ordering of S. In addition, it will be useful to extend the domains Si to include an
additional state (not part of the ordering), denoted ⋆, and to this end we let S⋆

i = Si ∪ {⋆}
and X ⋆ = S⋆

1 × · · · × S⋆
d . A function h : X → R extends to a function h : X ⋆ → R by

setting h(x) = 0 whenever any of the coordinates of x are equal to ⋆. We define increment
and decrement rules of the coordinates of x.

1The Fisher divergence depends only on ∇ log p, equal to the ratio (∇p)/p, meaning it is sufficient to
know p up to a normalising constant.
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Definition 7. Let S ∼= I ⊆ Z. For consecutive elements r < s < t in S we let s− := r

and s+ := t. If both smin and smax exist, we let s−
min := smax and s+

max := smin or, if
only smin exists, we let s−

min := ⋆ and ⋆+ = smin. For x = (x1, . . . , xd) ∈ X , define
xi+ := (x1, . . . , x+

i , . . . , xd) and xi− := (x1, . . . , x−
i , . . . , xd).

Simply put, this ensures that each element s has both a preceding and proceeding element,
so that increments and decrements are well-defined. The above structure can be exploited
to define an operator for X that is analogous to the gradient operators for Rd:

Definition 8. For h : X → R, define the backward difference operator by

∇−h(x) :=
[
h(x) − h(x1−), · · · , h(x) − h(xd−)

]⊤
∈ Rd.

This difference operator plays a central role in DFD, which we formally define next.

5.1.2. Construction

We construct DFD, a divergence applicable to probability measures in discrete domains
X , based on the definitions in Section 5.1.1. The divergence satisfies the requirements of a
proper local scoring rule and thus complements existing scoring rule methodology developed
in the finite domain context in Dawid et al. (2012). Recall that Lp(q,Rd) denotes the
Lebesgue space of measurable functions f : X → Rd such that ∑d

i=1 EX∼q[|fi(X)|p] < ∞,
in which two elements f, g ∈ Lp(q,Rd) are identified if they are q-almost everywhere equal.
Values of f ∈ Lp(q,Rd) in a measure zero domain of q i.e. {x ∈ X | q(x) = 0} are arbitrary
and not involved in the Lebesgue integral with respect to q (Rudin, 1987, Remark 1.37,
p.29). In what follows, it is sufficient for functions (∇−p)/p, (∇−q)/q ∈ L2(q,Rd) to be
well-defined in the support of q.

Definition 9 (Discrete Fisher Divergence). Let p and q be probability distributions on X ,
such that (∇−p)/p, (∇−q)/q ∈ L2(q,Rd). The discrete Fisher divergence is defined as

DFD2(p∥q) := EX∼q

∥∥∥∥∥∇−p(X)
p(X) − ∇−q(X)

q(X)

∥∥∥∥∥
2
 . (5.2)

The choice of a Euclidean norm in (5.2) is not critical and other norms could be employed,
but for expository purposes the standard Euclidean norm will be used. Proposition 6
justifies the name ‘divergence’ and offers an alternative computable formula for (5.2).

Proposition 6. The discrete Fisher divergence satisfies DFD2(p∥q) ≥ 0 for any p, q, with
equality if and only if p = q. Furthermore, if p(xj+) > 0 for all x and j = 1, . . . , d in the
support of q, it admits the following alternative formula

DFD2(p∥q) = EX∼q

 d∑
j=1

(
p(Xj−)
p(X)

)2

− 2
(

p(X)
p(Xj+)

)+ C(q), (5.3)
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where the term C(q) := EX∼q[
∑d

j=1 1 + (1 − q(Xj−)/q(X))2] is p-independent.

The proof is provided in Section 5.6.1. Note that DFD2(p∥q) can be computed without the
normalising constant of p by virtue of ∇−p(x)/p(x), analogously to the continuous Fisher
divergence FD(p∥q) in Rd. All models pθ used in this thesis are positive on X , for which
the assumption p(x+) > 0 in Proposition 1 is automatically satisfied. From Proposition 6,
DFD between a model pθ and an empirical distribution pn = 1

n

∑n
i=1 δxi

corresponding to
data {xi}n

i=1, is computed as

DFD2(pθ∥pn) θ= 1
n

n∑
i=1

d∑
j=1

(
pθ(xj−

i )
pθ(xi)

)2

− 2
(

pθ(xi)
pθ(xj+

i )

)
(5.4)

where θ= indicates equality up to an additive, θ-independent constant. In contrast to the
continuous Fisher divergence, the θ-independent constant C(pn) = 1

n

∑n
i=1

∑d
j=1 1 + (1 −

pn(xj−
i )/pn(xi))2 is well-defined for an empirical density pn in DFD.

We next establish that DFD is in fact a Stein discrepancy. Define the forward divergence
operator ∇+· for a Rd-valued function H : X → Rd by ∇+ ·H(x) = ∑d

j=1 Hj(xj+)−Hj(x),
where Hj(x) denotes the j-th output coordinate of H(x). Built on the forward divergence
operator, we use the following Stein operator

Sp[h](x) = ∇−p(x)
p(x) · H(x) + ∇+ · H(x) (5.5)

for a function H : X → Rd, and set a Stein set equal to the unit ball of L2(q,Rd).

Proposition 7. Let p and q be probability distributions on X , such that (∇−p)/p, (∇−q)/q ∈
L2(q,Rd). Consider a Stein discrepancy whose Stein operator is (5.5) and Stein set is
U = {H : X → Rd | ∑d

i=1 EX∼q[Hi(X)2] ≤ 1}. Then SD2(p∥q) = DFD2(p∥q).

The proof is contained in Section 5.6.2. A similar result immediately holds for the
continuous Fisher divergence by replacing X with Rd, ∇− with ∇, and the Stein discrepancy
(5.5) with the Langevin Stein discrepancy (2.5). This observation will allow us to conclude,
later in Section 5.3.2, that DFD is a topologically stronger divergence than essentially
any KSD. While a natural and computationally appealing choice of kernel K for KSD is
not clear in discrete case, it does not prevent KSD from being applicable in discrete case.
KSD is well-defined as long as a choice of kernel K and Stein operator Sp are specified
because the abstract construction in Section 4.1 admits any domain X and Stein operator
Sp. For example, KSD under a specific choice of Stein operator Sp was considered in
the discrete context in Yang et al. (2018). Using the Stein operator (5.5) and any kernel
K : X × X → Rd×d, KSD for a model pθ and data pn in discrete case is given by (4.2)
whose expanded form is (4.3) replacing ∇ log pθ with (∇−pθ)/pθ.
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5.2. DFD-Bayes Methodology

We are now in a position to present DFD-Bayes. We select DFD as the Stein discrepancy in
the SD-Bayes framework, where the resulting posterior is called the DFD-Bayes posterior.

Definition 10 (DFD-Bayes). Given a prior distribution π on Θ, a statistical model
pθ : X → (0, ∞) parametrised by θ ∈ Θ, and data {xi}n

i=1, the DFD-Bayes posterior is

πD
n (θ) ∝ π(θ) exp

(
−βn DFD2(pθ∥pn)

)
, (5.6)

where β ∈ (0, ∞) is a constant to be specified.

This is clearly a special case of SD-Bayes given SDγ(pθ∥pn) = DFD2(pθ∥pn). The θ-
independent constant C(pn) of DFD2(pθ∥pn) will be cancelled out by normalisation of
the DFD-Bayes posterior. It is thus sufficient to use (5.4) in place of DFD2(pθ∥pn) for
computation. The role of n in (5.6) is to ensure correct scaling of the generalised posterior
as n → ∞ limit, while the appropriate choice of β is crucial in calibrating the coverage of
the generalised posterior at finite n. Section B.1 contains a detailed worked example of
the DFD-Bayes posterior and a comparison with other posteriors using simple tractable
models. In the same manner as KSD-Bayes, DFD-Bayes achieves tractable computation
of the generalised posterior even for intractable models.

We next discuss computational appeals of DFD-Bayes. KSD-Bayes is applicable in
discrete case using KSD with the Stein operator (5.5) plugged-in, but DFD-Bayes has
several appealing advantages over KSD-Bayes in case of discrete intractable models.

5.2.1. Non-Conjugate Inference and Computation

The DFD-Bayes posterior is directly amenable to standard Markov chain Monte Carlo,
in contrast to standard Bayes posteriors in the presence of intractable likelihood. This
is because DFD in (5.6) does not depend on the intractable constant, with the cost of
evaluating (5.6) as low as O(d). Excluding the θ-independent constant cancelled out by
normalisation of the DFD-Bayes posterior, the original formula (5.6) is rearranged as:

πD
n (θ) ∝ π(θ) exp

−β
n∑

i=1

d∑
j=1

(
pθ(xj−

i )
pθ(xi)

)2

− 2
(

pθ(xi)
pθ(xj+

i )

) , (5.7)

where there is no interference by the intractable normalising constant of the model.

Remark 2. The computational cost associated with evaluation of (5.7) is O(nd), which
improves on the O(n2d) cost of KSD. Furthermore, if X is a finite set and count data
are provided, indicating the number of times each of the elements of X occurred, then the
complexity of (5.7) reduces to O(d), independent of the size of the dataset. This is because
DFD2(pθ∥pn) can be obtained by computing the intermediate quantity (pθ(xj−)/pθ(x))2 −
2pθ(x)/pθ(xj+) for each state x of X once and taking the summation of the memorised
quantities weighted by the empirical frequency of x.
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The improved computational cost is appealing to discrete intractable models whose
applications often involve data spaces of relatively large dimension, in which a large volume
of data may be used to improve accuracy of inference. The linear computational cost
O(nd) facilitates inference in such situations that a large amount of data ought to be
handled. Furthermore, gradient-based efficient samplers, such as the Langevin Monte
Carlo algorithm, is effortlessly available up to differentiability of a prior. Decomposing a
model into the normalising constant and non-normalised function as pθ(x) = qθ(x)/Z(θ),
the gradient of DFD is given as

∇θDFD2(pθ∥pn) = 2
n

n∑
i=1

d∑
j=1

(
qθ(xj−

i )
qθ(xi)

)(
∇θqθ(xj−

i )qθ(xi) − qθ(xj−
i )∇θqθ(xi)

qθ(xi)2

)

−
(

∇θqθ(xi)qθ(xj+
i ) − qθ(xi)∇θqθ(xj+

i )
qθ(xj+

i )2

)
.

Under the assumption of Proposition 6, it is clear from the expression above that the
gradient of DFD is available whenever ∇θqθ(x) exists for all x ∈ X , that is, qθ(x) is
differentiable with respect to θ at each x ∈ X . In practice, the expression above is
amenable to the use of automatic differentiation tools (Baydin et al., 2018).

It also makes DFD-Bayes attractive to discrete models that no choice of kernel is
involved. In discrete domains, there are often no natural choices of kernel for KSD
well-motivated by theoretical diagnosis, or natural choices, such as the heat kernel, are
often impractical due to the high computational cost. This is in intriguing contrast to
continuous case X = Rd where multiple studies on KSD motivate the use of the IMQ kernel
whose computational cost is no different from other common kernels in Rd. Moreover, no
dependency of kernel renders DFD-Bayes invariant to data transformation that preserves
the order of X . For example, defining alternative input states for implementational
convenience within the same ordering—e.g., transforming {−1, 1} to {0, 1} by some
bijective map—does not affect inference outcome of DFD-Bayes.

Remark 3. DFD-Bayes is invariant to order-preserving transformations of the dataset.
This is in contrast to KSD-Bayes, which is not invariant to how the data are represented.

5.2.2. Limitations

There are three potential limitations of DFD-Bayes that will be discussed now, the first of
which is specific to discrete case and the rest of which are similar to ones for KSD-Bayes in
continuous case. First, as opposed to continuous case X = Rd in Chapter 4, DFD-Bayes
(and even KSD-Bayes in discrete case) does no longer satisfy conjugacy for exponential
family models. This is because the Stein operator (5.5) used in discrete case relies on the
difference operator rather than the log-derivative in continuous case. The lack of conjugate
inference emphasises the appeal of the reduced computational cost of DFD-Bayes.

Second, DFD-Bayes was not derived as an approximation to standard Bayesian inference,
and thus the semantics associated with the generalised posterior should not be confused
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Figure 5.1 The form of the Poisson mixture model pθ∗ when θ∗ = 0.5 (left), DFD computed
for data generated from the model pθ∗ with θ∗ = 0.5 (middle), and DFD computed for data
generated from the model pθ∗ with θ∗ = 0.7 (right), for two cases where λ1 = 5, λ2 = 60 (top)
and λ1 = 5, λ2 = 15 (bottom).

with the semantics of standard Bayesian inference; see Bissiri et al. (2016); Knoblauch
et al. (2022) for a detailed discussion of this point. In particular, we need to calibrate
DFD-Bayes through the selection of β, which is not a feature of standard Bayesian inference
under well-specified models. Although we expect our bootstrap approach to outperform
existing alternative approaches for small sample size n, it is possible that in those cases
the bootstrap criterion for selecting β in Section 3.4 will fail, and in these circumstances
the generalised posterior will fail to be calibrated.

Third, the generalised posterior may suffer from well-known drawbacks of score-based
methods, including insensitivity to mixing proportions (Wenliang and Kanagawa, 2021).
Indeed, for a two-component mixture model pθ(x) = (1−θ)p1(x)+θp2(x), we can compute
the ratios

ρi :=
[

∇−pθ(x)
pθ(x)

]
i

= 1 − (1 − θ)p1(xi−) + θp2(xi−)
(1 − θ)p1(x) + θp2(x)

on which DFD is based. Suppose, informally, that the high probability regions R1 of p1

and R2 of p2 are separated, meaning p2 ≈ 0 on R1 and p1 ≈ 0 on R2. Then these ratios
are approximately independent of θ on R1 ∪ R2, since ρi ≈ 1 − p1(xi−)/p1(x) for x ∈ R1

and ρi ≈ 1 − p2(xi−)/p2(x) for x ∈ R2. It follows that DFD(pθ∥pn) is approximately
independent of θ whenever the data {x}n

i=1 ⊆ R1 ∪ R2. We illustrate this limitation for
DFD using a mixture model of two Poisson distributions pθ(x) = (1−θ)×qλ1(x)+θ×qλ2(x),
where qλ1 and qλ2 are the Poisson distributions with rate parameters λ1 > 0 and λ2 > 0.
Figure B.5 shows the surface geometry of DFD between the mixture model pθ and data
generated from the mixture model pθ∗ with the true mixture proportion θ∗, for two cases
when the supports of the two Poisson distributions are highly isolated and when they
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are not isolated. The correct mixture proportion θ∗ was identified only in the latter case,
while DFD was reduced to a constant in the former case. Thus, although DFD-Bayes
may be applied to mixture models, supported by the theoretical guarantees of Theorem 5,
the inferences for mixing proportions so-obtained can be data-inefficient. See Zhang et al.
(2022) for a potential approach to remedy this general limitation of score-based methods.

5.3. Theoretical Assessment

The asymptotic behaviour of the standard Bayesian posterior is well-understood, with
sufficient conditions for posterior consistency and asymptotic normality providing frequen-
tist justification for Bayesian inference in the large data limit. As previous Chapter 4
established analogous conditions for KSD-Bayes, our attention now turns to establishing
those conditions for DFD-Bayes. Analysis of DFD-Bayes is relatively more straightforward
than KSD-Bayes because DFD falls into a case of additive loss whose convergence results
are well-established in classical studies. Section 5.3.2 discusses a theoretical connection of
DFD-Bayes and KSD-Bayes, illuminating that DFD dominates KSDs of essentially any
kernels through a lens of the Stein discrepancy. Without loss of generality, we will give the
proof for β = 1 for notational convenience. To extend the proof to arbitrary β > 0, simply
replace DFD(pθ∥pn) in all arguments by β DFD(pθ∥pn); all of them hold immediately since
β is a constant. The basic setting for which we derive our theory is the following:

Standing Assumption 2. The data {xi}n
i=1 consist of independent samples from a

probability distribution p on X . The distribution p and the statistical model pθ for these
data satisfy (∇−p)/p, (∇−pθ)/pθ ∈ L2(p,Rd), for all θ ∈ Θ.

The setting of independent data is broad enough to contain important examples of discrete
intractable likelihood, including the models studied in Section 5.4. The other assumption
simply ensures that DFD2(pθ∥pn) is well-defined for each θ ∈ Θ, due to Proposition 6.

5.3.1. Posterior Consistency and Bernstein–von Mises Theorem

We begin with posterior consistency of DFD-Bayes, which implies that the generalised
posterior concentrates around the population minimiser θ∗ of DFD2(pθ∥p) with probability
1 as n → ∞. Recall that Theorem 1 established posterior consistency of abstract
generalised posteriors under Assumption 1 and Assumption 2. Because DFD is additive
loss, Assumption 2 can be immediately verified by applying Proposition 1 for DFD. This
leads to intended posterior consistency as follows:

Proposition 8. Let σ(θ) := (VX∼P[∑d
j=1(p(Xj−)/p(X))2 − 2p(X)/p(Xj+)]) 1

2 . Suppose
Assumption 1 for D(θ) = DFD2(pθ∥p), and supθ∈Θ σ(θ) < ∞. Then, for all δ ∈ (0, 1],

P
(∫

Θ

∣∣∣DFD2(pθ∥p) − DFD2(pθ∗∥p)
∣∣∣ πD

n (θ)dθ <
α1 + α2 + 8 supθ∈Θ σ(θ)

δ
√

n

)
≥ 1 − δ
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where the probability is with respect to realisations of the dataset {xi}n
i=1

i.i.d.∼ P.

Proof. Posterior consistency of DFD-Bayes follows from Theorem 1 that holds under
Assumption 1 and 2. Assumption 1 is assumed. Assumption 2 is implied by Proposition 1
which holds under the assumption that σ(θ) < ∞ at each θ ∈ Θ. This assumption trivially
holds under the condition supθ∈Θ σ(θ) < ∞.

We move on to a BvM result of DFD-Bayes, which implies the DFD-Bayes posterior is
asymptotically normal around the population minimiser θ∗. In this setting, a natural first
requirement is that the statistical model is identifiable in the large data limit:

Assumption 7. There exists a unique minimiser θ∗ of DFD2(pθ∥p) and there exists a
sequence {θn}∞

n=1 s.t. θn minimises θ 7→ DFD2(pθ∥pn) a.s. for all n sufficiently large.
Further, there exists a bounded convex open set U ⊆ Θ s.t. θ∗ ∈ U and θn ∈ U a.s. for all
n sufficiently large.

This requirement corresponds to the precondition C3 of Assumption 3. It is worth
highlighting that Assumption 7 does not require the model family {pθ | θ ∈ Θ} to contain
p—i.e., pθ can be misspecified—which is in contrast to the assumptions needed for the
classical Bernstein–von Mises theorem (van der Vaart, 1998, Theorem 10.1). On the
other hand, if the model family {pθ | θ ∈ Θ} contains p uniquely, existence of θ∗ is
immediate since DFD is a divergence and hence DFD2(pθ∥p) = 0 if and only if pθ = p.
Our second requirement is a technical condition on the derivatives of the model, to
ensure that the asymptotic limit is well-defined. It is helpful to introduce the shorthand
rj−(x, θ) := pθ(xj−)/pθ(x), and to let ∇s

θ denote s-times differentiation with respect to θ.
For a function g : Θ → R, let ∇2

θg(θ) ∈ Rp×p with entries ∂i∂jg(θ), and let ∇3
θg(θ) ∈ Rp×p×p

with entries ∂i∂j∂kg(θ).

Assumption 8. Assume that pθ(x) is three times continuously differentiable in U for
each fixed x ∈ X , and

EX∼p

[
sup
θ∈U

∥∇s
θrj−(Xj+, θ)∥

]
< ∞ and EX∼p

[
sup
θ∈U

∥∇s
θ(rj−(X, θ)2)∥

]
< ∞

for all j = 1, . . . , d and s = 1, 2, 3.

It is straightforward to verify Assumption 8 as opposed to Assumption 7, as illustrated
in the following example. It considers the exponential family, a large model class that
encompasses models used in Section 5.4. For example, any model on a space X of finite
cardinality has a representation as an exponential family model (Amari, 2016, Ch. 2.2.2).

Example 1 (Exponential Family). Consider an exponential family model pθ(x) ∝
exp(η(θ)·T (x)+b(x)), where η : Θ → Rk, T : X → Rk and b : X → R for some k ∈ N. For
this model, we have rj−(x, θ) = exp(η(θ)·(T (xj−)−T (x))+b(xj−)−b(x)). Assumption 8 is
satisfied if, for j = 1, . . . , d, (i) ∥η(θ)∥ and ∥∇s

θη(θ)∥ for s = 1, 2, 3 are bounded over θ ∈ U ,
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(ii) ∥T (xj−) − T (x)∥ is bounded over x ∈ X , and (iii) EX∼p[exp(b(Xj−) − b(X))2] < ∞.
The requirements (ii) and (iii) are immediate if X is a finite set.

The calculations that accompany this example are provided in Section 5.6.3. The following
theorem establishes that the BvM theorem holds for DFD-Bayes.

Theorem 5. Suppose that Assumptions 7 and 8 hold. Suppose that a prior π is positive
and continuous at θ∗. Denote by π̃D

n a density on Rp of a random variable
√

n(θ − θn) for
θ ∼ πD

n . If H∗ := ∇2
θ DFD2(pθ∥p)|θ=θ∗ is nonsingular, then

∫
Rp

∣∣∣∣∣π̃D
n (θ) − 1

det(2πH−1
∗ )1/2 exp

(
−1

2θ · H∗θ
)∣∣∣∣∣ dθ

a.s.−→ 0 (5.8)

where the a.s. convergence is with respect to realisations of the dataset {xi}n
i=1.

The proof is contained in Section 5.6.5.

5.3.2. Connection to KSD-Bayes

Finally, this section elaborates a certain theoretical connection of DFD-Bayes and KSD-
Bayes. To be precise, we deduce that DFD is topologically stronger than KSDs of essentially
any kernels. Informally this means that the statistical efficiency of DFD-Bayes outperforms
one of KSD-Bayes in case a model is well-specified, in a sense that the loss surface of DFD
distinguishes an optimal parameter from other non-optimal parameters more distinctively
than one of KSD.

Let k : X × X → R be a scalar-valued kernel with the associated reproducing kernel
Hilbert space Hk. Let Hd

k := Hk × · · · × Hk, that is, a space of functions H : X → Rd

whose i-th output coordinate Hi : X → R belongs to Hk for each i = 1, . . . , d. This space
Hd

k is a simple case of vector-valued RKHS defined by the Cartesian product of the same
scalar-valued RKHS Hk. For simplicity, we use the unit ball of such vector-valued RKHS
Hd

k as the Stein set to construct KSD. Recall from Proposition 7 that DFD is a Stein
discrepancy built on the unit ball of L2(q,Rd) as the Stein set. The following proposition
shows that DFD built on the unit ball of L2(q,Rd) dominates KSD built on the unit ball
of Hd

k for essentially any kernel k.

Proposition 9. Let p and q be probability distributions on X s.t. (∇−p)/p, (∇−q)/q ∈
L2(q,Rd). Let k : X × X → R be a kernel such that supx∈X k(x, x) ≤ 1. Let Sp be a Stein
operator in (5.5). Then the corresponding KSD satisfies that KSD(p∥q) ≤ DFD(p∥q).

The proof is contained in Section 5.6.6. Informally, there are two important implications
of this result for each case when a model is well-specified and misspecified. If a model is
well-specified, DFD-Bayes concentrates around an optimal parameter θ∗ faster than KSD-
Bayes, since KSD(p∥q) ≤ DFD(p∥q) and the larger loss induces a lighter-tailed generalised
posterior. However, on the flip side, this simultaneously manifests stronger robustness of
KSD, since KSD induces a heavier-tail generalised posterior than DFD and that limits
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the sensitivity of KSD-Bayes to perturbation in data, such as a contaminating outlier.
Indeed, our analysis in Section 4.3.3 illustrated compelling robustness of KSD-Bayes albeit
in continuous case. This is also supported in Section B.2 by empirical comparison of
DFD-Bayes and KSD-Bayes under severe model misspecification.

This argument is not restricted to discrete case and immediately applicable for contin-
uous case. Recall the Langevin Stein operator (2.5) for continuous domain Rd and the
continuous Fisher divergence FD(p∥q) = EX∼q[∥∇ log p(X) − ∇ log q(X)∥2].

Proposition 10. Let p and q be positive densities on Rd s.t. ∇ log p, ∇ log q ∈ L2(q,Rd).
Let k : Rd × Rd → R be a kernel such that supx∈Rd k(x, x) ≤ 1. Let Sp be a Stein operator
in (2.5). Then the corresponding KSD satisfies that KSD(p∥q) ≤ FD(p∥q).

Proof. The proof immediately follows from the same argument as Section 5.6.6 using
X = Rd and the Langevin Stein operator (2.5) instead.

This completes theoretical assessment of DFD-Bayes. We next provide detailed empiri-
cal assessment of DFD-Bayes.

5.4. Empirical Assessment

We perform an empirical assessment of DFD-Bayes, focusing on three important instances
of discrete intractable likelihood. First, in Section 5.4.1 we consider a relatively simple
model for over- and under-dispersed count data, called the Conway–Maxwell–Poisson model.
Section 5.4.2 concerns an application to Ising-type models for discrete spatial data. Finally,
we apply DFD-Bayes to perform inference for the parameters of flexible multivariate
models for count data in Section 5.4.3. Source code to reproduce these experiments can
be downloaded from https://github.com/takuomatsubara/Discrete-Fisher-Bayes.

5.4.1. Conway–Maxwell–Poisson Model

The first model we consider is a generalisation of the Poisson model for over- and under-
dispersed count data, due to Conway and Maxwell (1962). This model is on X = N ∪ {0}
(hence d = 1 and card(X ) = ∞) and generalises the Poisson distribution through the
inclusion of an additional parameter controlling how the data are dispersed. Since the
work of Shmueli et al. (2005), this model has been used in a wide range of fields including
transport, finance and retail. The model has two parameters θ ∈ Θ = (0, ∞)2 ∪([0, 1]×{0})
(and hence p = 2) and its probability mass function is given by pθ(x) = p̃θ(x)Z−1

θ where
p̃θ(x) = (θ1)x(x!)−θ2 . The normalising constant is given by Zθ = ∑∞

y=0 p̃θ(y), which has
no analytical form except for certain special cases of θ ∈ Θ, including the case θ2 = 1 for
which the standard Poisson model is recovered.

This model is an ideal test-bed for DFD-Bayes: although the likelihood is formally
intractable, it is relatively straightforward to directly approximate the normalising con-
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Figure 5.2 Comparison of standard Bayesian inference with the generalised posteriors from
DFD-Bayes and KSD-Bayes on the Conway–Maxwell–Poisson model in the over-dispersed case
θ2 = 0.75 and the under-dispersed case θ2 = 1.25 for n = 2, 000.

stant2. This enables a direct comparison with standard Bayesian inference in the case
where the model is well-specified. To this end, we simulated two datasets from the model:
(i) an under-dispersed case where θ∗ = (4, 1.25), and (ii) an over-dispersed case where
θ∗ = (4, 0.75), shown in Figure 5.2 (left). Three inference methods were compared: stan-
dard Bayesian inference, KSD-Bayes, and DFD-Bayes we have proposed. The settings of
KSD-Bayes are described in Section B.3.1. In each case, the prior π was taken to be the
chi-squared distribution with 3 degrees of freedom for each of θ1 and θ2 independently. A
Metropolis–Hastings algorithm was used to sample from all the posteriors; and details can
be found in Section B.3.2. The weight β in DFD-Bayes and KSD-Bayes was calibrated by
our approach described in Section 3.4.

Figure 5.2 (right) illustrates the posteriors, based on typical datasets of size n = 2, 000.
The estimated value of β∗ was 1.91 for DFD-Bayes and 5.04 for KSD-Bayes in the
over-dispersed case θ2 = 0.75, and 0.46 for DFD-Bayes and 2.51 for KSD-Bayes in the
under-dispersed case θ2 = 1.25. The left panel of Figure 5.3 displays the distribution of
calibrated weight β∗ as in Section 3.4 over multiple instances of the dataset, along with
the values advocated in Lyddon et al. (2019). For both methods, the calibrated weight is
stably estimated.

The inferences obtained using DFD-Bayes resembled those obtained using standard
Bayesian inference, irrespective of whether the data were over- or under-dispersed. Those
obtained using KSD-Bayes were more conservative than standard Bayes and DFD-Bayes,
although the maximum a posteriori estimator approximated the true parameter well. Note
that the credible regions of the generalised posteriors can substantially differ from those of
standard Bayesian inference; in our approach a credible region of a generalised posterior
is calibrated with reference to the distribution of a corresponding frequentist estimator

2The standard Bayesian inferences reported in this section used the approximation Zθ ≈
∑99

y=0 p̃θ(y)
and the associated approximate likelihood. Alternative estimators are available; see Benson and Friel
(2021).
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Figure 5.3 Distribution of β∗ across different realisations of the dataset at each data number
n for θ2 = 0.75 (left), comparison of a 95% credible region of the DFD-Bayes posterior and a
95% confidence interval of the frequentist counterpart for n = 2000 (centre), and comparison of
computational times of each Metropolis–Hastings algorithm (right). The confidence interval was
estimated by a 95% highest probability density region of a kernel density estimator applied to
the 100 bootstrap minimisers used in calibration of β.

estimated by bootstrapping, leading to approximately correct frequentist coverage as shown
in Figure 5.3 (middle). Calibration led to improved inference outcomes for both DFD-Bayes
and KSD-Bayes. In KSD-Bayes case for example, the value of β∗ ≥ 1 intensified the
concentration around the true parameter by placing more importance on the loss than
the prior. In addition, our approach to calibration is relatively more conservative than
Lyddon et al. (2019) because the prior is taken into account.

There is a stark difference in computational cost between DFD-Bayes and KSD-Bayes3,
as demonstrated in the right panel of Figure 5.3. Indeed, the computational cost of
DFD-Bayes is seen to increase linearly with n, while the cost of KSD-Bayes increases
quadratically.

Finally, to assess performance in a real-world data setting, we apply DFD-Bayes to infer
the parameters of a Conway–Maxwell–Poisson model using the sales dataset of Shmueli
et al. (2005). All relevant details are contained in Section B.3.3. Figure 5.4 compares our
fitted model to a standard Bayesian analysis using the Poisson distribution, which is the
closest analysis one can perform without confronting an intractable likelihood. As observed
in the central panel of Figure 5.4, the Poisson model is not able to capture over-dispersion
of the data, whereas the Conway–Maxwell–Poisson model fitted using DFD-Bayes, shown
in the right panel, provides a reasonable fit. The DFD-Bayes posterior (left) appears
approximately normal, in line with Theorem 5.

5.4.2. Ising Model

The aim of this section is to consider a more challenging instance of discrete intractable
likelihood, where the data are high-dimensional (i.e. d is large) and the cardinality of each
coordinate domain Si is small. A small cardinality of Si is particularly interesting, because
the intuition that our difference operators arise from discretisation of continuous differential

3The cost of standard Bayesian inference in this experiment is entirely determined by the accuracy
with which the normalisation constant is approximated; since direct approximation of the normalisation
constant is infeasible in general, we do not report this cost.
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Figure 5.4 Comparison of DFD-Bayes for the Conway–Maxwell–Poisson model and standard
Bayes for the Poisson distribution on the sales data of Shmueli et al. (2005). Left: The generalised
posterior distribution produced using DFD-Bayes. Centre: Posterior predictive distribution, at
the level of the data, for a Poisson model with standard Bayesian inference performed. Right:
Posterior predictive distribution, at the level of the data, for a Conway–Maxwell–Poisson model
with DFD-Bayes inference performed. In both cases, error bars indicate one standard deviation
of the posterior predictive distribution.

operators fails to hold. This setting is typified by the Ising model (which has Si = {0, 1}),
variants of which are used to model diverse phenomena, such as the network structure of
the amino-acid sequences (Xue et al., 2012). The computational challenge of performing
Bayesian inference for Ising-type models has, to-date, principally been addressed using
techniques such as pseudo-likelihood (see the recent survey in Bhattacharyya and Atchade,
2019). Unfortunately, these do not necessarily lead to asymptotically exact inference since
the correct likelihood is replaced by an approximation.

Let G be an undirected graph on a d-dimensional vertex set and let Ni denote the
neighbours of a node i, with self-edges excluded. An Ising model describes a discrete
process that assigns each vertex of G either the value 0 or 1, and thus the data domain is
X = {0, 1}d. The probability mass function has the exponential family form

pθ(x) ∝ exp
1

θ

d∑
i=1

∑
j∈Ni

xixj

 (5.9)

where θ is a temperature parameter, controlling the propensity for neighbouring vertices
to share a common value. Here we consider the ferromagnetic Ising model, which has
θ ∈ (0, ∞). To conduct a simulation study, we consider the case where G is a m × m grid.
Simulating from Ising models is challenging due to the high-dimensional discrete domain,
so here we restrict attention to m ∈ {5, . . . , 10} to ensure that data were accurately
simulated4. A total of n = 1, 000 data points were generated from an Ising model with
θ = 5, using an extended run of a Metropolis—Hastings algorithm, the details of which are
contained in Section B.3.4. A chi-squared prior with degree of freedom 3 was used. Three
inference methods were compared: the KSD-Bayes method, the proposed DFD-Bayes

4The value of m used in these experiments was not constrained by the computational demand of
DFD-Bayes, which scales as O(m2).
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Figure 5.5 Comparison of approximate Bayesian inference based on pseudo-likelihood, DFD-
Bayes and KSD-Bayes, applied to the Ising model with θ = 5 for n = 1, 000 and d = 10 × 10.
For all methods, the value β∗ from Section 3.4 was used.

method, and standard Bayesian inference based on the pseudo-likelihood

p̃θ(x) =
d∏

i=1
pθ(xi|{xj : j ∈ Ni}),

where pθ(xi|{xj : j ∈ Ni}) is a restriction of the original model (5.9) to the i-th coordinate
xi under the condition {xj : j ∈ Ni} that results in a Bernoulli distribution of xi for each
i = 1, · · · , d (Besag, 1974). The latter Pseudo-Bayes approach can be viewed as a special
case of generalised Bayes inference, since it replaces the original likelihood loss of the model
(5.9) with the pseudo-likelihood loss, and therefore we also applied the proposed calibration
procedure to this method. The settings of KSD-Bayes are described in Section B.3.5. A
Metropolis–Hastings algorithm was also used to sample from all generalised posteriors,
the details for which are contained in Section B.3.6.

Results are presented for three different datasets of size n = 1, 000 and dimension d =
36 (m = 6), d = 64 (m = 8), and d = 100 (m = 10) in Figure 5.5. For the lowest dimension
d = 36, all the approaches produced similar posteriors. For the higher-dimensional cases, it
can be seen that the DFD-Bayes and Pseudo-Bayes posteriors concentrate around the true
parameter θ = 5. The KSD-Bayes posterior is more conservative, whilst DFD-Bayes gives a
comparable result to Pseudo-Bayes. For d = 100, the total computational time required to
perform this analysis (including calibration) was 540 seconds for DFD-Bayes, 2, 353 seconds
for KSD-Bayes, and 1, 053 seconds for Pseudo-Bayes each in average over 10 independent
experiments, confirming that DFD-Bayes incurs a significantly lower computational cost
than both alternatives. The value of the weight obtained through our calibration method
for d = 100 in Figure 5.5 was 0.013 for DFD-Bayes, 0.157 for KSD-Bayes, and 0.579
for Pseudo-Bayes. These small values of weight indicated that the calibration worked
effectively, preventing the over-concentration of each posterior.

5.4.3. Multivariate Count Data

Finally, we consider a problem involving multivariate count data. Count data occur
in diverse application areas, and variables in such data are rarely independent, yet the
literature on statistical modelling of such data is limited. Poisson graphical models and
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Figure 5.6 Left: Posterior predictive distributions from the Poisson graphical model and
the Conway–Maxwell–Poisson graphical model. Right: Sampling distributions of β∗ for the
Conway–Maxwell–Poisson graphical model by Lyddon et al. (2019) and by the proposed approach,
computed using 10 independent realisations of the dataset.

their extensions have emerged as a powerful tool for modelling such data; see the recent
review of Inouye et al. (2017). To the best of our knowledge a complete Bayesian treatment
of Poisson graphical models has yet to be attempted5, and we speculate that this is due
to the computational challenges of the associated intractable likelihood. Our aim here is
to assess the suitability of DFD-Bayes for learning the parameters of a Poisson graphical
model.

Let G be an undirected graph on a vertex set {1, . . . , d} and let Mi denote the
neighbours of a node i that are contained in the set {i + 1, . . . , d}. A Poisson graphical
model has a probability mass function

pθ(x) ∝ exp
 d∑

i=1
θixi −

d∑
i=1

∑
j∈Mi

θi,jxixj −
d∑

i=1
log(xi!)


where the parameters θ consist of both the linear coefficients θi ∈ (−∞, ∞) and the
interaction coefficients θi,j ∈ [0, ∞). Our aim is to reproduce an analysis of a breast cancer
gene expression dataset described in Inouye et al. (2017), but in a generalised Bayesian
framework. For this problem, n = 878, d = 10, and p = 64 which renders the computational
cost of O(n2d) at every MCMC step and of O(p2n2d) at calibration associated with KSD-
Bayes inefficient. Full details of the dataset are contained in Section B.3.7. Independent
standard normal priors were employed for each θi, and half-normal distributions with scale
(d(d − 1)/2)−1 were employed for each θi,j . A No-U-Turn Sampler was used to sample from
the DFD-Bayes posterior, as described in Section B.3.8. The total computational time
required to perform this analysis, including calibration, was 1, 896 seconds. Results, in
Figure 5.6, demonstrate that the Poisson graphical model is in fact a poor fit for these data,
since the data show signs of being under-dispersed relative to the standard Poisson model.
However, in terms of identifying the best parameter values for this model, DFD-Bayes
appears to have performed well.

5Though we note that a pairwise Markov random field whose marginals are close to being Poisson was
considered in Roy and Dunson (2020), and a specific generalisation of the Conway-Maxwell-Poisson was
used in Piancastelli et al. (2021).
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As a possible improvement, and to further stress-test the DFD-Bayes method, we
considered a generalisation of the Poisson graphical model that allows for over- and
under-dispersion, analogous to Conway and Maxwell (1962). This model takes the form

pθ(x) ∝ exp
 d∑

i=1
θixi −

d∑
i=1

∑
j∈Mi

θi,jxixj −
d∑

i=1
θ0,i log(xi!)


where the additional parameters θ0,i ∈ [0, ∞) control the dispersion, with θ0,i = 1 recovering
the standard Poisson marginal. This time, p = 74 as opposed to p = 64 for the Poisson-
based model. For this Conway–Maxwell–Poisson graphical model, the same priors as the
Poisson graphical model were used for θi and θi,j, and half-normal priors with scale 1/

√
2

were used for each θ0,i. Results in Figure 5.6 demonstrate an improved fit to the dataset.
Indeed, the optimal β for the Poisson graphical model was β∗ = 0.2150, which is smaller
than the corresponding value β∗ = 0.9971 for the Conway–Maxwell–Poisson graphical
model, resulting in a conservative inference outcome when the statistical model is most
misspecified and supporting the effectiveness of the proposed approach to calibration.

The right panel of Figure 5.6 shows the sampling distributions of estimators for the
weight β in the context of the Conway–Maxwell–Poisson graphical model, computed using
bootstrap resampling of the gene expression dataset. It can be seen that the asymptotic
approach proposed in Lyddon et al. (2019) is severely numerically unstable and can even
lead to a negative weight, while the approach proposed in Section 3.4 remains stable within
a reasonable range between 0 and 3.5. The lack of stability of the approach by Lyddon
et al. (2019) arises from the need to invert a covariance matrix of derivatives of the loss,
which can become numerically singular if the parameter dimension is high. In contrast, our
approach involves no matrix inversion. This real-data analysis using flexible parametric
models highlights the value in being able to perform rapid and automatic (i.e. free from
user-specified degrees of freedom) generalised Bayesian inference for discrete intractable
likelihood.

5.5. Concluding Remark

In this chapter, we proposed DFD-Bayes, that is, the SD-Bayes methodology resulting
from the use of DFD. Similarly to KSD-Bayes in Chapter 4, DFD-Bayes is computable
by any standard MCMC algorithms even if intractable models are used. While both
KSD-Bayes and DFD-Bayes does not admit the conjugate inference in the discrete case,
DFD-Bayes enjoys the linear computational cost O(n) to the data size n in contrast to
the quadratic cost O(n2) of KSD-Bayes. DFD-Bayes also benefits from independence of
user-specified hyperparameter, such as a kernel in KSD-Bayes whose natural choice in
discrete domains is often impractical to compute. It achieves highly efficient inference
with few hyperparameters for discrete intractable models. There was little concern about
robustness for real-world datasets in Chapter 4, where model misspecification associated
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with the use of tractable models in standard Bayesian inference was resolved by using
more complex intractable models with DFD-Bayes. In circumstances where robustness is
concerned, KSD-Bayes can produce enhanced robustness as discussed in Section B.2.

5.6. Proofs of Chapter 5

This section contains all the deferred proof of theoretical results in Chapter 5. The proof
of posterior consistency of DFD-Bayes is placed in the main text since it is immediate
from Theorem 1 and proposition 1 in Chapter 3. The proofs of other results and useful
lemmas are contained in this section.

5.6.1. Proof of Proposition 6

First, we introduce three technical lemmas that will be useful:

Lemma 14. For any x ∈ X and i = 1, . . . , d, it holds that (xi−)i+ = x and (xi+)i− = x.

Proof. Since X = S1 × · · · × Sd from the Standing Assumption,

xi− = (x1, · · · , x−
i , · · · , xd), xi+ = (x1, · · · , x+

i , · · · , xd). (5.10)

It is thus sufficient to show that (x−
i )+ = xi and (x+

i )− = xi for any i = 1, . . . , d. Consider,
therefore, a set S ∼= I ⊆ Z with more than one element. Our aim is to establish the
identity (s−)+ = s and (s+)− = s for all s ∈ S. Existence of the least and greatest element
smin and smax of S determines four qualitatively distinct cases to be checked: (i) neither of
them exist; (ii) both of them exists; (iii) only smin exists; (iv) only smax exists. Recall that
we identify the case (iv) with (iii) without loss of generality by reversing the ordering of S.
The identity for (i) & (ii) is trivial since the maps s 7→ s− is bijective from S to itself with
inverse s 7→ s+. For case (iii), we have (s−)+ = s for s ̸= smin and (s+)− = s for all s ∈ S.
Recalling the definition s−

min = ⋆ and ⋆+ = smin completes the argument.

Lemma 15. For any f, g : X → R and any i = 1, . . . , d, suppose ∑x∈X |f(x)g(xi−)| < ∞,
that is, the series is absolutely convergent. Then we have

∑
x∈X

f(x)g(xi−) =
∑
x∈X

f(xi+)g(x). (5.11)

Proof. Since X = S1×· · ·×Sd from the Standing Assumption 1, the series can be expressed
as

∑
x∈X

f(x)g(xi−) =
∑

x1∈S1

· · ·
∑

xi∈Si

· · ·
∑

xd∈Sd

f(x1, · · · , xi, · · · , xd)g(x1, · · · , x−
i , · · · , xd),

∑
x∈X

f(xi+)g(x) =
∑

x1∈S1

· · ·
∑

xi∈Si

· · ·
∑

xd∈Sd

f(x1, · · · , x+
i , · · · , xd)g(x1, · · · , xi, · · · , xd).
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Holding the coordinates x1, . . . , xi−1, xi+1, . . . , xd fixed, and exploiting absolute convergence
to justify the interchange of summations, the claimed result follows if

∑
xi∈Si

f̃(xi)g̃(x−
i ) =

∑
xi∈Si

f̃(x+
i )g̃(xi) (5.12)

where f̃(xi) := f(x1, · · · , xi, · · · , xd) and g̃(xi) := g(x1, · · · , xi, · · · , xd) are viewed as
functions on Si.

Consider, therefore, an arbitrary set S ∼= I ⊆ Z, for which we aim to establish
the identity ∑

s∈S h(s)k(s−) = ∑
s∈S h(s+)k(s) for any functions h, k : S → R s.t.∑

s∈S |h(s)k(s−)| < ∞. From the definition of an order isomorphism, the elements of S can
be indexed as S = {si : i ∈ I}, where si < sj if and only if i < j. The identity therefore
can be written as ∑i∈I h(si)k(s−

i ) = ∑
i∈I h(s+

i )k(si), and will be verified for the three
qualitatively distinct cases of index set I described in the proof of Lemma 14:

(i) I = Z. The result is immediate, since (si, s−
i ) = (si, si−1) and (s+

i , si) = (si+1, si)
range over the same set for i ∈ I. The series ∑i∈I h(s+

i )k(si) is absolutely convergent
since the sets {h(si)k(s−

i )}i∈I and {h(s+
i )k(si)}i∈I in the two series are equal.

(ii) I = {1, . . . , n} for some n ∈ N. In this case smin = s1 and smax = sn, and it follows
from the definition of decrements and increments that

∑
i∈I

h(si)k(s−
i ) = h(s1)k(s−

1 ) + h(s2)k(s1) + · · · + h(sn)k(sn−1)

= h(s+
n )k(sn) + h(s2)k(s1) + · · · + h(sn)k(sn−1) =

∑
i∈I

h(s+
i )k(si),

where the sets {h(si)k(s−
i )}i∈I and {h(s+

i )k(si)}i∈I are again equal.

(iii) I = {1, 2, . . . }. In this case smin = s1, and it follows from s−
1 = ⋆ and k(⋆) = 0 that

∑
i∈I

h(si)k(s−
i ) = h(s1)k(⋆)︸ ︷︷ ︸

=0

+h(s2)k(s1) + h(s3)k(s2) + · · ·

= h(s2)k(s1) + h(s3)k(s2) + · · · =
∑
i∈I

h(s+
i )k(si).

The series ∑i∈I h(s+
i )k(si) is absolutely convergent since the set {h(s+

i )k(si)}i∈I is a
subset of the absolutely summable set {h(si)k(s−

i )}i∈I .

This completes the proof.

Lemma 16. Let Pq(X ) be a set of probability mass functions absolutely continuous to q

on X . The map µp := (∇−p)/p for p ∈ Pq(X ) is an injection µ : Pq(X ) → L2(q,Rd).

Proof. It suffices to show that each value p(x), for x in the support of q, can be explicitly
recovered from µp. Note that, since p takes values in (0, ∞) in the support of q, the
embedding µp is well-defined in the support of q, which is sufficient to be an element of
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L2(q,Rd). From the Standing Assumption 1, we have that X = S1 × · · · × Sd, where each
Si

∼= Ii ⊆ Z is a set with more than one element. Since Si serve only as index sets, we can
without loss of generality assume that Si is a consecutive subset of Z and that 0 ∈ Si, for
each i = 1, . . . , d. The idea of the proof is first to demonstrate that each of the quantities
p(x) can be explicitly expressed in terms of µp, p(0) and {p(y) : ∥y∥1 < ∥x∥1}, where
∥x∥1 := |x1| + · · · + |xd|. It would then follow from a simple inductive argument that
p(x) can be expressed in terms of µp and p(0). Finally, the constraint that ∑x∈X p(x) = 1
uniquely determines p(0), demonstrating that p(x) can be explicitly recovered.

Given x ∈ X , assume x ̸= 0, for otherwise the claim will trivially hold. Then let
i ∈ {1, . . . , d} be such that xi ̸= 0. If xi > 0, then from the definition of µp(x)i =
1 − p(xi−)/p(x) we have the relation

p(x) = p(xi−)
1 − µp(x)i

.

Conversely, if xi < 0, then using Lemma 14 we have µp(xi+)i = 1 − p(x)/p(xi+) and we
have the relation

p(x) = [1 − µp(xi+)i]p(xi+).

The previously described inductive argument completes the proof.

Now we prove the main result:

Proof of Proposition 6. Expanding the square gives that

DFD(p∥q) = EX∼q

[
d∑

i=1

(
p(X) − p(Xj−)

p(X)

)2

− 2 p(X) − p(Xj−)
p(X)

q(X) − q(Xj−)
q(X)︸ ︷︷ ︸

=:(∗)

+
(

q(X) − q(Xj−)
q(X)

)2]
.

Denote by supp(q) the support of q i.e. {x ∈ X | q(x) ̸= 0}. For the term EX∼q[(∗)], it
follows from the definition EX∼q[f(X)] = ∑

x∈supp(q) f(x)q(x) that

EX∼q[(∗)] =
d∑

j=1
EX∼q

[
p(X) − p(Xj−)

p(X) − p(X) − p(Xj−)
p(X)

q(Xj−)
q(X)

]

=
d∑

j=1

{ ∑
x∈supp(q)

p(x) − p(xj−)
p(x) q(x) −

∑
x∈supp(q)

p(x) − p(xj−)
p(x) q(xj−)

︸ ︷︷ ︸
(∗∗)

}
,

We apply Lemma 15 to the term (∗∗) with f(x) = (p(x) − p(xj−))/p(x) and g(x) = q(x),
where f(xj+) is well-defined for all x ∈ supp(q) due to the assumption that p(xj+) > 0
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for x ∈ supp(q) and Lemma 15 is thus applicable. This reveals that

(∗∗) =
∑

x∈supp(q)

p(xj+) − p(x)
p(xj+) q(x)

for each j = 1, . . . , d, where Lemma 14 is used to deduce that (xj−)j+ = x. Hence,

EX∼q[(∗)] = EX∼q

[
d∑

i=1

p(X) − p(Xj−)
p(X) − p(Xj+) − p(X)

p(Xj+)

]
= EX∼q

[
d∑

i=1
−p(Xj−)

p(X) + p(X)
p(Xj+)

]
.

Plugging this equality in DFD at the top and completing the expansion establish that

DFD(p∥q) = EX∼q

[
d∑

i=1

(
1 − p(Xj−)

p(X)

)2

+ 2p(Xj−)
p(X) − 2 p(X)

p(Xj+) +
(

1q(Xj−)
q(X)

)2]

= EX∼q

[
d∑

i=1

(
p(Xj−)
p(X)

)2

− 2 p(X)
p(Xj+)

]
+ EX∼q

[
d∑

i=1
1 +

(
1 − q(Xj−)

q(X)

)2]
︸ ︷︷ ︸

=:C(q)

.

Finally we verify that DFD(p∥q) = 0 if and only if p = q. From Lemma 16 we have
the injective embedding p 7→ µp := (∇−p)/p. Clearly, the map p 7→ µp is also an
injection into L2(q,Rd), equipped with the canonical norm ∥ν∥L2(q,Rd) := EX∼q[∥ν(X)∥2]
for ν ∈ L2(q,Rd). From (5.2) we recognise that DFD(p∥q) = ∥µp − µq∥2

L2(q,Rd) is the
squared distance between µp and µq according to the canonical norm of L2(q,Rd). Since
∥µp − µq∥L2(q,Rd) = 0 if and only if µp = µq in L2(q,Rd), it follows from injectivity of
p 7→ µp that DFD(p∥q) = 0 if and only if p = q, as required.

5.6.2. Proof of Proposition 7

Proof. From (2.6) and (5.5), we have that

SD(p∥q) = sup
h∈H

∣∣∣∣∣EX∼q

[
∇−p(X)

p(X) · h(X) − ∇−q(X)
q(X) · h(X)

]∣∣∣∣∣ .
Note that L2(q,Rd) is a Hilbert space when equipped with the inner product ⟨f, g⟩L2(q,Rd) :=
EX∼q[f(X) · g(X)]. Thus, we can view SD(p∥q) as the maximum of the inner product

SD(p∥q) = sup
h∈H

∣∣∣∣∣∣
〈

∇−p

p
− ∇−q

q
, h

〉
L2(q,Rd)

∣∣∣∣∣∣ , (5.13)

which is well-defined since u := (∇−p)/p − (∇−q)/q ∈ L2(q,Rd). Let ∥ · ∥L2(q,Rd) denote
the norm of L2(q,Rd), so that H is the set of f ∈ L2(q,Rd) for which ∥f∥L2(q,Rd) ≤ 1.
By the Cauchy–Schwarz inequality, the inner product in (5.13) attains its supremum at
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h = u/∥u∥L2(q,Rd) ∈ H. Therefore

SD(p∥q) = sup
h∈H

|⟨u, h⟩L2(q,Rd)| = ∥u∥L2(q,Rd) =

√√√√√EX∼q

∥∥∥∥∥∇−p(X)
p(X) − ∇−q(X)

q(X)

∥∥∥∥∥
2
,

which concludes the proof.

5.6.3. Assumption 8 for Exponential Family

The aim of this section is to establish when Assumption 8 is satisfied for the exponential
family model. For better presentation, let Tj−(x) := T (xj−)−T (x) and bj−(x) := b(xj−)−
b(x) to see that rj−(x, θ) = exp(η(θ) · Tj−(x) + bj−(x)). In addition, let Tj+(x) := T (x) −
T (xj+) and bj+(x) := b(x) − b(xj+) to see that rj−(xj+, θ) = exp(η(θ) · Tj+(x) + bj+(x)).
It is straightforward to see that, for any x ∈ X ,

∇θrj−(xj+, θ) = ∇θη(θ) · Tj+(x) exp(η(θ) · Tj+(x) + bj+(x))
= ∇θη(θ) · Tj+(x) exp(η(θ) · Tj+(x)) exp(bj+(x))

∇θ(rj−(x, θ)2) = 2rj−(x, θ) ∇θrj−(x, θ)
= 2∇θη(θ) · Tj−(x) exp(2η(θ) · Tj−(x)) exp(2bj−(x))

By assumption, Tj−(x) is bounded over all x ∈ X , which in turn shows that Tj+(x) =
Tj−(xj+) is bounded over all x ∈ X since xj+ ∈ X . Further, by assumption, supθ∈U ∥∇θη(θ)∥ <

∞ and supθ∈U ∥η(θ)∥ < ∞. Let M be a constant that upper bounds all the terms
supx∈X ∥Tj−(x)∥, supx∈X ∥Tj+(x)∥, supθ∈U ∥∇θη(θ)∥ and supθ∈U ∥η(θ)∥. Then we have

sup
θ∈U

∥∇θrj−(xj+, θ)∥ ≤ M2 exp
(
M2

)
exp(bj+(x)),

sup
θ∈U

∥∇θ(rj−(x, θ)2)∥ ≤ 2M2 exp
(
2M2

)
exp(2bj−(x)).

Taking the expectations,

EX∼p

[
sup
θ∈U

∥∇θrj−(Xj+, θ)∥
]

≤ M2 exp(M2)EX∼p [exp(bj+(X))] , (5.14)

EX∼p

[
sup
θ∈U

∥∇θ(rj−(X, θ)2)∥
]

≤ 2M2 exp(2M2)EX∼p [exp(2bj−(X))] . (5.15)

By assumption EX∼p [exp(2bj−(X))] = EX∼p [exp(bj−(X))2] < ∞ , and we now argue that
this also implies EX∼p [exp(bj+(X))] < ∞. Indeed, from Lemma 15,

EX∼p [exp(bj+(X))] =
∑
x∈X

p(x) exp(b(x) − b(xj+)) =
∑
x∈X

p(xj−) exp(b(xj−) − b(x))

=
∑
x∈X

p(x)p(xj−)
p(x) exp(b(xj−) − b(x)) = EX∼p

[
p(Xj−)
p(X) exp(bj−(X))

]
.

88



Now, using the Cauchy–Schwartz inequality,

EX∼p [exp(bj+(X))] ≤ EX∼p

[
p(Xj−)2

p(X)2

]
EX∼p [exp(2bj−(X))] . (5.16)

Existence of the first term in (5.16) is implied by the Standing Assumption (∇−p)/p ∈
L2(p,Rd), while existence of the second term in (5.16) was assumed. Therefore, we have
shown that (5.14) and (5.15) exist. Repeating an essentially identical argument, it is
straightforward to see also that

EX∼p

[
sup
θ∈U

∥∇s
θrj−(Xj+, θ)∥

]
< ∞ and EX∼p

[
sup
θ∈U

∥∇s
θ(rj−(X, θ)2)∥

]
< ∞ (5.17)

for s = 2, 3 as claimed.

5.6.4. Assumption 8 for Poisson, Ising, and Conway-Maxwell-Poisson
Models

Assumption 8 for the Poisson and Ising models used in the experiments can be verified as
a special case of exponential family. Any Poisson model can be written in the form

pθ(x) ∝ exp
(

log(θ1) x −
x∑

k=1
log(k)

)
.

This falls into a class of exponential family by setting η(θ) = log(θ), T (x) = x, and
b(x) = −∑x

k=1 log(k). This gives that T (x − 1) − T (x) = −1 and b(x − 1) − b(x) =
log(x). The condition derived in the preceding section is then satisfied provided that
EX∼p[exp(log(X))2] = EX∼p[X2] < ∞, i.e. p has a second moment. Similarly, any Ising
model can be written in the form

pθ(x) ∝ exp(θ · T (x))

where T : X → Rk is a vector of summary statistics that define the model. For Ising
models, X is of finite cardinality and T (x) is hence bounded for any x ∈ X . The conditions
are then automatically satisfied.

The Conway-Maxwell-Poisson model falls into a class of exponential family, but it is
beyond the simplified case. Nonetheless, Assumption 8 is still verifiable. Recall that the
Conway-Maxwell-Poisson model has the form pθ(x) ∝ (θ1)x(x!)−θ2 whose ratio function is
given by rj−(x, θ) = pθ(x − 1)/pθ(x) = xθ2/θ1 where θ1, θ2 ∈ (0, ∞). The derivative of the
ratio with respect to θ = (θ1, θ2) is then given by

∇θrj−(x + 1, θ) =
(

−(x + 1)θ2

θ2
1

,
(x + 1)θ2 log(x + 1)

θ1

)
, ∇θ(rj−(x, θ))2 =

(
−x2θ2

θ3
1

,
x2θ2 log x

θ2
1

)
.
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Note that the term x2θ2 log x in ∇θ(rj−(x, θ))2 is well-defined even at x = 0 since it
converges to 0 as x → 0 if θ2 > 0 despite the individual term log x alone is not well-defined
for x = 0. Let M1 and M2 be the infimum value of θ1 and the supremum value of θ2 for
(θ1, θ2) in the bounded set U to see that

sup
θ∈U

∥∇θrj−(x + 1, θ)∥ =
∣∣∣∣∣(x + 1)M2

M2
1

∣∣∣∣∣+
∣∣∣∣∣(x + 1)M2 log(x + 1)

M1

∣∣∣∣∣ ,
sup
θ∈U

∥∇θ(rj−(x, θ))2∥ =
∣∣∣∣∣x2M2

M3
1

∣∣∣∣∣+
∣∣∣∣∣x2M2 log x

M2
1

∣∣∣∣∣ .
We can derive the same quantity up to constants in the power exponent of each term for
the second and third derivative. Then Assumption 8 imposes that expectations of these
quantities with respect to the data generating distribution x ∼ p are finite. For example,
the expectations for the first derivatives are

EX∼p

[
sup
θ∈U

∥∇θrj−(X + 1, θ)∥
]

= 1
M2

1
EX∼p

[∣∣∣(x + 1)M2
∣∣∣]+ 1

M1
EX∼p

[∣∣∣(x + 1)M2 log(x + 1)
∣∣∣] ,

EX∼p

[
sup
θ∈U

∥∇θ(rj−(x, θ))2∥
]

= 1
M3

1
EX∼p

[∣∣∣x2M2
∣∣∣]+ 1

M2
1
EX∼p

[∣∣∣x2M2 log x
∣∣∣] ,

where the boundedness is translated into the moment condition of p as above.

5.6.5. Proof of Theorem 5

Proof. Let rj−(x, θ) := pθ(xj−)/pθ(x) and rj+(x, θ) := pθ(x)/pθ(xj+) to set

Dn(θ) := 1
n

n∑
i=1

d∑
j=1

(
rj−(xi, θ)

)2
− 2rj+(xi, θ).

Let R(xi, θ) := ∑d
j=1(rj−(xi, θ))2−2rj+(xi, θ). In what follows, we set D(θ) := EX∼p[R(X, θ)]

and verify that preconditions C1-C5 of Theorem 5 are satisfied. Note that C3 holds directly
by Assumption 7 and C5 is also assumed directly in Theorem 5.

C1: By the strong law of large numbers (Durrett, 2010, Theorem 2.5.10),

Dn(θ) = 1
n

n∑
i=1

R(xi, θ) a.s.−→ EX∼p[R(X, θ)] = D(θ), (5.18)

provided that EX∼p[|R(X, θ)|] < ∞ for each θ ∈ Θ. By the triangle inequality,

EX∼p[|R(X, θ)|] = EX∼p [|R(X, θ)|] + C(p) − C(p)

= EX∼p

∣∣∣∣∣∣R(X, θ) + 1 +
∥∥∥∥∥∇−p(X)

p(X)

∥∥∥∥∥
2
∣∣∣∣∣∣
+ EX∼p

1 +
∥∥∥∥∥∇−p(X)

p(X)

∥∥∥∥∥
2


= EX∼p

∥∥∥∥∥∇−pθ(X)
pθ(X) − ∇−p(X)

p(X)

∥∥∥∥∥
2
+ 1 + EX∼p

∥∥∥∥∥∇−p(X)
p(X)

∥∥∥∥∥
2

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where the last equality holds from Proposition 6 and both the quantities are finite by
Standing Assumption 1. Hence EX∼p[|R(X, θ)|] < ∞ and (5.18) holds for each θ ∈ Θ.

C2: From Assumption 8, we have that rj+(x, θ) and rj−(x, θ) are three times continuously
differentiable with respect to θ ∈ U for all x ∈ X , and thus Dn(θ) is three times
continuously differentiable with respect to θ ∈ U . For any s ∈ {1, 2, 3},

∇s
θDn(θ) = 1

n

n∑
i=1

∇s
θR(xi, θ) = 1

n

n∑
i=1

d∑
j=1

∇s
θ(rj−(xi, θ)2) − 2∇s

θrj+(xi, θ). (5.19)

By the triangle inequality, we have an upper bound

sup
θ∈U

∥∇s
θDn(θ)∥ ≤ 1

n

n∑
i=1

d∑
j=1

sup
θ∈U

∥∥∥∇s
θ(rj−(xi, θ)2)

∥∥∥+ 2 sup
θ∈U

∥∇s
θrj+(xi, θ)∥

︸ ︷︷ ︸
=:G(xi)

.

The quantity 1
n

∑n
i=1 G(xi) is a random variable dependent on {xi}n

i=1. By the strong law
of large numbers (Durrett, 2010, Theorem 2.5.10),

1
n

n∑
i=1

G(xi) a.s.−→EX∼p[G(X)] < ∞

provided that EX∼p[|G(X)|] < ∞. Indeed, this condition holds since from positivity of G

EX∼p[|G(X)|] =
d∑

j=1
EX∼p

[
sup
θ∈U

∥∥∥∇s
θ(rj−(X, θ)2)

∥∥∥]+ 2EX∼p

[
sup
θ∈U

∥∇s
θrj+(X, θ)∥

]
,

where the right-hand side is finite by Assumption 8. Then

lim sup
n→∞

sup
θ∈U

∥∇s
θDn(θ)∥ ≤ lim sup

n→∞

1
n

n∑
i=1

G(xi) = lim
n→∞

1
n

n∑
i=1

G(xi) a.s.= EX∼p[G(X)] < ∞

for any s ∈ {1, 2, 3}, which establishes C2.

C4: Let h(x, θ) := ∇2
θR(x, θ). From (5.19), Hn(θ) = 1

n

∑n
i=1 h(xi, θ). By the strong law of

large numbers (Durrett, 2010, Theorem 2.5.10), we have Hn(θ) a.s.−→EX∼p[h(X, θ)] provided
that EX∼p[∥h(X, θ)∥] < ∞. Indeed, this condition holds for all θ ∈ U , since we have the
upper bound

EX∼p[∥h(X, θ∗)∥] ≤ EX∼p

[
sup
θ∈U

∥h(X, θ)∥
]

≤ EX∼p [|G(X)|] < ∞

where the right-hand side is bounded by the preceding argument. It remains to verify that
H∗ := limn→∞ Hn(θ∗) is equal to ∇2

θ DFD(pθ∥p)|θ=θ∗ , from which C4 follows since H∗ was
assumed to be nonsingular in the statement of Theorem 5. By the Lebesgue’s dominated
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convergence theorem, for each θ ∈ U ,

lim
n→∞

Hn(θ) = EX∼p[∇2
θR(x, θ)] = ∇2

θEX∼p[R(x, θ)] = ∇2
θD(θ).

provided that EX∼p[supθ∈U ∥∇2
θR(x, θ)∥] < ∞. This condition holds for all θ ∈ U since

EX∼p[supθ∈U ∥∇2
θR(x, θ)∥] ≤ EX∼p [|G(X)|] < ∞. Since θ∗ ∈ U in particular, H∗ =

∇2
θD(θ) |θ=θ∗= ∇2

θ DFD(pθ∥p)|θ=θ∗ , as claimed.

Thus, preconditions C1-C5 are satisfied and the result follows from Assumption 3.

5.6.6. Proof of Proposition 9

We first establish that the Stein set {h ∈ Hd
k : ∑d

i=1 ∥hi∥2
Hk

≤ 1} constructed from Hd
k is

contained in another Stein set {h ∈ L2(q,Rd) : ∥h∥2
L2(q,Rd) ≤ 1} constructed from L2(q,Rd)

for any domain X , under a standard condition on the reproducing kernel. This in turn
shows that DFD dominates KSD.

Proposition 11. Let q be a probability distribution on X . Let k : X × X → R be a kernel
such that supx∈X k(x, x) ≤ 1. Then the unit ball of Hd

k is contained in the unit ball of
L2(q,Rd).

Proof. First, let f : X → Rd be any element of Hd
k, where its i-th output-coordinate

fi : X → R belongs to Hk each. From the reproducing property of Hk, followed by the
Cauchy–Schwartz inequality, the norm of f in L2(q,Rd) is upper bounded as follows:

∥f∥2
L2(q,Rd) =

d∑
i=1

EX∼q[fi(X)2] =
d∑

i=1
EX∼q[⟨fi(·), k(X, ·)⟩2

Hk
]

≤
d∑

i=1
EX∼q

[
∥fi∥2

Hk
∥k(X, ·)∥2

Hk

]
=

d∑
i=1

EX∼q

[
∥fi∥2

Hk
k(X, X)

]

=
(

d∑
i=1

∥fi∥2
Hk

)
EX∼q [k(X, X)] = ∥f∥2

Hd
k
EX∼q [k(X, X)] .

The continuous embedding of Hd
k in L2(q,Rd) therefore holds, and moreover the em-

bedding constant is at most one, since EX∼q[k(X, X)] ≤ 1 due to the assumption that
supx∈X k(x, x) ≤ 1. Therefore, it follows that the unit ball of Hd

k is contained in the unit
ball of L2(q,Rd).

Now we move on to the main proof.

Proof. From the construction of KSD and DFD based on (2.6), it is clear to see that

KSD(p∥q) = sup
∥h∥Hd

k
≤1

|EX∼q [Sp[h](X)]| ≤ sup
∥h∥

L2(q,Rd)≤1
|EX∼q [Sp[h](X)]| = DFD(p∥q),

where the inequality follows from Proposition 11 showing that {∥h∥Hd
k

≤ 1} is a smaller
set than {∥h∥L2(q,Rd) ≤ 1}, and the final equality follows from Proposition 7.
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Chapter 6. Conclusion

Prior to this thesis, there was little or no existing literature concerning generalised Bayesian
inference in the setting of intractable likelihood. Existing approaches to Bayesian inference
for intractable likelihood fell into three broad categories: (1) simulation-based methods
such as approximate Bayesian computation (Beaumont et al., 2002; Frazier, 2020; Marin
et al., 2012; Price et al., 2018; Tavaré et al., 1997) and exchange algorithm (Murray et al.,
2006; Møller et al., 2006), including MCMC-based simulation methods (Park and Haran,
2018b); (2) plugin-based methods such as pseudo-marginal MCMC (Andrieu and Roberts,
2009) and Russian roulette-based MCMC (Lyne et al., 2015); (3) approximate likelihood
methods such as pseudo-likelihood (Besag, 1974; Dryden et al., 2002) and composite
likelihood (Eidsvik et al., 2014), which are of course also applicable beyond the Bayesian
context. Both (1) and (2) rely on either the ability to exactly or approximately simulate
from the generative model, or the ability to unbiasedly estimate the likelihood, whilst
(3) represents a collection of approaches that are tailored to particular statistical models.
These algorithms aim to approximate the standard Bayesian posterior, which often do not
confer robustness in situations where the model is misspecified.

This thesis established SD-Bayes, a new Bayesian methodology for intractable models
based on generalised Bayesian inference and Stein discrepancy. Unlike the existing ap-
proaches, the SD-Bayes methodology does not rely on any approximation, estimation, or
sampling of intractable models. Instead, it leverages a Stein discrepancy—a statistical di-
vergence for probability distributions that is computable without knowing their normalising
constants—as a loss in generalised Bayesian inference. The resulting generalised posterior
is independent of normalising constants of intractable models and therefore accessible
by any standard MCMC algorithms. In Chapter 3, we established several theoretical
underpinnings of generalised Bayesian inference. We derived posterior consistency and the
Bernstein–von Mises theorem of generalised posteriors, which guarantees their appealing
regularity in the limiting regime of the number of data. Furthermore, we formulated a
qualitative criterion, termed global bias-robustness, that implies a strong insensitivity of
generalised posteriors to an outlier mixed in data. This criterion rigorously emphasises
an advantage of generalised Bayesian inference over standard Bayesian inference in the
setting of data containing an outlier. Finally, we discussed a novel calibration algorithm
of generalised posteriors through minimisation of the objective based on a Stein discrep-
ancy, which is computationally efficient and numerically stable even when a datum or a
parameter is high dimensional.
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In Chapter 4, we provided a general formulation of KSD as a particularly useful
Stein discrepancy to intractable models in continuous domains. We then proposed KSD-
Bayes, the SD-Bayes methodology resulting from the use of KSD. We demonstrated
that KSD-Bayes is not only computable by any standard MCMC algorithms, but also
admits fully conjugate analysis for exponential family models. KSD-Bayes provides robust
generalised Bayesian inference in this context, including a theoretical guarantee of global
bias-robustness over Θ. From a theoretical perspective, the soundness of KSD-Bayes,
in terms of posterior consistency and asymptotic normality of the generalised posterior,
was further established. In Chapter 5, we established DFD, a novel extension of the
Fisher divergence to a wide class of discrete domains, and concretise SD-Bayes with
DFD for intractable models in discrete domains. The approach, called DFD-Bayes, is
distinguished by its suitability for standard MCMC algorithms as with KSD-Bayes, its lack
of user-specified hyperparameters such as a choice, and its linear computational cost in the
dataset size n per-iteration of MCMC. Furthermore, posterior consistency and asymptotic
normality of the generalised posterior was established. In discrete case, DFD-Bayes
outperformed KSD-Bayes in our experiments both in terms of inferential performance
and computational cost. However, one of the significant advantages of KSD-Bayes is
robustness in the presence of outliers contained in a dataset. In discrete case, this is
confirmed through an additional experiment on the Ising model in Section B.2. Thus, in
settings where robust inference is required, the KSD-Bayes approach may be preferred.

Although SD-Bayes, whose concrete special cases include KSD-Bayes and DFD-Bayes,
has a number of appealing features, it is not a panacea for intractable likelihood. As
discussed in Sections 4.2.3 and 5.2.2, score-based methodologies in general can suffer
from insensitivity to mixture proportions, which limits its applicability to models and
datasets that are not “too multi-modal”. In addition, KSD-Bayes is not invariant to
transformations of data, while DFD-Bayes achieves the invariance in discrete case. DFD-
Bayes is not equipped with such strong robustness to model misspecification as KSD-Bayes
demonstrated by the virtue of an appropriate choice of kernel. Some of future works
could focus on generalising our DFD construction to allow for further robustness as per
the diffusion score-matching framework of Barp et al. (2019). This thesis focused on
independent and identically distributed data, meaning that, for example, regression models
were not considered. Relaxing the independence and identical distribution assumptions
represents a natural direction for future work, and a road map is provided by recent
research in the score-matching literature (Xu et al., 2022). There also exists various
open avenues for future work in more broad contexts of generalised Bayesian inference.
Calibration of generalised posteriors in non-asymptotic regime remains an open problem
in generalised Bayesian inference, where that in asymptotic regime has been solved by
Frazier et al. (2023) selecting a class of loss whose generalised posterior and frequentist
counterpart admit the same asymptotic covariance. In non-asymptotic regime, a certain
stable algorithm may be required especially when the parameter θ is high-dimensional
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relative to the size n of the dataset. Cases where model misspecification can occurs are
clearly not limited to the case of outliers considered in the global bias-robustness. There
appears to be an urgent need for extensive theory on in which circumstances generalised
Bayesian inference should be or should not be used, so that generalised Bayesian inference
can be safely applied in practice. While the focus of this thesis was entirely on posteriors
of Bayesian inference for complex models, priors and predictive distributions are also
fundamental components of Bayesian inference. It is further vital for Bayesian inference
for complex models to tackle an effective choice of priors and guarantees appropriate
predictive distributions, in which two other works of the author partially addressed in the
context of Bayesian neural networks and calibration error metrics before. All of these are
challenging yet exciting directions of future work.
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Appendix A. Supplementary Material for Chapter 4

This appendix contains additional empirical results and auxiliary theoretical results referred
in Chapter 4. Section A.1 investigates the sensitivity of the generalised posterior to the
choice of parameters employed in the kernel K. Section A.2 investigates the sampling
distribution of β, controlling the scale of the generalised posterior, when estimated using
the approach proposed by Lyddon et al. (2019). An extended discussion of the choice
of weighting function, M , and the associated trade-off between statistical efficiency and
robustness, is contained in Section A.3. A comparison of KSD-Bayes with other generalised
Bayesian procedures developed for a tractable likelihood is presented in Section A.4.
Section A.5 contains the detail of the default selection of β adopted in Section 4.4. Finally,
technical lemmas on the derivatives of KSD that were used as intermediate results in the
proofs are established in Section A.6.

A.1. Sensitivity to Kernel Parameters

The kernel K that we recommend as a default in Section 4.1.2 has no degrees of freedom
to be specified (with the exception of the weighting function M , whose choice is further
explored in Section A.3). Nevertheless, it is interesting to ask whether the generalised
posterior is sensitive to our recommended choice of kernel. To this end, we considered the
family of kernels of the form

K(x, x′) =
(
1 + σ−2∥x − x′∥2

2

)−γ
× Id (A.1)

where σ > 0 and γ ∈ (0, 1). Our recommended kernel sets σ equal to a regularised
version of the sample standard deviation of the dataset and γ = 1/2. To investigate how
the generalised KSD-Bayes posterior depends on the choice of σ and γ, we re-ran the
normal location model experiment from Section 4.4.1 using values σ ∈ {0.5, 1, 2} and
γ ∈ {0.1, 0.5, 0.9}. To limit scope, we consider the performance of the robust version
of KSD-Bayes from Section 4.4.1, with weight function M(x) = (1 + x2)−1/2, in the
case where the contaminant is fixed to y = 10 and the proportion of contamination is
varied in ϵ ∈ {0, 0.1, 0.2}. Results in Figure A.1 indicate that the generalised posterior
is insensitive to σ, with almost identical output for each value of σ considered. The
results for γ ∈ {0.5, 0.9} were almost identical, but the generalised posterior appeared
to be less robust to contamination when γ = 0.1. These results support the default
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Figure A.1 Sensitivity to kernel parameters: Kernels of the form (A.1), with length-scale
parameter σ and exponent γ, are considered in the context of the normal location model in
Section 4.4.1. The settings σ ≈ 1, γ = 0.5 (central panel) were used in the main text. The true
parameter value is θ = 1, while a proportion ϵ of the data were contaminated by noise of the
form N (y, 1). Here y = 10 is fixed and ϵ ∈ {0, 0.1, 0.2} are considered.

choices recommended in the main text (σ ≈ 1, γ = 0.5) and provide reassurance that the
generalised posterior is not overly sensitive to how these values are specified.

A.2. Sampling Distribution of β

An important component of the KSD-Bayes method is the use of a data-adaptive β.
In this appendix the sampling distribution of this data-adaptive β is investigated. Of
particular interest are (1) the extent to which β varies at small sample sizes, and (2) how
the behaviour of β changes when the data-generating model is misspecified. To investigate,
we considered multiple independent realisations of the dataset in the context of the normal
location model from Section 4.4.1, collecting the corresponding estimates of β together
into box plots, so that the sampling distribution of β can be visualised. To limit scope,
we consider the performance of the standard version of KSD-Bayes from Section 4.4.1
(i.e. with weight function M(x) = 1), in the case where the contaminant is fixed to
y = 10 and the proportion of contamination is varied in ϵ ∈ {0, 0.1, 0.2}. The dataset
sizes n ∈ {10, 50, 100} were considered. Results in Figure A.2 show that, in the case
ϵ = 0 where the model is well-specified, the value β = 1 is typically selected. This value
ensures that the scale of the KSD-Bayes posterior matches that of the standard posterior
in this example, so that the approach used to select β can be considered successful. In the
misspecified regimes ϵ ∈ {0.1, 0.2}, with small n the estimation of an appropriate weight β

is expected to be difficult and indeed the default choice of β = 1 in (A.7) is automatically
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Figure A.2 Sampling distribution of β: Box plots are used to summarise the sampling distribution
of β in the context of the normal location model in Section 4.4.1. The sample size n and the
contamination proportion ϵ were each varied.

adopted. At larger values of n it is possible to reliably estimate a weight β < 1 and this
weight is seen to be smaller on average when data are more contaminated. These results
support our recommended approach to selecting β in (A.7).

A.3. Efficiency/Robustness Trade-Off

There is a well-known trade-off between statistical efficiency and robustness to model
misspecification, as exemplified by the data-agnostic statistician who is robust by not
learning from data. Minimum distance estimation, which can be considered the frequentist
analogue of generalised Bayesian inference, can strike an attractive balance between
these competing goals (see e.g. Basu et al., 2019; Lindsay, 1994). In Section 4.3.3 it was
demonstrated that global bias-robustness can be achieved using KSD-Bayes through the
inclusion of an appropriate weighting function M in the kernel, and in Section 4.4 it was
demonstrated that KSD-Bayes can learn from data whilst being bias-robust. However,
it remains to investigate the extent to which statistical efficiency is lost in KSD-Bayes,
compared to standard Bayesian inference, in the case where the data-generating model
is correctly specified. In this appendix, we return to the normal location model of
Section 4.4.1 and explore the effect of the choice of weighting function M on the efficiency
of the inferences that are produced.

Recall from Theorem 4 that KSD-Bayes is globally bias-robust if there is a function
γ : Θ → R such that

sup
y∈Rd

(
∇y log pθ(y) · K(y, y)∇y log pθ(y)

)
≤ γ(θ) (A.2)

where supθ∈Θ |π(θ)γ(θ)| < ∞ and
∫

Θ π(θ)γ(θ)dθ < ∞. For our recommended kernel K in
(4.4), the expression on the left-hand side of (A.2) reduces to

sup
y∈Rd

∥M(y)⊤∇y log pθ(y)∥2
2.
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For the normal location model in Section 4.4.1 we have ∇y log pθ(y) = θ − y and thus,
with our recommended kernel from Equation (4.4), we have

∥M(y)⊤∇y log pθ(y)∥2
2 = (y − θ)2M(y)2. (A.3)

In order that (A.3) is bounded over y ∈ R we require M(y) to decay at the rate O(|y|−1)
as |y| → ∞. This decay is achieved, for example, by functions of the form

M(y) =
(

a2

a2 + (y − b)2

)c/2

(A.4)

for any a ̸= 0, b ∈ R and any c ≥ 1, although of course there are infinitely many other
such functions that could be considered. The particular value c = 1, which we considered
in Section 4.4.1 of the main text and consider here in the sequel, represents the smallest
value of c for which (A.3) is bounded over y ∈ R. For this choice we have that (A.3) is
maximised by y = θ ±

√
a2 + (θ − b)2 and

sup
y∈Rd

(y − θ)2M(y)2 = [a2 + (θ − b)2]a2

a2 + [θ − b ±
√

a2 + (θ − b)2]2
≤ a2 + (θ − b)2 =: γ(θ).

For this bound γ(θ), all conditions of Theorem 4 are satisfied. The aim in what follows is
to investigate how the performance of KSD-Bayes depends on the specific choices of a and
b and in (A.4).

To limit scope, we consider performance in the case where the contaminant is fixed to
y = 10 and the proportion of contamination is varied in ϵ ∈ {0, 0.1, 0.2}. The dataset sizes
were fixed at n = 100 as per the main text. Recall from Section 4.4.1 of the main text
that the choices a = 1, b = 0 lead to statistical efficiency comparable to that of standard
Bayesian inference. Results in Figure A.3 show that a = 0.1 led to almost total robustness
to contamination at the expense of inefficient estimation, with the spread of the generalised
posterior approximately twice as large as the case where a = 1. The setting a = 10 causes
the generalised posterior to approximate the non-robust KSD-Bayes approach with M ≡ 1,
as would be expected from inspection of (A.4). The generalised posterior was somewhat
insensitive to b, though we note that the choice b = −5 conferred additional robustness at
the expense of efficiency, while the choice b = 5 sacrificed both robustness and efficiency,
in both cases relative to b = 0. These results broadly support the choices of a = 1 and
b = 0 for this inference problem, as we considered in the main text.

A.4. Comparison with Robust Generalised Bayesian Procedures

This paper presented a generalised Bayesian approach to inference for models that involve
an intractable likelihood. However, several generalised Bayesian approaches exist for
tractable likelihood, and it is interesting to ask how the performance of KSD-Bayes
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Figure A.3 Efficiency/robustness trade-off: Weight functions of the form (A.4), with length-scale
parameter a and location parameter b, are considered in the context of the normal location model
in Section 4.4.1. The settings a = 1, b = 0 (central panel) were used in the main text. The true
parameter value is θ = 1, while a proportion ϵ of the data were contaminated by noise of the
form N (y, 1). Here y = 10 is fixed and ϵ ∈ {0, 0.1, 0.2} are considered.

compares to these existing approaches in the case of a tractable likelihood. To this end, we
return to the normal location model of Section 4.4.1, which has a tractable likelihood, and
consider two distinct generalised Bayesian procedures that have been developed in this
context; the power posterior approach of Holmes and Walker (2017) and the MMD-Bayes
approach of Cherief-Abdellatif and Alquier (2020). These approaches are representative of
two of the main classes of robust statistical methodology; data-adaptive scaling parameters
β and minimum discrepancy methods. Both approaches are briefly recalled:

Power Posteriors Motivated by the coherence argument of Bissiri et al. (2016), the
authors Holmes and Walker (2017) consider a generalised posterior of the form, for some
β > 0,

πn(θ) ∝ π(θ) exp
{

β
n∑

i=1
log pθ(xi)

}
,

which we call a power posterior (e.g. following Friel and Pettitt, 2008). To select an
appropriate value for β, with the intention to “allow for Bayesian learning under model
misspecification”, the authors first introduce the function

∆(x) =
∫

Θ
π(θ) ∥∂1 log pθ(x)∥2

2 dθ,
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where we recall that, in our notation, ∂1 = (∂θ1 , . . . , ∂θp). Then the authors set

β =
{∫

X pθ̂n
(x)∆(x)dx

1
n

∑n
i=1 ∆(xi)

} 1
2

, (A.5)

where θ̂n is a maximiser of the likelihood. The motivation for (A.5) is quite involved, so we
refer the reader to Holmes and Walker (2017) for further background. The authors prove
that β → 1 in probability when the model is well-specified (Holmes and Walker, 2017,
Lemma 2.1), and present empirical evidence of robustness when the model is misspecified.

For the normal location model of Section 4.4.1 we can compute ∂1 log pθ(x) = x −
θ, ∆(x) = 1 + x2, θ̂n = 1

n

∑n
i=1 xi, and

∫
X pθ̂n

(x)∆(x)dx = 2 + (θ̂n)2, leading to the
recommended weight

β =


2 +

(
1
n

∑n
i=1 xi

)2

1 + 1
n

∑n
i=1 x2

i


1
2

and an associated generalised posterior that is again Gaussian with mean ( βn
1+βn

)( 1
n

∑n
i=1 xi)

and variance 1
1+βn

.

MMD-Bayes An analogue of KSD-Bayes for tractable likelihood is provided by the
MMD-Bayes approach of Cherief-Abdellatif and Alquier (2020), where a maximum mean
discrepancy (MMD) is employed in place of KSD. In identical notation to that used in ??,
the MMD-Bayes generalised posterior is defined, for some β > 0, as

πD
n (θ) ∝ π(θ) exp

{
−βn MMD2(Pθ,Pn)

}
(A.6)

where, for a given reproducing kernel Hilbert space H with reproducing kernel k : X ×X →
R, the MMD between distributions P and Q on X is defined as

MMD(P,Q) = ∥µP − µQ∥H,

where the Bochner intergals µP(·) =
∫

X k(·, x)dP(x) and µQ(·) =
∫

X k(·, x)dQ(x) are
the kernel mean embeddings of P and Q in H. The authors prove a generalisation
bound for MMD-Bayes (Cherief-Abdellatif and Alquier, 2020, Theorem 1), which they
interpret as showing “the MMD-Bayes posterior distribution is robust to misspecification”.
The authors do not recommend a default choice of β in the main text1, but in private
correspondence they recommend β = O(1), and we use β = 1 as a default. The kernel
k(x, y) = exp(−∥x − y∥2

2/d) was used in our experiment, following Appendix F in Cherief-
Abdellatif and Alquier (2020).

1Cherief-Abdellatif and Alquier (2020) absorbed the n factor in (A.6) into their definition of β, but
for convenience of the reader we have adjusted the presentation of MMD-Bayes to match that used for
KSD-Bayes in the main text.

110



Figure A.4 Comparison with robust generalised Bayesian procedures: Robust KSD-Bayes
(this paper), power posterior (Holmes and Walker, 2017) and MMD-Bayes (Cherief-Abdellatif
and Alquier, 2020) approaches are considered in the context of the normal location model
in Section 4.4.1. The true parameter value is θ = 1, while a proportion ϵ of the data were
contaminated by noise of the form N (y, 1). In the top row y = 10 is fixed and ϵ ∈ {0, 0.1, 0.2}
are considered, while in the bottom row ϵ = 0.1 is fixed and y ∈ {1, 10, 20} are considered.

For the normal location model of Section 4.4.1 we can compute the kernel mean
embeddings µPθ

(x) =
√

1
3 exp(−1

3(x − θ)2), µPn(x) = 1
n

exp(−(x − xi)2), obtaining an
overall expression for the MMD:

MMD(Pθ,Pn)2 = 1
3 exp

(
−θ2

6

)
− 2

n

n∑
i=1

√
1
3 exp

(
−(θ − xi)2

3

)
+ 1

n2

n∑
i,j=1

exp
(
−(xi − xj)2

)

The un-normalised density associated with this generalised posterior can be pointwise
evaluated; we do this over a fine grid to approximate the normalisation constant in the
experiments that we report.

Results The experiment of Section 4.4.1 was conducted using the power posterior and
MMD-Bayes methods just described, with results shown in Figure A.4. Power posteriors
exhibited similar performance to (non-robust) KSD-Bayes (i.e. with M ≡ 1; see Figure 4.2
in the main text), and was therefore less robust to contamination compared with robust
KSD-Bayes (i.e. with M(x) = (1 + x2)−1/2). MMD-Bayes generalised posteriors provided
similar performance to robust KSD-Bayes in this experiment, albeit exhibiting greater
spread. The spread of the MMD-Bayes generalised posterior might be improved if a
data-adaptive learning rate β is used, but such an approach was not proposed in Cherief-
Abdellatif and Alquier (2020).
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A.5. Default Setting for β in Section 4.4

For a simple normal location model, as described in Section 4.4.1, and in a well-specified
setting, the asymptotic variance of the KSD-Bayes posterior with β = 1 is never smaller
than that of the standard posterior. This provides a heuristic motivation for the default
β = 1. However, in a misspecified setting smaller values of β are needed to avoid over-
confidence in the generalised posterior, taking misspecification into account; see the recent
review of Wu and Martin (2020). Here we aim to pick β such that the scale of the
asymptotic precision matrix of the generalised posterior (H∗; Proposition 5) matches that
of the minimum KSD point estimator (H∗J

−1
∗ H∗; Lemma 7), the approach proposed in

Lyddon et al. (2019). This ensures the scale of the generalised posterior matches the scale
of the sampling distribution of a closely related estimator whose frequentist properties can
be analysed when the statistical model is misspecified. Since P is unknown, estimators of
H∗ and J∗ are required. We propose the following default for β:

β = min (1, βn) where βn = tr(HnJ−1
n Hn)

tr(Hn) , (A.7)

where the matrix H∗ is approximated using Hn := ∇2
θ KSD2(Pθ∥Pn)

∣∣∣
θ=θn

, and the matrix
J∗ is approximated using

Jn := 1
n

n∑
i=1

Sn(xi, θn)Sn(xi, θn)⊤, Sn(x, θ) := 1
n

n∑
i=1

∇θ(SPθ
SPθ

K(x, xi)).

The minimum of β = 1 and β = βn taken in (A.7) provides a safeguard against selecting
a value of β that over-shrinks the posterior covariance matrix—a phenomenon that we
observed for the experiments reported in Sections 4.4.2 to 4.4.4, due to poor quality of the
approximations Hn and Jn when n is small.

A.6. Derivative Bounds

Our auxiliary results here mainly concern moments of derivative quantities, and the aim
of this section is to establish the main bounds that will be used. Recall that ∂1, ∂2 and ∂3

denote the partial derivatives (∂/∂θh), (∂2/∂θh∂θk) and (∂3/∂θh∂θk∂θl) respectively. For
the proofs in this section, we make the index explicit by re-writing them as ∂1

(h), ∂2
(h,k) and
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∂3
(h,k,l). For x ∈ X and (h, k, l) ∈ {1, . . . , p}3, we define

m0(x) := sup
θ∈Θ

√
SPθ

SPθ
K(x, x), m1(x) := sup

θ∈Θ

√√√√ p∑
h=1

(∂1
(h)SPθ

)(∂1
(h)SPθ

)K(x, x),

m2(x) := sup
θ∈Θ

√√√√ p∑
h,k=1

(∂2
(h,k)SPθ

)(∂2
(h,k)SPθ

)K(x, x),

m3(x) := sup
θ∈Θ

√√√√ p∑
h,k,l=1

(∂3
(h,k,l)SPθ

)(∂3
(h,k,l)SPθ

)K(x, x).

where we continue to use the convention that the first and second operator in expressions
such as (∂1

(h)SPθ
)(∂1

(h)SPθ
)K(x, x′) are respectively applied to the first and second argument

of K. Further define

M1(x, x′) := m1(x)m0(x′) + m0(x)m1(x′),
M2(x, x′) := m2(x)m0(x′) + 2m1(x)m1(x′) + m0(x)m2(x′),
M3(x, x′) := m3(x)m0(x′) + 3m2(x)m1(x′) + 3m1(x)m2(x′) + m0(x)m3(x′).

Based on these quantities, we now provide three technical results, Lemma 17, Lemma 19
and Lemma 18.

Lemma 17. Suppose Assumption 5 (rmax = 3) holds. For each r = 1, 2, 3, and for any
x, x′ ∈ X ,

sup
θ∈Θ

∥∥∥∇r
θ

(
SPθ

SPθ
K(x, x′)

)∥∥∥
2

≤ M r(x, x′). (A.8)

If instead Assumption 5 (rmax = 1) holds, then (A.8) holds for r = 1.

Proof. We first derive the upper bound for r = 1 and then apply the same argument for
the remaining upper bound for r = 2 and r = 3. By the definition of ∇θ,

sup
θ∈Θ

∥∥∥∥∇θ

(
SPθ

SPθ
K(x, x′)

)∥∥∥∥
2

= sup
θ∈Θ

√√√√ p∑
h=1

(
∂1

(h)

(
SPθ

SPθ
K(x, x′)

))2
. (A.9)

By Lemma 9 and Standing Assumption 2, we have SPθ
K(x, ·) ∈ H for any x ∈ X and

(∗1) := ∂1
(h)

(
SPθ

SPθ
K(x, x′)

)
= ∂1

(h)

(
⟨SPθ

K(x, ·), SPθ
K(x′, ·)⟩H

)
. (A.10)

From Assumption 5 (rmax = 1), the operator (∂1
(h)SPθ

) exists over Θ and satisfies the
preconditions of Lemma 9. Hence, by setting SQ = (∂1

(h)SPθ
) in Lemma 9, we have that

(∂1
(h)SPθ

)K(x, ·) ∈ H for each x ∈ X . Let fθ(·) = SPθ
K(x, ·) and gθ(·) = SPθ

K(x′, ·). Then
the following product rule holds:

∂1
(h)⟨fθ, gθ⟩H = ⟨∂1

(h)fθ, gθ⟩H + ⟨fθ, ∂1
(h)gθ⟩H, (A.11)
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which is verified from definition of differentiation as a limit and continuity of the inner
product. Note that ∂(h)fθ(·) = (∂1

(h)SPθ
)K(x, ·) ∈ H and ∂(h)gθ(·) = (∂1

(h)SPθ
)K(x′, ·) ∈ H.

Therefore, by (A.11) and the Cauchy–Schwarz inequality,

(∗1) =
〈
∂1

(h)SPθ
K(x, ·), SPθ

K(x′, ·)
〉

H
+
〈
SPθ

K(x, ·), ∂1
(h)SPθ

K(x′, ·)
〉

H

≤
∥∥∥(∂1

(h)SPθ
)K(x, ·)

∥∥∥
H︸ ︷︷ ︸

(∗a)

∥SPθ
K(x′, ·)∥H︸ ︷︷ ︸

(∗b)

+ ∥SPθ
K(x, ·)∥H︸ ︷︷ ︸

(∗c)

∥∥∥(∂1
(h)SPθ

)K(x′, ·)
∥∥∥

H︸ ︷︷ ︸
(∗d)

.

For the original term (A.9), by the triangle inequality,

sup
θ∈Θ

√√√√ p∑
h=1

(∗1)2 ≤ sup
θ∈Θ

√√√√ p∑
h=1

(
(∗a)(∗b) + (∗c)(∗d)

)2
≤ sup

θ∈Θ

√√√√ p∑
h=1

(∗a)2(∗b)2 + sup
θ∈Θ

√√√√ p∑
h=1

(∗c)2(∗d)2.

For the term (∗a), expanding the norm yields that

(∗a)2 =
〈
(∂1

(h)SPθ
)K(x, ·), (∂1

(h)SPθ
)K(x, ·)

〉
H

= (∂1
(h)SPθ

)(∂1
(h)SPθ

)K(x, x).

A similar argument applied to (∗b)2, (∗c)2 and (∗d)2 leads to the overall bound

sup
θ∈Θ

∥∥∥∇θ

(
SPθ

SPθ
K(x, x′)

)∥∥∥
2

≤ m1(x)m0(x′) + m0(x)m1(x′) = M1(x, x′).

The upper bounds for r = 2 and r = 3 are obtained by an analogous argument. Indeed,
from the definition of ∇2

θ and ∇3
θ,

sup
θ∈Θ

∥∥∥∇2
θ

(
SPθ

SPθ
K(x, x′)

)∥∥∥
2

= sup
θ∈Θ

√√√√ p∑
h,k=1

(
∂2

(h,k)

(
SPθ

SPθ
K(x, x′)

))2
=: (∗′′),

sup
θ∈Θ

∥∥∥∇3
θ

(
SPθ

SPθ
K(x, x′)

)∥∥∥
2

= sup
θ∈Θ

√√√√ p∑
h,k,l=1

(
∂3

(h,k,l)

(
SPθ

SPθ
K(x, x′)

))2
=: (∗′′′).

From Assumption 5 (rmax = 3), the operators (∂2
(h,k)SPθ

) and (∂3
(h,k,l)SPθ

) exist over
Θ and satisfy the preconditions of Lemma 9. Hence, from Lemma 9, ∂2

(h,k)fθ(·) =
(∂2

(h,k)SPθ
)K(x, ·) ∈ H and ∂3

(h,k,l)fθ(·) = (∂3
(h,k,l)SPθ

)K(x, ·) ∈ H for any x ∈ X , and
in turn ∂2

(h,k)gθ(·) ∈ H and ∂3
(h,k,l)gθ(·) ∈ H. Repeated application of the product rule

(A.11) gives that

∂2
(h,k)⟨fθ, gθ⟩H =⟨∂2

(h,k)fθ, gθ⟩H + ⟨∂1
(h)fθ, ∂1

(k)gθ⟩H + ⟨∂1
(k)fθ, ∂1

(h)gθ⟩H + ⟨fθ, ∂2
(h,k)gθ⟩H,

∂3
(h,k,l)⟨fθ, gθ⟩H =⟨∂3

(h,k,l)fθ, gθ⟩H + ⟨∂2
(h,k)fθ, ∂1

(l)gθ⟩H + ⟨∂2
(h,l)fθ, ∂1

(k)gθ⟩H + ⟨∂2
(k,l)fθ, ∂(h)gθ⟩H

+ ⟨∂1
(h)fθ, ∂2

(k,l)gθ⟩H + ⟨∂1
(k)fθ, ∂2

(h,l)gθ⟩H + ⟨∂1
(l)fθ, ∂2

(h,k)gθ⟩H + ⟨fθ, ∂3
(h,k,l)gθ⟩H.
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Following the same argument as the preceding upper bound for r = 1, the triangle
inequality and Cauchy–Schwarz imply that

(∗′′) ≤ m2(x)m0(x′) + m1(x)m1(x′) + m1(x)m1(x′) + m0(x)m2(x′)
= m2(x)m0(x′) + 2m1(x)m1(x′) + m0(x)m2(x′) = M2(x, x′),

(∗′′′) ≤ m3(x)m0(x′) + m2(x)m1(x′) + m2(x)m1(x′) + m2(x)m1(x′)
+ m1(x)m2(x′) + m1(x)m2(x′) + m1(x)m2(x′) + m0(x)m3(x′)

= m3(x)m0(x′) + 3m2(x)m1(x′) + 3m1(x)m2(x′) + m0(x)m3(x′) = M3(x, x′),

which are the claimed upper bounds for the cases r = 2 and r = 3.

Lemma 18. Suppose Assumption 5 (rmax = 3) holds. For r = 0, 1, 2, 3, EX∼P[|mr(X)|] <

∞ and EX∼P[|mr(X)|2] < ∞. For r = 1, 2, 3, EX,X′∼P[|M r(X, X ′)|] < ∞ and EX∼P[|M r(X, X)|] <

∞. If instead Assumption 5 (rmax = 1) holds, these results hold for 0 ≤ r ≤ 1.

Proof. First, note that positivity of mr(·) and M r(·) implies that the absolute value signs
can be neglected. Moreover, from Jensen’s inequality (EX∼P[mr(X)])2 ≤ EX∼P[mr(X)2].
Thus, it is sufficient to show that (a) EX∼P[mr(X)2] < ∞, (b) EX,X′∼P[M r(X, X ′)] < ∞
and (c) EX∼P[M r(X, X)] < ∞.

Part (a): The argument is analogous for each r = 0, 1, 2, 3 and we present it with r = 3.
The bounded follows from Jensen’s inequality and the triangle inequality:

EX∼P

[
m3(X)2

]
≤ EX∼P

sup
θ∈Θ

p∑
h,k,l=1

(∂3
(h,k,l)SPθ

)(∂3
(h,k,l)SPθ

)K(X, X)


≤
p∑

h,k,l=1
EX∼P

[
sup
θ∈Θ

(
(∂3

(h,k,l)SPθ
)(∂3

(h,k,l)SPθ
)K(X, X)

)]

where the terms in the sum are finite by Assumption 5 (rmax = 3).

Part (b): Since X, X ′ are independent in the expectation EX,X′∼P[M r(X, X ′)], it is clear
from the definition of M r that EX,X′∼P[M r(X, X ′)] exists if the expectation of each term
ms(X), s ≤ r, exists. Thus, by part (a), EX,X′∼P[M r(X, X ′)] < ∞ for r = 1, 2, 3.

Part (c): From the definition of M r(x, x) for r = 1, 2, 3,

EX∼P[M1(X, X)] = 2EX∼P[m1(X)m0(X)],
EX∼P[M2(X, X)] = 2EX∼P[m2(X)m0(X)] + 2EX∼P[m1(X)m1(X)],
EX∼P[M3(X, X)] = 2EX∼P[m3(X)m0(X)] + 6EX∼P[m2(X)m1(X)].

115



Applying the Cauchy Schwartz inequality for each term

EX∼P[M1(X, X)] ≤ 2
√
EX∼P[m1(X)2]

√
EX∼P[m0(X)2],

EX∼P[M2(X, X)] ≤ 2
√
EX∼P[m2(X)2]

√
EX∼P[m0(X)2] + 2

√
EX∼P[m1(X)2]

√
EX∼P[m1(X)2],

EX∼P[M3(X, X)] ≤ 2
√
EX∼P[m3(X)2]

√
EX∼P[m0(X)2] + 6

√
EX∼P[m2(X)2]

√
EX∼P[m1(X)2].

Since each of the latter expectations is finite by part (a), EX∼P[M r(X, X)] < ∞ for
r = 1, 2, 3.

Inspection of the proof reveals that these results hold for r = 0, 1 if instead Assumption 5
(rmax = 1) holds.

Lemma 19. Suppose Assumption 5 (rmax = 3) holds. Then, for r = 1, 2, 3,

1
n2

n∑
i=1

n∑
j=1

M r(xi, xj) a.s−→ EX,X′∼P[M r(X, X ′)] < ∞. (A.12)

If instead Assumption 5 (rmax = 1) holds, then (A.12) holds for r = 1.

Proof. The proof is based on the strong law of large numbers, the sufficient conditions for
which are provided by Lemma 18, which shows that EX∼P [|mr(X)|] < ∞ for r = 0, 1, 2, 3
under Assumption 5 (rmax = 3). Then the strong law of large numbers (Durrett, 2010,
Theorem 2.5.10) yields that (1/n)∑n

i=1 mr(xi) a.s.→ EX∼P [mr(X)] =: (∗r) for r = 0, 1, 2, 3.
Then, from the definition of M1,

lim
n→∞

1
n2

n∑
i=1

n∑
j=1

M1(xi, xj) = lim
n→∞

1
n2

n∑
i=1

n∑
j=1

(
m1(xi)m0(xj) + m0(xi)m1(xj)

)

= lim
n→∞

1
n

n∑
i=1

m1(xi) × lim
n→∞

1
n

n∑
j=1

m0(xj) + lim
n→∞

1
n

n∑
i=1

m0(xi) × lim
n→∞

1
n

n∑
j=1

m1(xj).

Since each limit in the right-hand side converges a.s. to either (∗0) or (∗1), so that

1
n2

n∑
i=1

n∑
j=1

M1(xi, xj) a.s.−→EX∼P[m1(X)] × EX∼P[m0(X)] + EX∼P[m0(X)] × EX∼P[m1(X)]

=EX,X′∼P[m1(X)m0(X ′) + m0(X)m1(X ′)] = EX,X′∼P[M1(X, X ′)],

where X, X ′ are independent. An analogous argument holds for M2(xi, xj) and M3(xi, xj),
giving that

1
n2

n∑
i=1

n∑
j=1

M2(xi, xj) a.s.−→ (∗2)(∗0) + 2(∗1)(∗1) + (∗0)(∗2) = EX,X′∼P[M2(X, X ′)],

1
n2

n∑
i=1

n∑
j=1

M3(xi, xj) a.s.−→ (∗3)(∗0) + 3(∗2)(∗1) + 3(∗1)(∗2) + (∗0)(∗3) = EX,X′∼P[M3(X, X ′)].
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Inspection of the proof reveals that (A.12) still holds for r = 1 if Assumption 5 (rmax = 1)
holds instead.
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Appendix B. Supplementary Material for Chapter 5

This supplementary material is structured as follows: Illustrative analysis of the DFD and
the DFD-Bayes using simple tractable models is presented in Section B.1. Robustness of
KSD in discrete case is explored in Section B.2. Full details on our numerical experiments
are provided in Section B.3

B.1. Illustrative Analysis with Tractable Models

This section provides illustrative analysis of DFD-Bayes, including comparison with
standard Bayesian inference and KSD-Bayes, using simple tractable models. We first
demonstrate the calculation of the DFD using the Bernoulli model. We then compare
the properties of DFD-Bayes with standard Bayesian inference and KSD-Bayes, using the
same Bernoulli model. We next discuss the influence of model misspecification on each
posterior using the Poisson model. Finally, we provide an empirical illustration of the
limitations of the DFD discussed in Section 5.2.2. The Bernoulli and Poisson models are
used for illustration and comparison in this section, since they are tractable and enable
standard Bayesian inference to be performed.

B.1.1. The DFD for the Bernoulli Model

For x ∈ {0, 1}, the Bernoulli model can be expressed by

pθ(x) = θx(1 − θ)1−x (B.1)

where θ is the probability of x = 1. Recall that pθ(1+) = pθ(0) and pθ(0−) = pθ(1) under
our increment/decrement rule. Both the increment and decrement of pθ(1) are simply
equal to pθ(0), and likewise both the increment and decrement of pθ(0) are equal to pθ(1).
Hence, they can be expressed by

pθ(x+) = pθ(x−) = θ1−x(1 − θ)x, (B.2)

that is pθ(x+) = θ if x = 0 and pθ(x+) = 1 − θ if x = 1. Plugging these into equation (5)
in the manuscript with d = 1 gives an explicit form of the DFD:

DFD(pθ∥pn) θ= 1
n

n∑
i=1

(
θ1−xi(1 − θ)xi

θxi(1 − θ)1−xi

)2

− 2
(

θxi(1 − θ)1−xi

θ1−xi(1 − θ)xi

)
(B.3)
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Figure B.1 The DFD (top, solid) and the negative log-likelihood (bottom, dash) between the
Bernoulli model and data generated from the Bernoulli model of three different parameters
θ∗ = 0.1 (left), θ∗ = 0.5 (centre), and θ∗ = 0.9 (right). They both identify the correct parameter
θ∗ in each case albeit the different loss surface geometries.

Figure B.1 shows the DFD in (B.3) computed in three cases where 500 random samples
are generated from the Bernoulli model with θ = 0.1, θ = 0.5 and θ = 0.9, comparing the
loss surface geometry with that of the negative log-likelihood. Both of the losses identify
the parameter correctly in each case.

Although the geometrical shape of (B.3) is different from the negative log-likelihood,
we can observe in Figure B.1 that the DFD is symmetric under the relabelling yi = 1 − xi

similarly to the negative log-likelihood in this example. This can indeed be verified as
follows. If all data are relabelled, the above formula corresponds to

DFD(pθ∥pn) θ= 1
n

n∑
i=1

(
θyi(1 − θ)1−yi

θ1−yi(1 − θ)yi

)2

− 2
(

θ1−yi(1 − θ)yi

θyi(1 − θ)1−yi

)
. (B.4)

With a transform of the parameter ρ = 1 − θ applied, it further corresponds to

DFD(pθ∥pn) θ= 1
n

n∑
i=1

(
ρ1−yi(1 − ρ)yi

ρyi(1 − ρ)1−yi

)2

− 2
(

ρyi(1 − ρ)1−yi

ρ1−yi(1 − ρ)yi

)
. (B.5)

It is clear from comparison of (B.3) and (B.5) here that the DFD of θ based on the original
data xi is equivalent to that of ρ = 1 − θ based on the relabelled data yi = 1 − xi.
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B.1.2. Illustrative Comparison of DFD-Bayes with standard Bayes and
KSD-Bayes

First, we derive the negative log-likelihood and the KSD for the Bernoulli model. The
negative log-likelihood is

NLL(pθ∥pn) = − 1
n

n∑
i=1

xi log(θ) + (1 − xi) log(1 − θ). (B.6)

The KSD in the discrete context was considered in Yang et al. (2018). Letting ρ−(θ, x) :=
pθ(x−)/pθ(x) = θ1−2x(1 − θ)−1+2x, the KSD given a kernel function k : X × X → R is
derived as

KSD(pθ∥p) θ= 1
n2

n∑
i=1

n∑
j=1

(1 − ρ−(θ, xi)) k(xi, xj) (1 − ρ−(θ, xj)) +

(1 − ρ−(θ, xi))
(
k(xi, xj) − k(xi, x−

j )
)

+
(
k(xi, xj) − k(x−

i , xj)
)

(1 − ρ−(θ, xj))
]
. (B.7)

The DFD-Bayes posterior, the standard posterior, and the KSD-Bayes posterior are
recovered from generalised posterior (2.2) built upon losses (B.3), (B.6), and (B.7), where
β is set to 1 for the standard posterior.

Next, we provide an analytical comparison of the credible regions of each posterior. As
discussed in Section 5.2.2, a generalised posterior produces a credible region that differs
from that of a standard posterior even in the asymptotic regime. For illustration, we
derive the asymptotic variance of each posterior for the Bernoulli model. The asymptotic
distribution of each posterior (appropriately centred) follows a Gaussian distribution
N (0, σ2) whose variance σ2 is the inverse loss-Hessian at the minimiser θ∗. To simplify the
derivation, we use the Hamming distance kernel k(x, x′) = 1x=x′ , that is 1 when x = x′ and
otherwise 0, for the KSD. Let ρ+(θ, x) := pθ(x)/pθ(x+) = θ−1+2x(1 − θ)1−2x. By routine
calculation, the second derivatives of each loss in the limit n → ∞ are

∂2

∂2θ
NLL(pθ∥p) = EX∼p

[
X

θ2 + 1 − X

(1 − θ)2

]
,

∂2

∂2θ
DFD(pθ∥p) = EX∼p

[
2ρ−(θ, X) ∂2

∂2θ
ρ−(θ, X) + 2

(
∂

∂θ
ρ−(θ, X)

)2

− 2 ∂2

∂2θ
ρ+(θ, X)

]
,

∂2

∂2θ
KSD(pθ∥p) = EX∼p

[
2ρ−(θ, X) ∂2

∂2θ
ρ−(θ, X) + 2

(
∂

∂θ
ρ−(θ, X)

)2

− 2 ∂2

∂2θ
ρ−(θ, X)

]
.

For the KSD, given that k(x1, x2) − k(x1, x−
2 ) and k(x1, x2) − k(x−

1 , x2) are 1 when x = x′

and otherwise −1, we simplify the expression as

KSD(pθ∥p) θ= EX1,X2∼p

[
(1 − ρ−(θ, X1)) k(X1, X2) (1 − ρ−(θ, X2))

]
θ= EX∼p

[
(1 − ρ−(θ, X))2

]
θ= EX∼p

[
(ρ−(θ, X))2 − 2ρ−(θ, X)

]
.
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Figure B.2 The DFD-Bayes posterior (top, solid), the KSD-Bayes posterior (middle, dash-dot),
and the standard posterior (bottom, dash) computed without β calibrated, for data generated
from the Bernoulli model with three different parameters θ∗ = 0.1 (left), θ∗ = 0.5 (centre), and
θ∗ = 0.9 (right). While their scales and geometries are different, all methods identify the correct
parameter θ∗.

Suppose that the population loss minimiser is θ∗ = 0.5, meaning that the data-generating
distribution p is the Bernoulli model with θ∗ = 0.5. We then have ρ−(θ∗, x) = 1,
∂
∂θ

ρ−(θ∗, x) = 22(1 − 2x), ∂2

∂2θ
ρ−(θ∗, x) = 24(1 − 2x)2, and ∂2

∂2θ
ρ+(θ∗, x) = −24(1 − 2x)2.

These gives us that

(∂2/∂2θ)NLL(pθ∥p)|θ=θ∗ = EX∼p

[
22 × (X + 1 − X)

]
= 4,

(∂2/∂2θ)DFD(pθ∥p)|θ=θ∗ = EX∼p

[
3 × 25 × (1 − 2X)4

]
= 96,

(∂2/∂2θ)KSD(pθ∥p)|θ=θ∗ = EX∼p

[
2 × 24 × (1 − 2X)2

]
= 32.

By taking the inverse, the asymptotic variance σ2 for the standard Bayes, the DFD-Bayes,
and the KSD-Bayes is each given by 1/4, 1/96, and 1/32. In this example, the above
calculation suggests that the DFD-Bayes has the narrowest credible region. The difference
in these values emphasises the importance of calibrating β, which we do for all of our
experiments in the manuscript.

Finally, we empirically demonstrate the difference between the posteriors and the
influence of β. We computed each posterior in cases where (i) β is not calibrated i.e. β = 1
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Figure B.3 The DFD-Bayes posterior (top, solid), the KSD-Bayes posterior (middle, dash-dot),
and the standard posterior (bottom, dash) computed with β calibrated, for data generated
from the Bernoulli model with three different parameters θ∗ = 0.1 (left), θ∗ = 0.5 (centre), and
θ∗ = 0.9 (right). While their scales and geometries are different, all methods identify the correct
parameter θ∗.

and (ii) β is calibrated (except for the standard posterior, which has β = 1). A Metropolis–
Hastings algorithm was adopted to sample from all the posteriors. A Gaussian random
walk proposal with covariance σ2 = 0.01 was used. In total, 100 samples were obtained
from each posterior by thinning 2,000 samples, after an initial burn-in of length 2,000.
Figure B.2 shows each posterior computed without β calibrated. It confirms that, without
calibration of β, the DFD-Bayes posterior has the narrowest credible region, which agrees
with the analytical illustration provided above. Figure B.3 shows each posterior computed
with β calibrated, where the result for the standard posterior is identical to Figure B.2 as
β = 1. For the DFD-Bayes and the KSD-Bayes, calibration of β was performed by our
proposal in Section 3.4, where we used 100 bootstrap minimisers to compute the analytical
solution of β∗ in (3.10). It demonstrates that calibration of β prevents over-concentration
of the DFD-Bayes and the KSD-Bayes.

B.1.3. Influence of Model Misspecification

Next, we turn our attention to the influence of model misspecification on each method. It
is convenient to consider the Poisson model to introduce a synthetic model misspecification.
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For x ∈ N0, the Poisson model is

pθ(x) = θx exp(θ)
x! . (B.8)

Then, the negative log-likelihood and the DFD are

NLL(pθ∥pn) θ= 1
n

n∑
i=1

−xi log(θ) + θ, (B.9)

DFD(pθ∥pn) θ= 1
n

n∑
i=1

(
xi

θ

)2

− 2xi + 1
θ

. (B.10)

Letting ρ−(θ, x) := pθ(x−)/pθ(x) = xi/θ, the KSD is

KSD(pθ∥p) θ= 1
n2

n∑
i=1

n∑
j=1

(1 − ρ−(θ, xi)) k(xi, xj) (1 − ρ−(θ, xj)) +

(1 − ρ−(θ, xi))
(
k(xi, xj) − k(xi, x−

j )
)

+
(
k(xi, xj) − k(x−

i , xj)
)

(1 − ρ−(θ, xj)) . (B.11)

For the KSD, we use a similar choice of kernel to Section 4.1.2, that induces a robustness
suitable for this example: k(x, x′) = m(x) exp(−1x=x′)m(x′) where m(x) = σ(15 − x)
based on a sigmoid function σ(t) = (1 + exp(−t))−1.

For illustration, we synthetically introduce model misspecification by mixing outliers
into the data. We sampled 500 data points {xi}n

i=1 from the Poisson model with the
parameter θ∗ = 5, and replaced the 100 × ϵ percent of data with an outlier y = 20 that
is larger than the 99.9% percentile of the Poisson distribution of θ∗ = 5. This causes
a synthetic model misspecification because the dataset is generated from a mixture of
the Possion model and the Dirac distribution at y = 20, which cannot be adequately
explained by only the Poisson model. The sensitivity of each posterior to the outlier can
be analytically investigated. The standard Bayesian posterior is modestly impacted by the
outlier y, given that the negative log-likelihood (B.9) is a linear function of each datum xi.
On the other hand, in this example, DFD-Bayes may be more severely impacted, given
the DFD (B.10) is a quadratic function of each datum xi. The growth rate of the KSD
with respect to each datum xi is determined by the choice of kernel k. We compute each
posterior for two cases when ϵ = 0.0 (no outlier contained) and ϵ = 0.1 (10% outliers
contained), to empirically demonstrate the impact of the model misspecification. The
Metropolis–Hastings algorithm with the Gaussian random walk proposal of σ2 = 0.1 is
used to sample from each posterior with calibration applied. In total, 100 samples were
obtained from each posterior by thinning 2,000 samples, after an initial burn-in of length
2,000.

Figure B.4 demonstrates the sensitivity of the standard Bayesian posterior and DFD-
Bayes to the outliers, whlie KSD-Bayes shows insensitivity due to the careful choice of
kernel. See also Section B.2 for more discussion on robustness of KSD-Bayes. In this
example, the sensitivity of the DFD-Bayes to the outlier was higher than the standard
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Figure B.4 The standard posterior (left), The DFD-Bayes posterior (centre), and the KSD-Bayes
posterior (right) computed with β calibrated for data when ϵ = 0.0 (solid line) and ϵ = 0.1 (dash
line), that is, the 10% of data is replaced with outlier y.

Bayesian posterior, as anticipated. Barp et al. (2019) proposed a robust analogue of the
Fisher divergence in the continuous case. Although this is not a focus of this work, a
similar approach may be applied to the discrete case when severe model misspecification is
anticipated. This would be an interesting avenue for further work, but our present interest
is in computation for discrete intractable likelihood.

B.1.4. Limitation of DFD-Bayes for Inference of Mixture Parameters

Finally, we provide an empirical illustration of the limitation of score-based methods
in Section 5.2.2. It has been pointed out that score-based methods generally exhibit
insensitivity to mixing proportions when mixture components have isolated high-probability
regions (Wenliang and Kanagawa, 2021; Zhang et al., 2022). In the continuous case,
this can be observed using a mixture model of two Gaussian distributions Pθ(x) =
(1 − θ) × N (−µ, 1) + θ × N (µ, 1) whose parameter is the mixture ratio. Zhang et al. (2022)
illustrated how the Fisher divergence is approximately constant over Θ if µ is large enough
to isolate the components N (−µ, 1) and N (µ, 1). We illustrate the same limitation for the
DFD using a mixture model of two Poisson distributions pθ(x) = (1−θ)×qλ1(x)+θ×qλ2(x),
where qλ1 and qλ2 are the Poisson distributions with rate parameters λ1 > 0 and λ2 > 0.
Figure B.5 shows the geometry of the DFD between the mixture model pθ and data
generated from the mixture model pθ∗ with the true mixture proportion θ∗, for two cases
when the supports of the two Poisson distributions are highly isolated and when they
are not isolated. The correct mixture proportion θ∗ was identified only in the latter case,
while in the former case the DFD was approximately constant. See Zhang et al. (2022) for
a potential approach to remedy this general limitation of score-based methods.

B.2. Robustness of the KSD in Discrete Case

Section 5.3.2 indicates statistical efficiency of the DFD over the KSD. If one’s model
is well-specified, minimising the DFD leads us to a correct model faster than the KSD.
However, this does not mean that the use of the DFD is always better than the KSD. In
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Figure B.5 The form of the Poisson mixture model pθ∗ when θ∗ = 0.5 (left), the DFD computed
for data generated from the model pθ∗ with θ∗ = 0.5 (middle), and the DFD computed for data
generated from the model pθ∗ with θ∗ = 0.7 (right), for two cases where λ1 = 5, λ2 = 60 (top)
and λ1 = 5, λ2 = 15 (bottom).

particular, the KSD can be equipped with strong robustness by choosing an appropriate
kernel. To demonstrate this, we compare three posteriors of Pseudo-Bayes, DFD-Bayes,
and KSD-Bayes for the same Ising model as Section 5.4.2 with d = 100 (m = 10) in a
setting where a dataset contains extreme outliers with a proportion ϵ.

We approximately draw 1000 samples {xi}1000
i=1 from the Ising model pθ with θ = 5

by the same Metropolis–Hastings algorithm as Section 5.4.2. To study the robustness of
the posteriors, we replaced a proportion ϵ = 0.1 of the data with the vector (1, 1, · · · , 1)
corresponding to the extreme value in X that is rarely drawn from the model. Section 4.3.3
showed that KSD-Bayes can satisfy strong qualitative robustness called “global bias-
robustness" by choosing a kernel appropriately. For this example, we use the same choice
of kernel as Section 4.1.2 below:

k(x, x′) = m(x) exp
(

−1
d

d∑
i=1

1(xi − x′
i)
)

m(x)

where m(x) = σ(90 − |∑i xi|) based on a sigmoid function σ(t) = (1 + exp(−t))−1. This
is indeed a proper choice of kernel, and the function m(x) in the definition of kernel is
designed to restrict the influence of extreme data whose norm is closer to or larger than
90.

In Figure B.6 demonstrated that KSD-Bayes offered a correct inference outcome even
when the dataset contains outliers, being less affected by the outliers. On the other hand,
the Pseudo-Bayes and DFD-Bayes posteriors placed the majority of the probability mass
on smaller θ than the correct value θ = 5. The extreme value (1, 1, · · · , 1) of the outliers
is more likely to be drawn from the model of θ ≪ 1; the posteriors of Pseudo-Bayes and
DFD-Bayes were thus pulled in the direction of smaller θ.
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Figure B.6 Posteriors of Pseudo-Bayes (left), DFD-Bayes (centre), and KSD-Bayes (right) for
the Ising model in the presence of outlier with ϵ = 0.1 and no outlier with ϵ = 0.0.

B.3. Details of Experimental Assessment

Finally, this section summarises deferred details of the reported experiments in Chapter 5.

B.3.1. Settings for KSD-Bayes in Section 5.4.1

KSD-Bayes is a generalised posterior constructed by taking a KSD as a loss function; see
Chapter 4. The approach requires us to specify a kernel function k : X × X → R, based on
which the KSD is constructed. In these experiments, we adopted a kernel recommended
by Yang et al. (2018) for the KSD in discrete domains X given by

k(x, x′) = exp
(

−1
d

d∑
i=1

1(xi = x′
i)
)

where 1 is an indicator function, taking values in {0, 1}. The effect of kernel choice is
difficult to predict in the discrete context; for example, Yang et al. (2018) found that the
closely related kernel k(x, x′) = ∑d

i=1 1(xi = x′
i), can perform poorly in moderate-to-high

dimensions d when employed in a Stein discrepancy. General principles for kernel choice
in the discrete setting have not yet been established. Thus, one of the advantages of
DFD-Bayes is the absence of any user-specified parameters of the method.

B.3.2. Markov Chain Monte Carlo in Section 5.4.1

A Metropolis–Hasting algorithm was employed to sample from the standard Bayesian
posterior, as well as KSD-Bayes and DFD-Bayes. For computational convenience, the
parametrisation θ̃1 = log(θ1) and θ̃2 = log(θ2) was applied so that parameters are defined
on an unbounded domain θ̃ = (θ̃1, θ̃2) ∈ R2. An isotropic Gaussian random walk proposal
with covariance σ2I was employed, with σ = 0.1 used for all experiments. The convergence
of the Markov chain was diagnosed using univariate Gelman–Rubin statistics for each θ1

and θ2 computed from 10 independent chains. In total, 500 samples were obtained from
each chain by thinning 5,000 samples, all after an initial burn-in of length 5,000. In all
cases, the univariate Gelman–Rubin statistics were below 1.02, respectively, for θ1 and θ2.
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B.3.3. Sales Dataset of Shmueli et al. (2005) in Section 5.4.1

This dataset consists of quarterly sales figures for a particular item of clothing, taken
across the different stores of a large national retailer. The original dataset is publicly
available at https://www.stat.cmu.edu/COM-Poisson/Sales-data.html; see Shmueli et al.
(2005). Quarterly sales at each store can be small and result in a large proportion of 0
entries in the dataset, so that the Conway–Maxwell–Poisson model has a clear advantage
against the standard Poisson model. To obtain a maximum a posteriori estimate for the
parameters of the Conway–Maxwell–Poisson model for this sales dataset, Shmueli et al.
(2005) considered a prior π defined by

π(θ) ∝ θa−1
1 exp(−bθ2)

 ∞∑
j=1

θj
1/(j!)θ2

−c

κ(a, b, c) (B.12)

where (a, b, c) is the hyperparameter and κ(a, b, c) is the normalising constant of π. The
motivation to use this prior is conjugacy, since the resulting posterior takes the same form
as (B.12). However, the prior itself contains the intractable terms (∑∞

j=1 θj
1/(j!)θ2)−c and

κ(a, b, c). To avoid this additional intractability, which is not a focus of the present work,
we considered a simpler chi-squared prior distribution in the main text.

B.3.4. Simulating Data from the Ising Model in Section 5.4.2

Samples from the Ising model were obtained using the same Metropolis–Hasting algorithm
used in Yang et al. (2018). First, all coordinates xi of x were randomly initialised to
either −1 or 1 with equiprobability 1/2. Then, at each iteration, we randomly select one
coordinate xi of x and flip the value of xi either from −1 to 1 or from 1 to −1, where the
flipped value x̃i is accepted with probability min(1, exp(−2x̃i

∑
j∈Ni

xj/θ)) and otherwise
rejected. For the experiments in this paper, we ran n = 1, 000 chains in parallel, in
each case taking the final state at iteration 100, 000. This algorithm was used due to its
implementational simplicity, rather than its efficiency, and we note that more sophisticated
Markov chain Monte Carlo algorithms are available (e.g. Elçi et al., 2018).

B.3.5. Settings for KSD-Bayes in Section 5.4.2

The same choice of kernel as Section B.3.1 is used.

B.3.6. Markov Chain Monte Carlo in Section 5.4.2

The same Metropolis–Hasting algorithm as Section B.3.2 was used, in this case in dimension
p = 1 with proposal standard deviation σ = 0.1. The convergence of the Markov chain was
again diagnosed using univariate Gelman–Rubin statistics computed from 10 independent
chains. In total, 100 samples were obtained after thinning from 2000 samples, with an
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initial burn-in of length 2000. In all cases, the univariate Gelman–Rubin statistics were
below 1.002.

B.3.7. Description of the Dataset in Section 5.4.3

The original data were gathered by the Cancer Genome Atlas Program, run by the
National Cancer Institute in the United States, who have built large-scale genomic profiles
of cancer patients with the aim to discover the genetic substructures of cancer (Wan
et al., 2015). It contains molecular profiles of biological samples of more than 30 cancer
types, e.g. measured via RNA sequencing technology. The raw data were pre-processed
using the TCGA2STAT software developed by Wan et al. (2015). Inouye et al. (2017)
studied a subset of these data relevant to breast cancer, consisting of a total count of
each gene profile found in biological samples. They applied a “log-count" transform, a
common preprocessing technique for RNA sequencing data, for every datum, that is a
floor function of a log transformed value of the datum. Gene profiles were then sorted
by variance of the counts in descending order, with the top 10 gene profiles constituting
the final dataset. The preprocessed data studied in Inouye et al. (2017) can be found in
https://github.com/davidinouye/sqr-graphical-models.

B.3.8. Markov Chain Monte Carlo in Section 5.4.3

The Metropolis-Hasting Markov Chain Monte Carlo was applied for this experiment. The
detail for the Conway–Maxwell–Poisson graphical model is described first as the Poisson
graphical model is the special case. For computational convenience, we work with the
square of the interaction and dispersion parameters, i.e. θ̃i,j := θ2

i,j and θ̃0,i = θ0,i, which
modify the model as

pθ(x) ∝ exp
 d∑

i=1
θixi −

d∑
i=1

∑
j∈Mi

θ̃2
i,jxixj −

d∑
i=1

θ̃2
0,i log(xi!)


The domain of each original parameter θi,j and θ0,j is [0, ∞). With this modification,
θ̃i,j and θ̃0,i can be extended to R, making the model pθ(x) differentiable with respect to
θ ∈ Rp. The derivatives of the corresponding DFD-Bayes posterior is then available to
implement an efficient gradient-based Markov chain Monte Carlo method. We place a
standard normal distribution as a prior on each θi, a normal distribution with mean 0 and
scale (d(d − 1)/2)−1 as a prior on each θ̃i,j, and a standard normal distribution as a prior
on each θ̃0,i, that corresponds to the original priors of each θi, θi,j, and θ0,j. The small
scale of the half normal distribution prior on θ̃i,j was chosen to suppress rapid increase of
the quadratic term xixj as opposed to the linear term xi in the first summation. After the
Markov chain finished, the absolute value was taken for the sampled values of θ̃i,j and θ̃0,i

to convert them to the original parameters θi,j and θ0,j. The same setting is applied for
the Poisson graphical model by fixing the dispersion parameter θ̃0,i = θ0,i = 1.
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A No-U-Turn Sampler was used to approximate the DFD-Bayes posterior of both the
models. In total, 100 points were obtained thinning from 5, 000 samples, with an initial
burn-in of length 5, 000. The posterior predictive of each model pθ(x) was computed by
generating 500, 000 samples from pθ(x) at every θ sampled from the DFD-Bayes posterior.
Each 500, 000 predictive samples were thinned to 878 points to make it comparable with
the original data of n = 878. The number of bootstrap minimisers B used to calibrate β

for this experiment was B = 100.
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