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Abstract

Elementary Net Systems with Localities (ENL-systems) is a class of Petri nets introduced
to model GALS (globally asynchronous locally synchronous) systems, where some of the
components might be considered as logically or physically close and acting synchronously,
while others might be considered as loosely connected or residing at distant locations and
communicating with the rest of the system in an asynchronous way. The specification of
the behaviour of a GALS system comes very often in the form of a transition system. The
automated synthesis, based on regions, is an approach that allows to construct Petri net
models from their transition system specifications. While theory of regions is well developed,
there is still a shortage of implemented tools capable of dealing with complex real-life system
construction. In this research project, we focus on developing algorithms and tool support
for the synthesis of ENL-systems from step transition systems (ST-systems), where arcs are
labelled by steps (sets) of executed actions. We present an algorithm for deriving non-trivial
regions of ST-systems, which is a fundamental algorithm for the synthesis of ENL-systems.
We introduce two algorithms for verifying whether a given step transition system can be
synthesised to an ENL-system. Also, we present an algorithmic solution to the synthesis
problem for ENL/LC-systems - a special subclass of ENL-systems, where conflicts between
events are localised. Then, we focus on the minimisation of the synthesised nets. In particular,
we discuss the properties of minimal, companion, and complementary regions, and their
role in the process of minimisation of ENL-systems. Furthermore, we propose a strategy
to eliminate redundant regions. Our theoretical results are backed by experiments. The
algorithms are implemented within the WORKCRAFT framework.
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Chapter 1

Introduction

A number of computational systems exhibit behaviour which can be best understood as ‘glob-
ally asynchronous locally (maximally) synchronous’. Examples can be found in hardware
design, where a VLSI chip may contain multiple clocks responsible for synchronising differ-
ent subsets of gates [19, 22], and in biologically inspired membrane systems representing
cells within which biochemical reactions happen in synchronised pulses [35]. To formalise
such systems, [24] introduced Place/Transition-nets with localities (PTL-nets), where each
locality defines a distinct set of events/actions which must be executed synchronously, i.e., in
a maximally concurrent manner (often called local maximal concurrency).

The notion of locality is crucial in this research project. From the formal point of view
the concept of locality can be introduced by defining a locality mapping, which assigns to
each event its locality (a natural number), like it was done in [25]. Another possibility is to
define a co-location relation over the set of events like it was done in [27]. In this research
we adopted the approach of [27], which stipulates that a co-location relation must be an
equivalence relation and then localities are the equivalence classes of the chosen co-location
relation. In this second approach the localities are not explicitly ‘named’ like in the first
approach, but it is stated here which events are co-located and which ones belong to different
localities.

An attractive way of constructing complex computing systems is their automated synthesis
from behavioural specifications given in terms of suitable transition systems. In such a
case, the synthesis procedure is often based on the regions of a transition system, a notion
introduced in [21], and later used to solve the synthesis problem for many different classes
of Petri nets [6, 9, 13, 12, 33, 34, 37]. A comprehensive, systematic survey of the synthesis
problem and region theory is presented in [7].
A majority of results in the area of synthesis of Petri nets use the standard transition systems,
where the transitions are labelled with single events/actions, as initial specifications of
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systems’ behaviour. In this research project, however, we follow the approach, used in [25–
28, 37], employing step transition systems instead, where transitions are labelled with sets of
executed events/actions.

Nets with localities, as already mentioned, were first introduced in [24] using as a base a
class of Place/Transition nets ( PT-nets). The idea of actions’ localities was later adapted to
elementary net systems (EN-systems) in [25], where a solution to the synthesis problem for
ENL-systems was presented. Further advances in the area of synthesising nets with localities
from step transition systems are the subjects of [26–28]. The papers [25–27] suitably adapted
the classical theory of regions [9] to cope with local maximal concurrency in the context of
three different classes of nets, while [28] concentrated on finding the rules for reducing the
number of regions that are essential to synthesise ENL-systems.

The above list of papers built up a theory for the synthesis of ENL-systems. In this
research project, we developed algorithms and tool support for the synthesis of ENL-systems
from step transition systems. We concentrated on implementing existing and new theoretical
results into our tool. The new theoretical results were introduced to support and justify the
optimisations used in the developed algorithms. In our research, we were concerned with
finding efficient algorithms for the synthesis of ENL-systems. The most important among
them is an algorithm for deriving regions which are used in the synthesis procedure. Also,
we developed two algorithms for verifying whether a given step transition system can be
synthesised to an ENL-system. Furthermore, we presented an algorithmic solution to the
synthesis problem for ENL/LC-systems - a special subclass of ENL-systems, where conflicts
between events are localised (conflicting events belong to the same locality). The synthesis
procedure for the general class of ENL-systems assumes that the co-location relation for
events is known in advance. However, for the subclass of ENL/LC-systems whose conflicts are
localised, one can calculate their ‘canonical’ co-location relations as a part of the synthesis
procedure [27]. Any other valid co-location relations 1 can be obtained from such a co-
location relation. Note that the class of ENL/LC-systems is particularly important since
distributed conflicts (conflicting events belong to different localities) cannot be implemented
without prior modifications (see [8]). To further augment our tool with new algorithms, we
continued the work started in [28] and focused on the minimisation of ENL-systems. The nets
obtained from the synthesis procedure, called saturated nets, contain many conditions that
are redundant from their behaviour point of view. Removing such conditions is important to
get more manageable and readable solutions to the synthesis problem. The approaches to
remove redundant conditions from nets were investigated in the literature and implemented in

1By a valid co-location relation we mean a co-location relation that can be successfully used in the synthesis
procedure.
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several tools [1, 11]. Many synthesis procedures concentrate on returning smaller solutions
based on so-called minimal regions [10, 14, 16, 17, 32]. In our approach, minimal regions,
as defined for our class of step transition systems, are also important for building smaller
solutions to the synthesis problem. Furthermore, following [13], we were interested in
the role of minimal regions in defining state-machine components of the synthesised and
minimised ENL-systems. We observed/proved that the saturated ENL-systems that result from
the synthesis procedure and their minimal versions with all non-minimal regions removed
are state machine decomposable (built from a set of connected sequential subsystems).

The algorithms are implemented within the WORKCRAFT framework [39, 48]. Develop-
ing efficient algorithms for the synthesis of ENL-systems is a challenging problem (note that
the problem is NP-complete which can be shown following the argument made in [6]). Also,
there are no implemented tools for the synthesis of Petri nets from step transition systems.
The existing ones, like PETRIFY [16, 23, 17], VIPTOOL [11], PROM [1], GENET [14] or RB-
MINER [40], work with specifications that do not include the information about concurrency
in the form of steps of simultaneously executed actions.

1.1 Elementary net systems with localities

To explain the basic idea behind ENL-systems, let us consider the net in Figure 1.1 modelling
two co-located consumers and one producer residing in a remote location. In the initial state,
the net can execute the singleton step {c4}. Another enabled step is {p2} which removes the
token from b1 and puts a token in both b0 and b2. In this new state, there are three enabled
steps, viz. {p1}, {c1,c4} and {p1,c1,c4}. The last one, {p1,c1,c4}, corresponds to what is
usually called maximal concurrency as no more activities can be added to it without violating
the constrains imposed by the available resources (represented by tokens). However, the
previously enabled step {c4} which is still resource (or token) enabled is disallowed by the
control mechanism of ENL-systems. It rejects a resource enabled step like {c4} since we can
add to it c1 co-located with c4 obtaining a step which is resource enabled. In other words,
the control mechanism employed by ENL-systems (and PTL-nets) is that of local maximal
concurrency as indeed postulated by the GALS systems execution rule.

The local maximal concurrency semantics used by ENL-systems addresses a general
problem of modelling synchronous behaviour of events within localities that is needed in
both application areas of these systems: membrane systems and VLSI circuits. However, in
the context of designing VLSI circuits some additional requirements might be also important.
One of such requirements is to guarantee that the steps allowed by a Petri net model satisfy
step persistence property as defined in [22] (no step which became enabled can subsequently
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b0

b1

b2

b3

b4

b5

b6

p2p1 c1

c2

c3

c4

Fig. 1.1 A one producer/two co-located consumers system (shading of boxes indicates the
co-location of events they represent).

be prevented from being executed by the occurrence of any other step). The local maximal
concurrency semantics of ENL-systems is not strong enough to guarantee the step persistence
property as can be seen in the example discussed above. The step {c4}, which is enabled
in the initial state, becomes disabled after the execution of the step {p2}. Instead {c1,c4} is
enabled. In this thesis, we concentrate on ENL-systems with the local maximal concurrency
semantics of execution and augmenting it to guarantee the satisfaction of the step persistence
property is out of the scope of this thesis.

1.2 Automated synthesis of systems

Within the domain of rigorous system design, automated synthesis from behavioural specifi-
cations is an attractive and yet still underdeveloped approach of constructing computational
systems. Synthesis procedures guarantee that the resulting systems are correct, and so the
time consuming process of system verification becomes redundant. The main problem in the
area of automated synthesis is a shortage of mature techniques and implemented tools capable
of dealing with complex real-life system construction. In particular, there are no mature
algorithms and implemented tools aimed at the synthesis of Boolean nets with localities from
concurrent specifications. Addressing this issue is the overall goal of the proposed research
project.

1.3 Tool support and implementation

The algorithms developed within this PhD project are implemented as tool support for the
synthesis of ENL-systems. The tool is implemented as a Java plugin within a framework
called WORKCRAFT. The WORKCRAFT is designed to provide a flexible framework for
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the development and analysis of interpreted graph models [39], including capturing, visual
editing, simulation, synthesis, and verification of such models. There are several modules that
have been implemented and supported by the WORKCRAFT framework so far. For instance,
modules for Petri nets, Signal Transition Graph (STG) [52], Conditional Partial Order Graphs
(CPOG) [31], and Structured Occurrence Nets (SON) [30]. The framework is built using a
plugin-based architecture, which makes it easily extendible to new graph-based formalisms,
as well as new analysis and verification modules. In addition, WORKCRAFT provides a
GUI environment that facilitates model entry, supports interactive visual simulation, and
convenient ‘single-click’ verification. Being such an extensible and flexible environment,
WORKCRAFT allows researchers to define, model and analyse new model types [39, 38, 41].
Therefore, we decided to utilise WORKCRAFT to implement our algorithms and tool support
for the synthesis of ENL-systems.

WORKCRAFT software engineers must be aware of the technologies that were used to
develop this framework before embarking on making any further extensions to it. First of
all, the WORKCRAFT framework requires Java JDK 8 or later version and the installation
and inclusion of the WORKCRAFT library to a Java path. Furthermore, Eclipse IDE [46]
was used as an integrated environment for developing and debugging WORKCRAFT graph
models [48]. Taking these into consideration, it was possible to implement our proposed
algorithms as WORKCRAFT plugins in such a development environment. There were some
existing features in the WORKCRAFT plugins framework that we were able to utilise and
adapt to implement our tool such as features for creating some components (conditions,
transitions, arcs), for example. A part from that, our implemented tool for the synthesis of
ENL-systems introduced new two plugins into the WORKCRAFT. As the synthesis procedure
involves two different graph models: one plugin was developed to represent ENL-systems,
and another one to represent step transition systems (ST-systems).

The machine used in the experiments was PC with 3.20 GHz Intel Core i7 CPU and
12GB RAM, running Windows 10 Pro. The algorithms were implemented in Java (JDK
1.8.0) on top of the WORKCRAFT framework (version 3.2.6).

The average execution time of each algorithm was calculated on the basis of 10 runs.
All experiments reported in this thesis were conducted in isolation in order to prevent any
side effects caused by concurrently executing processes. We ran each of the experiments
over approximately the same time period to ensure that the computer was placed under
similar load. The same machine was used for conducting all the experiments to ensure fair
performance comparisons.
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1.4 Main contributions

The results of this research project contribute to a wider field of the theory of synthesis
of concurrent systems and focus on developing efficient algorithms for the synthesis of
ENL-systems. The detailed contributions are listed below:

• Investigation and analysis of different efficiency measures for the implementation of
algorithms to extract regions of ST-systems.

• Implementation of novel algorithms for extraction of regions of ST-systems based on
the proved theoretical results.

• Experimental evaluation of the proposed and implemented efficiency measures and
identification of an efficiency measure with highest gains.

• Design of the two algorithms for the synthesis of ENL-systems and experimental
evaluation of their efficiency.

• Implementation of the existing theoretical results for the synthesis of ENL/LC-systems.

• Design of a strategy to eliminate redundant regions from the synthesised ENL-systems.

• Design and implementation of the algorithms for the minimisation of the synthesised
nets.

• Investigation into state machine decomposability of the synthesised ENL-systems.

• Development and introduction of two new plugins into WORKCRAFT framework as a
tool support for the synthesis of ENL-systems.

Some of the results contained in this Thesis were presented at two international work-
shops, [4, 5], and published as a journal article [3].

1.5 Outline of the thesis

The thesis is organised as follows. The next chapter recalls some basic notions concerning
step transition systems, ENL-systems, the synthesis of ENL-systems, and summaries the
related works. Chapter 3 introduces an algorithm for computing regions of a given step
transition system and provides formal results to support the algorithm. Chapter 4 outlines
two algorithms for verifying whether a given step transition system can be synthesised to an
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ENLl-system and provides results to compare the efficiency of the two approaches for the
synthesis procedure. Chapter 5 investigates ENL-systems with localised conflicts and outlines
algorithms for computing ‘canonical’ co-location relations for them, from which any further
valid co-location relations can be obtained. Chapter 6 discusses the minimisation of the
solutions to the synthesis problems, and presents the experimental results. Chapter 7 presents
the selected case studies that have been used throughout our research. Chapter 8 explains the
WORKCRAFT framework and the implemented tool. Finally, Chapter 9 concludes the Thesis
by giving directions for future work.





Chapter 2

Background and related works

2.1 Preliminaries

In this section, we recall suitably adapted notions and results from [25, 27, 28].
Throughout the thesis, E is a fixed finite nonempty set of events. A step is a nonempty set

of events, and a co-location relation l is any equivalence relation over E. For every event
e ∈ E, [e]l is the equivalence class of l to which e belongs (i.e., the locality of e). For an
event e and a step U , we denote e lU whenever there is at least one event f ∈U satisfying
e l f .

Definition 2.1.1. A step transition system (or ST-system) on E is a triple ts
df
= (Q,A,q0)

where Q is a nonempty finite set of states, A ⊆ Q× (P(E) \ {∅})×Q is a finite set of
transitions (arcs), and q0 ∈ Q is the initial state 2. ♦

For a transition t= (q,U,q′) ∈ A, we will call q the source of t (q,U,q′) and q′ the target
of t. Furthermore, t is thick if |U | ≥ 2.
Moreover, for every state q of the ST-system ts, we assume that:

• allStepsq is the set of all steps labelling transitions outgoing from q.

• minStepsq is the set of all minimal steps (w.r.t. set inclusion) belonging to allStepsq.

• Eq is the union of all the steps in allStepsq.

In diagrams, ST-systems are represented as if they were labelled directed graphs, and
singleton steps annotating transitions are denoted without brackets (e.g.,e instead of {e}).
To ease the presentation, we assume that each event of E occurs in at least one of the steps

2P(E) is the set of all subsets of E (the power set of a set E). It is also often denoted by 2E .
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labelling the transitions of ts.
ts is called thin if, for every event e ∈ E, there is (q,{e},q′) ∈ A.
A sequence of transitions (q1,U1,q2)(q2,U2,q3) . . .(qk,Uk,qk+1) is a path from q1 to qk+1.
In such a case, σ =U1U2 . . .Uk is a step sequence from q1 to qk+1. A state q is reachable if
there is a path from q0 to q.
We say that two distinct events, e and f , are in conflict in ts if there is q ∈ Q such that
e, f ∈ Eq and, for all U ∈ allStepsq, {e, f} ̸⊆U . We denote this by e �ts f and e �q

ts f (if
mentioning q is important).

Let ts = (Q,A,q0) and ts′ = (Q′,A′,q′0) be two ST-systems. We say that ts and ts′

are isomorphic, ts ∼= ts′, if there is a bijection f : Q −→ Q′ such that f (q0) = q′0 and
(q,U,q′) ∈ A ⇔ ( f (q),U, f (q′)) ∈ A′, for all q,q′ ∈ Q and U ∈ P(E)\{∅}.

2.1.1 ENL-systems

Definition 2.1.2. An elementary net system with localities w.r.t. a co-location relation l (or
ENLl-system) is a tuple

enl
df
= (B,E,F,l,c0)

such that B is a finite set of conditions disjoint from the events, F ⊆ (B×E)∪ (E ×B) is the
flow relation, and c0 ⊆ B is the initial case (in general, any subset of B is a case).
For every event e, its pre-conditions and post-conditions are given respectively by

•e df
= {b | (b,e) ∈ F} and e• df

= {b | (e,b) ∈ F}

(both sets are assumed nonempty and disjoint).
We will also say that enl is an elementary net system with localities (or ENL-system) if
mentioning l is not important. ♦

In diagrams, conditions (local states) are represented by circles, events (actions) by boxes,
the flow relation by directed arcs, and each case (global state) by tokens (small black dots)
placed inside those conditions which belong to this case. Moreover, boxes representing
co-located events are shaded in the same way (see Figure 1.1).

The dot-notation used in Definition 2.1.2 for pre- and post-conditions extends to sets of
events in the usual way, e.g., •U df

=
⋃
{•e | e ∈U}. Furthermore, two distinct events, e and f ,

are in conflict (or conflicting) if they share a pre-condition, or share a post-condition. We
denote this by e �enl f .
The semantics of enl is based on steps of simultaneously executed events, and can be under-
stood as local maximal concurrency. We first define potential steps of enl as all nonempty
sets of mutually non-conflicting events. A potential step U is then resource enabled at a
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case c if •U ⊆ c and U•∩ c =∅, and control enabled if, in addition, there is no event e /∈U
such that e lU and the step U ∪{e} is resource enabled at c. We denote these respectively
by U ∈ resenabled(c) and U ∈ enabled(c). A control enabled step U ∈ enabled(c) can be
executed leading from c to the case c′ = (c\ •U)∪U•. We denote this by c[U⟩c′.
For example, for the ENL-system in Figure 1.1 with the initial case c0 = {b1,b3,b6}, we
have resenabled(c0) = enabled(c0) = {{p2},{c4},{p2,c4}}. At c0 we can execute the
step {p2} moving to c = {b0,b2,b3,b6} (i.e., c0[{p2}⟩c). At the case c, enabled(c) =
{{p1},{c1,c4},{p1,c1,c4}}. The steps containing c1 and c4 separately, like {c1}, {c4},
{p1,c1} and {p1,c4}, are not control enabled at the case c due to local maximal concur-
rency semantics. They are, however, resource enabled at c as we have resenabled(c) =
{{c1},{c4},{p1,c1},{p1,c4}}∪ enabled(c) (see also Figure 3.6, on p. 31).

The set of reachable cases of enl, denoted reachenl, is the least set of cases containing c0

such that if c ∈ reachenl and c[U⟩c′, then c′ ∈ reachenl.
The ST-system generated by enl is given by:

tsenl
df
= (reachenl,A,c0),

where A = {(c,U,c′) | c ∈ reachenl ∧ c[U⟩c′}. Note that its arcs are labelled only by control
enabled steps (see Figure 3.6, on p. 31, depicting an ST-system that is isomorphic to the
ST-system generated by the ENL-system in Figure 1.1, on p. 4).

enl is a net realisation of an ST-system ts if tsenl ∼= ts.
To ease the presentation, we assume that enl does not have dead events, i.e., for each

event e, there are c ∈ reachenl and U ∈ enabled(c) such that e ∈U .

Definition 2.1.3. Let enl = (B,E,F,l,c0) be an ENLl-system. We say that enl is a state
machine ENLl-system iff:

1. ∀e ∈ E : |•e|= 1 = |e•|;

2. |c0|= 1. ♦

Definition 2.1.4. Let enl = (B,E,F,l,c0) be an ENLl-system. A subsystem of enl is an
ENLl-system enl′ = (B′,E ′,F ′,l′,c′0) such that the following conditions hold:

1. B′ ⊆ B and E ′ ⊆ E;

2. ∀b ∈ B′ ∀e ∈ E : ((b,e) ∈ F ∨ (e,b) ∈ F) =⇒ e ∈ E ′;

3. F ′ = F ∩ ((B′×E ′)∪ (E ′×B′)); l′ =l ∩ E ′×E ′ and c′0 = c0 ∩B′.
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A subsystem enl′ is connected if the graph (B′∪E ′,F ′) is connected. Also, point 2 above says
that the subsystem enl′ is generated by the subset of conditions B′ of the ENLl-system enl. ♦

Definition 2.1.5. Let enl = (B,E,F,l,c0) be an ENLl-system. We say that enl is a state
machine decomposable ENLl-system iff there exists a set of connected subsystems of enl,
enli = (Bi,Ei,Fi,li,ci

0) (i = 1, . . . ,m), satisfying the following:

1. ∀i ∈ {1, . . . ,m} : enli is a state machine ENLli-system;

2. B =
⋃

i Bi, E =
⋃

i Ei and F =
⋃

i Fi.

The enli are called state machine (or sequential) components of enl. ♦

Elementary net systems (or EN-systems) can be considered as ENL-systems where no
two distinct events are co-located. The local maximal semantics of ENL-systems means that
certain properties enjoyed by EN-systems do not hold for the general class of ENL-systems,
e.g., the following step monotonicity property.

Fact 1. Let enl be such that no two distinct events are co-located. If U is a step enabled at a
case c and U ′ is a nonempty proper subset of U, then there is a case c′ such that c[U ′⟩c′ and
U \U ′ ∈ enabled(c′). ♦

A resource enabled step of an ENL-system is also control enabled whenever it is covered
by control enabled sub-steps.

Fact 2. Let U,U ′ ∈ enabled(c) and U ∪U ′ ∈ resenabled(c). Then U ∪U ′ ∈ enabled(c). ♦

Furthermore, every resource enabled step of an ENLl-system can be extended to a control
enabled step.

Fact 3. If U ∈ resenabled(c) then there is W ∈ enabled(c) such that U ⊆W and e lU, for
every e ∈W \U. ♦

The general synthesis problem considered in this thesis can be formulated in the following
way.

Problem 1. Given an ST-system ts and a co-location relation l, find an effective way of
checking whether there is an ENLl-system which is a net realisation of ts. If the answer is
positive construct such an ENLl-system. ♦
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2.1.2 ENLST-systems

Problem 1 can be approached by considering a link between the nodes (global states) of
an ST-system with the conditions (local states) of a hypothetical ENL-system realising it,
captured by the notion of regions with explicit input and output events.

Definition 2.1.6. A region (with explicit input and output events) of an ST-system ts =

(Q,A,q0) is a triple
r= (in,r,out) ∈ P(E)×P(Q)×P(E),

where sets in and out satisfy the following implication

(in =∅ ∧ out =∅) ⇒ (r = Q ∨ r =∅)

and for every transition (q,U,q′) of ts, the following hold:

R1 If q ∈ r and q′ /∈ r then |U ∩out|= 1.

R2 If q /∈ r and q′ ∈ r then |U ∩ in|= 1.

R3 If U ∩out ̸=∅ then q ∈ r and q′ /∈ r.

R4 If U ∩ in ̸=∅ then q /∈ r and q′ ∈ r.

♦

In a region r= (in,r,out), the set in comprises events responsible for entering the set of
states r, and out comprises events responsible for leaving r. There are exactly two trivial
regions satisfying r =∅ or r = Q, viz. (∅,∅,∅) and (∅,Q,∅). Moreover, (in,r,out) is a
region iff so is its complement (out,Q\ r, in). We will denote the complement of a region
r by r̄. In general, a region, r, cannot be identified only by its set of states r; in other
words, in and out may not be recoverable from r. For example, the non-trivial regions of
ST-system in Figure 2.1(a) are: r1 = (∅,{q0},{e}), r2 = ({e},{q},∅), r3 = (∅,{q0},{ f}),
r4 = ({ f},{q},∅). Note that r1 and r3 are based on the same set of states and differ only by
their out sets, and r2 and r4 are based on the same set of states and differ only by their in sets.

However, if ts is thin, then different regions are based on different sets of states. For exam-
ple, the non-trivial regions of the thin ST-system in Figure 2.2(a) are: r1 = (∅,{q0,q2},{e}),
r2 = ({e},{q1,q3},∅), r3 = (∅,{q0,q1},{ f}), r4 = ({ f},{q2,q3},∅).

The set of all non-trivial regions of ts will be denoted by Rts and, for every state q, Rq is
the set of all non-trivial regions (in,r,out) containing q,
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Fig. 2.1 An ENLST-system, where events e and f are co-located (a); and the ENL-system
resulting from its synthesis (b).
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Fig. 2.2 An ENLST-system, where events e and f are not co-located (a); and the ENL-system
resulting from its synthesis (b).

Rq
df
= {r ∈Rts | q ∈ r}.

The sets of pre-regions, ◦e, and post-regions, e◦, of an event e comprise all the non-trivial
regions (in,r,out) respectively satisfying e ∈ out and e ∈ in,

◦e df
= {r ∈Rts | e ∈ out} and e◦ df

= {r ∈Rts | e ∈ in}.

This extends in the usual way to sets of events, e.g., ◦U df
=

⋃
{◦e | e ∈U}.

For example, among the non-trivial regions of the ST-system in Figure 3.6 we have the
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following two regions: r=({c1},{q6,q7,q8,q9},{c3}) and r′= ({c1},{q6,q7,q8,q9},{c2}).
We observe that r,r′ ∈ c1

◦, r ∈ ◦c3 and r′ ∈ ◦c2. Note that these two regions are based on the
same set of states and differ only by their out sets. The need for having both r and r′ is the
consequence of the fact that all the transitions outgoing from the set of states {q6,q7,q8,q9}
are labelled by steps containing both c2 and c3 (see Definition 2.1.6(R1)).
The set of potential steps of ts comprises all nonempty sets U of events such that ◦e∩ ◦ f =
e◦ ∩ f ◦ = ∅, for each pair of distinct events e, f ∈ U . A potential step U is then region
enabled at q ∈ Q if ◦U ⊆Rq and U◦∩Rq =∅. We denote this by U ∈ regenabled(q).

Definition 2.1.7. An ST-system ts = (Q,A,q0) is an ENL step transition system w.r.t. a
co-location relation l (or ENLSTl-system) if the following hold:

A1 Each state is reachable.

A2 For every event e, both ◦e and e◦ are nonempty.

A3 For all distinct states q and q′, Rq ̸=Rq′ .

A4 For every state q and step U, U ∈ allStepsq iff U ∈ regenabled(q) and there is no event
e ̸∈U such that e lU and U ∪{e} ∈ regenabled(q).

We will also say that ts is an ENLST-system (if mentioning l is not important). ♦

The A1 axiom implies that all the states in ST-system are reachable from the initial state.
A2 will ensure that every event in a synthesised ENL-system will have at least one input
condition and at least one output condition. A3 was used for other transition systems as
well, and is usually called the state separation property [9, 34], and it guarantees that ts
is deterministic. A4 is a variation of the forward closure property [34] or the event/state
separation property [9], and ensures that every step in a transition system is indeed a maximal
step w.r.t. localities of the events it comprises (see [25]).

One can show (see [25]) that the ST-system generated by an ENLl-system is an ENLSTl-
system.

2.1.3 Synthesis of ENL-systems

ENL-systems generate ENLST-systems. The converse also is true, and the translation from
ENLST-systems to the corresponding ENL-systems is based on the regions of ST-systems.

Definition 2.1.8. The tuple associated with an ENLSTl-system ts is given as

enllts = (Rts,E,Fts, l,Rq0),
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where q0 is the initial state of ts and Fts = {(r,e) ∈Rts×E | r ∈ ◦e}∪{(e,r) ∈ E ×Rts |
r ∈ e◦}. ♦

The above construction always produces an ENLl-system which generates an ST-system
isomorphic to ts [25].

Theorem 2.1.9. Let ts be an ENLSTl-system. Then enllts is an ENLl-system such that ts∼=
tsenllts . Moreover, the unique isomorphism ψ between ts and tsenllts is given by ψ(q) =Rq,
for every state q of ts.

The ENL-system enllts may contain conditions which are redundant from the point of
view of its behaviour, i.e., deleting such conditions would result in an ENL-system generating
the same ST-system [28].

2.2 Related works

In Chapter 1 we introduced our research topic in the context of the existing literature of the
area. In this section, we focus on the selected papers that were the most important for this
thesis.

Paper [25] was a source of the initial definitions and the starting point for our research. It
introduced and investigated ENL-system with localities (ENL-systems), and provided a solu-
tion to the corresponding synthesis problem (from step transition systems to ENL-systems),
by adapting the classical theory of regions [9] to cope with local maximal concurrency.

Sources [16, 17], where theoretical foundations for the Petrify tool were described, were
important when we were developing our algorithms for extracting regions of ST-systems. In
particular, we found the ideas of excitation and switching regions, which were introduced
there for the standard transition systems, to be very useful and we generalised these ideas to
our setting of ST-systems.

Paper [27], provided theoretical foundations for the implementation of the algorithms for
the synthesis of ENL/LC-systems, where instead of assuming that localities are given at the
outset, they are discovered as part of the synthesis procedure.

Paper [28] was a starting point for developing algorithms for the minimisation of the
synthesised nets. We implemented three reduction rules introduced there, which allowed us
to design experiments to find out the most suitable strategy to eliminate redundant regions
(i.e., the most suitable according to our set of criteria). When working on the minimisation
of nets, we re-defined certain notions of [28]: in particular, the notion of minimal regions.

Paper [13] was an inspiration for us when reasoning about state machine decomposability
of the synthesised nets. Our new definition of minimal regions allowed us to prove new
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results regarding state machine decomposability of the synthesised ENL-systems, similar to
the results of [13] obtained for the Elementary Net Systems.

Papers [39, 38, 41] were the initial source of information about the WORKCRAFT tool,
which we decided to use as a framework for our algorithms for the synthesis of ENL-systems.





Chapter 3

Finding non-trivial regions

In this chapter, we discuss how one might generate non-trivial regions of an ST-system in
an effective way. As regions are triples r = (in,r,out) ∈ P(E)×P(Q)×P(E) satisfying
Definition 2.1.6(R1-R4), a brute force approach is too costly even for small ST-systems
like the ENLST-system in Figure 3.1 (see also its associated ENL-system in Figure 3.2) [4].
We therefore focus on improving the computational effort by reducing the number of the
transitions considered in Definition 2.1.6 as well as the in/out sets and the r sets. Also,
we are interested in comparing the improvements resulting from these three ways aimed at
efficiency gains. We consider the execution time of the algorithms as the main measure to
gauge their efficiency.

The initial idea was to focus on thin ST-systems, as in these transition systems, for every
event e ∈ E, there is a transition (q,{e},q′), for some q,q′ ∈ Q. This, we believed, would
allow us to ignore the thick transitions and base our algorithm solely on singleton transitions,
which in turn would enable us to use some of the techniques used in the Petrify tool [17],
which works with standard transition systems rather than with ST-systems. Although we
discovered that in certain circumstances the thick transitions can be ignored, leading to some
reduction of execution time when verifying regional conditions R1-R4, the rules for ignoring
thick transitions were complicated, and the class of thin ST-systems was not a special case,
for checking these rules easily. The results of this approach are reported on in section 3.2 and
we will use some of them, which apply to all ST-system, in our algorithms. Therefore, we
abandoned the special case of thin ST-systems and decided to seek a solution for the general
class of ST-systems.
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3.1 A general approach

In the first instance, we have implemented (starting with a brute-force approach) an algorithm
for extracting regions of ENLST-systems as defined in [25] and recalled in Section 2.1.
By using this approach, we could obtain the expected results. However, it was noticeable
that the execution time of deriving regions took too long even for small ST-systems. For
example, the algorithm took around 37 minutes to generate the non-trivial regions for
the ENLST-system in Figure 3.1 (see [4]). This was not surprising. As region is a triple
r= (in,r,out)∈P(E)×P(Q)×P(E), the computation of all non-trivial regions in such a way
would involve generation of all subsets of the set of states Q, all subsets of the set of events E
and then checking regional conditions, R1-R4, for all the transitions in the ST-system. Thus,
optimising the implemented (brute-force) algorithm was essential for reducing its execution
time and making it of any practical value.

The approach for reducing the number of potential in and out sets of regions is based on
the information about causality and concurrency embedded in the ST-systems. This approach
is presented in Section 3.3.

The approach for reducing the number of candidates for the sets of states (r) for regions
is based on source and target sets. This idea was first used in the Petrify tool [17] and is
adapted here to the context of ST-systems. This approach is explained in Section 3.4.
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Fig. 3.1 An ENLST-system ts3, where p1 and p2 are co-located events, and c1,c2,c3 and c4
are co-located events. The graph should be glued on the states q0, q1, q6 that appear twice in
the picture.
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Fig. 3.2 The ENL-system resulting from the synthesis of the ENLST-system ts3 in Figure 3.1.
Note that the synthesised net contains many redundant conditions (see Section 6.1, p. 65, for
definition).

3.2 Ignoring thick transitions

In this approach, we attempted to improve the execution time of extracting all the non-trivial
regions by ignoring some of the thick arcs in a given step transition systems in order to
reduce the number of transitions (q U−→ q′) that need to be checked for every potential region
(see Section 2.1.2).

A key problem here is which of the thick transitions can be ignored without changing
the set of non-trivial regions. Thin ST-systems are the first candidate class of ST-systems to
consider, as they contain transitions labelled with all possible singleton steps, so all the events
are present in the steps labelling the non-thick transitions. However, even in some of the thin
ST-systems removing thick transitions can be problematic as the example in Figure 3.3 shows.
In that example removing the only thick transition, (q2,{e, f},q3), leads to a disconnected
ST-system which is not an ENLST-system as Definition 2.1.7(A1) no longer holds. Thus
the property of being a thin ST-system is too weak to make a decision about the removal of
thick transitions. We need to make stronger assumptions, e.g., as those stated in the next
proposition.
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Fig. 3.3 An ENLST-system ts2 with co-located events e and f and non co-located events g
and h (a); the ENL-system resulting from its synthesis (b).

Proposition 3.2.1. Let t= (q,U,q′) be a thick transition of an ST-system ts, and U1, . . . ,Uk

(k ≥ 2) be a partition of U such that Ui1 . . .Uik is a step sequence from q to q′, for every
permutation i1, . . . , ik of 1, . . . ,k. Then Rts =Rts′ , where ts′ is the ST-system obtained from
ts by deleting t.

Proof: We first observe that the assumptions imply the existence of a path (q1,U1,q2)(q2,

U2,q3) . . .(qk,Uk,qk+1) in ts′ with q = q1 and q′ = qk+1.
The inclusion Rts ⊆ Rts′ holds trivially (see Definition 2.1.6). To prove Rts′ ⊆ Rts, let
r= (in,r,out) ∈Rts′ . To show r ∈Rts it suffices to demonstrate that Definition 2.1.6(R1–
R4) hold for t and r in ts. Assume to the contrary that one of the conditions does not hold
for t and r.

Suppose first that Definition 2.1.6(R1) does not hold (if Definition 2.1.6(R2) does not
hold, we proceed in a similar way). Then q ∈ r and q′ /∈ r and |U ∩out| ≠ 1. As r ∈Rts′ and
q ∈ r and q′ /∈ r, there is a transition (qi,Ui,qi+1), 1 ≤ i ≤ k, such that qi ∈ r and qi+1 /∈ r,
and for which Definition 2.1.6(R1) is satisfied in ts′. Hence |Ui ∩ out| = 1, and so, as
|U ∩out| ̸= 1, there exists j ̸= i such that |U j ∩out| ≥ 1. From the assumptions it follows that
there is a path (q′1,U

′
1,q

′
2)(q

′
2,U

′
2,q

′
3) . . .(q

′
k,U

′
k,q

′
k+1) from q = q′1 and q′ = q′k+1 in ts′ such

that U ′
1 =Ui and U ′

2 =U j. Since r is a region of ts′ and U j ∩out ̸=∅ ̸=Ui ∩out, it follows
from Definition 2.1.6(R3) that q′2 /∈ r and q′2 ∈ r, yielding a contradiction.
Suppose now that Definition 2.1.6(R3) does not hold (if Definition 2.1.6(R4) does not
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hold, we proceed in a similar way). Then U ∩out ̸=∅ and q /∈ r∨q′ ∈ r. We can assume
without the loss of generality that q /∈ r. Moreover, let i be such that Ui ∩ out ̸= ∅. From
the assumptions it follows that there is a path (q′1,U

′
1,q

′
2)(q

′
2,U

′
2,q

′
3) . . .(q

′
k,U

′
k,q

′
k+1) from

q = q′1 to q′ = q′k+1 in ts′ such that U ′
1 = Ui. Since r is a region of ts′ and Ui ∩ out ̸= ∅,

it follows from Definition 2.1.6(R3) that q′1 ∈ r, yielding a contradiction with q = q′1 and
q /∈ r.

Checking the conditions stated in Proposition 3.2.1 is computationally expensive. How-
ever, there is a class of ST-systems, for which they are always satisfied as shown in Theo-
rem 3.2.3. But first, we introduce a concept of co-located sequential events in the context of
step transition systems.

Definition 3.2.2. Let ts be an ST-system, and l be a co-location relation with the equivalence
classes E1, . . . ,Em. Then l partitions the set of events into sets of co-located sequential
events if, for all states q of ts, steps U ∈ allStepsq, and 1 ≤ i ≤ m, |U ∩Ei| ≤ 1. ♦

Theorem 3.2.3. Let ts be an ENLSTl-system such that l partitions the set of events into
sets of co-located sequential events. Then all thick transitions in ts satisfy the conditions of
Proposition 3.2.1 with each step Ui being a singleton.

Proof: From Definition 3.2.2 it follows that the ENLl-system enllts can be treated as an
elementary net system for which the step monotonicity property (see Fact 1) is satisfied for
every (resource) enabled step. Hence, for every transition (q,{e1, . . . ,ek},q′), there is a step
sequence {e1} . . .{ek} from q to q′ in ts. As a result, for every thick transition of ts, the
conditions of Proposition 3.2.1 are satisfied with each step Ui being a singleton.

Note that if a co-location relation l partitions the set of events into sets of co-located
sequential events, then an ENLSTl-system ts satisfies the substep property (see Defini-
tion 2.1.7(A4)).

The last result provides sufficient conditions for removing all the thick transitions from
an ENLSTl-system ts when computing its non-trivial regions. Its practical application in a
synthesis procedure for an arbitrary ST-system is discussed in Chapter 4.

The next result shows that in the case of ENLST-systems the test for removing transitions
can be simplified.

Proposition 3.2.4. Let t= (q,U,q′) be a thick transition of an ENLST-system ts which satis-
fies the conditions in Proposition 3.2.1. Then there are two paths from q to q′, (q,U ′,s)(s,U ′′,q′)
and (q,U ′′, t)(t,U ′,q′), such that U =U ′⊎U ′′.

Proof: Follows from Fact 2.
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Thus, if one is interested, e.g., in re-synthesising ENL-systems (cf. [7]), then one only
needs to apply Proposition 3.2.1 for k = 2. Moreover, if ts is an arbitrary ST-system such
that Proposition 3.2.1 can be applied for some k ≥ 3 but not for k = 2, then ts is not an
ENLST-system. This provides an additional test for being an ENLST-system.

3.3 Reducing the number of in/out sets

The approach for reducing the number of potential in and out sets of regions is based on
the information about causality and concurrency embedded in the structure and labelling of
ST-systems.
Finding non-trivial regions of ST-systems involves finding the in and out sets of events that
are part of their definition. To reduce the execution time of generating all the non-trivial
regions we now look at the possibilities of minimising the number of the in/out sets to be
considered. The following results present cases in which one can do this safely.

Proposition 3.3.1. Let r = (in,r,out) be a region of an ST-system ts = (Q,A,q0). If the
target of any transition (q,U ′,q′) in ts, where e ∈ U ′, is the source of another transition
(q′,U ′′,q′′) in ts, where f ∈U ′′ and f ̸= e, then the following hold:

1. {e, f} ̸⊆ in;

2. {e, f} ̸⊆ out.

Proof. 1. Assume, to the contrary, that we have two transitions in ts, (q,U ′,q′) and
(q′,U ′′,q′′) and two events e and f , such that e ̸= f , e ∈U ′ and f ∈U ′′, and {e, f} ⊆ in
for a region r = (in,r,out). Hence, since regional condition R4 is satisfied for both
transitions and r, we have: q ̸∈ r and q′ ∈ r and q′ ̸∈ r and q′′ ∈ r. We obtained a
contradiction and so {e, f} ̸⊆ in.

2. The proof is similar, but we use R3 regional condition here rather than R4.

Corollary 3.3.2. Let r= (in,r,out) be a region of an ST-system ts= (Q,A,q0). If the target
of any transition (q,{e},q′) in ts is the source of another transition (q′,{ f},q′′) in ts, for
f ̸= e, then {e, f} ̸⊆ in and {e, f} ̸⊆ out.

Proof. Follows directly from Proposition 3.3.1.

Proposition 3.3.3. Let r = (in,r,out) be a region of an ST-system ts = (Q,A,q0), and let
(q,U,q′) be a transition in ts, such that there are two events e, f ∈U. Then {e, f} ̸⊆ in∪out,
which can be split into three sub-cases:
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1. {e, f} ̸⊆ in;

2. {e, f} ̸⊆ out;

3. (e ∈ in ⇒ f ̸∈ out) and ( f ∈ in ⇒ e ̸∈ out).

Proof. 1. Assume, to the contrary, that we have a transition (q,U,q′) in ts, where e, f ∈U
and {e, f} ⊆ in. Hence, since regional condition R2 is satisfied in ts for (q,U,q′) and
r, we have that ¬(q ̸∈ r and q′ ∈ r) is true, which means that either q ∈ r or q′ ̸∈ r.
However, as R4 regional condition is also satisfied for (q,U,q′) and r, we have q ̸∈ r
and q′ ∈ r, but this contradicts the previous conclusion.

2. The proof is similar, but we use R1 and R3 regional conditions here rather than R2
and R4.

3. We prove that e ∈ in implies f ̸∈ out (the second implication has just e and f swapped).
Suppose, to the contrary, that e ∈ in and f ∈ out. Since (q,U,q′) is labelled by a step
U , where e, f ∈U , and r= (in,r,out) is a region, we have that regional condition R3
is satisfied for (q,U,q′) and f and regional condition R4 is satisfied for (q,U,q′) and
e, leading to a contradiction. So, the implication e ∈ in ⇒ f ̸∈ out holds.

3.4 Reductions based on source and target sets

After selecting the candidates for the sets in and out we need to turn our attention to
discovering the sets of states (r) for regions of the form: r= (in,r,out). When doing so we
need to look at the possibilities of reducing the number of these sets (see Section 3.1). In the
context of standard transition systems, where transitions are labelled by single events, these
sets would solely define regions. So, although we are considering step transition systems
here rather than the standard transition systems, some of the ideas developed earlier can be
re-used in our new setting. For this part of the algorithm, we use the ideas of excitation and
switching regions introduced in [16, 17, 23], where an excitation region for an event e is the
maximal set of states, which are the sources of transitions labelled by e, while a switching
region for an event e is the maximal set of states, which are targets of transitions labelled by
e. We generalise these ideas to our setting of ST-systems. Also, we take advantage of the fact
that ST-systems contain explicit information about the concurrency of events. We use this
information, as well as the information about the causality of events, to select potential in
and out sets (see Section 3.3), which are going to be useful in this step of the algorithm. In
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what follows we will call excitation regions the source sets and switching regions the target
sets in the context of ST-systems.

Definition 3.4.1. Let ts= (Q,A,q0) be an ST-system on E. We define the following two sets
of states for every e ∈ E:

• The source set Se = {q ∈ Q | ∃q′ ∈ Q : (q,U,q′) ∈ A ∧ e ∈U}.

• The target set Te = {q′ ∈ Q | ∃q ∈ Q : (q,U,q′) ∈ A ∧ e ∈U}.

♦

Proposition 3.4.2. Let r= (in,r,out) be a region of an ST-system on E, ts= (Q,A,q0), and
let e ∈ E. Then the following is satisfied:

1. If e ∈ out then Se ⊆ r and Te ∩ r =∅.

2. If e ∈ in then Te ⊆ r and Se ∩ r =∅.

Proof. Let (q,U,q′) ∈ A be a transition in ts and e ∈U . Hence q ∈ Se and q′ ∈ Te.

1. If e ∈ out then e ∈U ∩out and from the definition of a region (R3) we have: q ∈ r and
q′ ̸∈ r. So, Se ⊆ r and Te ∩ r =∅.

2. If e ∈ in then e ∈U ∩ in and from the definition of a region (R4) we have: q ̸∈ r and
q′ ∈ r. So, Te ⊆ r and Se ∩ r =∅.

If we want to combine the discovery of sets in, out and r, when searching for all non-
trivial regions of ST-systems, we can use the results given in Corollary 3.4.3, Proposition 3.4.4
and Corollary 3.4.5 below.

Corollary 3.4.3. Let r= (in,r,out) be a region of an ST-system on E: ts= (Q,A,q0). Then

⋃
e∈out

Se ∪
⋃

e∈in

Te ⊆ r .

Proof. Follows directly from Proposition 3.4.2.

From Corollary 3.4.3, we see that the set of states r of any region r = (in,r,out) in an
ST-system ts= (Q,A,q0) can be represented as

r =
⋃

e∈out
Se ∪

⋃
e∈in

Te ∪ Φ
r , (3.1)
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where Φr is a set of states we will call the filler set for r. We will use the following denotations:
Sr =

⋃
e∈out Se and T r =

⋃
e∈in Te.

Proposition 3.4.4. Let r = (in,r,out) be a region of an ST-system ts = (Q,A,q0) and
(q,U,q′) ∈ A. Then the following hold:

1. If q ∈ r and U ∩out =∅ then q′ ∈ r.

2. If q ̸∈ r and U ∩ in =∅ then q′ ̸∈ r.

Proof. 1. Follows directly from R1 of the definition of a region.

2. Follows directly from R2 of the definition of a region.

Corollary 3.4.5. Let r = (in,r,out) be a region of an ST-system on E ts = (Q,A,q0) and
(q,U,q′) ∈ A, where U ⊆ E \ (in∪out). Then the following hold:

1. If q ∈ Sr∪T r and q′ ̸∈ Sr∪T r then q′ ∈ Φr.

2. If q′ ∈ Sr∪T r and q ̸∈ Sr∪T r then q ∈ Φr.

Proof. Follows from the representation of r (see Eq. (3.1)) and Proposition 3.4.4.

3.5 Extracting regions

Before we propose an algorithm for computing non-trivial regions of an ST-system ts, we
summarise a few useful facts:

1. For every region r= (in,r,out) of an ST-system ts we have: in∩out =∅. This follows
from R3 and R4 of the definition of a region.

2. For any non-trivial region r = (in,r,out) of an ST-system ts we have: Sr ∪T r ̸= ∅.
This follows from the definition of a region, which states that the sets in and out can
only be both empty for trivial regions.

3. The set of potential in sets is the same as the one of out sets, as the in set of a region r

is the out set of its complement, r̄, and the other way round.

Algorithm 1 takes as input any ST-system as defined in Definition 2.1.1, and computes
regions according to Definition 2.1.6. The definition of a region that is used implies the
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target class of nets and the synthesis problem, in which the regions are later used as condi-
tions to build the synthesised net. The algorithm does not check the axioms A1–A4 (see
Definition 2.1.7) to decide whether the input ST-system is an ENLST-system and therefore
synthesisable. To explain the algorithm we can look at the ST-system of Figure 3.3(a). In this
case, as already observed, the only thick transition cannot be removed. The algorithm then
obtains all the potential in/out sets using the results from Section 3.3. Let us consider one
(in,out) pair with in =∅ and out = {h}, which trivially satisfies the validity constraints as
stated in Section 3.3. The algorithm now ‘discovers’ r for a candidate region r= (∅,r,{h}).
The set r will satisfy r = Sr∪T r∪Φr =

⋃
e∈out Se ∪

⋃
e∈in Te ∪Φr (see Eq.(3.1)). First, the

algorithm computes Sr∪T r, in this case containing a single state q3. The most involved part
of the algorithm is the one to compute the (implicit) filler set Φr (using Corollary 3.4.5).
The set Φr is initially empty. So, initially, r = S = Sr∪T r = {q3}. The algorithm starts the
while-loop at line 19 (see lines 19-27). Below we go through its iterations.

1. S = {q3} and Φcurrent = ∅ (this set records the states added to r during the current
iteration of the loop). We consider all possible transitions adjacent to q3 that are not
labelled by steps containing events from in∪out = {h}. We have two transitions to
consider:

• Transition (q3,{g},q4): we add q4 to r to ‘bury’ this transition in r. Now we
have: Φcurrent = {q4} and r = {q3,q4}.

• Transition (q2,{e, f},q3): we add q2 to r to ‘bury’ this transition in r. Now we
have: Φcurrent = {q4,q2} and r = {q3,q4,q2}.

2. S = {q2,q4} and Φcurrent =∅ and we consider all possible transitions adjacent to q2

and q4 that are not labelled by steps containing events from in∪out = {h} and are not
yet ‘buried’ in r. We have two transitions to consider:

• Transition (q4,{e},q5): we add q5 to r to ‘bury’ this transition in r. Now we
have: Φcurrent = {q5} and r = {q2,q3,q4,q5}.

• Transition (q1,{g},q2): we add q1 to r to ‘bury’ this transition in r. Now we
have: Φcurrent = {q5,q1} and r = {q3,q4,q5,q2,q1}.

3. S = {q5,q1} and Φcurrent =∅ and we consider all possible transitions adjacent to q1

and q5 that are not labelled by steps containing events from in∪out = {h} and are not
yet ‘buried’ in r. We have one transition to consider:

• Transition (q0,{e},q1): we add q0 to r to ‘bury’ this transition in r. Now we
have: Φcurrent = {q0} and r = {q3,q4,q5,q2,q1,q0}.
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Algorithm 1 Extracting Rts for an ST-system ts= (Q,A,q0).
1: function EXTRACT_REGIONS(ts)
2: remove selected thick transitions from A ◃ see Section 3.2
3: initialise Rts to ∅
4: initialise InOut to all potential in/out sets ◃ see Section 3.3
5: initialise InOutPairs to InOut× InOut
6: for all in,out ∈ InOut do
7: remove either (out, in) or (in,out) from InOutPairs
8: for every (in,out) ∈ InOutPairs do ◃ see Section 3.4
9: initialise Sr and T r to ∅

10: if in∩out =∅ and in∪out ̸=∅ then
11: for every e ∈ in do
12: calculate Te and add to T r

13: for every e ∈ out do
14: calculate Se and add to Sr

15: else
16: break ◃ (in,out) is invalid
17: initialise S to Sr∪T r ◃ initial states to consider
18: initialise r to Sr∪T r

19: while S ̸=∅ do
20: initialise Φcurrent to ∅
21: for every (q,U,q′) ∈ A do
22: if (in∪out)∩U =∅ then
23: if q ∈ S and q′ /∈ r then
24: add q′ to r and Φcurrent

25: if q′ ∈ S and q /∈ r then
26: add q to r and Φcurrent

27: set S to Φcurrent

28: if r= (in,r,out) satisfies regional axioms then
29: add r and r̄= (out,Q\ r, in) to Rts

30: return Rts

4. S = {q0} and Φcurrent = ∅. In this iteration we cannot add any more states to r that
are not already there, so S is set to ∅ making it the last iteration of the loop. The
computation of r is completed.

The discovered candidate for a region is r= (∅,{q0,q1,q2,q3,q4,q5},{h}). The algo-
rithm then checks the regional axioms for the candidate and, if they are satisfied, the region
and its complement (in this case r= ({h},{q6,q7},∅)) are added to the set of discovered
regions. These are two out of ten non-trivial regions of ts2 in Figure 3.3(a) discovered by
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Algorithm 1. See also the screenshot from WORKCRAFT, for this example, in Figure 3.4.
Note that each time the algorithm is run the naming of the generated regions might be
different. So, for example, r0 in Figure 3.4 is r1 in Figure 3.3(b).

Fig. 3.4 Extracting non-trivial regions of the ENLST-system ts2 in Figure 3.3(a) in
WORKCRAFT.

3.6 Results of the experiments

To test Algorithm 1, we selected the following examples: ts1 in Figure 3.5 (2 states, 4 events),
ts2 in Figure 3.3 (8 states, 4 events), ts3 in Figure 3.1 (16 states, 6 events), ts4 in Figure 3.6
(12 states, 6 events), and the ST-system generated by the ENL-system in Figure 3.7 (ts5).
The last ST-system has 64 states and 9 events. The selected test cases consider ST-systems
representing nets with different characteristics: thin ST-systems (ts2, ts3, ts5) or not thin (ts1,
ts4); ST-systems generated by nets with conflicts (ts1, ts2) or without conflicts (ts3, ts4, ts5);
ST-systems generated by nets, where every locality represents a sequential subsystem (ts3,
ts5) or not (ts1, ts2, ts4).
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q0

q

{e,g} {e,h} { f ,g} { f ,h}

Fig. 3.5 An ENLST-system ts1, where e, f , g and h are co-located events.
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Fig. 3.6 An ENLST-system ts4, where p1 and p2 are co-located events, and c1,c2,c3 and
c4 are co-located events. The graph should be glued on the states q0, q1, q2, q3 that appear
twice in the picture. ts4 is isomorphic to the ENLST-system generated by the ENL-system in
Figure 1.1 on p. 4.

When testing Algorithm 1, the aim was to check whether it generates correctly all the
expected regions. The experiments confirmed that Algorithm 1 computed correctly all the
expected regions for these small examples.

Secondly, we were interested in comparing the improvements to Algorithm 1 resulting
from the three efficiency measures described in Sections 3.2, 3.3, and 3.4. The results are
summarised in Table 3.1, where:
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b1 b2 b3 b4

b6b5 b7 b8

b9 b10 b11 b12

a b c

d e f

g h i

Fig. 3.7 An ENL-system, where events a, b, c are sharing a locality; events d, e, f are in the
second locality; and events g, h and i are in the third locality. It generates ENLST-system ts5
considered in Table 3.1 which is also considered in Table 3.2 and Table 5.1 as ts3,3.

• A1(3.2) means that we applied only the measures described in Section 3.2, i.e., the
algorithm removed some selected thick transitions from ST-systems according to
Propositions 3.2.1 and 3.2.4. All potential in, r and out sets were considered in the
computation.

• A1(3.3) means that the algorithm used only pre-selected in/out sets as described in
Section 3.3, but considered all the transitions of ST-systems and all possible candidates
for the r sets.

• A1(3.3,3.4) means that the algorithm used only pre-selected in/out sets (see Sec-
tion 3.3), and only selected r sets (see Section 3.4), but considered all the transitions of
ST-systems.

• A1 means that the algorithm employed all the efficiency measures as described in Sec-
tion 3.2 (Propositions 3.2.1 and 3.2.4), Section 3.3 and Section 3.4 (see Algorithm 1).

Table 3.1 clearly shows that the best savings are gained by reducing the number of potential
in/out sets, using the results of Section 3.3.

Table 3.1 Comparing execution times of Algorithm 1 when using different combinations of
efficiency measures.

ts |Q| |E| A1(3.2) A1(3.3) A1(3.3,3.4) A1
ts1 2 4 14.8 ms 11.7 ms 3.6 ms 3.55 ms
ts2 8 4 175.1 ms 24.1 ms 6.5 ms 6.55 ms
ts3 16 6 2123926.5 ms 208.5 ms 24.3 ms 22.30 ms
ts4 12 6 99278.1 ms 206.2 ms 14.2 ms 12.80 ms
ts5 64 9 memory overflow memory overflow 263.8 ms 195.40 ms
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To test how the performance of Algorithm 1 scales with the increasing sizes of inputs,
we used ST-systems generated by nets composed of several sequential subsystems like the
ST-system ts3,3 generated by the ENL-system in Figure 3.7. In the notation tsi, j, the index i
denotes the number of sequential subsystems, and the index j denotes the number of events
in each of the line-like sequential subsystems. The experimental results are summarised in
Table 3.2.

The last column of Table 3.2 contains the results for a variation of Algorithm 1, denoted
as Algorithm 1∗.

Algorithm 1∗ takes as its input not only an ST-system ts, but also a co-location relation
l. In its implementation it differs from Algorithm 1 only in the part concerning the removal
of thick transitions (see line 2 of Algorithm 1 and the description of the approach A1(3.2) of
Table 3.1 for Algorithm 1).

The additional information about the co-location relation is used in Algorithm 1∗ to check
whether it satisfies the conditions for partitioning the set of events into sets of co-located
sequential events (see Definition 3.2.2). If so, the Algorithm 1∗ can remove all the thick
transitions (rather than some selected ones) following Theorem 3.2.3. As this is possible for
all the tested tsi, j ST-systems we can see the savings achieved in this way by comparing the
columns for Algorithm 1 and Algorithm 1∗ in Table 3.2.

Table 3.2 Execution time taken to derive non-trivial regions of selected ST-systems when
using Algorithm 1 and Algorithm 1∗.

ts |Q| |E| Algorithm 1 Algorithm 1∗

ts3,3 64 9 0.1954 s 0.1718 s
ts3,4 125 12 2.0029 s 1.3520 s
ts3,5 216 15 13.9049 s 9.6727 s
ts4,3 256 12 10.2716 s 7.5632 s
ts4,4 625 16 172.0079 s 118.2612 s
ts4,5 1296 20 1720.4560 s 1099.3429 s





Chapter 4

Using non-trivial regions in the synthesis
procedure

4.1 Two approaches to the synthesis procedure

The synthesis procedure based on Definition 2.1.8 and Theorem 2.1.9 produces enllts, where
all the non-trivial regions are used as conditions (called the saturated net). It assumes that
the initial ST-system is an ENLST-system. However, Algorithm 1, which extracts non-trivial
regions of an ST-system takes as an input any ST-system. This means that another approach
to the synthesis procedure can be designed supported by the results presented in this section.
We will refer to the original approach to the synthesis procedure as Method I and to the
alternative procedure as Method II.

Proposition 4.1.1. Let ts and ts′ be two isomorphic ST-systems, and l be a co-location
relation. Then ts is an ENLSTl-system iff ts′ is an ENLSTl-system.

Proof: Follows directly from Definition 2.1.7(A1–A4).
Consider an arbitrary ST-system ts = (Q,A,q0) and a co-location relation l. After

computing all the non-trivial regions and constructing (Rts,E,Fts,l,Rq0), we still do not
know whether it is a solution to the synthesis problem for ts w.r.t. l. However, we have the
following result, generalising one that holds for the elementary net systems [7].

Proposition 4.1.2. Let ts be an ST-system, and enl be an ENLl-system which is a net
realisation of ts. Then ts is an ENLSTl-system.

Proof: It was shown in [25] that tsenl is an ENLSTl-system. Hence, by Proposition 4.1.1,
ts is also an ENLSTl-system.
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Corollary 4.1.3. If an ST-system ts has a net realisation which is an ENLl-system, then ts

has also the regional net realisation enllts.

Proof: By Proposition 4.1.2, ts is an ENLSTl-system. Hence, by Theorem 2.1.9, enllts is
an ENLl-system and the ST-system generated by it is isomorphic to ts.

Hence, the lack of a regional solution for a given ST-system ts and l means that ts
cannot be synthesised to an ENLl-system.

A consequence of this result is that we have two possible ways to design a synthesis
procedure for ts and l. In both cases we first compute all the non-trivial regions of ts, and
then proceed in one of the following two ways:

Method I: We check the conditions captured by Definition 2.1.7(A1–A4) for ts and l

(see Algorithm 3). If they are satisfied, ts is an ENLSTl-system and enllts is a solution to the
synthesis problem for ts and l (see Theorem 2.1.9). In this approach, we only need to build
enllts (see Algorithm 2) when the axioms of Definition 2.1.7(A1–A4) are satisfied.

Method II: We build enllts using the discovered non-trivial regions (see Algorithm 2), and
then check whether enllts is an ENLl-system (i.e., the sets of pre- and post-conditions, for
every e∈E, are nonempty and disjoint, see Algorithm 5). If this is the case, we check whether
the ST-system generated by enllts is isomorphic to ts (this procedure is straightforward as
enllts is deterministic and the only candidate for an isomorphism is a mapping associating Rq

with each state q of ts; see Algorithm 4).
Algorithm 1, computing the non-trivial regions of an ST-system, is central to both

approaches to solving the synthesis problem for ts and l described above.
In line 2, Algorithm 1 removes selected thick transitions from ts using the rules described in
Section 3.2. The general safe rule for transition removal is given in Proposition 3.2.1.
For a special subclass of ST-systems we can safely remove all the thick transitions following
Theorem 3.2.3. However, for an ordinary ST-system, this can only be done when Algorithm 1
is invoked in the context of Method II. This is supported by the next result.

Theorem 4.1.4. Let ts= (Q,A,q0) be an ST-system, and l be a co-location relation which
partitions the set of events into sets of co-located sequential events. Furthermore, let ts′ be the
ST-system obtained from ts by deleting its all thick transitions and net=(Rts′,E,Fts′,l,Rq0),
where Fts′ = {(r,e) ∈Rts′ ×E | r ∈ ◦e}∪{(e,r) ∈ E ×Rts′ | r ∈ e◦}. Then ts is an ENLSTl-
system iff net is an ENLl-system such that tsnet ∼= ts.

Proof: (=⇒) From Theorem 3.2.3 and Proposition 3.2.1, we have Rts =Rts′ . Hence,
net = (Rts,E,Fts,l,Rq0) = enllts and from Theorem 2.1.9 we have that net is an ENLl-
system and tsnet ∼= ts.
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(⇐=) Since net is an ENLl-system and tsnet ∼= ts, it follows from Proposition 4.1.2 that ts is
an ENLSTl-system.

The above theorem states that if the isomorphism check succeeds with the regions of ts′

and net is an ENLl-system, then Rts =Rts′ . Otherwise, it is not important that we computed
the regions of ts′ in Algorithm 1 rather than those of ts, because ts cannot be synthesised to
any ENLl-system anyway.
We cannot invoke safely Algorithm 1 with the thick transitions removal as in Theorem 3.2.3 in
the context of Method I. The reason is that we need to check the axioms in Definition 2.1.7(A1–
A4) for the regions of ts and not for ts′ and they may be different (in general, we only have
Rts ⊆Rts′).

We now present Algorithms 2, 3 and 4.
Algorithm 2 returns the computed enllts net as a data structure (for further processing)

and produces its visualisation that can be viewed in the WORKCRAFT tool.

Algorithm 2 Constructing the saturated net enllts for an ST-system ts= (Q,A,q0) on E and
a co-location relation l.

1: function BUILD_enllts(Rts, l)
2: initialise E to the set of events of ts
3: for every e ∈ E do
4: represent e as an event (box) in the diagram of enllts
5: set e with its locality according to l ◃ boxes of co-located events will be shaded

in the same way
6: for every r= (in,r,out) ∈Rts do
7: represent r as a condition (circle) in the diagram of enllts
8: if q0 ∈ r then
9: place a token (small black dot) inside the r condition

10: for every e ∈ out do
11: link r to e by a directed arc ◃ r will be a pre-condition of e
12: for every e ∈ in do
13: link e to r by a directed arc ◃ r will be a post-condition of e
14: return enllts

Figure 4.1 shows the screenshot from WORKCRAFT depicting constructed enllts1
for the

ENLST-system ts1 in Figure 3.5, on p. 31.
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Fig. 4.1 Shows the screenshot from WORKCRAFT depicting the constructed enllts1
for the

ENLST-system ts1 in Figure 3.5, on p. 31.

Algorithm 3 checks the axioms A1–A4 (see Definition 2.1.7) for an ST-system ts and a
co-location relation l to decide whether it is ENLSTl-system or not.

Algorithm 3 Checking axioms A1-A4 for an ST-system ts and a co-location relation l.
1: function CHECK_AXIOMS(ts, l)
2: initialise result to false
3: if ts satisfies axiom A1 then
4: input ts to Algorithm 1 to compute Rts

5: if ts satisfies axiom A2 then
6: if ts satisfies axiom A3 then
7: if ts satisfies axiom A4 w.r.t. l then
8: result = true
9: if result then

10: input Rts and l to Algorithm 2 to build enllts ◃ ts is an ENLSTl-system
11: return enllts ◃ enllts is an ENLl-system
12: else
13: return "ts is not an ENLSTl-system”

Figure 4.2 shows the screenshot from WORKCRAFT with the results of applying Algo-
rithm 3 to a given ST-system, where the axioms A1-A4 are satisfied, so it is synthesisable.
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Fig. 4.2 Shows the screenshot from WORKCRAFT with the positive example of applying
Algorithm 3 to a given ST-system, where e and f have different localities.

Figures 4.3, 4.4, 4.5 and 4.6 show the screenshots from WORKCRAFT with the results
of applying Algorithm 3 to given ST-systems, where the axioms A1-A4 are not satisfied, so
they cannot be synthesised to ENLST-systems.
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Fig. 4.3 The screenshot from WORKCRAFT showing the violation of axiom A1 after applying
Algorithm 3 to a given ST-system, where e and f have different localities.

Fig. 4.4 The screenshot from WORKCRAFT showing the violation of axiom A2 after applying
Algorithm 3 to a given ST-system, where e and f and g have the same locality.
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Fig. 4.5 The screenshot from WORKCRAFT showing the violation of axiom A3 after applying
Algorithm 3 to a given ST-system.

Fig. 4.6 The screenshot from WORKCRAFT showing the violation of axiom A4 after applying
Algorithm 3 to a given ST-system, where e and f have different localities.
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Algorithm 4 checks whether an ST-system ts is isomorphic to the ST-system generated
by enllts (see Theorem 2.1.9). This procedure is straightforward as enllts is deterministic and
the only candidate for an isomorphism is a mapping associating Rq with each state q of ts.

Algorithm 4 Checking whether an ST-system ts= (Q,A,q0) is isomorphic to the ST-system
generated by enllts : ts′ = (Q′,A′,q′0) (isomorphism used: ψ(q) =Rq, for every state q of ts,
see Theorem 2.1.9).

1: function CHECK_ISOMORPHISM(ts,ts′)
2: initialise result to true
3: for every transition (q,U,q′) ∈ A do
4: if transition (ψ(q),U,ψ(q′)) /∈ A′ then
5: result = f alse
6: break
7: for every transition (q,U,q′) ∈ A′ do
8: if transition (ψ−1(q),U,ψ−1(q′)) /∈ A then ◃ ψ−1is the inverse ofψ
9: result = f alse

10: break
11: if result then
12: ts is isomorphic to ts′ (ts can be synthesised to an ENLl-system and enllts is the

saturated solution to the synthesis problem for ts and l)
13: else
14: ts is not an ENLSTl-system ◃ see Corollary 4.1.3
15: return result

Figure 4.7 shows the screenshot from WORKCRAFT after the Algorithm 4 was applied
to a given ST-system, where the ST-system generated by enllts is isomorphic to ts, so it can
be synthesised. On the other hand, Figure 4.8 shows a negative result obtained after the
application of Algorithm 4 to an ST-system.
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Fig. 4.7 Shows the screenshot from WORKCRAFT with the result of applying Algorithm 4 to
the ST-system in Figure 2.2(a), where e and f have different localities.

Fig. 4.8 Shows the screenshot from WORKCRAFT with the result of applying Algorithm 4 to
a given ST-system, where e and f have different localities.
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Algorithms 5 and 6 return positives answer if ENL-system is an ENLl-system. Otherwise,
they return negative answers.

Algorithm 5 Checking whether the synthesised net enllts is an ENLl-system.

1: function IS_ENLl_SYSTEM(enllts) ◃ see Section 2.1.3
2: initialise result to true
3: for every e ∈ E do
4: initialise ◦e and e◦ to ∅
5: for every r= (in,r,out) ∈Rts do ◃ see Section 2.1.2
6: if e ∈ out then
7: add r to ◦e
8: if e ∈ in then
9: add r to e◦

10: if ◦e =∅ ∨ e◦ =∅ ∨ ◦e∩ e◦ ̸=∅ then
11: result = f alse
12: break
13: return result

Algorithm 6 Checking whether a tuple enl= (B,E,F,l,c0) is an ENLl-system.

1: function IS_ENLl_SYSTEM(enl)
2: initialise result to true
3: for every e ∈ E do
4: initialise •e and e• to ∅
5: for every b ∈ B do
6: if (b,e) ∈ F then
7: add b to •e
8: if (e,b) ∈ F then
9: add b to e•

10: if •e =∅ ∨ e• =∅ ∨ •e∩ e• ̸=∅ then
11: result = f alse
12: break
13: return result

4.2 Results of the experiments

We tested Method I and Method II to compare the efficiency of the two approaches for the
synthesis procedure. In our tests, we used in the first instance, the same selected examples
that we used for Algorithm 1. The experimental results showed that Method I performed
a bit better than Method II on small examples such as ts1, ts2, ts3, and ts4. When using
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bigger examples, like ts5, the reverse was true: Method II performed better than Method I
(see Figure 4.9). This better performance of Method II on bigger examples was confirmed,
when we tested the algorithms on other ST-systems with up to 1296 states. The main reason
for this result is the fact that checking the axiom A4 in Algorithm 3 consumes a considerable
time.
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Approaches: Method I Method II

Fig. 4.9 A diagram showing the comparison between the execution times of Method I and
Method II, when applied to ts1, ts2, ts3, ts4 and ts5 ST-systems.

To test the efficiency of the two approaches to the synthesis procedure given by Method I
and Method II described in Section 4.1 and to see how the performance of Method I and
Method II scale with the increasing sizes of inputs, we used ST-systems generated by nets
modelling server-client systems like the net in Figure 4.10 showing the interactions of two
servers and two clients. In Figure 4.10, we use the following denotations for events: Sndi j

(send), Rcvi j (receive), Srvi j (serve) and Resi j (result), where i is the local number of a server
or a client and j is the destination number of a server or a client. Furthermore, the conditions
of clients (servers) are denoted by Ci j (Si j respectively), where i is the index of a condition
within a subsystem and j is the index of the subsystem. The subsystems are connected by
buffer conditions: b1, . . . ,b8. The server-client ST-systems are denoted by tsser−cl

i, j , where the
index i denotes the number of servers and j denotes the number of clients. The experimental
results are summarised in Table 4.1. Note that, except for the very small examples, algorithms
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of Method II perform better than those of Method I because checking the axioms A1-A4 of
Definition 2.1.7 is computationally expensive (especially the verification of axiom A4).

C01

C11 C21

b2b1 b3 b4

Snd11 Rcv11 Rcv12 Snd12

S01

S21 S11b6b5

Res12 Srv12 Srv11 Res11

S02

S12 S22b7 b8

Res21 Srv21 Srv22 Res22

C02

C12 C22

Rcv21 Snd21 Snd22 Rcv22

Fig. 4.10 An ENL-system with two clients and two servers that generates the ST-system
tsser−cl

2,2 (later also called ts9).
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Table 4.1 Comparing execution times of synthesis algorithms of Method I and Method II
for selected ST-systems. The results in columns 6 and 7 include the time of executing
Algorithm 1 to derive non-trivial regions for each of the tested ST-systems (see column 4).

tsser−cl |Q| |E| Algorithm 1 |Rts| Method I Method II

tsser−cl
1,2 15 8 0.0114 s 30 0.0326 s 0.0402 s

tsser−cl
1,3 54 12 0.2724 s 50 0.4137 s 0.3675 s

tsser−cl
2,2 47 16 0.9029 s 256 1.8222 s 1.1693 s

tsser−cl
2,3 176 20 24.0480 s 276 55.0885 s 24.8932 s

tsser−cl
3,2 97 24 122.4600 s 2050 415.7800 s 127.7800 s

tsser−cl
3,3 1446 36 68806.3500 s 3094 1188718.1600 s 68972.3000 s

tsser−cl
4,2 165 32 61182.4100 s 16388 205830.0400 s 61427.6900 s





Chapter 5

ENL-systems with localised conflicts

So far it was assumed that the co-location relation is known in advance. However, in some
cases it can be ‘deduced’ from the structure of an ST-system. In particular, there is a subclass
of ENLST-systems for which one can calculate ‘canonical’ co-location relations, from which
any further valid co-location relations can be obtained. Such a subclass corresponds to
ENL-systems with localised conflicts.

5.1 ENL/LC-systems

Definition 5.1.1 ([27]). An ENL-system is ENL-system with localised conflicts (or ENL/LC-
system) if no conflicting non-co-located events are resource enabled at any reachable case.
♦

In other words, an ENLl-system enl is an ENL/LC-system if, for all events e ̸= f and
each reachable case c, e �enl f and e ̸l f together imply {e, f} ̸⊆ resenabled(c). As an
implication with a false antecedent is always true, any ENL-system without conflicts is
trivially an ENL/LC-system.
It can be argued that ENL-systems which are not ENL/LC-systems are not directly imple-
mentable as any mechanism for resolving conflicts between actions of a concurrent system
must be local (see [8]). Hence, ENL/LC-systems are highly relevant from the practical point
of view.
For some ENL-systems, whose conflicts are not localised, we can re-define their co-location
relations so that the conflicts are localised without changing the generated ST-systems. Nev-
ertheless, ENL/LC-systems are a proper subclass of ENL-systems. There are examples of
ST-systems, like ts6 in Figure 5.1(a) and ts7 in Figure 5.2(a), which cannot be synthesised
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to any ENL/LC-system. We can only synthesise them to ENL-systems, where conflicts are not
localised (see Figure 5.1(b) and Figure 5.2(b)).
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Fig. 5.1 An ENLST-system ts6, where e and g are co-located and f belongs to a different
locality (a); and the ENL-system resulting from its synthesis (b).
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Fig. 5.2 An ENLST-system ts7, where e and g are co-located and event f belongs to a
different locality (a); the ENL-system resulting from its synthesis (b).

We will now consider the following synthesis problem, where the discovery of the suitable
co-location relation is a part of the synthesis procedure.

Problem 2 ([27]). Given an ST-system ts find an effective way of checking whether there is
an ENL/LC-system which is a net realisation of ts. If the answer is positive construct such an
ENL/LC-system. ♦

First, we show that conflicts between events in ENLST-systems are present in their regional
net realisations.

Proposition 5.1.2. Let ts be an ENLSTl-system. Then e �ts f implies e �enllts
f , for all

events e and f .
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Proof: Let q be a state of ts such that e �q
ts f . Then, we have e, f ∈ Eq (and consequently

◦e∪ ◦ f ⊆Rq, (e◦∪ f ◦)∩Rq = ∅), and {e, f} ̸⊆ U , for all U ∈ allStepsq. In enllts, where
Rq is a reachable case, we have {e},{ f} ∈ resenabled(Rq) and {e, f} ̸⊆ U , for all U ∈
enabled(Rq). This can only happen if {e, f} ̸⊆U , for all U ∈ resenabled(Rq) (see Fact 3).
Hence, e and f are in conflict in enllts (i.e., e �enllts

f ).
The implication in Proposition 5.1.2 cannot be reversed. A pair of events, e and f , can be

in conflict in an ENL-system enl (sharing a pre-condition or a post-condition), but they might
not be in conflict in tsenl, because of not being enabled together at any reachable case of enl.
As an example, consider the ENLST-system ts3 in Figure 3.1, on p. 20. Its net realisation in
Figure 3.2, on p. 21, contains a common pre-condition r9 for c1 and c4, but there is no state
of ts3 at which both c1 and c4 are included in the labels of the outgoing transitions.

5.2 Solving Problem 2

As shown in [27], co-location relations of ENL/LC-systems can to a significant extent be
characterised structurally (and locally). More precisely, if q is a state of the ST-system
generated by an ENL/LC-system, then two distinct events in Eq are co-located iff either there
is no step in allStepsq to which the two events belong, or there is a step in minStepsq to which
the two events belong. This motivated the introduction of a canonical co-location relation
lts

min for an ST-system ts= (Q,A,q0) for which there is an ENL/LC-system realisation. Such
a co-location relation is defined as:

lts
min =

( ⋃
q∈Q

lts,q )∗ , (5.1)

where
lts,q =

⋃
U∈minStepsq

U ×U ∪
(
(Eq ×Eq)\

⋃
U∈allStepsq

U ×U
)
, (5.2)

for every q ∈ Q. Moreover, lts
min is consistent with ts if lts

min ∩(Eq ×Eq) is equal to lts,q,
for every state q ∈ Q. The asterisk in Eq.(5.1) denotes the transitive closure operator.
A consistent canonical co-location relation can be employed in the synthesis of ENL/LC-
systems. If found, it is the finest (w.r.t. the number of equivalence classes) possible co-location
relation for ts. In other words, lts

min is included in any other suitable co-location relation
l, each equivalence class of lts

min is included in an equivalence class of l, and the number
of equivalence classes of lts

min is greater than the number of equivalence classes of l. A
consequence of this property is stated in the following result.
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Proposition 5.2.1. Let ts be an ST-system such that lts
min is consistent with ts. If ts is not an

ENLSTlts
min

-system, then ts is not an ENLST-system.

Proof: Suppose to the contrary that ts is not an ENLSTlts
min

-system, but ts is an ENLSTl-
system, for some co-location relation l. Hence, Definition 2.1.7(A1–A4) is satisfied for ts
and l.
Since Definition 2.1.7(A1–A3) does not depend on the choice of a co-location relation, it is
also satisfied for ts and lts

min. Hence, we have that Definition 2.1.7(A4) is not satisfied for ts
and lts

min, although it is satisfied for ts and l.
Let Definition 2.1.7(A4) fails to be satisfied for state q and step U such that U ∈ allStepsq in
ts, when using the co-location relation lts

min. As it does not fail to be satisfied when using
l, there exists e /∈U such that e lts

min U and U ∪{e} ∈ regenabled(q) and, at the same time,
e ̸lU since ts is an ENLSTl-system. Hence, there is an event f ∈U such that e lts

min f and
e ̸l f . However, the results of [27] showed that a consistent lts

min, if it exists, is the finest

Algorithm 7 Solution to Problem 2 for an ST-system ts= (Q,A,q0).
1: procedure SOLVING_PROBLEM_2(ts)
2: initialise lts

min to ∅
3: for every q ∈ Q do
4: calculate allStepsq, minStepsq and Eq

5: calculate lts,q =
⋃

U∈minStepsq

U ×U ∪
(
(Eq ×Eq)\

⋃
U∈allStepsq

U ×U
)

6: calculate lts
min =

( ⋃
q∈Q

lts,q )∗ ◃ see Eq.(5.1)

7: initialise result to true
8: for every q ∈ Q do
9: if lts,q is not equal to lts

min ∩(Eq ×Eq) then
10: result = f alse
11: break
12: if result then
13: calculate Rts

14: calculate enl= enl
lts

min
ts using Rts and lts

min
15: if enl is an ENLlts

min
-system and tsenl ∼= ts then

16: return lts
min ◃ enl is ENL/LC-system realisation of ts

17: else
18: return “ts is not an ENLST-system” ◃ see Proposition 5.2.1
19: else
20: return “Problem 2 is not feasible” ◃ ts may still be ENLST-system
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possible co-location relation for ts (i.e., for all events e ̸= f , e lts
min f implies e l f in this

case). Hence, we obtained a contradiction.
Using Eq.(5.1) and Proposition 5.2.1, an algorithmic solution to Problem 2 is given as

Algorithm 7. Note that Algorithm 7 when applied to ST-systems ts6 and ts7 (in Figures 5.1(a)
and 5.2(a), respectively) would exit with the message “Problem 2 is not feasible” (see line
20 of the algorithm; see also Figure 5.3 showing the screenshot from WORKCRAFT after
Algorithm 7 was applied to ts6).

Algorithm 7 solution to Problem 2 takes advantage of the structural (and local) properties
of the original ST-system. If it succeeds, we obtain an ENL/LC-system which solves the
synthesis problem. Moreover, the approach can be extended to tackle the following related
problem.

Problem 3. Given an ST-system ts and a co-location relation l, find an effective way of
checking whether there is an ENLl-system with localised conflicts which is a net realisation
of ts. If the answer is positive construct such an ENLl-system. ♦

To start with, Problem 3 can only have a solution if lts
min provides a solution to Problem 2.

In such a case, one can use another result established in [27] which characterizes all suitable
co-location relations for ts.
Let Gts be an undirected graph whose vertices are the equivalence classes of lts

min, and there
is an edge between vertices V and V ′ if there is a state q of ts and two events, e ∈ V and
f ∈V ′, such that e, f ∈ Eq. Then l provides a solution to Problem 3 if it can be computed as
a solution to the vertex colouring problem for Gts, where we colour two vertices (equivalence
classes of lts

min) using the same colour iff there is an equivalence class of l in which they
are both included. Moreover, if the answer is positive, we can simply replace lts

min with l in
the solution to Problem 2 to address the second part of Problem 3.

5.2.1 Results of the experiments

To test Algorithm 7, we used the examples that we already selected for Algorithm 1. Our
goal was to check whether it provides a positive answer to the synthesis problem. As we
have described before, the selected examples for our experiments consider ST-systems repre-
senting nets with different characteristics, and if it comes to conflicts there are two types of
ST-systems: ST-systems generated by nets without conflicts (ts3, ts4, ts5) or with conflicts
(ts1, ts2), where ts1 has localised conflicts. According to the experimental results, Algo-
rithm 7 gives positive answers for all chosen ST-systems generated by nets without conflicts
(ts3, ts4, ts5), which are trivially ENL/LC-systems. Also, ts1 and ts2 can be synthesised to
ENL/LC-systems. The discovered lts1

min is the same as the co-location relation used for ts1 in
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Fig. 5.3 Shows the screenshot from WORKCRAFT after the Algorithm 7 was applied to ts6 in
Figures 5.1(a).

Figure 3.5, on p. 31. However, the discovered lts2
min is different than the co-location relation

used for ts2 in Figure 3.3, on p. 22, but whichever of them we use for the net synthesised
from ts2 it would generate the same ST-system. The ST-system ts2 in Figure 3.3 has conflict
between non co-located events g and h, but the discovered co-location relation lts2

min localises
this conflict without changing the behaviour of the net synthesised from ts2.

The results of the experiments for the selected examples are as follows:

• The discovered co-location relation of ts1 in Figure 3.5, on p. 31, is lts1
min = {(g, f ),( f ,e),

(h,g),(e,e),(g,g),(h,h),( f , f ),( f ,g),(e, f ),(g,h),(e,g),( f ,h),(e,h),(h,e),
(g,e),(h, f )}. The set of equivalence classes of lts1

min is {{e, f ,g,h}}.

• The discovered co-location relation of ts2 in Figure 3.3, on p. 22, is lts2
min = {( f ,e),(h,g),

(g,g),(e,e),( f , f ),(h,h),(e, f ),(g,h)}. The set of equivalence classes of lts2
min is

{{e, f},{g,h}}.

• The discovered co-location relation of ts3 in Figure 3.1, on p. 20, is lts3
min = {(p1, p1),(c3,c3),

(c4,c4),(c2,c2),(c1,c1),(p2, p2)}. The set of equivalence classes of lts3
min is {{c3},{c4}
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,{p1},{p2},{c1},{c2}}. The output from WORKCRAFT for this example is shown in
Figure 5.4.

• The discovered co-location relation of ts4 in Figure 3.6, on p. 31, is lts4
min = {(p1, p1),

(c3,c3),(c2,c2),(c4,c4),(p2, p2),(c1,c1),(c3,c2),(c2,c3),(c1,c4),(c4,c1)}. The set
of equivalence classes of lts4

min is {{p1},{p2},{c3,c2},{c4,c1}}.

• The discovered co-location relation of the ST-system generated by an ENL-system in
Figure 3.7, on p. 32, (ts5) is lts5

min = {(a,a),(b,b),(c,c),(d,d),(e,e),( f , f ),(g,g),
(h,h),(i, i)}. The set of equivalence classes of lts5

min is {{a},{b},{c},{d},{e},
{ f},{g},{h},{i}}.

Fig. 5.4 Shows the screenshot from WORKCRAFT with the discovered co-location relation of
ts3 in Figures 3.1; and the set of equivalence classes of lts3

min.
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The discovered co-location relations for the ST-systems ts3, ts4 and ts5 are not as shown
in Figure 3.2, Figure 1.1 and Figure 3.7 of the nets that generate them (see these figures on
pages 21, 4, and 32). They are the finest possible co-location relations that can be discovered
for these ST-systems. The co-location relations shown in the mentioned figures are further
valid co-location relations that can be computed from the discovered ‘canonical’ ones.

To test how the performance of Algorithms 7 scales with the increasing sizes of inputs,
we used the same ST-systems as listed in Table 3.2. The experimental results are summarised
in Table 5.1, where the results from Table 3.2 related to Algorithm 1 are quoted for the sake of
comparison. As Algorithm 7 invokes Algorithm 1, it can be seen that the main computational
effort of Algorithm 7 comes from executing Algorithm 1.

Table 5.1 Comparing execution times of Algorithm 1 and Algorithm 7.

ts |Q| |E| Algorithm 1 Algorithm 7
ts3,3 64 9 0.1954 s 0.2499 s
ts3,4 125 12 2.0029 s 2.3355 s
ts3,5 216 15 13.9049 s 15.0469 s
ts4,3 256 12 10.2716 s 12.5550 s
ts4,4 625 16 172.0079 s 181.2883 s
ts4,5 1296 20 1720.4560 s 1755.8690 s

5.3 Computing further co-location relations from lts
min

In [27], a general approach for computing any further valid co-location relations from lts
min

was briefly sketched. It involves looking for the solutions of the vertex colouring problem for
a graph defined as follows.

Let Gts be an undirected graph whose vertices are the equivalence classes of the co-
location relation lts

min, and there is an edge between vertices V and V ′ if there is a state q of
ts and two events, e ∈V and f ∈V ′, such that e, f ∈ Eq.

An algorithm for constructing the graph Gts for a given ST-system ts= (Q,A,q0) is given
below as Algorithm 8.

It follows from the results presented in [27], that all other co-location relations, which
also provide solutions to Problem 2, are given through the solutions of the vertex colouring
problem for the graph Gts. More precisely, for each valid colouring (i.e., one which uses
different colours for vertices joined by an edge), we can join into clusters of co-located events
all equivalence classes of lts

min labelled with the same colour.
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Algorithm 8 Constructing the graph Gts for a given ST-system ts= (Q,A,q0)

1: function CONSTRUCT_Gts( ts)
2: initialise VGts , EGts and EQ to ∅ ◃ VGts and EGts denote vertices and edges of the

graph Gts, respectively
3: calculate lts

min
4: set VGts to lts

min
5: for every q ∈ Q do
6: initialise Eq to ∅
7: calculate Eq ◃ Eq is the union of all the steps in allStepsq (see 2.1)
8: add Eq to EQ

9: for every V ′ ∈VGts do
10: for every V ′′ ∈VGts do ◃ where V ′ ̸=V ′′

11: for every Eq ∈ EQ do
12: if e ∈ Eq and f ∈ Eq then ◃ where e ∈V ′ and f ∈V ′′

13: initialise VE to empty list
14: add V ′ and V ′′ to VE ◃ no need to add V ′′ and V ′ to VE
15: add VE to EGts

16: initialise Gts to graph
17: Gts = build an undirected graph by using VGts and EGts

18: return Gts

An algorithm for finding all possible valid co-location relations for a given ts (out of
lts

min) would be both computationally expensive and of no practical value. Therefore, we
focused on developing algorithms for finding further valid co-location relations, which satisfy
some particular additional criteria.

An algorithm for computing valid co-location relations from lts
min with the smallest

number of equivalence classes is given below as Algorithm 9. It takes the graph Gts as
its parameter. The number of vertices of Gts, let’s call it n, is the number of equivalence
classes of lts

min, and it is the greatest number of equivalence classes we can have for any valid
co-location relation for ts, as lts

min is the finest co-location relation for ts. Instead of checking
the possibility of having solutions with n− 1 colours, n− 2 colours, etc., in a linear way,
we adopted the idea used in Binary Search algorithm (at every iteration we examine either
the candidate numbers from the upper or lower half of the previously considered interval),
reducing the number of iterations in Algorithm 9 from n to log2n.

The results given by Algorithm 9 for our selected five examples are given below. The
valid co-location relations with the smallest number of equivalent classes computed for them
from lts

min are given as sets of their equivalence classes.

• For ts1 in Figure 3.5, on p. 31, the result is {{e, f ,g,h}}, which is the same as lts1
min.
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Algorithm 9 Computing co-location relations from lts
min with the minimum number of

equivalence classes/colours (m) and returning them as a set CRm.

1: function COMPUTE_CO-LOCATION_RELATIONS_FROM_lts
min(Gts)

2: initialise CRm to ∅ ◃ m denotes the minimum number of colours
3: initialise m to n ◃ n is the number of vertices of Gts

4: initialise upper to n-1
5: initialise lower to 0
6: initialise mid to 0
7: while lower <= upper do
8: mid = (lower+upper)/2
9: if there is a valid solution with mid number of colours then

10: m = mid ◃ mid becomes the new minimum
11: upper = mid −1 ◃ can we improve the result further?
12: else
13: lower = mid +1 ◃ we need to consider only the numbers greater than mid
14: CRm= compute all valid co-location relations from lts

min with m colours
15: return CRm

• For ts2 in Figure 3.3, on p. 22, the result is {{e, f ,g,h}}.

• For ts3 in Figure 3.1, on p. 20, the result is {{p1, p2},{c1,c2,c3,c4}}.

• For ts4 in Figure 3.6, on p. 31, the result is {{p1, p2},{c1,c2,c3,c4}}.

• For ts5 generated by an ENL-system in Figure 3.7, on p. 32, the result is {{a,b,c},{d,e, f},{g,h,
i}}.

We observe that while the co-location relation lts1
min has only one equivalence class,

the canonical co-location relations for ts2, ts3, ts4 and ts5 have many equivalence classes.
However, for all the latter ST-systems some of the computed equivalence classes can be
combined producing valid co-location relations with smaller number of equivalence classes
as the results of applying Algorithm 9 to them show. This might not always be possible
as shown in the screenshot from WORKCRAFT in Figure 5.6 giving the results of applying
Algorithm 9 to the ST-system ts8 generated by an ENL/LC-system in Figure 5.5.

Notice also that for all our running examples (ts1–ts5) we obtained only one co-location
relation with the smallest number of equivalence classes. However, in general, Algorithm 9
can return more than one co-location relation satisfying this criterion for a given ts. The
computed result might not be unique as shown in Figure 5.7 that presents the screenshot
from WORKCRAFT with the output produced by Algorithm 9 for the ST-system ts9 generated
by an ENL/LC-system in Figure 4.10, on p. 46.
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b1

b2

b3

b4

e f g h

Fig. 5.5 An ENL/LC-system, where e and f are co-located events, and g and h are co-located
events; and it has localised conflicts.

Fig. 5.6 Shows the screenshot from WORKCRAFT giving the results of applying Algorithm 9
to the ST-system ts8 generated by an ENL/LC-system in Figure 5.5.

Figure 5.8 shows the execution time taken to compute valid co-location relations with the
smallest number of equivalence classes (from lts

min) for the ST-systems: ts1, ts2, ts3, ts4 and
ts5, when using Algorithm 9.
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Fig. 5.7 Shows the screenshot from WORKCRAFT giving the results of applying Algorithm 9
to the ST-system ts9 generated by an ENL/LC-system in Figure 4.10.
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Fig. 5.8 A diagram showing the execution time taken to compute valid co-location relations
with the smallest number of equivalence classes (from lts

min) for the ST-systems: ts1, ts2, ts3,
ts4 and ts5, when using Algorithm 9.

Moreover, when we applied Algorithm 9 to ts9 about 2.4839s needed to compute valid
co-location relations with the smallest number of equivalence classes (from lts

min).
The next algorithm, Algorithm 10, computes valid co-location relations from lts

min with
the smallest number of equivalence classes and the most balanced distribution of events in
their equivalence classes (the criteria are considered in this order). We understand that a
co-location relation, in a set of co-location relations, has the most balanced distribution of
events between equivalence classes, when the difference between the sizes of its biggest and
smallest equivalence classes (called the balanced indicator of a co-location relation) is the
smallest in the considered set of co-location relations.

The input for this algorithm is the set of co-location relations returned by Algorithm 9,
CRm, containing the co-location relations for ts (computed from lts

min) with the smallest
number of equivalence classes (m denotes this number).

The results given by Algorithm 10 for our running examples are given below. The results
for these examples are predictable as the sets obtained from Algorithm 9 for them, and used
as inputs for Algorithm 10, are one-element sets. So, this one element in a set satisfies
trivially the second criterion. The valid co-location relations with the smallest number of
equivalent classes and the most balanced distribution of events in their equivalence classes
computed for them from lts

min are given as sets of their equivalence classes.

• For ts1 in Figure 3.5, on p. 31, the result is {{e, f ,g,h}}, with balanced indicator = 0.
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Algorithm 10 Select co-location relations from CRm with the smallest balance indicators.
1: function SELECT_BALANCED_RELATIONS(CRm)
2: initialise CRbI

m to empty map ◃ mapping co-location relations to their balance
indicators

3: for every co-location relation crm ∈CRm do
4: initialise bSize, sSize and bI to 0
5: bSize = get the size of the biggest equivalence class of crm
6: sSize = get the size of the smallest equivalence class of crm
7: bI = bSize− sSize
8: add the pair (crm,bI) to the CRbI

m map
9: initialise CRb

m to ∅ ◃ set of co-location relations with the smallest balance indicators
10: CRb

m = get co-location relations with the smallest bI from CRbI
m

11: return CRb
m

• For ts2 in Figure 3.3, on p. 22, the result is {{e, f ,g,h}}, with balanced indicator = 0.

• For ts3 in Figure 3.1, on p. 20, the result is {{p1, p2},{c1,c2,c3,c4}}, with balanced
indicator = 2.

• For ts4 in Figure 3.6, on p. 31, the result is {{p1, p2},{c1,c2,c3,c4}}, with balanced
indicator = 2.

• For ts5 generated by an ENL-system in Figure 3.7, on p. 32, the result is {{a,b,c},{d,e, f},{g,h, i}},
with balanced indicator = 0.

The results of running Algorithm 10 for the ST-system generated by the ENL-system
in Figure 4.10, on p. 46, are given in Figure 5.9 as they are presented in WORKCRAFT.
Although there are 16 co-location relations for this example with 4 equivalence classes (see
Figure 5.7), only one of them has the balanced indicator equal to zero, giving the split for
event localities as in Figure 4.10.
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Fig. 5.9 Shows the screenshot from WORKCRAFT with the results of applying Algorithm 10
to the ST-system ts9 generated by an ENL/LC-system in Figure 4.10.





Chapter 6

Minimisation of the synthesised nets

Suppose now that we have applied the synthesis procedure on an ENLST-system as described
in Chapter 4. The resulting enllts is a saturated net because it uses all the non-trivial regions
as conditions. Many of these conditions might be unnecessarily and redundant. Removing
such conditions would not change the net behaviour [13, 20, 28, 36]. So, in this chapter, we
will address the minimisation of solutions of the synthesised nets.

6.1 Optimising solutions to the synthesis problem

In this section we recall some notions and results from [28].
The ENL-system enllts obtained from the synthesis of the ENLST-system ts may contain

many conditions which are redundant from the point of view of its behaviour, i.e., deletion
of such conditions (and their adjacent arcs) would lead to a net that generates the ST-system,
which is still isomorphic to ts.

Suppose that we have reduced enllts in this way obtaining a sub-ENL-system enl. We
would like to reduce enl further by deleting a condition/region r (and its adjacent arcs)
without, as before, violating the property of it being an ENL-system 3 and making sure
that the resultant net still generates the ST-system isomorphic to ts. We will denote the
ENL-system after such one step reduction: enlr.

In [28], it was proved that complement regions are very often redundant:

Reduction Rule 1. If r = (in,r,out) and r̄ = (out,Q \ r, in) are two conditions in enl and
deleting r̄ leads to an ENL-system, then the ST-systems generated by enl and enlr̄ are
isomorphic and r̄ is redundant. ♦

3Every ENL-system enl= (B,E,F,l,c0) should satisfy the following conditions:
∀e ∈ E (•e ̸=∅ ∧ e• ̸=∅ ∧ •e∩ e• =∅).
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Another source of redundancy among conditions/regions in the synthesised net are “big"
regions that are compositions of smaller regions. To define a composition operator, [28]
introduces the concept of compatible regions.

Definition 6.1.1. A region (in,r,out) is compatible with another region (in′,r′,out ′) iff the
following three conditions hold:

1. r∩ r′ =∅.

2. For every e ∈ out exactly one of the following holds:

• For all the transitions (q,U,q′) such that e ∈U we have q′ ∈ r′.

• For all the transitions (q,U,q′) such that e ∈U we have q′ /∈ r′.

3. For every e ∈ in exactly one of the following holds:

• For all the transitions (q,U,q′) such that e ∈U we have q ∈ r′.

• For all the transitions (q,U,q′) such that e ∈U we have q /∈ r′.

If region r is compatible with region r′ and region r′ is compatible with r we say that the two
regions are compatible. ♦

In [28], it was proved that the composition of two compatible regions (defined below) is
also a region. If r= (in,r,out) and r′ = (in′,r′,out ′) are two non-trivial compatible regions
of an ENLST-system ts, then the following is a (possibly trivial) region of ts:

r⊕ r′
df
= (in∪ in′ \H,r∪ r′,out ∪out ′ \H),

where H is a set of events that belong only to steps labelling transitions hidden/buried in
r∪ r′ (with its source in r and its target in r′ or the other way round). The region r⊕ r′ is
called the composition of r and r′. In [28], the following reduction rule was proved:

Reduction Rule 2. If r= (in,r,out), r′ = (in′,r′,out ′) and r⊕r′ are three conditions/regions
in enl, then the ST-systems generated by enl and enlr⊕r′ are isomorphic and r⊕r′ is redundant.

♦

The third reduction rule considers regions of ts = (Q,A,q0) based on the same set of
states. We will call such regions companion regions. For a given set of states r, they will
belong to the set denoted by Rr

ts.
In [28], it was proved that if the events contained in the set in (out) of a region r =

(in,r,out) can be found in the in (out) sets of other companion regions then r is redundant
and can be deleted. Formally:



6.2 Minimal regions 67

r′r

r′r

(a)

r r′

r r′

(b)

Fig. 6.1 An illustration for the definition of region r = (in,r,out) being compatible with
region r′ = (in′,r′,out ′), showing the two possibilities for point 2 of the definition (a); and
the two possibilities for point 3 of the definition (b).

Reduction Rule 3. Let r= (in,r,out) be a condition/region of enl such that:

in ⊆
⋃
{in′ | (in′,r,out ′) is condition in enl different from r} (6.1)

out ⊆
⋃
{out ′ | (in′,r,out ′) is condition in enl different from r} (6.2)

Then the ST-systems generated by enl and enlr are isomorphic and r is redundant.
♦

6.2 Minimal regions

For many classes of Petri nets, for which the synthesis problem was investigated, a region
was defined as a subset of states of a transition system. For such classes of nets and their
transition systems a minimal region was defined w.r.t. the set inclusion ⊂ [13, 12, 17, 36].
Also, composition of regions (as sets) was defined by using the set union operator (∪), which
is both commutative and associative.

The regions of ENLST-systems are triples of the form: r = (in,r,out). The minimal
regions in this class of (step) transition systems are defined w.r.t. the strict pre-order ≺ on
the set of regions, that utilises the idea of regions’ composition by means of ⊕:

r≺ r′ iff there is a non-trivial region r′′ such that r⊕ r′′ = r′ [28].

Formally, we have the following definition of a minimal region:
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Definition 6.2.1. A region r ∈Rts is minimal iff ∀ r̂ ∈Rts : r̂ ̸≺ r. ♦

The set of minimal regions of ts w.r.t. ≺ will be denoted by Rmin
ts .

We observe that if a non-trivial region is non-minimal then it can be represented as a
composition of two other non-trivial regions. This follows from the definition of the relation
≺ and the fact that the composition operator ⊕ is commutative, which, in turn, follows
immediately from the definition of ⊕.

As an example, consider the ENLST-system in Figure 6.2(a). Its non-trivial regions are:

r1 = (∅,{q0},{e}) r3 = r̄1 = ({e},{q1,q2},∅)

r2 = (∅,{q0},{e1,e2}) r4 = r̄2 = ({e1,e2},{q1,q2},∅)

r5 = ({e1},{q1},∅) r7 = r̄5 = (∅,{q0,q2},{e1})
r6 = ({e2},{q2},∅) r8 = r̄6 = (∅,{q0,q1},{e2})

q0

q1 q2

{e,e1} {e,e2}

(a)

r1

r3

r8

r6

r7

r5

r2

r4

e1 e2e

(b)

r1

r3 r6r5

r2
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Fig. 6.2 An ENLST-system with three co-located events e, e1 and e2 (a); the ENL-system
resulting from its synthesis (b); and the reduced ENL-system solution for (a) that uses only
regions minimal w.r.t. ≺ (c).

The minimal regions of the ENLST-system in Figure 6.2(a) are: r1, r2, r3, r5 and r6. The
remaining regions are non-minimal (their set is denoted by R⊕

ts):

r4 = r5 ⊕ r6 (H =∅)

r7 = r2 ⊕ r6 (H = {e2})
r8 = r2 ⊕ r5 (H = {e1})

The reduced ENL-system solution for the ENLST-system in Figure 6.2(a) that uses only
regions minimal w.r.t. ≺ is shown in Figure 6.2(c).

Note that the operator ⊕ is not associative as can be shown by using, again, the example
of the ENLST-system in Figure 6.2(a). We can observe that: (r5 ⊕ r6)⊕ r1 ̸= r5 ⊕ (r6 ⊕ r1).
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While r5 and r6 are compatible and their composition produces r4 (r4 = r5 ⊕ r6), regions r6

and r1 are not compatible, because r1 is not compatible with r6, and they cannot be composed.
Also notice that there might be two companion regions (regions based on the same set

of states) such that one of them is a minimal region and the second one is a non-minimal
region. See, for example, regions r3 = ({e},{q1,q2},∅) and r4 = ({e1,e2},{q1,q2},∅) of
the ENLST-system in Figure 6.2(a), where r3 is minimal and r4 is non-minimal. So, the
minimality of a region cannot be decided by looking at its set of states only.

The next result, about the representation of non-trivial regions, is similar to the results
proved for other classes of nets (and their transition systems) that can be found in the
literature: Elementary Net Systems [13], pure and bounded Place/Transition Nets [12], Safe
Nets [17] or Elementary Net Systems with Inhibitor Arcs (ENI-systems) [36].

Theorem 6.2.2. Every r= (in,r,out) ∈Rts can be represented as a composition of minimal
regions, where for each pair of different minimal regions in this representation, r̂= (în, r̂, ôut)
and r̃= (ĩn, r̃, õut), r̂∩ r̃ =∅.

Proof. If r is a minimal region then the result holds. If r is non-minimal then there exists a
minimal region r′ = (in′,r′,out ′)≺ r. From the definition of the strict pre-order ≺ we have
that there exists r′′ = (in′′,r′′,out ′′) such that r′⊕ r′′ = r. If r′′ is minimal we have r= r′⊕ r′′.
If r′′ is non-minimal we continue in the same way with r′′ as we have done before with r.
In this way we will build a sequence of minimal regions, whose sets of states are mutually
disjoint and their sum would define the set of states for r. As Q is finite, the number of
minimal regions in the representation of r will be finite:

r= r1 ⊕ (r2 ⊕ . . .(rn−2 ⊕ (rn−1 ⊕ rn)) . . .),

where ri = (ini,ri,outi) (for i = 1, . . . ,n) are minimal regions.
Observe that by the definition of compatibility of regions and that of ⊕ operator, we

have rn−1 ∩ rn = ∅ and rn−2 ∩ (rn−1 ∪ rn) = ∅. We can proceed in this way from right
to left of the above representation, ending with r1 ∩ r′′ = ∅, where r1 is the original r′

and r′′ = r2 ∪ r3 ∪ . . .∪ rn−1 ∪ rn. So, all the sets of states of the minimal regions in the
representation are pairwise disjoint.

Theorem 6.2.2 and Reduction Rule 2 imply that one can construct a solution to the
synthesis problem based on minimal regions w.r.t. the strict pre-order ≺. The consequence
of the fact that the operator ⊕ is not associative is that we cannot drop the brackets, if there
are any, when we represent a non-trivial region of an ENLST-system as a composition of
minimal regions (see the proof of Theorem 6.2.2).
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6.3 Properties of regions

In this section we gather facts regarding relationships of complementary, compatible, com-
panion and minimal regions of an ENLST-system ts= (Q,A,q0).

Fact 4. Any pair of complementary regions of ts, r and r̄, form a pair of compatible regions
and r⊕ r̄= (∅,Q,∅). ♦

From Fact 4 it follows that if ts has only minimal regions among non-trivial regions,
then only the pairs of complementary regions can be composed resulting in the trivial region
(∅,Q,∅).

Fact 5. Let r1 = (in1,r1,out1) and r2 = (in2,r2,out2) be two non-trivial compatible regions
of an ENLST-system ts. Then in1 ∩ in2 =∅ and out1 ∩out2 =∅.

Proof. Since r1 and r2 are compatible regions, we have r1 ∩ r2 =∅. Suppose in1 ∩ in2 ̸=∅.
Then there exists e∈ in1∩ in2 and every transition labelled with a step containing e enters both
r1 and r2 (see Definition 2.1.6(R4)), but that is impossible as r1 ∩ r2 =∅ - a contradiction.
So, in1 ∩ in2 =∅. Similarly, we can show that out1 ∩out2 =∅.

Now, we introduce a notion of strong compatibility of regions.

Definition 6.3.1. A region (in,r,out) is strongly compatible with another region (in′,r′,out ′)
iff the following three conditions hold:

1. r∩ r′ =∅.

2. For every e ∈ out exactly one of the following holds:

• e ∈ in′.

• For all the transitions (q,U,q′) such that e ∈U we have q′ /∈ r′.

3. For every e ∈ in exactly one of the following holds:

• e ∈ out′.

• For all the transitions (q,U,q′) such that e ∈U we have q /∈ r′.

If region r is strongly compatible with region r′ and region r′ is strongly compatible with r we
say that the two regions are strongly compatible. ♦

Fact 6. Two regions, (in,r,out) and (in′,r′,out ′), that are strongly compatible are compatible.

Proof. Follows from the facts that:
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• e ∈ in′ implies: For all the transitions (q,U,q′) such that e ∈U we have q′ ∈ r′ (see
Definition 2.1.6(R4)).

• e ∈ out′ implies: For all the transitions (q,U,q′) such that e ∈U we have q ∈ r′ (see
Definition 2.1.6(R3)).

The composition operator defined for the strongly compatible regions (rather than com-
patible regions) will be denoted by ⊕s. The strict pre-order relation for the set of regions that
utilises operator ⊕s instead of ⊕ will be denoted by ≺s. The set of minimal regions of ts
w.r.t. ≺s will be denoted by Rmin,s

ts .
The implication of Fact 6 is that Reduction Rule 2 works with strongly compatible regions

(we can replace operator ⊕ by ⊕s in that rule). Furthermore, Definition 6.3.1 means that we
can strengthen Fact 4 to:

Fact 7. Any pair of complementary regions of ts, r and r̄, form a pair of strongly compatible
regions and r⊕s r̄= (∅,Q,∅). ♦

We will give examples of compatible and strongly compatible pairs of regions using the
ENLST-system in Figure 6.2(a). We present the pairs in Table 6.1, where we use the following
denotations:

• Symbol ‘–’ means that a pair of regions (ri,r j), where i is a row index and j is a
column index, has sets of states, ri and r j, such that ri ∩ r j ̸=∅, and therefore they are
not compatible.

• C means that (ri,r j) is a pair of compatible regions.

• SC means that (ri,r j) is a pair of strongly compatible regions.

• NC means that a pair of regions (ri,r j) is not compatible, but not because their sets of
states have non-empty intersection.

Note the asymmetry in the table for pairs involving regions r1 and r5, where r5 is compatible
with r1, but r1 is not compatible with r5. So, there is C assigned for the pair (r5,r1) in the
table, but there is NC assigned for the pair (r1,r5). Similarly, we have asymmetry for the
pairs involving r1 and r6.

The next proposition shows that unlike ⊕ operator, ⊕s is associative.

Proposition 6.3.2. The operator ⊕s is associative.
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Table 6.1 Shows compatibility status for the pairs of regions of the ENLST-system in Fig-
ure 6.2(a).

r1 r2 r3 r4 r5 r6 r7 r8

r1 – – SC C NC NC – –
r2 – – C SC SC SC – –
r3 SC C – – – – – –
r4 C SC – – – – – –
r5 C SC – – – SC SC –
r6 C SC – – SC – – SC
r7 – – – – SC – – –
r8 – – – – – SC – –

Proof. Let r1 = (in1,r1,out1), r2 = (in2,r2,out2) and r3 = (in3,r3,out3) be non-trivial re-
gions of ts = (Q,A,q0). Furthermore, we assume that r1 and r2 are strongly compatible
and their composition r = r1 ⊕s r2 is a non-trivial region such that r and r3 are strongly
compatible.

We show that r2 and r3 are strongly compatible, their composition r′ = r2 ⊕s r3 is a
non-trivial region such that r′ and r1 are strongly compatible. Moreover, the following holds:

(r1 ⊕s r2)⊕s r3 = r1 ⊕s (r2 ⊕s r3).

First we show that r2 is strongly compatible with r3. As r1 and r2 are strongly compatible
regions and r= r1 ⊕s r2, we have:

r= (in,r,out) = (in1 ∪ in2 \H,r1 ∪ r2,out1 ∪out2 \H),

where H is a set of events that belong only to steps labelling transitions buried in r1∪r2. From
assumptions we also have: r1 ∩ r2 =∅, (r1 ∪ r2)∩ r3 =∅. So, r1 ∩ r3 =∅ and r2 ∩ r3 =∅.

Now, we show that:

∀e ∈ out2 : e ∈ in3 ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q′ ̸∈ r3) (†)

∀e ∈ in2 : e ∈ out3 ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q ̸∈ r3) (††)

Suppose, to the contrary, that (†) is not true. Then ∃ê ∈ out2 : ê ̸∈ in3 ∧ (∃(q̂,Û , q̂′) ∈ A :
ê ∈ Û ∧ q̂′ ∈ r3). So, there exists (q̂,Û , q̂′) ∈ A such that ê ∈ Û ∩out2 and q̂′ ∈ r3. This and
r3 ∩ r =∅ implies that (q̂,Û , q̂′) is a transition outgoing from r = r1 ∪ r2, so we have ê ̸∈ H
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and, consequently, ê ∈ out. From assumptions we have that r and r3 are strongly compatible,
so the existence of (q̂,Û , q̂′) with q̂′ ∈ r3 means ê ∈ in3, a contradiction with ê ̸∈ in3. So, (†)
holds.

Suppose, to the contrary, that (††) is not true. Then ∃ê ∈ in2 : ê ̸∈ out3 ∧ (∃(q̂,Û , q̂′) ∈
A : ê ∈ Û ∧ q̂ ∈ r3). So, there exists (q̂,Û , q̂′) ∈ A such that ê ∈ Û ∩ in2 and q̂ ∈ r3. This and
r3 ∩ r =∅ implies that (q̂,Û , q̂′) is a transition incoming into r = r1 ∪ r2, so we have ê ̸∈ H
and, consequently, ê∈ in. From assumptions we have that r and r3 are strongly compatible, so
the existence of (q̂,Û , q̂′) with q̂ ∈ r3 means ê ∈ out3, a contradiction with ê ̸∈ out3. So, (††)
holds.

Consequently, r2 is strongly compatible with r3.
To prove that r3 is strongly compatible with r2 we still need to show:

∀e ∈ out3 : e ∈ in2 ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q′ ̸∈ r2) (‡)

∀e ∈ in3 : e ∈ out2 ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q ̸∈ r2) (‡‡)

Suppose, to the contrary, that (‡) is not true. Then ∃ê ∈ out3 : ê ̸∈ in2 ∧ (∃(q̂,Û , q̂′) ∈
A : ê ∈ Û ∧ q̂′ ∈ r2). From the assumption that r and r3 are strongly compatible and the
existence of (q̂,Û , q̂′) with q̂′ ∈ r2 ⊂ r and ê ∈ out3 ∩Û , we have ê ∈ in = in1 ∪ in2 \H and
consequently ê ∈ in2 (see Facts 5 and 6), a contradiction with ê ̸∈ in2. So, (‡) holds.

Suppose, to the contrary, that (‡‡) is not true. Then ∃ê ∈ in3 : ê ̸∈ out2 ∧ (∃(q̂,Û , q̂′) ∈
A : ê ∈ Û ∧ q̂ ∈ r2). From the assumption that r and r3 are strongly compatible and the
existence of (q̂,Û , q̂′) with q̂ ∈ r2 ⊂ r and ê ∈ in3∩Û , we have ê ∈ out = out1∪out2 \H and
consequently ê ∈ out2 (see Facts 5 and 6), a contradiction with ê ̸∈ out2. So, (‡‡) holds.

Hence, r3 is strongly compatible with r2 and so r2 and r3 are strongly compatible regions.
So, we can compose them obtaining:

r′ = (in′,r′,out ′) = r2 ⊕s r3 = (in2 ∪ in3 \H ′,r2 ∪ r3,out2 ∪out3 \H ′),

where H ′ is a set of events that belong only to steps labelling transitions buried in r2 ∪ r3.
We need to show now that r1 and r′ are strongly compatible. We already showed that

r1 ∩ r2 =∅ and r1 ∩ r3 =∅. So, r1 ∩ (r2 ∪ r3) =∅.
Next we show that r1 is strongly compatible with r′. To do so, we still need to show that:

∀e ∈ out1 : e ∈ in′ ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q′ ̸∈ r′) (△)

∀e ∈ in1 : e ∈ out ′ ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q ̸∈ r′) (△△)
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Suppose, to the contrary, that (△) is not true. Then ∃ê ∈ out1 : ê ̸∈ in′ ∧ (∃(q̂,Û , q̂′) ∈
A : ê ∈ Û ∧ q̂′ ∈ r′). We now consider two cases:

1. q̂′ ∈ r2.
As (q̂,Û , q̂′) is a transition incoming into r2 and q̂ ∈ r1 (ê ∈ out1) and r1∩(r2∪r3) =∅
and r1 and r2 are strongly compatible, we have ê ̸∈ H ′ and ê ∈ in2. So, ê ∈ in′ =
in2 ∪ in3 \H ′, a contradiction with ê ̸∈ in′.

2. q̂′ ∈ r3.
From the assumption that r= r1⊕s r2 and r3 are strongly compatible we have r∩r3 =∅.
This and the existence of the transition (q̂,Û , q̂′), where ê ∈ Û ∩out1 and q̂′ ∈ r3, means
that ê ̸∈ H and consequently ê ∈ out = out1 ∪out2 \H. Furthermore, as r and r3 are
strongly compatible, we have ê ∈ in3. Also, ê ̸∈ H ′, because the transition (q̂,Û , q̂′)
has the source q̂ ∈ r1 (r1 ∩ r′ = ∅). So, ê ∈ in′ = in2 ∪ in3 \H ′, a contradiction with
ê ̸∈ in′.

We obtained a contradiction in both considered cases, so (△) holds.
Now we prove (△△). Suppose, to the contrary, that (△△) is not true. Then ∃ê ∈ in1 :

ê ̸∈ out ′ ∧ (∃(q̂,Û , q̂′) ∈ A : ê ∈ Û ∧ q̂ ∈ r′). We now consider two cases:

1. q̂ ∈ r2.
As (q̂,Û , q̂′) is a transition outgoing from r2 and q̂′ ∈ r1 (ê ∈ in1) and r1∩(r2∪r3) =∅
and r1 and r2 are strongly compatible, we have ê ̸∈ H ′ and ê ∈ out2. So, ê ∈ out ′ =
out2 ∪out3 \H ′, a contradiction with ê ̸∈ out ′.

2. q̂ ∈ r3.
From the assumption that r= r1⊕s r2 and r3 are strongly compatible we have r∩r3 =∅.
This and the existence of the transition (q̂,Û , q̂′), where ê ∈ Û ∩ in1 and q̂ ∈ r3, means
ê ̸∈ H and consequently ê ∈ in = in1 ∪ in2 \H. Furthermore, as r and r3 are strongly
compatible, we have ê ∈ out3. Also, ê ̸∈ H ′, because the transition (q̂,Û , q̂′) has the
target q̂′ ∈ r1 (r1∩r′ =∅). So, ê ∈ out ′ = out2∪out3\H ′, a contradiction with ê ̸∈ out ′.

We obtained a contradiction in both considered cases, so (△△) holds. Therefore, region r1 is
strongly compatible with region r′ = r2 ⊕s r3.

Now we prove that r′ = r2 ⊕s r3 is strongly compatible with r1. To do so, we still need to
show:

∀e ∈ out ′ : e ∈ in1 ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q′ ̸∈ r1) (♯)

∀e ∈ in′ : e ∈ out1 ∨ (∀(q,U,q′) ∈ A : e ∈U =⇒ q ̸∈ r1) (♯♯)
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Suppose, to the contrary, that (♯) is not true. Then ∃ê ∈ out ′ : ê ̸∈ in1 ∧ (∃(q̂,Û , q̂′) ∈ A :
ê ∈ Û ∧ q̂′ ∈ r1). We now consider two cases:

1. q̂ ∈ r2.
As (q̂,Û , q̂′) is a transition outgoing from r2 and q̂′ ∈ r1, r1 ∩ r′ =∅ and ê ∈ out ′, we
have ê ̸∈ H ′ and ê ∈ out2 (as out ′ = out2 ∪out3 \H ′, and from Facts 5 and 6 we have
out2 ∩out3 =∅ as r2 and r3 are strongly compatible). Hence, from the fact that r1 and
r2 are strongly compatible we have that ê ∈ in1, a contradiction with ê ̸∈ in1.

2. q̂ ∈ r3.
As (q̂,Û , q̂′) is a transition outgoing from r3 and q̂′ ∈ r1, r1 ∩ r′ = ∅ and ê ∈ out ′,
we have ê ̸∈ H ′ and ê ∈ out3 (as ê ∈ out ′ = out2 ∪ out3 \H ′, and from Facts 5 and 6
we have out2 ∩ out3 = ∅ as r2 and r3 are strongly compatible). From the fact that
r= r1 ⊕s r2 and r3 are strongly compatible we have that ê ∈ in (q̂′ ∈ r1 ⊂ r). From the
existence of the transition (q̂,Û , q̂′), where ê ∈ Û , q̂ ∈ r3, q̂′ ∈ r1 ⊂ r and r∩ r3 =∅,
we have that ê ̸∈ H. As ê ∈ in = in1∪ in2 \H and q̂′ ∈ r1, we have ê ∈ in1 (from Facts 5
and 6 we have in1 ∩ in2 =∅ as r1 and r2 are strongly compatible). So, we obtained a
contradiction with ê ̸∈ in1.

We obtained a contradiction in both considered cases, so (♯) holds.
We now prove (♯♯). Suppose, to the contrary, that (♯♯) is not true. Then ∃ê ∈ in′ : ê ̸∈

out1 ∧ (∃(q̂,Û , q̂′) ∈ A : ê ∈ Û ∧ q̂ ∈ r1). We now consider two cases:

1. q̂′ ∈ r2.
As (q̂,Û , q̂′) is a transition incoming into r2 and q̂ ∈ r1, r1∩r′ =∅ and ê ∈ in′, we have
ê ̸∈ H ′ and ê ∈ in2 (as in′ = in2∪ in3 \H ′, and from Facts 5 and 6 we have in2∩ in3 =∅
as r2 and r3 are strongly compatible). Hence, from the fact that r1 and r2 are strongly
compatible we have that ê ∈ out1, a contradiction with ê ̸∈ out1.

2. q̂′ ∈ r3.
As (q̂,Û , q̂′) is a transition incoming into r3 and q̂ ∈ r1, r1 ∩ r′ = ∅ and ê ∈ in′, we
have ê ̸∈ H ′ and ê ∈ in3 (as ê ∈ in′ = in2 ∪ in3 \H ′, and from Facts 5 and 6 we have
in2 ∩ in3 = ∅ as r2 and r3 are strongly compatible). From the fact that r = r1 ⊕s r2

and r3 are strongly compatible we have that ê ∈ out (q̂ ∈ r1 ⊂ r). From the existence
of the transition (q̂,Û , q̂′), where ê ∈ Û , q̂ ∈ r1 ⊂ r, q̂′ ∈ r3 and r∩ r3 = ∅, we have
that ê ̸∈ H. As ê ∈ out = out1 ∪out2 \H and q̂ ∈ r1, we have ê ∈ out1 (from Facts 5
and 6 we have out1 ∩out2 =∅ as r1 and r2 are strongly compatible). So, we obtained
a contradiction with ê ̸∈ out1.
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We obtained a contradiction in both considered cases, so (♯♯) holds. Therefore, r2 ⊕s r3 is
strongly compatible with r1, and consequently regions r2⊕s r3 and r1 are strongly compatible
regions.

Finally, we need to show that:

(r1 ⊕s r2)⊕s r3 = r1 ⊕s (r2 ⊕s r3),

where
r = r1 ⊕s r2 = (in1 ∪ in2 \H,r1 ∪ r2,out1 ∪out2 \H) and
r′ = r2 ⊕s r3 = (in2 ∪ in3 \H ′,r2 ∪ r3,out2 ∪out3 \H ′).

Let H ′′ be a set of events that belong only to steps labelling transitions buried in r1 ∪ r3 and
Ĥ = H ∪H ′∪H ′′.

We need to show: L = R, where

L =
(
(in1 ∪ in2 \H)∪ in3 \ Ĥ,r1 ∪ r2 ∪ r3,(out1 ∪out2 \H)∪out3 \ Ĥ

)
and

R =
(
in1 ∪ (in2 ∪ in3 \H ′)\ Ĥ,r1 ∪ r2 ∪ r3,out1 ∪ (out2 ∪out3 \H ′)\ Ĥ

)
.

Observe first that H ∩ in3 =∅ and H ∩out3 =∅, so in the equation for L above we can use
Ĥ instead of H ′∪H ′′. Similarly, as H ′∩ in1 =∅ and H ′∩out1 =∅, we can use Ĥ instead
of H ∪H ′′ in the equation for R.

Now we show that Lin = (in1∪ in2 \H)∪ in3 \ Ĥ = in1∪ (in2∪ in3 \H ′)\ Ĥ = Rin. From
the definitions of H, H ′ and H ′′ we have H ∩H ′ =∅, H ∩H ′′ =∅ and H ′∩H ′′ =∅. From
Facts 5 and 6 and the fact that r1 and r2 and r2 and r3 are strongly compatible we have
in1∩ in2 =∅ and out1∩out2 =∅ as well as in2∩ in3 =∅ and out2∩out3 =∅. Furthermore,
in1 ∩ in3 = ∅ as every transition labelled with a step containing e ∈ in1 must enter r1 and
every transition labelled with a step containing e ∈ in3 must enter r3, but r1 ∩ r3 = ∅, so
in1 ∩ in3 ̸= ∅ is impossible. Hence, the difference between the sets of events of Lin and
Rin, before taking away events from Ĥ, results from the events that are contained in the
intersections between the various sets of ‘buried’ events (H, H ′, H ′′) and in sets (in1, in2, in3).
However, since H ⊆ Ĥ, H ′ ⊆ Ĥ and H ′′ ⊆ Ĥ, the events that cause the difference between
the two sides of the equation will be removed when the set Ĥ is subtracted from both sides
of the equation, leaving Lin = Rin.

Similarly we can show that:

Lout = (out1 ∪out2 \H)∪out3 \ Ĥ = out1 ∪ (out2 ∪out3 \H ′)\ Ĥ = Rout .



6.3 Properties of regions 77

Proposition 6.3.3. Let r1 = (in1,r1,out1) and r2 = (in2,r2,out2) be compatible regions of
an ST-system ts= (Q,A,q0), which do not satisfy the conditions to be strongly compatible
regions of ts. Then there exists a companion region of r1, r′1 ∈Rr1

ts , and a companion region
of r2, r′2 ∈ Rr2

ts , such that r1 and r′2 are strongly compatible and r′1 and r2 are strongly
compatible. Furthermore, r1 ⊕s r

′
2 = r′1 ⊕s r2 = r1 ⊕ r2.

Proof. First, we show the existence of regions r′1 and r′2.
Since r1 and r2 are compatible we have r1 ∩ r2 =∅. Bearing in mind that r1 and r2 are

compatible regions we now consider two cases:

1. There are no ‘buried’ transitions in r1 ∪ r2.
For this case the definitions of compatibility and strong compatibility (Definitions 6.1.1
and 6.3.1) coincide. Hence, r1 and r2 are strongly compatible and r′1 = r1 and r′2 = r2.

2. There are ‘buried’ transitions in r1 ∪ r2.
Then, without loss of generality, we can assume that there exists a transition (q,U,q′)∈
A such that q ∈ r1 and q′ ∈ r2. Hence, from Definition 2.1.6(R1) for r1 and (q,U,q′),
and r1∩r2 =∅, we have |U∩out1|= 1. Let e1 ∈U∩out1. As r1 and r2 are not strongly
compatible we can assume, again without loss of generality, that Definition 6.3.1 fails
for e1 ∈ out1 resulting in e1 ̸∈ in2. Furthermore, from Definition 2.1.6(R2) for r2 and
(q,U,q′), and r1 ∩ r2 =∅, we have |U ∩ in2|= 1. Since e1 ̸∈ in2, there exists e2 ̸= e1

such that e2 ∈ U ∩ in2. Therefore, |U | ≥ 2. From Definition 2.1.6(R1) for r1 and
(q,U,q′), we have that e2 ̸∈ out1.

The manifestation of e1 ̸∈ in2 (recall e1 ∈ out1) might be the existence of a transition
(q1,U1,q′1) such that q1 ∈ r1, q′1 ̸∈ r1 ∪ r2 and e1 ∈U1. The manifestation of e2 ̸∈ out1
(recall e2 ∈ in2) might be the existence of a transition (q2,U2,q′2) such that q2 ̸∈ r1∪ r2,
q′2 ∈ r2 and e2 ∈ U2. However, there is not possible for the two such transitions to
exist considering the existence of the transition (q,U,q′). This is because r1 and r2

are compatible regions, and therefore they can be composed producing the region:
rsum = r1⊕ r2 = (insum,rsum,outsum) = (in1∪ in2 \H,r1∪ r2,out1∪out2 \H) and then
e1 ̸∈ H (because of (q1,U1,q′1)) and e2 ̸∈ H (because of (q2,U2,q′2)). Hence, as
e1 ∈ out1 and e2 ∈ in2, we have e1 ∈ outsum and e2 ∈ insum. Neither of these is possible,
because of the existence of the transition (q,U,q′), as e1,e2 ∈U and this transition is
‘buried’ in r1 ∪ r2. So, all transitions labelled by steps containing e1 or e2 are ‘buried’
in r1 ∪ r2 and the transition (q,U,q′) has a label containing both of them.

For the thick transitions that are ‘buried’ in r1 ∪ r2 (with source in r1 and target in r2)
we can have a mismatch between the event that leads out from r1 and the one that leads
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into r2. We will now show how to alleviate such mismatches like the mismatch between
e1 ∈ out1 and e2 ∈ in2 for the transition (q,U,q′). Let U r1,r2 = {U | ∃(q,U,q′) ∈ A :
q ∈ r1, q′ ∈ r2 and |U | ≥ 2}. Also, let pairsr1,r2 : U r1,r2 → out1 × in2 be a function,
which assigns, for labels of thick transitions going from r1 to r2, their pairs of events:
leading out of r1 and leading into r2. Furthermore, let N be a set of events from E,
which are not contained in labels of transitions ‘buried’ in r1 ∪ r2. We now define 4:

out′1 = out1 ∩N ∪ second(pairsr1,r2(U r1,r2)) and
in′2 = in2 ∩N ∪ f irst(pairsr1,r2(U r1,r2)).

We can then define tuples: (in1,r1,out′1) and (in′2,r2,out2). It is clear that the first tuple
is a region as r1 is a region and Definition 2.1.6(R1,R3) is satisfied for out′1. Also, it
is clear that the second tuple is a region as r2 is a region and Definition 2.1.6(R2,R4)
is satisfied for in′2. Furthermore, assuming that we had only mismatches between
events contained in the labels of transitions going from r1 to r2, it can be seen that
r′1 = (in1,r1,out′1) and r2 are strongly compatible regions (as out′1 \ out1 ∩N ⊆ in2),
and r1 and r′2 = (in′2,r2,out2) are strongly compatible regions (as in′2 \ in2 ∩N ⊆ out1).
The mismatches between events contained in the labels of transitions going from r2 to
r1 can be alleviated in a similar way.

Finally, we observe that r1 ⊕s r
′
2 = r′1 ⊕s r2 = r1 ⊕ r2 is true as: (1) the sets of states for all

three pairs of regions is r1∪ r2; and (2) the only difference between the in/out sets of regions
involved in the three pairs are due to the events that belong only to steps labelling transitions
‘buried’ in r1 ∪ r2, but they will be removed from the appropriate sums of the in/out sets
when the compositions of regions are formed.

To illustrate the result of Proposition 6.3.3, we can use again the ENLST-system in
Figure 6.2(a). A pair of its regions, r4 and r1, are compatible, but not strongly compatible
regions (see Table 6.1). However, there are regions r3 ∈ Rr4

ts and r2 ∈ Rr1
ts , such that r4

and r2 are strongly compatible and r3 and r1 are strongly compatible. Also, we have
r4 ⊕s r2 = r3 ⊕s r1 = r4 ⊕ r1 = (∅,Q,∅). Furthermore, using the same example, observe
that when we express a composition of two minimal compatible regions by a composition of
two strongly compatible regions, one of the two strongly compatible regions might be not a
minimal region. For example, r2 ⊕ r3 = r2 ⊕s r4, where r2 and r3 are minimal regions, but r4

is not. Proposition 6.3.3 does not take the minimality of regions into consideration.

Corollary 6.3.4. Let ts= (Q,A,q0) be an ENLST-system. Then

4For any sets X and Y , f irst : X ×Y → X and second : X ×Y → Y are mappings defined as follows:
f irst(x,y) = x and second(x,y) = y, where x ∈ X and y ∈ Y .
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1. Rmin
ts =Rmin,s

ts .

2. Every r ∈Rts can be represented as a composition of minimal regions, where each
pair of different minimal regions in this representation is a pair of strongly compatible
regions.

3. Let R= {r1,r2, . . . ,rn} be a set of pairwise strongly compatible non-trivial regions of
ts, where ri = (ini,ri,outi), i ∈ {1, . . . ,n}. Then there exists a region r= (in,r,out) =
r1 ⊕s . . .⊕s rn, where r = r1 ∪ . . .∪ rn.

Proof. 1. The minimal regions of ts can be obtained from Rts by elimination of non-
minimal regions. From Proposition 6.3.3 it follows that any non-minimal region that
can be represented as a composition of two compatible regions can also be represented
as a composition of two strongly compatible regions. So, the same set of regions will
be eliminated from Rts regardless of which strict pre-order is used (≺ or ≺s) when
defining non-minimal (minimal) regions. Hence, Rmin

ts =Rmin,s
ts .

2. The proof is similar to the proof of Theorem 6.2.2. However, as ⊕s is an associative
operator (see Proposition 6.3.2), we can drop the brackets, if there are any, in the final
representation of r.

3. Assume first that n = 3. We show that each of the three regions (r1, r2 and r3) and
the region obtained by composing the two remaining regions by means of ⊕s form
a pair of strongly compatible regions, which after being composed produce a region
r1⊕s r2⊕s r3. As an example, we can prove that (r1⊕s r2) and r3 form a pair of strongly
compatible regions. This part of the proof is omitted as it uses the same techniques as
were employed in Proposition 6.3.2.

Assuming now that n> 3, we can prove in a similar way that (r1⊕s r2) and ri, 3< i≤ n,
are pairs of strongly compatible regions. Since {r3, . . . ,rn} is a set of pairwise strongly
compatible regions by assumption, we have that the set {(r1 ⊕s r2),r3, . . . ,rn} is a set
of n−1 regions that are non-trivial and pairwise strongly compatible. We can continue
this process, decrementing by 1 in each step the number of regions in this set of regions,
till we have just one region in this set: r = (in,r,out) = r1 ⊕s r2 ⊕s . . .⊕s rn, where
r = r1 ∪ . . .∪ rn.

The next result, about special families of non-trivial regions of ts, is inspired by a result
proved for the class of Elementary Net Systems in [13]. We have adapted this result here for
the context of ENL-systems by changing one of the original conditions that a family of regions
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should satisfy, but the implied result is the same: a family of regions that satisfy the conditions
of Theorem 6.3.5, treated as a set of conditions of the synthesised net, would generate a state
machine component of this net. Points 2 and 3 of the consequent of Theorem 6.3.5 guarantee
the satisfaction of Definition 2.1.3(1) and the point 1 of the consequent of Theorem 6.3.5
guarantees the satisfaction of Definition 2.1.3(2).

Theorem 6.3.5. Let R= {r1,r2, . . . ,rn} be a family of non-trivial regions of ts= (Q,A,q0),
where ri = (ini,ri,outi), i ∈ {1, . . . ,n}, satisfy the following conditions:

1. Every two different regions ri,r j ∈R are strongly compatible regions.

2. ∀ r̂= (în, r̂, ôut) ∈Rts : r̂ ̸∈R =⇒ (∃ri ∈R : r̂∩ ri ̸=∅).

Then:

1.
⋃

ri = Q;

2. ∀e ∈ E : |◦e∩R| ≤ 1 and |e◦∩R| ≤ 1;

3. ∀e ∈ E : e ∈ ◦ri ⇐⇒ ∃ j : e ∈ r j
◦.

Proof. 1. Suppose q ∈ Q \
⋃

ri. As all regions of R are pairwise strongly compatible
then there exists a region r= (in,r,out) = r1 ⊕s . . .⊕s rn, where r = r1 ∪ . . .∪ rn and
ri ∩ r j =∅ for different i, j ∈ {1, . . . ,n} (see Corollary 6.3.4(3)). Also, r̄ is a region
with r̄ =Q\{r1∪ . . .∪rn} (disjoint from all ri) and r̄ is non-trivial (q∈ r̄), contradicting
the second assumption that R must satisfy.

2. Suppose to the contrary that there are ri and r j in R such that ri, r j ∈ ◦e. Hence,
e ∈ outi ∩out j. So, for all transitions (q,U,q′) ∈ A, where e ∈U , we have q ∈ ri and
q ∈ r j (see Definition 2.1.6(R3)), but ri ∩ r j =∅ - a contradiction. The second part of
this point can be proved in a similar way.

3. Suppose e ∈ ◦ri. Then ri ∈ e◦ and consequently e ∈ ini. As, by definition, every event
e ∈ E occurs in at least one of the steps labelling the transitions of ts, we have a
transition (q,U,q′) ∈ A such that e ∈U . Therefore, from Definition 2.1.6(R4) we have
q ̸∈ ri and q′ ∈ ri. From Theorem 6.3.5(1), we have that ri = Q\

⋃
k∈{1,...,n}\{i} rk. So,

there is j ̸= i such that q ∈ r j and q′ ̸∈ r j (the sets of states of ri and r j are disjoint
as these regions are compatible). Hence, from Definition 2.1.6(R1), we have that
|U ∩ out j| = 1, meaning that there is ê ∈ U such that ê ∈ out j. Since ri and r j are
strongly compatible regions, we have e = ê. So, e ∈ out j, and therefore r j ∈ ◦e and
consequently e ∈ r j

◦. The converse implication can be proved in a similar way.
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The saturated ENL-system that is a solution to Problem 1 for a given ENLST-system
ts, enl = enllts, and is based on all non-trivial regions, is state machine decomposable
(see Definition 2.1.5), as due to Fact 7 every pair of complementary regions satisfies the
conditions of Theorem 6.3.5 and would form a state machine component of enl. Furthermore,
from Corollary 6.3.4 it follows that, similarly as for the class of Elementary Net Systems
(see [13]), the ENL-system obtained from enl by deleting all non-minimal regions following
Reduction Rule 2 is also state machine decomposable as every region can be represented as
a composition of minimal regions (w.r.t. ≺s) and selected subsets of Rmin

ts =Rmin,s
ts would

satisfy the conditions of Theorem 6.3.5.
As an example we can take the saturated ENL-system synthesised from the ENLST-system

in Figure 6.2(a), shown in Figure 6.2(b), and its minimised version shown in Figure 6.2(c).
The state machine components of the former ENL-system are generated by the following
subsets of conditions/regions:

r1 ⊕s r3 = (∅,Q,∅)

r2 ⊕s r5 ⊕s r6 = (∅,Q,∅)

r2 ⊕s r4 = (∅,Q,∅)

r7 ⊕s r5 = (∅,Q,∅)

r8 ⊕s r6 = (∅,Q,∅)

The minimised ENL-system in Figure 6.2(c) has the first two state machine components from
the list above.

6.4 A strategy to eliminate redundant regions

The three reduction rules give conditions for deleting one of the redundant regions at a time.
Therefore, we need a strategy to delete as many redundant regions as possible to obtain
a net, where all (or almost all) remaining regions are needed (essential). The regions are
redundant or essential only in the context of other regions. Different strategies would lead
to different sets of essential (or nearly essential) regions. Such sets of regions were called
in [20] admissible sets of regions.

As an example we can take the ENLST-system in Figure 6.3(a). Its non-trivial regions are:

r1 = (∅,{q0},{e, f}) r4 = r̄2 = (∅,{q0,q2},{e})
r2 = ({e},{q1},∅) r5 = r̄3 = (∅,{q0,q1},{ f})
r3 = ({ f},{q2},∅) r6 = r̄1 = ({e, f},{q1,q2},∅)



82 Minimisation of the synthesised nets

We observe that the region r6 = r̄1 can be deleted according to Reduction Rule 1 (as the
complement of region r1) or according to Reduction Rule 2 (as a non-minimal region:
r6 = r2 ⊕ r3).

q0

q1 q2

e f

(a)

r1

r2 r3

r4 r5

r6

e f

(b)

Fig. 6.3 An ENLST-system with two non-collocated events e and f (a); and the ENL-system
resulting from its synthesis (b).

When looking for a strategy for deleting redundant regions, we will take into consideration
the following criteria:

• Limiting as much as possible the non-determinism in the process of computing admis-
sible regions.

• Effectiveness of the strategy gauged in terms of the number of the removed regions.

• Efficiency of the strategy gauged in terms of time needed to compute a set of admissible
regions.

Our first attempt at formulating a strategy will be based on the first criterion listed above.
Reduction Rule 2 showed that all non-minimal regions are redundant 5, so we can eliminate
first the non-minimal regions. After this step, for a given ENLST-system, we obtain from
the unique set of regions, Rts, the unique set of minimal regions: Rmin

ts . The application of
Reduction Rule 1 and Reduction Rule 3 might not lead to a unique resultant set of regions.
We might decide to keep certain companion regions and delete other companion regions
in case of Reduction Rule 3. Similarly, we can keep both or one (random one) out of two
complementary regions. As, in general, the Reduction Rule 3, leads to fewer possible choices
of regions to delete, and might be even irrelevant in the case of thin step transition systems,
where there are no companion regions, we might decide that this rule should be applied

5Reduction Rule 2 uses operator ⊕ and it was proved in [28] for this operator, but from Corollary 6.3.4(1)
we have Rmin

ts = Rmin,s
ts , so it does not matter whether we use ≺ and ⊕, or ≺s and ⊕s, to define the set of

minimal regions.



6.4 A strategy to eliminate redundant regions 83

before the Reduction Rule 1, which can lead to many possible combinations of regions to
keep/delete. This strategy, called Strategy (2,3,1), can be defined as follows:

1. Use Reduction Rule 2 to delete all non-minimal regions.

2. Use Reduction Rule 3 to delete any redundant companion regions that might be present
among the minimal regions.

3. Use Reduction Rule 1 to delete any redundant complementary regions that might be
present after the first two steps of the strategy.

To check how good this strategy is from the second criterion point of view we consider a
set of ENLST-systems generated by nets composed of several sequential subsystems, where
all the events are co-located. Such systems have a lot of companion regions. We will call
them tsco−loc

i, j , where the index i denotes the number of sequential subsystems, and the index
j denotes the number of events in each of the line-like sequential subsystem. As an example
of such a step transition system we can see an ENLST-system tsco−loc

2,2 in Figure 6.4.

q0

q1

q2

{e, f}

{g,h}

(a)

e f

g h

(b)

Fig. 6.4 An ENLST-system tsco−loc
2,2 with co-located events e, f , g and h (a), and one of the

possible ENL-systems generating it (b).

Using the set of step transition systems tsco−loc
i, j (i = 2, . . . ,4; j = 2, . . . ,5), we compare

the effectiveness of region removal of Strategy (2,3,1) and Strategy (3,2,1) (Strategy (2,3,1)
with the first two steps reversed). The result of this comparison is presented in Table 6.2.

The results in Table 6.2 are not so surprising. The removal of non-minimal regions makes
only sense in the context of all non-trivial regions (as the first step of the strategy). When
removing companion regions, the algorithm processes groups of companion regions (each
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Table 6.2 Shows comparison between the effectiveness of Strategy (3,2,1) and Strategy
(2,3,1), where denotation x - y - z in the last two columns reports the number of remaining
regions after the first (x), the second (y) and the third (z) stage of the strategies.

ts |Q| |E| |Rts| Strategy (3,2,1) Strategy (2,3,1)

tsco−loc
2,2 3 4 16 12 - 6 - 6 8 - 6 - 6

tsco−loc
2,3 4 6 52 28 - 10 - 10 12 - 8 - 8

tsco−loc
2,4 5 8 160 60 - 12 - 12 16 - 10 - 10

tsco−loc
2,5 6 10 484 124 - 26 - 26 20 - 12 - 12

tsco−loc
3,2 3 6 30 22 - 11 - 11 15 - 11 - 11

tsco−loc
3,3 4 9 126 66 - 20 - 20 24 - 16 - 16

tsco−loc
3,4 5 12 510 190 - 52 - 51 33 - 21 - 21

tsco−loc
3,5 6 15 2046 546 - 147 - 143 42 - 26 - 26

tsco−loc
4,2 3 8 48 36 - 18 - 18 24 - 18 - 18

tsco−loc
4,3 4 12 248 140 - 48 - 47 40 - 28 - 28

tsco−loc
4,4 5 16 1248 540 - 165 - 159 56 - 38 - 38

tsco−loc
4,5 6 20 6248 2108 - 532 - 508 72 - 48 - 48

based on a shared set of states) separately from each other. From each group some subset
of regions may be removed, at random, according to Reduction Rule 3. Once some of the
minimal companion regions are removed (if we remove companion regions first), some of
the regions that were previously non-minimal would become minimal as it won’t be possible
to represent them as compositions of minimal regions using the remaining minimal regions.
Therefore, they won’t be deleted by the Reduction Rule 2, if it is applied after Reduction
Rule 3. The results in Table 6.2 show how great would be the loss of effectiveness if we used
Strategy (3,2,1) for ENLST-systems with a big number of companion regions.

While the Reduction Rule 2, applied first in our strategy, can be considered as a method
for eliminating non-minimal regions, non-minimal from the ‘state information’ point of
view, the Reduction Rule 3 can be understood as a method for eliminating regions that are
redundant from the ‘event information’ point of view. However, some subsets of companion
regions will remain after the application of Reduction Rule 3, because they are essential as
shown in the following results:

Fact 8. Let r= (in,r,out) be a non-trivial region of ts= (Q,A,q0) and let Rr ⊆Rr
ts be a set

of its companion regions (including r) that remained after the application of the Reduction
Rule 3 and let |Rr| ≥ 2. Then all the regions of Rr do not satisfy the same conditions of the
Reduction Rule 3.
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Proof. Suppose, r̂ ∈Rr and r̂ ̸= r. Furthermore, suppose that r does not satisfy condition
(6.1) of the Reduction Rule 3, and therefore we have:

∃ e ∈ in ∀ r′ = (in′,r,out ′) ∈Rr : r′ ̸= r =⇒ e ̸∈ in′ (6.3)

Since e ∈ in we have that there is a transition (q,U,q′) ∈ A such that e ∈U and q ̸∈ r and
q′ ∈ r. As r̂= (în,r, ôut) ∈Rr and r̂ ̸= r, we have from (6.3) that e ̸∈ în, and therefore there
must be ê ̸= e such that ê ∈U ∩ în. From Definition 2.1.6(R2) for r we have that ê ̸∈ in. As
r ∈Rr is an example of a companion region of r̂ (different than r̂), we can see that r̂ satisfies
(6.3) with r̂ taking the role of r and r taking the role of r′ in (6.3). Hence, r̂ does not satisfy
condition (6.1) of the Reduction Rule 3. Similar arguments can be used if r does not satisfy
condition (6.2) of the Reduction Rule 3.

Corollary 6.4.1. Let Rr = {r1,r2, . . . ,rn} ⊆ Rr
ts be a set of companion regions based on

r that remained after the application of the Reduction Rule 3. Then, for every region
ri = (ini,r,outi) of Rr that does not satisfy condition (6.1) (respectively (6.2)) of Reduction
Rule 3 there exists a unique Ei ⊆ ini (respectively E ′

i ⊆ outi) with events that are not present
in the in (respectively out) sets of other regions from Rr. So, companion regions of Rr are

“indexed" by the unique subsets of events of their in (respectively out) sets. We will call these
subsets of events in-indices (respectively out-indices) of r for the regions of Rr. ♦

Notice that sets Rr in Corollary 6.4.1 (and in Fact 8) might be equal to Rr
ts. For example,

for ts in Figure 6.2(a), we have R{q0} =R
{q0}
ts = {r1,r2}. Also, the indexing sets of events

do not need to be singleton sets (as, for example, set {e1,e2} for r2 of ts in Figure 6.2(a)).
We will further illustrate the above results using the ENLST-system in Figure 6.4(a). Its

non-trivial regions are listed below:

r1 = (∅,{q0},{e}) r̄1 = ({e},{q1,q2},∅)

r2 = ({e},{q1},{g}) r̄2 = ({g},{q0,q2},{e})
r3 = ({g},{q2},∅) r̄3 = (∅,{q0,q1},{g})
r4 = ({e},{q1},{h}) r̄4 = ({h},{q0,q2},{e})
r5 = ({h},{q2},∅) r̄5 = (∅,{q0,q1},{h})
r6 = (∅,{q0},{ f}) r̄6 = ({ f},{q1,q2},∅)

r7 = ({ f},{q1},{g}) r̄7 = ({g},{q0,q2},{ f})
r8 = ({ f},{q1},{h}) r̄8 = ({h},{q0,q2},{ f})

The implemented tool, after applying Reduction Rule 2, will delete 8 out of 16 regions,
leaving the minimal regions (r1 - r8). The set of minimal regions will be the same whether
they are defined w.r.t. ≺ or ≺s strict pre-order (see Corollary 6.3.4(1)) as every non-minimal
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region that can be expressed as a composition of compatible regions can be also expressed
as a composition of strongly compatible regions (see Proposition 6.3.3). For example,
r̄3 = r1 ⊕s r2 = r1 ⊕ r7, where the first two regions are strongly compatible, but the second
two regions are only compatible, but not strongly compatible. The algorithm that implements
Reduction Rule 3, when applied to this example, would delete two out of four regions
based on the set of states {q1} leaving either r2 and r8 or r4 and r7. The remaining pairs
of companion regions, based on sets of states {q0},{q1} and {q2}, will remain as they
are essential (having different in-indices or/and out-indices for the shared sets of states;
see Corollary 6.4.1). The Reduction Rule 1, the last to be used in Strategy (2,3,1), is not
applicable to this example as all the complementary regions of r1 - r8 were already deleted
as non-minimal regions (see the results for tsco−loc

2,2 in Table 6.2).
We will now show the workings of Strategy (2,3,1) on further examples. For the first

three examples we will list their sets of non-trivial regions and present the pictures of the
step transition systems involved with their saturated nets obtained in the synthesis procedure.
Also, we will show the screenshots from WORKCRAFT with the minimised nets for every
saturated net. Note that in WORKCRAFT screenshots, the regions’ (conditions’) names are
changed as follows: ri is written as ri and r̄i is written as r_i.

The first example to test Strategy (2,3,1) on is the ENLST-system in Figure 3.6, on p. 31
(see also the saturated net resulting from its synthesis in Figure 6.5).

r0

r̄0

r1

r2

r3

r̄3

r4

r̄4

r5

r̄5

r6

r̄6

p2p1 c1

c2

c3

c4

Fig. 6.5 An ENL-system resulting from the synthesis of the ENLST-system in Figure 3.6.

Its non-trivial regions are listed below:
r0 = ({p2},{q1,q2,q4,q5,q8,q9}),{c1}),
r1 = ({p1},{q0,q2,q3,q5,q7,q9},{p2}),
r2 = ({p2},{q1,q4,q6,q8,q10,q11},{p1}),
r3 = ({c2},{q0,q1,q2,q3,q4,q5,q10,q11},{c1}),
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r4 = ({c1},{q6,q7,q8,q9},{c3}),
r5 = ({c4},{q3,q4,q5,q6,q7,q8,q9,q11},{c2}),
r6 = ({c3},{q0,q1,q2,q10},{c4}),
r̄0 = ({c1},{q0,q3,q6,q7,q10,q11},{p2}),
r̄3 = ({c1},{q6,q7,q8,q9},{c2}),
r̄4 = ({c3},{q0,q1,q2,q3,q4,q5,q10,q11},{c1}),
r̄5 = ({c2},{q0,q1,q2,q10},{c4}),
r̄6 = ({c4},{q3,q4,q5,q6,q7,q8,q9,q11},{c3}).

All these 12 regions are minimal and all its companion regions, associated with various
sets of states, are essential (they won’t be removed by the application of Reduction Rule 3)
as they are ‘indexed’ by events c2 or c3. So, after first two steps of Strategy (2,3,1) our
tool reports that there are still 12 regions. The only minimisation of the synthesised net
is therefore due to the application of Reduction Rule 1, which can (non-deterministically)
remove some of the non-essential complementary regions. Figure 6.6 shows a screenshot
from WORKCRAFT of one of many possible outcomes of the last step of Strategy (2,3,1) when
applied to this example (note there are 8 conditions there). The ENL-system in Figure 1.1
on p. 4, which generates the ENLST-system in Figure 3.6, on p. 31, and has 7 conditions,
can also be returned by the tool for this example. Right now our tool does not contain any
algorithms that would allow us to target specific regions to remove/keep, when Reduction
Rule 1 is applied.

Fig. 6.6 Shows a screenshot from WORKCRAFT with a minimised ENL-system of Figure 6.5.
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Another interesting example to test Strategy (2,3,1) on is the ENLST-system in Figure 6.7
(see also the saturated net resulting from its synthesis in Figure 6.8). In this example there
are no non-minimal regions and no companion regions (all regions are based on different
sets of states as this ENLST-system is thin). Therefore after the first two steps of Strategy
(2,3,1) we still have all 12 initial non-trivial regions listed below:

r0 = ({e},{q14,q28,q30,q15,q17,q18,q23,q11,q1,q26,q32,q7,q19,q25,q27,q16,q4,

q10,q22,q29}),{o}),
r1 = ({o},{q28,q21,q8,q2,q31,q18,q23,q11,q26,q13,q32,q5,q20,q19,q25,q27,q16,

q9,q24,q10,q29},{g}),
r2 = ({e},{q8,q2,q17,q18,q11,q1,q32,q5,q7,q19,q25,q4,q10,q24},{g,h}),
r3 = ({ f},{q21,q8,q2,q0,q23,q11,q1,q26,q5,q7,q25,q27,q4,q10,q22},{g,h}),
r4 = ({ f},{q14,q21,q30,q8,q18,q31,q17,q23,q13,q32,q7,q12,q25,q27,q4,q10,q24,

q22,q29},{i}),
r5 = ({i},{q28,q30,q15,q21,q8,q31,q17,q11,q26,q32,q5,q7,q20,q12,q19,q25,q27,

q6,q24,q22},{h}),
r̄0 = ({o},{q3,q21,q8,q0,q2,q31,q13,q5,q20,q12,q9,q6,q24},{e}),
r̄1 = ({g},{q3,q14,q12,q30,q15,q17,q0,q1,q4,q6,q22,q7},{o}),
r̄2 = ({g,h},{q3,q14,q28,q30,q15,q21,q0,q31,q23,q26,q13,q20,q12,q27,q16,q9,

q6,q22,q29},{e}),
r̄3 = ({g,h},{q3,q14,q28,q30,q15,q31,q17,q18,q13,q32,q20,q12,q19,q16,q9,q6,

q24,q29},{ f}),
r̄4 = ({i},{q3,q28,q15,q0,q2,q11,q1,q26,q5,q20,q19,q16,q9,q6},{ f}),
r̄5 = ({h},{q3,q14,q18,q2,q0,q23,q1,q13,q16,q4,q9,q10,q29},{i}).

The only minimalisation of the synthesised net in Figure 6.8 is therefore due to the
application of Reduction Rule 1, which can (non-deterministically) remove some of the
non-essential complementary regions. Figure 6.9 shows a screenshot from WORKCRAFT

of one of many possible outcomes of the last step of Strategy (2,3,1) when applied to this
example.

The third example we will consider is an ENLST-system depicted in Figure 3.3(a), on
p. 22. The saturated net solution resulting from its synthesis is shown in Figure 3.3(b). Its
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Fig. 6.7 An ENLST-system, where there are three pairs of co-located events with different
localities: e and f ; o and i, and g and h.

non-trivial regions are:

r0 = ({g,h},{q0,q2,q4,q6,q7},{e}), r̄0 = ({e},{q1,q3,q5},{g,h}),
r1 = ({e},{q1,q3,q5,q6,q7},{g}), r̄1 = ({g},{q0,q2,q4},{e}),
r2 = ({g,h},{q2,q4,q5,q6},{ f}), r̄2 = ({ f},{q0,q1,q3,q7},{g,h}),
r3 = ({ f},{q3,q4,q5,q7},{h}), r̄3 = ({h},{q0,q1,q2,q6},{ f}),
r4 = (∅,{q0,q1,q2,q3,q4,q5},{h}), r̄4 = ({h},{q6,q7},∅).

The Reduction Rule 2 applied to this example would eliminate three non-minimal regions
(r0, r1 and r4). There are no companion regions in this ENLST-system (all regions are
based on different sets of states as this ENLST-system is thin). Therefore, after the first two
steps of Strategy (2,3,1) we will have seven regions. Figure 6.10 shows a screenshot from
WORKCRAFT of one of many possible outcomes of the Strategy (2,3,1), when applied to this
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Fig. 6.8 The ENL-system resulting from the synthesis of the ENLST-system in Figure 6.7.

Fig. 6.9 Shows a screenshot from WORKCRAFT with a minimised ENL-system of Figure 6.8.
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example. We can see that Reduction Rule 1 deleted further two regions, so the minimised
net has five regions/conditions. It can be easily verified that region r̄4 = ({h},{q6,q7},∅) is
still redundant. This is an example that Strategy (2,3,1) might not delete all the redundant
regions/conditions.

Fig. 6.10 Shows a screenshot from WORKCRAFT with a minimised ENL-system of Fig-
ure 3.3(b).

The last example of this section uses a very large ENLST-system (tsser−cl
2,2 ) and therefore

we only show the initial ENL-system we used to generate it, as well as the minimised net after
Strategy (2,3,1) was applied to the saturated ENL-system that resulted from the synthesis
procedure. The initial ENL-system, depicted in Figure 4.10, on p. 46, models interactions
between two servers and two clients with each client and each sever residing in a different
locality. The minimising algorithms of our tool reduced the number of the non-trivial regions
from 256, in the saturated ENL-system, to 16, in its minimised version (see Figure 6.11).

6.5 Algorithms for the minimisation

The first algorithm considered, Algorithm 11, is the algorithm that implements Reduction
Rule 2. From Definition 6.2.1 we have that a non-trivial region r = (in,r,out) is not a
minimal region iff there exists a region r̂= (în, r̂, ôut) ∈Rts such that r̂≺ r. Hence we have
the following implication:

A region r is not a minimal region =⇒ ∃ r̂ ∈Rts : r̂ ⊂ r.
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Fig. 6.11 Shows a screenshot from WORKCRAFT with a minimised ENL-system of Fig-
ure 4.10.

Writing the above in an alternative form we have:

∀ r̂ ∈Rts : r̂ ̸⊂ r =⇒ r is a minimal region.

This test will identify some of the minimal regions. However, there might be some minimal
regions that do not satisfy the antecedent of this implication. For example, region r3 =

({e},{q1,q2},∅) of the ENLST-system in Figure 6.2(a) is minimal as it is not a composition
of any other two non-trivial regions, but its set of states {q1,q2} is a superset of the sets
of states of the two regions: r5 and r6. So, this test is not offering an easy to implement
condition for identifying minimal regions. Therefore, instead of calculating minimal regions
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directly, Algorithm 11 calculates the set of non-minimal regions (R⊕
ts =R⊕s

ts ) first and then
computes the difference Rts \R⊕

ts.
Algorithm 11 calls Algorithms 12 and 13. Algorithm 12 is called to decide whether two

regions, r and r′, are compatible. It is called twice in Algorithm 11, for pairs (r,r′) and (r′,r).
Algorithm 13 is called in Algorithm 11 to compute the composition r⊕ r′, where there is a
need to calculate the set H for r⊕ r′.

Algorithm 11 Using reduction rule 2 for a given ST-system ts = (Q,A,q0) to delete all
non-minimal regions from Rts (see Reduction Rule 2).

1: function APPLY_REDUCTION_RULE_2(Rts)
2: initialise Rmin

ts to ∅ ◃ Rmin
ts is the set of minimal regions of ts

3: initialise R⊕
ts to ∅ ◃ R⊕

ts is the set of non-minimal regions of ts
4: for every r= (in,r,out) ∈Rts do
5: for every r′ = (in′,r′,out ′) ∈Rts do
6: if r and r′ are compatible regions then ◃ where r ̸= r′, see Algorithm 12
7: calculate H ◃ see Algorithm 13
8: calculate r⊕ r′ = (in∪ in′ \H,r∪ r′,out ∪out ′ \H)
9: add r⊕ r′ to R⊕

ts

10: Rmin
ts = Rts \R⊕

ts
11: return Rmin

ts

Before we present Algorithm 12, we need to introduce additional notations for two
specific sets of transitions in an ENLST-system ts= (Q,A,q0). For a region r= (in,r,out) of
ts we denote:

Uout
e = {(q,U,q′) ∈ A | e ∈ out ∩U};

U in
e = {(q,U,q′) ∈ A | e ∈ in∩U}.

Algorithm 12 Checking whether region r = (in,r,out) ∈ Rts is compatible with region
r′ = (in′,r′,out ′) ∈Rts (ts= (Q,A,q0)).

1: function IS_FIRST_COMPATIBLE_WITH_SECOND(r,r′)
2: initialise result to false
3: if r∩ r′ =∅ then
4: initialise count1 to 0
5: for every e ∈ out do
6: initialise Uout

e to ∅
7: initialise hold1 and hold2 to false
8: add all the transitions (q,U,q′) ∈ A such that e ∈U to Uout

e
9: if q′ ∈ r′ for all transitions from Uout

e then
10: hold1 = true
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11: if q′ /∈ r′ for all transitions from Uout
e then

12: hold2 = true
13: if hold1 ∨hold2 then
14: ++count1
15: if count1 == |out| then
16: initialise count2 to 0
17: for every e ∈ in do
18: initialise U in

e to ∅
19: initialise hold3 and hold4 to false
20: add all the transitions (q,U,q′) ∈ A such that e ∈U to U in

e
21: if q ∈ r′ for all transitions from U in

e then
22: hold3 = true
23: if q /∈ r′ for all transitions from U in

e then
24: hold4 = true
25: if hold3 ∨hold4 then
26: ++count2
27: if count2 == |in| then
28: result = true
29: return result

Before we present Algorithm 13, which calculates the set H that is required to compute
non-minimal regions, we need to introduce additional notations for two specific sets of events.
For a region r= (in,r,out) of an ENLST-system ts= (Q,A,q0) we denote:

Hr = {e ∈ E | ∀(q,U,q′) ∈ A : (e ∈U ⇒ q′ ∈ r)};
rH = {e ∈ E | ∀(q,U,q′) ∈ A : (e ∈U ⇒ q ∈ r)}.

Algorithm 13 Calculating H, a set of events that belong only to steps labelling transitions
hidden in the set of states r∪ r′ of the composition region r⊕ r′ of two compatible regions
r = (in,r,out) and r′ = (in′,r′,out ′) of ts= (Q,A,q0).

1: function CALCULATE_H(r,r′)
2: initialise H, Hr, rH, Hr′, and r′H to ∅
3: for every e ∈ E do
4: initialise check1,check2,check3,check4 and belongs to true
5: for every transition (q,U,q′) ∈ A do
6: if e ∈U then
7: if q′ ̸∈ r then
8: check1 = false
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9: if q ̸∈ r then
10: check2 = false
11: if q′ ̸∈ r′ then
12: check3 = false
13: if q ̸∈ r′ then
14: check4 = false
15: else
16: belongs = false
17: if belongs then
18: if check1 then
19: add e to Hr
20: if check2 then
21: add e to rH

22: if check3 then
23: add e to Hr′

24: if check4 then
25: add e to r′H

26: calculate H = Hr∩ r′H∪Hr′∩ rH

27: return H

Before we present Algorithm 14 and Algorithm 15, which implement Reduction Rule 3,
we need to introduce additional notations. For an ENLST-system ts = (Q,A,q0) on E we
denote:

Rr
ts = {r ∈Rmin

ts | ∃ in,out ⊆ E : r= (in,r,out)};

R = {r ⊂ Q | ∃ r ∈Rmin
ts : r= (in,r,out)};

Rcomp
ts = {Rr

ts ⊂Rmin
ts | r ∈ R}.

In the above, Rr
ts is a set of regions based on the set of states r (note that these regions are

selected from the set of minimal regions here rather than from Rts); R comprises all possible
sets of states of minimal regions of ts; and Rcomp

ts is a set of sets of companion regions based
on different sets of states.
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Algorithm 14 Using reduction rule 3 to delete redundant companion regions that might be
present among the minimal regions Rmin

ts (see Reduction Rule 3).

1: function APPLY_REDUCTION_RULE_3(Rmin
ts )

2: Rcomp
ts = get the set of sets of companion regions from Rmin

ts ◃ see Algorithm 15
3: for every set of companion regions Rr

ts ∈Rcomp
ts do

4: for every r= (in,r,out) ∈Rr
ts do

5: initialise inset and outset to ∅
6: for every r′ = (in′,r,out ′) ∈Rr

ts do ◃ where r′ ̸= r
7: add elements of in′ to inset
8: add elements of out ′ to outset

9: if in ⊆ inset and out ⊆ outset then
10: delete r from Rr

ts and from Rmin
ts

11: return Rmin
ts ◃ the returned set is a subset of the original set Rmin

ts with redundant
companion regions deleted

Algorithm 15 Identifying sets of companion regions in the set of minimal regions Rmin
ts if

there are any (see Reduction Rule 3).

1: function GET_COMPANION_REGIONS(Rmin
ts )

2: initialise Rcomp
ts to ∅ ◃ Rcomp

ts is a set of sets of companion regions, each based on a
different set of states and having at least 2 elements

3: for every r= (in,r,out) ∈Rmin
ts do

4: initialise Rr
ts to ∅ ◃ Rr

ts is a set of companion regions based on r
5: for every r′ = (in′,r′,out ′) ∈Rmin

ts do ◃ where r′ ̸= r
6: if r′ == r then
7: add r′ to Rr

ts

8: if Rr
ts ̸=∅ then

9: add r to Rr
ts

10: add Rr
ts to Rcomp

ts ◃ duplicate elements will be rejected by Rcomp
ts

11: return Rcomp
ts

The next two algorithms considered, Algorithm 16 and Algorithm 17, are the algorithms
that implement Reduction Rule 1 to delete any redundant complementary regions that might
be present among the minimal regions Rmin

ts after deleting redundant companion regions, and
to check whether the synthesised net enllts is still an ENLl-system after removal of some
redundant regions.
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Algorithm 16 Using reduction rule 1 to delete any redundant complementary regions that
might be present among the minimal regions Rmin

ts after deleting redundant companion
regions.

1: function APPLY_REDUCTION_RULE_1(Rmin
ts ,Rts) ◃ Rmin

ts here is a subset of the
original set Rmin

ts with redundant companion regions deleted
2: initialise R

(r,r̄)
ts to empty map ◃ R

(r,r̄)
ts is a map containing pairs of complementary

regions of Rts

3: fill in R
(r,r̄)
ts with pairs of complementary regions of Rts

4: for every pair (r, r̄) ∈R
(r,r̄)
ts do

5: if r ∈Rmin
ts and r̄ ∈Rmin

ts then
6: delete r̄ from Rmin

ts

7: if enllts based on Rmin
ts is not an ENLl-system then ◃ see Algorithm 17

8: add r̄ to Rmin
ts

9: delete r from Rmin
ts

10: if enllts based on Rmin
ts is not an ENLl-system then

11: add r to Rmin
ts

12: return Rmin
ts ◃ Rmin

ts here is a subset of the original set Rmin
ts with redundant

companion and complementary regions deleted

Algorithm 17 Checking whether the synthesised net enllts is still an ENLl-system after
removal of some redundant regions.

1: function IS_ENLl_SYSTEM(Rts) ◃ the argument is Rts or its subset
2: initialise result to true
3: for every e ∈ E do
4: initialise ◦e and e◦ to ∅
5: for every r= (in,r,out) ∈Rts do
6: if e ∈ out then
7: add r to ◦e
8: if e ∈ in then
9: add r to e◦

10: if ◦e =∅∨ e◦ =∅ then
11: result = f alse
12: break
13: return result

6.6 Results of the experiments

Table 6.3 below shows the comparison between the efficiency of Strategy (2,3,1) and Strategy
(3,2,1). For this comparison we use the ST-systems from the tsco−loc class of ST-systems
(see pp. 83-84 for the description of these systems). The times in columns 7 and 8 include
the time of verifying with Method II, whether the saturated net is a solution to the synthesis
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problem (see col. 6), which in turn includes the time of executing Algorithm 1 to derive
all non-trivial regions for each of the selected ST-systems (see col. 4). Overall, the results
in Table 6.3 show that the times for Strategy (2,3,1) are worse than the times for Strategy
(3,2,1), but this is probably a consequence of Strategy (2,3,1) taking extra time to remove
more regions. As a result, Strategy (2,3,1) is still better, because it has significantly better
effectiveness in region removal (see Table 6.2) and time increases are not too big (no greater
than 10 times).

Table 6.3 Shows: the execution time taken to derive all non-trivial regions of selected ST-
systems (col. 4); the number of all non-trivial regions (col. 5); the time needed to verify, with
Method II, whether the saturated net is a solution to the synthesis problem (col. 6); and the
time needed to minimise the net following Strategy (2,3,1) (col. 7) and Strategy (3,2,1) (col.
8).

tsco−loc |Q| |E| Extracting Rts |Rts| Verifying enllts Strategy (2,3,1) Strategy (3,2,1)

tsco−loc
2,2 3 4 5.5 ms 16 14.3 ms 17.3 ms 16.7 ms

tsco−loc
2,3 4 6 8.1 ms 52 20.8 ms 35.3 ms 33.1 ms

tsco−loc
2,4 5 8 13.3 ms 160 34.3 ms 121.4 ms 56.6 ms

tsco−loc
2,5 6 10 51.1 ms 484 115.9 ms 911.4 ms 184.3 ms

tsco−loc
3,2 3 6 6.4 ms 30 17.2 ms 30.5 ms 28.0 ms

tsco−loc
3,3 4 9 12.6 ms 126 36.0 ms 78.2 ms 38.4 ms

tsco−loc
3,4 5 12 51.2 ms 510 107.4 ms 1208.4 ms 257.4 ms

tsco−loc
3,5 6 15 298.6 ms 2046 1196.8 ms 30968.4 ms 3824.2 ms

tsco−loc
4,2 3 8 7.6 ms 48 20.4 ms 35.3 ms 32.1 ms

tsco−loc
4,3 4 12 8.8 ms 248 48.6 ms 260.2 ms 113.8 ms

tsco−loc
4,4 5 16 86.2 ms 1248 419.9 ms 10966.7 ms 2593.9 ms

tsco−loc
4,5 6 20 2267.4 ms 6248 9227.9 ms 748713.5 ms 75694.3 ms

Table 6.4 below shows the efficiency and effectiveness of strategy (2,3,1) by using ST-
systems generated by nets modelling server-client systems like the net in Figure 4.10 on p.
46 (tsser−cl ST-systems). Column 7 shows the time needed to minimise the net following
Strategy (2,3,1), which includes the time for extraction of all non-trivial regions (see col. 4),
and the time to verify, whether the saturated net is a solution to the synthesis problem (see
col. 6). Note that the times in column 6 include the times in column 4. Column 8 shows
the number of the remaining regions after each step of the Strategy (2,3,1). Considering
the growing sizes and complexities of the ST-systems used in this experiment, we found the
results encouraging.
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Table 6.4 Shows: the execution time taken to derive non-trivial regions of selected ST-systems
(col. 4); the number of all non-trivial regions (col. 5); the time needed to verify, with Method
II, whether the saturated net is a solution to the synthesis problem (col. 6); the time needed to
minimise the net following Strategy (2,3,1) (col. 7); and the number of the remaining regions
after each step of the Strategy (2,3,1) (col. 8).

tsser−cl |Q| |E| Extracting Rts |Rts| Verifying enllts Strategy (2,3,1) Remaining regions

tsser−cl
1,2 15 8 0.0114 s 30 0.0402 s 0.0464 s 9-9-9

tsser−cl
1,3 54 12 0.2724 s 50 0.3675 s 0.3721 s 13-13-13

tsser−cl
2,2 47 16 0.9029 s 256 1.1693 s 1.4993 s 16-16-16

tsser−cl
2,3 176 20 24.0480 s 276 24.8932 s 27.5769 s 20-20-20

tsser−cl
3,2 97 24 122.4600 s 2050 127.7800 s 173.8000 s 23-23-23

tsser−cl
3,3 1446 36 68806.3500 s 3094 68972.3000 s 73123.6500 s 35-35-35

tsser−cl
4,2 165 32 61182.4100 s 16388 61427.6900 s 66330.6800 s 30-30-30





Chapter 7

Case studies

This chapter discusses the selected case studies that have been used throughout our research
to test and check the correctness and performance of the implemented algorithms in order to
evaluate and assess the capability of our tool.

The initial pool of case studies and the taxonomy used for them was described in [2]. This
pool was growing as the research progressed and more interesting examples were identified.
We describe the taxonomy in the next section.

7.1 Taxonomy of case studies

In the course of our research we considered many examples of Petri nets and step transition
systems. The analysis usually started by looking at an example in its net form: ENL-system
form. However, the synthesis problems for ENL-systems, the problems for which we designed
our algorithmic solutions, take step transition systems as inputs. Therefore, the classification
of case studies that was initially done for ENL-systems is presented in Table 7.1 from the
step transition systems’ point of view.

The classification takes into consideration the following characteristics of an ST-system6:

1. The co-location relation l used for its events, which can be defined in three possible
ways:

(a) All events of the ST-system have different localities:

l =
⋃
e∈E

{e}×{e}.

6Definition 2.1.1 of a step transition system does not include a co-location relation, but it is important in all
our synthesis procedures.
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(b) All events of the ST-system share one locality:

l = E ×E.

(c) There are several localities into which the events of the ST-system are partitioned
into, with at least one locality containing more than one event:

l =
k⋃

i=1

Ei ×Ei,

where E =
k⊎

i=1

Ei and 1 < k < |E| and for every i, 1 6 i 6 k, Ei denotes a subset

of events from E that share one locality.

2. The conflicts between events from E, i.e., whether the ST-system is conflict-free or not
(see the definition of conflicts in an ST-system on p. 10).

3. The structure of the ST-system, i.e., whether it is thin or not (see the definition of thin
ST-systems on p. 10).

The table below shows the classification of the selected ST-systems used in our research.
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Table 7.1 Shows the classification of the selected examples of ST-systems that have been
used throughout our research as case studies.

ts Figure ts is thin ts has conflict l=
⋃
e∈E

{e}×{e} l= E ×E l=
k⋃

i=1

Ei ×Ei

ts1 Figure 3.5 NO YES NO YES NO

ts2 Figure 3.3 YES YES NO NO YES

ts3 Figure 3.1 YES NO NO NO YES

ts4 Figure 3.6 NO NO NO NO YES

ts5 The ST-system generated by YES NO NO NO YES
the ENL-system in Figure 3.7

ts6 Figure 5.1(a) NO YES NO NO YES

ts7 Figure 5.2(a) YES YES NO NO YES

ts8 Figure 5.6 YES YES NO NO YES

ts9 The ST-system generated by YES YES NO NO YES
the ENL-system in Figure 4.10

tsi, j Extended ST-systems of ts5 YES NO NO NO YES

tsco−loc
i, j Extended ST-systems of the NO NO NO YES NO

ST-system in Figure 2.1(a)

tsser−cl
i, j Extended ST-systems of ts9 YES YES NO NO YES

7.2 Benchmarks and the strategy for experiments

In order to evaluate our tool to make sure that all the involved algorithms work and derive
the required results we used the following strategy for testing and experiments. First, we
identified small examples of ENL-systems to be used as case studies. They were chosen
specifically to represent different categories of ENL-systems, and were used for testing and
checking the functional correctness of the algorithms. Then we extended some of these
examples to build benchmarks of ENL-systems for testing the performance efficiency of the
developed algorithms.
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7.2.1 Checking the correctness of algorithms

Checking the correctness of algorithms is essential to prove that our tool is reliable and
delivers the expected results. So, we used the small examples as input into the tool to perform
tests and then compared the obtained results with the hand-computed results.

Algorithm 1 was the first algorithm we tested to check whether it computes correctly all
non-trivial regions as expected (see Chapter 3). Figure 3.4 on p. 30, for example, shows the
screenshot from WORKCRAFT with the extracted non-trivial regions of the ENLST-system ts2

in Figure 3.3(a), on p. 22, which confirmed that Algorithm 1 generated correctly all the
expected regions for ts2. We tested Algorithm 1 using all the examples in our pool of
examples, but ts2 was especially important here as it was a counterexample showing us that
the optimisation in Algorithm 1 based on ignoring thick transitions cannot be applied to all
thin ST-systems (ts2 is thin).

Next, we tested the implementation of Method I and Method II to check the correctness
of the two approaches for the synthesis procedure (see Chapter 4). Method I involves two
algorithms: Algorithm 2 and Algorithm 3. The latter is checking axioms A1–A4 for a
candidate ST-system. We tested this algorithm on various examples and showed the positive
output for an ST-system satisfying all four axioms in Figure 4.2, on p. 39, and the negative
outputs for ST-systems that violate one of the axioms in Figures 4.3, 4.4, 4.5 and 4.6, on pp
40-41. Method II involves three algorithms: Algorithm 2, Algorithm 4, and Algorithm 5.
The most important here is Algorithm 4, which tests whether the ST-system generated by the
synthesised net is isomorphic to the initial ST-system used as an input. We showed, as an
example, the output for the positive case in Figure 4.7, and the output for the negative case in
Figure 4.8, on p. 43. The experimental results showed that all algorithms implemented to
apply Method I and Method II for the synthesis procedure worked correctly on examples
from our pool of examples.

Chapter 5 describes the results of testing and checking the correctness of the algorithms
involved in the synthesis procedure of ENL/LC-systems, for which one can calculate a
canonical co-location relation lts

min from which any other suitable co-location relations can
be derived. The most important algorithm of this chapter is Algorithm 7 that calculates lts

min

and decides whether an ST-system is synthesisable to an ENL/LC-system or not. Identifying
the ST-systems ts6 and ts7 (in Figures 5.1(a) and 5.2(a) on p. 50) not only allowed us to
test the outcome for one of the conditional branches of the algorithm, but also helped us to
establish a theoretical result that the class of ENL/LC-systems is a proper subclass of the class
of ENL-systems.

Finally, we tested the correctness of algorithms for the minimisation of the synthesised
nets (see Chapter 6). To test Algorithms 11, 12, and 13, which implement Reduction
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Rule 2 (aimed at the elimination of non-minimal regions), we used all the examples in our
pool of examples. At this testing stage, the most important example was the ENLST-system in
Figure 6.2(a), on p. 68. The identification of this example was a part of the work on proving
properties of the composition operator ⊕, which is vital for the definition of minimal regions.
The ⊕ operator ( introduced originally in [28]) appeared to be not associative. This example
was important for the introduction of the new composition operator ⊕s and the new definition
of minimal regions. Figure 7.1 shows a screenshot from WORKCRAFT when we used the
ENLST-system in Figure 6.2(a) to obtain its saturated synthesised net and the reduced net
that resulted from applying to it the Reduction Rule 2.

Fig. 7.1 A screenshot from WORKCRAFT showing the ENLST-system from Figure 6.2(a); the
ENL-system resulting from its synthesis; and the reduced ENL-system that uses only minimal
regions (only Reduction Rule 2 applied).

To test Algorithms 14 and 15, which implement Reduction Rule 3 ( aimed at the elimi-
nation of redundant companion regions) we used all the examples in our pool of examples,
but the most important of them were two sets of examples. The first of them contained thin
ST-systems that have no companion regions as all their regions are based on different sets of
states. The second important set of test examples was the set of tsco−loc

i, j ST-systems, where
members have a lot of companion regions. Figure 7.2 shows a screenshot from WORKCRAFT

with the results for the ENLST-system tsco−loc
2,2 from Figure 6.4(a), on p. 83. Note that the

resultant reduced ENL-system does not need to be unique. Figure 7.3 shows a screenshot
from WORKCRAFT for tsco−loc

2,2 with a different resultant reduced net.
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Fig. 7.2 A screenshot from WORKCRAFT showing the ENLST-system tsco−loc
2,2 from Fig-

ure 6.4(a); the ENL-system resulting from its synthesis; and one of the possible reduced
ENL-systems generating it obtained by removing a set of redundant companion regions (only
Reduction Rule 3 applied).

Fig. 7.3 A screenshot from WORKCRAFT showing the ENLST-system tsco−loc
2,2 from Fig-

ure 6.4(a); the ENL-system resulting from its synthesis; and one of the possible reduced
ENL-systems generating it obtained by removing a set of redundant companion regions (only
Reduction Rule 3 applied).
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To test Algorithms 16 and 17, which implement Reduction Rule 1 ( aimed at the elimina-
tion of redundant complementary regions) we used all the examples in our pool of examples.
The application of Reduction Rule 1 might lead to many versions of smaller nets as shown in
screenshots from WORKCRAFT in Figure 6.6, on p. 87, and Figure 7.4, where the Reduction
Rule 1 is applied to the ST-system ts4 in Figure 3.6, on p. 31. Some of the resultant nets for
this example might be easier to understand, while other might be more different to interpret,
when we analyse them as models of concurrent systems.

Fig. 7.4 A screenshot from WORKCRAFT showing ST-system ts4 from Figure 3.6; and one of
the possible reduced ENL-systems generating it obtained by removing a set of complementary
regions (only Reduction Rule 1 applied).

7.2.2 Checking the efficiency of algorithms

The experimental results allow us to analyse the performance efficiency of our tool and enable
us to compare the execution time and memory consumption for all algorithms implemented
to build our tool. These comparisons provide good optimization opportunities for developing
all algorithms. To check the efficiency of algorithms we built benchmarks of ENL-systems
with larger size and rising complexity that are described below.

There are three selected classes of nets/ST-systems. In the first class, we have ST-systems
tsi, j generated by nets composed of several sequential subsystems, where every locality
represents a sequential subsystem, and there is no conflict between events. Figure 2.2, on p.
14, shows the simplest example of such a system, ts2,1, and the ST-system ts3,3 generated by
the ENL-system in Figure 3.7, on p. 32, shows how we extended them. We used this class of
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examples to obtain the experimental results of comparing the execution times of Algorithm 1
and Algorithm 1∗ as shown in Table 3.2 (see Chapter 3), and comparing the execution times
of Algorithm 1 and Algorithm 7 as shown in Table 5.1 (see Chapter 5).

In the second class of ST-systems, we have ST-systems tsco−loc
i, j generated by nets com-

posed of several sequential subsystems, where all events share the same locality, and there
is no conflict between events. The smallest example of such a system, tsco−loc

2,1 , is shown
in Figure 2.1, on p. 14, and Figure 6.4, on p. 83, shows the ENLST-system tsco−loc

2,2 as an
extended example. Such systems have a lot of companion regions, so we used them to check
the efficiency of algorithms that implement Reduction Rules 1, 2, and 3. We used these
systems to compare the effectiveness of Strategy (3,2,1) and Strategy (2,3,1), and to compare
the efficiency of Strategy (3,2,1) and Strategy (2,3,1). The results of these comparisons are
presented respectively in Table 6.2 and Tables 6.3 (see Chapter 6).

In the third class of ST-systems, we have the server-client ST-systems, tsser−cl
i, j , which

contain conflicts events. The ENL-system generating a small example from this class, tsser−cl
2,2 ,

is shown in Figure 4.10, on p. 46. We used this class of examples to test the efficiency
of the algorithms that implement Method I and Method II for the synthesis procedure (see
Section 4.1) in order to see how their performance scale with the increasing sizes of inputs.
These experimental results are summarised in Section 4.1 Table 4.1 (see Chapter 4). In
addition, we used these examples to show the effectiveness and the efficiency of Strategy
(2,3,1) as shown in Table 6.4 (see Chapter 6).



Chapter 8

The WORKCRAFT framework and the
implemented tool

This chapter describes a tool that implements existing and new theoretical results for the
synthesis of ENL-systems.The new theoretical results were proved to support the development
of algorithms in many ways: to justify the optimisations used in their implementations (see,
for example, Chapter 3); to show the existence of several approaches for solving the same
problems (Chapter4); to establish some important properties of step transition systems
that were used as inputs for algorithms (see, for example, Chapter 5) or to establish some
important properties of regions to reason about the net minimisation strategies (Chapter 6).
The algorithms were implemented within a framework called WORKCRAFT [39, 38, 41].

8.1 The WORKCRAFT framework

The tool has been developed and implemented as a Java plugin within WORKCRAFT software
framework. The WORKCRAFT is a collection of opensource tools for design, capturing, visual
editing, simulation, synthesis, and verification of graph models. It supports a wide range
of popular graph formalisms in the field of concurrent systems design, such as Petri nets,
data-flow structures, gate-level circuits, etc. All such formalisms have an underlying static
graph structure. Their semantics are defined using additional entities, e.g. tokens or node-arc
states, which together form the overall state of the system. The similarities in notation allow a
number of basic operations on these formalisms, such as editing, visualisation, serialisation 7,
and translation from one formalism into another, to be generalised. More complex operations
on the models can also be utilised, such as interfacing one model type with another. This

7WORKCRAFT provides an automatic serialisation facility for all models, i.e., , saving a new model plug-in
into disk without effort from the developer to add additional code [38].
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enables the researchers to model software and hardware systems using the most appropriate
formalism, while still retaining the ability to simulate and analyse the overall system. In
addition, WORKCRAFT provides a plugin-based framework for researchers who would like to
define, model, and analyse new model types. Its plugin based architecture makes it an easily
extensible and very flexible environment [39, 48]. A detailed WORKCRAFT description and
manual can be found in [38].

WORKCRAFT is used for different purposes, such as education, research, and industrial
circuit design. Therefore there are several categories of users: undergraduate students,
academics, researchers, PhD students, developers, and industrial engineers. Since using
WORKCRAFT makes it feasible for the user to harness the power of research tools it has been
used and is planned to be used, in several research proposals as a valuable framework to solve
and develop solutions for the problems stated in the project proposals [41, 30]. Furthermore,
the application areas of WORKCRAFT are wide-ranging: from modelling concurrent systems
and biological systems to designing asynchronous circuits and investigating crimes. For
instance, WORKCRAFT was used to capture the behaviour of concurrent systems such as
vending machines as Finite State Machines (FSM) [41]; to formally specify and derive the
implementation of Speed-Independent (SI) circuits [43]; to specify and explore processor
Instruction Set Architectures (ISAs); and synthesise efficient hardware implementations
for the microcontrollers [31, 41]. Also, WORKCRAFT was used for investigating accidents.
The Structured Occurrence Nets, SON model, was used for modelling and capturing the
details of the Ladbroke Grove rail crash [47, 41, 30]. Also, WORKCRAFT has attracted
industrial interest and it is used by several hardware design companies to develop real-life
electronic circuits. From their point of view it is cheaper to use WORKCRAFT to check the
correctness of the specifications of the electronic circuits and then to synthesise their Petri
net models (correct by design) rather than developing electronic circuits and then testing
their behaviour [41, 42, 29].

We took advantage of the WORKCRAFT plugin based architecture to implement our tool
support for the synthesis of ENL-systems. In the next section, we describe the backend and
frontend tools of our developed algorithms.

8.2 SYNTHCRAFT – a tool for synthesising ENL-systems

To use WORKCRAFT framework, one requires Java JDK 8 or later version, as well as installs
and needs to include the WORKCRAFT library to a Java path. More importantly, Eclipse
IDE [46] was used as an integrated environment for developing and debugging WORKCRAFT

graph models [48]. By having such development environment, it was possible to implement
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our designed algorithms as WORKCRAFT plugins. As the synthesis procedure involves two
different graph models, ENL-systems and ST-systems, we built SYNTHCRAFT tool, which
introduced two plugins into WORKCRAFT: one to represent ENL-systems, and another to
represent ST-systems.

Introducing the new two plugins into the WORKCRAFT was essential for implementing
our synthesis procedures. The main reason was that the existing net models in WORKCRAFT

like Petri Net (PN), Signal Transition Graph (STG), and Structured Occurrence Nets (SON)
cannot be used to represent ENL-systems which have specific local maximal concurrency
semantics. The only net model that associates transitions with localities is the Policy Net
model, but in this model, transitions can have more than one locality which is not the
case in the ENL-systems. Similarly, the provided formalisms for capturing the behaviour
of concurrent systems in WORKCRAFT like Finite State Machines (FSM) and Finite State
Transducers (FST) have transitions labelled by only one event, which was not suitable for
transition system specifications in our tool. So we needed to extend this set of models to
implement ST-systems and add more functionality. However, the new plugins use, wherever
possible, the icons and the visualisation elements that are familiar to the WORKCRAFT users
to ensure the consistency of our plugins with the rest of the existing tool.

8.2.1 ENL-system plugin

This plugin is intended for capturing, editing, simulation and verifying of ENL-systems.

8.2.1.1 Capturing

To create a new work file to hold an ENL-system we select from the main menu of WORKCRAFT

“File−→Create work” to get menu item and in the “New work” dialogue we choose “Elemen-
tary Net System with Localities” as the model type (see Figure 8.1). The graphical interface
of the ENL-system model is shown in Figure 8.2. The generic information for platform
interface and settings of WORKCRAFT is provided in [48]. Our main goal here is to focus on
features and functions related and designed for the ENL-system model.

In order to create a condition or an event as new nodes we can activate the condition
generator or the event generator as shown in Figure 8.3 and click on the preferred
position in the editor panel to place it there. In this way, we can create a series of conditions or
events respectively. By activating the connection tool as shown in Figure 8.3 we can link
conditions and events by directed arcs. Note that conditions can only be connected to events
and events can only be connected to conditions. So, in the case of connecting two nodes of
the same type, a warning will be issued that the connection is invalid (see Figure 8.4).
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Fig. 8.1 Shows the screenshot from WORKCRAFT with the list of modules to create a new
work.

Fig. 8.2 The ENL-system plugin interface.

8.2.1.2 Editing

Activating the selection tool as shown in Figure 8.3 enables us to edit an ENL-system
model. Within the ENL-system plugin we can use all the standard editing features of WORK-
RAFT models such as copy, select, delete, drag-and-drop, undo, group, etc. They are described
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Fig. 8.3 The “Model tools” of ENL-system plugin.

Fig. 8.4 Shows the screenshots from WORKCRAFT with the cases of invalid connections
between conditions and events.
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Fig. 8.5 Conditions property editor. Fig. 8.6 Events property editor.

under the generic WORKCRAFT help facility on “Selection controls” and “Property editor” [49,
50]. The features described below are related exclusively to the ENL-system plugin:

• Double-click on an empty condition to mark it with a token or edit “Tokens” option in
the “Conditions property editor” (see Figure 8.5), remembering that each condition
can only be marked with one token.

• Double-click a condition marked with a token to remove the token.

• Co-located events share the same colour and an associated number (see Figure 8.6).

Text notes can be created by activating the tool as shown in Figure 8.3 and pressing
on the appropriate position in the editor panel to place the text there. By double-clicking on
the note the user can write any text directly. Alternatively, a note can be edited by using the
“Label” field in the “Property editor” when the note is selected.

8.2.1.3 Simulation

The simulation function in the ENL-system model can be activated by clicking on the
simulation tool as shown in Figure 8.3. The enabled events will be then highlighted
in orange, and can be fired by clicking on them. In each step of the simulation we click
on just one event. However, the steps of events will be executed according to the local
maximal concurrency semantics of ENL-systems which is based on steps of simultaneously
executed events. If we click on an enabled event and there are several control enabled steps
containing this event, one of these steps will be chosen randomly to be fired. Figures 8.7
and 8.9 show the simulation for two examples. The first one shows an ENL-system with two
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co-located events e and f , and the initial case c0 = {b0,b2} (see Figure 8.7(a)). We have here:
resenabled(c0) = {{e},{ f},{e, f}} and enabled(c0) = {{e, f}}. At c0 we execute the step
{e, f} moving to c1 = {b1,b3}. In this example, the enabled events e and f must fire together
whether we clicked on e or f (see Figures 8.7(b) and 8.8(b)). The second one shows an
ENL-system, where e and f events are not co-located, and the initial case is c0 = {b0,b2} (see
Figure 8.9(a)). We have here resenabled(c0) = enabled(c0) = {{e},{ f},{e, f}}. At c0

we can execute the step {e} moving to c1 = {b0,b3} (see Figure 8.9(b)). At the case
c1, enabled(c1) = {{ f}}. At c1 we execute the step { f} moving to c2 = {b1,b3} (see
Figure 8.9(c)). However, there are several scenarios that may occur when we simulate the
behaviour of the net in this example. Figure 8.9 shows the first scenario with the executed
steps as described above; and Figure 8.10 shows the second scenario where at c0 we can
execute the step {e, f} moving to c1 = {b1,b3}. The main difference between the two
scenarios is that when we clicked on the enabled event e, there are two control enabled steps
containing e which are {e} and {e, f}. So, in the first scenario step {e} is executed first and
in the second one the step {e, f} is executed first. Similarly, there are two scenarios for this
example assuming that event f was clicked at the beginning of the simulation.

After activating the simulation tool , the buttons of the “Tool controls” panel (at the
right hand side) become active (see Figure 8.7), and provide access to several additional
simulation functions to analyse and navigate through the simulation trace. These are standard
features of WORKCRAFT and they are described under its generic help facility on “Simulation
controls” [51]. In addition, the simulation tool controls provide the means to analyse and
navigate a recorded simulation. There are two sets of data for a simulation record. “Clicked
events” records the sequence of clicked enabled events of the ENL-system. But because the
enabled events will be executed based on the local maximal concurrency semantics of the net,
the second set of data, “Step trace”, records the sequence of the executed steps. For example,
Figures 8.7 and 8.8 show that clicking on one of the enabled events e or f of the first example
net would lead to both events being fired at the same time, because they belong to the same
locality. Also, if there are several control enabled steps containing the clicked event (see
Figures 8.9 and 8.10), one of them will be chosen randomly to be executed. Furthermore,
more information is presented in the “Output” (lower left panel) showing a set of the control
enabled steps, the enabled event clicked by the user, and the executed step.

https://www.workcraft.org/help/core/tool_controls#simulation_controls
https://www.workcraft.org/help/core/tool_controls#simulation_controls
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(a)

(b)

Fig. 8.7 Shows the ENL-system from Figure 2.1(b) with two co-located events e and f and
the initial case c0 = {b0,b2} (a). After clicking on the enabled event e the step {e, f} was
executed and the system moved to c1 = {b1,b3} (b).
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(a)

(b)

Fig. 8.8 Shows the ENL-system from Figure 2.1(b) with two co-located events e and f and
the initial case c0 = {b0,b2} (a). After clicking on the enabled event f the step {e, f} was
executed and the system moved to c1 = {b1,b3} (b).
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(a)

(b)

(c)

Fig. 8.9 Shows scenario 1 for the ENL-system from Figure 2.2(b) with non co-located events
e and f and the initial case c0 = {b0,b2} (a). After clicking on the enabled event e the step
{e} was executed at c0 and the system moved to c1 = {b0,b3} (b). After clicking on the
enabled event f the step { f} was executed at c1 and the system moved to c2 = {b1,b3} (c).
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(a)

(b)

Fig. 8.10 Shows scenario 2 for the ENL-system from Figure 2.2(b) with non co-located
events e and f and the initial case c0 = {b0,b2} (a). After clicking on the enabled event e the
step {e, f} was executed at c0 and the system moved to c1 = {b1,b3} (b).
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8.2.1.4 Verification

An ENL-system can be verified for soundness via “Verification−→Soundness” menu, which
will identify any disconnected conditions or events as shown in Figure 8.11.

Fig. 8.11 Shows the verification result for an ENL-system with disconnected condition b2
and event g that has no post-condition.

8.2.2 ST-system plugin

This plugin provides the facilities for capturing, editing, verification, and synthesis of ENL-
systems from the specifications given in the form of ST-systems.

8.2.2.1 Capturing

To create an ST-system model from the main menu of WORKCRAFT we choose “File−→Create
work” to get menu item and in the “New work” dialogue we select the “Step Transition
System” as the model type (see Figure 8.1). The graphical interface of the ST-system model
is shown in Figure 8.12. The generic information for platform interface and settings of
WORKCRAFT is provided in [48]. In this section, we will focus on the facilities designed for
the ST-system plugin.
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Fig. 8.12 The ST-system plugin interface.

Fig. 8.13 The “Model tools” of ST-system plugin.

In order to create a new state as a node we need to activate the state generator as
shown in Figure 8.13, then click the editor panel in the desired position where a new state
appears. In this way, we can create as many states as we need. To connect two states together
we can activate the connection tool as shown in Figure 8.13 to link them by a directed
arc, where first state will be the source and the second state will be the target of the newly
created arc. Note that self-loops are not allowed in ST-systems (see Figure 8.14).

8.2.2.2 Editing

To edit an ST-system model we activate the selection tool as shown in Figure 8.13. As
described in Section 8.2.1.2 all the standard editing features of WORKCRAFT models are the
same. So, the functions mentioned below are designed exclusively for the ST-system plugin:
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Fig. 8.14 Shows a self-loop, which is not allowed.

• Click on an arc to edit its “Step” field as shown in Figure 8.15 remembering that
singleton steps annotating transitions are denoted without brackets (e.g., e instead of
{e}).

• Select an arc to colour its step by editing “Step colour” field as shown in Figure 8.15.

For every event e ∈ E, [e]l is the equivalence class of the co-location relation l to which
e belongs (i.e., the locality of e). By activating the events localities tool as shown in
Figure 8.13 we can use the “Tool controls” panel to link every event e with its locality as
shown in Figure 8.16. If there are events without associated localities then a warning will be
issued (see Figure 8.17).

Textual comments can be created by activating the tool as shown in Figure 8.13
and it works as described in Section 8.2.1.2, which is similar for all the other models in
WORKCRAFT.

Fig. 8.15 Property editor for arcs.
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Fig. 8.16 An interface for associating each event with its locality.

Fig. 8.17 A warning message that events e and f are without associated localities.

8.2.2.3 Verification

An ST-system can be verified for satisfying axioms A1–A4 (see Definition 2.1.7). Figure 8.18
shows the available options under the “Verification” menu, and example results of checking
these options were presented in Chapter 4:

• Figure 4.2, on p. 39, shows the verification result for an ST-system, which satisfies all
the axioms (A1–A4).

• Figure 4.3, on p. 40, shows the verification result for an ST-system, which violates the
axiom A1.
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• Figure 4.4, on p. 40, shows the verification result for an ST-system, which violates the
axiom A2.

• Figure 4.5, on p. 41, shows the verification result for an ST-system, which violates the
axiom A3.

• Figure 4.6, on p. 41, shows the verification result for an ST-system, which violates the
axiom A4.

Fig. 8.18 The “Verification” menu in the ST-system plugin.

8.2.2.4 Synthesis

To apply the synthesis procedure, the specification of an ST-system should be used as an
input to the tool, which would decide whether it can be synthesised as an ENL-system or not.
In the case of a positive answer, the tool would produce an ENL-system with the specified
concurrent behaviour (see examples in Figures 8.20 and 8.21). Otherwise, the tool would
produce a message with a negative result (see Figures 8.22 and 8.23). Figure 8.20 shows
that a given ST-system can be synthesised to an ENL-system, because it satisfies all axioms
A1–A4. On the other hand, Figure 8.22 shows that an ST-system cannot be synthesised to
an ENL-system, because it does not satisfy one of the axioms, A4. Figure 8.21 shows that a
given ST-system ts can be synthesised to an ENL-system, because the ST-system generated
by enllts is isomorphic to ts. Figure 8.23 shows a negative result obtained after the application
of Method II to an ST-system.

Figure 8.19 shows the full “Synthesis” menu in the ST-system plugin, which provides a
list of options for running different synthesis algorithms for a given ST-system.

Note that the produced ENL-system may have some redundant conditions. These condi-
tions (or most of them) can be removed by using the reduction rules described in Chapter 6.
Therefore, the “Synthesis” menu, for every synthesis option that leads to a saturated net,
offers an option that invokes minimisation algorithms. However, even after the application of
the reduction rules there is no guarantee that there are no redundant regions as was shown in
Chapter 6 for the case of ts2 (see Figure 6.10 on p. 91)
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Fig. 8.19 The Synthesis menu in the ST-system plugin, where criterion 1 refers to checking if
ST-system can be synthesised to an ENL/LC-system and if so constructing a solution with the
smallest number of localities, and criterion 2 requires in addition to have the most balanced
distribution of events between them.

Below are further results of testing the synthesis options that are available under the
“Synthesis” menu:

• Figure 8.24 shows that a given ST-system ts can be synthesised to an ENL/LC-system.
Figure 5.3 , on p. 54, discussed in Chapter 5, shows the negative result for this synthesis
procedure.

• Figure 8.25 shows that a given ST-system, ts3, can be synthesised to an ENL-system,
because the ST-system generated by enllts3

is isomorphic to ts3. This figure shows the
results of the synthesis procedure that involved the minimisation of the net.

Fig. 8.21 An example of a successful synthesis of the ST-system in Figure 2.2(a) by using
Method II (see Section 4.1).
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Fig. 8.20 An example of a successful synthesis of the ST-system in Figure 6.3(a) by using
Method I (see Section 4.1).

Fig. 8.22 An example of a negative case for the synthesis procedure when using Method I (see
Section 4.1).
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Fig. 8.23 An example of a negative case for the synthesis procedure when using
Method II (see Section 4.1).
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Fig. 8.24 An example of a successful synthesis for the ST-system ts3 in Figure 3.1 to an
ENL/LC-system.
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Fig. 8.25 An example of a successful synthesis for the ST-system ts3 in Figure 3.1 to a small
(minimised) ENL-system.
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8.3 Availability

The latest version of SYNTHCRAFT is available in [44]. There is no automatic installer for
the tool; the files need to be extracted manually from the link. In addition, we provided
all examples of ENL-systems and ST-systems they have been used throughout our research
in [45] so that can be used to test our tool.



Chapter 9

Conclusions

The aim of our research was to develop algorithms and tool support for the synthesis of
ENL-systems. In our work, we mainly concentrated on the general class of ENL-systems.
However, in addition, we also considered a synthesis problem for a subclass of ENL-systems,
where conflicts between events are localised. The synthesis problem, for any class of
Petri nets that might be considered, has always two aspects: a feasibility problem and an
effective construction problem. While the feasibility problem is about finding a complete
characterisation of the transition systems that can be realised by Petri nets of a particular
class, the effective construction problem is about finding effective algorithms for deriving
Petri nets from transition systems. In our research, we concentrated on solving the effective
construction problems for ENL-systems; the solution to the feasibility problem for ENL-
systems was given in [25], by axiomatising the class of ST-systems that can be realised by
ENL-systems (see Definition 2.1.7).

In this thesis, we presented an algorithm for deriving non-trivial regions of ST-systems,
which is a fundamental algorithm for the synthesis of ENL-systems. We presented two
algorithms for verifying whether a given step transition system can be synthesised to an
ENLl-system and provided results to compare the efficiency of the two approaches for
the synthesis procedure. Also, we presented algorithms for synthesising ENL/LC-systems
with the assumption that the co-location relation is not known in advance and needs to be
discovered as a part of solving the synthesis problem. We discussed the minimisation of the
synthesised ENL-systems and the strategy to eliminate redundant regions that involves three
reduction rules. Also, we investigated the properties of minimal regions that play a crucial
role in the minimisation process. We showed that synthesised and minimised nets that are
based on all minimal regions (after the application of the Reduction Rule 2) do not lose the
property of the saturated ENL-systems of being state machine decomposable. Furthermore,
we built a set of benchmarks to test the performance efficiency of our developed algorithms
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on bigger examples and see how they scale with the increasing sizes of ST-systems. We
described the SYNTHCRAFT tool that implements our designed algorithms for the synthesis of
ENL-systems. Through the SYNTHCRAFT tool, we introduced two plugins into WORKCRAFT

framework to represent ENL-systems and ST-systems, two kinds of graphs, which are involved
in the the synthesis procedure we consider.

9.1 Directions for future work

There are several directions for extending or improving the results presented in this thesis.
The main achievement of our research, Algorithm 1, is used in many other algorithms of

the SYNTHCRAFT tool, as extracting non-trivial regions from an ST-system is the fundamental
task in the synthesis procedure. Therefore, its performance has a considerable bearing on the
performance of the other algorithms of the tool. In the future, we plan to improve further the
performance of Algorithm 1 by parallelising its code.

In Chapter 5 we discussed the synthesis procedure for ENL/LC-systems. When researching
this subject, we identified two transition systems, ts6 and ts7 (respectively in Figure 5.1(a)
and Figure 5.2(a) on p. 50), which cannot be synthesised to any ENL/LC-system. These
ST-systems have an interesting characteristic. The conflict between two of their events, which
do not share a locality, is ‘witnessed’ by a third event that is independent (not in conflict)
from one of them. We plan to generalise this observation to give sufficient and necessary
conditions for deciding that an ST-system cannot be synthesised to an ENL/LC-system.

Many ideas discussed in Chapter 6 about the minimisation of the synthesised nets, can be
also investigated further. We proved that the saturated nets, which result from the synthesis
procedure, and their minimised versions obtained after the application of the Reduction
Rule 2 (which deletes non-minimal regions) are state machine decomposable. We believe
that after the application of the Reduction Rule 3 this property still holds for the resultant net.
However, this result still needs to be formally proved. We could observe that after applying
Reduction Rule 1, some synthesised ENL-systems are no longer state machine decomposable.
We can take, for example, the ENLST-system generated by the ENL-system in Figure 1.1, on
p. 4. The synthesis procedure for this example will produce a saturated net that has only
minimal regions (12 regions). Some of them are redundant and can be deleted according to
Reduction Rule 1. Figure 1.1 shows one of the possible minimised versions of this net that is
not state machine decomposable. Also, talking about Reduction Rule 1, we want to develop
an improved algorithm implementing this rule, which would allow to target certain regions
for deletion from the pairs of complementary regions. Furthermore, in relation to state
machine decomposability of ENL-systems, we plan to investigate the relationship between



9.1 Directions for future work 133

the split of ENL-systems into state machine components (based on conditions) and the split
into localities (based on events).

Furthermore, there are possibilities for improving the developed SYNTHCRAFT tool.
WORKCRAFT provides a feature to check a trace leading to a deadlock in a model such
as Signal Transition Graph (STG). We plan to provide similar feature in our tool for ENL-
systems.

Finally, we plan to keep track of new graph models available within the WORKCRAFT

framework that might be ‘compatible’ with our developed SYNTHCRAFT tool. Recently, a
new model of Burst Automata (BA) was implemented within WORKCRAFT [15]. BAs model
the behaviour of asynchronous circuits, where signals (events) are allowed to change in
groups called ‘bursts’. This is reflected in the definition of BAs, where they are represented
as a kind of step transition systems. It would be interesting to research whether SYNTHCRAFT

can be adopted to allow for the synthesis of BAs.
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