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Abstract 

 

Synthetic biology devices have proven to have a wide variety of applications, especially 

in the field of biosensors where pollutants, biomarkers, and a range of other stimuli can 

be detected. However, development of biosensor devices can be difficult due to issues 

surrounding optimisation, and inefficient use of engineering principles such as re-

usability, standardisation, and modularity. The work presented in this thesis aimed to 

investigate whether biosensor development could be aided by a framework which 

combines high-level modularity and multi-microbial systems. Previous work shows how 

high-level modularity could be used to develop biological devices but stop short of 

defining a framework which makes use of engineering principles. Building on previous 

work, biosensor designs were split into three module types, each of which could be 

implemented in separate cells and co-cultured to create the biosensor. Tools and 

resources were researched and developed with the aim of promoting the use of 

engineering principles within the framework. A pre-existing data standard was 

extended to allow for standard representation of multi-microbial systems. Additionally, 

a Python library was developed to allow for trivial and flexible generation of 

reproducible automation protocols for biosensor characterisation and a range of other 

synthetic biology workflows. Approaches for optimising biosensors developed within 

the modular and multi-microbial framework were investigated using computationally 

informed experimentation. Finally, an approach at implementing light-based 

intercellular communication is presented. 
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 Introduction and Background Information 

 Bioengineering 

 An overview of bioengineering 

Bioengineering efforts tend to take advantage of mechanisms evolved by nature for 

solving a variety of problems. For example, organisms are required to detect a range 

of molecules in order to survive[1]. In some cases, detection of certain molecules can 

indicate the prey is nearby[2], [3], and in others it can indicate the direction of food[4]. The 

detection of metabolites is fundamental to an organism’s survival, as too much or too 

little of primary and secondary metabolites can have serious consequences[5]. By 

detecting the level of these metabolites, pathways to degrade or produce that specific 

molecule can be regulated. It should be noted that these natural sensing mechanisms 

are not limited to the detection of molecules; there exist biological processes which 

deal with the detection of other stimuli such as temperature[6]. 

 

The detection of specific stimuli has application in many areas. For example, sensing 

of environmental pollutants can help guide remediation efforts[7], or the presence of 

certain chemicals in the blood stream of humans can indicate health problems and 

indicate medical interventions should occur[8]. In many cases, these molecules are 

difficult to detect using electronic or other manufactured sensors[9]. Instead, 

bioengineers look to discover the mechanisms already used in nature for detection of 

stimuli of interest and use those instead of non-biological sensing components. Such 

biological sensing devices are often termed as ‘biosensors’[10]. 

 

Other areas in which biological components and systems can aid include the synthesis 

of organic products[11], the degradation of pollutants[12], and the production of microbial 

fuel cells[13]. To further illustrate the field of bioengineering, the following sub-sections 

focus on some examples and case studies. 

 Biosynthesis 

Bioengineering can be used to enhance or replace chemical synthesis, where 

molecules with desired properties are created through a series of chemical reactions 

in a process known as total synthesis[14]. Molecules created via chemical synthesis can 

have wide ranging applications, including pharmaceuticals, pesticides, and food 
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additives[15]. A simple example of total synthesis is the production of ibuprofen[16] 

(Figure 1.1 (A)). Unfortunately, it is not uncommon for many useful molecules and 

compounds to be chemically complex, and the procedures required to synthesise them 

from readily available precursors can be expensive, inefficient, and involve the use of 

harmful chemicals[17]. In some cases, organisms have evolved to produce the desired 

molecule, which can be extracted and purified. An example of this is the production of 

steviol glycosides, which are obtained from the leaves of the Stevia rebaudiana plant 

and used as sweeteners[18] (Figure 1.1 (B)). The total synthesis of these molecules is 

difficult due to high acid sensitivity and inefficient processes, which makes the 

biosynthesis of steviol glycosides in plants, followed by chemical extraction and 

purification techniques, a better alternative[19]. 

 

Biosynthesis and chemical synthesis can also be combined, as in the production of 

Paclitaxel[20] (Figure 1.1 (C)). Paclitaxel has a very complex structure, and it is not 

feasible to synthesise using chemical reactions from readily available precursors, 

however a precursor of Paclitaxel can be found in the needles of European Yew trees 

(Taxus baccata), and there is a relatively simple chemical synthesis process to convert 

 

Figure 1.1. Overview of Synthesis Methods 

Depicted here are three methods of synthesising molecules. All molecule images were 
generated using ChemDrawJs (www.chemdrawdirect.perkinelmer.cloud) by importing the 
SMILES structure code from PubChem. (A) An example of total synthesis, where 
Ibuprofen is synthesised in a series of 4 reactions from p-isobutylacetophenone. (B) An 
example of biosynthesis, where a steviol glycoside is extracted from the leaves of Stevia 
rebaudiana. (C) An example of semi-synthesis, where 10-deacetylbaccatin is extracted 
from Taxus baccata needles and used as a precursor in Paclitaxel chemical synthesis. 

http://www.chemdrawdirect.perkinelmer.cloud/
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the precursor into Paclitaxel. In this way, the two methods of total synthesis and 

biosynthesis can be combined in a process known as semisynthesis. 

 Protein Engineering 

Protein engineering is another example of bioengineering. Research in this area 

concerns itself with the modification of proteins to improve or modify the protein’s 

function and behaviour, making it more appropriate for specific applications[21]. 

Examples of protein engineering can be seen in a variety of areas, including 

biosynthesis and semi-synthesis[22]. In these cases, the enzymes used in the synthesis 

pathways can be modified in a variety of ways, such as changing the enzyme’s binding 

site to accept different substrates[23], making an enzyme more tolerable to industrial 

conditions[24], or attempting to increase the efficiency of the enzymes overall[25]. There 

are many techniques which can be employed to achieve this engineering[26]. These 

include rational redesign, where the sequence of the protein is modified based on 

existing structure-function knowledge[27], and directed evolution, where the protein of 

interest is randomly mutated and candidates are selected based on desired behaviour, 

such as the conversion of a specific molecule[28]. This process of directed evolution 

typically occurs in cycles, where candidates which show promise undergo further 

mutation and testing to refine the desired functionality. 

 Enzymatic biosensors 

The development of biosensors has the most relevance within this thesis, and hence 

is discussed in more detail than the previous examples. As mentioned previously, 

nature has evolved a wide variety of mechanisms to detect the presence and absence 

of specific stimuli, which bioengineers can harness to develop biosensor devices. 

There are several formats these devices can take, but they are all designed to have 

the same high-level functionality: to sense a desired stimulus, or in some cases a group 

of stimuli, and respond in some way[29]. As well as sharing the same high-level 

functionality, biosensors of all types use the same abstracted mechanism of detection. 

The mechanism relies upon the stimulus of interest interacting with a biological 

element in such a way that a bio-reaction occurs. Changes caused by bio-reactions 

can be used downstream to generate a response[30]. 
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Early examples of biosensors generally relied upon in vitro biocatalysts which could 

biochemically react in the presence of a desired molecule[31]–[33] (Figure 1.2 (A)). As 

biochemical reactions can cause changes in the surrounding environment, it is 

possible to convert one of these changes into a desired response[33]. For example, the 

first generation of blood-glucose sensors relied on glucose oxidase as the biological 

sensing component[34]. The glucose oxidase enzyme has evolved to specifically bind 

glucose and convert it to gluconic acid. During this catalytic reaction, oxygen is 

depleted which results in a reduced concentration of dissolved oxygen. Therefore, as 

the concentration of glucose increases, the concentration of oxygen decreases, which 

means that the concentration of oxygen can be used as a proxy to the concentration 

of glucose. The concentration of oxygen in the biosensor device can be converted into 

a reading via an electrochemical oxygen sensor, which can be used as a human-

readable response. 

 

Whilst there are a number of success stories for biosensors which use enzymes to 

detect and report the presence of specific stimuli, the development of these sensors 

can be troublesome and slow. Development issues tend to stem from issues related to 

the enzymes themselves[35], [36]. Many enzymes in nature are not completely specific, 

and instead show some level of promiscuity towards their substrates[37]. This behaviour 

has advantages in natural systems, such as allowing a single mechanism to deal with 

similar situations[38]. However, for engineered biosensors, it is often desirable to 

 

Figure 1.2. Overview of Enzymatic Biosensor Mechanisms 

Two common mechanisms of enzymatic biosensing. (A) Generic schematic of an 
electrocatalytic biosensor. Conversion of the analyte to be detected into a different product 
by the enzyme generates free electrons. When the enzyme is in contact with an electrode, 
the electrons can flow from the enzyme and be detected electronically. (B) Schematic of 
direct ELISA. The analyte for detection is adsorbed to a surface and antibodies with 
binding capabilities to the analyte are added. After washing, antibodies bound to the 
analyte remain. An enzyme linked to the antibody catalyses a reaction which results in a 
colour change. 
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differentiate between very similar molecules or other stimuli[39]. It is also possible for 

no known enzymes to exist which act upon the desired stimulus, or for other issues to 

exist such as inactivation of the enzyme under conditions in which the biosensor needs 

to act, or difficulty producing the enzyme in industrially relevant quantities[40]. 

 

It is possible to use enzymes not only in stimuli detection, but also as the response 

section of a biosensor. For example, Enzyme-Linked Immunosorbent Assays, or 

ELISAs, rely on the use of antibodies to detect specific analytes, and enzymes to 

generate a response[41], [42] (Figure 1.2 (B)). Developed in the 1970s, ELISA assays 

remain a gold standard for detection in many fields[43]. There are different types of 

ELISA, however all types utilise antibodies as the sensing component of the sensor, 

and enzymes as the response component[44]. Generally, antibodies known to bind the 

substrate of interest are added to a sample, and several washing steps occur. During 

these washing steps, the antibodies are only retained if the sample was present. In 

some types of ELISA, the antibodies used have been modified to link an enzyme to 

the non-binding end, which can then perform an enzymatic reaction, usually resulting 

in a colour change, to indicate presence of the analyte. In other types of ELISA, 

secondary antibodies capable of binding either the first antibody or the substrate are 

instead modified to contain the enzyme responsible for generating a response. There 

are additional variants of ELISA which use additional antibodies; however the principle 

remains the same. 

 

The primary issue during development of ELISAs for novel targets is the generation of 

capture antibodies able to bind specifically to the analyte of interest. The development 

of new antibodies, which is required when an antibody with desired binding properties 

does not exist, is non-trivial and can be costly and time consuming[42].  

 Nucleic acid biosensors 

Another class of biosensors are those based on quantitative Polymerase Chain 

Reaction (qPCR). qPCR biosensors are used to detect nucleic acid molecules (both 

DNA and RNA) with a specific sequence, and to quantify the number of molecules 

encoding that sequence in a sample[45]. This functionality can help detect the presence 

or absence of a specific organism, such as a pathogen, by targeting DNA or RNA 

sequences which are specific to the species of interest[46]. It is also possible to use 

qPCR to measure gene expression levels by targeting the mRNA produced from the 
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desired gene[47]. The amount of mRNA in the sample is directly correlated to the 

expression levels of the gene. The idea behind qPCR is that primers can be designed 

to recognise and amplify a specific DNA sequence [48]. 

 

Whilst qPCR biosensors have proven incredibly useful, there are limitations. The 

principal limitation is in their ability to only detect nucleic acids as stimuli. It can also be 

difficult to develop these biosensors, as the primers must have specificity to the desired 

nucleic acid sequence to prevent false positives but must also have appropriate 

binding kinetics to the desired stimulus to ensure correct sensitivity and prevent false 

negatives[49].  

 Biosensor development and optimisation 

As detailed above, each type of biosensor comes with its own advantages and 

limitations. Despite these differences, there are aspects common to any biosensor 

which should be addressed during the development stage, and indeed should be used 

to help decide the most appropriate biotechnology to use. 

 

A biosensor’s sensitivity and specificity tend to be crucial no matter the application[39]. 

In the case of environmental pollutant biosensors, the device should only react to the 

target chemical and should not respond to the presence of chemicals with similar 

structures which may not be toxic to the environment. In other cases, a biosensor which 

is too specific may be disadvantageous. This could be the case when developing a 

diagnostic test for a pathogen. If the test is too specific, then other strains of the 

pathogen which are still dangerous may be missed, resulting in false negatives. The 

sensitivity of the system is also important, as a sensor which is too sensitive may 

respond to background levels of a stimulus, which in some cases should be ignored, 

such as when a pollutant is harmless at lower concentrations, or the sensitivity could 

be too low and false negatives could be reported when the stimulus is present. 

 

The specificity and sensitivity of a biosensor contribute to the signal-response curve[50], 

[51], which is a common characteristic of any biosensor (Figure 1.3). The signal-

response curve describes the relationship between the input and output of a sensor 

and can be used to determine features of the system such as the limit of detection, the 

dynamic range, the operating range, and the background noise. The signal-response 

curve can be determined by measuring the response from the biosensor over a range 
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of stimuli amounts. Any response measured when no stimulus is present determines 

the background noise of the system. The lowest stimulus amount which produces a 

response above the background noise is the limit of detection (LOD), or sensitivity limit, 

for the biosensor. Anything below this amount cannot be distinguished from the general 

noise. At the other end of the scale, beyond the saturation point, the response does 

not continue to increase with increased amounts of the stimulus. The range between 

the LOD and maximal response point is defined as the operational range, where 

increased amounts of stimulus result in a differential response. Within the operational 

range is the linear range, where the biosensor’s response increases proportionally with 

the stimulus amount. The difference between the response levels at the LOD and 

maximal response point is defined as the dynamic range and can be used to determine 

how much the response increases with each increase in concentration of the target 

molecule. 

 

The methods for biosensor optimisation will be different depending on which 

technology is being used[52]. These methods could involve increasing the sensitivity of 

the detection mechanism or decreasing noise in the presence of similar targets in a 

sample by increasing specificity. The importance of the operating range and dynamic 

range are also influenced by the exact requirements of the biosensor. In some cases, 

 

Figure 1.3. Dose-Response Curve 

Annotated dose-response (or signal-response) curve. The highlighted regions illustrate 
stimulus ranges which are below the limit of detection, within the operational range, or 
which saturate the sensor’s response. The grey box within the operational range identifies 
the linear range. The dynamic range is annotated with dotted black lines. The sensitivity 
limit and saturation point are labelled with arrows. 
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a binary ‘Yes’ or ‘No’ as to the presence of the target may be required, in which case 

it a large operating range may not be required. However, in other cases it may be 

essential to determine how much of a target is present across a range of 

concentrations, in which case the operating range must cover the entire range of 

important target amounts. The dynamic range is linked to the operating range, as it 

describes the difference in response between the lowest end of the operating range, 

and the highest. The exact response, along with how that response is measured or 

reported, will determine the importance and optimal values of the dynamic range. If the 

response is a colour change which will be observed by eye, like some types of ELISA-

based biosensors, it is important to have a large dynamic range so that there is little 

doubt as to the intensity of a colour change. 

 

Traditionally, the biosensor optimisation process has been somewhat limited, as it is 

not trivial to engineer an enzyme to tune the characteristics of an enzyme-based 

biosensor, or rapidly develop novel antibodies for use in ELISAs[41], [53], [54]. The rise of 

synthetic biology has helped to provide tools and techniques to assist with these efforts 

and has also introduced a whole new generation of biological devices[9]. In the next 

section, an overview of synthetic biology will be given, and examples will be used to 

discuss the impact it has had on bioengineering and to highlight the challenges which 

remain to be addressed. 

 Principles of Synthetic Biology 

The rise of synthetic biology has been a gamechanger for the development of 

biodevices and bioengineering more generally, partly due to the adoption of 

engineering principles. Such principles promote the tried-and-tested methods of 

developing devices found in other engineering fields and has helped to provide a 

wealth of resources for synbio device developers[55]. Some of the most discussed 

engineering principles are standardisation, reproducibility, re-usability, computationally 

assisted modelling, modularity, and the engineering life cycle[56] (Figure 1.4). 

 Standardisation 

The principles of standardisation, re-usability, and reproducibility are inherently linked. 

Standardisation, which refers to the development and implementation of standards, is 

used widely in fields such as electrical, mechanical, and software engineering, as well 

as architecture. The types of standards implemented vary between and within these 

fields, but generally any type of standard sets out to provide a common specification 
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for a commonly used entity or process to help ensure optimal efficiency is achieved, 

and that similar work completed within a field is reproducible, comparable, or re-usable, 

depending on the exact standard[57]. 

 

Within synthetic biology, standardisation is often associated with the physical assembly 

of genetic constructs, where several DNA assembly standards have been 

developed[58]–[60]. Assembly standards can define both a collection of genetic parts, like 

promoters, ribosome binding sites, and coding regions, and the methods used to 

assemble the individual parts into constructs. The use of assembly standards can allow 

researchers to rapidly assemble constructs[61]. Specific examples of DNA assembly 

standards and standard genetic parts are discussed in more depth in a future section. 

 

Aside from DNA assembly, standardisation attempts have also been made for other 

areas, such as building computational models of biological systems[62] and calibrating 

experimental data to known chemical standards[63]. Another example is the Synthetic 

Biology Open Language (SBOL), which allows for information about synthetic biology 

designs and systems to be captured in a standard format[64]. 

 Modularity 

The principle of modularity can sometimes be conflated with that of standardised parts. 

However, whilst overlaps exist, there is still a distinction to be made. Modularity, as 

defined in other fields which make use of this concept, allows for the development of 

systems or devices through the combination of functional units[65]. These units, termed 

modules, work together to provide the overall behaviour of the system or device, but 

can also display independence from one another. Module independence falls into two 

types: functional and structural independence[66]. Most modules will display both types 

of independence to some degree. Functional independence, as might be inferred from 

the name, deals with the general characteristics of how a module confers its function. 

The extent to which a module can be thought of as functionally independent can be 

determined by considering firstly how discrete the overall function is, and secondly by 

how much the module relies on external elements to complete its function. Structural 

independence is similar to functional independence but refers instead to the physical 

attributes of the module. A module can be considered structurally independent if the 

individual units which compose the module are tightly coupled without reliance on 
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external elements, but also can be easily connected and disconnected from other 

modules in a system. 

 

There are several advantages of using modules to develop a system or device. One 

of these advantages is the ability to split a design into discrete functions (each of which 

can be encapsulated by a module), which allows for complex systems to be developed 

by focusing on small sections independently and combining them once all sections are 

complete[65]. This approach of splitting a design into independent and discrete 

functional modules also has the advantage of allowing specific sections to be 

independently worked on by specialists in that area, without having to worry too much 

about the impact on the overall system. In addition, if modules are designed using 

standardised processes and with compatible connections, then module re-usability is 

possible, which helps to reduce the amount of time and resources spent on re-

developing elements with identical functionalities for different systems. Finally, the 

separation of discrete functions into modules allows for the intricacies of how specific 

sections of a system works to be abstracted out into top-level functions. This 

abstraction allows developers to have less specialised and in-depth knowledge of all 

parts of a system and can instead focus more on the system as a whole and make use 

of modules which have been designed by specialists[67]. 

 

 

Figure 1.4. Engineering Principles in Synthetic Biology 

Illustrated are engineering principles used in synthetic biology. 
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Modularity can be found in many areas, including software development, construction, 

and electronics[68]. Computer hardware is one such example of where modularisation 

has been successfully implemented. Typically, computers are developed using 

modular design, where each high-level function of a computer is developed as a 

discrete unit which can be connected to other modules to eventually form the entire 

system. Some examples of modular computing hardware are screens, 

microprocessors, storage devices, and motherboards. Each of these modules has a 

discrete function to perform: the screen should display graphical information to the user, 

the storage device records data which can be retrieved later, and so on. There are 

variations for each of these modules which can be swapped to modify the end product. 

For example, a portable laptop may require a small screen to keep the product small 

and easy to carry around, whereas a gaming computer could require a much larger, 

higher quality screen. Keeping with the theme of electronics, another example of a 

module are capacitors. Capacitors are electronic components which can store 

electrical charge, and have a wide variety of applications, including signal processing 

where the stored energy can be used to represent information. There are many 

different types of capacitors which act in different ways, and the most appropriate 

depends on the intended application. 

 

The examples of modularity (computer hardware and electronics) given above have 

some definite similarities: they act as somewhat standardised discrete elements with 

a generalised function, and different variations of each module can be interchanged 

depending on the application. However, it perhaps is also not too difficult to see the 

differences. The functions performed by the computer components, such as ‘perform 

logical calculations’ or ‘display graphical information’, are more complex in nature than 

that of ‘store an electrical charge’. Additionally, the knowledge level required to 

effectively utilise these modules differs; computer components can, and often are, 

used by consumers with little theoretical or practical knowledge of electrical 

engineering to build their own computers, and in many cases are essentially ‘plug-and-

play’. This contrasts with something like capacitors, where to effectively use these 

components in many cases requires a more in-depth working knowledge of electronics.  

 

Based on the comparison between these examples of modules, it is possible to define 

two groupings of modules: high-level and low-level. The computer components 

mentioned here would be examples of high-level modules, as they have complex (but 
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still discrete) functions and require basic knowledge to use. Modules like capacitors 

would be examples of low-level modules, as they have much simpler and smaller 

functions, but tend to require a more in-depth knowledge to use to their full potential. 

 

The hierarchy and grouping of modularity described here is a highly simplified version 

of the many theories of and approaches to modularisation which have been described 

and investigated previously[65], [66], [69]. However, the description given here is helpful in 

this work to differentiate between what has been achieved previously, and the 

approaches taken in this work. In the introductory section of chapter 3, specific 

examples of how modularity has been applied within synthetic biology are given.  

 Synthetic biology engineering cycle 

Another widely cited principle in synthetic biology is the Design-Build-Test-Learn cycle 

(DBTL)[70]. This cycle is a form of the various engineering cycles and processes from 

other fields and industries which have been modified to better fit the engineering of 

biological systems[71]. The cycle is composed of four main stages which should be 

completed in sequence and repeated in an iterative manner, which allows for guided 

system development and can help ensure that appropriate information is generated to 

aid with optimisation in future iterations. 

 

The first stage of the cycle is the design stage. The design stage itself can be thought 

of as a cycle, based heavily on the traditional engineering design process. Briefly, the 

design stage focuses on formulating a set of requirements that the final system/device 

should meet, generating a conceptual idea of the final product, creating a preliminary 

design, finalising the detailed design, and finally planning how the design will be built, 

implemented, and characterised[71]–[73]. A hallmark of synthetic biology, and another 

principle taken from other engineering fields, is the use of computational tools and 

modelling to assist with this design stage[74]. For example, CELLO is an online CAD-

type tool which was developed to help design genetic circuits based on desired logic 

specifications[75]. Other tools, such as iBioSim[76] and Simbiotics[77] have been 

developed to help computationally model synthetic biology systems to help identify 

potential design issues, and to help predict expected behaviour prior to building and 

testing the system experimentally. These computational models can also help with 

informed design choices when several options exist, as the behaviour of each variation 

can be predicted prior to committing to a finalised design[78]. 
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The build stage of the DBTL cycle is where the device or system is constructed 

according to plans formulated in the design stage. This very often involves the 

assembly of DNA encoding the genetic elements of the design[79], [80]. To aid with this 

stage, the DNA assembly standards mentioned previously can be utilised. Following 

DNA assembly is implementation of the built design. In synthetic biology research, 

implementation usually refers to the preparation of the built design so that it can be 

tested. 

 

Implementation of a design can involve a range of steps, depending on the specifics 

of the system, the intended application, and the characterisation to be performed. One 

of the commonalities across implementation of synthetic biology designs is the 

involvement of a biological chassis. While there is some discourse about the term[81], 

here biological chassis (or just chassis) simply refers to something which is capable of 

using biological elements to execute an intended function. Where designs involve 

genetic circuits, at a minimum the chassis must be able to express the genetic 

elements which encode the biological system’s function. 

 

There are a wide range of possible chasses provided by nature. Whilst the large 

selection allows for researchers and developers to select a chassis with desirable 

properties, in reality only a select few organisms tend to be used[82]. This is mainly due 

to a combination of biological incompatibility of genetic parts, and a lack of tools and 

knowledge relating to non-model organisms. Biological incompatibility here refers to 

difference in behaviour of genetic parts in different species and strains. One example 

of this is codon bias, where different species produce tRNAs required for translation in 

different ratios[83]. This means that a codon which is commonly used in one organism 

may be rare in another, and so if a genetic part uses that codon often, overall 

expression levels are likely to be lower in one organism than the other[84]. Additionally, 

the presence of rare codons can exert stress on a cell through ribosome stalling, which 

results in fewer resources available for other processes[85]. The issue of codon bias 

specifically is well documented, and a range of tools exist to optimise the sequence of 

a genetic element towards a specific species[86]. This does mean, however, that parts 

may need to be re-synthesised to obtain the optimised part, which takes both time and 

money. Efforts have been made to try and optimise part sequences such that they can 
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be used as-is in multiple species[87], however the success of such tools is yet to be 

determined. 

 

Once a biological system or device has been built and implemented, its function can 

be validated and characterised. The exact characterisation performed will vary 

depending on the design specifications of that system and should be considered during 

the design stage[88]. Once again, researchers have developed methods, inspired by 

other engineering disciplines, of aiding this test stage. One example is the application 

of statistical Design of Experiments (DOE), which uses statistics and machine learning 

to help fully characterise a system in an informed and cost-effective way[89], [90]. 

 

During the final stage of the DBTL cycle, the learn stage, data collected from the test 

stage, along with experiences during the build stage, are used to determine whether 

the system or device meets the requirements set out in the design stage. If necessary, 

the data collected can be used to inform modifications to the design of the system in 

order to optimise behaviour/functionality, and the cycle is repeated in this iterative 

manner[91]. 

 Synthetic Biology Applications 

The availability of synthetic biology derived technologies, such as standardised 

biological parts, has allowed for novel systems to be developed with some level of 

predictability, and breakthroughs in genetic engineering techniques make it easier than 

 

Figure 1.5. Overview of Synthetic Biology Applications 

Illustrated are 3 applications of synthetic biology: the synthesis of molecules (metabolic 
engineering), performing logic and computation (biocomputing), and detection of stimuli 
(biosensors). 
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ever to modify natural systems towards specific needs. Whilst synthetic biology still 

has challenges ahead of it the impact it has had on bioengineering is undeniable. There 

have been revolutions in fields such as biocomputing, where biological logic circuits 

were designed and implemented to introduce computing functionality into biological 

systems[92], and research into the development of synthetic biology devices (synbio 

devices) has become increasingly popular[93]. Given in this section are examples of 

some devices and systems developed with the aid of synthetic biology approaches. 

 Metabolic engineering 

The use of bioengineering in the production of useful molecules and compounds was 

discussed previously in section 1.1, where products produced naturally by organisms 

can be extracted and used as precursors in chemical synthesises, or natural enzymes 

are extracted and used in vitro to catalyse reactions not possible to perform by 

chemical means. With the application of synthetic biology, it is possible to instead 

engineer organisms themselves with the aim of enhancing natural production of 

desired molecules, or to build new biological pathways[94]. There are several 

approaches to this type of bioengineering, which typically fall under the branch of 

metabolic engineering. These include, but are not limited to, (i) engineering the host 

organism to knock-out or enhance genes involved in metabolism to increase flux 

through the desired pathway[95], (ii) expression of genes involved in biosynthesis of the 

metabolite of interest in a non-native host which has more desirable properties than 

the native host organism[96], and (iii) engineering of enzymes to increase their activity[97]. 

 

A common approach to metabolic engineering is to insert enzymes required for 

biosynthesis of a product into a host which is different to the organism which usually 

produces the molecule[94]. An advantage of this is that sometimes, the native organism 

is difficult to manipulate genetically, slow growing, or difficult to extract the product 

from[98], [99]. In these cases, moving the biosynthetic pathway to an organism which is 

easier to work with can be beneficial. Pathways which have been recreated in non-

native organisms are often referred to as heterologous pathways. 

 

One example where heterologous pathway recreation has been applied is in the 

production of artemisinic acid, which is an immediate precursor to the antimalarial drug 

Artemisinin[100]. Artemisinin itself is produced only in small quantities naturally, and its 

chemical synthesis pathway is complex and economically non-viable. It is possible to 
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obtain Artemisinin by chemically converting artemisinic acid, however artemisinic acid 

is also only obtained in low quantities naturally. Additionally, the organism which 

naturally produces artemisinic acid, Artemisia annua, is difficult to genetically engineer. 

Instead, researchers engineered Saccharomyces cerevisiae contain enzymes 

naturally found in A. annua in order to recreate the biosynthetic pathway in a host 

organism which could be more easily engineered. Using this approach, the 

heterologous biosynthetic pathway was optimised using genetic engineering 

approaches to produce artemisinic acid, which could then be converted into the 

antimalarial drug by chemical synthesis. Whilst this provided a method for more 

efficient production of artemisinin, scale up issues existed, and hence plate extraction 

of artemisinin is still common. 

 Biocomputing 

One area which has been completely revolutionised by synthetic biology is that of 

biocomputing. This is not to say that biocomputing did not exist before the rise of 

synthetic biology; indeed, the concept of using biological molecules to perform 

computation predates synthetic biology by a few decades[101], and comparisons of the 

mechanisms of cells to mechanical machines dates back even further[102]. It could even 

be considered that efforts to harness biological systems for computation provided the 

initial inspiration for synthetic biology as field, given that the two papers most often 

referred to as initial landmark studies dealt with developing biological logic devices[103], 

[104]. 

 

Genetic-based biocomputing relies on genetic parts with known functionality, which are 

subsequently expressed by a biological chassis, such as Escherichia coli cells, yeast 

cells, or cell-free expression systems[105]. The genetic elements which compose the 

biocomputational functionality tend to be referred to as the genetic circuit. The 

mechanisms of these genetic circuits most often harness the power of natural 

regulatory systems found in cells, where expression of specific coding sequences 

(CDSs) can be controlled by certain biomolecules. For example, in one of the landmark 

studies mentioned above, the authors designed a genetic circuit which resulted in cells 

which could act as a toggle switch[104]. The abstracted function of this toggle switch 

was one which allowed a certain protein, in this case a green fluorescent protein (GFP), 

to be produced continually when a stimulus was applied (in this case the small 
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molecule IPTG). The production of the GFP could then be turned off by application of 

another small molecule (aTc). 

 

Other examples of biological logical devices, some with much more complex 

mechanisms and functionality, have been developed over the past 2 decades[106]–[108]. 

The ability to build these devices has been heavily influenced by the wide availability 

of sequencing data, an increased understanding of how molecular mechanisms occur 

within cells, and genetic engineering/assembly techniques, as well as the presence of 

standardised genetic parts with characterised functions[79], [80], [105]. These parts can 

therefore be combined in somewhat predictable ways, although it should be noted that 

the issues which have plagued other areas, such as a lack of understanding as to how 

certain molecules and mechanisms interact, can lead to unforeseen behaviour[109]. 

This can result in devices with sub-optimal performance, or in some cases can be 

completely non-functional.  

 

There are many other areas of research impacted by synthetic biology which have not 

been discussed, including drug delivery systems and DNA data storage systems[93]. 

Most of these other applications and areas of research suffer from issues similar to 

those already discussed. One such area is that of biosensors, which will be discussed 

in the following section. 

 Genetic circuit-based biosensors 

Biosensors are devices which utilise biological components to detect specific stimuli. 

In recent decades, a new type of biosensor has become popular, thanks in part to the 

advent of synthetic biology technologies and approaches[110]. These types of 

biosensors, referred to here as genetic circuit-based biosensors, or simply genetic 

biosensors, are similar to the cellular biocomputational devices mentioned previously[9]. 

Genetic circuit-based biosensors use DNA to encode different elements of the system, 

and can be seen as a type of biocomputing, where logical functions are applied to 

generate an appropriate response to a desired stimulus (or set of stimuli). In fact, the 

genetic toggle switch from the previous section essentially acts as a biosensor for IPTG, 

as in the presence of IPTG (and absence of aTc), a response is generated (production 

of GFP, which produces a green, fluorescent signal). 
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 Mechanisms and applications 

Genetic biosensors have a wide range of applications, which is made clear by the 

plethora of diverse devices developed using synthetic biology[111]–[113]. Genetic 

biosensors have been developed to detect metabolites for aid in metabolic engineering 

efforts, helping to replace costly analytical techniques and provide real-time monitoring 

of cell cultures, and rapid identification of strains which show promising functionality 

during the development of these metabolic factories[114]. There are other devices with 

diagnostic applications, such as a paper-based test which utilises CFPS systems to 

detect Zika virus[115]. Devices for reporting on the presence of toxic metals or other 

pollutants have been developed for use in environmental monitoring and to direct 

remediation efforts[116].  

 

A common biological component to be used as the sensing mechanism of a genetic 

biosensor are regulatory factors[117] (Figure 1.6). When a stimulus interacts with the 

transcription or translation factor acting as the sensing mechanism, a change in genetic 

regulation occurs, which results in either up or down regulation of a coding sequence 

(CDS). The type of CDS, or in some cases set of CDSs, determines the type of 

response generated. For example, a CDS which encodes a fluoresecent protein could 

be used to give a fluorescent signal in response to a stimulus, or a CDS for a metabolic 

regulatory protein could be used to control production of a specific molecule of interest. 

An example of a genetic biosensor is the Frm-based formaldehyde biosensor[118]. This 

genetic biosensor contains several elements encoded as DNA, namely the frmR CDS 

which encodes the FrmR transcription factor, the Pfrm promoter, and a gfp CDS which 

encodes a green fluorescent protein (GFP). Once the biosensor is activated, the frmR 

CDS is expressed which results in production of the FrmR transcription factor. 

Ordinarily, FrmR represses expression from the Pfrm promoter, which in this case is 

positioned upstream from the gfp CDS. However, formaldehyde is able to bind to FrmR, 

which causes a change in the conformation of the transcription factor and prevents it 

from repressing Pfrm. Therefore, in the presence of formaldehyde, FrmR no longer 

represses the Pfrm promoter, which results in expression of the gfp CDS, and hence 

GFP is produced. The GFP emits a green fluorescent signal which can be visualised 

or measured. The intensity of the fluorescent signal can be used as a proxy to the 

concentration of formaldehyde present. 
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Genetic biosensors cannot be implemented in the same way as other biosensors. 

Whilst PCR or enzymatic biosensors are implemented in vitro, for genetic biosensors 

the DNA encoding the device must be inserted into an appropriate biological chassis 

capable of expressing the genetic[119]. In the specific case of the formaldehyde 

biosensor, the DNA encoding the device is intended for transformation into Escherichia 

coli. The genetic elements of the biosensor were designed and selected in such a way 

that the native biological machinery present in E. coli is able to correctly express the 

formaldehyde biosensor.  

 

While a bacterial species is used in this example, there are many examples of other 

species being used as a chassis for a biosensor device, including yeast[120], plant 

species[121], and mammalian cell lines[122]. There has also been increasing popularity 

in using cell-free protein synthesis (CFPS) systems as a biological chassis[123]. Put 

 

Figure 1.6. Transcription Factor-Based Biosensor Mechanisms 

Two common mechanisms for transcription-factor based biosensing. In each example, the 
analyte acts as an inducer. (A) An example of positive induction, where the combination of 
a transcription factor and analyte can promote genetic expression from a specific promoter 
to elicit a response. (B) An example of negative induction, where a transcription factor 
represses expression from a promoter. When an analyte is present, the transcription factor 
becomes sequestered and promoter repression is relived, leading to genetic expression 
and a response. 
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simply, CFPS systems use biological machinery and pathways to express genetic 

elements, but are not, and do not contain, living cells[124]. Whilst a wide range of 

potential hosts exist, only a handful are used regularly[82]. This can be problematic for 

the development of biosensors, where mechanisms of detection for many interesting 

molecules are often found in non-model organisms. There is then a choice to be made 

between implementing the detection mechanism in a non-native host, which in some 

cases may be difficult, especially if the molecule of interest is toxic, or required 

regulatory elements perform poorly in model organisms, or trying the implement logic 

and response mechanisms into a species where behaviour of the parts responsible for 

those mechanisms is less predictable. 

 Biosensor development and challenges 

When developing a genetic circuit-based biosensor, or any biosensor, the identification 

and engineering of the detector mechanism, which interacts with the desired stimulus 

to create a ‘genetic signal’ and generate a response, is fundamental. For some stimuli, 

detector mechanisms may already be known, but in other cases there may be no 

known mechanism of detection. Although research has been conducted into more 

efficient development of detection mechanisms, this work is ongoing[125], [126]. 

 

Aside from the detection mechanism, biosensors require a mechanism for generating 

a response in line with the design specification. For genetic biosensors, these 

responses tend to be the result of a change in expression of a CDS[127]. The nature of 

the protein encoded for by the CDS will vary based on the response, and could include 

fluorescent proteins, which provide a signal which can be both qualitative and 

quantifiable, a pigment which results in a change in colour, or an enzyme/set of 

enzymes required for activation of a metabolic pathway. 

 

Genetic biosensors often make use of the standardised biological parts covered in 

section 1.2.1 in their design. When the genetic biosensor’s chassis is a model organism, 

there are a wealth of standardised parts which can be selected from to help code the 

desired response. If the chassis is less studied and used in synthetic biology, there are 

likely to be fewer choices. The exact selection of parts will determine the overall 

function of the biosensor. For example, a section of the biosensor may require a protein 

to be continually expressed, and hence require the use of a constitutive promoter. The 

‘strength’ of the promoter (i.e. the rate of transcription of coding regions under the 
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control of that promoter) will affect the amount of that protein produced, and hence 

have an affect on the overall system[128]. This can have an impact on the signal-

response curve described previously. 

 

Development of genetic biosensors tends to hinge on the ability to optimise and tune 

their functionality towards the parameters set out by the design specification[117], [129]. 

There tend to be many trade-offs to consider, and it can take many iterations of the 

DBTL cycle to obtain a fit-for-purpose biosensor[52]. Whilst there are many success 

stories of genetic biosensors, it is still true that many genetic biosensors, and indeed a 

lot of synthetic biology solutions, tend to find themselves stuck in the proof-of-concept 

stage. This can stem from difficulties with optimisation, which could be due to the 

design space of a system being inaccessible, perhaps due to requirements for 

optimisation of aspects like enzyme kinetics or protein binding parameters[130]. These 

types of optimisations can be difficult as they rely on protein engineering, which as 

discussed earlier is still far from a simple task. It is also possible that the way in which 

the design has been implemented makes it time consuming and costly to generate 

variants for testing. This is common when designs have been built without standard 

DNA assembly techniques, as it becomes tough to easily swap out elements of the 

design, and even tougher to generate enough variants to properly explore the potential 

design space. 

 

Despite difficulties associated with biosensor optimisation, there are examples of 

innovative approaches to improve a biosensor’s functionality. One such example is 

that of a macrolide biosensor[131]. Macrolides represent a class of pharmaceutically 

relevant molecules. The initial biosensor design, which made use of transcription 

factor-based mechanisms, displayed low sensitivity. To improve sensitivity, an enzyme 

was added which modified macrolides to prevent them from diffusing out of the host 

cells. This allowed for detection of lower macrolide amounts by concentrating the 

analytes around the detection mechanisms. The optimisation approach taken here, 

whilst impactful and indicative of the potential bioengineering has for biosensor 

development, was highly specific to the type of biosensor being developed, as not all 

stimuli could be modified in such a way. 

 

There has been other research into genetic biosensor optimisation approaches, such 

as a study which aimed to provide a more generalised framework for biosensor 
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optimisation[132]. This framework utilised computationally informed design in the form 

of protein structural modelling to modify a transcription factor for specificity towards an 

analyte different than its native binding partner. Potential mutants were screened 

rapidly in vitro with the aid of cell-free protein synthesis systems, and the 

characterisation data was used to inform future iterations of the design stage and the 

creation of more optimal mutants. Whilst this study showed the great potential for such 

an approach, it was highly reliant on high quality structural data for the transcription 

factor being mutated, which is not always available. Additionally, the final mutated 

transcription factor may require further optimisation, as the initial cell-free screening 

step fails to account for issues such as membrane permeability of the analyte, and 

potential toxicity. 

 

In some cases, biosensor designs may be large, especially in cases which require 

complex, or even just moderate, signal processing or biocomputational capabilities[133]. 

These situations are likely to become more commonplace as synthetic biology aims to 

solve more complex problems and compete with other engineering fields generally. In 

such situations, implementation of the design into a chassis is likely to introduce host 

stress, which can cause reduced performance of the system as a whole[134]. In some 

cases, it is possible to use a chassis which is more resistant to the problematic 

elements. Often, however, genetic biosensors will use elements which have optimal 

chassis which are different from one another. This could occur if the detection 

mechanism has been taken from one species, such as a yeast, but the parts used for 

signal processing were developed for a different species, such as a gram-negative 

bacterium. It may be possible to address the issue of both host stress and sub-optimal 

chassis through the use of synthetic multi-microbial consortia. This concept is 

discussed in detail in the following section. 

 Multi-microbial systems 

 Natural microbial communities 

In nature, micro-organisms are known to form microbial communities, where many 

different strains or species co-exist[135]. Such multi-microbial communities can differ in 

size, complexity, and diversity; some communities may contain variants of a single 

species, whilst others are composed of many diverse micro-organisms[136]. To survive 

in different environments, micro-organisms rely on a plethora of biological processes, 

including the degradation of toxic substances into less harmful products, conversion of 
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resources into substrates which can be used as an energy source, and detection of 

threats[137]. Within a community, these processes can be divided among different 

populations (Figure 1.7 (A)). This ‘division of labour’ allows members to efficiently 

perform functions at which they excel, sharing the fruits of their labour with the 

community, whilst leaving others to deal with processes they are less adapted to, or 

unable to, perform[138]. 

 

 

It is also possible for a single process to be divided, where different populations 

perform separate parts of the overall process (Figure 1.7 (B)). Indeed, processes which 

require a large number of resources, such as some enzymatic pathways, are known to 

be performed through collaboration of multiple populations of a community, where 

each member performs part of the enzymatic process. This phenomenon can be seen 

in wastewater microbial communities subjected to the chemical terephthalate, where 

distinct populations play different roles in converting the chemical into useful products 

and energy for crucial cellular processes[139]. This type of division prevents individual 

members from having to perform the entirety of a high-burden process, which would 

 

Figure 1.7. Microbial Consortia Interactions and Relationships 

Illustrated are some examples of interactions which occur within microbial consortia. (A) 
Different species can produce resources to be shared with the wider community, and in 
turn gain access to resources which they do not produce. (B) Biological processes can be 
split across the different members of a community. Illustrated here is a hypothetical 
degradation pathway which converts a toxic molecule into a non-toxic product. (C) Cells 
within a community compete for resources, with better adapted species out growing less 
well adapted members. (D) Different species may directly predate on other members, 
which can prevent competition and provide an alternative source of resources. 
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decrease their overall fitness by diverting resources required for other critical 

processes important in cell growth and survival. Instead, the burden gets split across 

multiple cells, ensuring that resources remain for the individual members to grow and 

survive, as well as to perform other functions useful to the community. It has also been 

shown that the division of processes such as these actually increases the overall 

efficiency, as each step is performed by healthier cells, which are usually better 

adapted to the specific part for which they are responsible[140]. 

 

Aside from co-operation, other interactions can occur within natural microbial 

communities, where species compete for resources through a variety of mechanisms 

(Figure 1.7 (C)), including the conversion of resources to substrates not usable by 

competitors, increased growth rates to increase the population of that species and 

hence use more of the available resources, or direct attack of opposing members to 

slow their growth rates or cause cell death[141] (Figure 1.7 (D)). 

 Intercellular signalling 

Collaboration between members of a microbial consortia can be co-ordinated through 

the use of cell-to-cell signalling mechanisms[142]–[144]. Communication between the 

different populations allows for better co-operation. This is because individual 

members can let others know about their current situation or state. Microbial 

communication mechanisms tend to rely on the production of biological molecules, 

which can be transported out of the individual cells to the environment, where they can 

then be taken up by other members of the community and impact on regulation of 

certain processes[145]. One example of such a communication mechanism is that of 

acyl-homoserine lactone (AHL) based quorum sensing. AHLs are relatively simple 

molecules, composed of a homoserine lactone and a fatty acid acyl chain[146]–[148]. In 

this method of communication, AHLs, which are small secondary metabolites, are 

produced via enzymes called AHL synthases. As the AHLs build up in the cell, a 

diffusion gradient occurs, and the AHLs begin to freely diffuse across the cell 

membrane into the surrounding environment. As the AHLs begin to accumulate in the 

environment, surrounding cells take up the AHLs due to the diffusion gradient, and 

AHLs in the AHL producing cells accumulates further, due to the reduced diffusion 

gradient. Once a certain threshold of AHLs is present, genes regulated by these small 

molecules are turned on. This genetic regulation mechanism occurs through the use 
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of a transcription factor which promotes expression from a specific promoter, but only 

when bound to an AHL. 

 

In nature, it is common to find species which both produce and respond to the same 

AHL[149]. By expressing AHL synthases during normal cell growth, as the cell 

populations grows more AHL is produced and accumulates in the environment. The 

increased AHL concentration can signal to members in the population that the number 

of cells is increasing. This mechanism can be used by cell populations to ensure that 

certain genes are only turned on when a specific quorum of cells are present. It is 

common to find pathogenic bacteria, such as Pseudomonas aeruginosa, which make 

use of this quorum sensing mechanism, where virulence factors are only produced 

when enough cells are present to be effective, and to prevent alerting the body’s 

immune system early[150]. There are different types of AHLs, which mainly differ in the 

lengths of their acyl chain[151]. Different AHL synthases specialise in producing a 

specific AHL variant, and the transcription factors and promoters are similarly 

associated with a specific AHL. However, due to the similar structures, there is cross 

talk between the different AHLs, where one AHL may bind to and activate a 

transcription factor associated with a different AHL. 

 

 

Figure 1.8. General Quorum Sensing Mechanism 

Schematic depicting a generic quorum sensing mechanism. Here, one cell (top) is an acyl-
homoserine lactone (AHL) producer, and the other cell (bottom) is an AHL responder. AHL 
molecules are produced by an AHL| synthetase enzyme. The AHLs diffuse across a 
concentration gradient into the extracellular environment. As the AHL accumulates, the 
molecules diffuse into cells with fewer AHL molecules. AHL transcription factors (TF) can 
be activated by AHL molecules, which in turn activation transcription from specific 
promoters, generating a response. In nature, individual species often have both AHL 
producing and responding capabilities (see main text).  
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Whilst the vast majority of known communication mechanisms involve the production 

of small molecules, be they secondary metabolites or peptides, there is some evidence 

of cell-to-cell signalling which is mediated by other factors, such as light, although there 

is still no conclusive evidence for this[152].  

 Engineering natural communities 

As evidenced by the study of natural microbial communities, the concepts of division 

of labour and microbial communication can have a wide range of positive impacts on 

the overall function and efficiency of processes necessary for survival. It is perhaps no 

surprise, then, that the development of multi-microbial systems composed of two or 

more cell types is becoming increasingly popular within synthetic biology[153]–[155]. 

These efforts can largely be split into two broad areas: engineering of natural 

communities, and the development of synthetic consortia. 

 

There are many approaches towards the engineering of natural communities, some of 

which involve modifying the genetics of one or more populations, and other which focus 

on modifying the environment of and resources available to the members of the 

community. It has been shown previously that altering the feedstock available to a 

microbial community can influence the population composition, resulting in changes to 

the processes performed by that community[156]. There is also an interest in 

engineering the genetics of the microbial community as a whole (termed the 

metagenome)[157]. Aside from engineering natural communities, there is increased 

interest in developing completely synthetic multi-microbial systems, driven by efforts to 

overcome some of the issues discussed previously which plague the progression of 

synthetic biology. 

 Synthetic multi-microbial communities 

Within synthetic biology, the limits of what can be achieved with cells in monoculture 

are being reached[158], [159]. This is largely due to the need for increasingly complex 

designs to be implemented, which can impart immense burden on any cell expressing 

the system. The issue of burden, as touched upon previously, is a result of resources 

needed for cell survival being diverted in order to express the synthetic system which 

has been implemented. This lack of resources can negatively impact cell growth and 

even lead to cell death, resulting in fewer cells available to perform the intended 

function. When burden becomes too high, it can impact on the system’s performance, 

with effects ranging from less-than-optimal behaviour to a complete lack of function. 
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The need for complex systems also comes with other issues, such as the requirement 

for a large number of biological parts. In other engineering fields, such as electrical 

engineering, it is commonplace to re-use identical parts in a system; components such 

as buzzers or voltage amplifiers can be used multiple times without issue. However, in 

synthetic biology, re-use of identical components is a lot trickier. This is due to the high 

potential for cross-talk to occur, as there is very rarely any insulation between the 

different section of a system[160]. This means that if, for example, two or more signal 

amplifiers were required for a design, they must be composed of different genetic parts, 

as otherwise parts such as transcription factors produced by one amplifier can interact 

with the promoter in one of the other signal amplifiers, leading to unwanted functionality. 

 

As alluded to, the issues described above could be alleviated through the development 

of multi-microbial systems composed of two or more cell types[161]. This is because of 

the potential to split a system’s design into multiple parts, each of which is then 

implemented into separate chassis. As with processes being split across multiple 

members of a natural microbial community, this has the advantage of not only reducing 

the total burden experienced by any one cell, but also enables more suitable species 

to be selected for sections of the design which require specific chassis in order to 

function as intended. Additionally, re-use of identical biological parts becomes more 

feasible, as the separate sections of the system can be isolated within their respective 

chassis, meaning that the chance for cross talk to occur between elements such as 

transcription factors is significantly reduced. 

 

In order to successfully implement a synthetic biological system using microbial 

consortia, it is necessary to engineer some method of communication between cells in 

the system. Usually, this involves quorum sensing, of which AHL based mechanisms 

tend to be the system of choice[162]. This is likely a result of the mechanism of action 

being well characterised, and that transport is via passive diffusion and does not 

require additional components, as AIP based quorum sensing does. The use of AHL 

based quorum sensing has been put to good use, with many examples of synthetic 

microbial consortia utilising them, such as a spatial patterning system composed of 

two strains of E. coli with QS-mediated communication[163].  Other studies involving 

quorum sensing in synthetic systems include communication between physically 

separated populations in a microfluidic device, which use quorum sensing to create 
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oscillations of GFP expression[164], and implementation of a biological system which 

exhibits neural-like pattern recognition[107]. 

 

Whilst synthetic consortia have shown a lot of promise, there are still challenges. These 

include issues with system instability, where different cell types can grow at different 

rates, causing the ratios of populations to change over time and the system the 

eventually collapse [165]. To counter the issue of co-culture instability, there have been 

efforts to engineer cross-feeding mechanisms into synthetic consortia[166]. Cross-

feeding refers to populations of a consortia relying on each other for cell growth, as 

each produces a resource required by the other. In this way, the growth of the 

populations becomes linked, as if one population begins to outcompete the other, it will 

be limited by the resource provided by the population. Whilst these systems have been 

used successfully, they become difficult to implement and scale in complexity with 

increasing numbers of cell types in the system. Other problems associated with 

synthetic consortia, especially those involving diverse species, involve issues arising 

from a requirement for different conditions in order to grow and survive[167]. For 

example, different species can require radically different temperature to grow efficiently, 

and thus compromising on temperature for consortia of such cells can result in poor 

functionality of the system. Nevertheless, synthetic consortia could provide a solution 

to some of the big issues currently faced by synthetic biology. 

 Overview of This Work 

 A brief overview with rationale 

Synthetic biology approaches are undoubtedly useful, as evidenced by the many 

synthetic biological systems and devices developed, and the impact they have had on 

bioengineering efforts across all areas. However, as can be seen from the discussion 

above, challenges do remain, and there is still considerable potential for the efficiency 

of synthetic biology approaches to be improved upon. There are many causes for these 

challenges, of which many overlap. However, some of the common problems found 

include difficulties with implementing large and complex systems, issues with re-using 

aspects of some designs, and challenges associated with rapidly and efficiently 

optimising built systems. Whilst the exact nature of these challenges differ, similar 

obstacles can be found in other engineering fields. One approach to tackle the 

problems encountered within these other fields is the use of high-level modularity, 

where devices and systems are designed and implemented using modules with high-
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level functionality. The research presented for this thesis focused on demonstrating 

how the principles of high-level modularity and synthetic multi-microbial systems could 

be used to aid in the development of a specific type of synthetic biology device: 

biosensors. The following section provides a description of the project’s aims, which 

were identified with the intention of achieving this goal. 

 Main aims 

In this thesis, the overall goal was to investigate the feasibility of developing genetic 

biosensors with the aid of a modular, multi-microbial framework. Biosensors were 

selected as an application mainly due to their widespread usage within other areas of 

synthetic biology. To achieve this goal, the following aims were identified: 

• Develop tools and methods for the design, building, and characterisation of a 

modular, multi-microbial biosensor. 

• Design a proof-of-concept modular, multi-microbial biosensor according to a set 

of design principles 

• Use computational simulations to guide the characterisation and optimisation of 

the proof-of-concept biosensor 

• Characterise the proof-of-concept biosensor and its modules 

• Attempt to tackle difficulties with co-culturing microbes by investigating a 

method of microbial communication which is not reliant on the transfer of 

molecules 

 Thesis structure 

This thesis is split into seven main chapters. Each results chapter (3 – 7) begins with 

an introduction to the chapter and provides some specific background information. 

Results within these chapters are provided with discussion, following which the chapter 

is concluded with an overview of the main outcomes and discussion of next steps. 

 

The Introduction and Background Information chapter provides background 

information and a review of previous studies within the area of synthetic biology, 

biosensors, and multi-microbial systems. Common challenges surrounding the 

development and implementation of biological systems are discussed, and current 

approaches to alleviate these issues are discussed, along with an explanation of their 

own advantages and disadvantages. 
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The second chapter, Materials and Methods, describes the methodology used to 

perform the experiments discussed in this thesis. An explanation of the data handling 

and analysis used is also given where appropriate. It should be noted that the 

methodologies may not be in the order in which the results they yielded are discussed 

in the thesis. However, where the results are discussed, references back to the 

appropriate sections of Chapter 2 are given. 

 

Chapter 3, the first results chapter, describes a potential framework for developing a 

modular, multi-microbial biosensor. It is also presented how the Synthetic Biology 

Open Language (SBOL) was extended to allow for standardised representation of 

multi-microbial systems, along with a set of tools created for aiding in automation of 

the development of biosensor modules, and synthetic biology workflows more 

generally. 

 

In Chapter 4, the design for a proof-of-concept modular and multi-microbial genetic 

biosensor is given. Results are then presented from computational modelling of the 

biosensor modules using both deterministic and agent-based simulation. Following this, 

agent-based modelling is used to predict functionality of the multi-microbial biosensor, 

and to explore a potential avenue for optimisation. 

 

Chapter 5 discusses characterisation of the biosensor modules, along with validation 

of intercellular communication between cell types expressing each module. Finally, the 

multi-microbial biosensor itself is tested experimentally. 

 

Attempts to optimise the proof-of-concept biosensor through modification of cell ratios 

are presented in Chapter 6, and statistical Design of Experiments is used to determine 

important factors for optimisation of culturing conditions. 

 

Informed by difficulties encountered throughout the project, Chapter 7 deals with efforts 

to implement and alternative to chemical-based microbial communication. This 

alternative takes the form of bioluminescence-based communication, which may allow 

for easier implementation of multi-microbial systems by avoiding the need for co-

culturing. 
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The Conclusion and Future Work chapter rounds up the main outcomes and results of 

this thesis, and discussion is given to the overall limitations of this work. Potential future 

work to address these limitations and further the project is also discussed. 

 

The thesis finishes with Supplementary Information and References chapters. The 

Supplementary Information is split into sections according to each chapter in this thesis, 

and the References chapter provides citations for the entire thesis, arranged by order 

of appearance. 
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 Materials and Methods 

 Generic Methods 

 Bacterial cell culturing 

Unless stated otherwise, Lysogeny Broth (LB) media was used for growth of cells in 

liquid medium. LB media was prepared by combining chemicals in required amounts 

(10 g/L tryptone; 10 g/L sodium chloride; 5 g/L yeast extract) and dissolving in MiliQ 

water. Media was sterilised by autoclaving for 20 minutes at 121oC. 

 

Table 2.1. Antibiotic Details: (*) Long term storage concentration 

at -20oC. (†) Concentration for short-term working solution stored at 

4oC. (§) Final concentration used in liquid and solid culture media. 

Antibiotic Solvent 
Concentrations (mg/mL) 

Storage* Working† Final§ 

Chloramphenicol Ethanol 100 10 0.05 

Kanamycin Water 25 10 0.05 

Ampicillin Water 50 20 0.1 

 

In all cases, growth of cells on solid media was performed using LB agar plates. LB 

agar was prepared by combining chemicals in required amounts (15 g/L agar; 10 g/L 

tryptone; 10 g/L sodium chloride; 5 g/L yeast extract) and dissolving in MiliQ water. 

The mixture was sterilised by autoclaving for 20 minutes at 121oC and allowed to 

solidify. Solid agar was heated using a microwave until molten and left to cool. The 

relevant antibiotic was added at the appropriate concentration (Table 2.1) and mixed. 

Agar was then poured into 90 mm petri dishes and left to solidify. 

Antibiotics were stored in solvents as detailed by Table 2.1. Antibiotics were stored at 

either -20oC (long term) or 4oC (short term). Storage, working, and final concentrations 

for each antibiotic are detailed in Table 2.1.  

 

For overnight growth of cell cultures in liquid media (referred to as ‘overnight cultures’ 

within this thesis), 10 mL of LB media was added to a sterile 50 mL falcon tube and 

inoculated with a single colony from the appropriate agar plate. If required, antibiotic 

from the appropriate working stock was added to the required final concentration 

(Table 2.1). Cultures were incubated at 37oC for 16-18 hours with constant orbital 

shaking at 200 Revolutions per Minute (RPM), unless stated otherwise. 
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In all cases, the bacterial cell strain used was Escherichia coli DH5α originally sourced 

from New England Biolabs (NEB). Single colonies of E. coli DH5α were obtained by 

streaking from a glycerol stock stored at -80oC (sourced from NEB) onto LB agar plates 

with no antibiotic and incubated at 37oC for approximately 16 hours. Colonies were 

either used immediately, or the agar plate was stored short-term at 4oC until needed. 

 Preparation of E. coli competent cells 

Two transformation buffers were used for preparing competent cells: TF-1 and TF-2. 

TF-1 was prepared by first mixing chemicals at the required amounts (7.4 g potassium 

chloride; 2.95 g potassium acetate; 1.5 g calcium chloride dihydrate; 150 g glycerol) 

and dissolving in 950 mL MiliQ water. The buffer’s pH was adjusted to ~6.4 with acetic 

acid and sterilised by autoclaving for 20 minutes at 121oC. A 1 M manganese chloride 

tetrahydrate solution (198 g/L) was prepared in MiliQ water and sterilised by syringe 

filtration through a 0.22 μm filter, of which 50 mL was added to 950 mL the TF-1 buffer. 

TF-2 was prepared by mixing chemicals at the required amounts (0.74 g potassium 

chloride; 11 g calcium chloride dihydrate; 150 g glycerol) in 980 mL MiliQ water and 

sterilised by autoclaving for 20 minutes at 121oC. A 0.5 M solution of MOPS buffer 

(104.7 g/L 3-(N-morpholino)propanesulfonic acid) was prepared in MiliQ water with a 

pH adjusted to 6.8 with potassium hydroxide, and sterilised by syringe filtration through 

a 0.22 μm filter. 20 mL of MOPS buffer was added to 980 mL of TF-2 buffer. Both 

buffers were stored at 4oC until required. 

 

An overnight culture of E. coli DH5α was prepared from a streak plate on LB agar with 

no antibiotic as described in sub-section 2.1.1. 40 mL of LB media was added to a 250 

mL conical flask and inoculated with 400 μL of overnight culture. The culture was 

incubated at 37oC with shaking at 200 RPM until an optical density measurement at 

600 nm of approximately 0.5 was reached. The full culture was transferred to a 50 mL 

falcon tube, and cells were harvested by centrifugation at 4,500 RPM and 4oC for 10 

minutes. Supernatant was discarded. The cell pellet was re-suspended in 8 mL of ice-

cold TF-1 buffer and incubated on ice for 15 minutes. Cells were harvested by 

centrifugation at 4,500 RPM and 4oC for 10 minutes and supernatant discarded. The 

cell pellet was re-suspended in 4 mL of ice-cold TF-2 buffer and aliquoted at 50 μL into 

1.5 mL tubes and stored at -80oC until required. 
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 Transformation of plasmids into E. coli cells 

The appropriate number of competent E. coli DH5α aliquots were thawed, and between 

2 and 10 μL of plasmid DNA was added per aliquot. DNA was thoroughly mixed with 

gentle pipetting up and down. The cells-plasmid mixtures were subjected to heat shock 

at 42oC for 1 minute and then cooled to 4oC. 250 μL of LB media was added to the 

aliquots, which were then incubated for 1 hour with 250 RPM shaking at 37oC. All cells 

were dispensed onto separate LB agar plates prepared with the appropriate antibiotic, 

and cells were spread using autoclave sterilised glass beads. Beads were removed 

and cells were allowed to dry for 10 to 20 minutes, before being inverted at incubated 

at 37oC for approximately 16 to 18 hours. 

 Purification of plasmid DNA 

A single colony of cells transformed with the plasmid to be purified were used to 

inoculate an overnight culture with the appropriate antibiotic. Cultures were then 

processed using Monarch Plasmid Miniprep Kit (obtained from New England Biolabs) 

according to the manufacturer's protocol. Two modifications were made to this protocol: 

(i) overnight cultures were centrifuged at 4,500 RPM for 10 minutes instead of 13,000 

RPM for 30 seconds, and (ii) nuclease-free water was during the elution step instead 

of elution buffer. The concentration of plasmid DNA purified was determined using a 

UV-Vis spectrophotometer (NanoDrop One, Thermo Scientific) according to the 

manufacturer’s instructions. Plasmid DNA was stored at -20oC for long term storage, 

and 4oC for short term storage. 

 DNA gel electrophoresis 

Gel electrophoresis was used to visualise plasmid backbones on agarose gels. 

Agarose gels were prepared by combining 1% w/v agarose powder with 1x Tris-

acetate-EDTA (TAE) buffer and heating with stirring until all powder was dissolved. 0.1% 

v/v of 1% Nancy-520 (dsDNA dye supplied by Sigma-Aldrich) was added to the solution 

and mixed thoroughly. The molten agarose mixture was poured into a gel tray with a 

comb added and left to set. DNA samples were mixed with 6x purple gel loading dye 

(NEB) to a final volume of 10 μL and added to the agarose gel wells. 1kb and 100bp 

ladders (NEB) were used as markers. The gel was placed into an electrophoresis 

container filled with 1x TAE buffer, and a current was run across the gel for 

approximately 1 hour. Gels were visualised under UV light. 
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 Sequence verification of plasmid DNA 

The sequence of purified plasmid DNA was obtained via Sanger sequencer performed 

by Eurofins. Samples were prepared by combining approximately 500 ng of plasmid 

DNA with 2.5 μL of either 10 μM forward primer (VF2: TGCCACCTGACGTCTAAGAA) 

or 10 μM reverse primer (VR: ATTACCGCCTTTGAGTGAGC) and making the reaction 

up to 10 μL with nuclease-free water. 

 Manual Assembly of DNA Constructs 

Constructs were designed and assembled in silico using Benchling prior to assembly. 

All assembled DNA constructs are listed by assembly method in Table 2.6 and Table 

2.7, along with information such as the DNA assembly method(s) used and a link to 

the construct’s sequence. Sanger sequencing was used to verify correct assembly and 

sequence (sub-section 2.1.6). For a list of all DNA constructs or parts not built in this 

study, see Table 2.2.
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Table 2.2. DNA Obtained Outside this Study: Listed here are all DNA parts or constructs with did not originate within this study. 

Name Plasmid Backbone Antibiotic Selection Source 

BBa_J04450  pSB1C3 Chloramphenicol iGEM 2017 Distribution Kit 

BBa_J06602  pSB1C3 Chloramphenicol iGEM 2017 Distribution Kit 

BBa_K2205010 pSB1C3 Chloramphenicol Newcastle iGEM 2017 

BBa_K2205011 pSB1C3 Chloramphenicol Newcastle iGEM 2017 

BBa_K2205014 pSB1C3 Chloramphenicol Newcastle iGEM 2017 

PBLRep-EL222 ---- Kanamycin Gift from Chueh Loo Poh[168] 

PBLInd100-EL222 ---- Kanamycin Gift from Chueh Loo Poh[168] 

pOdd1 pOdd1 Kanamycin iGEM 2017 Distribution Kit 

pOdd2 pOdd2 Kanamycin iGEM 2017 Distribution Kit 

pSB1C00 pSB1C00 Chloramphenicol iGEM 2017 Distribution Kit 

pSB1C3-Lux pSB1C3 Chloramphenicol pSB1C3-Lux was a gift from Tom Ellis (Addgene plasmid 

# 109383) 



37 
 

 BioBrick assembly 

All reagents were obtained from New England Biolabs (NEB), and all assemblies were 

performed at 20 μL total reaction volume in 0.2- or 0.5-mL tubes. DNA constructs 

assembled via BioBrick assembly are listed in Table 2.6. 

 

For each assembly, the plasmid backbone and insert(s) were digested separately. 

DNA digest reactions were prepared as shown in Table 2.3. Reactions were incubated 

at 37oC for 1 hour, with a subsequent heat inactivation step at 80oC for 20 mins. 

Reactions were held at 4oC until required. 

Table 2.3. DNA Digest Reaction for BioBrick Assembly: (*) 

Enzymes used for each reaction are shown in Table 2.6. 

Reagent Amount 

Plasmid Backbone 250 ng 

Enzyme 1* (10 units/μL) 1 μL 

Enzyme 2* (10 units/μL) 1 μL 

10x rCutSmart Buffer 2.5 μL 

Nuclease-Free Water Up to 20 μL 

 

Unless stated otherwise, ligation reactions were prepared as shown in Table 2.4. 

Ligation reactions were incubated at either 16oC for 16 hours or 25oC for 2 hours, 

followed by heat inactivation at 65oC for 10 mins. Reactions were held at 4oC until 

needed. Reactions were transformed into E. coli DH5α as stated in sub-section 2.1.3, 

using approximately 5 μL of reaction mixture. 
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Table 2.4. Ligation Reaction for BioBrick Assembly: (*) Volume varied between 

reactions; aimed for ~50 ng of plasmid backbone, with BioBrick insert(s) added at an 

addition 3-fold. (†) DNA used for each reaction can be found in Table 2.6. 

Reagent Amount 

Digested Plasmid Backbone ~ 4 μL* 

Digested BioBrick Insert(s) ~ 3.5 μL* 

T4 DNA Ligase (400 units/μL) 1 μL 

T4 DNA Ligase Buffer (10x) 2 μL 

Nuclease-Free Water Up to 20 μL 

 

A variant of the reactions above were used to transfer constructs between BioBrick 

compatible plasmids. For these reactions, all steps remained the same except EcoRI 

and PstI was used to digest both the plasmid backbone and BioBrick insert. 

 Gibson assembly 

All reagents were obtained from New England Biolabs (NEB), and all assemblies were 

performed at 20 μL total reaction volume in 0.2 or 0.5 mL tubes. Gibson assembly was 

performed using gBlocks ordered from Integrated DNA Technologies (IDT). The 

gBlocks were designed by adding 20-30 bp overhangs to the desired part for assembly 

with homology to the plasmid backbone insert site. Assembly was verified in silico 

using the NEBuilder tool by New England Biolabs. DNA constructs assembled via 

Gibson assembly are listed in Table 2.7. 

 

gBlocks from IDT were prepared by centrifuging the dried DNA for 10 to 30 seconds 

at 12,000 RPM, and then resuspending by vortex in 50 μL of nuclease-free water for a 

final concentration of 20 ng/μL. The re-suspended DNA was incubated at 50oC for 20 

mins and then kept at -20oC until required. The plasmid backbone was linearised by 

restriction digestion using the same process described in sub-section 2.2.2, using 

enzymes mentioned in Table 2.7. Restriction sites were selected which flanked the 

desired insertion site. 

 

Gibson assembly was performed using the NEBuilder HiFi DNA assembly kit supplied 

by New England Biolabs. Reactions were prepared as stated in Table 2.5. Reactions 

were incubated at 50oC for 60 minutes, and then held at 4oC until required. Reactions 
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were transformed into E. coli DH5α as stated in sub-section 2.1.3, using 5 μL of 

reaction mixture. 

Table 2.5. HiFi Reaction for Gibson Assembly: (*) For all assemblies, three 

reactions were performed. Each reaction varied by the amount of gBlock added, 

which was determined as either a 1-fold, 2-fold, or 3-fold increase in pmols of 

gBlock relative to the number of plasmid backbone pmols. 

Reagent Amount 

Linear Plasmid Backbone ~ 50 ng 

gBlock Various* 

NEBuilder HiFi Master Mix 10 μL 

Nuclease-Free Water Up to 20 μL 
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Table 2.6. DNA Constructs Assembled via BioBrick Assembly: Shown here are successfully assembled DNA constructs assembled with BioBrick assembly. 

Construct Name Plasmid 

Backbone 

Antibiotic 

Selection 

Constitutive Parts (With Enzymes 

Used) 

Parts Source Link to Sequence 

Connector-2 

Sender + mCherry 

Sub-Module 

pSB1AT3 Ampicillin • Backbone: pSB1AT3 + BBa_J04450 

(EcoRI + PstI) 

• Insert 1: pSB1C3 + BBa_J06602 

(EcoRI + SpeI) 

• Insert 2: pSB1C3 + BBa_K2205011 

(XbaI + PstI) 

• Backbone: Table 2.2 

• Insert 1: Table 2.2 

• Insert 2: Table 2.2 

benchling.com/s/se

q-

X7cNXRHWB0QkC

kYQLfIn 

Default Processor 

+ mCherry Module 

pSB1C3 Chloramphenicol • Backbone: pSB1C3 + BBa_K2205010 

(SpeI + PstI) 

• Insert 1: Connector-2 Sender + 

mCherry Sub-Module 

• Backbone: Table 2.2 

• Insert 1: This study (Table 

2.6) 

benchling.com/s/se

q-

GgM5DP5lxw2ixtjvj

kjo 

Table 2.7. DNA Constructs Assembled via Gibson Assembly: Shown here are successfully assembled DNA constructs assembled with Gibson assembly. 

Construct 

Name 

Plasmid 

Backbone 

Antibiotic 

Selection 

Constitutive Parts (With Enzymes 

Used) 

Parts Source Link to Sequence 

pOdd1_AE pOdd1 Kanamycin • Backbone: pOdd1 + 

(J23100+B0034_EL222) (EcoRI + 

PstI) 

• Insert: pOdd1_AE_gBlock 

• Backbone: This Study (Table 2.2) 

• Insert: Synthesised by IDT as linear 

dsDNA (this study) 

benchling.com/s/seq-

r8x27DijlgDaV2zqow3y?m=s

lm-WyLdr9bGAylIFZYWf8B7  

https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-r8x27DijlgDaV2zqow3y?m=slm-WyLdr9bGAylIFZYWf8B7
https://benchling.com/s/seq-r8x27DijlgDaV2zqow3y?m=slm-WyLdr9bGAylIFZYWf8B7
https://benchling.com/s/seq-r8x27DijlgDaV2zqow3y?m=slm-WyLdr9bGAylIFZYWf8B7
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pOdd2_BF pOdd2 Kanamycin • Backbone: pOdd1 + 

(J23100+B0034_EL222) (EcoRI + 

PstI) 

• Insert: pOdd2_BF_gBlock 

• Backbone: This Study (Table 2.2) 

• Insert: Synthesised by IDT as linear 

dsDNA (this study) 

benchling.com/s/seq-

uy3g38t0PKDBtkRWKmuY?

m=slm-

ZIBdMk04ZWF7RHPVYUIV  

pOdd4 - Kanamycin • Backbone: pOdd1 + 

(J23100+B0034_EL222) (EcoRI + 

PstI) 

• Insert: pOdd4_gBlock 

• Backbone: This Study (Table 2.2) 

• Insert: Synthesised by IDT as linear 

dsDNA (this study) 

benchling.com/s/seq-

8DKZKLtQGFUbZxTrpUOn?

m=slm-

uzBRy5MxR35BexiCD4wj 

B0040 pOdd4 Kanamycin • Backbone: pOdd1 + 

(J23100+B0034_EL222) (EcoRI + 

PstI) 

• Insert: pOdd4_B0040_gBlock 

• Backbone: This Study (Table 2.2) 

• Insert: Synthesised by IDT as linear 

dsDNA (this study) 

benchling.com/s/seq-

dgbBIl4qdOBOkbRtY4Rr?m

=slm-

M9llkgFuIP9w9TxSktF3 

https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
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 Testing BiomationScripter Templates 

Described here are the methods used to test the BiomationScripter Templates 

presented in chapter 3. 

 EchoProto PCR Template 

Eight sequence fragments were amplified from DNA templates using the Echo525 

(Labcyte) and the BiomationScripter (v0.2.2) PCR Template (Table 2.13). Reactions 

were performed at 5 μL final volume and prepared in a 384-well, v-bottom PCR plate. 

Proportions of reagents per reaction are shown in Table 2.8. Nuclease-free water was 

transferred from a 6RES plate (Labcyte). DNA templates and primers were transferred 

from 384PP plates (Labcyte). All other reagents were transferred from 384LDV 

(Labcyte) plates. The PCR plate had a foil seal applied, was vortexed, and then 

centrifuged for approximately 10 seconds before being thermocycled according to 

Table 2.9. PCR fragments were analysed using the TapeStation 4200 (Agilent) and 

the D5000 Tape Kit (Agilent), according to the manufacturer’s instructions. A picture of 

the gel was exported from the TapeStation Analysis Software (v4.1.1), and raw 

electrophogram data was exported as a comma separated value (CSV) file for analysis 

and visualisation in Python (v3.9). 

Table 2.8. EchoProto PCR Reaction Composition 

Reagent Amount 

NEB Q5 Reaction Buffer (5x) 1000 nL 

dNTPs (10 mM) 100 nL 

Forward Primer (10 μM) 250 nL 

Reverse Primer (10 μM) 250 nL 

Template DNA (~200 ng/uL) 1000 nL 

Q5-HF DNA Polymerase 50 nL 

Nuclease-Free Water Up to 5000 nL 
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Table 2.9. EchoProto PCR Thermocycling Conditions 

Step Number of Cycles Temperature (oC) Time (Seconds) 

1 1 98 30 

2 35 

98 10 

60 30 

72 40 

3 1 72 120 

4 1 4 Inf 

 EchoProto Loop Assembly Template 

Level 0 phytobricks were created by Polymerase Chain Reaction (PCR) amplification 

from a DNA template. Primers were designed to add 5’ and 3’ ends to allow for 

assembly into a Level 0 phytobrick acceptor plasmid (pSB1C00). PCRs were 

performed manually. Reagents and volumes used can be found in Table 2.10. All level 

0 parts created, along with a list of primers used, can be found in Table 2.13. PCR 

fragments were analysed by gel electrophoresis (sub-section 2.1.5) to confirm correct 

sizing. All PCR fragments were assembled into pSB1C00 manually via loop assembly. 

Reactions were prepared as described in Table 2.11, and then subjected to 

thermocycling as shown in Table 2.12. 5 μL of reaction mixture was transformed into 

E. coli DH5α and plated onto LB agar plates with chloramphenicol antibiotic. A number 

of non-red colonies (the pSB1C00 plasmid contains a red fluorescent protein 

expression unit in the insertion site) per transformation were selected and subjected to 

plasmid purification. The sequence of level 0 parts in were confirmed via Sanger 

sequencing. 

 

Table 2.10. PCR for Level 0 Part Creation: (*) For each reaction, DNA backbone 

and DNA parts were added in a 1:1 and a 1:2 ratio 

Reagent Amount (μL) 

BsaI-HF (NEB) 0.125 

T4 Ligase Buffer (NEB) 0.5 

T4 Ligase 0.125 

DNA Backbone (10 fmol/μL) * 0.25 

DNA Parts (10 fmol/μL) * Various * 

Nuclease-Free Water Up to 5 
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Four level 1 phytobrick assemblies (Table 2.14) were prepared using the Echo525 

(Labcyte) and the BiomationScripter (v0.2.2) Loop assembly Template. Reactions 

were performed at 5 μL final volume and prepared in a 384-well, v-bottom PCR plate. 

Proportions of reagents per reaction are shown inTable 2.11. Nuclease-free water was 

transferred from a 6RES plate (Labcyte). Level 0 DNA parts, pOdd plasmids, and buffer 

were transferred from 384PP plates (Labcyte). All other reagents were transferred from 

384LDV (Labcyte) plates. The PCR plate had a foil seal applied, vortexed, and was 

the centrifuged for approximately 10 seconds before being thermocycled according to 

Table 2.12. 5 μL of assembly reaction was used to transform E. coli DH5α cells, and 

colonies were selected for plasmid purification. Plasmids were subjected to   PCR 

fragments were analysed using the TapeStation 4200 (Agilent) and the D5000 Tape 

Kit (Agilent), according to the manufacturer’s instructions. A picture of the gel was 

exported from the TapeStation Analysis Software (v4.1.1), and raw electrophogram 

data was exported as a comma separated value (CSV) file for analysis and 

visualisation in Python (v3.9). 

 

Table 2.11. Level 1 Loop Assembly Reactions 

Reagent Amount 

Q5-HF Master Mix (10x) 12.5 μL 

Forward Primer (10 μM) 1.25 μL 

Reverse Primer (10 μM) 1.25 μL 

Template DNA ~800 ng 

Nuclease-Free Water Up to 25 μL 

 

Table 2.12. EchoProto Level 1 Loop Assembly Thermocycling Conditions 

Step Number of Cycles Temperature (oC) Time (Minutes) 

1 30 
37 3 

16 4 

2 1 50 5 

3 1 80 10 

4 1 4 Inf 
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Table 2.13. PCR Reactions: Shown here are PCR reactions performed, with DNA templates and primers used. 

PCR Fragment Name Template DNA Forward Primer Reverse Primer Manual or Automated 

J23100_B0034_AC PBLInd100-EL222 (Table 2.2) 
ATCAgctcttcATCGggagtctTTGAC

GGCTAGCTCAGTCCT 

CTAGCCTAGAGAAAGAGGAGAA

ATACTAGaatgCGAGTgaagagcttgc 
Manual 

PBLInd100_B0034_AC PBLInd100-EL222 (Table 2.2) 
ATCAgctcttcATCGggagGGTAGC

CTTTAGTCCATGtt 

taaaTATGTCTAGAGAAAGAGGAG

AAATACTAGaatgCGAGTgaagagct

tgc 

Manual 

EL222_CE PBLInd100-EL222 (Table 2.2) 
ATCAgctcttcATCGaatgTTGGATA

TGGGACAAGATCG 

CCGTCGAAGCCGGAATCTAAgctt

CGAGTgaagagcttgc 
Manual 

mCherry_CE 
Default Processor + mCherry 

Module (Table 2.6) 

ATCAgctcttcATCGaATGGTGAG

CAAGGGCGAGGAGG 

CATGGACGAGCTGTACAAGTAAg

cttCGAGTgaagagcttgc 
Manual 

B0015_EF PBLRep-EL222 (Table 2.2) 
ATCAgctcttcATCGgcttaggatctcca

ggcatcaaataaaac 

tcgggtgggcctttctgcgtttatacgctCGAG

Tgaagagcttgc 
Manual 

pBLRep_B0034_AC PBLRep-EL222 (Table 2.2) 
ATCAgctcttcATCGggagTTGACA

GGTAGCCTTTAGTC 

TATAATTATGTCTAGAGAAAGAG

GAGAAATACTAGaatgCGAGTgaa

gagcttgc 

Automated (EchoProto) 

RBS_LuxD_BE pSB1C3-Lux (Table 2.2) 
ATCAgctcttcATCGTACTagttaaag

gaaattatatgaaagatg 

gaaaatgaattattagaattggcttaagcttCG

AGTgaagagcttgc 
Automated (EchoProto) 

RBS_LuxA_BE pSB1C3-Lux (Table 2.2) 
ATCAgctcttcATCGTACTataaacag

aatcaccaaaaagg 

gctcctttcttaaaagaacctaaataagcttCG

AGTgaagagcttgc 
Automated (EchoProto) 

RBS_LuxG_BE pSB1C3-Lux (Table 2.2) 
ATCAgctcttcATCGTACTgtcataca

aaagaatatcaagg 

cttttgcatacgtataatactaggcttCGAGTg

aagagcttgc 
Automated (EchoProto) 

RhlR_CE 
sfGFP Reporter Module (Table 

2.2) 

GTACgctcttcATCGaatgaggaatgac

ggaggctt 

gcgctgggcctcatctaataaGCTTcgagtG

AAGAGCgatc 
Automated (EchoProto) 
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pRhl_AB 
sfGFP Reporter Module (Table 

2.2) 

agtcGCTCTTCatcgGGAGtcctgtga

aatctggcagtt 

tcgaattggctaaaaagtgttcTACTcgagc

GAAGAGCgcgc 
Automated (EchoProto) 

LasI_CE 
IPTG Detector + eCFP Module 

(from synthesis) 

ATCAgctcttcATCGaATGATCGTT

CAGATCGGTCG 

GCGTCTGGCTGTTTCCTAATAAg

cttCGAGTgaagagcttgc 
Automated (EchoProto) 

B0040_AF 
Default Processor + mCherry 

Module (Table 2.6) 

AGTCGCTCTTCATCGGGAGagg

ttctgttaagtaactgaaccca 

ctcttaagaggtcactgacctaacaCGCTC

GAGTGAAGAGCTTGC 
Automated (EchoProto) 
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Table 2.14. DNA Constructs Assembled via Automated Loop Assembly: Shown here are successfully assembled DNA constructs assembled with Loop 

assembly using the EchoProto template. 

Construct Name Plasmid Backbone Antibiotic Selection DNA Parts Link to Sequence 

pOdd1: PBLInd-mCherry pOdd1 (Table 2.2) Kanamycin • PBLInd100_B0034_AC (Table 2.13) 

• mCherry_CE (Table 2.13) 

• B0015_EF (Table 2.13) 

benchling.com/s/seq-

GZuvozOBcFWx75SNatvN?m=

slm-EvXvnAGnUXFmK3migJ0K  

pOdd1: J23100-mCherry pOdd1 (Table 2.2) Kanamycin • J23100_B0034_AC (Table 2.13) 

• mCherry_CE (Table 2.13) 

• B0015_EF (Table 2.13) 

benchling.com/s/seq-

NA9sMgwo22g9MChF1Qmg?m

=slm-i7QlWkXxptUJztdUqcnZ  

pOdd2: PBLInd-EL222 pOdd2 (Table 2.2) Kanamycin • PBLInd100_B0034_AC (Table 2.13) 

• EL222_CE (Table 2.13) 

• B0015_EF (Table 2.13) 

benchling.com/s/seq-

5y5IyNioaWE29xJpkXwm?m=sl

m-1eo8OYEEB4Ry2k3BZZV7  

pOdd2: J23100-EL222 pOdd2 (Table 2.2) Kanamycin • J23100_B0034_AC (Table 2.13) 

• EL222_CE (Table 2.13) 

• B0015_EF (Table 2.13) 

benchling.com/s/seq-

iiUaTlm97fh753jBtYfg?m=slm-

uekx5RVwp8PVBTmyJKHf  

 

 

https://benchling.com/s/seq-GZuvozOBcFWx75SNatvN?m=slm-EvXvnAGnUXFmK3migJ0K
https://benchling.com/s/seq-GZuvozOBcFWx75SNatvN?m=slm-EvXvnAGnUXFmK3migJ0K
https://benchling.com/s/seq-GZuvozOBcFWx75SNatvN?m=slm-EvXvnAGnUXFmK3migJ0K
https://benchling.com/s/seq-NA9sMgwo22g9MChF1Qmg?m=slm-i7QlWkXxptUJztdUqcnZ
https://benchling.com/s/seq-NA9sMgwo22g9MChF1Qmg?m=slm-i7QlWkXxptUJztdUqcnZ
https://benchling.com/s/seq-NA9sMgwo22g9MChF1Qmg?m=slm-i7QlWkXxptUJztdUqcnZ
https://benchling.com/s/seq-5y5IyNioaWE29xJpkXwm?m=slm-1eo8OYEEB4Ry2k3BZZV7
https://benchling.com/s/seq-5y5IyNioaWE29xJpkXwm?m=slm-1eo8OYEEB4Ry2k3BZZV7
https://benchling.com/s/seq-5y5IyNioaWE29xJpkXwm?m=slm-1eo8OYEEB4Ry2k3BZZV7
https://benchling.com/s/seq-iiUaTlm97fh753jBtYfg?m=slm-uekx5RVwp8PVBTmyJKHf
https://benchling.com/s/seq-iiUaTlm97fh753jBtYfg?m=slm-uekx5RVwp8PVBTmyJKHf
https://benchling.com/s/seq-iiUaTlm97fh753jBtYfg?m=slm-uekx5RVwp8PVBTmyJKHf
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 Deterministic SBML-Based Modelling 

Simulations were performed on a server with 56 Intel® Xeon® E5-2695 v3 (2.30 GHz) 

CPUs and 755 GB RAM. The operating system was Ubuntu 18.04. Simbiotics was run 

in parallel mode across all CPU modules. The Python version used was 3.8. 

 

The deterministic SBML models were initially described using Systems Biology Markup 

Language (SBML; Level 2, Version 4) generated via Complex Pathway Simulator 

(COPASI; Version 4.36, build 260). Models were simulated using the basico python 

library (version 0.3.0) with the ‘deterministic’ simulator method. All simulation data was 

plotted using the matplotlib Python library (version 3.5.2)[169]. 

 

Models were initially simulated for 1440 minutes and 1440-time steps with starting 

entity amounts as stated in Table 2.15, Table 2.16, and Table 2.17, which acted to 

prime the model. The final entity amounts following initial simulation were used as 

starting amounts for a further simulation over 1440 minutes with 1440-time steps. For 

induced simulations, the starting amount of the inducer for the second simulation was 

modified based on the concentration of inducer as stated in the main text of Chapter 4. 

Reactions and parameters used for results shown in chapter 4 can be found in Table 

2.18, Table 2.19, and Table 2.20. Rationale behind the model mechanisms is 

discussed in Chapter 4.  
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Table 2.15. IPTG Detector Module Deterministic Model Entity Starting Quantities 

Entity Name Description Number 

C12 C12-HSL molecule 0 

C4 C4-HSL molecule 0 

eCFP Cyan fluorescent protein 0 

IPTG IPTG inducer molecule 0 

LacI LacI transcription factor 0 

LacI2 LacI dimer 0 

LacI2_IPTG LacI dimer bound to 1 IPTG molecule 0 

LacI2_IPTG2 LacI dimer bound to 2 IPTG molecules 0 

LacI4 LacI dimer-of-dimers 0 

LacI4_IPTG1 LacI dimer-of-dimers bound 1 IPTG molecules 0 

LacI4_IPTG2 LacI dimer-of-dimers bound 2 IPTG molecules 0 

LacI4_IPTG3 LacI dimer-of-dimers bound 3 IPTG molecules 0 

LacI4_IPTG4 LacI dimer-of-dimers bound 4 IPTG molecules 0 

LasI LasI C12-HSL synthetase enzyme 0 

mRNA_LacI mRNA encoding LacI 0 

mRNA_LasI_eCFP mRNA encoding LasI and eCFP 0 

PCon DNA encoding LacI under J23100 control 200 

pLac DNA encoding LasI and eCFP under PLac control 200 

pLac_LacI4 LacI dimer-of-dimers bound to PLac 0 

pLac_LacI4_IPTG LacI dimer-of-dimers with 1 IPTG bound to PLac 0 

 

Table 2.16. Default Processor Module Deterministic Model Entity Starting Quantities 

Entity Name Description Number 

C12 C12-HSL molecule 0 

C4 C4-HSL molecule 0 

LasR LasR transcription factor 0 

LasR_Dim LasR dimer 0 

LasR_Dim_1_C12 LasR dimer bound to 1 C12-HSL 0 

LasR_Dim_1_C4 LasR dimer bound to 1 C4-HSL 0 

LasR_Dim_2_C12 LasR dimer bound to 2 C12-HSLs 0 

LasR_Dim_2_C4 LasR dimer bound to 2 C4-HSLs 0 

mCherry Red fluorescent protein 0 

mRNA_LasR mRNA encoding LasR 0 

mRNA_mCherry_RhlI mRNA encoding mCherry and RhlI 0 

PCon DNA encoding LasR under J23100 control 200 

PLas DNA encoding mCherry and RhlI under PLac control 200 

PLas_LasR_Dim LasR dimer bound to PLas 0 

PLas_LasR_Dim_1_C12 LasR dimer with 1 C12-HSL bound to PLas 0 

PLas_LasR_Dim_1_C4 LasR dimer with 1 C4-HSL bound to PLas 0 

PLas_LasR_Dim_2_C12 LasR dimer with 2 C12-HSLs bound to PLas 0 

PLas_LasR_Dim_2_C4 LasR dimer with 2 C4-HSLs bound to PLas 0 

RhlI C4-HSL synthetase enzyme 0 
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Table 2.17. sfGFP Reporter Module Deterministic Model Entity Starting Quantities 

Entity Name Description Number 

C12 C12-HSL molecule 0 

C4 C4-HSL molecule 0 

mRNA_RhlR mRNA encoding RhlR 0 

mRNA_sfGFP mRNA encoding sfGFP 0 

PCon DNA encoding RhlR under J23100 control 200 

PRhl DNA encoding sfGFP under PRhl control 200 

PRhl_RhlR_Dim RhlR dimer bound to PRhl 0 

PRhl_RhlR_Dim_1_C12 RhlR dimer with 1 C12-HSL bound to PRhl 0 

PRhl_RhlR_Dim_1_C4 RhlR dimer with 1 C4-HSL bound to PRhl 0 

PRhl_RhlR_Dim_2_C12 RhlR dimer with 2 C12-HSLs bound to PRhl 0 

PRhl_RhlR_Dim_2_C4 RhlR dimer with 2 C4-HSLs bound to PRhl 0 

RhlR RhlR transcription factor 0 

RhlR_Dim RhlR dimer 0 

RhlR_Dim_1_C12 RhlR dimer bound to 1 C12-HSL 0 

RhlR_Dim_1_C4 RhlR dimer bound to 1 C4-HSL 0 

RhlR_Dim_2_C12 RhlR dimer bound to 2 C12-HSLs 0 

RhlR_Dim_2_C4 RhlR dimer bound to 2 C4-HSLs 0 

sfGFP Green fluorescent protein 0 
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Table 2.18. IPTG Detector Module Deterministic Model Reactions and Parameters: For each reaction, a name, schema, parameter value, parameter unit, 

and parameter source is given. 

Name Reaction Parameter Value Parameter 

Unit 

Source or Assumption 

LacI_Dim 2 * LacI -> LacI2 6.80e-23 Litre/min 
By estimation under 

assumption of fast kinetics, [170] 

LacI_IPTG_1_Bind LacI2 + IPTG -> LacI2_IPTG 1.61e-19 Litre/min Based on [171] 

LacI_IPTG_1_Unbind LacI2_IPTG -> LacI2 + IPTG 0.2 1/min Based on [171] 

LacI_IPTG_2_Bind LacI2_IPTG + IPTG -> LacI2_IPTG2 8.05e-20 Litre/min Based on [171] 

LacI_IPTG_2_Unbind LacI2_IPTG2 -> LacI2_IPTG + IPTG 0.4 1/min Based on [171] 

LacI_Quad_Bind 2 * LacI2 -> LacI4 6.80e-23 Litre/min 
By estimation under 

assumption of fast kinetics 

LacI_Quad_Unbind LacI4 -> 2 * LacI2 6.80e-39 1/min 
By estimation under 

assumption of slow kinetics 

LacI_Quad_IPTG_1_Bind LacI4 + IPTG -> LacI4_IPTG1 1.61e-19 Litre/min 
Assumed same kinetics as 

dimer binding 

LacI_Quad_IPTG_1_Unbind LacI4_IPTG1 -> LacI4 + IPTG 0.2 1/min As above 

LacI_Quad_IPTG_2_Bind LacI4_IPTG1 + IPTG -> LacI4_IPTG2 8.05-20 Litre/min As above 

LacI_Quad_IPTG_2_Unbind LacI4_IPTG2 -> LacI4_IPTG1 + IPTG 0.4 1/min As above 

LacI_Quad_IPTG_3_Bind LacI4_IPTG2 + IPTG -> LacI4_IPTG3 1.61e-19 Litre/min As above 

LacI_Quad_IPTG_3_Unbind LacI4_IPTG3 -> LacI4_IPTG2 + IPTG 0.2 1/min As above 

LacI_Quad_IPTG_4_Bind LacI4_IPTG3 + IPTG -> LacI4_IPTG4 8.05e-20 Litre/min As above 

LacI_Quad_IPTG_4_Unbind LacI4_IPTG4 -> LacI4_IPTG3 + IPTG 0.4 1/min As above 

pLac_Repress LacI4 + pLac -> pLac_LacI4 4.04e-18 Litre/min Based on [171] 

pLac_Unrepress pLac_LacI4 -> LacI4 + pLac 0.00063 1/min Based on [171] 

pLac_IPTG_Repress pLac + LacI4_IPTG1 -> pLac_LacI4_IPTG 2.01e-20 Litre/min Based on [171] 

pLac_IPTG_Unrepress pLac_LacI4_IPTG -> pLac + LacI4_IPTG1 0.063 1/min Based on [171] 

pLac_LacI_IPTG_1_Bind pLac_LacI4 + IPTG -> pLac_LacI4_IPTG 3.72e-20 Litre/min Based on [171] 

pLac_LacI_IPTG_1_Unbind pLac_LacI4_IPTG -> pLac_LacI4 + IPTG 1.0 1/min Based on [171] 
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pLac_LacI_IPTG_2_Bind pLac_LacI4_IPTG + IPTG -> pLac + LacI4_IPTG2 2.01-20 Litre/min Based on [171] 

LacI_Deg LacI ->  1.48e-05 1/min Based on [172] 

LacI_Dim_Deg LacI2 -> LacI 1.48e-06 1/min 
Assumed slower than LacI 

degradation 

LacI_Dim_IPTG_Deg LacI2_IPTG -> LacI + IPTG 1.48e-06 1/min 
Assumed similar to unbound 

LacI dimer degradation 

LacI_Dim_IPTG2_Deg LacI2_IPTG2 -> LacI + 2 * IPTG 1.48e-06 1/min 
Assumed similar to unbound 

LacI dimer degradation 

Tx_LacI PCon -> mRNA_LacI + PCon 0.0008167 1/min Calculated using [173] 

Tl_LacI mRNA_LacI -> mRNA_LacI + LacI 0.0007167 1/min Calculated using [174] 

Tx_pLac pLac -> mRNA_LasI_eCFP + pLac 0.00065 1/min Calculated using [173] 

Tl_LasI mRNA_LasI_eCFP -> mRNA_LasI_eCFP + LasI 0.0013167 1/min Calculated using [174] 

Tl_eCFP mRNA_LasI_eCFP -> mRNA_LasI_eCFP + eCFP 0.00105 1/min Calculated using [174] 

Syn_C12 LasI -> LasI + C12 0.096 1/min Using [175] 

Deg_mRNA_LacI mRNA_LacI ->  2.83e-05 1/min Based on [176] 

Deg_mRNA_LasI_eCFP mRNA_LasI_eCFP ->  2.83e-05 1/min Based on [176] 

Deg_LasI LasI ->  3.22e-06 1/min Based on [177] 

Deg_C12 C12 ->  4.72e-06 1/min Based on [178] 

Deg_eCFP eCFP ->  3.22e-06 1/min Based on [177] 

Deg_C4 C4 ->  3.69e-6 1/min Based on [179] 
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Table 2.19. Default Processor Module Deterministic Model Reactions and Parameters: For each reaction, a name, schema, parameter value, parameter unit, 

and parameter source are given. 

Name Reaction Parameter Value Parameter 

Unit 

Source or Assumption 

Tx_LasR PCon -> PCon + mRNA_LasR 0.00127 1/min Calculated using [173] 

Tl_LasR mRNA_LasR -> mRNA_LasR + LasR 0.0011 1/min Calculated using [174] 

Tx_PLas 
PLas_LasR_Dim_2_C12 -> PLas_LasR_Dim_2_C12 + 

mRNA_mCherry_RhlI 
0.0015 1/min Calculated using [173] 

Bg_Tx_PLas PLas -> PLas + mRNA_mCherry_RhlI 1.05E-05 1/min Assumed slower than above 

Tl_RhlI mRNA_mCherry_RhlI -> mRNA_mCherry_RhlI + RhlI 0.001317 1/min Calculated using [174] 

Tl_mCherry mRNA_mCherry_RhlI -> mRNA_mCherry_RhlI + mCherry 0.00113 1/min Calculated using [174] 

Deg_mRNA_LasR mRNA_LasR ->  2.83E-05 1/min Based on [176] 

Deg_mRNA_mCherry_RhlI mRNA_mCherry_RhlI ->  2.83E-05 1/min Based on [176] 

Deg_LasR LasR ->  0.889 1/min 

Estimation based on 

assumption of fast degradation 
[180]  

s[178]Deg_mCherry mCherry ->  1.48E-05 1/min By estimation based on [177] 

Deg_RhlI RhlI ->  1.48E-05 1/min By estimation based on [177] 

Deg_C12 C12 ->  4.72E-06 1/min Based on [178] 

Deg_C4 C4 ->  3.69E-06 1/min Based on [179] 

Syn_C4 RhlI -> RhlI + C4 0.046 1/min From [181] 

LasR_Dim_Bind 2 * LasR -> LasR_Dim 6.50E-10 Litre/min Assumed fast binding [182] [183] 

LasR_Dim_Unbind LasR_Dim -> 2 * LasR 1000 1/min 
Assumed fast unbinding [182] 
[183] 

LasR_Dim_C12_1_Bind LasR_Dim + C12 -> LasR_Dim_1_C12 1.59E-14 Litre/min By estimation based on [178] 

LasR_Dim_C12_1_Unbind LasR_Dim_1_C12 -> LasR_Dim + C12 1.00E-09 1/min By estimation based on [178] 

LasR_Dim_C12_2_Bind LasR_Dim_1_C12 + C12 -> LasR_Dim_2_C12 1.59E-14 Litre/min By estimation based on [178] 

LasR_Dim_C12_2_Unbind LasR_Dim_2_C12 -> LasR_Dim_1_C12 + C12 1.00E-09 1/min By estimation based on [178] 
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PLas_Activate PLas + LasR_Dim_2_C12 -> PLas_LasR_Dim_2_C12 3.25E-16 Litre/min By estimation based on [178] 

PLas_Unactivate PLas_LasR_Dim_2_C12 -> PLas + LasR_Dim_2_C12 0.00102 1/min By estimation based on [178] 

Bg_C12_1_PLas_Activate PLas + LasR_Dim_1_C12 -> PLas_LasR_Dim_1_C12 1.63E-16 Litre/min By estimation based on [178] 

Bg_C12_1_PLas_Unactivate PLas_LasR_Dim_1_C12 -> PLas + LasR_Dim_1_C12 0.00204 1/min By estimation based on [178] 

LasR_Dim_C4_1_Bind LasR_Dim + C4 -> LasR_Dim_1_C4 7.95E-25 Litre/min By estimation based on [178] 

LasR_Dim_C4_1_Unbind LasR_Dim_1_C4 -> LasR_Dim + C4 100 1/min By estimation based on [178] 

LasR_Dim_C4_2_Bind LasR_Dim_1_C4 + C4 -> LasR_Dim_2_C4 7.95E-25 Litre/min By estimation based on [178] 

LasR_Dim_C4_2_Unbind LasR_Dim_2_C4 -> LasR_Dim_1_C4 + C4 100 1/min By estimation based on [178] 

Ct_PLas_C4_1_Activate PLas + LasR_Dim_1_C4 -> PLas_LasR_Dim_1_C4 8.13E-18 Litre/min By estimation based on [178] 

Ct_PLas_C4_1_Unactivate PLas_LasR_Dim_1_C4 -> PLas + LasR_Dim_1_C4 0.102 1/min By estimation based on [178] 

Ct_PLas_C4_2_Activate PLas + LasR_Dim_2_C4 -> PLas_LasR_Dim_2_C4 1.63E-17 Litre/min By estimation based on [178] 

Ct_PLas_C4_2_Unactivate PLas_LasR_Dim_2_C4 -> PLas + LasR_Dim_2_C4 0.051 1/min By estimation based on [178] 

Tx_PLas_LasR_1_C12 
PLas_LasR_Dim_1_C12 -> PLas_LasR_Dim_1_C12 + 

mRNA_mCherry_RhlI 
0.0015 1/min 

Assumed same rate as when 

bound to LasR_Dim_2_C12 
[184] 

Tx_PLas_LasR_1_C4 
PLas_LasR_Dim_1_C4 -> PLas_LasR_Dim_1_C4 + 

mRNA_mCherry_RhlI 
0.0015 1/min 

Assumed same rate as when 

bound to LasR_Dim_2_C12 
[184] 

Tx_PLas_LasR_2_C4 
PLas_LasR_Dim_2_C4 -> PLas_LasR_Dim_2_C4 + 

mRNA_mCherry_RhlI 
0.0015 1/min 

Assumed same rate as when 

bound to LasR_Dim_2_C12 
[184] 

Tx_PLas_LasR_2 PLas_LasR_Dim -> PLas_LasR_Dim + mRNA_mCherry_RhlI 0.0015 1/min 

Assumed same rate as when 

bound to LasR_Dim_2_C12 
[184] 
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Table 2.20. sfGFP Reporter Module Deterministic Model Reactions and Parameters: For each reaction, a name, schema, parameter value, parameter unit, 

and parameter source are given. 

Name Reaction Parameter Value 
Parameter 

Unit 
Source or Assumption 

Tx_RhlR PCon -> PCon + mRNA_RhlR 0.00125 1/min Calculated using [173] 

Tl_RhlR mRNA_RhlR -> mRNA_RhlR + RhlR 0.0011 1/min Calculated using [174] 

Tl_sfGFP mRNA_sfGFP -> mRNA_sfGFP + sfGFP 0.001116 1/min Calculated using [174] 

RhlR_Dim_Bind 2 * RhlR -> RhlR_Dim 6.5e-10 Litre/min Assumed fast binding [185] 

RhlR_Dim_Unbind RhlR_Dim -> 2 * RhlR 1000 1/min By Estimation 

RhlR_Dim_C4_1_Bind RhlR_Dim + C4 -> RhlR_Dim_1_C4 1.59e-14 Litre/min 
Assumed similar to Las 

mechanism 

RhlR_Dim_C4_1_Unbind RhlR_Dim_1_C4 -> RhlR_Dim + C4 1e-09 1/min 
Assumed similar to Las 

mechanism 

RhlR_Dim_C4_2_Bind RhlR_Dim_1_C4 + C4 -> RhlR_Dim_2_C4 1.59e-14 Litre/min 
Assumed similar to Las 

mechanism 

RhlR_Dim_C4_2_Unbind RhlR_Dim_2_C4 -> RhlR_Dim_1_C4 + C4 1e-09 1/min 
Assumed similar to Las 

mechanism 

PRhl_Activate PRhl + RhlR_Dim_2_C4 -> PRhl_RhlR_Dim_2_C4 3.25e-16 Litre/min 
By estimation based on [186] 

and [187] 

PRhl_Unactivate PRhl_RhlR_Dim_2_C4 -> PRhl + RhlR_Dim_2_C4 0.00102 1/min 
By estimation based on [186] 

and [187] 

Bg_C4_1_PRhl_Activate RhlR_Dim_1_C4 + PRhl -> PRhl_RhlR_Dim_1_C4 3.25e-16 Litre/min 
By estimation based on [186] 

and [187] 

Bg_C4_1_PRhl_Unactivate PRhl_RhlR_Dim_1_C4 -> PRhl + RhlR_Dim_1_C4 0.00102 1/min 
By estimation based on [186] 

and [187] 

RhlR_Dim_C12_1_Bind RhlR_Dim + C12 -> RhlR_Dim_1_C12 7.95e-23 Litre/min 
Assumed similar to Las 

mechanism (by estimation) 
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RhlR_Dim_C12_1_Unbind RhlR_Dim_1_C12 -> RhlR_Dim + C12 0.1 1/min 
Assumed similar to Las 

mechanism (by estimation) 

RhlR_Dim_C12_2_Bind RhlR_Dim_1_C12 + C12 -> RhlR_Dim_2_C12 7.95e-23 Litre/min 
Assumed similar to Las 

mechanism (by estimation) 

RhlR_Dim_C12_2_Unbind RhlR_Dim_2_C12 -> RhlR_Dim_1_C12 + C12 0.1 1/min 
Assumed similar to Las 

mechanism (by estimation) 

Ct_PRhl_C12_1_Activate RhlR_Dim_1_C12 + PRhl -> PRhl_RhlR_Dim_1_C12 3.25e-16 Litre/min 
Assumed similar to Las 

mechanism (by estimation) 

Ct_PRhl_C12_1_Unactivate PRhl_RhlR_Dim_1_C12 -> RhlR_Dim_1_C12 + PRhl 0.00102 1/min 
Assumed similar to Las 

mechanism (by estimation) 

Ct_PRhl_C12_2_Activate RhlR_Dim_2_C12 + PRhl -> PRhl_RhlR_Dim_2_C12 3.25e-16 Litre/min 
Assumed similar to Las 

mechanism (by estimation) 

Ct_PRhl_C12_2_Unactivate PRhl_RhlR_Dim_2_C12 -> RhlR_Dim_2_C12 + PRhl 0.00102 1/min 
Assumed similar to Las 

mechanism (by estimation) 

Tx_PRhl 
PRhl_RhlR_Dim_2_C4 -> PRhl_RhlR_Dim_2_C4 + 

mRNA_sfGFP 
0.375 1/min 

Calculated using [173], but 

assumed faster kinetics 

Bg_Tx_PRhl PRhl -> PRhl + mRNA_sfGFP 0.002625 1/min Assumed slower than above 

Tx_PRhl_RhlR_1_C4 
PRhl_RhlR_Dim_1_C4 -> PRhl_RhlR_Dim_1_C4 + 

mRNA_sfGFP 
0.28125 1/min 

By estimation based on [186] 

and [187] 

Tx_PRhl_RhlR_1_C12 
PRhl_RhlR_Dim_1_C12 -> PRhl_RhlR_Dim_1_C12 + 

mRNA_sfGFP 
0.00375 1/min 

By estimation based on [186] 

and [187] 

Tx_PRhl_RhlR_2_C12 
PRhl_RhlR_Dim_2_C12 -> PRhl_RhlR_Dim_2_C12 + 

mRNA_sfGFP 
0.01875 1/min 

By estimation based on [186] 

and [187] 

Deg_mRNA_RhlR mRNA_RhlR ->  2.83e-05 1/min Based on [176] 

Deg_RhlR RhlR ->  0.000889 1/min Based on [177] 

Deg_C4 C4 ->  3.69e-06 1/min Based on [178] 

Deg_C12 C12 ->  4.72e-06 1/min Based on [179] 

Deg_mRNA_sfGFP mRNA_sfGFP ->  2.83e-05 1/min Based on [176] 

Deg_sfGFP sfGFP ->  1.4817e-05 1/min Based on [177] 

Bg_PRhl_Activate RhlR_Dim + PRhl -> PRhl_RhlR_Dim 3.25e-16 Litre/min 
By estimation based on [186] 

and [187] 
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Bg_PRhl_Unactivate PRhl_RhlR_Dim -> RhlR_Dim + PRhl 0.00102 1/min 
By estimation based on [186] 

and [187] 

Tx_PRhl_Rhl_2 PRhl_RhlR_Dim -> mRNA_sfGFP + PRhl_RhlR_Dim 0.0 1/min 
By estimation based on [186] 

and [187] 

C4_Bind_PRhl_RhlR PRhl_RhlR_Dim + C4 -> PRhl_RhlR_Dim_1_C4 1.1925e-14 Litre/min 
By estimation based on [186] 

and [187] 

C4_Bind_PRhl_RhlR_1_C4 PRhl_RhlR_Dim_1_C4 + C4 -> PRhl_RhlR_Dim_2_C4 1.1925e-14 Litre/min 
By estimation based on [186] 

and [187] 

C12_Bind_PRhl_RhlR PRhl_RhlR_Dim + C12 -> PRhl_RhlR_Dim_1_C12 5.9625e-23 Litre/min 
By estimation based on [186] 

and [187] 

C12_Bind_PRhl_RhlR_1_C12 PRhl_RhlR_Dim_1_C12 + C12 -> PRhl_RhlR_Dim_2_C12 5.9625e-23 Litre/min 
By estimation based on [186] 

and [187] 
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 Agent-Based Modelling 

Simulations were performed on a server with 56 Intel® Xeon® E5-2695 v3 (2.30 GHz) 

CPUs and 755 GB RAM. The operating system was Ubuntu 18.04. Simbiotics was run 

in parallel mode across all CPU modules. The Python version used was 3.8, and the 

Java version was JDK 11.0.17. 

 General model definition and simulation settings 

Simbiotics (version 1.1) was used to build and simulate the agent-based models 

presented in chapter 4. The simulation world was a 3-dimensional cube with a grid-

depth of 3. Cells were modelled as rods (length: 1.5 μm; radius: 0.25 μm) with 

permeable cell membranes. Cellular behaviour was defined by SBML models 

described in section 2.4. The native SBML simulator was modified to use basico (see 

section 2.4, and simulations were performed in Python. Results for SBML simulator 

were imported back into Simbiotics and converted such that the results were in the 

same fomrat as that produced by the native SBML simulator. This allowed the SBML 

results from basico to be used by Simbiotics in the same way. The Simbiotics model 

was simulated for 1200 minutes with 1200 timesteps. The SBML models were 

simulated every 60 timesteps, and each model was simulated for 60 minutes with 60 

timesteps. For simulations with an inducer added, the relevant inducer in the 

appropriate amount was applied to the centre of the system at time step 0. SBML 

reaction parameters were the same as stated in section 2.4. To obtain simulated single 

cell data, results from simulation of each SBML model was appended to a CSV file at 

the end of each SBML simulation step. 

 Data analysis 

Where shown, background noise was calculated by first determining the mean across 

all uninduced simulation replicates. The noise was then calculated as 1 + standard 

deviation of each uninduced simulation replicate divided by the mean of all uninduced 

simulation replicates. 

 

The 2nd degree polynomial curves were determined using the polyfit function from the 

numpy (version 1.23.1) python library. The r2 value was determined by calculating the 

sum of squared errors divided by the total sum of squares and subtracting this value 

from 1. 
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 Simulating cell growth 

For simulated cell growth, the Monod growth module in Simbiotics was used with 

parameters listed in Table 2.21. Growth was modelled as nutrient-dependent, with an 

entity of ‘food’ added to the centre of the system at time point 0. One cell type was 

implemented for cell growth simulation, with no SBML-derived cellular behaviour 

attached. 

Table 2.21. Simbiotics Model Parameters: Parameters used in the Simbiotics model. All 

parameters were unitless. 

Parameter Value 

Molecule Diffusion Coefficients 0.1 

Molecule Extracellular Degradation Coefficients 0 

Molecule Membrane Permeation Coefficients 0.14 

Brownian Constant 2.5 

Friction Constant 0 

Grid Depth 3 

Monod Nutrient Amount 1 

Monod Maximum Rate 0.12 

Monod Kinetic Rate 0.005 

 

The cell growth experimental data was obtained by creating an overnight culture of E. 

coli DH5α in 10 mL LB media with no antibiotic. Cells were pelleted by centrifugation 

at 4,500 RPM for 10 minutes, and supernatant was removed. The cells were re-

suspended in 10 mL of sterile MiliQ water and subsequently pelleted by centrifugation 

as above. Supernatant was discarded and the cell pellet was re-suspended in 10 mL 

of fresh LB media. OD600 of the cells was determined by transferring to a 1 mL cuvette 

and measuring absorbance with a spectrophotometer. The cells were diluted to an 

OD600 of 1.0 in fresh LB media, and 10 μL was added to four wells of a black 96-well 

plate with flat, clear bottomed wells. 90 μL of fresh LB was added to each well, and 

100 μL of LB media was added to a further three wells. A clear, permeable seal 

(Breathe-Easy; Scientific Laboratory Supplies) was adhered to the top of the plate. The 

microplate was incubated in a microplate reader (Clariostar Plus; BMG Labtech) at 

37oC with shaking at 400 RPM for 20 hours. Absorbance readings at OD600 were taken 

every 30 minutes. Absorbance readings for all empty wells were averaged and 

subtracted from the wells containing cells and pure LB. Absorbance values from the 

wells containing only LB were averaged and subtracted from the absorbance values 

for wells containing cells. The OD readings for the cells were then converted to 

‘Equivalent Microsphere Particles’ as described in section 2.6. 
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To calibrate simulated cell growth to experimental data, the initial number of cells in 

the experimental samples (~1e8 cells in 100 uL, where the number of cells was 

approximated as equivalent microsphere particles) was set as equal to the initial 

number of cells in the simulation. 

 Plate Reader Calibration 

Where stated, standard curves of calibrants were used to convert plate reader data 

into absolute units, based on previously reported methods[63] In a black 96-well plate 

with flat, clear bottomed wells, 1 in 2 serial dilutions of the standard calibrants were 

prepared to a final volume of 100 μL across 11 wells, with a twelfth well containing no 

calibrant. Each serial dilution was replicated twice. The calibrants used were as follows: 

fluorescein (Merck) in Phosphate-Buffered Saline (PBS), sulforhodamine 101 (Merck) 

in PBS, cascade blue (ThermoFisher Scientific) in water, and 950 nm monodisperse 

silica microspheres (Nanocym) in water. The first concentration of each calibrant in the 

serial dilutions was 10 μM for fluorescein, 2 μM for sulforhodamine 101, 10 μM cascade 

blue, and 3e9 particles/mL for the microspheres. The serial dilutions were prepared 

using the BiomationScripter OTProto Standard iGEM Calibration Template. The 

automation protocol can be found in section 9.1. After serial dilutions were prepared, 

the contents were measured using the same plate reader to be used for experiments 

(Clariostar Plus; BMG Labtech). Fluorescence measurements were made for wells 

containing fluorescein, sulforhodamine 101, and cascade blue using the same 

excitation and emission wavelengths to be used for measurement of fluorescent 

proteins in experiments (470-15 / 515-20, 570-15 / 620-20, and 430-20 / 480-20 

respectively). The absorbance at 600 nm was measured for wells containing 

microspheres. Gain and focus settings used were identical to those used for 

experimental measurements. 

 

Following measurement in the plate reader, custom Python scripts were used to 

analyse and plot the data. Raw data values for all wells in the dilution were blanked 

using averaged values of the solvent-only wells (PBS for fluorescein and 

sulforhodamine, and water for cascade blue and the microspheres). The mean of each 

dilution replicate was calculated, along with standard deviation. These values were 

then plotted on scatter graphs of calibrant amounts vs the measure value on linear-

linear and log-log plots to ensure linear correlation on both plots for the five most highly 
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concentration dilutions. For each calibrant, the five most highly concentrated dilutions 

were used to calculate a calibration factor for converting arbitrary units into absolute 

units using equation 2.1. The absolute units were Molecules of Equivalent Fluorescein 

(MEFL), Molecules of Equivalent Sulforhodamine 101 (MESR), Molecules of 

Equivalent Cascade Blue (MECB), and Equivalent Microsphere Particles. 

𝐶𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑛𝑡 =
1

5
∑ (

𝑛𝑑

𝑚𝑑
)

5

𝑑=1

 (2.1)   

In equation 2.1, CFcalibrant is the calibration factor for a specific calibrant, d is the dilution 

index (where 1 is highest concentration), nd is the number of particles in dilution d, and 

md is the mean, blanked measurement from the plate reader for dilution d. Results are 

shown in section 9.2. 

 Sensynova Characterisation Procedures 

Unless stated otherwise, samples were added to a final volume of 100 μL in a black 

96-well plate with flat, clear bottomed wells. A clear, permeable seal (Breathe-Easy; 

Scientific Laboratory Supplies) was adhered to the top of the plate prior to incubation 

in a microplate reader (Clariostar Plus; BMG Labtech) at 37oC with shaking at 400 

RPM for 20 hours. Gain, focus, and wavelength settings remained the same for all 

experiments. 

 Plate reader data handling 

All data handling and graphing was accomplished using custom Python scripts with 

the Matplotlib and Numpy libraries. Unless stated otherwise, all plate reader data was 

analysed as described here. The mean measurement value across all empty wells was 

calculated and subtracted from measurement values for all occupied wells. The mean 

value of each ‘blank’ well (i.e., wells with just media and non-cell additives) was 

calculated and subtracted from the appropriate cell-containing sample. The resulting 

values for each cell sample was converted from arbitrary units to absolute units as 

described in sub-section 2.6. The mean across cell sample replicates was calculated, 

along with standard error. For growth-corrected data, the calibrated fluorescence 

value(s) of each sample was divided by the calibrated OD600 value for the same sample. 

Fold change was calculated by dividing the non-averaged value of each sample 

replicate by the mean across all replicates of the relevant negative control. The relative 

data across each replicate was used to calculate mean fold change and standard error. 

Unless specified otherwise, background noise was calculated by dividing the non-
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averaged value of each negative control replicate by the mean value across all 

negative control replicates, and then determining the range between the maximum and 

minimum relative replicate values. 

 Flow cytometry gating and voltage settings 

For flow cytometry experiments, an Attune NxT with CytKick Max autosampler 

(ThermoFisher) with blue, red, yellow, and violet lasers was used. To determine 

voltage and gating for fluorescent and non-fluorescent cells, overnight cultures of 

untransformed cells and each cell type (IPTG detector, default processor, sfGFP 

reporter) induced with their canonical inducer (10 μM IPTG, 10 μM C12-HSL, 10 μM 

C4-HSL respectively) were prepared. Cells were pelleted by centrifugation at 4,500 

RPM for 10 minutes and supernatant discarded. The cells were re-suspended in 

autoclave sterilised and syringe filtered (0.22 μm filter) PBS before being pelleted as 

again as described above. Cells were re-suspended in PBS and diluted 1 in 10. The 

final cell solutions were flowed through the flow cytometer in manual mode to 

determine voltage settings for differentiating each of the fluorescent cells and the non-

fluorescent cells. These setting remained the same for all experiments described here. 

All future experiments used the flow cytometer in autosampler mode. Data was 

exported in FCS file format for analysis and visualisation using Python and the 

FlowCytometryTools (0.5.0) library. 

 Bacterial cell preparation 

Unless specified otherwise, all cell cultures were prepared as stated here before being 

added to the microplate. E. coli DH5α cells were transformed with the relevant plasmid: 

Default Processor Module + mCherry (Table 2.6) or the processor cells, and sfGFP 

Reporter Module (Table 2.2) for the reporter cells. For the detector cells, the IPTG 

detector + eCFP module obtained with third-party synthesis by ATUM directly into the 

pSB1C3 plasmid, which was then transformed into E. coli DH5α. 

 

For each cell type, a single transformant colony was streaked onto a separate LB agar 

plate with appropriate antibiotic selection. 10 mL of LB media and chloramphenicol at 

the appropriate amount (Table 2.1) was added to a 50 mL falcon tube and inoculated 

with a single colony from the streak plate. The overnight culture was incubated at 37oC 

for 16 to 17 hours with shaking at 200 RPM. Cells were pelleted at 4oC and 4,500 RPM 

for 10 minutes. Supernatant was removed and cells were resuspended in 10 mL of 

sterile MiliQ water. Resuspended cells were pelleted as above, supernatant removed, 
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and resuspended in 10 mL fresh LB media. The OD600 of resuspended cells was 

measured with a UV-Vis spectrophotometer and the culture diluted to an OD600 of 1.0 

in LB media. 

 BiomationScripter Sensynova Template 

Unless specified otherwise, all experimental setup was performed using the 

Opentrons-2 liquid handler. The automation protocol was generated using the 

BiomationScripter Sensynova Template. 

 Cell growth rate experiments 

Cells were prepared as described in sub-section 2.6.2. Experimental setup was 

performed manually, with a separate experiment for each cell type. All wells were made 

up to 100 μL with LB media. Untransformed cells were used as a control, where 10 μL 

of cells was added to 90 μL of LB media per well. For IPTG detector cells, 10 μL of 

cells was added to each well with 0.5 μL chloramphenicol. Plain LB media was used 

as a blank control. For default processor cells, 10 μL of cells were added to each well 

with 0.5 μL chloramphenicol and either 0, 0.5, 1, or 10 μL of DMSO (dimethyl sulfoxide; 

syringe filter sterilised through a 0.22 μm filter). For sfGFP reporter cells, 10 μL of cells 

were added to each well with 0.5 μL chloramphenicol and either 0, 0.5, 1, or 10 μL of 

DMSO. Cultures were incubated, OD600 measured, and data analysed as described 

previously. 

 Dose-response curve experiments 

Cells were prepared as described in sub-section 2.6.2. A separate experiment was 

performed per cell type. Experimental setup was performed using the Opentrons-2 

liquid handler. Automation protocols for characterising the detector and processor cells 

were generated using BiomationScripter (version 0.2) and the Sensynova Template 

(version 1.0). The automation protocol for reporter cells was generated using 

BiomationScripter (version 0.2) and the Sensynova Template (version 2.0 * ). Full 

protocols and plate maps can be found in section 9.3. 

 Cross talk experiments 

Cells were prepared as described in sub-section 2.6.2. A separate experiment was 

performed per cell type. Experimental setup was performed using the Opentrons-2 

 
* For monoculture experiments, version 1.0 and 2.0 of the Sensynova Template generate effectively 
identical liquid handling instructions and differed mainly in the format required for user input. 
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liquid handler. Automation protocols were generated using BiomationScripter (version 

0.1) and the Sensynova Template (version 1.0). Full protocols and plate maps can be 

found in section 9.4. 

 Homoserine-lactone synthesis validation experiments 

For agar plate experiments, reporter cells were inoculated into LB media in the 

absence of any inducer and incubated overnight for 16 hours. Untransformed DH5α 

cells and default processor cells were also inoculated in LB media in the presence and 

absence of 10 μM C12-HSL. 300 μL of reporter cells were plated onto six LB+CAM 

agar plates and left to dry at room temperature for 3 hours. and incubated for 16 hours. 

Cells were pelleted by centrifugation at 4500 RPM for 5 mins, and 1 mL of supernatant 

was transferred into 1.5 mL tubes. Supernatant was then spun for 5 mins at 12,000 

RPM to remove any remaining cells. To five of the dried agar plates, 10 μL of either 1 

mM C4-HSL, supernatant from untransformed cells incubated with C12-HSL, 

supernatant from untransformed cells alone, supernatant from processor cells 

incubated with C12-HSL, or supernatant from processor cells alone was spotted in the 

centre. To the final plate, nothing was added. The plates were left to dry at room 

temperature for 1 hour before inverting and incubating overnight at 37C. Plates were 

imaged under UV light with an ethidium bromide filter. Images were false-coloured 

green. Completely unaltered images can be seen in section 9.5. 

 

The above was repeated, except uninduced processor cells were used instead of 

uninduced reporter cells, supernatant from IPTG detector cells either induced with 10 

mM IPTG or not induced was used instead of processor cell supernatant, and C12-

HSL was used as a control instead of C4-HSL. 

 

For the plate reader experiment, samples were prepared manually. Processor cells 

were prepared as described in sub-section 2.6.2. Detector and untransformed cells 

were prepared similarly, except 10 mM of IPTG was added to each culture. The 

detector and untransformed cells were pelleted by centrifugation at 4500 RPM for 5 

mins, and 1 mL of supernatant was transferred into 1.5 mL tubes. Supernatant was 

then spun for 5 mins at 12,000 RPM to remove any remaining cells. Processor cells 

were washed in water, resuspended in LB media, and diluted to an OD600 of 1.0 as 

described previously. 10 μL of processor cells were added to 16 wells, along with 0.5 

μL chloramphenicol. To four wells, 1.0 μL of DMSO was added. To four wells, 1.0 μL 
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of 1 mM C12-HSL was added (final concentration of 10 μM). To four wells, 1.0 μL of 

supernatant from untransformed cells was added, and 1.0 μL of supernatant from the 

detector cells was added to the remaining four. All wells were made up to 100 μL with 

LB media. Cultures were incubated, OD600 and red fluorescence measured, and data 

analysed as described previously. 

 Noise propagation plate reader experiment 

Cells were prepared as described in sub-section 2.6.2. A separate experiment was 

performed per cell type. Experimental setup was performed using the Opentrons-2 

liquid handler. Automation protocols were generated using BiomationScripter (version 

0.2) and the Sensynova Template (version 2.0). Full protocols and plate maps can be 

found in section 9.6. 

 Noise propagation flow cytometry experiment 

Following approximately 20 hours of incubation in a plate reader, cell-containing 

samples were transferred u-bottomed 96-well plates. Samples were centrifuged for 10 

minutes at 4,500 RPM, and supernatant was removed. Cells were re-suspended in 

100 μL of autoclave sterilised and syringe filtered (0.22 μm filter) PBS and centrifuged 

again as above. Supernatant was removed and cells were re-suspended in 100 μL of 

PBS. Into a clean u-bottomed 96 well plate, 90 μL of PBS and 10 μL of sample was 

added to each well. Cells were analysed by the Attune NxT in autosampler mode, with 

voltages as determined previously. 

 1:1:1 biosensor plate reader experiment 

Cells were prepared as described in sub-section 2.6.2. Experimental setup was 

performed using the Opentrons-2 liquid handler. Co-cultures were prepared by adding 

10 μL of each cell culture at a density of OD600 = 1.0. Automation protocols were 

generated using BiomationScripter (version 0.2) and the Sensynova Template (version 

2.0). Full protocols and plate maps can be found in section 9.7. 

 1:1:1 biosensor flow cytometry experiment 

Following approximately 20 hours of incubation in a plate reader, a sub-set of cell-

containing samples were transferred u-bottomed 96-well plates. Samples were 

prepared and analysed as described in sub-section 2.6.10. 
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 Characterisation of cell ratios 

Experimental setup followed the general protocols described in section 2.6.11. The 

major difference was that co-cultures were prepared by mixing different ratios of cells, 

rather than just 1:1:1. Ratios were calculated by volume, as each cell type had a cell 

density of OD600 = 1.0. A list of tested cell ratios and the volumes they were added at 

can be found in Table 2.22. Automation protocols were generated using 

BiomationScripter (version 0.2) and the Sensynova Template (version 2.0). Full 

protocols and plate maps can be found in section 9.8. 

Table 2.22. Cell Ratios 

Cell Type Volume (μL) 

Detectors Processors Reporters 

2 24 2 

3 7 20 

5 10 15 

6 13 11 

7 4 19 

10 10 10 

11 18.5 0.5 

18 2 10 

19 7 4 

 Design of Experiments Main Effects Screening 

Experimental setup was the same for all experiments. Experiments were performed on 

separate days for each cell type, and the augmented design runs were also performed 

on separate days. For all run conditions, uninduced and induced samples were 

prepared in triplicate. Various medias were prepared using proportions stated in Table 

2.23. The stated chemicals were dissolved in 500 mL of MiliQ water and sterilised by 

autoclaving at 121oC for 20 minutes. 

Table 2.23. Medias for Main Effects Screening 

Design: Each row defines a different media. The 

chemicals were mixed in a duran bottle in the weights 

indicated, dissolved in 500 mL MiliQ water, and 

sterilises as described in section 2.1 

Media Compositions 

Tryptone (g) 
Sodium 

Chloride (g) 

Yeast Extract 

(g) 
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0 0 0 

10 10 5 

10 0 0 

0 10 5 

5 5 2.5 

0 0 5 

0 10 0 

10 10 0 

10 0 5 

 

Detector, processor, and reporter cells were prepared as described in section 2.6.3 

however cells were incubated at temperatures according to the main effects screening 

designs section 9.9, and after washing in sterile water were re-suspended in media 

also determined by the screening designs. For all experiments, three black 96-well 

plate with flat, clear bottoms, cells were used, one for each incubation temperature as 

determined by the main effects screening design. Cells were to wells of the appropriate 

plate such that the final OD600 would match the values stated in the main effects 

screening design. For the detector, processor, and reporter cells, 1 mM IPTG, 10 μM 

C12-HSL, and 10 μM C4-HSL was added to induced samples respectively. 

Chloramphenicol was added to the appropriate amount (Table 2.1) and the cultures 

were made up to 100 μL with the appropriate media. A clear, permeable seal (Breathe-

Easy; Scientific Laboratory Supplies) was adhered to the top of each plate and the 

cultures were incubated at the appropriate temperatures with shaking at 200 RPM. 

Fluorescence and absorbance readings were taken every hour as described previously 

but using a Clariostar (BMG Labtech) plate reader. 

 

The fluorescence values obtained from the plate reader were corrected based on cell 

density, and replicate values were averaged. Fold change in fluorescence was 

determined by making the induced samples relative to uninduced samples. The fold 

change values were inputted into JMP Pro 13 (JMP Statistical Discovery LLC), and 

data analysed using a standard least squares effect screening model. 

 Optical Communication Experiments 

 Bacterial luciferase characterisation 

E. coli cells were transformed with pSB1C3-Lux (Table 2.2). A single transformant 

colony was streaked onto a separate LB agar plate with chloramphenicol antibiotic 
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selection. 10 mL of LB media and the chloramphenicol at the appropriate amount 

(Table 2.1) was added to a 50 mL falcon tube and inoculated with a single colony from 

the streak plate. The overnight culture was incubated at 37oC for 16 to 17 hours with 

shaking at 200 RPM. Cells were pelleted at 4oC and 4,500 RPM for 10 minutes. 

Supernatant was removed and cells were resuspended in 10 mL of fresh LB media. 

The OD600 of resuspended cells was measured with a UV-Vis spectrophotometer and 

the culture diluted to an OD600 of 1.0 in LB media. Experimental setup was performed 

using the Opentrons-2 liquid handler (Section 9.11). Automation protocols were 

generated using BiomationScripter (version 0.2) and the Sensynova Template (version 

2.0). Full protocols and plate maps can be found in section 9.10. The culture plate was 

incubated in a Clariostar Plus for 20 hours at 30oC with shaking at 400 RPM. 

Luminescence was measured at 20 nm intervals between 400 nm and 600 nm 

everything 30 minutes. Absorbance at 600 nm was also measured everything 30 

minutes. 

 Initial characterisation of the EL222 light responsive system 

E. coli cells were transformed with EL222-PBLRep (Table 2.2). A single transformant 

colony was streaked onto a separate LB agar plate with kanamycin antibiotic selection. 

10 mL of LB media and kanamycin at the appropriate amount (Table 2.1) was added 

to a 50 mL falcon tube and inoculated with a single colony from the streak plate. The 

overnight culture was incubated at 37oC for 16 to 17 hours with shaking at 200 RPM 

in the presence of bright blue light. Cells were pelleted at 4oC and 4,500 RPM for 10 

minutes. Supernatant was removed and cells were resuspended in 10 mL of fresh LB 

media. The OD600 of resuspended cells was measured with a UV-Vis 

spectrophotometer and the culture diluted to an OD600 of 1.0 in LB media. To three 

wells of two black 96-well plates with flat, clear bottoms 89.5 μL of LB media was added 

along with 0.5 μL of working stock kanamycin (Table 2.1). 10 μL of E. coli cells were 

then added to each well. Clear lids were applied to each plate. One plate was wrapped 

in foil, whilst the other was place in the top of a pipette tip box. In the bottom of the tip 

box was a Raspberry Pi Zero (Pimoroni) with Unicron pHAT (Pimoroni). The Pi Zero 

was powered by an external battery pack. To all blue LEDs of the pHAT, 3 volts was 

supplied, resulting in bright blue light shining at the bottom of the 96 well plate. Both 

plates were incubated at 37oC with shaking at 200 RPM for 5 hours. A Clariostar plate 

reader (BMG Labtech) was used to measure red fluorescence (570-15 excitation and 

620-20 emission) and absorbance at 600 nm every 1 hour. 
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 Sensitivity testing of the EL222 light responsive system 

Cells were prepared as described in sub-section 2.7.3. To two wells of three 96-well 

plates, 89.5 μL of LB media was added along with 0.5 μL of working stock kanamycin 

(Table 2.1). 10 μL of E. coli cells were then added to each well. A clear, permeable 

seal (Breathe-Easy; Scientific Laboratory Supplies) was adhered to the top of each 

plate. One of the plates was wrapped in foil. The other two plates were placed on top 

of two separate optogenetic devices. Each optogenetic device consisted of an inverted 

black, 96-well plate with flat, clear bottoms, and RGB LEDs (Fedy Tech diffused 

‘Piranha’ RGB; Adafruit 1451) placed such that the bulb was facing the clear bottom of 

the plate. A 3-volt CR2032 battery was used to supply 3 volts to the LED such that blue 

light was emitted. To one of the devices, 6 megohms of resistance was applied. To the 

other, no resistors were used. The 96-well plates were placed on top of a pipette tip 

box, such that the flat bottom was facing up. The 96-well plates containing cells were 

placed on top of the device, so that each well aligned. The plates were tapped to the 

top of the device and were wrapped in foil. All plates were incubated for 6 hours at 

37oC and 200 RPM, following which red fluorescence and absorbance were measured 

as in section 2.7.2. Images of the optogenetic devices can be seen in chapter 7. 

 Designing and modelling microfluidic chips 

The microfluidic devices were designed using AutoCAD (Autodesk; 2022) and 

exported as DWG files. Ansys Workbench (Ansys; Student Edition; 2022 R2) was used 

to simulation fluid flow through the design. To save on computational resources, only 

on half of each design was simulated, as the designs consisted of two identical 

segments (Chapter 7). The DWG file was imported to ANSYS SpaceClaim (Ansys; 

Student Edition; 2022 R2) and converted into a 3D model. The 3D model was then 

imported into ANSYS Fluent (Ansys; Student Edition; 2022 R2) for fluidic simulation. 

The fluidic behaviours of each design variant were modelled using a  ‘Discrete Phase’ 

model, where the liquid phase (i.e. the media the cells are suspended in) was modelled 

as water, and the discrete phase (i.e. the cells) was modelled as non-reactive spherical 

particles with a diameter of 5e-7 meters – approximately the same size as E. coli cells. 

 

After initial exploratory simulations, a cell input flow rate of 1e-20 kg/second was used, 

along with a media flow rate of 0.0001 metres/second. Additionally, the following 

settings were used: (i) unsteady particle tracking, (ii) particles were tracked with fluid 

flow time step (iii) a maximum of 500 steps for particle tracking (iv) a length scale of 
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1e-05 metres, (v) particles set to interact with fluid phase, (vi) simulations performed for 

600-time steps, and (vii) time step size of 1 second. It should also be noted that cell 

growth and division has not been modelled in these simulations. 

 Fabrication of microfluidic chips 

For fabrication, all design variants were positioned within a circle with a 7 inch diameter. 

The design was exported as a DWG (from Drawing) file and submitted to JD Photo 

Data (Hertfordshire; United Kingdom). JD Photo Data supplied a 7 inch chrome 

photomask prepared from soda lime glass, with a class 2 resolution (128k dpi) and 

negative, right-reading, chrome down polarity. The mask was submitted to INEX 

Microtechnology (Newcastle-Upon-Tyne; United Kingdom), from which an SU8 

negative photoresist silicon wafer with uniform 40 μm depth features was produced. 

 

The silicon wafer was first washed with isopropanol and acetone, and then silinised in 

a vacuum chamber for 30 minutes with 40 μL Tridecafluoro-1,1,2,2-tetrahydrooctyl-1-

trichlorosilane. 60 mL of silicone resin (Translucent Platinum RTV-2; STARTSO 

WORLD) was prepared according to the manufacturer's instructions, and de-gassed 

under vacuum for 30 minutes. The silinised wafer was placed into a large glass petri 

dish lined with foil, and the silicone was carefully poured on top. The wafer and silicone 

were incubated at 60oC for 3 hours to allow the silicone to set. Once set, the silicone 

was peeled away from the wafer, and scotch tape was applied to the side which was 

in contact with the wafer. A scalpel was used to cut a rectangle around each design, 

and all chips were stored until needed. 

 

Immediately before use, a 1.2 mm biopsy punch was used to cut holes through the 

port sections of the microfluidic designs. A glass slide was cleaned thoroughly, and the 

microfluidic chip was placed onto the slide, ensuring the side which had been in contact 

with the wafer was face down. A plasma cleaner (PLASMAFLO PDC-FMG; Harrick 

Plasma) was used to plasma bond the chip to the glass slide. The glass slide with resin 

chip were placed into a plastic petri dish and inserted into the plasma cleaner. A 

vacuum was applied to the inside of the plasma chamber until a pressure of between 

800 and 1,200 mtorr was achieved. The RF level of the plasma cleaner was set to high 

for 1 minute, before turning the RF level to off and slowly removing the vacuum from 

the chamber. The microfluidic chip was removed from the plasma cleaner and 

incubated at 40oC for 20 minutes to help ensure strong bonding. 
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The top ends of10 μL pipette tips were cut down to size and inserted into the ports of 

the chips, such that the thinnest end was inside the chip. Clear HPLC tubing (1 mm) 

was inserted into the tops of the pipette tips. For tubing inserted into inlet ports, the top 

end of a 20 μL pipette tip was inserted into the other end of the tube. The thin end of 

the 20 μL tip was inserted into a 5 mL syringe filled with cells or media, depending on 

the experiment. For tubing inserted into the outlet ports, the end of the tube was taped 

to a waste collection tube. For all experiments, to achieve flow, syringes were placed 

into OEM pumps and controlled using WinPumpTerm (version 0.6 beta; NewEra). 

 

For visualisation of microfluidic chip features, a Nikon Ti microscope with 40x lens 

under phase contrast was used. Images were taken using NIS Elements software. 

 Verification of cell flow 

An overnight culture of E. coli DH5α cells was prepared as described in section 2.1.1. 

Cells were diluted 1 in 10 in fresh LB media and added to a 5 mL syringe. Cells were 

flowed through the chip as described in section 2.7.5 at various flow rates and imaged 

using a Nikon Ti2 microscope with 40x lens and 1.5x zoom under phase contrast, using 

the NIS elements software. 

 Verification of cell growth and fluorescence 

An overnight culture of processor cells was prepared as described in section 2.1.1. 

Cells were diluted 1 in 10 in fresh LB supplemented with chloramphenicol and 10 μM 

C12-HSL. Cells were loaded into the chamber of a microfluidic chip with 100 μm long 

chamber and a shelf. Fresh LB media supplemented with chloramphenicol and 10 μM 

C12-HSL was flowed through the chip at a constant rate of 0.1 μL/min for 10 hours, 

with phase contrast and red fluorescence images taken every 30 minutes by a Nikon 

Ti2 microscope with 40x objective and 1.5x zoom. The microscope chamber was kept 

at 37oC for the duration. 

 Verification of cell induction 

An overnight culture of processor cells was prepared as described in section 2.1.1. 

Cells were diluted 1 in 10 in fresh LB supplemented with chloramphenicol only. Cells 

were loaded into the chamber of a microfluidic chip with 100 μm long chamber and a 

shelf. Fresh LB media supplemented with chloramphenicol and 10 μM C12-HSL was 

flowed through the chip at a constant rate of 0.1 μL/min for 10 hours, with phase 
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contrast and red fluorescence images taken every 30 minutes by a Nikon Ti2 

microscope with 40x objective and 1.5x zoom. The microscope chamber was kept at 

37oC for the duration.  
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 Defining a Multi-Microbial Biosensor Framework using 

High-Level Modularity 

As discussed in section 1.3.1, high level modularity has the potential to aid in the 

development of synthetic biological systems. In this chapter, the first section (3.1) 

clarifies what is meant by modular synthetic biology. Section 3.2 discusses a 

framework for modular synthetic biology systems, specifically focussing on genetic 

biosensors. To aid with implementation of the framework, section 3.3 describes a set 

of proposed best practices for a standardised representation of multi-microbial system 

designs, whilst section 3.4 presents a Python library developed to assist with building 

and testing modular synthetic biology systems. 

 Introduction 

 Modular synthetic biology 

When talking about modularity in synthetic biology, a common term to come across is 

‘modular cloning’[59], [80], [188]. This term is often associated with modular Golden Gate 

assembly standards, where DNA ‘parts’ are viewed as standardised “discrete 

functional genetic elements”[189]. These genetic parts can be assembled into larger 

constructs using standardised cloning sites and methods, and the constructs built can 

be used in the development of novel synthetic biological systems and devices. This 

form of modular cloning, and indeed other types of DNA assembly which employ 

standard DNA parts such as BioBrick assembly, have been instrumental in allowing 

researchers to design and build DNA constructs required for the development of novel 

biological devices and systems[190], [191]. The use of standardised parts and assembly 

methods also allows for easier re-use of parts and constructs developed by other 

researchers. These standardised parts are a good example of low-level modularity, as 

described in chapter 1. In most Golden Gate based assembly standards, different 

‘levels’ of assembly are defined. The individual genetic parts, e.g., single generic 

features, to be denoted as ‘level 0’ and act as low-level modules (Figure 3.1 (A)). The 

constructs assembled using these level 0 parts, usually a single genetic expression 

unit, are referred to as ‘level 1’ assemblies (Figure 3.1 (B)). The level 1 assemblies can 

be combined to form ‘level 2’ constructs (Figure 3.1 (C)). Once assembled, the 

constructs can be implemented to create a functioning system (Figure 3.1 (D)). 
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At first, it may seem that the level 1 and 2 constructs map well to the definition of high-

level modularity discussed in chapter 1, in the same way that level 0 parts can be 

thought of as an example of low-level modularity. However, it is not always the case 

that higher order genetic constructs are high-level modules. This can be demonstrated 

with one the earliest examples of a synthetic biology design: the genetic toggle 

switch[104]. Figure 3.2(A) shows a schematic for assembly of an abstracted version of 

the original genetic toggle switch design using modular cloning. This design is 

comprised of two expression units (construct 1 and construct 2), each of which express 

a transcription factor which inhibits transcription from the promoter in the other 

expression unit. 

 

Figure 3.1. Modular Cloning in Synthetic Biology 

Schematic overview of modular cloning using SBOL symbols. Compatible modular fusion 
sites depicted as coloured vertical lines. (A) Level 0 parts: individual genetic elements 
(promoters, ribosome binding sites, coding sequences, terminators) encoded on individual 
level 0 acceptor plasmids. Compatible restriction sites allow them to be assembled, in 
order, into a new level 1 assembly plasmid. (B) Level 1 assemblies: composed of the level 
0 parts assembled together into a level 1 plasmid. Compatible restriction sites flanking the 
constructs allow them to be assembled into a level 2 assembly plasmid. (C) Level 2 
assembly: composed of level 1 assemblies combined together to form a functional 
biological device, where the coding region from the first level 1 assembly interacts with the 
promoter in the second level 1 assembly. (D) The level 2 assembly can be expressed by a 
chassis to create a system with a higher-level function. 

 nducer
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 utput

   

 B 

   

 D 



75 
 

 

In the above example, it may seem that constructs 1 and 2 are acting as the high-level 

modules, which are assembled to form the final biological device (the genetic toggle 

switch). However, when considering the generalised high-level function and 

interchangeability of these constructs, the analogy fails, because functionality of each 

level 1 construct is tightly coupled. This functional dependency is illustrated in Figure 

3.2 (B), where a variant of the genetic toggle switch has been designed. Here, 

transcription factor 2 (TF2) has been replaced with transcription factor 3 (TF3) to allow 

induction with inducer 3 (I3), instead of inducer 2. To do this, construct 1 has been 

replaced with construct 3. However, when this new construct is combined with 

construct 2, the genetic toggle switch no longer functions as intended, as construct 2 

retains promoter 2 (p2), which is not affected by TF3. To regain functionality, construct 

2 would require modification to replace p2 with a promoter repressible by TF3. The 

need for modification means each construct is not interchangeable, and hence does 

 

Figure 3.2. Modular Cloning of a Genetic Toggle Switch 

(A) Schematic showing modular cloning for an abstracted toggle switch. The level 1 
constructs (construct 1 and 2) are assembled using level 0 parts. The level 1 constructs 
are then combined into a level 2 assembly to form the toggle switch. In the presence of 
inducer 1 (I1), transcription factor 1 (TF1) is inhibited, which allows expression of 
transcription factor 2 (TF2) from promoter 1 (p1). Conversely, inducer 2 (I2) inhibits 
transcription factor 2 (TF2), which removes repression of promoter 2 (p2), which drives 
expression of transcription factor 1 (TF1). (B) Schematic showing the toggle switch from 
(A) where the level 1 assembly construct 1 has been replaced with construct 3. Construct 
3 is a variant of construct 1, where TF2 is replaced with TF3. The level 2 construct 
assembled from construct 3 and 2 is no functional. 
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not match the definition of high-level modularity. Additionally, it is not possible to assign 

high-level, abstract functionality due to the tightly coupled nature of the design[161]. 

 

Taking inspiration from other fields which have successfully utilised high-level 

modularisation, such as software engineering[192] and mechanics[193], it is possible to 

re-design the genetic toggle switch to allow for better exploitation of this concept. This 

approach relies on the use of standard connectors to link the modules together, and 

top-down design. By considering only the abstract logic employed by the genetic toggle 

switch, it is possible to describe the device’s behaviour using two functional modules 

(Figure 3.3 (A)). The internal logic of these two modules consist of an inverter, an AND 

gate, and an OR gate. This internal logic is identical between the two functional 

modules, and the only differences are the inputs and outputs. Each of the modules 

takes its respective inducer (I2 or I1) as one of the inputs. The second input and the 

output have been replaced by connectors which are used to link the two modules 

together. At this abstract level, it is possible to see the intended function of the modules, 

and to predict how a system composed of these two modules would behave, such is 

the nature of top-down modular design. Moreover, a third module (Figure 3.3 (B)) which 

takes I3 as an input instead of I2 can be defined. By keeping the input and output 

connectors identical, module 2 and module 3 become fully interchangeable. 
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A potential genetic implementation of modules 1 and 2 are shown in Figure 3.3(C, E), 

and of modules 1 and 3 in Figure 3.3(D, F), further demonstrating the uncoupling and 

interchangeable nature of the modules. As a result, it would also be possible to 

experimentally characterise the behaviour of each module separately and use this data 

to better predict how a system composed of each module combination would behave, 

rather than having to test every combination (which can become unfeasible when many 

variants of a module exist). It should be noted that designing and implementing the 

 

Figure 3.3. High-Level Modules for a Genetic Toggle Switch 

Alternative method for modular assembly of a genetic toggle switch. (A) Two high-level 
modules which, when combined, show toggle switch functionality. Both modules use an 

inverter ( : switches an OFF signal to ON and vice versa), AND gate ( : only ON when 
both inputs are ON), and NOR gate ( : only ON when both inputs are OFF) to integrate 
signals from a connector (red and blue CDSs) and an inducer (I1 and I2). (B) A third high-
level module which uses a third inducer (I3) as an input. The input and output connectors 
are the same as for the first module in (A). (C) Genetic implementation of the two modules 
in (A). (D) Genetic implementation of the module in (B) combined with the second module 
in (A). This is the same as the implementation in (C), except the first module has been 
swapped with the module in (B). (E) Modular cloning of the design in (C). the level 1 
assemblies (construct 4 and 5) are built using level 0 parts. The two level 1 constructs are 
then combined into a level 2 assembly, which functions as a toggle switch. (F) The same 
as for (E), except construct 4 is replaced with construct 6. Construct 6 is based on the 
module design in (B). 
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system in this way does come at the expense of a more complicated low-level design, 

but allows the high-level design to be simplified, and for better re-use of modules. 

There are also other issues with the design described. For example, module 3 is only 

interchangeable with module 2, and not module 1 (due to the connectors specified for 

the input/output of each module). These designs may also not be optimal for other 

applications, and the choice of connectors may interfere with the behaviour of other 

designs if those systems utilise the connectors in their internal mechanisms. Despite 

these issues, this concept of using high-level modules to design and implement 

biological devices and systems has the potential to aid synthetic biology in the same 

way it has other fields for the reasons discussed earlier. In the following section, some 

selected examples of previous implementation of such modularity are highlighted and 

discussed. 

 High level modularity in synthetic biology 

Discussed here are some examples of where high-level modularity has previously 

been used to develop biological devices. These examples were highlighted as they 

focus on biosensors, or use biosensor-like mechanisms, which are a major focus for 

this thesis. Additionally, the examples were selected because the results and 

approaches highlighted crucial aspects, advantages, and limitations of high-level 

modularity in synthetic biology. 

 

Potentially one of the earliest examples of true high-level modularity in synthetic 

biology is work presented by Tamsir and co-workers in 2011[194]. In this study, a series 

of genetic logic gates were designed and implemented in separate E. coli cells and 

‘wired’ together using quorum sensing molecules. The modules were used to design 

higher order biocomputing functions, such as the XOR gate shown in Figure 3.4 (C). 

This XOR biocomputing system was implementing by spot plating the required cell 

types (containing logic gates with the required logic gate module) onto solid agar, 

spatially positioning the cell types such that they correspond with the desired logic 

circuit layout. These cells were spotted one layer at a time: Cell 1 was added and 

allowed to grow as the first layer, then Cell 2 and Cell 3 to form the second layer, and 

finally Cell 4 formed the third layer. These cell types appear to have only been 

characterised on solid media, rather than in liquid culture, and the requirement to add 

cells one layer at a time may present scalability issues as genetic circuits grow in 

complexity and size. Regardless, these modules allowed the authors to design and 
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implement many different biocomputing systems rapidly and, aside from the initial 

creation of the modules, any extra genetic engineering. 

 

In 2019, a paper by Voyvodic and co-workers[195] described a method for expanding 

the ‘detection space’ of cell-free biosensors. This method made use of modular design, 

where a set of three modules were described: one which generated an output, one 

which could detect a common chemical using well known mechanisms, and a 

metabolic transducer module capable of converting a desired chemical, which perhaps 

does not have a known mechanism of detection, into a chemical which can be easily 

detected (Figure 3.4 A). These modules are described as ‘plug-and-play’, in that the 

modules can be assembled onto separate plasmids and mixed in cell-free systems to 

generate a complete biosensor. This study demonstrated the potential of high-level 

modularity in synthetic biology, although it should be noted that the plug-and-play 

nature of their output plasmid module is debatable, as it requires the output module to 

contain a promoter or other genetic element compatible with the sensor module. For 

example, in one of the use cases from the original paper, the authors design a sensor 

module which can detect benzoate (Figure 3.4 (B)). The sensor module works by 

expressing a transcription factor (BenR) which can bind benzoate. The output module 

contains a superfolder GFP coding sequence which is under the control of a promoter 

called PBen. This promoter is activated by the BenR-benzoate complex, which drives 

expression of the GFP. Whilst it would be possible to generate a library of output 

module consisting of different outputs controlled by the PBen promoter, it would not be 

possible to re-use these output modules with other sensor modules which do not 

express BenR. Nevertheless, this study presented a framework for expanding the 

range of chemicals which can be detected by biosensors, utilising high-level modularity 

which, for the most part, promotes re-use of parts with minimal modification required 

by other researchers. 

 

A study by Wang et al. (2013) also aimed to implement high-level modularity using 

synthetic microbial consortia. In this work, a modular biosensor capable of detecting 

and responding to multiple external stimuli was designed and implemented using a 

series of AND gate modules, each of which was implemented in a separate cell. Signal 

propagation between the cell types was achieved using quorum sensing, as seen with 

Tamsir et al.’s approach. The multi-microbial biosensor developed and characterised 

by Wang et al. integrated three inputs to a single output (Figure 3.4 (D)). This biosensor 
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was composed of two cell types which both consist of an AND gate. The first cell type 

takes two stimuli as an input and produces a quorum sensing molecule as an output, 

and the second takes the quorum sensing molecule generated by the first cell type and 

the third stimulus as inputs. This second cell type was designed to produce a red 

fluorescence protein (RFP) as an output when both inputs were detected. This 

approach showed high-level modularity at two stages. The first was at the AND gate 

construction stage. As can be seen in Figure 3.4 D, both AND gates were assembled 

using three expression units: two which could detect the presence of the input stimuli 

and one which dealt with the output. The input modules were designed to express one 

of two proteins (HrpR or HrpS). Both proteins are required to activate expression of the 

promoter PhrpL, which is what was included in the output expression unit to drive 

expression of the desired response. In this way, the construction of the AND gate 

modules can be considered truly modular. However, this approach is relatively limited 

in that only biosensors which rely on AND gate logic can be developed. It would also 

be difficult to easily tune the response characteristics of any biosensor by incorporating 

signal processing, such as signal amplification, as there is no space in the design 

described by the authors to add in this functionality. This is not to say that the work 

presented here is not useful, it should simply be noted that the approach taken is 

specific to a certain type of biosensor. 

 

The fourth example of high-level modularity in synthetic biology is the study by Macia 

and co-workers in 2016[196], which focused on implementing spatially distributed 

biocomputation. Similar to the study by Tamsir et al. (2011), Macia and co-workers 

designed modular logic gates, which were implemented in yeast cells and focussed on 

NOT and ID gates with an inherent OR layer (Figure 3.4 (E)). This work also used 

multi-microbial modular logic gates to create high-order biocomputational logic circuits 

via phased mixing of each cell type, although the cells were combined in liquid culture 

using a custom built machine (Figure 3.4 (F)) rather than on agar plates. To note, the 

OR gate logic is not an actual module, but an inherent feature of how signals from 

modules in previous layers were integrated, and thus could potentially create 

limitations when developing systems as the OR gate cannot be swapped or easily 

tuned. 
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Figure 3.4. Selected Examples of High-Level Modularity in Synthetic Biology 

An overview of synthetic biology systems developed previously which make use of high-level modularity. (A) A modular 
framework for biosensors. Three types of modules are used: a metabolic transducer, a sensor, and an output. The metabolic 
transducer converts a desired molecule with no known sensing mechanism into a molecule which does have a sensing 
mechanism. The sensor module detects the molecule and passes a signal to the output module to generate a response. 
Figure reproduced from Voyvodic et al. 2019 (figure 1) under licence agreement. (B) Modular design for a benzoate biosensor 
using the framework in (A). Two modules are defined: a TF (transcription factor) plasmid which acts as the sensor module, 
and a reporter plasmid to act as the output module. The output module is activated in the presence of benzoate. Figure 
reproduced from Voyvodic et al. 2019 (figure 2) under licence agreement.  (C) Implementation of an XOR gate using modular 
design. The modules are implemented into different cells, and the system is built by spotting cells onto an agar plate one layer 
at a time. The first layer consists of Cell1, the second layer of cell 2 and 3, and the third layer of cell 4. Signals from each cell 
type are passed via quorum sensing. Figure reproduced from Tamsir et al. 2011 (Figure 3) under license agreement. (D) 
Modular implementation of a three-input biosensor. Two modules are used. The first uses an AND gate to integrate signals 
from two stimuli. The second integrates the signal from the first module and a third stimuli, also using an AND gate. The 
second module produces a fluorescent reporter when activated. The two modules are implemented in separate cells, with the 
signal being passed from module 1 to module 2 via quorum sensing. Figure reproduced from Wang et al. 2013 (figure 4) under 
license agreement. (E) Design for a modular ‘majority rule’ biocomputing device, where a signal is generated when two or 
more of the inputs are present. Each module is implemented in a separate yeast cell. Figure reproduced from Macia et al. 
2016 (figure 3) under license agreement. (F) Device built to implement the modular biocomputing device in (E).   Figure 
reproduced from Macia et al. 2016 (figure 3) under license agreement. 
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 Modularity and multi-microbial systems 

Synthetic microbial consortia are commonly found in previous implementation of high-

level bio-modularity, as seen in the examples above. In addition to the general 

advantages and applications of synthetic consortia discussed in Chapter 1, there are 

several reasons for why this might be. The first is that, at least conceptually, the 

creation of co-cultures to ‘connect’ biological high-level modules is relatively simple. 

The idea that cells containing different biomodules can be mixed together as seen in 

the Wang et al. 2013 study, or plated next to each other like Tamsir et al. in 2011, can 

seem analogous to some of the plug-and-play architecture seen in other engineering 

fields. The approach of implementing each module in a different cell type in a 

consortium also allows optimal organisms to be used for each aspect of a biological 

system, rather than relying on techniques such as codon optimisation to modify 

biological parts to operate in a sub-par host chassis. 

 

Another reason why synthetic consortia are commonly used to implement high-level 

modularity in synthetic biology is simply because the inherent requirements of splitting 

a biological system across multiple cell types align closely with the requirements of 

high-level modularity. This is because the separate aspects of the system must be un-

coupled to function independently within their host chassis, and communication must 

be established between the different modules. This design architecture has a lot of 

similarities with the modular toggle switch design shown in Figure 3.3, but less so with 

the original genetic toggle switch in Figure 3.2. It is therefore possible that some studies 

which implemented high-level modularity did so as a result of using synthetic consortia, 

rather than by intent. Regardless, the combination of synthetic multi-microbial 

consortia and high-level modularity in synthetic biology appear to have great potential 

and is the approach which was taken in this research.  
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 Discussion of a high-level modular and multi-microbial framework for the 

development of genetic biosensor devices 

The framework described here is based on work first described by the Newcastle iGEM 2017 team 

(2017.igem.org/Team:Newcastle), of which I was a member. The work in this thesis can be considered 

a direct continuation of that project. 

 

In the previous section, it was identified that the combination of high-level modularity 

and multi-microbial systems could aid in the development of synthetic biology systems. 

In this section, it is discussed how the development of a framework could be used to 

explore this concept. 

 Framework requirements and application 

In fields where high-level modularisation has already been implemented, the modules 

developed do not tend to be completely universal to everything within that area[197]–[199]. 

In software engineering, modular code tends to be intended for specific types of 

software programs[200], [201]. For example, modules used in video game development 

are not necessarily expected to function in or be used in code for, say, a word 

processor. Similarly, in computer hardware engineering, modules designed for a 

desktop computer may not be fully compatible with modules used in a laptop for 

reasons such as power requirements and size[202]. Therefore, when looking to 

implement high-level modularisation, one should recognise that it is unlikely that a 

module will be fully universal to every application within that field. Instead, it is 

important to consider which applications or areas within a field can benefit from the 

same set of modules. This contrasts some of the previous studies, such as the Tamsir 

et al. (2011) and Macia et al. (2016) studies discussed in Section 3.1.1 (Figure 3.4(B) 

and Figure 3.4(D)) which tend to have scopes which are either much wider or narrower 

than those seen in other engineering fields. 

 

In this thesis, the applicability of high-level modularity and multi-microbial systems 

towards to development of biological systems was explored. Specifically, the project 

aimed to determine whether designing and implementing systems in such a way could 

provide alternative, easily accessible avenues for optimisation, and promote the use of 

engineering principles such as standardisation and re-usability. To guide these 

investigations, a high-level modular and multi-microbial framework for developing 

synthetic biology systems was developed. Considering the points discussed above, it 

https://2017.igem.org/Team:Newcastle
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was decided that this framework should focus on a specific area of synthetic biology, 

similar in scope to that seen in other fields which successfully apply high-level 

modularity. 

 

There are many applications and areas of research which can be considered to fall 

under the general term of synthetic biology, as discussed in Chapter 1. One of these 

areas is the development of genetic biosensors, where sensing devices are built using 

DNA and implemented using biological chassis such as bacteria or cell-free protein 

synthesis systems. The general concept of genetic biosensors is ubiquitous in many 

synthetic biology systems, and there are a wide range of potential applications for 

these biological devices. As a result, it was decided that the framework’s application 

would be towards the development of synthetic biology biosensors. An existing 

framework which matches this application, Sensynova, was previously proposed by 

the Newcastle iGEM 2017 team. As such, the framework described in this work is 

based on and extends the Sensynova framework. 

 General framework structure 

Biosensors have many analogues in other engineering fields, such as electronic 

sensors in electrical engineering, and event handlers or conditional statements in 

software engineering and programming. In these examples, the overall functionality is 

to react to some external stimulus or event. In fact, this abstract behaviour is so 

common that it can be summarised by an often-used architectural design pattern. 

Architectural design patterns (ADPs) are defined as a generalised solution for a 

 

Figure 3.5. Observe and React Architectural Design Pattern 

General overview of the observe and react ADP. The sensor detects a stimulus, which 
activates the sensor control. The sensor control informs the data processor, which 
processes the signal generated by the sensor control. The data processor then passes 
information to the actuator control, informing it as to the required response, which is then 
generated by the actuator. 
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common problem within a specified context, and have found popularity in software 

engineering and, to a lesser degree, other engineering fields and architecture. The 

observe and react ADP defined in software engineering can also be used to summarise 

the general structure of biosensors and their analogues[203] (Figure 3.5). Broadly 

speaking, the observe and react pattern is used when a sensor (or set of sensors) 

needs to be monitored and a response initiated depending on the output of the sensors. 

The ADP is split into three sub-processes: sensor control, data processor, and actuator 

control. The sensor control is responsible for collecting information from the sensor(s). 

The information collected is then fed to the data processor, which can analyse or 

modify the information in some pre-determined way. This data is then sent to the 

actuator control, which will generate a response depending on the information. This 

response could be to simply display the data, or it could generate some type of change 

by sending the data to some other device. 

 

Following the observe and react ADP, synthetic biology biosensor designs can be split 

into three modules: a detector which reacts to the presence or absence of a stimulus, 

a processor which can employ some sort of logic such as amplification or tuning to a 

specific level, and a reporter which generates some sort of response (Figure 3.6 (A)). 

This follows the modules described by the original Sensynova framework, where it was 

shown that all biosensors designed or used by iGEM teams matches this architecture. 

Following on from the concept of implementing modules in different cell types which 

can be co-cultured to form the overall system, the detector, processor, and reporter 

modules described here can be implemented similarly. Based on the previous 

 

Figure 3.6. Sensynova Framework 

General overview of the Sensynova framework. (A) Functional modularisation of a generic 
genetic biosensor, split into a detector, processor, and reporter module. This pattern 
mirrors the ADP shown in Figure 3.5. (B) Abstract depiction of the Sensynova framework. 
Biosensors are designed modularly, with each design built on a separate plasmid. Each 
plasmid is transformed into individual cells. Quorum sensing mechanisms built into each 
module’s design enables uni-directional communication when in co-culture, at which point 
the biosensor can be tested.  
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successes within synthetic biology discussed in Chapter 1, communication between 

cell types expressing one of the three modules can be achieved via acyl-homoserine 

lactone (AHL) based quorum sensing. This communication was intended to be uni-

directional, with the signal generated by the detector cells (as the result of interactions 

with a stimulus) passing to the processor cells, which then modifies the signal and 

passes it to the reporter cells, which can then generate the response. Specifically, the 

LasIR and RhlIR mechanisms were used to facilitate communication from detector to 

processor cells, and from processor to reporter cells respectively. These mechanisms 

were chosen as they had been previously reported to have little cross-talk[151]. Broadly, 

the detector module should confer C12-HSL production functionality, and the 

processor module should respond to C12-HSL. The processor module should also 

produce C4-HSL, and the reporter module should respond to C4-HSL (Figure 3.6 (B)). 

By defining this method of communication within the Sensynova framework, it is 

possible to help ensure module compatibility, where any detector, processor, or 

reporter cells can be combined with any other combination of detector, processor, or 

reporter cells. 

 

The general framework described above is expanded on in chapter 4, where a proof-

of-concept biosensor is designed and built according to the Sensynova principles. By 

developing a high-level modular and multi-microbial biosensor, it was possible to 

validate whether biosensors designed, built, and implemented according to the 

framework were functional. Additionally, novel approaches towards optimisation could 

be investigated, which may provide opportunities to ease the development process of 

biosensors more generally. First, however, presented in the remainder of this chapter 

are outcomes from research into, and development of, resources for aiding 

implementation of modular and multi-microbial systems. Focus was placed on how 

these resources could be used to promote the use of engineering principles such 

standardisation, reproducibility, and re-usability within the Sensynova framework. 
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 Defining Best Practices for Standardised Representations of Multi-

Microbial Systems 

This work has been published as “Capturing Multicellular System Designs Using Synthetic Biology Open 

Language (SBOL)” in ACS Synthetic Biology (doi.org/10.1021/acssynbio.0c00176), and also exists as 

a preprint on bioRxiv (doi.org/10.1101/463844). 

 

The best practices described here were submitted and accepted as SBOL Enhancement Proposal 30 

(SEP 030: github.com/SynBioDex/SEPs/blob/master/sep_030.md). This proposal was modified and 

included in the release of SBOL version 3.0.1 (doi.org/10.1515/jib-2020-0017). 

 Overview and rationale 

One of the main aims for the Sensynova framework was to aid in the development of 

synthetic biology biosensor designs by promoting the sharing and re-use of modules 

and systems. It was important, therefore, to ensure that information relating to these 

multi-microbial designs could be captured in a standard format that was easily 

shareable and allows for modules designed by different researchers to be combined 

into a single biosensor design. The Synthetic Biology Open Language (SBOL) is a data 

standard which can be used to store and share information about biological designs, 

along within information about how these designs have been implemented and 

characterised[64]. Prior to the work presented here, the SBOL data standard had only 

been used to capture design information about biological parts and devices, and 

ignored how contextual information, such as the chassis that the design is intended to 

be implemented in, should be represented. In addition, the SBOL standard had not 

been used to capture information about multi-microbial systems. 

 

To address the limitations of SBOL stated above, a set of standard best practices were 

developed to aid in the design and sharing of multi-microbial designs. These best 

practices considered the minimal information required for others to understand, adapt, 

and build a multi-microbial design. Other aspects, such as machine-readability, 

flexibility, and intuitiveness, were also explored. The best practices described here 

largely fit within the SBOL version 2 specification and are therefore compatible with 

tools which use any release of SBOL version 2. 

 Ontologies in the SBOL data model 

The SBOL data model makes use of ontologies to help describe biological entities, 

interactions, and functions in a standard way. An ontology can be thought of as a set 
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of formal descriptions for specific terms and their relationships[204]. A number of 

ontologies are used in SBOL to better describe entities within a system, and how those 

entities interact. The SBOL-OWL ontology defines relationships between classes in 

the SBOL data model and terms from other ontologies, allowing for recommendations 

of terms to be used for different aspects of a design or system[205]. For physical 

biological entities, terms taken from the Sequence Ontology (SO) are often used[206]. 

Example SO terms are ‘Promoter’ (SO:0000167), ‘Ribosome Entry Site’ (SO:0000139), 

and ‘CDS’ (SO:0000316). For interactions between entities, terms like ‘Genetic 

Production’ (SBO:0000589) from the Systems Biology Ontology (SBO) can be used to 

describe the role of that reaction[207]. The SBO can also be used to define functions for 

participants in the interaction, using terms like ‘Template’ (SBO:0000645) and ‘Product’ 

(SBO:0000011). Other commonly used ontologies include the Gene Ontology (GO)[208], 

Chemical Entities of Biological Interest (CHEBI)[209], and BioPAX[210]. 

 The SBOL 2 Data Model 

Explained here are relevant parts of the SBOL version 2.3.0 specification, which was 

the SBOL release these best practices were based on. 

 

Two main classes are used in SBOL version 2 for representing biological designs: 

ComponentDefinition and ModuleDefinition. The ComponentDefinition class can store 

information about physical structures, such as DNA and proteins. Aspects of a design 

represented by a ComponentDefinition may have both a ‘role’ and a ‘type’ associated 

with them. The ‘type’ property in SBOL is used to describe the category to which a 

biological entity belongs and can use BioPAX terms like ‘DNA’ (BioPAX: 0654) or 

‘Protein’ (BioPAX: 1208). The ‘role’ property is used to convey the intended or expected 

function of an entity, using terms like ‘Promoter’ (SO:0000167) or ‘Transcription Factor’ 

(GO:0003700). 

 

The ModuleDefinition class is used to group together biological entities in a design, 

allowing for definition of functional interactions between such entities. Designs 

captured by a ModuleDefinition can range in complexity, from individual biological 

entities such as promoters, coding sequences, and proteins, to devices composed of 

multiple parts or complex systems comprising many devices, like a genetic biosensor. 

Unlike the ComponentDefinition class, instances of ModuleDefinition do not have a 

‘type’ property and rely only a ‘role’ to represent overall functionality. For example, a 
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metabolic pathway might have roles of ‘metabolic process’ and ‘small molecule 

biosynthetic process’ from the Gene Ontology (GO), and a biosensor could have a role 

of ‘response to chemical’, also from the GO. In the case of devices and systems, each 

of the individual parts are described by separate ComponentDefinition class instances. 

The intended use and function of the part can be described within a ModuleDefinition 

class, where the part is instantiated using a FunctionalComponent class annotated with 

its intended ‘role’. 

 

The ModuleDefinition class can contain interactions between biological entities in a 

design. One such example of an interaction could be a protein which binds to and 

represses a promoter. Interactions are formally captured with the use of Interaction 

and Participation instances. The Interaction class specifies the interaction type, such 

as genetic repression, within which instances of the Participation class specify 

interacting entities and the role played by those entities. 

 Discussion of essential information to be captured 

To define a set of standard best practices for capturing designs of multi-microbial 

systems, it was important to consider the information needed to be captured. Essential 

information are attributes of a multi-microbial system which must be recorded to ensure 

others can understand the design’s purpose and function. Optional information about 

a design may provide further context but is not essential for understanding and 

implementation. 

 

To determine the essential information to be captured, core components of a multi-

microbial system were considered, using a basic design as an example (Figure 3.7). 

For this design, two populations composed the system: E. coli DH5α and Bacillus 

subtilis 168, which were present in proportions of 20% and 80% respectively. 

Information about the populations represented the first core component of the system. 

Thus, the SBOL standard was required to capture information the number, proportions, 

and taxonomic information about each population. Capturing information regarding the 

taxonomy of each population is required as behaviour differs between species and 

strains. For example, the two commonly used Escherichia coli strains DH5α and BL21 

have distinct differences. DH5α is a cloning strain and deficient in nucleases[211], 

whereas BL21 is protease deficient and hence will have a lower turnover of proteins[212]. 

In the example system, the E. coli DH5α strain was modified to contain a plasmid. 
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Modifications such as these, including genome editing, should be recorded, along with 

the functionality they are intended to impart. For example, here, plasmid A was 

designed to allow E. coli cells to produce molecule A. 

 

Aside from information regarding each population, inter-population interactions were 

also identified a key feature of multi-microbial systems, as these interactions tend to 

guide overall functionality[213]–[215]. In the example system, molecule A produced by the 

E. coli cells enhances B. subtilis growth. Thus, a uni-directional interaction from cell 1 

to cell 2 in the form of growth promotion existed. 

 

In addition to the information discussed above, there were other important aspects of 

the design, namely information related to implementation of the system. Details such 

as media used to grow the cells, initial growth phase of the cell populations, culture 

volumes, and incubation conditions can all impact the functionality of the system, and 

hence should also be recorded if known[216], [217]. It should be noted that whilst the 

information discussed here was deemed ‘essential’, in certain cases it may not be 

known. It was therefore important that when multi-microbial designs are captured, it is 

possible to indicate when information is unknown, rather than simply missing. 

 

 

Figure 3.7. Core Components of a Multi-Microbial System 

In this diagram, a design for a synthetic multi-microbial system is shown to demonstrate 
the core components of a multi-microbial system. This system is composed of two cell 
populations: cell 1 and cell 2. The cell 1 population is composed of E. coli DH5α cells 
transformed with plasmid A. The cell 2 population is composed of B. subtilis 168 cells. In 
the initial state of the system, 20% of the cells are part of the cell 1 population, and 80% 
are part of the cell 2 population. Plasmid A in the cell 1 population leads to the production 
of molecule A, which is then used by the cell 2 population to promote their own cell growth. 
The multi-microbial system is then implemented in a conical flask with a set of unspecified 
experimental conditions. 
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For all approaches described in this section, the essential information described above 

can be captured in SBOL – either explicitly or implicitly. Biological entities such as 

proteins and small molecules, and implementing/characterising designs, are not 

discussed here[218]. Instead, only aspects of multi-microbial systems discussed in this 

section which are not covered by the SBOL 2.3.0 specification are considered. 

 Approaches for representing cells using SBOL 

The SBOL data model was not able to natively capture information about cells or other 

chassis, which as identified above is crucial for describing multi-microbial systems. 

Thus, this limitation was tackles first. Two potential approaches were detailed which 

could record the essential information about cells identified in the previous sub-section. 

The first approach is referred to as ‘cell representation A’, and the second as ‘cell 

representation B’. 

 

 

Figure 3.8. Potential Best Practices for Representing Cells using SBOL 

Unified Modelling Language (UML) diagrams depicting two different approaches for 
representing cells in SBOL. (A) First approach for capturing information about cells, 
referred to as ‘cell representation A’. A ModuleDefinition instance represents the cell, and 
taxonomic information is annotated on the ModuleDefinition. Interactions are defined with 
the Interaction class, and internal biological entities captured using the 
FunctionalComponent class. (B) Second approach, referred to as ‘cell representation B’. 
The cell is represented as a ComponentDefinition, which is annotated with the cell’s 
taxonomy. A ModuleDefinition is used to represent the cell system, in which the cell itself is 
included as a physical compartment. (C) Example of how the Interaction class could be 
used to explicitly capture that an entity is contained within a cell for cell representation B, 
rather than implicitly as in (B). 
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To illustrate both approaches, information about a cell with an interaction involving two 

molecules was captured (Figure 3.8). For both approaches, taxonomic information 

about the cells was captured through the use of an URI (Uniform Resource Identifier) 

for a relevant entry in the NCBI Taxonomy Database. This standardised approach 

allowed for easier automated retrieval of information about different organisms. In cell 

representation A, the cell was represented as an instance of the ModuleDefinition class 

(Figure 3.8 (A)) with a role of ‘physical compartment’ from the Synthetic Biology 

Ontology (SBO:0000290), which is defined as a “[s]pecific location of space, that can 

be bounded or not”. To confer that the physical compartment was a cell, an ‘organism’ 

property was annotated to the ModuleDefinition. It should be noted that whilst the 

SBOL version 2.3.0 specification allowed for user-defined annotations, the ‘organism’ 

property was not defined within the specification and therefore was not standard within 

that version of SBOL. Taxonomic information was stored as attributes of the 

ModuleDefinition, and intracellular interactions were defined using Interaction class 

instance. Biological entities within the cell were represented using 

FunctionalComponent instances. 

 

For cell representation B, an instance of the ComponentDefinition class represented 

the cell, which was annotated with information regarding taxonomy (Figure 3.8 (B)). 

Similar to cell representation A, the ComponentDefinition role was annotated as a 

‘physical compartment’, however a type was also given of cell’ from the Gene Ontology 

(GO:0005623) ii. A ModuleDefinition instance was used to define cell functionality, 

where the ModuleDefinition represented the cell system, and the cell itself was 

included as a FunctionalComponent. For the cells system, a role of ‘functional 

compartment’ (SBO:0000289) was used, which is defined as a “[l]ogical … subset of 

the event space”. This essentially conveys that the cell system represents a subset of 

an overall system where interactions involving a cell occur. Intracellular interactions 

were captured similarly to cell representation A, except the cell was also involved 

explicitly in each interaction as a physical compartment. For cell representation B, it 

was possible to explicitly capture which entities resided within the cell (Figure 3.8 (C)), 

rather than relying on implicit representation as in Figure 3.8 (B). 

 

 
ii It should be noted that the GO term for ‘cell’ (GO: 0005623) has now been made obsolete in favour of 
the Cell Ontology (CL) term for ‘cell’ (CL:0000000). However, to keep in line with the published work 
and accepted best practices, the GO term is used throughout this thesis. 
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One advantage of cell representation A is that it is conceptually simpler to understand, 

and the data model is smaller. However, the advantage of cell representation B is that 

by capturing taxonomic information in a separate ComponentDefinition away from the 

class instance representing the system, it is easier to capture how a cell has been 

modified. For example, with cell representation B, it is clear that Plasmid A has been 

added to the E. coli DH5α strain, and was not already present within that strain, as 

might be implied by approach 1. Additionally, by capturing the cell using the 

ComponentDefinition class, it is possible to instantiate the cell as a 

FunctionalComponent within the ModuleDefinition, and hence use it as a participant in 

interactions. Using this approach allows  extra context to be added to specified 

interactions, such as the containment interaction described above to demonstrate that 

a plasmid is contained within the cell. 

 Approaches for representing multi-microbial systems using 

SBOL 

In this sub-section, options for representing in SBOL multi-microbial system designs, 

which incorporate two or more cell types, are discussed. There are three main 

approaches illustrated in Figure 3.9, Figure 3.10, Figure 3.11 which capture the 

information in this design, with the exception of cell ratios and experimental conditions, 

which are addressed later. 

 

The first approach is referred to as ‘multi-microbial representation A’. Here, the multi-

microbial system is represented by a ModuleDefinition with a role of ‘functional 

compartment’ (SBO:0000289). The cell types involved in this system are captured 

using instances of the Module class, with a definition property which refers directly to 

the ModuleDefinition instance which captures information about that cell type. Figure 

3.9 (A) and (B) show how this approach is compatible with both ‘cell representation A’ 

and ‘cell representation B’ respectively. In this approach, intercellular interactions are 

determined implicitly through shared interactions with identical pools of molecules or 

other entities. In this example, both cell 1 and cell 2 interact with molecule A; cell 1 

produces the molecule and cell 2 uses it to enhance cell growth. Therefore, when both 

cell types and instantiated within the same multi-microbial system, it can be deduced 

that they exhibit an intercellular interaction via molecule A. 
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‘Multi-microbial representation B’ (Figure 3.10) was similar to multi-microbial 

representation 1 in that a ModuleDefinition instance with a role of ‘functional 

compartment’ represented the multi-microbial system. Further, Module instances 

captured cell types in the design. However, this approach required explicit definition of 

intercellular interactions, rather than implicit, allowing designers to highlight intended 

intercellular interactions within the system. This came at the cost of additional data 

model complexity. Multi-microbial representation B was not compatible with ‘cell 

representation A’. This was because the cell type must be defined as a participant in 

intercellular interactions. As only instances of the FunctionalComponent classes can 

be used as participants in an interaction, and as FunctionalComponents must refer to 

a ComponentDefinition, as ‘cell representation A’ only used ModuleDefinition instances 

to refer to a cell, it could not be used with this approach. 

 

As with the previous two approaches, ‘multi-microbial representation C’ also uses a 

ModuleDefinition class instance with a role of ‘functional compartment’ to represent a 

multi-microbial system (Figure 3.11). This approach also uses both Module and 

FunctionalComponent classes to represent cells, except in the case when cell 

representation 1 is used to capture information about cells where only the Module class 

is used. Any non-cell entities are also instantiated using FunctionalComponent classes. 

The Module instances are defined by the ModuleDefinition classes used to represent 

cell or cell system as in multi-microbial representation 1 and 2. However, in this 

approach, the Module class instances also contain instances of the MapsTo class, 

which are used to explicitly capture links between the entities present in multiple parts 

of the same design. Here, a MapsTo class with a ’refinement’ value of ’merge’ is used 

to link FunctionalComponent classes which represent an entity in the multi-microbial 

system to the FunctionalComponent class used to represent the same cell in the lower-

level cell system design. 
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Figure 3.9. Potential Best Practice for Representing Multi-Microbial Systems using SBOL – Multi-Microbial Representation A 

Both (A) and (B) are Unified Modelling Language (UML) diagrams depicting an approach for capturing information about multi-microbial systems 
using SBOL. The diagrams represent the same system shown in Figure 3.7. (A) and (B) show the same approach for capturing information about 
multi-microbial systems, however (A) demonstrates how this approach is compatible with cell representation A, and (B) shows compatibility with 
cell representation B. In this approach, the multi-microbial system is represented using an instance of the ModuleDefinition class, which has a 
role of ‘functional compartment’ (SBO:0000289). The cell types within this system are represented by Module instances, which are defined by the 
ModuleDefinition which captures information about that cell type. Intercellular interactions are captured implicitly by comparing interactions 
defined by the lower-level cell ModuleDefinition instances. Here, Cell 1 and Cell 2 interacts via Molecule A, where cell 1 produces Molecule A 
and cell 2 uses Molecule A to stimulate cell growth. 
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Figure 3.10. Potential Best Practice for Representing Multi-Microbial Systems 

using SBOL – Multi-Microbial Representation B 

Unified Modelling Language (UML) diagram depicting an approach for capturing 
information about multi-microbial systems in SBOL. The diagram represents the same 
system shown in Figure 3.7. In this approach, the multi-microbial system is represented 
using an instance of the ModuleDefinition class, which has a role of ‘functional 
compartment’ (SBO:0000289). The cell types within this system are represented by 
Module instances, which are defined by the ModuleDefinition which captures information 
about that cell type. The cell type is also represented using a FunctionalComponent 
instance, which is defined by the ComponentDefinition which captures taxonomic 
information about that cell type. Other non-cell entities are captured only through the use 
of the FunctionalComponent class. Intercellular interactions are captured explicitly through 
the use of Interaction class instances, where the cell type related to that interaction are 
included as participants with a role of ‘physical compartment’ (SBO:0000290). Here, Cell 1 
and Cell 2 interact via Molecule A, where cell 1 produces Molecule A and cell 2 uses 
Molecule A to stimulate cell growth. 

 

One of the major differences between each approach presented here are how 

intercellular interaction are defined. Although explicit definition of interactions removes 

ambiguity, implicit interactions, as well requiring a similar data model, can have 

benefits. With implicit interactions, automated design software could combine cell 

designs into a multi-microbial system and automatically determine interactions 



98 
 

between cells. However, if designs for cells are obtained from other researchers, 

perhaps via a database such as SynBioHub, processes which are not important in a 

homogeneous design but are crucial in a multi-microbial system may be missing, and 

hence important interactions lost. 

 

Aside from intercellular interactions, it was identified that proportions of different 

populations composing the multi-microbial system should be captured. For the 

example system in Figure 3.7, cell type 1 composed 30% of the system, whilst cell type 

2 composed 70%. For all three multi-microbial representation approaches, it was 

possible to capture this information using an instance of the Measure class (Figure 

3.12). The measure class could be used to annotate Module instances which represent 

cells or cell systems. The Measure class allows annotation of a numerical value, which 

here would represent the proportion of cells, and a unit of measurement. For the 

purposes of capturing cell proportions, it was recommended that the OM (Ontology of 

Units of Measure) term percentage is used. The Measure instance could also be 

annotated with a ‘type’ property using the SBO term ‘fraction of an entity pool’ 

(SBO:0000470), where the entity pool being referred to here is the cells. 
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Figure 3.11. Potential Best Practice for Representing Multi-Microbial Systems using SBOL – Multi-Microbial Representation 

C 

Unified Modelling Language (UML) diagrams depicting an approach for capturing information about multi-microbial systems using SBOL. The 
diagrams represent the same system shown in Figure 3.7. (A) demonstrates how this approach is compatible with cell representation A, and 
(B) shows compatibility with cell representation B. The multi-microbial system is represented using an instance of the ModuleDefinition class 
with a role of ‘functional compartment’ (SBO:0000289). Cell types within the system are represented by Module instances, which are defined by 
the ModuleDefinition representing information about that cell type. In (B), cells are also represented using a FunctionalComponent instance, 
which is defined by the ComponentDefinition which captures taxonomic information about that cell type. The MapsTo class is used to explicitly 
capture which entities are present in both the cells and the multi-microbial systems. This information can be used to determine intercellular 
interactions. Here, Cell 1 and Cell 2 interact via Molecule A, where cell 1 produces Molecule A and cell 2 uses Molecule A to stimulate cell 
growth. 
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Figure 3.12. Capturing Cell Type Proportions in Multi-Microbial Systems using 

SBOL 

This figure shows an Unified Modelling Language (UML) diagram depicting how to capture 
information about the proportions of each cell type present in a multi-microbial system. In 
this figure, information about the individual cells has been omitted for clarity, and only the 
class instance representing the multi-microbial system is shown. This multi-microbial 
system is composed of two cell types (cell 1 and cell 2). The cell 1 population composes 
30% of all cells in the system, and the cell 2 population composes the other 70%. This 
information is conveyed through the use of the Measure class. 

 Accepted Best Practices 

In this section, the approved best practices for capturing information about cells and 

multi-microbial systems is presented. These best practices were selected based on 

discussions with the SBOL community. 

 

Representing cells using SBOL 

The following best practices should be followed when capturing information about cells 

in SBOL: 

• Taxonomic information about a cell type must be captured using an instance of 

the ComponentDefinition class. This ComponentDefinition instance must have 

a type property of ‘cell’ from the Gene Ontology (GO:0000290), and must have 

a role of ‘physical compartment’ from the Synthetic Biology Ontology 

(SBO:0000290). The ComponentDefinition instance must also have an 

organism property which should be a NCBI URI or link to another database. 

This property may also be a description of the organism if no other record exists. 

• Functional information about a cell type must be captured using an instance of 

the ModuleDefinition class. This ModuleDefinition instance must have a role 
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property of ‘functional compartment’ from the Synthetic Biology Ontology 

(SBO:0000289). The cell type should be instantiated within this 

ModuleDefinition as a FunctionalComponent. The FunctionalComponent must 

be defined by a ComponentDefinition which captures taxonomic information 

about the cell type as described above. Other entities which interact with or 

within the cell must be instantiated as a FunctionalComponent which refer to 

suitable ComponentDefinition class instances. Intracellular interactions must 

be captured using instance of the Interaction class, where the cell type 

FunctionalComponent must be included as a Participant with a role of ‘physical 

compartment’ from the Synthetic Biology Ontology (SBO:0000290). 

• It is recommended that entities which are contained within the cell only be 

specified using an Interaction instance with a type of ‘containment’ 

(SBO:0000469). The cell type must be included as a Participant with a role of 

‘physical compartment’, and the entity must be included as a Participant with a 

role of ‘contained’ (SBO:0000064). 

 

For acceptance by the SBOL community, the proposal was first submitted as an SBOL 

Enhancement Proposal (SEP) iii  and was subsequently voted to be accepted by 

members of the SBOL community. The above proposal was accepted as although it 

was the more complex approach, it allowed more context to be added to interactions 

involving cells. Additionally, this approach also distinguished between the natural cell 

strain (represented by a ComponentDefinition), and the cells implemented in a system 

(represented by a FunctionalComponent within a ModuleDefinition), which may have 

been modified, such as by transformation with a plasmid. This was not possible with 

cell representation A, where all information about the cell was contained within one 

ModuleDefinition. 

 

Representing multi-microbial systems using SBOL 

The following best practices should be followed when capturing information about 

multi-microbial systems in SBOL: 

• The overall multi-microbial system must be represented by a ModuleDefinition 

instance. This ModuleDefinition must have a role of ‘functional compartment’ 

from the Synthetic Biology Ontology (SBO:0000289). 

 
iii https://github.com/SynBioDex/SEPs/blob/master/sep_030.md 
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• Each cell type must be instantiated using the Module class, which must be 

defined by the ModuleDefinition representing that cell system, and using the 

FunctionalComponent class, which must be defined by the 

ComponentDefinition which captures the taxonomic information for that cell. 

The Module instance must include a MapsTo instance which has a refinement 

property of ‘merge’. The MapsTo local property must refer to the 

FunctionalComponent which represents the cell type in the multi-microbial 

system ModuleDefinition, and the remote property must refer to the 

FunctionalComponent instance which represents the same cell type in the cell 

system ModuleDefinition. 

• Non-cell entities should be included as FunctionalComponent instances, and a 

MapsTo instance with a refinement property of ‘merge’ must be used to link the 

FunctionalComponent in the multi-microbial system ModuleDefinition (local) 

and the FunctionalComponent representing the same entity in the cell system 

ModuleDefinition (remote). 

• It is recommended that any entities which are important for intercellular 

interactions are included in the multi-microbial system ModuleDefinition using 

the method described above. 
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Figure 3.13. Example of Capturing a Multi-Microbial System using the 

Accepted Best Practices: This figure illustrates how a multi-microbial system can 

be captured using the accepted best practices. (A) Schematic of a simple multi-

microbial system. This example system is composed of two cell populations: cell 1 

and cell 2. Cell 1 produces molecule A, and cell 2 produces molecule B in the 

presence of molecule A. (B) UML diagram depicting how the example system in (A) 

can be represented using SBOL. Each cell type is captured by both a 

ComponentDefinition (CD) and ModuleDefinition (MD). The CD represents the 

physical cell and stores information about taxonomy, and the MD is used to convey 

information about the cell’s functionality. For cell 1, an Interaction describes the 

production of molecule A. For cell 2, the Interaction describes how molecule B is 

produced when in the presence of a stimulant (molecule A). The overall multi-

microbial system is captured using an MD instance, with all relevant instances (cell 

1, cell 2, molecule A, and molecule B) represented by FunctionalComponents. The 

Module classes are used to separate the individual entities into the cell types 

present. 
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These best practices most closely align to multi-microbial representation C described 

above. This approach for capturing information about multi-microbial systems was 

accepted by the SBOL community as, although it is more complex than multi-microbial 

representation A and B, it allows for intercellular interactions to be highlighted explicitly 

without duplicating interactions already specified in the cell system designs. 

Additionally, the use of MapsTo classes helped remove any ambiguity as to which 

entity pools are shared between cell types. To illustrate the accepted best practices, a 

simple example multi-microbial system is depicted in Figure 3.13.    
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 Bio-Automation for Development of Modular Systems 

Source code for the Python library described in this section can be found at github.com/intbio-

ncl/BiomationScripterLib. Full documentation can be found at biomationscripterlib.readthedocs.io. Note 

that some of the text and images created for this thesis were duplicated for the documentation. The 

version of BiomationScripter described here is v0.2.0. 

 

BiomationScripter was developed in collaboration with David Markham, Dr Jasmine Bird, and Dr David 

James Skelton. The concept for the library was my own, and more than 98% of the code committed was 

written by me. However, of particular note is the format of the Excel file for labware, which was designed 

by David Markham, along with the import functionality. Unless noted otherwise, all BMS protocols and 

templates presented and used throughout this thesis were largely developed and implemented by me, 

although some contain modifications by David Markham. Full attributions for the code can be found at 

github.com/intbio-ncl/BiomationScripterLib/graphs/contributors. 

 Background and rationale 

Biological workflow automation by robotic systems has many advantages. One such 

advantage is the potential to increase reproducibility of experiments, which is well 

known to be essential for any scientific or engineering field[216], [219].  Bio-automation 

can help increase reproducibility by reducing human error, preventing deviations from 

protocols, and allowing better tracking of how a protocol was actually executed. 

Laboratory automation can also help free researchers from performing repetitive basic 

and tedious activities[220], in addition to allowing better exploration of large design 

spaces which may be otherwise unfeasible or time-consuming when performed 

manually[221]. 

 

The Sensynova Framework for modular and multi-microbial biosensor development 

has the potential to leverage bio-automation and make use of the advantages afforded 

by automating biological workflows. Characterising biosensor modules using 

automation could allow for better reproduction of results as other researchers can more 

easily repeat experiments exactly. Lab automation could also enable rapid testing of 

how different modules and biosensors respond to a variety of factors, especially in 

conjunction with a multifactorial Design of Experiments (DoE) approach[222]. Aside from 

characterisation, automation of DNA assembly workflows could also allow for easier 

and faster construction of module variants[59], [223], [224]. 

 

https://github.com/intbio-ncl/BiomationScripterLib
https://github.com/intbio-ncl/BiomationScripterLib
https://biomationscripterlib.readthedocs.io/
https://github.com/intbio-ncl/BiomationScripterLib/graphs/contributors
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Whilst laboratory automation has seen continued increases in uptake, there are still 

significant barriers to entry, especially within academia[225]. One such barrier is that of 

cost, as many pieces of automation equipment are expensive to obtain and 

maintain[226]. Another barrier is the time required to learn how to program and operate 

various equipment, each of which tends to use proprietary software which may be 

vastly different from software packaged with other equipment of the same type[216], [227]–

[229]. Even once the specifics of an automation equipment are understood, the 

conversion of manual protocols to automated workflows can be slow and tedious. 

Additionally, it can be difficult to re-use automation protocols for common workflows 

(such as DNA assembly), even when developed for the same equipment, as these 

protocols tend to be developed in such a way that they are highly specific[230]–[232]. 

 

There have been considerable efforts to reduce these barriers to laboratory automation. 

For example, companies such as Synthace offer ‘cloud laboratories’, where 

researchers can outsource their automation needs which can be cheaper and simpler 

than purchasing, maintaining, and learning the intricacies of their own automation 

equipment[233], [234]. These advantages are apparent when bio-automation is only 

intended to be used for a limited number of workflows or experiments, but costs can 

add up when considering automation as a mainstay of molecular and synthetic 

biology[235], [236]. Other efforts to increase accessibility to, and enhance the utility of, bio-

automation have centred around the idea of universal programming, where many 

different automation equipment can be programmed using a universal interface, 

eliminating the need for users to learn a plethora of software[237]–[239]. These efforts 

range from open-source platforms which provide a novel high-level programming 

language from which biologists can describe an experiment and generate an 

appropriate protocol[230], [240], to proprietary platforms reliant on point-and-click 

interfaces such as Antha (antha-lang.com). Whilst these platforms have shown use, 

they also have significant downsides: most platforms only support a very limited 

number of equipment, many open-source projects have not been updated in many 

years, and the proprietary efforts tend to be tied towards a specific ‘cloud laboratory’, 

preventing easy usage by researchers with access to their own equipment[232]. 

Additionally, a focus on creating simple interfaces for generating automation scripts 

has often resulted in a lack of flexibility, constricting users to only applications 

considered by the developers[241]. There have been projects which focused on 

providing users with the ability to program equipment in common programming 



107 
 

languages, such as Python, which give the potential for high degrees of flexibility. 

However, oftentimes these types of projects, such as PyHamilton[242], focus on specific 

automation equipment, and tend to require a good understanding of programming to 

utilise. 

 

Automation equipment tends to be costly to obtain. One notable exception is the OT2, 

an open-source liquid handler developed by Opentrons (New York, USA). This robot 

is available at a fraction of the cost of other automated liquid handling robots and can 

be programmed directly in Python. The open-source nature of the machine also makes 

it a good candidate for ‘hacking’, where the machine can be modified towards specific 

applications[223], [243]–[245]. There are, however, drawbacks associated with this liquid 

handler, such as reduced accuracy when compared to the higher-end liquid handlers, 

as well as a lack of built-in features like liquid detection and 96-channel pipetting. 

These limitations mean that many larger companies and biofoundries still rely on more 

expensive equipment, such as the Tecan Evo (Tecan, Männedorf, Switzerland), 

Hamilton STAR (Hamilton, Bonaduz, Switzerland), or Labcyte Echo 525 (Beckman 

Coultler, California, USA). 

 BiomationScripter: Overview 

Presented here is a Python library, BiomationScripter, which was developed to help 

leverage the potential of automation in synthetic biology and address some limitations 

surrounding its uptake. To this end, the focus of BiomationScripter (BMS) was to help 

make the protocol development aspect of automating synthetic biology workflows 

easier and allow for better sharing and re-use of protocols. The BMS library was also 

used to develop tooling with the aim of introducing automation to the characterisation 

of modular and multi-microbial biosensors developed according to the Sensynova 

framework and provide the potential for automated construction of module variants. 

 

The BMS library focused on protocol generation for two liquid handlers: OT2 and the 

Echo 525. The OT2 was selected due to its increasing ubiquity in academic research 

labs, and its relatively low barriers to access when compared to other liquid handlers. 

The Echo 525 provides an almost polar-opposite option as a high-end acoustic based 

liquid handler, capable of transferring liquid in the nanolitre range. The Echo is often 

used in synthetic biology for DNA assembly as its ability to handle low volumes allows 

for miniaturisation of reactions, resulting in the ability to assemble a vast amount of 
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genetic variants in parallel, as well as reducing the cost per reaction through reduced 

reagent usage[246]–[248]. Together, the OT2 and Echo 525 cover a wide range of use 

cases within synthetic biology, and the Sensynova Framework specifically. The 

decision was made to develop a programming library for bioautomation as scripting 

can provide users with a large amount of flexibility when developing automation 

protocols. The language of choice for BMS was Python, as this is a relatively 

lightweight language suitable for scripting of this nature and is already ubiquitously 

used within synthetic and computational biology[249]. 

 

The BMS library is split into three packages: one which contains a set of generic tools 

for bio-automation, one which provides specific tools for the OT2 liquid handler, and 

one which is specific towards the Echo 525 liquid handler. In addition to general tools 

included within the library, BMS enables the use of protocol ‘Templates’, which can be 

thought of as generalised implementations of a protocol which is largely performed in 

the same way each time, with variations between runs. For example, preparation of 

PCR reactions generally follows the same steps (addition of a DNA template, primers, 

polymerase, dNTPs, buffer, and water), however the exact DNA, primers, polymerase, 

and buffers used may vary, along with other user-defined parameters such as the 

number of reactions prepared, the reaction repeats, and the final volume of the 

reactions. Within BMS, protocol Templates are implemented as Python classes, and 

contain a `run` method which includes all of the necessary code to create the liquid 

handing steps based on specific user inputs. Each Template has required inputs; 

however, a variety of optional inputs allows advanced users more flexibility. 

 

There are examples of previous work which have demonstrated the applicability of 

approaches such as the Templates described above, where automation protocols are 

generated with minimal user input. However, these previous efforts focused only on 

specific applications, and provided no support for creation of different, or even similar, 

protocols[223], [250]. In other cases, alternative methods of developing a range of 

automation protocols are provided, but with no support for simple generation of 

common protocols[230], [239], [242]. Here, the BMS Templates were developed and 

implemented in such a way that users with an intermediate knowledge of Python 

programming can develop their own custom Templates and make them accessible for 

use by others. Therefore, the BMS library and Templates not only provides tools for 
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rapid generation of automation protocols for synthetic biology workflows but also 

presents a basis for future expansion and use across a range of applications. 

 BMS equipment-agnostic tools: Labware 

The first BMS package contains a set of equipment-agnostic tools which are applicable 

to protocol generation for a wide range of automation equipment. For liquid handling 

protocols, the presence of labware such as multi-well plates or tube racks is universal. 

These labware contain liquids, such as reagents, buffers, or cells. For example, DNA 

assembly workflows generally require DNA parts, plasmid backbones, water, and 

reagents such as enzymes and ligases. In this example, the source material (that is 

the DNA parts, plasmids, water, and reagents) could be stored in tubes held by a tube 

rack. In this case, the tube rack is the labware. The protocol would also require 

destination labware for assembly reactions to be prepared, such as a multi-well plate. 

 

Within BMS, labware are represented using the `Labware_Layout` class, which acts 

as a labware ‘blueprint’. The `Labware_Layout` class stores basic information about 

physical attributes of the labware (the labware type and number of rows and columns), 

along with a labware name. In addition to physical properties, `Labware_Layout` 

instances can track a labware’s state. Wells (or slots) available for use can be specified, 

along with empty wells. Well content, in terms of liquid, volume, and optionally a liquid 

class (i.e. the properties of the liquid), can also be specified using the 

`Labware_Content` class. Further context for each well’s content can be given the in 

 

Figure 3.14. `Labware_Layout` and `Labware_Content` Classes 

Architecture of labware representation in BMS. (A) The `Labware_Layout` class captures 
information about labware to be used in automation protocols. (B) Information about 
content contained within labware is captured using the `Labware_Content` class. (C) 
Illustration of labware representation in BMS. 
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the form of a well label. For example, wells containing DNA assembly reactions may 

be labelled as such. 
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Figure 3.15. `Labware_Layout` Usage: Example usage of the `Labware_Layout` class 

(A) Content in the `Labware_Layout` class can be displayed to OUT using `print` method. (B) A list of `Labware_Content` objects 
contained within the labware can be returned using the `get_content` method. (C) Liquids within a specific well can be retrieved 
using `get_liquids_in_well`. (D) Wells which contain a specific liquid can be retrieved using `get_wells_containing_liquid`. (E) The 
volume of a specific liquid in a well can be determined using `get_volume_of_liquid_in_well`. (F) The volume of a liquid in a well can 
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be changed using `update_volume_in_well`. (G) Wells can be labelled using the `add_well_label` method. (H) Wells can be retrieved 
via their label with `get_well_location_by_label`. (I) The content of a well can also be retrieved using a label with 
`get_well_content_by_label`. (J) Wells which are occupied can be determined using the `get_occupied_wells` method. (K) All content 
in a specific well can be removed `clear_content_from_well`. 
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The `Labware_Layout` class provides a variety of methods for easy retrieval and 

modification of the labware’s state. Figure 3.15 shows examples for some of the key 

`Labware_Layout` methods. Other methods, such as `get_total_volume_of_liquid`, 

which returns the total amount of a certain liquid within a labware, also exist. The 

`Labware_Layout` methods were developed to help users easily query and modify the 

state of specific labware. 

 

In a number of cases, labware will exist beyond the scope of a single protocol or 

workflow. An example of this is with DNA storage plates, where standard DNA parts 

and plasmids are stored within a plate which is re-used in many protocols. In these 

cases, it is necessary to have the option of long-term storage of a `Labware_Layout` 

object. Within BMS, this takes the form of a standard format Excel file which can be 

imported to create a `Labware_Layout` object. The Excel file contains two sheets. The 

first sheet is named ‘Plate Summary’ and contains the name and type of the labware, 

along with the total number of wells and number of rows and columns. There are also 

options to provide maximum and minimum well volumes and a short description of the 

labware. The second sheet, ‘Well lookup’, is where labware content is stored. It should 

be noted that the mapping of the Excel sheet to a `Labware_Layout` class is not exact. 

The only information imported to BMS are the labware’s name and type, the number 

 

Figure 3.16. Example of a Standard Format Labware File 

Example of an Excel file for capturing information about a piece of labware. (A) Metadata 
relating to the labware. (B) Content of the labware. 
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of rows and columns, and the name, volume, and liquid class of any content. The 

decision was made to exclude other information from import as it is generally not 

needed in order to run a protocol and creating a full data model for all protocol 

metadata is outside the scope of BMS. The ability to import a labware layout from a 

file has the advantage of not only providing a method of using labware which exists 

outside the lifetime of a single protocol, but also allows users with less programming 

experience to more easily define their labware. 

 BMS equipment-agnostic tools: Common features 

There tend to be similar requirements for many liquid handling protocols, and the 

purpose of the generic BMS functions are to aid implementing these requirements 

without having to re-develop methods for achieving them. For example, many protocols 

will require source material to be provided as aliquots, as the volume of liquid required 

is too large for compatible labware. In these cases, BMS can automatically calculate 

the number of aliquots required and split the required volume, considering dead 

volumes (Figure 3.17 (A)). The number of aliquots is determined via Equation 

(4.1)a.i.1.a.i. BMS can also calculate the total number of a specific labware needed for 

a protocol based on the number of wells or slots required (Figure 3.17 (B)).  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑖𝑞𝑢𝑜𝑡𝑠 = ⌈
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑜𝑢𝑟𝑐𝑒 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝑙𝑖𝑞𝑢𝑜𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 − 𝐷𝑒𝑎𝑑 𝑉𝑜𝑙𝑢𝑚𝑒
⌉ 

i.  

 

Another common function provided by BMS is automatic generation of transfer events 

for individual liquids (Figure 3.17 C). This function produces lists which specify the 

transfer volumes and destination location of a named liquid. This information can then 

be used by the more specific functions in OTProto and EchoProto to generate liquid 

handling instructions for the desired automation equipment. 

 

Mastermixes are commonly used in molecular and synthetic biology to assist with the 

preparation of reactions or experiments which share a proportion of their composition, 

and perhaps differ in only a few components. In these cases, mastermixes can be 

prepared which contain shared components, and which can be divided across different  

reactions or experiments. This gives several advantages, including consistency in 

preparation, as slight pipetting inaccuracies when adding the individual components 

will be the same across all reactions, and saving time during setup as individual 
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components can be added to the mastermix in one step, rather than being added 

separately to all experiments. Additionally, preparing mastermixes can help prevent 

liquids being transferred at low volumes, which can lead to inaccuracies depending on 

the equipment used. These advantages are true of both manual and automated setup. 

 

BMS provides a function to generate mastermixes based on replicates found in 

destination labware. Users can specify the maximum volume of mastermix aliquots, 

the number of extra reactions mastermixes should be prepared for (which can help 

 

Figure 3.17. General Purpose BMS Functions 

Illustrations depicting some of the BMS functions. (A) `Aliquot_Calculator` is used to 
determine source material aliquots are required by an automation protocol, based on the 
amount of volume required. (B) The required number of `Labware_Layout` objects for an 
automation protocol can be generated based on a template layout object, the number of 
available wells per labware, and the number of wells required. (C) Information regarding 
transfer actions for a specific liquid into a destination labware can be automatically 
generated using `Get_Transfers_Required`. The destination labware, well, and transfer 
volume are generated, which can be used by other functions. (D) Mastermixes can be 
automatically generated using `Mastermixes_By_Replicates`. Within a list of destination 
labware, wells with identical proportions of the same source materials are grouped, and 
mastermixes for those wells are generated and added to a `Labware_Layout` object. The 
destination labware is then updated to indicate which wells should be supplied by which 
mastermixes. 
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account for dead volumes and under-pipetting accuracies), and a minimum transfer 

volume. The function then automatically identifies identical reactions or experiments 

within the destination labware and populates a mastermix labware layout object with 

mastermixes containing the required components (Figure 3.17 D). The destination 

layout objects are also updated such that the contents of the wells now refer to the 

newly created mastermixes, rather than individual components. The mastermix layouts 

contain the individual components as content, and the mastermix name is stored as 

the label for the well or slot it occupies. 

 

The functions and classes mentioned thus far cannot be used to directly generate liquid 

handling instructions. Instead, there are two separate modules within BMS which aim 

to assist with the generation of instructions for the OT2 liquid handling robot, and the 

Echo 525 acoustic-based liquid hander. These are described in the following sub-

sections. 

 BiomationScripter: OTProto 

The OT2 robot includes two pipette slots which can be occupied by a range of different 

pipettes. The pipettes aspirate and dispense liquids via a piston-based mechanism, 

which is controlled by a stepper motor. Opentrons provides a Python API to control 

OT2 liquid handlers, as well as simulating protocols prior to execution by the robot. 

The native Opentrons API mainly focuses on providing an interface for controlling the 

core OT2 functionalities, such as aspirating, dispensing, mixing, and controlling the 

hardware modules. There is, however, a noticeable lack of so-called wrapper functions, 

which can be used to provide more complex and intelligent tools. Wrapper functions 

can be used to handle the common logic and calculations required of many liquid 

handling protocols, allowing users to focus on protocol-specific features, and reducing 

the requirement for repeated development of code with identical functionalities. By 

providing these wrapper functions, OTProto allows users to develop protocols with 

more complex logic without needing to understand the underlying Opentrons API in 

great depth, and also helps disincentivise hard-coding of run-specific information in 

such a way which makes modification of a protocol by other users difficult. This is 

because the wrapper functions can easily cope with changing parameters which can 

differ between runs (such as labware types, sample numbers, and number of tip boxes 

required) without needing to re-write large sections of the code. 
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 When using the native Opentrons API, labware is split into two types: default labware 

which is included within the Opentrons labware library, and custom labware which is 

not pre-defined. The Opentrons API uses a `Labware` class to inform the robot about 

the specifics of labware loaded to the deck and are instantiated using a specific 

labware API name. The API name provides a reference to an entry in the default 

labware library, or to the definition file for the desired custom labware. The loading of 

custom labware when using the native API can differ depending on how the protocol 

will be executed and/or simulated. Additionally, in some cases the way in which default 

and custom labware are loaded may also differ These differences can cause extra 

complexities during development of a protocol, may require modification of a protocol 

between simulation and execution, and can reduce the flexibility of a protocol in terms 

of easily replacing labware from run-to-run. OTProto provides the `load_labware` 

function to handle these issues, which allows users to load labware in the same way 

each time. 

 

OTProto also has the `calculate_and_load_labware` function, which will determine the 

amount of `labware` objects of a specified type required based on the number of wells 

needed by the protocol. There are also the `get_labware_format` and 

`get_labware_well_capacity` functions which allow users to get more easily (i) the 

number of rows and columns of a labware and (ii) the well capacity of a labware. These 

 

Figure 3.18. Labware Representations within OTProto 

Relationship between labware in BMS, the native Opentrons API, and the physical world. 
The `Labware_Layout` class in BMS can be used to capture the state of a labware in 
terms of current content. The Labware class in the native Opentrons API represents the 
physical attributes of the labware and is used to inform OT2 robots as to the XYZ co-
ordinates of individual wells and other positions in the physical world. 



118 
 

functions allow for the development of more flexible protocols, where information about 

the labware (such as how much liquid can be stored in a labware) do not need to be 

hard-coded. 

 

The representation of labware by the native API differs to BMS, which uses the 

`Labware_Layout` class. However, within the OTProto module, these two classes can 

act in synergy. The native Opentrons `Labware` class captures physical information 

required by the OT2 robot to convert well positions into XYZ co-ordinates, whereas the 

BMS `Labware_Layout` class can be used to capture the state of the labware, storing 

information about the labware’s content or intended content (Figure 3.18). Using the 

OTProto `load_labware_from_layout` function, it is possible to create Opentrons 

labware objects using a BMS layout object. The main requirement here is that the 

`Labware_Layout`’s type should be an Opentrons labware API name. 
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In terms of generating liquid handling commands, OTProto includes two main functions: 

`transfer_liquids` and `dispense_from_aliquots`. The `transfer_liquids` function 

generates OT2 commands from a list of transfer volumes (specified in μL), a list of 

source locations, and a list of destination locations, such that each index within these 

lists describes a single transfer event. Unlike the transfer functions provided in the 

native API, the OTProto function will automatically select the most appropriate pipette 

to use for each transfer based on those which are loaded. There are also a range of 

optional arguments which can be supplied to modify the way in which liquid is 

transferred to help optimise the transfer events for specific protocols. These are all 

 

Figure 3.19. Opentrons Liquid Transfer Behaviour 

Overview of the OT2 robot transferring low volumes of liquid. (A) Depiction of liquid 
droplets remaining on the pipette tip after dispensing and blow out when transferring low 
volumes of liquid into an empty well. (B) Method employed by BMS to ensure droplets are 
removed from the tip. After dispensing, the tip moves to touch the bottom of the well which 
causes the droplet to be removed. (C) Options for when blow out should occur. If blow out 
occurs after the tip position has reset to above the well, then a droplet can still form if liquid 
is already in the well. This is because a negative pressure differential can cause liquid to 
be slightly sucked up into the tip. If the blow out occurs whilst the tip is at the bottom of the 
well, it is less likely that liquid will remain in the tip. 
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possible to perform using just the native API, however OTProto wraps them together 

for easier implementation. The `new_tip` argument allows users to specify whether or 

not a new tip should be used for each transfer event specified. Beyond this, there are 

arguments to define mixing events (repeated aspirate and dispense actions) for the 

source and/or destination locations, and arguments to modify the speed at which liquid 

is aspirated, dispensed, or mixed. The ability to control these speeds can be important 

for liquids which are either significantly more or less viscous than water. There is also 

the option to define a ‘blow out’ action, which pushes extra air through the pipette tip 

to ensure all liquid is dispensed. This blow out can be performed into the source 

location, destination location, or the integrated trash. During initial testing of liquid 

transfer on the Opentrons, it was found that even with blow out actions, liquid droplets 

can still remain on the end of the pipette tip, particularly when dispensing low volumes 

of liquid into empty labware (Figure 3.19 A). To help tackle this issue, an option was 

added to the `transfer_liquids` function to move the pipette to the bottom of the well 

after dispensing. This allows any droplet on the pipette tip to be removed (Figure 3.19 

B). In the case where a well in occupied, moving the tip to the bottom of the well can 

cause liquid to remain within the bottom of the tip. To prevent this, the blow out action 

is performed before removing the tip from the liquid, to ensure all liquid is expelled 

(Figure 3.19 C). These actions are optional and thus can be modified by users to 

ensure accurate pipetting based on the specific application. 

 

The `dispense_from_aliquots` function acts similarly to `transfer_liquids`, and all of the 

optional liquid handling parameter arguments are still valid. However, 

`dispense_from_aliquots` allows users to present a list of aliquots of a specific liquid 

instead of a list of source wells. Based on the volume of each aliquot and the transfer 

volumes specified, the function using volume tracking to select the source location to 

aspirate from for each transfer event, ensuring that aspiration from empty aliquots does 

not occur. This helps make protocols more flexible and makes the use of aliquots 

simpler for protocol developers. 
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Aside from these functions, OTProto includes a number of less complex functions, 

such as determining the number of tip boxes required for a protocol, getting the next 

empty slot on the OT2 deck, and associating tip boxes with pipettes. These functions 

are simpler to implement within a protocol than using the native API, requiring far less 

lines of code and less understanding of how the API works. 

 BiomationScripter: EchoProto 

The Echo 525 is a liquid handler which is capable of transferring low volumes of liquid 

in the range of nanolitres. The robot functions via the use of acoustic sound waves to 

eject droplets of liquid, which are 25 nL in volume, from an acoustically validated 

source plate into wells of a destination plate, which is held inverted above the source 

plate (Figure 3.20). This has the advantage of allowing molecule biology reactions to 

be miniaturised which reduces the overall cost per reaction and has even been shown 

to increase efficiency in some cases. There is also the advantage of the transfers being 

pipette-less, which means that running costs can be reduced as tips do not need to be 

purchased. However, the source plates are very specific and must have been validated 

acoustically to ensure that the droplets generated by the acoustic waves are as close 

to 25 nL as possible. 

 

The generation of Echo protocols can be somewhat tedious, especially for large or 

complex experiments. This is because main method of creating the protocol is to use 

one of the Echo’s proprietary software, which are point-and-click interfaces. The other 

method of creating an Echo protocol is the use of ‘picklists’, which are CSV files where 

 

Figure 3.20. Echo 525 Liquid Transfer Mechanism 

Schematic showing how liquid is transferred by the Echo 525. The acoustic transducer 
positions below the source well and emits an acoustic wave. The wave causes droplets to 
be expelled from the top of the liquid in the source well into the well of an inverted 
destination plate. The droplets formed are 25 nL in volume. Multiple droplets can be 
expelled to reach the required transfer volume. 
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each line defines a transfer event. These two methods can be somewhat slow when 

writing large protocols and are not particularly easy to quickly modify to adjust aspects 

of an experiment such as sample types, number of reactions, or reaction proportions. 

EchoProto aims to solve these issues by providing a Python interface for the creation 

of the Echo picklists, allowing for protocols to be scripted, and thus enable a level of 

automation in protocol development. 

 

Implementation of the EchoProto module in BMS differs from OTProto; OTProto 

extends a pre-existing API and allows for direct control of the bio-automation robot, 

whereas EchoProto has no pre-existing, open-source API to be based on. Instead, 

EchoProto provides a method of generating CSV picklist files using Python scripts, 

which are then converted into liquid handling instructions by the Echo’s proprietary 

software. 

The architecture of EchoProto revolves around three core classes: 

`EchoProto.Protocol`, `EchoProto.TransferList`, and `EchoProto.Action` (Figure 3.21). 

The `Protocol` class holds all information for the entire protocol, including any 

metadata. The `TransferList` class is used to capture all transfer events from a single 

 

Figure 3.21. EchoProto Architecture 

Architecture of the EchoProto module. All information for an EchoProto protocol is 
captured by the `Protocol` class. Aside from metadata such as the protocol name, the 
available source plates are stored using the `Labware_Layout` class from BMS. 
Destination plates containing the desired content after the protocol has completed are also 
captured using the `Labware_Layout` class. Information regarding transfer events from 
each source plate are captured using the `TransferList` class, and information about the 
transfers themselves is captured using the `Action` class. 
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source plate. The individual transfer actions themselves are captured by the `Action` 

class. It should be noted that transfer actions are split by source plate due to a quirk of 

the Echo’s proprietary software; when generating liquid handling instructions from CSV 

picklist files, only one type of source plate can be specified at a time. Like OTProto, 

EchoProto also makes use of BMS’s `Labware_Layout` class. Here, source plates are 

defined using the layout class, where the type must be one of the three source plate 

types accepted by BMS (384PP, 384LDV, or 6Res), and the content is populated with 

the available reagents. These source `Labware_Layout` objects can be defined either 

within the code or imported from a Labware Layout Excel file. The destination plates 

are defined in a similarly, however the content should specify the desired final state 

once all liquid has been transferred, and the range of plate types is much larger. Once 

defined, these `Labware_Layout` objects are stored within a `Protocol` object as either 

a source or destination plate. The `Generate_Actions` function can then be used to 

automatically generate the transfer events required to prepare the destination plates 

specified by the user. The function can handle aliquots of the same reagent across a 

source plate and will use volume tracking to ensure that once one source well is 

depleted, the next well containing the required reagent is used. In the case of a lack of 

source material, the user will be prompted, and informed which reagents are lacking, 

and told how much extra is required. The user will also be alerted to any wells which 

are below the working range for that plate and hence cannot be used for the protocol. 

Once the actions are generated, the `Write_Picklists` function is used to generate the 

CSV picklist files. The user has the option of where these files should be saved. There 

is also the option to group transfers from source plates of the same type into a single 

picklist, or to have a separate file for every plate. As mentioned previously, source 

plates of different types cannot be grouped into a single file. Once the files are 

generated, they can be imported to the Echo and the protocols can be performed. 

 OTProto Templates 

OTProto Templates for different types of protocols or experiments are created by 

extending the `OTProto_Template` superclass. This superclass contains a number of 

methods and attributes which help keep some level of standardisation across all 

OTProto Templates and helps users with developing the Templates. For example, the 

number and type of tips required throughout the protocol can be tracked using the 

`calculate_and_add_tips` method, and the appropriate number of tip boxes can be 

added and associated with the correct pipette using the `add_tip_boxes_to_pipettes` 
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method. Runtime prompts alerting users as to the number of tips and boxes can also 

be generated by using the `tip_rack_prompt` method. The general purpose BMS and 

OTProto tools described previously can be used here to help easily implement flexible 

code for generating liquid handling instructions. 

 

An OTProto template is created by making a `Template` class within a python file 

(named for the protocol), which extends the `OTProto_Template` superclass. The 

`__init__` method of this new class should be used to collect the user-defined 

information required by the protocol and store them as attributes for later use. The bulk 

of the code for generating the liquid handling instructions should be contained within a 

`run` method, which can then be called by users at runtime. To illustrate the process 

further, a simple example for mixing different coloured liquids on the OT2 is described 

below. Code for this example can be found in the documentation 

(biomationscripterlib.readthedocs.io/en/latest/example_code/OTProto/OTProto_Tem

plate-Superclass). and a flowchart describing the general steps taken by the Template 

(Figure 3.22) are also presented. 

 

The requirements for the example OTProto Template are as follows: (i) to take a list of 

coloured solutions, (ii) to prepare 2-colour mixtures in equal amounts in a destination 

labware specified by the user, (iii) to allows the user to define the final volume of the 

mixtures, and (iv) to allow the user to define if the mixtures are permutations or 

combinations. The Template class for this protocol is defined by extending the 

`OTProto_Template` superclass. The required arguments are then defined in the 

`__init__` argument and stored as attributes. Keyword arguments required by the 

superclass, namely the protocol’s name, metadata, starting tip positions, and custom 

labware directory location, are passed to the superclass. Next, a `run` method is 

defined. Within this run function, the 2-colour mixtures are defined and stored in a list. 

A `Labware_Layout` object is then created for the destination labware, and the colour 

mixtures are added to it as content. Next, a `Labware_Layout` object is defined for the 

source labware, and the number of aliquots of each colour are determined. These 

aliquots are then added to the source layout. Opentrons `Labware` object are then 

generated from these layout objects and loaded to the deck. The transfer events 

required are determined using `get_transfers_required`, and this information is used to 

determine how many tips and tip boxes are required, which are then loaded to the deck. 

Finally, the `dispense_from_aliquots` function is used to generate the liquid handling 
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commands. This Template can then be defined by a user, and a liquid handling 

protocol for the OT2 will be generated based on the arguments supplied, with minimal 

effort from the user. 

 

OTProto has several Templates which have been developed and tested. These include 

a heat shock transformation Template, a Template for spot plating cells onto an agar 

plate, and a Template which prepares a microplate for calibrating a plate reader 

according to the iGEM standardisation procedure[63]. For the heat shock transformation 

template, the general functionality involves firstly dispensing competent cells into the 

transformation labware, which is located on either the Opentrons temperature module 

or the Opentrons thermocycler module. The DNA to transform with is then added to 

the cells and mixing occurs by pipetting up and down. The transformations then 

undergo the heat shock step, are cooled down to 4oC, and the user is prompted to 

supply the transformation media to the OT2 deck. The media is then dispensed into 

the transformation plate, which can then be placed into a shaking incubator for the 

growth stage of the transformation. Users are able to modify the transformation 

protocol by specifying parameters such as the labware types to use, the volume of 

competent cells, DNA, and media per transformation, the number of replicates for each 

transformation, the heat shock temperature and time, and whether or not the 

competent cells source labware should be placed onto a temperature module to keep 

them cool. By default, the transformation labware is kept at 4oC until the heat shock 

step. 

 

 

Figure 3.22. OTProto Template Example Flowchart 

General steps performed by the colour mixing OTProto Template to generate liquid 
handling instructions. 
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The spot plating Template is intended to add cells to an agar plate by spotting small 

volumes of liquid onto the plate. This can be used to automate the plating stage of 

transformations. The Template also includes a dilution stage, where the cells can be 

diluted to different concentrations before plating. This can be useful to help ensure that 

single colonies grow on the agar plate, rather than a circular lawn. Initial testing of this 

Template showed that when small volumes (< 5 μL) of cells are used to create spots, 

the liquid may remain on the pipette tip as a droplet, similar to the observation 

presented in Figure 3.19. This droplet then has the potential to fall off as the pipette 

moves across the deck, risking cross-contamination. These small volumes are very 

common when using the spot plating Template, as larger volumes tend to create spots 

with large diameters on the plate and can cause multiple drops to merge together. To 

prevent this, the ̀ move_after_dispense` argument of the OTProto transfer function was 

used to move the pipette down and slightly into the agar after dispensing, ensuring that 

droplet is always removed (Figure 3.23). This does have the disadvantage of 

occasionally piercing the agar slightly, however the depth to which it pierces does not 

appear to cause any negative effects and is required to ensure spotting is routinely 

successful. Users are able to customise specific instances of the spot plating Template 

by specifying parameters such as the cell dilutions, the spotting volumes (which can 

be a list to spots of many sizes for each source cell culture), the repeats per source 

cell culture, and the types of labware used. Users can also specify whether the protocol 

should be paused after the dilution step and before the spotting step, allowing the agar 

plates to only be supplied when needed and help prevent unnecessary contamination 

from being exposed to the environment. 

 

 

Figure 3.23. OTProto Spot Plating 

Spot plating methods employed by the OTProto spot plating Template. (A) After 
dispensing cells, the pipette tip moves down slightly into the agar plate below to ensure no 
droplets are left on the tip. (B) Serial dilutions of the cells are performed to ensure that 
single colonies are obtained. The highlighted circles show the results of increasing 
dilutions of a cello culture after incubation overnight at 37oC. 
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The iGEM standard plate reader calibration protocol can be used by researchers to 

convert arbitrary units acquired from a plate reader (fluorescence intensity and optical 

density) into absolute units[63]. The advantage of using absolute units rather than 

arbitrary (or relative) units is that data reported using such units can be compared 

directly, no matter what type of plate reader was used to collect the data. Data reported 

using arbitrary units cannot be used in this way as the values obtained differ between 

types of plate readers, and even plate readers of the same type. The calibration 

protocol works by calibrating arbitrary fluorescence values against a standard curve of 

a calibrant which has similar fluorescent properties to the fluorescent protein being 

measured. Similarly optical density, which is commonly used as a proxy for number of 

cells in a sample, can be calibrated against a standard curve of microspheres which 

have similar dimensions to the cells being measured. The plate reader calibration 

Template allows users to easily set up a calibration plate, which contains serial 

dilutions of the calibrants in a microplate. The calibration plate can then be measured 

using the described plate reader, and the data can be used to help convert units from 

experimental data collected using that plate reader into absolute units. The calibration 

Template accepts arguments from the user such as the calibrant types, stock 

concentrations, and initial concentration at the 1 in 1 position of the serial dilutions. The 

volume per well and number of repeats, as well as the solvents in which the calibrants 

should be diluted can also be specified. The types of labware to use at all stages are 

also customisable. Finally, the Template allows users full control over the liquid 

handling parameters, such as controlling the speed at which different liquids are 

aspirated and dispense, how the dilutions are mixed, and the option to enable actions 

like touching the tip to the sides of the wells after aspiration and dispensing, blowing 

out air from the tip after dispensing, and moving the tip to the bottom of the well after 

dispensing. Therefore, users can optimise their protocol and ensure the highest 

accuracy possible. For all of these options, the Template has default values, allowing 

users to ignore this extra complexity if desired. Results from using this Template are 

presented in section 2.6. 
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 EchoProto Templates 

Like OTProto, EchoProto enables the development of protocol Templates, but for the 

Echo liquid handler, and they extend the `EchoProto_Template` superclass. There are 

three methods associated with the EchoProto superclass to help developers create 

Templates: ̀ add_source_layout` and ̀ add_destination_layout` help to track the source 

and destination plates respectively, and `create_picklists` can be used to automatically 

generate the picklist files based on the source and destination layouts added. Again, 

like OTProto, developers should use the `__init__` method of their Template class to 

collect the required user inputs and store them as attributes, and a ̀ run` method should 

be added which contains the code for populating the labware layout objects and 

generating the picklists. An example EchoProto Template is shown in Figure 3.24 and 

can be found in the documentation 

(biomationscripterlib.readthedocs.io/en/latest/example_code/EchoProto/EchoProto-

EchoProto_Template-Superclass), which can be used to generate 2-colour mixtures, 

and functions similarly to the example shown for OTProto. 

 

Aside from the example Template mentioned above, two other Templates were 

developed for the Echo 525.The first Template can be used to help prepare PCR 

reactions. Users are able to supply a list of source plates as labware layout objects, 

which may either be generating using code or imported from a labware layout Excel 

file. The destination plate to use is supplied as an unpopulated labware layout object, 

allowing users to define the wells available for use (supporting re-use of partially used 

plates). PCR reactions are defined by the user as a list of tuples in the format `(DNA, 

Primer1, Primer2)`. Specifics for preparing the PCR reactions, such as the type of 

 

Figure 3.24. EchoProto Template Example Flowchart 

General steps performed by the colour mixing EchoProto Template to generate picklist 
files. 
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polymerase and buffer to use and the amount of DNA to add per reaction, can also be 

defined by the user, along with the number of reaction repeats. It is also possible to 

specify that a mastermix should be used to prepare the reactions, rather than adding 

each reagent (polymerase, buffer, and dNTPs) separately. When not using a 

mastermix, the proportions at which each reagent is added to the reactions is pre-

defined for a 5 μL reaction, which are then scaled based on the final reaction volume 

supplied. For advanced users, it is possible to modify the reagent proportions by 

changing the relevant attributes of the Template, before calling the `run` method to 

create the picklists. When the `run` method is called, the Template first checks that all 

of the source material required to prepare the PCR reactions are present in the source 

plates supplied. If not, the user is alerted to any issues and prompted on how to resolve 

the problem. Otherwise, the Template creates the number of destination plates 

required to contain the PCR reactions, and then populates the with the correct source 

material. From this, the transfer events and picklists can be generated as described 

previously. 

 

 

Figure 3.25. EchoProto PCR Template Results 

Results from testing the EchoProto loop assembly Template. (A) Workflow employed to 
test the assembly of level 1 constructs using the loop assembly Template. See section 
2.3.1 for full methods. Briefly, (B) DNA gel obtained by the Tapestation 4200 visualising 
PCR products generated by the Echo 525 using the EchoProto PCR Template. Red 
arrows show the approximate expected fragment sizes. 
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To test the PCR Template, eight PCR reactions were performed (Figure 3.25). The low 

number of reactions allowed downstream processes required to verify the PCR 

reactions to be performed manually (Figure 3.25 (A)). Performing these verification 

steps manually allowed for just the PCR Template to be validated, rather than 

simultaneously testing additional automation protocols in the same workflow. The PCR 

reactions aimed to amplify up genetic elements from various plasmids and add specific 

flanking regions (sub-section 2.3.1). These PCR reactions were verified via capillary 

electrophoresis using the TapeStation 4200, as shown in Figure 3.25 (B). For all PCR 

reactions, the major band was at roughly the expected size, suggesting that 

automation of the PCR reactions was successful. 

 

The other EchoProto Template developed was for the preparation of DNA assemblies 

using the Loop method. Loop DNA assembly is able to assemble DNA parts which 

adhere to the Phytobrick standard. The Template is able to assemble parts at any level 

(including the creation of level 0 parts), as users are able to specify which enzyme 

(typically BsaI or SapI) should be used. The user can also define the type of buffer to 

be used, the number of DNA assembly repeats to prepare, the final volume of each 

reaction, the initial concentration of the DNA parts (in fmol/μL), and the backbone to 

part ratios to use. The ratio of backbone to part can be supplied as a list, in which case 

each assembly will be prepared using all ratios. Assemblies are specified using the 

BMS `Assembly` class. An assembly object is instantiated by supplying a name for the 

assembly, the DNA backbone to use, and a list of DNA parts to add. The source plates 

and destination plate must also be supplied in the same way as described for the PCR 

template, and the picklists are generated in a similar way.
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Figure 3.26. EchoProto Loop Assembly Template Results 

Results from testing the EchoProto loop assembly Template. (A) Workflow employed to test the assembly of level 1 constructs 
using the loop assembly Template. See section 2.3.2 for full methods. Briefly, the Echo 525 was used to prepare the assembly 
reactions, which were then incubated in a thermocycler, transformed into E. coli cells, and grown in liquid culture. Plasmids 
were extracted and screened via confirmation digest with band visualisation by the Tapestation 4200 before confirming 
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assembly by Sanger sequencing. (B) Electrophogram showing DNA bands from the undigested backbone and the backbone 
digested with BsaI. The grey arrows show sample markers at 15 bp and 10000 bp. The red arrow shows the undigested 
backbone. The light blue arrows show the two linear fragments generated by digestion with BsaI, as expected (C) 
Electrophogram showing DNA bands from one of the undigested level 1 assemblies, and the digested sample. Grey arrows 
shown the markers, and the red arrow shows the undigested backbone. No linear fragments were observed, as expected. The 
inset shows a close up of the lower section of the electrophogram. (D) DNA gel obtained by the Tapestation, which was used 
to generate the electrophograms shown in (B) and (C). The red arrows shows the size for the assembly backbone, and the 
light blue arrows show sizes for the linear fragments after digestion. 



133 
 

To test the Loop assembly Template, four Level 1 expression units consisting of a 

promoter, RBS, CDS, and terminator were assembled into either pOdd1 or pOdd2 

backbones. To confirm the assemblies, first a confirmation digest with BsaI was 

performed. During the Level 1 assembly, the two BsaI sites in the plasmid backbones 

should be removed. Therefore, the assemblies should not be cut when incubated with 

BsaI, but the backbone should form two linear fragments. The confirmation digests 

were visualised via capillary electrophoresis performed by the Tapestation 4200. In 

addition to the BsaI digests, all assemblies were confirmed as correct via Sanger 

sequencing. Once again, all downstream processing was performed manually (Figure 

3.26 (A)). Figure 3.26 (B) shows results for one of the backbones, where the two linear 

fragments (light blue arrows) can be seen, along with some of the undigested 

backbone (red arrow) due to the digest reaction not reaching completion. Conversely, 

the assembly shown in Figure 3.26 (C) showed only one band: that of the undigested 

backbone. Only one of the four assemblies is shown here for clarity.  

 BMS Templates for testing Sensynova modules and 

biosensors 

Characterisation of modules and biosensors developed in accordance with the 

Sensynova framework stands to benefit from bio-automation. To aid in this endeavour, 

the BMS library was used to develop a characterisation template for Sensynova-

compatible biosensors and modules. This template aimed to allow for trivial generation 

of automation protocols to test a Sensynova module or a multi-microbial biosensor and 

allow for standardisation in testing procedures. The OT2 was selected for this task as 

it allowed for a much larger degree of flexibility compared to the Echo 525, allowing for 

more complex protocols to be performed in a walk-away manner. However, the DNA 

assembly EchoProto could have use within the Sensynova framework by allowing for 

automated assembly of module variants, although this was not explored here. 

 

The Sensynova OTProto Template was implemented similarly to the OTProto 

Templates already described. Additionally, a new Python class, `Cell_Type`, was 

defined for use in the Template. This cell type class requires instantiation by users, 

and requires information such as a name, antibiotic selection (if any), media for the 

cells to be cultured in, and the stock cell density of the culture supplied to the 

automation equipment. Cell types can be passed to the Sensynova Template as either 

positive controls, negative controls, or experimental samples, which allowed for easy 
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understanding of the intended role for each cell type in the experiment. Users can also 

define other global properties of the experiment, such as the different source materials 

(antibiotics, media, inducers, etc.) to be used during the experiment along with the 

volumes of aliquots and their stock concentrations, the types of labware to use for the 

source materials and the destination labware, and the final volume for each 

experimental. 

 

Aside from the initialisation and run methods seen previously with OTProto Templates, 

the Sensynova Template contains a number of additional methods which can be used 

to define specific experiments. The `add_sample` method is used to define individual 

experimental samples within the experiment. The types of cells to use, along with their 

volume per cell, are used to define an individual sample. Information such as the type 

of media and antibiotic to use are retrieved from the `Cell_Type` objects. Users are 

also required to specify how many repeats of each experimental sample should be 

added to the destination labware. If required, the type of inducer to use can also be 

given, along with the final concentration at which it should be added. For common 

types of characterisations associated with the Sensynova Framework, such as dose-

response or cross-talk experiments, methods are provided which act as wrapper 

functions to create the required samples, without requiring users to specify them 

individually. However, the `add_sample` method can still be used to provide flexibility 

in the types of experiments performed. There are also methods to add control samples, 

which simply adds the positive and negative cell types specified during Template 

creation. The controls can be added with or without inducers, and the number of 

repeats can also be specified independently. Finally, the `add_inducer_controls` 

method automatically creates controls for all samples containing an inducer, where the 

inducer is replaced with the solvent in which it is dissolved. 

 

Aside from defining the experimental samples, other methods can be used to modify 

the experimental setup. The use of mastermixes can be used to help decrease 

variation across a protocol by ensuring that the source material for replicates is pre-

mixed and then dispensed into the required wells, rather than adding the source 

material to each repeat well separately. Mastermixes can also be used to help increase 

pipetting accuracy by ensuring that liquid is not transferred at lower volumes. 

Mastermix generation uses the ‘mastermixes_by_replicates’ function described 

previously. 
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It is also possible to ensure samples with different concentrations of an inducer are 

added at the same volume. This can be particularly important when an inducer is 

dissolved in a solvent which may have an impact on cell behaviour, such as toxicity. 

The `normalise_inducer_volumes` method can be used to prepare uninform or non-

uniform serial dilutions of an inducer stock, allowing the same volume of inducer to be 

added to the samples, no matter the final concentration. The volume at which the 

inducer will be added to each sample is user-defined. 

 

As with all OTProto Templates, the ̀ run` method is used to generate the liquid handling 

instructions based on the specified information. Error checking is used throughout the 

Template to help prevent oversights or mistakes. This error checking goes beyond that 

which is included with the native Opentrons API, as BMS is able to track information 

about the experiment, rather than just checking for physical impossibilities (like trying 

to load two labware onto the same deck slot). For example, the Template will give 

warnings if a source material has been defined but never used, and errors are raised 

when cells with different antibiotic selection markers or media requirements are co-

cultured. 

 

The Template described here was used in chapters 5 and 6 to characterise Sensynova 

modules as well as modular and multi-microbial biosensors. Although the Sensynova 

Template was developed specifically for this purpose, it was found to have a large 

degree of flexibility and could be used to characterise different synthetic biology 

systems. An example of this can be seen in chapter 7, where a bioluminescent 

construct was characterised using the Sensynova Template. These use cases helped 

validate the applicability of the BMS library to a variety of applications within synthetic 

biology by providing a flexible language with which to develop automation protocols 

and Templates. 
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 Conclusions, Limitations, and Next Steps 

This chapter began by exploring how the concept of high-level modularity could aid in 

the development of synthetic biology systems. It was also identified that multi-microbial 

systems provided an ideal method for implementing modular designs. Further, a 

framework for developing genetic biosensors, termed the Sensynova framework, was 

presented which leveraged modularity and multi-microbial systems. Based on work 

described by the Newcastle iGEM 2017 team, this framework also builds upon 

previous research discussed in section 3.1[120], [194]–[196]. These previous efforts showed 

not only the potential for high-level modular synthetic biology, but also how multi-

microbial systems could be used in conjunction with such modular approaches. 

However, for reasons explained previously, research up until now tended to (i) focus 

on either very specific applications, (ii) require complex and custom equipment, or (iii) 

not provide guidelines for module development or implementation. By taking examples 

from other fields, the Sensynova framework differed from previous work by focusing 

on a wide-reaching but specific type of biological system, genetic biosensors, and 

providing standard guidelines for module development to ensure flexibility and re-

usability of modules between various projects. 

 

The Sensynova framework presented here extends the version documented by the 

Newcastle iGEM 2017 team in several ways. Discussed in this chapter was the 

development of resources for use within the Sensynova framework. Firstly, the 

Synthetic Biology Open Language (SBOL) was extended to allow for representation of 

cells and other chassis, and a set of best practices were proposed to allow for 

representation of multi-microbial systems. This extension provided a method of 

representing and sharing Sensynova biosensor designs using a standard format. 

Although methods for representing such systems existed before the work presented 

here[251], they did not have the uptake or reach of the SBOL data standard in the field 

of synthetic biology, as evidenced by the variety of software tools which are SBOL 

compatible[76], [252]–[261]. A limitation of the work provided here is that there currently do 

not exist tools which can leverage the newly-added capability to develop and share 

multi-microbial designs. Therefore, future work should focus on developing tooling 

towards this application, similar to the pre-existing tools for genetic designs[76], [262]. 

Without this tooling, the ability to capture multi-microbial systems in SBOL remains 

limited to data scientists and programmers familiar with the low-level SBOL libraries. 
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Nevertheless, the proposals discussed here, which were subsequently accepted by 

the SBOL community, allowed for a greater range of systems to be captured by SBOL 

than was previously possible. 

 

In addition to extension of the SBOL data model, a Python library, BiomationScripter 

(BMS) was developed to help automate characterisation of Sensynova modules and 

biosensors. As discussed previously, other research in the area of bio-automation 

protocol generation provided only an alternate method of programming protocols and 

did not have the capacity for BMS Template-like functionality[230], [239], or only developed 

a method of automatically generating protocols for very specific workflows[223], [250]. 

Thus, the BMS library is novel in combining these two approaches to not only develop 

a flexible method for intermediate Python programmers to script complex protocols, 

but to provide protocol Templates for rapidly and trivial generation of protocols for 

synthetic biology procedures and allow for further Template development by users. 

Next steps for development of BiomationScripter should focus on optimisation of the 

developed Templates in terms of liquid transfer parameters and reaction component 

proportions, where applicable. Such optimisation would be possible due to the in-built 

ability to easily pass optional parameters to BMS Templates. Such optimisation data 

would allow users to make informed choices when selecting these optional parameters, 

help increase successful implementation of automation workflows, and potentially aid 

with user uptake due to confidence that the developed Templates are high-quality. 
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 Design and Computational Modelling of a Modular 

and Multi-Microbial Biosensor 

In chapter 3, a modular and multi-microbial framework for assisting biosensor 

development and optimisation was described. In order to investigate this framework’s 

potential, a proof-of-concept biosensor was developed. This chapter details the initial 

design stage of the biosensor. The biosensor’s specification and modular designs are 

presented in section 4.2, along with a brief overview of how each module was built and 

implemented. To help inform experimental characterisation, computational modelling 

was first performed. Each module was modelled deterministically (section 4.3), and 

also modelled using an agent-based approach (section 4.4). The agent-based models 

were combined to simulate the biosensor co-culture. Section 4.5 gives an overview of 

the insights gained from the simulation results which were used to inform the 

experimental characterisation and validation presented in chapter 5. 

 Introduction 

 Computational modelling of biological systems 

Synthetic biology devices and systems can be simulated using computational models 

to assist with (i) the system’s design[76], (ii) experimentally testing the system[263], (iii) 

performing optimisation[89], [264], or (iv) a mixture of all three[265]. Modelling a system can 

allow for a more informed approach towards development by providing insight to a 

system’s behaviour and identifying fundamental issues with the design prior to 

expending time and resources building and testing the system. Simulating a system 

can also be used to investigate targets for optimisation by investigating aspects which 

have the most impact on the system’s desired function. 

 

Biological systems can be described using a series of stoichiometric equations, which 

detail interactions and reactions occurring within that system. Stoichiometric equations 

simply formalise entities which are involved in some reaction. There are a variety of 

approaches and algorithms which may be used to simulate models described by such 

stoichiometry[266]. One such approach, often referred to as deterministic simulation, in 

which ordinary differential equations (ODEs) are generated based on the 

stoichiometric reactions and their kinetic. The ODEs can be used to calculate, 

according to the law of mass action, how each entity varies over time as reactions 
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progress[267], [268]. Thus, by using the amount of each entity at the current time point as 

inputs for the ODEs, the state of the system can be determined after a set time period. 

 

Modelling processes such as transcription, translation, molecular binding, and 

enzymatic reactions allows deterministic models to predict how a system might react 

to the introduction or removal of specific biological or chemical entities (such as 

molecules used as inducers, or DNA encoding specific proteins)[269]. These models 

have also been employed to help inform on the design of genetic constructs used in 

synthetic biology systems by predicting how the behaviour of the system changes with 

increased or decreased transcription and translation (which can represent different 

strengths of promoters and ribosome binding sites), or other processes like protein 

degradation which can be modified via the genetic design, such as through the addition 

or removal of degradation tags[270]. 

 

Whilst a deterministic view of biological systems can be helpful, it is not able to 

meaningfully represent biological noise[271]. Random noise is a constant within biology, 

and in some cases is even integral to the correct functioning of a biological 

mechanism[272]. Therefore, it can be necessary to include this feature. An example of 

this is in gene expression, where the binding of transcription factors to regions within 

a promoter is subject to random chance[273], [274]. To account for random noise, 

stochastic models may be used rather than deterministic[272]. Stochastic models can 

be built in a similar way to deterministic models (by formalising the system via a series 

of reactions), however a different set of methods and algorithms are required for 

simulation[275]. These methods make use of statistical probability to introduce 

randomness into the model, and hence each run of the simulation will yield different 

results each time. Therefore, unlike deterministic models which will always give the 

same set of results when all inputs and parameters are the same, it is usually 

necessary to run stochastic simulations multiple times to determine the general pattern 

of behaviour for a given set of conditions. Additionally, stochastic simulations can be 

more computationally complex and expensive than deterministic models[276], [277]. The 

advantages of stochastic simulations come from the ability to account for noise, which 

also allows for them to more accurately represent systems containing entities present 

in low quantities. This is because when low numbers of an entity are present, 

randomness involved in certain processes becomes more important. For example, the 

binding of two molecules requires them to first come into contact with one another – a 
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situation which becomes more subject to random probability when the molecules are 

present in low numbers within a large space[278]. Therefore, despite their computational 

complexity, stochastic models are becoming more common within this field. 

 Systems Biology Markup Language (SBML) 

To help capture information required for modelling of a biological system, a standard 

data format termed SBML (Systems Biology Markup Language) can be used[279]. 

SBML formalises information about a system in a machine-readable format and is 

commonly encoded using extensible markup language (XML). SBML can be used to 

represent a biological model by capturing information about reactions, such as the 

species involved and their roles, the mathematical equations which describes the 

reaction, and the values of any parameters used, as well as the species present in the 

system, their starting amounts, and the units for any values. Other information such as 

the presence of compartments can also be captured. There are no specifications 

relating to how a system should be simulated, allowing for applicability to a wide range 

of model types and simulators. 

 

There are a variety of software tools and programming libraries which have been 

developed with SBML compatibility in mind, allowing users to easily define a biological 

system for modelling, and perform simulations of that system. For example, libSBML 

is a C++ library with APIs (Application Programming Interfaces) for other languages 

(such as Python and Java) which can be used to create and edit models encoded in 

SBML[280]. Similarly, the LibSBMLSim library can be used to simulate SBML models[281]. 

COPASI (a COmplex PAthway SImulator) is an SBML-compatible software tool which 

provides a user interface for creating, editing, and simulating biological models using 

a variety of deterministic and stochastic simulators[282]. 

 Modelling microbial communities 

For modelling microbial communities, agent-based modelling, sometimes referred to 

as individual-based models, are an appropriate option as each microbe in the system 

can be represented as its own agent[283]–[285]. Each agent can then be modelled 

separately within the overall simulation, rather than assuming homogeneity across all 

microbes. This is important when it comes to studying microbial communities as it is 

well known that heterogeneity, where microbes exhibit different behaviours, is 

common[286], [287]. As discussed in section 1.2.6, heterogeneity can even be observed 

in microbes of the same type, depending on the interactions occurring with other 
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nearby members and the state of the local environment[288]. Considering the immediate 

surroundings of each individual microbes is also crucial when modelling 

communication between individuals, as this communication most often relies on the 

diffusion of small chemicals, and hence the exposure of each microbe to the signalling 

chemical depends on their position within the diffusion gradient[289]. ABMs are also able 

to simulate mechanical interactions and forces which are important factors when 

modelling communities with distinct structures such as biofilms[290]. In these types of 

systems, affects like fluid flow and shear force have an impact on the community’s 

morphology. The use of agent-based modelling also enables graphical simulations in 

2- or 3-dimensional space, where the general positions of microbes and other entities, 

such as extracellular chemicals or proteins, within the system can be predicted. This 

allows for predictions relating to the shape and structure of communities which do not 

exist in a homogenous mixture[291]. 

 

There are a number of ABM simulators and software tools which have been developed 

for modelling microbial communities. One such example is gro, which is a specification 

language for defining and simulating a multi-microbial community[291]. The gro tool 

allows for specification of different cell types along with information about their growth 

rates. The internal reactions occurring within the cells can also be defined using rule-

based modelling, and cell-to-cell signalling can be modelling by defining signal 

emission and reception for each cell type. The downside of gro is that systems can 

only be modelled in 2-dimensions, which means that systems which exist in 3-

dimensions, such as those grown in liquid culture, cannot be accurately modelled. The 

NUFEB simulator is another example of an ABM tool, which allows for modelling of 

communities in 3-dimensions[292]. There is also extensive support for modelling 

nutrient-limited growth and essential features of biofilm formation, such as Extracellular 

Polymeric Substances (EPS), however there is no option to model other cellular 

mechanisms such as the expression of genes or cell-to-cell signalling. 

 

Simbiotics is a platform implemented in Java which allows for simulation of microbial 

communities in either 2- or 3-dimensions[77]. There is support for a range of cellular 

processes, including growth and transport of chemicals across membranes. There is 

also the option to include more complex internal cellular mechanisms such as the 

expression of genetic circuits using SBML models, which can be attached to the 

different cell types in the system and solved individually at each time step. These SBML 
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models can be simulated using solvers provided with the libsbmlsim library, which 

provides a variety of methods for solving ODEs. The ability to implement cellular 

behaviour using SBML files enables a modular approach to development of a model 

for microbial communities, as cell types can be easily swapped by changing the SBML 

file provided.  
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 Design, Assembly, and Implementation of a Proof-Of-Concept Biosensor 

 Biosensor specification 

To determine the feasibility of developing genetic biosensors using the Sensynova 

framework, a proof-of-concept biosensor was taken as a case study. The aims of this 

feasibility study were to (i) demonstrate how a biosensor can be split into three 

functional modules Sensynova framework’s design principles, (ii) determine whether 

these modules can be combined via co-culturing to form a biosensor with desired 

functionality, and (iii) explore potential avenues for optimisation. For the purposes of 

testing the framework, it was decided that this biosensor should be relatively simple in 

terms of the response characteristics and should be constructed of well characterised 

parts. This allowed more time and resources to be directed towards testing and 

development of the framework, rather than development of a complex and novel 

biological device. To this end, the following design parameters were used to define the 

biosensor specification: 

i. The biosensor should respond to the presence of the small 

molecule IPTG (Isopropyl β-D-thiogalactoside) 

ii. The biosensor’s response should generally scale with the 

concentration of IPTG present 

iii. The response should be well defined, easily detectable, and 

able to generate both quantitative and qualitative data 

iv. The biosensor should make use of well-defined genetic parts 

Using these design parameters, abstract functionalities for the three module types 

defined by the Sensynova framework (detector, processor, and reporter) were 

determined. Broadly, these abstract functionalities were as follows. The Detector 

module should convert the presence of IPTG into a genetic signal. This module was 

termed the IPTG Detector Module. As no specific response characteristic was 

specified by the design parameters, the Processor module needed to simply pass the 

signal from the Detector module to the Reporter module. This was termed the Default 

Processor Module. Finally, for the response, production of a green fluorescent protein 

(GFP) was chosen. This is because fluorescent proteins can provide quantitative data 

by using a fluorometer to measure the fluorescent intensity of a sample, and many 

GFPs are also visible to the naked eye or under ultraviolet (UV) light, producing a green 

colour. 
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Aside from these abstract functionalities, each module also needed to be compatible 

with the standard interfaces described in Chapter 3, namely that the Detector module 

should produce quorum sensing molecule C12-HSL, the Processor module should 

respond to the presence of C12-HSL and produce the molecule C4-HSL, and the 

Reporter module should respond to C4-HSL. As discussed previously, this functionality 

allows for uni-directional cell-to-cell communication and the propagation of a signal 

from the Detector module to the Processor module to the Reporter module. 

 

Figure 4.1. Module Interface Designs 

Genetic diagrams depicting interfaces between the three module types. (A) Abstract 
overview of signal propagation. C12-HSL carries the signal from the detector to the 
processor, and C4-HSL from the processor to reporter. (B) Top: detector module interface. 
A sensing mechanism regulates the Connector-1 sender sub-module, which is responsible 
for expression of lasI, and hence production of C12-HSL. Middle: processor module 
interfaces. Connector-1 receiver sub-module activates the signal processor in the 
presence of C12-HSL. The signal processor regulates the Connector-2 sender, which 
encodes rhlI. Bottom: reporter module interface. The Connector-2 receiver sub-module 
activates an actuator in the presence of C4-HSL. (C) Alternative interface sub-modules for 
the connector-1 sender and connector-2 sender. These variants co-express a fluorescent 
protein (eCFP for connector-1 sender and mCherry for connector-2 sender) to allow for 
easier measurement of activation. 
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Finally, it was decided that the biosensor modules should be implemented within 

Escherichia coli cells. This was because the use of well-defined parts was specified, 

and many of the most commonly used and characterised parts were designed for and 

tested in E. coli cells[82]. 

 Considerations for designing the high-level modules 

Here, the genetics for the three biosensor modules defined above are presented. For 

all constructs described here, genetic parts known to work in E. coli cells were used. 

A full list of all part names, sources, and sequences can be found in the materials and 

methods section. It should be noted that whilst a high-level modular framework such 

as the one described in this work can eventually promote top-down design, initial 

development of the individual modules must necessarily be bottom-up. This is because 

there are currently no suitable higher-level modules to use, and therefore individual 

genetic parts must be used instead. It is only once compatible modules have been 

developed that top-down design is possible. 

 

As described previously, the interfaces between each module in the Sensynova 

framework were implemented as quorum sensing mechanisms (Figure 4.1 (A)). Each 

interface (detector-processor and processor-reporter) was split into two sub-modules: 

a sender and a receiver (Figure 4.1 (B)). The first interface (detector-processor) was 

facilitated by LasIR quorum sensing, where the small diffusible molecule C12-HSL was 

sent from the detector module and received by the processor module. The second 

interface (processor-reporter) used the RhlIR mechanism, where the quorum sensing 

molecule C4-HSL was sent from the processor and received by the reporter. The 

genetic designs for these senders and receivers are shown in Figure 4.3. These sender 

and receiver designs were taken from those presented in the Newcastle iGEM 2017 

project, which ensured compatibility. 
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As one of the aims for this work was to characterise all three biosensor modules 

independently, it was important to ensure that the modules were designed so as to 

facilitate appropriate measurement of functionality. A common method of measuring a 

device or system’s behaviour within synthetic biology is to use fluorescent markers, 

which are co-expressed along with aspects of the system which require measurement. 

Fluorescent proteins tend to be used as their presence can be easily quantified using 

a range of laboratory equipment, such as fluorescent microplate readers. Additionally, 

there are a large range of fluorescent proteins which have been validated within 

organisms commonly used in synthetic biology research[294]. For these reasons, it was 

decided that fluorescent proteins would be used as markers to measure module activity. 

For the reporter module, no modifications to the design were required as the biosensor 

specification already requires the output of this module to be a fluorescent signal. For 

the detector and processor modules, the sender sub-modules were modified to contain 

a fluorescent protein coding sequence (with ribosome binding site) immediately 

upstream from the AHL synthetase coding sequence (lasI for the detector module and 

rhlI for the processor module). This positioning meant that the fluorescent proteins 

markers should be co-transcribed with the AHL synthetases, which in turn should only 

 

Figure 4.2.  luorescent  rotein Markers’ Spectral Profiles 

Spectral profiles for eCFP, mCherry, and sfGFP. Spectra were obtained from FPBase[293]. 
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be expressed when the modules have been activated. Therefore, presence of the 

fluorescent proteins, and hence a fluorescent signal, could be used to determine 

activation levels for the modules. 

 

The fluorescent protein markers have applicability not only in characterising the 

modules individually, but also in measuring activity of each module within a co-culture. 

It was therefore important to consider the excitation and emission spectra of the 

fluorescent proteins to ensure that minimal overlap exists. If significant overlap were to 

exist within the emission and/or excitation profiles of the fluorescent proteins, it would 

be difficult to differentiate from which modules the signal was generated. It was decided 

that cyan, red, and green fluorescent proteins would be used, as these colours are 

separated across the colour spectrum. The specific fluorescent proteins chosen were 

eCFP (enhanced cyan fluorescent protein), mCherry (a red/pink fluorescent protein), 

and sfGFP (superfolder green fluorescent protein). The spectral profiles for these 

proteins can be seen in Figure 4.2. Whilst the mCherry emission and excitation spectra 

have no overlap with eCFP or sfGFP, the two other proteins do have some overlap. 

This overlap, however, could be mitigated through careful selection of the wavelengths 

chosen for measurement. Here, eCFP expression was measured using an emission 

wavelength of 480 nm and sfGFP expression with an emission of 515 nm, both of 

which have little overlap with the emission profile of the other fluorescent protein. 

Therefore, it could be assumed that the majority of each fluorescent signal measured 

came from the expected protein.  

 

It was decided to use expression of the sfGFP protein as the output of the reporter 

module, as the protein exhibits high stability, and a large dynamic range and signal-to-

noise ratio[295]. Therefore, use of sfGFP as a reporter should allow for more sensitivity 

when measuring functionality of the multi-microbial biosensor. It was then decided that 

the processor module should use mCherry as the fluorescent marker, and the detector 

module should use eCFP. 
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 IPTG detector module design 

An IPTG sensing sub-module was designed to be used in the IPTG detector module. 

The sensing sub-module design utilised the well-known and well-utilised Lac system 

to convert the presence of IPTG into a genetic signal[104], [296]–[298]. In the Lac system, a 

transcription factor (LacI) represses the PLac promoter. However, IPTG can bind and 

sequester LacI from the promoter. Therefore, in the absence of IPTG expression from 

PLac is repressed, and in the presence of IPTG expression is permitted. The IPTG 

detector module design was completed by adding the connector-1 sender sub-module 

upstream of the IPTG sensing component. This design meant that PLac was 

positioned upstream of the lasI coding sequence, and hence allowed for regulation of 

LasI production (and consequently C12-HSL synthesis) by IPTG. The IPTG sensing 

sub-module was designed to be assembled immediately upstream of the connector-1 

testing variant sub-module, as shown in Figure 4.3 (A). 

 

Figure 4.3. Biosensor Module Designs 

Schematics depicting genetic designs for the three proof-of-concept biosensor modules. 
Abstracted functionality and interactions are shown. (A) Genetic design for the IPTG 
detector module. Consists of the IPTG sensing sub-module and Connector-1 sender 
testing variant. (B) Genetic design for the default processor module. Consists of the 
Connector-1 receiver sub-module and the Connector-2 sender testing variant. No 
processing sub-module is included in this design (shown as an empty box between the 
receiver and sender sub-modules). (C) Genetic design for the sfGFP reporter module. 
Consists of the Connector-2 receiver and sfGFP actuator sub-modules. 
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 Default processor module design 

The default processor module was intended to have no prescribed function other than 

accepting the signal from the detector and passing it to the reporter. Therefore, the 

default processor module’s design consisted simply of the connector-1 receiver sub-

module upstream of the connector-2 sender testing variant sub-module (Figure 4.3B). 

For processor variants, a design could be added between these two sub-modules with 

functionality such as signal amplification. 

 sfGFP reporter module design 

For the reporter module, an actuator sub-module capable of generating the desired 

signal (in this case fluorescence) was designed. Here, this actuator sub-module 

consisted of a coding sequence for superfolder GFP (sfGFP) flanked by a ribosome 

binding site and terminator. This sfGFP actuator sub-module was then combined with 

the connector-2 receiver to form the complete sfGFP reporter module (Figure 4.3C). 

 Overview of assembly strategies 

The genetic designs for the processor module shown in Figure 4.3 was assembled in 

stages using Biobrick assembly, as described in section 2.2[299].. The reporter module 

construct was previously constructed and required no further modification (section 2.2, 

Table 2.2). Initially, Biobrick assembly was also to build the IPTG detector module, 

however the final stage of assembling the IPTG sensor sub-module and connector-1 

sender testing variant sub-module repeatedly failed to yield plasmids containing the 

correct construct. Instead, the IPTG detector module was obtained via third-party 

synthesis (by ATUM) directly into the pSB1C3 plasmid (section 2.2). 

 

Once each module had been obtained and sequence verified, the plasmids were 

transformed into E. coli DH5α cells. Following transformation, the cells were termed 

IPTG detector cells, default processor cells, or sfGFP reporter cells, depending on the 

type of module each cell type contained.   
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 Deterministic modelling of biosensor modules 

Prior to experimental characterisation of the modules described above, and the multi-

microbial biosensor as a whole, computational modelling was used to help predict 

behaviour and guide the experiments performed. To achieve this, an SBML model was 

developed for each module (IPTG detector, default processor, and sfGFP reporter) 

Initially, the models were simulated using stochastic algorithms, namely the Gillespie 

stochastic algorithm[300]. However, the stochastic simulations showed a large degree 

of numerical instability and often resulted in internal time step limit errors. These issues 

were likely caused by the large number of some entities which accumulated during 

simulation, which are not handled well by stochastic algorithms. Subsequently, the 

SBML models were simulated deterministically. 

 General model assumptions 

For each biosensor module, a deterministic model was created in SBML using 

COPASI[282] (version 4.36, build 260), and simulated using the basico[301] python library 

(version 0.3.0). The models were defined by a series of reactions which assumed mass 

action rate kinetics and simulated deterministically. There were a few universal 

assumptions made for all models. The first was that the required cellular resources for 

the modelled processes, such as ribosomes, polymerases, and AHL synthetase 

substrates, were present in excess. This allowed for processes like transcription and 

translation to be abstracted to a single reaction, without modelling the presence of 

cellular machinery, nucleotides, amino acids, or other entities. The assumption of 

resource abundance, whilst not necessarily true, was made as it was more likely in the 

biosensor module systems that other entities, such as the inducers/signalling 

molecules, would be the limiting factors, and allowed for a simplified model which 

required less computation resources to simulate. Another assumption made was that 

all DNA elements comprising the biosensor modules were present at an initial starting 

amount of 200. This number was selected based on the reported copy number of 

pSB1C3 (100-300), which was the plasmid used to contain the genetic system[302], [303]. 

The final assumption made here was that of homogeneity across the system, where 

each cell of the same type had exposure to identical conditions as other cells and 

behaved in the same way. As discussed in section 4.1, this is not always necessarily 

true, however the assumption allowed for an initial insight into the functionality of the 

biosensor modules. The models could then be used to build an agent-based model to 

better account for heterogeneity in the system, as will be presented in section 4.4. 
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The parameters for the deterministic models were obtained through a mixture of 

literature and estimation based on previously reported behaviour of similar systems. 

The specifics for each model are described in the following sub-sections, along with 

discussion of simulation results. 

 IPTG Detector Module 

For the Lac repressor system employed by the IPTG detector module, there is a 

general consensus regarding its mechanism. It is thought that the LacI transcription 

factor forms a dimer of dimers, which permits binding to operator sequences in the 

PLac promoter region[304], [305]. Binding of LacI prevents polymerases from accessing 

the PLac promoter, and hence prevents transcriptional initiation[306]. For the IPTG 

 

Figure 4.4. IPTG Detector Module Schematics 

Depictions of reactions and interactions in the IPTG detector module SBML model. (A) 
LacI complex formation and IPTG binding. Grey circles ( ) are used to indicate 
association/dissociation reactions. Green double-sided arrows ( ) show products of 
association, black double-sided arrows ( ) show products of dissociation, and blue 
arrows ( ) show binding reactions assumed to not dissociate. (B) LacI interaction with 
PLac promoter. Red crosses ( ) indicate blocked transcription. Green ticks ( ) indicate 
permitted transcription. (C) Schematic depicting the IPTG detector module SBML model. 
Entity names are shown in larger font size, and reaction names in smaller font size. Black 
arrows ( ) show irreversible reactions and capped arrows ( ) show repressive 
interactions. Dashed black lines represent abstracted interactions shown in (A) and (B). 

The empty set symbol ( ) is used as the product of degradation reactions. A 
comprehensive list of reactions and their parameters can be found in section 2.4. 
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detector module model presented here, the formation of the dimer of dimers was 

modelled as a two-stage process, where each dimer first formed separately, before 

binding together to form the two-dimer complex. A common assumption for the 

formation of the first dimers is that this process is very energetically favourable, and 

thus does not tend to be rate limiting[170]. Additionally, the reverse reaction of the dimer 

into two separate proteins is generally assumed to happen so infrequently that it is 

frequently removed from models[171]. This approach was also taken here. The 

formation of the dimer-dimer complex is not always considered when modelling the 

LacI system, and as LacI is usually observed already in its tetrameric state, there were 

no readily available rates to use from previous studies for this reaction[307]. In the IPTG 

detector module model, the assumption was made that dimer-dimer binding was as 

energetically favourable as the formation of LacI dimers, although the collapse of the 

complex into two separate dimers was included, but at a slow rate. 

 

The small molecule IPTG is known to bind to LacI and sequester it from binding to the 

DNA operator[308]. For the purposes of this model, it was assumed that a LacI complex 

with one molecule of IPTG would have reduced binding to the DNA operon, but any 

extra would prevent binding completely. This assumption was made based on the 

mechanism of LacI binding, where each dimer in the complex is thought to bind to a 

separate region in the PLac promoter[309]. Thus, whilst one molecule of IPTG might 

allow for the dimer without any IPTG to still bind, and in the process aid binding of the 

other dimer due to close proximity with the DNA, two bound molecules of IPTG would 

make the binding kinetics unlikely enough as to be ignored. 
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It is thought that binding of IPTG to LacI-DNA complexes can occur to cause de-

repression of the PLac promoter[310]. In this model, one molecule of IPTG can bind to 

a LacI-PLac complex, but if another IPTG molecule binds the complex then PLac is 

freed and an unbound LacI dimer of dimers with two IPTG molecules bound forms. 

The LacI binding mechanisms used in this model are illustrated in Figure 4.4 (A-B). 

Figure 4.4 (C) illustrates the remainder of the IPTG detector module model with the 

LacI binding kinetics abstracted for clarity. The genetic expression of the relevant 

proteins (LacI, LasI, and eCFP) are modelled, along with the synthesis of C12-HSL by 

 

Figure 4.5. Deterministically Simulated IPTG Detector Module Behaviour 

Results from deterministic simulation of the IPTG detector module SBML model depicted 
in Figure 4.4. Full details regarding simulation can be found in section 2.4. (A-B) Dose-
response curves with concentrations of IPTG between 0.005 and 50 mM IPTG. Responses 
were measured as fold change in either eCFP (A) or C12-HSL (B) production compared to 
no IPTG addition after 3, 12, and 24 hours. (C-D) Time course curves over 24 hours for the 
IPTG detector module induced with either 0.5, 1.0, or 1.5 mM IPTG. The dependent 
variable was fold change in eCFP (C) or C12-HSL (D) production compared to the system 
with no IPTG added. Insets show curves for induction with 0.5 mM at increased resolution. 
(E-F) Time course curves over 24 hours when induced with 1.5, 1.0, 0.5, or 0.0 mM IPTG. 
Dependent variable was concentration of eCFP (E) or C12-HSL (F) in mM. 
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LasI, and degradation of all entities other than the plasmid DNA molecules, which are 

assumed to remain consistent throughout. 

 

The IPTG detector module model was first simulated for 24 hours with all starting 

entities at an amount of 0, except for the DNA components which began at 200. This 

allowed the system to stabilise and provide initial starting amounts for the other entities. 

Experimentally, this step correlated with culturing of the cell types in liquid media 

overnight prior to performing experiments. Following initialisation, the model was 

simulated for a further 24 hours in the presence of a range of IPTG concentrations, 

including no IPTG. The concentrations used were based on data from previous studies 

involving similar systems[311]–[313]. 

 

Simulation results were used to predict the detector’s dose-response curve, which 

allowed an informed choice of inducer concentrations to use in experiments. Dose-

response curves for fold changes in eCFP and C12-HSL production are shown in 

Figure 4.5 (A-B). eCFP and C12-HSL were chosen as responses for the curves as the 

former could be measured experimentally via fluorescence intensity (and hence 

allowed for comparison of simulated and experimental data), whilst the latter was 

essential for propagation of the signal to processor cells. It was also important to 

determine the relationship between the two entities to ensure that eCFP measurement 

was indicative of C12-HSL production. The simulations suggested that whilst the dose-

response curves for both entities display almost identical shapes, the fold change 

magnitude of C12-HSL is roughly a third of that seen with eCFP production. This can 

also be seen in the time course plots (Figure 4.5 (C-D)), where once again the time 

course curve shapes are similar, but differences are less pronounced with C12-HSL. 

The predicted fold change in production of C12-HSL was lower than that of eCFP, 

however the model also suggested that the overall concentration of C12-HSL present 

in the system would be ~5000 fold higher (Figure 4.5 (E-F)). These values should be 

treated with caution, as the model had not yet been experimentally validated, and the 

concentration of C12-HSL predicted (up to 3 mol/L-1) seemed exceptionally high. 

Nevertheless, the prediction of a higher C12-HSL concentration than eCFP was not 

unexpected, as multiple AHL molecules could be produced by a single enzyme (LasI), 

which was present in similar quantities to that of eCFP. Overall, these results 

suggested that the IPTG detector module should function as expected, and also that 

measurement of eCFP could be used as a proxy for module activity. 
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 Default Processor Module 

The default processor module was designed to respond to the presence of C12-HSL 

(the molecule produced by detector cells), and express RhlI to catalyse production of 

C4-HSL. To detect C12-HSL, the LasR transcription factor was used. Similar to the 

LacI mechanism, LasR forms a dimer, however it is not thought to form a dimer of 

dimers[314], [315]. C12-HSL can bind dimeric LasR with a stoichiometry of one AHL 

molecule per protein, which enables the LasR complex to bind a specific region of the 

PLas promoter. When bound, unlike LacI which blocks polymerase binding, LasR 

recruits RNA polymerase to the promoter site and hence drives transcription of 

downstream coding regions. In the default processor module, rhlI was placed under 

the control of PLas, and therefore RhlI production could be induced by the presence 

 

Figure 4.6. Default Processor Model Schematics 

Depictions of reactions and interactions in the default processor module SBML model. (A) 
LasR complex formation, C12-HSL binding, and interaction with PLas promoter. Grey 
circles ( ) are used to indicate association/dissociation reactions. Green double-sided 
arrows ( ) show products of association, black double-sided arrows ( ) show products 

of dissociation. Red crosses ( ) indicate unfavourable transcription. Green ticks ( ) 
indicate favourable transcription. (B) Schematic depicting the default processor module 
SBML model. Entity names are shown in larger font size, and reaction names in smaller 
font size. Black arrows ( ) show irreversible reactions. Dashed black lines represent 

abstracted interactions shown in (A). The empty set symbol ( ) is used as the product of 
degradation reactions. A comprehensive list of reactions and their parameters can be 
found in section 2.4.  
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of LasR and C12-HSL. In addition to the RhlI coding region, mCherry was also included 

downstream of PLas, allowing for co-expression of the two proteins. As mentioned 

previously, this allowed for characterisation of the module system via detection of red 

fluorescence. 

 

Like the IPTG detector module model, the default processor module was modelled as 

a set of mass action reactions and simulated deterministically. Based on previous 

studies, a number of assumptions were made regarding the LasR mechanism. Firstly, 

it was assumed that LasR dimerisation occurs at a relatively high rate, but that 

dissociation of the dimer also occurs quickly unless an AHL molecule is bound to the 

dimer[182]. It was also assumed that degradation of LasR monomers is high[180], but 

LasR dimers are protected from proteases to such a high degree that their degradation 

could be ignored. These assumptions were based on an experimental study[316] which 

found that in the absence of C12-HSL, LasR is unstable and difficult to extract from 

cells in high quantities. When C12-HSL was added, however, LasR showed increased 

stability and extraction of the protein was far more successful. These observations lead 

the authors to conclude that a feature of the LasR mechanism is that C12-HSL not only 

allows LasR to bind to DNA, but also increases the amount of LasR present by 

preventing degradation. Another assumption made was that LasR dimers with only one 

C12-HSL molecule bound would still be able to bind DNA, although at a much slower 

rate due to reduced conformational change, but LasR dimers with no ligand bound 

would show no DNA binding activity. This assumption was based on studies where 

ligand-free LasR did not appear to bind DNA at all, but that dimeric LasR complexed 

with non-canonical ligands still showed some DNA binding activity, despite non-optimal 

conditions[184], [316]. 



157 
 

 

An important aspect of the default processor system was crosstalk, where molecules 

other than C12-HSL could bind and activate LasR. Crosstalk behaviour has been well 

documented for LasR, where a range of ligands have shown to have binding capacity, 

including C4-HSL[151], [175], [180]. Because C4-HSL was to be present in the default 

processor system as a product of RhlI, interactions between LasR and C4-HSL were 

included in the model. In line with previous studies, the binding of C4-HSL to LasR was 

modelled as occurring at a slower rate than C12-HSL binding, and the complex as 

being less stable. However, it was assumed that once LasR was bound to the PLas 

promoter, no matter the type or number of ligands bound, the rate of transcription would 

 

Figure 4.7. Canonical and Crosstalk Response Predictions for the Default Processor 

Module 

Results from deterministic simulation of the default processor module SBML model 
depicted in Figure 4.6. Full details regarding simulation can be found in section 2.4. (A) 
Schematic depicting C4-HSL crosstalk interactions. Symbols are the same as seen in 
Figure 4.6 (A). (B-C) Results for the system with no C4-HSL synthesis activity. (D-E) 
Results for the system with C4-HSL synthesis activity. (B, D) Dose-response curves with 
concentrations of the canonical inducer (C12-HSL) between 10-6 and 50 μM. Responses 
were measured as fold change in either mCherry production compared to no C12-HSL 
addition after 3, 12, and 24 hours. (C, E) Same as (B, D) but with C4-HSL as inducer. The 
inset in (E) shows time course of mCherry fold change over 24 hours. 
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be the same. The basis for this assumption was that polymerase recruitment activity 

would not be affected by the type of ligand, and that observations of reduced genetic 

expression when inducing with molecules other than C12-HSL were a result of reduced 

binding to the LasR transcription factor. A simplified schematic of the system modelled 

is shown in Figure 4.6. 

 

Initial parameters for the modelled reactions were obtained through a mixture of 

literature, assumptions, and estimations. Initial parameters were subsequently 

modified to ensure behaviour approximated that found in similar systems. As other 

systems using LasR reported in literature tend to not involve C4-HSL production by 

RhlI, initial simulations excluded catalysis of the AHL to allow for better comparison of 

functionality. Results for these simulations can be seen in Figure 4.7 (B) and (C), where 

(B) shows simulations in which C12-HSL was used as the inducer, and (C) shows 

crosstalk simulations with C4-HSL as the inducer. In these simulations production of 

mCherry is shown. The dose-response curves presented largely matched with 

experimental observations presented previously[151], [315]; namely that activation with 

C12-HSL was apparent at concentrations above approximately 0.1 μM, and that a 

maximum fold change of around 5 is seen after 3 hours of incubation. The initial 

simulations shown here also match crosstalk experiments which suggested much 

lower activation when using C4-HSL as the inducer, with a fold change of less than 2. 

 

Once simulations had been performed without C4-HSL production, the RhlI synthesis 

reaction was added using a rate found in literature[181]. Dose-response curves for these 

simulations are shown in Figure 4.7 (D) and (E). Once again, the response shown is 

mCherry production. As with the IPTG detector module, production of the AHL 

synthetase and AHL (RhlI and C4-HSL here) followed similar patterns to mCherry 

production. As might be expected, responsiveness to C4-HSL as an inducer was 

completely diminished when RhlI activity was restored, due to high background levels 

of the AHL. The C12-HSL dose-response curve also displayed expected behaviour; 

maximal activity was reduced due to the C4-HSL background resulting in higher basal 

activity. It was also observed that over time, fold change expression of mCherry 

reduced, with higher levels at 12 hours post induction compared to 24 hours (Figure 

4.8 (A)). The system without C4-HSL production showed more typical behaviour, 

where mCherry production increased gradually before plateauing (Figure 4.8 (C)). The 

behaviour observed when C4-HSL production is enabled appears to be a result of a 
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positive feedback loop occurring in systems with no inducer, where background levels 

of C4-HSL could activate production of RhlI, which lead to production of more C4-HSL. 

Thus, over time, the levels of C4-HSL increased in inactivated systems which 

manifested as a reduction in relative activity. Background activation in systems with 

C4-HSL production can be more clearly observed in time course plots of mCherry 

production, where noticeable increases in mCherry over time occur even with no or 

little inducer (Figure 4.8 (B)), compared to the system without AHL production where 

mCherry production remained low throughout the simulation when no inducer was 

present Figure 4.8 (D). 

 

The default processor module model suggested that although activation by C12-HSL 

may be lower than observed in similar systems which do not include production C4-

HSL, functionality should be retained. The model also predicted that the fold change 

of mCherry, RhlI, and C4-HSL levels compared to uninduced samples are likely to 

 

Figure 4.8. Simulated Default Processor Module Feedback Loop 

Simulated results demonstrating how the default processor module’s feedback loop 
impacts response characteristics. (A-B) Results for the processor module system with C4-
HSL synthesis activity. (C-D) Results for the system with no C4-HSL synthesis activity. (A, 
C) Time course curves over 24 hours for systems induced with 0.1, 0.01, or 10 μM C12-
HSL. Fold change in mCherry production compared to the uninduced system was used as 
the dependent variable. (B, D) Same as (A, C), but results for the uninduced system are 
also shown, and the dependent variable was mCherry concentration in mM. 
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peak after roughly 10 hours of growth post-induction, before slowly dropping, likely due 

to a positive-feedback loop. 

 

 sfGFP Reporter Module 

The sfGFP reporter module was designed for induction by C4-HSL. This functionality 

was achieved by employing the RhlR transcription factor. The mechanism of RhlR is 

thought to be similar to that of LasR, where dimeric RhlR forms and binds its ligand 

(C4-HSL) with a stoichiometry of one molecule per protein[185]. The RhlR dimer 

complex can also bind DNA, but in this case recognises a region within the PRhl 

promoter, and recruits RNA polymerase to drive transcription of downstream coding 

regions. In the case of the sfGFP reporter module, PRhl was designed to control 

expression of sfGFP. Unlike LasR, there is evidence that ligand-free, dimeric RhlR can 

repress expression from PRhl[187]. However, many studies have also reported 

 

Figure 4.9. sfGFP Reporter Module Model Schematics 

Depictions of reactions and interactions in the sfGFP reporter module SBML model. (A) 
RhlR complex formation, C4-HSL binding, and interaction with PRhl promoter. Grey circles 
( ) are used to indicate association/dissociation reactions. Green double-sided arrows ( ) 
show products of association, black double-sided arrows ( ) show products of 
dissociation. Red crosses ( ) indicate unfavourable transcription. Green ticks ( ) indicate 
favourable transcription. (B) Schematic depicting the sfGFP Reporter module SBML 
model. Entity names are shown in larger font size, and reaction names in smaller font 
size. Black arrows ( ) show irreversible reactions and capped arrows ( ) show 
repressive interactions. Dashed black lines represent abstracted interactions shown in (A). 

The empty set symbol ( ) is used as the product of degradation reactions. A 
comprehensive list of reactions and their parameters can be found in section 2.4. 
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activation of RhlR as a transcriptional activator with non-canonical ligands, including 

C12-HSL[151], [186] (Figure 4.10 (A)). This suggests that binding of RhlR to the promoter 

region is independent of ligand binding, but the ligands are required for polymerase 

recruitment. It has also been observed that genetic expression from PRhl is higher than 

that from PLas, and that fold changes in expression levels between induced and 

uninduced systems also tend to be higher[151]. Aside from these differences, the binding 

mechanics are thought to be similar. 

 

As with the previous two models, the sfGFP reporter model was also modelled as a 

set of mass action reactions. Due to the similarities between LasR and RhlR, many of 

the parameters used in the default processor module model were used as the basis 

for the sfGFP reporter module model. As before, these parameters were modified to 

ensure simulation results were in general agreement with similar systems in previous 

studies. One notable difference was the transcription reaction from PRhl bound to 

ligand-free RhlR. In the reporter model, this reaction had a rate of 0 min-1, which 

reflected RhlR’s ability to act as a repressor in the absence of any ligands. Additionally, 

the binding of dimeric RhlR in all states were set to the same rate, as it has been 

reported that the DNA binding functionality of RhlR is unaffected by the presence or 

type of ligands. However, unlike the processor model where transcription from PRhl 

occurred at the same rate once LasR was bound, in this reporter model the rate of 

transcription was dependent on the ligands bound, as a result of the apparent impact 

ligand binding to RhlR has on polymerase recruitment. The inclusion of ligand-free, 

dimeric RhlR to DNA required a set of extra reactions to be defined; binding of C4-HSL 

or C12-HSL to RhlR already bound to PRhl. For these reactions, it was assumed that 

AHL binding would occur at a slower rate than RhlR not bound to DNA, as the free 

transcription factor would not experience affects such as steric hinderance. 
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A simulated dose-response curve for the sfGFP reporter module with the canonical 

C4-HSL inducer is shown Figure 4.10 (B). Unlike the IPTG detector and default 

processor modules, the range of inducers tested were not predicted to saturate the 

signal. This behaviour was in accordance with experimental data previously 

reported[151]. Additionally, the fold change in activation relative to no inducer was 

predicted to be much larger than that seen for the detector and processor. This was 

likely due to the inclusion of ligand-free RhlR as a repressor, which resulted in reduced 

background expression from PRhl when no inducers were present. The dose-response 

curve shown in Figure 4.10 (C) shows responsiveness to increasing concentrations of 

C12-HSL. Whilst not present in the reporter module, in a co-culture the IPTG detector 

module would be expected to produce C12-HSL, and hence modelling the crosstalk 

was important. The dose-response curve shows predicted that the reporter module 

 

Figure 4.10. Simulated sfGFP Processor Module Behaviour 

Results from deterministic simulation of the sfGFP Reporter module SBML model depicted 
in Figure 4.9. Full details regarding simulation can be found in section 2.4. (A) Schematic 
depicting C12-HSL crosstalk interactions. Symbols are the same as seen in Figure 4.9 (A). 
(B, D, F) Results from systems induced with the canonical C4-HSL inducer. (C, E, G) 
Results from systems induced with the non-specific C12-HSL inducer. (B-C) Dose-
response curves with concentrations of inducer between 10-6 and 50 μM IPTG. 
Responses were measured as fold change in sfGFP production compared to no inducer 
addition after 3, 12, and 24 hours. (D-E) Time course curves over 24 hours when induced 
with either 10, 1.0, or 0.1 μM of relevant AHL. The dependent variable was fold change in 
sfGFP production compared to the system with no AHL added. (F-G) Time course curves 
over 24 hours when induced with 10, 1.0, 0.1, or 0.0 μM AHL. Dependent variable was 
concentration of sfGFP in mM. 
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would begin responding at similar levels of both C4- and C12-HSL, but the fold change 

in sfGFP expression would be much lower for C4-HSL. Over time, for both C4- and 

C12-HSL as an inducer, the fold change (Figure 4.10 (D-E)) and total concentration 

((Figure 4.10 (F-G)) for sfGFP shows a similar pattern to activation of the IPTG detector 

module, rather than the behaviour predicted for the processor module. This was as 

expected due to the lack of a potential feedback loop, which was present in the 

processor module system.  
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 Agent-Based Modelling of a Modular and Multi-Microbial Biosensor 

The models and simulations presented in section 4.3 provided a basis for predicting 

behaviour of each module. In this section, a model for predicting behaviour of the multi-

microbial biosensor is presented. For this model, it was not appropriate to assume 

homogeneity, due to the importance of heterogeneity in multi-microbial systems, as 

discussed previously. Therefore, an agent-based model approach was used (see sub-

section 4.1.3). The agent-based biosensor model was required to simulate the 

behaviour of each cell type in the system (detector, processor, and reporter) and model 

interactions between the cells, specifically intercellular communication via production 

and diffusion of small molecules. To assist with building and simulating the biosensor 

model, Simbiotics was selected as the modelling and simulation platform[77]. Simbiotics 

was selected as it was developed with agent-based modelling of multi-microbial 

systems in mind and has the unique feature of allowing complex cellular behaviour to 

be defined via SBML models. This allowed for the models shown in section 4.3 to be 

directly integrated as modular behaviour. Simbiotics is also capable of modelling 

systems in 3-dimensional space, which was essential for predicting the biosensor’s 

behaviour in liquid culture and provides simulators for diffusion of chemicals 

extracellularly and across cell membranes. The ability to model diffusion across the 

cell wall meant that quorum sensing-based communication could be simulated. 

 

In Simbiotics, the native SBML simulator module uses libsbmlsim, which is a java 

package capable of simulating models captured in SBML. However, testing of this 

module found that the simulator methods employed by the java package were not 

suitable for simulation of the biosensor models. Whilst the integrated SBML solver had 

been demonstrated previously to function for relatively simple models [317], here it was 

found to have issues when simulating more complex models with a larger number of 

entities and interactions. Specifically, issues seemed to stem from ‘stiff’ equations in 

the models, where interacting entities can be present in quantities magnitudes apart, 

and difficulties in identifying appropriate time steps can lead to numerical instabilities 

within simulations[318]. To tackle this problem, the SBML simulator module was 

changed to use basico instead[301], which allowed for the same deterministic method 

described in section 4.3 to be used for solving cell behaviour. Although the cell 

behaviour models were simulated deterministically, the rest of the model, including 
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diffusion of chemicals and movement of cells, were simulated stochastically using the 

built-in Simbiotics methods. 

 General Model Assumptions 

Agent-based modelling can require far more computational resource than other types 

of models, and the resources and time required tends to scale with the number of 

agents present[319]. In biological systems such as the ones under study here, the 

number of cells can easily reach 107
 to 109 [63]; agent-based models typically cannot 

easily scale to these numbers when integrating complex modelling for each agent. 

Therefore, the decision was made to only model a subsection of the total system and 

assume that this local section would be representative of the global system[285]. For the 

simulations presented here, the initial number of cells was set to 300. For the cells 

themselves, Simbiotics defines two morphologies: spherical or rod shaped. As the 

proof-of-concept biosensor was implemented in Escherichia coli, cells were modelled 

as rod-shaped with a length of 1.5 μm and a diameter of 0.5 μm. For each cell type, 

behaviour was defined by the corresponding SBML model developed previously. As 

with the simulations presented in section 4.3, the initial starting amount for each entity 

was determined using the results from simulating each SBML model for 24 hours. As 

before, basico was used to perform the simulations prior to running the Simbiotics 

model. 

 

 

Figure 4.11. Simulated Cell Growth Curve 

Results from simulating cell growth using Simbiotics. (A) Growth curves obtained over 20 
hours from either agent-based simulation or experimentally (section 2.5.3). Simulated data 
shows number of cells (agents) over time (left Y-axis). Experimental data shows equivalent 
microsphere particles over time (right Y-axis). The Y-axis values for both curves were 
calibrated against one another as described in section 2.5.3. (B) Graph showing simulated 
time against cumulative execution time. Simulation details, including computational 
specifications, can be found in section 2.5.  
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When defining extracellular chemicals (in this case IPTG, C12-HSL, and C4-HSL) in 

Simbiotics, three coefficients can be set: extracellular diffusion, diffusion across cell 

membranes, and degradation. Although degradation of the AHLs was included for 

reactions within the cells, it was assumed that once in the media all chemicals would 

remain stable for the duration of the experiment. For initial simulations, the diffusion 

coefficients for all three chemicals were assumed to be similar, and thus were set to 

the same coefficients. During experimentation, it was planned that samples would be 

continually shaken, and thus the diffusion coefficients were set relatively high to 

account for this constant motion, along with a global Brownian motion coefficient of 2.5. 

Addition of either IPTG, C12-HSL, or C4-HSL as an inducer was incorporated into the 

model as a pipetting event, where the appropriate number of molecules were added to 

the centre point of the space at time point 0. For systems with no inducer added, no 

pipetting event was scheduled. 

 

To determine the size of the system subsection to be simulated, the average volume 

of liquid (in μL) per cell was calculated using equations ii, iii, and iv: 

[𝐶𝑒𝑙𝑙𝑠𝑒𝑥𝑝] =  
𝐶𝑒𝑙𝑙𝑠𝑒𝑥𝑝

𝑉𝑜𝑙𝑢𝑚𝑒𝑒𝑥𝑝
 
ii.  

𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑖𝑚 =  
𝐶𝑒𝑙𝑙𝑠𝑠𝑖𝑚

[𝐶𝑒𝑙𝑙𝑠𝑒𝑥𝑝]
 
iii.  

𝑊𝑜𝑟𝑙𝑑𝑒𝑑𝑔𝑒 = √(𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑖𝑚 × 1𝑒9)
3

 
iv.  

For the above equations, 𝐶𝑒𝑙𝑙𝑠𝑒𝑥𝑝 and 𝐶𝑒𝑙𝑙𝑠𝑠𝑖𝑚 are the initial number of cells in the 

experimental and simulated systems respectively, 𝑉𝑜𝑙𝑢𝑚𝑒𝑒𝑥𝑝 and 𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑖𝑚 are the 

total volumes (in μL) of the experimental and simulated systems respectively, and 

𝑊𝑜𝑟𝑙𝑑𝑒𝑑𝑔𝑒 is the length (in μm) of each edge of the simulated subsystem boundary. 

 Simulating cell growth 

Simbiotics allows for nutrient-dependent growth to be modelled, where the rate at 

which cells in the system grow and divide is dependent on resource availability. The 

modules and biosensor were intended to be characterised in batch culture, rather than 

in a continuous flow or chemostat environment. Therefore, if cell growth was to be 

modelled, nutrient availability would likely be a limiting factor over time as resources 

would not be replenished. The growth rate of each agent, or cell, in the system was 

determined using Monod kinetics, where a maximum possible growth rate is 

moderated based on the availability of a specific nutrient or set of nutrients. For the 
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simulations here, a single abstracted nutrient (simply termed ‘food’) was used to 

represent all resources required for cell growth. This was because the exact resources  

required were unknown. To determine Monod growth rate parameters, different values 

were tested until a growth curve approximating experimental data was found. The 

experimental growth curve was obtained by inoculating 100 μL of Lysogeny Broth (LB) 

media in a standard 96 well, flatbottomed microplate with untransformed E. coli DH5α 

at a starting optical density of 0.1 when measured at 600 nm. The cultures were then 

incubated at 37oC with shaking at 300 RPM for 20 hours. Optical density 

measurements were converted to an approximate number of cells according to 

standard calibration protocols (see sub-section 5.1.1 and section 2.5.3 for more detail). 

This approach made the initial assumption that all three cell types would grow at 

identical rates, and at the same rate as untransformed cells, which was unlikely to be 

true due to the different stresses placed upon each cell by each plasmid and construct. 

Additionally, the detector, processor, and reporter cell types would be grown in the 

presence of antibiotics to exert a selection pressure for retention of the plasmids, which 

tends to reduce growth rates further. Nevertheless, this provided an initial basis for 

indicative predictions of behaviour. 

 

The simulated growth curve compared to experimental data can be seen in Figure 4.11 

(A). Simulations were performed using a single cell type with no behaviour (i.e., no 

SBML model) to save on computational resources and simulation time. It was possible 

to exclude the SBML-based behaviour as it had no bearing on how the cells grew in 

silico (although as mentioned previously, in reality there would be an effect). However, 

it was found that even with a small number of starting cells (300) and an underestimate 

of cell growth, total execution time for 24 hours of simulated growth was more than 18 

hours (Figure 4.11 (B)) when simulations were performed using hardware described in 

section 2.5. It became apparent that experimental characterisation, where 60 samples 

could be tested in parallel over 24 hours, would be less time consuming than 

computational simulation, given the hardware specifications used. Therefore, it was 

decided that cell growth would be abstracted from the model. This abstraction placed 

introduced limitations, as factors like increased cell density and competition for 

resources between the different cell types in co-culture could not be accounted for. 

However, it was thought to still be possible to make informed decisions based on 

indicative results from the scaled back models. 
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 Agent-based modelling of each cell type in monoculture 

Before simulating the multi-microbial biosensor in co-culture, each cell type was 

simulated using the Simbiotics platform in a monoculture. Agent-based modelling of 

each cell type allowed for comparisons to be made between the pure-deterministic 

models presented in the previous section and the agent-based model. As each cell in 

the system was simulated separately, it was possible to obtain simulated single cell 

data, allowing for an insight as to the possible heterogeneity between cells of the same 

type. 

 

As before, a range of inducer concentrations were tested for each cell type in order to 

obtain a dose-response curve. In the agent-based model, stochasticity has an impact, 

and thus simulations were performed in replicates of at least three to help determine 

run-to-run variation. The simulated dose-response curve for the IPTG detector module 

can be seen in Figure 4.12 (A). Compared to the curve shown in Figure 4.5 (A), it can 

be seen that the agent-based model predicted a smaller dynamic range for the IPTG 

detector module, with a maximal fold change in eCFP production of approximately 4.0 

after 24 hours, compared to an increase of 9.5 times background predicted by the 

purely deterministic model. However, both models predict similar levels of sensitivity, 

with a noise threshold of between 0.1 and 0.5 mM IPTG. Both models also agreed that 

after 24 hours of growth, the system would not have reached a steady state in terms 

of eCFP production (Figure 4.12 (B) and Figure 4.5 (C)) when induced with higher 

concentrations of IPTG. It was possible that the smaller dynamic range prediction by 

the Simbiotics model was a result of the incorporation of IPTG diffusion, both in the 

extracellular environment and across the cell membrane. Cells in the agent-based 

model would have had a longer period of delay before exposure to inducer molecules, 

compared to the purely deterministic simulations where cells had access to IPTG from 

time point 0. Therefore, as eCFP production was predicted to still be increasing after 

24 hours, the state of the system when simulated by Simbiotics would be delayed, and 

hence the fold change at this time point would be lower. 
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The plot in Figure 4.12 (B) shows the number of eCFP molecules per cell produced 

over time when induced by different concentrations of IPTG, along with error bars to 

indicate potential stochastic variation across repeats. This data can be thought of as 

‘bulk’ measurements, where the total amount of an entity is measured for the system 

as a whole, and values per cell can be obtained by averaging the value across the 

 

Figure 4.12. Agent-Based Modelling Results for the IPTG Detector Module 

Results from agent-based simulation of the IPTG detector module in monoculture. All 
simulations were performed with 300 cells and according to the methods in section 2.5.1. 
(A) Dose-response curve with different concentrations of IPTG as an inducer, where fold 
change in eCFP production after 24 hours was measured as the response. The grey box 
shows background noise, calculated as stated in section 2.5.2. (B) Time course curve for 
production of eCFP proteins over 24 hours. Results are shown as a bulk measurement of 
all cells, and a number-per-cell was calculated by averaging the total value across all cells 
in the system. (C) Time course of eCFP production per cell when induced with 20 mM 
IPTG. The navy line shows bulk measurement, where the number of eCFP molecules per 
cell was calculated as an average from the total value. The grey lines show single cell data 
for eCFP production. Time from 0 to 24 hours is along the x-axis. (D) Histogram depicting 
simulated single cell data from systems 20 hours post induction with either 0, 0.1, 0.5, or 
10 mM IPTG. Data was grouped into 17 bins. The box below the graph shows histogram 
zoomed in for 0 mM. Top right inset shows the same data as main graph for 0.1, 0.5, and 
10 mM IPTG on a 3D plot, where the x-axis is the number of eCFP molecules, and the y-
axis is the counts on a linear scale. On the z-axis is the amount of IPTG used for induction. 
(E) Lasagna plots[320] depicting single cell data for systems induced with either 0, 0.1, 0.5, 
or 10 mM IPTG. Each horizontal line represents a single cell over 20 hours. Colouring is 
based on the number of eCFP molecules per cell. Time course plots are shown for each 
system to the right of the lasagna plot. The y-axis is number of eCFP molecules. 
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number of cells present. Although bulk measurements are a common way to measure 

the overall behaviour of a system[294], it does not give any insight as to variation across 

cells within a system. As Simbiotics simulates each cell separately, it was possible to 

export the results obtained for each cell to compare differences in state compared to 

other cells. Figure 4.12 (C) shows a time course of eCFP production for all cells in a 

single system when induced with 10 mM IPTG. It was observed that the activity of each 

cell can vary drastically. As the cell behaviours were simulated using a deterministic 

solver, the majority of variation was thought to come from proximity of each cell to 

different amounts of IPTG, which was the major impactor on cell behaviour. In Figure 

4.12 (D), a histogram shows the spread of eCFP production across cells in a single 

system when induced with 4 different IPTG concentrations, and when uninduced, after 

20 hours of growth. Although the general pattern of eCFP production seen with bulk 

measurements (higher amounts of IPTG correlates to more eCFP), there is a 

noticeable overlap of data. For example, it can be seen that some cells in the system 

induced with 0.1 and 0.5 mM of IPTG show higher eCFP production than some cells 

in the system induced with 20 mM IPTG. Again, this is consistent with the thought that 

the behaviour of each cell was influenced by the local concentration of inducer, as 

higher eCFP production would be expected if cells were disproportionately exposed to 

different concentrations of IPTG. If this was the case, it would be expected that cells in 

simulations with not IPTG added would show no variation. Indeed, the spread of data 

is far smaller than that seen in systems with IPTG, although there are some differences 

across the cells (Figure 4.12 (D) bottom left). These differences appear to be an artifact 

of numerical errors in the deterministic solver due to the stiff equations, which can 

occasionally cause entities to spontaneously appear in very low quantities or be 

calculated as a negative value (which is biologically impossible). To help account for 

this known behaviour, after each cell was solved deterministically, the results were 

automatically checked for these spontaneous appearances of entities at very low 

quantities or negative values and corrected to a value of 0. However, in between these 

checks, the erroneous values could have had a small impact on other entities in the 

system, and this is what causes slight variations in what should be consistent solutions 

to deterministic simulations. 
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Figure 4.13. Agent-Based Modelling Results for the Default Processor Module 

Results from agent-based simulation of the default processor module in monoculture. All 
simulations were performed with 300 cells and according to the methods in section 2.5.1. 
(A) Dose-response curve with different concentrations of C12-HSL as an inducer, where 
fold change in mCherry production after 24 hours was measured as the response. The 
grey box shows background noise, calculated as stated in section 2.5.2. (B) Time course 
curve for production of mCherry proteins over 24 hours. Results are shown as a bulk 
measurement of all cells, and a number-per-cell was calculated by averaging the total 
value across all cells in the system. (C) Time course curve of fold change in mCherry 
production per cell over 24 hours relative to uninduced cells. (D) Histogram depicting 
simulated single cell data from systems 20 hours post induction with either 0, 0.01, 1.0, or 
100 μM C12-HSL. Data was grouped into 17 bins. Top right inset shows the same data as 
main graph for 0.01, 1.0, and 100 μM IPTG on a 3D plot, where the x-axis is the number of 
mCherry molecules, and the y-axis is the counts on a linear scale. (E) Lasagna plots 
depicting single cell data for systems induced with either 0, 0.01, 1.0, or 100 μM C12-HSL. 
Each horizontal line represents a single cell over 20 hours. Colouring is based on the 
number of mCherry molecules per cell. Time course plots are shown for each system to 
the right of the lasagna plot. The y-axis is number of mCherry molecules. 
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The simulation results also suggested that heterogeneity may be higher when inducer 

concentrations within the linear range of the dose-response curve (~0.1 to ~ 10 mM for 

the detector cells), than when concentrations below the detection threshold or above 

the saturation point were used. For IPTG concentrations above the saturation point, 

this likely reflected the fact that although individual cells may be exposed to different 

amounts of inducer, this could not be observed in the response due to saturation 

occurring within most cells. For IPTG concentration below the detection threshold, 

lower heterogeneity may have occurred due a majority of cells being exposed to levels 

of IPTG below the amount required to show a dramatic difference in response. 

 

Figure 4.14. Agent-Based Modelling Results for the sfGFP Reporter Module 

Results from agent-based simulation of the sfGFP Reporter module in monoculture. All 
simulations were performed with 300 cells and according to the methods in section 2.5.1. 
(A) Dose-response curve with different concentrations of C4-HSL as an inducer, where 
fold change in sfGFP production after 24 hours was measured as the response. The grey 
box shows background noise, calculated as stated in section 2.5.2. (B) Time course curve 
for production of sfGFP proteins over 24 hours. Results are shown as a bulk measurement 
of all cells, and a number-per-cell was calculated by averaging the total value across all 
cells in the system. (C) Histogram depicting simulated single cell data from systems 20 
hours post induction with either 0, 1, 10, or 100 μM C4-HSL. Data was grouped into 17 
bins. Box below the graph shows histogram zoomed in for 0 μM. Top right inset shows the 
same data as main graph for 1, 10, or 100 μM C4-HSL on a 3D plot, where the x-axis is 
the number of eCFP molecules, and the y-axis is the counts on a linear scale. (E) Lasagna 
plots depicting single cell data for systems induced with either 0, 1, 10, or 100 μM C4-HSL. 
Each horizontal line represents a single cell over 20 hours. Colouring is based on the 
natural log of the number of sfGFP molecules per cell. Time course plots are shown for 
each system to the right of the lasagna plot. The y-axis is the natural log of the number of 
eCFP molecules. 
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To investigate how heterogeneity was predicted to change over time, values for the 

amount of eCFP production over 20 hours for four concentrations of IPTG (0, 0.1, 0.5, 

and 10 mM) were visualised as a Lasagna plot (Figure 4.12 (E)). This shows that the 

general trend seen with bulk measurements remains, where the amount of eCFP 

produced increased over time, except in the uninduced system where eCFP numbers 

remained stable. However, it can also be seen that cells within the same system did 

not all activate synchronously, and eCFP production began at different points in time. 

There was also agreement with the conclusion drawn from Figure 4.12 (D) that 

inducing the detector cells with IPTG at concentrations within the linear range of the 

dose-response curve resulted in higher heterogeneity than when using IPTG 

concentrations outside of this range. 

 

Simulations performed for the IPTG detector module were repeated for the default 

processor module. Compared to the purely deterministic processor model, the agent-

based model predicted a similar level of sensitivity (approximately 0.01 μM) and fold 

change in mCherry production after 24 hours, with a 2.2-fold increase for the 

deterministic model compared to 1.5-fold for the agent-based model (Figure 4.13 (A) 

and Figure 4.7 (D)). Both models predicted a higher level of background noise than for 

the IPTG detector module, with mCherry accumulating over time in the absence of any 

inducer, albeit at a slower rate than induced systems (Figure 4.13 (B) and Figure 4.8 

(B)). The deterministic model also predicted that a maximum fold change would be 

observed approximately 8 hours post induction, at which point the relative signal was 

predicted to decrease. Whilst the agent-based model simulations showed some 

evidence of this behaviour (Figure 4.13 (C)), it was far less pronounced, and the 

decrease in signal was predicted to occur after 20 hours. As with the IPTG detector 

module models, this may have been due to delays associated with cells becoming 

exposed to the inducer. Additionally, the maximum fold change predicted by the agent-

based model was approximately 2.2 times lower than predicted by the deterministic 

model. 
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For the default processor module, heterogeneity within the system was observed, as 

shown in Figure 4.13 (D). Similar to observations with the IPTG detector module, there 

appeared to be a larger cell-to-cell variation in activity when the inducer was added at 

a concentration within the linear dose-response range (1.0 μM) compared to 

concentrations near the limit of detection (0.01 μM) or above the saturation point (100 

μM). Whilst both the detector and processor modules showed increasing heterogeneity 

as time progressed (Figure 4.13 (E)), the uninduced processor system showed more 

 

Figure 4.15. Simulation Results for Multi-Microbial Biosensor with a 1:1:1 Cell Ratio 

Simulated behaviour of the proof-of-concept modular and multi-microbial IPTG biosensor. 
All three cell types were added in equal amounts (100 of each). The system was simulated 
in the presence of either 0 or 20 mM IPTG over 24 hours. Error bars show standard 
deviation of 4 replicates centred on the mean value. (A) Fold change in eCFP, mCherry, 
and sfGFP production relative to the uninduced system. Fold change values for each 
fluorescent protein were plotted on Y-axes with different scales. (B) Time course curve 
over 24 hours for the extracellular concentration (in μM) of C12-HSL in the presence of 0 
mM and 20 mM IPTG. (C) Same as (B) but for extracellular C4-HSL. (D) Lasagna plots 
showing either eCFP (left), mCherry (middle), and sfGFP (right) production over time when 
induced with 0 mM or 20 mM IPTG. Each horizontal line represents a single cell over time. 
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heterogeneity than the uninduced detector system. Whilst the uninduced processor 

module’s variation was still lower than observed with the induced systems, and some 

of this variation would have been due to numerical artifacts, the positive feedback loop 

present in the processor module would likely have caused the majority of variation. 

The feedback loop causes low-level induction by C4-HSL produced by the processor 

itself, leading to a system which was not truly uninduced. 

 

For agent-based simulation of the sfGFP reporter module, the general conclusions 

drawn from the dose-response curve (Figure 4.14 (A)) were much the same as those 

for the detector and processor modules; compared to the purely deterministic model 

the predicted sensitivity was similar, but the maximum fold change was lower. There 

was again evidence of delayed response, as evidenced by the lack of a signal plateau 

in time course curves for sfGFP production when simulated as an agent-based model 

(Figure 4.14 (B)) compared to when simulated purely deterministically (Figure 4.10 (F)). 

As with the detector and processor modules, heterogeneity was also observed for the 

sfGFP reporter module (Figure 4.14 (C-D)). For the reporter system, heterogeneity 

appeared to increase with higher concentrations of C4-HSL added as an inducer, 

which was in line with previous observations and conclusions as the saturation point 

was not reached even at 100 μM of C4-HSL. Cell-to-cell variation for the uninduced 

system was similar to that observed with the IPTG detector module, where differences 

in sfGFP quantities were almost identical across all 300 cells in the system, and the 

only differences were likely due to the numerical instabilities arising during 

deterministic simulation. It should be noted, however, that the heterogeneity within the 

sfGFP reporter systems was much larger than that seen with the other two modules. 

This was likely due to the much larger fold changes in activity observed with increasing 

concentrations of inducer seen in Figure 4.14 (A), which resulted in more pronounced 

differences between cells when exposed to different amounts of inducer. 

 

Overall, the agent-based models simulated using Simbiotics showed general 

agreement with the deterministic-only models presented in section 4.3. The main 

difference observed between the two model types was a slower response time when 

using agent-based simulation, which was thought to be due to delays in exposure of 

cells, and the entities within each cell. The agent-based models also predicted lower 

maximal fold changes in activity when compared to uninduced systems, which may 

have been related to the delayed response times. The agent-based models also 
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allowed for prediction of variation across cells within the same system. It was observed 

that the potential for heterogeneity in terms of behaviour could be significant, even 

within monoculture. 

 Simulating the multi-microbial biosensor 

Simbiotics was used to predict behaviour of the multi-microbial biosensor by modelling 

systems with all three module types. As with the mono-culture simulations, systems 

were limited to 300 cells. Initially, a multi-microbial system consisting of each cell type 

present in equal amounts (i.e. 100 of each cell type) was simulated. The agent-based 

model predicted that the detector cells would exhibit behaviour similar to that seen in 

homogenous culture, but that the processor and reporter cells would not produce a 

signal above the background noise (Figure 4.15 (A)). The amount of C12-HSL 

produced by uninduced detector cells was above the predicted saturation limit for 

processor cells (Figure 4.15 (B)), and hence additional production of C12-HSL by the 

induced detector cells would not have caused a difference in activation of the processor 

cells. This meant that there was no fold change in amount of C4-HSL produced by the 

processor cells when co-cultured with induced or uninduced detector cells (Figure 4.15 

 

Figure 4.16. Visual Representation of the Cell Ratio Design Space 

The cell ratios used in each simulation were visualised on a ternary plot, where each axis 
represented the number of detector, processor, and reporter cells. The cell ratios used are 
shown as white crosses. The dashed grey lines show stoichiometric boundaries, where the 
amounts of two cell types are present in equal amounts. 
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(C)). As the levels of C4-HSL were predicted to be the same in both induced and 

uninduced samples, the reporter cells were also predicted to show no difference in 

terms of response (sfGFP production). This pattern could also be seen at the single-

cell level, where differences were only apparent in the detector cells (Figure 4.15 (D)). 

 

 

Figure 4.17. Impact of Cell Ratios on Module Behaviour 

Fold change in fluorescent protein production for systems induced with 20 mM IPTG 
compared to uninduced systems. Each horizontal line of the lasagna plots shows the 
average fold change (of 4 replicates) for a system with a specific cell ratio over 20 hours. 
Fold change is visualised using an asymmetrical colour scale. The colour scale is centred 
on 1.0 (white colour), and ranges from the minimum value (red) to the maximum value 
(blue). A red cross ( ) indicates that no values fell within that range of the colour scale. 
Fold change values are for eCFP production by detector cells (A-C), mCherry production 
by processor cells (D-F), or sfGFP production by reporter cells (G-I). Systems are ordered 
by increasing number of detector cells (A, D, G), processor cells (B, E, H) or reporter cells 
(C, F, I). 
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Synthetic multi-microbial communities have an easily accessible design space which 

is absent from systems composed of only one cell type. This design space is that of 

 

Figure 4.18. Identifying Optimal Cell Ratios 

Potentially functional biosensor systems were identified using ternary plots. (A-B) Ternary 
plots showing the cell ratios used in simulations. Dots are coloured according to fold 
change in either mCherry (A) or sfGFP (B) production for systems induced with 20 mM 
IPTG relative to uninduced systems. An asymmetrical colour scale was used centred on 
1.0 (white colour), ranging from the minimum value (red) to the maximum value (blue). 
White arrows show a selection of cell ratios which gave a positive fold change in both 
mCherry and sfGFP. (C) Fold change in eCFP, mCherry, and sfGFP production for 
systems with cell ratios indicated by white arrows in (A) and (B). Fold change values for 
each fluorescent protein were plotted on Y-axes with different scales. Error bars show 
standard deviation of 4 replicates centred on the mean value. 
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cell ratios, where the initial proportion of each cell type in the system can be modified. 

By modifying the ratios of each cell type in the modular, multi-microbial biosensor may 

have allowed for optimisation of the system, resulting in a functional biosensor, rather 

than the non-functional system predicted by the agent-based model. To this end, the 

model presented above was simulated a number of times with different  

proportions of each cell type. The cell ratios were chosen to ensure the design space 

was explored fully, as visualised in Figure 4.16. 

 

Results from simulations using each cell ratio are shown in Figure 4.17, where the 

systems were ordered by number of detector, processor, and reporter cells present. 

Activity was determined as the fold change in eCFP, mCherry, and sfGFP for systems 

induced with 20 mM of IPTG relative to uninduced systems, and visualised using an 

asymmetrical, 2-tone colour scale centred on a fold change of 1.0. The simulation 

results suggested that there was little impact of cell ratios on the behaviour of detector 

cells (Figure 4.17 (A-C)), but there appeared to be an effect on the activity of the 

processor and reporter cells (Figure 4.17 (D-I)). The detector cells were likely not 

impacted as their functionality was not impacted by the other cell types in the system, 

whereas activation of the processor and reporter cells was dependent on the amount 

of quorum sensing molecules produced by the other cells. Whilst the activity of 

processor and reporter cells appeared to be impacted by the cell ratios, there was not 

a noticeable correlation between the amount of each cell type and fold change in 

fluorescent protein production. To help visualise the data across the entire design 

space, the fold change values at 20 hours post induction were graphed on ternary plots, 

with each axis representing the amount of detector, processor, or reporter cells in the 

system (Figure 4.18 (A-B)). Although a noticeable trend remained absent, the ternary 

plots allowed for easier identification of cell ratios predicted to have a positive fold 

change for both mCherry and sfGFP production. Six of these cell ratios were selected, 

and fold change over time was plotted for eCFP (detector cells), mCherry (processor 

cells), and sfGFP (reporter cells) (Figure 4.18 (C)). The time course graphs showed 

that although there was an average increase in fluorescence protein production 

predicted, there was sufficient variation between repeated simulations of the same 

system that the fold change increases were not significant. 

 



180 
 

To help better determine module activity outside of the noise, fold change was re-

calculated as before, but this time using the repeat with the highest and lowest value 

for the control (uninduced) and sample (induced) respectively. For both the processor 

and reporter cells, a positive fold change increase was not predicted for any cell ratio, 

however a correlation between number of cells and module activity was identified. The 

correlation for mCherry production by the processor cells is shown in Figure 4.19. For 

both the lasagna and ternary plots (Figure 4.19 (A-B)), it can be seen that smaller fold 

changes tended to result from systems with fewer processor cells, whereas systems 

with a higher number of processors exhibited fold changes closer to 1. Figure 4.19 (C) 

shows this trend with a 2nd degree polynomial line fitted to the data. The correlation 

indicates that whist there does appear to be a correlation between number of 

 

Figure 4.19. Processor Cells Activity Above Noise 

Impact of cell ratios on the fold change activity for processor cells. Here, fold change was 
calculated at each time point using the maximum value from the uninduced systems, and 
the minimum value from the induced systems. For (A-B), fold change is visualised using an 
asymmetrical colour scale. The colour scale is centred on 1.0 (white colour), and ranges 
from the minimum value (red) to the maximum value (blue). A red cross ( ) indicates that 
no values fell within that range of the colour scale. (A) Lasagna plot showing mCherry fold 
change over time. Systems were ordered by the number of processor cells. (B) Ternary 
plot showing mCherry fold change 20 hours post induction. (C-E) Scatter plots visualising 
the relationship between the number of processor cells and fold change in mCherry 
production after 20 hours. The dependent variable was number of processor cells for (C), 
relative number of processors compared to the number of detectors for (D), and the 
number of processor cells relative to the number of reporter cells for (E). The curve of best 
fit was calculated as a 2nd degree polynomial curve as described in section 2.5.2. The r2 for 
each curve is shown on the plots. 
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processors and mCherry fold change, the correlation is only moderate with an r2 of 

0.84. To determine whether the number of detector and reporter cells had a 

confounding effect on the behaviour of the processor cells, scatter plots with fitted lines 

were also generated for the number of processors relative to the number of detectors 

and reporters against fold change in mCherry (Figure 4.19 (D-E)). This showed that 

the agent-based model predicted a positive correlation between the relative number of 

processors compared to detectors, although again the strength of this correlation was 

not strong (r2 = 0.845). There was, however, no noteworthy correlation between the 

number of processor relative to the number of reporters and the fold change in mCherry. 

These observations were likely due to the unidirectional communication from detector 

to processor cells, which was designed to have a direct impact on the processor cells’ 

activity, whereas the reporter cells could not directly impact the processors. 

 

For the reporter cells, a similar trend to that observed with the processor cells was 

observed (Figure 4.20), whereby more reporter cells seemed to be correlated with a 

fold change in sfGFP closer to 1. However, this trend was less obvious from the 

lasagna and ternary plots (Figure 4.20 (A-B)), and the 2nd degree polynomial line of 

best fit for number of reporter cells against sfGFP fold change was weaker than that 

observed for processor cells vs mCherry fold change, with an r2 of 0.809 (Figure 4.20 

(C)). Additionally, the correlation for relative number of reporter cells (compared to the 

number of detector or processor cells) against sfGFP fold change was found to be 

weak to non-existent (Figure 4.20 (E)), which may be indicative of the fact that the 

reporter cells’ behaviour was dependent on not only the processor cells, which directly 

influence the reporters’ activity, but also on the detector cells which had both indirect 

(via activation of the processor cells) and direct (via quorum sensing cross-talk) 

interactions with the reporters. 

 

The results presented throughout this sub-section indicated that there may be the 

potential to influence behaviour of the multi-microbial biosensor system via the design 

space of cell ratios. However, the agent-based model also predicted that the majority 

of any signal would be lost to background noise. 
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Figure 4.20. Reporter Cells Activity Above Noise 

Impact of cell ratios on the fold change activity for reporter cells. Here, fold change was 
calculated at each time point using the maximum value from the uninduced systems, and 
the minimum value from the induced systems. For (A-B), fold change is visualised using an 
asymmetrical colour scale. The colour scale is centred on 1.0 (white colour), and ranges 
from the minimum value (red) to the maximum value (blue). A red cross ( ) indicates that 
no values fell within that range of the colour scale. (A) Lasagna plot showing sfGFP fold 
change over time. Systems were ordered by the number of reporter cells. (B) Ternary plot 
showing sfGFP fold change 20 hours post induction. (C-E) Scatter plots visualising the 
relationship between the number of reporter cells and fold change in sfGFP production 
after 20 hours. The dependent variable was number of reporter cells for (C), relative 
number of reporters compared to the number of detectors for (D), and the number of 
reporter cells relative to the number of processor cells for (E). The curve of best fit was 
calculated as a 2nd degree polynomial curve as described in section 2.5.2. The r2 for each 
curve is shown on the plots. 
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 Conclusions and Next Steps 

In this chapter, modular designs for a proof-of-concept multi-microbial biosensor were 

presented and discussed, including engineering intercellular communication interfaces 

between each module. Results from computational modelling of this biosensor system 

indicated that individually, each module should function as expected, and 

discrepancies between purely deterministic and agent-based modelling of the modules 

were highlighted. Specifically, the agent-based model predicted slower response times 

to induction, which were thought to arise from inclusion of inducer diffusion both 

throughout the extracellular environment, and into/out of the cells. The agent-based 

model was also used to gain insight into potential heterogeneity between cells in 

monoculture. The simulation results suggested that greater heterogeneity would be 

apparent when systems were induced with concentrations above the sensitivity 

threshold, but below the saturation point, although variation between cells was 

observed for systems containing any amount of inducer. 

 

Parameters used by the models were acquired through either literature or estimation, 

and although this is common practice within the field[77], [171], [321], the quantitative 

simulation results may have inaccuracies. Therefore, in order to gain more accurate 

predictions about the biosensor system and modules, experimental parameterisation 

should be completed[322]. This could include a sensitivity analysis of each parameter to 

determine which have the most impact on the simulation results, and hence identify 

the most important parameters to have accurate values[323]. Experimental 

parameterisation could then be accomplished with approaches including genetic 

algorithms, where parameter values which lead to simulation results matching most 

closely to experimental data could be determined[324]. The use of experimentally 

determined parameter values would then lead to more accurate simulation data, and 

hence more useful insights. 

 

Regardless of the limitations above, results generated by simulation of the agent-

based, multi-microbial biosensor model provided useful insights into functionality of the 

system. Simulation results predicted that whilst each module should function 

individually, when mixed in a co-culture the biosensor would be non-functional. This 

appeared to be due to background synthesis of AHL quorum sensing molecules by the 

detector and processor cells in the absence of any inducer. High levels of background 
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AHL synthesis could result in saturation of downstream module responses, and hence 

inducing the biosensor would have no impact. In this way, background noise could 

propagate through the system in the form of AHL accumulation. 

 

The above predictions prompted exploration of the design space of cell ratios as a 

method of system optimisation. It was hypothesised that modifying the proportions of 

cells in the co-culture may allow for reduced AHL accumulation and background 

induction by either decreasing the amount of AHL synthesisers, increasing the number 

of AHL receivers to prevent saturation, or a combination of both. Whilst no functional 

system was predicted for any cell ratio simulated, it was found that the relative amounts 

of each cell had an impact on biosensor behaviour, which provided guidance for 

experimental optimisation of the system. 

  



185 
 

 Development and Validation of a Modular and Multi-

Microbial Biosensor 

 

Chapter 4 presented the design for a proof-of-concept biosensor, along with results of 

computational modelling to help predict behaviour of each module and the biosensor 

as a whole. In this chapter, results from experimental characterisation are presented 

and discussed. Section 5.2 focuses on characterisation of each biosensor module’s 

behaviour in response to their canonical inducer, as well as determining potential cross 

talk between modules and validation that the detector and processor modules confer 

AHL production capabilities. Section 5.3 presents results from co-culture experiments, 

where propagation of noise through the system was first investigated, based on results 

gathered from the agent-based model, before testing the proof-of-concept modular, 

multi-microbial biosensor as a whole. The final section (5.4) concludes the outcomes 

and findings from this chapter and discusses next steps for optimisation of the proof-

of-concept biosensor, which are explored further in chapter 6. 

 Introduction 

 Standard calibration of plate reader data 

The characterisation of many synthetic biology devices and systems tend to rely 

heavily on data collected by a microplate reader. This is partially due to synthetic 

biology devices often including fluorescent proteins as markers for determining 

behaviour of a system by either acting as a final output of the system, or to indicate 

expression of another element in the system via co-transcription or -translation[294]. 

Using a plate reader to measure fluorescent intensity of samples allows for 

determination of expression, as higher expression leads to more fluorescent protein 

and thus an increase in fluorescent signal. For systems involving cells, measurement 

of optical density at 600 nm is often used as a proxy for the density of cells in a sample 

and to determine cellular growth, as more cells results in increased light scattering. 

 

The units in which plate readers report data are arbitrary and not directly comparable 

between different instruments, leading to difficulties to reproducibility[325] These 

comparability issues can be mitigated to some extent by making the data relative to a 

control sample, however this has been shown to be sub-optimal as the quality and 

reproducibility of such data is highly dependent on the quality of the controls used[326].  
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Additionally, the most appropriate type of controls can vary between experiments. 

Instead, it is possible to use standard calibrants to calibrate arbitrary units reported by 

a plate reader to absolute units, which can be directly compared and allows for much 

easier detection of failed or deviant samples and controls. There are currently standard 

calibrants defined for fluorescent proteins in the blue, green, and red sections of the 

spectrum[63]. These calibrants are cascade blue for blue fluorescent proteins, 

sulforhodamine-101 for red fluorescent proteins, and fluoresceine for green fluorescent 

proteins. By preparing serial dilutions of these calibrants and measuring fluorescence 

using the same settings to be used for the experimental samples, a standard curve 

can be determined and used to calculate a conversion factor for arbitrary units to 

absolute units. The absolute units are termed ‘Molecules of Equivalent Cascade Blue’ 

(MECB), ‘Molecules of Equivalent sulforhodamine-101’ (MESR), and ‘Molecules of 

Equivalent Fluorescein’ (MEFL), depending on the calibrant used. Similarly, 

microspheres with a radius approximately the same as the cells being measured can 

be used to calibrate OD600 readings, allowing for the number of cells to be reported 

as ‘number of equivalent microsphere particles’. 

 

Figure 5.1. Cell Module Growth Rates 

Growth rates of E. coli DH5α cells expressing one of the three biosensor modules. Error 
bars are +/- standard error of replicates centred on the mean. Individual points represent 
each replicate. (A) Growth curves for uninduced IPTG detector cells, default processor 
cells, and sfGFP reporter cells. Untransformed E. coli cells were included as a control. (B-
C) Growth rates of default processor cells (B) and sfGFP reporter cells (C) in the presence 
of DMSO. Cells without DMSO as presented in (A) are shown as a control. 
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 Flow cytometry for multi-microbial cultures 

Whilst plate readers can provide bulk measurements for a sample, it is not possible to 

determine heterogeneity within the sample and distinguish between different cell types 

within a mixed-microbial system. For many experiments these bulk measurements 

which assume homogeneity are sufficient to determine overall behaviour of a system, 

however for other systems where heterogeneity needs to be measured, single-cell 

measurement techniques are required[327]. Flow cytometry is one such technique, 

where cells are flowed through a set of lasers one at a time, allowing for attributes 

including fluorescence of individual cells to be measured apart from other cells in the 

sample. This allows for different populations of cells, which exhibit different levels of 

fluorescence, fluorescence at different wavelengths, and different shapes, to be 

determined. Flow cytometry has been successfully applied to the analysis of multi-

microbial communities previously, including determining the microbial composition of 

a natural community by the shapes of cells present[328]. There have also been studies 

which have shown heterogeneity in monocultures using flow cytometry, highlighting 

the importance of singe cell analysis[329]. However, flow cytometry is a destructive 

method of analysis and more expensive compared to plate readers. Therefore, plate 

readers are still useful for making many measurements of a system over a time course.  
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 Initial Biosensor Module Characterisation 

The behaviour of the IPTG detector, default processor, and sfGFP modules was 

determined by measuring fold change in expression of a fluorescent marker of induced 

samples relative to uninduced samples. For all experiments, the detector, processor, 

and reporter cell types refer to Escherichia coli DH5α cells transformed with the IPTG 

detector with CFP (cyan fluorescent protein), default processor with mCherry, or sfGFP 

(superfolder green fluorescent protein) reporter modules respectively. Data collected 

in the first 2 hours of incubation were excluded as it was routinely found that 

measurements were at or below the limit of accurate detection for the equipment used. 

In all cases, raw data was converted to absolute units and processed according to the 

methods presented in section 2.7.1. 

 Characterising cell growth rates 

Prior to validation of module functionality, the growth rates of each cell type were 

measured and compared to untransformed E. coli DH5α cells. Each cell type was 

incubated in LB media overnight before being sub-cultured into fresh LB media in a 96 

well microplate. Cell cultures were shake incubated at 37oC for 20 hours in a plate 

reader, and absorbance readings were taken periodically to measure cell density. The 

complete experimental procedure is detailed in section 2.7.5. 

 

All cells were observed to reach exponential growth phase within 2 hours (Figure 3.7 

(A)), however, all three module types were found to have a slower growth rate than 

untransformed cells. This finding was expected, as the detector, processor, and 

reporter cells were likely to have a higher burden and experience increased stress 

compared to untransformed cells due to the inclusion of high copy number plasmids 

encoding additional proteins for expression. The expression of these additional 

proteins would have diverted resources away from normal cellular processes and 

hence reduce the rate at which cells were growing and dividing. Although the three cell 

types contained plasmids encoding different proteins, when uninduced the growth 

rates were found to be identical. This indicated that when in co-culture, the different 

cell types may also grow at similar rates which may reduce the chances of any cell 

type becoming outcompeted due to domination over resources by a faster growing cell 

type. 
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Both the processor and reporter cells were designed for induction by acyl-homoserine 

lactones (AHLs). Due to the low solubility of AHLs in water, dimethyl sulfoxide (DMSO) 

is commonly used as a solvent. However, it is known that DMSO can be toxic to E. coli 

cells at high amounts. Therefore, it was important to determine the impact DMSO 

would have on cell growth and determine the maximum percentage of DMSO which 

could be used. Figure 3.7 (B-C) shows the impact of adding 0.5, 1, and 10% of DMSO 

to processor and reporter cells. It was found that 10% DMSO severely impacted cell 

growth, whilst 0.5 and 1% had little overall effect. Therefore, a maximum of 1% DMSO 

was used for all following experiments. 
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Figure 5.2. IPTG Detector Module Dose-Response Characterisation 

Behaviour of the IPTG detector cells when induced with IPTG. Error bars show +/- standard error centred on the mean 
of 3 or 4 replicates. The IPTG concentration shown in dark red indicates an outlier in the data. (A) The time course 
curve shows average eCFP fluorescence per cell (reported as molecules of equivalent cascade blue (MECB) per 
equivalent microsphere particles) over time. Autofluorescence of untransformed cells and uninduced IPTG detector 
cells were used as controls. Inset shows a zoomed-in portion of the plot. (B) Time course curve of fold change in eCFP 
fluorescence over 20 hours for induced detector cells induced with IPTG relative to uninduced cells. Background noise 
was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point, 
relative to the mean fluorescence for all uninduced cells. (C) Dose-response curve for the detector cells at 5, 7, and 20 
hours post induction. Coloured boxes show the sensitivity limit at each time point, which was calculated as a fold 
change of 1.0 plus standard deviation of the negative control. 
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 IPTG detector module: dose-response behaviour 

Following initial characterisation of each cell type’s growth rate, the behaviour of each 

module when induced by their canonical inducer was determined. To perform initial 

validation of each module type, the cell types were prepared separately before using 

a liquid handler to sub-culture into a 96-well microplate in the presence and absence 

of the relevant inducer. The concentrations used for each inducer were determined 

based on both previously reported experiments for similar systems[151], [330], and results 

from both the deterministic and agent-based models presented in chapter 4. The 

microplate was then incubated with shaking at 37oC, and fluorescence and absorbance 

readings were taken periodically to measure fold change in fluorescent marker 

production and cell growth. The complete experimental procedure is detailed section 

2.7.6. 

 

For the IPTG detector cells, an increase in cyan fluorescence was observed when 

induced with IPTG compared to uninduced cells (Figure 5.2). This indicated expected 

behaviour, where the presence of IPTG allowed for un-repression of the PLac promoter 

and increased expression of eCFP. As LasI was designed to be co-expressed with 

eCFP, it was therefore assumed that LasI expression, and thus C12-HSL synthesis, 

increased similarly. However, in the first 5 hours of measurement, no difference could 

be observed in fluorescence of induced and un-induced cells (Figure 5.2 (A)). 

Additionally, a decrease over time in fluorescence per cell was observed. These results 

indicated that eCFP production in the first 5 hours was low, and fluorescence was 

below the limit of detection. The decrease in fluorescence per cell also indicated that 

initially, cell growth was faster than eCFP production. This conclusion is in accordance 

with the growth curves shown in Figure 3.7 (A), as the detector cells remained in 

exponential growth until around 4-6 hours, after which time the increase in number of 

cells plateaued. 
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Figure 5.3. Impact of Induction on IPTG Detector Cell Growth 

Data showing the impact induction at different levels has on cell growth. Error bars show standard error of 3 to 4 replicates centred on the 
mean. Data points show results of individual replicates. (A) Time course curve over 20 hours. Coloured lines show samples grown in the 
presence of an inducer. Dashed black lines show cells grown in the presence of water only. (B) Dose-response curves for detector cells, 
where the response was measured as cell density relative to uninduced control cells at 2, 4, 6, and 20 hours post induction. Grey boxes 
show +/- standard deviation of the uninduced control cells. 
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Generally, an increase in concentration of IPTG correlated with an increase in eCFP 

production over time (Figure 5.2 (A-C)). An exception to this was 0.3125 mM IPTG, 

which showed fluorescence values outside of the established trend (Figure 5.2 (A-B) 

and section 9.10). This was assumed to be an outlier caused by either inaccurate 

pipetting or insufficient mixing by the automated liquid handler. Aside from this 

erroneous result, a clear dose-response curve had emerged by 7 hours post induction, 

with a sloping region (i.e., the range of concentrations at which signal correlated with 

dosage) between approximately 0.01 and 0.04 mM IPTG (Figure 5.2 (C)). The limit of 

sensitivity was lowered to 0.005 mM IPTG by 20 hours post induction, with the 

saturation point also decreasing to approximately 0.02 mM. From this data, it can be 

seen that the operational range of the IPTG detector cells was small, with high 

sensitivity relative to the concentrations tested. However, the dynamic range was also 

found to be low, with a maximum fold change in fluorescence of approximately 1.7 after 

20 hours of growth. 

 

The growth rate of IPTG detector cells in the presence of increasing IPTG 

concentrations were analysed to determine the impact that induction had on the overall 

growth rates. Although there appeared to be a slightly lower number of cells at the end 

of the experiment for cultures exposed to the higher concentrations of IPTG (Figure 

5.3 (A)), no significant trend was identified (Figure 5.3 (B)). 

 

The fold change in eCFP production (measured as a change in fluorescence 

experimentally) was compared to simulated data collected from the deterministic and 

agent-based models presented in chapter 4 (Figure 5.4). It was observed that both 

model types generally over-estimated the fold change in eCFP production. Additionally, 

 

Figure 5.4. Simulated vs. Experimental Data for IPTG Detector Module 

Comparison of data collected experimentally, by deterministic simulation (section 4.3), and 
by agent-based simulation (section 4.4). (A) Time course curve of fold change in eCFP 
when detector cells were induced with 10 mM IPTG. (B-C) Dose-response curve of IPTG 
concentration against eCFP fold change at 10 hours (B) and 20 hours (C) post induction. 

  perimental Deterministic  gent Based

    B    



195 
 

whilst both model types predicted that after 20 hours the fold change signal would 

continue to increase, experimentally the signal plateaued after approximately 7 to 8 

hours (Figure 5.4 (A)). Both models predicted that the IPTG detector module would be 

less sensitive than observed experimentally (Figure 5.4 (B-C)). 

 Default processor module: dose-response behaviour 

The experiment described in the previous sub-section was repeated for the default 

processor cells. mCherry fluorescence per cell increased over time, and induction with 

higher concentrations of C12-HSL appeared to result in higher mCherry production 

(Figure 5.5 (A)). Additionally, the change in mCherry production appeared to occur in 

three stages. Firstly, there was an increase in fluorescence in the first 4 hours, which 

is more obvious in cultures inducted with C12-HSL above 2 μM. After this initial 

increase, fluorescence remained relatively stable for an additional 8 to 10 hours, after 

which mCherry production appeared to begin increasing rapidly, where once again 

cultures induced with higher concentrations of C12-HSL exhibited higher rates of 

production. The uninduced sample also exhibited this behaviour; based on results from 

the default processor module in chapter 4, this could be due to the positive feedback 

loop in the processor’s design, where leaky expression of rhlI lead to accumulation of 

C4-HSL and additional activation of PLas. This increase in fluorescence exhibited by 

uninduced cells seemed to be delayed compared to cells induced with higher 

concentrations of C12-HSL. The delayed accumulation of mCherry by uninduced 

processor cells compared to cells induced with concentrations of C12-HSL above 2 

μM results in the fold-change signal forming a 3rd degree polynomial (Figure 5.5 (B)). 

When these higher concentrations of C12-HSL were used for induction, a peak in 

signal at around 8 to 10 hours occurred, after which a decrease in fold change was 

observed. This indicated that the default processor module may not be suitable for use 

in systems required to function for longer than 10 hours as background expression can 

cause increased noise and reduced signal. 
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Figure 5.5. Default Processor Module Dose-Response Characterisation 

Behaviour of the default processor cells when induced with C12-HSL. Error bars show +/- standard error centred on the mean of 3 or 4 
replicates. (A) The time course curve shows average mCherry fluorescence per cell (reported as molecules of equivalent 
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sulforhodamine-101 (MESR) per equivalent microsphere particles) over time. Autofluorescence of untransformed cells and uninduced 
default processor cells were used as controls. (B) Time course curve of fold change in mCherry fluorescence over 20 hours for 
processor cells induced with C12-HSL relative to uninduced cells. Background noise was calculated as the maximum and minimum 
calibrated fluorescence values from uninduced cells at each time point, relative to the mean fluorescence for all uninduced cells. The 
dotted black line is a 3rd degree polynomial curve fitted to data collected from cells induced with 50 mM C12-HSL, with an r2 of 0.929. 
(C) Dose-response curve for the processor cells at 5, 10, and 20 hours post induction. Coloured boxes show the sensitivity limit at each 
time point, which was calculated as a fold change of 1.0 plus standard deviation of the negative control. 
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The sensitivity of default processor cells was determined from dose-response curves 

(Figure 5.5 (C)). For all curves after 5 hours post induction, the limit of sensitivity was 

approximately 10e-4 μM C12-HSL. At 5 hours post induction, a dynamic range of almost 

3-fold was observed, with a saturation point at 10 μM C12-HSL. At 10 and 20 hours 

post induction, the maximal dynamic range was observed to be 4.6- and 3.75-fold 

respectively. When measuring fluorescence 20 hours post induction, the signal 

saturation point was reached after induction with approximately 0.2 μM C12-HSL, 

whereas the sloping region continued to 10 μM for measurements taken at 10 hours. 

This was likely due to the decrease in signal relative to uninduced cells after 10 hours 

observed in Figure 5.5 (D). 

 

For measurements taken at both 10 and 20 hours, induction with 20 μM C12-HSL 

showed a notably lower fold change in fluorescence compared to 10 μM C12-HSL. The 

reason for this was identified by analysis of growth rates for processor cells in the 

presence of different C12-HSL concentrations (Figure 5.6). It was found that induction 

of cells with concentrations of C12-HSL above 0.02 μM resulted in reduced cell density, 

and a slower rate of growth, with the most dramatic impact observed for induction with 

20 μM C12-HSL. As time progressed, the difference in cell density between all samples 

decreased as stationary phase was reached. The AHL inducers were prepared by 

serial dilution, which meant the total volume of DMSO added was identical for all 

samples. Therefore, the decrease in growth rate could not be due to DMSO toxicity, 

as all samples should have been affected by the presence of DMSO in the same way. 

Thus, there was a potential that decreased cell growth was due to increased production 

of mCherry and RhlI resulting in increased burden and stress on the cells. Such burden 

has been well documented and is known to negatively impact a system’s functionality 

[331], [332].
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Figure 5.6. Impact of Induction on Default Processor Cell Growth 

Data showing the impact induction at different levels has on cell growth. Error bars show standard error of at least 3 replicates centred on 
the mean. Data points show results of individual replicates. (A) Time course curve over 20 hours. Coloured lines show samples grown in 
the presence of C12-HSL. The dashed black line show cells grown in the presence of DMSO only. (B) Dose-response curves for processor 
cells, where the response was measured as cell density relative to uninduced control cells at 2, 4, 6, and 20 hours post induction. Grey 
boxes show +/- standard deviation of the uninduced control cells. 
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Predictions made by the processor models in chapter 4 were compared to the 

experimental characterisation data to determine simulation accuracy (Figure 5.7). 

Whilst both model types correctly predicted that fold change in mCherry production 

would peak before decreasing (Figure 5.7 (A)), it was found that the agent-based 

model underestimated the observed fold change across the range of concentrations of 

C12-HSL tested (Figure 5.7(B-D)). Additionally, the agent-based model predicted that 

the processor module would be less sensitive than was observed experimentally. 

Whilst the deterministic processor model also predicted a lower sensitivity than was 

observed, the simulated fold change values were much closer to the observed values. 

The deterministic model also predicted that the peak and subsequent decrease in 

signal would occur earlier than was observed. Nevertheless, overall, the deterministic 

model appeared to be better at predicting behaviour of the processor module than the 

agent-based approach. This may have been due to the parameter used in the agent-

based model for diffusion of C12-HSL into/out of the cells, as this parameter was 

largely based on assumptions and therefore may have been an underestimate. A lower 

diffusion parameter would have meant decreased amounts of C12-HSL passing into 

the cells, and hence reduced activation of LasR leading to the smaller fold change in 

mCherry production predicted by the model.

 

Figure 5.7. Simulated vs. Experimental Data for Default Processor Module 

Comparison of data collected experimentally, by deterministic simulation (section 4.3), and 
by agent-based simulation (section 4.4). (A) Time course curve of fold change in mCherry 
when processor cells were induced with 10 μM C12-HSL. (B-D) Dose-response curve of 
C12-HSL concentration against mCherry fold change at 5 hours (B), 10 hours (C), and 20 
hours (D) post induction. 

  perimental Deterministic  gent Based
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Figure 5.8. sfGFP Reporter Module Dose-Response Characterisation 

Behaviour of the sfGFP reporter cells when induced with C4-HSL. Error bars show +/- standard error centred on the mean of 3 or 4 
replicates. (A) The time course curve shows average sfGFP fluorescence per cell (reported as molecules of equivalent fluorescein (MEFL) 
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per equivalent microsphere particles) over time. Autofluorescence of untransformed cells and uninduced sfGFP reporter cells were used as 
controls. (B) Time course curve of fold change in sfGFP fluorescence over 20 hours for processor cells induced with C4-HSL relative to 
uninduced cells. Background noise was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at 
each time point, relative to the mean fluorescence for all uninduced cells. (C) Dose-response curve for the reporter cells at 3, 10, and 20 
hours post induction. Coloured boxes show the sensitivity limit at each time point, which was calculated as a fold change of 1.0 plus 
standard deviation of the negative control. 
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 sfGFP reporter module: dose-response behaviour 

Behaviour of the sfGFP reporter cells was determined experimentally by measuring 

fluorescence and optical density over time of cultures induced with differing 

concentrations of C4-HSL, and in much the same way as the detector and processor 

cells were characterised. When induced with a sufficient concentration of C4-HSL, the 

reporter cells displayed increased green fluorescence, as expected Figure 5.8 (A-B). 

When higher concentrations of C4-HSL were used, the fold change signal was found 

to plateau after 16 to 18 hours; for lower concentrations of C4-HSL (below 0.4 μM), 

this plateau was observed earlier. 

 

The maximal fold change observed experimentally with reporter cells was higher than 

seen with detector and processor cells, which was likely due to the high expression 

and low leakiness exhibited by the PRhl promoter, as discussed in chapter 4. It was 

also found that even 20 hours post induction with 50 μM C4-HSL, the signal saturation 

limit had not been reached (Figure 5.8 (C)). For the experimental setup used here, it 

was not feasible to add more than 50 μM C4-HSL due to solubility of the AHL in DMSO, 

and the toxicity of DMSO to E. coli cells. At 3 hours post induction, it can be seen that 

the system signal was saturated at a C4-HSL concentration of approximately 2 μM, 

however the dynamic range was much smaller than when measured at later time points 

(~2-fold at 3 hours compared to ~28-fold at 20 hours). 

 

Unlike the processor cells, higher concentrations of AHL used for induction did not 

appear to cause any drop in signal. This indicated that induction of reporter cells with 

high amounts of C4-HSL did not impact cell growth in the same way that high induction 

of the processor cells did. Results shown in Figure 5.9 confirm this, where no significant 

reduction in cell density or growth rate was observed with increasing C4-HSL 

concentrations. 
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Figure 5.9. Impact of Induction on sfGFP Reporter Cell Growth 

Data showing the impact induction at different levels has on cell growth. Error bars show standard error of 3 to 4 replicates centred on the 
mean. (A) Time course curve over 20 hours. Coloured lines show samples grown in the presence of C12-HSL. The dashed black line 
show cells grown in the presence of DMSO only.  Data points show results of individual replicates. (B) Dose-response curves for 
processor cells, where the response was measured as cell density relative to uninduced control cells at 2, 4, 6, and 20 hours post 
induction. Grey boxes show +/- standard deviation of the uninduced control cells. 
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Both model types presented in chapter 4 predicted that the sfGFP reporter module 

would show the highest levels of fold change in fluorescent protein production. Whilst 

this prediction was accurate, the deterministic and agent-based reporter modules 

predicted a far higher maximal fold change than was observed experimentally 

(approximately 1000- to 2000- fold compared to below than 30-fold) (Figure 5.10). 

Additionally, it was observed that sfGFP fold change had stopped increasing by 20 

hours post induction, whilst the models predicted that the signal would continue to 

increase. However, despite the large differences in predicted and observed fold 

change values, the dose response curves predicted by both models showed 

similarities to the observed curve, with almost identical sensitivity limits at different time 

points (Figure 5.10 (B-C)), and the lack of a definitive saturation point 20 hours post 

induction (Figure 5.10 (C) and Figure 5.8 (C)), although there it appears that the 

saturation point may be approaching at 50 μM C4-HSL induction, as can be seen more 

easily when fold change was plotted on a log scale as shown in Figure 5.10 (C). 

Additionally, a saturation point was observed experimentally at 3 hours post induction, 

which was absent in either of the models. This suggests that whilst the models were 

 

Figure 5.10. Simulated vs. Experimental Data for sfGFP Reporter Module 

Comparison of data collected experimentally, by deterministic simulation (section 4.3), and 
by agent-based simulation (section 4.4). (A) Time course curve of fold change in sfGFP 
when reporter cells were induced with 10 μM C4-HSL. (B-C) Dose-response curve of C4-
HSL concentration against mCherry fold change on a log10 scale at 3 hours (B) and 20 
hours (C) post induction. 
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accurate in their prediction of sensitivity, parameters related to the kinetics of sfGFP 

production over time were inaccurate, especially with regard to the overall fold change 

compared to uninduced samples. The higher fold change values were likely due to 

either an underestimation of background noise exhibited by the PRhl promoter in the 

reporter module design, or an overestimation of expression levels from activated PRhl. 

 Cross talk between module inducers 

Whilst C12-HSL and C4-HSL were selected as the intercellular chemical 

communication molecules due to reports of high orthogonality, cross talk has been 

previously reported as discussed in chapter 4. Additionally, although IPTG is not known 

to interact in any meaningful way with any of the genetic elements or proteins used for 

the processor or reporter modules, it was important to ensure that IPTG does not have 

any impact on the signal or behaviour of the processor and reporter cells. This would 

ensure that any signal produced by the processor or reporter cells when in co-culture 

with detector cells in the presence of IPTG was due to cellular communication, and not 

direct interaction with IPTG. Therefore, cross talk characterisation was performed for 

all three modules with IPTG, C12-HSL, and C4-HSL to (i) determine the level of 

communication between the detector and reporter cells, (ii) help further characterise 

the self-induction behaviour thought to occur in the processor cells, and (iii) validate 

that IPTG does not impact behaviour of the processor and reporter cells. 

 

When IPTG was used as the inducer, only the detector cells were found to be activated 

(Figure 5.11 (A, D G)). This confirmed that IPTG could not directly cause induction of 

the processor or reporter cells, and hence any activation observed during co-culture 

experiments was likely to be the result of uni-directional communication from the 

detector to processor to reporter cells. C12-HSL caused activation of the processor 

cells as seen previously (Figure 5.11 (E)), and also caused very low-level activation of 

the reporter cells, although the fold change magnitude did not appear to be dose 

dependent and hence may have been within natural noise and variation (Figure 5.11 

(H)). Unexpectedly, C12-HSL was observed to cause activation of the detector cells in 

a dose-dependent manner, with 10 μM C12-HSL resulting in almost 1.1-fold increase 

at 20 hours (Figure 5.11 (B)). However, as these values were very low, it was once 

again thought to be within variation between samples. 
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When C4-HSL was used to induce the detector cells, very low-level activation of the 

detector cells was also observed (Figure 5.11 (C)). The reporter cells induced with C4-

HSL showed behaviour in-line with results from the previous sub-section (Figure 5.11 

(I)), however the processor cells showed no activation (Figure 5.11 (F)). From the 

deterministic processor model in chapter 4, it was predicted that although non-specific 

activation of LasR with C4-HSL could occur, no signal would be observed due to the 

presence of background levels of C4-HSL produced by RhlI. Therefore, this 

observation was in line with previous predictions. 

 

The growth rates of all three cell types when grown in the presence of each inducer 

were visualised to determine whether there were any growth rate effects (Figure 5.12). 

It was found that for almost all cases, no impact on cell growth was observed. The only 

exception was for default processor cells in the presence of C12-HSL (Figure 5.12 (B)). 

This was in-line with the results discussed previously, where the growth rate of 

processor cells was found to be negatively correlated with induction by C12-HSL at 

increasing concentrations. Observations that neither the detector nor reporter cells 

were negatively impacted by the presence of C12-HSL, and that the processor’s 

growth remained unaffected by the addition of IPTG and C4-HSL, lent credibility to the 

hypothesis that induction of processor cells with C12-HSL was placing burden onto the 

cells. If the decreased growth rate was due to another factor, such as C12-HSL toxicity, 

this behaviour would be expected in cells other than the processors, like the IPTG 

detector and sfGFP reporter cells. 
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Figure 5.11. Characterising Module Cross Talk 

Behaviour of the IPTG detector, default processor, and sfGFP reporter modules was characterised when induced with IPTG, C12-HSL, 
and C4-HSL. Autofluorescence of untransformed cells and background fluorescence of uninduced cells were used as controls. 
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Uninduced cells were grown in the presence of water (the solvent used for IPTG) or DMSO (the solvent used for AHLs). The plots 
show time course curve for fold change in fluorescence of induced cells relative to non-induced cells. Error bars show +/- standard 
error centred on the mean of 3 or 4 replicates, except for reporter cells induced with 10 μM C4-HSL, which had 2 replicates. 
Background noise was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time 
point, relative to the mean fluorescence for all uninduced cells.   
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Figure 5.12. Impact of Inducers on Cell Growth 

The impact of all three inducers, IPTG (1 mM), C12-HSL (10 μM), and C4-HSL (10 μM) on the growth rates of (A) IPTG detector, (B) default 
processor, and (C) sfGFP reporter cells. The growth rates of untransformed cells and each cell type in the presence of water and DMSO are 
shown as controls. Error bars show +/- standard error centred on the mean of at least 3.   
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 Initial Multi-Microbial Biosensor Characterisation 

 Validating quorum sensing based intercellular communication 

In section 5.2, the responsiveness of each module to the presence of an inducer was 

described. Module response was measured as a fold change in fluorescence, which 

indicated expression of a fluorescent protein. For the detector and processor modules, 

the fluorescent protein was co-transcribed along with the AHL synthetase (LasI for the 

detector module and RhlI for the processor module), and so the detection of a 

fluorescent signal suggested that the AHL synthetase was also being expressed. 

However, it was possible that the AHL synthetase was not present due to issues with 

translation, or that the enzyme was non-functional and hence unable to synthesise the 

AHL molecule required for cell-to-cell communication. Therefore, it was necessary to 

confirm AHL production by the detector and processor cells. As the processor and 

reporter modules had been confirmed to respond in the presence of C12-HSL and C4-

HSL respectively, it was possible to utilise these modules as biosensors for AHL 

detection. 

 

The confirmation of production of AHLs by the detector and processor cells was initially 

planned to be visual. To achieve this, uninduced processor and reporter cells were 

spread onto LB agar plates. To the processor cell plates, 10 μL of supernatant from 

detector and untransformed cells induced with IPTG or water were spotted onto the 

centre of the plates. For the reporter cell plates, supernatant from processor and 

untransformed cells induced with C4-HSL or DMSO were used. In both cases, the 

untransformed cells were used as a negative control which should not have produced 

any AHL. The agar plates were then incubated for 18 hours at 37oC. The reporter cell 

plates were visualised under ultraviolet light and imaged with a UV filter in order to 

detect green fluorescence. It was expected that plates with supernatant from the 

processor cells and the positive control plates with C4-HSL added should show green 

fluorescence spreading from the centre, but the untransformed cells should show no 

fluorescence. This expectation was met (Figure 5.13 (A)), validating that the processor 

cells had synthesised C4-HSL which diffused into the extracellular environment. 

 

The processor cell plates were visualised under blue/green light and imaged using a 

filter for detection of red fluorescence. With the processor cell plates, no difference in 

red fluorescence was observed across all plates, and no ‘halo’ could be seen 
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expanding from the centre of any plates, including the positive control plate with C12-

HSL added (images not shown). It was possible that no difference in fluorescence 

could be seen due to processor cells exhibiting lower magnitude fold change values 

compared to reporter cells, as seen in section 5.2. Therefore, a different approach was 

taken to determine if detector cells were synthesising C12-HSL. Uninduced processor 

cells were added to LB media in wells of a 96-well plate, to which 1 μL of either DMSO, 

C12-HSL, or supernatant from detector or untransformed cells induced previously 

induced with IPTG was added (section 2.7.8). The processor cells were then incubated 

with shaking at 37oC for 20 hours, during which red fluorescence and optical density 

measurements were taken. From this experiment, it was observed that processor cells 

grown in the presence of detector cells induced with IPTG showed increased red 

fluorescence compared to cells grown with either C12-HSL or supernatant from 

untransformed cells (Figure 5.13 (B)). The results therefore suggested that the detector 

cells were producing C12-HSL, which accumulated in the media. 

 

 

Figure 5.13. Production of AHLs by Detector and Processor Cells 

Detector and processor cells were tested for production of AHLs. (A) C4-HSL production 
by processor cells. Uninduced sfGFP reporter cells were spread onto LB agar plates, and 
10 μL of supernatant from untransformed or default processor cells either induced with 
C12-HSL or uninduced were spotted onto the plate’s centre. Plates with C4-HSL and 
nothing added were used as positive and negative controls. Following incubation overnight 
at 37oC, the plates were visualised under UV light. Bright green halos appeared in the 
presence of supernatant from processor cells, but not untransformed cells. Images were 
false-coloured green, originals can be found in section 9.5. (B) C12-HSL production by 
detector cells. Uninduced processor cells were added to a 96 well microplate and induced 
with supernatant from detector and untransformed cells previously induced with IPTG. 
Processor cells were also induced with 10 μM C12-HSL and DMSO as positive and 
negative controls. Background noise was calculated as the maximum and minimum 
calibrated fluorescence values from uninduced cells at each time point, relative to the 
mean fluorescence for all uninduced cells. 
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Figure 5.14. Propagation of Noise During Intercellular Communication 

All module types were co-cultured in 2-population combinations. The sender cells (detector and processor) were not induced 
to determine background activation of receiver cells (processor and reporter). Error bars show +/- standard error centred on 
the mean of 3 or 4 replicates. Fold change was calculated as fluorescence of co-cultures relative to fluorescence from the 
receiver cells in monoculture. Receiver background noise (pink area) was calculated as the maximum and minimum 
calibrated fluorescence values from receiver cells in monoculture at each time point, relative to the mean fluorescence for all 
uninduced cells. (A) Processor and reporter cell co-cultures. (B) Detector and reporter cell co-cultures. (C) Detector and 
processor cell co-cultures. 
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 Measuring noise propagation 

The agent-based model presented in chapter 4 predicted that propagation of 

background noise may result in a non-functional biosensor. In biological systems, 

noise can propagate as a result of leaky expression. In the case of the biosensor 

system, background production of the AHL synthetases can lead to accumulation of 

AHLs, which are able to activate downstream modules. To determine the accuracy of 

this prediction, the ability for uninduced detector cells to activate processor cells, and 

uninduced processor cells to activate reporter cells, was investigated. In a 96 well plate, 

detector cells diluted to an OD600 of 1.0 were added to processor and reporter cells in 

at percentages of 0, 0.5, 1.0, 10, and 50 % v/v (volume of cells to final culture volume). 

Similarly, processor cells diluted to an OD600 of 1.0 were added to reporter cells in the 

percentages. For all co-cultures, the receiver cells (reporters or processors) were 

added at 1% v/v. The co-cultures were incubated in a 96-well plate at 37oC with shaking 

for 20 hours. Fluorescence and absorbance measurements were made at regular 

intervals. It should be noted that in previous experiments, fluorescence readings were 

corrected based on cell density to get an average fluorescence per cell. For the co-

cultures, this was not possible as there was no method to determine how many of each 

cell type was present at each time step. Therefore, the fluorescence values presented 

here were for the entire culture. 

 

When co-cultured with processor cells, sfGFP reporter cells showed increased 

fluorescence compared to uninduced monoculture (Figure 5.14 (A)). This indicated that 

background production of C4-HSL by the processor cells was sufficient to activate the 

reporter cells. Within the first 5 hours of culture, fluorescence fold change appeared to 

be correlated with the number of processor cells present, and an ‘S’-like dose-

response curve could be identified (Figure 5.15 (A)). This was not unexpected as more 

processor cells should have resulted in higher amounts of C4-HSL present, and hence 

increased sfGFP expression as seen previously. However, as time progressed, this 

correlation was lost. This may have been due to changes in the proportions of 

processor and reporter cells present if one cell type was able to outcompete the other. 

If this were the case then it was possible that as the stationary phase of growth 

approached (which was observed to occur between 5 and 6 hours in previous 

experiments), the proportion of processor and reporter cells became similar across all 

samples, no matter the starting amounts. Another possibility was that beyond 5 hours 
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background production of C4-HSL by processor cells in all samples had reached levels 

which were saturating the reporter cells’ response. There was also the possibility that 

the initial dose-response observed in the first 5 hours was an artifact from experimental 

setup, whereby C4-HSL was present in the media of the processor cells added to the 

initial cultures, and hence the addition of increasing volumes of processor cells 

unintentionally introduced different concentrations of AHL, which caused the initial 

response seen. Measures were taken to avoid this possibility, namely removing the 

liquid media used to culture the cells in overnight and then washing the cells in sterile 

water to remove any excess media, and hence any AHL present. However, it still 

remained a possibility that a non-significant amount of AHL was retained. 

 

Another feature of note in the time course data was that the sample containing 1% v/v 

of processor cells showed a large degree of variation, with all 4 repeats showing 

distinct time course curves. Each repeat was prepared in bulk before aliquoting into 

separate wells of the microplate, which should have removed the chance of each 

replicate containing different amounts of each cell type. However, as the cell growth 

curves also show similar variation (Figure 5.15 (B)), and this behaviour was not 

identified in other samples, error during experimental setup (such as improper mixing 

by the liquid handling robot of the bulk culture) seemed likely. 

 

 

Figure 5.15. Visualising Behavioural Features of Processor and Reporter Co-

Cultures 

The plots here visualise features of interest from the processor and reporter co-culture 
experiment. (A) Dose-response curve of processor cell percentage (v/v for volume of 
processor cells to final culture volume) and fold change in sfGFP fluorescence by the 
reporter cells in co-culture, relative to uninduced reporter cells in monoculture. Curves are 
shown for 3 time points. Coloured box shows limit of detection, calculated as 1 + standard 
deviation of uninduced reporter cells in monoculture. Error bars show standard error of 3 or 
4 replicates centred on the mean value. (B) Growth curves for two processor-reporter co-
cultures. Error bars show standard error of 3 or 4 replicates centred on the mean value. 
Individual points show cell density measurements for each replicate. 



216 
 

The presence of detector cells did not appear to result in any increased sfGFP 

expression by reporter cells (Figure 5.14 (B)), as expected based on results from 

crosstalk experiments (Figure 5.11 (bottom middle)), where it was concluded that C12-

HSL had no noticeable impact on reporter cell behaviour. However, increased 

percentages of detector cells did seem to cause a decrease in sfGFP production by 

reporter cells after 5 hours of co-culture. This may have been due to detector cells 

managing to outcompete reporter cells over time, and hence less reporter cells were 

present than in cultures with less detector cells. 

 

When detector and processor cells were co-cultured, in the majority of samples no 

increase in processor cell fluorescence was observed Figure 5.14 (C). As it was 

previously confirmed that detector cells were capable of producing C12-HSL, and 

processor cells were induced by the AHL, it was suspected that the uninduced detector 

cells simply produced C12-HSL below the processor cells’ limit of sensitivity. This 

would have been in opposition to the agent-based model predictions in chapter 4. 

Another possibility was that one of the cell types were outcompeted significantly by the 

other during co-culture. As it was found that the default processor cells appeared to 

have decreased growth rates when induced, it was possible that the presence of C12-

HSL produced by the detector cells resulted in slower growing processor cells, allowing 

for the amount of detector cells to increase. This would have led to even higher 

amounts of AHL, repressing processor growth further and so-on, such that not enough 

processor cells were present to generate a detectable signal. From the plate reader 

data, it was not possible to determine if this was the case, as growth curves of each 

cell type could not be obtained. It should be noted that 2 of the 50% detector + 10% 

processor co-cultures did show increased red fluorescence over time. However, as 

with the high-variation culture identified in the processor-reporter co-cultures, it was 

possible that this was simply a result of experimental setup, where more processor 

cells were present in these replicates than the remaining two. This possibility is 

supported by lower fluorescence in these other two replicates, suggesting an un-equal 

distribution of processor cells and poor mixing prior to replicate aliquoting by the liquid 

handling robot.
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Figure 5.16. Single Cell Analysis of Processor to Reporter Noise Propagation 

Analysis of processor-reporter co-cultures from the experiment shown in Figure 5.14 via flow cytometry after ~20 hours 
incubation. (A) 2D-scatter plot of side scatter height (SSC-H) vs green fluorescence. Green points show all reporter-
containing cultures. Grey dots show monocultures of untransformed cells. Data was segmented into four sections based 
on fluorescence. (A1) Non fluorescent cells. (A2) Cells expressing sfGFP at background levels. (A3) Cells expressing 
sfGFP at moderate levels. (A4) Cells expressing sfGFP at high levels. Inset shows the same data as main plot at a higher 
resolution to better visualise the four populations. (B) Histogram of green fluorescence vs cell count. For all reporter-
containing samples. Dashed black line shows cut-off point for analysis. (C-H) Left plots are 2D-scatter plots of SSC-H vs 
green fluorescence on the same scale as shown in (A). Right plots are bar plots showing the percentage of all cells in 
each of the four segments displayed in (A). (C-D) show uninduced monocultures of reporter and processor cells 
respectively. (E-H) shows co-cultures of processor and reporter cells added at the stated percentages. Percentages refer 
to volume-per-volume percentage of cell to final culture volume. Bar height is the mean of three or four replicates. Error 
bars show +/- standard deviation across replicates. 
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As bulk measurements of the co-cultures collected using a plate reader were unable 

to explain fully the behaviour observed by co-culturing the cell types, flow cytometry 

was used to perform single cell measurement. This allowed for each cell type to be 

separated based on fluorescence in an attempt to determine how the proportion of cell 

populations changed during the experiment. Samples from the plate reader experiment 

above were collected and prepared prior to analysis using a flow cytometer. Initial 

gating and voltage setup had been performed prior to experimentation using controls, 

as described in section 2.7.2. 

 

All samples containing reporter cells were initially visualised on a scatter plot of side 

scatter height (SSC-H) vs green fluorescence, from which four distinct populations 

were observed (Figure 5.16 (A)). Overlaying data from monocultures of untransformed 

cells, one of these populations could be identified as cells which exhibit no green 

fluorescence above cellular autofluorescence (Figure 5.16 (A1)). The remaining 

populations (Figure 5.16 (A2-4)) had increasing levels of green fluorescence, and so 

were described as following: (A2) cells expressing sfGFP at background levels, (A3) 

cell expressing sfGFP at moderate levels, and (A4) cells strongly expressing sfGFP. A 

cut-off point was also defined based on the distribution of fluorescence levels, below 

which entities were assumed to be debris rather than cells (Figure 5.16 (B)). 

 

For monocultures containing uninduced sfGFP reporter cells, the majority of cells 

(more than 90%) could be seen to have background levels of sfGFP expression, whilst 

a minority (approximately 0 to 5%) were found to have moderate levels of fluorescence. 

The remainder (approximately 5 to 10%) appeared to show no fluorescence (Figure 

5.16 (C)). There are a number of possible reasons for this observed heterogeneity, 

including non-fluorescing cells caused by factors like loss of plasmid over time, and 

differences in cell cycle state [333], [334]. For uninduced default processor cells, as 

expected, no fluorescent cells were observed (Figure 5.16 (D)). When the processor 

cells were added to reporter cell cultures, all samples exhibited increased fluorescence 

(Figure 5.16 (E-H)), which was in-line with the plate reader data (Figure 5.14 (A)). It 

was also observed that when 1.0% v/v or above of processor cells were added, the 

majority of reporter cells were in a highly fluorescent state (Figure 5.16 (E-G)). 

However, when only 0.5% v/v of processor cells were added, most reporter cells were 

in a state of moderate sfGFP expression (Figure 5.16 (H)). This indicated that it may 

have been possible to create a processor-reporter co-culture with low enough 
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background activation of reporters by the processor to establish a functional system. 

Although, as even a 5:100 processor to reporter cell ratio showed significant increase 

in background activation compared to reporters in monoculture, the agent-based 

model’s prediction that the multi-microbial biosensor could have high noise seems to 

be somewhat accurate. 

 

For the processor-reporter co-cultures, it was possible to approximate the proportion 

of each cell type present at the point of measurement (i.e., after incubation for 20 hours, 

as described above), as only the reporter cells showed fluorescence of background 

levels or above. This method has some inaccuracy, as it could not be determined how 

many reporter cells were completely non-fluorescent, but it could be used as an 

indicator. The single cell results shown in Figure 5.16 (E-H) suggest that the reporter 

cells may be outcompeting the processor cells over time, resulting in an unstable 

culture. When processor and reporter cells were added in initial ratios of 5:1, it was 

 

Figure 5.17. Single Cell Analysis of Detector to Reporter Noise Propagation: 

Analysis of detector-reporter co-cultures from the experiment shown in Figure 5.14 via flow 
cytometry after ~20 hours incubation. (A-D) Left plots are 2D-scatter plots of SSC-H vs 
green fluorescence on the same scale as shown in (Figure 5.16 (A)). Right plots are bar 
plots showing the percentage of all cells in each of the four segments displayed in (Figure 
5.16 (A)). All plots show co-cultures of detector and processor cells added at the stated 
percentages. Percentages refer to volume-per-volume percentage of cell to final culture 
volume. Bar height is the mean of three or four replicates. Error bars show +/- standard 
deviation across replicates. 
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found that after 20 hours of incubation, the final approximate cell ratio was 

approximately 1.2:1 (Figure 5.16 (E)), representing a relative increase of reporter cells 

compared the processor cells. Similarly, when the initial ratio of processors to reporters 

was 1:1, a final ratio of 0.14:1 was measured (Figure 5.16 (F)), and when a ratio of 

0.05:1 was added, the final ratio was 0.03:1 (Figure 5.16 (H)). This supported the 

thought that the collapse of a correlation between number of processors and reporter 

activation over time could have been partially caused by unstable cell populations. 

 

The plate reader data suggested that the presence of uninduced IPTG detector cells 

had no influence over reporter cell activation (Figure 5.17). The single cell data 

supported this conclusion, as the distribution of reporter cells with regards to green 

fluorescence was almost identical to that of uninduced reporter cells in monoculture. 

Furthermore, when the detector and reporter cells were added in similar proportions 

(5:1 and 1:1), the final ratios detected appeared to be very similar (6:1 and 1.5:1 

respectively). However, when the reporter cells were present in higher amounts (0.1:1 

and 0.05:1), the relative number of detector cells seemed to slightly increase, such that 

the final ratios in both cases were approximately 0.25:1 in both cases. However, the 

variation between replicates observed for these co-cultures was also markedly 

increased, and hence were within error. Overall, it appeared that the detector and 

reporter cells established a stable co-culture over time. 

 

The detector-processor co-cultures were analysed similarly to the reporter containing 

cultures, except red fluorescence was measured instead of green. For the detector-

processor cultures, three populations were identified: non-fluorescent, background 

fluorescent, and moderately fluorescent (Figure 5.18(A)). For the uninduced processor 

cells in monoculture, the majority of cells were found to have background levels of 

fluorescence (Figure 5.18(C)). 
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Figure 5.18. Single Cell Analysis of Detector to Processor Noise Propagation 

Analysis of detector-processor co-cultures from the experiment shown in Figure 5.14 via flow cytometry after ~20 hours 
incubation. (A) 2D-scatter plot of side scatter height (SSC-H) vs red fluorescence. Light purple points show all detector-
processor cultures, and dark purple points are uninduced processor monocultures. Grey dots show monocultures of 
untransformed cells. Data was segmented into three sections based on fluorescence. (A1) Non fluorescent cells. (A2) 
Cells expressing mCherry at background levels. (A3) Cells expressing mCherry at moderate levels. Inset shows the 
same data as main plot at a higher resolution to better visualise the populations. (B) Histogram of red fluorescence vs 
cell count for all detector-processor co-culture samples. Dashed black line shows cut-off point for analysis. (C-G) Left 
plots are 2D-scatter plots of SSC-H vs red fluorescence on the same scale as shown in (A). Right plots are bar plots 
showing the percentage of all cells in each of the three segments displayed in (A). (C) Uninduced monocultures of 
processor cells. (D-G) Co-cultures of detector and processor cells added at the stated percentages. Percentages refer to 
volume-per-volume percentage of cell to final culture volume. Bar height is the mean of three or four replicates. Error 
bars show +/- standard deviation across replicates. 
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In the bulk plate reader data, the detector-processor co-cultures with 50% v/v detector 

cells and 10% v/v processor cells showed large variation between replicates. It was 

thought that this variation was due to poor mixing by the liquid handler during 

experimental setup, in which case it was expected that in the single cell measurements, 

all processor cells would show background levels of red fluorescence. This was 

because the increased fluorescence would have resulted from more processor cells 

than intended, rather than increased activity of each cell. However, the single cell data 

showed processor cells with increased fluorescence in all replicates (Figure 5.18(D)). 

Additionally, the variation between samples was far lower for single cell measurements. 

Therefore, it was possible that the variation may have been due to a biological factor, 

but the factor’s identity was unclear. For the remaining detector-processor co-cultures, 

increased red fluorescence of processor cells was also observed, with approximately 

half of all fluorescent processor cells exhibiting a signal above background levels 

(Figure 5.18(E-G)). This suggested that background expression of processor cells by 

detector cells was occurring, although large variation across repeats of some co-

cultures made it difficult to determine definitively. Additionally, this conclusion was in 

contradiction to the bulk plate reader data, although as large degree of heterogeneity 

was detected, with processor cells being split almost in half between two states, it was 

possible that any signal was undetectable in bulk measurements. 

 

The amount of fluorescent and non-fluorescent cells in each co-culture were compared 

to determine how the proportion of each cell type had changed during the course of 

experimentation. Whilst it seemed that there may have been some outgrowing of the 

processor cells by the detector cells, this was within error, and largely the two cell types 

were observed to grow in a stable manner during the 20-hour experiment. Therefore, 

one of the potential causes for low background activation of processor by the detectors, 

was proven to be incorrect. Instead, it was more likely that contrary to the prediction 

made by the agent-based model, in their uninduced state the detector cells only caused 

a low-level activation of processor cells. 

 

Overall, the experiments presented here indicate that the greatest source of noise in 

the multi-microbial biosensor was likely to arise from background activation of the 

reporter cells by the processor cells. This background activation was observed to occur 

after approximately 5 hours, which suggested that the potential positive feedback loop 

in the processor module was the cause, as it was shown in sub-section 5.2.4 that there 
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was a delay before background mCherry expression began increasing. Regardless, 

the background activation of the sfGFP reporter cells appeared to be below the 

saturation limit, and thus processor cells induced by detector cells should have been 

able to activate higher sfGFP expression by the reporters. 

 Validation of the modular, multi-microbial biosensor 

To determine if the proof-of-concept biosensor was functional, co-cultures of all three 

cell types were prepared as described in section 2.7.11, such that each cell type was 

added in equal amounts, as determined by culture optical density at a wavelength of 

600 nm. Each co-culture was induced with one of a range of IPTG concentrations, 

including no IPTG. Monocultures of each cell type were also prepared, for which half 

were induced with their canonical inducer, and half were left uninduced. Samples were 

incubated at 37oC for 20 hours with periodic fluorescence and absorbance 

measurements. As with the co-cultures in sub-section 5.3.2, fluorescence values are 

presented for the culture as a whole, and not correct for number of cells present. 

 

Fluorescence measurements in the cyan wavelength were plotted over time to 

determine activation of IPTG detector cells (Figure 5.19 (A-B)). It was observed that 

detector cells in all co-cultures induced with IPTG showed increased eCFP 

fluorescence compared to the uninduced co-cultures. These results indicated that the 

detector cells could be induced by IPTG in co-culture, and activation levels appeared 

similar to that observed in monoculture up until 6 hours of incubation time. 
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Measurements of red fluorescence were used to determine activity of the default 

processor cells over time (Figure 5.19 (C-D)). From this data, it appeared that the 

processor cells in co-cultures induced with IPTG showed no mCherry fluorescence 

 

Figure 5.19. Characterisation of a 1:1:1 Cell Ratio Multi-Microbial Biosensor 

Detector, processor, and reporter cells were added at an initial ratio of 1:1:1. Error bars 
show +/- standard error centred on the mean of 3 or 4 replicates. Background noise was 
calculated as the maximum and minimum calibrated fluorescence values from uninduced 
cells at each time point, relative to the mean fluorescence for all uninduced cells. (A, C, E) 
Time course curves of non-growth corrected eCFP (A), mCherry (C), and sfGFP (E) 
fluorescence for the multi-microbial biosensor system induced with a range of IPTG 
concentrations.  The module positive controls were detector (A), processor (C), or reporter 
(E) cells in monoculture induced with 1 mM IPTG, 10 μM C12-HSL, or 10 μM C4-HSL 
respectively. The module negative controls were uninduced detector (A), processor (C), or 
reporter (E) cells in monoculture. The biosensor negative control was the multi-microbial 
system culture with water instead of IPTG. (B, D, F) Time course curves of fold change in 
eCFP (B), mCherry (D), and sfGFP (F) fluorescence of the multi-microbial biosensor 
system induced with a range of IPTG concentrations, relative to the biosensor negative 
control. 



227 
 

above that of uninduced co-cultures. The agent-based model predicted that no fold 

change in mCherry production would be observed in biosensor co-cultures induced 

with IPTG compared to non-induced cultures. This was because of the high 

background activation of processor cells by the detector cells. However, as revealed 

by the noise propagation experiments, processor cells were only induced at a low-to-

moderate level by the presence of uninduced detector cells. Additionally, the total 

fluorescence for biosensor co-cultures was below that of the uninduced processor cells 

in monoculture (Figure 5.19 (C)). Therefore, it was concluded that the reason for lack 

of processor activity was due to either insufficient production of C12-HSL by the 

induced detector cells, or out-growth of processor cells by the detector and reporter 

cells. Another possibility was that the processor cells were activated, but at a level too 

low to detect with plate reader measurements, as indicated by the detector to 

processor noise propagation experiments. 

 

To determine whether the reporter cells were more highly induced in biosensor co-

cultures induced with IPTG compared to uninduced biosensor systems, fluorescence 

in the green wavelength were made (Figure 5.19 (E-F)). Despite an apparent lack of 

processor cell activation, there was a small but significant fold change in sfGFP 

fluorescence for biosensor systems induced with IPTG compared to uninduced 

 

Figure 5.20. sfGFP Reporter Cell Response in Early Biosensor Culture 

Data for reporter cells presented in Figure 5.19 (F) was plotted for the first 5 hours of 
culturing time to better visualise response. Error bars show +/- standard error centred on 
the mean of 3 or 4 replicates. (A) Time course curve of sfGFP fold change between 2 and 
5 hours. Background noise was calculated as the maximum and minimum calibrated 
fluorescence values from uninduced cells at each time point, relative to the mean 
fluorescence for all uninduced cells. (B) Dose-response curve of IPTG concentration vs 
sfGFP fold change after 3.5 hours of culture time. Coloured box shows limit of detection, 
calculated as 1 + standard deviation of uninduced co-culture after 3.5 hours of culture 
time. 
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systems within the first four hours of culturing (Figure 5.20 (A)). This response was 

found to exhibit dose-dependent characteristics, although variation between replicates 

made it difficult to establish a definitive relationship between IPTG concentration and 

fold change in sfGFP (Figure 5.20 (B)). As it was found in sub-section 5.2.6 that IPTG 

could not be used to induce reporter cells, the fold change in fluorescence must have 

occurred through production of communication from either the detector or processor 

cells. 

 

Past 4 hours of culture time, no fold change in sfGFP fluorescence above background 

noise was observed. This suggested that after this point, the co-culture became 

unstable as outgrowth between the cell types occurred, or background production of 

AHLs became too high, or a combination of both. To help determine the final proportion 

of cell types, a selection of the cultures was processed and analysed by flow cytometry 

as described in section 2.7.12 (Figure 5.21). From this, it was found that across all 

samples, approximately 30 to 35% of all cells exhibited green fluorescence, and hence 

were assumed to be reporter cells, and approximately 20 to 30% were found to have 

red fluorescence, and hence assumed to be processors. This suggested that after 20 

hours of culture time, all cells remained at similar proportions to that at which they were 

added, although the processor cells appeared to have a slight decrease relative to the 

other cell types. It appeared that there were fewer processor cells in co-cultured 

induced with a lower concentration of IPTG, however the difference was small and not 

 

Figure 5.21. Single Cell Analysis of Biosensor Culture 

The bar plots show single cell analysis for biosensor cultures after 20 hours of growth. (A) 
Bar plot showing the percentage of cells displaying no, background, and moderate red 
fluorescence, using thresholds visualised in Figure 5.18. (B) Bar plot showing the 
percentage of cells displaying no, background, moderate, and high green fluorescence, 
using thresholds visualised in Figure 5.16. For both bar plots, bar height shows mean 
percentage counts across 3 replicates, and error bars show standard error. 
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definitive. The clear presence of both processor and reporter cells, along with evidence 

of continued eCFP production by detector cells as shown by the plate reader data, 

indicated that loss of signal by the reporter cells over time was not due to competition 

between cell types in co-culture. Therefore, it was likely that loss of signal was due to 

an increase in noise over time, where continued background production of C12-HSL 

and C4-HSL saturated the processor and reporter cells’ response. 
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 Conclusions and Next Steps 

All module types could be activated by their canonical inducers, and a range of inducer 

concentrations was found for each in which response (measured as fold change in 

fluorescence) was correlated with amount of inducer. However, it was found that the 

detector and processor modules exhibited a lower maximal fold change above 

background noise than the reporter module. It was also found that IPTG could only 

activate the detector cells, and only a low level of cross talk was identified for the AHLs. 

In addition to responsiveness of the modules to induction, the ability for detector and 

processor module cells to produce C12-HSL and C4-HSL respectively was confirmed. 

 

It was identified that induction of the default processor cells leads to decreased growth 

rates when compared to uninduced processor cells. It was not entirely clear why the 

processor module appeared to impart a higher burden than the detector or reporter 

modules, however there are a number of possible reasons. Firstly, the processor 

module may have caused a higher burden than the reporter module because the 

processor module required an additional protein to be expressed; the reporter module 

encoded RhlR and sfGFP, whereas the processor module encoded LasR, RhlI, and 

mCherry. However, this would not explain why the detector module would not also 

impart similar levels of burden onto host cells, as it also contained coding regions for 

the same number of proteins with similar sizes (LacI, LasI, and eCFP). Secondly, it 

was possible that PLas allowed for a higher level of expression than PLac or PRhl, and 

hence required host cells to produce more proteins. This reason was supported by a 

higher fold change in mCherry observed when inducing processor cells compared to 

the fold change in eCFP seen from detector cells, although the reporter cells exhibited 

an even high fold change in fluorescence. Thirdly, the processor module may have 

resulted in a higher burden on cells due to the positive feedback loop, which would 

likely have caused higher background production of proteins encoded by the processor 

module. Therefore, the processor cells may have already been in a state of low-level 

stress, which began to impact cell growth more heavily following induction. Rather than 

just one of the reasons being true, it was likely that all had some impact. However, as 

different fluorescent markers were used for all three module types, it was not possible 

to directly compare levels of expression to determine the true reason. 
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The agent-based model presented in chapter 4 predicted a high level of noise, where 

background production of AHLs could result in unwanted activation of the processor 

cells by the detector cells, and activation of reporter cells by the processor cells. 

Therefore, the potential for noise to propagate through the multi-microbial system via 

background synthesis of AHL communication molecules was tested experimentally. It 

was found that uninduced detector cells could activate the processor cells, and 

uninduced processor cells could activate reporter cells. Therefore, the potential for 

noise to propagate from the detector cells to the processor cells, and onto the reporter 

cells, for validated. 

 

Co-culturing of the detector, processor, and reporter cells was found to result in a 

functioning biosensor, however loss-of-signal occurred 4 hours post induction. This 

signal loss was hypothesised to be due to an increase in background noise as a result 

of noise propagating through the system. 

 

It has been previously shown how positive feedback loops in genetic circuits based on 

quorum sensing can reduce responsiveness to induction[315]. This supports the idea 

that over time the processor module may become unresponsive to the detectors and 

simply ‘leak’ a false signal to the reporter, hence destroying the biosensor’s activity. 

However, in contradiction to the results shown here, many previously reported 

synthetic microbial systems employing sequential, uni-directional cell-to-cell signal 

propagation did not display a loss of behaviour over time, with no evidence of noise 

propagation[107], [120], [335], [336]. The main differences between these previous systems 

and the biosensor system presented here is that three cell types are used rather than 

two. The inclusion of three cell types in a uni-directional fashion required one cell (the 

processor) to have both sending and receiving capabilities, which leads to issues with 

cross-talk and adds in an additional layer for the signal to pass through. Cells which 

display sending and receiving capabilities are largely missing from previously recorded 

systems, except in cases where bi-directional feedback is utilised to help with stability 

and robustness. 

 

The experimental results shown here had some similarities to the simulation results 

presented in chapter 4, namely that background noise had the potential to decrease 

functionality of the system. The model also suggested that it may have been possible 

to optimise the biosensor through the design space of cell ratios. Chapter 6 presents 
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approaches taken towards optimisation of the biosensor, including exploration of cell 

ratios.  
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 Modular and Multi-Microbial Biosensor Optimisation 

In chapter 5, it was found that whilst the modular, multi-microbial biosensor was 

functional, the maximal response was low, and the signal was unstable and decreased 

to background levels over time. The agent-based model presented in chapter 4 

indicated that modification of cell ratios may have presented an easily accessible 

design space for optimisation of the biosensor’s response. In section 6.2, the impact 

of cell ratios on biosensor behaviour is explored in the context of experimental data. 

Section 6.3 focuses on an alternative method of optimisation, making use of statistical 

Design Of Experiments to investigate the impact of environmental factors on each 

biosensor module. Finally, section 6.4 concludes the findings from this chapter, and 

discusses future work. 

  Introduction 

 Statistical Design Of Experiments 

Optimisation of systems and processes can be performed by first measuring the impact 

different factors have on desired response characteristics, and then using this 

information to help determine which factor values could lead to optimal results. Within 

synthetic biology and biotechnology, the optimisation process is often performed by 

changing factors individually whilst keeping all other conditions the same[337]. This One 

Factor At a Time (OFAT) methodology is intuitive and allows for a degree of certainty 

as to whether a factor is impacting upon a system, however it does not allow for 

efficient exploration of the entire design space, and can lead to local optima being 

found, rather than the true global optima[338] (Figure 6.1). An alternative to the OFAT 

approach is to employ a statistical Design Of Experiments (DOE) approach. DOE 

refers to a collection of statistical tools and methodologies which allow for a rational 

and unbiased exploration of multi-factorial design spaces[89] (Figure 6.1). With DOE, 

experimental ‘runs’, where each run consists of a set of factor values to be tested, are 

determined using statistical algorithms. The experimental runs generated aim to yield 

the most amount of information in the least number of experiments possible, typically 

leading to faster, cheaper, and more efficient experimentation than with an OFAT 

approach[337]. However, the number of runs required can still be large when many 

factors require investigation. Once the experimental runs have been performed, the 

data can be fed back to a DOE statistical model, which helps determine potentially 
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optimal factor values, and can also measure the relationship between factors which 

may have dependencies or interactions[89]. 

 

There exist several categories of DOE, each of which have advantages and 

disadvantages based on the desired information about a system or process to be 

determined[89]. Broadly, the types of DOE employed can be described by two groups: 

screening designs and optimisation designs[339]. Screening designs focus on 

measuring the impact different factors have on specific responses characteristics of a 

system, whilst optimisation designs can be used to map a system’s response surface 

with an aim of finding optimal responses. Typically, when working with novel systems 

or processes, screening designs are employed initially to determine which factors may 

have the greatest impact on the system’s response characteristic of interest[340]. Once 

important factors with the greatest impact have been determined, optimisation designs 

can be used to find optimal values for these factors. Optimisation designs are not 

typically used in the first instance as they require more experimental runs to be 

performed than screening designs, especially when a large number of potential factors 

require investigation[89]. Therefore, the less expensive screening designs can be used 

to determine only the most important factors, allowing fewer factors to be investigated 

in optimisation designs, and hence reducing the number of runs required. 

 

Figure 6.1. OFAT vs. DOE 

Schematics representing One Factor At a Time (OFAT) and statistical Design Of 
Experiments (DOE) methodologies for a hypothetical system with 3 factors. With OFAT, 
the factor under investigation is modified whilst keeping values for the other 2 factors the 
same. With DOE, factor values are chosen to allow for representative sampling of the 
design space. 
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 Experimental Exploration of Cell Ratio Design Space 

Although the agent-based model in chapter 4 predicted that the multi-microbial 

biosensor would not show any activity, it suggested that modifying the ratio of cell types 

could impact upon the biosensor’s behaviour. Additionally, as seen in chapter 5, the 

biosensor with a 1:1:1 cell ratio exhibited functionality within the first few hours of co-

culture, where the biosensor responded to IPTG in a dose-responsive manner. 

However, 5 hours after induction, the signal could no longer be detected. Therefore, it 

was possible that although the model was not quantitatively accurate with its 

predictions, qualitatively it may have yielded useful insight into which cell ratios could 

display more optimal biosensor functionality. 

  Selecting cell ratios 

In chapter 4, the design space of cell ratios was visualised using a ternary plot. The 

design space could be split into 6 sections based on the stoichiometric boundaries 

between each cell type, with the 1:1:1 ratio sitting at the centre of all sections. The in 

silico results generated by the agent-based model indicated that a larger signal-to-

 

Figure 6.2. Selected Cell Ratios 

Ternary plot displaying the cell ratios selected for experimental testing. The axis values 
represent the proportion of each cell type in the system, calculated as the volume (in μL) of 
each cell type (at a cell density of OD600 = 1.0) in a culture volume of 100 μL. The total 
volume of all cells was 30 μL. The white crosses represent cell ratios tested 
experimentally, and dashed grey lines show stoichiometric boundaries, where the amounts 
of two cell types are equal. The solid yellow lines bound the section predicted by the 
agent-based model to contain more optimal cell ratios (detectors < processors < 
reporters). 
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noise response could be generated by the biosensor when more reporter cells were 

present than detector or processor cells (Figure 4.20), and when the number of 

processor cells were present in higher amounts than the detector cells (Figure 4.19). 

Cell ratios which matched these conditions fell within the section highlighted in Figure 

6.2. To fully explore the design space, at least one ratio from within each section was 

selected which corresponded to a similar cell ratio tested by the model. It was ensured 

that an additional ratio was tested from the section predicted by the model to 

incorporate potentially better performing biosensor systems (Figure 6.2). 

 Experimental characterisation of cell ratios 

To test the selected cell ratios, cell cultures were incubated in a plate reader at 37oC 

for 20 hours, with fluorescence and cell density measurements taken every 30 minutes. 

For all systems, the calibrated green fluorescence (Figure 6.5), calibrated cyan 

fluorescence (Figure 6.3), calibrated red fluorescence (Figure 6.4), and total cell 

growth (Figure 6.6) is reported. For these experiments, the fluorescence values were 

not corrected for cell density as it was not possible to determine the proportion of each 

cell type in the system (section 2.7.13). 

 

Table 6.1: Summary of Multi-Microbial Biosensor Behaviour by Cell Ratio 

Cell Ratio 
Observations 

Detector Cells Processor Cells Reporter Cells 

2:24:4 

Small fold change in 

fluorescence detected 

after 12 hours 

Fold change detected 

after 14 hours 

Initial peak in fluorescence 

fold change at 3 hours, drop 

in signal below noise at 8 

hours, fold change detected 

again at 12 hours 

3:7:20 

Small fold change in 

fluorescence detected 

after 7 hours 

Fold change detected 

after 18 hours 

Initial peak in fluorescence 

fold change at 3 hours, drop 

in signal at 7 hours, fold 

change peaked again at 15 

hours 

5:10:15 
No fold change in 

fluorescence detected 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 6 hours 

6:13:11 
No fold change in 

fluorescence detected 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 4 hours 
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7:4:19 

Small fold change in 

fluorescence detected 

after 6 hours 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 4 hours 

10:10:10 

Fold change in 

fluorescence detected 

after 2 hours 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 6 hours 

11:18.5:0.5 

Large fold change in 

fluorescence detected 

after 7 hours 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 10 hours 

18:2:10 

Large fold change in 

fluorescence detected 

after 7 hours 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 16 hours, although 

only a small fold change was 

observed from 6 hours 

19:7:4 

Large fold change in 

fluorescence detected 

after 7 hours 

No fold change in 

fluorescence detected 

Peak in fluorescence fold 

change at 3 hours, loss-of-

signal at 4 hours 

 

For all cell ratios tested excepting two (5:10:15 and 6:13:11), a fold increase in cyan 

fluorescence was observed (Figure 6.3). This indicated successful induction of the 

IPTG detector cells. Additionally, it was found, as expected, that a larger number of 

detector cells corresponded with a larger fold change in cyan fluorescence. The four 

systems containing the highest proportions of detector cells (10:10:10, 11:18.5:0.5, 

18:2:10, and 19:7:4) displayed an increase in cyan fluorescence at approximately the 

same time as a fold increase in green fluorescence was measured (Figure 6.5). This 

behaviour indicated activation of the reporter cells by signal propagation through the 

detector and processor cells. However, for the remaining systems, although activation 

of the detector cells could not be measured, a response by the reporter cells was 

observed. It was therefore possible that amplification of the signal was occurring, 

allowing a small, undetectable response by the detector cells to result in a larger 

response by the reporter cells. For the majority of systems, no fold change in red 

fluorescence by the processor cells could be detected (Figure 6.4), for reasons which 

will be expanded on in due course. A summary of all biosensor behaviours is detailed 

in table 6.1. 

 

In this experiment, analysis of green fluorescence data showed that once again, the 

1:1:1 cell ratio biosensor system exhibited initial functionality, but eventually the signal 
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became lost to the background noise (Figure 6.5 (A)). Indeed, the majority of cell ratios 

tested showed similar behaviour, with the reporter cells showing increased green 

fluorescence when the co-culture was induced with IPTG, followed by a decrease over 

time. Some of the ratios, however, showed a second peak in signal after this initial 

decrease, and a further sub-set of ratios had another subsequent decrease after the 

secondary peak, displaying an oscillation-like behaviour. The exact pattern of this 

oscillation-like signal differs between systems, where in some cases the signal never 

dropped below the noise threshold, whilst others regained signal after temporarily 

losing it. In some cases, although there was a noticeable second peak pattern, the 

signal could not be distinguished from the noise (as in 7:4:19 and 10:10:10). 

 

In chapter 5, it was discussed that the eventual loss-of-signal by the 1:1:1 biosensor 

system may have been due to co-culture instability, resulting in some cell types 

outcompeting others. However, the single cell data at 20 hours post induction indicated 

that all three cells were present in similar proportions, and thus it was thought that the 

accumulation of noise in the form of leaky quorum sensing molecule production was 

to blame for the loss-of-signal. From the data presented here, it is posited that perhaps 

a combination of both factors (accumulation of noise and unstable co-culture) 

contributed to the observed behaviour.
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Figure 6.3. Detector Cell Behaviour in Co-Culture at Various Cell Ratios 

All plots show the change in cyan fluorescence of IPTG detector cells in the multi-microbial biosensor co-culture when induced with 20 mM IPTG 
compared to the uninduced system.  Error bars show +/- standard error centred on the mean of 3 replicates, and individual points show data for 
each replicate. The cell ratios used are displayed on each plot. (A) Fold change in cyan fluorescence of IPTG detector cells in co-culture, calculated 
as the change in fluorescence of co-cultures induced with 20 mM IPTG relative to uninduced co-cultures. The pink areas represent background 
noise, which was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point, relative to the 
mean fluorescence for all uninduced cells. (B) Total calibrated cyan fluorescence (in molecules of equivalent cascade blue) for induced (cyan) and 
uninduced (grey) systems. 

    B 
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Figure 6.4. Processor Cell Behaviour in Co-Culture at Various Cell Ratios 

All plots show the change in red fluorescence of default processor cells in the multi-microbial biosensor co-culture when induced with 20 mM IPTG 
compared to the uninduced system.  Error bars show +/- standard error centred on the mean of 3 replicates, and individual points show data for 
each replicate. The cell ratios used are displayed on each plot. (A) Fold change in red fluorescence of default processor cells in co-culture, 
calculated as the change in fluorescence of co-cultures induced with 20 mM IPTG relative to uninduced co-cultures. The pink areas represent 
background noise, which was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point, 
relative to the mean fluorescence for all uninduced cells. (B) Total calibrated cyan fluorescence (in molecules of equivalent sulforhodamine 101) for 
induced (purple) and uninduced (grey) systems. 

    B 
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Figure 6.5. Reporter Cell Behaviour in Co-Culture at Various Cell Ratios 

All plots show the change in green fluorescence of sfGFP reporter cells in the multi-microbial biosensor co-culture when induced with 20 mM IPTG 
compared to the uninduced system.  Error bars show +/- standard error centred on the mean of 3 replicates, and individual points show data for 
each replicate. The cell ratios used are displayed on each plot. (A) Fold change in green fluorescence of sfGFP reporter cells in co-culture, 
calculated as the change in fluorescence of co-cultures induced with 20 mM IPTG relative to uninduced co-cultures. The pink areas represent 
background noise, which was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point, 
relative to the mean fluorescence for all uninduced cells. (B) Total calibrated green fluorescence (in molecules of equivalent fluorescein) for 
induced (green) and uninduced (grey) systems. 

 B    
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The unstable signal observed across the biosensor co-cultures was due to non-regular 

increases in fluorescence over time of both the uninduced and induced systems, rather 

than an actual decrease in fluorescence (see the non-relative fluorescence data in 

Figure 6.5 (B)). Additionally, as would be expected, the total fluorescence of systems 

with fewer reporter cells added at the start of the experiment is lower than that of 

systems with more reporter cells. The overall growth curves for each system are similar, 

although some systems displayed decreased cell densities in the induced systems 

compared to the non-induced systems (Figure 6.6). In chapter 5, it was found that only 

the processor cells had decreased growth rates when induced, and so it was thought 

that the decreased growth in the co-cultures was due to induction of the processor cells 

by the detector cells. This thought was supported by observations that the decreased 

growth of induced systems was more prevalent when a higher ratio of processor cells 

was used. A noticeable outlier to this observation was the 2:24:4 cell ratio system, 

which despite having the largest proportion of processor cells displayed almost no 

decrease in cell growth. This could be explained by the lack of detector cells, however, 

as fewer detector cells would have meant less C12-HSL present in the system to induct 

the processor cells. 

 

If it were the case that the detector cells were causing a decrease in processor cell 

growth, this could explain the potential unstable cell type proportions in co-culture over 

time, and the fluctuations in reporter cell fluorescence. In this scenario, near the 

beginning of the experiment when the cells are in lag to early exponential phase and 

before the detector cells have been induced to produce C12-HSL, the default 

processor cells could grow at a similar rate to the other cell types. As the detector cells 

begin producing C12-HSL, the default processor cells would then be induced to 

produce C4-HSL, which could activate the reporter cells and lead to the first peak in 

signal observed for all systems. However, as the default processor cells become 

induced, their growth rate would drop and the amount of C4-HSL produced would be 

expected to fall to levels similar to that seen in the uninduced systems. This decrease 

in C4-HSL production would result in the initial loss-of-signal observed. However, this 

behaviour alone does not explain the second increase in signal observed for some cell 

ratios. Instead, this may be explained by the positive feedback loop inherent in the 

default processor cells’ design. 
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In monoculture, the default processor cells were shown to have similar behaviour to 

that observed with the multi-microbial biosensor, where an initial increase in signal was 

followed by a subsequent decrease. This was concluded to be due to a positive 

feedback loop, where the C4-HSL produced by the processor cells, in close proximity 

to the LasR transcription factor, could induce further expression of RhlI which was 

responsible for C4-HSL synthesis. When the processor cells were induced, the 

feedback loop appeared to occur at an earlier time point than the uninduced system. 

In the biosensor co-culture, after around 6 hours it appeared that the cells reached 

stationary phase. At this point, it would be expected that the proportions of cells in the 

system would stabilise. Over time, the C4-HSL produced by the default processor cells 

could continue accumulating due to the feedback loop, leading to further induction of 

the reporter cells. Indeed, this appears to happen in some systems, most noticeably in 

the cultures with cell ratios of 2:24:4, 3:7:20, and 7:4:19 (Figure 6.5). The feedback 

loop could also explain the second decrease in signal observed, as it appears the 

 

Figure 6.6. Cell Growth in Multi-Microbial Biosensor Systems 

Time course plots of calibrated cell density over 20 hours. Black lines show uninduced 
systems for each cell ratio, and purple lines show systems induced with 20 mM IPTG. 
Untransformed E. coli DH5α cells in monoculture were used as a control (black lines).  
Error bars show +/- standard error centred on the mean of 3 replicates, and individual 
points show data for each replicate. The cell ratios used are displayed on each plot. 
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uninduced systems show a similar increase in green fluorescence but lagging behind 

the induced system, mirroring the behaviour observed for the processor cells alone. 

 

For two of the systems, an eventual steady signal appeared to be reached. These 

systems had cell ratios of 2:24:4 and 3:7:20 (Figure 6.5 (A)). Although for the majority 

of systems fluorescence by the default processor cells could not be detected, 

potentially due to the aforementioned out competition of processor cells by the 

detectors and reporters, the 2:24:4 and 3:7:20 systems did eventually exhibit a 

measurable signal (Figure 6.4). These two systems had the lowest detector-to-

processor cell ratio compared to all other systems tested, which may have allowed for 

a high enough proportion of processor cells to remain in the system that as the 

feedback loop allowed for accumulation of both C4-HSL and mCherry, a signal could 

be observed. Additionally, the lower number of detector cells would have resulted in a 

 

Figure 6.7. Impact of Cell Ratios on Maximal Biosensor Response 

Ternary plot displaying the maximal biosensor response, measured as the maximal fold 
change in green fluorescence for induced vs non-induced systems, for each cell ratio. 
Each dot represents a characterised cell ratio and is coloured based on the maximal 
biosensor response. The axis values represent the proportion of each cell type in the 
system, calculated as the volume (in μL) of each cell type (at a cell density of OD600 = 1.0) 
in a culture volume of 100 μL. The total volume of all cells was 30 μL. White crosses 
represent the cell ratios tested experimentally. The dashed grey lines show stoichiometric 
boundaries, where the amounts of two cell types are present in equal amounts. 
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lower background activation of the processor cells, which was found to occur even with 

uninduced detector cells in chapter 5. The lower background activation could have then 

contributed to the more stable signal observed for these systems. 

 Determination of optimal cell ratios 

To help determine the optimal ratios for biosensor activity, the maximal fold change in 

green fluorescence for all systems tested were visualised on a ternary plot (Figure 6.7). 

From this visualisation, two systems exhibited the maximum activity: 3:7:20 and 

5:10:15. Both of these systems populated the same section of the cell ratio design 

space. In this section of the design space, the number of detectors is always lower 

than the number of processors, and the number of processors is always lower than the 

number of reporter (detectors < processors < reporters). Interestingly, this was the 

same section of the design space tentatively predicted by the agent-based model to 

represent the best chance of creating a functional multi-microbial biosensor. This 

therefore indicated the usefulness of the agent-based model as a qualitative predictor 

of optimal cell ratios, even if the values predicted were inaccurate. 

 

The identified design space section (detectors < processor < reporters) representing 

the most optimal cell ratios was in keeping with the analysis provided in the previous 

sub-section, where it was thought that a lower detector-to-processor cell ratio would 

result in a more functional system. However, the 2:24:4 system identified to have the 

most stable signal was not included in this design space, although it did exhibit the 

highest maximal activity outside of the 3:7:20 and 5:10:15 systems. This was likely due 

to the much lower proportion of reporter cells in the 2:24:4 system, as less reporter 

cells would have led to lower fluorescence intensity. Therefore, it appears that the most 

optimal cell ratio for a system may be dependent on the biosensor’s application, where 

it should be decided if a high fold change or more stable signal is required. However, 

to determine this relationship, further experimentation with a larger number of cell 

ratios should be performed.  
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 Statistical Design of Experiments Driven Characterisation 

The design space of cell ratios was, as discussed in the previous section, a promising 

approach for optimisation of modular and multi-microbial biosensors. Another potential 

avenue for optimising the biosensor system was to focus on external factors which 

could impact upon the cells which compose the biosensor. It is well known that cellular 

synthetic biology systems are impacted by factors such as the composition of media 

used for culturing and incubation temperature[52], [219], [341], [342]. Thus, it stood to reason 

that optimisation of factors such as these may have allowed for enhanced biosensor 

functionality. As mentioned in sub-section 6.1.2, statistical Design of Experiments can 

be used to screen for factors which have a large impact on response characteristics of 

a system, and to determine factor values which yield optimal responses. A common 

design type for determining factors which have an impact on a specific system or 

process is the main effects screening design[343]. These main effects designs are able 

to measure the relative impact of various factors on a user-specified characteristic of 

a system (such as the dynamic range of a biosensor) in a low number of experiments. 

The major drawback of such designs is that interactions between factors cannot be 

easily determined without additional experimental runs [89]. 

 

For the Sensynova framework, it was decided that each module type should be 

characterised independently, as these results would provide context-free information 

about optimal conditions for each module, which could then be used to help inform 

theoretical future systems which make use of the modules developed here in 

conjunction with other modules. For each module, the JMP software was used to 

generate a custom, D-optimal, main-effects screening design. Main-effects screening 

designs can be used to gain insight as to which factors are having the greatest impact 

upon the system in a low number of experimental runs. There were six factors 

investigated in total. The first three factors were the temperature at which the cells 

were incubated during measurement (incubation temperature), the temperature at 

which cells were grown in overnight cultures prior to inoculation in a 96-well plate 

(overnight culture temperature), and the initial cell density (cell starting OD600). The 

remaining three factors described the composition of LB media used for culturing, 

specifically the proportions of tryptone, NaCl, and yeast extract. For each factor, upper 

and lower limits were set. All limits were the same across the three cell types, except 

for the IPTG detector cells’ overnight culture temperature factor. For the default 
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processor and sfGFP reporter cells, the overnight culture temperature limits were 25oC 

and 37oC. In initial experiments, it was found that the IPTG detector cells grew poorly 

in overnight cultures at 25oC, and the final cell density was routinely too low for 

experimental setup. Therefore, limits of 30oC and 37oC were used instead. The final 

designs are listed in the supplementary material.
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Figure 6.8. Main Effects Screening for IPTG Detector Cells 

Analysis of DOE screening design, model, and results for IPTG detector cells. (A-B) Initial main effects screening design. (C-D) Augmented 
main effects screening design. (E-F) Main effects screening design without anomalous runs. (A, C, E) Colourmap on correlations for main 
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effects (bounded by white box) and interaction effects. Each cell represents the absolute correlation magnitude between two effects or 
interactions. (B, D, F) Scatter plot of actual eCFP fold change responses as measured experimentally vs fold change responses predicted by 
the main effects, standard least squares statistical model. Crosses show data points from runs determined by the initial screening design, and 
dots represent runs determined by the design augmentation stage. Red circles highlight runs with results thought to be anomalous. The 
dashed black line shows the line of best fit through the data points (the r2 value shows the variation for this fit), and the dotted grey line shows 
line with slope of 1. Confidence levels are displayed at the 95% (pink shading) and 100% (grey shading) levels. (G) Bar chart showing scaled 
estimates of main factor effects on fold change in eCFP. The p value is shown for factors with effects significant at the 1% level, as calculated 
by a t-test. Error bars show the standard error of scaled estimates. 
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 IPTG Detector Cell Factor Screening 

For the IPTG detector cells, 13 experimental runs were performed according to the 

initial design and as described in section 2.7.14. For each experimental run, the fold 

change in eCFP fluorescence of induced samples compared to uninduced samples 

after 6 hours was calculated and used as the system response characteristic. When 

the samples were measured in the 96-well plate by the plate reader, the initial cell 

densities were measured as slightly different to the density aimed for and determined 

by the DOE design. This was due to slight pipetting inaccuracies and imprecise 

measurements by the spectrophotometer. The DOE design was modified so that the 

initial cell density factor had values corresponding to those measured by the plate 

reader rather than the density aimed for, allowing for more accurate interpretation of 

results. Changing these values impacted on the DOE design, resulting in higher 

correlation scores between the factors, and a lower D efficiency score (60.2 compared 

to the original 89.5). The higher correlation and lower D efficiency resulted in lower 

confidence in separating factor effects, however from the correlation colourmap, it 

could be seen that the main effects correlations remained relatively low. The JMP 

software was used to model main factor effects on the fold change response using a 

standard least squares effect screening model. It was found that the model performed 

poorly, where the predicted response values did not correlate well with the observed 

response values. This poor performance was potentially due to sampling bias 

introduced by the change in initial cell starting densities used compared to those 

suggested by the design. To help increase the design’s power, the augment feature of 

JMP was used to generate an additional 6 experimental runs. With the additional runs, 

the main effect factor correlations were lowered (although remained higher than the 

initial design), and the D efficiency was increased to 90.2 (which was higher than the 

initial design). These runs were performed in an identical manner to the initial 

experiment, and the fold change responses were added to the DOE model. Whilst the 

model appeared to perform slightly better, with the line of best fit through the actual vs 

predicted values having a slope closer to 1, four experimental runs were identified 

which had much higher residuals than the other samples. These experimental runs 

were thought to be potentially anomalous results, and so were removed from the DOE 

model. Exclusion of these results once again increased the factor correlation effects, 

particularly for the media composition factors, and decreased the D efficiency score to 

80.9. However, the main effects screening model showed far better performance, with 
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predicted values correlating closely to the actual values. Regarding factor effects on 

fold change in eCFP, the model indicated that two of the factors, incubation 

temperature and the initial cell starting densities, were important. The remaining factors 

did not appear to have any impact on functionality of the IPTG detector cells. Further 

testing would be required to confirm these results; however, it appears that it would be 

possible to optimise the detector cells by changing their external conditions. 

   Default Processor Cell Factor Screening 

Factor effects for the default processor cells were initially estimated by performing 12 

experimental runs as defined by the initial main effects screening design, and as 

described in section 2.7.14. The response for the processor cells was defined as the 

fold change in mCherry fluorescence of induced cells relative to uninduced cells. As 

with the detector cell experiment, some of the initial cell density measurements varied 

from the density values which were aimed for. These values were used in the screening 

design instead, which resulted in higher correlation magnitudes between factors, 

especially between the initial cell density and the overnight culture incubation 

temperature. Therefore, the design was augmented with an additional 6 experimental 

runs, which helped decrease the main factor correlations. However, the standard least 

squares effect screening model could be seen to perform poorly, with line of best fit 

through actual mCherry fold change values vs values predicted by the model having a 

slope far from 1, and large confidence intervals. It was observed that 3 of the 

experimental runs did not fit well with the other results, and thus were thought to be 

anomalous. These runs were removed, and the design was re-analysed. It could be 

seen that the correlations between main effects once again increased, however they 

remained below 0.5. The statistical model also appeared to perform better, with the 

actual vs precited response values showing moderate correlation, with a slope close 

to 1. From this model, it was estimated that the incubation temperature was the only 

factor to impact upon the default processor cells’ response. However, due to relative 

high correlation of incubation temperature with the other factors, particularly the 

overnight culture temperature and initial cell densities, it was possible that confounding 

effects were impacting on the data. Therefore, to better estimate these effects, 

additional runs would need to be performed. 
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Figure 6.9. Main Effects Screening for Default Processor Cells 

Analysis of DOE screening design, model, and results for default processor cells. (A-B) Initial main effects screening design. (C-D) Augmented 
main effects screening design. (E-F) Main effects screening design without anomalous runs. (A, C, E) Colourmap on correlations for main 
effects (bounded by white box) and interaction effects. Each cell represents the absolute correlation magnitude between two effects or 
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interactions. (B, D, F) Scatter plot of actual mCherry fold change responses as measured experimentally vs fold change responses predicted 
by the main effects, standard least squares statistical model. Crosses show data points from runs determined by the initial screening design, 
and dots represent runs determined by the design augmentation stage. Red circles highlight runs with results thought to be anomalous. The 
dashed black line shows the line of best fit through the data points (the r2 value shows the variation for this fit), and the dotted grey line shows 
line with slope of 1. Confidence levels are displayed at the 95% (pink shading) and 100% (grey shading) levels. (G) Bar chart showing scaled 
estimates of main factor effects on fold change in mCherry. The p value is shown for factors with effects significant at the 1% level, as 
calculated by a t-test. Error bars show the standard error of scaled estimates. 
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 sfGFP Reporter Cell Factor Screening 

A main effects screening design generated for the default processor cells was used for 

characterisation of the sfGFP reporter cells, where fold change in sfGFP was used as 

the response. Experimental runs were performed as described in section 2.7.14. Once 

again, the guide cell densities determined by the design differed from those measured 

experimentally, and so the design was modified to incorporate this. Whilst the standard 

least squares main effects model generated from this data showed good correlation of 

actual vs predicted responses, where the line of best fit showed a slope close to 1, the 

colourmap of factor correlations showed high magnitudes for the initial cell density and 

overnight culture temperature factors. Thus, the design was augmented by 6 additional 

experimental runs. The augmentation helped decrease the main effects factor 

correlation magnitudes, however the statistical model exhibited poorer performance. 

Three experimental runs showed potentially anomalous results, and so were removed 

from analysis. The resulting design showed higher correlations between the main 

factors than the fully augmented design, but values were still overall lower than the 

initial design. Additionally, the statistical model showed good performance with small 

confidence intervals. From this model, it was predicted that as with the default 

processor cells, the only factor to influence sfGFP fold change was incubation 

temperature.
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Figure 6.10. Main Effects Screening for sfGFP Reporter Cells 

Analysis of DOE screening design, model, and results for sfGFP reporter cells. (A-B) Initial main effects screening design. (C-D) Augmented 
main effects screening design. (E-F) Main effects screening design without anomalous runs. (A, C, E) Colourmap on correlations for main 
effects (bounded by white box) and interaction effects. Each cell represents the absolute correlation magnitude between two effects or 
interactions. (B, D, F) Scatter plot of actual sfGFP fold change responses as measured experimentally vs fold change responses predicted by 
the main effects, standard least squares statistical model. Crosses show data points from runs determined by the initial screening design, and 
dots represent runs determined by the design augmentation stage. Red circles highlight runs with results thought to be anomalous. The 
dashed black line shows the line of best fit through the data points (the r2 value shows the variation for this fit), and the dotted grey line shows 
line with slope of 1. Confidence levels are displayed at the 95% (pink shading) and 100% (grey shading) levels. (G) Bar chart showing scaled 
estimates of main factor effects on fold change in sfGFP. The p value is shown for factors with effects significant at the 1% level, as calculated 
by a t-test. Error bars show the standard error of scaled estimates. 
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 Conclusions and Future Work 

In this chapter, it was investigated how modifying the ratios in which each cell type was 

initially added impacted the modular and multi-microbial biosensor’s behaviour. It is 

typical for studies focusing on the engineering of multi-microbial systems give some 

thought towards the proportions in which different cell types or species are added, as 

it is well documented that population changes within microbial communities can have 

large effects [344]–[348]. However, usually such thoughts extend only to documenting the 

proportions each population was added at and ensuring populations remain at equal 

amounts during an experiment or process[349], [350]. Studies which have considered cell 

ratios as an avenue for optimisation have mainly done so for natural communities, 

rather than de novo synthetic biological systems[351], [352]. In recent years, as multi-

microbial systems have become ever more popular in synthetic biology, the potential 

of cell ratios as a design space has become increasingly apparent, especially within 

the field of metabolic engineering. For example, it has been shown how mixing cell-

free extracts containing enzymes involved in mevalonate synthesis could optimise 

yield [353], and a recent study (Liu and co-workers 2022) demonstrated how different E. 

coli cells expressing sections of a pathway could be co-cultured in different proportions 

to optimise biosynthetic efficiency [354]. 

 

In this chapter, it was found that cell ratios could be used as a design space to optimise 

the functionality of a multi-microbial biosensor, mainly by impacting on the dynamic 

range and signal stability over time. This finding was similar to how previous studies 

have shown the impact of population proportions on natural communities, and how 

ratios can be used to improve the yield of biosynthetic pathways. 

 

The observation of an unstable response was thought to be due to changes in the 

proportions of each cell types over time as a result of competition for resources. 

Therefore, changes in the initial cell type ratios could have impacted upon whether or 

not a specific cell type became outcompeted. Additionally, based on information from 

chapter 5 indicating that induced processor cells displayed slower cell growth than 

uninduced cells, it was concluded that the amount of detector cells present, which are 

able to induce processor cells, could have directly impacted on the ability for the 

processors to grow. It was indeed observed that only with a sufficiently small number 

of detector cells was a response able to be measured from the processors (2:24:2 and 
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3:7:20). The lack of a measurable processor response with higher numbers of detector 

cells may have been due to the amount of processor cells being too low. 

 

The different cell ratios may have also impacted on the propagation of noise through 

the biosensor system. Noise propagation could occur by background synthesis of 

AHLs by the detector and processor cells, which could accumulate over time and result 

in activation of downstream cell types even in uninduced systems. Reduction of 

background activation could also explain the lack of fold change in red fluorescence 

by the processor cells when in the presence of a large number of detectors, as 

background accumulation of C12-HSL could have caused saturation of the processor’s 

response. Therefore, a fold change could only be seen in systems with detector cells 

below a certain threshold, where background C12-HSL synthesis did not saturate the 

processor. It was also seen that response stability, where a fold change in green 

fluorescence by the reporter cells, was only observed for the 2:24:2 and 3:7:20 cell 

ratios (which were the systems with the lowest proportion of detector cells). It was 

therefore possible that the eventual loss-of-signal by the other systems with higher 

numbers of detector cells was due to saturation of the processor cells after 

approximately 6 to 10 hours of growth, leading to similar levels of C4-HSL being 

produced, and hence non-differential activation of the reporter cells in both induced 

and uninduced systems. To determine if either, or both, of these scenarios were the 

case, it would be necessary to measure growth of each cell type in co-culture over time, 

and to determine the concentration of AHLs in each system at various time points. By 

measuring the change in cell type proportions, which could be achieved through single 

cell analysis using techniques such as flow cytometry or microfluidics, it could be 

determined whether increasing amounts of detector cells did inhibit processor cell 

growth. Measuring the amount of each AHL in the system would identify whether the 

AHL concentrations were sufficient to saturate either the processor or reporter cells’ 

responses. 

 

Visualisation of each cell ratio tested on a ternary plot allow for identification of the 

optimal cell ratio design space. Using maximal reporter cell response, it was found that 

the two best performing biosensors had ratios where the number of detectors was less 

than the number of processors which was less than the number of reporters, which 

was in-line with preliminary predictions made by the agent-based model. However, it 

was possible that this was a local optimum, as the third best performing system had a 
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cell ratio in a different section of the design space. Therefore, further testing with 

additional cell ratios perhaps employing a Design Of Experiments approach, would be 

required to better characterise the cell ratio design space. Additionally, better 

parameterisation of the agent-based model, making use of sensitivity analysis to 

identify the most crucial parameters and experimental parameterisation to determine 

parameter values which fits simulation data to the experimental data, would allow for 

further in silico exploration of the design space. 

 

Following on from exploration of the cell ratio design space, it was investigated whether 

it was possible to optimise each biosensor module individually by modifying the 

conditions in which they were cultured. To achieve this characterisation, statistical 

Design Of Experiments (DOE) was used to screening for factors which impacted upon 

the behaviour of each cell type module. It was found in all cases that the temperature 

at which the cells were incubated at had the largest impact. Additionally, for the IPTG 

detector cells, it was found that the cell density at which the cells were initially added 

also had an impact. Although the incubation temperature impacting upon each cell 

type’s ability to respond to induction was expected, as E. coli grows optimally at 37oC, 

the observation that initial cell density only impacted the detector cells was unexpected. 

Additionally, it was unexpected that the media composition would have little-to-no 

effect on the cells, as previous studies employing Design of Experiments have found 

culture medium to impact on the behaviour of a variety of species [355], [356]. To 

investigate these factors further, it would be necessary to perform additional screening 

experiments which could explore interactions between each factor, rather than simply 

the main effects as seen here, and to conduct surface-response characterisation to 

find optimal values for the impacting factors. 

 

The overall success of the Sensynova system could have been improved in several 

ways. Firstly, screening of quorum sensing channels for use in 3-cell unidirectional 

communication would have allowed for selection of mechanisms which reduced the 

amplification of noise at the processor cell level. Similar screening has been 

successfully implemented previously, and this historical data was indeed used to select 

the quorum sensing mechanisms used here[151]. However, these previous studies 

focus more on responsiveness to outside induction, rather than use within sequential, 

uni-directional communication. Secondly, the identification of more appropriate 

computational modelling/simulation which can scale with the complexity of multi-
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microbial systems would have allowed for faster design iterations, and the exploration 

of a larger number of parameters. The hybrid agent-based and deterministic SBML-

based modelling, whilst potentially highly representative of multi-microbial systems, is 

far too computationally expensive to allow for these investigations. Therefore, more 

traditional modelling approaches, such as deterministic and non-agent-based 

modelling, may be more appropriate[214], [357]. Finally, the optimisation of each individual 

module at a genetic level, rather than relying primarily upon external conditions and 

modulation of cell ratios when in co-culture, would likely have helped optimise the final 

biosensor’s activity, as issues such as high background noise could have been 

reduced. It is therefore suggested that any future work look to use a combination of 

genetic and non-genetic interventions to optimise multi-microbial biosensors based on 

the Sensynova framework.  
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 Optical Communication as an Alternative to Quorum 

Sensing 

 

One challenge of synthetic multi-microbial systems is difficulties associated with co-

culturing different cell types. Populations can compete for resources leading to 

unstable systems and changes in proportions throughout the lifetime of the system. 

Different cell types, species, and strains can require different environmental factors to 

operate optimally, which is not possible to establish in co-culture. The propagation of 

noise, where chemical-based communication molecules can accumulate over time. In 

this chapter, investigations into an alternative, light-based intercellular communication 

mechanism are presented. In section 7.1, optogenetics and bioluminescence are 

explained. In section 7.2, results validating the behaviour of light senders 

(bioluminescent) and light receivers (optogenetic) are presented, whilst section 7.3 

explains a microfluidic approach to experimentally testing optical communication. 

Finally, section 7.4 concludes findings from this chapter and discusses future next 

steps. 

  Introduction 

 Bacterial optogenetics 

In nature, there are many examples of bacterial systems which are regulated by light. 

A classical example is that of bacteriorhodopsin, which is a bacterial proton pump 

driven by light[358]. Another example is the protein YtvA, which is a Bacillus subtilis 

receptor that responds to the presence of blue light, and which is involved in stress 

response signalling mechanisms. EL222 is a protein found in Erythrobacter litoralis 

which, upon dimerization, can bind DNA[359], [360]. The dimerization of EL222 only 

occurs in the presence of blue light, allowing for light regulated control of genetic 

expression. 

 

Optogenetics, a field of light-regulated genetic expression, has been founded based 

on natural light-responsive mechanisms. Whilst optogenetics has traditionally been 

associated with neuroscience, it has become increasingly popular in synthetic 

biology[361]. The ability to use light as a method of controlling genetic expression, rather 

than the more commonly used chemical method, has several advantages. One such 

advantage is that light can be applied to a system transiently, which allows for dynamic 
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switching between activation and deactivation of genetic expression[360]. Such dynamic 

regulation is far more difficult with chemical analytes, as they cannot be easily removed 

from the system once added, and many commonly used chemicals, such as IPTG, 

have long half-lives. Another advantage is that spatial regulation, where different 

sections of a system require independent regulation, can be achieved more easily with 

light, as chemicals may diffuse through a system and ‘bleed’ into unwanted areas, 

whereas light has a higher spatial resolution[362], [363]. Systems which involve patterning 

have benefited greatly from optogenetics for this reason. Disadvantages of 

optogenetics include accidental background activation, where exposure to ambient 

light may inadvertently influence the system, and the requirement for electronics and 

specialist setup, which contrasts chemical induction where the chemical need simply 

be added to the system. 

 Bioluminescence 

Bioluminescence is found abundantly in nature, especially in marine environments 

where animals use light to confuse predators or hunt for prey. Although many bacteria 

have been discovered which exhibit bioluminescence, the exact reasons for why 

bacteria display luminescence are not clear[364]. Bacterial luminescence tends to be 

conferred via an operon, the most common of which is the luciferase, or Lux, operon[365]. 

This operon encodes a set of enzymes which form three complexes: (i) a fatty acid 

reductase composed of LuxC, LuxD, and LuxE, (ii) the luciferase complex composed 

of LuxA and LuxB, and (ii) a flavin reductase which exists as a LuxG homodimer[366]. 

The fatty acid reductase converts long chain aldehydes produced by fatty acid 

metabolism into aldehydes. The LuxAB luciferase uses reduced flavin mononucleotide 

(FMNH2) to oxygenate the aldehyde metabolites, the reaction for which generates light. 

The flavin reductase regenerates FMNH2 by reduction of FMN. 

 

Within synthetic biology, bioluminescence has been used as a reporter. Compared to 

the more commonly used fluorescent reporters, bioluminescence can have a greater 

dynamic range as background luminescence of cells is far lower than background 

fluorescence[367]. However, the vast majority of natural bioluminescence emits in the 

blue or green wavelengths, which may not be suitable for more complex systems. 

These systems require multiple reporters that must be distinguishable from each 

other[364]. Additionally, expression of bioluminescence can place a larger burden on 
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cells, as it tends to require expression of multiple enzymes, compared to fluorescence 

which can be achieved with a single protein. 

 Light-based intercellular communication 

Engineering communication between cells in a synthetic biology system has almost 

universally focused on chemical-based signalling, such as the quorum sensing 

mechanisms discussed throughout this thesis[368], [369]. Whilst there has been much 

success with this approach, chemical-based signalling suffers from many of the issues 

of chemical-based regulation described in sub-section 6.1.1[370]. Additionally, chemical-

based signalling requires the cells to be co-cultured in the same media and 

environment, which can prove problematic when working with different strains or 

species which differ in terms of their optimal conditions. Other issues can also arise 

from co-culturing, such as competition for resources causing the proportions of each 

population to change over time, and difficulties in distinguishing each population 

separately. 

 

As optogenetics provided an alternative to chemical-based genetic regulation, so might 

light-based communication provide an alternative to chemical intercellular 

communication. In such a system, the ‘senders’ in the system would generate light via 

bioluminescence, and the ‘receivers’ could respond to the bioluminescence through 

the use of light-responsive transcription factors, such as the EL222 system described 

previously. Optical communication such as this could benefit not only from the 

advantages afforded to optogenetics, such as a more dynamic signalling system, but 

may also allow for the development of multi-microbial systems which do not rely on co-

culturing. Additionally, different populations could be cultured separately in optically 

clear containers, through which the light could travel. The potential for physically-

separated co-cultures would allow for optimisation of each population’s environment, 

and also help prevent interpopulation competition. Although optical communication has 

been suggested previously in literature[371], and a few projects have attempted to 

engineer such light-based communication[372], [373], rigorous scientific experimentation 

still appears to be lacking. Recent work has suggested the potential for this approach 

in artificial cell communities[370]. 
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 Validation of Light Sender and Light Receivers 

 Optical communication system 

To determine the feasibility of a light-based intercellular communication system, two 

cell types were defined: light senders and light receivers. The light senders were 

selected to generate blue bioluminescent light in response to an inducer, and the light 

receivers were selected to respond to blue light. The light senders consisted of E. coli 

DH5α cells expressing the Lux operon under the control of a PBad promoter, which 

was arabinose inducible. The light receivers expressed mCherry under the control of 

PBLRep. The PBLRep promoter is capable of constitutive expression, however when 

in its dimerised form, the EL222 protein can bind to the promoter sequence and block 

transcription[360]. Thus, the light receivers could only produce mCherry in the absence 

of blue light. As the bacterial luciferase has been previously reported to generate blue 

light, and the PBLRep-EL222 has been shown to respond to blue light, it was expected 

that the light senders and receivers should engage in unidirectional communication. 

 Luciferase operon characterisation 

The bioluminescence of light senders over time with differing levels of induction was 

characterised to determine conditions for maximal light intensity. Light sender cells 

were prepared and characterised as described in section 2.8.1. It was found that 

luminescence was maximal between 4 and 6 hours post induction, after which the 

signal decayed to background levels (Figure 7.1 (A)). This demonstrated the transient 

nature of bioluminescence as both a reporter and a potential intercellular 

communication channel. It was also found that the light sender cells could be induced 

in a dose-dependent manner between approximately 0.04 μM and 0.625 μM of 

arabinose (Figure 7.1 (B)). When fewer than 0.04 μM of arabinose was added, no 

signal could be seen above background levels, and arabinose added above 0.625 μM 

had no impact on luminescence. The bacterial luciferase was observed to generate 

light across a broad range of wavelengths, although maximal intensity was between 

440 nm and 520 nm. This range of wavelengths was similar to the wavelengths of light 

previously reported to activate EL222[374]. Thus, it was concluded that the Lux operon 

could allow for cells to emit light in the correct range of wavelengths to activate the 

EL222 light receiver system. 
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 Comparison of bioluminescence to electronic light 

Whilst it was demonstrated that bacterial luciferase could emit light in the appropriate 

wavelength range to activate EL222, it was not clear if the intensity of light emitted 

would be sufficient to cause a measurable response by the light receiver cells. To help 

determine whether the light sender cells would emit light at a great enough intensity, 

the bioluminescence was compared to electronic light from a Light Emitting Diode 

(LED). To this end, a light calibration plate device was prepared (Figure 7.2(A)). This 

device consisted of a black 96-well plate with clear, flat bottoms, a blue LED (Fedy 

Tech diffused ‘Piranha’ RGB; Adafruit 1451), and a 3-volt CR2032 battery. The LED 

and battery were wired together, with space for resistors to be added in series. The 

number of resistors was used to modulate the LED’s brightness, which allowed for 

better approximation of bioluminescence. Luminescence from the light calibration plate 

device was measured using the same plate reader and settings used for 

characterisation of the light sender cells. The LED brightness was measured when 

 

Figure 7.1. Light Sender Cell Characterisation 

Characterisation of E. coli cells expressing the Lux operon. Error bars shows standard 
error of 3 or 4 replicates centred on the mean luminescence value. (A) Time course curve 
of log10 luminescence at 460 nm when induced with 20, 1.25, 0.04, or 0 μM of arabinose. 
Dots show individual luminescence values for each replicate. (B) Dose-response curve of 
arabinose concentration vs log10 luminescence at 460 nm, 5 hours post induction. (C) 
Spectral scan of cell cultures between 400 nm and 600 nm in 20 nm intervals, 5 hours post 
induction. Data shown for cells induced with 20, 1.25, 0.08, 0.04, or 0 μM of arabinose. 
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different numbers of 1 megohm resistors (between 0 and 6) were added in series. 

When 0 or 1 resistor was added, the LED’s brightness saturated the plate reader’s 

detector, and hence this data was excluded. For the remaining data, it could be seen 

that the LED emitted light maximally between 440 and 480 nm (Figure 7.2(B)). The 

spectral properties of bacterial luciferase and the LED were similar, although the light 

sender cells showed luminescence across a broader spectrum. Additionally, the 

brightest light sender cultures showed luminescence approximately 10 times lower 

than the dimmest LED setup measured. It therefore needed to be determined whether 

the EL222 optogenetic system could be impacted by light at this low level. 

 

 Validation of EL222 optogenetic construct 

To initially validate responsiveness of cells expressing the EL222 optogenetic 

construct to blue light, cells were grown in a 96 well plate exposed to either bright blue 

light or kept in complete darkness (Figure 7.3 (A)). The PBLRep promoter allows 

translation of downstream coding regions when EL222 is inactive (not exposed to light) 

but is blocked by EL222 in its active form (exposed to blue light). It was seen that over 

a period of 5 hours, cells exposed to blue light had red fluorescence repressed 

compared to cells kept in the dark, as was expected. 

 

 

Figure 7.2. Comparing Bioluminescence to Electronic Light 

Plate reader luminescence readings were calibrated to a blue LED. (A) Picture showing 
setup. An LED (Fedy Tech diffused ‘Piranha’ RGB; Adafruit 1451) was placed facing down 
into a 96-well plate. A 3-volt CR2032 battery was adhered to the plate, along with space 
for 1 megohm resistors connected in series. The plate was placed into a plate reader and 
luminescence readings were taken using the bottom luminometer. (B) Spectral scan of 
LED luminescence between 400 nm and 600 nm. Solid lines show luminescence of the 
LED with different numbers of resistors added. The dashed line shows bioluminescence of 
the light sender cells with 20 μM of arabinose added (Figure 7.1). The grey box shows the 
wavelengths at which EL222 is maximally activated[374]. 
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An alternative optogenetic setup was used to determine whether the light receivers 

could respond to light at an intensity approaching that of the light sender cells. In this 

experiment, each well containing light receiver cells were exposed to either no light, or 

blue light from a single LED with 0 or 6 megohms of resistance. Plates were then 

covered in foil to prevent exposure to ambient light. Cells were prepared and 

characterised as described in section 2.8.3. Unlike in the previous experiment, there 

was no difference in fluorescence between the cells exposed to bright blue light, and 

the cells kept in total darkness (data not shown). The reason for this was not clear, as 

cells were prepared in the same ways, although it was likely related to the change in 

experimental setup. Regardless, the initial experiment demonstrated that the light 

receiver cells could respond to blue light, although the system appeared not to be 

robust. 

 

 

Figure 7.3.  alidation of Light  eceiver  ells’  esponse to Blue Light 

The light receiver cells were cultured in the presence and absence of blue light. (A) 
Optogenetic setup. A Unicorn pHAT (Pimoroni) was connected to a Raspberry Pi Zero 
(Pimoroni), and 3 volts was supplied to all blue LEDs. The light emitting device was placed 
into a box, with the 96 well plate containing cell cultures on top. The box was covered in 
foil and experimentation was performed (section 2.8.2) (B) Time course curve of red 
fluorescence per cell density over 5 hours. Error bars show standard deviation across 
three replicates, centred on the mean. (C) Alternative optogenetic setup allowing for 
characterisation with calibrated LEDs. The LED circuits were powered individually as 
described in Figure 7.2 (A). For the setup in the first image on the left, no resistors were 
used. In the setup on the right in the first image, 6 megohms of resistance was applied to 
the LED circuits. The second image shows the setup with a 96-well culture plate placed on 
top. 
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 Microfluidic-Based Optical Communication Validation 

 Microfluidic chip design 

A microfluidic chip was designed with the aim of validating optical communication 

between the light senders and receivers. The microfluidic chip was required to allow 

for each cell type to accumulate and grow within separate chambers but be positioned 

such that light could pass between the two chambers. The microfluidic device was 

based upon a previously reported design [375], where cells flow through a channel which 

has a chamber extending from one edge of the channel, as illustrated in Figure 7.4 (A). 

The optical communication microfluidic chip was designed to incorporate two channels 

of 10 μm width and 40 μm depth, with growth chambers extending from the centre of 

each. The channels were positioned as illustrated in Figure 7.4 (A), which allowed for 

the edge of each chamber to be facing one another, and hence light could pass 

between each chamber. The two channels each had an input and output port, where 

cells and fresh media could be flowed in one end of the chamber, and waste could be 

 

Figure 7.4. Optical Communication Microfluidic Chip Design 

Basic design for the microfluidic chip. (A) Full device, consisting of two unconnected 
sections mirror imaged about the plane indicated by the dotted grey line. The lengths of 
the growth chambers were 100, 120, or 150 μm long, and 100 μm wide. The channels 
were 10 μm wide. The ports were 2 mm in diameter. The distance between each growth 
chamber was 10, 50, or 100 μm. The distance between each port and the channel bend 
and the distance between the channel bend and opening of the growth chamber were both 
2 mm. The depth across the entire chip was 40 μm. (B) Growth chamber variant with a 
‘shelf’. The shelf was 10 μm wide and reached to the mid-point of the chamber (50 μm). 
The distance between the top of the shelf and growth chamber opening was 25 μm. 
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collected from the other end. This allowed for continuous flow to be established, which 

can promote cell growth in microfluidic devices[376]. 

 

The microfluidic chips were designed using Autocad as described in section 2.8.4. 

Initially, three variants of the microfluidic chips were designed by modifying the length 

of the growth chamber, such that each chamber was 100 μm in width, and either 100 

μm, 120 μm, or 150 μm in length. These variants were created as it has been shown 

previously that different chamber sizes can impact on trapping of cells. Prior to 

fabrication of the microfluidic chips, fluidic modelling was performed using ANSYS 

workbench (section 2.8.4) to help identify and problems relating to the designs. It was 

found that whilst cells did enter the growth chambers (Figure 7.5 (A-C)), there was the 

potential for significant escape to occur. To address this issue, another set of variants 

were designed. These variants incorporated a ‘shelf’ 50 μm long and 10 μm wide, 25 

μm from the growth chamber opening (Figure 7.4 (B)). This feature was added with the 

aim of stopping cells from simply flowing out of the chamber and into the channel. 

Fluidic modelling indicated that the shelf feature did help prevent cell escape (Figure 

7.5 (D-E)). Additionally, it was found that a slow vortex formed in the 100 μm long 

chamber, assisting with continual mixing of cells and nutrients from the media to assist 

with growth. 

 

For all designs described above, a final three variants were generated for each by 

varying the distance between each growth chamber, such that the chambers were 

placed either 10 μm, 50 μm, or 100 μm apart (48 variants in total). The varied distances 

were incorporated to allow for characterisation of the relationship between light travel 

distance, and response by the light receivers. 
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Figure 7.5. Fluidic Simulation Results 

Images captured from fluidic simulation of microfluidic chip designs using ANSYS as described in 
section 2.8.4. For all images, direction of flow was from left to right. Spheres represent cells and were 
coloured according to velocity. Solid arrows show the cell’s direction of travel, and the size and colour 
of each arrow were determined by the cell’s velocity. (A-C) Images showing the state of 100 (A), 120 
(B), and 150 (C) μm long growth chambers after 10 minutes of simulation time. (D-E) Images showing 
the state of 100 (D) and 150 (E) μm long growth chambers with shelf after approximately 5 (left) and 
10 (right) minutes of simulation time. Dashed black arrows show general flow patterns within each 
chamber. 



271 
 

 Microfluidic chip fabrication and cell culturing 

The microfluidic designs were fabricated as described in section 2.8.5. It should be 

noted that initially, PDMS was selected to fabricate the microfluidic chips from. 

However, due to supply chain issues, PDMS could not be acquired (see COVID impact 

statement). As an alternative, silicone resin was used to allow for initial testing of cell 

culturing within the microfluidic chips (Figure 7.6 (A)). However, silicone is far less 

optically clear than PDMS, and hence was not suitable for testing optical 

communication. To begin testing of cell culturing, the fabricated chips were first imaged 

under a microscope to check for damaged features. It could be seen that all features 

had good resolution and were as designed (Figure 7.6 (B)). 

 

The fabricated microfluidic chips were tested to ensure their viability for cell growth. 

Initially, the chips were tested by flowing E. coli DH5α cell culture through the channels 

to ensure cells could be trapped in the chambers. It was found that the designs 

containing longer growth chambers (120 and 150 μm) were prone to air bubbles 

becoming trapped at the end of the chamber (Figure 7.6 (C)). Therefore, only the 

designs with 100 μm long growth chambers were used for subsequent experiments. 

Additionally, it was observed that the 100 μm long growth chambers with shelf 

appeared to allow for better retention of cells, however it appeared that performance 

increased when liquid flow was in the opposite direction to that tested during fluidic 

simulation. Therefore, subsequent experiments made use of the 100 μm long growth 

chamber with shelf designs, with liquid flow in the direction of right to left with respect 

to Figure 7.4 (B) and Figure 7.5 (D). 
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Figure 7.6. Validation of Microfluidic Chip Fabrication 

Initial validation of fabricated microfluidic chip feature accuracy and functionality. (A) Images showing the design for a single 
microfluidic device in Autocad (top) and the fabricated device (bottom). (B) Phase contrast images of microfluidic chip 
features using a Nikon Ti microscope with a 40x objective with 1.5x zoom (left). Images on the right show the corresponding 
feature design in Autocad. (C) Phase contrast image (40x objective with 1.5x zoom) showing E. coli DH5α cells in a 
microfluidic chip with 150 μm growth chamber. White arrow indicates liquid-air interface. 
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As the light receiver cells were engineered to express mCherry in the absence of blue 

light, it was therefore necessary to ensure red fluorescence could be detected in the 

microfluidic device. To this end, the default processor cells developed for the 

Sensynova framework were cultured overnight, mixed with 10 μM C12-HSL to induce 

mCherry production, and loaded into a microfluidic device (2.8.7). Fresh LB media 

supplemented with 10 μM C12-HSL and chloramphenicol was flowed at a constant 

rate (approximately 0.1 μL/min) through the chip for 10 hours, with phase contrast and 

red fluorescence images taken every 30 minutes by a Nikon Ti2 microscope with 40x 

objective and 1.5x zoom (section 2.8.7). The microscope chamber was kept at 37oC 

for the duration of the experiment. As expected, red fluorescent cells were observed, 

 

Figure 7.7. Cell Growth and Red Fluorescence within Microfluidic Device 

Default processor cells from the Sensynova framework were induced to produce mCherry 
and trapped in a microfluidic growth chamber. (A) Merged phase contrast and red 
fluorescence images taken by a Nikon Ti2 microscope with 40x objective and 1.5x zoom. 
Images were taken over a 10-hour time course. (B) Tracking of an individual cell 
throughout the images shown in (A). (C) Red fluorescence (top) and merged phase 
contrast and red fluorescence (bottom) images after 8 hours of growth showing an E. coli 
cell displaying failed division and cytoplasmic condensation. White arrows indicate 
segments of segregated cytoplasm. 
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with increasing fluorescence observed over time (Figure 7.7 (A-B)). However, some E. 

coli cells appeared to fail to replicate correctly, and instead formed elongated chains 

with evidence of cytoplasmic condensation[377] (Figure 7.7 (C)). As mCherry 

accumulated in the cytoplasm, it was possible to visualise individual cytoplasm 

sections. This behaviour of both disrupted cell division and cytoplasmic condensation 

have been shown to occur in the presence of DMSO and chloramphenicol 

previously[377], [378]. Therefore, as chloramphenicol was used as the selection pressure 

to retain the default processor module, and DMSO was used as the solvent for C12-

HSL, it was likely that these additives were the cause. Although cell division was 

somewhat impacted, cell activity was apparent due to the increase in red fluorescence 

over time. 

 

Although it was seen that the default processor cells produced mCherry over time, it 

was not clear whether this behaviour was due to induction with C12-HSL or the result 

of background expression. This uncertainty stemmed from observations of high 

 

Figure 7.8. Induction of Fluorescence in Microfluidic Device 

Induction of default processor cells in the optical communication microfluidic device. (A-B) 
Schematic (A) and picture (B) of experimental setup following loading of default processor 
cells into the growth chambers. The tube-syringe adapters were 200 μL pipette tips cut to 
size. The inlet and outlet ports were 10 μL pipette tips cut to size. The syringes were 
controlled by automatic pumps. Inset in (B) shows microfluidic device positioned in the 
microscope. White arrow indicates flow direction. (C) Time lapse images of red 
fluorescence (bottom) and merged phase contrast and red fluorescence (top) taken by a 
Nikon Ti2 with a 40x object and 1.5x zoom. 
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background mCherry production over time discussed in chapter 5. It was important to 

establish whether cells could be induced within the microfluidic device, as the light 

sender cells required induction by arabinose to produce bioluminescence. Therefore, 

a second experiment was conducted in which default processor cells were grown 

overnight but were not mixed with C12-HSL. Instead, cells were loaded into both 

chambers of a single fluidic device, and LB media with only chloramphenicol added 

was flowed through one section, whilst LB media with chloramphenicol and 10 μM C12-

HSL was flowed through the other (Figure 7.8 (A-B)). It was observed that cells in the 

chamber with C12-HSL in the media displayed greater fluorescence than those in the 

chamber with no C12-HSL, suggesting that induction of cells within the microfluidic 

device was possible (Figure 7.8 (C)).  
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 Conclusions and Future Work 

The use of multi-microbial systems in synthetic biology relies heavily upon intercellular 

communication mechanisms, the vast majority of which make use of diffusible 

chemical molecules [175], [379]–[381], or at least require cells to occupy the same physical 

space [382]. The Sensynova framework presented in this thesis make use of such 

chemical-based communication in the form of quorum sensing mechanisms. In this 

chapter, efforts were made to investigate a light-based intercellular communication 

mechanism which would not require co-culturing of cells. 

 

Two cell types, a light sender and a light receiver, were identified to help validate optical 

communication. The light sender consisted of an inducible bacterial luciferase pathway 

which could generate blue light. The light receiver used the EL222 light-activated 

transcription factor which could prevent transcription of a fluorescent protein when 

active. As the EL222 protein responded to blue light, it was thought that the bacterial 

luciferase could activate EL222. 

 

To validate appropriateness of the bacterial luciferase as a light sender, it was 

necessary to ensure that light emitted was in the range of wavelengths known to 

activate the EL222 protein. In accordance with previous studies [366], it was found that 

bacterial luciferase emitted light maximally in the range of 440 nm to 520 nm. This 

range corresponded with wavelengths known to activate EL222 [374], indicating the 

potential for bacterial luciferase to act as a light sender. 

 

Whilst bacterial luciferase had been shown to emit light in appropriate wavelengths, it 

was not clear whether the intensity of light was high enough to activate EL222. It was 

therefore necessary to calibrate the brightness of the luciferase against a known light 

source. This light source could then be used to characterise the EL222 light receivers 

and determine their limit of sensitivity. Whilst chemical standards exist for calibrating 

fluorescence [63], appropriate luminescence standards have not yet been validated. 

Instead, a custom calibration plate was built, which allowed for calibration of 

bioluminescence against electronic light in a plate reader. Intensity of the electronic 

light was modulated via resistance in the circuit, and raw luminescence was compared 

to that of the luciferase. Whilst the luciferase was found to emit light below the 

measured electronic light intensities, it was possible to obtain a base sensitivity 
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threshold for the EL222 system. Although initial characterisation demonstrated 

responsiveness of the EL222 system to light, the optogenetic setup used to measure 

sensitivity failed to generate a response, even when high intensity light was used. 

Therefore, future work should aim to optimise this setup to ensure robustness, and 

hence provide a method for establishing the minimum bioluminescent intensity 

required to activate EL222-based light receivers. 

 

If future work indicated that the bacterial luciferase tested in this project was too dim, 

a brighter variant of the Lux operon should be investigated, such as the iLux operon[383]. 

Alternatively, BRET (Bioluminescent Resonance Energy Transfer) could be employed 

to increase the light intensity emitted[384]. BRET would occur by co-expressing a bright 

fluorescent protein with emission at the wavelength required for activation of the EL222 

system, and excitation within the range of wavelengths emitted by the luciferase. 

 

To enable implementation and characterisation of an optical communication 

mechanism, and microfluidic device was developed. This novel device would allow for 

physically separated culturing of light senders and receivers, leveraging the ability to 

establish multi-microbial systems without the need for co-culturing. The microfluidic 

device was shown to be suitable for growth of bacterial cells over time, and it was 

successfully demonstrated how cells could be induced within the device. However, the 

microfluidic chips had to be fabricated from silicone resin rather than PDMS due to a 

lack of availability. PDMS was initially selected as it is optically clear, however the 

chemical could not be obtained. Therefore, the culturing experiments had to use 

microfluidic devices fabricated from the far less transparent silicone resin. Thus, it was 

not possible to use the microfluidic device to validate the potential for optical 

communication. Future work should aim to fabricate the designs from PDMS. 

 

To summarise, initial characterisation of a potential light sender and light receiver was 

performed, with the aim of establishing suitability for implementing optical 

communication. Additionally, a microfluidic device was developed to allow for future 

validation of light-based intercellular communication. 
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 Conclusions and Future Work 

 Summary of Research Objective 

The research objective of this thesis was to demonstrate how the principles of high-

level modularity and synthetic multi-microbial systems could be used to aid in the 

development of a specific type of synthetic biology device: biosensors. In chapter 1, 

bioengineering and synthetic biology were introduced. The strengths and challenges 

associated with synthetic biology approaches towards the development of biological 

systems and devices were discussed, using examples of previous studies. It was 

identified that although synthetic biology has shown much promise, the development 

and optimisation of systems is difficult, and implementation of engineering principles 

can be inefficient. A particular area of interest was highlighted: genetic biosensors. 

These types of biosensors represent a commonly developed biological system and 

have wide-reaching applications, although their development was found to suffer 

similarly to other synthetic biology systems. In this thesis, it was investigated how high-

level modularity and multi-microbial systems could be used to provide alternative 

approaches towards biosensor development and optimisation. Specifically, focus was 

given to identifying novel and easily accessible design spaces and developing a 

framework to promote more efficient use of engineering principles in development. 

Throughout the thesis, the findings, outcomes, limitations, and potential future avenues 

were discussed at the end of each chapter. In this chapter, the impact of the project as 

a whole is considered, and the major outcomes highlighted. 

 Summary of Previous Work 

As discussed in section 3.1, there is a large potential for the combination of high-level 

modularity and multi-microbial systems to aid with the development of biological 

devices. However, previous studies which have used modular multi-microbial systems 

had various limitations, such as the requirement for complex hardware and very 

specific applications (section 3.1.2). More broadly, however, these attempts focused 

only on presenting the functionality of synthetic biology systems implemented using 

their approaches, rather than developing a framework and associated tools. Moreover, 

many examples did not consider engineering principles other than those inherently 

linked to modularity, including computationally informed experimentation and 

optimisation (section 3.1.2). The work in this thesis has considered the benefits, 

disadvantages, and challenges of modular and multi-microbial systems which require 
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uni-directional signal propagation. An overview of the insights and conclusions gained 

from work detailed in this thesis is given throughout the remainder of this chapter. 

 Tools for Enhancing a High-Level Modular and Multi-Microbial Framework 

In this thesis, the focus was not simply on determining whether a genetic biosensor 

could be developed using the Sensynova framework. Instead, focus was also placed 

on investigating how such an approach could be enhanced using a range of tools and 

resources to promote the use of engineering principles. 

 

In section 3.3.1, it was identified that the Synthetic Biology Open Language (SBOL), 

which is commonly used to develop and share synthetic biology designs, could not be 

used to represent multi-microbial systems. As discussed in section 1.2, re-usability and 

reproducibility are key principles not only in modularity, but also synthetic biology more 

widely. The ability to share information easily and accurately about a design and its 

intended function are key to such principles. To aid in this endeavour, a proposal of 

how the SBOL data model could be extended to capture information about multi-

microbial systems, along with a set of best practices for representing such information 

was researched and presented (section 3.3). Also proposed were methods for storing 

information about cells and other chassis in SBOL, as this was not currently possible. 

These proposals were accepted by the SBOL community, and as such, multi-microbial 

systems and contextual information surrounding cells and chassis can now be 

represented in SBOL (section 3.3.7). Acceptance of the proposals was the first major 

outcome of this project, as it provided a method for users to capture information not 

only about Sensynova compatible modules and biosensors, but other modular and 

multi-microbial approaches more widely. 

 

In section 3.4.1, it was discussed how automation could aid high-throughput 

development of synthetic biology systems and allow for easier sharing and 

reproduction of experiments. However, it was also found that the development of 

automation protocols can be difficult, and often pre-existing protocols cannot be easily 

adapted (section 3.4.1). Further, it was discussed how although previous efforts to aid 

in automation protocol generation have been made, these tools are either poorly 

documented or only provide an alternative language with which to write protocols, with 

no support for trivial protocol generation (section 3.4.1). Some tools were identified 

which allowed for easy generation of automation protocols, however they were towards 
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highly specific applications. Presented in section 3.4 was the second major outcome 

of this project: a Python library (BiomationScripter) which provided not only tools to aid 

in writing automation protocols for a wide range of workflows, but also Templates which 

could quickly generate protocols for common applications based on a few user inputs. 

Additionally, optional parameters allowed for flexibility and the potential for optimisation 

of protocols generated from Templates, and support was provided to allow users to 

create custom Templates. Documentation with walkthrough examples were made 

available to aid with uptake of BiomationScripter. Within the context of the Sensynova 

framework, a BiomationScripter-enabled Template for characterisation of modules and 

multi-microbial biosensors was developed and used throughout the project, allowing 

for simpler replication of experiments, and standardised generation of characterisation 

protocols. This represented a major difference from previously described 

implementations of high-level modular and multi-microbial synthetic biology, which did 

not make use of flexible automation. 

 

The use of computational simulations has become popular in synthetic biology, as it 

can aid guided design and experimentation (section 4.1). In chapter 4, a proof-of-

concept biosensor and its constituent modules were modelled and simulated using 

both deterministic and agent-based approaches. The Simbiotics platform was used to 

model the multi-microbial biosensor as it allowed for different cell types to have 

behaviour defined in a modular fashion, using the Systems Biology Markup Language 

(SBML) standard. In section 4.4, it was discussed how the standard SBML solver 

implemented within Simbiotics was not appropriate for simulation of complex designs, 

such as the ones developed here. Thus, a different method of simulation SBML models 

was implemented, adapting Simbiotics towards the needs of the Sensynova framework. 

Through simulating the modules and biosensor it was found that noise could easily 

propagate through the system, but an easily accessible design space, cell ratios, could 

be used to optimise the biosensor’s functionality. As was discussed in section 6.4, the 

cell ratios design space has been shown previously to have importance but has been 

underutilised. 

 

Whilst the Simbiotics platform allowed for some basic in silico interrogation of the 

Sensynova concept, it was found that the computational expense of simulating the 

system was high. This expense was found to be a major limitation as it was not feasible 

to rapidly explore large areas of the design space, and approaches such as sensitivity 



281 
 

analysis and parameter scanning were severely hindered. Therefore, a key finding 

from this section of work was that although the hybrid deterministic and agent-based 

modelling approach employed can be highly representative of biological systems, 

approaches which are less computationally expensive are vital in aiding the 

development of synthetic multi-microbial consortia. 

 Validating a Proof-Of-Concept Sensynova Biosensor 

Through the use of the tools developed in this thesis, a proof-of-concept modular and 

multi-microbial biosensor was developed. Initially, the biosensor modules were 

characterised separately before combining into a co-culture. Section 5.2 described 

how information from computational models was used to help validate module 

functionality, and how BiomationScripter trivially generated protocols for automating 

experimental setups. Further, all data presented in chapter 5 was calibrated according 

to a standard protocol, which would allow for data collected by different researchers 

using different equipment to be compared more accurately. This was the first time that 

a modular and multi-microbial approach made use of standardised and automated 

characterisation protocols and calibrated data to help ensure reproducibility and re-

usability, in conjunction with computationally informed experimentation. Future work 

should aim to conduct interlaboratory studies to determine the extent to which these 

approaches aided with increasing reproducibility and easing implementation. 

 

From the experimental results, it was found that each module displayed different time-

course fold-change behaviour when comparing induced and uninduced cells. Whilst 

the detector and reporter modules appeared to show increased fold change over time 

until a plateau was reached, the processor module instead showed that after an initial 

increase, fold change then began to decrease. This behaviour was found to be due to 

background activation of uninduced processor cells over time. Based on the design of 

the processor module and the potential for cross-talk between the two quorum sensing 

mechanisms used in the Sensynova platform, it was hypothesised that a positive 

feedback loop was amplifying leaky expression. This finding highlights the importance 

of selecting the correct communication channels when designing synthetic microbial 

consortia. 

 

In section 5.2.3, the impact of noise propagation was characterised using 

BiomationScripter-generated protocols. Whilst the agent-based model indicated that 
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noise propagation may be an essential component of multi-microbial systems which 

rely on signal transfer through intercellular communication (section 4.4.4), this has not 

been thoroughly explored previously. Here, it was found that activation of cell types 

through background production of intercellular communication molecules was 

significant, and hence should be addressed when considering optimisation of multi-

microbial systems. Indeed, an initial implementation of the multi-microbial biosensor, 

where all cell types were added in a 1:1:1 ratio, showed that whilst the system was 

functional, as time progressed background noise increased, and the signal become 

indifferentiable from the noise. This was thought to be due to the positive feedback 

loop exhibited by the processor cells, where background expression of the C4-HSL 

molecule saturated the response of the downstream reporter cells. The behaviour 

documented in this thesis demonstrates how noise can propagate through uni-

directional cell-to-cell communication channels via feedback loops to saturate the 

response of downstream populations. Therefore, a key finding from this thesis is that 

if synthetic consortia are to become increasingly complex as the field of biocomputing 

advances, it is important that interventions to prevent noise amplification are developed. 

Such interventions could take a number of forms, including the development or 

discovery of fully orthogonal communication pathways, or methods to increase the 

transience of communication ‘messengers’ (such as quorum sensing molecules) to 

prevent background accumulation. 

 

The impact of cell ratios on biosensor functionality was investigated experimentally in 

section 6.2, using predictions made by the agent-based model and making use of 

BiomationScripter to automate the testing process. It was found that cell ratios did 

indeed have a significant impact on response characteristics of the proof-of-concept 

multi-microbial biosensor. Additionally, results indicated that the design space section 

predicted by the agent-based model to contain the most optimal cell ratios was 

accurate, although further testing with a greater number of ratios would be required to 

confirm this finding. Nevertheless, these results indicated the usefulness of agent-

based modelling in the optimisation of multi-microbial biosensors, and further 

development of the model to include more accurate parameters may allow for more 

precise predictions. Aside from the cell ratios design space, a computationally driven, 

multifactorial approach was taken to determine factors which most heavily impact on 

the functionality of individual modules (section 6.3). Results of the initial screening 

design indicated which factors should be investigated further in future experiments.  
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The success of using cell ratios as a design space to modulate the behaviour of a 

synthetic consortium has implications for the development of future synthetic biology 

systems and devices. The findings in this thesis makes clear that cell population 

composition is important even in multi-microbial systems which have not been 

designed to be impacted by changing cell ratios, such as previously described 

predator-prey systems[385]. Further, this work has shown that stable cell populations 

present in equal ratios is not always the most optimal configuration for synthetic 

consortia, and thus efforts should be made to properly consider this aspect of multi-

microbial systems developed in the future. 

 Optical Intercellular Communication 

In chapter 7, the limitations of chemical-based intercellular communication, such as 

the requirement for co-culturing, was discussed. A potential alternative communication 

method based on light was identified as an approach to address these concerns by 

allowing cells to grow separated by a physical barrier, but still maintain communication 

(section 7.1.3). As was also discussed in section 7.1.3, optical communication has 

been suggested previously and identified as a crucial technology in the development 

of multi-microbial communities but has had limited success in implementation. 

 

In this project, strides were made towards implementing a method of optical 

communication. Mechanisms for light sender and receiver cells were identified and 

attempts were made to validate their feasibility (section 7.2). Additionally, a microfluidic 

device was designed, modelled, and fabricated which could allow for characterisation 

of optical communication. Whilst this device could not be fully tested due to difficulties 

in sourcing PDMS (see the COVID impact statement), the ability to grow and induce 

bacterial cells within the device was demonstrated. 

 

Within this thesis, a method of calibrating bioluminescence to electrically generated 

light using a microplate reader was demonstrated. This method can be used to rapidly 

determine if a physically separated bioluminescent cell population would be able to 

control an optogenetic cell population. It is hoped that the efforts made here will aid in 

future work to develop a light-based cell-to-cell communication mechanism. 
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 Future Work 

The work presented in this thesis laid the foundations for a high-level modular and 

multi-microbial framework and demonstrated how it could aid development of a proof-

of-concept biosensor. Whilst the approaches and principles researched here were 

shown to have promise, there remains future work which may be conducted based on 

the presented findings. Whilst further work has been discussed in each chapter for 

individual parts of the project, listed here are more general areas which require further 

investigation to help direct future efforts in this field. 

 

Firstly, it is recommended that the interoperability of high-level modules designed and 

implemented according to the framework should be investigated. To achieve this, 

module variants could be rapidly assembled using automation protocols generated by 

BiomationScripter. The construction of a multitude of biosensors could then be created 

through co-culture of module variants to demonstrate not only how variants for each 

module type (detector, processor, reporter) can be easily interchanged, but the impact 

on biosensor response characteristics could be measured and reported on. These 

endeavours could be assisted by agent-based modelling, where deterministic models 

for each module variant are created and simulated using the Simbiotics platform to 

predict biosensor behaviours. 

 

Secondly, as mentioned previously, conduction of interlaboratory studies would aid in 

determining how the availability of resources developed in this project, such as SBOL 

representation of multi-microbial systems and BiomationScripter generated 

characterisation protocols, impact on reproducibility of Sensynova biosensors. These 

studies could also help determine further barriers to re-usability and reproducibility and 

guide future efforts. 

 

Thirdly, although the computational models presented here provided invaluable insight 

concerning optimisation of multi-microbial systems, the use of experimentally derived 

parameters would allow for more accurate predictions. It is also recommended that 

alternative agent-based modelling software which allows for less computationally 

intensive simulation of complex, SBML-defined multi-microbial systems be identified 

or developed. Faster simulation times would allow for better exploration of design 

spaces and variants in silico and could allow for cell growth to be added to the model. 
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Finally, limitations of multi-microbial systems were found to largely stem from issues 

related to co-culturing of different cell types. These findings prompted investigation of 

optical intercellular communication. Further efforts in this area could aim to use the 

approaches presented in chapter 7 for the purposes of identifying appropriate 

mechanisms for light production and reception. Additionally, as the microfluidic devices 

developed in this project showed promise, future work could use these designs to aid 

in validating optical communication mechanisms. 

 Conclusions 

In this project, it was shown how a biosensor design could be split into three functional 

modules. It was then demonstrated that each biosensor module acted as a functional, 

high-level module by displaying its own functionality. Further, each module was 

implemented into different cells, and a biosensor system was assembled via co-

culturing of each modular cell type. Tools and resources were developed and their 

application in aiding the implementation of a modular and multi-microbial biosensor 

demonstrated. By building on previous approaches at implementing high-level 

modularity and multi-microbial systems in synthetic biology, the work presented in this 

thesis has provided extra insight and tools to aid in the development of biological 

systems, and more efficient use of engineering principles. 
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 Supplementary Information 

 BiomationScripter Plate Calibrant Protocol 

def run(protocol): 

    Custom_Labware_Dir = "C:/Users/bradl/OneDrive - Newcastle 

University/Nextcloud/Private/Automation/Opentrons_Labware_Definitions" 

    Starting_20uL_Tip = "A1" 

    Starting_300uL_Tip = "A1" 

    Calibrants = [ 

        "Fluorescein", 

        "Sulforhodamine 101", 

        "Cascade Blue", 

        "Microspheres" 

    ] 

    Calibrants_Stock_Concs = [ 

        10, 

        2, 

        10, 

        3e9, 

    ] 

    Calibrants_Initial_Concs = [ 

        10, 

        2, 

        10, 

        3e9 

    ] 

    Calibrants_Solvents = [ 

        "PBS", 

        "PBS", 

        "Water", 

        "Water", 

    ] 

    Calibrant_Aliquot_Volumes = 500 

    Solvent_Aliquot_Volumes = 5000 

    Volume_Per_Well = 100 

    Repeats = 2 

    Calibrant_Labware_Type = "3dprinted_24_tuberack_1500ul" 

    Solvent_Labware_Type = "3dprinted_15_tuberack_15000ul" 

    Destination_Labware_Type = "greiner655087_96_wellplate_340ul" 

    Trash_Labware_Type = "axygen_1_reservoir_90ml" 

    Solvent_Mix_Before = None  

    Solvent_Mix_After = None 

    Solvent_Source_Touch_Tip = True 

    Solvent_Destination_Touch_Tip = True 

    Solvent_Move_After_Dispense = "well_bottom" 

    Solvent_Blowout = "destination well" 

    First_Dilution_Mix_Before = (10, "transfer_volume") 

    First_Dilution_Mix_After = (10, "transfer_volume") 

    First_Dilution_Source_Touch_Tip = True 

    First_Dilution_Destination_Touch_Tip = True 

    First_Dilution_Move_After_Dispense = False 

    First_Dilution_Blowout = "destination well" 

    Dilution_Mix_Before = (10, "transfer_volume") 
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    Dilution_Mix_After = (10, "transfer_volume") 

    Dilution_Source_Touch_Tip = True 

    Dilution_Destination_Touch_Tip = True 

    Dilution_Move_After_Dispense = False 

    Dilution_Blowout = "destination well" 

    Mix_Speed_Multipler = 2 

    Aspirate_Speed_Multipler = 1 

    Dispense_Speed_Multipler = 1 

    Blowout_Speed_Multiplier = 1 

    Dead_Volume_Proportion = 0.95 

    Calibration_Protocol = Templates.Standard_iGEM_Calibration( 

        Calibrants = Calibrants, 

        Calibrants_Stock_Concs = Calibrants_Stock_Concs, 

        Calibrants_Initial_Concs = Calibrants_Initial_Concs, 

        Calibrants_Solvents = Calibrants_Solvents, 

        Calibrant_Aliquot_Volumes = Calibrant_Aliquot_Volumes, 

        Solvent_Aliquot_Volumes = Solvent_Aliquot_Volumes, 

        Volume_Per_Well = Volume_Per_Well, 

        Repeats = Repeats, 

        Calibrant_Labware_Type = Calibrant_Labware_Type, 

        Solvent_Labware_Type = Solvent_Labware_Type, 

        Destination_Labware_Type = Destination_Labware_Type, 

        Trash_Labware_Type = Trash_Labware_Type, 

        Solvent_Mix_Before = Solvent_Mix_Before, 

        Solvent_Mix_After = Solvent_Mix_After, 

        Solvent_Source_Touch_Tip = Solvent_Source_Touch_Tip, 

        Solvent_Destination_Touch_Tip = Solvent_Destination_Touch_Tip, 

        Solvent_Move_After_Dispense = Solvent_Move_After_Dispense, 

        Solvent_Blowout = Solvent_Blowout, 

        First_Dilution_Mix_Before = First_Dilution_Mix_Before, 

        First_Dilution_Mix_After = First_Dilution_Mix_After, 

        First_Dilution_Source_Touch_Tip = First_Dilution_Source_Touch_Tip, 

        First_Dilution_Destination_Touch_Tip = 

First_Dilution_Destination_Touch_Tip, 

        First_Dilution_Move_After_Dispense = 

First_Dilution_Move_After_Dispense, 

        First_Dilution_Blowout = First_Dilution_Blowout, 

        Dilution_Mix_Before = Dilution_Mix_Before, 

        Dilution_Mix_After = Dilution_Mix_After, 

        Dilution_Source_Touch_Tip = Dilution_Source_Touch_Tip, 

        Dilution_Destination_Touch_Tip = Dilution_Destination_Touch_Tip, 

        Dilution_Move_After_Dispense = Dilution_Move_After_Dispense, 

        Dilution_Blowout = Dilution_Blowout, 

        Mix_Speed_Multipler = Mix_Speed_Multipler, 

        Aspirate_Speed_Multipler = Aspirate_Speed_Multipler, 

        Dispense_Speed_Multipler = Dispense_Speed_Multipler, 

        Blowout_Speed_Multiplier = Blowout_Speed_Multiplier, 

        Dead_Volume_Proportion = Dead_Volume_Proportion, 

        Protocol=protocol, 

        Name=metadata["protocolName"], 

        Metadata=metadata, 

        Starting_20uL_Tip=Starting_20uL_Tip, 

        Starting_300uL_Tip=Starting_300uL_Tip, 

    ) 

    Calibration_Protocol.custom_labware_dir = Custom_Labware_Dir 
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    Calibration_Protocol.run() 
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 Plate Reader Calibrant Standard Curves 

 

Figure 9.1. Standard Curves for Plate Reader Calibration: Shown are linear (A, C, E, H) and log-log (B, D, F, H) standard curves for 

plate reader calibrations. In each graph, number of calibrant molecules is plotted again raw plate reader data. In all cases, the 5 most 

concentrated dilutions were used to calculate calibration factors. 
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 Dose Response Curve Plate Maps and Automation Protocols 

Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data 

 IPTG Detector Module Plate Map 

Well Content Well Content 

B2  J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep0 

E2  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.3125)-

Rep2 

B3  J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep1 

E3  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.3125)-

Rep3 

B4  DH5alpha-ON(37.0)OD(0.1)-None-

Rep0 

E4  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.15625)-

Rep0 

B5  DH5alpha-ON(37.0)OD(0.1)-None-

Rep1 

E5  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.15625)-

Rep1 

B6  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(20.0)-Rep0 

E6  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.15625)-

Rep2 

B7  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(20.0)-Rep1 

E7  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.15625)-

Rep3 

B8  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(20.0)-Rep2 

E8  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.078125)-

Rep0 

B9  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(20.0)-Rep3 

E9  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.078125)-

Rep1 

B10  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(10.0)-Rep0 

E10  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.078125)-

Rep2 

B11  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(10.0)-Rep1 

E11  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.078125)-

Rep3 

C2  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(10.0)-Rep2 

F2  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0390625)-Rep0 

C3  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(10.0)-Rep3 

F3  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0390625)-Rep1 

C4  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(5.0)-Rep0 

F4  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0390625)-Rep2 

C5  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(5.0)-Rep1 

F5  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0390625)-Rep3 

C6  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(5.0)-Rep2 

F6  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.01953125)-Rep0 
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C7  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(5.0)-Rep3 

F7  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.01953125)-Rep1 

C8  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(2.5)-Rep0 

F8  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.01953125)-Rep2 

C9  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(2.5)-Rep1 

F9  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.01953125)-Rep3 

C10  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(2.5)-Rep2 

F10  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.009765625)-Rep0 

C11  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(2.5)-Rep3 

F11  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.009765625)-Rep1 

D2  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1.25)-Rep0 

G2  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.009765625)-Rep2 

D3  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1.25)-Rep1 

G3  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.009765625)-Rep3 

D4  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1.25)-Rep2 

G4  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0048828125)-Rep0 

D5  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1.25)-Rep3 

G5  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0048828125)-Rep1 

D6  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.625)-Rep0 

G6  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0048828125)-Rep2 

D7  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.625)-Rep1 

G7  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-

IPTG(0.0048828125)-Rep3 

D8  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.625)-Rep2 

G8  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep0 

D9  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.625)-Rep3 

G9  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep1 

D10  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.3125)-

Rep0 

G10  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep2 

D11  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.3125)-

Rep1 

G11  IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep3 

 Default Processor Module Plate Map 

Well Content Well Content 

B02 J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None 

E02 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.003200000000000001) 
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B03 J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None 

E03 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.003200000000000001) 

B04 DH5alpha-ON(37.0)OD(0.1)-None E04 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.0006400000000000003) 

B05 DH5alpha-ON(37.0)OD(0.1)-None E05 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.0006400000000000003) 

B06 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(50.0) 

E06 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.0006400000000000003) 

B07 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(50.0) 

E07 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.0006400000000000003) 

B08 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(50.0) 

E08 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.00012800000000000008) 

B09 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(50.0) 

E09 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.00012800000000000008) 

B10 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10.0) 

E10 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.00012800000000000008) 

B11 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10.0) 

E11 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.00012800000000000008) 

C02 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10.0) 

F02 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.5600000000000012e-05) 

C03 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10.0) 

F03 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.5600000000000012e-05) 

C04 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0000000000000004) 

F04 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.5600000000000012e-05) 

C05 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0000000000000004) 

F05 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.5600000000000012e-05) 

C06 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0000000000000004) 

F06 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(5.120000000000003e-06) 

C07 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0000000000000004) 

F07 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(5.120000000000003e-06) 

C08 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.4000000000000001) 

F08 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(5.120000000000003e-06) 

C09 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.4000000000000001) 

F09 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(5.120000000000003e-06) 
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C10 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.4000000000000001) 

F10 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(1.0240000000000007e-06) 

C11 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.4000000000000001) 

F11 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(1.0240000000000007e-06) 

D02 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.08000000000000002) 

G02 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(1.0240000000000007e-06) 

D03 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.08000000000000002) 

G03 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(1.0240000000000007e-06) 

D04 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.08000000000000002) 

G04 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0480000000000011e-07) 

D05 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.08000000000000002) 

G05 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0480000000000011e-07) 

D06 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.016000000000000004) 

G06 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0480000000000011e-07) 

D07 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.016000000000000004) 

G07 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(2.0480000000000011e-07) 

D08 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.016000000000000004) 

G08 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(0.5uL) 

D09 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.016000000000000004) 

G09 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(0.5uL) 

D10 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.003200000000000001) 

G10 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(0.5uL) 

D11 Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-

HSL(0.003200000000000001) 

G11 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(0.5uL) 

 sfGFP Reporter Module Plate Map 

Well Content Well Content 

B2  ['J23100-B0034-mCherry-B0015-

Temp(37)-AB(KAN 1)-

Media(LB)Vol(10.0)']-None(0 uL)-

LB-Rep 0 

E2  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.0032)-LB-Rep 2 

B3  ['J23100-B0034-mCherry-B0015-

Temp(37)-AB(KAN 1)-

Media(LB)Vol(10.0)']-None(0 uL)-

LB-Rep 1 

E3  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.0032)-LB-Rep 3 

B4  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 0 

E4  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.00064)-LB-Rep 0 
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B5  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 1 

E5  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.00064)-LB-Rep 1 

B6  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(50.0)-LB-Rep 0 

E6  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.00064)-LB-Rep 2 

B7  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(50.0)-LB-Rep 1 

E7  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.00064)-LB-Rep 3 

B8  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(50.0)-LB-Rep 2 

E8  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.000128)-LB-Rep 0 

B9  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(50.0)-LB-Rep 3 

E9  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.000128)-LB-Rep 1 

B10  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10.0)-LB-Rep 0 

E10  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.000128)-LB-Rep 2 

B11  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10.0)-LB-Rep 1 

E11  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(0.000128)-LB-Rep 3 

C2  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10.0)-LB-Rep 2 

F2  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(2.56e-

05)-LB-Rep 0 

C3  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10.0)-LB-Rep 3 

F3  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(2.56e-

05)-LB-Rep 1 

C4  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(2.0)-LB-Rep 0 

F4  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(2.56e-

05)-LB-Rep 2 

C5  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(2.0)-LB-Rep 1 

F5  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(2.56e-

05)-LB-Rep 3 

C6  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(2.0)-LB-Rep 2 

F6  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(5.12e-

06)-LB-Rep 0 

C7  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(2.0)-LB-Rep 3 

F7  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(5.12e-

06)-LB-Rep 1 

C8  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.4)-LB-Rep 0 

F8  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(5.12e-

06)-LB-Rep 2 

C9  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.4)-LB-Rep 1 

F9  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-HSL(5.12e-

06)-LB-Rep 3 

C10  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.4)-LB-Rep 2 

F10  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(1.024e-06)-LB-Rep 0 

C11  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.4)-LB-Rep 3 

F11  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(1.024e-06)-LB-Rep 1 
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D2  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.08)-LB-Rep 0 

G2  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(1.024e-06)-LB-Rep 2 

D3  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.08)-LB-Rep 1 

G3  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(1.024e-06)-LB-Rep 3 

D4  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.08)-LB-Rep 2 

G4  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(2.048e-07)-LB-Rep 0 

D5  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.08)-LB-Rep 3 

G5  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(2.048e-07)-LB-Rep 1 

D6  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.016)-LB-Rep 0 

G6  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(2.048e-07)-LB-Rep 2 

D7  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.016)-LB-Rep 1 

G7  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-C4-

HSL(2.048e-07)-LB-Rep 3 

D8  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.016)-LB-Rep 2 

G8  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10.0)']-DMSO(0.5 

uL)-LB-Rep 0 

D9  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.016)-LB-Rep 3 

G9  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10.0)']-DMSO(0.5 

uL)-LB-Rep 1 

D10  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.0032)-LB-Rep 0 

G10  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10.0)']-DMSO(0.5 

uL)-LB-Rep 2 

D11  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(0.0032)-LB-Rep 1 

G11  ['sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10.0)']-DMSO(0.5 

uL)-LB-Rep 3 

 Cross Talk Plate Maps and Automation Protocols 

Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data 

 IPTG Detector Module Plate Map 

Well Content Well Content 

B2 
J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep0 
E2 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(1)-

Rep2 

B3 
J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep1 
E3 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(1)-

Rep3 

B4 
DH5alpha-ON(37.0)OD(0.1)-None-

Rep0 
E4 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep0 

B5 
DH5alpha-ON(37.0)OD(0.1)-None-

Rep1 
E5 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep1 
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B6 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1)-Rep0 
E6 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep2 

B7 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1)-Rep1 
E7 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep3 

B8 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1)-Rep2 
E8 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep0 

B9 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(1)-Rep3 
E9 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep1 

B10 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep0 
E10 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep2 

B11 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep1 
E11 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep3 

C2 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep2 
F2 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep0 

C3 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep3 
F3 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep1 

C4 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep0 
F4 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep2 

C5 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep1 
F5 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep3 

C6 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep2 
F6 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep0 

C7 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep3 
F7 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep1 

C8 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep0 
F8 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep2 

C9 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep1 
F9 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep3 

C10 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep2 
F10 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep0 

C11 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep3 
F11 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep1 

D2 

IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep0 

G2 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep2 

D3 

IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep1 

G3 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep3 

D4 

IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep2 

G4 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep0 

D5 

IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep3 

G5 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep1 
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D6 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep0 
G6 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep2 

D7 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep1 
G7 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep3 

D8 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep2 
G8 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep0 

D9 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep3 
G9 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep1 

D10 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(1)-Rep0 
G10 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep2 

D11 
IPTG Detector + eCFP-

ON(37.0)OD(0.1)-C12-HSL(1)-Rep1 
G11 

 IPTG Detector + eCFP-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep3 

 

 Default Processor Module Plate Map 

Well Content Well Content 

B2 
J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep0 
E2 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep2 

B3 
J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep1 
E3 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep3 

B4 
DH5alpha-ON(37.0)OD(0.1)-None-

Rep0 
E4 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep0 

B5 
DH5alpha-ON(37.0)OD(0.1)-None-

Rep1 
E5 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep1 

B6 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep0 

E6  Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep2 

B7 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep1 

E7  Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.01)-Rep3 

B8 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep2 

E8 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep0 

B9 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(10)-

Rep3 

E9 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep1 

B10 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep0 
E10 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep2 

B11 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep1 
E11 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(10)-

Rep3 

C2 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep2 
F2 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep0 

C3 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(5)-Rep3 
F3 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep1 
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C4 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(1)-Rep0 
F4 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep2 

C5 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(1)-Rep1 
F5 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(5)-Rep3 

C6 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(1)-Rep2 
F6 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep0 

C7 
Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(1)-Rep3 
F7 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep1 

C8 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep0 

F8  Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep2 

C9 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep1 

F9  Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(1)-Rep3 

C10 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep2 

F10 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep0 

C11 

Default Processor + mCherry-

ON(37.0)OD(0.1)-C12-HSL(0.1)-

Rep3 

F11 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep1 

D2 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(1)-Rep0 
G2 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep2 

D3 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(1)-Rep1 
G3 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-C4-HSL(0.1)-

Rep3 

D4 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(1)-Rep2 
G4 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep0 

D5 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(1)-Rep3 
G5 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep1 

D6 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep0 
G6 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep2 

D7 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep1 
G7 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-Water(1.0uL)-

Rep3 

D8 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep2 
G8 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep0 

D9 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.5)-Rep3 
G9 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep1 

D10 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep0 
G10 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep2 

D11 
Default Processor + mCherry-

ON(37.0)OD(0.1)-IPTG(0.1)-Rep1 
G11 

 Default Processor + mCherry-

ON(37.0)OD(0.1)-DMSO(1.0uL)-

Rep3 
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 sfGFP Reporter Module Plate Map 

Well Content Well Content 

B2  J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep0 
E2 

 sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.1)-Rep2 

B3  J23100-B0034-mCherry-B0015-

ON(37.0)OD(0.1)-None-Rep1 
E3 

 sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.1)-Rep3 

B4  DH5alpha-ON(37.0)OD(0.1)-None-

Rep0 
E4 

 sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.01)-Rep0 

B5  DH5alpha-ON(37.0)OD(0.1)-None-

Rep1 
E5 

 sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.01)-Rep1 

B6  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(10)-Rep0 
E6 

 sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.01)-Rep2 

B7  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(10)-Rep1 
E7 

 sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.01)-Rep3 

B8  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(10)-Rep2 
E8 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(10)-Rep0 

B9  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(10)-Rep3 
E9 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(10)-Rep1 

B10  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(5)-Rep0 
E10 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(10)-Rep2 

B11  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(5)-Rep1 
E11 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(10)-Rep3 

C2  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(5)-Rep2 
F2 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(5)-Rep0 

C3  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(5)-Rep3 
F3 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(5)-Rep1 

C4  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(1)-Rep0 
F4 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(5)-Rep2 

C5  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(1)-Rep1 
F5 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(5)-Rep3 

C6  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(1)-Rep2 
F6 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(1)-Rep0 

C7  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(1)-Rep3 
F7 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(1)-Rep1 

C8  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(0.1)-Rep0 
F8 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(1)-Rep2 

C9  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(0.1)-Rep1 
F9 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(1)-Rep3 

C10  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(0.1)-Rep2 
F10 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(0.1)-Rep0 

C11  sfGFP Reporter-ON(37.0)OD(0.1)-

C4-HSL(0.1)-Rep3 
F11 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(0.1)-Rep1 

D2  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(1)-Rep0 
G2 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(0.1)-Rep2 

D3  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(1)-Rep1 
G3 

 sfGFP Reporter-ON(37.0)OD(0.1)-

C12-HSL(0.1)-Rep3 

D4  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(1)-Rep2 
G4 

 sfGFP Reporter-ON(37.0)OD(0.1)-

Water(1.0uL)-Rep0 

D5  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(1)-Rep3 
G5 

 sfGFP Reporter-ON(37.0)OD(0.1)-

Water(1.0uL)-Rep1 
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D6  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.5)-Rep0 
G6 

 sfGFP Reporter-ON(37.0)OD(0.1)-

Water(1.0uL)-Rep2 

D7  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.5)-Rep1 
G7 

 sfGFP Reporter-ON(37.0)OD(0.1)-

Water(1.0uL)-Rep3 

D8  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.5)-Rep2 
G8 

 sfGFP Reporter-ON(37.0)OD(0.1)-

DMSO(1.0uL)-Rep0 

D9  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.5)-Rep3 
G9 

 sfGFP Reporter-ON(37.0)OD(0.1)-

DMSO(1.0uL)-Rep1 

D10  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.1)-Rep0 
G10 

 sfGFP Reporter-ON(37.0)OD(0.1)-

DMSO(1.0uL)-Rep2 

D11  sfGFP Reporter-ON(37.0)OD(0.1)-

IPTG(0.1)-Rep1 
G11 

 sfGFP Reporter-ON(37.0)OD(0.1)-

DMSO(1.0uL)-Rep3 

 

 Homoserine-lactone synthesis validation agar plates 

 

 

 

Figure 9.2. Unprocessed images of those shown in figure 5.13 
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 Noise Propagation Plate Maps and Automation Protocols 

Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data 

Well Content Well Content 

B2 

['J23100-B0034-mCherry-B0015-

Temp(37)-AB(KAN 1)-

Media(LB)Vol(10.0)']-None(0 uL)-

LB-Rep 0 

E2 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

B3 

['J23100-B0034-mCherry-B0015-

Temp(37)-AB(KAN 1)-

Media(LB)Vol(10.0)']-None(0 uL)-

LB-Rep 1 

E3 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

B4 

['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 0 

E4 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 0 

B5 

['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 1 

E5 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 1 

B6 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

E6 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 2 

B7 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

E7 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 3 

B8 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

E8 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

B9 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

E9 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

B10 

['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 0 

E10 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'Default Processor + mCherry-
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Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

B11 

['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 1 

E11 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

C2 

['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 2 

F2 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 0 

C3 

['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 3 

F3 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 1 

C4 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

F4 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 2 

C5 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

F5 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(50)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

None(0 uL)-LB-Rep 3 

C6 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

F6 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

C7 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

F7 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

C8 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 0 

F8 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

C9 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 1 

F9 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-
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Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

C10 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 2 

F10 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(1)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

C11 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 3 

F11 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(1)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

D2 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

G2 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(1)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

D3 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

G3 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(1)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

D4 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

G4 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

D5 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

G5 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

D6 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 0 

G6 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

D7 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 1 

G7 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

D8 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

G8 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(50)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-
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1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 2 

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

D9 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(1)', 

'sfGFP Reporter-Temp(37)-AB(CAM 

1)-Media(LB)Vol(10)']-None(0 uL)-

LB-Rep 3 

G9 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(50)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

D10 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 0 

G10 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(50)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 2 

D11 

['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 1 

G11 

['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(50)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-None(0 uL)-LB-

Rep 3 

 Initial Biosensor Testing Plate Maps and Automation Protocols 

Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data 

Well Content Well Content 

B2  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 0 

E2  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

IPTG(0.01)-LB-Rep 2 

B3  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 1 

E3  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-

IPTG(0.01)-LB-Rep 3 

B4  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 2 

E4  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-

Rep 0 

B5  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 3 

E5  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-

Rep 1 

B6  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

E6  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-
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Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 0 

Media(LB)Vol(10)']-IPTG(1)-LB-

Rep 2 

B7  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 1 

E7  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-

Rep 3 

B8  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 2 

E8  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-C12-HSL(10)-

LB-Rep 0 

B9  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 3 

E9  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-C12-HSL(10)-

LB-Rep 1 

B10  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(15)-LB-

Rep 0 

E10  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-C12-HSL(10)-

LB-Rep 2 

B11  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(15)-LB-

Rep 1 

E11  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-C12-HSL(10)-

LB-Rep 3 

C2  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(15)-LB-

Rep 2 

F2  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10)-LB-Rep 0 
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C3  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(15)-LB-

Rep 3 

F3  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10)-LB-Rep 1 

C4  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(10)-LB-

Rep 0 

F4  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10)-LB-Rep 2 

C5  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(10)-LB-

Rep 1 

F5  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)']-C4-

HSL(10)-LB-Rep 3 

C6  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(10)-LB-

Rep 2 

F6  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-DMSO(1.0 

uL)-LB-Rep 0 

C7  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(10)-LB-

Rep 3 

F7  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-DMSO(1.0 

uL)-LB-Rep 1 

C8  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(5)-LB-Rep 

0 

F8  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-DMSO(1.0 

uL)-LB-Rep 2 

C9  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

F9  ['Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-DMSO(1.0 

uL)-LB-Rep 3 
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Media(LB)Vol(10)']-IPTG(5)-LB-Rep 

1 

C10  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(5)-LB-Rep 

2 

F10  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

DMSO(1.0 uL)-LB-Rep 0 

C11  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(5)-LB-Rep 

3 

F11  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

DMSO(1.0 uL)-LB-Rep 1 

D2  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-Rep 

0 

G2  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

DMSO(1.0 uL)-LB-Rep 2 

D3  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-Rep 

1 

G3  ['sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

DMSO(1.0 uL)-LB-Rep 3 

D4  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-Rep 

2 

G4  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 0 

D5  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(1)-LB-Rep 

3 

G5  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 1 

D6  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

G6  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 

Processor + mCherry-Temp(37)-
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Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(0.1)-LB-

Rep 0 

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 2 

D7  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(0.1)-LB-

Rep 1 

G7  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 3 

D8  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(0.1)-LB-

Rep 2 

G8  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-Water(1.0 

uL)-LB-Rep 0 

D9  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(0.1)-LB-

Rep 3 

G9  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-Water(1.0 

uL)-LB-Rep 1 

D10  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(0.01)-LB-

Rep 0 

G10  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-Water(1.0 

uL)-LB-Rep 2 

D11  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(0.01)-LB-

Rep 1 

G11  ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)']-Water(1.0 

uL)-LB-Rep 3 

 Cell Ratio Testing Plate Maps and Automation Protocols 

Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data 

Well Content Well Content 

B2  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 0 

E2 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 



309 
 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 0 

B3  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 1 

E3 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 1 

B4  ['DH5alpha-Temp(37)-AB(None 

None)-Media(LB)Vol(10.0)']-None(0 

uL)-LB-Rep 2 

E4 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)']-

Water(1.0 uL)-LB-Rep 2 

B5  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 0 

E5 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(3.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(7.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(20.0)']-

Water(1.0 uL)-LB-Rep 0 

B6  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 1 

E6 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(3.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(7.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(20.0)']-

Water(1.0 uL)-LB-Rep 1 

B7  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 2 

E7 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(3.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(7.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(20.0)']-

Water(1.0 uL)-LB-Rep 2 

B8  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(3)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(7)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(20)']-IPTG(20)-LB-

Rep 0 

E8 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(5.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(15.0)']-

Water(1.0 uL)-LB-Rep 0 
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B9  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(3)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(7)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(20)']-IPTG(20)-LB-

Rep 1 

E9 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(5.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(15.0)']-

Water(1.0 uL)-LB-Rep 1 

B10  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(3)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(7)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(20)']-IPTG(20)-LB-

Rep 2 

E10 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(5.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(15.0)']-

Water(1.0 uL)-LB-Rep 2 

B11  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(15)']-IPTG(20)-LB-

Rep 0 

E11 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(6.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(13.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11.0)']-

Water(1.0 uL)-LB-Rep 0 

C2  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(15)']-IPTG(20)-LB-

Rep 1 

F2 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(6.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(13.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11.0)']-

Water(1.0 uL)-LB-Rep 1 

C3  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(5)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(15)']-IPTG(20)-LB-

Rep 2 

F3 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(6.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(13.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11.0)']-

Water(1.0 uL)-LB-Rep 2 

C4  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(6)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(13)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(11)']-IPTG(20)-LB-

Rep 0 

F4 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(2.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(24.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(4.0)']-

Water(1.0 uL)-LB-Rep 0 

C5  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(6)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(13)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

F5 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(2.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(24.0)', 

'sfGFP Reporter-Temp(37)-
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Media(LB)Vol(11)']-IPTG(20)-LB-

Rep 1 

AB(CAM 1)-Media(LB)Vol(4.0)']-

Water(1.0 uL)-LB-Rep 1 

C6  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(6)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(13)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(11)']-IPTG(20)-LB-

Rep 2 

F6 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(2.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(24.0)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(4.0)']-

Water(1.0 uL)-LB-Rep 2 

C7  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(2)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(24)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)']-IPTG(20)-LB-Rep 

0 

F7 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(11.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(18.5)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)']-

Water(1.0 uL)-LB-Rep 0 

C8  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(2)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(24)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)']-IPTG(20)-LB-Rep 

1 

F8 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(11.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(18.5)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)']-

Water(1.0 uL)-LB-Rep 1 

C9  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(2)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(24)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)']-IPTG(20)-LB-Rep 

2 

F9 

 ['IPTG Detector + eCFP-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(11.0)', 'Default 

Processor + mCherry-Temp(37)-

AB(CAM 1)-Media(LB)Vol(18.5)', 

'sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(0.5)']-

Water(1.0 uL)-LB-Rep 2 

C10  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(18.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)']-IPTG(20)-LB-

Rep 0 

 

C11  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(18.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)']-IPTG(20)-LB-

Rep 1 

D2  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
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Media(LB)Vol(18.5)', 'sfGFP 

Reporter-Temp(37)-AB(CAM 1)-

Media(LB)Vol(0.5)']-IPTG(20)-LB-

Rep 2 

D3  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(19)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(7)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)']-IPTG(20)-LB-Rep 

0 

D4  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(19)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(7)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)']-IPTG(20)-LB-Rep 

1 

D5  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(19)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(7)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)']-IPTG(20)-LB-Rep 

2 

D6  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(18)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(2)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 0 

D7  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(18)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(2)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 1 

D8  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(18)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(2)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(10)']-IPTG(20)-LB-

Rep 2 

D9  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(7)', 
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'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(19)']-IPTG(20)-LB-

Rep 0 

D10  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(7)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(19)']-IPTG(20)-LB-

Rep 1 

D11  ['IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(7)', 

'Default Processor + mCherry-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(4)', 'sfGFP Reporter-

Temp(37)-AB(CAM 1)-

Media(LB)Vol(19)']-IPTG(20)-LB-

Rep 2 

 

 Main Effects Screening Designs 

Shown below are the main effects screening designs for each module type. Runs 

highlighted in blue represent the augmented runs. Temperatures are in oC and media 

compositions in g/L. Runs were performed as described in section 2.7.14. 
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 IPTG Detector Module 

 

 Default Processor Module 
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 sfGFP Reporter Module 

 

 

 IPTG Dose Response Outliers 

 

 

 

Figure 9.3. Shown here is the dose response curve from figure 5.2 (C). Red points 

show the excluded outlier data. 
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 Luciferase Characterisation Plate Map and Automation Protocol 

Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data 

 

Well Content Well Content 

B02 pBad Lux-ON(37.0)OD(0.1)-None 
E02 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.625) 

B03 pBad Lux-ON(37.0)OD(0.1)-None 
E03 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.625) 

B04 pBad Lux-ON(37.0)OD(0.1)-None 
E04 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.3125) 

B05 pBad Lux-ON(37.0)OD(0.1)-None 
E05 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.3125) 

B06 DH5alpha-ON(37.0)OD(0.1)-None 
E06 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.3125) 

B07 DH5alpha-ON(37.0)OD(0.1)-None 
E07 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.3125) 

B08 DH5alpha-ON(37.0)OD(0.1)-None 
E08 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.15625) 

B09 DH5alpha-ON(37.0)OD(0.1)-None 
E09 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.15625) 

B10 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(20) 
E10 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.15625) 

B11 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(20) 
E11 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.15625) 

C02 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(20) 
F02 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.078125) 

C03 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(20) 
F03 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.078125) 

C04 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(10) 
F04 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.078125) 

C05 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(10) 
F05 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.078125) 

C06 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(10) 
F06 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.0390625) 

C07 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(10) 
F07 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.0390625) 

C08 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(5) 
F08 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.0390625) 

C09 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(5) 
F09 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.0390625) 

C10 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(5) 
F10 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.01953125) 

C11 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(5) 
F11 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.01953125) 

D02 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(2.5) 
G02 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.01953125) 

D03 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(2.5) 
G03 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.01953125) 

D04 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(2.5) 
G04 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.009765625) 
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D05 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(2.5) 
G05 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.009765625) 

D06 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(1.25) 
G06 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.009765625) 

D07 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(1.25) 
G07 

pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.009765625) 

D08 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(1.25) 
G08 

pBad Lux-ON(37.0)OD(0.1)-

Water(2.0uL) 

D09 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(1.25) 
G09 

pBad Lux-ON(37.0)OD(0.1)-

Water(2.0uL) 

D10 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.625) 
G10 

pBad Lux-ON(37.0)OD(0.1)-

Water(2.0uL) 

D11 pBad Lux-ON(37.0)OD(0.1)-

Arabinose(0.625) 
G11 

pBad Lux-ON(37.0)OD(0.1)-

Water(2.0uL) 
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