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Abstract

Synthetic biology devices have proven to have a wide variety of applications, especially
in the field of biosensors where pollutants, biomarkers, and a range of other stimuli can
be detected. However, development of biosensor devices can be difficult due to issues
surrounding optimisation, and inefficient use of engineering principles such as re-
usability, standardisation, and modularity. The work presented in this thesis aimed to
investigate whether biosensor development could be aided by a framework which
combines high-level modularity and multi-microbial systems. Previous work shows how
high-level modularity could be used to develop biological devices but stop short of
defining a framework which makes use of engineering principles. Building on previous
work, biosensor designs were split into three module types, each of which could be
implemented in separate cells and co-cultured to create the biosensor. Tools and
resources were researched and developed with the aim of promoting the use of
engineering principles within the framework. A pre-existing data standard was
extended to allow for standard representation of multi-microbial systems. Additionally,
a Python library was developed to allow for trivial and flexible generation of
reproducible automation protocols for biosensor characterisation and a range of other
synthetic biology workflows. Approaches for optimising biosensors developed within
the modular and multi-microbial framework were investigated using computationally
informed experimentation. Finally, an approach at implementing light-based

intercellular communication is presented.
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Chapter 1. Introduction and Background Information

1.1. Bioengineering

1.1.1. An overview of bioengineering

Bioengineering efforts tend to take advantage of mechanisms evolved by nature for
solving a variety of problems. For example, organisms are required to detect a range
of molecules in order to survivell. In some cases, detection of certain molecules can
indicate the prey is nearby!?: [l and in others it can indicate the direction of food!*. The
detection of metabolites is fundamental to an organism’s survival, as too much or too
little of primary and secondary metabolites can have serious consequencesl®. By
detecting the level of these metabolites, pathways to degrade or produce that specific
molecule can be regulated. It should be noted that these natural sensing mechanisms
are not limited to the detection of molecules; there exist biological processes which

deal with the detection of other stimuli such as temperaturelSl.

The detection of specific stimuli has application in many areas. For example, sensing
of environmental pollutants can help guide remediation efforts!’l, or the presence of
certain chemicals in the blood stream of humans can indicate health problems and
indicate medical interventions should occurl®l. In many cases, these molecules are
difficult to detect using electronic or other manufactured sensors®l. Instead,
bioengineers look to discover the mechanisms already used in nature for detection of
stimuli of interest and use those instead of non-biological sensing components. Such

biological sensing devices are often termed as ‘biosensors’10],

Other areas in which biological components and systems can aid include the synthesis
of organic products(*], the degradation of pollutants(*?, and the production of microbial
fuel cells*3l. To further illustrate the field of bioengineering, the following sub-sections

focus on some examples and case studies.

1.1.2. Biosynthesis

Bioengineering can be used to enhance or replace chemical synthesis, where
molecules with desired properties are created through a series of chemical reactions
in a process known as total synthesis¥l. Molecules created via chemical synthesis can

have wide ranging applications, including pharmaceuticals, pesticides, and food

1
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Figure 1.1. Overview of Synthesis Methods

Depicted here are three methods of synthesising molecules. All molecule images were
generated using ChemDrawJs (www.chemdrawdirect.perkinelmer.cloud) by importing the
SMILES structure code from PubChem. (A) An example of total synthesis, where
Ibuprofen is synthesised in a series of 4 reactions from p-isobutylacetophenone. (B) An
example of biosynthesis, where a steviol glycoside is extracted from the leaves of Stevia
rebaudiana. (C) An example of semi-synthesis, where 10-deacetylbaccatin is extracted
from Taxus baccata needles and used as a precursor in Paclitaxel chemical synthesis.

additives!?®, A simple example of total synthesis is the production of ibuprofenti®l

(Figure 1.1 (A)). Unfortunately, it is not uncommon for many useful molecules and
compounds to be chemically complex, and the procedures required to synthesise them
from readily available precursors can be expensive, inefficient, and involve the use of
harmful chemicals[']. In some cases, organisms have evolved to produce the desired
molecule, which can be extracted and purified. An example of this is the production of
steviol glycosides, which are obtained from the leaves of the Stevia rebaudiana plant
and used as sweeteners!'8! (Figure 1.1 (B)). The total synthesis of these molecules is
difficult due to high acid sensitivity and inefficient processes, which makes the
biosynthesis of steviol glycosides in plants, followed by chemical extraction and

purification techniques, a better alternative(*9l.

Biosynthesis and chemical synthesis can also be combined, as in the production of
Paclitaxel® (Figure 1.1 (C)). Paclitaxel has a very complex structure, and it is not
feasible to synthesise using chemical reactions from readily available precursors,
however a precursor of Paclitaxel can be found in the needles of European Yew trees
(Taxus baccata), and there is a relatively simple chemical synthesis process to convert
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the precursor into Paclitaxel. In this way, the two methods of total synthesis and

biosynthesis can be combined in a process known as semisynthesis.

1.1.3. Protein Engineering

Protein engineering is another example of bioengineering. Research in this area
concerns itself with the modification of proteins to improve or modify the protein’s
function and behaviour, making it more appropriate for specific applications[?1l.
Examples of protein engineering can be seen in a variety of areas, including
biosynthesis and semi-synthesis[?2. In these cases, the enzymes used in the synthesis
pathways can be modified in a variety of ways, such as changing the enzyme’s binding
site to accept different substrates!?®l, making an enzyme more tolerable to industrial
conditions[?4, or attempting to increase the efficiency of the enzymes overall??l. There
are many techniques which can be employed to achieve this engineering/?6l. These
include rational redesign, where the sequence of the protein is modified based on
existing structure-function knowledge!?”}, and directed evolution, where the protein of
interest is randomly mutated and candidates are selected based on desired behaviour,
such as the conversion of a specific moleculel?®. This process of directed evolution
typically occurs in cycles, where candidates which show promise undergo further

mutation and testing to refine the desired functionality.

1.1.4. Enzymatic biosensors

The development of biosensors has the most relevance within this thesis, and hence
is discussed in more detail than the previous examples. As mentioned previously,
nature has evolved a wide variety of mechanisms to detect the presence and absence
of specific stimuli, which bioengineers can harness to develop biosensor devices.
There are several formats these devices can take, but they are all designed to have
the same high-level functionality: to sense a desired stimulus, or in some cases a group
of stimuli, and respond in some way®?. As well as sharing the same high-level
functionality, biosensors of all types use the same abstracted mechanism of detection.
The mechanism relies upon the stimulus of interest interacting with a biological
element in such a way that a bio-reaction occurs. Changes caused by bio-reactions

can be used downstream to generate a responsel3°,
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Figure 1.2. Overview of Enzymatic Biosensor Mechanisms

Two common mechanisms of enzymatic biosensing. (A) Generic schematic of an
electrocatalytic biosensor. Conversion of the analyte to be detected into a different product
by the enzyme generates free electrons. When the enzyme is in contact with an electrode,
the electrons can flow from the enzyme and be detected electronically. (B) Schematic of
direct ELISA. The analyte for detection is adsorbed to a surface and antibodies with
binding capabilities to the analyte are added. After washing, antibodies bound to the
analyte remain. An enzyme linked to the antibody catalyses a reaction which results in a
colour change.

Early examples of biosensors generally relied upon in vitro biocatalysts which could

biochemically react in the presence of a desired moleculel1-33 (Figure 1.2 (A)). As
biochemical reactions can cause changes in the surrounding environment, it is
possible to convert one of these changes into a desired responsel33l. For example, the
first generation of blood-glucose sensors relied on glucose oxidase as the biological
sensing component®4. The glucose oxidase enzyme has evolved to specifically bind
glucose and convert it to gluconic acid. During this catalytic reaction, oxygen is
depleted which results in a reduced concentration of dissolved oxygen. Therefore, as
the concentration of glucose increases, the concentration of oxygen decreases, which
means that the concentration of oxygen can be used as a proxy to the concentration
of glucose. The concentration of oxygen in the biosensor device can be converted into
a reading via an electrochemical oxygen sensor, which can be used as a human-

readable response.

Whilst there are a number of success stories for biosensors which use enzymes to
detect and report the presence of specific stimuli, the development of these sensors
can be troublesome and slow. Development issues tend to stem from issues related to
the enzymes themselves!®! 3¢, Many enzymes in nature are not completely specific,
and instead show some level of promiscuity towards their substrates!®’l. This behaviour
has advantages in natural systems, such as allowing a single mechanism to deal with
similar situations(®¢l. However, for engineered biosensors, it is often desirable to
4



differentiate between very similar molecules or other stimulil®. It is also possible for
no known enzymes to exist which act upon the desired stimulus, or for other issues to
exist such as inactivation of the enzyme under conditions in which the biosensor needs

to act, or difficulty producing the enzyme in industrially relevant quantities!“°l.

It is possible to use enzymes not only in stimuli detection, but also as the response
section of a biosensor. For example, Enzyme-Linked Immunosorbent Assays, or
ELISAs, rely on the use of antibodies to detect specific analytes, and enzymes to
generate a responsel*! 42 (Figure 1.2 (B)). Developed in the 1970s, ELISA assays
remain a gold standard for detection in many fields!*3. There are different types of
ELISA, however all types utilise antibodies as the sensing component of the sensor,
and enzymes as the response componentl*4, Generally, antibodies known to bind the
substrate of interest are added to a sample, and several washing steps occur. During
these washing steps, the antibodies are only retained if the sample was present. In
some types of ELISA, the antibodies used have been modified to link an enzyme to
the non-binding end, which can then perform an enzymatic reaction, usually resulting
in a colour change, to indicate presence of the analyte. In other types of ELISA,
secondary antibodies capable of binding either the first antibody or the substrate are
instead modified to contain the enzyme responsible for generating a response. There
are additional variants of ELISA which use additional antibodies; however the principle

remains the same.

The primary issue during development of ELISAs for novel targets is the generation of
capture antibodies able to bind specifically to the analyte of interest. The development
of new antibodies, which is required when an antibody with desired binding properties

does not exist, is non-trivial and can be costly and time consumingt“2.

1.1.5. Nucleic acid biosensors

Another class of biosensors are those based on quantitative Polymerase Chain
Reaction (QPCR). gPCR biosensors are used to detect nucleic acid molecules (both
DNA and RNA) with a specific sequence, and to quantify the number of molecules
encoding that sequence in a samplel*3]. This functionality can help detect the presence
or absence of a specific organism, such as a pathogen, by targeting DNA or RNA
sequences which are specific to the species of interestl*6l, It is also possible to use

gPCR to measure gene expression levels by targeting the mRNA produced from the

5



desired genel*l. The amount of mMRNA in the sample is directly correlated to the
expression levels of the gene. The idea behind gPCR is that primers can be designed

to recognise and amplify a specific DNA sequence 48],

Whilst gPCR biosensors have proven incredibly useful, there are limitations. The
principal limitation is in their ability to only detect nucleic acids as stimuli. It can also be
difficult to develop these biosensors, as the primers must have specificity to the desired
nucleic acid sequence to prevent false positives but must also have appropriate
binding kinetics to the desired stimulus to ensure correct sensitivity and prevent false

negatives!*,

1.1.6. Biosensor development and optimisation

As detailed above, each type of biosensor comes with its own advantages and
limitations. Despite these differences, there are aspects common to any biosensor
which should be addressed during the development stage, and indeed should be used

to help decide the most appropriate biotechnology to use.

A biosensor’s sensitivity and specificity tend to be crucial no matter the application[39,
In the case of environmental pollutant biosensors, the device should only react to the
target chemical and should not respond to the presence of chemicals with similar
structures which may not be toxic to the environment. In other cases, a biosensor which
is too specific may be disadvantageous. This could be the case when developing a
diagnostic test for a pathogen. If the test is too specific, then other strains of the
pathogen which are still dangerous may be missed, resulting in false negatives. The
sensitivity of the system is also important, as a sensor which is too sensitive may
respond to background levels of a stimulus, which in some cases should be ignored,
such as when a pollutant is harmless at lower concentrations, or the sensitivity could

be too low and false negatives could be reported when the stimulus is present.

The specificity and sensitivity of a biosensor contribute to the signal-response curvel>°:
(511 which is a common characteristic of any biosensor (Figure 1.3). The signal-
response curve describes the relationship between the input and output of a sensor
and can be used to determine features of the system such as the limit of detection, the
dynamic range, the operating range, and the background noise. The signal-response

curve can be determined by measuring the response from the biosensor over a range
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Figure 1.3. Dose-Response Curve

Annotated dose-response (or signal-response) curve. The highlighted regions illustrate
stimulus ranges which are below the limit of detection, within the operational range, or
which saturate the sensor’s response. The grey box within the operational range identifies
the linear range. The dynamic range is annotated with dotted black lines. The sensitivity
limit and saturation point are labelled with arrows.

of stimuli amounts. Any response measured when no stimulus is present determines

the background noise of the system. The lowest stimulus amount which produces a
response above the background noise is the limit of detection (LOD), or sensitivity limit,
for the biosensor. Anything below this amount cannot be distinguished from the general
noise. At the other end of the scale, beyond the saturation point, the response does
not continue to increase with increased amounts of the stimulus. The range between
the LOD and maximal response point is defined as the operational range, where
increased amounts of stimulus result in a differential response. Within the operational
range is the linear range, where the biosensor’s response increases proportionally with
the stimulus amount. The difference between the response levels at the LOD and
maximal response point is defined as the dynamic range and can be used to determine
how much the response increases with each increase in concentration of the target

molecule.

The methods for biosensor optimisation will be different depending on which
technology is being used!®2. These methods could involve increasing the sensitivity of
the detection mechanism or decreasing noise in the presence of similar targets in a
sample by increasing specificity. The importance of the operating range and dynamic

range are also influenced by the exact requirements of the biosensor. In some cases,
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a binary “Yes’ or ‘No’ as to the presence of the target may be required, in which case
it a large operating range may not be required. However, in other cases it may be
essential to determine how much of a target is present across a range of
concentrations, in which case the operating range must cover the entire range of
important target amounts. The dynamic range is linked to the operating range, as it
describes the difference in response between the lowest end of the operating range,
and the highest. The exact response, along with how that response is measured or
reported, will determine the importance and optimal values of the dynamic range. If the
response is a colour change which will be observed by eye, like some types of ELISA-
based biosensors, it is important to have a large dynamic range so that there is little

doubt as to the intensity of a colour change.

Traditionally, the biosensor optimisation process has been somewhat limited, as it is
not trivial to engineer an enzyme to tune the characteristics of an enzyme-based
biosensor, or rapidly develop novel antibodies for use in ELISAs!*): 53] 54, The rise of
synthetic biology has helped to provide tools and techniques to assist with these efforts
and has also introduced a whole new generation of biological devices®l. In the next
section, an overview of synthetic biology will be given, and examples will be used to
discuss the impact it has had on bioengineering and to highlight the challenges which

remain to be addressed.

1.2. Principles of Synthetic Biology

The rise of synthetic biology has been a gamechanger for the development of
biodevices and bioengineering more generally, partly due to the adoption of
engineering principles. Such principles promote the tried-and-tested methods of
developing devices found in other engineering fields and has helped to provide a
wealth of resources for synbio device developers!®®. Some of the most discussed
engineering principles are standardisation, reproducibility, re-usability, computationally

assisted modelling, modularity, and the engineering life cyclel®®! (Figure 1.4).

1.2.1. Standardisation

The principles of standardisation, re-usability, and reproducibility are inherently linked.
Standardisation, which refers to the development and implementation of standards, is
used widely in fields such as electrical, mechanical, and software engineering, as well
as architecture. The types of standards implemented vary between and within these

fields, but generally any type of standard sets out to provide a common specification
8



for a commonly used entity or process to help ensure optimal efficiency is achieved,
and that similar work completed within a field is reproducible, comparable, or re-usable,

depending on the exact standard®7.

Within synthetic biology, standardisation is often associated with the physical assembly
of genetic constructs, where several DNA assembly standards have been
developed®8H®0, Assembly standards can define both a collection of genetic parts, like
promoters, ribosome binding sites, and coding regions, and the methods used to
assemble the individual parts into constructs. The use of assembly standards can allow
researchers to rapidly assemble constructs(®ll. Specific examples of DNA assembly

standards and standard genetic parts are discussed in more depth in a future section.

Aside from DNA assembly, standardisation attempts have also been made for other
areas, such as building computational models of biological systems(®? and calibrating
experimental data to known chemical standards(®3l. Another example is the Synthetic
Biology Open Language (SBOL), which allows for information about synthetic biology
designs and systems to be captured in a standard format(4,

1.2.2. Modularity

The principle of modularity can sometimes be conflated with that of standardised parts.
However, whilst overlaps exist, there is still a distinction to be made. Modularity, as
defined in other fields which make use of this concept, allows for the development of
systems or devices through the combination of functional units®. These units, termed
modules, work together to provide the overall behaviour of the system or device, but
can also display independence from one another. Module independence falls into two
types: functional and structural independencel®8l. Most modules will display both types
of independence to some degree. Functional independence, as might be inferred from
the name, deals with the general characteristics of how a module confers its function.
The extent to which a module can be thought of as functionally independent can be
determined by considering firstly how discrete the overall function is, and secondly by
how much the module relies on external elements to complete its function. Structural
independence is similar to functional independence but refers instead to the physical
attributes of the module. A module can be considered structurally independent if the
individual units which compose the module are tightly coupled without reliance on
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Figure 1.4. Engineering Principles in Synthetic Biology

lllustrated are engineering principles used in synthetic biology.

external elements, but also can be easily connected and disconnected from other

modules in a system.

There are several advantages of using modules to develop a system or device. One
of these advantages is the ability to split a design into discrete functions (each of which
can be encapsulated by a module), which allows for complex systems to be developed
by focusing on small sections independently and combining them once all sections are
completel®®l, This approach of splitting a design into independent and discrete
functional modules also has the advantage of allowing specific sections to be
independently worked on by specialists in that area, without having to worry too much
about the impact on the overall system. In addition, if modules are designed using
standardised processes and with compatible connections, then module re-usability is
possible, which helps to reduce the amount of time and resources spent on re-
developing elements with identical functionalities for different systems. Finally, the
separation of discrete functions into modules allows for the intricacies of how specific
sections of a system works to be abstracted out into top-level functions. This
abstraction allows developers to have less specialised and in-depth knowledge of all
parts of a system and can instead focus more on the system as a whole and make use

of modules which have been designed by specialists!®7].
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Modularity can be found in many areas, including software development, construction,
and electronicsl®®l. Computer hardware is one such example of where modularisation
has been successfully implemented. Typically, computers are developed using
modular design, where each high-level function of a computer is developed as a
discrete unit which can be connected to other modules to eventually form the entire
system. Some examples of modular computing hardware are screens,
microprocessors, storage devices, and motherboards. Each of these modules has a
discrete function to perform: the screen should display graphical information to the user,
the storage device records data which can be retrieved later, and so on. There are
variations for each of these modules which can be swapped to modify the end product.
For example, a portable laptop may require a small screen to keep the product small
and easy to carry around, whereas a gaming computer could require a much larger,
higher quality screen. Keeping with the theme of electronics, another example of a
module are capacitors. Capacitors are electronic components which can store
electrical charge, and have a wide variety of applications, including signal processing
where the stored energy can be used to represent information. There are many
different types of capacitors which act in different ways, and the most appropriate

depends on the intended application.

The examples of modularity (computer hardware and electronics) given above have
some definite similarities: they act as somewhat standardised discrete elements with
a generalised function, and different variations of each module can be interchanged
depending on the application. However, it perhaps is also not too difficult to see the
differences. The functions performed by the computer components, such as ‘perform
logical calculations’ or ‘display graphical information’, are more complex in nature than
that of ‘store an electrical charge’. Additionally, the knowledge level required to
effectively utilise these modules differs; computer components can, and often are,
used by consumers with little theoretical or practical knowledge of electrical
engineering to build their own computers, and in many cases are essentially ‘plug-and-
play’. This contrasts with something like capacitors, where to effectively use these

components in many cases requires a more in-depth working knowledge of electronics.

Based on the comparison between these examples of modules, it is possible to define
two groupings of modules: high-level and low-level. The computer components

mentioned here would be examples of high-level modules, as they have complex (but
11



still discrete) functions and require basic knowledge to use. Modules like capacitors
would be examples of low-level modules, as they have much simpler and smaller

functions, but tend to require a more in-depth knowledge to use to their full potential.

The hierarchy and grouping of modularity described here is a highly simplified version
of the many theories of and approaches to modularisation which have been described
and investigated previously!®°}: 661 [6%] However, the description given here is helpful in
this work to differentiate between what has been achieved previously, and the
approaches taken in this work. In the introductory section of chapter 3, specific

examples of how modularity has been applied within synthetic biology are given.

1.2.3. Synthetic biology engineering cycle

Another widely cited principle in synthetic biology is the Design-Build-Test-Learn cycle
(DBTL)I9. This cycle is a form of the various engineering cycles and processes from
other fields and industries which have been modified to better fit the engineering of
biological systemsl’l, The cycle is composed of four main stages which should be
completed in sequence and repeated in an iterative manner, which allows for guided
system development and can help ensure that appropriate information is generated to

aid with optimisation in future iterations.

The first stage of the cycle is the design stage. The design stage itself can be thought
of as a cycle, based heavily on the traditional engineering design process. Briefly, the
design stage focuses on formulating a set of requirements that the final system/device
should meet, generating a conceptual idea of the final product, creating a preliminary
design, finalising the detailed design, and finally planning how the design will be built,
implemented, and characterised"™-73l. A hallmark of synthetic biology, and another
principle taken from other engineering fields, is the use of computational tools and
modelling to assist with this design stagel™. For example, CELLO is an online CAD-
type tool which was developed to help design genetic circuits based on desired logic
specifications!”®. Other tools, such as iBioSim!l’® and Simbiotics’’l have been
developed to help computationally model synthetic biology systems to help identify
potential design issues, and to help predict expected behaviour prior to building and
testing the system experimentally. These computational models can also help with
informed design choices when several options exist, as the behaviour of each variation

can be predicted prior to committing to a finalised design!7®l.
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The build stage of the DBTL cycle is where the device or system is constructed
according to plans formulated in the design stage. This very often involves the
assembly of DNA encoding the genetic elements of the design!™ 8%, To aid with this
stage, the DNA assembly standards mentioned previously can be utilised. Following
DNA assembly is implementation of the built design. In synthetic biology research,
implementation usually refers to the preparation of the built design so that it can be

tested.

Implementation of a design can involve a range of steps, depending on the specifics
of the system, the intended application, and the characterisation to be performed. One
of the commonalities across implementation of synthetic biology designs is the
involvement of a biological chassis. While there is some discourse about the term(81],
here biological chassis (or just chassis) simply refers to something which is capable of
using biological elements to execute an intended function. Where designs involve
genetic circuits, at a minimum the chassis must be able to express the genetic

elements which encode the biological system’s function.

There are a wide range of possible chasses provided by nature. Whilst the large
selection allows for researchers and developers to select a chassis with desirable
properties, in reality only a select few organisms tend to be used!®. This is mainly due
to a combination of biological incompatibility of genetic parts, and a lack of tools and
knowledge relating to non-model organisms. Biological incompatibility here refers to
difference in behaviour of genetic parts in different species and strains. One example
of this is codon bias, where different species produce tRNAs required for translation in
different ratios(®3l, This means that a codon which is commonly used in one organism
may be rare in another, and so if a genetic part uses that codon often, overall
expression levels are likely to be lower in one organism than the other®4, Additionally,
the presence of rare codons can exert stress on a cell through ribosome stalling, which
results in fewer resources available for other processes!®l. The issue of codon bias
specifically is well documented, and a range of tools exist to optimise the sequence of
a genetic element towards a specific species!®l. This does mean, however, that parts
may need to be re-synthesised to obtain the optimised part, which takes both time and

money. Efforts have been made to try and optimise part sequences such that they can
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Figure 1.5. Overview of Synthetic Biology Applications

lllustrated are 3 applications of synthetic biology: the synthesis of molecules (metabolic
engineering), performing logic and computation (biocomputing), and detection of stimuli
(biosensors).

be used as-is in multiple species!®”l, however the success of such tools is yet to be

determined.

Once a biological system or device has been built and implemented, its function can
be validated and characterised. The exact characterisation performed will vary
depending on the design specifications of that system and should be considered during
the design stagel®®. Once again, researchers have developed methods, inspired by
other engineering disciplines, of aiding this test stage. One example is the application
of statistical Design of Experiments (DOE), which uses statistics and machine learning

to help fully characterise a system in an informed and cost-effective way!8°}: [0],

During the final stage of the DBTL cycle, the learn stage, data collected from the test
stage, along with experiences during the build stage, are used to determine whether
the system or device meets the requirements set out in the design stage. If necessary,
the data collected can be used to inform modifications to the design of the system in
order to optimise behaviour/functionality, and the cycle is repeated in this iterative

manner©1],

1.3. Synthetic Biology Applications
The availability of synthetic biology derived technologies, such as standardised
biological parts, has allowed for novel systems to be developed with some level of

predictability, and breakthroughs in genetic engineering techniques make it easier than
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ever to modify natural systems towards specific needs. Whilst synthetic biology still
has challenges ahead of it the impact it has had on bioengineering is undeniable. There
have been revolutions in fields such as biocomputing, where biological logic circuits
were designed and implemented to introduce computing functionality into biological
systems[®, and research into the development of synthetic biology devices (synbio
devices) has become increasingly popularl®3l, Given in this section are examples of

some devices and systems developed with the aid of synthetic biology approaches.

1.3.1. Metabolic engineering

The use of bioengineering in the production of useful molecules and compounds was
discussed previously in section 1.1, where products produced naturally by organisms
can be extracted and used as precursors in chemical synthesises, or natural enzymes
are extracted and used in vitro to catalyse reactions not possible to perform by
chemical means. With the application of synthetic biology, it is possible to instead
engineer organisms themselves with the aim of enhancing natural production of
desired molecules, or to build new biological pathways[®4. There are several
approaches to this type of bioengineering, which typically fall under the branch of
metabolic engineering. These include, but are not limited to, (i) engineering the host
organism to knock-out or enhance genes involved in metabolism to increase flux
through the desired pathway[®9, (ii) expression of genes involved in biosynthesis of the
metabolite of interest in a non-native host which has more desirable properties than
the native host organism[®€l, and (iii) engineering of enzymes to increase their activity!°7l.

A common approach to metabolic engineering is to insert enzymes required for
biosynthesis of a product into a host which is different to the organism which usually
produces the moleculel®¥. An advantage of this is that sometimes, the native organism
is difficult to manipulate genetically, slow growing, or difficult to extract the product
from[®8l [99]_ |n these cases, moving the biosynthetic pathway to an organism which is
easier to work with can be beneficial. Pathways which have been recreated in non-

native organisms are often referred to as heterologous pathways.

One example where heterologous pathway recreation has been applied is in the
production of artemisinic acid, which is an immediate precursor to the antimalarial drug
Artemisinin®%, Artemisinin itself is produced only in small quantities naturally, and its

chemical synthesis pathway is complex and economically non-viable. It is possible to
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obtain Artemisinin by chemically converting artemisinic acid, however artemisinic acid
is also only obtained in low quantities naturally. Additionally, the organism which
naturally produces artemisinic acid, Artemisia annua, is difficult to genetically engineer.
Instead, researchers engineered Saccharomyces cerevisiae contain enzymes
naturally found in A. annua in order to recreate the biosynthetic pathway in a host
organism which could be more easily engineered. Using this approach, the
heterologous biosynthetic pathway was optimised using genetic engineering
approaches to produce artemisinic acid, which could then be converted into the
antimalarial drug by chemical synthesis. Whilst this provided a method for more
efficient production of artemisinin, scale up issues existed, and hence plate extraction

of artemisinin is still common.

1.3.2. Biocomputing

One area which has been completely revolutionised by synthetic biology is that of
biocomputing. This is not to say that biocomputing did not exist before the rise of
synthetic biology; indeed, the concept of using biological molecules to perform
computation predates synthetic biology by a few decades!'°l, and comparisons of the
mechanisms of cells to mechanical machines dates back even further%2. It could even
be considered that efforts to harness biological systems for computation provided the
initial inspiration for synthetic biology as field, given that the two papers most often

referred to as initial landmark studies dealt with developing biological logic devices!1%3!
[104]

Genetic-based biocomputing relies on genetic parts with known functionality, which are
subsequently expressed by a biological chassis, such as Escherichia coli cells, yeast
cells, or cell-free expression systemsl'%l, The genetic elements which compose the
biocomputational functionality tend to be referred to as the genetic circuit. The
mechanisms of these genetic circuits most often harness the power of natural
regulatory systems found in cells, where expression of specific coding sequences
(CDSs) can be controlled by certain biomolecules. For example, in one of the landmark
studies mentioned above, the authors designed a genetic circuit which resulted in cells
which could act as a toggle switch!1%4, The abstracted function of this toggle switch
was one which allowed a certain protein, in this case a green fluorescent protein (GFP),

to be produced continually when a stimulus was applied (in this case the small
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molecule IPTG). The production of the GFP could then be turned off by application of

another small molecule (aTc).

Other examples of biological logical devices, some with much more complex
mechanisms and functionality, have been developed over the past 2 decades!106-1108],
The ability to build these devices has been heavily influenced by the wide availability
of sequencing data, an increased understanding of how molecular mechanisms occur
within cells, and genetic engineering/assembly techniques, as well as the presence of
standardised genetic parts with characterised functions!”! [80}: [105] These parts can
therefore be combined in somewhat predictable ways, although it should be noted that
the issues which have plagued other areas, such as a lack of understanding as to how
certain molecules and mechanisms interact, can lead to unforeseen behaviour%,
This can result in devices with sub-optimal performance, or in some cases can be

completely non-functional.

There are many other areas of research impacted by synthetic biology which have not
been discussed, including drug delivery systems and DNA data storage systems!®l.
Most of these other applications and areas of research suffer from issues similar to
those already discussed. One such area is that of biosensors, which will be discussed

in the following section.

1.4. Genetic circuit-based biosensors

Biosensors are devices which utilise biological components to detect specific stimuli.
In recent decades, a new type of biosensor has become popular, thanks in part to the
advent of synthetic biology technologies and approaches!'?. These types of
biosensors, referred to here as genetic circuit-based biosensors, or simply genetic
biosensors, are similar to the cellular biocomputational devices mentioned previously.
Genetic circuit-based biosensors use DNA to encode different elements of the system,
and can be seen as a type of biocomputing, where logical functions are applied to
generate an appropriate response to a desired stimulus (or set of stimuli). In fact, the
genetic toggle switch from the previous section essentially acts as a biosensor for IPTG,
as in the presence of IPTG (and absence of aTc), a response is generated (production

of GFP, which produces a green, fluorescent signal).
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1.4.1. Mechanisms and applications

Genetic biosensors have a wide range of applications, which is made clear by the
plethora of diverse devices developed using synthetic biology 1113 Genetic
biosensors have been developed to detect metabolites for aid in metabolic engineering
efforts, helping to replace costly analytical techniques and provide real-time monitoring
of cell cultures, and rapid identification of strains which show promising functionality
during the development of these metabolic factories!'4l. There are other devices with
diagnostic applications, such as a paper-based test which utilises CFPS systems to
detect Zika virus!'®l. Devices for reporting on the presence of toxic metals or other
pollutants have been developed for use in environmental monitoring and to direct

remediation efforts!18],

A common biological component to be used as the sensing mechanism of a genetic
biosensor are regulatory factors*'/ (Figure 1.6). When a stimulus interacts with the
transcription or translation factor acting as the sensing mechanism, a change in genetic
regulation occurs, which results in either up or down regulation of a coding sequence
(CDS). The type of CDS, or in some cases set of CDSs, determines the type of
response generated. For example, a CDS which encodes a fluoresecent protein could
be used to give a fluorescent signal in response to a stimulus, or a CDS for a metabolic
regulatory protein could be used to control production of a specific molecule of interest.
An example of a genetic biosensor is the Frm-based formaldehyde biosensor!*8l, This
genetic biosensor contains several elements encoded as DNA, namely the frmR CDS
which encodes the FrmR transcription factor, the Pfrm promoter, and a gfp CDS which
encodes a green fluorescent protein (GFP). Once the biosensor is activated, the frmR
CDS is expressed which results in production of the FrmR transcription factor.
Ordinarily, FrmR represses expression from the Pfrm promoter, which in this case is
positioned upstream from the gfp CDS. However, formaldehyde is able to bind to FrmR,
which causes a change in the conformation of the transcription factor and prevents it
from repressing Pfrm. Therefore, in the presence of formaldehyde, FrmR no longer
represses the Pfrm promoter, which results in expression of the gfp CDS, and hence
GFP is produced. The GFP emits a green fluorescent signal which can be visualised
or measured. The intensity of the fluorescent signal can be used as a proxy to the
concentration of formaldehyde present.
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Figure 1.6. Transcription Factor-Based Biosensor Mechanisms

Two common mechanisms for transcription-factor based biosensing. In each example, the
analyte acts as an inducer. (A) An example of positive induction, where the combination of
a transcription factor and analyte can promote genetic expression from a specific promoter
to elicit a response. (B) An example of negative induction, where a transcription factor
represses expression from a promoter. When an analyte is present, the transcription factor
becomes sequestered and promoter repression is relived, leading to genetic expression
and a response.

Genetic biosensors cannot be implemented in the same way as other biosensors.

Whilst PCR or enzymatic biosensors are implemented in vitro, for genetic biosensors
the DNA encoding the device must be inserted into an appropriate biological chassis
capable of expressing the geneticl'’®. In the specific case of the formaldehyde
biosensor, the DNA encoding the device is intended for transformation into Escherichia
coli. The genetic elements of the biosensor were designed and selected in such a way
that the native biological machinery present in E. coli is able to correctly express the

formaldehyde biosensor.

While a bacterial species is used in this example, there are many examples of other
species being used as a chassis for a biosensor device, including yeast!*2%, plant
species?l, and mammalian cell lines[*?2, There has also been increasing popularity

in using cell-free protein synthesis (CFPS) systems as a biological chassis[*?3l. Put
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simply, CFPS systems use biological machinery and pathways to express genetic
elements, but are not, and do not contain, living cellsi??4. Whilst a wide range of
potential hosts exist, only a handful are used regularly®. This can be problematic for
the development of biosensors, where mechanisms of detection for many interesting
molecules are often found in non-model organisms. There is then a choice to be made
between implementing the detection mechanism in a non-native host, which in some
cases may be difficult, especially if the molecule of interest is toxic, or required
regulatory elements perform poorly in model organisms, or trying the implement logic
and response mechanisms into a species where behaviour of the parts responsible for

those mechanisms is less predictable.

1.4.2. Biosensor development and challenges

When developing a genetic circuit-based biosensor, or any biosensor, the identification
and engineering of the detector mechanism, which interacts with the desired stimulus
to create a ‘genetic signal’ and generate a response, is fundamental. For some stimuli,
detector mechanisms may already be known, but in other cases there may be no
known mechanism of detection. Although research has been conducted into more

efficient development of detection mechanisms, this work is ongoing!125}: [126],

Aside from the detection mechanism, biosensors require a mechanism for generating
a response in line with the design specification. For genetic biosensors, these
responses tend to be the result of a change in expression of a CDS[?71, The nature of
the protein encoded for by the CDS will vary based on the response, and could include
fluorescent proteins, which provide a signal which can be both qualitative and
guantifiable, a pigment which results in a change in colour, or an enzyme/set of

enzymes required for activation of a metabolic pathway.

Genetic biosensors often make use of the standardised biological parts covered in
section 1.2.1 in their design. When the genetic biosensor’s chassis is a model organism,
there are a wealth of standardised parts which can be selected from to help code the
desired response. If the chassis is less studied and used in synthetic biology, there are
likely to be fewer choices. The exact selection of parts will determine the overall
function of the biosensor. For example, a section of the biosensor may require a protein
to be continually expressed, and hence require the use of a constitutive promoter. The

‘strength’ of the promoter (i.e. the rate of transcription of coding regions under the
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control of that promoter) will affect the amount of that protein produced, and hence
have an affect on the overall system!?8l. This can have an impact on the signal-

response curve described previously.

Development of genetic biosensors tends to hinge on the ability to optimise and tune
their functionality towards the parameters set out by the design specification[117): [129],
There tend to be many trade-offs to consider, and it can take many iterations of the
DBTL cycle to obtain a fit-for-purpose biosensor!®2. Whilst there are many success
stories of genetic biosensors, it is still true that many genetic biosensors, and indeed a
lot of synthetic biology solutions, tend to find themselves stuck in the proof-of-concept
stage. This can stem from difficulties with optimisation, which could be due to the
design space of a system being inaccessible, perhaps due to requirements for
optimisation of aspects like enzyme kinetics or protein binding parameters['3%. These
types of optimisations can be difficult as they rely on protein engineering, which as
discussed earlier is still far from a simple task. It is also possible that the way in which
the design has been implemented makes it time consuming and costly to generate
variants for testing. This is common when designs have been built without standard
DNA assembly techniques, as it becomes tough to easily swap out elements of the
design, and even tougher to generate enough variants to properly explore the potential

design space.

Despite difficulties associated with biosensor optimisation, there are examples of
innovative approaches to improve a biosensor’s functionality. One such example is
that of a macrolide biosensor*3l. Macrolides represent a class of pharmaceutically
relevant molecules. The initial biosensor design, which made use of transcription
factor-based mechanisms, displayed low sensitivity. To improve sensitivity, an enzyme
was added which modified macrolides to prevent them from diffusing out of the host
cells. This allowed for detection of lower macrolide amounts by concentrating the
analytes around the detection mechanisms. The optimisation approach taken here,
whilst impactful and indicative of the potential bioengineering has for biosensor
development, was highly specific to the type of biosensor being developed, as not all

stimuli could be modified in such a way.

There has been other research into genetic biosensor optimisation approaches, such

as a study which aimed to provide a more generalised framework for biosensor
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optimisation*32l. This framework utilised computationally informed design in the form
of protein structural modelling to modify a transcription factor for specificity towards an
analyte different than its native binding partner. Potential mutants were screened
rapidly in vitro with the aid of cell-free protein synthesis systems, and the
characterisation data was used to inform future iterations of the design stage and the
creation of more optimal mutants. Whilst this study showed the great potential for such
an approach, it was highly reliant on high quality structural data for the transcription
factor being mutated, which is not always available. Additionally, the final mutated
transcription factor may require further optimisation, as the initial cell-free screening
step fails to account for issues such as membrane permeability of the analyte, and

potential toxicity.

In some cases, biosensor designs may be large, especially in cases which require
complex, or even just moderate, signal processing or biocomputational capabilities33l,
These situations are likely to become more commonplace as synthetic biology aims to
solve more complex problems and compete with other engineering fields generally. In
such situations, implementation of the design into a chassis is likely to introduce host
stress, which can cause reduced performance of the system as a wholel'34, In some
cases, it is possible to use a chassis which is more resistant to the problematic
elements. Often, however, genetic biosensors will use elements which have optimal
chassis which are different from one another. This could occur if the detection
mechanism has been taken from one species, such as a yeast, but the parts used for
signal processing were developed for a different species, such as a gram-negative
bacterium. It may be possible to address the issue of both host stress and sub-optimal
chassis through the use of synthetic multi-microbial consortia. This concept is

discussed in detail in the following section.
1.5. Multi-microbial systems

1.5.1. Natural microbial communities

In nature, micro-organisms are known to form microbial communities, where many
different strains or species co-exist'3®, Such multi-microbial communities can differ in
size, complexity, and diversity; some communities may contain variants of a single
species, whilst others are composed of many diverse micro-organismsl*3l, To survive
in different environments, micro-organisms rely on a plethora of biological processes,

including the degradation of toxic substances into less harmful products, conversion of
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Figure 1.7. Microbial Consortia Interactions and Relationships

lllustrated are some examples of interactions which occur within microbial consortia. (A)
Different species can produce resources to be shared with the wider community, and in
turn gain access to resources which they do not produce. (B) Biological processes can be
split across the different members of a community. lllustrated here is a hypothetical
degradation pathway which converts a toxic molecule into a non-toxic product. (C) Cells
within a community compete for resources, with better adapted species out growing less
well adapted members. (D) Different species may directly predate on other members,
which can prevent competition and provide an alternative source of resources.

resources into substrates which can be used as an energy source, and detection of

threats!'37l, Within a community, these processes can be divided among different
populations (Figure 1.7 (A)). This ‘division of labour’ allows members to efficiently
perform functions at which they excel, sharing the fruits of their labour with the
community, whilst leaving others to deal with processes they are less adapted to, or

unable to, perform!138l,

It is also possible for a single process to be divided, where different populations
perform separate parts of the overall process (Figure 1.7 (B)). Indeed, processes which
require a large number of resources, such as some enzymatic pathways, are known to
be performed through collaboration of multiple populations of a community, where
each member performs part of the enzymatic process. This phenomenon can be seen
in wastewater microbial communities subjected to the chemical terephthalate, where
distinct populations play different roles in converting the chemical into useful products
and energy for crucial cellular processes!*®l. This type of division prevents individual
members from having to perform the entirety of a high-burden process, which would
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decrease their overall fitness by diverting resources required for other critical
processes important in cell growth and survival. Instead, the burden gets split across
multiple cells, ensuring that resources remain for the individual members to grow and
survive, as well as to perform other functions useful to the community. It has also been
shown that the division of processes such as these actually increases the overall
efficiency, as each step is performed by healthier cells, which are usually better

adapted to the specific part for which they are responsible!4%],

Aside from co-operation, other interactions can occur within natural microbial
communities, where species compete for resources through a variety of mechanisms
(Figure 1.7 (C)), including the conversion of resources to substrates not usable by
competitors, increased growth rates to increase the population of that species and
hence use more of the available resources, or direct attack of opposing members to

slow their growth rates or cause cell death**l (Figure 1.7 (D)).

1.5.2. Intercellular signalling

Collaboration between members of a microbial consortia can be co-ordinated through
the use of cell-to-cell signalling mechanisms!142-1441 " Communication between the
different populations allows for better co-operation. This is because individual
members can let others know about their current situation or state. Microbial
communication mechanisms tend to rely on the production of biological molecules,
which can be transported out of the individual cells to the environment, where they can
then be taken up by other members of the community and impact on regulation of
certain processes[*l. One example of such a communication mechanism is that of
acyl-homoserine lactone (AHL) based quorum sensing. AHLs are relatively simple
molecules, composed of a homoserine lactone and a fatty acid acyl chain46H148l |n
this method of communication, AHLs, which are small secondary metabolites, are
produced via enzymes called AHL synthases. As the AHLs build up in the cell, a
diffusion gradient occurs, and the AHLs begin to freely diffuse across the cell
membrane into the surrounding environment. As the AHLs begin to accumulate in the
environment, surrounding cells take up the AHLs due to the diffusion gradient, and
AHLs in the AHL producing cells accumulates further, due to the reduced diffusion
gradient. Once a certain threshold of AHLs is present, genes regulated by these small

molecules are turned on. This genetic regulation mechanism occurs through the use
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Figure 1.8. General Quorum Sensing Mechanism

Schematic depicting a generic quorum sensing mechanism. Here, one cell (top) is an acyl-
homoserine lactone (AHL) producer, and the other cell (bottom) is an AHL responder. AHL
molecules are produced by an AHL| synthetase enzyme. The AHLs diffuse across a
concentration gradient into the extracellular environment. As the AHL accumulates, the
molecules diffuse into cells with fewer AHL molecules. AHL transcription factors (TF) can
be activated by AHL molecules, which in turn activation transcription from specific

promoters, generating a response. In nature, individual species often have both AHL
producing and responding capabilities (see main text).

of a transcription factor which promotes expression from a specific promoter, but only

when bound to an AHL.

In nature, it is common to find species which both produce and respond to the same
AHLI#, By expressing AHL synthases during normal cell growth, as the cell
populations grows more AHL is produced and accumulates in the environment. The
increased AHL concentration can signal to members in the population that the number
of cells is increasing. This mechanism can be used by cell populations to ensure that
certain genes are only turned on when a specific quorum of cells are present. It is
common to find pathogenic bacteria, such as Pseudomonas aeruginosa, which make
use of this quorum sensing mechanism, where virulence factors are only produced
when enough cells are present to be effective, and to prevent alerting the body’s
immune system early*>. There are different types of AHLs, which mainly differ in the
lengths of their acyl chain*>l. Different AHL synthases specialise in producing a
specific AHL variant, and the transcription factors and promoters are similarly
associated with a specific AHL. However, due to the similar structures, there is cross
talk between the different AHLs, where one AHL may bind to and activate a

transcription factor associated with a different AHL.
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Whilst the vast majority of known communication mechanisms involve the production
of small molecules, be they secondary metabolites or peptides, there is some evidence
of cell-to-cell signalling which is mediated by other factors, such as light, although there

is still no conclusive evidence for thislt52],

1.5.3. Engineering natural communities

As evidenced by the study of natural microbial communities, the concepts of division
of labour and microbial communication can have a wide range of positive impacts on
the overall function and efficiency of processes necessary for survival. It is perhaps no
surprise, then, that the development of multi-microbial systems composed of two or
more cell types is becoming increasingly popular within synthetic biology™53-155],
These efforts can largely be split into two broad areas: engineering of natural

communities, and the development of synthetic consortia.

There are many approaches towards the engineering of natural communities, some of
which involve modifying the genetics of one or more populations, and other which focus
on modifying the environment of and resources available to the members of the
community. It has been shown previously that altering the feedstock available to a
microbial community can influence the population composition, resulting in changes to
the processes performed by that community®®¢l. There is also an interest in
engineering the genetics of the microbial community as a whole (termed the
metagenome)'®7. Aside from engineering natural communities, there is increased
interest in developing completely synthetic multi-microbial systems, driven by efforts to
overcome some of the issues discussed previously which plague the progression of

synthetic biology.

1.5.4. Synthetic multi-microbial communities

Within synthetic biology, the limits of what can be achieved with cells in monoculture
are being reached[8l [159] This is largely due to the need for increasingly complex
designs to be implemented, which can impart immense burden on any cell expressing
the system. The issue of burden, as touched upon previously, is a result of resources
needed for cell survival being diverted in order to express the synthetic system which
has been implemented. This lack of resources can negatively impact cell growth and
even lead to cell death, resulting in fewer cells available to perform the intended
function. When burden becomes too high, it can impact on the system’s performance,

with effects ranging from less-than-optimal behaviour to a complete lack of function.
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The need for complex systems also comes with other issues, such as the requirement
for a large number of biological parts. In other engineering fields, such as electrical
engineering, it is commonplace to re-use identical parts in a system; components such
as buzzers or voltage amplifiers can be used multiple times without issue. However, in
synthetic biology, re-use of identical components is a lot trickier. This is due to the high
potential for cross-talk to occur, as there is very rarely any insulation between the
different section of a systeml!1¢%, This means that if, for example, two or more signal
amplifiers were required for a design, they must be composed of different genetic parts,
as otherwise parts such as transcription factors produced by one amplifier can interact

with the promoter in one of the other signal amplifiers, leading to unwanted functionality.

As alluded to, the issues described above could be alleviated through the development
of multi-microbial systems composed of two or more cell types!*®l. This is because of
the potential to split a system’s design into multiple parts, each of which is then
implemented into separate chassis. As with processes being split across multiple
members of a natural microbial community, this has the advantage of not only reducing
the total burden experienced by any one cell, but also enables more suitable species
to be selected for sections of the design which require specific chassis in order to
function as intended. Additionally, re-use of identical biological parts becomes more
feasible, as the separate sections of the system can be isolated within their respective
chassis, meaning that the chance for cross talk to occur between elements such as

transcription factors is significantly reduced.

In order to successfully implement a synthetic biological system using microbial
consortia, it is necessary to engineer some method of communication between cells in
the system. Usually, this involves quorum sensing, of which AHL based mechanisms
tend to be the system of choicel®2. This is likely a result of the mechanism of action
being well characterised, and that transport is via passive diffusion and does not
require additional components, as AIP based quorum sensing does. The use of AHL
based quorum sensing has been put to good use, with many examples of synthetic
microbial consortia utilising them, such as a spatial patterning system composed of
two strains of E. coli with QS-mediated communication*%3l. Other studies involving
quorum sensing in synthetic systems include communication between physically

separated populations in a microfluidic device, which use quorum sensing to create
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oscillations of GFP expression!'®4, and implementation of a biological system which

exhibits neural-like pattern recognition!1%7],

Whilst synthetic consortia have shown a lot of promise, there are still challenges. These
include issues with system instability, where different cell types can grow at different
rates, causing the ratios of populations to change over time and the system the
eventually collapse [*6%], To counter the issue of co-culture instability, there have been
efforts to engineer cross-feeding mechanisms into synthetic consortial’®6l, Cross-
feeding refers to populations of a consortia relying on each other for cell growth, as
each produces a resource required by the other. In this way, the growth of the
populations becomes linked, as if one population begins to outcompete the other, it will
be limited by the resource provided by the population. Whilst these systems have been
used successfully, they become difficult to implement and scale in complexity with
increasing numbers of cell types in the system. Other problems associated with
synthetic consortia, especially those involving diverse species, involve issues arising
from a requirement for different conditions in order to grow and survivel's’l. For
example, different species can require radically different temperature to grow efficiently,
and thus compromising on temperature for consortia of such cells can result in poor
functionality of the system. Nevertheless, synthetic consortia could provide a solution

to some of the big issues currently faced by synthetic biology.
1.6. Overview of This Work

1.6.1. A brief overview with rationale

Synthetic biology approaches are undoubtedly useful, as evidenced by the many
synthetic biological systems and devices developed, and the impact they have had on
bioengineering efforts across all areas. However, as can be seen from the discussion
above, challenges do remain, and there is still considerable potential for the efficiency
of synthetic biology approaches to be improved upon. There are many causes for these
challenges, of which many overlap. However, some of the common problems found
include difficulties with implementing large and complex systems, issues with re-using
aspects of some designs, and challenges associated with rapidly and efficiently
optimising built systems. Whilst the exact nature of these challenges differ, similar
obstacles can be found in other engineering fields. One approach to tackle the
problems encountered within these other fields is the use of high-level modularity,

where devices and systems are designed and implemented using modules with high-
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level functionality. The research presented for this thesis focused on demonstrating
how the principles of high-level modularity and synthetic multi-microbial systems could
be used to aid in the development of a specific type of synthetic biology device:
biosensors. The following section provides a description of the project’s aims, which

were identified with the intention of achieving this goal.

1.6.2. Main aims
In this thesis, the overall goal was to investigate the feasibility of developing genetic
biosensors with the aid of a modular, multi-microbial framework. Biosensors were
selected as an application mainly due to their widespread usage within other areas of
synthetic biology. To achieve this goal, the following aims were identified:
e Develop tools and methods for the design, building, and characterisation of a
modular, multi-microbial biosensor.
e Design a proof-of-concept modular, multi-microbial biosensor according to a set
of design principles
e Use computational simulations to guide the characterisation and optimisation of
the proof-of-concept biosensor
e Characterise the proof-of-concept biosensor and its modules
e Attempt to tackle difficulties with co-culturing microbes by investigating a
method of microbial communication which is not reliant on the transfer of

molecules

1.6.3. Thesis structure

This thesis is split into seven main chapters. Each results chapter (3 — 7) begins with
an introduction to the chapter and provides some specific background information.
Results within these chapters are provided with discussion, following which the chapter

is concluded with an overview of the main outcomes and discussion of next steps.

The Introduction and Background Information chapter provides background
information and a review of previous studies within the area of synthetic biology,
biosensors, and multi-microbial systems. Common challenges surrounding the
development and implementation of biological systems are discussed, and current
approaches to alleviate these issues are discussed, along with an explanation of their

own advantages and disadvantages.
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The second chapter, Materials and Methods, describes the methodology used to
perform the experiments discussed in this thesis. An explanation of the data handling
and analysis used is also given where appropriate. It should be noted that the
methodologies may not be in the order in which the results they yielded are discussed
in the thesis. However, where the results are discussed, references back to the

appropriate sections of Chapter 2 are given.

Chapter 3, the first results chapter, describes a potential framework for developing a
modular, multi-microbial biosensor. It is also presented how the Synthetic Biology
Open Language (SBOL) was extended to allow for standardised representation of
multi-microbial systems, along with a set of tools created for aiding in automation of
the development of biosensor modules, and synthetic biology workflows more

generally.

In Chapter 4, the design for a proof-of-concept modular and multi-microbial genetic
biosensor is given. Results are then presented from computational modelling of the
biosensor modules using both deterministic and agent-based simulation. Following this,
agent-based modelling is used to predict functionality of the multi-microbial biosensor,

and to explore a potential avenue for optimisation.

Chapter 5 discusses characterisation of the biosensor modules, along with validation
of intercellular communication between cell types expressing each module. Finally, the

multi-microbial biosensor itself is tested experimentally.

Attempts to optimise the proof-of-concept biosensor through modification of cell ratios
are presented in Chapter 6, and statistical Design of Experiments is used to determine

important factors for optimisation of culturing conditions.

Informed by difficulties encountered throughout the project, Chapter 7 deals with efforts
to implement and alternative to chemical-based microbial communication. This
alternative takes the form of bioluminescence-based communication, which may allow
for easier implementation of multi-microbial systems by avoiding the need for co-

culturing.
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The Conclusion and Future Work chapter rounds up the main outcomes and results of
this thesis, and discussion is given to the overall limitations of this work. Potential future

work to address these limitations and further the project is also discussed.

The thesis finishes with Supplementary Information and References chapters. The
Supplementary Information is split into sections according to each chapter in this thesis,
and the References chapter provides citations for the entire thesis, arranged by order

of appearance.
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Chapter 2. Materials and Methods

2.1. Generic Methods

2.1.1. Bacterial cell culturing
Unless stated otherwise, Lysogeny Broth (LB) media was used for growth of cells in
liquid medium. LB media was prepared by combining chemicals in required amounts
(10 g/L tryptone; 10 g/L sodium chloride; 5 g/L yeast extract) and dissolving in MiliQ
water. Media was sterilised by autoclaving for 20 minutes at 121°C.

Table 2.1. Antibiotic Details: (*) Long term storage concentration
at -20°C. () Concentration for short-term working solution stored at

4°C. (8) Final concentration used in liquid and solid culture media.

o Concentrations (mg/mL)
Antibiotic Solvent - -
Storage* | Workingt Final®
Chloramphenicol | Ethanol 100 10 0.05
Kanamycin Water 25 10 0.05
Ampicillin Water 50 20 0.1

In all cases, growth of cells on solid media was performed using LB agar plates. LB
agar was prepared by combining chemicals in required amounts (15 g/L agar; 10 g/L
tryptone; 10 g/L sodium chloride; 5 g/L yeast extract) and dissolving in MiliQ water.
The mixture was sterilised by autoclaving for 20 minutes at 121°C and allowed to
solidify. Solid agar was heated using a microwave until molten and left to cool. The
relevant antibiotic was added at the appropriate concentration (Table 2.1) and mixed.
Agar was then poured into 90 mm petri dishes and left to solidify.

Antibiotics were stored in solvents as detailed by Table 2.1. Antibiotics were stored at
either -20°C (long term) or 4°C (short term). Storage, working, and final concentrations

for each antibiotic are detailed in Table 2.1.

For overnight growth of cell cultures in liquid media (referred to as ‘overnight cultures’
within this thesis), 10 mL of LB media was added to a sterile 50 mL falcon tube and
inoculated with a single colony from the appropriate agar plate. If required, antibiotic
from the appropriate working stock was added to the required final concentration
(Table 2.1). Cultures were incubated at 37°C for 16-18 hours with constant orbital

shaking at 200 Revolutions per Minute (RPM), unless stated otherwise.
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In all cases, the bacterial cell strain used was Escherichia coli DH5a originally sourced
from New England Biolabs (NEB). Single colonies of E. coli DH5a were obtained by
streaking from a glycerol stock stored at -80°C (sourced from NEB) onto LB agar plates
with no antibiotic and incubated at 37°C for approximately 16 hours. Colonies were
either used immediately, or the agar plate was stored short-term at 4°C until needed.

2.1.2. Preparation of E. coli competent cells

Two transformation buffers were used for preparing competent cells: TF-1 and TF-2.
TF-1 was prepared by first mixing chemicals at the required amounts (7.4 g potassium
chloride; 2.95 g potassium acetate; 1.5 g calcium chloride dihydrate; 150 g glycerol)
and dissolving in 950 mL MiliQ water. The buffer’'s pH was adjusted to ~6.4 with acetic
acid and sterilised by autoclaving for 20 minutes at 121°C. A 1 M manganese chloride
tetrahydrate solution (198 g/L) was prepared in MiliQ water and sterilised by syringe
filtration through a 0.22 ym filter, of which 50 mL was added to 950 mL the TF-1 buffer.
TF-2 was prepared by mixing chemicals at the required amounts (0.74 g potassium
chloride; 11 g calcium chloride dihydrate; 150 g glycerol) in 980 mL MiliQ water and
sterilised by autoclaving for 20 minutes at 121°C. A 0.5 M solution of MOPS buffer
(104.7 g/L 3-(N-morpholino)propanesulfonic acid) was prepared in MiliQ water with a
pH adjusted to 6.8 with potassium hydroxide, and sterilised by syringe filtration through
a 0.22 uym filter. 20 mL of MOPS buffer was added to 980 mL of TF-2 buffer. Both
buffers were stored at 4°C until required.

An overnight culture of E. coli DH5a was prepared from a streak plate on LB agar with
no antibiotic as described in sub-section 2.1.1. 40 mL of LB media was added to a 250
mL conical flask and inoculated with 400 pyL of overnight culture. The culture was
incubated at 37°C with shaking at 200 RPM until an optical density measurement at
600 nm of approximately 0.5 was reached. The full culture was transferred to a 50 mL
falcon tube, and cells were harvested by centrifugation at 4,500 RPM and 4°C for 10
minutes. Supernatant was discarded. The cell pellet was re-suspended in 8 mL of ice-
cold TF-1 buffer and incubated on ice for 15 minutes. Cells were harvested by
centrifugation at 4,500 RPM and 4°C for 10 minutes and supernatant discarded. The
cell pellet was re-suspended in 4 mL of ice-cold TF-2 buffer and aliquoted at 50 uL into

1.5 mL tubes and stored at -80°C until required.

33



2.1.3. Transformation of plasmids into E. coli cells
The appropriate number of competent E. coli DH5a aliquots were thawed, and between
2 and 10 pL of plasmid DNA was added per aliquot. DNA was thoroughly mixed with
gentle pipetting up and down. The cells-plasmid mixtures were subjected to heat shock
at 42°C for 1 minute and then cooled to 4°C. 250 yL of LB media was added to the
aliquots, which were then incubated for 1 hour with 250 RPM shaking at 37°C. All cells
were dispensed onto separate LB agar plates prepared with the appropriate antibiotic,
and cells were spread using autoclave sterilised glass beads. Beads were removed
and cells were allowed to dry for 10 to 20 minutes, before being inverted at incubated

at 37°C for approximately 16 to 18 hours.

2.1.4. Purification of plasmid DNA
A single colony of cells transformed with the plasmid to be purified were used to
inoculate an overnight culture with the appropriate antibiotic. Cultures were then
processed using Monarch Plasmid Miniprep Kit (obtained from New England Biolabs)
according to the manufacturer's protocol. Two modifications were made to this protocol:
(i) overnight cultures were centrifuged at 4,500 RPM for 10 minutes instead of 13,000
RPM for 30 seconds, and (ii) nuclease-free water was during the elution step instead
of elution buffer. The concentration of plasmid DNA purified was determined using a
UV-Vis spectrophotometer (NanoDrop One, Thermo Scientific) according to the
manufacturer’s instructions. Plasmid DNA was stored at -20°C for long term storage,

and 4°C for short term storage.

2.1.5. DNA gel electrophoresis
Gel electrophoresis was used to visualise plasmid backbones on agarose gels.
Agarose gels were prepared by combining 1% w/v agarose powder with 1x Tris-
acetate-EDTA (TAE) buffer and heating with stirring until all powder was dissolved. 0.1%
v/v of 1% Nancy-520 (dsDNA dye supplied by Sigma-Aldrich) was added to the solution
and mixed thoroughly. The molten agarose mixture was poured into a gel tray with a
comb added and left to set. DNA samples were mixed with 6x purple gel loading dye
(NEB) to a final volume of 10 uL and added to the agarose gel wells. 1kb and 100bp
ladders (NEB) were used as markers. The gel was placed into an electrophoresis
container filled with 1x TAE buffer, and a current was run across the gel for

approximately 1 hour. Gels were visualised under UV light.
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2.1.6. Sequence verification of plasmid DNA
The sequence of purified plasmid DNA was obtained via Sanger sequencer performed
by Eurofins. Samples were prepared by combining approximately 500 ng of plasmid
DNA with 2.5 uL of either 10 yM forward primer (VF2: TGCCACCTGACGTCTAAGAA)
or 10 uM reverse primer (VR: ATTACCGCCTTTGAGTGAGC) and making the reaction

up to 10 uL with nuclease-free water.

2.2. Manual Assembly of DNA Constructs

Constructs were designed and assembled in silico using Benchling prior to assembly.
All assembled DNA constructs are listed by assembly method in Table 2.6 and Table
2.7, along with information such as the DNA assembly method(s) used and a link to
the construct’s sequence. Sanger sequencing was used to verify correct assembly and
sequence (sub-section 2.1.6). For a list of all DNA constructs or parts not built in this
study, see Table 2.2.
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Table 2.2. DNA Obtained Outside this Study: Listed here are all DNA parts or constructs with did not originate within this study.

Name Plasmid Backbone Antibiotic Selection Source

BBa_J04450 pSB1C3 Chloramphenicol iGEM 2017 Distribution Kit
BBa_J06602 pSB1C3 Chloramphenicol iGEM 2017 Distribution Kit
BBa_K2205010 pSB1C3 Chloramphenicol Newcastle iGEM 2017
BBa_K2205011 pSB1C3 Chloramphenicol Newcastle iGEM 2017
BBa_K2205014 pSB1C3 Chloramphenicol Newcastle iGEM 2017
PBLRep-EL222 ---- Kanamycin Gift from Chueh Loo Pohlté8]
PBLINd100-EL222 - Kanamycin Gift from Chueh Loo Pohl'68]
pOdd1 pOdd1 Kanamycin iGEM 2017 Distribution Kit
pOdd2 pOdd2 Kanamycin iIGEM 2017 Distribution Kit
pSB1C00 pSB1C00 Chloramphenicol iIGEM 2017 Distribution Kit
pSB1C3-Lux pSB1C3 Chloramphenicol pSB1C3-Lux was a gift from Tom Ellis (Addgene plasmid

#109383)
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2.2.2. BioBrick assembly
All reagents were obtained from New England Biolabs (NEB), and all assemblies were
performed at 20 pL total reaction volume in 0.2- or 0.5-mL tubes. DNA constructs

assembled via BioBrick assembly are listed in Table 2.6.

For each assembly, the plasmid backbone and insert(s) were digested separately.
DNA digest reactions were prepared as shown in Table 2.3. Reactions were incubated
at 37°C for 1 hour, with a subsequent heat inactivation step at 80°C for 20 mins.
Reactions were held at 4°C until required.

Table 2.3. DNA Digest Reaction for BioBrick Assembly: (*)

Enzymes used for each reaction are shown in Table 2.6.

Reagent Amount
Plasmid Backbone 250 ng
Enzyme 1* (10 units/pL) 1L
Enzyme 2* (10 units/pL) 1uL

10x rCutSmart Buffer 2.5 L
Nuclease-Free Water Up to 20 pL

Unless stated otherwise, ligation reactions were prepared as shown in Table 2.4.
Ligation reactions were incubated at either 16°C for 16 hours or 25°C for 2 hours,
followed by heat inactivation at 65°C for 10 mins. Reactions were held at 4°C until
needed. Reactions were transformed into E. coli DH5a as stated in sub-section 2.1.3,

using approximately 5 uL of reaction mixture.
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Table 2.4. Ligation Reaction for BioBrick Assembly: (*) Volume varied between
reactions; aimed for ~50 ng of plasmid backbone, with BioBrick insert(s) added at an

addition 3-fold. (t) DNA used for each reaction can be found in Table 2.6.

Reagent Amount
Digested Plasmid Backbone ~ 4 yL*
Digested BioBrick Insert(s) ~ 3.5 uL*
T4 DNA Ligase (400 units/pL) 1uL

T4 DNA Ligase Buffer (10x) 2 yL
Nuclease-Free Water Up to 20 yL

A variant of the reactions above were used to transfer constructs between BioBrick
compatible plasmids. For these reactions, all steps remained the same except EcoRl
and Pstl was used to digest both the plasmid backbone and BioBrick insert.

2.2.3. Gibson assembly
All reagents were obtained from New England Biolabs (NEB), and all assemblies were
performed at 20 uL total reaction volume in 0.2 or 0.5 mL tubes. Gibson assembly was
performed using gBlocks ordered from Integrated DNA Technologies (IDT). The
gBlocks were designed by adding 20-30 bp overhangs to the desired part for assembly
with homology to the plasmid backbone insert site. Assembly was verified in silico
using the NEBuilder tool by New England Biolabs. DNA constructs assembled via

Gibson assembly are listed in Table 2.7.

gBlocks from IDT were prepared by centrifuging the dried DNA for 10 to 30 seconds
at 12,000 RPM, and then resuspending by vortex in 50 uL of nuclease-free water for a
final concentration of 20 ng/uL. The re-suspended DNA was incubated at 50°C for 20
mins and then kept at -20°C until required. The plasmid backbone was linearised by
restriction digestion using the same process described in sub-section 2.2.2, using
enzymes mentioned in Table 2.7. Restriction sites were selected which flanked the

desired insertion site.

Gibson assembly was performed using the NEBuilder HiFi DNA assembly kit supplied
by New England Biolabs. Reactions were prepared as stated in Table 2.5. Reactions

were incubated at 50°C for 60 minutes, and then held at 4°C until required. Reactions
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were transformed into E. coli DH5a as stated in sub-section 2.1.3, using 5 uL of

reaction mixture.

Table 2.5. HiFi Reaction for Gibson Assembly: (*) For all assemblies, three
reactions were performed. Each reaction varied by the amount of gBlock added,
which was determined as either a 1-fold, 2-fold, or 3-fold increase in pmols of

gBlock relative to the number of plasmid backbone pmols.

Reagent Amount
Linear Plasmid Backbone ~50ng
gBlock Various*
NEBuilder HiFi Master Mix 10 uL
Nuclease-Free Water Up to 20 pL
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Table 2.6. DNA Constructs Assembled via BioBrick Assembly: Shown here are successfully assembled DNA constructs assembled with BioBrick assembly.

Construct Name Plasmid Antibiotic Constitutive Parts (With Enzymes Parts Source Link to Sequence
Backbone Selection Used)
Connector-2 pSB1AT3 Ampicillin e Backbone: pSB1AT3 + BBa_J04450 | e Backbone: Table 2.2 benchling.com/s/se
Sender + mCherry (EcoRlI + Pstl) e Insert 1: Table 2.2 a-
Sub-Module e Insert 1: pSB1C3 + BBa_J06602 e Insert 2: Table 2.2 X7cNXRHWBOQkC
(EcoRlI + Spel) KYOQLfIn
e Insert 2: pSB1C3 + BBa_K2205011
(Xbal + Pstl)
Default Processor | pSB1C3 Chloramphenicol e Backbone: pSB1C3 + BBa_K2205010 | « Backbone: Table 2.2 benchling.com/s/se

+ mCherry Module

(Spel + Pstl)
Insert 1: Connector-2 Sender +
mCherry Sub-Module

Insert 1: This study (Table

2.6)

g-
GgM5DP5Ixw2ixtjvj
kio

Table 2.7. DNA Constructs Assembled via Gibson Assembly: Shown here are successfully assembled DNA constructs assembled with Gibson assembly.

Construct Plasmid Antibiotic Constitutive Parts (With Enzymes Parts Source Link to Sequence
Name Backbone Selection Used)
pOddl_AE pOdd1 Kanamycin e Backbone: pOdd1 + e Backbone: This Study (Table 2.2) benchling.com/s/seq-

(J23100+B0034_EL222) (EcCORI + | »
Pstl)
e Insert: pOdd1_AE_gBlock

Insert: Synthesised by IDT as linear
dsDNA (this study)

r8x27DijlgDaV2zqow3y?m=s

Im-WyLdr9bGAVIIFZYW{8B7
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https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-X7cNXRHWB0QkCkYQLfIn?m=slm-VP3kis9Pir9m8LuKNxKI
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-GgM5DP5lxw2ixtjvjkjo?m=slm-lPBG2pDnRW8dO1BMeVgN
https://benchling.com/s/seq-r8x27DijlgDaV2zqow3y?m=slm-WyLdr9bGAylIFZYWf8B7
https://benchling.com/s/seq-r8x27DijlgDaV2zqow3y?m=slm-WyLdr9bGAylIFZYWf8B7
https://benchling.com/s/seq-r8x27DijlgDaV2zqow3y?m=slm-WyLdr9bGAylIFZYWf8B7

pOdd2_BF pOdd2 Kanamycin Backbone: pOddl + Backbone: This Study (Table 2.2) benchling.com/s/seq-
(J23100+B0034_EL222) (EcoRlI + Insert: Synthesised by IDT as linear uy3938t0PKDBtkRWKmuY?
Pstl) dsDNA (this study) m=sim-
Insert: pOdd2_BF_gBlock ZIBAMk04ZWE7RHPVYUIV
pOdd4 - Kanamycin Backbone: pOdd1 + Backbone: This Study (Table 2.2) benchling.com/s/seq-
(J23100+B0034_EL222) (ECoRI + Insert: Synthesised by IDT as linear | 8DKZKLtQOGFUbZxTrpUOn?
Pstl) dsDNA (this study) m=sim-
Insert: pOdd4_gBlock uzBRYS5MxR35BexiCD4wj
B0040 pOdd4 Kanamycin Backbone: pOddl + Backbone: This Study (Table 2.2) benchling.com/s/seq-

(J23100+B0034_EL222) (EcoRI +
Pstl)
Insert: pOdd4_B0040_gBlock

Insert: Synthesised by IDT as linear
dsDNA (this study)

dgbBIll4gdOBOkbRtY4Rr?m

=slm-
MOIllkgFulPOwW9TxSktF3
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https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-uy3g38t0PKDBtkRWKmuY?m=slm-ZIBdMk04ZWF7RHPVYUIV
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-8DKZKLtQGFUbZxTrpUOn?m=slm-uzBRy5MxR35BexiCD4wj
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3
https://benchling.com/s/seq-dgbBIl4qdOBOkbRtY4Rr?m=slm-M9llkgFuIP9w9TxSktF3

2.3. Testing BiomationScripter Templates
Described here are the methods used to test the BiomationScripter Templates

presented in chapter 3.

2.3.1. EchoProto PCR Template

Eight sequence fragments were amplified from DNA templates using the Echo525
(Labcyte) and the BiomationScripter (v0.2.2) PCR Template (Table 2.13). Reactions
were performed at 5 pL final volume and prepared in a 384-well, v-bottom PCR plate.
Proportions of reagents per reaction are shown in Table 2.8. Nuclease-free water was
transferred from a 6RES plate (Labcyte). DNA templates and primers were transferred
from 384PP plates (Labcyte). All other reagents were transferred from 384LDV
(Labcyte) plates. The PCR plate had a foil seal applied, was vortexed, and then
centrifuged for approximately 10 seconds before being thermocycled according to
Table 2.9. PCR fragments were analysed using the TapeStation 4200 (Agilent) and
the D5000 Tape Kit (Agilent), according to the manufacturer’s instructions. A picture of
the gel was exported from the TapeStation Analysis Software (v4.1.1), and raw
electrophogram data was exported as a comma separated value (CSV) file for analysis
and visualisation in Python (v3.9).

Table 2.8. EchoProto PCR Reaction Composition

Reagent Amount

NEB Q5 Reaction Buffer (5x) 1000 nL
dNTPs (10 mM) 100 nL
Forward Primer (10 uM) 250 nL
Reverse Primer (10 pyM) 250 nL
Template DNA (~200 ng/uL) 1000 nL
Q5-HF DNA Polymerase 50 nL
Nuclease-Free Water Up to 5000 nL
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Table 2.9. EchoProto PCR Thermocycling Conditions

Step Number of Cycles Temperature (°C) Time (Seconds)
1 1 98 30
98 10
2 35 60 30
72 40
3 1 72 120
4 1 4 Inf

2.3.2. EchoProto Loop Assembly Template
Level O phytobricks were created by Polymerase Chain Reaction (PCR) amplification
from a DNA template. Primers were designed to add 5 and 3’ ends to allow for
assembly into a Level O phytobrick acceptor plasmid (pSB1C00). PCRs were
performed manually. Reagents and volumes used can be found in Table 2.10. All level
0 parts created, along with a list of primers used, can be found in Table 2.13. PCR
fragments were analysed by gel electrophoresis (sub-section 2.1.5) to confirm correct
sizing. All PCR fragments were assembled into pSB1C00 manually via loop assembly.
Reactions were prepared as described in Table 2.11, and then subjected to
thermocycling as shown in Table 2.12. 5 uL of reaction mixture was transformed into
E. coli DH5a and plated onto LB agar plates with chloramphenicol antibiotic. A number
of non-red colonies (the pSB1CO00 plasmid contains a red fluorescent protein
expression unit in the insertion site) per transformation were selected and subjected to
plasmid purification. The sequence of level 0 parts in were confirmed via Sanger

sequencing.

Table 2.10. PCR for Level 0 Part Creation: (*) For each reaction, DNA backbone

and DNA parts were added in a 1:1 and a 1:2 ratio

Reagent Amount (pL)
Bsal-HF (NEB) 0.125

T4 Ligase Buffer (NEB) 0.5

T4 Ligase 0.125

DNA Backbone (10 fmol/pL) * 0.25

DNA Parts (10 fmol/uL) * Various *
Nuclease-Free Water Upto 5
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Four level 1 phytobrick assemblies (Table 2.14) were prepared using the Echo525
(Labcyte) and the BiomationScripter (v0.2.2) Loop assembly Template. Reactions
were performed at 5 pL final volume and prepared in a 384-well, v-bottom PCR plate.
Proportions of reagents per reaction are shown inTable 2.11. Nuclease-free water was
transferred from a 6RES plate (Labcyte). Level 0 DNA parts, pOdd plasmids, and buffer
were transferred from 384PP plates (Labcyte). All other reagents were transferred from
384LDV (Labcyte) plates. The PCR plate had a foil seal applied, vortexed, and was
the centrifuged for approximately 10 seconds before being thermocycled according to
Table 2.12. 5 pyL of assembly reaction was used to transform E. coli DH5a cells, and
colonies were selected for plasmid purification. Plasmids were subjected to PCR
fragments were analysed using the TapeStation 4200 (Agilent) and the D5000 Tape
Kit (Agilent), according to the manufacturer’s instructions. A picture of the gel was
exported from the TapeStation Analysis Software (v4.1.1), and raw electrophogram
data was exported as a comma separated value (CSV) file for analysis and

visualisation in Python (v3.9).

Table 2.11. Level 1 Loop Assembly Reactions

Reagent Amount
Q5-HF Master Mix (10x) 12.5 uL
Forward Primer (10 uM) 1.25 yL
Reverse Primer (10 pM) 1.25 uL
Template DNA ~800 ng
Nuclease-Free Water Up to 25 L

Table 2.12. EchoProto Level 1 Loop Assembly Thermocycling Conditions

Step Number of Cycles Temperature (°C) Time (Minutes)
37 3

1 30
16 4

2 1 50 5

3 1 80 10

4 1 4 Inf
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Table 2.13. PCR Reactions: Shown here are PCR reactions performed, with DNA templates and primers used.

PCR Fragment Name

Template DNA

Forward Primer

Reverse Primer

Manual or Automated

ATCAgctcttcATCGggagtctTTGAC

CTAGCCTAGAGAAAGAGGAGAA

J23100_B0034_AC PBLINd100-EL222 (Table 2.2) Manual
GGCTAGCTCAGTCCT ATACTAGaatgCGAGTgaagagcttgc
taaaTATGTCTAGAGAAAGAGGAG
ATCAgctcttcATCGggagGGTAGC
PBLINd100_B0034_AC PBLINd100-EL222 (Table 2.2) AAATACTAGaatgCGAGTgaagagct Manual
CTTTAGTCCATGtt
tgc
ATCAQgctcttcATCGaatgTTGGATA | CCGTCGAAGCCGGAATCTAAgctt
EL222 CE PBLINd100-EL222 (Table 2.2) Manual
TGGGACAAGATCG CGAGTgaagagcttgc
Default Processor + mCherry ATCAQCctcttcATCGaATGGTGAG CATGGACGAGCTGTACAAGTAAg
mCherry_CE Manual
Module (Table 2.6) CAAGGGCGAGGAGG cttCGAGTgaagagcttgc
ATCAgctcttcATCGgcttaggatctcca | tcgggtgggcctttctgegtttatacgctCGAG
B0015_EF PBLRep-EL222 (Table 2.2) g gettagy 9991999 9cd J Manual

ggcatcaaataaaac

Tgaagagcttgc

pBLRep_B0034_AC

PBLRep-EL222 (Table 2.2)

ATCAgctcttcATCGggagTTGACA
GGTAGCCTTTAGTC

TATAATTATGTCTAGAGAAAGAG
GAGAAATACTAGaatgCGAGTgaa
gagcttgc

Automated (EchoProto)

ATCAgctcttcATCGTACTagttaaag

gaaaatgaattattagaattggcttaagcttCG

RBS_LuxD_BE pSB1C3-Lux (Table 2.2) Automated (EchoProto)
gaaattatatgaaagatg AGTgaagagcttgc
ATCAgctcttcATCGTACTataaacag | gctcctttcttaaaagaacctaaataagcttCG

RBS_LuxA_BE pSB1C3-Lux (Table 2.2) Automated (EchoProto)
aatcaccaaaaagg AGTgaagagcttgc
ATCAgctcttcATCGTACTgtcataca | ctitigcatacgtataatactaggcttCGAGTg

RBS LuxG_BE pSB1C3-Lux (Table 2.2) Automated (EchoProto)
aaagaatatcaagg aagagcttgc

sfGFP Reporter Module (Table | GTACgctcttcATCGaatgaggaatgac cgctgggcctcatctaataaGCT TcgagtG
RhIR_CE P ( J 9ag9adtd 9egeia9s 999 Automated (EchoProto)

2.2)

ggaggctt

AAGAGCgatc
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sfGFP Reporter Module (Table

agtcGCTCTTCatcgGGAGtcctgtga

tcgaattggctaaaaagtgticTACTcgagc

pRhl_AB Automated (EchoProto)
2.2) aatctggcagtt GAAGAGCgcgc
IPTG Detector + eCFP Module | ATCAgctcttcATCGaATGATCGTT | GCGTCTGGCTGTTTCCTAATAAQ

Lasl_CE ) Automated (EchoProto)
(from synthesis) CAGATCGGTCG CcttCGAGTgaagagcttgc
Default Processor + mCherry AGTCGCTCTTCATCGGGAGagg | ctcttaagaggtcactgacctaacaCGCTC

B0040_AF Automated (EchoProto)

Module (Table 2.6)

ttctgttaagtaactgaaccca

GAGTGAAGAGCTTGC
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Table 2.14. DNA Constructs Assembled via Automated Loop Assembly: Shown here are successfully assembled DNA constructs assembled with Loop

assembly using the EchoProto template.

Construct Name

Plasmid Backbone

Antibiotic Selection

DNA Parts

Link to Sequence

pOddl: PBLInd-mCherry | pOddl (Table 2.2) Kanamycin e PBLInd100_B0034 AC (Table 2.13) benchling.com/s/seg-
e mCherry CE (Table 2.13) GZuvozOBCcFWx75SNatvN?m=
e BO0015 EF (Table 2.13) sIm-EvVXVNAGNUXFmMK3migJOK
pOdd1: J23100-mCherry [ pOdd1 (Table 2.2) Kanamycin e J23100 _B0034_AC (Table 2.13) benchling.com/s/seq-
e mCherry_CE (Table 2.13) NA9sMgwo02299MChF10Qmg?m
e BO0015 EF (Table 2.13) =sIm-i7QIWkXxptUJztdUgcnZ
pOdd2: PBLInd-EL222 pOdd2 (Table 2.2) Kanamycin e PBLINd100_B0034_AC (Table 2.13) benchling.com/s/seg-
e EL222_CE (Table 2.13) 5y5lyNioaWE29xJpkXwm?m=sl|
e BO0015 EF (Table 2.13) m-1e080YEEB4Ry2k3BZZV7
pOdd2: J23100-EL222 pOdd2 (Table 2.2) Kanamycin e J23100 B0034_AC (Table 2.13) benchling.com/s/sea-

EL222_CE (Table 2.13)
B0O015_EF (Table 2.13)

iiUaTlm97fh753jBtYfg?m=sIm-
uekx5RVwp8PVBTmyJKHf
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https://benchling.com/s/seq-GZuvozOBcFWx75SNatvN?m=slm-EvXvnAGnUXFmK3migJ0K
https://benchling.com/s/seq-GZuvozOBcFWx75SNatvN?m=slm-EvXvnAGnUXFmK3migJ0K
https://benchling.com/s/seq-GZuvozOBcFWx75SNatvN?m=slm-EvXvnAGnUXFmK3migJ0K
https://benchling.com/s/seq-NA9sMgwo22g9MChF1Qmg?m=slm-i7QlWkXxptUJztdUqcnZ
https://benchling.com/s/seq-NA9sMgwo22g9MChF1Qmg?m=slm-i7QlWkXxptUJztdUqcnZ
https://benchling.com/s/seq-NA9sMgwo22g9MChF1Qmg?m=slm-i7QlWkXxptUJztdUqcnZ
https://benchling.com/s/seq-5y5IyNioaWE29xJpkXwm?m=slm-1eo8OYEEB4Ry2k3BZZV7
https://benchling.com/s/seq-5y5IyNioaWE29xJpkXwm?m=slm-1eo8OYEEB4Ry2k3BZZV7
https://benchling.com/s/seq-5y5IyNioaWE29xJpkXwm?m=slm-1eo8OYEEB4Ry2k3BZZV7
https://benchling.com/s/seq-iiUaTlm97fh753jBtYfg?m=slm-uekx5RVwp8PVBTmyJKHf
https://benchling.com/s/seq-iiUaTlm97fh753jBtYfg?m=slm-uekx5RVwp8PVBTmyJKHf
https://benchling.com/s/seq-iiUaTlm97fh753jBtYfg?m=slm-uekx5RVwp8PVBTmyJKHf

2.4. Deterministic SBML-Based Modelling

Simulations were performed on a server with 56 Intel® Xeon® E5-2695 v3 (2.30 GHz)
CPUs and 755 GB RAM. The operating system was Ubuntu 18.04. Simbiotics was run
in parallel mode across all CPU modules. The Python version used was 3.8.

The deterministic SBML models were initially described using Systems Biology Markup
Language (SBML; Level 2, Version 4) generated via Complex Pathway Simulator
(COPASI; Version 4.36, build 260). Models were simulated using the basico python
library (version 0.3.0) with the ‘deterministic’ simulator method. All simulation data was

plotted using the matplotlib Python library (version 3.5.2)[16°],

Models were initially simulated for 1440 minutes and 1440-time steps with starting
entity amounts as stated in Table 2.15, Table 2.16, and Table 2.17, which acted to
prime the model. The final entity amounts following initial simulation were used as
starting amounts for a further simulation over 1440 minutes with 1440-time steps. For
induced simulations, the starting amount of the inducer for the second simulation was
modified based on the concentration of inducer as stated in the main text of Chapter 4.
Reactions and parameters used for results shown in chapter 4 can be found in Table
2.18, Table 2.19, and Table 2.20. Rationale behind the model mechanisms is
discussed in Chapter 4.
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Table 2.15. IPTG Detector Module Deterministic Model Entity Starting Quantities

Entity Name Description Number
C12 C12-HSL molecule 0
C4 C4-HSL molecule 0
eCFP Cyan fluorescent protein 0
IPTG IPTG inducer molecule 0
Lacl Lacl transcription factor 0
Lacl2 Lacl dimer 0
Lacl2_IPTG Lacl dimer bound to 1 IPTG molecule 0
Lacl2_IPTG2 Lacl dimer bound to 2 IPTG molecules 0
Lacl4 Lacl dimer-of-dimers 0
Lacl4_IPTG1 Lacl dimer-of-dimers bound 1 IPTG molecules 0
Lacl4_IPTG2 Lacl dimer-of-dimers bound 2 IPTG molecules 0
Lacl4_IPTG3 Lacl dimer-of-dimers bound 3 IPTG molecules 0
Lacl4_IPTG4 Lacl dimer-of-dimers bound 4 IPTG molecules 0
Lasl Lasl C12-HSL synthetase enzyme 0
MRNA_Lacl MRNA encoding Lacl 0
MRNA_Lasl_eCFP | mRNA encoding Lasl and eCFP 0
PCon DNA encoding Lacl under J23100 control 200
pLac DNA encoding Lasl and eCFP under PLac control 200
pLac_Lacl4 Lacl dimer-of-dimers bound to PLac 0
pLac_Lacl4 IPTG Lacl dimer-of-dimers with 1 IPTG bound to PLac 0

Table 2.16. Default Processor Module Deterministic Model Entity Starting Quantities

Entity Name Description Number
C12 C12-HSL molecule 0
C4 C4-HSL molecule 0
LasR LasR transcription factor 0
LasR_Dim LasR dimer 0
LasR_Dim_1 C12 LasR dimer bound to 1 C12-HSL 0
LasR_Dim_1 C4 LasR dimer bound to 1 C4-HSL 0
LasR_Dim_2_C12 LasR dimer bound to 2 C12-HSLs 0
LasR_Dim_2 C4 LasR dimer bound to 2 C4-HSLs 0
mCherry Red fluorescent protein 0
MRNA_LasR MRNA encoding LasR 0
MRNA_mCherry_Rhll mMRNA encoding mCherry and Rhll 0
PCon DNA encoding LasR under J23100 control 200
PLas DNA encoding mCherry and Rhll under PLac control 200
PLas LasR_Dim LasR dimer bound to PLas 0
PLas_LasR_Dim_1 C12 | LasR dimer with 1 C12-HSL bound to PLas 0
PLas_LasR_Dim_1 C4 | LasR dimer with 1 C4-HSL bound to PLas 0
PLas LasR_Dim_2 C12 | LasR dimer with 2 C12-HSLs bound to PLas 0
PLas_LasR_Dim_2 C4 | LasR dimer with 2 C4-HSLs bound to PLas 0
Rhll C4-HSL synthetase enzyme 0
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Table 2.17. sfGFP Reporter Module Deterministic Model Entity Starting Quantities

Entity Name Description Number
C12 C12-HSL molecule 0
C4 C4-HSL molecule 0
mMmRNA_RhIR MRNA encoding RhIR 0
mRNA_sfGFP mRNA encoding sfGFP 0
PCon DNA encoding RhIR under J23100 control 200
PRhI DNA encoding sfGFP under PRhI control 200
PRhl_RhIR_Dim RhIR dimer bound to PRhl 0
PRhI_RhIR_Dim_1 C12 | RhIR dimer with 1 C12-HSL bound to PRhl 0
PRhI_RhIR_Dim_1_C4 RhIR dimer with 1 C4-HSL bound to PRhlI 0
PRhI_RhIR_Dim_2_C12 | RhIR dimer with 2 C12-HSLs bound to PRhlI 0
PRhI_RhIR_Dim_2_C4 RhIR dimer with 2 C4-HSLs bound to PRhI 0
RhIR RhIR transcription factor 0
RhIR_Dim RhIR dimer 0
RhIR_Dim_1 C12 RhIR dimer bound to 1 C12-HSL 0
RhIR_Dim_1 C4 RhIR dimer bound to 1 C4-HSL 0
RhIR_Dim_2_C12 RhIR dimer bound to 2 C12-HSLs 0
RhIR_Dim_2_C4 RhIR dimer bound to 2 C4-HSLs 0
sfGFP Green fluorescent protein 0
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Table 2.18. IPTG Detector Module Deterministic Model Reactions and Parameters: For each reaction, a name, schema, parameter value, parameter unit,

and parameter source is given.

Name Reaction Parameter Value | Parameter | Source or Assumption
Unit
Lacl_Dim 2 * Lacl -> Lacl2 6.80e-23 Litre/min | BY estimation under
assumption of fast kinetics, 170
Lacl_IPTG_1 Bind Lacl2 + IPTG -> Lacl2_IPTG 1.61e-19 Litre/min Based on 171
Lacl_IPTG_1_Unbind Lacl2_IPTG -> Lacl2 + IPTG 0.2 1/min Based on 171
Lacl_IPTG_2 Bind Lacl2_IPTG + IPTG -> Lacl2_IPTG2 8.05e-20 Litre/min Based on 171
Lacl_IPTG_2_Unbind Lacl2_IPTG2 -> Lacl2_IPTG + IPTG 0.4 1/min Based on 171
Lacl_Quad_Bind 2 * Lacl2 -> Lacl4 6.80e-23 Litre/min | BY 8Stimation under
assumption of fast kinetics
Lacl_Quad_Unbind Lacl4 -> 2 * Lacl2 6.80e-39 1/min By estimation under I
assumption of slow kinetics
Lacl_ Quad_IPTG_1 Bind | Lacl4 + IPTG -> Lacl4_IPTG1 1.61e-19 Litrefmin | £\SSumed same kinetics as
dimer binding
Lacl_Quad_IPTG_1 Unbind | Lacl4_IPTG1 -> Lacl4 + IPTG 0.2 1/min As above
Lacl_Quad_IPTG_2_Bind Lacl4 IPTG1 + IPTG -> Lacl4_IPTG2 8.05-20 Litre/min As above
Lacl_Quad_IPTG_2_Unbind | Lacl4_IPTG2 -> Lacl4_IPTG1 + IPTG 0.4 1/min As above
Lacl_Quad_IPTG_3 Bind Lacl4_IPTG2 + IPTG -> Lacl4_IPTG3 1.61e-19 Litre/min As above
Lacl_Quad_IPTG_3 _Unbind | Lacl4_IPTG3 -> Lacl4_IPTG2 + IPTG 0.2 1/min As above
Lacl_Quad_IPTG_4 Bind Lacl4 IPTG3 + IPTG -> Lacl4_IPTG4 8.05e-20 Litre/min As above
Lacl_Quad_IPTG_4 Unbind | Lacl4_IPTG4 -> Lacl4_IPTG3 + IPTG 0.4 1/min As above
pLac_Repress Lacl4 + pLac -> pLac_Lacl4 4.04e-18 Litre/min Based on 1711
pLac_Unrepress pLac_Lacl4 -> Lacl4 + pLac 0.00063 1/min Based on 71
pLac_IPTG_Repress pLac + Lacl4_IPTG1 -> pLac_Lacl4_IPTG 2.01le-20 Litre/min Based on 171
pLac_IPTG_Unrepress pLac_Lacl4_IPTG -> pLac + Lacl4_IPTG1 0.063 1/min Based on 171
pLac_Lacl IPTG_1 Bind pLac_Lacl4 + IPTG -> pLac_Lacl4_IPTG 3.72e-20 Litre/min Based on 171
pLac_Lacl_IPTG_1 _Unbind | pLac_Lacl4_IPTG -> pLac_Lacl4 + IPTG 1.0 1/min Based on 171
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pLac_Lacl IPTG_2 Bind pLac_Lacl4_IPTG + IPTG -> pLac + Lacl4_IPTG2 2.01-20 Litre/min Based on 1711
Lacl_Deg Lacl -> 1.48e-05 1/min Based on 172
Lacl_Dim_Deg Lacl2 -> Lacl 1.48¢-06 Umin Assumed slower than Lacl
degradation
) . Assumed similar to unbound
Lacl_Dim_IPTG_Deg Lacl2_IPTG -> Lacl + IPTG 1.48e-06 1/min . .
Lacl dimer degradation
Lacl_Dim_IPTG2_Deg Lacl2_IPTG2 -> Lacl + 2 * IPTG 1.48e-06 Umin Assumed similar to unbound
Lacl dimer degradation
Tx_Lacl PCon -> mRNA_Lacl + PCon 0.0008167 1/min Calculated using [173]
Tl_Lacl mMRNA_Lacl -> mRNA_Lacl + Lacl 0.0007167 1/min Calculated using 174
Tx_pLac pLac -> mRNA_Lasl eCFP + pLac 0.00065 1/min Calculated using 173
TI_Lasl mMRNA_Lasl eCFP -> mRNA Lasl eCFP + Lasl 0.0013167 1/min Calculated using 174
Tl eCFP MRNA_Lasl_eCFP -> mRNA_Lasl_eCFP + eCFP 0.00105 1/min Calculated using (174
Syn_C12 Lasl -> Lasl + C12 0.096 1/min Using [179]
Deg_mRNA_Lacl mRNA_Lacl -> 2.83e-05 1/min Based on [178]
Deg_mRNA_Lasl_eCFP mRNA_Lasl_eCFP -> 2.83e-05 1/min Based on [178]
Deg_Lasl Lasl -> 3.22e-06 1/min Based on [177]
Deg_C12 Ci12 > 4.72e-06 1/min Based on [178]
Deg_eCFP eCFP -> 3.22e-06 1/min Based on [177]
Deg_C4 C4 -> 3.69e-6 1/min Based on 179
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Table 2.19. Default Processor Module Deterministic Model Reactions and Parameters: For each reaction, a name, schema, parameter value, parameter unit,

and parameter source are given.

Name Reaction Parameter Value | Parameter | Source or Assumption
Unit

Tx_LasR PCon -> PCon + mRNA_LasR 0.00127 1/min Calculated using 173
Tl_LasR mMRNA_LasR -> mRNA_LasR + LasR 0.0011 1/min Calculated using 174
Tx_PLas ;ﬁj;fj?ﬁg:;:;ﬁﬁlz “>Plas_LasR_Dim_2_C12 + 0.0015 1/min Calculated using (173
Bg_Tx PLas PLas -> PLas + mMRNA_mCherry_Rhll 1.05E-05 1/min Assumed slower than above
TIL_Rhll mRNA_mCherry_Rhll -> mRNA_mCherry_Rhll + Rhll 0.001317 1/min Calculated using 174
TI_mCherry MRNA_mCherry_Rhll -> mRNA_mCherry_Rhll + mCherry 0.00113 1/min Calculated using 174
Deg_mRNA LasR mRNA_LasR -> 2.83E-05 1/min Based on [178]
Deg_mRNA_mCherry_Rhll mRNA_mCherry_Rhll -> 2.83E-05 1/min Based on [176]

Estimation based on
Deg_LasR LasR -> 0.889 1/min assumption of fast degradation

[180]
sit78Deg_mCherry mCherry -> 1.48E-05 1/min By estimation based on [177]
Deg_RAnll Rhll -> 1.48E-05 1/min By estimation based on 1771
Deg C12 C12 > 4.72E-06 1/min Based on [178]
Deg C4 C4 -> 3.69E-06 1/min Based on 179
Syn _C4 Rhll -> Rhll + C4 0.046 1/min From [181]
LasR_Dim_Bind 2 *LasR -> LasR_Dim 6.50E-10 Litre/min Assumed fast binding [182] [183]
LasR_Dim_Unbind LasR_Dim -> 2 * LasR 1000 1/min Q;?umed LT el
LasR_Dim_C12 1 Bind LasR_Dim + C12 -> LasR_Dim_1 C12 1.59E-14 Litre/min By estimation based on [178]
LasR_Dim_C12_1 Unbind LasR_Dim_1 C12 ->LasR_Dim + C12 1.00E-09 1/min By estimation based on [178]
LasR_Dim_C12_2 Bind LasR_Dim_1_C12 + C12 -> LasR_Dim_2_C12 1.59E-14 Litre/min By estimation based on [178]
LasR_Dim_C12 2 Unbind LasR_Dim 2 C12->LasR_Dim_1 C12 + C12 1.00E-09 1/min By estimation based on [178]
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PLas_Activate PLas + LasR_Dim_2 C12 -> PLas_LasR_Dim_2 C12 3.25E-16 Litre/min By estimation based on [178]
PLas_Unactivate PLas LasR _Dim 2 C12 ->PLas + LasR_Dim 2 C12 0.00102 1/min By estimation based on [178]
Bg_C12 1 PLas Activate PLas + LasR_Dim_1 C12 ->PlLas_LasR_Dim_1 C12 1.63E-16 Litre/min By estimation based on [178]
Bg C12 1 PLas Unactivate | PLas_LasR _Dim_1 C12 ->PLas + LasR_Dim_1 C12 0.00204 1/min By estimation based on [178]
LasR_Dim_C4_1 Bind LasR_Dim + C4 -> LasR_Dim_1 C4 7.95E-25 Litre/min By estimation based on [178]
LasR_Dim_C4 1 Unbind LasR_Dim_1 C4 ->LasR_Dim + C4 100 1/min By estimation based on [178]
LasR_Dim_C4 2 Bind LasR_Dim_1 C4+ C4 ->LasR_Dim_2 C4 7.95E-25 Litre/min By estimation based on [178]
LasR_Dim_C4_2_Unbind LasR_Dim_2_C4 ->LasR_Dim_1 C4 + C4 100 1/min By estimation based on [178]
Ct_PLas_C4 1 Activate PLas + LasR_Dim_1 C4 ->PlLas_LasR_Dim_1 C4 8.13E-18 Litre/min By estimation based on 178
Ct_ PLas_C4 1 Unactivate PLas LasR Dim_1 C4->PLas + LasR_Dim_1 C4 0.102 1/min By estimation based on [178]
Ct_PLas_C4 2 Activate PLas + LasR_Dim_2 C4 ->PLas_LasR_Dim_2 C4 1.63E-17 Litre/min By estimation based on [178]
Ct_PLas_C4 2 Unactivate PLas LasR Dim_2 C4 -> PlLas + LasR_Dim_2 C4 0.051 1/min By estimation based on [178]
. . Assumed same rate as when
Tx_PLas LasR_1 C12 PLas_LasR_Dim_1_C12 ->Plas_LasR_Dim_1_C12 + 0.0015 1/min bound to LasR_Dim_2_ C12
- - - MRNA_mCherry_Rhll [184] - - =
PLas_LasR_Dim_1_C4 -> PLas_LasR_Dim 1 C4 + _ Assumed same rate as when
Tx_PLas LasR_1 C4 - - = - - = 0.0015 1/min bound to LasR_Dim_2 C12
MRNA_mCherry_Rhll [184]
PLas_LasR_Dim_2 C4 -> PLas_LasR_Dim_2_C4 + Assumed same rate as when
Tx _PLas LasR 2 C4 - - == - - - = 0.0015 1/min bound to LasR_Dim_2 C12
- - - MRNA_mCherry_Rhll [184] - - =
Assumed same rate as when
Tx_PLas LasR_2 PLas_LasR_Dim -> PLas_LasR_Dim + mRNA_mCherry_Rhll | 0.0015 1/min bound to LasR_Dim_2_C12

[184]
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Table 2.20. sfGFP Reporter Module Deterministic Model Reactions and Parameters: For each reaction, a name, schema, parameter value, parameter unit,

and parameter source are given.

. Parameter .
Name Reaction Parameter Value Unit Source or Assumption
Tx_RhIR PCon -> PCon + mRNA_RhIR 0.00125 1/min Calculated using 173
Tl_RhIR mRNA_RhIR -> mRNA_RhIR + RhIR 0.0011 1/min Calculated using 174
TI_sfGFP MRNA_sfGFP -> mRNA_sfGFP + sfGFP 0.001116 1/min Calculated using 174
RhIR_Dim_Bind 2 * RhIR -> RhIR_Dim 6.5e-10 Litre/min Assumed fast binding [185]
RhIR_Dim_Unbind RhIR_Dim -> 2 * RhIR 1000 1/min By Estimation
RhIR_Dim_C4_1_Bind RhIR_Dim + C4 -> RhIR_Dim_1_C4 1.59¢-14 G | e Sl e
- - - = - - = mechanism
RhIR_Dim_C4_1_Unbind RhIR_Dim_1_C4 -> RhIR_Dim + C4 1e-09 Umin Assumed similar to Las
mechanism
RhIR_Dim_C4_2_Bind RhIR_Dim_1_C4 + C4 -> RhIR_Dim_2_C4 1.59¢-14 Gl | e sl e
- - - = - == - - = mechanism
RhIR_Dim_C4_2_Unbind RhIR_Dim_2_C4 -> RhIR_Dim_1_C4 + C4 1e-09 Umin Assumed similar to Las
mechanism
—— 1186]
PRhI_Activate PRhI + RhIR_Dim_2_C4 -> PRhl_RhIR_Dim_2 C4 3.25e-16 Litre/min Z}]’ de[?;rrat'o” based on
r—— 1186]
PRhI_Unactivate PRhI_RhIR_Dim_2_C4 -> PRhl + RhIR_Dim_2_C4 0.00102 1/min Sr): de[f;';?a“o” based on
. . . ) . B i i [186]
Bg_C4_1_PRhI_Activate RhIR_Dim_1_C4 + PRhl -> PRhl_RhIR_Dim_1_C4 3.25¢-16 Litre/min az de['j';;?“a“"” based on
: : [186]
Bg_C4_1_PRhl_Unactivate | PRhI_RhIR_Dim_1_C4 -> PRhl + RhIR_Dim_1_C4 0.00102 1/min :;’ dejg';;‘a“"” based on
RhIR_Dim_C12_1_Bind RhIR_Dim + C12 -> RhIR_Dim_1_C12 7.95¢-23 Lirefmin || 2>5umed similarto Las

mechanism (by estimation)
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Assumed similar to Las

RhIR_Dim_C12_1_Unbind RhIR_Dim_1_C12 -> RhIR_Dim + C12 0.1 1/min ) T
mechanism (by estimation)
RhIR_Dim_C12_2_Bind RhIR_Dim_1_C12 + C12 -> RhIR_Dim_2_C12 7.95e-23 Litre/min | AASSumed similar to Las
mechanism (by estimation)
RhIR_Dim_C12 2 _Unbind RhIR_Dim_2 C12 -> RhIR_Dim_1_C12 + C12 0.1 Umin Assumed similar to Las
mechanism (by estimation)
Ct_PRhI_C12 1 Activate RhIR_Dim_1_C12 + PRhl -> PRhl_RhIR_Dim_1_C12 3.25e-16 Litre/min | AASSumed similar to Las
- - - - - - - = mechanism (by estimation)
Ct PRhI_C12_1 Unactivate | PRhI_RhIR_Dim_1_C12 -> RhIR_Dim_1_C12 + PRhI 0.00102 1/min Assumed similar to Las
- - = - - == - == mechanism (by estimation)
Ct_PRhI_C12 2 Activate RhIR_Dim_2_C12 + PRhl -> PRhI_RhIR_Dim_2_C12 3.25e-16 Litre/min | /ASSumed similar to Las
- - - - - - - - - - = mechanism (by estimation)
Ct_PRhI_C12_2 Unactivate | PRhI_RhIR_Dim_2_C12 -> RhIR_Dim_2_C12 + PRh 0.00102 1/min Assumed similar to Las
- - - - - - = - - = mechanism (by estimation)
PRhl_RhIR_Dim_2_ C4 -> PRhl_RhIR_Dim_2 C4 + _ Calculated using 73], but
TX_PRAl MRNA_sfGFP 0.375 1/min assumed faster kinetics
Bg_Tx_PRAhlI PRhl -> PRhl + mRNA_sfGFP 0.002625 1/min Assumed slower than above
PRhl_RhIR_Dim_1 C4 -> PRhl_RhIR_Dim_1 C4 + . By estimation based on [188]
Tx_PRhl_RhIR_1 C4 MRNA_SIGFP 0.28125 1/min and 187
PRhl_RhIR_Dim_1 C12 -> PRhl_RhIR_Dim_1 C12 + _ By estimation based on [186]
Tx_PRhl_RhIR_1 C12 MRNA_SIGFP 0.00375 1/min and 187
PRhl_RhIR_Dim_2 C12 -> PRhl_RhIR_Dim_2 C12 + . By estimation based on [188]
Tx_PRhl_RhIR_2 C12 MRNA_SIGFP 0.01875 1/min and 187
Deg_mRNA_RhIR mRNA_RhIR -> 2.83e-05 1/min Based on [178]
Deg_RhIR RhIR -> 0.000889 1/min Based on 1771
Deg_C4 C4 > 3.69e-06 1/min Based on [178]
Deg_C12 Cc12 > 4.72e-06 1/min Based on [179]
Deg_mRNA_sfGFP MRNA_sfGFP -> 2.83e-05 1/min Based on [178]
Deg_sfGFP sfGFP -> 1.4817e-05 1/min Based on [177]
i i [186]
Bg_PRhI_Activate RhIR_Dim + PRhI -> PRh_RhIR_Dim 3.25e-16 Litre/min | B estimation based on

an d [187]
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By estimation based on [186]

Bg_PRhI_Unactivate PRhl_RhIR_Dim -> RhIR_Dim + PRhl 0.00102 1/min and 1187

Tx_PRhI_RhI_2 PRhI_RhIR_Dim -> mRNA_SfGFP + PRhI_RhIR_Dim 0.0 1/min :ry,de[?;LTation based on
C4_Bind_PRhI_RhIR PRhI_RhIR_Dim + C4 -> PRh|_RhIR_Dim_1_C4 1.1925e-14 Litre/min Sry]deiii'}‘a“"” based on £
C4_Bind_PRhl_RhIR_1_C4 | PRhI_RhIR_Dim_1_C4 + C4 -> PRhI_RhIR_Dim_2_C4 1.1925e-14 Litre/min Z’: de[j;‘;;"a“"” FEEEIEm
C12_Bind_PRhl_RhIR PRhI_RhIR_Dim + C12 -> PRhl_RhIR_Dim_1_C12 5.9625¢-23 Litre/min aBz dejgi;;‘a“"” based on %
C12_Bind_PRhl_RhIR_1_C12 | PRhI_RhIR_Dim_1_C12 + C12 -> PRhl_RhIR_Dim_2 C12 | 5.9625e-23 i || 2 CETEROR BEsee e

an d [187]
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2.5. Agent-Based Modelling

Simulations were performed on a server with 56 Intel® Xeon® E5-2695 v3 (2.30 GHz)
CPUs and 755 GB RAM. The operating system was Ubuntu 18.04. Simbiotics was run
in parallel mode across all CPU modules. The Python version used was 3.8, and the
Java version was JDK 11.0.17.

2.5.1. General model definition and simulation settings
Simbiotics (version 1.1) was used to build and simulate the agent-based models
presented in chapter 4. The simulation world was a 3-dimensional cube with a grid-
depth of 3. Cells were modelled as rods (length: 1.5 ym; radius: 0.25 um) with
permeable cell membranes. Cellular behaviour was defined by SBML models
described in section 2.4. The native SBML simulator was modified to use basico (see
section 2.4, and simulations were performed in Python. Results for SBML simulator
were imported back into Simbiotics and converted such that the results were in the
same fomrat as that produced by the native SBML simulator. This allowed the SBML
results from basico to be used by Simbiotics in the same way. The Simbiotics model
was simulated for 1200 minutes with 1200 timesteps. The SBML models were
simulated every 60 timesteps, and each model was simulated for 60 minutes with 60
timesteps. For simulations with an inducer added, the relevant inducer in the
appropriate amount was applied to the centre of the system at time step 0. SBML
reaction parameters were the same as stated in section 2.4. To obtain simulated single
cell data, results from simulation of each SBML model was appended to a CSV file at

the end of each SBML simulation step.

2.5.2. Data analysis
Where shown, background noise was calculated by first determining the mean across
all uninduced simulation replicates. The noise was then calculated as 1 + standard
deviation of each uninduced simulation replicate divided by the mean of all uninduced

simulation replicates.

The 2" degree polynomial curves were determined using the polyfit function from the
numpy (version 1.23.1) python library. The r? value was determined by calculating the
sum of squared errors divided by the total sum of squares and subtracting this value

from 1.
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2.5.3. Simulating cell growth
For simulated cell growth, the Monod growth module in Simbiotics was used with
parameters listed in Table 2.21. Growth was modelled as nutrient-dependent, with an
entity of food’ added to the centre of the system at time point 0. One cell type was
implemented for cell growth simulation, with no SBML-derived cellular behaviour

attached.

Table 2.21. Simbiotics Model Parameters: Parameters used in the Simbiotics model. All

parameters were unitless.

Parameter Value
Molecule Diffusion Coefficients 0.1
Molecule Extracellular Degradation Coefficients | O
Molecule Membrane Permeation Coefficients 0.14
Brownian Constant 2.5
Friction Constant 0
Grid Depth 3
Monod Nutrient Amount 1
Monod Maximum Rate 0.12
Monod Kinetic Rate 0.005

The cell growth experimental data was obtained by creating an overnight culture of E.
coli DH5a in 10 mL LB media with no antibiotic. Cells were pelleted by centrifugation
at 4,500 RPM for 10 minutes, and supernatant was removed. The cells were re-
suspended in 10 mL of sterile MiliQ water and subsequently pelleted by centrifugation
as above. Supernatant was discarded and the cell pellet was re-suspended in 10 mL
of fresh LB media. ODsoo Of the cells was determined by transferring to a 1 mL cuvette
and measuring absorbance with a spectrophotometer. The cells were diluted to an
ODeoo of 1.0 in fresh LB media, and 10 yL was added to four wells of a black 96-well
plate with flat, clear bottomed wells. 90 yL of fresh LB was added to each well, and
100 yL of LB media was added to a further three wells. A clear, permeable seal
(Breathe-Easy; Scientific Laboratory Supplies) was adhered to the top of the plate. The
microplate was incubated in a microplate reader (Clariostar Plus; BMG Labtech) at
37°C with shaking at 400 RPM for 20 hours. Absorbance readings at ODesoo were taken
every 30 minutes. Absorbance readings for all empty wells were averaged and
subtracted from the wells containing cells and pure LB. Absorbance values from the
wells containing only LB were averaged and subtracted from the absorbance values
for wells containing cells. The OD readings for the cells were then converted to

‘Equivalent Microsphere Particles’ as described in section 2.6.
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To calibrate simulated cell growth to experimental data, the initial number of cells in
the experimental samples (~1e8 cells in 100 uL, where the number of cells was
approximated as equivalent microsphere particles) was set as equal to the initial

number of cells in the simulation.

2.6. Plate Reader Calibration

Where stated, standard curves of calibrants were used to convert plate reader data
into absolute units, based on previously reported methods[®® In a black 96-well plate
with flat, clear bottomed wells, 1 in 2 serial dilutions of the standard calibrants were
prepared to a final volume of 100 uL across 11 wells, with a twelfth well containing no
calibrant. Each serial dilution was replicated twice. The calibrants used were as follows:
fluorescein (Merck) in Phosphate-Buffered Saline (PBS), sulforhodamine 101 (Merck)
in PBS, cascade blue (ThermoFisher Scientific) in water, and 950 nm monodisperse
silica microspheres (Nanocym) in water. The first concentration of each calibrant in the
serial dilutions was 10 uM for fluorescein, 2 uM for sulfornodamine 101, 10 uM cascade
blue, and 3e® particles/mL for the microspheres. The serial dilutions were prepared
using the BiomationScripter OTProto Standard iGEM Calibration Template. The
automation protocol can be found in section 9.1. After serial dilutions were prepared,
the contents were measured using the same plate reader to be used for experiments
(Clariostar Plus; BMG Labtech). Fluorescence measurements were made for wells
containing fluorescein, sulforhodamine 101, and cascade blue using the same
excitation and emission wavelengths to be used for measurement of fluorescent
proteins in experiments (470-15 / 515-20, 570-15 / 620-20, and 430-20 / 480-20
respectively). The absorbance at 600 nm was measured for wells containing
microspheres. Gain and focus settings used were identical to those used for

experimental measurements.

Following measurement in the plate reader, custom Python scripts were used to
analyse and plot the data. Raw data values for all wells in the dilution were blanked
using averaged values of the solvent-only wells (PBS for fluorescein and
sulforhodamine, and water for cascade blue and the microspheres). The mean of each
dilution replicate was calculated, along with standard deviation. These values were
then plotted on scatter graphs of calibrant amounts vs the measure value on linear-

linear and log-log plots to ensure linear correlation on both plots for the five most highly
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concentration dilutions. For each calibrant, the five most highly concentrated dilutions
were used to calculate a calibration factor for converting arbitrary units into absolute
units using equation 2.1. The absolute units were Molecules of Equivalent Fluorescein
(MEFL), Molecules of Equivalent Sulforhodamine 101 (MESR), Molecules of
Equivalent Cascade Blue (MECB), and Equivalent Microsphere Patrticles.

5
CFeatibrant = %dzzl (%) (2.1)

In equation 2.1, CFcaibrant iS the calibration factor for a specific calibrant, d is the dilution
index (where 1 is highest concentration), nq is the number of particles in dilution d, and
mq is the mean, blanked measurement from the plate reader for dilution d. Results are

shown in section 9.2.

2.7. Sensynova Characterisation Procedures

Unless stated otherwise, samples were added to a final volume of 100 pL in a black
96-well plate with flat, clear bottomed wells. A clear, permeable seal (Breathe-Easy;
Scientific Laboratory Supplies) was adhered to the top of the plate prior to incubation
in a microplate reader (Clariostar Plus; BMG Labtech) at 37°C with shaking at 400
RPM for 20 hours. Gain, focus, and wavelength settings remained the same for all

experiments.

2.7.1. Plate reader data handling
All data handling and graphing was accomplished using custom Python scripts with
the Matplotlib and Numpy libraries. Unless stated otherwise, all plate reader data was
analysed as described here. The mean measurement value across all empty wells was
calculated and subtracted from measurement values for all occupied wells. The mean
value of each ‘blank’ well (i.e., wells with just media and non-cell additives) was
calculated and subtracted from the appropriate cell-containing sample. The resulting
values for each cell sample was converted from arbitrary units to absolute units as
described in sub-section 2.6. The mean across cell sample replicates was calculated,
along with standard error. For growth-corrected data, the calibrated fluorescence
value(s) of each sample was divided by the calibrated ODeoo value for the same sample.
Fold change was calculated by dividing the non-averaged value of each sample
replicate by the mean across all replicates of the relevant negative control. The relative
data across each replicate was used to calculate mean fold change and standard error.
Unless specified otherwise, background noise was calculated by dividing the non-
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averaged value of each negative control replicate by the mean value across all
negative control replicates, and then determining the range between the maximum and

minimum relative replicate values.

2.7.2. Flow cytometry gating and voltage settings
For flow cytometry experiments, an Attune NXT with CytKick Max autosampler
(ThermoFisher) with blue, red, yellow, and violet lasers was used. To determine
voltage and gating for fluorescent and non-fluorescent cells, overnight cultures of
untransformed cells and each cell type (IPTG detector, default processor, sfGFP
reporter) induced with their canonical inducer (10 yM IPTG, 10 yM C12-HSL, 10 uM
C4-HSL respectively) were prepared. Cells were pelleted by centrifugation at 4,500
RPM for 10 minutes and supernatant discarded. The cells were re-suspended in
autoclave sterilised and syringe filtered (0.22 um filter) PBS before being pelleted as
again as described above. Cells were re-suspended in PBS and diluted 1 in 10. The
final cell solutions were flowed through the flow cytometer in manual mode to
determine voltage settings for differentiating each of the fluorescent cells and the non-
fluorescent cells. These setting remained the same for all experiments described here.
All future experiments used the flow cytometer in autosampler mode. Data was
exported in FCS file format for analysis and visualisation using Python and the

FlowCytometryTools (0.5.0) library.

2.7.3. Bacterial cell preparation
Unless specified otherwise, all cell cultures were prepared as stated here before being
added to the microplate. E. coli DH5a cells were transformed with the relevant plasmid:
Default Processor Module + mCherry (Table 2.6) or the processor cells, and sfGFP
Reporter Module (Table 2.2) for the reporter cells. For the detector cells, the IPTG
detector + eCFP module obtained with third-party synthesis by ATUM directly into the
pSB1C3 plasmid, which was then transformed into E. coli DH5a.

For each cell type, a single transformant colony was streaked onto a separate LB agar
plate with appropriate antibiotic selection. 10 mL of LB media and chloramphenicol at
the appropriate amount (Table 2.1) was added to a 50 mL falcon tube and inoculated
with a single colony from the streak plate. The overnight culture was incubated at 37°C
for 16 to 17 hours with shaking at 200 RPM. Cells were pelleted at 4°C and 4,500 RPM
for 10 minutes. Supernatant was removed and cells were resuspended in 10 mL of

sterile MiliQ water. Resuspended cells were pelleted as above, supernatant removed,
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and resuspended in 10 mL fresh LB media. The ODsoo Of resuspended cells was
measured with a UV-Vis spectrophotometer and the culture diluted to an ODsoo of 1.0

in LB media.

2.7.4. BiomationScripter Sensynova Template
Unless specified otherwise, all experimental setup was performed using the
Opentrons-2 liquid handler. The automation protocol was generated using the

BiomationScripter Sensynova Template.

2.7.5. Cell growth rate experiments
Cells were prepared as described in sub-section 2.6.2. Experimental setup was
performed manually, with a separate experiment for each cell type. All wells were made
up to 100 uL with LB media. Untransformed cells were used as a control, where 10 uL
of cells was added to 90 yL of LB media per well. For IPTG detector cells, 10 pL of
cells was added to each well with 0.5 yL chloramphenicol. Plain LB media was used
as a blank control. For default processor cells, 10 pL of cells were added to each well
with 0.5 uL chloramphenicol and either 0, 0.5, 1, or 10 uL of DMSO (dimethyl sulfoxide;
syringe filter sterilised through a 0.22 um filter). For sfGFP reporter cells, 10 L of cells
were added to each well with 0.5 pL chloramphenicol and either 0, 0.5, 1, or 10 uL of
DMSO. Cultures were incubated, ODesoo measured, and data analysed as described

previously.

2.7.6. Dose-response curve experiments
Cells were prepared as described in sub-section 2.6.2. A separate experiment was
performed per cell type. Experimental setup was performed using the Opentrons-2
liquid handler. Automation protocols for characterising the detector and processor cells
were generated using BiomationScripter (version 0.2) and the Sensynova Template
(version 1.0). The automation protocol for reporter cells was generated using
BiomationScripter (version 0.2) and the Sensynova Template (version 2.07). Full

protocols and plate maps can be found in section 9.3.

2.7.7. Cross talk experiments
Cells were prepared as described in sub-section 2.6.2. A separate experiment was

performed per cell type. Experimental setup was performed using the Opentrons-2

* For monoculture experiments, version 1.0 and 2.0 of the Sensynova Template generate effectively
identical liquid handling instructions and differed mainly in the format required for user input.
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liquid handler. Automation protocols were generated using BiomationScripter (version
0.1) and the Sensynova Template (version 1.0). Full protocols and plate maps can be

found in section 9.4.

2.7.8. Homoserine-lactone synthesis validation experiments
For agar plate experiments, reporter cells were inoculated into LB media in the
absence of any inducer and incubated overnight for 16 hours. Untransformed DH5a
cells and default processor cells were also inoculated in LB media in the presence and
absence of 10 yuM C12-HSL. 300 pL of reporter cells were plated onto six LB+CAM
agar plates and left to dry at room temperature for 3 hours. and incubated for 16 hours.
Cells were pelleted by centrifugation at 4500 RPM for 5 mins, and 1 mL of supernatant
was transferred into 1.5 mL tubes. Supernatant was then spun for 5 mins at 12,000
RPM to remove any remaining cells. To five of the dried agar plates, 10 pL of either 1
mM C4-HSL, supernatant from untransformed cells incubated with C12-HSL,
supernatant from untransformed cells alone, supernatant from processor cells
incubated with C12-HSL, or supernatant from processor cells alone was spotted in the
centre. To the final plate, nothing was added. The plates were left to dry at room
temperature for 1 hour before inverting and incubating overnight at 37C. Plates were
imaged under UV light with an ethidium bromide filter. Images were false-coloured

green. Completely unaltered images can be seen in section 9.5.

The above was repeated, except uninduced processor cells were used instead of
uninduced reporter cells, supernatant from IPTG detector cells either induced with 10
mM IPTG or not induced was used instead of processor cell supernatant, and C12-

HSL was used as a control instead of C4-HSL.

For the plate reader experiment, samples were prepared manually. Processor cells
were prepared as described in sub-section 2.6.2. Detector and untransformed cells
were prepared similarly, except 10 mM of IPTG was added to each culture. The
detector and untransformed cells were pelleted by centrifugation at 4500 RPM for 5
mins, and 1 mL of supernatant was transferred into 1.5 mL tubes. Supernatant was
then spun for 5 mins at 12,000 RPM to remove any remaining cells. Processor cells
were washed in water, resuspended in LB media, and diluted to an ODeoo of 1.0 as
described previously. 10 pL of processor cells were added to 16 wells, along with 0.5

ML chloramphenicol. To four wells, 1.0 yL of DMSO was added. To four wells, 1.0 uL
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of 1 mM C12-HSL was added (final concentration of 10 yM). To four wells, 1.0 pL of
supernatant from untransformed cells was added, and 1.0 pyL of supernatant from the
detector cells was added to the remaining four. All wells were made up to 100 pL with
LB media. Cultures were incubated, ODeso0o and red fluorescence measured, and data

analysed as described previously.

2.7.9. Noise propagation plate reader experiment
Cells were prepared as described in sub-section 2.6.2. A separate experiment was
performed per cell type. Experimental setup was performed using the Opentrons-2
liquid handler. Automation protocols were generated using BiomationScripter (version
0.2) and the Sensynova Template (version 2.0). Full protocols and plate maps can be

found in section 9.6.

2.7.10. Noise propagation flow cytometry experiment
Following approximately 20 hours of incubation in a plate reader, cell-containing
samples were transferred u-bottomed 96-well plates. Samples were centrifuged for 10
minutes at 4,500 RPM, and supernatant was removed. Cells were re-suspended in
100 uL of autoclave sterilised and syringe filtered (0.22 um filter) PBS and centrifuged
again as above. Supernatant was removed and cells were re-suspended in 100 pL of
PBS. Into a clean u-bottomed 96 well plate, 90 yL of PBS and 10 pL of sample was
added to each well. Cells were analysed by the Attune NXT in autosampler mode, with

voltages as determined previously.

2.7.11. 1:1:1 biosensor plate reader experiment
Cells were prepared as described in sub-section 2.6.2. Experimental setup was
performed using the Opentrons-2 liquid handler. Co-cultures were prepared by adding
10 pL of each cell culture at a density of ODsoo = 1.0. Automation protocols were
generated using BiomationScripter (version 0.2) and the Sensynova Template (version

2.0). Full protocols and plate maps can be found in section 9.7.

2.7.12. 1:1:1 biosensor flow cytometry experiment
Following approximately 20 hours of incubation in a plate reader, a sub-set of cell-
containing samples were transferred u-bottomed 96-well plates. Samples were

prepared and analysed as described in sub-section 2.6.10.
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2.7.13. Characterisation of cell ratios
Experimental setup followed the general protocols described in section 2.6.11. The
major difference was that co-cultures were prepared by mixing different ratios of cells,
rather than just 1:1:1. Ratios were calculated by volume, as each cell type had a cell
density of ODsoo = 1.0. A list of tested cell ratios and the volumes they were added at
can be found in Table 2.22. Automation protocols were generated using
BiomationScripter (version 0.2) and the Sensynova Template (version 2.0). Full

protocols and plate maps can be found in section 9.8.

Table 2.22. Cell Ratios

Cell Type Volume (pL)
Detectors Processors Reporters
2 24 2
3 7 20
5 10 15
6 13 11
7 4 19
10 10 10
11 18.5 0.5
18 2 10
19 7 4

2.7.14. Design of Experiments Main Effects Screening
Experimental setup was the same for all experiments. Experiments were performed on
separate days for each cell type, and the augmented design runs were also performed
on separate days. For all run conditions, uninduced and induced samples were
prepared in triplicate. Various medias were prepared using proportions stated in Table
2.23. The stated chemicals were dissolved in 500 mL of MiliQ water and sterilised by

autoclaving at 121°C for 20 minutes.

Table 2.23. Medias for Main Effects Screening
Design: Each row defines a different media. The
chemicals were mixed in a duran bottle in the weights
indicated, dissolved in 500 mL MiliQ water, and

sterilises as described in section 2.1

Media Compositions

Sodium Yeast Extract

Tryptone (9) Chloride (g) (@)
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0 0 0
10 10 5
10 0 0

0 10 5

5 5 2.5

5

0 10 0
10 10 0
10 0 5

Detector, processor, and reporter cells were prepared as described in section 2.6.3
however cells were incubated at temperatures according to the main effects screening
designs section 9.9, and after washing in sterile water were re-suspended in media
also determined by the screening designs. For all experiments, three black 96-well
plate with flat, clear bottoms, cells were used, one for each incubation temperature as
determined by the main effects screening design. Cells were to wells of the appropriate
plate such that the final ODesoo would match the values stated in the main effects
screening design. For the detector, processor, and reporter cells, 1 mM IPTG, 10 uM
Cl12-HSL, and 10 pM C4-HSL was added to induced samples respectively.
Chloramphenicol was added to the appropriate amount (Table 2.1) and the cultures
were made up to 100 pL with the appropriate media. A clear, permeable seal (Breathe-
Easy; Scientific Laboratory Supplies) was adhered to the top of each plate and the
cultures were incubated at the appropriate temperatures with shaking at 200 RPM.
Fluorescence and absorbance readings were taken every hour as described previously

but using a Clariostar (BMG Labtech) plate reader.

The fluorescence values obtained from the plate reader were corrected based on cell
density, and replicate values were averaged. Fold change in fluorescence was
determined by making the induced samples relative to uninduced samples. The fold
change values were inputted into JMP Pro 13 (JMP Statistical Discovery LLC), and

data analysed using a standard least squares effect screening model.
2.8. Optical Communication Experiments

2.8.1. Bacterial luciferase characterisation
E. coli cells were transformed with pSB1C3-Lux (Table 2.2). A single transformant

colony was streaked onto a separate LB agar plate with chloramphenicol antibiotic
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selection. 10 mL of LB media and the chloramphenicol at the appropriate amount
(Table 2.1) was added to a 50 mL falcon tube and inoculated with a single colony from
the streak plate. The overnight culture was incubated at 37°C for 16 to 17 hours with
shaking at 200 RPM. Cells were pelleted at 4°C and 4,500 RPM for 10 minutes.
Supernatant was removed and cells were resuspended in 10 mL of fresh LB media.
The ODeoo of resuspended cells was measured with a UV-Vis spectrophotometer and
the culture diluted to an ODsoo of 1.0 in LB media. Experimental setup was performed
using the Opentrons-2 liquid handler (Section 9.11). Automation protocols were
generated using BiomationScripter (version 0.2) and the Sensynova Template (version
2.0). Full protocols and plate maps can be found in section 9.10. The culture plate was
incubated in a Clariostar Plus for 20 hours at 30°C with shaking at 400 RPM.
Luminescence was measured at 20 nm intervals between 400 nm and 600 nm
everything 30 minutes. Absorbance at 600 nm was also measured everything 30

minutes.

2.8.2. Initial characterisation of the EL222 light responsive system
E. coli cells were transformed with EL222-PBLRep (Table 2.2). A single transformant
colony was streaked onto a separate LB agar plate with kanamycin antibiotic selection.
10 mL of LB media and kanamycin at the appropriate amount (Table 2.1) was added
to a 50 mL falcon tube and inoculated with a single colony from the streak plate. The
overnight culture was incubated at 37°C for 16 to 17 hours with shaking at 200 RPM
in the presence of bright blue light. Cells were pelleted at 4°C and 4,500 RPM for 10
minutes. Supernatant was removed and cells were resuspended in 10 mL of fresh LB
media. The ODsoo of resuspended cells was measured with a UV-Vis
spectrophotometer and the culture diluted to an ODeoo of 1.0 in LB media. To three
wells of two black 96-well plates with flat, clear bottoms 89.5 pL of LB media was added
along with 0.5 pL of working stock kanamycin (Table 2.1). 10 uL of E. coli cells were
then added to each well. Clear lids were applied to each plate. One plate was wrapped
in foil, whilst the other was place in the top of a pipette tip box. In the bottom of the tip
box was a Raspberry Pi Zero (Pimoroni) with Unicron pHAT (Pimoroni). The Pi Zero
was powered by an external battery pack. To all blue LEDs of the pHAT, 3 volts was
supplied, resulting in bright blue light shining at the bottom of the 96 well plate. Both
plates were incubated at 37°C with shaking at 200 RPM for 5 hours. A Clariostar plate
reader (BMG Labtech) was used to measure red fluorescence (570-15 excitation and

620-20 emission) and absorbance at 600 nm every 1 hour.
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2.8.3. Sensitivity testing of the EL222 light responsive system

Cells were prepared as described in sub-section 2.7.3. To two wells of three 96-well
plates, 89.5 uL of LB media was added along with 0.5 uL of working stock kanamycin
(Table 2.1). 10 uL of E. coli cells were then added to each well. A clear, permeable
seal (Breathe-Easy; Scientific Laboratory Supplies) was adhered to the top of each
plate. One of the plates was wrapped in foil. The other two plates were placed on top
of two separate optogenetic devices. Each optogenetic device consisted of an inverted
black, 96-well plate with flat, clear bottoms, and RGB LEDs (Fedy Tech diffused
‘Piranha’ RGB; Adafruit 1451) placed such that the bulb was facing the clear bottom of
the plate. A 3-volt CR2032 battery was used to supply 3 volts to the LED such that blue
light was emitted. To one of the devices, 6 megohms of resistance was applied. To the
other, no resistors were used. The 96-well plates were placed on top of a pipette tip
box, such that the flat bottom was facing up. The 96-well plates containing cells were
placed on top of the device, so that each well aligned. The plates were tapped to the
top of the device and were wrapped in foil. All plates were incubated for 6 hours at
37°C and 200 RPM, following which red fluorescence and absorbance were measured
as in section 2.7.2. Images of the optogenetic devices can be seen in chapter 7.

2.8.4. Designing and modelling microfluidic chips
The microfluidic devices were designed using AutoCAD (Autodesk; 2022) and
exported as DWG files. Ansys Workbench (Ansys; Student Edition; 2022 R2) was used
to simulation fluid flow through the design. To save on computational resources, only
on half of each design was simulated, as the designs consisted of two identical
segments (Chapter 7). The DWG file was imported to ANSYS SpaceClaim (Ansys;
Student Edition; 2022 R2) and converted into a 3D model. The 3D model was then
imported into ANSYS Fluent (Ansys; Student Edition; 2022 R2) for fluidic simulation.
The fluidic behaviours of each design variant were modelled using a ‘Discrete Phase’
model, where the liquid phase (i.e. the media the cells are suspended in) was modelled
as water, and the discrete phase (i.e. the cells) was modelled as non-reactive spherical

particles with a diameter of 5e"” meters — approximately the same size as E. coli cells.

After initial exploratory simulations, a cell input flow rate of 1e-2° kg/second was used,
along with a media flow rate of 0.0001 metres/second. Additionally, the following
settings were used: (i) unsteady particle tracking, (ii) particles were tracked with fluid

flow time step (iii) a maximum of 500 steps for particle tracking (iv) a length scale of
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1e metres, (V) particles set to interact with fluid phase, (vi) simulations performed for
600-time steps, and (vii) time step size of 1 second. It should also be noted that cell

growth and division has not been modelled in these simulations.

2.8.5. Fabrication of microfluidic chips
For fabrication, all design variants were positioned within a circle with a 7 inch diameter.
The design was exported as a DWG (from Drawing) file and submitted to JD Photo
Data (Hertfordshire; United Kingdom). JD Photo Data supplied a 7 inch chrome
photomask prepared from soda lime glass, with a class 2 resolution (128k dpi) and
negative, right-reading, chrome down polarity. The mask was submitted to INEX
Microtechnology (Newcastle-Upon-Tyne; United Kingdom), from which an SUS8

negative photoresist silicon wafer with uniform 40 ym depth features was produced.

The silicon wafer was first washed with isopropanol and acetone, and then silinised in
a vacuum chamber for 30 minutes with 40 pL Tridecafluoro-1,1,2,2-tetrahydrooctyl-1-
trichlorosilane. 60 mL of silicone resin (Translucent Platinum RTV-2; STARTSO
WORLD) was prepared according to the manufacturer's instructions, and de-gassed
under vacuum for 30 minutes. The silinised wafer was placed into a large glass petri
dish lined with foil, and the silicone was carefully poured on top. The wafer and silicone
were incubated at 60°C for 3 hours to allow the silicone to set. Once set, the silicone
was peeled away from the wafer, and scotch tape was applied to the side which was
in contact with the wafer. A scalpel was used to cut a rectangle around each design,

and all chips were stored until needed.

Immediately before use, a 1.2 mm biopsy punch was used to cut holes through the
port sections of the microfluidic designs. A glass slide was cleaned thoroughly, and the
microfluidic chip was placed onto the slide, ensuring the side which had been in contact
with the wafer was face down. A plasma cleaner (PLASMAFLO PDC-FMG; Harrick
Plasma) was used to plasma bond the chip to the glass slide. The glass slide with resin
chip were placed into a plastic petri dish and inserted into the plasma cleaner. A
vacuum was applied to the inside of the plasma chamber until a pressure of between
800 and 1,200 mtorr was achieved. The RF level of the plasma cleaner was set to high
for 1 minute, before turning the RF level to off and slowly removing the vacuum from
the chamber. The microfluidic chip was removed from the plasma cleaner and

incubated at 40°C for 20 minutes to help ensure strong bonding.
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The top ends of10 uL pipette tips were cut down to size and inserted into the ports of
the chips, such that the thinnest end was inside the chip. Clear HPLC tubing (1 mm)
was inserted into the tops of the pipette tips. For tubing inserted into inlet ports, the top
end of a 20 yL pipette tip was inserted into the other end of the tube. The thin end of
the 20 uL tip was inserted into a 5 mL syringe filled with cells or media, depending on
the experiment. For tubing inserted into the outlet ports, the end of the tube was taped
to a waste collection tube. For all experiments, to achieve flow, syringes were placed
into OEM pumps and controlled using WinPumpTerm (version 0.6 beta; NewEra).

For visualisation of microfluidic chip features, a Nikon Ti microscope with 40x lens

under phase contrast was used. Images were taken using NIS Elements software.

2.8.6. Verification of cell flow
An overnight culture of E. coli DH5a cells was prepared as described in section 2.1.1.
Cells were diluted 1 in 10 in fresh LB media and added to a 5 mL syringe. Cells were
flowed through the chip as described in section 2.7.5 at various flow rates and imaged
using a Nikon Ti2 microscope with 40x lens and 1.5x zoom under phase contrast, using

the NIS elements software.

2.8.7. Verification of cell growth and fluorescence

An overnight culture of processor cells was prepared as described in section 2.1.1.
Cells were diluted 1 in 10 in fresh LB supplemented with chloramphenicol and 10 yM
C12-HSL. Cells were loaded into the chamber of a microfluidic chip with 200 ym long
chamber and a shelf. Fresh LB media supplemented with chloramphenicol and 10 yM
C12-HSL was flowed through the chip at a constant rate of 0.1 yL/min for 10 hours,
with phase contrast and red fluorescence images taken every 30 minutes by a Nikon
Ti2 microscope with 40x objective and 1.5x zoom. The microscope chamber was kept
at 37°C for the duration.

2.8.8. Verification of cell induction
An overnight culture of processor cells was prepared as described in section 2.1.1.
Cells were diluted 1 in 10 in fresh LB supplemented with chloramphenicol only. Cells
were loaded into the chamber of a microfluidic chip with 100 um long chamber and a
shelf. Fresh LB media supplemented with chloramphenicol and 10 yM C12-HSL was
flowed through the chip at a constant rate of 0.1 yL/min for 10 hours, with phase
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contrast and red fluorescence images taken every 30 minutes by a Nikon Ti2
microscope with 40x objective and 1.5x zoom. The microscope chamber was kept at
37°C for the duration.
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Chapter 3. Defining a Multi-Microbial Biosensor Framework using

High-Level Modularity

As discussed in section 1.3.1, high level modularity has the potential to aid in the
development of synthetic biological systems. In this chapter, the first section (3.1)
clarifies what is meant by modular synthetic biology. Section 3.2 discusses a
framework for modular synthetic biology systems, specifically focussing on genetic
biosensors. To aid with implementation of the framework, section 3.3 describes a set
of proposed best practices for a standardised representation of multi-microbial system
designs, whilst section 3.4 presents a Python library developed to assist with building
and testing modular synthetic biology systems.

3.1. Introduction

3.1.1. Modular synthetic biology
When talking about modularity in synthetic biology, a common term to come across is
‘modular cloning’® 89} [188] This term is often associated with modular Golden Gate
assembly standards, where DNA ‘parts’ are viewed as standardised “discrete
functional genetic elements”’®], These genetic parts can be assembled into larger
constructs using standardised cloning sites and methods, and the constructs built can
be used in the development of novel synthetic biological systems and devices. This
form of modular cloning, and indeed other types of DNA assembly which employ
standard DNA parts such as BioBrick assembly, have been instrumental in allowing
researchers to design and build DNA constructs required for the development of novel
biological devices and systems!®%: 191 The use of standardised parts and assembly
methods also allows for easier re-use of parts and constructs developed by other
researchers. These standardised parts are a good example of low-level modularity, as
described in chapter 1. In most Golden Gate based assembly standards, different
‘levels’ of assembly are defined. The individual genetic parts, e.g., single generic
features, to be denoted as ‘level 0’ and act as low-level modules (Figure 3.1 (A)). The
constructs assembled using these level 0 parts, usually a single genetic expression
unit, are referred to as ‘level 1’ assemblies (Figure 3.1 (B)). The level 1 assemblies can
be combined to form ‘level 2’ constructs (Figure 3.1 (C)). Once assembled, the

constructs can be implemented to create a functioning system (Figure 3.1 (D)).
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Figure 3.1. Modular Cloning in Synthetic Biology

Schematic overview of modular cloning using SBOL symbols. Compatible modular fusion
sites depicted as coloured vertical lines. (A) Level 0 parts: individual genetic elements
(promoters, ribosome binding sites, coding sequences, terminators) encoded on individual
level 0 acceptor plasmids. Compatible restriction sites allow them to be assembled, in
order, into a new level 1 assembly plasmid. (B) Level 1 assemblies: composed of the level
0 parts assembled together into a level 1 plasmid. Compatible restriction sites flanking the
constructs allow them to be assembled into a level 2 assembly plasmid. (C) Level 2
assembly: composed of level 1 assemblies combined together to form a functional
biological device, where the coding region from the first level 1 assembly interacts with the
promoter in the second level 1 assembly. (D) The level 2 assembly can be expressed by a
chassis to create a system with a higher-level function.

At first, it may seem that the level 1 and 2 constructs map well to the definition of high-
level modularity discussed in chapter 1, in the same way that level O parts can be
thought of as an example of low-level modularity. However, it is not always the case
that higher order genetic constructs are high-level modules. This can be demonstrated
with one the earliest examples of a synthetic biology design: the genetic toggle
switch!1%4, Figure 3.2(A) shows a schematic for assembly of an abstracted version of
the original genetic toggle switch design using modular cloning. This design is
comprised of two expression units (construct 1 and construct 2), each of which express
a transcription factor which inhibits transcription from the promoter in the other

expression unit.
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Figure 3.2. Modular Cloning of a Genetic Toggle Switch

(A) Schematic showing modular cloning for an abstracted toggle switch. The level 1
constructs (construct 1 and 2) are assembled using level O parts. The level 1 constructs
are then combined into a level 2 assembly to form the toggle switch. In the presence of
inducer 1 (11), transcription factor 1 (TF1) is inhibited, which allows expression of
transcription factor 2 (TF2) from promoter 1 (p1). Conversely, inducer 2 (12) inhibits
transcription factor 2 (TF2), which removes repression of promoter 2 (p2), which drives
expression of transcription factor 1 (TF1). (B) Schematic showing the toggle switch from
(A) where the level 1 assembly construct 1 has been replaced with construct 3. Construct
3 is a variant of construct 1, where TF2 is replaced with TF3. The level 2 construct
assembled from construct 3 and 2 is no functional.

In the above example, it may seem that constructs 1 and 2 are acting as the high-level
modules, which are assembled to form the final biological device (the genetic toggle
switch). However, when considering the generalised high-level function and
interchangeability of these constructs, the analogy fails, because functionality of each
level 1 construct is tightly coupled. This functional dependency is illustrated in Figure
3.2 (B), where a variant of the genetic toggle switch has been designed. Here,
transcription factor 2 (TF2) has been replaced with transcription factor 3 (TF3) to allow
induction with inducer 3 (13), instead of inducer 2. To do this, construct 1 has been
replaced with construct 3. However, when this new construct is combined with
construct 2, the genetic toggle switch no longer functions as intended, as construct 2
retains promoter 2 (p2), which is not affected by TF3. To regain functionality, construct
2 would require modification to replace p2 with a promoter repressible by TF3. The

need for modification means each construct is not interchangeable, and hence does
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not match the definition of high-level modularity. Additionally, it is not possible to assign

high-level, abstract functionality due to the tightly coupled nature of the design!61,

Taking inspiration from other fields which have successfully utilised high-level
modularisation, such as software engineering!’®2 and mechanics!'%], it is possible to
re-design the genetic toggle switch to allow for better exploitation of this concept. This
approach relies on the use of standard connectors to link the modules together, and
top-down design. By considering only the abstract logic employed by the genetic toggle
switch, it is possible to describe the device’s behaviour using two functional modules
(Figure 3.3 (A)). The internal logic of these two modules consist of an inverter, an AND
gate, and an OR gate. This internal logic is identical between the two functional
modules, and the only differences are the inputs and outputs. Each of the modules
takes its respective inducer (12 or I11) as one of the inputs. The second input and the
output have been replaced by connectors which are used to link the two modules
together. At this abstract level, it is possible to see the intended function of the modules,
and to predict how a system composed of these two modules would behave, such is
the nature of top-down modular design. Moreover, a third module (Figure 3.3 (B)) which
takes I3 as an input instead of 12 can be defined. By keeping the input and output

connectors identical, module 2 and module 3 become fully interchangeable.
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Figure 3.3. High-Level Modules for a Genetic Toggle Switch

Alternative method for modular assembly of a genetic toggle switch. (A) Two high-level
modules which, when combined, show toggle switch functionality. Both modules use an
inverter ([>°: switches an OFF signal to ON and vice versa), AND gate (D: only ON when
both inputs are ON), and NOR gate (2°: only ON when both inputs are OFF) to integrate
signals from a connector (red and blue CDSs) and an inducer (11 and 12). (B) A third high-
level module which uses a third inducer (I3) as an input. The input and output connectors
are the same as for the first module in (A). (C) Genetic implementation of the two modules
in (A). (D) Genetic implementation of the module in (B) combined with the second module
in (A). This is the same as the implementation in (C), except the first module has been
swapped with the module in (B). (E) Modular cloning of the design in (C). the level 1
assemblies (construct 4 and 5) are built using level 0 parts. The two level 1 constructs are
then combined into a level 2 assembly, which functions as a toggle switch. (F) The same
as for (E), except construct 4 is replaced with construct 6. Construct 6 is based on the

module design in (B).

A potential genetic implementation of modules 1 and 2 are shown in Figure 3.3(C, E),

and of modules 1 and 3 in Figure 3.3(D, F), further demonstrating the uncoupling and

interchangeable nature of the modules. As a result, it would also be possible to

experimentally characterise the behaviour of each module separately and use this data

to better predict how a system composed of each module combination would behave,

rather than having to test every combination (which can become unfeasible when many

variants of a module exist). It should be noted that designing and implementing the
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system in this way does come at the expense of a more complicated low-level design,
but allows the high-level design to be simplified, and for better re-use of modules.
There are also other issues with the design described. For example, module 3 is only
interchangeable with module 2, and not module 1 (due to the connectors specified for
the input/output of each module). These designs may also not be optimal for other
applications, and the choice of connectors may interfere with the behaviour of other
designs if those systems utilise the connectors in their internal mechanisms. Despite
these issues, this concept of using high-level modules to design and implement
biological devices and systems has the potential to aid synthetic biology in the same
way it has other fields for the reasons discussed earlier. In the following section, some
selected examples of previous implementation of such modularity are highlighted and

discussed.

3.1.2. High level modularity in synthetic biology
Discussed here are some examples of where high-level modularity has previously
been used to develop biological devices. These examples were highlighted as they
focus on biosensors, or use biosensor-like mechanisms, which are a major focus for
this thesis. Additionally, the examples were selected because the results and
approaches highlighted crucial aspects, advantages, and limitations of high-level

modularity in synthetic biology.

Potentially one of the earliest examples of true high-level modularity in synthetic
biology is work presented by Tamsir and co-workers in 2011194, In this study, a series
of genetic logic gates were designed and implemented in separate E. coli cells and
‘wired’ together using quorum sensing molecules. The modules were used to design
higher order biocomputing functions, such as the XOR gate shown in Figure 3.4 (C).
This XOR biocomputing system was implementing by spot plating the required cell
types (containing logic gates with the required logic gate module) onto solid agar,
spatially positioning the cell types such that they correspond with the desired logic
circuit layout. These cells were spotted one layer at a time: Cell 1 was added and
allowed to grow as the first layer, then Cell 2 and Cell 3 to form the second layer, and
finally Cell 4 formed the third layer. These cell types appear to have only been
characterised on solid media, rather than in liquid culture, and the requirement to add
cells one layer at a time may present scalability issues as genetic circuits grow in

complexity and size. Regardless, these modules allowed the authors to design and
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implement many different biocomputing systems rapidly and, aside from the initial

creation of the modules, any extra genetic engineering.

In 2019, a paper by Voyvodic and co-workers!1%! described a method for expanding
the ‘detection space’ of cell-free biosensors. This method made use of modular design,
where a set of three modules were described: one which generated an output, one
which could detect a common chemical using well known mechanisms, and a
metabolic transducer module capable of converting a desired chemical, which perhaps
does not have a known mechanism of detection, into a chemical which can be easily
detected (Figure 3.4 A). These modules are described as ‘plug-and-play’, in that the
modules can be assembled onto separate plasmids and mixed in cell-free systems to
generate a complete biosensor. This study demonstrated the potential of high-level
modularity in synthetic biology, although it should be noted that the plug-and-play
nature of their output plasmid module is debatable, as it requires the output module to
contain a promoter or other genetic element compatible with the sensor module. For
example, in one of the use cases from the original paper, the authors design a sensor
module which can detect benzoate (Figure 3.4 (B)). The sensor module works by
expressing a transcription factor (BenR) which can bind benzoate. The output module
contains a superfolder GFP coding sequence which is under the control of a promoter
called Psen. This promoter is activated by the BenR-benzoate complex, which drives
expression of the GFP. Whilst it would be possible to generate a library of output
module consisting of different outputs controlled by the Pgen promoter, it would not be
possible to re-use these output modules with other sensor modules which do not
express BenR. Nevertheless, this study presented a framework for expanding the
range of chemicals which can be detected by biosensors, utilising high-level modularity
which, for the most part, promotes re-use of parts with minimal modification required

by other researchers.

A study by Wang et al. (2013) also aimed to implement high-level modularity using
synthetic microbial consortia. In this work, a modular biosensor capable of detecting
and responding to multiple external stimuli was designed and implemented using a
series of AND gate modules, each of which was implemented in a separate cell. Signal
propagation between the cell types was achieved using quorum sensing, as seen with
Tamsir et al.’s approach. The multi-microbial biosensor developed and characterised

by Wang et al. integrated three inputs to a single output (Figure 3.4 (D)). This biosensor
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was composed of two cell types which both consist of an AND gate. The first cell type
takes two stimuli as an input and produces a quorum sensing molecule as an output,
and the second takes the quorum sensing molecule generated by the first cell type and
the third stimulus as inputs. This second cell type was designed to produce a red
fluorescence protein (RFP) as an output when both inputs were detected. This
approach showed high-level modularity at two stages. The first was at the AND gate
construction stage. As can be seen in Figure 3.4 D, both AND gates were assembled
using three expression units: two which could detect the presence of the input stimuli
and one which dealt with the output. The input modules were designed to express one
of two proteins (HrpR or HrpS). Both proteins are required to activate expression of the
promoter PnrpL, Which is what was included in the output expression unit to drive
expression of the desired response. In this way, the construction of the AND gate
modules can be considered truly modular. However, this approach is relatively limited
in that only biosensors which rely on AND gate logic can be developed. It would also
be difficult to easily tune the response characteristics of any biosensor by incorporating
signal processing, such as signal amplification, as there is no space in the design
described by the authors to add in this functionality. This is not to say that the work
presented here is not useful, it should simply be noted that the approach taken is

specific to a certain type of biosensor.

The fourth example of high-level modularity in synthetic biology is the study by Macia
and co-workers in 2016['°¢ which focused on implementing spatially distributed
biocomputation. Similar to the study by Tamsir et al. (2011), Macia and co-workers
designed modular logic gates, which were implemented in yeast cells and focussed on
NOT and ID gates with an inherent OR layer (Figure 3.4 (E)). This work also used
multi-microbial modular logic gates to create high-order biocomputational logic circuits
via phased mixing of each cell type, although the cells were combined in liquid culture
using a custom built machine (Figure 3.4 (F)) rather than on agar plates. To note, the
OR gate logic is not an actual module, but an inherent feature of how signals from
modules in previous layers were integrated, and thus could potentially create
limitations when developing systems as the OR gate cannot be swapped or easily

tuned.
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Figure 3.4. Selected Examples of High-Level Modularity in Synthetic Biology

An overview of synthetic biology systems developed previously which make use of high-level modularity. (A) A modular
framework for biosensors. Three types of modules are used: a metabolic transducer, a sensor, and an output. The metabolic
transducer converts a desired molecule with no known sensing mechanism into a molecule which does have a sensing
mechanism. The sensor module detects the molecule and passes a signal to the output module to generate a response.
Figure reproduced from Voyvodic et al. 2019 (figure 1) under licence agreement. (B) Modular design for a benzoate biosensor
using the framework in (A). Two modules are defined: a TF (transcription factor) plasmid which acts as the sensor module,
and a reporter plasmid to act as the output module. The output module is activated in the presence of benzoate. Figure
reproduced from Voyvodic et al. 2019 (figure 2) under licence agreement. (C) Implementation of an XOR gate using modular
design. The modules are implemented into different cells, and the system is built by spotting cells onto an agar plate one layer
at a time. The first layer consists of Celll, the second layer of cell 2 and 3, and the third layer of cell 4. Signals from each cell
type are passed via guorum sensing. Figure reproduced from Tamsir et al. 2011 (Figure 3) under license agreement. (D)
Modular implementation of a three-input biosensor. Two modules are used. The first uses an AND gate to integrate signals
from two stimuli. The second integrates the signal from the first module and a third stimuli, also using an AND gate. The
second module produces a fluorescent reporter when activated. The two modules are implemented in separate cells, with the
signal being passed from module 1 to module 2 via quorum sensing. Figure reproduced from Wang et al. 2013 (figure 4) under
license agreement. (E) Design for a modular ‘majority rule’ biocomputing device, where a signal is generated when two or
more of the inputs are present. Each module is implemented in a separate yeast cell. Figure reproduced from Macia et al.
2016 (figure 3) under license agreement. (F) Device built to implement the modular biocomputing device in (E). Figure
reproduced from Macia et al. 2016 (figure 3) under license agreement.
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3.1.3. Modularity and multi-microbial systems

Synthetic microbial consortia are commonly found in previous implementation of high-
level bio-modularity, as seen in the examples above. In addition to the general
advantages and applications of synthetic consortia discussed in Chapter 1, there are
several reasons for why this might be. The first is that, at least conceptually, the
creation of co-cultures to ‘connect’ biological high-level modules is relatively simple.
The idea that cells containing different biomodules can be mixed together as seen in
the Wang et al. 2013 study, or plated next to each other like Tamsir et al. in 2011, can
seem analogous to some of the plug-and-play architecture seen in other engineering
fields. The approach of implementing each module in a different cell type in a
consortium also allows optimal organisms to be used for each aspect of a biological
system, rather than relying on techniques such as codon optimisation to modify
biological parts to operate in a sub-par host chassis.

Another reason why synthetic consortia are commonly used to implement high-level
modularity in synthetic biology is simply because the inherent requirements of splitting
a biological system across multiple cell types align closely with the requirements of
high-level modularity. This is because the separate aspects of the system must be un-
coupled to function independently within their host chassis, and communication must
be established between the different modules. This design architecture has a lot of
similarities with the modular toggle switch design shown in Figure 3.3, but less so with
the original genetic toggle switch in Figure 3.2. It is therefore possible that some studies
which implemented high-level modularity did so as a result of using synthetic consortia,
rather than by intent. Regardless, the combination of synthetic multi-microbial
consortia and high-level modularity in synthetic biology appear to have great potential

and is the approach which was taken in this research.
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3.2. Discussion of a high-level modular and multi-microbial framework for the

development of genetic biosensor devices

The framework described here is based on work first described by the Newcastle iGEM 2017 team

(2017.igem.org/Team:Newcastle), of which | was a member. The work in this thesis can be considered

a direct continuation of that project.

In the previous section, it was identified that the combination of high-level modularity
and multi-microbial systems could aid in the development of synthetic biology systems.
In this section, it is discussed how the development of a framework could be used to

explore this concept.

3.2.1. Framework requirements and application
In fields where high-level modularisation has already been implemented, the modules
developed do not tend to be completely universal to everything within that arealt°7-199],
In software engineering, modular code tends to be intended for specific types of
software programs(?°0. 2011 For example, modules used in video game development
are not necessarily expected to function in or be used in code for, say, a word
processor. Similarly, in computer hardware engineering, modules designed for a
desktop computer may not be fully compatible with modules used in a laptop for
reasons such as power requirements and sizel?d. Therefore, when looking to
implement high-level modularisation, one should recognise that it is unlikely that a
module will be fully universal to every application within that field. Instead, it is
important to consider which applications or areas within a field can benefit from the
same set of modules. This contrasts some of the previous studies, such as the Tamsir
et al. (2011) and Macia et al. (2016) studies discussed in Section 3.1.1 (Figure 3.4(B)
and Figure 3.4(D)) which tend to have scopes which are either much wider or narrower

than those seen in other engineering fields.

In this thesis, the applicability of high-level modularity and multi-microbial systems
towards to development of biological systems was explored. Specifically, the project
aimed to determine whether designing and implementing systems in such a way could
provide alternative, easily accessible avenues for optimisation, and promote the use of
engineering principles such as standardisation and re-usability. To guide these
investigations, a high-level modular and multi-microbial framework for developing

synthetic biology systems was developed. Considering the points discussed above, it
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Figure 3.5. Observe and React Architectural Design Pattern

General overview of the observe and react ADP. The sensor detects a stimulus, which
activates the sensor control. The sensor control informs the data processor, which
processes the signal generated by the sensor control. The data processor then passes
information to the actuator control, informing it as to the required response, which is then
generated by the actuator.

was decided that this framework should focus on a specific area of synthetic biology,

similar in scope to that seen in other fields which successfully apply high-level

modularity.

There are many applications and areas of research which can be considered to fall
under the general term of synthetic biology, as discussed in Chapter 1. One of these
areas is the development of genetic biosensors, where sensing devices are built using
DNA and implemented using biological chassis such as bacteria or cell-free protein
synthesis systems. The general concept of genetic biosensors is ubiquitous in many
synthetic biology systems, and there are a wide range of potential applications for
these biological devices. As a result, it was decided that the framework’s application
would be towards the development of synthetic biology biosensors. An existing
framework which matches this application, Sensynova, was previously proposed by
the Newcastle iGEM 2017 team. As such, the framework described in this work is

based on and extends the Sensynova framework.

3.2.2. General framework structure
Biosensors have many analogues in other engineering fields, such as electronic
sensors in electrical engineering, and event handlers or conditional statements in
software engineering and programming. In these examples, the overall functionality is
to react to some external stimulus or event. In fact, this abstract behaviour is so
common that it can be summarised by an often-used architectural design pattern.
Architectural design patterns (ADPs) are defined as a generalised solution for a
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General overview of the Sensynova framework. (A) Functional modularisation of a generic
genetic biosensor, split into a detector, processor, and reporter module. This pattern
mirrors the ADP shown in Figure 3.5. (B) Abstract depiction of the Sensynova framework.
Biosensors are designed modularly, with each design built on a separate plasmid. Each
plasmid is transformed into individual cells. Quorum sensing mechanisms built into each
module’s design enables uni-directional communication when in co-culture, at which point
the biosensor can be tested.

common problem within a specified context, and have found popularity in software

engineering and, to a lesser degree, other engineering fields and architecture. The
observe and react ADP defined in software engineering can also be used to summarise
the general structure of biosensors and their analogues?®® (Figure 3.5). Broadly
speaking, the observe and react pattern is used when a sensor (or set of sensors)
needs to be monitored and a response initiated depending on the output of the sensors.
The ADP is splitinto three sub-processes: sensor control, data processor, and actuator
control. The sensor control is responsible for collecting information from the sensor(s).
The information collected is then fed to the data processor, which can analyse or
modify the information in some pre-determined way. This data is then sent to the
actuator control, which will generate a response depending on the information. This
response could be to simply display the data, or it could generate some type of change

by sending the data to some other device.

Following the observe and react ADP, synthetic biology biosensor designs can be split
into three modules: a detector which reacts to the presence or absence of a stimulus,
a processor which can employ some sort of logic such as amplification or tuning to a
specific level, and a reporter which generates some sort of response (Figure 3.6 (A)).
This follows the modules described by the original Sensynova framework, where it was
shown that all biosensors designed or used by iGEM teams matches this architecture.
Following on from the concept of implementing modules in different cell types which
can be co-cultured to form the overall system, the detector, processor, and reporter

modules described here can be implemented similarly. Based on the previous
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successes within synthetic biology discussed in Chapter 1, communication between
cell types expressing one of the three modules can be achieved via acyl-homoserine
lactone (AHL) based quorum sensing. This communication was intended to be uni-
directional, with the signal generated by the detector cells (as the result of interactions
with a stimulus) passing to the processor cells, which then modifies the signal and
passes it to the reporter cells, which can then generate the response. Specifically, the
LasIR and RhIIR mechanisms were used to facilitate communication from detector to
processor cells, and from processor to reporter cells respectively. These mechanisms
were chosen as they had been previously reported to have little cross-talk*5%. Broadly,
the detector module should confer C12-HSL production functionality, and the
processor module should respond to C12-HSL. The processor module should also
produce C4-HSL, and the reporter module should respond to C4-HSL (Figure 3.6 (B)).
By defining this method of communication within the Sensynova framework, it is
possible to help ensure module compatibility, where any detector, processor, or
reporter cells can be combined with any other combination of detector, processor, or

reporter cells.

The general framework described above is expanded on in chapter 4, where a proof-
of-concept biosensor is designed and built according to the Sensynova principles. By
developing a high-level modular and multi-microbial biosensor, it was possible to
validate whether biosensors designed, built, and implemented according to the
framework were functional. Additionally, novel approaches towards optimisation could
be investigated, which may provide opportunities to ease the development process of
biosensors more generally. First, however, presented in the remainder of this chapter
are outcomes from research into, and development of, resources for aiding
implementation of modular and multi-microbial systems. Focus was placed on how
these resources could be used to promote the use of engineering principles such

standardisation, reproducibility, and re-usability within the Sensynova framework.
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3.3. Defining Best Practices for Standardised Representations of Multi-

Microbial Systems

This work has been published as “Capturing Multicellular System Designs Using Synthetic Biology Open
Language (SBOL)” in ACS Synthetic Biology (doi.org/10.1021/acssynbio.0c00176), and also exists as
a preprint on bioRxiv (doi.0rg/10.1101/463844).

The best practices described here were submitted and accepted as SBOL Enhancement Proposal 30
(SEP 030: github.com/SynBioDex/SEPs/blob/master/sep 030.md). This proposal was modified and
included in the release of SBOL version 3.0.1 (doi.org/10.1515/jib-2020-0017).

3.3.1. Overview and rationale
One of the main aims for the Sensynova framework was to aid in the development of
synthetic biology biosensor designs by promoting the sharing and re-use of modules
and systems. It was important, therefore, to ensure that information relating to these
multi-microbial designs could be captured in a standard format that was easily
shareable and allows for modules designed by different researchers to be combined
into a single biosensor design. The Synthetic Biology Open Language (SBOL) is a data
standard which can be used to store and share information about biological designs,
along within information about how these designs have been implemented and
characterised!®4. Prior to the work presented here, the SBOL data standard had only
been used to capture design information about biological parts and devices, and
ignored how contextual information, such as the chassis that the design is intended to
be implemented in, should be represented. In addition, the SBOL standard had not

been used to capture information about multi-microbial systems.

To address the limitations of SBOL stated above, a set of standard best practices were
developed to aid in the design and sharing of multi-microbial designs. These best
practices considered the minimal information required for others to understand, adapt,
and build a multi-microbial design. Other aspects, such as machine-readability,
flexibility, and intuitiveness, were also explored. The best practices described here
largely fit within the SBOL version 2 specification and are therefore compatible with
tools which use any release of SBOL version 2.

3.3.2. Ontologies in the SBOL data model
The SBOL data model makes use of ontologies to help describe biological entities,

interactions, and functions in a standard way. An ontology can be thought of as a set
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of formal descriptions for specific terms and their relationships?°4. A number of
ontologies are used in SBOL to better describe entities within a system, and how those
entities interact. The SBOL-OWL ontology defines relationships between classes in
the SBOL data model and terms from other ontologies, allowing for recommendations
of terms to be used for different aspects of a design or systeml?%l. For physical
biological entities, terms taken from the Sequence Ontology (SO) are often used!2°],
Example SO terms are ‘Promoter’ (SO:0000167), ‘Ribosome Entry Site’ (SO:0000139),
and ‘CDS’ (S0O:0000316). For interactions between entities, terms like ‘Genetic
Production’ (SBO:0000589) from the Systems Biology Ontology (SBO) can be used to
describe the role of that reaction[?°”l, The SBO can also be used to define functions for
participants in the interaction, using terms like ‘Template’ (SBO:0000645) and ‘Product’
(SBO:0000011). Other commonly used ontologies include the Gene Ontology (GO)[2%8],
Chemical Entities of Biological Interest (CHEBI)?%, and BioPAX[?10],

3.3.3. The SBOL 2 Data Model
Explained here are relevant parts of the SBOL version 2.3.0 specification, which was

the SBOL release these best practices were based on.

Two main classes are used in SBOL version 2 for representing biological designs:
ComponentDefinition and ModuleDefinition. The ComponentDefinition class can store
information about physical structures, such as DNA and proteins. Aspects of a design
represented by a ComponentDefinition may have both a ‘role’ and a ‘type’ associated
with them. The ‘type’ property in SBOL is used to describe the category to which a
biological entity belongs and can use BioPAX terms like ‘DNA’ (BioPAX: 0654) or
‘Protein’ (BioPAX: 1208). The ‘role’ property is used to convey the intended or expected
function of an entity, using terms like ‘Promoter’ (SO:0000167) or “Transcription Factor’
(G0O:0003700).

The ModuleDefinition class is used to group together biological entities in a design,
allowing for definition of functional interactions between such entities. Designs
captured by a ModuleDefinition can range in complexity, from individual biological
entities such as promoters, coding sequences, and proteins, to devices composed of
multiple parts or complex systems comprising many devices, like a genetic biosensor.
Unlike the ComponentDefinition class, instances of ModuleDefinition do not have a

‘type’ property and rely only a ‘role’ to represent overall functionality. For example, a
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metabolic pathway might have roles of ‘metabolic process’ and ‘small molecule
biosynthetic process’ from the Gene Ontology (GO), and a biosensor could have a role
of ‘response to chemical’, also from the GO. In the case of devices and systems, each
of the individual parts are described by separate ComponentDefinition class instances.
The intended use and function of the part can be described within a ModuleDefinition
class, where the part is instantiated using a FunctionalComponent class annotated with

its intended ‘role’.

The ModuleDefinition class can contain interactions between biological entities in a
design. One such example of an interaction could be a protein which binds to and
represses a promoter. Interactions are formally captured with the use of Interaction
and Participation instances. The Interaction class specifies the interaction type, such
as genetic repression, within which instances of the Participation class specify

interacting entities and the role played by those entities.

3.3.4. Discussion of essential information to be captured
To define a set of standard best practices for capturing designs of multi-microbial
systems, it was important to consider the information needed to be captured. Essential
information are attributes of a multi-microbial system which must be recorded to ensure
others can understand the design’s purpose and function. Optional information about
a design may provide further context but is not essential for understanding and

implementation.

To determine the essential information to be captured, core components of a multi-
microbial system were considered, using a basic design as an example (Figure 3.7).
For this design, two populations composed the system: E. coli DH5a and Bacillus
subtilis 168, which were present in proportions of 20% and 80% respectively.
Information about the populations represented the first core component of the system.
Thus, the SBOL standard was required to capture information the number, proportions,
and taxonomic information about each population. Capturing information regarding the
taxonomy of each population is required as behaviour differs between species and
strains. For example, the two commonly used Escherichia coli strains DH5a and BL21
have distinct differences. DH5a is a cloning strain and deficient in nucleases?'Y,
whereas BL21 is protease deficient and hence will have a lower turnover of proteins(?,

In the example system, the E. coli DH5a strain was modified to contain a plasmid.
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Multi-Microbial System

Molecule A '\
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Cell 1 - E. coli DH5a Cell 2 — B. subtilis 168
with plasmid A ./

Experimental Conditions

Figure 3.7. Core Components of a Multi-Microbial System

In this diagram, a design for a synthetic multi-microbial system is shown to demonstrate
the core components of a multi-microbial system. This system is composed of two cell
populations: cell 1 and cell 2. The cell 1 population is composed of E. coli DH5a cells
transformed with plasmid A. The cell 2 population is composed of B. subtilis 168 cells. In
the initial state of the system, 20% of the cells are part of the cell 1 population, and 80%
are part of the cell 2 population. Plasmid A in the cell 1 population leads to the production
of molecule A, which is then used by the cell 2 population to promote their own cell growth.
The multi-microbial system is then implemented in a conical flask with a set of unspecified
experimental conditions.

Modifications such as these, including genome editing, should be recorded, along with

the functionality they are intended to impart. For example, here, plasmid A was

designed to allow E. coli cells to produce molecule A.

Aside from information regarding each population, inter-population interactions were
also identified a key feature of multi-microbial systems, as these interactions tend to
guide overall functionality?13-215 |n the example system, molecule A produced by the
E. coli cells enhances B. subtilis growth. Thus, a uni-directional interaction from cell 1

to cell 2 in the form of growth promotion existed.

In addition to the information discussed above, there were other important aspects of
the design, namely information related to implementation of the system. Details such
as media used to grow the cells, initial growth phase of the cell populations, culture
volumes, and incubation conditions can all impact the functionality of the system, and
hence should also be recorded if known[?16l [217] |t should be noted that whilst the
information discussed here was deemed ‘essential’, in certain cases it may not be
known. It was therefore important that when multi-microbial designs are captured, it is

possible to indicate when information is unknown, rather than simply missing.
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Figure 3.8. Potential Best Practices for Representing Cells using SBOL

Unified Modelling Language (UML) diagrams depicting two different approaches for
representing cells in SBOL. (A) First approach for capturing information about cells,
referred to as ‘cell representation A’. A ModuleDefinition instance represents the cell, and
taxonomic information is annotated on the ModuleDefinition. Interactions are defined with
the Interaction class, and internal biological entities captured using the
FunctionalComponent class. (B) Second approach, referred to as ‘cell representation B’.
The cell is represented as a ComponentDefinition, which is annotated with the cell's
taxonomy. A ModuleDefinition is used to represent the cell system, in which the cell itself is
included as a physical compartment. (C) Example of how the Interaction class could be
used to explicitly capture that an entity is contained within a cell for cell representation B,
rather than implicitly as in (B).

For all approaches described in this section, the essential information described above

can be captured in SBOL - either explicitly or implicitly. Biological entities such as
proteins and small molecules, and implementing/characterising designs, are not
discussed herel?18l, Instead, only aspects of multi-microbial systems discussed in this
section which are not covered by the SBOL 2.3.0 specification are considered.

3.3.5. Approaches for representing cells using SBOL
The SBOL data model was not able to natively capture information about cells or other
chassis, which as identified above is crucial for describing multi-microbial systems.
Thus, this limitation was tackles first. Two potential approaches were detailed which
could record the essential information about cells identified in the previous sub-section.
The first approach is referred to as ‘cell representation A’, and the second as ‘cell

representation B’.
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To illustrate both approaches, information about a cell with an interaction involving two
molecules was captured (Figure 3.8). For both approaches, taxonomic information
about the cells was captured through the use of an URI (Uniform Resource Identifier)
for a relevant entry in the NCBI Taxonomy Database. This standardised approach
allowed for easier automated retrieval of information about different organisms. In cell
representation A, the cell was represented as an instance of the ModuleDefinition class
(Figure 3.8 (A)) with a role of ‘physical compartment’ from the Synthetic Biology
Ontology (SB0:0000290), which is defined as a “[s]pecific location of space, that can
be bounded or not”. To confer that the physical compartment was a cell, an ‘organism’
property was annotated to the ModuleDefinition. It should be noted that whilst the
SBOL version 2.3.0 specification allowed for user-defined annotations, the ‘organism’
property was not defined within the specification and therefore was not standard within
that version of SBOL. Taxonomic information was stored as attributes of the
ModuleDefinition, and intracellular interactions were defined using Interaction class
instance. Biological entities within the cell were represented using

FunctionalComponent instances.

For cell representation B, an instance of the ComponentDefinition class represented
the cell, which was annotated with information regarding taxonomy (Figure 3.8 (B)).
Similar to cell representation A, the ComponentDefinition role was annotated as a
‘physical compartment’, however a type was also given of cell’ from the Gene Ontology
(GO:0005623) i. A ModuleDefinition instance was used to define cell functionality,
where the ModuleDefinition represented the cell system, and the cell itself was
included as a FunctionalComponent. For the cells system, a role of ‘functional
compartment’ (SBO:0000289) was used, which is defined as a “[lJogical ... subset of
the event space”. This essentially conveys that the cell system represents a subset of
an overall system where interactions involving a cell occur. Intracellular interactions
were captured similarly to cell representation A, except the cell was also involved
explicitly in each interaction as a physical compartment. For cell representation B, it
was possible to explicitly capture which entities resided within the cell (Figure 3.8 (C)),

rather than relying on implicit representation as in Figure 3.8 (B).

i It should be noted that the GO term for ‘cell’ (GO: 0005623) has now been made obsolete in favour of
the Cell Ontology (CL) term for ‘cell’ (CL:0000000). However, to keep in line with the published work
and accepted best practices, the GO term is used throughout this thesis.
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One advantage of cell representation A is that it is conceptually simpler to understand,
and the data model is smaller. However, the advantage of cell representation B is that
by capturing taxonomic information in a separate ComponentDefinition away from the
class instance representing the system, it is easier to capture how a cell has been
modified. For example, with cell representation B, it is clear that Plasmid A has been
added to the E. coli DH5a strain, and was not already present within that strain, as
might be implied by approach 1. Additionally, by capturing the cell using the
ComponentDefinition class, it is possible to instantiate the cell as a
FunctionalComponent within the ModuleDefinition, and hence use it as a participant in
interactions. Using this approach allows extra context to be added to specified
interactions, such as the containment interaction described above to demonstrate that

a plasmid is contained within the cell.

3.3.6. Approaches for representing multi-microbial systems using
SBOL
In this sub-section, options for representing in SBOL multi-microbial system designs,
which incorporate two or more cell types, are discussed. There are three main
approaches illustrated in Figure 3.9, Figure 3.10, Figure 3.11 which capture the
information in this design, with the exception of cell ratios and experimental conditions,

which are addressed later.

The first approach is referred to as ‘multi-microbial representation A’. Here, the multi-
microbial system is represented by a ModuleDefinition with a role of ‘functional
compartment’ (SB0O:0000289). The cell types involved in this system are captured
using instances of the Module class, with a definition property which refers directly to
the ModuleDefinition instance which captures information about that cell type. Figure
3.9 (A) and (B) show how this approach is compatible with both ‘cell representation A’
and ‘cell representation B’ respectively. In this approach, intercellular interactions are
determined implicitly through shared interactions with identical pools of molecules or
other entities. In this example, both cell 1 and cell 2 interact with molecule A; cell 1
produces the molecule and cell 2 uses it to enhance cell growth. Therefore, when both
cell types and instantiated within the same multi-microbial system, it can be deduced

that they exhibit an intercellular interaction via molecule A.
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‘Multi-microbial representation B’ (Figure 3.10) was similar to multi-microbial
representation 1 in that a ModuleDefinition instance with a role of ‘functional
compartment’ represented the multi-microbial system. Further, Module instances
captured cell types in the design. However, this approach required explicit definition of
intercellular interactions, rather than implicit, allowing designers to highlight intended
intercellular interactions within the system. This came at the cost of additional data
model complexity. Multi-microbial representation B was not compatible with ‘cell
representation A’. This was because the cell type must be defined as a participant in
intercellular interactions. As only instances of the FunctionalComponent classes can
be used as participants in an interaction, and as FunctionalComponents must refer to
a ComponentDefinition, as ‘cell representation A’ only used ModuleDefinition instances

to refer to a cell, it could not be used with this approach.

As with the previous two approaches, ‘multi-microbial representation C’ also uses a
ModuleDefinition class instance with a role of ‘functional compartment’ to represent a
multi-microbial system (Figure 3.11). This approach also uses both Module and
FunctionalComponent classes to represent cells, except in the case when cell
representation 1 is used to capture information about cells where only the Module class
is used. Any non-cell entities are also instantiated using FunctionalComponent classes.
The Module instances are defined by the ModuleDefinition classes used to represent
cell or cell system as in multi-microbial representation 1 and 2. However, in this
approach, the Module class instances also contain instances of the MapsTo class,
which are used to explicitly capture links between the entities present in multiple parts
of the same design. Here, a MapsTo class with a 'refinement’ value of ‘'merge’ is used
to link FunctionalComponent classes which represent an entity in the multi-microbial
system to the FunctionalComponent class used to represent the same cell in the lower-

level cell system design.
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Figure 3.9. Potential Best Practice for Representing Multi-Microbial Systems using SBOL — Multi-Microbial Representation A

Both (A) and (B) are Unified Modelling Language (UML) diagrams depicting an approach for capturing information about multi-microbial systems
using SBOL. The diagrams represent the same system shown in Figure 3.7. (A) and (B) show the same approach for capturing information about
multi-microbial systems, however (A) demonstrates how this approach is compatible with cell representation A, and (B) shows compatibility with
cell representation B. In this approach, the multi-microbial system is represented using an instance of the ModuleDefinition class, which has a
role of ‘functional compartment’ (SBO:0000289). The cell types within this system are represented by Module instances, which are defined by the
ModuleDefinition which captures information about that cell type. Intercellular interactions are captured implicitly by comparing interactions
defined by the lower-level cell ModuleDefinition instances. Here, Cell 1 and Cell 2 interacts via Molecule A, where cell 1 produces Molecule A

and cell 2 uses Molecule A to stimulate cell growth.
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Figure 3.10. Potential Best Practice for Representing Multi-Microbial Systems
using SBOL — Multi-Microbial Representation B

Unified Modelling Language (UML) diagram depicting an approach for capturing
information about multi-microbial systems in SBOL. The diagram represents the same
system shown in Figure 3.7. In this approach, the multi-microbial system is represented
using an instance of the ModuleDefinition class, which has a role of ‘functional
compartment’ (SBO:0000289). The cell types within this system are represented by
Module instances, which are defined by the ModuleDefinition which captures information
about that cell type. The cell type is also represented using a FunctionalComponent
instance, which is defined by the ComponentDefinition which captures taxonomic
information about that cell type. Other non-cell entities are captured only through the use
of the FunctionalComponent class. Intercellular interactions are captured explicitly through
the use of Interaction class instances, where the cell type related to that interaction are
included as participants with a role of ‘physical compartment’ (SBO:0000290). Here, Cell 1
and Cell 2 interact via Molecule A, where cell 1 produces Molecule A and cell 2 uses
Molecule A to stimulate cell growth.

One of the major differences between each approach presented here are how
intercellular interaction are defined. Although explicit definition of interactions removes
ambiguity, implicit interactions, as well requiring a similar data model, can have
benefits. With implicit interactions, automated design software could combine cell

designs into a multi-microbial system and automatically determine interactions
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between cells. However, if designs for cells are obtained from other researchers,
perhaps via a database such as SynBioHub, processes which are not important in a
homogeneous design but are crucial in a multi-microbial system may be missing, and

hence important interactions lost.

Aside from intercellular interactions, it was identified that proportions of different
populations composing the multi-microbial system should be captured. For the
example system in Figure 3.7, cell type 1 composed 30% of the system, whilst cell type
2 composed 70%. For all three multi-microbial representation approaches, it was
possible to capture this information using an instance of the Measure class (Figure
3.12). The measure class could be used to annotate Module instances which represent
cells or cell systems. The Measure class allows annotation of a numerical value, which
here would represent the proportion of cells, and a unit of measurement. For the
purposes of capturing cell proportions, it was recommended that the OM (Ontology of
Units of Measure) term percentage is used. The Measure instance could also be
annotated with a ‘type’ property using the SBO term ‘fraction of an entity pool’
(SB0O:0000470), where the entity pool being referred to here is the cells.
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Figure 3.11. Potential Best Practice for Representing Multi-Microbial Systems using SBOL — Multi-Microbial Representation
C

Unified Modelling Language (UML) diagrams depicting an approach for capturing information about multi-microbial systems using SBOL. The
diagrams represent the same system shown in Figure 3.7. (A) demonstrates how this approach is compatible with cell representation A, and
(B) shows compatibility with cell representation B. The multi-microbial system is represented using an instance of the ModuleDefinition class
with a role of ‘functional compartment’ (SBO:0000289). Cell types within the system are represented by Module instances, which are defined by
the ModuleDefinition representing information about that cell type. In (B), cells are also represented using a FunctionalComponent instance,
which is defined by the ComponentDefinition which captures taxonomic information about that cell type. The MapsTo class is used to explicitly
capture which entities are present in both the cells and the multi-microbial systems. This information can be used to determine intercellular
interactions. Here, Cell 1 and Cell 2 interact via Molecule A, where cell 1 produces Molecule A and cell 2 uses Molecule A to stimulate cell
growth.
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Figure 3.12. Capturing Cell Type Proportions in Multi-Microbial Systems using
SBOL

This figure shows an Unified Modelling Language (UML) diagram depicting how to capture
information about the proportions of each cell type present in a multi-microbial system. In
this figure, information about the individual cells has been omitted for clarity, and only the
class instance representing the multi-microbial system is shown. This multi-microbial
system is composed of two cell types (cell 1 and cell 2). The cell 1 population composes
30% of all cells in the system, and the cell 2 population composes the other 70%. This
information is conveyed through the use of the Measure class.

3.3.7. Accepted Best Practices
In this section, the approved best practices for capturing information about cells and
multi-microbial systems is presented. These best practices were selected based on

discussions with the SBOL community.

Representing cells using SBOL
The following best practices should be followed when capturing information about cells
in SBOL:
e Taxonomic information about a cell type must be captured using an instance of
the ComponentDefinition class. This ComponentDefinition instance must have
a type property of ‘cell’ from the Gene Ontology (GO:0000290), and must have
a role of ‘physical compartment from the Synthetic Biology Ontology
(SB0O:0000290). The ComponentDefinition instance must also have an
organism property which should be a NCBI URI or link to another database.
This property may also be a description of the organism if no other record exists.
e Functional information about a cell type must be captured using an instance of

the ModuleDefinition class. This ModuleDefinition instance must have a role
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property of ‘functional compartment’ from the Synthetic Biology Ontology
(SBO:0000289). The cell type should be instantiated within this
ModuleDefinition as a FunctionalComponent. The FunctionalComponent must
be defined by a ComponentDefinition which captures taxonomic information
about the cell type as described above. Other entities which interact with or
within the cell must be instantiated as a FunctionalComponent which refer to
suitable ComponentDefinition class instances. Intracellular interactions must
be captured using instance of the Interaction class, where the cell type
FunctionalComponent must be included as a Participant with a role of ‘physical
compartment’ from the Synthetic Biology Ontology (SBO:0000290).

e |t is recommended that entities which are contained within the cell only be
specified using an Interaction instance with a type of ‘containment
(SB0O:0000469). The cell type must be included as a Participant with a role of
‘physical compartment’, and the entity must be included as a Participant with a
role of ‘contained’ (SBO:0000064).

For acceptance by the SBOL community, the proposal was first submitted as an SBOL
Enhancement Proposal (SEP)'" and was subsequently voted to be accepted by
members of the SBOL community. The above proposal was accepted as although it
was the more complex approach, it allowed more context to be added to interactions
involving cells. Additionally, this approach also distinguished between the natural cell
strain (represented by a ComponentDefinition), and the cells implemented in a system
(represented by a FunctionalComponent within a ModuleDefinition), which may have
been modified, such as by transformation with a plasmid. This was not possible with
cell representation A, where all information about the cell was contained within one

ModuleDefinition.

Representing multi-microbial systems using SBOL
The following best practices should be followed when capturing information about
multi-microbial systems in SBOL.:
e The overall multi-microbial system must be represented by a ModuleDefinition
instance. This ModuleDefinition must have a role of ‘functional compartment’
from the Synthetic Biology Ontology (SB0O:0000289).

i https://github.com/SynBioDex/SEPs/blob/master/sep_030.md
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Each cell type must be instantiated using the Module class, which must be
defined by the ModuleDefinition representing that cell system, and using the
FunctionalComponent class, which must be defined by the
ComponentDefinition which captures the taxonomic information for that cell.
The Module instance must include a MapsTo instance which has a refinement
property of ‘merge’. The MapsTo local property must refer to the
FunctionalComponent which represents the cell type in the multi-microbial
system ModuleDefinition, and the remote property must refer to the
FunctionalComponent instance which represents the same cell type in the cell
system ModuleDefinition.

Non-cell entities should be included as FunctionalComponent instances, and a
MapsTo instance with a refinement property of ‘merge’ must be used to link the
FunctionalComponent in the multi-microbial system ModuleDefinition (local)
and the FunctionalComponent representing the same entity in the cell system
ModuleDefinition (remote).

It is recommended that any entities which are important for intercellular
interactions are included in the multi-microbial system ModuleDefinition using

the method described above.
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(A)  Example Multi-Microbial System

(B) MaduleDefinition

name: Example Multi-Microbial System
role: function compartment [SBO:0000289]

Module Madule
name: Cell System 1 name: Cell System 2
MapsTo ﬁ
refinement: merge i
\ A ) A | Remot
Loca Remote  |Local Loca Remote  |Loca Remote  |Local
FunctionalComponent
|’<> name: Molecule B Q‘
Remote
ModuleDefinition ModuleDefinition
name: Cell System 1 name: Cell System 2
role: physical compartment [SBO:0000290] role: physical compartment [SBO:0000290]
Interaction Interaction
type: Production [SBO:0000393] type: Production [SBO:0000393]
Participation
name: Molecule B
role: Product
[SBO:0000011]
A
ici Participant KParﬁcipam Participant
; FunctionalComponent ’
name: Molecule B i >
C Definition <
‘ : name: Molecule B
type: Small Molecule

—

Figure 3.13. Example of Capturing a Multi-Microbial System using the
Accepted Best Practices: This figure illustrates how a multi-microbial system can
be captured using the accepted best practices. (A) Schematic of a simple multi-
microbial system. This example system is composed of two cell populations: cell 1
and cell 2. Cell 1 produces molecule A, and cell 2 produces molecule B in the
presence of molecule A. (B) UML diagram depicting how the example system in (A)
can be represented using SBOL. Each cell type is captured by both a
ComponentDefinition (CD) and ModuleDefinition (MD). The CD represents the
physical cell and stores information about taxonomy, and the MD is used to convey
information about the cell’s functionality. For cell 1, an Interaction describes the
production of molecule A. For cell 2, the Interaction describes how molecule B is
produced when in the presence of a stimulant (molecule A). The overall multi-
microbial system is captured using an MD instance, with all relevant instances (cell
1, cell 2, molecule A, and molecule B) represented by FunctionalComponents. The
Module classes are used to separate the individual entities into the cell types

present.




These best practices most closely align to multi-microbial representation C described
above. This approach for capturing information about multi-microbial systems was
accepted by the SBOL community as, although it is more complex than multi-microbial
representation A and B, it allows for intercellular interactions to be highlighted explicitly
without duplicating interactions already specified in the cell system designs.
Additionally, the use of MapsTo classes helped remove any ambiguity as to which
entity pools are shared between cell types. To illustrate the accepted best practices, a

simple example multi-microbial system is depicted in Figure 3.13.
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3.4. Bio-Automation for Development of Modular Systems

Source code for the Python library described in this section can be found at github.com/intbio-

ncl/BiomationScripterLib. Full documentation can be found at biomationscripterlib.readthedocs.io. Note

that some of the text and images created for this thesis were duplicated for the documentation. The

version of BiomationScripter described here is v0.2.0.

BiomationScripter was developed in collaboration with David Markham, Dr Jasmine Bird, and Dr David
James Skelton. The concept for the library was my own, and more than 98% of the code committed was
written by me. However, of particular note is the format of the Excel file for labware, which was designed
by David Markham, along with the import functionality. Unless noted otherwise, all BMS protocols and
templates presented and used throughout this thesis were largely developed and implemented by me,
although some contain modifications by David Markham. Full attributions for the code can be found at

github.com/intbio-ncl/BiomationScripterLib/graphs/contributors.

3.4.1. Background and rationale
Biological workflow automation by robotic systems has many advantages. One such
advantage is the potential to increase reproducibility of experiments, which is well
known to be essential for any scientific or engineering field!216l 2191 Bjo-automation
can help increase reproducibility by reducing human error, preventing deviations from
protocols, and allowing better tracking of how a protocol was actually executed.
Laboratory automation can also help free researchers from performing repetitive basic
and tedious activities??%, in addition to allowing better exploration of large design
spaces which may be otherwise unfeasible or time-consuming when performed

manuallyf?21,

The Sensynova Framework for modular and multi-microbial biosensor development
has the potential to leverage bio-automation and make use of the advantages afforded
by automating biological workflows. Characterising biosensor modules using
automation could allow for better reproduction of results as other researchers can more
easily repeat experiments exactly. Lab automation could also enable rapid testing of
how different modules and biosensors respond to a variety of factors, especially in
conjunction with a multifactorial Design of Experiments (DoE) approach!???, Aside from
characterisation, automation of DNA assembly workflows could also allow for easier

and faster construction of module variants!®9 [223]. [224]
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Whilst laboratory automation has seen continued increases in uptake, there are still
significant barriers to entry, especially within academial??l. One such barrier is that of
cost, as many pieces of automation equipment are expensive to obtain and
maintain(?2¢l. Another barrier is the time required to learn how to program and operate
various equipment, each of which tends to use proprietary software which may be
vastly different from software packaged with other equipment of the same typel?16l [227}-
2291 Even once the specifics of an automation equipment are understood, the
conversion of manual protocols to automated workflows can be slow and tedious.
Additionally, it can be difficult to re-use automation protocols for common workflows
(such as DNA assembly), even when developed for the same equipment, as these

protocols tend to be developed in such a way that they are highly specific[2301-232],

There have been considerable efforts to reduce these barriers to laboratory automation.
For example, companies such as Synthace offer ‘cloud laboratories’, where
researchers can outsource their automation needs which can be cheaper and simpler
than purchasing, maintaining, and learning the intricacies of their own automation
equipment(233l: 12341 These advantages are apparent when bio-automation is only
intended to be used for a limited number of workflows or experiments, but costs can
add up when considering automation as a mainstay of molecular and synthetic
biology!?33! 2361 Other efforts to increase accessibility to, and enhance the utility of, bio-
automation have centred around the idea of universal programming, where many
different automation equipment can be programmed using a universal interface,
eliminating the need for users to learn a plethora of softwarel?37H23°], These efforts
range from open-source platforms which provide a novel high-level programming
language from which biologists can describe an experiment and generate an
appropriate protocol?3%. 2401 to proprietary platforms reliant on point-and-click
interfaces such as Antha (antha-lang.com). Whilst these platforms have shown use,
they also have significant downsides: most platforms only support a very limited
number of equipment, many open-source projects have not been updated in many
years, and the proprietary efforts tend to be tied towards a specific ‘cloud laboratory’,
preventing easy usage by researchers with access to their own equipment!232],
Additionally, a focus on creating simple interfaces for generating automation scripts
has often resulted in a lack of flexibility, constricting users to only applications
considered by the developersi?*ll. There have been projects which focused on

providing users with the ability to program equipment in common programming
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languages, such as Python, which give the potential for high degrees of flexibility.
However, oftentimes these types of projects, such as PyHamilton!?#2, focus on specific
automation equipment, and tend to require a good understanding of programming to

utilise.

Automation equipment tends to be costly to obtain. One notable exception is the OT2,
an open-source liquid handler developed by Opentrons (New York, USA). This robot
is available at a fraction of the cost of other automated liquid handling robots and can
be programmed directly in Python. The open-source nature of the machine also makes
it a good candidate for ‘hacking’, where the machine can be modified towards specific
applications(?23l: [2431-1245]  There are, however, drawbacks associated with this liquid
handler, such as reduced accuracy when compared to the higher-end liquid handlers,
as well as a lack of built-in features like liquid detection and 96-channel pipetting.
These limitations mean that many larger companies and biofoundries still rely on more
expensive equipment, such as the Tecan Evo (Tecan, Mannedorf, Switzerland),
Hamilton STAR (Hamilton, Bonaduz, Switzerland), or Labcyte Echo 525 (Beckman
Coultler, California, USA).

3.4.2. BiomationScripter: Overview
Presented here is a Python library, BiomationScripter, which was developed to help
leverage the potential of automation in synthetic biology and address some limitations
surrounding its uptake. To this end, the focus of BiomationScripter (BMS) was to help
make the protocol development aspect of automating synthetic biology workflows
easier and allow for better sharing and re-use of protocols. The BMS library was also
used to develop tooling with the aim of introducing automation to the characterisation
of modular and multi-microbial biosensors developed according to the Sensynova

framework and provide the potential for automated construction of module variants.

The BMS library focused on protocol generation for two liquid handlers: OT2 and the
Echo 525. The OT2 was selected due to its increasing ubiquity in academic research
labs, and its relatively low barriers to access when compared to other liquid handlers.
The Echo 525 provides an almost polar-opposite option as a high-end acoustic based
liquid handler, capable of transferring liquid in the nanolitre range. The Echo is often
used in synthetic biology for DNA assembly as its ability to handle low volumes allows

for miniaturisation of reactions, resulting in the ability to assemble a vast amount of
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genetic variants in parallel, as well as reducing the cost per reaction through reduced
reagent usagel?46l-248 Together, the OT2 and Echo 525 cover a wide range of use
cases within synthetic biology, and the Sensynova Framework specifically. The
decision was made to develop a programming library for bioautomation as scripting
can provide users with a large amount of flexibility when developing automation
protocols. The language of choice for BMS was Python, as this is a relatively
lightweight language suitable for scripting of this nature and is already ubiquitously

used within synthetic and computational biology!?49l.

The BMS library is split into three packages: one which contains a set of generic tools
for bio-automation, one which provides specific tools for the OT2 liquid handler, and
one which is specific towards the Echo 525 liquid handler. In addition to general tools
included within the library, BMS enables the use of protocol ‘Templates’, which can be
thought of as generalised implementations of a protocol which is largely performed in
the same way each time, with variations between runs. For example, preparation of
PCR reactions generally follows the same steps (addition of a DNA template, primers,
polymerase, dNTPs, buffer, and water), however the exact DNA, primers, polymerase,
and buffers used may vary, along with other user-defined parameters such as the
number of reactions prepared, the reaction repeats, and the final volume of the
reactions. Within BMS, protocol Templates are implemented as Python classes, and
contain a ‘run” method which includes all of the necessary code to create the liquid
handing steps based on specific user inputs. Each Template has required inputs;

however, a variety of optional inputs allows advanced users more flexibility.

There are examples of previous work which have demonstrated the applicability of
approaches such as the Templates described above, where automation protocols are
generated with minimal user input. However, these previous efforts focused only on
specific applications, and provided no support for creation of different, or even similar,
protocols!?23l: 250 |n other cases, alternative methods of developing a range of
automation protocols are provided, but with no support for simple generation of
common protocols!?30: [239]. [242]  Here, the BMS Templates were developed and
implemented in such a way that users with an intermediate knowledge of Python
programming can develop their own custom Templates and make them accessible for

use by others. Therefore, the BMS library and Templates not only provides tools for
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A) B)

Labware_Layout Labware_content

* name: str * name: str

= type: str + volume: float | int

= rows: int « liquid_class: str| None

= columns: int 0..n

= content: dict[str: Iisi[Labware_cnntent]]‘

« available_wells: list[str] | None

+ empty_wells: list[str] | None

= well_labels: dict[str: str]

+ __init__(Name, Type) P

« add_content(\Well, Reagent, Volume, Liquid_Class = None) B3": [ L]

+ add_well_label(Wel, Label) Labware_content]

» get_well_content_by_label(Label)

« get_well_location_by_label(Label) “B10": [Labware_content]

+ update_volume_in_well(Volume, Reagent)

» define_format(Rows, Columns)

+ set_available_wells(Well_Range = None, Use_Outer_Wells = True,
Direction = “Horizontal", Box = False)

= get_occupied_wells()

« get_liquids_in_well(Well)

= get_wells_containing_liquid(Liquid_Name)

= get_volume_of_liquid_in_well(Liquid, Well)

« get_total_volume_of_liquid(Liquid)

+ get_next_empty_well()

« print() Labware_Layout

v

__init__(Name, Volume, Liquid_Class = None)
+ get_info()

C)

Figure 3.14. 'Labware_Layout™ and "Labware_Content” Classes

Architecture of labware representation in BMS. (A) The "Labware_Layout™ class captures
information about labware to be used in automation protocols. (B) Information about
content contained within labware is captured using the "Labware_Content™ class. (C)
Illustration of labware representation in BMS.

rapid generation of automation protocols for synthetic biology workflows but also

presents a basis for future expansion and use across a range of applications.

3.4.3. BMS equipment-agnostic tools: Labware
The first BMS package contains a set of equipment-agnostic tools which are applicable
to protocol generation for a wide range of automation equipment. For liquid handling
protocols, the presence of labware such as multi-well plates or tube racks is universal.
These labware contain liquids, such as reagents, buffers, or cells. For example, DNA
assembly workflows generally require DNA parts, plasmid backbones, water, and
reagents such as enzymes and ligases. In this example, the source material (that is
the DNA parts, plasmids, water, and reagents) could be stored in tubes held by a tube
rack. In this case, the tube rack is the labware. The protocol would also require

destination labware for assembly reactions to be prepared, such as a multi-well plate.

Within BMS, labware are represented using the "Labware_Layout™ class, which acts
as a labware ‘blueprint’. The "Labware_Layout™ class stores basic information about
physical attributes of the labware (the labware type and number of rows and columns),
along with a labware name. In addition to physical properties, "Labware_Layout’
instances can track a labware’s state. Wells (or slots) available for use can be specified,
along with empty wells. Well content, in terms of liquid, volume, and optionally a liquid
class (i.e. the properties of the liquid), can also be specified using the

‘Labware_Content’ class. Further context for each well’'s content can be given the in
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the form of a well label. For example, wells containing DNA assembly reactions may

be labelled as such.
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/\) Source_Labware_Layout . print o) EE) Source_Labware_Layout.get_volume_of_liquid_in_well

Information for Source Plate 20.0
Plate Type: Greiner 96-well 2mL Masterblock (786278)
Well Volume(ul) Liquid Class Reagent

Al 20.90 Unknown DNA1

B2 30. Unknown Water

B3 30. Unknown Water

B4 30.
BS 30.
B6 30.
AS 20.
c7 20.
D9 20.
c1 10.
c1 15.

F) Source_Labware_Layout.update_volume_in_well
Volume
Reagent

Well
Unknown Water

Unknown Water
Unknown Water
Unknown Buffer1 Source_Labware_Layout.get_volume_of_liquid_in_well
Unknown Buffer1

Unknown Bufferl 10.8

Unknown Primer1
Unknown Primer2

oo ODOOLODTODODO O

G) Source_Labware_Layout.add_well_label

B) Source_Labware_Layout . get_content H

Source_Labware_Layout get_well_location_by_label
{'A1': [<BiomationScripter.Labware_Content at 8x28bd4ed41460>],

‘B2': [<BiomationScripter.Labware_Content at 8x28b4ed415e0>], e’

‘B3': [<BiomationScripter.Labware_Content at 8x28b4ed410876>]

‘B4': [<BiomationScripter.Labware_Content at B8x20b4ed41346>], I)

'B5': [<BiomationScripter.Labware_Content at 8x26b4ed41498>], Source_Labware_Layout.get_well_content_by_label
‘B6': [<BiomationScripter.Labware_Content at Bx20bd4ed41370>],

'A5': [<BiomationScripter.Labware_Content at 8x28bded41a08>],

'C7': [<BiomationScripter.Labware_Content at 8x28bded41eb8>],

‘D9’ : [<BiomationScripter.Labware_Content at 8x28b4ed41f108>], J
'C1': [<BiomationScripter.Labware_Content at 8x28b4ed41dfe>, )
<BiomationScripter.Labware_Content at 8x28b4ed41b56>]}

[<BiomationScripter.Labware_Content at 8x26b4ed41dfo>,
<BiomationScripter.Labware_Content at 8x28bd4ed41b50>]

Source_Labware_Layout.get_occupied_wells
[AATY, B2, B3, B4, BSS; "B6, “AS', °C7%;
C) Source_Labware_Layout.get_liquids_in_well

K) Source_Labware_Layout.clear_content_from_well
['Primer1', 'Primer2’'])

D) Source_Labware_Layout get_wells_containing_liquid Source_Labware_Layout.get_occupied_wells

[£B2% 7t B3 B4t BS I BE Y EAS LN €7, DO Y

Figure 3.15. 'Labware_Layout™ Usage: Example usage of the "Labware_Layout™ class

(A) Content in the "Labware_Layout™ class can be displayed to OUT using “print- method. (B) A list of "Labware_Content™ objects
contained within the labware can be returned using the "get_content™ method. (C) Liquids within a specific well can be retrieved
using “get_liquids_in_well". (D) Wells which contain a specific liquid can be retrieved using "get_wells_containing_liquid". (E) The
volume of a specific liquid in a well can be determined using “get volume of liquid in well’. (F) The volume of a liquid in a well can

111




be changed using "update_volume_in_well’. (G) Wells can be labelled using the "add_well_label" method. (H) Wells can be retrieved
via their label with "get_well_location_by label’. (I) The content of a well can also be retrieved using a label with
‘get_well_content_by_label". (J) Wells which are occupied can be determined using the "get_occupied_wells® method. (K) All content
in a specific well can be removed “clear content from well".
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Plate Summary = Well lookup

A)
A B C D E F G

1 Plate Name Example DNA Stocks

2 Plate Type 384pPP

3 Total Wells 384

4 Rows 16

5 |Columns 24

6 Minimum working volume 12

7 Maximum working volume 50

8 Description All DNA in this plate are at concentrations of 10 fmol/uL

9

10

1

12
B) Plate Summary | Well lookup

A B C D E F G H I J

1 Well Row Column Name Volume (ul)- Initial Concentration (ng/ul) Concentration (uM) Volume (uL)-Curren(‘\e Calibration Type Notes
2 Al A 1 pOdd1 50 AQ_BP
3 A2 A 2 J23100 50 AQ_BP
4 A3 A 3 B0034 50 AQ_BP
5 A4 A 4 GFP 50 AQ_BP
6 AS A 5 mCherry 50 AQ_BP
7 A6 A 6 B0015 50 AQ_BP
8 A7 A 7
9 A8 A 8
10 A9 A 9
11 A10 A 10
12 A11 A 11
13 A12 A 12

Figure 3.16. Example of a Standard Format Labware File

Example of an Excel file for capturing information about a piece of labware. (A) Metadata
relating to the labware. (B) Content of the labware.

The "Labware_Layout™ class provides a variety of methods for easy retrieval and

modification of the labware’s state. Figure 3.15 shows examples for some of the key
‘Labware_Layout” methods. Other methods, such as "get_total volume_of liquid",
which returns the total amount of a certain liquid within a labware, also exist. The
‘Labware_Layout” methods were developed to help users easily query and modify the

state of specific labware.

In a number of cases, labware will exist beyond the scope of a single protocol or
workflow. An example of this is with DNA storage plates, where standard DNA parts
and plasmids are stored within a plate which is re-used in many protocols. In these
cases, it is necessary to have the option of long-term storage of a "Labware_Layout
object. Within BMS, this takes the form of a standard format Excel file which can be
imported to create a Labware_Layout™ object. The Excel file contains two sheets. The
first sheet is named ‘Plate Summary’ and contains the name and type of the labware,
along with the total number of wells and number of rows and columns. There are also
options to provide maximum and minimum well volumes and a short description of the
labware. The second sheet, ‘Well lookup’, is where labware content is stored. It should
be noted that the mapping of the Excel sheet to a "Labware_Layout™ class is not exact.

The only information imported to BMS are the labware’s name and type, the number
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of rows and columns, and the name, volume, and liquid class of any content. The
decision was made to exclude other information from import as it is generally not
needed in order to run a protocol and creating a full data model for all protocol
metadata is outside the scope of BMS. The ability to import a labware layout from a
file has the advantage of not only providing a method of using labware which exists
outside the lifetime of a single protocol, but also allows users with less programming

experience to more easily define their labware.

3.4.4. BMS equipment-agnostic tools: Common features

There tend to be similar requirements for many liquid handling protocols, and the
purpose of the generic BMS functions are to aid implementing these requirements
without having to re-develop methods for achieving them. For example, many protocols
will require source material to be provided as aliquots, as the volume of liquid required
is too large for compatible labware. In these cases, BMS can automatically calculate
the number of aliquots required and split the required volume, considering dead
volumes (Figure 3.17 (A)). The number of aliquots is determined via Equation
(4.1)a.i.1.a.i. BMS can also calculate the total number of a specific labware needed for
a protocol based on the number of wells or slots required (Figure 3.17 (B)).

Numb Al fs = [Total Volume of Source Material Required]
umber of Aliquots = Aliquot Volume — Dead Volume i

Another common function provided by BMS is automatic generation of transfer events
for individual liquids (Figure 3.17 C). This function produces lists which specify the
transfer volumes and destination location of a named liquid. This information can then
be used by the more specific functions in OTProto and EchoProto to generate liquid

handling instructions for the desired automation equipment.

Mastermixes are commonly used in molecular and synthetic biology to assist with the
preparation of reactions or experiments which share a proportion of their composition,
and perhaps differ in only a few components. In these cases, mastermixes can be
prepared which contain shared components, and which can be divided across different
reactions or experiments. This gives several advantages, including consistency in
preparation, as slight pipetting inaccuracies when adding the individual components

will be the same across all reactions, and saving time during setup as individual
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Aliquot_calculator
—

JduL Aliquot 1, ... , Aliquot n
Aliquot x
Destination Labware Container n=
(a-d)

B)

Create_Labware_Needed

> BAAE
Available Wells = 60
Wells Required = 312 m F, 3

Duplicated Labware_Layouts

Labware_Layout

)

A0 20> @0 A0

Substance A
R Labware = [ wells = [ Transfer_volumes = [

GEI—Traf'SfEV'S—Req“”‘E'L “pestination Plate”, “g2", 10

> “pestination Plate”, “B3", 20,

“Destination Plate”, ‘4", 30,
“pestination Plate”, “B5", 40,
“Destination Plate”, “c2”, 10,
“Destination Plate”, “c3”, 20,
“Destination Plate”, “ca,” 30,
“Destination Plate” “c5” 40

8-

Mastermixes_by_Replicates

Mastermix-A_B_C Mastermix-D_B_C Mastermix-D_~_C

Figure 3.17. General Purpose BMS Functions

lllustrations depicting some of the BMS functions. (A) "Aliquot_Calculator’ is used to
determine source material aliquots are required by an automation protocol, based on the
amount of volume required. (B) The required number of "Labware_Layout™ objects for an
automation protocol can be generated based on a template layout object, the number of
available wells per labware, and the number of wells required. (C) Information regarding
transfer actions for a specific liquid into a destination labware can be automatically
generated using "Get_Transfers_Required. The destination labware, well, and transfer
volume are generated, which can be used by other functions. (D) Mastermixes can be
automatically generated using "Mastermixes_By Replicates’. Within a list of destination
labware, wells with identical proportions of the same source materials are grouped, and
mastermixes for those wells are generated and added to a "Labware_Layout™ object. The
destination labware is then updated to indicate which wells should be supplied by which
mastermixes.

components can be added to the mastermix in one step, rather than being added

separately to all experiments. Additionally, preparing mastermixes can help prevent

liquids being transferred at low volumes, which can lead to inaccuracies depending on

the equipment used. These advantages are true of both manual and automated setup.

BMS provides a function to generate mastermixes based on replicates found in

destination labware. Users can specify the maximum volume of mastermix aliquots,

the number of extra reactions mastermixes should be prepared for (which can help
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account for dead volumes and under-pipetting accuracies), and a minimum transfer
volume. The function then automatically identifies identical reactions or experiments
within the destination labware and populates a mastermix labware layout object with
mastermixes containing the required components (Figure 3.17 D). The destination
layout objects are also updated such that the contents of the wells now refer to the
newly created mastermixes, rather than individual components. The mastermix layouts
contain the individual components as content, and the mastermix name is stored as

the label for the well or slot it occupies.

The functions and classes mentioned thus far cannot be used to directly generate liquid
handling instructions. Instead, there are two separate modules within BMS which aim
to assist with the generation of instructions for the OT2 liquid handling robot, and the
Echo 525 acoustic-based liquid hander. These are described in the following sub-

sections.

3.4.5. BiomationScripter: OTProto
The OT2 robot includes two pipette slots which can be occupied by a range of different
pipettes. The pipettes aspirate and dispense liquids via a piston-based mechanism,
which is controlled by a stepper motor. Opentrons provides a Python API to control
OT2 liquid handlers, as well as simulating protocols prior to execution by the robot.
The native Opentrons APl mainly focuses on providing an interface for controlling the
core OT2 functionalities, such as aspirating, dispensing, mixing, and controlling the
hardware modules. There is, however, a noticeable lack of so-called wrapper functions,
which can be used to provide more complex and intelligent tools. Wrapper functions
can be used to handle the common logic and calculations required of many liquid
handling protocols, allowing users to focus on protocol-specific features, and reducing
the requirement for repeated development of code with identical functionalities. By
providing these wrapper functions, OTProto allows users to develop protocols with
more complex logic without needing to understand the underlying Opentrons API in
great depth, and also helps disincentivise hard-coding of run-specific information in
such a way which makes modification of a protocol by other users difficult. This is
because the wrapper functions can easily cope with changing parameters which can
differ between runs (such as labware types, sample numbers, and number of tip boxes

required) without needing to re-write large sections of the code.
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Figure 3.18. Labware Representations within OTProto

Relationship between labware in BMS, the native Opentrons API, and the physical world.
The "Labware_Layout™ class in BMS can be used to capture the state of a labware in
terms of current content. The Labware class in the native Opentrons API represents the
physical attributes of the labware and is used to inform OT2 robots as to the XYZ co-
ordinates of individual wells and other positions in the physical world.

When using the native Opentrons API, labware is split into two types: default labware

which is included within the Opentrons labware library, and custom labware which is
not pre-defined. The Opentrons API uses a "Labware’ class to inform the robot about
the specifics of labware loaded to the deck and are instantiated using a specific
labware APl name. The API name provides a reference to an entry in the default
labware library, or to the definition file for the desired custom labware. The loading of
custom labware when using the native API can differ depending on how the protocol
will be executed and/or simulated. Additionally, in some cases the way in which default
and custom labware are loaded may also differ These differences can cause extra
complexities during development of a protocol, may require modification of a protocol
between simulation and execution, and can reduce the flexibility of a protocol in terms
of easily replacing labware from run-to-run. OTProto provides the ‘load_labware’
function to handle these issues, which allows users to load labware in the same way

each time.

OTProto also has the “calculate_and_load_labware™ function, which will determine the
amount of "labware’ objects of a specified type required based on the number of wells
needed by the protocol. There are also the ‘get labware format® and
‘get_labware_well _capacity’ functions which allow users to get more easily (i) the

number of rows and columns of a labware and (ii) the well capacity of a labware. These
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functions allow for the development of more flexible protocols, where information about
the labware (such as how much liquid can be stored in a labware) do not need to be
hard-coded.

The representation of labware by the native API differs to BMS, which uses the
"Labware_Layout class. However, within the OTProto module, these two classes can
act in synergy. The native Opentrons "Labware™ class captures physical information
required by the OT2 robot to convert well positions into XYZ co-ordinates, whereas the
BMS "Labware_Layout™ class can be used to capture the state of the labware, storing
information about the labware’s content or intended content (Figure 3.18). Using the
OTProto ‘load_labware from_layout™ function, it is possible to create Opentrons
labware objects using a BMS layout object. The main requirement here is that the

‘Labware_Layout’’s type should be an Opentrons labware APl name.
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Figure 3.19. Opentrons Liquid Transfer Behaviour

Overview of the OT2 robot transferring low volumes of liquid. (A) Depiction of liquid
droplets remaining on the pipette tip after dispensing and blow out when transferring low
volumes of liquid into an empty well. (B) Method employed by BMS to ensure droplets are
removed from the tip. After dispensing, the tip moves to touch the bottom of the well which
causes the droplet to be removed. (C) Options for when blow out should occur. If blow out
occurs after the tip position has reset to above the well, then a droplet can still form if liquid
is already in the well. This is because a negative pressure differential can cause liquid to
be slightly sucked up into the tip. If the blow out occurs whilst the tip is at the bottom of the
well, it is less likely that liquid will remain in the tip.

= |
)

In terms of generating liquid handling commands, OTProto includes two main functions:
“transfer_liquids® and “dispense_from_aliquots’. The ‘transfer_liquids™ function
generates OT2 commands from a list of transfer volumes (specified in yL), a list of
source locations, and a list of destination locations, such that each index within these
lists describes a single transfer event. Unlike the transfer functions provided in the
native API, the OTProto function will automatically select the most appropriate pipette
to use for each transfer based on those which are loaded. There are also a range of
optional arguments which can be supplied to modify the way in which liquid is

transferred to help optimise the transfer events for specific protocols. These are all
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possible to perform using just the native API, however OTProto wraps them together
for easier implementation. The "'new_tip" argument allows users to specify whether or
not a new tip should be used for each transfer event specified. Beyond this, there are
arguments to define mixing events (repeated aspirate and dispense actions) for the
source and/or destination locations, and arguments to modify the speed at which liquid
is aspirated, dispensed, or mixed. The ability to control these speeds can be important
for liquids which are either significantly more or less viscous than water. There is also
the option to define a ‘blow out’ action, which pushes extra air through the pipette tip
to ensure all liquid is dispensed. This blow out can be performed into the source
location, destination location, or the integrated trash. During initial testing of liquid
transfer on the Opentrons, it was found that even with blow out actions, liquid droplets
can still remain on the end of the pipette tip, particularly when dispensing low volumes
of liquid into empty labware (Figure 3.19 A). To help tackle this issue, an option was
added to the “transfer_liquids™ function to move the pipette to the bottom of the well
after dispensing. This allows any droplet on the pipette tip to be removed (Figure 3.19
B). In the case where a well in occupied, moving the tip to the bottom of the well can
cause liquid to remain within the bottom of the tip. To prevent this, the blow out action
is performed before removing the tip from the liquid, to ensure all liquid is expelled
(Figure 3.19 C). These actions are optional and thus can be modified by users to

ensure accurate pipetting based on the specific application.

The “dispense_from_aliquots™ function acts similarly to “transfer_liquids’, and all of the
optional liquid handling parameter arguments are still valid. However,
“dispense_from_aliquots™ allows users to present a list of aliquots of a specific liquid
instead of a list of source wells. Based on the volume of each aliquot and the transfer
volumes specified, the function using volume tracking to select the source location to
aspirate from for each transfer event, ensuring that aspiration from empty aliquots does
not occur. This helps make protocols more flexible and makes the use of aliquots

simpler for protocol developers.
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Figure 3.20. Echo 525 Liquid Transfer Mechanism

Schematic showing how liquid is transferred by the Echo 525. The acoustic transducer
positions below the source well and emits an acoustic wave. The wave causes droplets to
be expelled from the top of the liquid in the source well into the well of an inverted
destination plate. The droplets formed are 25 nL in volume. Multiple droplets can be
expelled to reach the required transfer volume.

Aside from these functions, OTProto includes a number of less complex functions,

such as determining the number of tip boxes required for a protocol, getting the next
empty slot on the OT2 deck, and associating tip boxes with pipettes. These functions
are simpler to implement within a protocol than using the native API, requiring far less
lines of code and less understanding of how the API works.

3.4.6. BiomationScripter: EchoProto

The Echo 525 is a liquid handler which is capable of transferring low volumes of liquid
in the range of nanolitres. The robot functions via the use of acoustic sound waves to
eject droplets of liquid, which are 25 nL in volume, from an acoustically validated
source plate into wells of a destination plate, which is held inverted above the source
plate (Figure 3.20). This has the advantage of allowing molecule biology reactions to
be miniaturised which reduces the overall cost per reaction and has even been shown
to increase efficiency in some cases. There is also the advantage of the transfers being
pipette-less, which means that running costs can be reduced as tips do not need to be
purchased. However, the source plates are very specific and must have been validated
acoustically to ensure that the droplets generated by the acoustic waves are as close
to 25 nL as possible.

The generation of Echo protocols can be somewhat tedious, especially for large or
complex experiments. This is because main method of creating the protocol is to use
one of the Echo’s proprietary software, which are point-and-click interfaces. The other

method of creating an Echo protocol is the use of ‘picklists’, which are CSV files where
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BiomationScripter.EchoProto.Protocol

destination_plates: 1...n

\L source_plates: 1..n

BiomationScripter.PlateLayout BiomationScripter.PlateLayout
transferlists: 1...n

BiomationScripter.EchoProto.TransferList
source_plate: 1

BiomationScripter.PlateLayout

actions: 1..n

BiomationScripter.EchoProto.Action

o uid | int: Unique ID

o reagent | str: Name of the reagent to transfer

o sourcePlateName | str: Name of the plate to transfer from
o calibration | str: Acoustic calibration to be used for transfer
o sourceWell | str: Well containing the reagent

o destinationPlateName | str: Name of the plate to transfer to
o destinationPlateType | str: Type of plate to transfer to

o destinationWell | str: Well to transfer the reagent to

o _volume | float Amount of reagent to transfer

Figure 3.21. EchoProto Architecture

Architecture of the EchoProto module. All information for an EchoProto protocol is
captured by the "Protocol” class. Aside from metadata such as the protocol name, the
available source plates are stored using the "Labware_Layout™ class from BMS.
Destination plates containing the desired content after the protocol has completed are also
captured using the "Labware_Layout™ class. Information regarding transfer events from
each source plate are captured using the “TransferList™ class, and information about the
transfers themselves is captured using the "Action’ class.

each line defines a transfer event. These two methods can be somewhat slow when

writing large protocols and are not particularly easy to quickly modify to adjust aspects
of an experiment such as sample types, number of reactions, or reaction proportions.
EchoProto aims to solve these issues by providing a Python interface for the creation
of the Echo picklists, allowing for protocols to be scripted, and thus enable a level of

automation in protocol development.

Implementation of the EchoProto module in BMS differs from OTProto; OTProto
extends a pre-existing API and allows for direct control of the bio-automation robot,
whereas EchoProto has no pre-existing, open-source API to be based on. Instead,
EchoProto provides a method of generating CSV picklist files using Python scripts,
which are then converted into liquid handling instructions by the Echo’s proprietary
software.

The architecture of EchoProto revolves around three core classes:
"EchoProto.Protocol’, "EchoProto.TransferList’, and "EchoProto.Action” (Figure 3.21).
The “Protocol” class holds all information for the entire protocol, including any

metadata. The "TransferList™ class is used to capture all transfer events from a single
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source plate. The individual transfer actions themselves are captured by the "Action
class. It should be noted that transfer actions are split by source plate due to a quirk of
the Echo’s proprietary software; when generating liquid handling instructions from CSV
picklist files, only one type of source plate can be specified at a time. Like OTProto,
EchoProto also makes use of BMS’s "Labware_Layout’ class. Here, source plates are
defined using the layout class, where the type must be one of the three source plate
types accepted by BMS (384PP, 384LDV, or 6Res), and the content is populated with
the available reagents. These source "Labware_Layout™ objects can be defined either
within the code or imported from a Labware Layout Excel file. The destination plates
are defined in a similarly, however the content should specify the desired final state
once all liquid has been transferred, and the range of plate types is much larger. Once
defined, these "Labware_Layout™ objects are stored within a "Protocol” object as either
a source or destination plate. The "Generate_Actions™ function can then be used to
automatically generate the transfer events required to prepare the destination plates
specified by the user. The function can handle aliquots of the same reagent across a
source plate and will use volume tracking to ensure that once one source well is
depleted, the next well containing the required reagent is used. In the case of a lack of
source material, the user will be prompted, and informed which reagents are lacking,
and told how much extra is required. The user will also be alerted to any wells which
are below the working range for that plate and hence cannot be used for the protocol.
Once the actions are generated, the "Write_Picklists™ function is used to generate the
CSV picklist files. The user has the option of where these files should be saved. There
is also the option to group transfers from source plates of the same type into a single
picklist, or to have a separate file for every plate. As mentioned previously, source
plates of different types cannot be grouped into a single file. Once the files are

generated, they can be imported to the Echo and the protocols can be performed.

3.4.7. OTProto Templates
OTProto Templates for different types of protocols or experiments are created by
extending the "OTProto_Template™ superclass. This superclass contains a number of
methods and attributes which help keep some level of standardisation across all
OTProto Templates and helps users with developing the Templates. For example, the
number and type of tips required throughout the protocol can be tracked using the
“calculate_and_add_tips® method, and the appropriate number of tip boxes can be

added and associated with the correct pipette using the "add_tip_boxes_to pipettes
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method. Runtime prompts alerting users as to the number of tips and boxes can also
be generated by using the “tip_rack _prompt method. The general purpose BMS and
OTProto tools described previously can be used here to help easily implement flexible

code for generating liquid handling instructions.

An OTProto template is created by making a "Template™ class within a python file
(named for the protocol), which extends the "OTProto_Template™ superclass. The
" init__ " method of this new class should be used to collect the user-defined
information required by the protocol and store them as attributes for later use. The bulk
of the code for generating the liquid handling instructions should be contained within a
‘run’ method, which can then be called by users at runtime. To illustrate the process
further, a simple example for mixing different coloured liquids on the OT2 is described
below. Code for this example can be found in the documentation
(biomationscripterlib.readthedocs.io/en/latest/example_code/OTProto/OTProto_Tem

plate-Superclass). and a flowchart describing the general steps taken by the Template

(Figure 3.22) are also presented.

The requirements for the example OTProto Template are as follows: (i) to take a list of
coloured solutions, (ii) to prepare 2-colour mixtures in equal amounts in a destination
labware specified by the user, (iii) to allows the user to define the final volume of the
mixtures, and (iv) to allow the user to define if the mixtures are permutations or
combinations. The Template class for this protocol is defined by extending the
"OTProto_Template™ superclass. The required arguments are then defined in the
" init__ " argument and stored as attributes. Keyword arguments required by the
superclass, namely the protocol’s name, metadata, starting tip positions, and custom
labware directory location, are passed to the superclass. Next, a ‘run" method is
defined. Within this run function, the 2-colour mixtures are defined and stored in a list.
A "Labware_Layout™ object is then created for the destination labware, and the colour
mixtures are added to it as content. Next, a "Labware_Layout object is defined for the
source labware, and the number of aliquots of each colour are determined. These
aliquots are then added to the source layout. Opentrons "Labware™ object are then
generated from these layout objects and loaded to the deck. The transfer events
required are determined using "get_transfers_required’, and this information is used to
determine how many tips and tip boxes are required, which are then loaded to the deck.

Finally, the "dispense_from_aliquots™ function is used to generate the liquid handling
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Figure 3.22. OTProto Template Example Flowchart

General steps performed by the colour mixing OTProto Template to generate liquid
handling instructions.

commands. This Template can then be defined by a user, and a liquid handling

protocol for the OT2 will be generated based on the arguments supplied, with minimal

effort from the user.

OTProto has several Templates which have been developed and tested. These include
a heat shock transformation Template, a Template for spot plating cells onto an agar
plate, and a Template which prepares a microplate for calibrating a plate reader
according to the iGEM standardisation procedure!®l. For the heat shock transformation
template, the general functionality involves firstly dispensing competent cells into the
transformation labware, which is located on either the Opentrons temperature module
or the Opentrons thermocycler module. The DNA to transform with is then added to
the cells and mixing occurs by pipetting up and down. The transformations then
undergo the heat shock step, are cooled down to 4°C, and the user is prompted to
supply the transformation media to the OT2 deck. The media is then dispensed into
the transformation plate, which can then be placed into a shaking incubator for the
growth stage of the transformation. Users are able to modify the transformation
protocol by specifying parameters such as the labware types to use, the volume of
competent cells, DNA, and media per transformation, the number of replicates for each
transformation, the heat shock temperature and time, and whether or not the
competent cells source labware should be placed onto a temperature module to keep
them cool. By default, the transformation labware is kept at 4°C until the heat shock

step.
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Figure 3.23. OTProto Spot Plating

Spot plating methods employed by the OTProto spot plating Template. (A) After
dispensing cells, the pipette tip moves down slightly into the agar plate below to ensure no
droplets are left on the tip. (B) Serial dilutions of the cells are performed to ensure that
single colonies are obtained. The highlighted circles show the results of increasing
dilutions of a cello culture after incubation overnight at 37°C.

The spot plating Template is intended to add cells to an agar plate by spotting small

volumes of liquid onto the plate. This can be used to automate the plating stage of
transformations. The Template also includes a dilution stage, where the cells can be
diluted to different concentrations before plating. This can be useful to help ensure that
single colonies grow on the agar plate, rather than a circular lawn. Initial testing of this
Template showed that when small volumes (< 5 uL) of cells are used to create spots,
the liquid may remain on the pipette tip as a droplet, similar to the observation
presented in Figure 3.19. This droplet then has the potential to fall off as the pipette
moves across the deck, risking cross-contamination. These small volumes are very
common when using the spot plating Template, as larger volumes tend to create spots
with large diameters on the plate and can cause multiple drops to merge together. To
prevent this, the ‘'move_after_dispense’ argument of the OTProto transfer function was
used to move the pipette down and slightly into the agar after dispensing, ensuring that
droplet is always removed (Figure 3.23). This does have the disadvantage of
occasionally piercing the agar slightly, however the depth to which it pierces does not
appear to cause any negative effects and is required to ensure spotting is routinely
successful. Users are able to customise specific instances of the spot plating Template
by specifying parameters such as the cell dilutions, the spotting volumes (which can
be a list to spots of many sizes for each source cell culture), the repeats per source
cell culture, and the types of labware used. Users can also specify whether the protocol
should be paused after the dilution step and before the spotting step, allowing the agar
plates to only be supplied when needed and help prevent unnecessary contamination
from being exposed to the environment.
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The IGEM standard plate reader calibration protocol can be used by researchers to
convert arbitrary units acquired from a plate reader (fluorescence intensity and optical
density) into absolute unitsl®¥l, The advantage of using absolute units rather than
arbitrary (or relative) units is that data reported using such units can be compared
directly, no matter what type of plate reader was used to collect the data. Data reported
using arbitrary units cannot be used in this way as the values obtained differ between
types of plate readers, and even plate readers of the same type. The calibration
protocol works by calibrating arbitrary fluorescence values against a standard curve of
a calibrant which has similar fluorescent properties to the fluorescent protein being
measured. Similarly optical density, which is commonly used as a proxy for number of
cells in a sample, can be calibrated against a standard curve of microspheres which
have similar dimensions to the cells being measured. The plate reader calibration
Template allows users to easily set up a calibration plate, which contains serial
dilutions of the calibrants in a microplate. The calibration plate can then be measured
using the described plate reader, and the data can be used to help convert units from
experimental data collected using that plate reader into absolute units. The calibration
Template accepts arguments from the user such as the calibrant types, stock
concentrations, and initial concentration at the 1 in 1 position of the serial dilutions. The
volume per well and number of repeats, as well as the solvents in which the calibrants
should be diluted can also be specified. The types of labware to use at all stages are
also customisable. Finally, the Template allows users full control over the liquid
handling parameters, such as controlling the speed at which different liquids are
aspirated and dispense, how the dilutions are mixed, and the option to enable actions
like touching the tip to the sides of the wells after aspiration and dispensing, blowing
out air from the tip after dispensing, and moving the tip to the bottom of the well after
dispensing. Therefore, users can optimise their protocol and ensure the highest
accuracy possible. For all of these options, the Template has default values, allowing
users to ignore this extra complexity if desired. Results from using this Template are

presented in section 2.6.
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Figure 3.24. EchoProto Template Example Flowchart

General steps performed by the colour mixing EchoProto Template to generate picklist
files.

3.4.8. EchoProto Templates

Like OTProto, EchoProto enables the development of protocol Templates, but for the
Echo liquid handler, and they extend the "EchoProto_Template™ superclass. There are
three methods associated with the EchoProto superclass to help developers create
Templates: "add_source_layout” and "add_destination_layout™ help to track the source
and destination plates respectively, and "create_picklists’ can be used to automatically
generate the picklist files based on the source and destination layouts added. Again,
like OTProto, developers should use the ~__init__ " method of their Template class to
collect the required user inputs and store them as attributes, and a ‘run” method should
be added which contains the code for populating the labware layout objects and
generating the picklists. An example EchoProto Template is shown in Figure 3.24 and
can be found in the documentation
(biomationscripterlib.readthedocs.io/en/latest/example_code/EchoProto/EchoProto-

EchoProto_Template-Superclass), which can be used to generate 2-colour mixtures,

and functions similarly to the example shown for OTProto.

Aside from the example Template mentioned above, two other Templates were
developed for the Echo 525.The first Template can be used to help prepare PCR
reactions. Users are able to supply a list of source plates as labware layout objects,
which may either be generating using code or imported from a labware layout Excel
file. The destination plate to use is supplied as an unpopulated labware layout object,
allowing users to define the wells available for use (supporting re-use of partially used
plates). PCR reactions are defined by the user as a list of tuples in the format "(DNA,

Primerl, Primer2)". Specifics for preparing the PCR reactions, such as the type of
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Figure 3.25. EchoProto PCR Template Results

Results from testing the EchoProto loop assembly Template. (A) Workflow employed to
test the assembly of level 1 constructs using the loop assembly Template. See section
2.3.1 for full methods. Briefly, (B) DNA gel obtained by the Tapestation 4200 visualising
PCR products generated by the Echo 525 using the EchoProto PCR Template. Red
arrows show the approximate expected fragment sizes.

polymerase and buffer to use and the amount of DNA to add per reaction, can also be

defined by the user, along with the number of reaction repeats. It is also possible to
specify that a mastermix should be used to prepare the reactions, rather than adding
each reagent (polymerase, buffer, and dNTPs) separately. When not using a
mastermix, the proportions at which each reagent is added to the reactions is pre-
defined for a 5 uL reaction, which are then scaled based on the final reaction volume
supplied. For advanced users, it is possible to modify the reagent proportions by
changing the relevant attributes of the Template, before calling the ‘run’ method to
create the picklists. When the “run” method is called, the Template first checks that all
of the source material required to prepare the PCR reactions are present in the source
plates supplied. If not, the user is alerted to any issues and prompted on how to resolve
the problem. Otherwise, the Template creates the number of destination plates
required to contain the PCR reactions, and then populates the with the correct source
material. From this, the transfer events and picklists can be generated as described

previously.
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To test the PCR Template, eight PCR reactions were performed (Figure 3.25). The low
number of reactions allowed downstream processes required to verify the PCR
reactions to be performed manually (Figure 3.25 (A)). Performing these verification
steps manually allowed for just the PCR Template to be validated, rather than
simultaneously testing additional automation protocols in the same workflow. The PCR
reactions aimed to amplify up genetic elements from various plasmids and add specific
flanking regions (sub-section 2.3.1). These PCR reactions were verified via capillary
electrophoresis using the TapeStation 4200, as shown in Figure 3.25 (B). For all PCR
reactions, the major band was at roughly the expected size, suggesting that

automation of the PCR reactions was successful.

The other EchoProto Template developed was for the preparation of DNA assemblies
using the Loop method. Loop DNA assembly is able to assemble DNA parts which
adhere to the Phytobrick standard. The Template is able to assemble parts at any level
(including the creation of level 0 parts), as users are able to specify which enzyme
(typically Bsal or Sapl) should be used. The user can also define the type of buffer to
be used, the number of DNA assembly repeats to prepare, the final volume of each
reaction, the initial concentration of the DNA parts (in fmol/uL), and the backbone to
part ratios to use. The ratio of backbone to part can be supplied as a list, in which case
each assembly will be prepared using all ratios. Assemblies are specified using the
BMS "Assembly” class. An assembly object is instantiated by supplying a name for the
assembly, the DNA backbone to use, and a list of DNA parts to add. The source plates
and destination plate must also be supplied in the same way as described for the PCR

template, and the picklists are generated in a similar way.
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Figure 3.26. EchoProto Loop Assembly Template Results

Results from testing the EchoProto loop assembly Template. (A) Workflow employed to test the assembly of level 1 constructs
using the loop assembly Template. See section 2.3.2 for full methods. Briefly, the Echo 525 was used to prepare the assembly
reactions, which were then incubated in a thermocycler, transformed into E. coli cells, and grown in liquid culture. Plasmids
were extracted and screened via confirmation digest with band visualisation by the Tapestation 4200 before confirming
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assembly by Sanger sequencing. (B) Electrophogram showing DNA bands from the undigested backbone and the backbone
digested with Bsal. The grey arrows show sample markers at 15 bp and 10000 bp. The red arrow shows the undigested
backbone. The light blue arrows show the two linear fragments generated by digestion with Bsal, as expected (C)
Electrophogram showing DNA bands from one of the undigested level 1 assemblies, and the digested sample. Grey arrows
shown the markers, and the red arrow shows the undigested backbone. No linear fragments were observed, as expected. The
inset shows a close up of the lower section of the electrophogram. (D) DNA gel obtained by the Tapestation, which was used
to generate the electrophograms shown in (B) and (C). The red arrows shows the size for the assembly backbone, and the
light blue arrows show sizes for the linear fragments after digestion.
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To test the Loop assembly Template, four Level 1 expression units consisting of a
promoter, RBS, CDS, and terminator were assembled into either pOdd1 or pOdd2
backbones. To confirm the assemblies, first a confirmation digest with Bsal was
performed. During the Level 1 assembly, the two Bsal sites in the plasmid backbones
should be removed. Therefore, the assemblies should not be cut when incubated with
Bsal, but the backbone should form two linear fragments. The confirmation digests
were visualised via capillary electrophoresis performed by the Tapestation 4200. In
addition to the Bsal digests, all assemblies were confirmed as correct via Sanger
sequencing. Once again, all downstream processing was performed manually (Figure
3.26 (A)). Figure 3.26 (B) shows results for one of the backbones, where the two linear
fragments (light blue arrows) can be seen, along with some of the undigested
backbone (red arrow) due to the digest reaction not reaching completion. Conversely,
the assembly shown in Figure 3.26 (C) showed only one band: that of the undigested

backbone. Only one of the four assemblies is shown here for clarity.

3.4.9. BMS Templates for testing Sensynova modules and

biosensors
Characterisation of modules and biosensors developed in accordance with the
Sensynova framework stands to benefit from bio-automation. To aid in this endeavour,
the BMS library was used to develop a characterisation template for Sensynova-
compatible biosensors and modules. This template aimed to allow for trivial generation
of automation protocols to test a Sensynova module or a multi-microbial biosensor and
allow for standardisation in testing procedures. The OT2 was selected for this task as
it allowed for a much larger degree of flexibility compared to the Echo 525, allowing for
more complex protocols to be performed in a walk-away manner. However, the DNA
assembly EchoProto could have use within the Sensynova framework by allowing for

automated assembly of module variants, although this was not explored here.

The Sensynova OTProto Template was implemented similarly to the OTProto
Templates already described. Additionally, a new Python class, "Cell_Type’, was
defined for use in the Template. This cell type class requires instantiation by users,
and requires information such as a name, antibiotic selection (if any), media for the
cells to be cultured in, and the stock cell density of the culture supplied to the
automation equipment. Cell types can be passed to the Sensynova Template as either

positive controls, negative controls, or experimental samples, which allowed for easy
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understanding of the intended role for each cell type in the experiment. Users can also
define other global properties of the experiment, such as the different source materials
(antibiotics, media, inducers, etc.) to be used during the experiment along with the
volumes of aliquots and their stock concentrations, the types of labware to use for the
source materials and the destination labware, and the final volume for each

experimental.

Aside from the initialisation and run methods seen previously with OTProto Templates,
the Sensynova Template contains a number of additional methods which can be used
to define specific experiments. The "add_sample” method is used to define individual
experimental samples within the experiment. The types of cells to use, along with their
volume per cell, are used to define an individual sample. Information such as the type
of media and antibiotic to use are retrieved from the "Cell_Type" objects. Users are
also required to specify how many repeats of each experimental sample should be
added to the destination labware. If required, the type of inducer to use can also be
given, along with the final concentration at which it should be added. For common
types of characterisations associated with the Sensynova Framework, such as dose-
response or cross-talk experiments, methods are provided which act as wrapper
functions to create the required samples, without requiring users to specify them
individually. However, the "add_sample” method can still be used to provide flexibility
in the types of experiments performed. There are also methods to add control samples,
which simply adds the positive and negative cell types specified during Template
creation. The controls can be added with or without inducers, and the number of
repeats can also be specified independently. Finally, the “add_inducer_controls’
method automatically creates controls for all samples containing an inducer, where the

inducer is replaced with the solvent in which it is dissolved.

Aside from defining the experimental samples, other methods can be used to modify
the experimental setup. The use of mastermixes can be used to help decrease
variation across a protocol by ensuring that the source material for replicates is pre-
mixed and then dispensed into the required wells, rather than adding the source
material to each repeat well separately. Mastermixes can also be used to help increase
pipetting accuracy by ensuring that liquid is not transferred at lower volumes.
Mastermix generation uses the ‘mastermixes by replicates’ function described

previously.
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It is also possible to ensure samples with different concentrations of an inducer are
added at the same volume. This can be particularly important when an inducer is
dissolved in a solvent which may have an impact on cell behaviour, such as toxicity.
The "normalise_inducer_volumes™ method can be used to prepare uninform or non-
uniform serial dilutions of an inducer stock, allowing the same volume of inducer to be
added to the samples, no matter the final concentration. The volume at which the

inducer will be added to each sample is user-defined.

As with all OTProto Templates, the “run” method is used to generate the liquid handling
instructions based on the specified information. Error checking is used throughout the
Template to help prevent oversights or mistakes. This error checking goes beyond that
which is included with the native Opentrons API, as BMS is able to track information
about the experiment, rather than just checking for physical impossibilities (like trying
to load two labware onto the same deck slot). For example, the Template will give
warnings if a source material has been defined but never used, and errors are raised
when cells with different antibiotic selection markers or media requirements are co-

cultured.

The Template described here was used in chapters 5 and 6 to characterise Sensynova
modules as well as modular and multi-microbial biosensors. Although the Sensynova
Template was developed specifically for this purpose, it was found to have a large
degree of flexibility and could be used to characterise different synthetic biology
systems. An example of this can be seen in chapter 7, where a bioluminescent
construct was characterised using the Sensynova Template. These use cases helped
validate the applicability of the BMS library to a variety of applications within synthetic
biology by providing a flexible language with which to develop automation protocols

and Templates.
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3.5. Conclusions, Limitations, and Next Steps

This chapter began by exploring how the concept of high-level modularity could aid in
the development of synthetic biology systems. It was also identified that multi-microbial
systems provided an ideal method for implementing modular designs. Further, a
framework for developing genetic biosensors, termed the Sensynova framework, was
presented which leveraged modularity and multi-microbial systems. Based on work
described by the Newcastle IGEM 2017 team, this framework also builds upon
previous research discussed in section 3.1[120) [194-19] These previous efforts showed
not only the potential for high-level modular synthetic biology, but also how multi-
microbial systems could be used in conjunction with such modular approaches.
However, for reasons explained previously, research up until now tended to (i) focus
on either very specific applications, (ii) require complex and custom equipment, or (iii)
not provide guidelines for module development or implementation. By taking examples
from other fields, the Sensynova framework differed from previous work by focusing
on a wide-reaching but specific type of biological system, genetic biosensors, and
providing standard guidelines for module development to ensure flexibility and re-
usability of modules between various projects.

The Sensynova framework presented here extends the version documented by the
Newcastle IGEM 2017 team in several ways. Discussed in this chapter was the
development of resources for use within the Sensynova framework. Firstly, the
Synthetic Biology Open Language (SBOL) was extended to allow for representation of
cells and other chassis, and a set of best practices were proposed to allow for
representation of multi-microbial systems. This extension provided a method of
representing and sharing Sensynova biosensor designs using a standard format.
Although methods for representing such systems existed before the work presented
herel?1 they did not have the uptake or reach of the SBOL data standard in the field
of synthetic biology, as evidenced by the variety of software tools which are SBOL
compatiblel?®l [2521H2611 " A [imitation of the work provided here is that there currently do
not exist tools which can leverage the newly-added capability to develop and share
multi-microbial designs. Therefore, future work should focus on developing tooling
towards this application, similar to the pre-existing tools for genetic designsl’6l [262],
Without this tooling, the ability to capture multi-microbial systems in SBOL remains

limited to data scientists and programmers familiar with the low-level SBOL libraries.
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Nevertheless, the proposals discussed here, which were subsequently accepted by
the SBOL community, allowed for a greater range of systems to be captured by SBOL

than was previously possible.

In addition to extension of the SBOL data model, a Python library, BiomationScripter
(BMS) was developed to help automate characterisation of Sensynova modules and
biosensors. As discussed previously, other research in the area of bio-automation
protocol generation provided only an alternate method of programming protocols and
did not have the capacity for BMS Template-like functionality[?3° 239 or only developed
a method of automatically generating protocols for very specific workflows!223] 1250],
Thus, the BMS library is novel in combining these two approaches to not only develop
a flexible method for intermediate Python programmers to script complex protocols,
but to provide protocol Templates for rapidly and trivial generation of protocols for
synthetic biology procedures and allow for further Template development by users.
Next steps for development of BiomationScripter should focus on optimisation of the
developed Templates in terms of liquid transfer parameters and reaction component
proportions, where applicable. Such optimisation would be possible due to the in-built
ability to easily pass optional parameters to BMS Templates. Such optimisation data
would allow users to make informed choices when selecting these optional parameters,
help increase successful implementation of automation workflows, and potentially aid
with user uptake due to confidence that the developed Templates are high-quality.

137



Chapter 4. Design and Computational Modelling of a Modular

and Multi-Microbial Biosensor

In chapter 3, a modular and multi-microbial framework for assisting biosensor
development and optimisation was described. In order to investigate this framework’s
potential, a proof-of-concept biosensor was developed. This chapter details the initial
design stage of the biosensor. The biosensor’s specification and modular designs are
presented in section 4.2, along with a brief overview of how each module was built and
implemented. To help inform experimental characterisation, computational modelling
was first performed. Each module was modelled deterministically (section 4.3), and
also modelled using an agent-based approach (section 4.4). The agent-based models
were combined to simulate the biosensor co-culture. Section 4.5 gives an overview of
the insights gained from the simulation results which were used to inform the

experimental characterisation and validation presented in chapter 5.
4.1. Introduction

4.1.1. Computational modelling of biological systems
Synthetic biology devices and systems can be simulated using computational models
to assist with (i) the system’s designl’®, (ii) experimentally testing the system[2&3], (iii)
performing optimisation!®® [264] or (iv) a mixture of all threel?%3l. Modelling a system can
allow for a more informed approach towards development by providing insight to a
system’s behaviour and identifying fundamental issues with the design prior to
expending time and resources building and testing the system. Simulating a system
can also be used to investigate targets for optimisation by investigating aspects which

have the most impact on the system’s desired function.

Biological systems can be described using a series of stoichiometric equations, which
detail interactions and reactions occurring within that system. Stoichiometric equations
simply formalise entities which are involved in some reaction. There are a variety of
approaches and algorithms which may be used to simulate models described by such
stoichiometry!?%6l. One such approach, often referred to as deterministic simulation, in
which ordinary differential equations (ODEs) are generated based on the
stoichiometric reactions and their kinetic. The ODEs can be used to calculate,

according to the law of mass action, how each entity varies over time as reactions
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progressl?671. 1268, Thus, by using the amount of each entity at the current time point as

inputs for the ODESs, the state of the system can be determined after a set time period.

Modelling processes such as transcription, translation, molecular binding, and
enzymatic reactions allows deterministic models to predict how a system might react
to the introduction or removal of specific biological or chemical entities (such as
molecules used as inducers, or DNA encoding specific proteins)i?%?l. These models
have also been employed to help inform on the design of genetic constructs used in
synthetic biology systems by predicting how the behaviour of the system changes with
increased or decreased transcription and translation (which can represent different
strengths of promoters and ribosome binding sites), or other processes like protein
degradation which can be modified via the genetic design, such as through the addition
or removal of degradation tags!?7%,

Whilst a deterministic view of biological systems can be helpful, it is not able to
meaningfully represent biological noisel?’tl, Random noise is a constant within biology,
and in some cases is even integral to the correct functioning of a biological
mechanism[?72l, Therefore, it can be necessary to include this feature. An example of
this is in gene expression, where the binding of transcription factors to regions within
a promoter is subject to random chancel?”3 274 To account for random noise,
stochastic models may be used rather than deterministicl?72. Stochastic models can
be built in a similar way to deterministic models (by formalising the system via a series
of reactions), however a different set of methods and algorithms are required for
simulation?”®l, These methods make use of statistical probability to introduce
randomness into the model, and hence each run of the simulation will yield different
results each time. Therefore, unlike deterministic models which will always give the
same set of results when all inputs and parameters are the same, it is usually
necessary to run stochastic simulations multiple times to determine the general pattern
of behaviour for a given set of conditions. Additionally, stochastic simulations can be
more computationally complex and expensive than deterministic models!?7¢l 2771 The
advantages of stochastic simulations come from the ability to account for noise, which
also allows for them to more accurately represent systems containing entities present
in low quantities. This is because when low numbers of an entity are present,
randomness involved in certain processes becomes more important. For example, the

binding of two molecules requires them to first come into contact with one another — a
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situation which becomes more subject to random probability when the molecules are
present in low numbers within a large spacel?”8l. Therefore, despite their computational

complexity, stochastic models are becoming more common within this field.

4.1.2. Systems Biology Markup Language (SBML)
To help capture information required for modelling of a biological system, a standard
data format termed SBML (Systems Biology Markup Language) can be used[?9,
SBML formalises information about a system in a machine-readable format and is
commonly encoded using extensible markup language (XML). SBML can be used to
represent a biological model by capturing information about reactions, such as the
species involved and their roles, the mathematical equations which describes the
reaction, and the values of any parameters used, as well as the species present in the
system, their starting amounts, and the units for any values. Other information such as
the presence of compartments can also be captured. There are no specifications
relating to how a system should be simulated, allowing for applicability to a wide range

of model types and simulators.

There are a variety of software tools and programming libraries which have been
developed with SBML compatibility in mind, allowing users to easily define a biological
system for modelling, and perform simulations of that system. For example, libSBML
is a C++ library with APIs (Application Programming Interfaces) for other languages
(such as Python and Java) which can be used to create and edit models encoded in
SBML[?89, Similarly, the LibSBMLSIm library can be used to simulate SBML models!281],
COPASI (a COmplex PAthway Simulator) is an SBML-compatible software tool which
provides a user interface for creating, editing, and simulating biological models using

a variety of deterministic and stochastic simulators(?82],

4.1.3. Modelling microbial communities
For modelling microbial communities, agent-based modelling, sometimes referred to
as individual-based models, are an appropriate option as each microbe in the system
can be represented as its own agent[?3-1285 Each agent can then be modelled
separately within the overall simulation, rather than assuming homogeneity across all
microbes. This is important when it comes to studying microbial communities as it is
well known that heterogeneity, where microbes exhibit different behaviours, is
common!?88l [287] ' As discussed in section 1.2.6, heterogeneity can even be observed

in microbes of the same type, depending on the interactions occurring with other
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nearby members and the state of the local environment!?88l, Considering the immediate
surroundings of each individual microbes is also crucial when modelling
communication between individuals, as this communication most often relies on the
diffusion of small chemicals, and hence the exposure of each microbe to the signalling
chemical depends on their position within the diffusion gradient(?8°l, ABMs are also able
to simulate mechanical interactions and forces which are important factors when
modelling communities with distinct structures such as biofilms/?®%, In these types of
systems, affects like fluid flow and shear force have an impact on the community’s
morphology. The use of agent-based modelling also enables graphical simulations in
2- or 3-dimensional space, where the general positions of microbes and other entities,
such as extracellular chemicals or proteins, within the system can be predicted. This
allows for predictions relating to the shape and structure of communities which do not

exist in a homogenous mixturel?°4,

There are a number of ABM simulators and software tools which have been developed
for modelling microbial communities. One such example is gro, which is a specification
language for defining and simulating a multi-microbial community?®Y. The gro tool
allows for specification of different cell types along with information about their growth
rates. The internal reactions occurring within the cells can also be defined using rule-
based modelling, and cell-to-cell signalling can be modelling by defining signal
emission and reception for each cell type. The downside of gro is that systems can
only be modelled in 2-dimensions, which means that systems which exist in 3-
dimensions, such as those grown in liquid culture, cannot be accurately modelled. The
NUFEB simulator is another example of an ABM tool, which allows for modelling of
communities in 3-dimensions?®2, There is also extensive support for modelling
nutrient-limited growth and essential features of biofilm formation, such as Extracellular
Polymeric Substances (EPS), however there is no option to model other cellular

mechanisms such as the expression of genes or cell-to-cell signalling.

Simbiotics is a platform implemented in Java which allows for simulation of microbial
communities in either 2- or 3-dimensionsl’’l. There is support for a range of cellular
processes, including growth and transport of chemicals across membranes. There is
also the option to include more complex internal cellular mechanisms such as the
expression of genetic circuits using SBML models, which can be attached to the

different cell types in the system and solved individually at each time step. These SBML
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models can be simulated using solvers provided with the libsbmlsim library, which
provides a variety of methods for solving ODEs. The ability to implement cellular
behaviour using SBML files enables a modular approach to development of a model
for microbial communities, as cell types can be easily swapped by changing the SBML

file provided.
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4.2. Design, Assembly, and Implementation of a Proof-Of-Concept Biosensor

4.2.1. Biosensor specification
To determine the feasibility of developing genetic biosensors using the Sensynova
framework, a proof-of-concept biosensor was taken as a case study. The aims of this
feasibility study were to (i) demonstrate how a biosensor can be split into three
functional modules Sensynova framework’s design principles, (ii) determine whether
these modules can be combined via co-culturing to form a biosensor with desired
functionality, and (iii) explore potential avenues for optimisation. For the purposes of
testing the framework, it was decided that this biosensor should be relatively simple in
terms of the response characteristics and should be constructed of well characterised
parts. This allowed more time and resources to be directed towards testing and
development of the framework, rather than development of a complex and novel
biological device. To this end, the following design parameters were used to define the
biosensor specification:
i.  The biosensor should respond to the presence of the small
molecule IPTG (Isopropyl B-D-thiogalactoside)
ii.  The biosensor's response should generally scale with the
concentration of IPTG present
iii.  The response should be well defined, easily detectable, and
able to generate both quantitative and qualitative data
iv.  The biosensor should make use of well-defined genetic parts
Using these design parameters, abstract functionalities for the three module types
defined by the Sensynova framework (detector, processor, and reporter) were
determined. Broadly, these abstract functionalities were as follows. The Detector
module should convert the presence of IPTG into a genetic signal. This module was
termed the IPTG Detector Module. As no specific response characteristic was
specified by the design parameters, the Processor module needed to simply pass the
signal from the Detector module to the Reporter module. This was termed the Default
Processor Module. Finally, for the response, production of a green fluorescent protein
(GFP) was chosen. This is because fluorescent proteins can provide quantitative data
by using a fluorometer to measure the fluorescent intensity of a sample, and many
GFPs are also visible to the naked eye or under ultraviolet (UV) light, producing a green

colour.
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Figure 4.1. Module Interface Designs

Genetic diagrams depicting interfaces between the three module types. (A) Abstract
overview of signal propagation. C12-HSL carries the signal from the detector to the
processor, and C4-HSL from the processor to reporter. (B) Top: detector module interface.
A sensing mechanism regulates the Connector-1 sender sub-module, which is responsible
for expression of lasl, and hence production of C12-HSL. Middle: processor module
interfaces. Connector-1 receiver sub-module activates the signal processor in the
presence of C12-HSL. The signal processor regulates the Connector-2 sender, which
encodes rhll. Bottom: reporter module interface. The Connector-2 receiver sub-module
activates an actuator in the presence of C4-HSL. (C) Alternative interface sub-modules for
the connector-1 sender and connector-2 sender. These variants co-express a fluorescent
protein (eCFP for connector-1 sender and mCherry for connector-2 sender) to allow for
easier measurement of activation.

Aside from these abstract functionalities, each module also needed to be compatible

with the standard interfaces described in Chapter 3, namely that the Detector module
should produce quorum sensing molecule C12-HSL, the Processor module should
respond to the presence of C12-HSL and produce the molecule C4-HSL, and the
Reporter module should respond to C4-HSL. As discussed previously, this functionality
allows for uni-directional cell-to-cell communication and the propagation of a signal

from the Detector module to the Processor module to the Reporter module.
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Finally, it was decided that the biosensor modules should be implemented within
Escherichia coli cells. This was because the use of well-defined parts was specified,
and many of the most commonly used and characterised parts were designed for and

tested in E. coli cells®2,

4.2.2. Considerations for designing the high-level modules
Here, the genetics for the three biosensor modules defined above are presented. For
all constructs described here, genetic parts known to work in E. coli cells were used.
A full list of all part names, sources, and sequences can be found in the materials and
methods section. It should be noted that whilst a high-level modular framework such
as the one described in this work can eventually promote top-down design, initial
development of the individual modules must necessarily be bottom-up. This is because
there are currently no suitable higher-level modules to use, and therefore individual
genetic parts must be used instead. It is only once compatible modules have been

developed that top-down design is possible.

As described previously, the interfaces between each module in the Sensynova
framework were implemented as quorum sensing mechanisms (Figure 4.1 (A)). Each
interface (detector-processor and processor-reporter) was split into two sub-modules:
a sender and a receiver (Figure 4.1 (B)). The first interface (detector-processor) was
facilitated by LasIR quorum sensing, where the small diffusible molecule C12-HSL was
sent from the detector module and received by the processor module. The second
interface (processor-reporter) used the RhlIR mechanism, where the quorum sensing
molecule C4-HSL was sent from the processor and received by the reporter. The
genetic designs for these senders and receivers are shown in Figure 4.3. These sender
and receiver designs were taken from those presented in the Newcastle iGEM 2017

project, which ensured compatibility.
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Figure 4.2. Fluorescent Protein Markers’ Spectral Profiles
Spectral profiles for eCFP, mCherry, and sfGFP. Spectra were obtained from FPBase[?%3,

As one of the aims for this work was to characterise all three biosensor modules
independently, it was important to ensure that the modules were designed so as to
facilitate appropriate measurement of functionality. A common method of measuring a
device or system’s behaviour within synthetic biology is to use fluorescent markers,
which are co-expressed along with aspects of the system which require measurement.
Fluorescent proteins tend to be used as their presence can be easily quantified using
a range of laboratory equipment, such as fluorescent microplate readers. Additionally,
there are a large range of fluorescent proteins which have been validated within
organisms commonly used in synthetic biology researchl?®4. For these reasons, it was
decided that fluorescent proteins would be used as markers to measure module activity.
For the reporter module, no modifications to the design were required as the biosensor
specification already requires the output of this module to be a fluorescent signal. For
the detector and processor modules, the sender sub-modules were modified to contain
a fluorescent protein coding sequence (with ribosome binding site) immediately
upstream from the AHL synthetase coding sequence (lasl for the detector module and
rhll for the processor module). This positioning meant that the fluorescent proteins
markers should be co-transcribed with the AHL synthetases, which in turn should only
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be expressed when the modules have been activated. Therefore, presence of the
fluorescent proteins, and hence a fluorescent signal, could be used to determine

activation levels for the modules.

The fluorescent protein markers have applicability not only in characterising the
modules individually, but also in measuring activity of each module within a co-culture.
It was therefore important to consider the excitation and emission spectra of the
fluorescent proteins to ensure that minimal overlap exists. If significant overlap were to
exist within the emission and/or excitation profiles of the fluorescent proteins, it would
be difficult to differentiate from which modules the signal was generated. It was decided
that cyan, red, and green fluorescent proteins would be used, as these colours are
separated across the colour spectrum. The specific fluorescent proteins chosen were
eCFP (enhanced cyan fluorescent protein), mCherry (a red/pink fluorescent protein),
and sfGFP (superfolder green fluorescent protein). The spectral profiles for these
proteins can be seen in Figure 4.2. Whilst the mCherry emission and excitation spectra
have no overlap with eCFP or sfGFP, the two other proteins do have some overlap.
This overlap, however, could be mitigated through careful selection of the wavelengths
chosen for measurement. Here, eCFP expression was measured using an emission
wavelength of 480 nm and sfGFP expression with an emission of 515 nm, both of
which have little overlap with the emission profile of the other fluorescent protein.
Therefore, it could be assumed that the majority of each fluorescent signal measured

came from the expected protein.

It was decided to use expression of the sfGFP protein as the output of the reporter
module, as the protein exhibits high stability, and a large dynamic range and signal-to-
noise ratiol?®®l. Therefore, use of SfGFP as a reporter should allow for more sensitivity
when measuring functionality of the multi-microbial biosensor. It was then decided that
the processor module should use mCherry as the fluorescent marker, and the detector

module should use eCFP.
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Figure 4.3. Biosensor Module Designs

Schematics depicting genetic designs for the three proof-of-concept biosensor modules.
Abstracted functionality and interactions are shown. (A) Genetic design for the IPTG
detector module. Consists of the IPTG sensing sub-module and Connector-1 sender
testing variant. (B) Genetic design for the default processor module. Consists of the
Connector-1 receiver sub-module and the Connector-2 sender testing variant. No
processing sub-module is included in this design (shown as an empty box between the
receiver and sender sub-modules). (C) Genetic design for the sfGFP reporter module.
Consists of the Connector-2 receiver and sfGFP actuator sub-modules.

4.2.3. IPTG detector module design
An IPTG sensing sub-module was designed to be used in the IPTG detector module.
The sensing sub-module design utilised the well-known and well-utilised Lac system
to convert the presence of IPTG into a genetic signall04: [2961-[298] |n the Lac system, a
transcription factor (Lacl) represses the PLac promoter. However, IPTG can bind and
sequester Lacl from the promoter. Therefore, in the absence of IPTG expression from
PLac is repressed, and in the presence of IPTG expression is permitted. The IPTG
detector module design was completed by adding the connector-1 sender sub-module
upstream of the IPTG sensing component. This design meant that PLac was
positioned upstream of the lasl coding sequence, and hence allowed for regulation of
Lasl production (and consequently C12-HSL synthesis) by IPTG. The IPTG sensing
sub-module was designed to be assembled immediately upstream of the connector-1

testing variant sub-module, as shown in Figure 4.3 (A).
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4.2.4. Default processor module design
The default processor module was intended to have no prescribed function other than
accepting the signal from the detector and passing it to the reporter. Therefore, the
default processor module’s design consisted simply of the connector-1 receiver sub-
module upstream of the connector-2 sender testing variant sub-module (Figure 4.3B).
For processor variants, a design could be added between these two sub-modules with

functionality such as signal amplification.

4.2.5. sStGFP reporter module design
For the reporter module, an actuator sub-module capable of generating the desired
signal (in this case fluorescence) was designed. Here, this actuator sub-module
consisted of a coding sequence for superfolder GFP (sfGFP) flanked by a ribosome
binding site and terminator. This sfGFP actuator sub-module was then combined with

the connector-2 receiver to form the complete sfGFP reporter module (Figure 4.3C).

4.2.6. Overview of assembly strategies

The genetic designs for the processor module shown in Figure 4.3 was assembled in
stages using Biobrick assembly, as described in section 2.2[2%.. The reporter module
construct was previously constructed and required no further modification (section 2.2,
Table 2.2). Initially, Biobrick assembly was also to build the IPTG detector module,
however the final stage of assembling the IPTG sensor sub-module and connector-1
sender testing variant sub-module repeatedly failed to yield plasmids containing the
correct construct. Instead, the IPTG detector module was obtained via third-party
synthesis (by ATUM) directly into the pSB1C3 plasmid (section 2.2).

Once each module had been obtained and sequence verified, the plasmids were
transformed into E. coli DH5a cells. Following transformation, the cells were termed
IPTG detector cells, default processor cells, or sStGFP reporter cells, depending on the

type of module each cell type contained.
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4.3. Deterministic modelling of biosensor modules

Prior to experimental characterisation of the modules described above, and the multi-
microbial biosensor as a whole, computational modelling was used to help predict
behaviour and guide the experiments performed. To achieve this, an SBML model was
developed for each module (IPTG detector, default processor, and sfGFP reporter)
Initially, the models were simulated using stochastic algorithms, namely the Gillespie
stochastic algorithm[®°°, However, the stochastic simulations showed a large degree
of numerical instability and often resulted in internal time step limit errors. These issues
were likely caused by the large number of some entities which accumulated during
simulation, which are not handled well by stochastic algorithms. Subsequently, the

SBML models were simulated deterministically.

4.3.1. General model assumptions
For each biosensor module, a deterministic model was created in SBML using
COPASI??82] (version 4.36, build 260), and simulated using the basico!*°Y python library
(version 0.3.0). The models were defined by a series of reactions which assumed mass
action rate kinetics and simulated deterministically. There were a few universal
assumptions made for all models. The first was that the required cellular resources for
the modelled processes, such as ribosomes, polymerases, and AHL synthetase
substrates, were present in excess. This allowed for processes like transcription and
translation to be abstracted to a single reaction, without modelling the presence of
cellular machinery, nucleotides, amino acids, or other entities. The assumption of
resource abundance, whilst not necessarily true, was made as it was more likely in the
biosensor module systems that other entities, such as the inducers/signalling
molecules, would be the limiting factors, and allowed for a simplified model which
required less computation resources to simulate. Another assumption made was that
all DNA elements comprising the biosensor modules were present at an initial starting
amount of 200. This number was selected based on the reported copy number of
pSB1C3 (100-300), which was the plasmid used to contain the genetic system[202}: [303],
The final assumption made here was that of homogeneity across the system, where
each cell of the same type had exposure to identical conditions as other cells and
behaved in the same way. As discussed in section 4.1, this is not always necessarily
true, however the assumption allowed for an initial insight into the functionality of the
biosensor modules. The models could then be used to build an agent-based model to

better account for heterogeneity in the system, as will be presented in section 4.4.
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Figure 4.4. IPTG Detector Module Schematics

Depictions of reactions and interactions in the IPTG detector module SBML model. (A)

Lacl complex formation and IPTG binding. Grey circles () are used to indicate
association/dissociation reactions. Green double-sided arrows (€*>) show products of
association, black double-sided arrows (<>) show products of dissociation, and blue

arrows (—>) show binding reactions assumed to not dissociate. (B) Lacl interaction with
PLac promoter. Red crosses (X) indicate blocked transcription. Green ticks (v) indicate
permitted transcription. (C) Schematic depicting the IPTG detector module SBML model.
Entity names are shown in larger font size, and reaction names in smaller font size. Black

arrows (—>) show irreversible reactions and capped arrows (=) show repressive

interactions. Dashed black lines represent abstracted interactions shown in (A) and (B).

The empty set symbol (Q) is used as the product of degradation reactions. A
comprehensive list of reactions and their parameters can be found in section 2.4.

The parameters for the deterministic models were obtained through a mixture of
literature and estimation based on previously reported behaviour of similar systems.

The specifics for each model are described in the following sub-sections, along with

discussion of simulation results.

4.3.2. IPTG Detector Module

For the Lac repressor system employed by the IPTG detector module, there is a

general consensus regarding its mechanism. It is thought that the Lacl transcription

factor forms a dimer of dimers, which permits binding to operator sequences

PLac promoter region[394: [305], Binding of Lacl prevents polymerases from accessing
IPTG

the PLac promoter, and hence prevents transcriptional initiation®%l, For the
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detector module model presented here, the formation of the dimer of dimers was
modelled as a two-stage process, where each dimer first formed separately, before
binding together to form the two-dimer complex. A common assumption for the
formation of the first dimers is that this process is very energetically favourable, and
thus does not tend to be rate limiting!'%. Additionally, the reverse reaction of the dimer
into two separate proteins is generally assumed to happen so infrequently that it is
frequently removed from modelsi?”Y. This approach was also taken here. The
formation of the dimer-dimer complex is not always considered when modelling the
Lacl system, and as Lacl is usually observed already in its tetrameric state, there were
no readily available rates to use from previous studies for this reaction!3%7]. In the IPTG
detector module model, the assumption was made that dimer-dimer binding was as
energetically favourable as the formation of Lacl dimers, although the collapse of the

complex into two separate dimers was included, but at a slow rate.

The small molecule IPTG is known to bind to Lacl and sequester it from binding to the
DNA operator®%8l. For the purposes of this model, it was assumed that a Lacl complex
with one molecule of IPTG would have reduced binding to the DNA operon, but any
extra would prevent binding completely. This assumption was made based on the
mechanism of Lacl binding, where each dimer in the complex is thought to bind to a
separate region in the PLac promoter3%9. Thus, whilst one molecule of IPTG might
allow for the dimer without any IPTG to still bind, and in the process aid binding of the
other dimer due to close proximity with the DNA, two bound molecules of IPTG would

make the binding kinetics unlikely enough as to be ignored.
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Figure 4.5. Deterministically Simulated IPTG Detector Module Behaviour

Results from deterministic simulation of the IPTG detector module SBML model depicted
in Figure 4.4. Full details regarding simulation can be found in section 2.4. (A-B) Dose-
response curves with concentrations of IPTG between 0.005 and 50 mM IPTG. Responses
were measured as fold change in either eCFP (A) or C12-HSL (B) production compared to
no IPTG addition after 3, 12, and 24 hours. (C-D) Time course curves over 24 hours for the
IPTG detector module induced with either 0.5, 1.0, or 1.5 mM IPTG. The dependent
variable was fold change in eCFP (C) or C12-HSL (D) production compared to the system
with no IPTG added. Insets show curves for induction with 0.5 mM at increased resolution.
(E-F) Time course curves over 24 hours when induced with 1.5, 1.0, 0.5, or 0.0 mM IPTG.
Dependent variable was concentration of eCFP (E) or C12-HSL (F) in mM.

It is thought that binding of IPTG to Lacl-DNA complexes can occur to cause de-
repression of the PLac promoter®19, In this model, one molecule of IPTG can bind to
a Lacl-PLac complex, but if another IPTG molecule binds the complex then PLac is
freed and an unbound Lacl dimer of dimers with two IPTG molecules bound forms.
The Lacl binding mechanisms used in this model are illustrated in Figure 4.4 (A-B).
Figure 4.4 (C) illustrates the remainder of the IPTG detector module model with the
Lacl binding kinetics abstracted for clarity. The genetic expression of the relevant

proteins (Lacl, Lasl, and eCFP) are modelled, along with the synthesis of C12-HSL by
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Lasl, and degradation of all entities other than the plasmid DNA molecules, which are

assumed to remain consistent throughout.

The IPTG detector module model was first simulated for 24 hours with all starting
entities at an amount of 0, except for the DNA components which began at 200. This
allowed the system to stabilise and provide initial starting amounts for the other entities.
Experimentally, this step correlated with culturing of the cell types in liquid media
overnight prior to performing experiments. Following initialisation, the model was
simulated for a further 24 hours in the presence of a range of IPTG concentrations,
including no IPTG. The concentrations used were based on data from previous studies

involving similar systems(311-313],

Simulation results were used to predict the detector’'s dose-response curve, which
allowed an informed choice of inducer concentrations to use in experiments. Dose-
response curves for fold changes in eCFP and C12-HSL production are shown in
Figure 4.5 (A-B). eCFP and C12-HSL were chosen as responses for the curves as the
former could be measured experimentally via fluorescence intensity (and hence
allowed for comparison of simulated and experimental data), whilst the latter was
essential for propagation of the signal to processor cells. It was also important to
determine the relationship between the two entities to ensure that eCFP measurement
was indicative of C12-HSL production. The simulations suggested that whilst the dose-
response curves for both entities display almost identical shapes, the fold change
magnitude of C12-HSL is roughly a third of that seen with eCFP production. This can
also be seen in the time course plots (Figure 4.5 (C-D)), where once again the time
course curve shapes are similar, but differences are less pronounced with C12-HSL.
The predicted fold change in production of C12-HSL was lower than that of eCFP,
however the model also suggested that the overall concentration of C12-HSL present
in the system would be ~5000 fold higher (Figure 4.5 (E-F)). These values should be
treated with caution, as the model had not yet been experimentally validated, and the
concentration of C12-HSL predicted (up to 3 mol/Ll) seemed exceptionally high.
Nevertheless, the prediction of a higher C12-HSL concentration than eCFP was not
unexpected, as multiple AHL molecules could be produced by a single enzyme (Lasl),
which was present in similar quantities to that of eCFP. Overall, these results
suggested that the IPTG detector module should function as expected, and also that

measurement of eCFP could be used as a proxy for module activity.
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Figure 4.6. Default Processor Model Schematics

Depictions of reactions and interactions in the default processor module SBML model. (A)
LasR complex formation, C12-HSL binding, and interaction with PLas promoter. Grey
circles (e) are used to indicate association/dissociation reactions. Green double-sided
arrows (<>) show products of association, black double-sided arrows (€*) show products
of dissociation. Red crosses (X) indicate unfavourable transcription. Green ticks (V)
indicate favourable transcription. (B) Schematic depicting the default processor module
SBML model. Entity names are shown in larger font size, and reaction names in smaller
font size. Black arrows (—>) show irreversible reactions. Dashed black lines represent
abstracted interactions shown in (A). The empty set symbol (Q) is used as the product of
degradation reactions. A comprehensive list of reactions and their parameters can be
found in section 2.4.

4.3.3. Default Processor Module
The default processor module was designed to respond to the presence of C12-HSL
(the molecule produced by detector cells), and express Rhll to catalyse production of
C4-HSL. To detect C12-HSL, the LasR transcription factor was used. Similar to the
Lacl mechanism, LasR forms a dimer, however it is not thought to form a dimer of
dimerst314: 15 C12-HSL can bind dimeric LasR with a stoichiometry of one AHL
molecule per protein, which enables the LasR complex to bind a specific region of the
PLas promoter. When bound, unlike Lacl which blocks polymerase binding, LasR
recruits RNA polymerase to the promoter site and hence drives transcription of
downstream coding regions. In the default processor module, rhll was placed under

the control of PLas, and therefore Rhll production could be induced by the presence
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of LasR and C12-HSL. In addition to the Rhll coding region, mCherry was also included
downstream of PLas, allowing for co-expression of the two proteins. As mentioned
previously, this allowed for characterisation of the module system via detection of red

fluorescence.

Like the IPTG detector module model, the default processor module was modelled as
a set of mass action reactions and simulated deterministically. Based on previous
studies, a number of assumptions were made regarding the LasR mechanism. Firstly,
it was assumed that LasR dimerisation occurs at a relatively high rate, but that
dissociation of the dimer also occurs quickly unless an AHL molecule is bound to the
dimerl’82, |t was also assumed that degradation of LasR monomers is high['8%, but
LasR dimers are protected from proteases to such a high degree that their degradation
could be ignored. These assumptions were based on an experimental study!!6! which
found that in the absence of C12-HSL, LasR is unstable and difficult to extract from
cells in high quantities. When C12-HSL was added, however, LasR showed increased
stability and extraction of the protein was far more successful. These observations lead
the authors to conclude that a feature of the LasR mechanism is that C12-HSL not only
allows LasR to bind to DNA, but also increases the amount of LasR present by
preventing degradation. Another assumption made was that LasR dimers with only one
C12-HSL molecule bound would still be able to bind DNA, although at a much slower
rate due to reduced conformational change, but LasR dimers with no ligand bound
would show no DNA binding activity. This assumption was based on studies where
ligand-free LasR did not appear to bind DNA at all, but that dimeric LasR complexed
with non-canonical ligands still showed some DNA binding activity, despite non-optimal

conditions!184l. [316]
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Figure 4.7. Canonical and Crosstalk Response Predictions for the Default Processor
Module

Results from deterministic simulation of the default processor module SBML model
depicted in Figure 4.6. Full details regarding simulation can be found in section 2.4. (A)
Schematic depicting C4-HSL crosstalk interactions. Symbols are the same as seen in
Figure 4.6 (A). (B-C) Results for the system with no C4-HSL synthesis activity. (D-E)
Results for the system with C4-HSL synthesis activity. (B, D) Dose-response curves with
concentrations of the canonical inducer (C12-HSL) between 10-6 and 50 uM. Responses
were measured as fold change in either mCherry production compared to no C12-HSL
addition after 3, 12, and 24 hours. (C, E) Same as (B, D) but with C4-HSL as inducer. The
inset in (E) shows time course of mCherry fold change over 24 hours.

An important aspect of the default processor system was crosstalk, where molecules
other than C12-HSL could bind and activate LasR. Crosstalk behaviour has been well
documented for LasR, where a range of ligands have shown to have binding capacity,
including C4-HSL[151: [175]. [180]  Because C4-HSL was to be present in the default
processor system as a product of Rhll, interactions between LasR and C4-HSL were
included in the model. In line with previous studies, the binding of C4-HSL to LasR was
modelled as occurring at a slower rate than C12-HSL binding, and the complex as
being less stable. However, it was assumed that once LasR was bound to the PLas

promoter, no matter the type or number of ligands bound, the rate of transcription would
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be the same. The basis for this assumption was that polymerase recruitment activity
would not be affected by the type of ligand, and that observations of reduced genetic
expression when inducing with molecules other than C12-HSL were a result of reduced
binding to the LasR transcription factor. A simplified schematic of the system modelled
is shown in Figure 4.6.

Initial parameters for the modelled reactions were obtained through a mixture of
literature, assumptions, and estimations. Initial parameters were subsequently
modified to ensure behaviour approximated that found in similar systems. As other
systems using LasR reported in literature tend to not involve C4-HSL production by
Rhll, initial simulations excluded catalysis of the AHL to allow for better comparison of
functionality. Results for these simulations can be seen in Figure 4.7 (B) and (C), where
(B) shows simulations in which C12-HSL was used as the inducer, and (C) shows
crosstalk simulations with C4-HSL as the inducer. In these simulations production of
mCherry is shown. The dose-response curves presented largely matched with
experimental observations presented previously*5t 815: namely that activation with
C12-HSL was apparent at concentrations above approximately 0.1 yM, and that a
maximum fold change of around 5 is seen after 3 hours of incubation. The initial
simulations shown here also match crosstalk experiments which suggested much

lower activation when using C4-HSL as the inducer, with a fold change of less than 2.

Once simulations had been performed without C4-HSL production, the Rhll synthesis
reaction was added using a rate found in literature!'8%, Dose-response curves for these
simulations are shown in Figure 4.7 (D) and (E). Once again, the response shown is
mCherry production. As with the IPTG detector module, production of the AHL
synthetase and AHL (Rhll and C4-HSL here) followed similar patterns to mCherry
production. As might be expected, responsiveness to C4-HSL as an inducer was
completely diminished when Rhll activity was restored, due to high background levels
of the AHL. The C12-HSL dose-response curve also displayed expected behaviour;
maximal activity was reduced due to the C4-HSL background resulting in higher basal
activity. It was also observed that over time, fold change expression of mCherry
reduced, with higher levels at 12 hours post induction compared to 24 hours (Figure
4.8 (A)). The system without C4-HSL production showed more typical behaviour,
where mCherry production increased gradually before plateauing (Figure 4.8 (C)). The

behaviour observed when C4-HSL production is enabled appears to be a result of a
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Figure 4.8. Simulated Default Processor Module Feedback Loop

Simulated results demonstrating how the default processor module’s feedback loop
impacts response characteristics. (A-B) Results for the processor module system with C4-
HSL synthesis activity. (C-D) Results for the system with no C4-HSL synthesis activity. (A,
C) Time course curves over 24 hours for systems induced with 0.1, 0.01, or 10 yM C12-
HSL. Fold change in mCherry production compared to the uninduced system was used as
the dependent variable. (B, D) Same as (A, C), but results for the uninduced system are
also shown, and the dependent variable was mCherry concentration in mM.

positive feedback loop occurring in systems with no inducer, where background levels

of C4-HSL could activate production of Rhll, which lead to production of more C4-HSL.
Thus, over time, the levels of C4-HSL increased in inactivated systems which
manifested as a reduction in relative activity. Background activation in systems with
C4-HSL production can be more clearly observed in time course plots of mCherry
production, where noticeable increases in mCherry over time occur even with no or
little inducer (Figure 4.8 (B)), compared to the system without AHL production where
mCherry production remained low throughout the simulation when no inducer was

present Figure 4.8 (D).

The default processor module model suggested that although activation by C12-HSL
may be lower than observed in similar systems which do not include production C4-
HSL, functionality should be retained. The model also predicted that the fold change

of mCherry, Rhll, and C4-HSL levels compared to uninduced samples are likely to
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Figure 4.9. sfGFP Reporter Module Model Schematics

Depictions of reactions and interactions in the sfGFP reporter module SBML model. (A)
RhIR complex formation, C4-HSL binding, and interaction with PRhl promoter. Grey circles
(®) are used to indicate association/dissociation reactions. Green double-sided arrows (<>)
show products of association, black double-sided arrows (<*) show products of
dissociation. Red crosses (X) indicate unfavourable transcription. Green ticks () indicate
favourable transcription. (B) Schematic depicting the sfGFP Reporter module SBML
model. Entity names are shown in larger font size, and reaction names in smaller font
size. Black arrows (—>) show irreversible reactions and capped arrows (—) show
repressive interactions. Dashed black lines represent abstracted interactions shown in (A).
The empty set symbol (,@’) is used as the product of degradation reactions. A
comprehensive list of reactions and their parameters can be found in section 2.4.

peak after roughly 10 hours of growth post-induction, before slowly dropping, likely due

to a positive-feedback loop.

4.3.4. sSfGFP Reporter Module
The sfGFP reporter module was designed for induction by C4-HSL. This functionality
was achieved by employing the RhIR transcription factor. The mechanism of RhIR is
thought to be similar to that of LasR, where dimeric RhIR forms and binds its ligand
(C4-HSL) with a stoichiometry of one molecule per protein'8%, The RhIR dimer
complex can also bind DNA, but in this case recognises a region within the PRhI
promoter, and recruits RNA polymerase to drive transcription of downstream coding
regions. In the case of the sfGFP reporter module, PRhl was designed to control
expression of sSfGFP. Unlike LasR, there is evidence that ligand-free, dimeric RhIR can

repress expression from PRI, However, many studies have also reported
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activation of RhIR as a transcriptional activator with non-canonical ligands, including
C12-HSL[M51:[188] (Figure 4.10 (A)). This suggests that binding of RhIR to the promoter
region is independent of ligand binding, but the ligands are required for polymerase
recruitment. It has also been observed that genetic expression from PRhl is higher than
that from PLas, and that fold changes in expression levels between induced and
uninduced systems also tend to be higher’>l, Aside from these differences, the binding

mechanics are thought to be similar.

As with the previous two models, the sfGFP reporter model was also modelled as a
set of mass action reactions. Due to the similarities between LasR and RhIR, many of
the parameters used in the default processor module model were used as the basis
for the sfGFP reporter module model. As before, these parameters were modified to
ensure simulation results were in general agreement with similar systems in previous
studies. One notable difference was the transcription reaction from PRhl bound to
ligand-free RhIR. In the reporter model, this reaction had a rate of 0 mint, which
reflected RhIR’s ability to act as a repressor in the absence of any ligands. Additionally,
the binding of dimeric RhIR in all states were set to the same rate, as it has been
reported that the DNA binding functionality of RhIR is unaffected by the presence or
type of ligands. However, unlike the processor model where transcription from PRhl
occurred at the same rate once LasR was bound, in this reporter model the rate of
transcription was dependent on the ligands bound, as a result of the apparent impact
ligand binding to RhIR has on polymerase recruitment. The inclusion of ligand-free,
dimeric RhIR to DNA required a set of extra reactions to be defined; binding of C4-HSL
or C12-HSL to RhIR already bound to PRhI. For these reactions, it was assumed that
AHL binding would occur at a slower rate than RhIR not bound to DNA, as the free

transcription factor would not experience affects such as steric hinderance.
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Figure 4.10. Simulated sfGFP Processor Module Behaviour

Results from deterministic simulation of the sfGFP Reporter module SBML model depicted
in Figure 4.9. Full details regarding simulation can be found in section 2.4. (A) Schematic
depicting C12-HSL crosstalk interactions. Symbols are the same as seen in Figure 4.9 (A).
(B, D, F) Results from systems induced with the canonical C4-HSL inducer. (C, E, G)
Results from systems induced with the non-specific C12-HSL inducer. (B-C) Dose-
response curves with concentrations of inducer between 10-6 and 50 uM IPTG.
Responses were measured as fold change in sfGFP production compared to no inducer
addition after 3, 12, and 24 hours. (D-E) Time course curves over 24 hours when induced
with either 10, 1.0, or 0.1 uM of relevant AHL. The dependent variable was fold change in
sfGFP production compared to the system with no AHL added. (F-G) Time course curves
over 24 hours when induced with 10, 1.0, 0.1, or 0.0 uM AHL. Dependent variable was
concentration of sSftGFP in mM.

A simulated dose-response curve for the sfGFP reporter module with the canonical
C4-HSL inducer is shown Figure 4.10 (B). Unlike the IPTG detector and default
processor modules, the range of inducers tested were not predicted to saturate the
signal. This behaviour was in accordance with experimental data previously
reported®>l, Additionally, the fold change in activation relative to no inducer was
predicted to be much larger than that seen for the detector and processor. This was
likely due to the inclusion of ligand-free RhIR as a repressor, which resulted in reduced
background expression from PRhl when no inducers were present. The dose-response
curve shown in Figure 4.10 (C) shows responsiveness to increasing concentrations of
C12-HSL. Whilst not present in the reporter module, in a co-culture the IPTG detector
module would be expected to produce C12-HSL, and hence modelling the crosstalk

was important. The dose-response curve shows predicted that the reporter module
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would begin responding at similar levels of both C4- and C12-HSL, but the fold change
in sSfGFP expression would be much lower for C4-HSL. Over time, for both C4- and
C12-HSL as an inducer, the fold change (Figure 4.10 (D-E)) and total concentration
((Figure 4.10 (F-G)) for sStGFP shows a similar pattern to activation of the IPTG detector
module, rather than the behaviour predicted for the processor module. This was as
expected due to the lack of a potential feedback loop, which was present in the

processor module system.
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4.4, Agent-Based Modelling of a Modular and Multi-Microbial Biosensor

The models and simulations presented in section 4.3 provided a basis for predicting
behaviour of each module. In this section, a model for predicting behaviour of the multi-
microbial biosensor is presented. For this model, it was not appropriate to assume
homogeneity, due to the importance of heterogeneity in multi-microbial systems, as
discussed previously. Therefore, an agent-based model approach was used (see sub-
section 4.1.3). The agent-based biosensor model was required to simulate the
behaviour of each cell type in the system (detector, processor, and reporter) and model
interactions between the cells, specifically intercellular communication via production
and diffusion of small molecules. To assist with building and simulating the biosensor
model, Simbiotics was selected as the modelling and simulation platform[””l. Simbiotics
was selected as it was developed with agent-based modelling of multi-microbial
systems in mind and has the unique feature of allowing complex cellular behaviour to
be defined via SBML models. This allowed for the models shown in section 4.3 to be
directly integrated as modular behaviour. Simbiotics is also capable of modelling
systems in 3-dimensional space, which was essential for predicting the biosensor’'s
behaviour in liquid culture and provides simulators for diffusion of chemicals
extracellularly and across cell membranes. The ability to model diffusion across the

cell wall meant that quorum sensing-based communication could be simulated.

In Simbiotics, the native SBML simulator module uses libsbmlisim, which is a java
package capable of simulating models captured in SBML. However, testing of this
module found that the simulator methods employed by the java package were not
suitable for simulation of the biosensor models. Whilst the integrated SBML solver had
been demonstrated previously to function for relatively simple models 317, here it was
found to have issues when simulating more complex models with a larger number of
entities and interactions. Specifically, issues seemed to stem from ‘stiff equations in
the models, where interacting entities can be present in quantities magnitudes apart,
and difficulties in identifying appropriate time steps can lead to numerical instabilities
within simulations®18l. To tackle this problem, the SBML simulator module was
changed to use basico instead®°l, which allowed for the same deterministic method
described in section 4.3 to be used for solving cell behaviour. Although the cell

behaviour models were simulated deterministically, the rest of the model, including
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Figure 4.11. Simulated Cell Growth Curve

Results from simulating cell growth using Simbiotics. (A) Growth curves obtained over 20
hours from either agent-based simulation or experimentally (section 2.5.3). Simulated data
shows number of cells (agents) over time (left Y-axis). Experimental data shows equivalent
microsphere particles over time (right Y-axis). The Y-axis values for both curves were
calibrated against one another as described in section 2.5.3. (B) Graph showing simulated
time against cumulative execution time. Simulation details, including computational
specifications, can be found in section 2.5.

diffusion of chemicals and movement of cells, were simulated stochastically using the

built-in Simbiotics methods.

4.4.1. General Model Assumptions

Agent-based modelling can require far more computational resource than other types
of models, and the resources and time required tends to scale with the number of
agents present®9l, In biological systems such as the ones under study here, the
number of cells can easily reach 107 to 10° [63]; agent-based models typically cannot
easily scale to these numbers when integrating complex modelling for each agent.
Therefore, the decision was made to only model a subsection of the total system and
assume that this local section would be representative of the global system!?83l, For the
simulations presented here, the initial number of cells was set to 300. For the cells
themselves, Simbiotics defines two morphologies: spherical or rod shaped. As the
proof-of-concept biosensor was implemented in Escherichia coli, cells were modelled
as rod-shaped with a length of 1.5 ym and a diameter of 0.5 ym. For each cell type,
behaviour was defined by the corresponding SBML model developed previously. As
with the simulations presented in section 4.3, the initial starting amount for each entity
was determined using the results from simulating each SBML model for 24 hours. As
before, basico was used to perform the simulations prior to running the Simbiotics
model.

165



When defining extracellular chemicals (in this case IPTG, C12-HSL, and C4-HSL) in
Simbiotics, three coefficients can be set: extracellular diffusion, diffusion across cell
membranes, and degradation. Although degradation of the AHLs was included for
reactions within the cells, it was assumed that once in the media all chemicals would
remain stable for the duration of the experiment. For initial simulations, the diffusion
coefficients for all three chemicals were assumed to be similar, and thus were set to
the same coefficients. During experimentation, it was planned that samples would be
continually shaken, and thus the diffusion coefficients were set relatively high to
account for this constant motion, along with a global Brownian motion coefficient of 2.5.
Addition of either IPTG, C12-HSL, or C4-HSL as an inducer was incorporated into the
model as a pipetting event, where the appropriate number of molecules were added to
the centre point of the space at time point 0. For systems with no inducer added, no
pipetting event was scheduled.

To determine the size of the system subsection to be simulated, the average volume

of liquid (in yL) per cell was calculated using equations ii, iii, and iv
Cellsey,
Cell = —
[Cellsex] Volumegy,, i
Cellsgim
Volumesim = [CTSexp] i

Worldeqge = V (Volumeyg;,, X 1e°) .

For the above equations, Cells,,, and Cellsg;, are the initial number of cells in the
experimental and simulated systems respectively, Volume,,, and Volumeg;, are the

total volumes (in yL) of the experimental and simulated systems respectively, and

World,qg. is the length (in um) of each edge of the simulated subsystem boundary.

4.4.2. Simulating cell growth
Simbiotics allows for nutrient-dependent growth to be modelled, where the rate at
which cells in the system grow and divide is dependent on resource availability. The
modules and biosensor were intended to be characterised in batch culture, rather than
in a continuous flow or chemostat environment. Therefore, if cell growth was to be
modelled, nutrient availability would likely be a limiting factor over time as resources
would not be replenished. The growth rate of each agent, or cell, in the system was
determined using Monod kinetics, where a maximum possible growth rate is

moderated based on the availability of a specific nutrient or set of nutrients. For the
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simulations here, a single abstracted nutrient (simply termed ‘food’) was used to
represent all resources required for cell growth. This was because the exact resources
required were unknown. To determine Monod growth rate parameters, different values
were tested until a growth curve approximating experimental data was found. The
experimental growth curve was obtained by inoculating 100 pL of Lysogeny Broth (LB)
media in a standard 96 well, flatbottomed microplate with untransformed E. coli DH5a
at a starting optical density of 0.1 when measured at 600 nm. The cultures were then
incubated at 37°C with shaking at 300 RPM for 20 hours. Optical density
measurements were converted to an approximate number of cells according to
standard calibration protocols (see sub-section 5.1.1 and section 2.5.3 for more detail).
This approach made the initial assumption that all three cell types would grow at
identical rates, and at the same rate as untransformed cells, which was unlikely to be
true due to the different stresses placed upon each cell by each plasmid and construct.
Additionally, the detector, processor, and reporter cell types would be grown in the
presence of antibiotics to exert a selection pressure for retention of the plasmids, which
tends to reduce growth rates further. Nevertheless, this provided an initial basis for
indicative predictions of behaviour.

The simulated growth curve compared to experimental data can be seen in Figure 4.11
(A). Simulations were performed using a single cell type with no behaviour (i.e., no
SBML model) to save on computational resources and simulation time. It was possible
to exclude the SBML-based behaviour as it had no bearing on how the cells grew in
silico (although as mentioned previously, in reality there would be an effect). However,
it was found that even with a small number of starting cells (300) and an underestimate
of cell growth, total execution time for 24 hours of simulated growth was more than 18
hours (Figure 4.11 (B)) when simulations were performed using hardware described in
section 2.5. It became apparent that experimental characterisation, where 60 samples
could be tested in parallel over 24 hours, would be less time consuming than
computational simulation, given the hardware specifications used. Therefore, it was
decided that cell growth would be abstracted from the model. This abstraction placed
introduced limitations, as factors like increased cell density and competition for
resources between the different cell types in co-culture could not be accounted for.
However, it was thought to still be possible to make informed decisions based on

indicative results from the scaled back models.
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4.4.3. Agent-based modelling of each cell type in monoculture
Before simulating the multi-microbial biosensor in co-culture, each cell type was
simulated using the Simbiotics platform in a monoculture. Agent-based modelling of
each cell type allowed for comparisons to be made between the pure-deterministic
models presented in the previous section and the agent-based model. As each cell in
the system was simulated separately, it was possible to obtain simulated single cell

data, allowing for an insight as to the possible heterogeneity between cells of the same

type.

As before, a range of inducer concentrations were tested for each cell type in order to
obtain a dose-response curve. In the agent-based model, stochasticity has an impact,
and thus simulations were performed in replicates of at least three to help determine
run-to-run variation. The simulated dose-response curve for the IPTG detector module
can be seen in Figure 4.12 (A). Compared to the curve shown in Figure 4.5 (A), it can
be seen that the agent-based model predicted a smaller dynamic range for the IPTG
detector module, with a maximal fold change in eCFP production of approximately 4.0
after 24 hours, compared to an increase of 9.5 times background predicted by the
purely deterministic model. However, both models predict similar levels of sensitivity,
with a noise threshold of between 0.1 and 0.5 mM IPTG. Both models also agreed that
after 24 hours of growth, the system would not have reached a steady state in terms
of eCFP production (Figure 4.12 (B) and Figure 4.5 (C)) when induced with higher
concentrations of IPTG. It was possible that the smaller dynamic range prediction by
the Simbiotics model was a result of the incorporation of IPTG diffusion, both in the
extracellular environment and across the cell membrane. Cells in the agent-based
model would have had a longer period of delay before exposure to inducer molecules,
compared to the purely deterministic simulations where cells had access to IPTG from
time point 0. Therefore, as eCFP production was predicted to still be increasing after
24 hours, the state of the system when simulated by Simbiotics would be delayed, and

hence the fold change at this time point would be lower.
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Figure 4.12. Agent-Based Modelling Results for the IPTG Detector Module

Results from agent-based simulation of the IPTG detector module in monoculture. All
simulations were performed with 300 cells and according to the methods in section 2.5.1.
(A) Dose-response curve with different concentrations of IPTG as an inducer, where fold
change in eCFP production after 24 hours was measured as the response. The grey box
shows background noise, calculated as stated in section 2.5.2. (B) Time course curve for
production of eCFP proteins over 24 hours. Results are shown as a bulk measurement of
all cells, and a number-per-cell was calculated by averaging the total value across all cells
in the system. (C) Time course of eCFP production per cell when induced with 20 mM
IPTG. The navy line shows bulk measurement, where the number of eCFP molecules per
cell was calculated as an average from the total value. The grey lines show single cell data
for eCFP production. Time from 0 to 24 hours is along the x-axis. (D) Histogram depicting
simulated single cell data from systems 20 hours post induction with either 0, 0.1, 0.5, or
10 mM IPTG. Data was grouped into 17 bins. The box below the graph shows histogram
zoomed in for 0 mM. Top right inset shows the same data as main graph for 0.1, 0.5, and
10 mM IPTG on a 3D plot, where the x-axis is the number of eCFP molecules, and the y-
axis is the counts on a linear scale. On the z-axis is the amount of IPTG used for induction.
(E) Lasagna plotst®?° depicting single cell data for systems induced with either 0, 0.1, 0.5,
or 10 mM IPTG. Each horizontal line represents a single cell over 20 hours. Colouring is
based on the number of eCFP molecules per cell. Time course plots are shown for each
system to the right of the lasagna plot. The y-axis is number of eCFP molecules.

The plot in Figure 4.12 (B) shows the number of eCFP molecules per cell produced
over time when induced by different concentrations of IPTG, along with error bars to
indicate potential stochastic variation across repeats. This data can be thought of as
‘bulk’ measurements, where the total amount of an entity is measured for the system
as a whole, and values per cell can be obtained by averaging the value across the
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number of cells present. Although bulk measurements are a common way to measure
the overall behaviour of a system[?®4, it does not give any insight as to variation across
cells within a system. As Simbiotics simulates each cell separately, it was possible to
export the results obtained for each cell to compare differences in state compared to
other cells. Figure 4.12 (C) shows a time course of eCFP production for all cells in a
single system when induced with 10 mM IPTG. It was observed that the activity of each
cell can vary drastically. As the cell behaviours were simulated using a deterministic
solver, the majority of variation was thought to come from proximity of each cell to
different amounts of IPTG, which was the major impactor on cell behaviour. In Figure
4.12 (D), a histogram shows the spread of eCFP production across cells in a single
system when induced with 4 different IPTG concentrations, and when uninduced, after
20 hours of growth. Although the general pattern of eCFP production seen with bulk
measurements (higher amounts of IPTG correlates to more eCFP), there is a
noticeable overlap of data. For example, it can be seen that some cells in the system
induced with 0.1 and 0.5 mM of IPTG show higher eCFP production than some cells
in the system induced with 20 mM IPTG. Again, this is consistent with the thought that
the behaviour of each cell was influenced by the local concentration of inducer, as
higher eCFP production would be expected if cells were disproportionately exposed to
different concentrations of IPTG. If this was the case, it would be expected that cells in
simulations with not IPTG added would show no variation. Indeed, the spread of data
is far smaller than that seen in systems with IPTG, although there are some differences
across the cells (Figure 4.12 (D) bottom left). These differences appear to be an artifact
of numerical errors in the deterministic solver due to the stiff equations, which can
occasionally cause entities to spontaneously appear in very low quantities or be
calculated as a negative value (which is biologically impossible). To help account for
this known behaviour, after each cell was solved deterministically, the results were
automatically checked for these spontaneous appearances of entities at very low
guantities or negative values and corrected to a value of 0. However, in between these
checks, the erroneous values could have had a small impact on other entities in the
system, and this is what causes slight variations in what should be consistent solutions

to deterministic simulations.
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Figure 4.13. Agent-Based Modelling Results for the Default Processor Module

Results from agent-based simulation of the default processor module in monoculture. All
simulations were performed with 300 cells and according to the methods in section 2.5.1.
(A) Dose-response curve with different concentrations of C12-HSL as an inducer, where
fold change in mCherry production after 24 hours was measured as the response. The
grey box shows background noise, calculated as stated in section 2.5.2. (B) Time course
curve for production of mCherry proteins over 24 hours. Results are shown as a bulk
measurement of all cells, and a number-per-cell was calculated by averaging the total
value across all cells in the system. (C) Time course curve of fold change in mCherry
production per cell over 24 hours relative to uninduced cells. (D) Histogram depicting
simulated single cell data from systems 20 hours post induction with either 0, 0.01, 1.0, or
100 uM C12-HSL. Data was grouped into 17 bins. Top right inset shows the same data as
main graph for 0.01, 1.0, and 100 uyM IPTG on a 3D plot, where the x-axis is the number of
mCherry molecules, and the y-axis is the counts on a linear scale. (E) Lasagna plots
depicting single cell data for systems induced with either 0, 0.01, 1.0, or 100 pM C12-HSL.
Each horizontal line represents a single cell over 20 hours. Colouring is based on the
number of mCherry molecules per cell. Time course plots are shown for each system to
the right of the lasagna plot. The y-axis is number of mCherry molecules.
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Figure 4.14. Agent-Based Modelling Results for the sfGFP Reporter Module

Results from agent-based simulation of the sStGFP Reporter module in monoculture. All
simulations were performed with 300 cells and according to the methods in section 2.5.1.
(A) Dose-response curve with different concentrations of C4-HSL as an inducer, where
fold change in sfGFP production after 24 hours was measured as the response. The grey
box shows background noise, calculated as stated in section 2.5.2. (B) Time course curve
for production of sfGFP proteins over 24 hours. Results are shown as a bulk measurement
of all cells, and a number-per-cell was calculated by averaging the total value across all
cells in the system. (C) Histogram depicting simulated single cell data from systems 20
hours post induction with either 0, 1, 10, or 100 yM C4-HSL. Data was grouped into 17
bins. Box below the graph shows histogram zoomed in for 0 uM. Top right inset shows the
same data as main graph for 1, 10, or 100 yM C4-HSL on a 3D plot, where the x-axis is
the number of eCFP molecules, and the y-axis is the counts on a linear scale. (E) Lasagna
plots depicting single cell data for systems induced with either 0, 1, 10, or 100 uM C4-HSL.
Each horizontal line represents a single cell over 20 hours. Colouring is based on the
natural log of the number of sSfGFP molecules per cell. Time course plots are shown for
each system to the right of the lasagna plot. The y-axis is the natural log of the number of
eCFP molecules.

The simulation results also suggested that heterogeneity may be higher when inducer
concentrations within the linear range of the dose-response curve (~0.1 to ~ 10 mM for
the detector cells), than when concentrations below the detection threshold or above
the saturation point were used. For IPTG concentrations above the saturation point,
this likely reflected the fact that although individual cells may be exposed to different
amounts of inducer, this could not be observed in the response due to saturation
occurring within most cells. For IPTG concentration below the detection threshold,
lower heterogeneity may have occurred due a majority of cells being exposed to levels

of IPTG below the amount required to show a dramatic difference in response.
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To investigate how heterogeneity was predicted to change over time, values for the
amount of eCFP production over 20 hours for four concentrations of IPTG (0, 0.1, 0.5,
and 10 mM) were visualised as a Lasagna plot (Figure 4.12 (E)). This shows that the
general trend seen with bulk measurements remains, where the amount of eCFP
produced increased over time, except in the uninduced system where eCFP numbers
remained stable. However, it can also be seen that cells within the same system did
not all activate synchronously, and eCFP production began at different points in time.
There was also agreement with the conclusion drawn from Figure 4.12 (D) that
inducing the detector cells with IPTG at concentrations within the linear range of the
dose-response curve resulted in higher heterogeneity than when using IPTG

concentrations outside of this range.

Simulations performed for the IPTG detector module were repeated for the default
processor module. Compared to the purely deterministic processor model, the agent-
based model predicted a similar level of sensitivity (approximately 0.01 yM) and fold
change in mCherry production after 24 hours, with a 2.2-fold increase for the
deterministic model compared to 1.5-fold for the agent-based model (Figure 4.13 (A)
and Figure 4.7 (D)). Both models predicted a higher level of background noise than for
the IPTG detector module, with mCherry accumulating over time in the absence of any
inducer, albeit at a slower rate than induced systems (Figure 4.13 (B) and Figure 4.8
(B)). The deterministic model also predicted that a maximum fold change would be
observed approximately 8 hours post induction, at which point the relative signal was
predicted to decrease. Whilst the agent-based model simulations showed some
evidence of this behaviour (Figure 4.13 (C)), it was far less pronounced, and the
decrease in signal was predicted to occur after 20 hours. As with the IPTG detector
module models, this may have been due to delays associated with cells becoming
exposed to the inducer. Additionally, the maximum fold change predicted by the agent-
based model was approximately 2.2 times lower than predicted by the deterministic

model.
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Figure 4.15. Simulation Results for Multi-Microbial Biosensor with a 1:1:1 Cell Ratio
Simulated behaviour of the proof-of-concept modular and multi-microbial IPTG biosensor.
All three cell types were added in equal amounts (100 of each). The system was simulated
in the presence of either 0 or 20 mM IPTG over 24 hours. Error bars show standard
deviation of 4 replicates centred on the mean value. (A) Fold change in eCFP, mCherry,
and sfGFP production relative to the uninduced system. Fold change values for each
fluorescent protein were plotted on Y-axes with different scales. (B) Time course curve
over 24 hours for the extracellular concentration (in uM) of C12-HSL in the presence of 0
mM and 20 mM IPTG. (C) Same as (B) but for extracellular C4-HSL. (D) Lasagna plots
showing either eCFP (left), mCherry (middle), and sfGFP (right) production over time when
induced with 0 mM or 20 mM IPTG. Each horizontal line represents a single cell over time.

For the default processor module, heterogeneity within the system was observed, as
shown in Figure 4.13 (D). Similar to observations with the IPTG detector module, there
appeared to be a larger cell-to-cell variation in activity when the inducer was added at
a concentration within the linear dose-response range (1.0 yM) compared to
concentrations near the limit of detection (0.01 uM) or above the saturation point (100
MM). Whilst both the detector and processor modules showed increasing heterogeneity

as time progressed (Figure 4.13 (E)), the uninduced processor system showed more
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heterogeneity than the uninduced detector system. Whilst the uninduced processor
module’s variation was still lower than observed with the induced systems, and some
of this variation would have been due to numerical artifacts, the positive feedback loop
present in the processor module would likely have caused the majority of variation.
The feedback loop causes low-level induction by C4-HSL produced by the processor

itself, leading to a system which was not truly uninduced.

For agent-based simulation of the sfGFP reporter module, the general conclusions
drawn from the dose-response curve (Figure 4.14 (A)) were much the same as those
for the detector and processor modules; compared to the purely deterministic model
the predicted sensitivity was similar, but the maximum fold change was lower. There
was again evidence of delayed response, as evidenced by the lack of a signal plateau
in time course curves for sStGFP production when simulated as an agent-based model
(Figure 4.14 (B)) compared to when simulated purely deterministically (Figure 4.10 (F)).
As with the detector and processor modules, heterogeneity was also observed for the
sfGFP reporter module (Figure 4.14 (C-D)). For the reporter system, heterogeneity
appeared to increase with higher concentrations of C4-HSL added as an inducer,
which was in line with previous observations and conclusions as the saturation point
was not reached even at 100 yM of C4-HSL. Cell-to-cell variation for the uninduced
system was similar to that observed with the IPTG detector module, where differences
in sSfGFP quantities were almost identical across all 300 cells in the system, and the
only differences were likely due to the numerical instabilities arising during
deterministic simulation. It should be noted, however, that the heterogeneity within the
sfGFP reporter systems was much larger than that seen with the other two modules.
This was likely due to the much larger fold changes in activity observed with increasing
concentrations of inducer seen in Figure 4.14 (A), which resulted in more pronounced

differences between cells when exposed to different amounts of inducer.

Overall, the agent-based models simulated using Simbiotics showed general
agreement with the deterministic-only models presented in section 4.3. The main
difference observed between the two model types was a slower response time when
using agent-based simulation, which was thought to be due to delays in exposure of
cells, and the entities within each cell. The agent-based models also predicted lower
maximal fold changes in activity when compared to uninduced systems, which may

have been related to the delayed response times. The agent-based models also
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Figure 4.16. Visual Representation of the Cell Ratio Design Space

The cell ratios used in each simulation were visualised on a ternary plot, where each axis
represented the number of detector, processor, and reporter cells. The cell ratios used are
shown as white crosses. The dashed grey lines show stoichiometric boundaries, where the
amounts of two cell types are present in equal amounts.

allowed for prediction of variation across cells within the same system. It was observed

that the potential for heterogeneity in terms of behaviour could be significant, even

within monoculture.

4.4.4. Simulating the multi-microbial biosensor
Simbiotics was used to predict behaviour of the multi-microbial biosensor by modelling
systems with all three module types. As with the mono-culture simulations, systems
were limited to 300 cells. Initially, a multi-microbial system consisting of each cell type
present in equal amounts (i.e. 100 of each cell type) was simulated. The agent-based
model predicted that the detector cells would exhibit behaviour similar to that seen in
homogenous culture, but that the processor and reporter cells would not produce a
signal above the background noise (Figure 4.15 (A)). The amount of C12-HSL
produced by uninduced detector cells was above the predicted saturation limit for
processor cells (Figure 4.15 (B)), and hence additional production of C12-HSL by the
induced detector cells would not have caused a difference in activation of the processor
cells. This meant that there was no fold change in amount of C4-HSL produced by the

processor cells when co-cultured with induced or uninduced detector cells (Figure 4.15
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(C)). As the levels of C4-HSL were predicted to be the same in both induced and
uninduced samples, the reporter cells were also predicted to show no difference in
terms of response (sfGFP production). This pattern could also be seen at the single-

cell level, where differences were only apparent in the detector cells (Figure 4.15 (D)).
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Figure 4.17. Impact of Cell Ratios on Module Behaviour

Fold change in fluorescent protein production for systems induced with 20 mM IPTG
compared to uninduced systems. Each horizontal line of the lasagna plots shows the
average fold change (of 4 replicates) for a system with a specific cell ratio over 20 hours.
Fold change is visualised using an asymmetrical colour scale. The colour scale is centred
on 1.0 (white colour), and ranges from the minimum value (red) to the maximum value
(blue). A red cross (X) indicates that no values fell within that range of the colour scale.
Fold change values are for eCFP production by detector cells (A-C), mCherry production
by processor cells (D-F), or sSftGFP production by reporter cells (G-1). Systems are ordered
by increasing number of detector cells (A, D, G), processor cells (B, E, H) or reporter cells
(C, F, .
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Figure 4.18. Identifying Optimal Cell Ratios

Potentially functional biosensor systems were identified using ternary plots. (A-B) Ternary
plots showing the cell ratios used in simulations. Dots are coloured according to fold
change in either mCherry (A) or sfGFP (B) production for systems induced with 20 mM
IPTG relative to uninduced systems. An asymmetrical colour scale was used centred on
1.0 (white colour), ranging from the minimum value (red) to the maximum value (blue).
White arrows show a selection of cell ratios which gave a positive fold change in both
mCherry and sfGFP. (C) Fold change in eCFP, mCherry, and sfGFP production for
systems with cell ratios indicated by white arrows in (A) and (B). Fold change values for
each fluorescent protein were plotted on Y-axes with different scales. Error bars show
standard deviation of 4 replicates centred on the mean value.

Synthetic multi-microbial communities have an easily accessible design space which

is absent from systems composed of only one cell type. This design space is that of
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cell ratios, where the initial proportion of each cell type in the system can be modified.
By modifying the ratios of each cell type in the modular, multi-microbial biosensor may
have allowed for optimisation of the system, resulting in a functional biosensor, rather
than the non-functional system predicted by the agent-based model. To this end, the
model presented above was simulated a number of times with different

proportions of each cell type. The cell ratios were chosen to ensure the design space

was explored fully, as visualised in Figure 4.16.

Results from simulations using each cell ratio are shown in Figure 4.17, where the
systems were ordered by number of detector, processor, and reporter cells present.
Activity was determined as the fold change in eCFP, mCherry, and sfGFP for systems
induced with 20 mM of IPTG relative to uninduced systems, and visualised using an
asymmetrical, 2-tone colour scale centred on a fold change of 1.0. The simulation
results suggested that there was little impact of cell ratios on the behaviour of detector
cells (Figure 4.17 (A-C)), but there appeared to be an effect on the activity of the
processor and reporter cells (Figure 4.17 (D-l)). The detector cells were likely not
impacted as their functionality was not impacted by the other cell types in the system,
whereas activation of the processor and reporter cells was dependent on the amount
of quorum sensing molecules produced by the other cells. Whilst the activity of
processor and reporter cells appeared to be impacted by the cell ratios, there was not
a noticeable correlation between the amount of each cell type and fold change in
fluorescent protein production. To help visualise the data across the entire design
space, the fold change values at 20 hours post induction were graphed on ternary plots,
with each axis representing the amount of detector, processor, or reporter cells in the
system (Figure 4.18 (A-B)). Although a noticeable trend remained absent, the ternary
plots allowed for easier identification of cell ratios predicted to have a positive fold
change for both mCherry and sfGFP production. Six of these cell ratios were selected,
and fold change over time was plotted for eCFP (detector cells), mCherry (processor
cells), and sfGFP (reporter cells) (Figure 4.18 (C)). The time course graphs showed
that although there was an average increase in fluorescence protein production
predicted, there was sufficient variation between repeated simulations of the same

system that the fold change increases were not significant.
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Figure 4.19. Processor Cells Activity Above Noise

Impact of cell ratios on the fold change activity for processor cells. Here, fold change was
calculated at each time point using the maximum value from the uninduced systems, and
the minimum value from the induced systems. For (A-B), fold change is visualised using an
asymmetrical colour scale. The colour scale is centred on 1.0 (white colour), and ranges
from the minimum value (red) to the maximum value (blue). A red cross (¥X) indicates that
no values fell within that range of the colour scale. (A) Lasagna plot showing mCherry fold
change over time. Systems were ordered by the number of processor cells. (B) Ternary
plot showing mCherry fold change 20 hours post induction. (C-E) Scatter plots visualising
the relationship between the number of processor cells and fold change in mCherry
production after 20 hours. The dependent variable was number of processor cells for (C),
relative number of processors compared to the number of detectors for (D), and the
number of processor cells relative to the number of reporter cells for (E). The curve of best
fit was calculated as a 2" degree polynomial curve as described in section 2.5.2. The r? for
each curve is shown on the plots.

To help better determine module activity outside of the noise, fold change was re-

calculated as before, but this time using the repeat with the highest and lowest value
for the control (uninduced) and sample (induced) respectively. For both the processor
and reporter cells, a positive fold change increase was not predicted for any cell ratio,
however a correlation between number of cells and module activity was identified. The
correlation for mCherry production by the processor cells is shown in Figure 4.19. For
both the lasagna and ternary plots (Figure 4.19 (A-B)), it can be seen that smaller fold
changes tended to result from systems with fewer processor cells, whereas systems
with a higher number of processors exhibited fold changes closer to 1. Figure 4.19 (C)
shows this trend with a 2" degree polynomial line fitted to the data. The correlation

indicates that whist there does appear to be a correlation between number of
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processors and mCherry fold change, the correlation is only moderate with an r? of
0.84. To determine whether the number of detector and reporter cells had a
confounding effect on the behaviour of the processor cells, scatter plots with fitted lines
were also generated for the number of processors relative to the number of detectors
and reporters against fold change in mCherry (Figure 4.19 (D-E)). This showed that
the agent-based model predicted a positive correlation between the relative number of
processors compared to detectors, although again the strength of this correlation was
not strong (r?> = 0.845). There was, however, no noteworthy correlation between the
number of processor relative to the number of reporters and the fold change in mCherry.
These observations were likely due to the unidirectional communication from detector
to processor cells, which was designed to have a direct impact on the processor cells’

activity, whereas the reporter cells could not directly impact the processors.

For the reporter cells, a similar trend to that observed with the processor cells was
observed (Figure 4.20), whereby more reporter cells seemed to be correlated with a
fold change in sfGFP closer to 1. However, this trend was less obvious from the
lasagna and ternary plots (Figure 4.20 (A-B)), and the 2" degree polynomial line of
best fit for number of reporter cells against sfGFP fold change was weaker than that
observed for processor cells vs mCherry fold change, with an r? of 0.809 (Figure 4.20
(C)). Additionally, the correlation for relative number of reporter cells (compared to the
number of detector or processor cells) against sfGFP fold change was found to be
weak to non-existent (Figure 4.20 (E)), which may be indicative of the fact that the
reporter cells’ behaviour was dependent on not only the processor cells, which directly
influence the reporters’ activity, but also on the detector cells which had both indirect
(via activation of the processor cells) and direct (via quorum sensing cross-talk)

interactions with the reporters.

The results presented throughout this sub-section indicated that there may be the
potential to influence behaviour of the multi-microbial biosensor system via the design
space of cell ratios. However, the agent-based model also predicted that the majority

of any signal would be lost to background noise.
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Figure 4.20. Reporter Cells Activity Above Noise

Impact of cell ratios on the fold change activity for reporter cells. Here, fold change was
calculated at each time point using the maximum value from the uninduced systems, and
the minimum value from the induced systems. For (A-B), fold change is visualised using an
asymmetrical colour scale. The colour scale is centred on 1.0 (white colour), and ranges
from the minimum value (red) to the maximum value (blue). A red cross (¥) indicates that
no values fell within that range of the colour scale. (A) Lasagna plot showing sfGFP fold
change over time. Systems were ordered by the number of reporter cells. (B) Ternary plot
showing sfGFP fold change 20 hours post induction. (C-E) Scatter plots visualising the
relationship between the number of reporter cells and fold change in sSfGFP production
after 20 hours. The dependent variable was number of reporter cells for (C), relative
number of reporters compared to the number of detectors for (D), and the number of
reporter cells relative to the number of processor cells for (E). The curve of best fit was
calculated as a 2" degree polynomial curve as described in section 2.5.2. The r? for each
curve is shown on the plots.

182



4.5. Conclusions and Next Steps

In this chapter, modular designs for a proof-of-concept multi-microbial biosensor were
presented and discussed, including engineering intercellular communication interfaces
between each module. Results from computational modelling of this biosensor system
indicated that individually, each module should function as expected, and
discrepancies between purely deterministic and agent-based modelling of the modules
were highlighted. Specifically, the agent-based model predicted slower response times
to induction, which were thought to arise from inclusion of inducer diffusion both
throughout the extracellular environment, and into/out of the cells. The agent-based
model was also used to gain insight into potential heterogeneity between cells in
monoculture. The simulation results suggested that greater heterogeneity would be
apparent when systems were induced with concentrations above the sensitivity
threshold, but below the saturation point, although variation between cells was

observed for systems containing any amount of inducer.

Parameters used by the models were acquired through either literature or estimation,
and although this is common practice within the field”} [171l. 321 the quantitative
simulation results may have inaccuracies. Therefore, in order to gain more accurate
predictions about the biosensor system and modules, experimental parameterisation
should be completed®?2, This could include a sensitivity analysis of each parameter to
determine which have the most impact on the simulation results, and hence identify
the most important parameters to have accurate values?3, Experimental
parameterisation could then be accomplished with approaches including genetic
algorithms, where parameter values which lead to simulation results matching most
closely to experimental data could be determined®?4. The use of experimentally
determined parameter values would then lead to more accurate simulation data, and

hence more useful insights.

Regardless of the limitations above, results generated by simulation of the agent-
based, multi-microbial biosensor model provided useful insights into functionality of the
system. Simulation results predicted that whilst each module should function
individually, when mixed in a co-culture the biosensor would be non-functional. This
appeared to be due to background synthesis of AHL quorum sensing molecules by the

detector and processor cells in the absence of any inducer. High levels of background
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AHL synthesis could result in saturation of downstream module responses, and hence
inducing the biosensor would have no impact. In this way, background noise could

propagate through the system in the form of AHL accumulation.

The above predictions prompted exploration of the design space of cell ratios as a
method of system optimisation. It was hypothesised that modifying the proportions of
cells in the co-culture may allow for reduced AHL accumulation and background
induction by either decreasing the amount of AHL synthesisers, increasing the number
of AHL receivers to prevent saturation, or a combination of both. Whilst no functional
system was predicted for any cell ratio simulated, it was found that the relative amounts
of each cell had an impact on biosensor behaviour, which provided guidance for

experimental optimisation of the system.
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Chapter 5. Development and Validation of a Modular and Multi-

Microbial Biosensor

Chapter 4 presented the design for a proof-of-concept biosensor, along with results of
computational modelling to help predict behaviour of each module and the biosensor
as a whole. In this chapter, results from experimental characterisation are presented
and discussed. Section 5.2 focuses on characterisation of each biosensor module’s
behaviour in response to their canonical inducer, as well as determining potential cross
talk between modules and validation that the detector and processor modules confer
AHL production capabilities. Section 5.3 presents results from co-culture experiments,
where propagation of noise through the system was first investigated, based on results
gathered from the agent-based model, before testing the proof-of-concept modular,
multi-microbial biosensor as a whole. The final section (5.4) concludes the outcomes
and findings from this chapter and discusses next steps for optimisation of the proof-

of-concept biosensor, which are explored further in chapter 6.
5.1. Introduction

5.1.1. Standard calibration of plate reader data
The characterisation of many synthetic biology devices and systems tend to rely
heavily on data collected by a microplate reader. This is partially due to synthetic
biology devices often including fluorescent proteins as markers for determining
behaviour of a system by either acting as a final output of the system, or to indicate
expression of another element in the system via co-transcription or -translation2%4.
Using a plate reader to measure fluorescent intensity of samples allows for
determination of expression, as higher expression leads to more fluorescent protein
and thus an increase in fluorescent signal. For systems involving cells, measurement
of optical density at 600 nm is often used as a proxy for the density of cells in a sample

and to determine cellular growth, as more cells results in increased light scattering.

The units in which plate readers report data are arbitrary and not directly comparable
between different instruments, leading to difficulties to reproducibility®?5] These
comparability issues can be mitigated to some extent by making the data relative to a
control sample, however this has been shown to be sub-optimal as the quality and

reproducibility of such data is highly dependent on the quality of the controls used![32],
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Figure 5.1. Cell Module Growth Rates

Growth rates of E. coli DH5a cells expressing one of the three biosensor modules. Error
bars are +/- standard error of replicates centred on the mean. Individual points represent
each replicate. (A) Growth curves for uninduced IPTG detector cells, default processor
cells, and sfGFP reporter cells. Untransformed E. coli cells were included as a control. (B-
C) Growth rates of default processor cells (B) and sfGFP reporter cells (C) in the presence
of DMSO. Cells without DMSO as presented in (A) are shown as a control.

Additionally, the most appropriate type of controls can vary between experiments.

Instead, it is possible to use standard calibrants to calibrate arbitrary units reported by
a plate reader to absolute units, which can be directly compared and allows for much
easier detection of failed or deviant samples and controls. There are currently standard
calibrants defined for fluorescent proteins in the blue, green, and red sections of the
spectrum(®®, These calibrants are cascade blue for blue fluorescent proteins,
sulforhodamine-101 for red fluorescent proteins, and fluoresceine for green fluorescent
proteins. By preparing serial dilutions of these calibrants and measuring fluorescence
using the same settings to be used for the experimental samples, a standard curve
can be determined and used to calculate a conversion factor for arbitrary units to
absolute units. The absolute units are termed ‘Molecules of Equivalent Cascade Blue’
(MECB), ‘Molecules of Equivalent sulforhodamine-101" (MESR), and ‘Molecules of
Equivalent Fluorescein’ (MEFL), depending on the calibrant used. Similarly,
microspheres with a radius approximately the same as the cells being measured can
be used to calibrate OD600 readings, allowing for the number of cells to be reported

as ‘number of equivalent microsphere particles’.
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5.1.2. Flow cytometry for multi-microbial cultures
Whilst plate readers can provide bulk measurements for a sample, it is not possible to
determine heterogeneity within the sample and distinguish between different cell types
within a mixed-microbial system. For many experiments these bulk measurements
which assume homogeneity are sufficient to determine overall behaviour of a system,
however for other systems where heterogeneity needs to be measured, single-cell
measurement techniques are required®?”l. Flow cytometry is one such technique,
where cells are flowed through a set of lasers one at a time, allowing for attributes
including fluorescence of individual cells to be measured apart from other cells in the
sample. This allows for different populations of cells, which exhibit different levels of
fluorescence, fluorescence at different wavelengths, and different shapes, to be
determined. Flow cytometry has been successfully applied to the analysis of multi-
microbial communities previously, including determining the microbial composition of
a natural community by the shapes of cells present(®?8l, There have also been studies
which have shown heterogeneity in monocultures using flow cytometry, highlighting
the importance of singe cell analysis*?°. However, flow cytometry is a destructive
method of analysis and more expensive compared to plate readers. Therefore, plate

readers are still useful for making many measurements of a system over a time course.
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5.2. Initial Biosensor Module Characterisation

The behaviour of the IPTG detector, default processor, and sfGFP modules was
determined by measuring fold change in expression of a fluorescent marker of induced
samples relative to uninduced samples. For all experiments, the detector, processor,
and reporter cell types refer to Escherichia coli DH5a cells transformed with the IPTG
detector with CFP (cyan fluorescent protein), default processor with mCherry, or sStGFP
(superfolder green fluorescent protein) reporter modules respectively. Data collected
in the first 2 hours of incubation were excluded as it was routinely found that
measurements were at or below the limit of accurate detection for the equipment used.
In all cases, raw data was converted to absolute units and processed according to the

methods presented in section 2.7.1.

5.2.1. Characterising cell growth rates
Prior to validation of module functionality, the growth rates of each cell type were
measured and compared to untransformed E. coli DH5a cells. Each cell type was
incubated in LB media overnight before being sub-cultured into fresh LB media in a 96
well microplate. Cell cultures were shake incubated at 37°C for 20 hours in a plate
reader, and absorbance readings were taken periodically to measure cell density. The

complete experimental procedure is detailed in section 2.7.5.

All cells were observed to reach exponential growth phase within 2 hours (Figure 3.7
(A)), however, all three module types were found to have a slower growth rate than
untransformed cells. This finding was expected, as the detector, processor, and
reporter cells were likely to have a higher burden and experience increased stress
compared to untransformed cells due to the inclusion of high copy number plasmids
encoding additional proteins for expression. The expression of these additional
proteins would have diverted resources away from normal cellular processes and
hence reduce the rate at which cells were growing and dividing. Although the three cell
types contained plasmids encoding different proteins, when uninduced the growth
rates were found to be identical. This indicated that when in co-culture, the different
cell types may also grow at similar rates which may reduce the chances of any cell

type becoming outcompeted due to domination over resources by a faster growing cell

type.
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Both the processor and reporter cells were designed for induction by acyl-hnomoserine
lactones (AHLS). Due to the low solubility of AHLs in water, dimethyl sulfoxide (DMSO)
is commonly used as a solvent. However, it is known that DMSO can be toxic to E. coli
cells at high amounts. Therefore, it was important to determine the impact DMSO
would have on cell growth and determine the maximum percentage of DMSO which
could be used. Figure 3.7 (B-C) shows the impact of adding 0.5, 1, and 10% of DMSO
to processor and reporter cells. It was found that 10% DMSO severely impacted cell
growth, whilst 0.5 and 1% had little overall effect. Therefore, a maximum of 1% DMSO

was used for all following experiments.
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Figure 5.2. IPTG Detector Module Dose-Response Characterisation

Behaviour of the IPTG detector cells when induced with IPTG. Error bars show +/- standard error centred on the mean
of 3 or 4 replicates. The IPTG concentration shown in dark red indicates an outlier in the data. (A) The time course
curve shows average eCFP fluorescence per cell (reported as molecules of equivalent cascade blue (MECB) per
equivalent microsphere particles) over time. Autofluorescence of untransformed cells and uninduced IPTG detector
cells were used as controls. Inset shows a zoomed-in portion of the plot. (B) Time course curve of fold change in eCFP
fluorescence over 20 hours for induced detector cells induced with IPTG relative to uninduced cells. Background noise
was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point,
relative to the mean fluorescence for all uninduced cells. (C) Dose-response curve for the detector cells at 5, 7, and 20
hours post induction. Coloured boxes show the sensitivity limit at each time point, which was calculated as a fold
change of 1.0 plus standard deviation of the negative control.
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5.2.2. IPTG detector module: dose-response behaviour

Following initial characterisation of each cell type’s growth rate, the behaviour of each
module when induced by their canonical inducer was determined. To perform initial
validation of each module type, the cell types were prepared separately before using
a liquid handler to sub-culture into a 96-well microplate in the presence and absence
of the relevant inducer. The concentrations used for each inducer were determined
based on both previously reported experiments for similar systems!*51l: 330 and results
from both the deterministic and agent-based models presented in chapter 4. The
microplate was then incubated with shaking at 37°C, and fluorescence and absorbance
readings were taken periodically to measure fold change in fluorescent marker
production and cell growth. The complete experimental procedure is detailed section
2.7.6.

For the IPTG detector cells, an increase in cyan fluorescence was observed when
induced with IPTG compared to uninduced cells (Figure 5.2). This indicated expected
behaviour, where the presence of IPTG allowed for un-repression of the PLac promoter
and increased expression of eCFP. As Lasl was designed to be co-expressed with
eCFP, it was therefore assumed that Lasl expression, and thus C12-HSL synthesis,
increased similarly. However, in the first 5 hours of measurement, no difference could
be observed in fluorescence of induced and un-induced cells (Figure 5.2 (A)).
Additionally, a decrease over time in fluorescence per cell was observed. These results
indicated that eCFP production in the first 5 hours was low, and fluorescence was
below the limit of detection. The decrease in fluorescence per cell also indicated that
initially, cell growth was faster than eCFP production. This conclusion is in accordance
with the growth curves shown in Figure 3.7 (A), as the detector cells remained in
exponential growth until around 4-6 hours, after which time the increase in number of

cells plateaued.
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Figure 5.3. Impact of Induction on IPTG Detector Cell Growth
Data showing the impact induction at different levels has on cell growth. Error bars show standard error of 3 to 4 replicates centred on the
mean. Data points show results of individual replicates. (A) Time course curve over 20 hours. Coloured lines show samples grown in the
presence of an inducer. Dashed black lines show cells grown in the presence of water only. (B) Dose-response curves for detector cells,
where the response was measured as cell density relative to uninduced control cells at 2, 4, 6, and 20 hours post induction. Grey boxes
show +/- standard deviation of the uninduced control cells.
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Figure 5.4. Simulated vs. Experimental Data for IPTG Detector Module

Comparison of data collected experimentally, by deterministic simulation (section 4.3), and
by agent-based simulation (section 4.4). (A) Time course curve of fold change in eCFP
when detector cells were induced with 10 mM IPTG. (B-C) Dose-response curve of IPTG
concentration against eCFP fold change at 10 hours (B) and 20 hours (C) post induction.

Generally, an increase in concentration of IPTG correlated with an increase in eCFP

production over time (Figure 5.2 (A-C)). An exception to this was 0.3125 mM IPTG,
which showed fluorescence values outside of the established trend (Figure 5.2 (A-B)
and section 9.10). This was assumed to be an outlier caused by either inaccurate
pipetting or insufficient mixing by the automated liquid handler. Aside from this
erroneous result, a clear dose-response curve had emerged by 7 hours post induction,
with a sloping region (i.e., the range of concentrations at which signal correlated with
dosage) between approximately 0.01 and 0.04 mM IPTG (Figure 5.2 (C)). The limit of
sensitivity was lowered to 0.005 mM IPTG by 20 hours post induction, with the
saturation point also decreasing to approximately 0.02 mM. From this data, it can be
seen that the operational range of the IPTG detector cells was small, with high
sensitivity relative to the concentrations tested. However, the dynamic range was also
found to be low, with a maximum fold change in fluorescence of approximately 1.7 after

20 hours of growth.

The growth rate of IPTG detector cells in the presence of increasing IPTG
concentrations were analysed to determine the impact that induction had on the overall
growth rates. Although there appeared to be a slightly lower number of cells at the end
of the experiment for cultures exposed to the higher concentrations of IPTG (Figure
5.3 (A)), no significant trend was identified (Figure 5.3 (B)).

The fold change in eCFP production (measured as a change in fluorescence
experimentally) was compared to simulated data collected from the deterministic and
agent-based models presented in chapter 4 (Figure 5.4). It was observed that both

model types generally over-estimated the fold change in eCFP production. Additionally,
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whilst both model types predicted that after 20 hours the fold change signal would
continue to increase, experimentally the signal plateaued after approximately 7 to 8
hours (Figure 5.4 (A)). Both models predicted that the IPTG detector module would be
less sensitive than observed experimentally (Figure 5.4 (B-C)).

5.2.3. Default processor module: dose-response behaviour
The experiment described in the previous sub-section was repeated for the default
processor cells. mCherry fluorescence per cell increased over time, and induction with
higher concentrations of C12-HSL appeared to result in higher mCherry production
(Figure 5.5 (A)). Additionally, the change in mCherry production appeared to occur in
three stages. Firstly, there was an increase in fluorescence in the first 4 hours, which
is more obvious in cultures inducted with C12-HSL above 2 pM. After this initial
increase, fluorescence remained relatively stable for an additional 8 to 10 hours, after
which mCherry production appeared to begin increasing rapidly, where once again
cultures induced with higher concentrations of C12-HSL exhibited higher rates of
production. The uninduced sample also exhibited this behaviour; based on results from
the default processor module in chapter 4, this could be due to the positive feedback
loop in the processor’s design, where leaky expression of rhll lead to accumulation of
C4-HSL and additional activation of PLas. This increase in fluorescence exhibited by
uninduced cells seemed to be delayed compared to cells induced with higher
concentrations of C12-HSL. The delayed accumulation of mCherry by uninduced
processor cells compared to cells induced with concentrations of C12-HSL above 2
uM results in the fold-change signal forming a 3™ degree polynomial (Figure 5.5 (B)).
When these higher concentrations of C12-HSL were used for induction, a peak in
signal at around 8 to 10 hours occurred, after which a decrease in fold change was
observed. This indicated that the default processor module may not be suitable for use
in systems required to function for longer than 10 hours as background expression can

cause increased noise and reduced signal.
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Figure 5.5. Default Processor Module Dose-Response Characterisation

Behaviour of the default processor cells when induced with C12-HSL. Error bars show +/- standard error centred on the mean of 3 or 4
replicates. (A) The time course curve shows average mCherry fluorescence per cell (reported as molecules of equivalent
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sulforhodamine-101 (MESR) per equivalent microsphere particles) over time. Autofluorescence of untransformed cells and uninduced
default processor cells were used as controls. (B) Time course curve of fold change in mCherry fluorescence over 20 hours for
processor cells induced with C12-HSL relative to uninduced cells. Background noise was calculated as the maximum and minimum
calibrated fluorescence values from uninduced cells at each time point, relative to the mean fluorescence for all uninduced cells. The
dotted black line is a 3™ degree polynomial curve fitted to data collected from cells induced with 50 mM C12-HSL, with an r? of 0.929.
(C) Dose-response curve for the processor cells at 5, 10, and 20 hours post induction. Coloured boxes show the sensitivity limit at each
time point, which was calculated as a fold change of 1.0 plus standard deviation of the negative control.
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The sensitivity of default processor cells was determined from dose-response curves
(Figure 5.5 (C)). For all curves after 5 hours post induction, the limit of sensitivity was
approximately 10e* uM C12-HSL. At 5 hours post induction, a dynamic range of almost
3-fold was observed, with a saturation point at 10 yM C12-HSL. At 10 and 20 hours
post induction, the maximal dynamic range was observed to be 4.6- and 3.75-fold
respectively. When measuring fluorescence 20 hours post induction, the signal
saturation point was reached after induction with approximately 0.2 yM C12-HSL,
whereas the sloping region continued to 10 uM for measurements taken at 10 hours.
This was likely due to the decrease in signal relative to uninduced cells after 10 hours

observed in Figure 5.5 (D).

For measurements taken at both 10 and 20 hours, induction with 20 yM C12-HSL
showed a notably lower fold change in fluorescence compared to 10 uM C12-HSL. The
reason for this was identified by analysis of growth rates for processor cells in the
presence of different C12-HSL concentrations (Figure 5.6). It was found that induction
of cells with concentrations of C12-HSL above 0.02 yM resulted in reduced cell density,
and a slower rate of growth, with the most dramatic impact observed for induction with
20 uM C12-HSL. As time progressed, the difference in cell density between all samples
decreased as stationary phase was reached. The AHL inducers were prepared by
serial dilution, which meant the total volume of DMSO added was identical for all
samples. Therefore, the decrease in growth rate could not be due to DMSO toxicity,
as all samples should have been affected by the presence of DMSO in the same way.
Thus, there was a potential that decreased cell growth was due to increased production
of mCherry and Rhll resulting in increased burden and stress on the cells. Such burden

has been well documented and is known to negatively impact a system’s functionality
[331], [332]
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Figure 5.6. Impact of Induction on Default Processor Cell Growth
Data showing the impact induction at different levels has on cell growth. Error bars show standard error of at least 3 replicates centred on
the mean. Data points show results of individual replicates. (A) Time course curve over 20 hours. Coloured lines show samples grown in
the presence of C12-HSL. The dashed black line show cells grown in the presence of DMSO only. (B) Dose-response curves for processor
cells, where the response was measured as cell density relative to uninduced control cells at 2, 4, 6, and 20 hours post induction. Grey
boxes show +/- standard deviation of the uninduced control cells.
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Figure 5.7. Simulated vs. Experimental Data for Default Processor Module
Comparison of data collected experimentally, by deterministic simulation (section 4.3), and
by agent-based simulation (section 4.4). (A) Time course curve of fold change in mCherry
when processor cells were induced with 10 yM C12-HSL. (B-D) Dose-response curve of
C12-HSL concentration against mCherry fold change at 5 hours (B), 10 hours (C), and 20
hours (D) post induction.

Predictions made by the processor models in chapter 4 were compared to the

experimental characterisation data to determine simulation accuracy (Figure 5.7).
Whilst both model types correctly predicted that fold change in mCherry production
would peak before decreasing (Figure 5.7 (A)), it was found that the agent-based
model underestimated the observed fold change across the range of concentrations of
C12-HSL tested (Figure 5.7(B-D)). Additionally, the agent-based model predicted that
the processor module would be less sensitive than was observed experimentally.
Whilst the deterministic processor model also predicted a lower sensitivity than was
observed, the simulated fold change values were much closer to the observed values.
The deterministic model also predicted that the peak and subsequent decrease in
signal would occur earlier than was observed. Nevertheless, overall, the deterministic
model appeared to be better at predicting behaviour of the processor module than the
agent-based approach. This may have been due to the parameter used in the agent-
based model for diffusion of C12-HSL into/out of the cells, as this parameter was
largely based on assumptions and therefore may have been an underestimate. A lower
diffusion parameter would have meant decreased amounts of C12-HSL passing into
the cells, and hence reduced activation of LasR leading to the smaller fold change in

mCherry production predicted by the model.
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Figure 5.8. sfGFP Reporter Module Dose-Response Characterisation

Behaviour of the sfGFP reporter cells when induced with C4-HSL. Error bars show +/- standard error centred on the mean of 3 or 4
replicates. (A) The time course curve shows average sfGFP fluorescence per cell (reported as molecules of equivalent fluorescein (MEFL)
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per equivalent microsphere particles) over time. Autofluorescence of untransformed cells and uninduced sfGFP reporter cells were used as
controls. (B) Time course curve of fold change in sfGFP fluorescence over 20 hours for processor cells induced with C4-HSL relative to
uninduced cells. Background noise was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at
each time point, relative to the mean fluorescence for all uninduced cells. (C) Dose-response curve for the reporter cells at 3, 10, and 20
hours post induction. Coloured boxes show the sensitivity limit at each time point, which was calculated as a fold change of 1.0 plus
standard deviation of the negative control.
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5.2.4. stGFP reporter module: dose-response behaviour
Behaviour of the sfGFP reporter cells was determined experimentally by measuring
fluorescence and optical density over time of cultures induced with differing
concentrations of C4-HSL, and in much the same way as the detector and processor
cells were characterised. When induced with a sufficient concentration of C4-HSL, the
reporter cells displayed increased green fluorescence, as expected Figure 5.8 (A-B).
When higher concentrations of C4-HSL were used, the fold change signal was found
to plateau after 16 to 18 hours; for lower concentrations of C4-HSL (below 0.4 pM),

this plateau was observed earlier.

The maximal fold change observed experimentally with reporter cells was higher than
seen with detector and processor cells, which was likely due to the high expression
and low leakiness exhibited by the PRhl promoter, as discussed in chapter 4. It was
also found that even 20 hours post induction with 50 yM C4-HSL, the signal saturation
limit had not been reached (Figure 5.8 (C)). For the experimental setup used here, it
was not feasible to add more than 50 yM C4-HSL due to solubility of the AHL in DMSO,
and the toxicity of DMSO to E. coli cells. At 3 hours post induction, it can be seen that
the system signal was saturated at a C4-HSL concentration of approximately 2 uM,
however the dynamic range was much smaller than when measured at later time points

(~2-fold at 3 hours compared to ~28-fold at 20 hours).

Unlike the processor cells, higher concentrations of AHL used for induction did not
appear to cause any drop in signal. This indicated that induction of reporter cells with
high amounts of C4-HSL did not impact cell growth in the same way that high induction
of the processor cells did. Results shown in Figure 5.9 confirm this, where no significant
reduction in cell density or growth rate was observed with increasing C4-HSL

concentrations.

203



(A) (B)

9 1.4 1.4
a 6.5-x1° 2 Hours 4 Hours

% 6.0 - 1.2 - 1.2
H 5.5

Q. 5.0+ 1.0 1.0
3‘ 4.5+

== 4.0 0.5 0.8
3.5+

0.6 4 0.6

0.4 0.4

Cell Dens
lent Microsphere
N oW
n o
| 1

Cell Density (Equivalent Microsphere Particles)

2.0+ il T il il T T T T T T T T T T T T T T T .
1077 107% 10°% 1074 1073 1072 107* 10° 10 102 10771071075 107% 1073 10-2 10~* 10° 10% 107
1.5
8 1.0 14 1.4
'S 0.5 == == Reporter Cells + DMSO € Hours 20 Hours
o
w 0.0 T T T T T T T T T T 1.2 1.2 4
-~ 2 4 6 8 10 12 14 16 18 20
Time (Hours) "A’v)\\_ ’*HW
1.0 1.0
%%, 8 Y Y e ® e 9o
2 2 8 8 ¥838 c oo 0.6- 0.6
S 8- wggeae s e
2 2 v 8§ 2 <
N - o =4 0.4 =y T S A | T T T T 0.4 =y T T T T T ™ .l il
1077107 1075 107% 1072 1072 107" 10° 10 10? 1077107°107°10"10*10"?10"* 10° 10* 102

C4-HSL (M)

Figure 5.9. Impact of Induction on sfGFP Reporter Cell Growth

Data showing the impact induction at different levels has on cell growth. Error bars show standard error of 3 to 4 replicates centred on the
mean. (A) Time course curve over 20 hours. Coloured lines show samples grown in the presence of C12-HSL. The dashed black line
show cells grown in the presence of DMSO only. Data points show results of individual replicates. (B) Dose-response curves for
processor cells, where the response was measured as cell density relative to uninduced control cells at 2, 4, 6, and 20 hours post
induction. Grey boxes show +/- standard deviation of the uninduced control cells.
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Figure 5.10. Simulated vs. Experimental Data for sfGFP Reporter Module
Comparison of data collected experimentally, by deterministic simulation (section 4.3), and
by agent-based simulation (section 4.4). (A) Time course curve of fold change in sfGFP
when reporter cells were induced with 10 yM C4-HSL. (B-C) Dose-response curve of C4-
HSL concentration against mCherry fold change on a logio scale at 3 hours (B) and 20
hours (C) post induction.

Both model types presented in chapter 4 predicted that the sfGFP reporter module

would show the highest levels of fold change in fluorescent protein production. Whilst
this prediction was accurate, the deterministic and agent-based reporter modules
predicted a far higher maximal fold change than was observed experimentally
(approximately 1000- to 2000- fold compared to below than 30-fold) (Figure 5.10).
Additionally, it was observed that sfGFP fold change had stopped increasing by 20
hours post induction, whilst the models predicted that the signal would continue to
increase. However, despite the large differences in predicted and observed fold
change values, the dose response curves predicted by both models showed
similarities to the observed curve, with almost identical sensitivity limits at different time
points (Figure 5.10 (B-C)), and the lack of a definitive saturation point 20 hours post
induction (Figure 5.10 (C) and Figure 5.8 (C)), although there it appears that the
saturation point may be approaching at 50 yM C4-HSL induction, as can be seen more
easily when fold change was plotted on a log scale as shown in Figure 5.10 (C).
Additionally, a saturation point was observed experimentally at 3 hours post induction,

which was absent in either of the models. This suggests that whilst the models were
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accurate in their prediction of sensitivity, parameters related to the kinetics of sfGFP
production over time were inaccurate, especially with regard to the overall fold change
compared to uninduced samples. The higher fold change values were likely due to
either an underestimation of background noise exhibited by the PRhl promoter in the
reporter module design, or an overestimation of expression levels from activated PRhl.

5.2.5. Cross talk between module inducers
Whilst C12-HSL and C4-HSL were selected as the intercellular chemical
communication molecules due to reports of high orthogonality, cross talk has been
previously reported as discussed in chapter 4. Additionally, although IPTG is not known
to interact in any meaningful way with any of the genetic elements or proteins used for
the processor or reporter modules, it was important to ensure that IPTG does not have
any impact on the signal or behaviour of the processor and reporter cells. This would
ensure that any signal produced by the processor or reporter cells when in co-culture
with detector cells in the presence of IPTG was due to cellular communication, and not
direct interaction with IPTG. Therefore, cross talk characterisation was performed for
all three modules with IPTG, C12-HSL, and C4-HSL to (i) determine the level of
communication between the detector and reporter cells, (ii) help further characterise
the self-induction behaviour thought to occur in the processor cells, and (iii) validate

that IPTG does not impact behaviour of the processor and reporter cells.

When IPTG was used as the inducer, only the detector cells were found to be activated
(Figure 5.11 (A, D G)). This confirmed that IPTG could not directly cause induction of
the processor or reporter cells, and hence any activation observed during co-culture
experiments was likely to be the result of uni-directional communication from the
detector to processor to reporter cells. C12-HSL caused activation of the processor
cells as seen previously (Figure 5.11 (E)), and also caused very low-level activation of
the reporter cells, although the fold change magnitude did not appear to be dose
dependent and hence may have been within natural noise and variation (Figure 5.11
(H)). Unexpectedly, C12-HSL was observed to cause activation of the detector cells in
a dose-dependent manner, with 10 uM C12-HSL resulting in almost 1.1-fold increase
at 20 hours (Figure 5.11 (B)). However, as these values were very low, it was once

again thought to be within variation between samples.
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When C4-HSL was used to induce the detector cells, very low-level activation of the
detector cells was also observed (Figure 5.11 (C)). The reporter cells induced with C4-
HSL showed behaviour in-line with results from the previous sub-section (Figure 5.11
(1)), however the processor cells showed no activation (Figure 5.11 (F)). From the
deterministic processor model in chapter 4, it was predicted that although non-specific
activation of LasR with C4-HSL could occur, no signal would be observed due to the
presence of background levels of C4-HSL produced by Rhll. Therefore, this

observation was in line with previous predictions.

The growth rates of all three cell types when grown in the presence of each inducer
were visualised to determine whether there were any growth rate effects (Figure 5.12).
It was found that for almost all cases, no impact on cell growth was observed. The only
exception was for default processor cells in the presence of C12-HSL (Figure 5.12 (B)).
This was in-line with the results discussed previously, where the growth rate of
processor cells was found to be negatively correlated with induction by C12-HSL at
increasing concentrations. Observations that neither the detector nor reporter cells
were negatively impacted by the presence of C12-HSL, and that the processor’s
growth remained unaffected by the addition of IPTG and C4-HSL, lent credibility to the
hypothesis that induction of processor cells with C12-HSL was placing burden onto the
cells. If the decreased growth rate was due to another factor, such as C12-HSL toxicity,
this behaviour would be expected in cells other than the processors, like the IPTG

detector and sfGFP reporter cells.
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Figure 5.11. Characterising Module Cross Talk
Behaviour of the IPTG detector, default processor, and sfGFP reporter modules was characterised when induced with IPTG, C12-HSL,
and C4-HSL. Autofluorescence of untransformed cells and background fluorescence of uninduced cells were used as controls.
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Uninduced cells were grown in the presence of water (the solvent used for IPTG) or DMSO (the solvent used for AHLS). The plots
show time course curve for fold change in fluorescence of induced cells relative to non-induced cells. Error bars show +/- standard
error centred on the mean of 3 or 4 replicates, except for reporter cells induced with 10 yM C4-HSL, which had 2 replicates.
Background noise was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time
point, relative to the mean fluorescence for all uninduced cells.
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Figure 5.12. Impact of Inducers on Cell Growth

The impact of all three inducers, IPTG (1 mM), C12-HSL (10 uM), and C4-HSL (10 uM) on the growth rates of (A) IPTG detector, (B) default
processor, and (C) sfGFP reporter cells. The growth rates of untransformed cells and each cell type in the presence of water and DMSO are
shown as controls. Error bars show +/- standard error centred on the mean of at least 3.
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5.3. Initial Multi-Microbial Biosensor Characterisation

5.3.1. Validating quorum sensing based intercellular communication
In section 5.2, the responsiveness of each module to the presence of an inducer was
described. Module response was measured as a fold change in fluorescence, which
indicated expression of a fluorescent protein. For the detector and processor modules,
the fluorescent protein was co-transcribed along with the AHL synthetase (Lasl for the
detector module and Rhll for the processor module), and so the detection of a
fluorescent signal suggested that the AHL synthetase was also being expressed.
However, it was possible that the AHL synthetase was not present due to issues with
translation, or that the enzyme was non-functional and hence unable to synthesise the
AHL molecule required for cell-to-cell communication. Therefore, it was necessary to
confirm AHL production by the detector and processor cells. As the processor and
reporter modules had been confirmed to respond in the presence of C12-HSL and C4-
HSL respectively, it was possible to utilise these modules as biosensors for AHL

detection.

The confirmation of production of AHLs by the detector and processor cells was initially
planned to be visual. To achieve this, uninduced processor and reporter cells were
spread onto LB agar plates. To the processor cell plates, 10 pL of supernatant from
detector and untransformed cells induced with IPTG or water were spotted onto the
centre of the plates. For the reporter cell plates, supernatant from processor and
untransformed cells induced with C4-HSL or DMSO were used. In both cases, the
untransformed cells were used as a negative control which should not have produced
any AHL. The agar plates were then incubated for 18 hours at 37°C. The reporter cell
plates were visualised under ultraviolet light and imaged with a UV filter in order to
detect green fluorescence. It was expected that plates with supernatant from the
processor cells and the positive control plates with C4-HSL added should show green
fluorescence spreading from the centre, but the untransformed cells should show no
fluorescence. This expectation was met (Figure 5.13 (A)), validating that the processor

cells had synthesised C4-HSL which diffused into the extracellular environment.

The processor cell plates were visualised under blue/green light and imaged using a
filter for detection of red fluorescence. With the processor cell plates, no difference in

red fluorescence was observed across all plates, and no ‘halo’ could be seen
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Figure 5.13. Production of AHLs by Detector and Processor Cells

Detector and processor cells were tested for production of AHLs. (A) C4-HSL production
by processor cells. Uninduced sfGFP reporter cells were spread onto LB agar plates, and
10 pL of supernatant from untransformed or default processor cells either induced with
C12-HSL or uninduced were spotted onto the plate’s centre. Plates with C4-HSL and
nothing added were used as positive and negative controls. Following incubation overnight
at 37°C, the plates were visualised under UV light. Bright green halos appeared in the
presence of supernatant from processor cells, but not untransformed cells. Images were
false-coloured green, originals can be found in section 9.5. (B) C12-HSL production by
detector cells. Uninduced processor cells were added to a 96 well microplate and induced
with supernatant from detector and untransformed cells previously induced with IPTG.
Processor cells were also induced with 10 yM C12-HSL and DMSO as positive and
negative controls. Background noise was calculated as the maximum and minimum
calibrated fluorescence values from uninduced cells at each time point, relative to the
mean fluorescence for all uninduced cells.

expanding from the centre of any plates, including the positive control plate with C12-

HSL added (images not shown). It was possible that no difference in fluorescence
could be seen due to processor cells exhibiting lower magnitude fold change values
compared to reporter cells, as seen in section 5.2. Therefore, a different approach was
taken to determine if detector cells were synthesising C12-HSL. Uninduced processor
cells were added to LB media in wells of a 96-well plate, to which 1 uL of either DMSO,
C12-HSL, or supernatant from detector or untransformed cells induced previously
induced with IPTG was added (section 2.7.8). The processor cells were then incubated
with shaking at 37°C for 20 hours, during which red fluorescence and optical density
measurements were taken. From this experiment, it was observed that processor cells
grown in the presence of detector cells induced with IPTG showed increased red
fluorescence compared to cells grown with either C12-HSL or supernatant from
untransformed cells (Figure 5.13 (B)). The results therefore suggested that the detector

cells were producing C12-HSL, which accumulated in the media.
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Figure 5.14. Propagation of Noise During Intercellular Communication

All module types were co-cultured in 2-population combinations. The sender cells (detector and processor) were not induced
to determine background activation of receiver cells (processor and reporter). Error bars show +/- standard error centred on
the mean of 3 or 4 replicates. Fold change was calculated as fluorescence of co-cultures relative to fluorescence from the
receiver cells in monoculture. Receiver background noise (pink area) was calculated as the maximum and minimum
calibrated fluorescence values from receiver cells in monoculture at each time point, relative to the mean fluorescence for all
uninduced cells. (A) Processor and reporter cell co-cultures. (B) Detector and reporter cell co-cultures. (C) Detector and

processor cell co-cultures.
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5.3.2. Measuring noise propagation
The agent-based model presented in chapter 4 predicted that propagation of
background noise may result in a non-functional biosensor. In biological systems,
noise can propagate as a result of leaky expression. In the case of the biosensor
system, background production of the AHL synthetases can lead to accumulation of
AHLs, which are able to activate downstream modules. To determine the accuracy of
this prediction, the ability for uninduced detector cells to activate processor cells, and
uninduced processor cells to activate reporter cells, was investigated. In a 96 well plate,
detector cells diluted to an ODsoo of 1.0 were added to processor and reporter cells in
at percentages of 0, 0.5, 1.0, 10, and 50 % v/v (volume of cells to final culture volume).
Similarly, processor cells diluted to an ODsoo of 1.0 were added to reporter cells in the
percentages. For all co-cultures, the receiver cells (reporters or processors) were
added at 1% v/v. The co-cultures were incubated in a 96-well plate at 37°C with shaking
for 20 hours. Fluorescence and absorbance measurements were made at regular
intervals. It should be noted that in previous experiments, fluorescence readings were
corrected based on cell density to get an average fluorescence per cell. For the co-
cultures, this was not possible as there was no method to determine how many of each
cell type was present at each time step. Therefore, the fluorescence values presented

here were for the entire culture.

When co-cultured with processor cells, sfGFP reporter cells showed increased
fluorescence compared to uninduced monoculture (Figure 5.14 (A)). This indicated that
background production of C4-HSL by the processor cells was sufficient to activate the
reporter cells. Within the first 5 hours of culture, fluorescence fold change appeared to
be correlated with the number of processor cells present, and an ‘S’-like dose-
response curve could be identified (Figure 5.15 (A)). This was not unexpected as more
processor cells should have resulted in higher amounts of C4-HSL present, and hence
increased sfGFP expression as seen previously. However, as time progressed, this
correlation was lost. This may have been due to changes in the proportions of
processor and reporter cells present if one cell type was able to outcompete the other.
If this were the case then it was possible that as the stationary phase of growth
approached (which was observed to occur between 5 and 6 hours in previous
experiments), the proportion of processor and reporter cells became similar across all

samples, no matter the starting amounts. Another possibility was that beyond 5 hours
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Figure 5.15. Visualising Behavioural Features of Processor and Reporter Co-
Cultures

The plots here visualise features of interest from the processor and reporter co-culture
experiment. (A) Dose-response curve of processor cell percentage (v/v for volume of
processor cells to final culture volume) and fold change in sfGFP fluorescence by the
reporter cells in co-culture, relative to uninduced reporter cells in monoculture. Curves are
shown for 3 time points. Coloured box shows limit of detection, calculated as 1 + standard
deviation of uninduced reporter cells in monoculture. Error bars show standard error of 3 or
4 replicates centred on the mean value. (B) Growth curves for two processor-reporter co-
cultures. Error bars show standard error of 3 or 4 replicates centred on the mean value.
Individual points show cell density measurements for each replicate.

background production of C4-HSL by processor cells in all samples had reached levels

which were saturating the reporter cells’ response. There was also the possibility that
the initial dose-response observed in the first 5 hours was an artifact from experimental
setup, whereby C4-HSL was present in the media of the processor cells added to the
initial cultures, and hence the addition of increasing volumes of processor cells
unintentionally introduced different concentrations of AHL, which caused the initial
response seen. Measures were taken to avoid this possibility, namely removing the
liquid media used to culture the cells in overnight and then washing the cells in sterile
water to remove any excess media, and hence any AHL present. However, it still

remained a possibility that a non-significant amount of AHL was retained.

Another feature of note in the time course data was that the sample containing 1% v/v
of processor cells showed a large degree of variation, with all 4 repeats showing
distinct time course curves. Each repeat was prepared in bulk before aliquoting into
separate wells of the microplate, which should have removed the chance of each
replicate containing different amounts of each cell type. However, as the cell growth
curves also show similar variation (Figure 5.15 (B)), and this behaviour was not
identified in other samples, error during experimental setup (such as improper mixing

by the liquid handling robot of the bulk culture) seemed likely.
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The presence of detector cells did not appear to result in any increased sfGFP
expression by reporter cells (Figure 5.14 (B)), as expected based on results from
crosstalk experiments (Figure 5.11 (bottom middle)), where it was concluded that C12-
HSL had no noticeable impact on reporter cell behaviour. However, increased
percentages of detector cells did seem to cause a decrease in sSfGFP production by
reporter cells after 5 hours of co-culture. This may have been due to detector cells
managing to outcompete reporter cells over time, and hence less reporter cells were

present than in cultures with less detector cells.

When detector and processor cells were co-cultured, in the majority of samples no
increase in processor cell fluorescence was observed Figure 5.14 (C). As it was
previously confirmed that detector cells were capable of producing C12-HSL, and
processor cells were induced by the AHL, it was suspected that the uninduced detector
cells simply produced C12-HSL below the processor cells’ limit of sensitivity. This
would have been in opposition to the agent-based model predictions in chapter 4.
Another possibility was that one of the cell types were outcompeted significantly by the
other during co-culture. As it was found that the default processor cells appeared to
have decreased growth rates when induced, it was possible that the presence of C12-
HSL produced by the detector cells resulted in slower growing processor cells, allowing
for the amount of detector cells to increase. This would have led to even higher
amounts of AHL, repressing processor growth further and so-on, such that not enough
processor cells were present to generate a detectable signal. From the plate reader
data, it was not possible to determine if this was the case, as growth curves of each
cell type could not be obtained. It should be noted that 2 of the 50% detector + 10%
processor co-cultures did show increased red fluorescence over time. However, as
with the high-variation culture identified in the processor-reporter co-cultures, it was
possible that this was simply a result of experimental setup, where more processor
cells were present in these replicates than the remaining two. This possibility is
supported by lower fluorescence in these other two replicates, suggesting an un-equal
distribution of processor cells and poor mixing prior to replicate aliquoting by the liquid

handling robot.
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Figure 5.16. Single Cell Analysis of Processor to Reporter Noise Propagation

Analysis of processor-reporter co-cultures from the experiment shown in Figure 5.14 via flow cytometry after ~20 hours
incubation. (A) 2D-scatter plot of side scatter height (SSC-H) vs green fluorescence. Green points show all reporter-
containing cultures. Grey dots show monocultures of untransformed cells. Data was segmented into four sections based
on fluorescence. (A1) Non fluorescent cells. (A2) Cells expressing sfGFP at background levels. (A3) Cells expressing
sfGFP at moderate levels. (A4) Cells expressing sfGFP at high levels. Inset shows the same data as main plot at a higher
resolution to better visualise the four populations. (B) Histogram of green fluorescence vs cell count. For all reporter-
containing samples. Dashed black line shows cut-off point for analysis. (C-H) Left plots are 2D-scatter plots of SSC-H vs
green fluorescence on the same scale as shown in (A). Right plots are bar plots showing the percentage of all cells in
each of the four segments displayed in (A). (C-D) show uninduced monocultures of reporter and processor cells
respectively. (E-H) shows co-cultures of processor and reporter cells added at the stated percentages. Percentages refer
to volume-per-volume percentage of cell to final culture volume. Bar height is the mean of three or four replicates. Error
bars show +/- standard deviation across replicates.
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As bulk measurements of the co-cultures collected using a plate reader were unable
to explain fully the behaviour observed by co-culturing the cell types, flow cytometry
was used to perform single cell measurement. This allowed for each cell type to be
separated based on fluorescence in an attempt to determine how the proportion of cell
populations changed during the experiment. Samples from the plate reader experiment
above were collected and prepared prior to analysis using a flow cytometer. Initial
gating and voltage setup had been performed prior to experimentation using controls,

as described in section 2.7.2.

All samples containing reporter cells were initially visualised on a scatter plot of side
scatter height (SSC-H) vs green fluorescence, from which four distinct populations
were observed (Figure 5.16 (A)). Overlaying data from monocultures of untransformed
cells, one of these populations could be identified as cells which exhibit no green
fluorescence above cellular autofluorescence (Figure 5.16 (Al)). The remaining
populations (Figure 5.16 (A2-4)) had increasing levels of green fluorescence, and so
were described as following: (A2) cells expressing sfGFP at background levels, (A3)
cell expressing sfGFP at moderate levels, and (A4) cells strongly expressing sfGFP. A
cut-off point was also defined based on the distribution of fluorescence levels, below

which entities were assumed to be debris rather than cells (Figure 5.16 (B)).

For monocultures containing uninduced sfGFP reporter cells, the majority of cells
(more than 90%) could be seen to have background levels of sStGFP expression, whilst
a minority (approximately 0 to 5%) were found to have moderate levels of fluorescence.
The remainder (approximately 5 to 10%) appeared to show no fluorescence (Figure
5.16 (C)). There are a number of possible reasons for this observed heterogeneity,
including non-fluorescing cells caused by factors like loss of plasmid over time, and
differences in cell cycle state [333 1334 For uninduced default processor cells, as
expected, no fluorescent cells were observed (Figure 5.16 (D)). When the processor
cells were added to reporter cell cultures, all samples exhibited increased fluorescence
(Figure 5.16 (E-H)), which was in-line with the plate reader data (Figure 5.14 (A)). It
was also observed that when 1.0% v/v or above of processor cells were added, the
majority of reporter cells were in a highly fluorescent state (Figure 5.16 (E-G)).
However, when only 0.5% v/v of processor cells were added, most reporter cells were
in a state of moderate sfGFP expression (Figure 5.16 (H)). This indicated that it may

have been possible to create a processor-reporter co-culture with low enough
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Figure 5.17. Single Cell Analysis of Detector to Reporter Noise Propagation:

Analysis of detector-reporter co-cultures from the experiment shown in Figure 5.14 via flow
cytometry after ~20 hours incubation. (A-D) Left plots are 2D-scatter plots of SSC-H vs
green fluorescence on the same scale as shown in (Figure 5.16 (A)). Right plots are bar
plots showing the percentage of all cells in each of the four segments displayed in (Figure
5.16 (A)). All plots show co-cultures of detector and processor cells added at the stated
percentages. Percentages refer to volume-per-volume percentage of cell to final culture
volume. Bar height is the mean of three or four replicates. Error bars show +/- standard
deviation across replicates.

background activation of reporters by the processor to establish a functional system.

Although, as even a 5:100 processor to reporter cell ratio showed significant increase
in background activation compared to reporters in monoculture, the agent-based
model’s prediction that the multi-microbial biosensor could have high noise seems to

be somewhat accurate.

For the processor-reporter co-cultures, it was possible to approximate the proportion
of each cell type present at the point of measurement (i.e., after incubation for 20 hours,
as described above), as only the reporter cells showed fluorescence of background
levels or above. This method has some inaccuracy, as it could not be determined how
many reporter cells were completely non-fluorescent, but it could be used as an
indicator. The single cell results shown in Figure 5.16 (E-H) suggest that the reporter
cells may be outcompeting the processor cells over time, resulting in an unstable

culture. When processor and reporter cells were added in initial ratios of 5:1, it was
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found that after 20 hours of incubation, the final approximate cell ratio was
approximately 1.2:1 (Figure 5.16 (E)), representing a relative increase of reporter cells
compared the processor cells. Similarly, when the initial ratio of processors to reporters
was 1:1, a final ratio of 0.14:1 was measured (Figure 5.16 (F)), and when a ratio of
0.05:1 was added, the final ratio was 0.03:1 (Figure 5.16 (H)). This supported the
thought that the collapse of a correlation between number of processors and reporter

activation over time could have been partially caused by unstable cell populations.

The plate reader data suggested that the presence of uninduced IPTG detector cells
had no influence over reporter cell activation (Figure 5.17). The single cell data
supported this conclusion, as the distribution of reporter cells with regards to green
fluorescence was almost identical to that of uninduced reporter cells in monoculture.
Furthermore, when the detector and reporter cells were added in similar proportions
(5:1 and 1:1), the final ratios detected appeared to be very similar (6:1 and 1.5:1
respectively). However, when the reporter cells were present in higher amounts (0.1:1
and 0.05:1), the relative number of detector cells seemed to slightly increase, such that
the final ratios in both cases were approximately 0.25:1 in both cases. However, the
variation between replicates observed for these co-cultures was also markedly
increased, and hence were within error. Overall, it appeared that the detector and

reporter cells established a stable co-culture over time.

The detector-processor co-cultures were analysed similarly to the reporter containing
cultures, except red fluorescence was measured instead of green. For the detector-
processor cultures, three populations were identified: non-fluorescent, background
fluorescent, and moderately fluorescent (Figure 5.18(A)). For the uninduced processor
cells in monoculture, the majority of cells were found to have background levels of

fluorescence (Figure 5.18(C)).
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Figure 5.18. Single Cell Analysis of Detector to Processor Noise Propagation

Analysis of detector-processor co-cultures from the experiment shown in Figure 5.14 via flow cytometry after ~20 hours
incubation. (A) 2D-scatter plot of side scatter height (SSC-H) vs red fluorescence. Light purple points show all detector-
processor cultures, and dark purple points are uninduced processor monocultures. Grey dots show monocultures of
untransformed cells. Data was segmented into three sections based on fluorescence. (A1) Non fluorescent cells. (A2)
Cells expressing mCherry at background levels. (A3) Cells expressing mCherry at moderate levels. Inset shows the
same data as main plot at a higher resolution to better visualise the populations. (B) Histogram of red fluorescence vs
cell count for all detector-processor co-culture samples. Dashed black line shows cut-off point for analysis. (C-G) Left
plots are 2D-scatter plots of SSC-H vs red fluorescence on the same scale as shown in (A). Right plots are bar plots
showing the percentage of all cells in each of the three segments displayed in (A). (C) Uninduced monocultures of
processor cells. (D-G) Co-cultures of detector and processor cells added at the stated percentages. Percentages refer to
volume-per-volume percentage of cell to final culture volume. Bar height is the mean of three or four replicates. Error
bars show +/- standard deviation across replicates.
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In the bulk plate reader data, the detector-processor co-cultures with 50% v/v detector
cells and 10% v/v processor cells showed large variation between replicates. It was
thought that this variation was due to poor mixing by the liquid handler during
experimental setup, in which case it was expected that in the single cell measurements,
all processor cells would show background levels of red fluorescence. This was
because the increased fluorescence would have resulted from more processor cells
than intended, rather than increased activity of each cell. However, the single cell data
showed processor cells with increased fluorescence in all replicates (Figure 5.18(D)).
Additionally, the variation between samples was far lower for single cell measurements.
Therefore, it was possible that the variation may have been due to a biological factor,
but the factor’s identity was unclear. For the remaining detector-processor co-cultures,
increased red fluorescence of processor cells was also observed, with approximately
half of all fluorescent processor cells exhibiting a signal above background levels
(Figure 5.18(E-G)). This suggested that background expression of processor cells by
detector cells was occurring, although large variation across repeats of some co-
cultures made it difficult to determine definitively. Additionally, this conclusion was in
contradiction to the bulk plate reader data, although as large degree of heterogeneity
was detected, with processor cells being split almost in half between two states, it was

possible that any signal was undetectable in bulk measurements.

The amount of fluorescent and non-fluorescent cells in each co-culture were compared
to determine how the proportion of each cell type had changed during the course of
experimentation. Whilst it seemed that there may have been some outgrowing of the
processor cells by the detector cells, this was within error, and largely the two cell types
were observed to grow in a stable manner during the 20-hour experiment. Therefore,
one of the potential causes for low background activation of processor by the detectors,
was proven to be incorrect. Instead, it was more likely that contrary to the prediction
made by the agent-based model, in their uninduced state the detector cells only caused

a low-level activation of processor cells.

Overall, the experiments presented here indicate that the greatest source of noise in
the multi-microbial biosensor was likely to arise from background activation of the
reporter cells by the processor cells. This background activation was observed to occur
after approximately 5 hours, which suggested that the potential positive feedback loop

in the processor module was the cause, as it was shown in sub-section 5.2.4 that there
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was a delay before background mCherry expression began increasing. Regardless,
the background activation of the sfGFP reporter cells appeared to be below the
saturation limit, and thus processor cells induced by detector cells should have been

able to activate higher sfGFP expression by the reporters.

5.3.3. Validation of the modular, multi-microbial biosensor
To determine if the proof-of-concept biosensor was functional, co-cultures of all three
cell types were prepared as described in section 2.7.11, such that each cell type was
added in equal amounts, as determined by culture optical density at a wavelength of
600 nm. Each co-culture was induced with one of a range of IPTG concentrations,
including no IPTG. Monocultures of each cell type were also prepared, for which half
were induced with their canonical inducer, and half were left uninduced. Samples were
incubated at 37°C for 20 hours with periodic fluorescence and absorbance
measurements. As with the co-cultures in sub-section 5.3.2, fluorescence values are

presented for the culture as a whole, and not correct for number of cells present.

Fluorescence measurements in the cyan wavelength were plotted over time to
determine activation of IPTG detector cells (Figure 5.19 (A-B)). It was observed that
detector cells in all co-cultures induced with IPTG showed increased eCFP
fluorescence compared to the uninduced co-cultures. These results indicated that the
detector cells could be induced by IPTG in co-culture, and activation levels appeared

similar to that observed in monoculture up until 6 hours of incubation time.
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Figure 5.19. Characterisation of a 1:1:1 Cell Ratio Multi-Microbial Biosensor
Detector, processor, and reporter cells were added at an initial ratio of 1:1:1. Error bars
show +/- standard error centred on the mean of 3 or 4 replicates. Background noise was
calculated as the maximum and minimum calibrated fluorescence values from uninduced
cells at each time point, relative to the mean fluorescence for all uninduced cells. (A, C, E)
Time course curves of non-growth corrected eCFP (A), mCherry (C), and sfGFP (E)
fluorescence for the multi-microbial biosensor system induced with a range of IPTG
concentrations. The module positive controls were detector (A), processor (C), or reporter
(E) cells in monoculture induced with 1 mM IPTG, 10 yM C12-HSL, or 10 yM C4-HSL
respectively. The module negative controls were uninduced detector (A), processor (C), or
reporter (E) cells in monoculture. The biosensor negative control was the multi-microbial
system culture with water instead of IPTG. (B, D, F) Time course curves of fold change in
eCFP (B), mCherry (D), and sfGFP (F) fluorescence of the multi-microbial biosensor
system induced with a range of IPTG concentrations, relative to the biosensor negative
control.

Measurements of red fluorescence were used to determine activity of the default
processor cells over time (Figure 5.19 (C-D)). From this data, it appeared that the

processor cells in co-cultures induced with IPTG showed no mCherry fluorescence
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Figure 5.20. sfGFP Reporter Cell Response in Early Biosensor Culture

Data for reporter cells presented in Figure 5.19 (F) was plotted for the first 5 hours of
culturing time to better visualise response. Error bars show +/- standard error centred on
the mean of 3 or 4 replicates. (A) Time course curve of sSfGFP fold change between 2 and
5 hours. Background noise was calculated as the maximum and minimum calibrated
fluorescence values from uninduced cells at each time point, relative to the mean
fluorescence for all uninduced cells. (B) Dose-response curve of IPTG concentration vs
sfGFP fold change after 3.5 hours of culture time. Coloured box shows limit of detection,
calculated as 1 + standard deviation of uninduced co-culture after 3.5 hours of culture
time.

above that of uninduced co-cultures. The agent-based model predicted that no fold

change in mCherry production would be observed in biosensor co-cultures induced
with IPTG compared to non-induced cultures. This was because of the high
background activation of processor cells by the detector cells. However, as revealed
by the noise propagation experiments, processor cells were only induced at a low-to-
moderate level by the presence of uninduced detector cells. Additionally, the total
fluorescence for biosensor co-cultures was below that of the uninduced processor cells
in monoculture (Figure 5.19 (C)). Therefore, it was concluded that the reason for lack
of processor activity was due to either insufficient production of C12-HSL by the
induced detector cells, or out-growth of processor cells by the detector and reporter
cells. Another possibility was that the processor cells were activated, but at a level too
low to detect with plate reader measurements, as indicated by the detector to

processor noise propagation experiments.

To determine whether the reporter cells were more highly induced in biosensor co-
cultures induced with IPTG compared to uninduced biosensor systems, fluorescence
in the green wavelength were made (Figure 5.19 (E-F)). Despite an apparent lack of
processor cell activation, there was a small but significant fold change in sfGFP

fluorescence for biosensor systems induced with IPTG compared to uninduced

227



(A) (B)

No
Fluorescence

100
100

No
Fluorescence

80
1

80
1

60
1

60
1

40
1
40
1

Moderate
High Fluorescence

4 Fluorescence

Moderate
Fluorescence

Percentage Counts
Percentage Counts

Background
Fluorescence

20
1

Background
Fluorescence

1]
1

G
G
G

0.1 mM IPTG
1.0 mM IPTG
5.0 mM IPTG
20 mM IPTG
0.1 mM IPTG
1.0 mM IPTG
5.0 mM IPTG
20 mM IPTG
0.1 mM IPTG
1.0 mM IPTG
5.0 mM IPTG
20 mM IPTG
0.1 mM IPTG
1.0 mM IPTG
5.0 mM IPTG
20 mM IPTG
0.1 mM IPTG
1.0 mM IPTG
0.1 mM IPT:

1.0 mM IPT.

5.0 mM IPT

20 mM IPTG
0.1 mM IPTG
1.0 mM IPTG
5.0 mM IPTG
20 mM IPTG

Figure 5.21. Single Cell Analysis of Biosensor Culture

The bar plots show single cell analysis for biosensor cultures after 20 hours of growth. (A)
Bar plot showing the percentage of cells displaying no, background, and moderate red
fluorescence, using thresholds visualised in Figure 5.18. (B) Bar plot showing the
percentage of cells displaying no, background, moderate, and high green fluorescence,
using thresholds visualised in Figure 5.16. For both bar plots, bar height shows mean
percentage counts across 3 replicates, and error bars show standard error.

systems within the first four hours of culturing (Figure 5.20 (A)). This response was

found to exhibit dose-dependent characteristics, although variation between replicates
made it difficult to establish a definitive relationship between IPTG concentration and
fold change in sfGFP (Figure 5.20 (B)). As it was found in sub-section 5.2.6 that IPTG
could not be used to induce reporter cells, the fold change in fluorescence must have
occurred through production of communication from either the detector or processor

cells.

Past 4 hours of culture time, no fold change in sfGFP fluorescence above background
noise was observed. This suggested that after this point, the co-culture became
unstable as outgrowth between the cell types occurred, or background production of
AHLs became too high, or a combination of both. To help determine the final proportion
of cell types, a selection of the cultures was processed and analysed by flow cytometry
as described in section 2.7.12 (Figure 5.21). From this, it was found that across all
samples, approximately 30 to 35% of all cells exhibited green fluorescence, and hence
were assumed to be reporter cells, and approximately 20 to 30% were found to have
red fluorescence, and hence assumed to be processors. This suggested that after 20
hours of culture time, all cells remained at similar proportions to that at which they were
added, although the processor cells appeared to have a slight decrease relative to the
other cell types. It appeared that there were fewer processor cells in co-cultured

induced with a lower concentration of IPTG, however the difference was small and not
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definitive. The clear presence of both processor and reporter cells, along with evidence
of continued eCFP production by detector cells as shown by the plate reader data,
indicated that loss of signal by the reporter cells over time was not due to competition
between cell types in co-culture. Therefore, it was likely that loss of signal was due to
an increase in noise over time, where continued background production of C12-HSL

and C4-HSL saturated the processor and reporter cells’ response.
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5.4. Conclusions and Next Steps

All module types could be activated by their canonical inducers, and a range of inducer
concentrations was found for each in which response (measured as fold change in
fluorescence) was correlated with amount of inducer. However, it was found that the
detector and processor modules exhibited a lower maximal fold change above
background noise than the reporter module. It was also found that IPTG could only
activate the detector cells, and only a low level of cross talk was identified for the AHLSs.
In addition to responsiveness of the modules to induction, the ability for detector and
processor module cells to produce C12-HSL and C4-HSL respectively was confirmed.

It was identified that induction of the default processor cells leads to decreased growth
rates when compared to uninduced processor cells. It was not entirely clear why the
processor module appeared to impart a higher burden than the detector or reporter
modules, however there are a number of possible reasons. Firstly, the processor
module may have caused a higher burden than the reporter module because the
processor module required an additional protein to be expressed; the reporter module
encoded RhIR and sfGFP, whereas the processor module encoded LasR, Rhll, and
mCherry. However, this would not explain why the detector module would not also
impart similar levels of burden onto host cells, as it also contained coding regions for
the same number of proteins with similar sizes (Lacl, Lasl, and eCFP). Secondly, it
was possible that PLas allowed for a higher level of expression than PLac or PRhl, and
hence required host cells to produce more proteins. This reason was supported by a
higher fold change in mCherry observed when inducing processor cells compared to
the fold change in eCFP seen from detector cells, although the reporter cells exhibited
an even high fold change in fluorescence. Thirdly, the processor module may have
resulted in a higher burden on cells due to the positive feedback loop, which would
likely have caused higher background production of proteins encoded by the processor
module. Therefore, the processor cells may have already been in a state of low-level
stress, which began to impact cell growth more heavily following induction. Rather than
just one of the reasons being true, it was likely that all had some impact. However, as
different fluorescent markers were used for all three module types, it was not possible

to directly compare levels of expression to determine the true reason.
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The agent-based model presented in chapter 4 predicted a high level of noise, where
background production of AHLs could result in unwanted activation of the processor
cells by the detector cells, and activation of reporter cells by the processor cells.
Therefore, the potential for noise to propagate through the multi-microbial system via
background synthesis of AHL communication molecules was tested experimentally. It
was found that uninduced detector cells could activate the processor cells, and
uninduced processor cells could activate reporter cells. Therefore, the potential for
noise to propagate from the detector cells to the processor cells, and onto the reporter
cells, for validated.

Co-culturing of the detector, processor, and reporter cells was found to result in a
functioning biosensor, however loss-of-signal occurred 4 hours post induction. This
signal loss was hypothesised to be due to an increase in background noise as a result

of noise propagating through the system.

It has been previously shown how positive feedback loops in genetic circuits based on
quorum sensing can reduce responsiveness to induction®!®l. This supports the idea
that over time the processor module may become unresponsive to the detectors and
simply ‘leak’ a false signal to the reporter, hence destroying the biosensor’s activity.
However, in contradiction to the results shown here, many previously reported
synthetic microbial systems employing sequential, uni-directional cell-to-cell signal
propagation did not display a loss of behaviour over time, with no evidence of noise
propagationl107] [120]. [335]. [336] The main differences between these previous systems
and the biosensor system presented here is that three cell types are used rather than
two. The inclusion of three cell types in a uni-directional fashion required one cell (the
processor) to have both sending and receiving capabilities, which leads to issues with
cross-talk and adds in an additional layer for the signal to pass through. Cells which
display sending and receiving capabilities are largely missing from previously recorded
systems, except in cases where bi-directional feedback is utilised to help with stability

and robustness.

The experimental results shown here had some similarities to the simulation results
presented in chapter 4, namely that background noise had the potential to decrease
functionality of the system. The model also suggested that it may have been possible

to optimise the biosensor through the design space of cell ratios. Chapter 6 presents
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approaches taken towards optimisation of the biosensor, including exploration of cell

ratios.
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Chapter 6. Modular and Multi-Microbial Biosensor Optimisation

In chapter 5, it was found that whilst the modular, multi-microbial biosensor was
functional, the maximal response was low, and the signal was unstable and decreased
to background levels over time. The agent-based model presented in chapter 4
indicated that modification of cell ratios may have presented an easily accessible
design space for optimisation of the biosensor’s response. In section 6.2, the impact
of cell ratios on biosensor behaviour is explored in the context of experimental data.
Section 6.3 focuses on an alternative method of optimisation, making use of statistical
Design Of Experiments to investigate the impact of environmental factors on each
biosensor module. Finally, section 6.4 concludes the findings from this chapter, and

discusses future work.
6.1. Introduction

6.1.1. Statistical Design Of Experiments

Optimisation of systems and processes can be performed by first measuring the impact
different factors have on desired response characteristics, and then using this
information to help determine which factor values could lead to optimal results. Within
synthetic biology and biotechnology, the optimisation process is often performed by
changing factors individually whilst keeping all other conditions the same!3%]l, This One
Factor At a Time (OFAT) methodology is intuitive and allows for a degree of certainty
as to whether a factor is impacting upon a system, however it does not allow for
efficient exploration of the entire design space, and can lead to local optima being
found, rather than the true global optimal338! (Figure 6.1). An alternative to the OFAT
approach is to employ a statistical Design Of Experiments (DOE) approach. DOE
refers to a collection of statistical tools and methodologies which allow for a rational
and unbiased exploration of multi-factorial design spaces(®! (Figure 6.1). With DOE,
experimental ‘runs’, where each run consists of a set of factor values to be tested, are
determined using statistical algorithms. The experimental runs generated aim to yield
the most amount of information in the least number of experiments possible, typically
leading to faster, cheaper, and more efficient experimentation than with an OFAT
approach®3¥7l. However, the number of runs required can still be large when many
factors require investigation. Once the experimental runs have been performed, the

data can be fed back to a DOE statistical model, which helps determine potentially
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Figure 6.1. OFAT vs. DOE

Schematics representing One Factor At a Time (OFAT) and statistical Design Of
Experiments (DOE) methodologies for a hypothetical system with 3 factors. With OFAT,
the factor under investigation is modified whilst keeping values for the other 2 factors the
same. With DOE, factor values are chosen to allow for representative sampling of the
design space.

optimal factor values, and can also measure the relationship between factors which

may have dependencies or interactions(®.

There exist several categories of DOE, each of which have advantages and
disadvantages based on the desired information about a system or process to be
determined!®). Broadly, the types of DOE employed can be described by two groups:
screening designs and optimisation designs[®3*°. Screening designs focus on
measuring the impact different factors have on specific responses characteristics of a
system, whilst optimisation designs can be used to map a system’s response surface
with an aim of finding optimal responses. Typically, when working with novel systems
or processes, screening designs are employed initially to determine which factors may
have the greatest impact on the system’s response characteristic of interest(3*°l. Once
important factors with the greatest impact have been determined, optimisation designs
can be used to find optimal values for these factors. Optimisation designs are not
typically used in the first instance as they require more experimental runs to be
performed than screening designs, especially when a large number of potential factors
require investigation(®. Therefore, the less expensive screening designs can be used
to determine only the most important factors, allowing fewer factors to be investigated

in optimisation designs, and hence reducing the number of runs required.
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Figure 6.2. Selected Cell Ratios

Ternary plot displaying the cell ratios selected for experimental testing. The axis values
represent the proportion of each cell type in the system, calculated as the volume (in uL) of
each cell type (at a cell density of ODeoo = 1.0) in a culture volume of 100 yL. The total
volume of all cells was 30 pL. The white crosses represent cell ratios tested
experimentally, and dashed grey lines show stoichiometric boundaries, where the amounts
of two cell types are equal. The solid yellow lines bound the section predicted by the
agent-based model to contain more optimal cell ratios (detectors < processors <
reporters).

6.2. Experimental Exploration of Cell Ratio Design Space

Although the agent-based model in chapter 4 predicted that the multi-microbial
biosensor would not show any activity, it suggested that modifying the ratio of cell types
could impact upon the biosensor’s behaviour. Additionally, as seen in chapter 5, the
biosensor with a 1:1:1 cell ratio exhibited functionality within the first few hours of co-
culture, where the biosensor responded to IPTG in a dose-responsive manner.
However, 5 hours after induction, the signal could no longer be detected. Therefore, it
was possible that although the model was not quantitatively accurate with its
predictions, qualitatively it may have yielded useful insight into which cell ratios could

display more optimal biosensor functionality.

6.2.1. Selecting cell ratios

In chapter 4, the design space of cell ratios was visualised using a ternary plot. The
design space could be split into 6 sections based on the stoichiometric boundaries
between each cell type, with the 1:1:1 ratio sitting at the centre of all sections. The in

silico results generated by the agent-based model indicated that a larger signal-to-
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noise response could be generated by the biosensor when more reporter cells were
present than detector or processor cells (Figure 4.20), and when the number of
processor cells were present in higher amounts than the detector cells (Figure 4.19).
Cell ratios which matched these conditions fell within the section highlighted in Figure
6.2. To fully explore the design space, at least one ratio from within each section was
selected which corresponded to a similar cell ratio tested by the model. It was ensured
that an additional ratio was tested from the section predicted by the model to

incorporate potentially better performing biosensor systems (Figure 6.2).

6.2.2. Experimental characterisation of cell ratios

To test the selected cell ratios, cell cultures were incubated in a plate reader at 37°C
for 20 hours, with fluorescence and cell density measurements taken every 30 minutes.
For all systems, the calibrated green fluorescence (Figure 6.5), calibrated cyan
fluorescence (Figure 6.3), calibrated red fluorescence (Figure 6.4), and total cell
growth (Figure 6.6) is reported. For these experiments, the fluorescence values were
not corrected for cell density as it was not possible to determine the proportion of each

cell type in the system (section 2.7.13).

Table 6.1: Summary of Multi-Microbial Biosensor Behaviour by Cell Ratio

Observations
Cell Ratio
Detector Cells Processor Cells Reporter Cells
Initial peak in fluorescence
Small fold change in fold change at 3 hours, drop
Fold change detected o )
2:24:4 fluorescence detected in signal below noise at 8
after 14 hours
after 12 hours hours, fold change detected
again at 12 hours
Initial peak in fluorescence
Small fold change in fold change at 3 hours, drop
Fold change detected o
3:7:20 fluorescence detected in signal at 7 hours, fold
after 18 hours .
after 7 hours change peaked again at 15
hours
. ] Peak in fluorescence fold
No fold change in No fold change in
5:10:15 change at 3 hours, loss-of-
fluorescence detected fluorescence detected )
signal at 6 hours
. ] Peak in fluorescence fold
No fold change in No fold change in
6:13:11 change at 3 hours, loss-of-
fluorescence detected fluorescence detected ]
signal at 4 hours
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Small fold change in ) Peak in fluorescence fold
No fold change in
7:4:19 fluorescence detected change at 3 hours, loss-of-
fluorescence detected ]
after 6 hours signal at 4 hours
Fold change in ) Peak in fluorescence fold
No fold change in
10:10:10 fluorescence detected change at 3 hours, loss-of-
fluorescence detected ]
after 2 hours signal at 6 hours
Large fold change in ] Peak in fluorescence fold
No fold change in
11:18.5:0.5 | fluorescence detected change at 3 hours, loss-of-
fluorescence detected ]
after 7 hours signal at 10 hours
Peak in fluorescence fold
Large fold change in ) change at 3 hours, loss-of-
No fold change in )
18:2:10 fluorescence detected signal at 16 hours, although
fluorescence detected
after 7 hours only a small fold change was
observed from 6 hours
Large fold change in ) Peak in fluorescence fold
No fold change in
19:7:4 fluorescence detected change at 3 hours, loss-of-
fluorescence detected )
after 7 hours signal at 4 hours

For all cell ratios tested excepting two (5:10:15 and 6:13:11), a fold increase in cyan
fluorescence was observed (Figure 6.3). This indicated successful induction of the
IPTG detector cells. Additionally, it was found, as expected, that a larger number of
detector cells corresponded with a larger fold change in cyan fluorescence. The four
systems containing the highest proportions of detector cells (10:10:10, 11:18.5:0.5,
18:2:10, and 19:7:4) displayed an increase in cyan fluorescence at approximately the
same time as a fold increase in green fluorescence was measured (Figure 6.5). This
behaviour indicated activation of the reporter cells by signal propagation through the
detector and processor cells. However, for the remaining systems, although activation
of the detector cells could not be measured, a response by the reporter cells was
observed. It was therefore possible that amplification of the signal was occurring,
allowing a small, undetectable response by the detector cells to result in a larger
response by the reporter cells. For the majority of systems, no fold change in red
fluorescence by the processor cells could be detected (Figure 6.4), for reasons which
will be expanded on in due course. A summary of all biosensor behaviours is detailed
in table 6.1.

In this experiment, analysis of green fluorescence data showed that once again, the
1:1:1 cell ratio biosensor system exhibited initial functionality, but eventually the signal
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became lost to the background noise (Figure 6.5 (A)). Indeed, the majority of cell ratios
tested showed similar behaviour, with the reporter cells showing increased green
fluorescence when the co-culture was induced with IPTG, followed by a decrease over
time. Some of the ratios, however, showed a second peak in signal after this initial
decrease, and a further sub-set of ratios had another subsequent decrease after the
secondary peak, displaying an oscillation-like behaviour. The exact pattern of this
oscillation-like signal differs between systems, where in some cases the signal never
dropped below the noise threshold, whilst others regained signal after temporarily
losing it. In some cases, although there was a noticeable second peak pattern, the

signal could not be distinguished from the noise (as in 7:4:19 and 10:10:10).

In chapter 5, it was discussed that the eventual loss-of-signal by the 1:1:1 biosensor
system may have been due to co-culture instability, resulting in some cell types
outcompeting others. However, the single cell data at 20 hours post induction indicated
that all three cells were present in similar proportions, and thus it was thought that the
accumulation of noise in the form of leaky quorum sensing molecule production was
to blame for the loss-of-signal. From the data presented here, it is posited that perhaps
a combination of both factors (accumulation of noise and unstable co-culture)

contributed to the observed behaviour.
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Figure 6.3. Detector Cell Behaviour in Co-Culture at Various Cell Ratios

All plots show the change in cyan fluorescence of IPTG detector cells in the multi-microbial biosensor co-culture when induced with 20 mM IPTG
compared to the uninduced system. Error bars show +/- standard error centred on the mean of 3 replicates, and individual points show data for
each replicate. The cell ratios used are displayed on each plot. (A) Fold change in cyan fluorescence of IPTG detector cells in co-culture, calculated
as the change in fluorescence of co-cultures induced with 20 mM IPTG relative to uninduced co-cultures. The pink areas represent background
noise, which was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point, relative to the
mean fluorescence for all uninduced cells. (B) Total calibrated cyan fluorescence (in molecules of equivalent cascade blue) for induced (cyan) and
uninduced (grey) systems.
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Figure 6.4. Processor Cell Behaviour in Co-Culture at Various Cell Ratios

All plots show the change in red fluorescence of default processor cells in the multi-microbial biosensor co-culture when induced with 20 mM IPTG
compared to the uninduced system. Error bars show +/- standard error centred on the mean of 3 replicates, and individual points show data for
each replicate. The cell ratios used are displayed on each plot. (A) Fold change in red fluorescence of default processor cells in co-culture,
calculated as the change in fluorescence of co-cultures induced with 20 mM IPTG relative to uninduced co-cultures. The pink areas represent
background noise, which was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point,
relative to the mean fluorescence for all uninduced cells. (B) Total calibrated cyan fluorescence (in molecules of equivalent sulforhnodamine 101) for
induced (purple) and uninduced (grey) systems.
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Figure 6.5. Reporter Cell Behaviour in Co-Culture at Various Cell Ratios

All plots show the change in green fluorescence of stGFP reporter cells in the multi-microbial biosensor co-culture when induced with 20 mM IPTG
compared to the uninduced system. Error bars show +/- standard error centred on the mean of 3 replicates, and individual points show data for
each replicate. The cell ratios used are displayed on each plot. (A) Fold change in green fluorescence of sfGFP reporter cells in co-culture,
calculated as the change in fluorescence of co-cultures induced with 20 mM IPTG relative to uninduced co-cultures. The pink areas represent
background noise, which was calculated as the maximum and minimum calibrated fluorescence values from uninduced cells at each time point,
relative to the mean fluorescence for all uninduced cells. (B) Total calibrated green fluorescence (in molecules of equivalent fluorescein) for
induced (green) and uninduced (grey) systems.
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The unstable signal observed across the biosensor co-cultures was due to non-regular
increases in fluorescence over time of both the uninduced and induced systems, rather
than an actual decrease in fluorescence (see the non-relative fluorescence data in
Figure 6.5 (B)). Additionally, as would be expected, the total fluorescence of systems
with fewer reporter cells added at the start of the experiment is lower than that of
systems with more reporter cells. The overall growth curves for each system are similar,
although some systems displayed decreased cell densities in the induced systems
compared to the non-induced systems (Figure 6.6). In chapter 5, it was found that only
the processor cells had decreased growth rates when induced, and so it was thought
that the decreased growth in the co-cultures was due to induction of the processor cells
by the detector cells. This thought was supported by observations that the decreased
growth of induced systems was more prevalent when a higher ratio of processor cells
was used. A noticeable outlier to this observation was the 2:24:4 cell ratio system,
which despite having the largest proportion of processor cells displayed almost no
decrease in cell growth. This could be explained by the lack of detector cells, however,
as fewer detector cells would have meant less C12-HSL present in the system to induct
the processor cells.

If it were the case that the detector cells were causing a decrease in processor cell
growth, this could explain the potential unstable cell type proportions in co-culture over
time, and the fluctuations in reporter cell fluorescence. In this scenario, near the
beginning of the experiment when the cells are in lag to early exponential phase and
before the detector cells have been induced to produce C12-HSL, the default
processor cells could grow at a similar rate to the other cell types. As the detector cells
begin producing C12-HSL, the default processor cells would then be induced to
produce C4-HSL, which could activate the reporter cells and lead to the first peak in
signal observed for all systems. However, as the default processor cells become
induced, their growth rate would drop and the amount of C4-HSL produced would be
expected to fall to levels similar to that seen in the uninduced systems. This decrease
in C4-HSL production would result in the initial loss-of-signal observed. However, this
behaviour alone does not explain the second increase in signal observed for some cell
ratios. Instead, this may be explained by the positive feedback loop inherent in the

default processor cells’ design.
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Figure 6.6. Cell Growth in Multi-Microbial Biosensor Systems

Time course plots of calibrated cell density over 20 hours. Black lines show uninduced
systems for each cell ratio, and purple lines show systems induced with 20 mM IPTG.
Untransformed E. coli DH5a cells in monoculture were used as a control (black lines).
Error bars show +/- standard error centred on the mean of 3 replicates, and individual
points show data for each replicate. The cell ratios used are displayed on each plot.

In monoculture, the default processor cells were shown to have similar behaviour to
that observed with the multi-microbial biosensor, where an initial increase in signal was
followed by a subsequent decrease. This was concluded to be due to a positive
feedback loop, where the C4-HSL produced by the processor cells, in close proximity
to the LasR transcription factor, could induce further expression of Rhll which was
responsible for C4-HSL synthesis. When the processor cells were induced, the
feedback loop appeared to occur at an earlier time point than the uninduced system.
In the biosensor co-culture, after around 6 hours it appeared that the cells reached
stationary phase. At this point, it would be expected that the proportions of cells in the
system would stabilise. Over time, the C4-HSL produced by the default processor cells
could continue accumulating due to the feedback loop, leading to further induction of
the reporter cells. Indeed, this appears to happen in some systems, most noticeably in
the cultures with cell ratios of 2:24:4, 3:7:20, and 7:4:19 (Figure 6.5). The feedback

loop could also explain the second decrease in signal observed, as it appears the
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Figure 6.7. Impact of Cell Ratios on Maximal Biosensor Response

Ternary plot displaying the maximal biosensor response, measured as the maximal fold
change in green fluorescence for induced vs non-induced systems, for each cell ratio.
Each dot represents a characterised cell ratio and is coloured based on the maximal
biosensor response. The axis values represent the proportion of each cell type in the
system, calculated as the volume (in uL) of each cell type (at a cell density of ODggo = 1.0)
in a culture volume of 100 L. The total volume of all cells was 30 yL. White crosses
represent the cell ratios tested experimentally. The dashed grey lines show stoichiometric
boundaries, where the amounts of two cell types are present in equal amounts.

uninduced systems show a similar increase in green fluorescence but lagging behind

the induced system, mirroring the behaviour observed for the processor cells alone.

For two of the systems, an eventual steady signal appeared to be reached. These
systems had cell ratios of 2:24:4 and 3:7:20 (Figure 6.5 (A)). Although for the majority
of systems fluorescence by the default processor cells could not be detected,
potentially due to the aforementioned out competition of processor cells by the
detectors and reporters, the 2:24:4 and 3:7:20 systems did eventually exhibit a
measurable signal (Figure 6.4). These two systems had the lowest detector-to-
processor cell ratio compared to all other systems tested, which may have allowed for
a high enough proportion of processor cells to remain in the system that as the
feedback loop allowed for accumulation of both C4-HSL and mCherry, a signal could

be observed. Additionally, the lower number of detector cells would have resulted in a
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lower background activation of the processor cells, which was found to occur even with
uninduced detector cells in chapter 5. The lower background activation could have then

contributed to the more stable signal observed for these systems.

6.2.3. Determination of optimal cell ratios

To help determine the optimal ratios for biosensor activity, the maximal fold change in
green fluorescence for all systems tested were visualised on a ternary plot (Figure 6.7).
From this visualisation, two systems exhibited the maximum activity: 3:7:20 and
5:10:15. Both of these systems populated the same section of the cell ratio design
space. In this section of the design space, the number of detectors is always lower
than the number of processors, and the number of processors is always lower than the
number of reporter (detectors < processors < reporters). Interestingly, this was the
same section of the design space tentatively predicted by the agent-based model to
represent the best chance of creating a functional multi-microbial biosensor. This
therefore indicated the usefulness of the agent-based model as a qualitative predictor

of optimal cell ratios, even if the values predicted were inaccurate.

The identified design space section (detectors < processor < reporters) representing
the most optimal cell ratios was in keeping with the analysis provided in the previous
sub-section, where it was thought that a lower detector-to-processor cell ratio would
result in a more functional system. However, the 2:24:4 system identified to have the
most stable signal was not included in this design space, although it did exhibit the
highest maximal activity outside of the 3:7:20 and 5:10:15 systems. This was likely due
to the much lower proportion of reporter cells in the 2:24:4 system, as less reporter
cells would have led to lower fluorescence intensity. Therefore, it appears that the most
optimal cell ratio for a system may be dependent on the biosensor’s application, where
it should be decided if a high fold change or more stable signal is required. However,
to determine this relationship, further experimentation with a larger number of cell

ratios should be performed.
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6.3. Statistical Design of Experiments Driven Characterisation

The design space of cell ratios was, as discussed in the previous section, a promising
approach for optimisation of modular and multi-microbial biosensors. Another potential
avenue for optimising the biosensor system was to focus on external factors which
could impact upon the cells which compose the biosensor. It is well known that cellular
synthetic biology systems are impacted by factors such as the composition of media
used for culturing and incubation temperaturef®2 [219]. [341], [342] Thys, it stood to reason
that optimisation of factors such as these may have allowed for enhanced biosensor
functionality. As mentioned in sub-section 6.1.2, statistical Design of Experiments can
be used to screen for factors which have a large impact on response characteristics of
a system, and to determine factor values which yield optimal responses. A common
design type for determining factors which have an impact on a specific system or
process is the main effects screening design(®*3l. These main effects designs are able
to measure the relative impact of various factors on a user-specified characteristic of
a system (such as the dynamic range of a biosensor) in a low number of experiments.
The major drawback of such designs is that interactions between factors cannot be

easily determined without additional experimental runs [,

For the Sensynova framework, it was decided that each module type should be
characterised independently, as these results would provide context-free information
about optimal conditions for each module, which could then be used to help inform
theoretical future systems which make use of the modules developed here in
conjunction with other modules. For each module, the JMP software was used to
generate a custom, D-optimal, main-effects screening design. Main-effects screening
designs can be used to gain insight as to which factors are having the greatest impact
upon the system in a low number of experimental runs. There were six factors
investigated in total. The first three factors were the temperature at which the cells
were incubated during measurement (incubation temperature), the temperature at
which cells were grown in overnight cultures prior to inoculation in a 96-well plate
(overnight culture temperature), and the initial cell density (cell starting ODsoo). The
remaining three factors described the composition of LB media used for culturing,
specifically the proportions of tryptone, NaCl, and yeast extract. For each factor, upper
and lower limits were set. All limits were the same across the three cell types, except

for the IPTG detector cells’ overnight culture temperature factor. For the default
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processor and sfGFP reporter cells, the overnight culture temperature limits were 25°C
and 37°C. In initial experiments, it was found that the IPTG detector cells grew poorly
in overnight cultures at 25°C, and the final cell density was routinely too low for
experimental setup. Therefore, limits of 30°C and 37°C were used instead. The final

designs are listed in the supplementary material.
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Figure 6.8. Main Effects Screening for IPTG Detector Cells
Analysis of DOE screening design, model, and results for IPTG detector cells. (A-B) Initial main effects screening design. (C-D) Augmented
main effects screening design. (E-F) Main effects screening design without anomalous runs. (A, C, E) Colourmap on correlations for main
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effects (bounded by white box) and interaction effects. Each cell represents the absolute correlation magnitude between two effects or
interactions. (B, D, F) Scatter plot of actual eCFP fold change responses as measured experimentally vs fold change responses predicted by
the main effects, standard least squares statistical model. Crosses show data points from runs determined by the initial screening design, and
dots represent runs determined by the design augmentation stage. Red circles highlight runs with results thought to be anomalous. The
dashed black line shows the line of best fit through the data points (the r? value shows the variation for this fit), and the dotted grey line shows
line with slope of 1. Confidence levels are displayed at the 95% (pink shading) and 100% (grey shading) levels. (G) Bar chart showing scaled
estimates of main factor effects on fold change in eCFP. The p value is shown for factors with effects significant at the 1% level, as calculated
by a t-test. Error bars show the standard error of scaled estimates.
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6.3.2. IPTG Detector Cell Factor Screening

For the IPTG detector cells, 13 experimental runs were performed according to the
initial design and as described in section 2.7.14. For each experimental run, the fold
change in eCFP fluorescence of induced samples compared to uninduced samples
after 6 hours was calculated and used as the system response characteristic. When
the samples were measured in the 96-well plate by the plate reader, the initial cell
densities were measured as slightly different to the density aimed for and determined
by the DOE design. This was due to slight pipetting inaccuracies and imprecise
measurements by the spectrophotometer. The DOE design was modified so that the
initial cell density factor had values corresponding to those measured by the plate
reader rather than the density aimed for, allowing for more accurate interpretation of
results. Changing these values impacted on the DOE design, resulting in higher
correlation scores between the factors, and a lower D efficiency score (60.2 compared
to the original 89.5). The higher correlation and lower D efficiency resulted in lower
confidence in separating factor effects, however from the correlation colourmap, it
could be seen that the main effects correlations remained relatively low. The JMP
software was used to model main factor effects on the fold change response using a
standard least squares effect screening model. It was found that the model performed
poorly, where the predicted response values did not correlate well with the observed
response values. This poor performance was potentially due to sampling bias
introduced by the change in initial cell starting densities used compared to those
suggested by the design. To help increase the design’s power, the augment feature of
JMP was used to generate an additional 6 experimental runs. With the additional runs,
the main effect factor correlations were lowered (although remained higher than the
initial design), and the D efficiency was increased to 90.2 (which was higher than the
initial design). These runs were performed in an identical manner to the initial
experiment, and the fold change responses were added to the DOE model. Whilst the
model appeared to perform slightly better, with the line of best fit through the actual vs
predicted values having a slope closer to 1, four experimental runs were identified
which had much higher residuals than the other samples. These experimental runs
were thought to be potentially anomalous results, and so were removed from the DOE
model. Exclusion of these results once again increased the factor correlation effects,
particularly for the media composition factors, and decreased the D efficiency score to

80.9. However, the main effects screening model showed far better performance, with
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predicted values correlating closely to the actual values. Regarding factor effects on
fold change in eCFP, the model indicated that two of the factors, incubation
temperature and the initial cell starting densities, were important. The remaining factors
did not appear to have any impact on functionality of the IPTG detector cells. Further
testing would be required to confirm these results; however, it appears that it would be

possible to optimise the detector cells by changing their external conditions.

6.3.3. Default Processor Cell Factor Screening

Factor effects for the default processor cells were initially estimated by performing 12
experimental runs as defined by the initial main effects screening design, and as
described in section 2.7.14. The response for the processor cells was defined as the
fold change in mCherry fluorescence of induced cells relative to uninduced cells. As
with the detector cell experiment, some of the initial cell density measurements varied
from the density values which were aimed for. These values were used in the screening
design instead, which resulted in higher correlation magnitudes between factors,
especially between the initial cell density and the overnight culture incubation
temperature. Therefore, the design was augmented with an additional 6 experimental
runs, which helped decrease the main factor correlations. However, the standard least
squares effect screening model could be seen to perform poorly, with line of best fit
through actual mCherry fold change values vs values predicted by the model having a
slope far from 1, and large confidence intervals. It was observed that 3 of the
experimental runs did not fit well with the other results, and thus were thought to be
anomalous. These runs were removed, and the design was re-analysed. It could be
seen that the correlations between main effects once again increased, however they
remained below 0.5. The statistical model also appeared to perform better, with the
actual vs precited response values showing moderate correlation, with a slope close
to 1. From this model, it was estimated that the incubation temperature was the only
factor to impact upon the default processor cells’ response. However, due to relative
high correlation of incubation temperature with the other factors, particularly the
overnight culture temperature and initial cell densities, it was possible that confounding
effects were impacting on the data. Therefore, to better estimate these effects,

additional runs would need to be performed.
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Figure 6.9. Main Effects Screening for Default Processor Cells

Analysis of DOE screening design, model, and results for default processor cells. (A-B) Initial main effects screening design. (C-D) Augmented
main effects screening design. (E-F) Main effects screening design without anomalous runs. (A, C, E) Colourmap on correlations for main
effects (bounded by white box) and interaction effects. Each cell represents the absolute correlation magnitude between two effects or
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interactions. (B, D, F) Scatter plot of actual mCherry fold change responses as measured experimentally vs fold change responses predicted
by the main effects, standard least squares statistical model. Crosses show data points from runs determined by the initial screening design,
and dots represent runs determined by the design augmentation stage. Red circles highlight runs with results thought to be anomalous. The
dashed black line shows the line of best fit through the data points (the r? value shows the variation for this fit), and the dotted grey line shows
line with slope of 1. Confidence levels are displayed at the 95% (pink shading) and 100% (grey shading) levels. (G) Bar chart showing scaled
estimates of main factor effects on fold change in mCherry. The p value is shown for factors with effects significant at the 1% level, as
calculated by a t-test. Error bars show the standard error of scaled estimates.
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6.3.4. sSfGFP Reporter Cell Factor Screening

A main effects screening design generated for the default processor cells was used for
characterisation of the sfGFP reporter cells, where fold change in sfGFP was used as
the response. Experimental runs were performed as described in section 2.7.14. Once
again, the guide cell densities determined by the design differed from those measured
experimentally, and so the design was modified to incorporate this. Whilst the standard
least squares main effects model generated from this data showed good correlation of
actual vs predicted responses, where the line of best fit showed a slope close to 1, the
colourmap of factor correlations showed high magnitudes for the initial cell density and
overnight culture temperature factors. Thus, the design was augmented by 6 additional
experimental runs. The augmentation helped decrease the main effects factor
correlation magnitudes, however the statistical model exhibited poorer performance.
Three experimental runs showed potentially anomalous results, and so were removed
from analysis. The resulting design showed higher correlations between the main
factors than the fully augmented design, but values were still overall lower than the
initial design. Additionally, the statistical model showed good performance with small
confidence intervals. From this model, it was predicted that as with the default
processor cells, the only factor to influence sfGFP fold change was incubation

temperature.
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Figure 6.10. Main Effects Screening for sfGFP Reporter Cells

Analysis of DOE screening design, model, and results for sSfGFP reporter cells. (A-B) Initial main effects screening design. (C-D) Augmented
main effects screening design. (E-F) Main effects screening design without anomalous runs. (A, C, E) Colourmap on correlations for main
effects (bounded by white box) and interaction effects. Each cell represents the absolute correlation magnitude between two effects or
interactions. (B, D, F) Scatter plot of actual sSfGFP fold change responses as measured experimentally vs fold change responses predicted by
the main effects, standard least squares statistical model. Crosses show data points from runs determined by the initial screening design, and
dots represent runs determined by the design augmentation stage. Red circles highlight runs with results thought to be anomalous. The
dashed black line shows the line of best fit through the data points (the r? value shows the variation for this fit), and the dotted grey line shows
line with slope of 1. Confidence levels are displayed at the 95% (pink shading) and 100% (grey shading) levels. (G) Bar chart showing scaled
estimates of main factor effects on fold change in sfGFP. The p value is shown for factors with effects significant at the 1% level, as calculated
by a t-test. Error bars show the standard error of scaled estimates.
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6.4. Conclusions and Future Work

In this chapter, it was investigated how modifying the ratios in which each cell type was
initially added impacted the modular and multi-microbial biosensor’s behaviour. It is
typical for studies focusing on the engineering of multi-microbial systems give some
thought towards the proportions in which different cell types or species are added, as
it is well documented that population changes within microbial communities can have
large effects 344348 However, usually such thoughts extend only to documenting the
proportions each population was added at and ensuring populations remain at equal
amounts during an experiment or process!34° 350 Studies which have considered cell
ratios as an avenue for optimisation have mainly done so for natural communities,
rather than de novo synthetic biological systems®>1 352 |n recent years, as multi-
microbial systems have become ever more popular in synthetic biology, the potential
of cell ratios as a design space has become increasingly apparent, especially within
the field of metabolic engineering. For example, it has been shown how mixing cell-
free extracts containing enzymes involved in mevalonate synthesis could optimise
yield 1353, and a recent study (Liu and co-workers 2022) demonstrated how different E.
coli cells expressing sections of a pathway could be co-cultured in different proportions

to optimise biosynthetic efficiency 354,

In this chapter, it was found that cell ratios could be used as a design space to optimise
the functionality of a multi-microbial biosensor, mainly by impacting on the dynamic
range and signal stability over time. This finding was similar to how previous studies
have shown the impact of population proportions on natural communities, and how

ratios can be used to improve the yield of biosynthetic pathways.

The observation of an unstable response was thought to be due to changes in the
proportions of each cell types over time as a result of competition for resources.
Therefore, changes in the initial cell type ratios could have impacted upon whether or
not a specific cell type became outcompeted. Additionally, based on information from
chapter 5 indicating that induced processor cells displayed slower cell growth than
uninduced cells, it was concluded that the amount of detector cells present, which are
able to induce processor cells, could have directly impacted on the ability for the
processors to grow. It was indeed observed that only with a sufficiently small number

of detector cells was a response able to be measured from the processors (2:24:2 and
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3:7:20). The lack of a measurable processor response with higher numbers of detector

cells may have been due to the amount of processor cells being too low.

The different cell ratios may have also impacted on the propagation of noise through
the biosensor system. Noise propagation could occur by background synthesis of
AHLs by the detector and processor cells, which could accumulate over time and result
in activation of downstream cell types even in uninduced systems. Reduction of
background activation could also explain the lack of fold change in red fluorescence
by the processor cells when in the presence of a large number of detectors, as
background accumulation of C12-HSL could have caused saturation of the processor’s
response. Therefore, a fold change could only be seen in systems with detector cells
below a certain threshold, where background C12-HSL synthesis did not saturate the
processor. It was also seen that response stability, where a fold change in green
fluorescence by the reporter cells, was only observed for the 2:24:2 and 3:7:20 cell
ratios (which were the systems with the lowest proportion of detector cells). It was
therefore possible that the eventual loss-of-signal by the other systems with higher
numbers of detector cells was due to saturation of the processor cells after
approximately 6 to 10 hours of growth, leading to similar levels of C4-HSL being
produced, and hence non-differential activation of the reporter cells in both induced
and uninduced systems. To determine if either, or both, of these scenarios were the
case, itwould be necessary to measure growth of each cell type in co-culture over time,
and to determine the concentration of AHLs in each system at various time points. By
measuring the change in cell type proportions, which could be achieved through single
cell analysis using techniques such as flow cytometry or microfluidics, it could be
determined whether increasing amounts of detector cells did inhibit processor cell
growth. Measuring the amount of each AHL in the system would identify whether the
AHL concentrations were sufficient to saturate either the processor or reporter cells’

responses.

Visualisation of each cell ratio tested on a ternary plot allow for identification of the
optimal cell ratio design space. Using maximal reporter cell response, it was found that
the two best performing biosensors had ratios where the number of detectors was less
than the number of processors which was less than the number of reporters, which
was in-line with preliminary predictions made by the agent-based model. However, it

was possible that this was a local optimum, as the third best performing system had a
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cell ratio in a different section of the design space. Therefore, further testing with
additional cell ratios perhaps employing a Design Of Experiments approach, would be
required to better characterise the cell ratio design space. Additionally, better
parameterisation of the agent-based model, making use of sensitivity analysis to
identify the most crucial parameters and experimental parameterisation to determine
parameter values which fits simulation data to the experimental data, would allow for

further in silico exploration of the design space.

Following on from exploration of the cell ratio design space, it was investigated whether
it was possible to optimise each biosensor module individually by modifying the
conditions in which they were cultured. To achieve this characterisation, statistical
Design Of Experiments (DOE) was used to screening for factors which impacted upon
the behaviour of each cell type module. It was found in all cases that the temperature
at which the cells were incubated at had the largest impact. Additionally, for the IPTG
detector cells, it was found that the cell density at which the cells were initially added
also had an impact. Although the incubation temperature impacting upon each cell
type’s ability to respond to induction was expected, as E. coli grows optimally at 37°C,
the observation that initial cell density only impacted the detector cells was unexpected.
Additionally, it was unexpected that the media composition would have little-to-no
effect on the cells, as previous studies employing Design of Experiments have found
culture medium to impact on the behaviour of a variety of species [3% [3%6] Tg
investigate these factors further, it would be necessary to perform additional screening
experiments which could explore interactions between each factor, rather than simply
the main effects as seen here, and to conduct surface-response characterisation to
find optimal values for the impacting factors.

The overall success of the Sensynova system could have been improved in several
ways. Firstly, screening of quorum sensing channels for use in 3-cell unidirectional
communication would have allowed for selection of mechanisms which reduced the
amplification of noise at the processor cell level. Similar screening has been
successfully implemented previously, and this historical data was indeed used to select
the quorum sensing mechanisms used herel*®l, However, these previous studies
focus more on responsiveness to outside induction, rather than use within sequential,
uni-directional communication. Secondly, the identification of more appropriate

computational modelling/simulation which can scale with the complexity of multi-
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microbial systems would have allowed for faster design iterations, and the exploration
of a larger number of parameters. The hybrid agent-based and deterministic SBML-
based modelling, whilst potentially highly representative of multi-microbial systems, is
far too computationally expensive to allow for these investigations. Therefore, more
traditional modelling approaches, such as deterministic and non-agent-based
modelling, may be more appropriatel?14} [357], Finally, the optimisation of each individual
module at a genetic level, rather than relying primarily upon external conditions and
modulation of cell ratios when in co-culture, would likely have helped optimise the final
biosensor’s activity, as issues such as high background noise could have been
reduced. It is therefore suggested that any future work look to use a combination of
genetic and non-genetic interventions to optimise multi-microbial biosensors based on

the Sensynova framework.
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Chapter 7. Optical Communication as an Alternative to Quorum

Sensing

One challenge of synthetic multi-microbial systems is difficulties associated with co-
culturing different cell types. Populations can compete for resources leading to
unstable systems and changes in proportions throughout the lifetime of the system.
Different cell types, species, and strains can require different environmental factors to
operate optimally, which is not possible to establish in co-culture. The propagation of
noise, where chemical-based communication molecules can accumulate over time. In
this chapter, investigations into an alternative, light-based intercellular communication
mechanism are presented. In section 7.1, optogenetics and bioluminescence are
explained. In section 7.2, results validating the behaviour of light senders
(bioluminescent) and light receivers (optogenetic) are presented, whilst section 7.3
explains a microfluidic approach to experimentally testing optical communication.
Finally, section 7.4 concludes findings from this chapter and discusses future next

steps.
7.1. Introduction

7.1.1. Bacterial optogenetics

In nature, there are many examples of bacterial systems which are regulated by light.
A classical example is that of bacteriorhodopsin, which is a bacterial proton pump
driven by light358l, Another example is the protein YtvA, which is a Bacillus subtilis
receptor that responds to the presence of blue light, and which is involved in stress
response signalling mechanisms. EL222 is a protein found in Erythrobacter litoralis
which, upon dimerization, can bind DNAI 360 The dimerization of EL222 only
occurs in the presence of blue light, allowing for light regulated control of genetic

expression.

Optogenetics, a field of light-regulated genetic expression, has been founded based
on natural light-responsive mechanisms. Whilst optogenetics has traditionally been
associated with neuroscience, it has become increasingly popular in synthetic
biology!®¢1l. The ability to use light as a method of controlling genetic expression, rather
than the more commonly used chemical method, has several advantages. One such

advantage is that light can be applied to a system transiently, which allows for dynamic
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switching between activation and deactivation of genetic expression(®%l, Such dynamic
regulation is far more difficult with chemical analytes, as they cannot be easily removed
from the system once added, and many commonly used chemicals, such as IPTG,
have long half-lives. Another advantage is that spatial regulation, where different
sections of a system require independent regulation, can be achieved more easily with
light, as chemicals may diffuse through a system and ‘bleed’ into unwanted areas,
whereas light has a higher spatial resolution!362l [363], Systems which involve patterning
have benefited greatly from optogenetics for this reason. Disadvantages of
optogenetics include accidental background activation, where exposure to ambient
light may inadvertently influence the system, and the requirement for electronics and
specialist setup, which contrasts chemical induction where the chemical need simply

be added to the system.

7.1.2. Bioluminescence

Bioluminescence is found abundantly in nature, especially in marine environments
where animals use light to confuse predators or hunt for prey. Although many bacteria
have been discovered which exhibit bioluminescence, the exact reasons for why
bacteria display luminescence are not clearl®%4. Bacterial luminescence tends to be
conferred via an operon, the most common of which is the luciferase, or Lux, operon(36s],
This operon encodes a set of enzymes which form three complexes: (i) a fatty acid
reductase composed of LuxC, LuxD, and LuxE, (ii) the luciferase complex composed
of LuxA and LuxB, and (ii) a flavin reductase which exists as a LuxG homodimerf3s],
The fatty acid reductase converts long chain aldehydes produced by fatty acid
metabolism into aldehydes. The LuxAB luciferase uses reduced flavin mononucleotide
(FMNH2) to oxygenate the aldehyde metabolites, the reaction for which generates light.
The flavin reductase regenerates FMNH2 by reduction of FMN.

Within synthetic biology, bioluminescence has been used as a reporter. Compared to
the more commonly used fluorescent reporters, bioluminescence can have a greater
dynamic range as background luminescence of cells is far lower than background
fluorescencel®®”l, However, the vast majority of natural bioluminescence emits in the
blue or green wavelengths, which may not be suitable for more complex systems.
These systems require multiple reporters that must be distinguishable from each
other(®4l, Additionally, expression of bioluminescence can place a larger burden on
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cells, as it tends to require expression of multiple enzymes, compared to fluorescence

which can be achieved with a single protein.

7.1.3. Light-based intercellular communication

Engineering communication between cells in a synthetic biology system has almost
universally focused on chemical-based signalling, such as the quorum sensing
mechanisms discussed throughout this thesis!3¢8l [369 Whilst there has been much
success with this approach, chemical-based signalling suffers from many of the issues
of chemical-based regulation described in sub-section 6.1.1179. Additionally, chemical-
based signalling requires the cells to be co-cultured in the same media and
environment, which can prove problematic when working with different strains or
species which differ in terms of their optimal conditions. Other issues can also arise
from co-culturing, such as competition for resources causing the proportions of each
population to change over time, and difficulties in distinguishing each population

separately.

As optogenetics provided an alternative to chemical-based genetic regulation, so might
light-based communication provide an alternative to chemical intercellular
communication. In such a system, the ‘senders’ in the system would generate light via
bioluminescence, and the ‘receivers’ could respond to the bioluminescence through
the use of light-responsive transcription factors, such as the EL222 system described
previously. Optical communication such as this could benefit not only from the
advantages afforded to optogenetics, such as a more dynamic signalling system, but
may also allow for the development of multi-microbial systems which do not rely on co-
culturing. Additionally, different populations could be cultured separately in optically
clear containers, through which the light could travel. The potential for physically-
separated co-cultures would allow for optimisation of each population’s environment,
and also help prevent interpopulation competition. Although optical communication has
been suggested previously in literaturel®”ll, and a few projects have attempted to
engineer such light-based communication!372: 373 rigorous scientific experimentation
still appears to be lacking. Recent work has suggested the potential for this approach

in artificial cell communities(379,
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7.2. Validation of Light Sender and Light Receivers

7.2.1. Optical communication system

To determine the feasibility of a light-based intercellular communication system, two
cell types were defined: light senders and light receivers. The light senders were
selected to generate blue bioluminescent light in response to an inducer, and the light
receivers were selected to respond to blue light. The light senders consisted of E. coli
DH5a cells expressing the Lux operon under the control of a PBad promoter, which
was arabinose inducible. The light receivers expressed mCherry under the control of
PBLRep. The PBLRep promoter is capable of constitutive expression, however when
in its dimerised form, the EL222 protein can bind to the promoter sequence and block
transcription[36%, Thus, the light receivers could only produce mCherry in the absence
of blue light. As the bacterial luciferase has been previously reported to generate blue
light, and the PBLRep-EL222 has been shown to respond to blue light, it was expected

that the light senders and receivers should engage in unidirectional communication.

7.2.2. Luciferase operon characterisation

The bioluminescence of light senders over time with differing levels of induction was
characterised to determine conditions for maximal light intensity. Light sender cells
were prepared and characterised as described in section 2.8.1. It was found that
luminescence was maximal between 4 and 6 hours post induction, after which the
signal decayed to background levels (Figure 7.1 (A)). This demonstrated the transient
nature of bioluminescence as both a reporter and a potential intercellular
communication channel. It was also found that the light sender cells could be induced
in a dose-dependent manner between approximately 0.04 yM and 0.625 pM of
arabinose (Figure 7.1 (B)). When fewer than 0.04 yM of arabinose was added, no
signal could be seen above background levels, and arabinose added above 0.625 uM
had no impact on luminescence. The bacterial luciferase was observed to generate
light across a broad range of wavelengths, although maximal intensity was between
440 nm and 520 nm. This range of wavelengths was similar to the wavelengths of light
previously reported to activate EL222E74, Thus, it was concluded that the Lux operon
could allow for cells to emit light in the correct range of wavelengths to activate the

EL222 light receiver system.
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Figure 7.1. Light Sender Cell Characterisation

Characterisation of E. coli cells expressing the Lux operon. Error bars shows standard
error of 3 or 4 replicates centred on the mean luminescence value. (A) Time course curve
of logio luminescence at 460 nm when induced with 20, 1.25, 0.04, or 0 uM of arabinose.
Dots show individual luminescence values for each replicate. (B) Dose-response curve of
arabinose concentration vs logio luminescence at 460 nm, 5 hours post induction. (C)
Spectral scan of cell cultures between 400 nm and 600 nm in 20 nm intervals, 5 hours post
induction. Data shown for cells induced with 20, 1.25, 0.08, 0.04, or 0 uM of arabinose.

7.2.3. Comparison of bioluminescence to electronic light

Whilst it was demonstrated that bacterial luciferase could emit light in the appropriate
wavelength range to activate EL222, it was not clear if the intensity of light emitted
would be sufficient to cause a measurable response by the light receiver cells. To help
determine whether the light sender cells would emit light at a great enough intensity,
the bioluminescence was compared to electronic light from a Light Emitting Diode
(LED). To this end, a light calibration plate device was prepared (Figure 7.2(A)). This
device consisted of a black 96-well plate with clear, flat bottoms, a blue LED (Fedy
Tech diffused ‘Piranha’ RGB; Adafruit 1451), and a 3-volt CR2032 battery. The LED
and battery were wired together, with space for resistors to be added in series. The
number of resistors was used to modulate the LED’s brightness, which allowed for
better approximation of bioluminescence. Luminescence from the light calibration plate
device was measured using the same plate reader and settings used for

characterisation of the light sender cells. The LED brightness was measured when
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Figure 7.2. Comparing Bioluminescence to Electronic Light

Plate reader luminescence readings were calibrated to a blue LED. (A) Picture showing
setup. An LED (Fedy Tech diffused ‘Piranha’ RGB; Adafruit 1451) was placed facing down
into a 96-well plate. A 3-volt CR2032 battery was adhered to the plate, along with space
for 1 megohm resistors connected in series. The plate was placed into a plate reader and
luminescence readings were taken using the bottom luminometer. (B) Spectral scan of
LED luminescence between 400 nm and 600 nm. Solid lines show luminescence of the
LED with different numbers of resistors added. The dashed line shows bioluminescence of
the light sender cells with 20 uM of arabinose added (Figure 7.1). The grey box shows the
wavelengths at which EL222 is maximally activated"4,

different numbers of 1 megohm resistors (between 0 and 6) were added in series.

When 0 or 1 resistor was added, the LED’s brightness saturated the plate reader’s
detector, and hence this data was excluded. For the remaining data, it could be seen
that the LED emitted light maximally between 440 and 480 nm (Figure 7.2(B)). The
spectral properties of bacterial luciferase and the LED were similar, although the light
sender cells showed luminescence across a broader spectrum. Additionally, the
brightest light sender cultures showed luminescence approximately 10 times lower
than the dimmest LED setup measured. It therefore needed to be determined whether
the EL222 optogenetic system could be impacted by light at this low level.

7.2.4. Validation of EL222 optogenetic construct

To initially validate responsiveness of cells expressing the EL222 optogenetic
construct to blue light, cells were grown in a 96 well plate exposed to either bright blue
light or kept in complete darkness (Figure 7.3 (A)). The PBLRep promoter allows
translation of downstream coding regions when EL222 is inactive (not exposed to light)
but is blocked by EL222 in its active form (exposed to blue light). It was seen that over
a period of 5 hours, cells exposed to blue light had red fluorescence repressed

compared to cells kept in the dark, as was expected.
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Figure 7.3. Validation of Light Receiver Cells’ Response to Blue Light

The light receiver cells were cultured in the presence and absence of blue light. (A)
Optogenetic setup. A Unicorn pHAT (Pimoroni) was connected to a Raspberry Pi Zero
(Pimoroni), and 3 volts was supplied to all blue LEDs. The light emitting device was placed
into a box, with the 96 well plate containing cell cultures on top. The box was covered in
foil and experimentation was performed (section 2.8.2) (B) Time course curve of red
fluorescence per cell density over 5 hours. Error bars show standard deviation across
three replicates, centred on the mean. (C) Alternative optogenetic setup allowing for
characterisation with calibrated LEDs. The LED circuits were powered individually as
described in Figure 7.2 (A). For the setup in the first image on the left, no resistors were
used. In the setup on the right in the first image, 6 megohms of resistance was applied to
the LED circuits. The second image shows the setup with a 96-well culture plate placed on
top.

An alternative optogenetic setup was used to determine whether the light receivers

could respond to light at an intensity approaching that of the light sender cells. In this
experiment, each well containing light receiver cells were exposed to either no light, or
blue light from a single LED with 0 or 6 megohms of resistance. Plates were then
covered in foil to prevent exposure to ambient light. Cells were prepared and
characterised as described in section 2.8.3. Unlike in the previous experiment, there
was no difference in fluorescence between the cells exposed to bright blue light, and
the cells kept in total darkness (data not shown). The reason for this was not clear, as
cells were prepared in the same ways, although it was likely related to the change in
experimental setup. Regardless, the initial experiment demonstrated that the light
receiver cells could respond to blue light, although the system appeared not to be

robust.
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Figure 7.4. Optical Communication Microfluidic Chip Design

Basic design for the microfluidic chip. (A) Full device, consisting of two unconnected
sections mirror imaged about the plane indicated by the dotted grey line. The lengths of
the growth chambers were 100, 120, or 150 ym long, and 100 ym wide. The channels
were 10 ym wide. The ports were 2 mm in diameter. The distance between each growth
chamber was 10, 50, or 100 ym. The distance between each port and the channel bend
and the distance between the channel bend and opening of the growth chamber were both
2 mm. The depth across the entire chip was 40 ym. (B) Growth chamber variant with a
‘shelf’. The shelf was 10 um wide and reached to the mid-point of the chamber (50 um).
The distance between the top of the shelf and growth chamber opening was 25 um.

7.3. Microfluidic-Based Optical Communication Validation

7.3.1. Microfluidic chip design

A microfluidic chip was designed with the aim of validating optical communication
between the light senders and receivers. The microfluidic chip was required to allow
for each cell type to accumulate and grow within separate chambers but be positioned
such that light could pass between the two chambers. The microfluidic device was
based upon a previously reported design 7%, where cells flow through a channel which
has a chamber extending from one edge of the channel, as illustrated in Figure 7.4 (A).
The optical communication microfluidic chip was designed to incorporate two channels
of 10 ym width and 40 pm depth, with growth chambers extending from the centre of
each. The channels were positioned as illustrated in Figure 7.4 (A), which allowed for
the edge of each chamber to be facing one another, and hence light could pass
between each chamber. The two channels each had an input and output port, where

cells and fresh media could be flowed in one end of the chamber, and waste could be
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collected from the other end. This allowed for continuous flow to be established, which

can promote cell growth in microfluidic devices[37€l,

The microfluidic chips were designed using Autocad as described in section 2.8.4.
Initially, three variants of the microfluidic chips were designed by modifying the length
of the growth chamber, such that each chamber was 100 um in width, and either 100
pMm, 120 um, or 150 ym in length. These variants were created as it has been shown
previously that different chamber sizes can impact on trapping of cells. Prior to
fabrication of the microfluidic chips, fluidic modelling was performed using ANSYS
workbench (section 2.8.4) to help identify and problems relating to the designs. It was
found that whilst cells did enter the growth chambers (Figure 7.5 (A-C)), there was the
potential for significant escape to occur. To address this issue, another set of variants
were designed. These variants incorporated a ‘shelf’ 50 ym long and 10 ym wide, 25
pm from the growth chamber opening (Figure 7.4 (B)). This feature was added with the
aim of stopping cells from simply flowing out of the chamber and into the channel.
Fluidic modelling indicated that the shelf feature did help prevent cell escape (Figure
7.5 (D-E)). Additionally, it was found that a slow vortex formed in the 100 pym long
chamber, assisting with continual mixing of cells and nutrients from the media to assist

with growth.

For all designs described above, a final three variants were generated for each by
varying the distance between each growth chamber, such that the chambers were
placed either 10 ym, 50 um, or 100 um apart (48 variants in total). The varied distances
were incorporated to allow for characterisation of the relationship between light travel
distance, and response by the light receivers.
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Figure 7.5. Fluidic Simulation Results

Images captured from fluidic simulation of microfluidic chip designs using ANSYS as described in
section 2.8.4. For all images, direction of flow was from left to right. Spheres represent cells and were
coloured according to velocity. Solid arrows show the cell’s direction of travel, and the size and colour
of each arrow were determined by the cell’s velocity. (A-C) Images showing the state of 100 (A), 120
(B), and 150 (C) um long growth chambers after 10 minutes of simulation time. (D-E) Images showing
the state of 100 (D) and 150 (E) um long growth chambers with shelf after approximately 5 (left) and
10 (right) minutes of simulation time. Dashed black arrows show general flow patterns within each
chamber.
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7.3.2. Microfluidic chip fabrication and cell culturing

The microfluidic designs were fabricated as described in section 2.8.5. It should be
noted that initially, PDMS was selected to fabricate the microfluidic chips from.
However, due to supply chain issues, PDMS could not be acquired (see COVID impact
statement). As an alternative, silicone resin was used to allow for initial testing of cell
culturing within the microfluidic chips (Figure 7.6 (A)). However, silicone is far less
optically clear than PDMS, and hence was not suitable for testing optical
communication. To begin testing of cell culturing, the fabricated chips were first imaged
under a microscope to check for damaged features. It could be seen that all features

had good resolution and were as designed (Figure 7.6 (B)).

The fabricated microfluidic chips were tested to ensure their viability for cell growth.
Initially, the chips were tested by flowing E. coli DH5a cell culture through the channels
to ensure cells could be trapped in the chambers. It was found that the designs
containing longer growth chambers (120 and 150 um) were prone to air bubbles
becoming trapped at the end of the chamber (Figure 7.6 (C)). Therefore, only the
designs with 100 ym long growth chambers were used for subsequent experiments.
Additionally, it was observed that the 100 uym long growth chambers with shelf
appeared to allow for better retention of cells, however it appeared that performance
increased when liquid flow was in the opposite direction to that tested during fluidic
simulation. Therefore, subsequent experiments made use of the 100 ym long growth
chamber with shelf designs, with liquid flow in the direction of right to left with respect
to Figure 7.4 (B) and Figure 7.5 (D).
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Figure 7.6. Validation of Microfluidic Chip Fabrication

Initial validation of fabricated microfluidic chip feature accuracy and functionality. (A) Images showing the design for a single
microfluidic device in Autocad (top) and the fabricated device (bottom). (B) Phase contrast images of microfluidic chip
features using a Nikon Ti microscope with a 40x objective with 1.5x zoom (left). Images on the right show the corresponding
feature design in Autocad. (C) Phase contrast image (40x objective with 1.5x zoom) showing E. coli DH5a cells in a
microfluidic chip with 150 um growth chamber. White arrow indicates liquid-air interface.
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Figure 7.7. Cell Growth and Red Fluorescence within Microfluidic Device

Default processor cells from the Sensynova framework were induced to produce mCherry
and trapped in a microfluidic growth chamber. (A) Merged phase contrast and red
fluorescence images taken by a Nikon Ti2 microscope with 40x objective and 1.5x zoom.
Images were taken over a 10-hour time course. (B) Tracking of an individual cell
throughout the images shown in (A). (C) Red fluorescence (top) and merged phase
contrast and red fluorescence (bottom) images after 8 hours of growth showing an E. coli
cell displaying failed division and cytoplasmic condensation. White arrows indicate
segments of segregated cytoplasm.

As the light receiver cells were engineered to express mCherry in the absence of blue
light, it was therefore necessary to ensure red fluorescence could be detected in the
microfluidic device. To this end, the default processor cells developed for the
Sensynova framework were cultured overnight, mixed with 10 uM C12-HSL to induce
mCherry production, and loaded into a microfluidic device (2.8.7). Fresh LB media
supplemented with 10 yM C12-HSL and chloramphenicol was flowed at a constant
rate (approximately 0.1 pL/min) through the chip for 10 hours, with phase contrast and
red fluorescence images taken every 30 minutes by a Nikon Ti2 microscope with 40x
objective and 1.5x zoom (section 2.8.7). The microscope chamber was kept at 37°C
for the duration of the experiment. As expected, red fluorescent cells were observed,
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Figure 7.8. Induction of Fluorescence in Microfluidic Device

Induction of default processor cells in the optical communication microfluidic device. (A-B)
Schematic (A) and picture (B) of experimental setup following loading of default processor
cells into the growth chambers. The tube-syringe adapters were 200 uL pipette tips cut to
size. The inlet and outlet ports were 10 JL pipette tips cut to size. The syringes were
controlled by automatic pumps. Inset in (B) shows microfluidic device positioned in the
microscope. White arrow indicates flow direction. (C) Time lapse images of red
fluorescence (bottom) and merged phase contrast and red fluorescence (top) taken by a
Nikon Ti2 with a 40x object and 1.5x zoom.

with increasing fluorescence observed over time (Figure 7.7 (A-B)). However, some E.

coli cells appeared to fail to replicate correctly, and instead formed elongated chains
with evidence of cytoplasmic condensation*’”1 (Figure 7.7 (C)). As mCherry
accumulated in the cytoplasm, it was possible to visualise individual cytoplasm
sections. This behaviour of both disrupted cell division and cytoplasmic condensation
have been shown to occur in the presence of DMSO and chloramphenicol
previously®377} 1378, Therefore, as chloramphenicol was used as the selection pressure
to retain the default processor module, and DMSO was used as the solvent for C12-
HSL, it was likely that these additives were the cause. Although cell division was
somewhat impacted, cell activity was apparent due to the increase in red fluorescence

over time.

Although it was seen that the default processor cells produced mCherry over time, it
was not clear whether this behaviour was due to induction with C12-HSL or the result

of background expression. This uncertainty stemmed from observations of high
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background mCherry production over time discussed in chapter 5. It was important to
establish whether cells could be induced within the microfluidic device, as the light
sender cells required induction by arabinose to produce bioluminescence. Therefore,
a second experiment was conducted in which default processor cells were grown
overnight but were not mixed with C12-HSL. Instead, cells were loaded into both
chambers of a single fluidic device, and LB media with only chloramphenicol added
was flowed through one section, whilst LB media with chloramphenicol and 10 uM C12-
HSL was flowed through the other (Figure 7.8 (A-B)). It was observed that cells in the
chamber with C12-HSL in the media displayed greater fluorescence than those in the
chamber with no C12-HSL, suggesting that induction of cells within the microfluidic

device was possible (Figure 7.8 (C)).
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7.4. Conclusions and Future Work

The use of multi-microbial systems in synthetic biology relies heavily upon intercellular
communication mechanisms, the vast majority of which make use of diffusible
chemical molecules 1175} [3791-381] ' or at least require cells to occupy the same physical
space 1382, The Sensynova framework presented in this thesis make use of such
chemical-based communication in the form of quorum sensing mechanisms. In this
chapter, efforts were made to investigate a light-based intercellular communication

mechanism which would not require co-culturing of cells.

Two cell types, a light sender and a light receiver, were identified to help validate optical
communication. The light sender consisted of an inducible bacterial luciferase pathway
which could generate blue light. The light receiver used the EL222 light-activated
transcription factor which could prevent transcription of a fluorescent protein when
active. As the EL222 protein responded to blue light, it was thought that the bacterial

luciferase could activate EL222.

To validate appropriateness of the bacterial luciferase as a light sender, it was
necessary to ensure that light emitted was in the range of wavelengths known to
activate the EL222 protein. In accordance with previous studies 2%, it was found that
bacterial luciferase emitted light maximally in the range of 440 nm to 520 nm. This
range corresponded with wavelengths known to activate EL222 1874, indicating the

potential for bacterial luciferase to act as a light sender.

Whilst bacterial luciferase had been shown to emit light in appropriate wavelengths, it
was not clear whether the intensity of light was high enough to activate EL222. It was
therefore necessary to calibrate the brightness of the luciferase against a known light
source. This light source could then be used to characterise the EL222 light receivers
and determine their limit of sensitivity. Whilst chemical standards exist for calibrating
fluorescence (63, appropriate luminescence standards have not yet been validated.
Instead, a custom calibration plate was built, which allowed for calibration of
bioluminescence against electronic light in a plate reader. Intensity of the electronic
light was modulated via resistance in the circuit, and raw luminescence was compared
to that of the luciferase. Whilst the luciferase was found to emit light below the

measured electronic light intensities, it was possible to obtain a base sensitivity
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threshold for the EL222 system. Although initial characterisation demonstrated
responsiveness of the EL222 system to light, the optogenetic setup used to measure
sensitivity failed to generate a response, even when high intensity light was used.
Therefore, future work should aim to optimise this setup to ensure robustness, and
hence provide a method for establishing the minimum bioluminescent intensity

required to activate EL222-based light receivers.

If future work indicated that the bacterial luciferase tested in this project was too dim,
a brighter variant of the Lux operon should be investigated, such as the iLux operon!33],
Alternatively, BRET (Bioluminescent Resonance Energy Transfer) could be employed
to increase the light intensity emitted®84. BRET would occur by co-expressing a bright
fluorescent protein with emission at the wavelength required for activation of the EL222

system, and excitation within the range of wavelengths emitted by the luciferase.

To enable implementation and characterisation of an optical communication
mechanism, and microfluidic device was developed. This novel device would allow for
physically separated culturing of light senders and receivers, leveraging the ability to
establish multi-microbial systems without the need for co-culturing. The microfluidic
device was shown to be suitable for growth of bacterial cells over time, and it was
successfully demonstrated how cells could be induced within the device. However, the
microfluidic chips had to be fabricated from silicone resin rather than PDMS due to a
lack of availability. PDMS was initially selected as it is optically clear, however the
chemical could not be obtained. Therefore, the culturing experiments had to use
microfluidic devices fabricated from the far less transparent silicone resin. Thus, it was
not possible to use the microfluidic device to validate the potential for optical

communication. Future work should aim to fabricate the designs from PDMS.

To summarise, initial characterisation of a potential light sender and light receiver was
performed, with the aim of establishing suitability for implementing optical
communication. Additionally, a microfluidic device was developed to allow for future

validation of light-based intercellular communication.
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Chapter 8. Conclusions and Future Work

8.1. Summary of Research Objective

The research objective of this thesis was to demonstrate how the principles of high-
level modularity and synthetic multi-microbial systems could be used to aid in the
development of a specific type of synthetic biology device: biosensors. In chapter 1,
bioengineering and synthetic biology were introduced. The strengths and challenges
associated with synthetic biology approaches towards the development of biological
systems and devices were discussed, using examples of previous studies. It was
identified that although synthetic biology has shown much promise, the development
and optimisation of systems is difficult, and implementation of engineering principles
can be inefficient. A particular area of interest was highlighted: genetic biosensors.
These types of biosensors represent a commonly developed biological system and
have wide-reaching applications, although their development was found to suffer
similarly to other synthetic biology systems. In this thesis, it was investigated how high-
level modularity and multi-microbial systems could be used to provide alternative
approaches towards biosensor development and optimisation. Specifically, focus was
given to identifying novel and easily accessible design spaces and developing a
framework to promote more efficient use of engineering principles in development.
Throughout the thesis, the findings, outcomes, limitations, and potential future avenues
were discussed at the end of each chapter. In this chapter, the impact of the project as

a whole is considered, and the major outcomes highlighted.

8.2. Summary of Previous Work

As discussed in section 3.1, there is a large potential for the combination of high-level
modularity and multi-microbial systems to aid with the development of biological
devices. However, previous studies which have used modular multi-microbial systems
had various limitations, such as the requirement for complex hardware and very
specific applications (section 3.1.2). More broadly, however, these attempts focused
only on presenting the functionality of synthetic biology systems implemented using
their approaches, rather than developing a framework and associated tools. Moreover,
many examples did not consider engineering principles other than those inherently
linked to modularity, including computationally informed experimentation and
optimisation (section 3.1.2). The work in this thesis has considered the benefits,
disadvantages, and challenges of modular and multi-microbial systems which require
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uni-directional signal propagation. An overview of the insights and conclusions gained

from work detailed in this thesis is given throughout the remainder of this chapter.

8.3. Tools for Enhancing a High-Level Modular and Multi-Microbial Framework

In this thesis, the focus was not simply on determining whether a genetic biosensor
could be developed using the Sensynova framework. Instead, focus was also placed
on investigating how such an approach could be enhanced using a range of tools and

resources to promote the use of engineering principles.

In section 3.3.1, it was identified that the Synthetic Biology Open Language (SBOL),
which is commonly used to develop and share synthetic biology designs, could not be
used to represent multi-microbial systems. As discussed in section 1.2, re-usability and
reproducibility are key principles not only in modularity, but also synthetic biology more
widely. The ability to share information easily and accurately about a design and its
intended function are key to such principles. To aid in this endeavour, a proposal of
how the SBOL data model could be extended to capture information about multi-
microbial systems, along with a set of best practices for representing such information
was researched and presented (section 3.3). Also proposed were methods for storing
information about cells and other chassis in SBOL, as this was not currently possible.
These proposals were accepted by the SBOL community, and as such, multi-microbial
systems and contextual information surrounding cells and chassis can now be
represented in SBOL (section 3.3.7). Acceptance of the proposals was the first major
outcome of this project, as it provided a method for users to capture information not
only about Sensynova compatible modules and biosensors, but other modular and

multi-microbial approaches more widely.

In section 3.4.1, it was discussed how automation could aid high-throughput
development of synthetic biology systems and allow for easier sharing and
reproduction of experiments. However, it was also found that the development of
automation protocols can be difficult, and often pre-existing protocols cannot be easily
adapted (section 3.4.1). Further, it was discussed how although previous efforts to aid
in automation protocol generation have been made, these tools are either poorly
documented or only provide an alternative language with which to write protocols, with
no support for trivial protocol generation (section 3.4.1). Some tools were identified

which allowed for easy generation of automation protocols, however they were towards
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highly specific applications. Presented in section 3.4 was the second major outcome
of this project: a Python library (BiomationScripter) which provided not only tools to aid
in writing automation protocols for a wide range of workflows, but also Templates which
could quickly generate protocols for common applications based on a few user inputs.
Additionally, optional parameters allowed for flexibility and the potential for optimisation
of protocols generated from Templates, and support was provided to allow users to
create custom Templates. Documentation with walkthrough examples were made
available to aid with uptake of BiomationScripter. Within the context of the Sensynova
framework, a BiomationScripter-enabled Template for characterisation of modules and
multi-microbial biosensors was developed and used throughout the project, allowing
for simpler replication of experiments, and standardised generation of characterisation
protocols. This represented a major difference from previously described
implementations of high-level modular and multi-microbial synthetic biology, which did

not make use of flexible automation.

The use of computational simulations has become popular in synthetic biology, as it
can aid guided design and experimentation (section 4.1). In chapter 4, a proof-of-
concept biosensor and its constituent modules were modelled and simulated using
both deterministic and agent-based approaches. The Simbiotics platform was used to
model the multi-microbial biosensor as it allowed for different cell types to have
behaviour defined in a modular fashion, using the Systems Biology Markup Language
(SBML) standard. In section 4.4, it was discussed how the standard SBML solver
implemented within Simbiotics was not appropriate for simulation of complex designs,
such as the ones developed here. Thus, a different method of simulation SBML models
was implemented, adapting Simbiotics towards the needs of the Sensynova framework.
Through simulating the modules and biosensor it was found that noise could easily
propagate through the system, but an easily accessible design space, cell ratios, could
be used to optimise the biosensor’s functionality. As was discussed in section 6.4, the
cell ratios design space has been shown previously to have importance but has been

underutilised.

Whilst the Simbiotics platform allowed for some basic in silico interrogation of the
Sensynova concept, it was found that the computational expense of simulating the
system was high. This expense was found to be a major limitation as it was not feasible

to rapidly explore large areas of the design space, and approaches such as sensitivity
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analysis and parameter scanning were severely hindered. Therefore, a key finding
from this section of work was that although the hybrid deterministic and agent-based
modelling approach employed can be highly representative of biological systems,
approaches which are less computationally expensive are vital in aiding the
development of synthetic multi-microbial consortia.

8.4. Validating a Proof-Of-Concept Sensynova Biosensor

Through the use of the tools developed in this thesis, a proof-of-concept modular and
multi-microbial biosensor was developed. Initially, the biosensor modules were
characterised separately before combining into a co-culture. Section 5.2 described
how information from computational models was used to help validate module
functionality, and how BiomationScripter trivially generated protocols for automating
experimental setups. Further, all data presented in chapter 5 was calibrated according
to a standard protocol, which would allow for data collected by different researchers
using different equipment to be compared more accurately. This was the first time that
a modular and multi-microbial approach made use of standardised and automated
characterisation protocols and calibrated data to help ensure reproducibility and re-
usability, in conjunction with computationally informed experimentation. Future work
should aim to conduct interlaboratory studies to determine the extent to which these

approaches aided with increasing reproducibility and easing implementation.

From the experimental results, it was found that each module displayed different time-
course fold-change behaviour when comparing induced and uninduced cells. Whilst
the detector and reporter modules appeared to show increased fold change over time
until a plateau was reached, the processor module instead showed that after an initial
increase, fold change then began to decrease. This behaviour was found to be due to
background activation of uninduced processor cells over time. Based on the design of
the processor module and the potential for cross-talk between the two quorum sensing
mechanisms used in the Sensynova platform, it was hypothesised that a positive
feedback loop was amplifying leaky expression. This finding highlights the importance
of selecting the correct communication channels when designing synthetic microbial

consortia.

In section 5.2.3, the impact of noise propagation was characterised using

BiomationScripter-generated protocols. Whilst the agent-based model indicated that
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noise propagation may be an essential component of multi-microbial systems which
rely on signal transfer through intercellular communication (section 4.4.4), this has not
been thoroughly explored previously. Here, it was found that activation of cell types
through background production of intercellular communication molecules was
significant, and hence should be addressed when considering optimisation of multi-
microbial systems. Indeed, an initial implementation of the multi-microbial biosensor,
where all cell types were added in a 1:1:1 ratio, showed that whilst the system was
functional, as time progressed background noise increased, and the signal become
indifferentiable from the noise. This was thought to be due to the positive feedback
loop exhibited by the processor cells, where background expression of the C4-HSL
molecule saturated the response of the downstream reporter cells. The behaviour
documented in this thesis demonstrates how noise can propagate through uni-
directional cell-to-cell communication channels via feedback loops to saturate the
response of downstream populations. Therefore, a key finding from this thesis is that
if synthetic consortia are to become increasingly complex as the field of biocomputing
advances, itis important that interventions to prevent noise amplification are developed.
Such interventions could take a number of forms, including the development or
discovery of fully orthogonal communication pathways, or methods to increase the
transience of communication ‘messengers’ (such as quorum sensing molecules) to

prevent background accumulation.

The impact of cell ratios on biosensor functionality was investigated experimentally in
section 6.2, using predictions made by the agent-based model and making use of
BiomationScripter to automate the testing process. It was found that cell ratios did
indeed have a significant impact on response characteristics of the proof-of-concept
multi-microbial biosensor. Additionally, results indicated that the design space section
predicted by the agent-based model to contain the most optimal cell ratios was
accurate, although further testing with a greater number of ratios would be required to
confirm this finding. Nevertheless, these results indicated the usefulness of agent-
based modelling in the optimisation of multi-microbial biosensors, and further
development of the model to include more accurate parameters may allow for more
precise predictions. Aside from the cell ratios design space, a computationally driven,
multifactorial approach was taken to determine factors which most heavily impact on
the functionality of individual modules (section 6.3). Results of the initial screening

design indicated which factors should be investigated further in future experiments.
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The success of using cell ratios as a design space to modulate the behaviour of a
synthetic consortium has implications for the development of future synthetic biology
systems and devices. The findings in this thesis makes clear that cell population
composition is important even in multi-microbial systems which have not been
designed to be impacted by changing cell ratios, such as previously described
predator-prey systems[38l. Further, this work has shown that stable cell populations
present in equal ratios is not always the most optimal configuration for synthetic
consortia, and thus efforts should be made to properly consider this aspect of multi-

microbial systems developed in the future.

8.5. Optical Intercellular Communication

In chapter 7, the limitations of chemical-based intercellular communication, such as
the requirement for co-culturing, was discussed. A potential alternative communication
method based on light was identified as an approach to address these concerns by
allowing cells to grow separated by a physical barrier, but still maintain communication
(section 7.1.3). As was also discussed in section 7.1.3, optical communication has
been suggested previously and identified as a crucial technology in the development

of multi-microbial communities but has had limited success in implementation.

In this project, strides were made towards implementing a method of optical
communication. Mechanisms for light sender and receiver cells were identified and
attempts were made to validate their feasibility (section 7.2). Additionally, a microfluidic
device was designed, modelled, and fabricated which could allow for characterisation
of optical communication. Whilst this device could not be fully tested due to difficulties
in sourcing PDMS (see the COVID impact statement), the ability to grow and induce

bacterial cells within the device was demonstrated.

Within this thesis, a method of calibrating bioluminescence to electrically generated
light using a microplate reader was demonstrated. This method can be used to rapidly
determine if a physically separated bioluminescent cell population would be able to
control an optogenetic cell population. It is hoped that the efforts made here will aid in

future work to develop a light-based cell-to-cell communication mechanism.
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8.6. Future Work

The work presented in this thesis laid the foundations for a high-level modular and
multi-microbial framework and demonstrated how it could aid development of a proof-
of-concept biosensor. Whilst the approaches and principles researched here were
shown to have promise, there remains future work which may be conducted based on
the presented findings. Whilst further work has been discussed in each chapter for
individual parts of the project, listed here are more general areas which require further

investigation to help direct future efforts in this field.

Firstly, it is recommended that the interoperability of high-level modules designed and
implemented according to the framework should be investigated. To achieve this,
module variants could be rapidly assembled using automation protocols generated by
BiomationScripter. The construction of a multitude of biosensors could then be created
through co-culture of module variants to demonstrate not only how variants for each
module type (detector, processor, reporter) can be easily interchanged, but the impact
on biosensor response characteristics could be measured and reported on. These
endeavours could be assisted by agent-based modelling, where deterministic models
for each module variant are created and simulated using the Simbiotics platform to

predict biosensor behaviours.

Secondly, as mentioned previously, conduction of interlaboratory studies would aid in
determining how the availability of resources developed in this project, such as SBOL
representation of multi-microbial systems and BiomationScripter generated
characterisation protocols, impact on reproducibility of Sensynova biosensors. These
studies could also help determine further barriers to re-usability and reproducibility and

guide future efforts.

Thirdly, although the computational models presented here provided invaluable insight
concerning optimisation of multi-microbial systems, the use of experimentally derived
parameters would allow for more accurate predictions. It is also recommended that
alternative agent-based modelling software which allows for less computationally
intensive simulation of complex, SBML-defined multi-microbial systems be identified
or developed. Faster simulation times would allow for better exploration of design

spaces and variants in silico and could allow for cell growth to be added to the model.
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Finally, limitations of multi-microbial systems were found to largely stem from issues
related to co-culturing of different cell types. These findings prompted investigation of
optical intercellular communication. Further efforts in this area could aim to use the
approaches presented in chapter 7 for the purposes of identifying appropriate
mechanisms for light production and reception. Additionally, as the microfluidic devices
developed in this project showed promise, future work could use these designs to aid

in validating optical communication mechanisms.

8.7. Conclusions

In this project, it was shown how a biosensor design could be split into three functional
modules. It was then demonstrated that each biosensor module acted as a functional,
high-level module by displaying its own functionality. Further, each module was
implemented into different cells, and a biosensor system was assembled via co-
culturing of each modular cell type. Tools and resources were developed and their
application in aiding the implementation of a modular and multi-microbial biosensor
demonstrated. By building on previous approaches at implementing high-level
modularity and multi-microbial systems in synthetic biology, the work presented in this
thesis has provided extra insight and tools to aid in the development of biological

systems, and more efficient use of engineering principles.
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Chapter 9. Supplementary Information

9.1. BiomationScripter Plate Calibrant Protocol

def run(protocol):
Custom Labware Dir = "C:/Users/bradl/OneDrive - Newcastle
University/Nextcloud/Private/Automation/Opentrons_Labware Definitions"
Starting 20uL Tip "Al"
Starting 300ul _Tip "Al"
Calibrants [
"Fluorescein"
"Sulforhodamine 101"
"Cascade Blue"
"Microspheres"
1
Calibrants_Stock Concs [
10
2
10
3e9
1
Calibrants_Initial Concs [
10
2
10
3e9
1
Calibrants_Solvents [
"PBS"
"PBS"
"Water"
"Water"
1
Calibrant Aliquot Volumes 500
Solvent Aliquot_Volumes 5000
Volume Per Well 100
Repeats 2
Calibrant Labware Type "3dprinted_ 24 tuberack_1500ul"
Solvent Labware Type "3dprinted 15 tuberack 15000ul"
Destination_ Labware Type "greiner655087_96 wellplate 340ul"
Trash Labware_ Type "axygen 1 reservoir 90ml"
Solvent Mix Before None
Solvent Mix After None
Solvent Source Touch Tip True
Solvent Destination_Touch Tip True
Solvent Move After Dispense "well bottom"
Solvent Blowout "destination well"”
First Dilution Mix Before (10, "transfer volume")
First Dilution Mix After (10, "transfer volume")
First Dilution_Source_Touch Tip True
First Dilution Destination_Touch Tip True
First Dilution Move After Dispense False
First Dilution Blowout "destination well"
Dilution Mix Before (10, "transfer volume")
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Dilution Mix After (10, "transfer volume")

Dilution_Source_Touch Tip True

Dilution Destination_Touch Tip True

Dilution Move After Dispense False

Dilution_Blowout "destination well"

Mix Speed Multipler 2

Aspirate_Speed Multipler 1

Dispense_Speed Multipler 1

Blowout_Speed Multiplier 1

Dead Volume_ Proportion 0.95

Calibration_ Protocol Templates.Standard iGEM Calibration(
Calibrants Calibrants
Calibrants_Stock_Concs Calibrants_Stock_ Concs
Calibrants_Initial Concs Calibrants_Initial Concs
Calibrants_Solvents Calibrants_Solvents
Calibrant_Aliquot_Volumes Calibrant_Aliquot_Volumes
Solvent_Aliquot_Volumes Solvent_Aliquot_Volumes
Volume Per Well Volume Per Well
Repeats Repeats
Calibrant Labware_ Type Calibrant_Labware_Type
Solvent Labware Type Solvent Labware_ Type
Destination_Labware_ Type Destination_Labware_ Type
Trash_ Labware_ Type Trash Labware Type
Solvent Mix Before Solvent Mix Before
Solvent Mix After Solvent Mix After
Solvent_Source Touch_Tip Solvent_Source Touch_Tip
Solvent Destination_Touch Tip Solvent Destination Touch_ Tip
Solvent Move After Dispense Solvent Move After Dispense
Solvent Blowout Solvent Blowout
First Dilution Mix Before First Dilution Mix Before
First Dilution Mix After First Dilution Mix After
First Dilution_Source_Touch Tip First Dilution_Source_Touch Tip
First Dilution Destination_Touch Tip

First Dilution Destination_Touch Tip
First Dilution Move After Dispense
First Dilution Move After Dispense

First Dilution Blowout First Dilution Blowout
Dilution Mix Before Dilution Mix Before
Dilution Mix After Dilution Mix After
Dilution_Source_Touch Tip Dilution_Source_ Touch Tip
Dilution Destination_Touch Tip Dilution Destination_ Touch_ Tip
Dilution Move After Dispense Dilution Move After Dispense
Dilution_ Blowout Dilution_Blowout
Mix Speed Multipler Mix Speed Multipler
Aspirate_Speed Multipler Aspirate_Speed Multipler
Dispense_Speed Multipler Dispense_Speed Multipler
Blowout_Speed Multiplier = Blowout Speed Multiplier
Dead Volume_ Proportion Dead Volume Proportion
Protocol=protocol
Name=metadata["protocolName"]
Metadata=metadata
Starting 20ul_Tip=Starting 20uL _Tip
Starting 300ulL_Tip=Starting 300ul Tip

)

Calibration Protocol.custom labware dir Custom_Labware Dir
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Calibration_Protocol.run()
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9.2. Plate Reader Calibrant Standard Curves
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Figure 9.1. Standard Curves for Plate Reader Calibration: Shown are linear (A, C, E, H) and log-log (B, D, F, H) standard curves for

plate reader calibrations. In each graph, number of calibrant molecules is plotted again raw plate reader data. In all cases, the 5 most

concentrated dilutions were used to calculate calibration factors.
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9.3. Dose Response Curve Plate Maps and Automation Protocols
Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data

9.3.1. IPTG Detector Module Plate Map

ON(37.0)0D(0.1)-IPTG(5.0)-Rep2

Well Content Well Content
B2 J23100-B0034-mCherry-B0015- E2 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-None-Rep0 ON(37.0)0D(0.1)-IPTG(0.3125)-
Rep2
B3 J23100-B0034-mCherry-B0015- E3 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-None-Rep1 ON(37.0)0D(0.1)-IPTG(0.3125)-
Rep3
B4 DHb5alpha-ON(37.0)OD(0.1)-None- E4 IPTG Detector + eCFP-
Rep0 ON(37.0)0D(0.1)-IPTG(0.15625)-
RepO
B5 DHb5alpha-ON(37.0)0D(0.1)-None- E5 IPTG Detector + eCFP-
Repl ON(37.0)0D(0.1)-IPTG(0.15625)-
Repl
B6 IPTG Detector + eCFP- E6 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(20.0)-Rep0 ON(37.0)0D(0.1)-IPTG(0.15625)-
Rep2
B7 IPTG Detector + eCFP- E7 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(20.0)-Repl ON(37.0)0D(0.1)-IPTG(0.15625)-
Rep3
B8 IPTG Detector + eCFP- E8 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(20.0)-Rep2 ON(37.0)0D(0.1)-IPTG(0.078125)-
Rep0
B9 IPTG Detector + eCFP- E9 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(20.0)-Rep3 ON(37.0)0OD(0.1)-IPTG(0.078125)-
Repl
B10 IPTG Detector + eCFP- E10 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(10.0)-Rep0 ON(37.0)00D(0.1)-IPTG(0.078125)-
Rep2
B11 IPTG Detector + eCFP- Ell IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(10.0)-Repl ON(37.0)0OD(0.1)-IPTG(0.078125)-
Rep3
Cc2 IPTG Detector + eCFP- F2 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(10.0)-Rep2 ON(37.0)0D(0.1)-
IPTG(0.0390625)-Rep0
C3 IPTG Detector + eCFP- F3 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(10.0)-Rep3 ON(37.0)0D(0.1)-
IPTG(0.0390625)-Repl
C4 IPTG Detector + eCFP- F4 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(5.0)-Rep0 ON(37.0)0D(0.1)-
IPTG(0.0390625)-Rep2
C5 IPTG Detector + eCFP- F5 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(5.0)-Repl ON(37.0)0OD(0.1)-
IPTG(0.0390625)-Rep3
C6 IPTG Detector + eCFP- F6 IPTG Detector + eCFP-

ON(37.0)0D(0.1)-
IPTG(0.01953125)-Rep0
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Cc7 IPTG Detector + eCFP- F7 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(5.0)-Rep3 ON(37.0)0D(0.1)-
IPTG(0.01953125)-Repl
Cs8 IPTG Detector + eCFP- F8 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(2.5)-Rep0 ON(37.0)0D(0.1)-
IPTG(0.01953125)-Rep2
C9 IPTG Detector + eCFP- F9 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(2.5)-Repl ON(37.0)0OD(0.1)-
IPTG(0.01953125)-Rep3
C10 IPTG Detector + eCFP- F10 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(2.5)-Rep2 ON(37.0)0D(0.1)-
IPTG(0.009765625)-Rep0
Ci11 IPTG Detector + eCFP- F11 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(2.5)-Rep3 ON(37.0)0OD(0.1)-
IPTG(0.009765625)-Repl
D2 IPTG Detector + eCFP- G2 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(1.25)-Rep0 ON(37.0)0OD(0.1)-
IPTG(0.009765625)-Rep2
D3 IPTG Detector + eCFP- G3 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(1.25)-Repl ON(37.0)0D(0.1)-
IPTG(0.009765625)-Rep3
D4 IPTG Detector + eCFP- G4 IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(1.25)-Rep2 ON(37.0)0D(0.1)-
IPTG(0.0048828125)-Rep0
D5 IPTG Detector + eCFP- G5 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(1.25)-Rep3 ON(37.0)0D(0.1)-
IPTG(0.0048828125)-Repl
D6 IPTG Detector + eCFP- G6 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.625)-Rep0 ON(37.0)0D(0.1)-
IPTG(0.0048828125)-Rep2
D7 IPTG Detector + eCFP- G7 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.625)-Repl ON(37.0)0D(0.1)-
IPTG(0.0048828125)-Rep3
D8 IPTG Detector + eCFP- G8 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.625)-Rep2 ON(37.0)0D(0.1)-Water(1.0uL)-
RepO
D9 IPTG Detector + eCFP- G9 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.625)-Rep3 ON(37.0)0OD(0.1)-Water(1.0uL)-
Repl
D10 IPTG Detector + eCFP- G10 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.3125)- ON(37.0)0D(0.1)-Water(1.0uL)-
RepO Rep2
D11 IPTG Detector + eCFP- G1l1 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.3125)- ON(37.0)0D(0.1)-Water(1.0uL)-
Repl Rep3
9.3.2. Default Processor Module Plate Map
Well Content Well Content
B02 J23100-B0034-mCherry-B0015- EO2 Default Processor + mCherry-

ON(37.0)0OD(0.1)-None

ON(37.0)0D(0.1)-C12-
HSL(0.003200000000000001)
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BO3 J23100-B0034-mCherry-B0015- EO3 Default Processor + mCherry-
ON(37.0)0D(0.1)-None ON(37.0)0D(0.1)-C12-
HSL(0.003200000000000001)
B0O4 DH5alpha-ON(37.0)0OD(0.1)-None EO04 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-
HSL(0.0006400000000000003)
BO5 DH5alpha-ON(37.0)0OD(0.1)-None EO05 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-
HSL(0.0006400000000000003)
B0O6 Default Processor + mCherry- EO06 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(50.0) ON(37.0)0D(0.1)-C12-
HSL(0.0006400000000000003)
BO7 Default Processor + mCherry- EOQ7 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(50.0) ON(37.0)0D(0.1)-C12-
HSL(0.0006400000000000003)
BO8 Default Processor + mCherry- EO8 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(50.0) ON(37.0)0D(0.1)-C12-
HSL(0.00012800000000000008)
B09 Default Processor + mCherry- E09 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(50.0) ON(37.0)0D(0.1)-C12-
HSL(0.00012800000000000008)
B10 Default Processor + mCherry- E10 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(10.0) ON(37.0)0D(0.1)-C12-
HSL(0.00012800000000000008)
B11l Default Processor + mCherry- E1ll Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(10.0) ON(37.0)0D(0.1)-C12-
HSL(0.00012800000000000008)
co2 Default Processor + mCherry- FO02 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(10.0) ON(37.0)0D(0.1)-C12-
HSL(2.5600000000000012e-05)
co3 Default Processor + mCherry- FO3 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(10.0) ON(37.0)0D(0.1)-C12-
HSL(2.5600000000000012e-05)
co4 Default Processor + mCherry- FO4 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(2.0000000000000004) HSL(2.5600000000000012e-05)
C05 Default Processor + mCherry- FO05 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(2.0000000000000004) HSL(2.5600000000000012e-05)
C06 Default Processor + mCherry- FO6 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(2.0000000000000004) HSL(5.120000000000003e-06)
co7 Default Processor + mCherry- FO7 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(2.0000000000000004) HSL(5.120000000000003e-06)
co8 Default Processor + mCherry- F08 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.4000000000000001) HSL(5.120000000000003e-06)
C09 Default Processor + mCherry- F09 Default Processor + mCherry-

ON(37.0)0D(0.1)-C12-
HSL(0.4000000000000001)

ON(37.0)0D(0.1)-C12-
HSL(5.120000000000003€-06)
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C10 Default Processor + mCherry- F10 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.4000000000000001) HSL(1.0240000000000007e-06)
Cl1 Default Processor + mCherry- F11 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.4000000000000001) HSL(1.0240000000000007e-06)
D02 Default Processor + mCherry- GO02 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.08000000000000002) HSL(1.0240000000000007e-06)
D03 Default Processor + mCherry- GO03 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.08000000000000002) HSL(1.0240000000000007e-06)
D04 Default Processor + mCherry- G04 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.08000000000000002) HSL(2.0480000000000011e-07)
D05 Default Processor + mCherry- GO05 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.08000000000000002) HSL(2.0480000000000011e-07)
D06 Default Processor + mCherry- G06 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.016000000000000004) HSL(2.0480000000000011e-07)
D07 Default Processor + mCherry- GO7 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-C12-
HSL(0.016000000000000004) HSL(2.0480000000000011e-07)
D08 Default Processor + mCherry- G08 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-DMSO(0.5uL)
HSL(0.016000000000000004)
D09 Default Processor + mCherry- GO09 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-DMSO(0.5uL)
HSL(0.016000000000000004)
D10 Default Processor + mCherry- G10 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-DMSO(0.5uL)
HSL(0.003200000000000001)
D11 Default Processor + mCherry- Gl1 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12- ON(37.0)0D(0.1)-DMSO(0.5uL)
HSL(0.003200000000000001)
9.3.3. sfGFP Reporter Module Plate Map
Well Content Well Content
B2 ['J23100-B0034-mCherry-B0015- E2 ['sfGFP Reporter-Temp(37)-AB(CAM
Temp(37)-AB(KAN 1)- 1)-Media(LB)Vol(10)']-C4-
Media(LB)Vol(10.0)1-None(0 uL)- HSL(0.0032)-LB-Rep 2
LB-Rep O
B3 [J23100-B0034-mCherry-B0015- E3 [[sfGFP Reporter-Temp(37)-AB(CAM
Temp(37)-AB(KAN 1)- 1)-Media(LB)Vol(10)1-C4-
Media(LB)Vol(10.0)]-None(0 uL)- HSL(0.0032)-LB-Rep 3
LB-Rep 1
B4 [DH5alpha-Temp(37)-AB(None E4 ['sfGFP Reporter-Temp(37)-AB(CAM

None)-Media(LB)Vol(10.0)']-None(0
uL)-LB-Rep 0

1)-Media(LB)Vol(10)]-C4-
HSL(0.00064)-LB-Rep 0
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B5 [[DH5alpha-Temp(37)-AB(None E5 ['sfGFP Reporter-Temp(37)-AB(CAM
None)-Media(LB)Vol(10.0)']-None(0 1)-Media(LB)Vol(10)-C4-
uL)-LB-Rep 1 HSL(0.00064)-LB-Rep 1
B6 ['sfGFP Reporter-Temp(37)- E6 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)7-C4- 1)-Media(LB)Vol(10)7-C4-
HSL(50.0)-LB-Rep O HSL(0.00064)-LB-Rep 2
B7 [sfGFP Reporter-Temp(37)- E7 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)T-C4- 1)-Media(LB)Vol(10)7]-C4-
HSL(50.0)-LB-Rep 1 HSL(0.00064)-LB-Rep 3
B8 ['sfGFP Reporter-Temp(37)- E8 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)]-C4- 1)-Media(LB)Vol(10)1-C4-
HSL(50.0)-LB-Rep 2 HSL(0.000128)-LB-Rep O
B9 [sfGFP Reporter-Temp(37)- E9 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)T-C4- 1)-Media(LB)Vol(10)7-C4-
HSL(50.0)-LB-Rep 3 HSL(0.000128)-LB-Rep 1
B10 ['sfGFP Reporter-Temp(37)- E10 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)]-C4- 1)-Media(LB)Vol(10)1-C4-
HSL(10.0)-LB-Rep O HSL(0.000128)-LB-Rep 2
B11l [sfGFP Reporter-Temp(37)- E1ll [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)]-C4- 1)-Media(LB)Vol(10)1-C4-
HSL(10.0)-LB-Rep 1 HSL(0.000128)-LB-Rep 3
Cc2 ['sfGFP Reporter-Temp(37)- F2 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)-C4- 1)-Media(LB)Vol(10)]-C4-HSL(2.56e-
HSL(10.0)-LB-Rep 2 05)-LB-Rep O
C3 [sfGFP Reporter-Temp(37)- F3 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)]-C4- 1)-Media(LB)Vol(10)1-C4-HSL(2.56e-
HSL(10.0)-LB-Rep 3 05)-LB-Rep 1
C4 ['sfGFP Reporter-Temp(37)- F4 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)]-C4-HSL(2.56e-
HSL(2.0)-LB-Rep O 05)-LB-Rep 2
C5 ['sfGFP Reporter-Temp(37)- F5 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)]-C4- 1)-Media(LB)Vol(10)1-C4-HSL(2.56e-
HSL(2.0)-LB-Rep 1 05)-LB-Rep 3
C6 [sfGFP Reporter-Temp(37)- F6 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0I(10)]-C4- 1)-Media(LB)Vol(10)7-C4-HSL(5.12e-
HSL(2.0)-LB-Rep 2 06)-LB-Rep O
Cc7 ['sfGFP Reporter-Temp(37)- F7 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)]-C4-HSL(5.12e-
HSL(2.0)-LB-Rep 3 06)-LB-Rep 1
C8 [sfGFP Reporter-Temp(37)- F8 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)]-C4- 1)-Media(LB)Vol(10)7-C4-HSL(5.12e-
HSL(0.4)-LB-Rep 0 06)-LB-Rep 2
C9 [sfGFP Reporter-Temp(37)- F9 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)]-C4-HSL(5.12e-
HSL(0.4)-LB-Rep 1 06)-LB-Rep 3
C10 ['sfGFP Reporter-Temp(37)- F10 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)]-C4-
HSL(0.4)-LB-Rep 2 HSL(1.024e-06)-LB-Rep O
c11 [sfGFP Reporter-Temp(37)- F11 [sfGFP Reporter-Temp(37)-AB(CAM

AB(CAM 1)-Media(LB)Vol(10)]-C4-
HSL(0.4)-LB-Rep 3

1)-Media(LB)Vol(10)]-C4-
HSL(1.024e-06)-LB-Rep 1
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D2 ['sfGFP Reporter-Temp(37)- G2 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)1-C4-
HSL(0.08)-LB-Rep 0 HSL(1.024e-06)-LB-Rep 2
D3 ['sfGFP Reporter-Temp(37)- G3 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)']-C4- 1)-Media(LB)Vol(10)7-C4-
HSL(0.08)-LB-Rep 1 HSL(1.024e-06)-LB-Rep 3
D4 ['sfGFP Reporter-Temp(37)- G4 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vo0l(10)']-C4- 1)-Media(LB)Vol(10)7-C4-
HSL(0.08)-LB-Rep 2 HSL(2.048e-07)-LB-Rep 0
D5 ['sfGFP Reporter-Temp(37)- G5 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)1-C4-
HSL(0.08)-LB-Rep 3 HSL(2.048e-07)-LB-Rep 1
D6 ['sfGFP Reporter-Temp(37)- G6 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)']-C4- 1)-Media(LB)Vol(10)7-C4-
HSL(0.016)-LB-Rep O HSL(2.048e-07)-LB-Rep 2
D7 ['sfGFP Reporter-Temp(37)- G7 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vol(10)1-C4-
HSL(0.016)-LB-Rep 1 HSL(2.048e-07)-LB-Rep 3
D8 [sfGFP Reporter-Temp(37)- G8 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)]-C4- 1)-Media(LB)Vo0l(10.0)']-DMSO(0.5
HSL(0.016)-LB-Rep 2 uL)-LB-Rep 0
D9 ['sfGFP Reporter-Temp(37)- G9 ['sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)']-C4- 1)-Media(LB)V0l(10.0)'1-DMSO(0.5
HSL(0.016)-LB-Rep 3 uL)-LB-Rep 1
D10 [sfGFP Reporter-Temp(37)- G10 [sfGFP Reporter-Temp(37)-AB(CAM
AB(CAM 1)-Media(LB)Vol(10)T-C4- 1)-Media(LB)V0l(10.0)']-DMSO(0.5
HSL(0.0032)-LB-Rep 0 uL)-LB-Rep 2
D11 ['sfGFP Reporter-Temp(37)- G11 ['sfGFP Reporter-Temp(37)-AB(CAM

AB(CAM 1)-Media(LB)Vol(10)]-C4-
HSL(0.0032)-LB-Rep 1

1)-Media(LB)Vo0l(10.0)']-DMSO(0.5
uL)-LB-Rep 3

9.4. Cross Talk Plate Maps and Automation Protocols
Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data

9.4.1. IPTG Detector Module Plate Map

Well Content Well Content
IPTG Detector + eCFP-
J23100-B0034-mCherry-B0015-
B2 ON(37.0)0D(0.1)-None-Rep0 E2 ON(37.0)0D(0.1)-C12-HSL(1)-
Rep2
IPTG Detector + eCFP-
J23100-B0034-mCherry-B0015-
B3 ON(37.0)0D(0.1)-None-Rep1 E3 ON(37.0)0D(0.1)-C12-HSL(1)-
Rep3
IPTG Detector + eCFP-
ga | DH5alpha-ON(37.0)0D(0.1)-None- E4 ON(37.0)0D(0.1)-C12-HSL(0.1)-
Rep0
Rep0
IPTG Detector + eCFP-
gs | DH5alPha-ON(37.0)0D(0.1)-None- ES ON(37.0)0D(0.1)-C12-HSL(0.1)-

Repl

Repl
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IPTG Detector + eCFP-

IPTG Detector + eCFP-

B6 ON(37.0)0D(0.1)-IPTG(1)-Rep0 E6 ON(37'O)OD((£L'§12'HSL(O'1)'
IPTG Detector + eCFP-
IPTG Detector + eCFP-
BY ON(37.0)0D(0.1)-IPTG(1)-Repl =0 ON(37-O)OD(%2L-3CIZ-HSL(O.1)-
IPTG Detector + eCFP-
IPTG Detector + eCFP-
B8 ON(37.0)0D(0.1)-IPTG(1)-Rep2 E8 ON(37.0)0OD(0.1)-C4-HSL(10)-
RepO
IPTG Detector + eCFP-
IPTG Detector + eCFP-
B9 ON(37.0)0D(0.1)-IPTG(1)-Rep3 E9 ON(37'O)OD(F§)£1'C4'HSL(1O)'
IPTG Detector + eCFP-
IPTG Detector + eCFP-
B10 ON(37.0)0D(0.1)-IPTG(0.5)-Rep0 E10 ON(37.0)ODg)ét)z-C4-HSL(10)-
IPTG Detector + eCFP-
IPTG Detector + eCFP-
B11 ON(37.0)0D(0.1)-IPTG(0.5)-Rep1 El1l ON(37.O)OD(Fg)ét)g-C4-HSL(10)-
c2 IPTG Detector + eCFP- F2 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.5)-Rep2 ON(37.0)0OD(0.1)-C4-HSL(5)-Rep0
c3 IPTG Detector + eCFP- F3 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.5)-Rep3 ON(37.0)0D(0.1)-C4-HSL(5)-Rep1
ca IPTG Detector + eCFP- Fa IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.1)-Rep0 ON(37.0)0D(0.1)-C4-HSL(5)-Rep2
c5 IPTG Detector + eCFP- 5 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.1)-Repl ON(37.0)0D(0.1)-C4-HSL(5)-Rep3
C6 IPTG Detector + eCFP- 6 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.1)-Rep2 ON(37.0)0OD(0.1)-C4-HSL(1)-Rep0
c7 IPTG Detector + eCFP- F7 IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.1)-Rep3 ON(37.0)0D(0.1)-C4-HSL(1)-Rep1
cs IPTG Detector + eCFP- s IPTG Detector + eCFP-
ON(37.0)0OD(0.1)-IPTG(0.01)-Rep0 ON(37.0)0D(0.1)-C4-HSL(1)-Rep2
c9 IPTG Detector + eCFP- Fo IPTG Detector + eCFP-
ON(37.0)0D(0.1)-IPTG(0.01)-Rep1 ON(37.0)0D(0.1)-C4-HSL(1)-Rep3
IPTG Detector + eCFP-
IPTG Detector + eCFP-
C10 ON(37.0)0D(0.1)-IPTG(0.01)-Rep2 F10 ON(37.O)OD(|(?).61;(-)C4-HSL(0.1)-
IPTG Detector + eCFP-
IPTG Detector + eCFP-
C11 ON(37.0)0D(0.1)-IPTG(0.01)-Rep3 F11 ON(37.O)OD(gélg-104-HSL(o.1)-
IPTG Detector + eCFP- IPTG Detector + eCFP-
D2 ON(37.0)0D(0.1)-C12-HSL(10)- G2 ON(37.0)0D(0.1)-C4-HSL(0.1)-
Rep0 Rep2
IPTG Detector + eCFP- IPTG Detector + eCFP-
D3 ON(37.0)0D(0.1)-C12-HSL(10)- G3 ON(37.0)0OD(0.1)-C4-HSL(0.1)-
Repl Rep3
IPTG Detector + eCFP- IPTG Detector + eCFP-
D4 ON(37.0)0D(0.1)-C12-HSL(10)- G4 ON(37.0)0OD(0.1)-Water(1.0uL)-
Rep2 Rep0
IPTG Detector + eCFP- IPTG Detector + eCFP-
D5 ON(37.0)0D(0.1)-C12-HSL(10)- G5 ON(37.0)0D(0.1)-Water(1.0uL)-

Rep3

Repl
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IPTG Detector + eCFP-

IPTG Detector + eCFP-

D6 | oN(37.0)0D(0.1)-C12-HSL(5)-Rep0 G6 ON(37'O)OD(g'jg'zwater(l'ou")'
IPTG Detector + eCFP-
IPTG Detector + eCFP-
D7 ON(37.0)0D(0.1)-C12-HSL(5)-Rep1 7 ON(37.O)OD(g.E:}LF))-?’Water(l.OuL)-
IPTG Detector + eCFP-
IPTG Detector + eCFP-
D8 ON(37.0)0D(0.1)-C12-HSL(5)-Rep2 c8 ON(37'O)OD(2$L'5MSO(1'OUL)'
IPTG Detector + eCFP-
IPTG Detector + eCFP-
D9 ON(37.0)0D(0.1)-C12-HSL(5)-Rep3 9 ON(37'0)OD(2$£|13MSO(1'OUL)_
IPTG Detector + eCFP-
IPTG Detector + eCFP-
D10 ON(37.0)0D(0.1)-C12-HSL(1)-Rep0 G10 ON(37.O)OD((I)_\;2L-I23MSO(1.OuL)-
IPTG Detector + eCFP-
IPTG Detector + eCFP-
D11 ON(37.0)0D(0.1)-C12-HSL(1)-Repl G11 ON(37.0)0D(0.1)-DMSO(1.0uL)-
Rep3
9.4.2. Default Processor Module Plate Map
Well Content Well Content
B2 J23100-B0034-mCherry-B0015- £2 Default Processor + mCherry-
ON(37.0)0OD(0.1)-None-Rep0 ON(37.0)0D(0.1)-IPTG(0.1)-Rep2
B3 J23100-B0034-mCherry-B0015- £3 Default Processor + mCherry-
ON(37.0)OD(0.1)-None-Rep1l ON(37.0)0D(0.1)-IPTG(0.1)-Rep3
B4 DH5alpha-ON(37.0)0OD(0.1)-None- E4 Default Processor + mCherry-
Rep0 ON(37.0)0D(0.1)-IPTG(0.01)-Rep0
B5 DHb5alpha-ON(37.0)OD(0.1)-None- E5 Default Processor + mCherry-
Repl ON(37.0)0D(0.1)-IPTG(0.01)-Repl
Default Processor + mCherry-
B6 ON(37.0)0D(0.1)-C12-HSL(10)- E6 Default Processor + mCherry-
Rep0 ON(37.0)0D(0.1)-IPTG(0.01)-Rep2
Default Processor + mCherry-
B7 ON(37.0)0D(0.1)-C12-HSL(10)- E7 Default Processor + mCherry-
Repl ON(37.0)0D(0.1)-IPTG(0.01)-Rep3
Default Processor + mCherry- Default Processor + mCherry-
B8 ON(37.0)0D(0.1)-C12-HSL(10)- E8 ON(37.0)0D(0.1)-C4-HSL(10)-
Rep2 RepO
Default Processor + mCherry- Default Processor + mCherry-
B9 ON(37.0)0D(0.1)-C12-HSL(10)- E9 ON(37.0)0D(0.1)-C4-HSL(10)-
Rep3 Repl
Default Processor + mCherry-
Default Processor + mCherry-
B10 ON(37.0)0D(0.1)-C12-HSL (5)-Rep0 E10 ON(37.0)OD§$)2-C4-HSL(10)-
Default Processor + mCherry-
Default Processor + mCherry-
B11 ON(37.0)0D(0.1)-C12-HSL(5)-Rep1 E11 ON(37.0)0Dg)ét)?-’c4-HSL(10)-
c2 Default Processor + mCherry- F2 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(5)-Rep2 ON(37.0)0D(0.1)-C4-HSL(5)-Rep0
c3 Default Processor + mCherry- F3 Default Processor + mCherry-

ON(37.0)0D(0.1)-C12-HSL(5)-Rep3

ON(37.0)0D(0.1)-C4-HSL(5)-Repl
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Default Processor + mCherry-

Default Processor + mCherry-

c4 ON(37.0)0D(0.1)-C12-HSL(1)-Rep0 F4 ON(37.0)0D(0.1)-C4-HSL(5)-Rep2
cs Default Processor + mCherry- 5 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(1)-Repl ON(37.0)0D(0.1)-C4-HSL(5)-Rep3
C6 Default Processor + mCherry- 6 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(1)-Rep2 ON(37.0)0D(0.1)-C4-HSL(1)-Rep0
c7 Default Processor + mCherry- F7 Default Processor + mCherry-
ON(37.0)0D(0.1)-C12-HSL(1)-Rep3 ON(37.0)0D(0.1)-C4-HSL(1)-Repl
Default Processor + mCherry-
C8 ON(37.0)0D(0.1)-C12-HSL(0.1)- F8 Default Processor + mCherry-
Rep0 ON(37.0)0OD(0.1)-C4-HSL(1)-Rep2
Default Processor + mCherry-
(01°] ON(37.0)0D(0.1)-C12-HSL(0.1)- F9 Default Processor + mCherry-
Repl ON(37.0)0D(0.1)-C4-HSL(1)-Rep3
Default Processor + mCherry- Default Processor + mCherry-
C10 ON(37.0)0D(0.1)-C12-HSL(0.1)- F10 ON(37.0)0D(0.1)-C4-HSL(0.1)-
Rep2 Rep0
Default Processor + mCherry- Default Processor + mCherry-
C11 ON(37.0)0OD(0.1)-C12-HSL(0.1)- F11 ON(37.0)0D(0.1)-C4-HSL(0.1)-
Rep3 Repl
Default Processor + mCherry-
Default Processor + mCherry-
D2 ON(37.0)0D(0.1)-IPTG(1)-Rep0 G2 ON(37.0)0D(0.1)-C4-HSL(0.1)-
Rep2
Default Processor + mCherry-
Default Processor + mCherry-
D3 ON(37.0)0D(0.1)-IPTG(1)-Repl G3 ON(37.0)0D(0.1)-C4-HSL(0.1)-
Rep3
Default Processor + mCherry-
Default Processor + mCherry-
D4 ON(37.0)0D(0.1)-IPTG(1)-Rep2 G4 ON(37.0)0D(0.1)-Water(1.0uL)-
Rep0
Default Processor + mCherry-
Default Processor + mCherry-
D N(37. D(0.1)-W 1.0uL)-
> ON(37.0)0D(0.1)-IPTG(1)-Rep3 G5 ON(37.00 (ge; ) ater(1.0uL)
Default Processor + mCherry-
Default Processor + mCherry-
D6 ON(37.0)0D(0.1)-IPTG(0.5)-Rep0 G6 ON(37.0)0D(g.el|[))-2Water(1.0uL)-
Default Processor + mCherry-
Default Processor + mCherry-
D7 ON(37.0)0D(0.1)-IPTG(0.5)-Repl G7 ON(37.0)0D(g.elg-SWater(l.ouL)-
Default Processor + mCherry-
Default Processor + mCherry-
D8 ON(37.0)0D(0.1)-IPTG(0.5)-Rep2 G8 ON(37.O)OD((;2.(19L-CI)DMSO(1.OuL)-
Default Processor + mCherry-
Default Processor + mCherry-
D9 ON(37.0)0D(0.1)-IPTG(0.5)-Rep3 G9 ON(37.0)OD((;iL-SMSO(1.0uL)-
Default Processor + mCherry-
Default Processor + mCherry-
D10 ON(37.0)0D(0.1)-IPTG(0.1)-Rep0 G10 ON(37.0)OD((;2:5MSO(1.0uL)-
Default Processor + mCherry-
D11 Default Processor + mCherry- G11 ON(37.0)0D(0.1)-DMSO(L.0uL)-

ON(37.0)0D(0.1)-IPTG(0.1)-Repl

Rep3
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9.4.3. sfGFP Reporter Module Plate Map

Well Content Well Content
B2 J23100-B0034-mCherry-B0015- E2 sfGFP Reporter-ON(37.0)0OD(0.1)-
ON(37.0)0OD(0.1)-None-Rep0 IPTG(0.1)-Rep2
B3 J23100-B0034-mCherry-B0015- 3 sfGFP Reporter-ON(37.0)0OD(0.1)-
ON(37.0)OD(0.1)-None-Rep1l IPTG(0.1)-Rep3
B4 DH5alpha-ON(37.0)0OD(0.1)-None- E4 sfGFP Reporter-ON(37.0)0OD(0.1)-
Rep0 IPTG(0.01)-Rep0
B5 DH5alpha-ON(37.0)0OD(0.1)-None- E5 sfGFP Reporter-ON(37.0)0OD(0.1)-
Repl IPTG(0.01)-Repl
B6 sfGFP Reporter-ON(37.0)OD(0.1)- E6 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(10)-Rep0 IPTG(0.01)-Rep2
B7 sfGFP Reporter-ON(37.0)0OD(0.1)- £7 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(10)-Repl IPTG(0.01)-Rep3
B8 sfGFP Reporter-ON(37.0)0OD(0.1)- Es sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(10)-Rep2 C12-HSL(10)-Rep0
B9 sfGFP Reporter-ON(37.0)0OD(0.1)- E9 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(10)-Rep3 C12-HSL(10)-Repl
B10 sfGFP Reporter-ON(37.0)OD(0.1)- E10 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(5)-Rep0 C12-HSL(10)-Rep2
B11 sfGFP Reporter-ON(37.0)0OD(0.1)- E11 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(5)-Repl C12-HSL(10)-Rep3
Cc2 sfGFP Reporter-ON(37.0)OD(0.1)- F2 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(5)-Rep2 C12-HSL(5)-Rep0
C3 sfGFP Reporter-ON(37.0)0OD(0.1)- F3 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(5)-Rep3 C12-HSL(5)-Repl
Cc4 sfGFP Reporter-ON(37.0)0OD(0.1)- F4 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(1)-Rep0 C12-HSL(5)-Rep2
C5 sfGFP Reporter-ON(37.0)0OD(0.1)- F5 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(1)-Repl C12-HSL(5)-Rep3
C6 sfGFP Reporter-ON(37.0)0OD(0.1)- 6 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(1)-Rep2 C12-HSL(1)-Rep0
c7 sfGFP Reporter-ON(37.0)0OD(0.1)- F7 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(1)-Rep3 C12-HSL(1)-Repl
C8 sfGFP Reporter-ON(37.0)0OD(0.1)- Fs sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(0.1)-RepO C12-HSL(1)-Rep2
Cc9 sfGFP Reporter-ON(37.0)0OD(0.1)- F9 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(0.1)-Rep1 C12-HSL(1)-Rep3
C10 sfGFP Reporter-ON(37.0)OD(0.1)- F10 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(0.1)-Rep2 C12-HSL(0.1)-Rep0
Cl11 sfGFP Reporter-ON(37.0)OD(0.1)- F11 sfGFP Reporter-ON(37.0)0OD(0.1)-
C4-HSL(0.1)-Rep3 C12-HSL(0.1)-Repl
D2 sfGFP Reporter-ON(37.0)0OD(0.1)- G2 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(1)-Rep0 C12-HSL(0.1)-Rep2
D3 sfGFP Reporter-ON(37.0)0OD(0.1)- G3 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(1)-Repl C12-HSL(0.1)-Rep3
D4 sfGFP Reporter-ON(37.0)0OD(0.1)- Ga sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(1)-Rep2 Water(1.0uL)-Rep0O
D5 sfGFP Reporter-ON(37.0)OD(0.1)- G5 sfGFP Reporter-ON(37.0)0OD(0.1)-

IPTG(1)-Rep3

Water(1.0uL)-Repl
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Positive Control Negative Cells Processor Cells
(C4-HSL) (C12-HSL) (C12-HSL)

Negative Control Negative Cells Processor Cells
(None) (None) (None)
Figure 9.2. Unprocessed images of those shown in figure 5.13

D6 sfGFP Reporter-ON(37.0)0OD(0.1)- G6 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(0.5)-Rep0 Water(1.0uL)-Rep2

D7 sfGFP Reporter-ON(37.0)0OD(0.1)- G7 sfGFP Reporter-ON(37.0)OD(0.1)-
IPTG(0.5)-Repl Water(1.0uL)-Rep3

D8 sfGFP Reporter-ON(37.0)OD(0.1)- G8 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(0.5)-Rep2 DMSO(1.0uL)-Rep0

D9 sfGFP Reporter-ON(37.0)0OD(0.1)- G9 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(0.5)-Rep3 DMSO(1.0uL)-Repl

D10 sfGFP Reporter-ON(37.0)OD(0.1)- G10 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(0.1)-Rep0 DMSO(1.0uL)-Rep2

D11 sfGFP Reporter-ON(37.0)0OD(0.1)- G11 sfGFP Reporter-ON(37.0)0OD(0.1)-
IPTG(0.1)-Repl DMSO(1.0uL)-Rep3

9.5. Homoserine-lactone synthesis validation agar plates
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9.6. Noise Propagation Plate Maps and Automation Protocols
Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data

None(0 uL)-LB-Rep 0

Well Content Well Content
[IPTG Detector + eCFP-Temp(37)-
['J23100-B0034-mCherry-B0015- AB(CAM 1)-Media(LB)Vol(10),
B2 Temp(37)-AB(KAN 1)- E2 'Default Processor + mCherry-
Media(LB)Vol(10.0)]-None(0 uL)- Temp(37)-AB(CAM 1)-
LB-Rep 0 Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 2
[IPTG Detector + eCFP-Temp(37)-
[[J23100-B0034-mCherry-B0015- AB(CAM 1)-Media(LB)Vol(10)',
B3 Temp(37)-AB(KAN 1)- £3 'Default Processor + mCherry-
Media(LB)Vol(10.0)-None(0 uL)- Temp(37)-AB(CAM 1)-
LB-Rep 1 Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 3
[1PTG Detector + eCFP-Temp(37)-
[DH5alpha-Temp(37)-AB(None AB(CAM 1)-Media(LB)Vol(10),
B4 None)-Media(LB)Vol(10.0)']-None(0 E4 'sfGFP Reporter-Temp(37)-
uL)-LB-Rep 0 AB(CAM 1)-Media(LB)Vol(10)-
None(0 uL)-LB-Rep 0
[1PTG Detector + eCFP-Temp(37)-
[[DH5alpha-Temp(37)-AB(None AB(CAM 1)-Media(LB)Vol(10)',
B5 None)-Media(LB)Vol(10.0)]-None(0 E5 'sfGFP Reporter-Temp(37)-
uL)-LB-Rep 1 AB(CAM 1)-Media(LB)Vol(10)]-
None(0 uL)-LB-Rep 1
) [IPTG Detector + eCFP-Temp(37)-
[Default Processor + mCherry- AB(CAM 1)-Media(LB)Vol(10),
Temp(37)-AB(CAM 1)- \
B6 Media(LB)Vol(10)]-None(0 uL)-LB- E6 sfGFP Reporter-Temp(37)-
Rep 0 AB(CAM 1)-Media(LB)Vol(10)1-
None(0 uL)-LB-Rep 2
, [1PTG Detector + eCFP-Temp(37)-
[Default Processor + mCherry- AB(CAM 1)-Media(LB)Vol(10),
Temp(37)-AB(CAM 1)- )
B7 Media(LB)Vol(10)]-None(0 uL)-LB- E7 sSfGFP Reporter-Temp(37)-
Rep 1 AB(CAM 1)-Media(LB)Vol(10)]-
None(0 uL)-LB-Rep 3
[IPTG Detector + eCFP-Temp(37)-
['Default Processor + mCherry- AB(CAM 1)-Media(LB)Vol(50),
BS Temp(37)-AB(CAM 1)- Es 'Default Processor + mCherry-
Media(LB)Vol(10)-None(0 uL)-LB- Temp(37)-AB(CAM 1)-
Rep 2 Media(LB)Vol(10)7-None(0 uL)-LB-
Rep O
[IPTG Detector + eCFP-Temp(37)-
['Default Processor + mCherry- AB(CAM 1)-Media(LB)Vol(50),
B9 Temp(37)-AB(CAM 1)- E9 'Default Processor + mCherry-
Media(LB)Vol(10)']-None(0 uL)-LB- Temp(37)-AB(CAM 1)-
Rep 3 Media(LB)Vol(10)']-None(0 uL)-LB-
Rep 1
[sfGFP Reporter-Temp(37)- [IPTG Detector + eCFP-Temp(37)-
B10 AB(CAM 1)-Media(LB)Vol(10)]- E10 AB(CAM 1)-Media(LB)Vol(50),

'‘Default Processor + mCherry-
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Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 2

['sfGFP Reporter-Temp(37)-

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(50)',
'Default Processor + mCherry-

P Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 3
[IPTG Detector + eCFP-Temp(37)-
['sfGFP Reporter-Temp(37)- AB(CAM 1)-Media(LB)Vol(50)',
Cc2 AB(CAM 1)-Media(LB)Vol(10)- F2 'sfGFP Reporter-Temp(37)-
None(0 uL)-LB-Rep 2 AB(CAM 1)-Media(LB)Vol(10)-
None(0 uL)-LB-Rep 0
[IPTG Detector + eCFP-Temp(37)-
['sfGFP Reporter-Temp(37)- AB(CAM 1)-Media(LB)Vol(50),
C3 AB(CAM 1)-Media(LB)Vol(10)]- F3 'sSfGFP Reporter-Temp(37)-
None(0 uL)-LB-Rep 3 AB(CAM 1)-Media(LB)Vol(10)]-
None(0 uL)-LB-Rep 1
[ 'Z;?Ciiﬂtef)ti;; d(iaacéllfBP)-\-ll—slTopS'Y )- [IPTG Detector + eCFP-Temp(37)-
, 0 AB(CAM 1)-Media(LB)Vol(50)',
Default Processor + mCherry- ,
Cc4 F4 sfGFP Reporter-Temp(37)-
Temp(37)-AB(CAM 1)- AB(CAM 1)-Media(LB)Vol(10)]-
Media(LB)Vol(10)']-None(0 uL)-LB- None(0 uL)-LB-Rep 2
Rep 0
PTG D + eCFP-T 7)-
[ AB(GC A(:/Itelc)t_c;;l e d?aC(LB)Vglr(nOpS' ) [IPTG Detector + eCFP-Temp(37)-
, 0 AB(CAM 1)-Media(LB)Vol(50)',
Default Processor + mCherry- ,
C5 F5 sfGFP Reporter-Temp(37)-
Temp(37)-AB(CAM 1)- AB(CAM 1)-Media(LB)Vol(10)]-
Media(LB)Vol(10)-None(0 uL)-LB- None(0 uL)-LB-Rep 3
Rep 1
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(0.5)', Temp(37)-AB(CAM 1)-
C6 ‘Default Processor + mCherry- 6 Media(LB)Vol(0.5)", 'sfGFP
Temp(37)-AB(CAM 1)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-None(0 uL)-LB- Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 2 Rep O
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(0.5), Temp(37)-AB(CAM 1)-
c7 '‘Default Processor + mCherry- F7 Media(LB)Vol(0.5)", 'sfGFP
Temp(37)-AB(CAM 1)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)']-None(0 uL)-LB- Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 3 Rep 1
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
. . Temp(37)-AB(CAM 1)-
AB(CAM 1)-Media(LB)Vol(0.5), : .
. Media(LB)Vol(0.5)", 'sSfGFP
C8 sfGFP Reporter-Temp(37)-AB(CAM F8
1)-Media(LB)Vol(10)]-None(0 uL)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-None(0 uL)-LB-
LB-Rep O
Rep 2
[IPTG Detector + eCFP-Temp(37)- :
AB(CAM 1)-Media(LB)Vol(0.5), [ Def?;'; P(g);ﬁi;o(rclmi?_e”y
c9 | 'sfGFP Reporter-Temp(37)-AB(CAM F9 P

1)-Media(LB)Vol(10)]-None(0 uL)-
LB-Rep 1

Media(LB)Vol(0.5)', 'sfGFP
Reporter-Temp(37)-AB(CAM 1)-
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Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 3

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(0.5),

[Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(1)', 'sfGFP Reporter-

Media(LB)Vol(10)]-None(0 uL)-LB-
LB-Rep 2
Rep O
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
. . Temp(37)-AB(CAM 1)-
AB(CAM 1)-Media(LB)Vol(0.5), . .
. Media(LB)Vol(1)', 'sfGFP Reporter-
Cc11 sfGFP Reporter-Temp(37)-AB(CAM F11
1)-Media(LB)Vol(10)]-None(0 uL)- Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-None(0 uL)-LB-
LB-Rep 3
Rep 1
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(1)', Temp(37)-AB(CAM 1)-
D2 ‘Default Processor + mCherry- G2 Media(LB)Vol(1)", 'sfGFP Reporter-
Temp(37)-AB(CAM 1)- Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-None(0 uL)-LB- Media(LB)Vol(10)]-None(0 uL)-LB-
Rep O Rep 2
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(1)', Temp(37)-AB(CAM 1)-
D3 ‘Default Processor + mCherry- G3 Media(LB)Vol(1)", 'sfGFP Reporter-
Temp(37)-AB(CAM 1)- Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)']-None(0 uL)-LB- Media(LB)Vol(10)T-None(0 uL)-LB-
Rep 1 Rep 3
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(1)', Temp(37)-AB(CAM 1)-
D4 '‘Default Processor + mCherry- Ga Media(LB)Vol(10)', 'sfGFP
Temp(37)-AB(CAM 1)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-None(0 uL)-LB- Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 2 Rep O
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(1)', Temp(37)-AB(CAM 1)-
D5 '‘Default Processor + mCherry- G5 Media(LB)Vol(10)', 'sfGFP
Temp(37)-AB(CAM 1)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-None(0 uL)-LB- Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 3 Rep 1
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
. , Temp(37)-AB(CAM 1)-
AB(CAM 1)-Media(LB)Vol(1)', : L
, Media(LB)Vol(10)', 'sfGFP
D6 sfGFP Reporter-Temp(37)-AB(CAM G6
1)-Media(LB)Vol(10)]-None(0 uL)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)']-None(0 uL)-LB-
LB-Rep O
Rep 2
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
. , Temp(37)-AB(CAM 1)-
AB(CAM 1)-Media(LB)Vol(1), . o
. Media(LB)Vol(10)', 'sfGFP
D7 sfGFP Reporter-Temp(37)-AB(CAM G7
1)-Media(LB)Vol(10)]-None(0 uL)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)']-None(0 uL)-LB-
LB-Rep 1
Rep 3
[IPTG Detector + eCFP-Temp(37)- [Def-?:rl; P(r;;)e_ZSBO(rC;QCS_e e
D8 AB(CAM 1)-Media(LB)Vol(1)', G8 P

'sfGFP Reporter-Temp(37)-AB(CAM

Media(LB)Vol(50)', 'sfGFP
Reporter-Temp(37)-AB(CAM 1)-
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1)-Media(LB)Vol(10)]-None(0 uL)-
LB-Rep 2

Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 0

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(1),

[Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(50)', 'sfGFP

Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-None(0 uL)-LB-
Rep 1

| e || pepeerrensn Ao
Media(LB)Vol(10)T-None(0 uL)-LB-
LB-Rep 3
Rep 1
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
D10 '‘Default Processor + mCherry- G10 Media(LB)Vol(50)", 'sfGFP
Temp(37)-AB(CAM 1)- Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-None(0 uL)-LB- Media(LB)Vol(10)]-None(0 uL)-LB-
Rep O Rep 2
[IPTG Detector + eCFP-Temp(37)- [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
D11 ‘Default Processor + mCherry- G11 Media(LB)Vol(50)", 'sfGFP

Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-None(0 uL)-LB-
Rep 3

9.7. Initial Biosensor Testing Plate Maps and Automation Protocols
Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data

Well Content Well Content
B2 [DH5alpha-Temp(37)-AB(None E2 [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 Temp(37)-AB(CAM 1)-
uL)-LB-Rep 0 Media(LB)Vol(10)", 'Default
Processor + mCherry-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10),
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10)-
IPTG(0.01)-LB-Rep 2
B3 [DH5alpha-Temp(37)-AB(None E3 [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 Temp(37)-AB(CAM 1)-
uL)-LB-Rep 1 Media(LB)Vol(10)", 'Default
Processor + mCherry-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10),
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10)]-
IPTG(0.01)-LB-Rep 3
B4 [DH5alpha-Temp(37)-AB(None E4 [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 Temp(37)-AB(CAM 1)-
uL)-LB-Rep 2 Media(LB)Vol(10)-IPTG(1)-LB-
Rep 0
B5 [DH5alpha-Temp(37)-AB(None E5 [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 Temp(37)-AB(CAM 1)-
uL)-LB-Rep 3 Media(LB)Vol(10)-IPTG(1)-LB-
Rep 1
B6 [IPTG Detector + eCFP-Temp(37)- E6 [IPTG Detector + eCFP-

AB(CAM 1)-Media(LB)Vol(10),
'‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
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Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)T-IPTG(20)-LB-
Rep O

Media(LB)Vol(10)-IPTG(1)-LB-
Rep 2

B7 [IPTG Detector + eCFP-Temp(37)- E7 [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10)7-IPTG(1)-LB-
Temp(37)-AB(CAM 1)- Rep 3
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)'T-IPTG(20)-LB-
Rep 1
B8 [IPTG Detector + eCFP-Temp(37)- E8 [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vol(10)7-C12-HSL(10)-
Temp(37)-AB(CAM 1)- LB-Rep O
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)T-IPTG(20)-LB-
Rep 2
B9 [IPTG Detector + eCFP-Temp(37)- E9 [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10)1-C12-HSL(10)-
Temp(37)-AB(CAM 1)- LB-Rep 1
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)T-IPTG(20)-LB-
Rep 3
B10 [IPTG Detector + eCFP-Temp(37)- E10 [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10)7-C12-HSL(10)-
Temp(37)-AB(CAM 1)- LB-Rep 2
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(15)-LB-
Rep 0
B11 [IPTG Detector + eCFP-Temp(37)- E1ll [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10)]-C12-HSL(10)-
Temp(37)-AB(CAM 1)- LB-Rep 3
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(15)-LB-
Rep 1
Cc2 [IPTG Detector + eCFP-Temp(37)- F2 [sfGFP Reporter-Temp(37)-

AB(CAM 1)-Media(LB)Vol(10),
‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)", 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-IPTG(15)-LB-
Rep 2

AB(CAM 1)-Media(LB)Vol(10)]-C4-
HSL(10)-LB-Rep 0
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C3 [IPTG Detector + eCFP-Temp(37)- F3 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10), AB(CAM 1)-Media(LB)Vol(10)']-C4-
'‘Default Processor + mCherry- HSL(10)-LB-Rep 1
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)-IPTG(15)-LB-
Rep 3
C4 [IPTG Detector + eCFP-Temp(37)- F4 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10), AB(CAM 1)-Media(LB)Vol(10)]-C4-
'‘Default Processor + mCherry- HSL(10)-LB-Rep 2
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)T-IPTG(10)-LB-
Rep 0
C5 [IPTG Detector + eCFP-Temp(37)- F5 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10)', AB(CAM 1)-Media(LB)Vol(10)]-C4-
'‘Default Processor + mCherry- HSL(10)-LB-Rep 3
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(10)-LB-
Rep 1
C6 [IPTG Detector + eCFP-Temp(37)- F6 [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vo0l(10.0)]-DMSO(1.0
Temp(37)-AB(CAM 1)- uL)-LB-Rep 0
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)-IPTG(10)-LB-
Rep 2
Cc7 [IPTG Detector + eCFP-Temp(37)- F7 [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)V0l(10.0)]-DMSO(1.0
Temp(37)-AB(CAM 1)- uL)-LB-Rep 1
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)-IPTG(10)-LB-
Rep 3
C8 [IPTG Detector + eCFP-Temp(37)- F8 [Default Processor + mCherry-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)V0l(10.0)]-DMSO(1.0
Temp(37)-AB(CAM 1)- uL)-LB-Rep 2
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)T-IPTG(5)-LB-Rep
0
C9 [IPTG Detector + eCFP-Temp(37)- F9 [Default Processor + mCherry-

AB(CAM 1)-Media(LB)Vol(10),
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(10.0)1-DMSO(1.0
uL)-LB-Rep 3
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Media(LB)Vol(10)]-IPTG(5)-LB-Rep
1

C10 [IPTG Detector + eCFP-Temp(37)- F10 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10), AB(CAM 1)-Media(LB)Vol(10.0)1-
'‘Default Processor + mCherry- DMSO(1.0 uL)-LB-Rep 0
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(5)-LB-Rep
2
Cl1 [IPTG Detector + eCFP-Temp(37)- F11 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10), AB(CAM 1)-Media(LB)Vol(10.0)1-
'‘Default Processor + mCherry- DMSO(1.0 uL)-LB-Rep 1
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(5)-LB-Rep
3
D2 [IPTG Detector + eCFP-Temp(37)- G2 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10), AB(CAM 1)-Media(LB)Vol(10.0)1-
'‘Default Processor + mCherry- DMSO(1.0 uL)-LB-Rep 2
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(1)-LB-Rep
0
D3 [IPTG Detector + eCFP-Temp(37)- G3 [sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10), AB(CAM 1)-Media(LB)Vol(10.0)-
'‘Default Processor + mCherry- DMSO(1.0 uL)-LB-Rep 3
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(1)-LB-Rep
1
D4 [IPTG Detector + eCFP-Temp(37)- G4 [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10.0)', 'Default
Temp(37)-AB(CAM 1)- Processor + mCherry-Temp(37)-
Media(LB)Vol(10)', 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(10.0)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(10)T-IPTG(1)-LB-Rep AB(CAM 1)-Media(LB)Vol(10.0)1-
2 Water(1.0 uL)-LB-Rep O
D5 [IPTG Detector + eCFP-Temp(37)- G5 [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10.0)", 'Default
Temp(37)-AB(CAM 1)- Processor + mCherry-Temp(37)-
Media(LB)Vol(10)", 'sSfGFP Reporter- AB(CAM 1)-Media(LB)Vol(10.0),
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(10)T-IPTG(1)-LB-Rep AB(CAM 1)-Media(LB)Vol(10.0)1-
3 Water(1.0 uL)-LB-Rep 1
D6 [IPTG Detector + eCFP-Temp(37)- G6 [IPTG Detector + eCFP-

AB(CAM 1)-Media(LB)Vol(10)',
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(10.0)", 'Default
Processor + mCherry-Temp(37)-
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Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(0.1)-LB-
Rep O

AB(CAM 1)-Media(LB)Vol(10.0)',
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0)']-
Water(1.0 uL)-LB-Rep 2

AB(CAM 1)-Media(LB)Vol(10),
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)1-IPTG(0.01)-LB-
Rep 1

D7 [IPTG Detector + eCFP-Temp(37)- G7 [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10.0)", 'Default
Temp(37)-AB(CAM 1)- Processor + mCherry-Temp(37)-
Media(LB)Vol(10)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(10.0),
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(10)]-IPTG(0.1)-LB- AB(CAM 1)-Media(LB)Vol(10.0)1-
Rep 1 Water(1.0 uL)-LB-Rep 3
D8 [IPTG Detector + eCFP-Temp(37)- G8 [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10.0)7-Water(1.0
Temp(37)-AB(CAM 1)- uL)-LB-Rep O
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)]-IPTG(0.1)-LB-
Rep 2
D9 [IPTG Detector + eCFP-Temp(37)- G9 [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vol(10.0)]-Water(1.0
Temp(37)-AB(CAM 1)- uL)-LB-Rep 1
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)']-IPTG(0.1)-LB-
Rep 3
D10 [IPTG Detector + eCFP-Temp(37)- G10 [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(10.0)]-Water(1.0
Temp(37)-AB(CAM 1)- uL)-LB-Rep 2
Media(LB)Vol(10)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)']-IPTG(0.01)-LB-
Rep 0
D11 [IPTG Detector + eCFP-Temp(37)- Gl1 [1PTG Detector + eCFP-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(10.0)7-Water(1.0
uL)-LB-Rep 3

9.8. Cell Ratio Testing Plate Maps and Automation Protocols
Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data

uL)-LB-Rep O

Well Content Well Content
B2 [DH5alpha-Temp(37)-AB(None [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 E2 Temp(37)-AB(CAM 1)-

Media(LB)Vol(10.0)", 'Default
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Processor + mCherry-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0),
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0)1-
Water(1.0 uL)-LB-Rep O

B3 [DH5alpha-Temp(37)-AB(None [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 Temp(37)-AB(CAM 1)-
uL)-LB-Rep 1 Media(LB)Vol(10.0)", 'Default
E3 Processor + mCherry-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0),
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0)1-
Water(1.0 uL)-LB-Rep 1
B4 [DH5alpha-Temp(37)-AB(None [IPTG Detector + eCFP-
None)-Media(LB)Vol(10.0)']-None(0 Temp(37)-AB(CAM 1)-
uL)-LB-Rep 2 Media(LB)Vol(10.0)", 'Default
E4 Processor + mCherry-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0),
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(10.0)1-
Water(1.0 uL)-LB-Rep 2
B5 ['1PTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(3.0)", 'Default
Temp(37)-AB(CAM 1)- E5 Processor + mCherry-Temp(37)-
Media(LB)Vol(10)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(7.0),
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(10)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(20.0)1-
Rep 0 Water(1.0 uL)-LB-Rep 0
B6 [IPTG Detector + eCFP-Temp(37)- [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10)', Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vol(3.0)", 'Default
Temp(37)-AB(CAM 1)- 6 Processor + mCherry-Temp(37)-
Media(LB)Vol(10)', 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(7.0),
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(10)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(20.0)1-
Rep 1 Water(1.0 uL)-LB-Rep 1
B7 [IPTG Detector + eCFP-Temp(37)- [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(10), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(3.0)", 'Default
Temp(37)-AB(CAM 1)- £7 Processor + mCherry-Temp(37)-
Media(LB)Vol(10)', 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(7.0),
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(10)-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(20.0)1-
Rep 2 Water(1.0 uL)-LB-Rep 2
B8 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(3)', Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vol(5.0)", 'Default
Temp(37)-AB(CAM 1)- Es Processor + mCherry-Temp(37)-

Media(LB)Vol(7)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(20)7-IPTG(20)-LB-
Rep 0

AB(CAM 1)-Media(LB)Vol(10.0)',
'sfGFP Reporter-Temp(37)-
AB(CAM 1)-Media(LB)Vol(15.0)-
Water(1.0 uL)-LB-Rep O

309




B9 ['IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(3), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(5.0)", 'Default
Temp(37)-AB(CAM 1)- E9 Processor + mCherry-Temp(37)-
Media(LB)Vol(7)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(10.0)',
Temp(37)-AB(CAM 1)- 'sSfGFP Reporter-Temp(37)-
Media(LB)Vol(20)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(15.0)1-
Rep 1 Water(1.0 uL)-LB-Rep 1
B10 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(3), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(5.0)", 'Default
Temp(37)-AB(CAM 1)- E10 Processor + mCherry-Temp(37)-
Media(LB)Vol(7)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(10.0)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(20)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(15.0)1-
Rep 2 Water(1.0 uL)-LB-Rep 2
B11 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(5)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(6.0)", ‘Default
Temp(37)-AB(CAM 1)- E11 Processor + mCherry-Temp(37)-
Media(LB)Vol(10)', 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(13.0)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(15)'T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(11.0)1-
Rep 0 Water(1.0 uL)-LB-Rep O
Cc2 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(5)', Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vol(6.0)", 'Default
Temp(37)-AB(CAM 1)- 2 Processor + mCherry-Temp(37)-
Media(LB)Vol(10)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(13.0)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(15)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(11.0)1-
Rep 1 Water(1.0 uL)-LB-Rep 1
C3 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(5)', Temp(37)-AB(CAM 1)-
‘Default Processor + mCherry- Media(LB)Vol(6.0)", 'Default
Temp(37)-AB(CAM 1)- F3 Processor + mCherry-Temp(37)-
Media(LB)Vol(10)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(13.0)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(15)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(11.0)1-
Rep 2 Water(1.0 uL)-LB-Rep 2
o7} [IPTG Detector + eCFP-Temp(37)- [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(6)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(2.0)", 'Default
Temp(37)-AB(CAM 1)- F4 Processor + mCherry-Temp(37)-
Media(LB)Vol(13)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(24.0)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(11)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(4.0)1-
Rep 0 Water(1.0 uL)-LB-Rep O
C5 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(6)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- 5 Media(LB)Vol(2.0)", 'Default

Temp(37)-AB(CAM 1)-
Media(LB)Vol(13)", 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-

Processor + mCherry-Temp(37)-
AB(CAM 1)-Media(LB)Vol(24.0)',
'sfGFP Reporter-Temp(37)-
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Media(LB)Vol(11)-IPTG(20)-LB-
Rep 1

AB(CAM 1)-Media(LB)Vol(4.0)7-
Water(1.0 uL)-LB-Rep 1

C6 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(6), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(2.0)", 'Default
Temp(37)-AB(CAM 1)- 6 Processor + mCherry-Temp(37)-
Media(LB)Vol(13)", 'sSfGFP Reporter- AB(CAM 1)-Media(LB)Vol(24.0)',
Temp(37)-AB(CAM 1)- 'sSfGFP Reporter-Temp(37)-
Media(LB)Vol(11)T-IPTG(20)-LB- AB(CAM 1)-Media(LB)Vol(4.0)1-
Rep 2 Water(1.0 uL)-LB-Rep 2
C7 [IPTG Detector + eCFP-Temp(37)- [IPTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(2), Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(11.0)", 'Default
Temp(37)-AB(CAM 1)- F7 Processor + mCherry-Temp(37)-
Media(LB)Vol(24)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(18.5),
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(4)]-IPTG(20)-LB-Rep AB(CAM 1)-Media(LB)Vol(0.5)]-
0 Water(1.0 uL)-LB-Rep O
C8 [IPTG Detector + eCFP-Temp(37)- [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(2)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(11.0), 'Default
Temp(37)-AB(CAM 1)- Fs Processor + mCherry-Temp(37)-
Media(LB)Vol(24)", 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(18.5)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(4)]-IPTG(20)-LB-Rep AB(CAM 1)-Media(LB)Vol(0.5)]-
1 Water(1.0 uL)-LB-Rep 1
Cc9 [IPTG Detector + eCFP-Temp(37)- [1PTG Detector + eCFP-
AB(CAM 1)-Media(LB)Vol(2)', Temp(37)-AB(CAM 1)-
'‘Default Processor + mCherry- Media(LB)Vol(11.0)', 'Default
Temp(37)-AB(CAM 1)- F9 Processor + mCherry-Temp(37)-
Media(LB)Vol(24)', 'sfGFP Reporter- AB(CAM 1)-Media(LB)Vol(18.5)',
Temp(37)-AB(CAM 1)- 'sfGFP Reporter-Temp(37)-
Media(LB)Vol(4)]-IPTG(20)-LB-Rep AB(CAM 1)-Media(LB)Vol(0.5)]-
2 Water(1.0 uL)-LB-Rep 2
C10 [IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(11)',
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(18.5)", 'sfGFP
Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(0.5)7-IPTG(20)-LB-
Rep 0
Ccl11 [IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(11)',
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(18.5)", 'sfGFP
Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(0.5)7-IPTG(20)-LB-
Rep1
D2 [IPTG Detector + eCFP-Temp(37)-

AB(CAM 1)-Media(LB)Vol(11)',
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
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Media(LB)Vol(18.5)", 'sfGFP
Reporter-Temp(37)-AB(CAM 1)-
Media(LB)Vol(0.5)1-IPTG(20)-LB-

Rep 2

D3

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(19),
'‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(7)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(4)']-IPTG(20)-LB-Rep
0

D4

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(19),
‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(7)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(4)']-IPTG(20)-LB-Rep
1

D5

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(19),
‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(7)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(4)']-IPTG(20)-LB-Rep
2

D6

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(18),
'‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(2)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-IPTG(20)-LB-
Rep 0

D7

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(18),
'‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(2)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)1-IPTG(20)-LB-
Rep 1

D8

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(18),
‘Default Processor + mCherry-

Temp(37)-AB(CAM 1)-
Media(LB)Vol(2)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(10)7-IPTG(20)-LB-
Rep 2

D9

[IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(7)',
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'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(4)", 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(19)]-IPTG(20)-LB-
Rep O
D10 [IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(7)',
‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(4)", 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(19)]-IPTG(20)-LB-
Rep 1
D11 [IPTG Detector + eCFP-Temp(37)-
AB(CAM 1)-Media(LB)Vol(7)',
'‘Default Processor + mCherry-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(4)', 'sfGFP Reporter-
Temp(37)-AB(CAM 1)-
Media(LB)Vol(19)]-IPTG(20)-LB-
Rep 2

9.9. Main Effects Screening Designs
Shown below are the main effects screening designs for each module type. Runs
highlighted in blue represent the augmented runs. Temperatures are in °C and media

compositions in g/L. Runs were performed as described in section 2.7.14.
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9.9.1. IPTG Detector Module

<l ; ON_Temp Run_Temp OD600 Tryptone Nacl Yeast Extract
1 37 25 0.324 0 0 0
2 30 37 0.37 20 20 10
3 30 37 0.169 20 0 0
4 37 37 0.392 0 20 10
5 30 30 0.311 10 10 5
6 30 25 0.179 0 0 10
7 30 25 0.367 0 20 0
8 37 25 0.139 20 20 0
9 30 25 0.336 20 0 10
10 37 37 0.338 20 0 0
11 30 37 0.184 0 20 0

37 25 0.153 20 20 10
37 30 0.259 10 10 5
30 25 0.955 0 20 0
37 37 1.036 20 0 0
37 37 1.184 0 20 10
37 25 0.949 0 0 0
30 25 0.788 20 0 10
30 37 0.797 20 20 10
9.9.2. Default Processor Module

q -

- = ON_Temp Run_Temp OD600 Tryptone Nacl Yeast Extract
1 25 25 0.149 0 0 0
2 25 37  0.154 20 0 10
3 37 25 0611 0 0 0
4 25 25 0.368 20 20 0
5 25 37 0.15 0 20 0
6 37 37 0499 20 0 0
7 37 37 1.864 20 0 0
8 37 37 0485 0 20 10
9 25 25  0.147 20 0 10

10 37 25 2.024 0 0 10
11 37 25 0.551 20 20 10
30 30 0.848 10 10 5
37 25 0.559 20 20 0
25 37 1.265 0 20 10
37 37 0458 20 0 10
37 25 0.537 0 20 10
37 37 0469 0 0 0
25 37 1.042 20 20 0
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9.9.3. sfGFP Reporter Module

q -
- ON_Temp Run_Temp OD600 Tryptone NaCl YeastExtract
1 25 25 0.143 0 0 0
2 25 37  0.154 20 0 10
3 37 25 0.537 0 0 0
4 25 25 0409 20 20 0
5 25 37 0138 0 20 0
6 37 37  0.504 20 0 0
7 37 37 1928 20 0 0
8 37 37 0475 0 20 10
9 25 25 0.145 20 0 10
10 37 25 2002 0 0 10
11 37 25 0.486 20 20 10
12 30 30 0.841 10 10 5
13 25 37 1.247 0 20 10
14 37 37 0493 0 0 10
15 37 37 0464 20 20 0
16 25 37 1.269 0 20 0
17 25 25 11N 20 20 10
18 37 25 0.5M 0 20 0

9.10. IPTG Dose Response Outliers
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Figure 9.3. Shown here is the dose response curve from figure 5.2 (C). Red points
show the excluded outlier data.
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9.11. Luciferase Characterisation Plate Map and Automation Protocol
Protocols can be found on GitHub: https://github.com/Brad0440/PhD-Thesis-Data

Arabinose(2.5)

Well Content Well Content
BO2 pBad Lux-ON(37.0)0OD(0.1)-None £02 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(0.625)
BO3 pBad Lux-ON(37.0)0OD(0.1)-None £03 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(0.625)
BO4 pBad Lux-ON(37.0)0OD(0.1)-None £04 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(0.3125)
BO5 pBad Lux-ON(37.0)0D(0.1)-None £05 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(0.3125)
BO6 DH5alpha-ON(37.0)OD(0.1)-None £06 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(0.3125)
BO7 DH5alpha-ON(37.0)0OD(0.1)-None E07 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(0.3125)
BO8 DH5alpha-ON(37.0)0OD(0.1)-None £08 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(0.15625)
B09 DH5alpha-ON(37.0)OD(0.1)-None £09 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(0.15625)
B10 pBad Lux-ON(37.0)0D(0.1)- E10 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(20) Arabinose(0.15625)
B11 pBad Lux-ON(37.0)OD(0.1)- E11 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(20) Arabinose(0.15625)
Cco2 pBad Lux-ON(37.0)0D(0.1)- F02 pBad Lux-ON(37.0)0D(0.1)-
Arabinose(20) Arabinose(0.078125)
co3 pBad Lux-ON(37.0)0D(0.1)- F03 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(20) Arabinose(0.078125)
co4 pBad Lux-ON(37.0)0D(0.1)- Fo4 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(10) Arabinose(0.078125)
C05 pBad Lux-ON(37.0)0D(0.1)- Fo5 pBad Lux-ON(37.0)0D(0.1)-
Arabinose(10) Arabinose(0.078125)
C06 pBad Lux-ON(37.0)0D(0.1)- FO6 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(10) Arabinose(0.0390625)
cov pBad Lux-ON(37.0)0D(0.1)- FO7 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(10) Arabinose(0.0390625)
cos pBad Lux-ON(37.0)0D(0.1)- Fos pBad Lux-ON(37.0)0D(0.1)-
Arabinose(5) Arabinose(0.0390625)
Cco09 pBad Lux-ON(37.0)0D(0.1)- F09 pBad Lux-ON(37.0)0D(0.1)-
Arabinose(5) Arabinose(0.0390625)
C10 pBad Lux-ON(37.0)0D(0.1)- F10 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(5) Arabinose(0.01953125)
C11 pBad Lux-ON(37.0)0D(0.1)- F11 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(5) Arabinose(0.01953125)
D02 pBad Lux-ON(37.0)0OD(0.1)- GO2 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(2.5) Arabinose(0.01953125)
D03 pBad Lux-ON(37.0)0D(0.1)- GO3 pBad Lux-ON(37.0)OD(0.1)-
Arabinose(2.5) Arabinose(0.01953125)
D04 pBad Lux-ON(37.0)0D(0.1)- Goa pBad Lux-ON(37.0)0OD(0.1)-

Arabinose(0.009765625)

316




D05

pBad Lux-ON(37.0)OD(0.1)-

pBad Lux-ON(37.0)0D(0.1)-

Arabinose(2.5) GOS Arabinose(0.009765625)
D06 pBad Lux-ON(37.0)0D(0.1)- GO6 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(1.25) Arabinose(0.009765625)
D07 pBad Lux-ON(37.0)0D(0.1)- G07 pBad Lux-ON(37.0)0D(0.1)-
Arabinose(1.25) Arabinose(0.009765625)
D08 pBad Lux-ON(37.0)0D(0.1)- Go8 pBad Lux-ON(37.0)0D(0.1)-
Arabinose(1.25) Water(2.0uL)
D09 pBad Lux-ON(37.0)0D(0.1)- G09 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(1.25) Water(2.0uL)
D10 pBad Lux-ON(37.0)0D(0.1)- G10 pBad Lux-ON(37.0)0OD(0.1)-
Arabinose(0.625) Water(2.0uL)
D11 pBad Lux-ON(37.0)0D(0.1)- G11 pBad Lux-ON(37.0)0D(0.1)-

Arabinose(0.625)

Water(2.0uL)
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