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Abstract

The primary objective of an auto-scaler is to allocate resources to meet demand, while adapting
to varying workloads in a distributed streaming systems. This is done in order to achieve low
latency and high throughput. However, achieving optimal performance in the auto-scaling of
stream processing applications can be challenging due to various factors such as workload
patterns, and application state sizes. While most auto-scaling systems assume that application
state sizes and offered load remain unchanged during scaling intervals, in rapidly changing
workload environments, long scaling durations may exacerbate suboptimal parallelism decisions
as additional state may have been accrued during a rescaling interval, thereby causing multiple
rescalings. The execution of this recurring task may negatively impact the system’s performance.

Similarly, accurately measuring processing capacity is crucial for optimal performance in
streaming applications. This helps ensure that the system can handle the application’s data
volume and processing requirements without introducing bottlenecks or increasing latency.
Furthermore, relying on conventional techniques, such as using offered load as a proxy for
application state size, can be misleading, especially in window-based applications where both
measures may not align perfectly. The stateful nature of individual window configuration creates
a trade-off between memory usage and processing throughput. This can result in a false positive,
causing a premature scaling decision, and leading to reduced throughput.

We address these challenges by empirically evaluating the interplay between application state
size, end-to-end checkpoint duration, and the duration of scaling procedures. Large checkpointing
intervals could lead to longer recovery duration due to the accumulation of more state, while short
intervals can lead to high processing overhead due to the frequency and potential checkpointing
overlap, a delay in a preceding checkpoint influenced by state size.

Based on our findings, we develop predictive models to provide future auto-scalers with
intelligence to inform scaling decisions. Next, we conduct empirical evaluations to assess the
relationship between operator throughput and state size, showcasing the relationship between the
state size and the operator’s throughput of a streaming application.

We explore the impact of window selectivity, an approach where the length of the window
and the sliding period can impact the effectiveness and efficiency of streaming applications. In
stateful operations, offered load is accumulated in a buffer until it reaches the end of the window,
at which point the buffer is subsequently processed. Given that these buffers are retained in
memory, a surge in offered load or larger windows may result in a rapid expansion of buffer size,
thereby causing a spike in memory consumption. We therefore demonstrate first, how growing
application state sizes can spuriously decrease operator throughput and trigger premature scale-
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up or scaling-down decisions and secondly, the impact of windowing on instantaneous state
size.

The major contributions of the thesis are as follows:

1. We investigate the task allocation mechanism employed by Flink. The present study
demonstrates the non-uniform distribution of data and the disparity in throughput among
individual operators.

2. We show that rescaling duration is a critical factor in auto-scaling a streaming application,
demonstrating that with the accumulation of more state, the time to rescale also increases.
This can lead to multiple rescaling of an application and falling short of resources.

3. We develop and evaluate a predictive model to forecast the rescaling duration of a streaming
application based on the state size and end-to-end duration. This model will provide a
scaling controller with knowledge of the estimated rescaling duration, enabling it to make
informed scaling decisions.

4. We show that offered load is an inadequate proxy for state size, demonstrating how the
state size metric varies and falls behind the arrival rate. We show the impact of growing
state size on operator processing capacity. We also show the impact of windowing on the
instantaneous state size.
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Chapter 1

Introduction

1.1 Overview

The emergence of Internet of Things (IoT) the has led to a growing interest in data stream
processing, due to escalating demand for processing of diverse and extensive data streams.
The proliferation of IoT devices and end users has resulted in a significant surge in the vol-
ume of data generated. According to a projection, it is anticipated that by 2025, a significant
proportion of enterprise data, approximately 75%, will be generated remotely from the data cen-
tres [122]. These data are generated frequently and necessitate immediate processing following
their production [137]. Data Stream Processing (DSP) frameworks are frequently employed as
an intermediary software layer for the purpose of handling these data streams [104].

Data stream processing systems were developed to handle unbounded incoming data streams
in a continuous manner while maintaining low end-to-end latency [6]. Several Stream Processing
Engines (SPEs) have been suggested, such as Apache Storm [118], Apache Spark [139], and
Apache Flink [15]. DSP applications are typically structured as directed acyclic graphs compris-
ing of data transformations, also known as operators. These operators are interconnected by data
streams, and collectively constitute a data processing workflow. Typically, the inputs consist
of tuples within a data stream that are processed by each operator through a predetermined
computation, resulting in the creation of new tuples that are subsequently transmitted to the
succeeding operators.

The fundamental assumption of streaming data is that the potential value lies in the freshness
of the data. These data are generated at high velocity from multiple sources and processed with
low latency in real-time. Stream processing ensures that data are analyzed real-time immediately
after they arrive at the stream, contrary to batch processing where the data is first persisted before
they are analyzed [108].

In order to ensure a desirable level of service quality, DSP employ diverse methodologies
to parallelise the implementation of their operators [110]. According to research, the majority
of instances indicate that duplicating a stream processing operator results in an augmentation
of its processing capability and an enhancement of its quality of service (QoS) [48]. As such, a
multitude of techniques aimed at enhancing the performance of DSP systems centres around the
implementation of parallelisation and elasticity strategies [104].
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Stream processing parallelisation and elasticity enable streaming engines to support high
quality of service in processing a large amount of data while ensuring high throughput and low
latency [58]. To maximize stream processing engine throughput and improve the utilization rate
of its computation resources, workloads are commonly partitioned and processed concurrently
by multiple logical operator instances. The source operator being aware of the local graph sends
data in tuples for processing based on a global partitioning strategy [50]. Tuples with the same
key are received and processed by the same stateful operator. Stateful operator refers to an
operator that has a memory space to store intermediate results called states. For example, a state
can be used to record the tuples or counts of words in a sliding window. When a key is reassigned
to a different operator instance, its state is usually migrated as well to ensure the correctness of
the computation outcome. This is because of the binding between a key and state [35].

At a time when data is growing at an unprecedented rate, consumers are demanding not
only connectivity and access, but also improved service quality and overall experience. Thus,
operators view real-time analytics as a crucial enabler for accelerating the creation, delivery, and
monetisation of service bundles and providing consumers with a unique network experience [115].
In this context, it is essential to develop new scalable, dynamic, and responsive data analytics
solutions.

Auto-scaling refers to the automatic adjustment of computational resources based on the
demand or workload of the streaming system. It allows the system to dynamically allocate or
deallocate resources, such as servers, processing units, operators, data injection rate, or storage,
in order to efficiently handle fluctuations in data volume or processing requirements. The goal of
auto-scaling is to optimize performance, ensure smooth data streaming, and minimize costs by
scaling up or down the resources as needed, without requiring manual intervention.

Auto-scaling can be accomplished via either vertical or horizontal scaling techniques. Vertical
scaling is a method of enhancing the capacity of individual resources, whereas horizontal
scaling is a technique of increasing capacity by incorporating additional instances of resources.
Furthermore, while resource scaling both at the infrastructure level and operator scaling could
be a solution for long-term workload, this solution might be too expensive for the short-term
fluctuation scenario because of its temporal and random nature [101]. Hence, in order to optimise
the advantages of auto-scaling, a comprehensive and meticulous assessment of all the relevant
metrics and components of the streaming pipeline is imperative.

1.2 Research Problem

Maximising the benefits of auto-scaling in stream processing applications is difficult due to chal-
lenges associated with precisely estimating resource usage or accurately gauging the processing
capacity of the system in the face of significant variability in client workload patterns. In this
thesis, we investigate the following research problems:

Flink’s Task distribution mechanism: How does Flink distribute data across multiple opera-
tors’ instances in a stream processing pipeline? What is the impact of system utilization
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on the level of imbalance between different operators’ instances in a distributed stream
processing pipeline? We address this in Chapter 3.

Impact of long scaling time: What is the effect of time and resource requirements to perform a
‘rescaling’ of an application during runtime? What impact does long scaling time have on
streaming applications? What metrics are critical to the scaling procedure of a streaming
system and how can we measure the correlation between these metrics and the scaling
duration. Most auto-scaling systems do not consider the impact of scaling time and often
assume that application state sizes and offered load remain unchanged during the scaling
interval [51, 84, 107, 105, 58]. Chapter 4 tackles these challenges.

Impact of state size on operators throughput: How can we measure the state size of a
streaming application? Is there a relationship between the application state size and offered
load? Does application state size have an impact on the processing capacity of streaming
operators? Most auto-scaling systems do not consider the impact of the application state
and rely on offered load as a proxy for application state size. This is addressed in Chapter
5.

Windowing selectivity: What is the impact of window selectivity on instantaneous state size?
Does the window size or sliding period length have any impact on streaming applications?
How do we measure how a streaming operator responds to a decreasing offered load in a
windowed setting with different window sizes and length configurations? This is addressed
in Chapter 5.

1.3 Thesis Contributions

The research presented in this thesis offers several significant contributions.

i. We investigate the task allocation mechanism employed by Flink. The present study
demonstrates the non-uniform distribution of data and the disparity in throughput among
individual operators.

I chose to exclusively utilize Apache Flink as the streaming engine for my research due to
its unique blend of openness, versatility, and compatibility. Being an open-source software,
Flink allows for collaborative exploration and development within a diverse community,
enabling cost-effective and resourceful research. However, the level of abstraction of
this research, makes adaptation to other streaming platforms relatively seamless and
other streaming engines may offer similar functionalities, Flink’s robustness, ease of
integration, and supportive community made it the optimal choice for conducting my
research experiment.

ii. We show that rescaling duration is a critical factor in auto-scaling a streaming application,
demonstrating that with the accumulation of more state, the time to rescale also increases.
This can lead to multiple rescaling of an application and falling short of resources.
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iii. We develop and evaluate a predictive model to forecast the rescaling duration of a streaming
application based on the state size and end-to-end duration. This model will provide a
scaling controller with knowledge of the estimated rescaling duration, enabling it to make
informed scaling decisions.

iv. We show that offered load is an inadequate proxy for state size, demonstrating how the
state size metric varies and falls behind the arrival rate. We show the impact of growing
state size on operator processing capacity. We also show the impact of windowing on the
instantaneous state size.

1.4 Thesis Structure

Chapter 1 describes the fundamental motivations that propelled the research and highlights
the principal discoveries and progressions from the investigation. Furthermore, a compre-
hensive record of the peer-reviewed publications produced in the period of this PhD is
presented.

Chapter 2 provides a concise overview of the contextual background and technological tools
employed in developing the solutions presented in this thesis.

Chapter 3 describes the task distribution mechanism of Flink over stateful operators in a
distributed stream processing pipeline. We show that increasing the parallelism in a
FlatMap operator does not necessarily result in a corresponding increase in processing
capacity. This outcome is contingent upon various factors, including but not limited to
the availability of system resources, data distribution, size of application state, bottlenecks
in upstream and downstream processes, and the degree of parallelism in the upstream
and downstream operators. Furthermore, in this chapter we note Flink’s non-uniform
distribution of data in a topology with multiple FlatMap instances as well as the disparity
in throughput among individual operators.

Chapter 4 empirically evaluates application state size and end-to-end checkpoint duration
and identify their correlation with the duration of scaling procedures. We evaluate the
impact of long rescaling duration during an auto-scaling interval which could lead to
multiple rescaling of an application when the state size growth of the application is
larger and unpredictable. This repetitive task could harm the system performance. We
believe that a proactive approach will be to use machine learning algorithms to develop
a workload prediction module that can forecast workload characteristics and rescaling
duration. Finally, we develop predictive models to provide future autoscalers with further
intelligence to inform scaling decisions.

Chapter 5 undertakes empirical assessments to examine the correlation between the state
size and the operator’s processing capacity in a distributed streaming application. Our
findings demonstrate the disparity in the rates of convergence between small and larger
window configurations. The results of our study emphasise the significance of taking into
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account the size of the application state when making decisions regarding auto-scaling.
We also show that in a window-based applications, relying on offered load as a proxy for
the application’s state size can be misleading.

Chapter 6 provides a summary of the findings presented in this thesis and outlines potential
directions for future research in this field.



8 Introduction

1.5 Related Publications

Throughout the duration of my doctoral studies, I have made contributions to the following
peer-reviewed publications.

[90] Omoregbee, P. and Forshaw, M. (2022). Performability requirements in making a rescaling
decision for streaming applications. In Computer Performance Engineering: 18th European
Workshop, EPEW 2022, Santa Pola, Spain, September 21–23, 2022, Proceedings, pages
133–147. Springer.

This paper considers the impact of long rescaling duration during an auto-scaling interval
which could lead to multiple rescaling of an application when the state size growth of the
application is larger and unpredictable. This paper serves as the foundation of Chapter 4
of this thesis.

[92] Omoregbee, P., Nigel, T. and Forshaw, M. (2023). A State-Size inclusive approach to
autoscaling stream processing applications. In Computer Performance Engineering: 19th
European Workshop, EPEW 2023, Florence, Italy, 20-23 June, 2023.

This paper makes the following contributions: first, we demonstrate that offered load is
an inadequate proxy for state size; second, we model the impact of growing state size
on operator processing capacity. Finally, we show the importance of carefully selecting
an appropriate window size and criteria to balance the selectivity and accuracy of the
window operator, taking into consideration the performance requirements of the streaming
application. This paper serves as the foundation of Chapter 5 of this thesis.

[91] Omoregbee, P., Forshaw, M. and Nigel, T. (2023). Analyzing Performance Effects of
Window Size on Streaming Operator Throughput. In Computer Performance Engineering:
39th Annual UK Performance Engineering Workshop, UKPEW 2023, Birmingham, United
Kingdom, 7-8 August, 2023.

This paper presents two key contributions. Firstly, we analyze and model the influence
of an increased collection resulting from a larger state size. Secondly, we showcase
that streaming operators showcase higher processing rates and quicker responsiveness in
smaller window sizes compared to larger ones. This paper comprises the latter portion of
Chapter 5.



Chapter 2

Background

2.1 Fundamentals of Data Stream Processing

Stream processing is a programming paradigm defining applications that process unbounded
stream of events as a collection of elements as they arrive at the stream, and this is applica-
ble to different use cases [117]. Stream processing has become commonly used in real-time
applications, due to lower processing latency compared with batch processing. In Facebook,
for example, many stream processing applications require a 90 seconds end-to-end latency
guarantee [82]. Stream processing is commonly categorised into stateless and stateful processing.
Stateless streaming operators only consider their current input without knowledge of their past
operations. Stateful streaming processing, on the other hand, keeps a copy of its state. Therefore,
allowing the system to reference an event in a previous state or allowing past events to influence
the way current events are processed [102].

There are open challenges in stream processing systems like Flink that still requires the
attention of the research community to tackle. These includes, the manual reconfiguration of
a running streaming application topology. Second, most streaming frameworks can’t sustain
their Service Level Agreement (SLA) when the system is overloaded because they sometimes
choose the wrong execution plan on the first try. Thirdly, the default topologies are mapped to
the nodes regardless of the knowledge of the workload, this causes a burden and usually slows
down not only the job at hand but also the whole system, many researchers [51, 84, 107, 105]
have advocated for an automatic scaling approach which has the ability to refine the topology of
the system at runtime.

Hummer et al. [51], argue that while several state-of-the-art distributed streaming frameworks
have the ability to manually change the operator distribution topology, none of these frameworks
has yet established a mechanism to automatically adapt to the incoming workload. Auto-scaling
is designed to increase the overall performance by making the refining of topology robust
according to incoming workload streams in real-time, while maintaining SLA constraints [84].

The Performance metrics used by [51] are throughput (number of records out/time in sec-
onds) and latency. These metrics do not cater for the active and ideal time of an operator
which might not give an exact performance measure of the throughput of an operator. In this
thesis we leverage the notion of true and observed processing rate as described in [58]. The
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term TrueProcessingRate refers to the highest possible quantity of records that an operator
instance can handle within a given unit of useful time. This operation intuitively determines
the capacity of an instance of an operator. It should be noted that the useful time can be cal-
culated by subtracting the waiting time from the duration, as stated by Kalavri et al. [58]. The
ObservedProcessingRate refers to the number of records that an operator instance is capable
of processing within a given unit of observed time. In contrast to the TrueProcessingRates,
the observed rates are determined by simply counting the number of records processed and
output by an operator instance over a unit of elapsed time, which might include any waiting time
that existed over the processing period.

The occurrence of waiting time is observed in practical scenarios, with the specific reasons
varying depending on the architecture of the reference system. Within the Flink framework, it is
possible for an operator instance to experience blocking conditions. This can occur when the
input buffers are devoid of data or when the output buffers, which have a finite capacity, are
unable to accommodate additional information. Serialization and deserialization overheads can
introduce delays, leading to increased waiting time. This is particularly critical in applications
that require low-latency processing, such as real-time analytics and monitoring, where even
small delays can impact the application’s effectiveness.

The term "processing capacity" or "capacity" refers to the maximum amount of information
or data that a system or operator can handle or process within a period.

Furthermore, Hummer et al. [51] do not make reference to state management which suggests
that the system architecture will be unable to handle a service disruption or failure. Considering
Flink’s distributed data processing nature, provisions must be made to handle failures such as
machine failure, killed process, network interruption, etc. My research study considers Flink
checkpointing mechanism that guarantee exactly once state consistency to simulate a state
recovery.

Similarly, we note Dhalion [38]. A system that essentially allows stream processing frame-
works to become self-regulating. Dhalion seeks to solve the complexity of manually configuring,
managing and deploying streaming processing systems. Floratou et al. [38] argue that the manual
tasks involved in tuning streaming application to meet Service Level Objectives (SLOs) such as
adjusting to load spikes, etc. is time-consuming, tedious and error-prone. This research examines
the impact of time to redeploy a streaming application from save point. While Dhalion focused
on resource utilization and performance (Throughput, latency and backpressure) this research
seeks to identify the critical factors that should influence an optimal rescalling decision.

2.1.1 Streaming Processing General System Model

A stream processing system processes incoming data streams in real-time [19]. The process
aggregates, filters, and analyzes data items to swiftly derive insights, respond to observed
situations, and generate higher-level information. This can be seen in applications like continuous
Twitter trend analysis, automated stock trading, fraud detection, and traffic monitoring. The basis
of a stream processing system is the directed, acyclic operator graph, also known as its topology,
which processes and forwards the input data streams [104]. In addition, the topology consists
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of data sources that emit data items in streams into the graph and sinks that ingest the output.
In Figure 2.1, we present a diagram of a typical stream processing system. The rectangles on
the left represent data sources, while the circles represent operators. The flow of data streams is
depicted by the boundaries between them. The sink is represented by the rightmost rectangle.
In a distributed stream processing system, operators function across multiple interconnected
processing nodes.

Fig. 2.1 A General Stream Processing Model

Considering that stream processing systems are intended to analyse data streams in real time,
achieving low latency and high throughput are the main quality of service QoS goals. These
objectives heavily influence the strategies employed for parallelization and elasticity. Failure
to meet these QoS objectives can result in suboptimal system behavior, often accompanied by
associated costs. Secondary QoS objectives, including load balancing, node utilization, and
fault tolerance, are commonly configured to support the attainment of low latency and high
throughput [104].

Operators and streams are the primary elements that make up the abstract model. Stream
processing applications are typically defined at this level as directed graphs G = (V, E), where
V is a collection of vertices made up of data sources, operators, and sinks and E is a set of
edges (i.e., streams flowing between vertices). Input streams come from data sources, which are
represented by vertices without any outgoing edges. Sinks are vertices that have no outgoing
edges and stand for consumers of the results generated, such as dashboards. You should be aware
that at this level of abstraction, a source vertex may represent a variety of physical sources (such
as sensors) that collectively generate a single logical data stream [14].

2.1.2 Apache Flink Overview

Apache Flink is an open-source framework that offers stateful stream processing capabilities that
are scalable, distributed, and fault-tolerant [15].

Apache Flink enables the ingestion of vast amounts of streaming data, ranging up to several
terabytes, from diverse origins and facilitates its distributed processing across multiple nodes.
The resultant streams can then be directed to other applications or services, such as Apache Kafka,
Databases, and Elastic search [15]. The fundamental components of a Flink pipeline comprise
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of three stages: input, processing, and output. The system’s operational duration facilitates
expeditious data processing with exceptionally high rates of throughput while maintaining fault
tolerance. The capabilities of Flink facilitate the extraction of real-time insights from streaming
data and enable event-based functionalities. Flink facilitates instantaneous data analysis on
streaming data, making it a suitable option for uninterrupted Extract-Transform-Load (ETL)
pipelines on streaming data and for applications that are driven by events [98]. Figure 2.2
illustrates the Apache Flink software stack

Fig. 2.2 Apache Flink Software Stack [15]

The software stack of Flink comprises of two distinct APIs, namely DataStream and DataSet,
which are utilised for the processing of infinite and finite data, correspondingly. Flink provides a
variety of operations for manipulating data streams or sets, including but not limited to mapping,
filtering, grouping, state updating, joining, window definition, and aggregation.

Flink’s primary data abstractions are DataStream and DataSet, which serve as immutable
aggregations of data entities. In the context of DataSet and DataStream, it can be observed that
the list of elements in the former is limited or finite, whereas, in the latter, it is unrestricted or
infinite [112].

Flink applications are shown by a data-flow graph, more specifically a Directed Acyclic
Graph (DAG), which is run by Flink’s core, which is a distributed streaming dataflow engine.
Data flow graphs are made up of operators that keep track of the state of the system and parts
of secondary data streams. A varying number of parallel instances, set by the parallelism level,
makes it possible for operators to run at the same time. Every instance of the parallel operator
is executed within a distinct task slot on a computing machine that belongs to a cluster of
computers.



2.1 Fundamentals of Data Stream Processing 13

Flink has a valuable set of features for building and benchmarking windows on data streams.
It uses a blocking queue to manage back pressure, supports custom windows operators with a
large pre-defined windowing operator and supports out of order stream. At a minimal cost Flink
automatically transfers information to upstream operators upon detection of congestion [99]

2.1.3 Flink Architecture and Process Model

The Flink cluster is managed by three runtime components, namely the JobClient, JobManager,
and TaskManager. The role of job manager is responsible for overseeing the allocation of
resources and the distribution of tasks among the available task managers. The task manager is
responsible for executing computations and providing updates to the job manager regarding the
status of the tasks.

The distributed communication in Flink is facilitated through the utilisation of the Akka
framework [8]. Akka is a software framework that employs an actor model to facilitate the
development of applications that are capable of concurrent processing, fault tolerance, and
scalability. Each actor within the Akka framework is regarded as autonomous and interacts
with other actors in an asynchronous manner. The process of executing a job is illustrated in
Figure 2.3 presented below. The number labels signify the sequence of events within the Flink
cluster.

Fig. 2.3 Flink Job Execution Process [33]

Job Client

End users engage with the system through the "JobClient" module. The JobClient performs
various functions, such as submitting jobs, communicating with the JobManager, retrieving the



14 Background

the state of the job that is currently running, and querying the job status. After the JobClient gets
the user programme, it is compiled and optimised to make a logical graph representation, which
is then sent to the JobManager for processing.

The JobClient is an actor that facilitates communication through message exchange. There
are two distinct messages pertaining to job submission, namely SubmitJobDetached and
SubmitJobWait. The initial communication entails the submission of a task while simultane-
ously opting out of receiving any subsequent updates or notifications regarding the job’s progress
and ultimate outcome. The detached mode can be a valuable tool for submitting a job to a Flink
cluster in a manner that allows for submission without the need for continuous monitoring [33].

The SubmitJobWait message is utilised to submit a job to the JobManager and simultane-
ously enrols to obtain status messages pertaining to the job in question.The internal process
involves the creation of a helper actor that serves as the recipient of status messages. Upon com-
pletion of the task, the JobManager dispatches a JobResultSuccess message to the auxiliary
actor, containing the duration and the accumulator results.Upon receipt of the aforementioned
message, the assisting entity proceeds to forward the message to the respective client who had
initially issued the SubmitJobWait message, following which it ceases to function [33].

Job Manager and Task Manager

The JobManager serves as the primary process tasked with overseeing the execution of Flink jobs.
The JobManager is responsible for managing physical translation, resource allocation, and task
scheduling. The JobManager is responsible for distributing tasks to various task managers [15].

Prior to the execution of any Flink job, it is necessary to initiate at least one JobManager and
one TaskManager. Subsequently, the TaskManager initiates communication with the JobManager
by transmitting a message denoted as "RegisterTaskManager". Upon a successful registration,
the JobManager issues an AcknowledgeRegistration message. If the TaskManager has been
registered with the JobManager due to the transmission of multiple RegisterTaskManager
messages, the JobManager will issue an AlreadyRegistered message. In the event of regis-
tration being declined, the JobManager will issue a message denoting the refusal, namely the
RefuseRegistration message [55].

To submit a job, a SubmitJob message along with the corresponding JobGraph must be
sent to the JobManager. After the JobGraph is received, the JobManager proceeds to generate
an ExecutionGraph from it. This ExecutionGraph functions as the abstract model of the
distributed execution. The ExecutionGraph comprises the pertinent details regarding the tasks
that necessitate deployment to the TaskManager for their execution.

The allocation of execution slots on the available TaskManagers is the responsibility of
the scheduler of the JobManager. Upon allocation of an execution slot on a TaskManager, a
SubmitTask message containing all requisite information for task execution is transmitted to
the corresponding TaskManager. The TaskOperationResult is recognised as an indicator of a
prosperous task deployment. Upon successful deployment and execution of the sources associated
with the submitted job, the job submission is deemed to be successful. The JobManager apprises
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the JobClient of the aforementioned condition through the transmission of a Success notification,
inclusive of the relevant job identifier.

The JobManager receives updates on the status of individual tasks being executed on
TaskManagers through the transmission of UpdateTaskExecutionState messages. By means
of these update notifications, it is possible to modify the ExecutionGraph so as to accurately
represent the present status of the execution.

The JobManager serves the additional function of serving as the assigner of input splits
for various data sources. The responsible function involves the equitable allocation of tasks
among all TaskManagers, with due consideration given to preserving data locality whenever
feasible. To achieve dynamic load balancing, the Tasks solicit a fresh input split subsequent
to completing the processing of the previous one. The act of fulfilling this request is achieved
through the transmission of a RequestNextInputSplit message to the JobManager. Upon
receiving a request for the next input split, the JobManager provides a response in the form of a
NextInputSplit message. In the absence of additional input splits, the input split referenced in
the message assumes a null value [15].

The Tasks are deployed in a deferred manner to the TaskManagers. Consequently, oper-
ations that require the utilisation of information are exclusively implemented subsequent to
the completion of data production by one of its corresponding producers. Upon completion of
the task, the producer transmits a ScheduleOrUpdateConsumers message to the JobManager.
The communication indicates that the end-user is now able to access and review the recently
generated information. In the event that the task being consumed is not currently in operation, it
shall be deployed to a TaskManager. The architecture of a typical Flink cluster is depicted in
Figure 2.4.
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Fig. 2.4 Flink Architecture [12]

Flink Time Attributes

Flink has the capability to perform data processing operations utilising diverse time concepts
namely Processing time and Event time. The system time of the machine is what the word "Pro-
cessing time" refers to, also referred to as epoch time, such as the System.currentTimeMillis()
in Java, which is engaged in performing the corresponding operation. The concept of "Event
time" pertains to the computation of streaming data by utilising the timestamps that are associated
with individual rows. The temporal information can be encoded by timestamps to indicate the
occurrence of an event.

The time placement of a record upon its arrival at the window operator is a determining
factor for its allocation to a specific window. If data is stored in a message broker and handled
asynchronously from its origination, the processing time may not yield the intended outcomes,
particularly when there is a significant time gap between origination and processing. The
utilisation of the concept of event time can serve this objective [12]. It is imperative that every
record includes a timestamp denoting the precise moment of its creation, also known as the
event time. Upon reaching a window operator, the timestamp of a record is utilised to ascertain
the specific window to which the record pertains. The window operator necessitates a means
of ascertaining the comprehensive advancement of event time to effectuate the termination
of a window subsequent to the stipulated duration. Flink employs watermarks to signify the
advancement of event time, which are derived from records at the data source or immediately
thereafter. Watermarks are a crucial component of the data stream, as they are strategically
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placed between records to indicate that any subsequent records with timestamps lower than the
watermark are not expected to appear in the remainder of the stream.

2.1.4 Flink Execution Mode

The DataStream API provides various runtime execution modes that can be selected based on
the specific needs of the use case and the job’s attributes. The two modes of execution modes
are streaming and batching. The streaming execution mode is recommended for unbounded
tasks that necessitate ongoing incremental processing and are anticipated to remain operational
indefinitely. During batch execution mode, jobs are executed in a manner that bears resemblance
to batch processing frameworks like MapReduce. This approach is recommended for tasks that
have defined parameters and a finite input, and are not executed in a continuous manner.

The unified methodology of Apache Flink for stream and batch processing ensures that the
execution of a DataStream application with bounded input will yield identical final outcomes,
irrespective of the designated execution mode. It is noteworthy to consider the definition of "final"
in this context: a task performed in streaming mode has the potential to generate incremental
updates, whereas a batch task would solely produce a singular final outcome upon completion.
Although the ultimate outcome remains unchanged with proper interpretation, the approach to
achieving it may vary.

The activation of batch execution in Flink facilitates the implementation of supplementary
optimisations that are exclusively feasible when the bounded nature of the input is known.
Various join and aggregation techniques can be employed, along with an alternative shuffle
mechanism that facilitates improved task scheduling and failure recovery performance. The
subsequent section will delve into the intricacies of the execution behaviour.

Distinctive Behaviour of Streaming and Batch Execution Mode

Under the streaming execution mode, it is imperative that all tasks remain continuously online
and operational. The capability of Flink to promptly handle fresh data entries throughout the
entire pipeline is essential for the seamless and real-time processing of data streams with minimal
delay. Consequently, it is imperative that the task managers assigned to a given task possess
adequate resources to execute all the assigned tasks concurrently [50].

The process of network shuffles is executed in a pipelined manner, whereby data records are
expeditiously transmitted to subsequent tasks downstream, with a certain degree of buffering
implemented at the network layer. This requirement arises due to the absence of inherent
temporal breakpoints for data materialisation between consecutive tasks or task pipelines while
processing a continuous data stream. This stands in contrast to the batch execution mode, which
allows for the materialisation of intermediate results, as elaborated upon subsequently.

The batch execution mode facilitates the segregation of a job’s tasks into distinct stages
that can be sequentially executed. This is feasible due to the limited scope of the input, which
enables Flink to execute an entire stage of the pipeline before proceeding to the subsequent one.
In contrast to the streaming mode described earlier, the process of executing tasks in stages
necessitates Flink to persist intermediate results to a durable storage medium. This enables
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downstream tasks to access these results even after the upstream tasks have terminated. The
introduction of this approach is likely to result in a higher processing latency, albeit accompanied
by other noteworthy characteristics. Firstly, this feature enables Flink to perform a rollback to
the most recent obtainable outcomes in the event of a failure, rather than initiating a complete
job restart. An additional consequence is that batch jobs have the ability to operate on a reduced
number of resources, as measured by the quantity of available slots at task managers, due to the
system’s capacity to execute tasks consecutively and in succession.

Task managers are designed to retain intermediate outcomes for a duration that is at least
equivalent to the time period in which downstream tasks have not yet utilised them. In technical
terms, the retention of these items will persist until the pipelined regions responsible for their
consumption have generated their respective outputs. Subsequently, the data will be retained
for an indeterminate duration, contingent upon the availability of storage space, to facilitate the
aforementioned ability to retrace previous outcomes in the event of a malfunction.

2.2 State Management

The concept of state effectively encompasses all internal side-effects that arise from a continuous
stream computation. The aforementioned encompasses various elements such as operational
windows and sets of data in an application, in addition to conceivably certain variables established
and revised by the user throughout the operation of a stream pipeline [39]. An in-depth analysis of
the disclosure and administration of state in stream processing systems reveals intriguing patterns
in computer systems and cloud computing, as well as insights into the potential advancements in
event-based computing.

Big data processing systems are made up of many different ideas, such as data flow operators,
global scale out, and fault-tolerance. All of these are used to control, manage, or change the state.
In data analytics, programmes can be shown as either directed data flow graphs or trees, as long
as there are no iterations or results that are shared. From this point of view, the results of the
study can be thought of as the root components, with the operators serving as the intermediary
nodes, and the data acting as the leaves. Each operator node performs an action that changes
the incoming data arriving into outputs. The transmission of data from the leave nodes, to the
intermediary operator nodes, and then to the root nodes.

There are two distinct types of operators. Stateless operators are characterised by their
purely functional nature, which enables them to generate output exclusively based on the input
they receive. Stateless operators are exemplified by relational selection, merging two inputs,
or relational projection without duplicate elimination. In contrast, operators that are stateful
perform their output computation based on a sequence of inputs and may utilise supplementary
side information that is stored in an internal data structure referred to as state [116]

Figure 2.5 organises state management into five principles and three state applications, each
based on the primary topic it addresses. In the context of this research endeavour, the scope
will be limited to a few pertinent aspects of state management as depicted in Figure 2.5, namely
Operations, Load Balancing and Stateful and Stateless Computation.
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Fig. 2.5 State Management’s Many Facets [116]

2.2.1 State Operations

The efficient management of state poses a multitude of technical obstacles. The migration of
state among operators or nodes in a cluster has been explored in previous research [29, 37].
Additionally, exposing this state to programmers has been suggested as a means of facilitat-
ing its use [18]. Incremental maintenance of state has been proposed as a way to enhance
performance, while sharing state among different processes has been suggested as a means of
conserving storage [116]. The storage of state can be accomplished either remotely or locally,
and various techniques such as in-memory or disc spilling can be employed [100]. Furthermore,
load balancing can be achieved through these techniques, and there is even the possibility of
geographically distributing state. Various operations can be performed on state, such as storing,
updating, purging, migrating, and exposing [116]. In the following, we will explain some of
these operations.

Storing State

The storage options available for states exhibit significant variation, with the size of a state
typically dictating the location of its storage. In the case of small sizes, Ren et al. [100] suggest
the utilisation of in-memory storage for state retention, which has the potential to expedite
processing. However, it is important to note that this approach may also impede recovery
operations in the event of machine malfunctions. In this instance, it will be necessary to replicate
the state across multiple machines to enable recovery from potential machine failures, including
those of a transient nature. In contrast, scholars Nicolae and Cappello [89] have devised remedies
for large sizes, wherein the state is retained in persistent storage. Nevertheless, this results in
increased overhead. However, determining the most suitable location for optimal storage of state
is not always a straightforward task. In the following section, we will examine three potential
approaches for managing large state sizes: load shedding, state spilling, and state cleanup delay.

The execution of lengthy queries on data streams, commonly referred to as Long-Running
Queries (LRQ), may require a significant amount of memory due to the complexity of the
queries and the large operator states involved, particularly in the case of multi-joins. In situations
where there is a scarcity of system resources, and processing demands cannot be fulfilled,
alternative handling methods may be utilised. This may occur, for instance, when there is a high
throughput and inadequate storage or computational capacity. The technique of load shedding
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is known to retain only a portion of the system’s state, such as a sample, synopsis, or through
lossy compression. This approach results in a reduction of workloads and an improvement in
performance. However, it comes at the cost of decreased accuracy. According to Liu et al. [73] ,
workloads have the potential to be permanently offloaded or deferred for subsequent processing
when computing resources become accessible.

In situations where accuracy is of utmost importance, the implementation of load shedding
may not be a feasible remedy. Therefore, it is possible to utilise an alternative technique known
as state spilling. This holds particularly true for relational operators that maintain state as they
resort to flushing in-memory states to discs when the memory reaches its capacity. An additional
alternative is to postpone the process of state cleanup, which involves the handling of states that
are stored on discs, until the availability of resources is sufficient. All of these solutions for state
handling are capable of achieving both low-latency processing and accurate results [116].

Updating State

Within this particular section, we identify four distinct concepts pertaining to the modification
of state: specifically, incremental state updates, fine-grained updates, consistent updates, and
update semantics. In this context, our attention is directed towards the fourth concept, which is
commonly referred to as the update semantics.

Various big data processing frameworks [15, 118, 139] investigate and contrast diverse update
semantics for state. The assessment of state correctness can be achieved through three distinct
types of semantic guarantees, which are at-least-once, at-most-once, and exactly-once. Systems
that employ at-least-once semantics ensure complete processing of each tuple. However, they are
unable to provide assurance against duplication during processing, which could mean that a tuple
is added to the state. In the context of at-most-once semantics, it can be observed that systems
exhibit behaviour where tuples are either not processed or executed only once and subsequently
added to the state. In contrast to the at-least-once semantics, the at-most-once semantics do
not require that duplicated tuples be found. Systems that implement exactly-once semantics
make sure that each tuple is processed once, without exception, thus offering the most robust
guarantee.

Purging State

State management can eliminate data that is no longer required for subsequent operations within
a system. For instance, a buffer state may remove tuples that have expired. Some scholars have
suggested various methods for eliminating state in a distributed system [127].

Migrating State

Dynamic state migration is a very important operation, especially for stream processing systems.
It is used to move state from one node to another in an efficient way while keeping the operator
semantics. The fluctuation of workloads, data characteristics, and resource availability neces-
sitates special attention to operations such as joins and aggregations when nodes are added or
removed. This is of particular importance.
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Cardellini et al. [16] note that moving from one state to another comes with two main
problems: what to move and how to move? The first consideration pertains to the selection of a
mechanism that minimises the synchronisation overhead and defers the production of results
while migration is underway. The second consideration pertains to the determination of what
data or processes should be migrated. That is, figuring out the best way to divide up tasks so that
transfer costs are kept to a minimum.

2.2.2 Load Balancing and Scalability

The dynamic nature of system workloads necessitates the implementation of load balancing or
elasticity mechanisms to effectively manage increased demands. Load balancing is the ability of
a system to distribute its workload between its computational resources, especially in situations
where certain nodes are burdened with more significant workloads than others [117]. In the
event of an increase in workload within a node, it is possible to achieve a balance of workload by
redistributing it to another node, as illustrated in Figure 2.6 (a). The concept of elasticity pertains
to the capacity of a computing system to furnish supplementary computing resources when faced
with escalating workloads.

As workloads increase, it is possible to allocate supplementary resources, such as nodes,
to distribute the workload. This is illustrated in Figure 2.6 (b). Managing load balancing and
elasticity in stateless operators is a relatively uncomplicated task. However, the same cannot be
said for stateful operators, as their intricate nature poses a significant challenge.

Contemporary data-parallel computation frameworks address the issue of elasticity by means
of preserving and transferring state during the course of active job execution. In order to facilitate
state migration, it is necessary to ensure that the quantity of parallel channels is capable of
dynamically adjusting to changes in the number of nodes, as well as fluctuations in computing
resources and workload availability that may arise during runtime.

As depicted in Figure 2.6, the distribution of load can be either uniform or non-uniform
across various nodes. Figure 2.6 (a) & (b) in the right half of the figure, we show an example
of a system with uniform load distribution. In this case, the work or load is evenly distributed
across all the nodes. Each node is handling a roughly equal amount of work or processing tasks.
However, on the left side of Figure 2.6, we present an example of a system with non-uniform
load distribution. Here, the load is not evenly distributed among the nodes. One node is handling
a much heavier workload compared to the other node. This non-uniform distribution can occur
due to various factors, such as varying task complexity, imbalanced data partitions, or resource
limitations.
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Fig. 2.6 Balancing Load with State Awareness

In a varying workload environment, redistribution and reassignment of heavy burdened node
states (as illustrated in Figure 2.6 occurs to nodes that are not experiencing a heavy workload. In
situations where resources are limited, it becomes necessary to reassign the states of affected
tasks, such as job partitions. Therefore, it is necessary to implement partitioning techniques that
facilitate the scalability and workload balance of systems.

In the context of stream applications, the concept of scalable state can be classified into
two distinct categories: partitioned state and non-partitioned state, which is also known as
global state [127]. The utilisation of one or both of these state types is contingent upon the
characteristics of a given operation.

Partitioned State

The utilisation of partitioned state has become the established method for facilitating data-parallel
computation on extensive data streams [16]. The concept of partitioned state enables the logical
partitioning of state based on keys for the purpose of performing computational tasks. Each
logical task is responsible for processing a specific key. The API level facilitates this process by
incorporating an extra operation that is executed before stateful processing, thereby elevating the
scope from task-oriented to key-oriented processing. This is analogous to the "keyBy" function
in Apache Flink or the "groupBy" function in Beam and Kafka-Streams. At the physical level,
you can give a physical job or computing node more than one key (or a range of keys).
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Non-partitioned State

The state that is not partitioned is represented as a single entity and is assigned to physical
computing tasks. The utilisation of a non-partitioned state is commonly observed in two distinct
manners. Initially, to calculate overall aggregates across the entire input stream. Furthermore,
it is possible to utilise it for the computation of aggregates on the physical operator level, such
as determining the number of keys that have been processed by each operator. Keeping offsets
while receiving logs from a physical stream source task can be made easier by using task-level
state. Non-partitioned state is either about operator-specific calculations or about the sum of
everything [16]. The scalability of its usage is limited and it is advisable for practitioners to
exercise caution when utilising it.

2.2.3 Stateful and Stateless Computation

The stateful computations during data stream processing are facilitated by the state in a natural
manner. The processing of data stream records can be classified into two categories: stateless
computation and stateful computation. Stateless operators, such as filtering, do not maintain
any record of prior computations. In contrast, every computation is executed in a purely
functional manner, solely relying on the present input. As per the definition, operators that
maintain state, such as those performing aggregations over time windows or other stream
discretisation methods, exhibit interactions with preceding computations or data that have been
recently observed. Therefore, as state embodies antecedent computational outcomes or formerly
observed information, it is imperative to persist. Figure 2.7 depicts a streaming application’s
load distribution across nodes. Stateful computation, on the right, involves processing data while
maintaining state, while stateless computation, on the left, processes data independently without
needing past context.

Fig. 2.7 An Example of State Computation

Contemporary data stream processing frameworks, including Flink, Spark, Storm, Storm +
Trident, and Heron, have stateful operators, which is a clear indication of this trend. Although
there are similarities between various frameworks, there exist divergent perspectives regarding
the optimal approach to implementing state. In its initial iterations, Storm prioritised stateless
processing and necessitated the management of state at the application level. The utilisation
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of Storm and its extension, Trident, facilitates state management through the utilisation of an
Application Programming Interface (API). Samza utilises a local database to facilitate persistence
and effectively manage substantial states. The utilisation of DStream, which stands for discretised
streams, allows for state computation through the implementation of Spark Streaming. Flink
prioritises state as a primary element, thereby simplifying the development of applications that
require stateful processing. Table 5 presents an overview of the features of stateful computation
techniques in four different systems.

Table 2.1 A characterisation of methods for stateful computation.

Characteristics Systems Main Mechanism

Batch Processing
[75] Data indexing

[74] State as explicit input

Stream Processing
[41] Partitioned stateful operators

[27] Parallel patterns

2.2.4 Windowing

Windowed operators, split incoming data into parts also referred to as windows, there are special
kinds of stateful operators that process these windows as a whole [43]. For example, given a
stream of patient inflow into an hospital A&E department, we may want to compute the number
of most common medical complains by patients in the last hour. In this scenerio, the operator
will have count the number of patient and group them in windows based on their specific medical
situation.

A window can be described in terms of time, number of tuples, or number of sessions.
Timestamps mark the beginning and end of time-based windows, which group data from the same
time period. As tuples are received, the stream processing system may set explicit timestamps or
implicit timestamps. Explicit timestamps are set by data sources as tuple properties, and implicit
timestamps are set by the stream processing system. Most of the time, specific timestamps are
better for data about real-world events, but they can also be hard to work with, especially when
sources are spread out. First, the order in which data actually comes into the system may not
match the order of the stream based on the timestamps. Some events may also be lost or delayed,
and it’s not always clear if a window is closed or if it’s still open.

A straightforward method for dealing with stragglers relies on timeouts, after which any
missing tuple is treated as lost. Setting a reasonable timeout is unfortunately difficult because
big values have a significant influence on processing latency, while tiny values might require the
discarding of a large number of delayed tuples. Given the importance of the problem, academics
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have looked into more adaptable methods for dealing with stragglers and out-of-order data. Many
DSP engines, like Flink and Google Cloud Dataflow, rely on watermarks [4, 39] (also known as
landmarks), which keep track of the earliest timestamp that might still exist in a stream. Any
operator can use watermarks to quickly determine when a window is finished and can continue
with the computation once the watermark has passed the window’s conclusion. The use of
punctuations [120], which are unique tuples injected into the data stream that provide progress
information about one or more attributes (such as a timestamp), as a watermarking technique has
been investigated [4].

The definition of alternative windows is based on either the number of sessions or counts.
Count based windows refer to a method of grouping a predetermined quantity of consecutive data
items, such as "the previous 1000 events." Session based windows are initiated and terminated
in a dynamic manner based on specific "activity" metrics. For instance, a window is deemed
complete when no further events are received within a designated time frame [14].

The magnitude of the window is determined by the number of occurrences or temporal
segments. The sliding interval, also known as stride, determines the potential overlap of windows.
Two types of windows are commonly distinguished: tumbling (or fixed) windows and sliding
windows. The partitioning of the input stream is defined by tumbling windows, which are
characterised by their non-overlapping nature. Specifically, the size and sliding interval of
tumbling windows are equivalent. On the other hand, it is possible for sliding windows to exhibit
overlap, resulting in the inclusion of individual tuples in multiple consecutive windows.

2.2.5 Flink State Backends

The state backend of a streaming application is responsible for determining the location and
method of storing and checkpointing the application’s state. Diverse state backends exhibit
variations in their storage formats and employ distinct data structures to maintain a functional
application. The Apache Flink framework offers three distinct backends for storing application
state information, which are Memory state backend, File System state backend and RocksDB
state backend. In the absence of any other configurations, by default Flink uses the MemoryS-
tateBackend [111]

Memory State Backend

The default state backend employed by Flink is the memory state backend. The state information
is stored in the heap memory of the task manager. The utilisation of objects for state persistence
results in expedited read and write operations. During the checkpointing process, the state
backend captures a snapshot of the state, which is subsequently stored in the heap memory of the
Job Manager. The utilisation of the memory state backend is primarily intended for purposes of
local development and debugging. One constraint associated with the memory state backend is
that the combined state must be accommodated within the JobManager’s memory.
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File System State Backend

Similar to the memory state backend, the file system state backend also retains the state informa-
tion within the heap memory of the task managers. After the checkpointing process, the data
from the snapshot is stored in a designated file system, which may include HDFS, S3 bucket,
or the local file system of the task manager. The utilisation of the file system state backend is
primarily observed in high availability systems, and its application is recommended for tasks that
large state size, large window size/sliding period, and large key/value states. The thesis adopts
the file system state backend, based on the aforementioned recommendations.

RocksDB State Backend

The RocksDB state backend is utilised to persist state information by means of a RocksDB
database. RocksDB is a data storage system that maintains a sorted collection of key-value pairs,
utilising the Log-Structured Merge (LSM) approach. The RocksDBStateBackend consistently
executes asynchronous snapshots. LSM is a specialised data structure that has been devised to
enhance the efficiency of write operations. RocksDB is characterised by a notably elevated rate
of both reading and writing operations, and has been optimised to provide swift and low-latency
storage capabilities [111].

The RocksDB system is primarily composed of three fundamental components, namely the
memtable, sstfile, and logfile. The memtable is a data structure that resides in the com-
puter’s memory, and all write operations are appended to the memtable. Optionally, writes can be
recorded in the write-ahead log. Upon reaching its maximum capacity, the memtableundergoes a
transition to a READ-ONLY state and subsequently gets substituted by a fresh active memtable.
Periodic flushing of READ-ONLY memtable to disc occurs in the form of sstfile (Sorted
String Tables). The initial retrieval of all reads is sourced from the memtable. In the event of an
unsuccessful retrieval, the read operation proceeds to access the READ-ONLY memtable in a re-
verse chronological sequence. In the event that it remains undiscovered, the system will proceed
to retrieve data from the sstfile, beginning with the most recently generated. Consequently,
the duration of reads may be slightly longer than that of writes to achieve completion. In order to
expedite the process, sstfile undergo compaction and are protected by bloom filters to prevent
superfluous scans.

The RocksDB ava Native Interface (JNI) bridge API utilises byte, thereby limiting the
maximum size that can be supported for both key and value to 231 bytes. It is crucial to note
that in RocksDB, states utilising merge operations such as ListState have the potential to
accumulate value sizes exceeding 231 bytes without any indication, ultimately resulting in failure
during the next retrieval process. Presently, this represents a constraint of RocksDB JNI [95]

2.3 Checkpointing and Restore

The fault tolerance mechanism in Apache Flink is achieved through the utilisation of both
checkpointing and stream replay techniques. The utilisation of a checkpointing mechanism [63]
is implemented in Apache Flink to facilitate the recovery of system state and ensure fault
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tolerance. Within streaming applications, operators are designated with a specific point in each
input stream. This methodology involves the continuous generation of low-impact snapshots of
data streams to maintain consistency, adhering to either exactly-once or at-least-once semantics,
through the replay of the stream from a designated point. Snapshots are typically designed
to have a low weight for streaming applications that involve small states. Frequent snapshots
are taken for both running states and distributed data streams with minimal impact on overall
performance. The captured images are stored in a customizable location, such as a distributed
file system.

To store and process application state during normal operation and quickly restore it after a
failure, checkpointing is a crucial and practical crash-tolerant strategy. However, choosing the
checkpoint frequency to reduce a suitable cost function would be the primary interest question
for different research use case. knowing the conditions where checkpoints are useful and where
they are not will help optimize the performance of a streaming application [143, 34]. In each of
our experiments, we chose a checkpointing interval that our system resource can handle. Our
interest is in the amount of state produced and collecting the state size for each deployment
through an API call.

2.3.1 Consistent Checkpointing and Recovery

The challenge of distributed unbounded processing has made consistent stream processing a
longstanding research issue. Additionally, the absence of a formal problem specification has
contributed to this challenge. The concept of consistency pertains to the assurances that a system
can provide in the event of a malfunction, as well as any requirements for modification during its
functioning. The act of modifying or revising a currently operational data streaming application is
commonly referred to as reconfiguration within the field. An instance of this scenario pertains to
situations where it becomes necessary to implement a software update to a streaming application
or expand the computational nodes while ensuring that neither the precision nor the computation
is compromised.

Previous studies, including SEEP [18], have emphasised the correlation between fault tol-
erance and reconfiguration. The SEEP system proposes an integrated strategy for scaling and
restoring tasks in the event of failures. At present, the majority of stream processors operate as
transactional processing systems that adhere to consistency rules and processing assurances. For
example, Flink adheres to Atomicity, Consistency, Isolation, Durability (ACID) properties, pro-
viding strong consistency guarantees for stateful processing in streaming applications. Flink also
supports event time processing and can achieve exactly-once processing through mechanisms
like checkpointing and stateful fault tolerance.

2.3.2 Impact of Checkpointing Interval on Streaming Applications

heuristics are commonly employed to determine the optimal checkpointing interval, such as
frequent or infrequent checkpointing. The implementation of frequent checkpointing facilitates
expedited system recovery in the event of a failure. Nevertheless, the implementation may
consume valuable resources and time that could be allocated more effectively in other areas.
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On the contrary, the implementation of infrequent checkpointing results in extended durations
for the recovery of system failures. In recent years, researchers in the field of streaming
systems [18, 87, 31] have directed their attention towards identifying the most optimal frequency
for checkpointing.

Naksinehaboon et al. [87] conducted a study on determining the most efficient placement
of checkpoints in order to minimise the overall overhead, which includes both the overhead
associated with rollback recovery and checkpointing. Through the utilisation of a checkpointing
frequency function, an optimal interval for checkpointing can be determined by utilising a failure
probability distribution provided by the user.

Fernandez et al. [18] conducted a study to assess processing latency and found that the
implementation of infrequent checkpointing resulted in inconsistent latencies. The methodology
employed by the researchers demonstrates that broader intervals exert a diminished influence
on the processing of data, albeit at the cost of prolonging the duration of failure recovery. The
proposal suggests establishing the interval for checkpointing based on the anticipated rate of
system failures and the performance demands of the queries.

The impact of checkpointing intervals across methods is evaluated by Sayed and Schroeder
in their study [31]. The authors provide a critique of ad hoc periodic checkpointing strategies,
specifically those that involve checkpointing at fixed intervals, such as every 30 minutes. The
authors note that Young’s model [138] demonstrates a high level of performance close to
optimality and is also practical in its application. The researchers delve deeper into more
sophisticated techniques that dynamically modify the frequency of checkpointing. The results
of their study indicate that these techniques exhibit a noteworthy enhancement compared to
Young’s model, albeit only for a limited number of systems.

2.4 Streaming Application Scalability

Previous work investigated horizontal scalability, i.e. increasing the number of workers. Karimov
et al. [61] compared the performance of clusters with investigated performance for 1, 2, 4, and
6 workers. Analysis of how scalability is influenced by the throughput bottleneck, as well as
the analysis of vertical and horizontal scalability for different frameworks. We take a similar
approach for our horizontal scaling experiments where we carryout experiment to scale operator
instance using the true and observed processing rate. However rather than toeing the part of
benchmarking various frameworks, our work provides a universal approach that can be adopted
by different use-case.

A variety of strategies have been put forth to manage distributed stream processing systems’
flexibility in virtualised environments, They differ in the type of data that is monitored, the
quality-of-service objective that is addressed, the deployment environment (cluster, cloud, fog),
and the optimisation technique that is used [104].

Prior research has introduced automatic rescaling controllers that consider various metrics
in arriving at a scaling decision [38, 125]. Kalavri et al. offers an autonomous scaling system
called Data Stream 2 (DS2) that aims to balance resource over-provisioning and on-demand
scaling [58]. DS2 measures each operator’s true and observed processing ability. The number of



2.4 Streaming Application Scalability 29

records that may be processed by an operator instance in one unit of useful time is known as
the true processing rate (duration minus waiting time). This logically determines the operator
hardware capacity. The number of records a particular operator instance processes in a certain
amount of time is known as the observed processing rate (duration plus waiting time)

However, Like DS2, most auto-scaling systems do not consider the impact of application
state and rely on offered load as a proxy for application state size, resulting in a false positive
that will trigger a scale down. This assumption can mislead the auto-scaler to making a wrong
scaling decision.

Using machine learning approaches, a different class of solutions uses measured or profiled
data to identify patterns [17, 70]. Typically, patterns are improved at runtime to increase precision.
To make precise scaling decisions, these systems must first undergo extensive training, which
could take a very long time.

Long-running applications inevitably face various external and internal shocks capable of
creating instability, for example, users’ reactions to a national disaster on Twitter or a champion’s
league football goals. Unpredictable load variation can lead to over-provisioning or under-
provisioning. Prior research has introduced automatic rescaling controllers [38, 125]. A key
service distinction is the approach taken by various systems to react to changes in real-time and
balance competing objectives like performance (throughput or latency) and resource utilisation
during a load spike or resource failure [84, 85].

Some research has argued that memory and CPU utilisation metrics and other coarse-grained
metrics are inadequate for arriving at a good scaling decision, especially in a multitenancy
cloud environment where shared resources and performance interference are prevalent [58,
99]. Research is increasingly focusing on operator performance, dataflow topology, and the
sustainability of throughput levels at different cluster sizes for different streaming frameworks [38,
60, 124]. We take a similar approach for our horizontal scaling experiments, investigating the
operator throughput capacity. However, this thesis evaluates the performability requirement in
rescaling when an application state size becomes bigger.

A suitable scaling controller should provide Stability, Accuracy, Short Settling Time, and
Overshooting (SASO) properties [58]. Whereas speculative scaling techniques that violate
these could lead to unnecessary costs due to sub-optimal utilisation of resources due to over-
provisioning or under-provisioning, performance degradation due to frequent scaling action
due to oscillation and low convergence resulting in an SLOs violation or load shedding [58].
Furthermore, an effective scaling controller must be mindful of the resource availability and the
scaling duration. These factors are an important element that must be contained in the scaling
policy.

Mindful of the challenges that come with decision-making on how to scale efficiently and
when to scale, we study the work carried out in the DS2 project, DS2 evaluates each operator’s
true and observed processing capabilities regardless of the backpressure and other effects. [58].
Based on real-time performance traces, DS2 automatically determines, on demand, the optimal
level of parallelism for each operator in the dataflow. The number of resources allocated to each
operator is maintained as a dynamic provisioning plan. In our experiments, we use Apache Flink
with the DS2 policy configuration values: 10-second decision interval (frequency of metrics
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collection and policy application), 30-second warm-up period (the number of consecutive policy
intervals that were ignored following a scaling action), one interval activation period (when DS2
will make a scaling decision), and a 1.0 target ratio (maximum permitted difference between the
target rate and observed source rate attained by the policy).

However, like DS2, most auto-scaling systems do not consider the impact of scaling duration,
especially in a volatile workload environment. Instead, more attention is focused on mitigating
the impact of over-provisioning of resources for temporary load spikes and under-provisioning
during peak loads.

Arkian et al. [7] introduce Gesscale (Geo-distributed Stream autoscaler), an auto-scaling
mechanism designed for stream processing applications that operate in geo-distributed environ-
ments, such as fog computing. The Gesscale system employs a dynamic approach to managing
the workload and performance of the system in real-time. This involves the addition or removal
of replicas to or from individual stream processing operators to ensure that the Maximum Sustain-
able Throughput (MST) is maintained at an optimal level, while minimising resource utilisation.
MST is a widely accepted metric used to evaluate the ability of a stream processing system to
handle incoming data without experiencing excessive queuing delays, as documented in various
sources [52, 24]. The Gesscale system utilises a performance model based on backpressure and
operator utilisation to make a scale-up or scale-down decision. The implementation enables
Gesscale to minimise the frequency of reconfigurations as it adopts a staggered scaling approach.

This research also reviews related research that examines workload prediction and resource
allocation. On the basis of an underlying queuing model, Urgaonkar et al. [121] implemented
dynamic provisioning of multi-tiered applications using virtual machines (VM). But there can
only be one VM running on each physical host. Similar infrastructure is utilised by Wood
et al. [130] and [121]. They mainly focus on Virtual Machines (VM) dynamic migration to
facilitate VM dynamic provisioning. In order to decide whether to migrate, they construct a
special metric based on consumption data for the three resources: CPU, network, and memory.
The research in [121, 130] fails to link the placement method to a broader utility value for the
Cloud provider. They merely make an effort to boost the application’s throughput. Multiple
classes are not present in the applications under consideration, which is unreasonable.

A thorough queuing model is created by Cunha et al. [25] to model virtual servers. Each
class of jobs in an application is given its own virtual machine. They offer a pricing structure that
promotes throughput that stays within SLA parameters and penalises throughput that exceeds
those limitations. However, they put each class on a single virtual machine, which might not be
economical if an application has multiple classes.

A control-theoretic method is offered by Padala et al. [96] in which each tier of the programme
is run on a separate virtual computer. Black box application profiling is done by the authors,
who then create an approximation model that links performance metrics like reaction time to the
percentage of the processor allotted to the virtual machine that is running the application. For a
virtualized context, Wang et al. [128] offer a two-level control architecture. A load balancing
controller makes sure that all of the virtual machines are load balanced and that all of the
applications respond uniformly.
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An architecture for elastic management of cluster-based services is suggested by Moreno et
al. [86]. A virtualized infrastructure layer that collaborates with a VM management and a cloud
service provider makes up this system. This method aids in resource autoscaling with the least
amount of user disruption. While Yang et al. [136] suggest a profile-based approach to the issue
of just-in-time scalability in a cloud context, Waheed et al. [54] propose a reactive algorithm to
allocate more resources to a cluster farm when workload grows. We also note the work carried
out by Roy et al. [105] which Utilises a workload forecasting model-predictive algorithm for
resource autoscaling. Our research evaluates the impact of long rescaling duration and provides
a predictive model to forecast the rescaling duration of a streaming application based on the state
size and end-to-end duration.

2.5 Adaptation Technique for Stream Processing Systems

Adaptation mechanisms refer to the available actions that can be taken to alter the configuration
and behaviour of a streaming applications and their components during runtime. Cardellini
et al. [16] categorises the various adaptation mechanisms into distinct groups, which include
topology adaptation, deployment adaptation, processing adaptation, overload management, fault
tolerance adaptation, and infrastructure adaptation. There exists a disparity in the level of atten-
tion received by various groups within the research community. The exploration of deployment
adaptation mechanisms has surpassed that of other tools. The categories of processing and
infrastructure adaptation mechanisms have garnered significant attention over the past decade,
emerging as the most widely studied groups among the remaining categories. Thus far, the other
groups have been subject to a restricted degree of scrutiny. This section examines the optimal
timing for implementing adaptation measures and the appropriate time horizon for planning
purposes.

Trigger

Adaptation measures may be initiated either through scheduled timers or in reaction to specific
occurrences. The implementation of timer-based adaptation is relatively straightforward, as
it involves the configuration of only an adaptation activation interval. This approach ensures
that the adaptation policy continues to proactively plan and execute any necessary actions over
a specified duration. The temporal duration separating successive adaptation rounds typically
varies from a few seconds to several minutes. The activation interval for the adaptation policy
must strike a balance between responsiveness and efficiency. While a short interval allows for
quick responses to changes in conditions, frequent metrics collection and adaptation planning can
result in overheads. Therefore, the appropriate activation interval must be determined based on
this trade-off. The majority of current methodologies have implemented timer-based adaptation,
as evidenced by various sources (e.g., [38, 11, 58, 71, 123]). Floratou et al. [38] and Kalavri et
al. [58] proposed operator scaling techniques that involve periodic collection of relevant operator
metrics, such as throughput, followed by the implementation of an adaptation policy by the
system.
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Several other studies have explored the concept of event-triggered adaptation actions, as
evidenced by the references cited (e.g., [3, 22, 23, 59, 144]). In order to execute an adaptation
policy, it is necessary to associate one or more types of events with the scheme’s implementation.
The arrival of a new tuple to a buffer is a commonly utilised event in literature for the purpose of
load shedding, load distribution, and stream scheduling strategies. This has been demonstrated
in various studies, including those referenced in sources such as [144, 62, 59]. Katsipoulakis et
al. [62] propose a load distribution approach that is activated upon detection of each incoming
tuple. Chaturvedi et al. [22] propose an approach for operator reuse, whereby adaptation is
initiated upon the submission or termination of an application. In contrast to the aforementioned
studies, Ottenwälder et al. [94] take into account triggering events that are related to the user. The
placement solution for geo-distributed Complex Event Processing (CEP) involves the strategic
planning and potential execution of operator migrations in order to accommodate changes in
user location.

Proactivity

Another crucial aspect pertains to the time window taken into account when devising strategies for
adapting to changing circumstances. Reactive approaches involve the analysis of historical data
to inform decision-making regarding adaptation, potentially resulting in responses to alterations
in conditions. On the contrary, proactive tactics involve making decisions based on a restricted
future time frame, with the aim of preemptively adjusting applications. The attainment of
proactive solutions is evidently challenging due to the necessity of forecasting future working
conditions, and their effectiveness is contingent upon the precision of such prognostications.
Hence, it is not unexpected that the majority of current methodologies depend on responsive
adjustment strategies, such as those outlined in [3, 42, 77, 83, 109, 113, 140]. The article cites
threshold-based heuristics as instances of reactive policies. These policies are characterised
by the activation of actions in response to threshold violations. Typically, such violations are
assessed against the most recent monitoring data, such as the average resource utilisation over
the preceding minute.

Several studies have suggested proactive adaptation strategies, utilising various techniques
(e.g., [13, 47, 49, 53, 64, 106]). One of the primary obstacles in formulating proactive adaptation
solutions pertains to the prediction of application load in the immediate future, particularly with
regard to scaling strategies for operators and infrastructure. Imai et al. [53] depend on ARMA
and ARIMA forecasting models. Hidalgo et al. [47] construct a model of the incoming load
via a Markov chain. Runsewe and Samaan [106] employ a more intricate state-based approach,
wherein multi-layer hidden Markov models are taken into account. Buddhika et al. [13] devised
a bespoke data structure, denoted as the prediction ring, to monitor the arrival of data streams
and forecast the utilisation of resources. Prediction rings bear resemblance to circular buffers in
their utilisation of exponential smoothing for the purpose of updating arrival rate approximations
over a given period. The utilisation of the data structure is also employed for the computation of
a certain task.
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The utilisation of the data structure is also employed for the computation of an interference
score, which serves to measure the magnitude of the effect that the placement of an extra operator
instance would have on other instances located on the same machine. In addition to the matter of
prediction, there exists a concern pertaining to the proactive management and optimisation of
adaptive measures. Farahabady et al. [36] utilise model predictive control, a control-theoretic
methodology that leverages a model to anticipate the forthcoming behaviour of a system within a
restricted prediction horizon. De Matteis and Mencagli [26] employed model predictive control
in their study to regulate operator scaling and enhance a multi-objective cost function. This cost
function takes into consideration QoS violations, resource utilisation, and adaptation overhead.
Kumbhare et al. [67] suggest a lookahead optimisation strategy that employs a predictive model
to address an optimisation problem across a moving time window in order to regulate auto-
scaling. The authors analyse a utility maximisation problem subject to a constraint that ensures a
minimum application throughput.





Chapter 3

Stream Workload Parallelisation and
Elasticity

Chapter Summary

The underlining objective of this research chapter is to identify more efficient ways of moving
data within distributed architecture and modelling relevant parameters. This research leverages
stateful operations, and wordcount workload, which requires the collocation of tuples with
similar characteristics and produces an aggregated result.

3.1 Introduction

Stream processing parallelisation and elasticity enables streaming engines to support high quality
of service in processing large amount of data while ensuring high throughput and low latency [58].
To maximise stream processing engine throughput and improve the utilisation of computational
resources, workloads are commonly partitioned and processed concurrently by multiple instances
of logical operators. The source operator sends data in tuples for processing based on a global
partitioning strategy [50]. Tuples with the same key are received and processed by the same
stateful operator. Stateful operators refers to operators that has a memory space to store results
called states. For example, a state can be used to record the tuples or counts of words in a sliding
window. When a key is reassigned to a different operator instance, its state is usually migrated to
ensure the correctness of the computation outcome. [35].

Workload variance and skewness are common events in distributed stream processing. Work-
load skewness refers to an uneven or imbalanced distribution of workload across different
resources or components within a system or application. It indicates a situation where certain
resources or components are overloaded or underutilized compared to others, leading to an im-
balance in the processing or resource utilization patterns. Workload skewness can impact system
performance, efficiency, and resource allocation, and it is often a concern in distributed systems
or parallel computing environments. [35]. Workload skewness also affects key-based partitioning
in streaming processing that enables effective tuple distribution over threads of workers in a
local operator instance [62]. According to Wang et al., operator scaling and load balancing are
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resource-centric solutions for adapting to workload fluctuations. This is because executors are
bound to specific resources, and elasticity can be achieved by dynamically repartitioning keys
across executors [126].

Figure 3.1, presents an example to illustrate the potential problem that workload skewness
can cause. In this example, there are three logic operators in the pipeline, operator1 is the
source operator instance, operator2 are the FlatMap operators, and operator3 is the sink. The
FlatMap operator2 has three parallel instances workers (task 1, 2 and 3) running while the
source and sink has one each. The number of incoming tuples that arrives at task 1 in operator
2 is two times more than those that arrived at task 2 and 3. Due to this distribution skewness,
research carried out by Fang et al., [35] assert that the efficiency of the FlatMap operator may
not be optimal if the system succeed in allocating the tasks to the FlatMap nodes in a balanced
manner. The potential for backpressure to occur as a result of increased latency in task 1 of
the FlatMap instance within operator2 may necessitate a reduction in processing speed by
the source operator. The sink operator may encounter a scenario where it needs to await the
intermediate outcomes generated by the FlatMap operator2.

Fig. 3.1 A stream topology consisting of one Sources operator, three FlatMap operators and one
Sink operator. This illustrates the potential problem of workload imbalance within operators in
real distributed stream processing engine [35]

3.2 Parallel Stream Processing

If more data comes in than an operator can handle, the operator’s input queue grows, resulting in
data item queuing delays. In addition, back-pressure may impede operators who have to wait
until the bottleneck operator further down the line finishes processing its input list. The stream
processing system may not be able to meet its QoS goals. As it handles many pieces of info at
once instead of one at a time, parallel stream processing reduces queuing latencies and improves
throughput. Stream processing systems can parallelize their processing in a variety of methods,
We shall be discussing the stream processing system properties that influence the parallelisation
potential of the system and also the parallelisation techniques.
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3.3 Properties of Parallel Stream Processing Systems

This section discusses two major types of streaming processing and their distinctive character-
istics. General stream processing system and CEP. The properties of a streaming processor
influence the parallelisation potential of the streaming processor system and the operations
supported by the system.

General Stream Processing Systems

Stream processing systems usually run processes on groups of data objects in a continuous
way. Every operator has the ability to generate a stream of output data items, which can be
used as input for another operator, or to share the results with external applications by storing
them in a data storage or transmitting them to compatible sinks. Data Stream Management
Systems (DSMS), which execute continuous queries on data streams, are integral components of
broader stream processing systems. A continuous query is a query that is consistently executed
on a dynamically evolving dataset, such as a data stream. This differs from traditional database
applications that execute various queries on a static dataset. Aurora [2] and TelegraphCQ [20]
are common examples of DSMS systems that don’t work in parallel. Apache Flink [15] and
Apache Storm [15] are two examples of contemporary GP systems.

Complex Event Processing System (CEP)

CEP systems are stream processing systems that are made to find trends in events and get higher-
level information from them. "moisture and low temperature < 0o " can represent "Snow". Input
streams for CEP systems are made up of events that are set off by views of the outside world. The
users who run CEP systems look through the streams of data for sequences of events that match
the patterns. When an operator detects a pattern, it generates an output event, often referred
to as a complex event, such as "Snow." In parallel execution of a Complex Event Processing
CEP system, the input stream must be split into multiple parallel streams so that patterns can
still be found. Automated stock trading [10, 79], financial fraud detection [5, 131], and traffic
monitoring [78] are typical applications of CEP pattern detection. There are general-purpose
stream processing systems, such as Apache Flink [50], that provide CEP functionality as a
library.

3.3.1 Sub-Stream Processing

Operators often utilize sub-streams to parse their input streams, employing keys or windows
to divide the streams into smaller segments. When using key-based extraction, data items are
sorted based on a key value provided by each item, resulting in a sub-stream for each unique key
value [134].

In a window-based environment, sub-streams are created using a strategy known as a "win-
dow." A window policy determines the size and sliding period of the window. The window size
can be determined by the number of data items or the duration of a period, among other factors.
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The window slide indicates how frequently a new input window can be initiated and can also be
based on time, count, or a predicate [133, 78]

3.3.2 Infrastructure Model

The choice of the underlying framework for running a stream processing system significantly
impacts the system’s performance and determines the necessity and feasibility of parallel pro-
cessing. This primarily relates to the specific characteristics of the processing nodes and memory
design [104].

Different types of infrastructure serve as options for stream processing systems, including
single-node setups, clusters, cloud-based solutions, and fog-based solutions. The scalability of
single-node solutions is limited by the capacity of the underlying machine. Stream processing
systems can only scale up, or add more threads, if the node size allows. Clusters offer a constant
number of processing modules. Scalability of the stream processing system is constrained by
cluster size. For both single-node and cluster systems, a common optimisation goal is to use
as many resources as possible. Stream processing systems operating in the cloud have greater
scalability. They must choose between cost and efficiency

The communication between cloud and stream sources can result in a high latency, which
can harm stream processing applications with low latency requirements. In addition to its limited
scalability, a fog infrastructure typically offers low communication latency because processing
can be performed close to the sources. Across all types of infrastructure, the presence of diverse
processing nodes can impact the processing speed of a stream processing application [104].

Memory Achitecture. Administrators typically engage in asynchronous communication
through message passing. Certain systems facilitate shared memory operations for communica-
tion and state management, particularly when multiple operators are hosted on the same system.
This approach decreases communication and state-migration cost but introduces additional costs
associated with access synchronization [104].

3.4 Operator Parallelisation Methods and Limitations

In this section, we introduce two stream processing parallelisation concept: The data parallelisa-
tion and task parallelisation. Furthermore, we present their opportunities and drawbacks of these
methods.

3.4.1 Data Parallelisation

Data parallelisation runs multiple copies of an operator, called "instances," on different parts
of the original data at the same time. The degree of parallelisation of the operator is shown by
the number of examples. Input streams must be partitionable to enable data parallelisation. The
raw stream is split into smaller streams by a splitter component. Depending on the method for
splitting, the splitter could be a separate process or part of the operator instances. A merger
merges the outputs of the different instances into a single stream and, if necessary, makes sure
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that the outputs are sent to the next operators in the right order. Figure 3.2 depicts a data-parallel
stream processing operator’s fundamental architecture.

In data parallel stream processing systems, stateful operators require special attention. The
input stream should be divided among operator instances so that each instance can maintain its
own state. This prevents operator instances from interfering with each other.

Fig. 3.2 Data Parallelisation Fundamental Architecture [104]

Following, is a description of the three common dividing strategies used in data parallelisa-
tion.

Key-based Splitting

In key-based splitting, the splitter uses keys to divide the data stream. These variables are the
properties of data items. Each instance of an operator is in charge of a portion of the whole set of
keys. If operators have no state or keep track of state for each key, then key-based splitting can
be used. In Figure 3.3, we can tell the value of each key by its colour. Each operator instance
keeps the state of a key range that has been given to it and does not combine. Similar key-range
data items are forwarded to the same operator instance by the splitter.
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Fig. 3.3 Key-based Splitting [104]

Window-based Splitting

In the context of window-based splitting, the splitter is responsible for dividing the input stream
into subsequences, specifically referred to as windows, which consist of data items. Subsequently,
the windows are allocated to the instances of the operator, as depicted in Figure 3.4 below. Li
et al., [68] distinguish between two types of context, namely backward context and forward
context, in order to ascertain the appropriate windows for a particular data item, depending on the
window policy. The backward context of a data item, denoted as e, encompasses all information
regarding preceding data that has been received by the operator. On the other hand, the forward
context pertains to information derived from subsequent data in the input stream following e.
In the context of backward methods, when a data item "e" is being processed in the splitter, it
is possible to promptly start a new window and assign it to an operator instance, if appropriate.
Nevertheless, the implementation of this approach may not be practical if the window policy
necessitates the inclusion of forward context.
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Fig. 3.4 Window-based splitting is the process of dividing the input stream into windows
consisting of successive data items. Every instance of the operator is responsible for processing
a subset of all the windows. [104]

Pane-based Splitting

Window-based partitioning can lead to higher communication cost when dealing with overlapping
windows. Moreover, it is often unnecessary to process each window separately, and computations
that produce overlapping windows can be reused by multiple windows.

In pane-based splitting, the splitter splits the input stream into groups of data times that don’t
overlap, known as panes. As illustrated in Figure 3.5, each window pane belongs to multiple
windows. Following parallel processing of the panes, the merge operation combines the results
based on the corresponding windows to which each pane was assigned. For example, when
figuring out the highest temperature in a 1-minute window with a 10-second shift, the data
stream can be split into 10-second chunks. At the same time, the operator instances figure out
the highest number in each pane and send that information to the merge. The merger figures
out the maximum value of a certain window by figuring out the maximum value of each of the
window’s six parts.
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Fig. 3.5 Pane-based Splitting [104]

3.4.2 Task Parallelisation

In task parallelisation, the stream processing system simultaneously executes several action on
the same data stream. Figure 3.6 shows how this works. A repeater makes copies of the data it
receives and sends them to operators A, B, and C. The merger combines the sources of data into
a single stream of output. Task parallelisation makes it possible to use pipelines, in which the
result of one operator is the input for the next operator. In stream processing systems, pipelining
breaks up big operators into smaller ones that can work at the same time. Multiple operations
(i.e., tasks) must be able to execute concurrently on the same input as a prerequisite for task
parallelisation. Thus, applicability is dependent on the specific application.

Fig. 3.6 Task Parallelisation Fundamental Architecture [104]

3.4.3 Limitations of Operator Parallelisation Methods.

Having discussed the advantages of each parallelisation method presented above, we now look
at each method’s drawback.
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Limitations of Data Parallelisation.

The most difficult aspect of data parallelisation is achieving a well-balanced burden and delivering
data items in order to downstream operators. There are three limitations to key-based data
parallelisation: expressiveness, scalability, and load balancing [104]. The amount of different
partitions, or key-value pairs, limits what you can do with the data and how big it can get. For
example, when looking for patterns in the stock market, the key-based parallelism is limited by
the amount of different company symbols. Additionally, key-based splitting is only applicable
when the data includes a corresponding key. If the keys aren’t spread out evenly in the input
data, you have to do specific load balancing between the operator instances. It is possible for one
instance to experience a high arrival rate while others remain dormant [103].

Window-based division may raise communication costs. If individual operator instances
are assigned distinct overlapping windows, the data items within the overlap of these windows
need to be duplicated and distributed to each respective operator instance. To minimize this
overhead, window aggregation consolidates multiple overlapping windows into a single operator
instance [80, 27]. This approach offers more flexibility in the input data structure since it doesn’t
necessitate the use of keys for division, as seen in window-based splitting.

For pane-based division, it is essential that the operator function can be split into two stages.
The first stage involves processing individual panes, while the second stage involves combining
the results from multiple panes to obtain the window’s overall results. Nonetheless, It doesn’t
need associative operations instead of key-based splitting. Instead, the system keeps processing
the data in the panes in sorted groups, keeping the order of the items.

Limitations of Task Parallelisation.

Task parallelisation, including pipelining, is a well-established parallelisation technique, but it
has three main drawbacks [104] When each operator must receive the entire input stream, it
can increase network traffic. Second, if the processing speeds of the operators vary, there is
the possibility of a burden imbalance. Third, task parallelisation has limited scalability: An
operator can only be divided into a restricted number of sub-operators before reaching an atomic
operation or, more commonly, before the advantages of additional parallelisation are outweighed
by the costs associated with distributing the processing.

3.5 Flink FlatMap Operator Distribution Mechanism

Flink uses a parallel data processing model to distribute data among different FlatMap instances.
When you apply a FlatMap transformation on a DataStream, Flink internally partitions the data
stream into multiple substreams based on the parallelism of the job. Each substream is then
processed by a separate instance of the FlatMap operator. The partitioning is based on a key
grouping or round-robin distribution. If a key grouping is used, Flink ensures that all records
with the same key are processed by the same FlatMap instance to preserve the ordering of the
records. On the other hand, round-robin distribution sends records in a round-robin fashion to
different instances of the FlatMap operator.



44 Stream Workload Parallelisation and Elasticity

The parallelism of the FlatMap operator determines the number of instances that process
the data stream in parallel. You can set the parallelism by calling the setParallelism() method
on the FlatMap operator. Flink also supports data shuffling, which means that records with the
same key can be sent to different parallel instances of the FlatMap operator. This is useful when
the processing of a record depends on data from other records with the same key, which are
processed by different instances of the FlatMap operator. In this case, Flink ensures that all
records with the same key are sent to the same downstream operator for processing.
Flink provides different levels of operator parallelism to optimise the execution of data processing
pipelines. These levels include the execution environment, client level, and system level.

i. Execution Environment Parallelism: This level of parallelism is set at the beginning of the
execution of a Flink job and is determined by the resources available in the environment.
The execution environment parallelism is set by the Flink cluster manager and is based on
the number of task manager slots and the available resources in the cluster. This level of
parallelism is fixed throughout the execution of the job and cannot be changed dynamically.

ii. Client Level Parallelism: This level of parallelism is set by the Flink client when submitting
a job to the Flink cluster. The client level parallelism specifies the degree of parallelism for
each operator in the job and can be set using the setParallelism() method when defining the
job. This level of parallelism is defined at the job level and can be adjusted dynamically
based on the input data size or the available resources in the cluster.

iii. System Level Parallelism: This level of parallelism is determined by Flink’s internal
system parameters, such as the degree of network and disk I/O parallelism, the number of
available threads, and the buffer size. The system-level parallelism is managed by Flink’s
runtime system and is used to optimize the performance of the job by minimizing the
overhead of inter-operator communication and maximizing the utilization of available
resources.

By combining these levels of parallelism, Flink can optimize the execution of data processing
pipelines for different input data sizes, available resources, and performance requirements.
Flink’s flexible parallelism model allows users to fine-tune the degree of parallelism for each
operator in the pipeline, enabling efficient processing of large-scale data in real-time.
There are differences between these levels of operator parallelism in the way the topology is
deployed.

i. Execution Environment Parallelism: This level of parallelism is fixed throughout the
execution of the job and is determined by the resources available in the environment.
When the job is submitted, Flink’s cluster manager deploys the job’s topology across
available task manager slots in the cluster based on the execution environment parallelism.
The task manager slots are distributed across the available nodes in the cluster, and each
slot runs a single instance of the operator with a fixed degree of parallelism.

ii. Client Level Parallelism: This level of parallelism is defined at the job level and can be
adjusted dynamically based on the input data size or the available resources in the cluster.
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When the job is submitted, the Flink client specifies the degree of parallelism for each
operator in the job using the setParallelism() method. Flink’s runtime system deploys the
job’s topology across available task manager slots based on the client level parallelism, and
the system automatically adjusts the degree of parallelism based on the available resources
in the cluster.

iii. System Level Parallelism: This level of parallelism is determined by Flink’s internal
system parameters and is used to optimize the performance of the job. Flink’s runtime
system manages the system-level parallelism by optimizing the buffer size, the degree of
network and disk I/O parallelism, and the number of available threads based on the input
data size and the available resources in the cluster. The system-level parallelism is not
explicitly defined by the user and is managed by Flink’s runtime system.

In summary, the differences between these levels of operator parallelism lie in how the topology
is deployed across the available task manager slots in the Flink cluster. The execution environ-
ment parallelism is fixed and determined by the cluster manager, the client level parallelism is
adjustable by the user, and the system level parallelism is managed by Flink’s runtime system to
optimize performance.

3.6 System Design

We present our experimental pipeline setup and the relationship among the various unit of our
setup in Figure 3.7. These units are self-contained and hosted on Microsoft Azure, which makes
it easy to scale the experiment. The term "easy to scale" refers to the ability to effortlessly
grow computing resources without necessitating intricate integration. This setup architecture
has four major areas: the data source (Wordcount workload generation), Streaming framework
(Flink and DS2 scaling controller), Visualisation, and Datastore. The experimental objective is
to evaluate the operators elasticity and operator’s processing capacity. In this experiment, we
adopt the horizontal scaling methodology by increasing the operators parallelism. This research
adopts best practice benchmarks like wordcount. The benchmark must consider the diversity of
workload to cover different type of application domain. We provide further details on the (4)
fundamental processes in our pipeline.

i. Data Sources: input data is required for any stream processing engine and these data
can be derived form either a message broker (eg. Kafka etc.), Realtime event data, event
logs, reading from file, sockets etc. for this research I have a random string generator that
continuously generates a set of sentences for the purpose of simulating a data source that
feeds data to the streaming pipeline. The random sentence generator randomly generates a
predefined set of sentences from a group of letters per seconds and persist the output to a
local file.

By leveraging a combination of defined rules like the length of the sentence, etc., a random
sentence generator can produce a wide array of sentences that, while not necessarily
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meaningful or coherent, appear grammatically sound and structurally plausible to a certain
extent.

ii. Computation: My computation is powered by Apache Flink as illustrated in Figure 3.7.
The computation evaluates the stream data ingested continuously to detect the occurrence
of each strings over a short period of time. Here we simulate a simple word count that
records the number of times a string occurs. To achieve this, We do three things: First,
we specify that my stream is a keyed window using the command .keyBy(). Specifying
a keyed window ensures that all attributes of my incoming stream will be used as a key,
thereby allowing the computation to be done in parallel by multiple task as against a
non-keyed stream where the stream will not be split, rather all the window logic will
be processed by a single task. Secondly, I define a window assignor which assigns all
incoming stream element to one or more window. Windowing in stream processing
basically determines the time frequency in which data is received for computation. Lastly,
we apply a rolling aggregate to the keyed stream (.sum ()) to aggregate the value of
each key and produces a key value pair (word, 1).

iii. Data Storage: All processed stream are written to a local file called the rate file. The
metadata contained in this file include the worker name, instance id, number of instances,
time, true processing rate, observed processing rate, true output rate and observed output
rate.

iv. Visualisation: This research uses ggplot2 graphical representation from R to visualise
the results. We also leverage R to analyse the performance of the streaming engine, study
the pattern and trends when the stream computation is subjected to different conditions
and also to help derive experimentation results. The objective is to extract the pertinent
performance data and visually represent them through graphs.

As depicted in Figure 1, each constituent of our experimental pipeline exhibits an interrelation
that functions as an input to another.
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Fig. 3.7 Experimental System Architecture (Chapter 3)

3.6.1 Experimental Setup

In carrying out these experiments, we seek to know how much work is done by each flatmap
operator instance, the imbalance in terms of data distribution across the different operators, does
it increase or decrease the utilisation of the system, are the operator instance heavily loaded.

VM and Software Configuration

Tables 3.1, 3.2 and 3.3show the hardware and software configuration parameters as well as the
Flink configuration used for this experiment.

Table 3.1 Standalone hardware configuration (Chapter 3)

Hardware Configuration

CPU Intel(R) Xeon(R) E5-2673 v4 @ 2.30GHz
CPU Cores 8 vCPU(s)
Memory 16GB
Disk 1TB
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Table 3.2 Software configuration (Chapter 3)

Software Version

OS Ubuntu 18.04.3 LTS (Bionic Beaver)

Flink 1.4.1

R Rstudio 2021.09.0 Build 351

Intellij IDEA 2019.3.3 (Ultimate Edition)

Table 3.3 Apache Flink Configuration

Configuration Parameters Values

taskmanager.numberOfTaskSlots 3

state.backend filesystem

state.backend.fs.checkpointdir file:///path/to/savepoints

jobmanager.heap.mb 2048

taskmanager.heap.mb 2048

• taskmanager.numberOfTaskSlots. This refers to a configuration parameter that speci-
fies the number of parallel task slots available on a Flink TaskManager

• state.backend . This refers to a configuration parameter that determines the type of
state backend used for storing and managing the state of streaming applications.

• state.backend.fs.checkpointdir. This refers to a configuration parameter that spec-
ifies the directory where the checkpoints of Flink’s state backend are stored on the file
system.

• jobmanager.heap.mb. This refers to a configuration parameter that determines the
maximum memory allocated to the JobManager in the Flink cluster

• taskmanager.heap.mb. This refers to a configuration parameter that determines the
maximum memory allocated to each TaskManager in the Flink cluster

Based on the above, define two terminology that are frequently used within this chapter.

trueProcessingRate

This signifies the maximum potential number of records an operator instance can process per
unit of a useful time. Intuitively, this calculates the capacity of an operator instance. Please note
that useful time = duration – waiting time [58].
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ObservedProcessingRate

This signifies the number of records an operator instance processes per unit of observed time.
Contrary to the trueProcessingRates, the observed rates are measured by simply counting the
numbers of records processed by an operator instance over a unit of observed time [58].

i. Experiment 1. This experiment seeks to evaluate the true and observed processing rate of
the FlatMap operator. The present study involves the implementation of a basic topology
consisting of one source operator, a FlatMap operator, and one Sink operator. We inject a
source rate of 100,000 records per seconds and we measure the operators true and observed
processing rate.This experiment was ran for 5 hours. Additionally, the percentage disparity
between the true and observed processing rate is quantified in order to comprehend the
variation in the streaming processing capability.

ii. Experiment 2. Building upon the preceding experiment, the experiment delves into the
notion of operator rescaling. The process of rescaling generally entails the dynamic redis-
tribution of workload among multiple operator instances or the modification of the number
of instances themselves. In this study, three distinct executions were conducted. The initial
implementation involves a single FlatMap, while the subsequent ones incorporate two and
three FlatMaps, respectively. The process of introducing the new FlatMap was carried
out on an hourly basis through the rescaling of the application and modification of the
parallelism. A single source operator and a single sink operator are maintained. The source
data injection rate is set at 150,000 records per second. The duration of the experiment is
three hours.

iii. Experiment 3. The experiment was conducted for a duration of one hour, during which
there were five instances of redeployment and rescaling of the source injection rate as well
as the Source and FlatMap operators. As presented in Table 3.4, the initial source injection
rate is 80,000 records per second, and subsequent redeployments result in a doubling of
this figure. The source and FlatMap operator are subject to scaling within the range of 1 to
3 while ensuring the use of a singular Sink operator.

Drawing from the results of the preceding experiments, the present study aims to investigate
the correlation between operator instance parallelism and the distribution of tasks across
multiple operator instance. It is anticipated that with the introduction of additional source
operators and an increase in the rate of source data injection, the FlatMap operator will
encounter difficulties in managing the influx of data, resulting in backpressure. Therefore,
provisions have been made to accommodate the rescaling of FlatMap operators.
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Table 3.4 Scaling Operator Parallelism Experiment

Source Injection Rate Source Operator Parallelism Flatmap Operator Parallelism

80,000 1 1

160,000 2 2

800.000 3 3

1,600,000 3 3

8,000,000 3 3

The insights obtained from the aforementioned experiments, namely Experiment 1, Experiment
2 and Experiment 3 will facilitate an enhanced comprehension of the techniques employed to
gauge the processing rate and utilisation capacity of operators. We also learn that increasing the
source operator greater than one has a multiplicative effect on the source injection rate.

3.7 Summary of Experimental Results

Figure 3.8, displays the outcomes of the first experiment, presenting both the true and observed
processing rate of FlatMap operators over time in a single plot. The source injection rate is set at
100,000 records per seconds. in Figure 3.9, we measure the percentage variance between the
true and observed processing rate. Our findings indicate a variance of approximately 30 percent,
implying that the operators possess the potential to enhance their present processing capacity by
30%.

Fig. 3.8 Measuring True and Observed processing Rate (Experiment 1)
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Fig. 3.9 Percentage difference between the True and Observed processing rate (Experiment 1)

The percentage difference provides a relative measure of how much the true processing rate
metric differs from the observed processing rate in percentage terms. To calculate the percentage
difference between the true and observed processing rate, we used the following formula:

Percentage Difference= True−Observed/True∗100 (3.1)

The observed processing rate is based on the actual data processed and output within a given
time frame, including any periods of waiting or delays. In streaming applications, waiting times
can occur due to various factors, such as network latencies, uneven data arrival, and variations in
data processing complexity. While the true processing rate, on the other hand, represents an ideal
scenario where the operator processes data continuously without any waiting. It is a measure of
the operator’s capacity which dependent on the underlining hardware infrastructure, assuming
perfect conditions and continuous data availability. This is the reason for the variation we see
between the two measurement.

Figure 3.10 illustrates an example of the summation of the ObservedProcessingRate inter-
polated values for three operator instances over a three-hour period. The experiment result
shown in Figure 3.10, is the aggregated number of records processed by each FlatMap operator
instance per unit of observed time. This is grouped by timestamp and operator. This experiment
displays the outcome of our second experiment (Experiment 2). The experiment contains three
deployment with one FlatMap operator in the first deployment, and the introduction of a second
and third FlatMap operators by changing the parallelism in the second and third deployment,
respectively. The source injection rate is 150,000 records per seconds and was constant. As
illustrated, The data stream exhibits a notable decrease followed by subsequent recovery, which
has been observed to occur on multiple occasions. The observed data imbalance pattern can be
attributed to the source data injection or node-level factor that are external to Flink.
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Fig. 3.10 Summed Value of Observed Processing Interpolation Records Over Time (Experiment
2)

Furthermore, we show in 3.11 the number of records processed by each FlatMap operator
instance by measuring the observed processing rates. Consistent with our third experiment, this
experiment ran for three hours, changing parallelism to introduce a new FlatMap operator every
hour and maintaining a constant source injection rate of 150,000 records per seconds.

Fig. 3.11 Observed Processing Interpolated Records Over Time (Experiment 2)
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The result in Figure 3.11 shows the observed processing rate for three different deployment.
each having one, two and three FlatMap operators, respectively. We notice a declining processing
rate in the deployments with more FlatMap operators despite increasing the FlatMap operator
parallelism compared with the deployment with a single FlatMap. This behaviour is caused
because we are using a single node deployment, by increasing the parallelism of the operator,
we are not introducing additional compute power. Rather, Flink divides the offered load across
multiple threads. in this case the different parallel operators.

During the analysis of the observed processing rate numbers, we detected slight temporal
gaps between the data processing performed by the FlatMap operators. In order to obtain a
comprehensive comprehension of the operators’ behaviour during these temporal disparities,
we have chosen to employ a linear interpolation mechanism to estimate all time gaps. As a
result, the time allocated for processing the data by each instance of the operator was extended,
leading to the production of Not Available (NA) values. The method of Linear Interpolation was
employed to approximate the values that were expressly marked as missing NA.

Linear interpolation is a useful technique for understanding streaming data because it allows
us to estimate values between known and unknown data points in a continuous manner. In
streaming data, it is common for data points to arrive at irregular intervals and in different orders,
making it challenging to obtain a continuous understanding of the underlying data point. Linear
interpolation can help address this challenge by allowing us to estimate the value of the unknown
data at any given point in time, based on the known values at adjacent points in time. This can
help us to identify trends, patterns, and anomalies in the data, and make predictions about future
values.

Fig. 3.12 Three Instance FlatMap Operator Processing Capacity (Experiment 3)

Figure 3.12 illustrates records processed by three FlatMap instance Flink deployment, displaying
the outcome of our third experiment (Experiment 3). Scaling a stateful operator is common
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requirement for streaming applications by adjusting the parallelism of by either increasing or
decreasing the operator instances [50]. We plot the cumulative frequency over records processed
per second as shown in Figure 3.12. This experiment is run on a standalone Flink infrastructure
with the state back end set to filesystem. Further work would merit exploring the differing
impacts of alternative state backends, such as MemoryStateBackend or RocksDBStateBackend.
This experiment started with one Flatmap and subsequently scaled up at run time through the
increase in parallelism introducing two more Flatmap operators, in a bid to increase throughput
by enabling parallel data processing. According to [81], for keyed transformation, each operator
is allocated a data with similar property type, while for non-keyed transformation (operator state),
events are distributed in a round-robin fashion among operators. Based on Figure 3.12 above,
there is a variation in the number of records processed by each FlatMap instance. Splitter FlatMap
1 processed more data followed by Flatmap 3 and 2. This result shows that the distribution of
data is not done evenly or sequentially.

3.8 Conclusion

Our experimental findings highlight a crucial insight: the processing capacity of a flatmap
operator is intricately linked to the hardware it operates on. Simply increasing the operator’s
parallelism does not always equate to a boost in its processing capacity. This is due to a multitude
of influencing factors, including the availability of resources, data distribution patterns and
application state size. There are a couple of reasons behind this phenomenon.

• Limited resources: The processing capacity of a flatmap operator is limited by the resources
available on the task manager slots that host the operator. If the parallelism of the operator
is increased without adding more task manager slots or increasing the resources available
on existing slots, then the operator may not be able to fully utilize the available resources.
This can lead to idle resources and a decrease in processing capacity.

• Uneven data distribution: If the input data is not evenly distributed across the parallel
instances of the flatmap operator, some instances may have more work to do than others.
For example, if some instances receive more data than others, they may become bottlenecks,
leading to idle resources on other instances. In this case, increasing the parallelism of the
operator may not lead to a corresponding increase in processing capacity.

Furthermore, our results suggest that Flink’s task distribution is not consistent across various
operators. Therefore, when assessing the combined record count handled by a uniform group
of FlatMap operators in a stream processing pipeline, it’s essential to individually evaluate
each operator’s processing capacity. One shouldn’t assume that one FlatMap’s processing
speed matches that of another. This understanding is critical in our main goal of pinpointing
more effective approaches for data transfer in a distributed architecture and modeling relevant
parameters.
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3.8.1 Future Work

In this sub section, we provide bullet points of future direction and next steps that could be useful
and complementary to this body of research. This is listed in no specific order.

• Measure the impact of system utilisation on the level of imbalance between different oper-
ators’ instance in a distributed stream processing pipeline. The first step towards achieving
this will be to deploy this experiment on a system with more dedicated computational
resource.

• An interesting future direction will be to investigate the task allocation mechanism being
used by Flink in this kind of distribution setup with the aim of ascertaining the effect of
the imbalance between each operator instance and throughput.





Chapter 4

Modelling of Time and Resource
Requirements to Perform Rescaling

Chapter Summary

Autoscaling mechanisms promise to ensure QoS properties for applications while also max-
imising resource utilisation and operational costs for service providers. Despite the perceived
benefits of autoscaling, maximising its potential is difficult due to various challenges associated
with the requirement to precisely estimate resource usage in the face of significant variability in
client workload patterns and trends [105]. Mindful of the challenges that come with decision-
making on how to scale efficiently and when to scale, this research notes the work carried out
in the DS2 project, which provides an automatic scaling system that strives to strike a balance
between resource over-provisioning and on-demand scaling, by considering each operator true
and observed processing capabilities regardless of the backpressure and other effects [58].

However, most auto-scaling systems do not consider the impact of scaling time. This research
chapter seeks to contribute to this space. We argue that long scaling time especially in a rapidly
varying workload environment, poses a potential challenge to a streaming application upon
resuming from an auto-scaling procedure. The unanticipated workload characteristic could lead
to poor scaling decision-making and suboptimal system performance.

Therefore, in this chapter, we analyse some metrics that can influence the scaling duration of
a streaming application like state size and end-to-end checkpoint duration. We start by exploring
the correlation between the state size and scaling duration, and then conduct some simulations to
validate our argument that, the rescaling policy approach adopted by DS2 could lead to multiple
rescaling once the state size of the application gets bigger.

Predictive models were developed and trained with all relevant associated variables collected
from the experiment. These models were tested to ascertain their performance effectiveness, and
the most efficient model was used to predict scaling duration based on forecasted state sizes. We
believe this predictive model will provide auto-scaling controllers with more insight leading to a
more robust and effective scaling decision-making process in a general use case [90].



58 Modelling of Time and Resource Requirements to Perform Rescaling

4.1 Introduction

Stream processing technology powers numerous applications, such as continuous analytics,
monitoring, fraud detection, stock trading, and mobile and network information management [9].
Dealing with applications characterised by high demand fluctuation in stream processing is
difficult, as the distribution of data streams is constantly changing and unpredictable [141].

Workload variance and skewness are common features in distributed stream processing
deployments. When a large amount of data is injected into a distributed system for processing,
a change in the source data stream can affect the system performance resulting in Service
Level Objective (SLO) violation [35]. Cloud hosting enables operators to scale horizontally
or vertically based on the benefit of on-demand elasticity and economy of scale. However,
without sufficient knowledge of the workload characteristics, making a scaling decision can
become a complex task [106]. This could lead to over-provisioning or under-provisioning.
Overprovisioning system resources can lead to increased costs and the underutilisation of
computational resources. Meanwhile, under-provisioning can lead to suboptimal performance of
the system, thereby affecting the QoS. Auto-scaling is automatically adjusting a system capacity
or compute resource to maintain a steady or predictable performance level at the lowest possible
cost.

A suitable scaling controller should provide SASO properties [58]. Whereas speculative
scaling techniques that violate these could lead to incurring unnecessary costs due to sub-optimal
utilisation of resources as a result of over-provisioning or under-provisioning, performance
degradation due to frequent scaling action as a result of oscillation and low convergence resulting
in an SLO violation or load shedding [58] Furthermore, a good scaling controller must be mindful
of the resource availability and the scaling time. These factors, amongst other things, are an
important element that must be contained in the scaling policy.

Mindful of the challenges that come with decision-making on how to scale efficiently and
when to scale, this research notes the work carried out in the DS2 project, which provides an
automatic scaling system that strives to strike a balance between resource over-provisioning and
on-demand scaling, by considering each operator’s true and observed processing capabilities
regardless of the backpressure and other effects [58].

However, like DS2, most auto-scaling systems do not consider the impact of scaling time,
especially in a volatile workload environment. Rather more attention is focused on mitigating
the impact of over-provisioning of resources for temporary load spikes and under-provisioning
during peak loads. We leverage Apache Flink’s checkpointing fault-tolerant guarantees through
the exactly-once guarantee semantics to stop, update the configuration, and restart a running
application. This enables us to achieve two things: first, a failure-free execution and application
state consistency and second, rescaling of the computational resources (vertical scaling) [143].

This chapter considers the impact of long rescaling duration during an auto-scaling interval
which could lead to multiple rescaling of an application when the state size growth of the
application is larger and unpredictable. State size is the measure of the entire content of the
memory where the application state resides at a given point in time.
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Fig. 4.1 Rescaling Duration Increasing Over Larger State Sizes

In a window-based environment, sub-streams are created using a strategy known as a ”win-
dow”. A window policy determines the size and sliding period of the window. A sliding window
size defines a specific period of time during which data is considered for analysis. Larger window
sizes result in an increased state size because more data is accumulated within the extended
window [92]. Figure 4.1 shows the estimated time to auto-scale an application over different
state sizes. The plot shows that it takes approximately 40 seconds to scale a running application
when the application state size is 1GB. In this experiment(first experiment under section 4.3),
we collect the application state information twice, every 2.5 minutes. Each shape represents the
duration of the sliding window; consider each shape as the scaling duration value collected every
2:30 minutes for the different state sizes. Therefore, we have two identical shapes for every
deployment (each experimental deployment is set at 5 minutes). You will observe that the points
begin to disperse as the state size grows. This shows the rescaling time variance between each
deployment.

Figure 4.1 shows that, as the application’s state grows, so does the rescaling duration. We
argue that more data could have accumulated during a rescaling process, which could mean
constantly rescaling and falling short of resources, leading to multiple rescaling of the application.
This repetitive task could harm system performance. We believe that a proactive approach
will be to use machine learning algorithms to develop a workload prediction module that can
forecast workload characteristics [142] and rescaling duration. This predictive approach should
be embedded in a scaling policy to broaden the decision-making scope and ensure adequate
resource allocation even when workload skewness exists.

We make the following contributions in this chapter:

• First, we show that rescaling duration is critical in auto-scaling a streaming application.
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• Second, we show that state size is an important metric when rescaling.

• Third, we show that the end-to-end checkpoint duration strongly correlates with the state
size.

• Fourth, we develop a machine learning predictive model to forecast a streaming applica-
tion’s rescaling duration based on the state size and end-to-end duration. This model will
provide a scaling controller with knowledge of the estimated rescaling duration.

• Finally, we apply our model to predict the rescaling duration of an application based on
forecasted state size values.

4.2 Influencing Metrics for Scaling a Streaming Application

Scaling controllers usually rely on metrics to determine when and how to scale. Several studies
have focused on different metrics in building an optimal scaling policy. Most systems rely on
simplistic performance models, like setting predefined thresholds and conditions. These condi-
tions include CPU and memory utilisation, backpressure, observed processing rate, etc. However,
CPU and memory utilisation can be insufficient metrics for streaming applications, especially in
cloud environments where multi-tenancy and performance interference is prevalent [84].

Kalavri et al. propose a better approach (DS2) to automatically determine the optimal
parallelism level for each operator in the dataflow as the computation progresses, using real-time
performance traces. It maintains a dynamic provisioning plan in which the allocation of resources
to each operator changes.

This paper explores other metrics like state size and end-to-end checkpoint duration. These
metrics have been shown to significantly influence the scaling duration of streaming applications
compared to offered load (data arrival rate).

While many stream processors support elastic runtimes and job reconfiguration via migration
or externalisation of state, symptom detection and scaling actions are entirely dependent on
manual intervention by the vast majority. 4.1 summarises the systems that incorporate some form
of automatic scaling. We classify them according to (i) the metrics used to detect symptoms, (ii)
the policy logic used to determine when to scale, (iii) the type of scaling action used to specify
which operators to scale and to what level, and (iv) the optimisation objective (e.g. latency or
throughput SLO).
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Table 4.1 Summary of auto-scaling policies in distributed dataflow systems [58]

System Metrics Policy Scaling Action Objective

Borealis [1] CPU, network slack, queue sizes. Rule-based Load shedding Latency, throughput

Stream Cloud [45] Average CPU, observed rates. Threshold-based
Speculative,
multi-operator

Throughput

Seep [18] User/system CPU time. Threshold-based
Speculative,
single operator

Latency, throughput

IBM Streams [42] Congestion, observed rates.
Threshold-based,
blacklisting

Speculative,
single operator

Throughput

FUGU+ [46] CPU, processing time. Threshold-based
Speculative,
single operator

Latency

Nephele [76]
Mean task latency, service time,
interarrival time, channel latency.

Queuing theory model
Predictive,
multi operator

Latency

DRS [40] Service time, interarrival time. Queuing theory model
Predictive,
multi operator

Latency

Stela [135] Observed rates. Threshold-based
Speculative,
single operator

Throughput

Spark Streaming [93] Pending tasks. Threshold-based
Speculative,
multi operator

Throughput

Google Dataflow [65] CPU, backlog, observed rates. Heuristics
Speculative,
multi operator

Latency, Throughput

Dhalion [38]
Backpressure, queue sizes,
observed rate

. Rule-based, blacklisting
Speculative,
single operator

Throughput

Pravega [28] Observed rates. Rule-based
Speculative,
single operator

Throughput

DS2 [58] True processing and output rates. Dataflow model
Predictive,
multi operator

Throughput

4.3 System Design

Figure 4.2 shows our experimental pipeline setup and the relationship among the various unit of
our setup. These units are self-contained, which makes it easy to scale the experiment. This setup
architecture has four major areas: the data source (NEXMark workload generation), Streaming
framework (Flink and DS2 scaling controller), Visualisation, and Datastore. Our experimental
aim is to simulate a fluctuating workload streaming environment and measure the time required
to complete a rescaling procedure using the DS2 rescaling policy. This experiment leverages
Flink’s consistent checkpointing of the application state on a single Flink instance [124].
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Fig. 4.2 Experimental System Architecture (Chapter 4)

Hardware and Software Configuration. Tables 4.2 and 4.3 show this experiment’s hardware
and software configuration parameters.

Table 4.2 Standalone hardware configuration (Chapter 4)

Hardware Configuration

CPU Intel® Core™ i5-8500 CPU @3.00GHz
CPU Cores 6
Memory 16GB
Disk 1TB
NIC 1000 Mbps
Kernel Version 4.15.0-74-generic

Table 4.3 Software Configuration (Chapter 4)

Software Version Number of instances

OS Linux 19scompd047 84-Ubuntu 1

Flink 1.4.1 1

R Rstudio 2021.09.0 Build 351 1

Intellij IDEA 2019.3.3 (Ultimate Edition) 1

Table 4.4, shows the single instance Flink installation configuration parameters used for
this experiment. When checkpointing is triggered, the state is preserved between checkpoints to
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protect against data loss and to ensure consistent recovery. The internal representation of the
state, as well as how and where it is persisted between checkpoints, is determined by the State
Backend selected. Flink supports multiple state backends, each specifying how and where the
state is stored. This includes memory, file system and RocksDB state backends. We chose the
file system state backend (FsStateBackend). Further work would merit exploring alternative
state backends’ differing impacts.

Table 4.4 Apache Flink Configuration

Configuration Parameters Values

taskmanager.numberOfTaskSlots 4

state.backend filesystem

state.backend.fs.checkpointdir file:///path/to/savepoints

jobmanager.heap.mb 6144

taskmanager.heap.mb 6144

We set the data source rate at 20,000, the checkpoint interval to 2:30 minutes and the sliding
window to 60 minutes. We update the time window configuration parameter using different
time intervals to create different state sizes each time we run the workload. Subsequently, we
consume the /jobs/:jobid/ REST API and collect values like state size and end-to-end checkpoint
duration (this is the duration of a complete checkpoint measured by the time interval between
the triggered timestamp and the most recent acknowledgement.) and job start time. Below is a
summary of the two major experimental runs used for this experiment.

The purpose of running two experiments was to get the one that simulated our experimental
objective better. We aim to show a use case where state size growth will lead to an increased
rescaling duration interval. Rescaling duration is the time between when a scaling operation is
triggered, and the new configuration is deployed. We derive the rescaling duration as follows:

Rescaling duration= new job start time−rescaling triggered time (4.1)

New Job Start Time. The start time recorded in Flink for a newly deployed running application.

Rescaling Triggered Time. The recorded time when a rescaling procedure is triggered

Experiment One. This experiment was repeated 13 times. Checkpoint interval equal to five
minutes, data source rate equal to 20,000 records/sec, operator parallelism (Bid-Source and
Sliding window-sink) equal to 1 and 2 respectively, windows width time in minutes were
alternated over the 13 experiments in the following interval (30, 60, 90, 120, 150, 180, 210, 240,
270, 300, 400, 500, 600). At the end of each run, the state size, end-to-end checkpoint duration,
new job start-time, Job ID and checkpoint triggered-start-time values are collected through the
Flink APIs. We control the state size at the end of each deployment for each deployment by
adjusting the window width time value of the workload.
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Table 4.5 First experiment configuration parameters

Deployment Operators Parallelism Data Source rate Checkpoint Interval (mins) Window width (mins) Back Pressure Status

Bid-Source Sliding window-sink

1 1 2 20,000 5 30 Low

2 1 2 20,000 5 60 Low

3 1 2 20,000 5 90 Low

4 1 2 20,000 5 120 High

5 1 2 20,000 5 150 High

6 1 2 20,000 5 180 High

7 1 2 20,000 5 210 High

8 1 2 20,000 5 240 High

9 1 2 20,000 5 270 High

10 1 2 20,000 5 300 High

11 1 2 20,000 5 400 High

12 1 2 20,000 5 500 High

13 1 2 20,000 5 600 High

Experiment Two. We try to explore shorter checkpoint intervals to enable us to measure
the scaling duration between different checkpoints. Therefore, the checkpoint interval for
this experiment is set to 2:30 minutes to allow us to collect the state size twice after each
checkpoint and redeployment. Like the previous experiment, we adjusted the state size after
every deployment through the window width time parameter of the workload. After each
deployment, we update the sliding window-sink operator parallelism to simulate a change in the
data flow topology during scaling.

This research chapter provides decision support and predictions that can cater to the early
deployment of newly emerging workloads with no historical operational data. Therefore, the
volume of data used for this experiment supports this use case. More experiments could be run
with wider checkpointing intervals. However, this would require more system resources.

We also observed the backpressure status, which becomes high when the state size grows.
This experiment measures the rescaling duration when the state size grows huge. Therefore,
we do not investigate the backpressure effect because it affects the offered load, which is not a
priority for this experiment.

We also kept the source data rate static (20,000 records/sec) as increasing it did not signifi-
cantly affect the state size as we wanted. The choice of checkpoint interval (2:30 and 5 minutes)
enabled us to collect a state size value distinctive from another. Shorter intervals would have
very close results, while longer intervals would require a bigger hardware resource.
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Table 4.6 Second experiment configuration parameters

Deployment Operators Parallelism Data Source rate Checkpoint Interval (mins) Window width (mins) Back Pressure Status

Bid-Source Sliding window-sink

1
1 2 20,000 2:30

30
Low

1 3 20,000 5:00 Low

2
1 2 20,000 2:30

60
Low

1 3 20,000 5:00 Low

3
1 2 20,000 2:30

90
Low

1 3 20,000 5:00 Low

4
1 2 20,000 2:30

120
Low

1 3 20,000 5:00 Low

5
1 2 20,000 2:30

150
Low

1 3 20,000 5:00 Low

6
1 2 20,000 2:30

180
High

1 3 20,000 5:00 High

7
1 2 20,000 2:30

210
High

1 3 20,000 5:00 High

8
1 2 20,000 2:30

250
High

1 3 20,000 5:00 High

9
1 2 20,000 2:30

300
High

1 3 20,000 5:00 High

10
1 2 20,000 2:30

400
High

1 3 20,000 5:00 High

11
1 2 20,000 2:30

500
High

1 3 20,000 5:00 High

12
1 2 20,000 2:30

600
High

1 3 20,000 5:00 High

13
1 2 20,000 2:30

700
High

1 3 20,000 5:00 High

A system failure caused the last deployment (13) to fail. This was caused by the hardware
configuration capacity being exhauted. This deployment failure was observed when the window
width became bigger translating to a larger state size. We also observed the backpressure status
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which becomes high when the state size gets bigger. This experiment focuses on measuring
the rescaling duration when the state size grows huge and therefore, we do not investigate the
backpressure effect. We also kept the source data rate static as increasing it did not significantly
affect the state size as we wanted. At the end of each experiment, the relevant system data values
are collected and measured. To automatically collect these values, we develop two Java GET
API classes that consume the Flink REST API. We also updated the DS2 rescaling shell script to
log a timestamp whenever executed. The experiment was deployed in this order:

i. First, I execute a script to start the Flink streaming application using the NEXMark Query5
workload.

ii. Next, I trigger a redeployment script that redeploys an application from savepoint by
ending the current job and redeploying a new job with the capability of updating the
dataflow topology (scaling up or scaling down). This script is triggered immediately after
a checkpoint operation is concluded and the status changes to complete. Furthermore, the
script collects and saves the job ID of the completed job and the timestamp when the script
was triggered.

iii. Next, I invoke the CheckpointApiCall.java GET API code to collect the values of the
following parameters: jobid, triggered-timestamp, state_size and end_to_end_duration
through the Flink API.

iv. Next, I Invoke the StartTimeApi.java GET API code to collect the jobid and start-time
from the newly deployed running job.

v. Finally, we change the configuration parameters, build a new artefact, and repeat the
procedure from the start.

I ran these experimental procedures multiple times with different configuration parameters as
shown in Tables 4.5 and 4.6 above. This is done to analyse the behaviour of the streaming
application over different computational parameters. We collect results after each deployment
and measure the redeployment duration over different state sizes.

4.3.1 Nexmark Workload

NEXMark is an online auction system that allows queries over three main business objects
(Person, Auction and Bid) [119]. All users register under a person’s business objects to participate
in an auction as either a seller or a buyer. As illustrated in Figure 4.3, a seller submits items
for sale to an auction with certain information about the item to be sold. An auction has an
opening and closing time, and after an auction is closed, buyers enter bids for existing auctions
(Tucker et al., 2008). There are many interesting queries that NEXMark provides, which could
be over single or multiple business objects and joins or unions from stored data or the business
objects. Since our objective was to simulate the rescaling duration of a streaming application
that accumulates a huge state, we, adopted NEXMark Query5 for our experiments.
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Fig. 4.3 NexMark Workload Stream Processing Directed Acyclic Graph (DAG)

The DAG comprises several key components as shown in Figure 4.3: a data source generating
auction and person events, a filtering stage to eliminate irrelevant events, a join operation
combining auction and person events based on person ID, an aggregation process grouping
events by the person’s city to compute the total number of auctions, a key-value store to maintain
the state of aggregated results, and a sink to output the final results.

Query 5 selects the items that have seen the most bids over a period. These items are also
referred to as HOT ITEMS. This query uses a sliding window group by operation. A sliding
window groups tuples within a window that moves across the data stream in accordance with
a predetermined interval [114]. Table 4.7 shows some relevant configuration parameters we
update in the NEXMark Query5.java class. We run this workload multiple times with different
state sizes. We update the time window configuration parameter using different time intervals to
create different state sizes each time we run the workload.

Table 4.7 NEXMark Query 5 Configuration

Configuration Parameters Values

Checkpoint Interval 2:30 minutes

Data Source Rate 20,000

Sliding Window 60+ minutes

NEXMark Query 5 was adopted as the workload for this experiment because it retains the
system state based on the sliding window capabilities that meet our experimental objective to
simulate the rescaling duration of a streaming application that accumulates a huge state.

4.4 Impact of Long Checkpointing Duration in Streaming
Applications

The Flink checkpointing mechanism guarantees exactly-once state consistency it is the most
common fault tolerance and rescaling approach used by most state-of-the-art streaming sys-
tems for stateful applications [56]. This study employed the full checkpointing mode. We
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measure the end-to-end duration of each checkpoint, which is the duration of a complete pro-
cess. After each checkpoint, we leverage the Flink API to collect certain parameters like the
state size, triggered timestamp, and end-to-end duration values. We also configure the Flink
env.enableCheckpointing() to set the checkpointing interval.

Checkpointing intervals are usually carefully selected as high intervals could lead to longer
recovery duration, while low intervals can lead to high processing overhead due to state size
[124]. Figure 4.4 shows that a larger state leads to longer checkpoint durations. The growth
in state size is dependent on the window size, as illustrated in our initial experiment within
Table 4.5. When the state of a system is larger, the time it takes to capture a snapshot of that state
(checkpoint) increases. In scenarios where frequent checkpoints are necessary for fault tolerance,
longer checkpoint durations can become a problem. This is because the system may spend
a significant amount of time taking these checkpoints, potentially impacting the application’s
responsiveness and overall performance.

Fig. 4.4 Flink Checkpoint Duration Increasing Over Larger State Sizes.

4.5 Predictive Modelling

This section describes our approach to developing our predictive models and the methods used
in testing each model’s performance quality. We also show each model’s prediction results when
applied to known and unknown data sets.
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4.5.1 Linear Regression Analysis for Predictive Modelling

Regression analysis is a statistical approach to determine the relationship between one dependent
variable and one or more independent (predictor) variables. The analysis produces a predicted
value for the criterion because the predictors are combined linearly. Cohen asserts (Cohen et al.,
2014). Regression analysis is primarily used for prediction, classification, and explanation. To
determine whether we can create a predictive model, we determine whether our predictor and
response variables are related.

Fig. 4.5 Exploring the Relationship Between Variables.

Figure 4.5 provides some interesting trends that create curiosity to question the data further.
The correlation coefficients tell how close the variables are to having a relationship. Correlation
coefficients closer to 1 signify a stronger relationship. The scatter plots allow us to envision
the relationship between sets of variables. Scatter plots where the points have a clear aesthetic
pattern suggest a stronger connection. Figure 4.5 contains four variables from our dataset:
checkpoint time (the end-to-end checkpoint duration for a complete checkpoint measured in
seconds), state size (the state size of all acknowledged subtasks measured in megabytes), scaling
time (this is the rescaling duration measured in seconds), and window size (the different sliding
window configuration parameters used for each deployment we ran to produce different state
sizes measured in minutes).

The data set used for this experiment contains two data points, because checkpoints were
taken twice (2:30 and 5 minutes), and the relevant parameters, as stated above, were collected
after each checkpoint was completed. Therefore, the dispersal of the data at some points shows
the rescaling time variance between each checkpoint based on the state size. This suggests a
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strong relationship between the dependent and independent variables, especially as the correlation
coefficients are close to 1.

The relationship between state size, end-to-end checkpoint duration, window width size and
rescaling duration appears to have a strong relationship with correlation coefficients close to one.
We can see a consistent increase in the rescaling time as the state size, end-to-end duration, and
window width size increase. We formulate the equation for our linear regression as follows.

Y ≈ β0+β1X + ε (4.2)

• The Y and X represent the dependent and independent variables.

• β0 denotes the model intercept or the point at which it crosses the y-axis.

• β1 denotes the model slope and the direction and steepness of the line (positive or
negative).

• ε is the error team that includes variability that the model cannot account for (what X is
unable to reveal about Y).

We develop four linear regression models to ascertain the strength of these relationships and
identify which independent variables have the closest relationship with our dependent variable.
The reason for adding more predictors is to improve the model’s predictive ability.

i. Model 1. Rescaling Duration ≈ β0+ β (State Size) + ε

ii. Model 2. Rescaling Duration ≈ β0+β1 (State Size * End-to-End Duration) + ε

iii. Model 3. Rescaling Duration ≈ β0+β1 (State Size * Window Width Size) + ε

iv. Model 4. Rescaling Duration ≈ β0+β1 (State Size * End-to-End Duration * Window Width Size)
+ ε

Since we have numeric values and the relationship tends to have a linear pattern, we use the
linear regression model for this experiment. We create a linear model engine to fit our linear
model line to our data as shown in Figures 5 and 6. It fits the line, thereby minimising the sum
of the squares of the residuals. This method is called "Minimising Least Squares". However,
it is worth noting that even when the linear regression model seems to have a good fit, it is
usually imperfect [97]. The residuals represent the differences between our observations and
their model-predicted value, as shown in Figure 4.

The output of our fitted linear model is shown in Figure 5. The grey shading around the line
denotes a confidence interval of 0.95, the default value for the stat_smooth() function [97].
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(a) Linear Model 1 Fitted to Data

(b) Linear Regression Model Fit to Data [97]

4.5.2 Resampling

We split the dataset into a training set and a testing set. The training data set is used to fit models,
tune models, estimate parameters, and compare models, among other things, In contrast, the
testing data set evaluates the model’s performance. It also serves as an objective source for
determining the model’s performance. To accomplish this, we used the rsample package to
generate an object that contains information about how to split the data, followed by two further
rsample methods that create data frames for the training and testing sets.

Creating a uniform guideline for splitting data into specific proportions can be exceedingly
difficult. Various factors, including the size of the initial data pool and the total number of
predictors can influence the data proportion. With a large volume of data, the criticality of this
decision is reduced. Additionally, it is critical to consider the ratio of samples (n) to predictors
(p). When n is significantly greater than p, we will have much more leeway in splitting the data.
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However, when n is less than p, however, even if n appears to be a large number, modelling
difficulties can arise.

We used the random sample approach to select 80% of our dataset as a training data set and
the remaining 20% as test data. We note the work by Joseph et al. that proposes some evaluation
criteria for choosing an optimal splitting ratio [57]. However, there is no consensus regarding
the optimal data splitting ratio based on theoretical and numerical investigations [88, 30].

We used a random number seed to guarantee the reproducibility of the data. However, other
strategies exist for splitting data, like the stratified random sample, non-random sampling, etc.
Random sampling is a simple strategy to implement and typically prevents the process from
being skewed toward any data characteristic. Stratified random sampling is mostly used to
balance variables outcomes of categorical data sets. Since our population set does not have
categorical variables and no imbalance in our variable distribution outcome, this data splitting
strategy was not relevant to this experiment. Furthermore, the non-random sampling method is
used when the data is selected based on subjective judgement. Since we have no reason to select
or exclude any data element in our population pool, the random sampling method was preferable
to the non-random sampling method.

Table 1 below shows the comparison of all our models’ statistical properties. Working
through the output of our models’ statistical properties, we focus on a few evaluation metrics
that tell us how well these models fit our data.

Table 4.8 Models Statistical Properties

Model 1 Model 2 Model 3 Model 4

95% CI p-value 95% CI p-value 95% CI p-value 95% CI p-value

state Size 0.02 0.03 <0.001 0.00 0.02 0.077 0.00 0.03 0.10 -0.07 0.03 0.4

end-to-end duration 1.1 2.2 <0.001 -2.2 1.9 >0.9

state size * end-to-end duration 0.00 0.00 0.032 0.00 0.01 0.2

state size * end-to-end duration 0.06 0.18 <0.001 -0.03 0.20 0.2

state size * window size 0.00 0.00 0.003 0.0 0.0 >0.9

end-to-end duration * window size 0.00 0.01 0.3

state size * end-to-end duration * window size 0.00 0.00 0.024

Confidence Interval (CI) / Confidence level (95%). Sample size impacts the CI and confidence
level estimate. Larger sample sizes normally lead to higher confidence levels. A confidence
interval with zero value may indicate no significance in the parameter’s relationship. This is
frequently how confidence intervals are interpreted, but this could be incorrect, as shown by
other relevant statistical properties. Rather, it indicates uncertainty. Having a confidence interval
of zero indicates that an independent variable could have a positive (>0) or negative (<0) effect
on the rescaling duration. However, considering the volume of our sample size, we focus on
other statistical metrics like the R-squared, Adjusted R-squared and p-value.
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P-value. Statistical significance is defined as a p-value less than 0.05 (<0.05). It indicates
strong evidence against the null hypothesis, representing the likelihood that our data would have
occurred under the null hypothesis. As a result, the null hypothesis is rejected, and the alternative
hypothesis is accepted.

Table 4.9 Comparison of Model Performance Indices.

Name R2 R2(adj). RMSE Sigma AIC weights BIC weights

Model 1 0.635 0.615 7.076 7.458 <0.001 <0.001

Model 2 0.937 0.925 2.937 3.283 0.158 0.579

Model 3 0.843 0.813 4.644 5.193 <0.001 <0.001

Model 4 0.964 0.944 2.212 2.855 0.842 0.421

Table 4.9 evaluates the performance quality of each model. Model 4 has the better perfor-
mance indices results, followed by Model 2. Figure 5 gives a pictorial representation of the
model performance indices comparison.

R-squared (R2) is the correlation between the known outcome and model-predicted values.
Values closer to 1 indicate models with a good fit; Adjusted R-squared (R2 (adj)) is usually lower
than or equal to R2. Similarly, A model with accurate predictive capability has a value of 1, while
a model with weak or no predictive value has a value of 0 or less; Calculating the Root Mean
Square Error (RMSE) is one way to determine how well a regression model fits a dataset, by
measuring the average distance between the predicted values of the model and the actual values
in the dataset. The lower the model’s root mean square error, the better it fits a dataset; Sigma
(standard deviation) quantifies the degree to which a process deviates from ideal performance.
Furthermore, for model selection, Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) are frequently utilised for model selection. AIC picks the best-fit model that
explains the most variance with the fewest independent variables, while BIC assesses how likely
a model is to be accurate. Lower AIC and Bayesian Information Criterion (BIC) scores are
preferable.

Further comprehensive model checks were carried out to check each model’s assumptions like
collinearity, normality of residuals, linearity, homogeneity of variance and influential observation.
The result indicates a multicollinearity issue in Models 2, 3 and 4, each with a Variance Inflation
Factor (VIF) above 10. Concerning the normality of residual, models 2 and 4 are normally
distributed, result on linearity showed that model 2 data points are fitted closer to the residual
line compared to other models, which suggests that it has a better predictive performance. The
result of influential observation shows that model 4 and 2 has the highest leverage and residual,
which indicates a strong influence on the observation by these two models.

Model 4 and Model 2 both stand out to be the most efficient for our experiment. However,
we shall investigate further to get the best amongst the two. There are a few reasons why training
set statistics such as those presented in the previous section may be overly optimistic:
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i. Random forests, neural networks, and other machine learning methods can effectively
memorise the training data set. Re-predicting the same set of data will always produce
near-perfect predictions.

ii. The training data set cannot accurately predict performance because it is not an independent
data set.

Fig. 4.7 Comparison of Model Indices.

Consequently, Cross-Validation (CV) is applied to our training data, which splits the training
data further into the assessment and analysis set. An assessment set in the tidymodel framework
is a set of data to measure the CV’s performance, while analysis data sets are used to train and fit
the models [66]. Figure 4.8 illustrates the CV resampling method architecture. The objective
is to further measure our model’s performance using some performance statistics. Due to the
volume of our data, we created a 4-fold CV. This randomly allocates the 20 cells in the training
data set into four groups (“folds”) of equal sizes.

For the initial iteration of resampling, the first fold of approximately five cells is held out
for performance measurement. In comparison, the remaining 75% of the data (approximately
15 cells) is used to fit the model. After training the models on the analysis set, the four models
are applied to the assessment set to generate predictions. Next, we compute the performance
statistics for each model based on the predictions’ results. Table 4.10 shows the resampling
results and performance statistics from the 4-fold cross-validation. The performance statistics
used are the RMSE and the R2.
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Model 2 appears to be the most efficient model considering it has the lowest RMSE mean
value and the highest R2 mean value. However, Models 4 and 2 could compete for superior
performance if subjected to a larger data set.

Fig. 4.8 Cross-Validation Resampling Method Architecture [66]

Table 4.10 Performance Statistics Metrics for Each Model

Models Model 1 Model 2 Model 3 Model 4

metrics RMSE R2 RMSE R2 RMSE R2 RMSE R2

mean 7.690 0.707 3.430 0.977 5.720 0.791 7.54 0.818

standard error 0.309 0.077 0.635 0.012 0.794 0.022 1.22 0.041

4.6 Summary of Experimental Results

In the previous section, we used different strategies to train and test the efficacy of our models.
Resampling enables us to simulate how well our model performs on new data, while the test set
serves as the final, unbiased validation of the model’s performance. We now apply the model’s
predictive ability to our test data set.
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Table 4.11 Linear Models Applied to Test Data

Rescaling Duration (mins)
Predicted Duration

Model 1 (mins) Model 2 (mins) Model 3 (mins) Model 4 (mins)

3.75 5.65 2.81 0.49 3.29
4.91 7.94 4.74 8.03 6.61
5.71 7.99 6.13 8.04 6.88
8.30 5.02 2.57 -3.36 1.36
14.17 18.10 15.50 20.10 15.00

Table 4.11 shows the result of predicted results by each model placed side by side with the
actual values of the test data set. Values in the "Rescaling Duration" column are the known test
data set aside when we carried out the 80/20 split operation. The predicted rescaling duration
values are the predicted values generated by each model. The predicted results (bolded) are the
closest predicted values produced by each model. Following these prediction results, Models 2
and 4 have a better predictive performance capability than other models.

State Size Forecasting.

We apply our model to a real-world use case, aiming to show the general applicability of our
model to common use cases. We leverage experimental data measurements from the Rule-Based
Event Aggregator (RBEA) [14].

We extracted measurements of five distinct RBEA deployments, spanning from 100 to 500
GB of global state. The end-to-end duration was set to 9 milliseconds based on empirical
knowledge. We applied our Model 2 to estimate the rescaling duration for each state size
measurement.

The results (83 sec, 149 sec, 215 sec, 281 sec and 347 sec) show a linear growth in the
rescaling duration that correlates with state size. Based on the result, it will take between 83-347
seconds to auto-scale the RBEA global state size.

We also measured Model 2’s mean prediction values of rescaling duration over the forecasted
state size values with the upper and lower limits prediction limits. As the state size grows, so do
the upper and lower limit prediction values. An estimate will always have a level of uncertainty
associated with it, which depends on the data’s underlying variability and the sample size. The
more variable the data, the greater our estimate’s uncertainty. Similarly, as the sample size
increases, we gain more information and thus reduce our uncertainty [72]. A limitation of the
current modelling approach is the prediction of negative values. These negative predictions may
be caused by the speculative approach of manually allocating corresponding end-to-end duration
to match each forecasted state size. This can be explored in future work to prevent the model
from predicting negative values.
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4.7 Conclusion

Our experimental findings highlight the importance of state size during rescaling, demonstrating
that with the accumulation of more state, the time to auto-scale also increases. More state could
have accumulated during a rescaling time window, and this could mean constantly rescaling and
falling short of resources which will lead to multiple rescaling of the application. This repetitive
task could harm system performance.

Four predictive regression models were developed and trained with the existing data set,
leveraging resampling cross-validation. Model 2 was chosen as the most efficient based on the
performance statistics and predictive performance, followed by Model 4.

Next, we use Model 2 to predict the rescaling duration of a running application over some
forecasted state size values. Results show that it will take approx. 6 minutes to auto-scale when
the application state size reaches 500GB. In a constantly changing and unpredictable distributed
data streaming environment, a lot could happen in 6 minutes. We, therefore, recommend that
forecasting workload characteristics and state size growth rate is very relevant when developing
a scaling policy to enable a streaming application to handle unanticipated resource demand.

Our predictive model can be applied by the broader user base to assess the rescaling time of
streaming applications. However, it’s important to note that users might need to tailor the model
to their specific system environment, as different characteristics and factors in other domains
like volume of data, imbalance in the variable distribution outcome can influence the model’s
performance and effectiveness.

4.7.1 Experimental Challenges

In this sub section, we provide bullet points of experimental challenges faced while carrying out
this experiment and limitations of the overall experimental body. This is listed in no specific
order.

• The volume of data used for this experiment was very small, and hence our machine
learning model was limited to this low volume of data. It is my desire that a large dataset
is used to train these models.

• A limitation of the current modelling approach is that it predicts negative values in the
mean prediction values. Further work could explore a different model that would not
permit negative values. e.g. gamma GLMs [24].

• Flink exposes the state size of a stream application after a checkpoint. This makes getting
information about a running application state impossible until a successful checkpoint is
taken. Checkpoint operations struggle and eventually fail when the state size becomes
bigger. Even when checkpoint intervals are carefully chosen, this interval selection decision
can easily become sub-optimal once a checkpoint takes a longer time to complete than
expected.



78 Modelling of Time and Resource Requirements to Perform Rescaling

• This experiment was run on my local bare metal machine. Therefore, my Flink streaming
application is limited to the computational capacity of my machine. Therefore, limiting
the experimental processing capacity.

• The process of redeploying and consuming Flink API, though largely done through a Java
class and shell scripts but triggered manually. Updating the Nexmark workload parameter
(change the state size values) and rebuilding the project artefact after each deployment is
also manually done.

• Predicting a corresponding end-to-end duration to state size was difficult. Hence, we
adopted a static approach of forecasting five milliseconds based on speculative assumption.
This could be potential limitation of this experiment

4.7.2 Future Work

In this subsection, we provide bullet points of future direction and next steps that could be useful
and complementary to this body of research. This is listed in no specific order.

• Developing an adaptive approach leveraging our models in this chapter within DS2’s
scaling policy to govern rescaling decisions.

• Evaluate the performance impact of a long-running checkpoint process on the stream-
ing application with respect to overlapping checkpointing operations without delaying
subsequent scheduled checkpoints [23].

• Develop a model to predict the corresponding end-to-end duration of a state size instead of
the manual approach used in this experiment. The end-to-end duration is system-generated
and dependent on the system state size.

• Identify and measure the effectiveness of other metrics like backpressure, etc. and check
for correlations between this metric, the application state, the operators true processing rate
and any other interesting correlation and trend that should be considered when rescaling.



Chapter 5

Impact of State Size on Streaming
Operator Throughput

Chapter Summary

In stream processing applications, accurately measuring a system’s processing capacity is critical
for ensuring optimal performance and meeting SLOs. Traditionally, operator throughput has been
used as a proxy for the application’s state size, but this approach can be misleading when dealing
with window-based applications. In this chapter, we explore the impact of window selectivity
on the performance of streaming applications, demonstrating how a growing application state
can artificially decrease the operators’ throughput, resulting in false positives that could trigger
premature scaling-down decisions. To address this problem, we conduct empirical evaluations to
assess the relationship between operators’ throughput and state size. Showcasing that the state
size pattern typically does not correspond to the operator’s processing rate in window-based
applications. Our findings highlight the importance of considering the state size of the application
in performance monitoring and decision-making, particularly in the context of window-based
applications [92].

5.1 Introduction

Dataflow execution in streaming processors involves encapsulating distributed operator logic
centred on records, intending to describe complex data pipelines. In Flink-based data processing
pipelines, a consistent application state is a critical element and persisted using a modular state
backbone. When required, the system orchestrates failure recovery and reconfiguration (scale-
out/in) without significantly impacting execution or violating consistency [9]. Apache Flink is
an open-source framework that offers stateful stream processing capabilities that are scalable,
distributed and fault tolerant.

A distributed system involves a computing setup where processing tasks, data, and resources
are dispersed across multiple interconnected nodes or machines. These nodes collaborate to
process and analyze an uninterrupted flow of data in an effective and expandable way. Gener-
ally, Flink’s distributed systems are designed to present a unified front to the user, hiding any
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challenges tied to their decentralized arrangement. When utilizing such a distributed computing
system, we often need to assume the state of a pipeline being employed in real-world situations
at a particular time.

The technique of snap-shotting in streaming systems has been utilised for a considerable
duration [143]. It has been rigorously tested in production at some of the largest stream processing
deployments on thousands of nodes handling hundreds of gigabytes of state [14].

Checkpointing is a crucial and practical crash-tolerant strategy to store the process state
during normal operation and quickly restore it after a failure. However, choosing the checkpoint
frequency to reduce a suitable cost function would be the primary interest question for different
research use cases. Knowing the conditions where checkpoints are useful and where they are
not will help optimize the performance of a streaming application [34]. In this experiment, we
investigate the utilisation of the application state from two distinct layers. Initially, we utilise
the Flink API to gather and exploit Flink’s checkpointing state. Subsequently, we analyse the
constituents of the state in our workload to comprehend its internal mechanisms and track the
progression of these constituent elements over time.

Flink’s runtime ensures that managed state is always consistent, in the event of a partial
failures or changes in the workflow topology, like upgrades to the application code or parallelism
change. The size of an application’s state is the amount of memory or storage space needed to
store the application’s current state. Data like user preferences, current settings, and any other
details required for the application to operate properly might be included in this. During the
design and development process, the size of the application state is frequently a crucial factor to
consider because it can significantly affect the program’s performance and usability.

Fig. 5.1 State Growth Despite a Declining Operator Throughput

Offered load refers to the volume of data that the system needs to process at any given
time. It is a measure of the amount of data that is being ingested or generated by streaming
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sources. The offered load is typically measured in terms of the number of data units (e.g. events,
messages, records) that are being processed per second. The offered load can be affected by
various factors, such as the number of users, the complexity of the tasks being performed, and
the system resources available. In this chapter, more emphasis is placed on the state size and
its impact on operator throughput as well as the impact of the choice of window length and the
sliding period chosen. The objective is to evaluate the processing capacity of our streaming
operators over bigger state sizes and to analyse the impact of window selectivity amongst various
deployments. To achieve this, we adopted two workloads: Nexmark Query 3 and Query 5.

Figure 5.1 illustrates a non-alignment between the state size and the operator’s throughput
of a streaming application. Without sufficient knowledge of the relationship between these two
metrics poses a potential challenge for auto-scalers. In a scenario where an operator, for example,
has a window of 1 hour, if the offered load (arrival rate) stops or reduces either because a sensor
fails or due to a lack of customers, most auto-scalers will recommend downscaling, but the state
size of that operator could still be maintained due to the window. This will mean scaling down
too quickly while the state size is still large and creating additional time to recover. Our previous
paper shows the impact of state size on auto-scalers’ rescaling time [90].

In this chapter, we make the following contributions in this chapter:

• First, we demonstrate that offered load is an inadequate proxy for state size.

• Second, we model the impact of growing state size on operator processing capacity.

• Third, we show that flink heap memory has an effect on the growth of the state and the
operator’s performance.

• Finally, we show the importance of carefully selecting an appropriate window size and
criteria to balance the selectivity and accuracy of the window operator, taking into consid-
eration the performance requirements of the streaming application.

5.2 Evaluating The Impact of System Resource On Operator
Throughput

Most public and private cloud systems require users to specify resource needs for running their
workloads efficiently. For example, users must select the type and quantity of VM they will
rent on public cloud platforms; in a Kubernetes cluster, users must specify the number of pod
replicas and the resource limits for individual pods; Google requires users to identify the number
of containers they require as well as the resource limits for each [107]. These restrictions allow
the cloud architecture to provide appropriate resource utilization estimates, which makes cloud
computing possible.

Limits, however, are (often) frustrating to the user. It is challenging to predict how many
resources a job will require to function at its best, including the proper ratio of CPU power,
memory, and the number of copies operating simultaneously. Load tests may be useful to
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discover an initial estimate. However, because many end-user serving activities have daily or
weekly load patterns, and traffic changes over longer time scales as a service gets popular, these
estimates will become outdated as resource needs vary over time. Finally, as the underlying
software or hardware stack gets updated, optimised, or added new capabilities, the resources
required to handle a particular load change accordingly. When the requested resources are
exceeded, the performance may suffer if the CPU is capped, or the process may be terminated
because the memory is exhausted [107].

Apache Flink Heap Memory

Apache Flink is a distributed streaming data processing framework that uses heap memory to
store and process data. Heap memory is a region of memory that is dynamically allocated by
the Java Virtual Machine (JVM) at runtime and is used to store objects and data structures. In
Flink, heap memory is used to store the state of a running job, as well as to buffer and cache
data. The amount of heap memory that is allocated to Flink can have a significant impact on the
performance and stability of a Flink job.

When Flink is running, it will dynamically adjust the amount of heap memory that it uses
based on the amount of data that it needs to process. If there is not enough heap memory
available, Flink may experience performance issues or even fail. To avoid these issues, it is
important to configure Flink with an appropriate amount of heap memory.

In order to configure heap memory for Flink, it is possible to specify the JVM options
jobmanager.heap.mb and taskmanager.heap.mb: during the initiation of the Flink job man-
ager or task manager. The jobmanager.heap.mb option sets the maximum amount of heap
memory allocated to the job manager that Flink can use during the taskmanager.heap.mb op-
tion sets the maximum amount of heap memory allocated to the task manager. It is recommended
to set the jobmanager.heap.mb and taskmanager.heap.mb options to the same value to avoid
heap memory fragmentation [50]. It’s important to monitor the heap usage during the execution
of a Flink job. If you see that the heap usage is reaching the maximum heap size, it means that
the job is running out of memory and you should consider increasing the heap size or reducing
the data size to prevent the job from failing.

Flink Heap Size Impact Assessment Experiment

To determine the impact of Flink’s memory on the processing capacity of the operators, we
run an experiment with the following parameters as contained in Table below. This experiment
consists of 3 deployments, each with a constant source rate and window size. However, the heap
memory value is reduced by 50% for each deployment, starting with an initial heap memory of
6144 MB.



5.3 Application State Size Dynamics 83

Table 5.1 Flink Job Manager and Task Manager Memory Configuration Experiment

Deployment Data Source rate Checkpoint Interval (mins) window size(mins) State Size (MB) Heap Size

1 10,000 02:00 240 435 6,144

2 10,000 02:00 240 435 3,072

The source rate is set to 10,000 records/second. Each deployment time is set to 2 mins and
a checkpoint is also triggered every 2mins. In the end, we measure the observed processing
rate for each deployment, and we show this in Figure. The result shows a that the deployment
with bigger heap memory enabled the operator to process more records compared to the other
deployment with smaller heap memory. These results therefore suggest that, in configuring a
Flink infrastructure, the allocation and choice of heap memory must be carefully allocated to
consider the workload, state size and desired operator processing rate.

Fig. 5.2 Visualisation of Observed Processing Rate for Different Heap Memory Sizes of 3072
and 4144 MB.

5.3 Application State Size Dynamics

Distributed stream processing engines like Flink are commonly designed to provide users with
the perception of a unified entity while simultaneously masking any challenges associated with
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their distributed architecture. In the context of utilising a distributed computing framework
such as Flink, it is common practice to establish certain presumptions regarding the current
state of a pipeline that is actively employed within real-world situations. When rolling back a
computation’s full execution to the moment that its global state was captured, it is crucial to refer
to the entire distributed state of the calculation as an atomic unit.

When reconfiguration is necessary or a partial failure prevents the pipeline from running prop-
erly, this is critical. The term "rollback recovery" is typically used to describe this strategy [32].
Distributed snapshotting protocols make it possible to roll back recovery by making an exact, full
copy of the current state of a distributed execution. [21]. A directed graph of nodes and edges
is an abstract representation of a distributed system, which is essentially a group of processes
linked by data channels. The nodes and edges of such a network always represent the whole
state during continuous system execution. In order to prevent the loss of any computational state
or data, a consistent snapshot should capture the full state while taking execution dependencies
into account..

5.3.1 Managed State

To retain a summary of the data viewed thus far, each stream action in Flink can declare its own
state and update it continually. State is a fundamental component of a pipeline since it contains
the complete status of the computation at any given point [14]. The conceptual foundations of
the managed state are divided into two areas. For purely data-parallel stream operations, like
getting an average for each key, the calculation, its state, and any other streams that go with it
can be properly scoped and done separately for each key. Similar to how a relational GROUP
BY assigns rows with the same key to the same set to calculate grouped aggregates, this also
computes aggregates. This state is referred to as Keyed State. State can be stated at the level of
an Operator State job, which is a parallel physical data flow task, for local per-task computations
like a partial machine learning training model. The system’s runtime manages and transparently
partitions Keyed State and Operator State. Moreover, the system may ensure that any update
actions on managed state will be mirrored exactly-once with respect to the input streams.

Keyed-State

Any computation in a data-parallel stream that is mapped to a user-defined key space will scope
with the computation and any related state. The system typically receives data-stream records
that contain a domain-specific key, like a user session ID, geo-location, or a device address.
Flink allows a user to use the key in the broadest sense by: S −→ K operation offered by the
DataStream is an abstract type that lets you map any record from its model domain to a given
keyspace. Under the key scope, state can be flexibly assigned within a user-defined function by
using certain collections that the model makes available through the API and changing based on
the state’s properties.
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Operator-State

Within the granularity of each concurrent instance of a task is another scope upon which state
and computation can be stated (task-parallel). When a computation only applies to one particular
physical stream partition, when a key cannot be used to scope state, the Operator-State is
employed. This scope is used, for instance, by a Kafka ingesting source operator instance that
must maintain offsets to specific Kafka partitions [132]. Operator-State follows a distribution
scheme that, if possible, breaks state into smaller, more granular units. This enables the system
to redistribute state when the operator’s parallelism changes.

5.4 Evaluating The Impact of Window Selectivity Across Var-
ious Deployments

Window selectivity is an important concept in stream processing applications, where data is
processed as it arrives in real time. Selectivity refers to the ability to filter and process only the
relevant data within a specific time window. However, in practice, the length of the window
and the sliding window period can vary widely between deployments, leading to variations in
selectivity. These variations can impact the effectiveness and efficiency of stream processing
applications, as well as the accuracy and reliability of any downstream analysis or, in this case,
the query result [44]. Therefore, understanding the likely performance implications of the
window size and slide period configuration choice is crucial to meet optimal business needs of
streaming applications that rely on window-based processing.

5.5 System Design

Figure 5.3 shows our experimental pipeline setup and the relationship among the various unit of
our setup. These units are self-contained, which makes it easy to scale the experiment. This setup
architecture has four major areas: the data source (Nexmark Query 3 & Query 5), Streaming
framework (Flink and DS2 scaling controller), Visualisation (we interrogate the offered load and
state size and show their relationship and impact), and Datastore (this is stored in a local file).
Our experimental aim is to simulate a growing application state size of a streaming environment
and measure the impact on the operator’s observed processing rate. We also collect the system
resource utilisation metrics to know the highest resource-consuming system users during the
experiment.
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Fig. 5.3 Experimental System Architecture (Chapter 5)

Hardware and Software Configuration. Tables 5.2 and 5.3 show this experiment’s hardware
and software configuration parameters.

Table 5.2 Standalone Hardware Configuration (Chapter 5)

Hardware Configuration

CPU Intel® Core™ i5-8500 CPU @3.00GHz
CPU Cores 6
Memory 16GB
Disk 1TB
NIC 1000 Mbps
Kernel Version 4.15.0-74-generic

Table 5.3 Software Configuration (Chapter 5)

Software Version Number of instances

OS Linux 84-Ubuntu 1

Flink 1.4.1 1

R Rstudio 2021.09.0 Build 351 1

IntelliJ IDEA 2019.3.3 (Ultimate Edition) 1
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5.5.1 Nexmark Workload

Nexmark Query 3

Nexmark Query 3 is a complex data processing query that involves filtering, joining, and
aggregation operations. The architecture of Nexmark Query 3 typically involves the following
components:

i. Data source: The source generates a stream of auction and person events. Here we
have two java classes the PersonGenerator.java and the AuctionGenerator.java
class. the PersonGenerator.java generates person events, which contain informa-
tion about the person, such as their name, email, credit card, state, and city, while the
AuctionGenerator.java generates auction events, which contain information about the
auction, such as the auction ID, the seller ID, the initial bid and the description.

ii. Filtering: The filtering component filters out irrelevant events based on certain criteria,
such as the event type and the auction state.

iii. Join: The join component combines the filtered auction events with the filtered person
events based on the person ID. The join operation results in a stream of auction-person
pairs.

iv. Aggregation: The aggregation component aggregates the joined events based on the
person’s city. The aggregation operation computes the total number of auctions for each
city.

v. Key-value store: The key-value store is used to store the state of the aggregated results.
This store is updated every time a new event is processed, and the results are aggregated.

vi. Sink: The sink component consumes the final results of the aggregation operation and can
output the results to a file, a database, or a message queue.

The architecture of Nexmark Query 3 is designed to process a large volume of events in real-
time, the choice of implementation and configuration of the system will depend on the specific
requirements of the use case. In this experiment, our objective is to instrument the workload
to generate a bigger state size that is required to test our hypothesis. The workload consists of
various classes and components working together to perform the operations required by Nexmark
Query 3 and process a stream of events in real-time. The summary of the workload operation is
summarized in the equation below:

SELECT Istream(P.name, P.city, P.state, A.id)
FROM Auction A [ROWS UNBOUNDED], Person P [ROWS UNBOUNDED]
WHERE A.seller=P.id AND

(P.state=’OR’ OR P.state=’ID’ OR P.state=’CA’)}
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In the case of Nexmark Query 3, the flatMap function is used to apply a series of operations
to the stream of auction and person events. The function starts by filtering the events using the
PersonFilter and AuctionFilter classes, which only allow events that match certain criteria
to pass through. The filtered events are then joined using the Join class, resulting in a stream
of auction-person pairs. Finally, the joined events are aggregated using the Aggregator class,
which computes the total number of auctions for each city. The flatMap function is an important
part of the Nexmark Query 3 architecture, as it allows the system to process a large volume
of events in real-time and produce the final results of the aggregation operation. To enable my
workload to retain more state, I disabled the default operation of removing the person.id from
the auctionMap collection.

Nexmark Query 5

In Nexmark Query 5, the state size management of a windowing operation is a crucial factor
that can impact the query’s performance. It allows the query to process events in a sliding time
window, which can be used to aggregate events over a certain period [119]. The size of the
window determines the amount of time for which events are aggregated and stored in state.
When a sliding window is used, the state size can increase over time as new events are added to
the window and older events are discarded [114]. State size management involves controlling
the size of the state by managing the window size, the number of windows, and the number of
events stored in each window. The objective is to keep the state size within acceptable limits
while ensuring that the query maintains an optimal latency and throughput. The selection of a
parameterisation method for a sliding window has an impact on the state size.

time: - - - t+00- - -t+15- - -t+30- - -t+45- - - -t+60- - ->
: : : :

W1: | = = = = = = = = | : :
W2: | = = = = = = = = | :
W3: | = = = = = = = = = |

Fig. 5.4 Three sliding windows, with overlapping elements across windows.

A sliding time window can overlap, as shown in Figure 5.4 but it still represents time periods
in the data stream. For instance, each window might record data for 30 seconds, but a new
window might start every 15 seconds. The period refers to how frequently sliding windows open.
As a result, our example’s window and period would both be 30 seconds long. in my query 5
workload, I update the following parameters to generate more state.

.timeWindow(Time.minutes(60), Time.minutes(1))

The aforementioned parameter pertains to the configuration of the time window for a stream
processing application in Apache Flink. Sliding window size can be determined by the number
of data items or the duration of a period, among other factors. Sliding window period indicates
how frequently a new input window can be initiated and can also be based on time, count, or a



5.5 System Design 89

predicate. Time.minutes(60) sets the sliding window size to 60 minutes. Data in the stream will
be grouped and processed every 1 minute, across a past horizon of 60 minutes. Time.minutes(1)
defines the sliding window period. Each processing step advances the window by 1 minute.
Thus, each processing step creates a new window that spans data from the previous minute to the
present minute and discards the prior window.

Other common windowing approaches are tumbling or fixed windows, as shown in Figure 5.5
below, where the size of the window is fixed, and events are processed in batches. Tumbling
windows have the advantage of being simple to implement and easy to manage, but they can
result in high latency and may not be suitable for processing real-time events. Increasing the size
of the sliding window period can result in a larger state size and a higher memory footprint, even
when the window period is not completed, due to the increased amount of data that needs to be
stored in memory

time: - - - t+00- - -t+15- - -t+30- - -t+45- - - -t+60- - ->
: : : :

W1: | = = = = = = = = | : :
W3: | = = = = = = = = = |
W2: | = =

Fig. 5.5 Tumbling windows, with non-overlapping elements across windows

as intermediate results [69]. This trade-off must be carefully considered when configuring
the sliding window period to ensure that the application can handle the increased state size while
still delivering the desired performance and scalability. State size management is a crucial aspect
of designing a scalable and performance streaming application, and it is important to choose the
appropriate windowing operation and state size management strategy based on the requirements
of the application [9]. Additionally, larger windows may result in longer processing times, as
more data needs to be processed for each window, which can impact the overall performance
and scalability of the application [69].

5.5.2 Experimental Setup

In this chapter, we ran four major experiments using two different workloads. The first and
second experiments aim to show the impact of state size on operators processing capacity. In
these experiments, we leverage Nexmark Query5 and Nexmark Query 3 workloads. The third
and fourth experiment seeks to examine the impact of window selectivity on state size. This
experiment also uses Nexmark Query5 workload.

First Experiment (State size impact on capacity using NexMark Query 5)

Modelling impact of offered load on state size. The aim of this study is to demonstrate the
impact of a growing state size on the processing capabilities of streaming operators. We keep
a constant arrival rate of 20,000 records/seconds with a transient window size (20, 40, 60, 80,
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100, 120, 140, 160, 180, 200, 400 and 600 minutes). The reason for selecting these window
sizes was to establish a consistent upward trend in state size. The study involved conducting 12
deployments, each with a consistent checkpoint interval of 10 minutes as shown in Table 5.4. The
total deployment circles were carried out during a single experimental period. Upon completion
of each experiment, the observed and true processing rates are collected for each sliding window
configuration as well as the state size metrics for each deployment.

Table 5.4 First experiment configuration parameters

Deployment Data Source rate Checkpoint Interval(mins) Window size(mins) Back Pressure Status

1 20,000 10:00 20 OK

2 20,000 10:00 40 Low

3 20,000 10:00 60 High

4 20,000 10:00 80 High

5 20,000 10:00 100 High

6 20,000 10:00 120 High

7 20,000 10:00 140 High

8 20,000 10:00 160 High

9 20,000 10:00 180 High

10 20,000 10:00 200 High

11 20,000 10:00 400 High

12 20,000 10:00 600 High

After concluding 12 executions of the first experiment measuring the effect of state size on
capacity using NexMark Query 5, the harmonised results from the 12 executions is depicted in
Figure 5.6 illustrate the processing capability of the true and observed processing rates in Query
5. As indicated previously, we maintained a constant arrival rate of 20,000 records per second
with a window size of 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400, and 600 minutes.

During the initial warm-up phase of this experiment as shown in Figure 5.6 system resources
are typically underutilized, leading to a surge in the true processing rate, reflecting the system’s
higher processing capability when resources are readily available. However, as the system
becomes fully engaged and resources are more efficiently utilized, the true processing rate
decreases from its peak, aligning more closely with the actual processing capacity of the system
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under sustained workloads. In contrast, the observed processing rate accurately reflects the
number of records processed (20,000/records), considering real-world factors such as seriali-
sation/deserialisation and processing complexities, providing a more practical measure of the
system’s performance in steady-state conditions. This dynamic interplay between the true and
observed processing rates showcases the system’s ability to adapt and optimize its resource
utilization as it transitions from an initial high-capacity state to a more stable operational mode.
A consistent decrease in the processing rate is observed with an increase in state size caused by
the increase in window size as demonstrated by the data spanning from 1:30 minutes to 2 hours.

Fig. 5.6 Evolution of True and Observed Processing Rates for Nexmark Query 5.

The findings depicted in Figure 5.7 demonstrate the relationship between the observed processing
rate and the growth of state size. we measured the observed processing rate because it gives the
exact number of records processed by the operator. A decrease in the processing capacity of
operators is noted with the increase in state size over time. The findings of this study provide
evidence in favour of our hypothesis that a higher state could impact the throughput of streaming
operators.
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Fig. 5.7 For Nexmark Query 5, the Evolution of Observed Processing Rates and the Interplay
with Application State.

Second Experiment (State size impact on capacity using NexMark Query 3)

The preceding experiment were conducted utilising Nexmark Query 5, which serves as an
exemplar of sliding window and combiner. Consequently, we proceed to evaluate the state size
impact on operator capacity using Nexmark Query 3, which serves as an exemplar of incremental
join and filter. Query 3 comprises five operators. (Auction, Person, Filter, Incremental Join and
Sink). The value of each operator’s parallelism has been set to one since we are running on a
single-node cluster installation.

Table 5.5 Second experiment configuration parameters

Deployment Source Rate Checkpoint Interval (mins) Deployment Time Back Pressure Status

Auction Person

1 1,000,000 500,000 2 15mins OK

The workload comprises two source operators, namely the Auction operator and the Person
operator. The Auction source has a data processing rate of 1,000,000 records per second,
whereas the Persons source has a rate of 500,000 records per second as shown in Table 5.5.
The arrival rate specified is deemed adequate for producing the necessary state size as per the
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requirements of this experiment. The duration of deployment is 0.25 hours, while the frequency
of checkpoint intervals is 2 minutes. During the experimental deployment, the system underwent
seven checkpoints and state metrics were collected for each of them.

Fig. 5.8 For Nexmark Query 3, the Evolution of Observed Processing Rates for Filter and
Incremental Join operators, and the Interplay with Application State.

Unlike the Query 5 workload, We experienced no back pressure effect in for this experiment,
giving us a fare judgment without a backpressure effect. We collect the true and observed
processing rate of the Filter and Incremental Join operator and the result also shows a decline
in the operator’s true and observed processing rate over time as the state size grows. Similarly,
Figure 5.8 the evolution of processing rates for Filter and Incremental Join operators, and the
interplay with application state.

Third Experiment (Relationship between parameters of sliding window length and state
accumulation)

Building upon the findings of the second experiment, a comprehensive analysis is conducted on
the individual data components that comprise the Query 5 workload state. The objective is to
augment our comprehension of the internal mechanisms of the application state and to evaluate
and compare the impact of various window size configuration on a stream processing system.
A transient offered load is implemented, consisting of three distinct tasks. Each task exhibits
an arrival rate that initially increases and subsequently decreases, following a predetermined
sequence (100,000, 200,000 and 50,000). Each task has a duration of one minute.
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The available window sliding periods are 5, 10, and 20 seconds. A sliding window size of 30
seconds is upheld for all deployments, while the overall duration of the experiment is estimated
to be around 3 minutes. Following this, the auctions, bids, and date time values are collected,
and subsequently, the quantity of bids produced in each window configuration is assessed. The
absence of back pressure in this experiment allows for a focused examination of the effects of
windowing in a narrow window size, contingent upon the chosen window size configuration.

Table 5.6 Third experiment configuration parameters

Deployment Source Rate Deployment Time (mins) Window size (sec) Sliding Period (sec)

Task 1 task 2 task 3

1 100,000 200,000 50,000 3 30 5

2 100,000 200,000 50,000 3 30 10

3 100,000 200,000 50,000 3 30 20

In the following, we present Figures 5.9 and 5.10, which depict the impact of windowing
on instantaneous state size with a sliding window size of 30 seconds, with sliding periods of
5,10 and 20 seconds respectively. Figure 5.9 illustrates how state size evolves over time. We see
comparable results during the rising arrival rate phase in the first 1.5 minutes. We see the greatest
divergence when the arrival rate drops. We see the 5-second slide length responding most rapidly,
while longer slide lengths retain elevated state sizes for a longer period. This elevated state size
represents a gap not currently captured by approaches which leverage instantaneous arrival rate
as a proxy for state size.

Figure 5.10 depicts the facets pertaining to the configuration of the individual sliding window,
which aligns with the source injection rate. Reducing the sliding period yields increased
granularity in the obtained results, as demonstrated below.

The percentile value of state size over the experimental period for various window configu-
rations is illustrated in Figure 5.11 below. A consistent window size of 30 seconds is upheld.
Each line on the ECDF plot represents a different sliding period: the blue line represents a
sliding period of 5 seconds, the red line represents a sliding period of 10 seconds, and the green
line represents a sliding period of 20 seconds. Each step represents a change in the cumulative
proportion of sliding window periods that have observed a particular number of bids or fewer.
We observe a slower reaction in the longer sliding length configuration than the smaller length,
specifically around 0.75 proportion. This corresponds to the portion of our third experiment, in
which the offered load is decreased from 200,000 to 50,000 records per second. Similarly, we
demonstrate this trend in Figure 5.9, and Figure 5.10. We see a a greater degree of granularity
for the shorter window length of 5 seconds compared to sliding lengths of 10 and 20 seconds. It
is worth noting that due to the duplication of data elements that occurs in a sliding window, a



5.5 System Design 95

sliding period with shorter length yields increased granularity than a longer sliding period [114].
This is illustrated in Figure 5.10.

Fig. 5.9 Visualisation of state size (number of bids) for a window operator of length 30 second,
for different slide lengths of 5, 10 and 20 seconds.
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Fig. 5.10 Visualisation of state size (number of bids) for a window operator of length 30 second,
for different slide lengths of 5, 10 and 20 seconds.

Fig. 5.11 ECDF plot of instantaneous state size for a sliding window operator of 30 second, with
slide lengths of 5, 10 and 20 seconds.
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Forth Experiment (Relationship between parameters of sliding window size and state
accumulation)

Similar to the third experiment, the aim of this experiment is to examine the impact of different
sliding window sizes on the state size accumulation. A transient offered load consisting of three
distinct tasks is adopted. Each task has an arrival rate of 100,000, 200,000 and 50,000. Each task
has a duration of one minute. The available window size durations are 20, 40, and 60 seconds.
A sliding period of 5 seconds is upheld for all deployments, while the overall duration of the
experiment is estimated to be around 3 minutes.

Our experimental findings as illustrated in Figure 5.12, indicate that the 60 seconds window,
accumulated a higher number of bids in comparison to the 40 and 20 seconds window respectively.
When using a sliding window of a larger size, more data is accumulated in each window,
compared to a smaller window size. This is because the larger window size covers a longer period
of time or more events, which means that more data points are included in each window [114].

Table 5.7 Forth experiment configuration parameters

Deployment Source Rate Deployment Time (mins) Window size (sec) Sliding Period (sec)

Task 1 task 2 task 3

1 100,000 200,000 50,000 3 20 5

2 100,000 200,000 50,000 3 40 5

3 100,000 200,000 50,000 3 60 5
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Fig. 5.12 Visualisation of state size (number of bids) for a window operator of slide lengths 5
second, for different window sizes of 20, 40 and 60 seconds.

Figure 5.13 and Figure 5.14, demonstrate the impact of different window size configuration
parameters on the operators’ true and observed processing rate. The findings in both figures
provide evidence to substantiate the claim that streaming operators exhibit superior processing
capabilities in scenarios where the window sizes are comparatively smaller. Window size of 20
seconds has a higher processing potential than the 40 & and 60 seconds window.
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Fig. 5.13 For Nexmark Query 5, the evolution of true processing rates for different window sizes
of 20, 40 and 60 seconds.

Fig. 5.14 For Nexmark Query 5, the evolution of observed processing rates for different window
sizes of 20, 40 and 60 seconds.
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5.6 Summary of Experimental Results

Drawing from the results of the third and forth experiment, we analyse the influence of window
selectivity on operator processing to determine whether a corresponding effect exists between
the operators and the state size. The ECDF depicted in Figure 5.15 and Figure 5.16 portrays
the observed processing rate of the operators as observed during our windowing experiment.
A consistent window size of 30 seconds is upheld. Each line on the ECDF plot represents a
different sliding period. Each step corresponds to the change in the cumulative proportion of the
sliding window period.

Figure 5.15, shows a comparable processing rate for each windowing length configuration
during the rising arrival rate phase. However, we observe a slower reaction in the observed pro-
cessing rate in the longer sliding length configuration compared to the smaller length, specifically
around 0.65 proportion. This corresponds to the portion of our third experiment, in which the
offered load is decreased from 200,000 to 50,000 records per second. This suggests a potential
challenge to operators reaction to offered load in a window based application.

Fig. 5.15 ECDF plot of the evolution of observed processing rates for a sliding window operator
of 30 second, with slide lengths of 5, 10 and 20 seconds.

In Figure 5.16, A consistent window length of 5 seconds is upheld with different sliding
window sizes of 20, 40 and 60 seconds. Each line on the ECDF plot represents a different sliding
window size. We see a different behaviour in the operators processing rates for different window
size configurations compared to the window length. We observe a higher processing rate for the
smaller window size of 20 seconds compared to the 40 and 60 seconds window size. This is seen
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as early as 0.25 proportion, but it’s more common around 0.65 proportion, when the system has
accumulated more state.

Fig. 5.16 ECDF plot of the evolution of observed processing rates for a slide length of 5 second,
for different window sizes of 20, 40 and 60 seconds

In addition to the results shown above where we the see the impact of state size on the
operators observed processing rate, we further interrogate the system resource utilization capacity,
by checking the 10 top highest CPU and memory consuming user and our findings reveal that
the java runtime being the highest system CPU and memory consuming user process. This is
illustrated in Figure 5.17 and 5.18. The values for this experiment came from our first experiment,
which had 12 executions, each with a consistent checkpoint interval of 10 minutes and a total
experiment time of two hours. We keep a constant arrival rate of 20,000 records/seconds with a
transient window size (20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400 and 600 minutes).

This results shows the instantaneous time value of CPU time and share of physical system
memory the tasks has used since the last update. Following the results from the various experi-
ments carried out in this chapters, we observe a similar trend from the two workload (Nexmark
Query 3 & 5) used.
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Fig. 5.17 Top 5 CPU consuming processes during experiment

Fig. 5.18 Top 5 Memory consuming processes during experiment

Our experimental findings show that without sufficient knowledge of the relationship between
these two metrics pose a potential challenge for autoscalers. Streaming applications with larger
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state or long window size can lead to a slow convergence between the state size and the offered
load. Like DS2, that relies on the true and observed processing rate to make a rescaling decision,
most autoscalers do not consider the impact of state size when making the decision on when and
how to scale up or scale down a streaming application computational resource. Our experimental
results show that metrics like state size can force an autoscaler to scale down too quickly due to
a reduced offered load. However, this reduction in the observed processing rate is artificial and
not a natural reduction in the number of events injected per second. This leads the autoscaler to
make a wrong call, and will struggle to recover from the scaling process leading to inefficiency.

5.7 Conclusion

The experimental findings strongly support the assertion that larger window sizes lead to the
accumulation of a greater amount of state, thereby exerting a notable impact on the throughput
of streaming operators. This outcome is attributed to the fact that processing a larger number of
elements within the window significantly influences the observed processing rate of operators,
in contrast to smaller windows that encompass a smaller state. The evidence gathered from the
experiments underscores the critical role that window size plays in shaping the performance and
efficiency of streaming application operators, providing valuable insights for optimizing and
fine-tuning these systems in a window-based environment.

Stream processing applications that have a significant state or extended window duration may
experience variations in how the application state aligns with the operator throughput. Many
auto-scaling mechanisms do not account for the impact of state size when determining how to
scale. Our practical observations reveal that as the state grows, an auto-scaling system might
quickly downscale due to a decline in the operator’s processing rate. However, this decrease is
contrived and does not accurately depict the arrival rate. Such scaling decisions made by the
auto-scaler could pose challenges for effective rescaling and ultimately reduce efficiency.

To evaluate the effects of window selectivity options in streaming applications, an experiment
was done. We demonstrate the impact of different sliding window length configurations on
instantaneous state size. Therefore, our results lend credence to the claim that window size
selectivity is essential for streaming programmes to run as efficiently as possible in a windowed
environment.

To motivate early researchers who are unfamiliar with state management within the Flink
streaming framework, an experiment was conducted to assess the effect of system resources
on the throughput of streaming operators. Specifically, the impact of Flink’s memory on the
processing capacity of the operators was investigated. The findings indicate that the deployment
utilising a larger heap memory exhibited a greater capacity for processing records, whereas
the deployment utilising a smaller heap memory demonstrated a reduced processing capacity
as the state size increased. The aforementioned outcome implies that when setting up a Flink
infrastructure, the allocation and selection of heap memory should be meticulously considered
with regards to the workload, state size, and desired operator processing rate. Additionally, it
has been demonstrated that with an increase in state size, the Flink execution process utilises a
significant proportion of the central processing unit and physical memory of the local machine.
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Subsequently, the expansion of the state size and depletion of system memory resources can lead
to process crashes.

5.7.1 Experimental Challenges

In this sub section, we provide bullet points of experimental challenges faced while carrying out
this experiment and limitations of the overall experimental body. This is listed in no specific
order.

• Longer window length enables bigger state size. However, this forces the experiment to
crash when a longer (for example, 10mins) checkpoint interval is set. We therefore went
for shorter checkpoint intervals to avoid checkpoint process overlap and avoid crashing
the system.

• I observed that increasing the sources rates alone on both workloads was not enough and
had no significant impact on the state size as I initially assumed, especially in Query 5.
Therefore instrumenting the workload is required to influence a growing state size.

• I could not simulate a scenario where the observed processing rate of a deployment with
an initial high source rate increases when the state size begins to reduce. I wasted time
trying to build an experiment to show this scenario. Unlike the other experiment, where I
maintained a constant source injection rate and changed the window length intermittently,
I could not do the reverse for the reason stated above.

5.7.2 Future Work

In this subsection, we provide bullet points of future direction and next steps that could be useful
and complementary to this body of research. This is listed in no specific order.

• Develop a dynamic scaling resource multiplier. Experimental Options for developing a
dynamic multiplier include:

Version 1. P(baseline)

Version 2. P * i%, e.g. Do what DS2 says but based on the rescaling duration, increase
them by 20% every minute.

Version 3. p * forecast of where offered load might go
where

P = the parallelism which DS2 suggests

i = the predicted time to rescale

• Evaluate the impact of state size on the streaming application data initialisation injection
efficiency. When an offered load is assigned to Flink, for example, 10,000 records per
second, we observe a staggered growth in the processing of records during the initial
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startup face that later normalises over time. The optimisation of the initialisation period
and the ability for the system to reach its optimal processing capacity within a short time
can be a distinctive factor amongst streaming systems, especially when real-time data for
analytics is required. Future research can explore measuring the time the operator takes to
reach its optimal processing rate over different state sizes.

• Future research can explore the impact of a larger collection arising from a larger state size.
Iterating over a larger number of elements could have a resulting impact on the operators
observed processing rate.

• A useful next step is to juxtapose the influence of sliding window selectivity with alternative
windowing methodologies in terms of managing state size.





Chapter 6

Conclusion

6.1 Thesis Summary

This thesis explores auto-scaling in streaming applications, with a particular emphasis on
identifying factors that may impede auto-scaling controllers from fully realising their potential.
The aim of this study was to enhance the existing body of research on the optimisation of
rescaling operations in streaming applications. We hope to achieve this by identifying the
constraining factors and suggesting an improved approach that will equip auto-scaling controllers
with additional insights. This, in turn, will lead to a more resilient and efficient scaling decision-
making process in a broad range of use cases.

Chapter 3 examines the Apache Flink engine and the development of a basic distributed
topology to gain comprehension of Flink streaming applications. We examine the issue of
workload imbalance and disparate data injection rates among operators in a real-time distributed
stream processing engine. In addition, we assess the notion of rescaling an application, a
technique employed to recover from a system outage or reconfigure a running streaming topology
by adjusting computational resources either upwards or downwards. We conduct different
experiments on rescaling operator’s parallelism with the aim of understanding how to scale-up
and scale-down streaming operators and evaluate the impact of these topology adjustments on the
overall system. The results of our study suggest that Flink exhibits non-uniform task distribution
across various operators.

Chapter 4 builds upon the knowledge gained in Chapter 3 and examines the effects of scaling
time and resources on the attainment of an optimal scaling process. We show that extended
scaling time, particularly in a workload environment that fluctuates rapidly, presents a possible
obstacle to a streaming application when it resumes after an automatic scaling procedure. The
experimental results emphasise the significance of state size and end-to-end checkpoint duration
in the process of rescaling. They indicate that as the state size grows, the duration required for
auto-scaling also increases. It is possible that additional state may have been accrued during a
rescaling time frame, resulting in a recurring need for rescaling and potential resource depletion,
ultimately leading to multiple rescalings of the application. The recurrent nature of this task has
the potential to negatively impact the performance of the system.



108 Conclusion

In addition, the existing dataset was utilised to develop and train predictive regression models,
utilising resampling cross-validation techniques. The selection of the optimal model was based on
performance statistics and predictive accuracy. This model was subsequently utilised to forecast
the duration of rescaling for a running application across various forecasted state size values.
The results of our study support our hypotheses that in a distributed data streaming environment
characterised by constant change and unpredictability, a larger volume of data can accumulate
rapidly within a rescaling time window. It is recommended that the forecasting of workload
characteristics and the growth rate of state size be taken into consideration when formulating a
scaling policy for facilitating a streaming application to effectively manage unforeseen resource
demand.

Chapter 5 reveals that the utilisation of offered load as a proxy for state size, as assumed by
most existing auto-scalers, is inadequate. We explore the impact of window selectivity on the
performance of streaming applications, demonstrating the impact of different sliding window
length configuration on instantaneous state size. Our results lend credence to the claim that
window size selectivity is essential for streaming programmes to run as efficiently as possible in a
windowed environment. Furthermore, we conduct empirical evaluations to assess the relationship
between operators’ throughput and state size. Our empirical findings indicate that the growth
of the state can compel an auto-scaling system to downscale rapidly, owing to a decrease in
the operator processing rate. Nonetheless, the decrease in question is contrived and does not
accurately depict the arrival rate. Such decisions by the auto-scaler may result in difficulties in
rescaling, leading to reduced efficiency.

6.2 Limitations

We present the limitation of our research and subsequently examines the potential challenges
to the validity that emanate from these limitations. The primary limitations of this research are
deemed to be the following.

L1 Single streaming platform & Single cluster instance The results of this experiments were
generated using Apache Flink running on a single node cluster.

L2 Single auto-scaler The experimental outcomes presented in this study were obtained
utilising a single state-of-the-art auto-scaler, DS2.

L3 Single window type Our windowing experimental results leveraged a single window type,
Sliding window.

Subsequently, an examination of the limitations will be conducted, with a focus on the potential
risks to the construct, internal and external validity [129].

Construct Validity This experiment was run on Ubuntu 4.15.0–74-generic with a single
instance of Flink version 1.4.1. (Limitation L1 ). Although not the most current
version, this particular version of Flink has proven to be a reliable and consistent option
for our experimental purposes. It could be deemed advantageous to transfer this research
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setup to a more recent version of Flink. Moreover, operating on a single instance entails
distributing tasks across numerous threads during the rescaling operator’s parallelism,
as opposed to augmenting the processing potential of the streaming pipeline. We chose
the file system state backend (FsStateBackend). Further work would merit exploring
the differing impacts of alternative state backends, such as MemoryStateBackend or
RocksDBStateBackend. This research also caters for the early deployment of newly
emerging workloads with no historical operational data. Therefore, the volume of data
used for our experiments supports this use case.

Internal Validity The presented experimental study utilises DS2 as the exemplar auto-scaler
(Limitation L2) and incorporates its concepts of true and observed processing rates [58].
This feature offers the advantage of enabling the measurement of not only the number
of records handled by operators in the topology, but also the duration of productive
versus unproductive time that the operators expend. This study focuses on the streaming
application’s observed processing rate, which gives the exact number of records processed
by each operator. This is a widely used approach for measuring operators throughput, and
even though we only use one auto-scaler, our method can be used with any auto-scaling
system for a wide variety of use cases. So, the use of DS2 doesn’t reduce the relevance of
this study.

External Validity Our window selectivity experiment considers only sliding window approach
(Limitation L3). The lack of testing of our hypothesis using alternative windowing
approaches may pose a constraint on the generalisability of our findings. Nonetheless, this
fulfils our aim by showcasing the influence of varying sliding window length configurations
on the size of instantaneous states. Hence, the outcomes of our study provide support
for the assertion that the selectivity of window size plays a crucial role in optimising the
performance of streaming applications in a windowed setting. Our configuration possesses
the potential to be implemented in a broad range of use cases.

6.3 Future Research Direction

Here we identify several potential areas for future research, based on insights gained during the
course of the PhD programme.

6.3.1 Optimising Streaming Engine’s Processing and Data Distribution
Mechanism

An interesting future work will be to optimise stream processors’ data initialization period and
the ability for the system to reach its optimal processing capacity within a shorter period. This
could become a distinctive factor amongst streaming systems, especially when real-time data for
analytics is required.

It is recommended that further research work be conducted to measures the impact of system
utilisation on the level of imbalance between different operators’ instance in a distributed stream
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processing pipeline. The first step towards achieving this will be to deploy this experiment
on a system with more dedicated computational resources. Furthermore, An interesting future
direction will be to investigate the task allocation mechanism being used by Flink in this kind of
distribution setup with the aim of ascertaining the effect of the imbalance between each operator
instance and throughput.

6.3.2 Declining Processing Rates and the Interplay with Application State

A useful next step is to evaluate the performance impact of the streaming application iterating
over a larger collection arising from a growing state size. This could arguably be a contributing
factor to the declining operators throughput.

To demonstrate this impact we can run an experiment with two arrival rates. The first with
a lower arrival rate, while the other with much larger arrival rate. Then drop the arrival rate to
like 10 or 20% of what the max throughput should be. then measure how much state has been
accumulated from that first phase to the second phase. We can then measure the true processing
rate and say based on the amount of time this operator is able to service the same amount of load,
how much slack does there appear to be? My hypothesis will be with increased state you will
see a lower throughput for the same hardware.

6.3.3 Windowing Selectivity Expansion to Other Window Types

A useful next step is to expand the selectivity of windowing techniques beyond the commonly
used sliding window approach. While sliding windows have been widely employed in data
analysis, they have limitations, such as fixed window sizes that remains constant throughout
the analysis which may not be suitable for all data and analytical requirements. In the sliding
window technique, a window of a specific size moves sequentially over the data, capturing a
fixed number of data points within each window. While this approach is suitable for certain
applications, it may not be optimal in scenarios where the data distribution or patterns change
over time.

For example, if the data being analysed exhibits varying temporal dynamics or if there are
fluctuations in the data’s statistical properties, a fixed window size may not capture the relevant
information effectively. Certain events or patterns that occur outside the fixed window boundaries
may be overlooked or inaccurately represented in the analysis. This limitation can potentially
lead to incomplete or biased results, particularly when dealing with dynamic or evolving data.

By exploring alternative window types that offer more flexibility in adjusting the window
size or capturing different subsets of data, users can make a choice of windowing approach that
best fits their business needs. Alternative window types, including expanding window, tumbling
window, and session-based window. The analysis will involve evaluating factors such as window
size, adaptability to changing data patterns, and computational efficiency. By considering these
alternative window types, we aim to enhance the flexibility and applicability of window-based
analyses in future research endeavors.

Expanding windows allow for dynamically adjusting the window size based on data char-
acteristics, accommodating variations in data patterns. Tumbling windows offer the ability to
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segment data into non-overlapping windows, which may be advantageous in certain scenarios.
Additionally, session-based windows provide a means to capture sequential events within a
session context. Through this exploration of alternative window types, we aim to broaden the
scope of windowing selectivity and enable more nuanced and adaptable analyses in future work.
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