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Abstract 

Very preterm infants born <32 weeks of gestation are at increased risk of various 

diseases such as necrotising enterocolitis (NEC), a devastating gastrointestinal 

disorder affecting up to 10% of preterm infants. Origins of NEC are multifactorial, 

associated with both a naïve immune system and disturbances to the gut microbiome. 

This thesis aimed to characterise the gut microbiome of preterm infants at risk of NEC 

and identify factors that may impact this development. Analysing longitudinal stool 

samples (n = 1431) from infants who did not develop NEC, revealed probiotics to be 

the main driver of the gut microbiota in this ‘healthy’ population, driving transition into 

different preterm gut community types (PGCTs) dependent on probiotic type. 

Functional analyses identified PGCT-associated stool metabolites and in preterm-

derived organoids, sterile faecal supernatants impacted intestinal organoid monolayer 

gene expression in a PGCT-specific manner. Comparing healthy infants to those who 

developed NEC (n = 75 infants, n = 547 samples) revealed that preceding diagnosis, 

the relative abundance of Proteobacteria such as Klebsiella variicola was higher whilst 

the relative abundance of Actinobacteria, mainly Bifidobacteria was lower, concordant 

with other studies. Exploring the microbial origins of NEC in the context of probiotics, 

both the type and administration of probiotics influenced microbial associations with 

NEC, in particular the colonisation patterns of different probiotic-associated strains. 

Finally, the complex relationship between temporal development of the gut 

microbiome, metabolome and circulating T-lymphocytes in the preterm population was 

characterised. Greatest concordance was found between the gut microbiome and 

metabolome, with little relationship observed between the gut environment and 

circulating T-lymphocytes. Together, the results described provide important insights 

into gut microbiome development in preterm infants during early life, the modifiable 

factors associated with modulation of the gut microbiome, and how this might be 

tailored to improve gut health.  
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1. Introduction 

1.1. The human microbiome 
Microorganisms have evolved to live in symbiosis with humans, colonising various 

parts of the human body (i.e., skin and mucosal environments) and forming the human 

microbiome. The human microbiome spans all domains of life, including viruses, 

archaea, fungi and bacteria. There are estimated to be roughly 3.8 x 1013 bacterial cells 

associated with the human body, with roughly a 1:1.3 ratio of human:bacterial cells 

(Sender et al., 2016). Importantly, these estimations do not account for other 

microorganisms including viruses and fungi, which when combined together likely 

greatly outnumber human cells. In addition, when considering the functionality of the 

gut microbiome, there are substantially more bacterial genes (~100X) associated with 

the human body than there are human genes, offering much more in terms of genetic 

diversity and flexibility (Gilbert et al., 2018). 

 

Most human-associated microorganisms colonise along the gastrointestinal (GI) tract, 

which broadly consists of the oral cavity, oesophagus, stomach, small intestine (made 

up of the duodenum, jejunum, and ileum) and large intestine (made up of the cecum, 

colon, rectum and anus) (Figure 1.1). Of these, most are attributed to the colon where 

there are an estimated 1011 bacterial cells per ml, and the ileum where there are an 

estimated 108 bacterial cells per ml (Sender et al., 2016). The gut microbiome therefore 

refers to the entire community of microorganisms living in the gut, their genomes (i.e., 

genes) and the GI environment in which they reside.  
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Figure 1.1. Diagram of the human GI tract and accompanying gut microbiota. The 
highest concentration of microbes can be found in the colon region of the large 
intestine. Created in part with Biorender.com.  
 

1.2. The role of the gut microbiome in health and disease 

The gut microbiome plays a fundamental role in host activities, aiding the digestion and 

breakdown of dietary compounds, and modulating the immune system. Over years of 

co-evolution, paralleled with changes in diet and lifestyle (Muegge et al., 2011), an 

intimate relationship has been forged between the gut microbiota and the immune 

system. Studies in germ-free (GF) animal models have helped to develop the concept 

of immune training and imprinting by the microbiota, demonstrating the absence of 

commensal microbes to be associated with improper immune functioning and general 

development (Zheng et al., 2020). Of note, GF mice have been found to have reduced 

levels of immunoglobulin A (IgA) and absence of T helper 17 (Th17) cells, which play 

important roles in defence against extracellular pathogens, particularly at mucosal sites 

(Khader et al., 2009). Notably, both IgA and Th17 cells can be restored/induced by the 

colonisation of microbial commensals (Hapfelmeier et al., 2010; Ivanov et al., 2008). 

In addition, various other studies have demonstrated evidence of the gut microbiota in 
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modulating regulatory T cells (Tregs), which help maintain homeostasis and self-

tolerance (Kondělková et al., 2010). For example, commensals such as Bacteroides 

fragilis have been shown to direct the development of Tregs by stimulating the 

expression of the transcription factor: Forkhead box-P3 (FoxP3) (Round & Mazmanian, 

2010) and members of the Clostridium genus have been shown to promote 

accumulation of these cells in the colon (Atarashi et al., 2011). 

 

Aside from the roles of the gut microbiota in immune imprinting, multiple studies have 

evidenced the idea of “colonisation resistance” whereby the gut microbiota can prevent 

the colonisation of potential pathogens and pathobionts through multiple mechanisms 

such as via the secretion of antimicrobials, nutrient competition and by supporting gut 

barrier integrity (Ducarmon et al., 2019). 

 

Notwithstanding, the association of the gut microbiome with health and disease has 

long been established, disorders of which can lead to a diverse range of GI and 

systemic diseases. For example, the gut microbiome has been linked to diseases such 

as inflammatory bowel disease (Yilmaz et al., 2019), necrotising enterocolitis (NEC) 

(Olm et al., 2019; Stewart et al., 2012), obesity (Davis, 2016), diabetes (Gurung et al., 

2020), asthma (Hufnagl et al., 2020) and cardiovascular disease in later life 

(Zhernakova et al., 2018). Although, in many cases observations are of general 

‘dysbiosis’, or else specific bacteria are not consistently found across studies. The 

association of the gut microbiome with the occurrence of diseases is inherently 

complex, not least because a healthy intestinal milieu is the product of a whole network 

of interactions and associations.  

 

1.3. Early life gut microbiome development in term infants 

It is widely accepted that the gut microbiome is formed at birth, following the 

colonisation of microorganisms along the GI tract. Despite this topic being subject to 

considerable debate in recent years, with several research groups suggesting the 

placenta and amniotic fluid to be a reservoir for microbes (Aagaard et al., 2014; Collado 

et al., 2016), recent evidence has shown neonatal meconium (i.e., stool formed before 

birth) to have no detectable microbiota (Kennedy et al., 2021) and that the so-called 

placental microbiome could not be distinguished from kit negative control 

contamination (Lauder et al., 2016). These data suggest that any microbial signatures 
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obtained from ‘low biomass’ foetal samples are instead likely the result of 

contamination during the clinical procedure, DNA extraction and/or sequencing 

(Kennedy et al., 2023). 

 

Studies have shown that mother-to-infant microbial seeding accounts for ~58.5% of 

the infant gut microbiome, with composition being attributed to multiple maternal 

source communities such as the vagina, faeces, skin and breastmilk (Bogaert et al., 

2023). Following colonisation, the human gut microbiome evolves through infancy 

before becoming increasingly individualised and stable. Preceding this more ‘mature’ 

state, the gut microbiome can be considered quite plastic, whereby this dynamic entity 

is influenced by varying factors. This early life plasticity thereby represents a period of 

critical importance, impacting on both short- and long-term health. In humans, 

gestation (i.e., the period of time between conception and birth) is expected to last for 

40 weeks, with full-term infants generally being defined as those babies born >37 

weeks of gestation. In healthy full-term infants, a well-established set of host and 

environmental factors have been found to influence the patterns of gut microbiome 

development, explored further below. 

 

1.4. Factors that impact the term infant gut microbiome 

1.4.1. Birth mode 

Birth mode is considered one of the first direct determinants of gut microbial 

composition, providing the initial microbial inoculum for the GI tract both during and 

immediately after birth. As such, in term infants, vaginally delivered infants are 

consistently found to have a higher abundance of Bacteroides spp., likely reflecting 

maternal faecal to infant transmission (Mitchell et al., 2020). Conversely, infants born 

via caesarean section have been found to have disturbed transmission of maternal 

Bacteroides spp., and a higher level of colonisation by hospital-associated 

opportunistic pathogens such as Enterococcus, Enterobacter and Klebsiella spp. 

(Shao et al., 2019). Furthermore, some studies have also found vaginally delivered 

infants to be enriched with Bifidobacterium spp. when compared to those born by 

caesarean (Reyman et al., 2019). These differences are most pronounced during the 

earlier stages of life, around 1 - 2 weeks after birth (Mitchell et al., 2020; Reyman et 

al., 2019), following which the delay in colonisation of caesarean born infants 

somewhat diminishes. After around 1 year of life, the differences in gut microbiota 
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composition based on birth mode are generally no longer observed with microbial 

convergence occurring with age (Stewart et al., 2018; Xiao & Zhao, 2023). In addition, 

during these earlier stages of life, studies have shown that the gut microbiome of 

infants who are born by caesarean section can at least be partially restored by 

exposing these infants to maternal vaginal fluids (Dominguez-Bello et al., 2016) , faecal 

microbiota transplants from the mother (Korpela et al., 2020), and by breastfeeding 

(Guo et al., 2020). 

 

1.4.2. Breast milk, breast milk components and formula milk 

Following birth and during the subsequent postnatal period, one of the biggest factors 

that governs gut microbiome structure in term infants is diet. This association is well-

described, with receipt of breast milk being one of the major reproducible determinants 

(Stewart et al., 2018). Mother’s own milk (MOM) shapes the gut microbiome in various 

ways including providing a direct source of colonisers from the milk microbiome, as 

well as from the skin microbiome when infants are fed from the breast directly 

(Moossavi et al., 2019). In addition, MOM contains several bioactive components that 

are hypothesised to shape this gut microbial community. One of the most studied 

bioactive components are human milk oligosaccharides (HMOs). HMOs are the third 

most abundant component in breast milk, following lactose and lipids, yet cannot be 

digested by the infant and reach the colon intact (Masi & Stewart, 2022). They act as 

prebiotic substrates, promoting the growth of specific bacteria that are able to utilise 

these sugars, namely Bifidobacterium spp. As such, studies have shown that infants 

who are breastfed have a higher abundance of gut Bifidobacterium in comparison to 

those who are formula fed (Ma et al., 2020; Stewart et al., 2018). Conversely, infants 

who are formula fed have been found to be colonised by a higher abundance of 

opportunistic pathogens such as S. aureus, Staphylococcus epidermidis, Klebsiella 

pneumoniae, Klebsiella oxytoca and Clostridium difficile (Pärnänen et al., 2022).  

 

In addition to the differences observed between infants receiving breast milk or formula 

milk, previous studies have also found a difference in the milk microbiome specifically 

of pumped breast milk rather than direct feeding (Moossavi et al., 2019). This likely 

reflects how flowback of milk from the infant mouth during direct breastfeeding further 

shapes the milk microbiome with microorganisms from the infant oral cavity. A similar 

phenomenon also likely occurs with breast pumping, allowing pump-associated 
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bacteria to enter the milk duct as opposed to from the infant oral cavity (Moossavi et 

al., 2019). However, little research has been done on the subsequent impact on the 

infant gut microbiome based on direct vs indirect breastfeeding.  

 

Whilst breast milk-derived HMOs are important in shaping the gut microbial 

community, they are not the only means by which breast milk is able to shape the gut 

microbiome. For example, lactoferrin is an iron-binding glycoprotein found in high 

levels in colostrum (i.e., the first milk) which has also been proposed to modulate the 

infant gut microbiome by promoting growth of ‘beneficial’ gut bacteria such as 

Bifidobacteria, and inhibiting the growth of microbes such as Staphylococcus aureus 

by iron sequestration (Young et al., 2022a). Despite this, recent studies have shown 

minimal impact of lactoferrin intervention on the preterm infant gut microbiome (Young 

et al., 2022a). There is also ongoing research into other components such as 

glycosaminoglycans (GAGs), which are also complex glycans, like HMOs, that pass 

through the GI tract undigested before being catabolised by bacterial enzymes 

(Maccari et al., 2016). Although relatively understudied, it has previously been shown 

that GAGs can inhibit the adhesion of the enteric pathogens Escherichia coli and 

Salmonella fyris to human intestinal cells (Coppa et al., 2016). Further work will be 

needed to see if GAGs can alter the infant gut microbiome. 

 

1.4.3. Antibiotics 

Antibiotics impact the gut microbiome of both infants and adults alike. In adults, these 

effects are generally short-term, with bacterial diversity immediately decreasing 

coupled with a loss of various species dependent on the type of antibiotic. The gut 

microbial population of adults generally returns to previous levels prior to antibiotic use, 

particularly following shorter and less frequent courses (Palleja et al., 2018).  

 

In infants, the effects of antibiotic use have been studied widely since this population 

can be seen as more vulnerable, with a gut microbial population that has not yet 

reached a mature state. Short term effects depend on the type of antibiotic and the 

length of the course, but in general will cause changes to the relative abundance of 

individual taxa, in particular a decrease in Bifidobacteria (Korpela et al., 2020), and 

increase in Enterobacteriaceae such as Klebsiella and Enterococcus spp. (Korpela et 

al., 2020; Reyman et al., 2022). In this neonatal population, more prolonged effects of 
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antibiotics can be observed when compared to children and adults, with some studies 

still seeing the effects up to 12 months after a 48-hour antibiotic course (Reyman et 

al., 2022). It is hypothesised that this could be due to a “normal” state having not yet 

been established for the gut microbial population to return to (Reyman et al., 2022). In 

the neonatal intensive care unit (NICU) antibiotic use is often clinically necessary, but 

frequent use can delay maturation of the microbiome, in both term and preterm infants 

alike, although studies have found this to eventually recover (Gasparrini et al., 2019). 

Moreover, when assessing the impacts of antibiotic use using sequencing methods, 

DNA from dead microorganisms would still be detected and could potentially skew 

results. In addition to direct antibiotic use in infants, the impact of maternal antibiotic 

use on the infant gut microbiome has also been investigated. Studies have shown that 

intrapartum antibiotic use (i.e., antibiotics given during labour) alters the gut microbial 

community composition for up to 12 months, with an increase in Clostridium and 

Enterococcus and decrease in Bacteroides and Parabacteroides observed (Azad et 

al., 2016). Further to this, other studies have shown intrapartum antibiotic use to 

increase the abundance of antibiotics resistance genes (ARGs) and mobile genetic 

elements in the infant gut community, suggesting transfer of these genes via bacteria 

from mother to infant (Pärnänen et al., 2018). 

 

1.4.4. Maternal and other factors 

In addition to the factors discussed above, there are additional factors that have been 

shown to influence the gut community in term infants albeit to varying degrees and with 

less reproducibility between studies. Geographical location is often found to be a major 

driver of gut microbiome composition in both infants and adults (Suzuki & Worobey, 

2014), although this measure is sometimes potentially confounded with many others 

such as diet, socioeconomic status, maternal characteristics etc. In addition, studies 

have found factors such as the presence of siblings and furry pets in the household to 

influence the infant gut microbial community (Stewart et al., 2018). Aside from infant 

characteristics and direct infant exposures, maternal characteristics and exposures 

pre-birth can also impact the subsequent infant gut microbiome. For example, a meta-

analysis of 76 studies found maternal intrapartum antibiotic use (discussed previously), 

maternal obesity and excessive gestational weight gain to all be associated with 

reduced microbial diversity (Grech et al., 2021). 
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1.5. Preterm birth 
Preterm infants are defined as those babies born <37 weeks of gestation. These 

infants can be sub-categorised based on their gestational age at birth as follows: 

moderate to late preterm (32 – 37 weeks), very preterm (28 – 32 weeks) and extremely 

preterm (<28 weeks). Preterm birth can occur as a result of medical complications that 

require early induction of labour or caesarean birth, or more commonly they occur 

spontaneously. Maternal demographic factors (i.e., higher maternal age, higher body 

mass index, smoking, stress, lower socioeconomic status etc.) as well as other factors 

including multiple gestations and infections are all associated with preterm delivery. 

The prevalence of preterm birth varies by region and geographical location, with 

approximately 10% of births worldwide being preterm (Cao et al., 2022). 

 

1.5.1. The neonatal intensive care unit and practices 
Very preterm infants born <32 weeks of gestation will have a vastly different start to 

life in comparison to their healthy term counterparts. Very preterm infants will initially 

be cared for on the NICU, a unique setting which plays a crucial role in the acquisition 

and development of the gut microbiome. Here, infants are limited in their exposure to 

environmental microbes and will instead be colonised by NICU-acquired microbes, 

which are typically considered pathobionts (i.e., species which cause harm under 

certain environmental conditions) such as Klebsiella spp. and E. coli. In addition, these 

infants undergo clinical care regimes that will impact microbiome development, 

including specific feeding practices, antibiotic treatment (often multiple courses), 

ventilation and intravenous line placement (Ahearn-Ford et al., 2022), not experienced 

by a healthy term infant.  

 

Much of the clinical care provided to very preterm infants has associations with shaping 

the gut microbiome. Due to an inability to latch and suckle at the breast and a high 

energy requirement to support growth, very preterm infants will require support when 

feeding, with the National Institute for Health and Care Excellence (NICE) guidelines 

stating parenteral nutrition (PN) should be used for infants born <31 weeks of 

gestation. PN is the provision of nutrients intravenously (i.e., directly into the 

bloodstream) thereby bypassing the GI tract which is immature in this population and 

therefore contributes to their inability to tolerate milk feeds straight away (Binchy et al., 

2018). PN is used to encourage growth until the infant is able to tolerate milk feeds, 
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which are then introduced gradually until reaching what is known as ‘full feeds’, at 

which point the infant will receive all their nutrition as milk feeds. These milk feeds are 

initially introduced by enteral feeding whereby a feeding tube allows the direct intake 

of milk into the stomach via the nasogastric route (i.e., nose to stomach) or orogastric 

route (i.e., mouth to stomach), until the infant has developed the suck and swallow 

mechanism and can feed safely by bottle or breast. These feeding practices greatly 

differ to healthy full-term infants, for whom the gold standard is direct feeding from the 

breast. Moreover, PN has been shown to have significant adverse effects on the gut 

microbiome of preterm infants, associated with a reduced Bifidobacterium abundance 

(Jia et al., 2020).  

 

In terms of antibiotics, these are often used immediately after birth in preterm, very low 

birthweight (VLBW) and extremely low birthweight (ELBW) infants for at least the first 

48 hours of life. Empiric antibiotics are used in order to prevent early onset sepsis 

(EOS), which preterm infants are more prone to due to their weakened immune 

systems and underdeveloped skin and gut barriers. Furthermore, during their stay on 

the NICU, many of these infants will encounter various complications and as a result 

are often exposed to multiple antibiotic treatments, discussed further in Section 1.6.5.3. 

In addition, antifungal prophylaxis is recommended by the European Society of Clinical 

Microbiology and Infectious Diseases for a number of preterm infants in the first 48 – 

72 hours after birth (i.e., infants weighing <1000 g, in NICUs where invasive candidiasis 

infections are frequent etc.), which has been shown to reduce colonisation of Candida 

spp. (Hanna & Mazkereth, 2021). Neonatal intensive care practices such as feeding 

practices and antibiotic use have been reproducibly shown to impact the developing 

preterm gut microbiome. 

 

1.5.2. Early life gut microbiome development in preterm infants 
All things considered, it is of no surprise that preterm infants often experience a gut 

microbiome with lower microbial diversity and increased colonisation of pathobionts, 

compared to healthy term babies (Chernikova et al., 2018). As such, gestational age 

represents an additional covariate associated with the gut microbiome, with term and 

preterm infants found to have very distinct gut community compositions (Chernikova 

et al., 2018; Grier et al., 2017; Hill et al., 2017). For example, preterm infants have 
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been reported to experience delayed colonisation of Bifidobacterium (Korpela et al., 

2018) and Bacteroides (Stewart et al., 2017) in comparison to term infants. 

 

Aside from gestational age, previous studies specifically investigating preterm gut 

microbiome development have identified associations that overlap with term infants, 

including receipt of MOM and antibiotic exposure (Aguilar-Lopez et al., 2021; Cong et 

al., 2016; Grier et al., 2017). Alike term infants, the opposing effects of MOM and 

antibiotic exposure on the preterm gut microbiome are reasonably well-recognised. 

 

The impact of other factors on the preterm gut microbiome, such as birth mode and 

sex are, however, more ambiguous. Specifically, numerous studies have found birth 

mode not to be significantly associated with the preterm gut microbiome (Hill et al., 

2017; Stewart et al., 2016), or to have minimal influence (La Rosa et al., 2014), whilst 

in term infants, birth mode is thought to have a major impact for at least the first year 

of life (Bokulich et al., 2016; Reyman et al., 2019). Furthermore, one preterm neonate 

study has suggested sex-specific differences in preterm infants, including a lower 

diversity index, higher abundance of Enterobacteriales and lower abundance of 

Clostridiales in males compared to females (Cong et al., 2016). However, findings like 

these are not universally observed, and are seemingly specific to certain cohorts (i.e., 

specific NICUs). These inconsistencies could potentially reflect the use of smaller 

underpowered cohorts and in some cases a lack of longitudinal sampling. It also 

underscores the need for a more focused investigation into the factors influencing 

normal gut microbiome development in healthy preterm infants. 

 

1.5.3. The preterm immune system 

Preterm infants are born before their immune system has had chance to develop. 

During the later stages of pregnancy, mostly in the third trimester of gestation, there is 

a high level of maternal antibody transfer in utero in the form of immunoglobulin G 

(IgG). Despite the reduction in placental transfer of maternal antibodies, there is 

evidence of selective transfer of functional antibodies earlier in pregnancy, allowing at 

least some level of humoral immunity for infants born prematurely (Dolatshahi et al., 

2022). Following birth, infants receive maternal antibody protection in the form of IgA 

from human breast milk, for which there is research surrounding its potential role in 

protection from NEC (described later in Section 1.6.5.1.).  
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Neonates rely heavily on the innate immune system, as the adaptive immune system 

does not fully develop until early childhood. In the preterm population, the innate 

immune system has a reduced capacity compared to infants born full term and is 

thought to be less developed, although little is known specifically about lymphocyte 

populations (Quinello et al., 2014). The immaturity of the innate immune system in 

preterm infants reduces the ability of these infants to overcome potential pathogenic 

infections and initiate a sufficient and controlled immune response, or in the case of 

NEC, an exaggerated un-controlled response (Hackam & Sodhi, 2018). For example, 

preterm infants have been shown to have attenuated toll-like receptor (TLR) function, 

which are pattern recognition receptors responsible for mediating an immune response 

to pathogen-derived ligands. Previous research has shown TLR2 and TLR4 

expression to be reduced in preterm infants during the initial weeks following birth, 

although rapidly increasing during the first months of life (Shen et al., 2013). By 

contrast, cytokine response from preterm cord blood (i.e., blood remaining in the 

placenta and umbilical cord after birth) has been previously shown to be imbalanced 

when compared to term cord blood (Glaser et al., 2023), and that lipopolysaccharide 

(LPS)-induced cytokine response does not appear to recover like TLR expression 

(Shen et al., 2013). Further to this, preterm infants have been found to have a reduced 

pool of monocytes and neutrophils, as well as reduced cytokine production from these 

cells which in turn limits T-lymphocyte activation (Melville & Moss, 2013). Importantly, 

studies have shown that the preterm immune system differs to that of term infants early 

in life, but converges rapidly thereafter, both sharing a common trajectory of immune 

development (Olin et al., 2018). This immune system adaptation appears to be driven 

by microbial interactions and is impaired where there is extremely low gut microbiome 

diversity (Olin et al., 2018). 

 

1.5.4. T-lymphocytes in preterm infants 
T-lymphocytes represent an important component of the immune system, responsible, 

in part, for detecting and dealing with potential pathogens. T lymphocytes originate 

from hematopoietic stem cells in the bone marrow, after which they migrate to the 

thymus for maturation, selection, and subsequent migration to the periphery (i.e., 

outside the brain and spinal cord). From these immature cells, various T lymphocyte 

lineages arise, which can be defined by differential expression of surface antigen 
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markers and cytokine profiles. The protocol for identifying cell surface molecules is 

called the Cluster of Differentiation (CD), whereby surface markers are given CD 

numbers which are used to identify different immune cell lineages, such as T-

lymphocyte sub-populations. The two major T-lymphocyte lineages are CD4+ cells (T-

helper cells) and CD8+ cells (cytotoxic T cells). These lineages, and others (i.e., γδ T 

lymphocytes) can be further divided into smaller sub-populations, each expressing 

different markers and each with different specific roles (Figure 1.2). 

 
 

Figure 1.2. Schematic of T-lymphocyte differentiation into major sub-types. 
Double negative T-lymphocytes (CD4-CD8-) can differentiate into CD4-CD8- or 
CD4+CD8+. Double positive T-lymphocytes thereafter can differentiate into naïve 
CD4+CD8- T-cells or naïve CD4-CD8+ T-cells. The expression of different markers 
gives rise to various regulatory, helper and cytotoxic T-cell subtypes, each with 
specified roles. 
 

Foetal T-lymphocytes can be detected from around 8 weeks of gestation, but perhaps 

unsurprisingly, the majority of T-lymphocytes detected in foetal cord blood are naïve 

(i.e., immature cells that have yet to encounter an antigen and become activated) 
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(Quinello et al., 2014). Despite these accounting for the majority, there is evidence to 

support the existence of non-naïve T-lymphocytes in the foetus, including CD4+ T-

lymphocytes with an effector memory phenotype, which have been identified in cord 

blood (Zhang et al., 2014). Furthermore, a memory phenotype has been found to 

dominate CD4+ T cells in the intestine (Li et al., 2019). Together these data are 

consistent with the idea of prior antigen exposure in utero, despite the womb being 

considered sterile in normal pregnancies. Ultimately, the nature of this priming is 

currently unknown (Sproat et al., 2020), and there is much more to explore, although 

these could be the result of harmless antigen exposure from metabolites transferred 

across the placenta. Following birth and at around 8 weeks of life, preterm infants have 

been found to have lower absolute counts of T-lymphocytes, a lower CD4/CD8 ratio 

and a lower proportion of naïve T-lymphocytes when compared to term infants of the 

postnatal same age (Berrington et al., 2005), the latter of which could potentially reflect 

their higher antigen exposure. 

 

On the whole, there is limited data surrounding T-lymphocyte characterisation in 

preterm infants, as it presents a significant challenge to study. The acquisition of an 

adequate volume of blood for research purposes is often both ethically and logistically 

challenging, resulting in a heavy dependence on salvaged samples obtained through 

routine blood tests. Consequently, numerous studies have resorted to the use of foetal 

cord blood as a model, despite its inadequacy in representing postnatal immunity as 

accurately (Olin et al., 2018). Together, this underscores the need for future research 

to be primarily based on the use of peripheral blood samples, where ethical 

considerations permit.  

 

1.6. Diseases affecting preterm infants 

Infants born prematurely and VLBW are at increased risk of various diseases, many 

but not all are GI-related, owing to their naïve immune systems and immature intestinal 

barriers. 

 

1.6.1. Late onset sepsis 

Neonatal sepsis is a significant cause of mortality amongst very preterm infants, as 

well as being associated with increased risk of in-hospital morbidities and poor 

neurodevelopmental outcomes amongst survivors. Defined as an infection involving 
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the bloodstream, neonatal sepsis can be subdivided into EOS and late onset sepsis 

(LOS), based on time after birth (i.e., EOS <72 hours after birth, LOS >72 hours after 

birth).  

 

Although not strictly a GI disease, in preterm infants, LOS can be caused by 

translocation of bacteria from the gut into the bloodstream (Pilarczyk-Zurek et al., 

2022). Preterm infants are prone to “leaky gut”, whereby the gut epithelial barrier is not 

fully developed yet, resulting in a great capacity for enteric microorganisms to pass 

through. In such cases, LOS can be caused by microbes that would typically not be 

classed as true pathogens and in a more mature gut would likely not cause any issues, 

evidenced by reported cases of probiotic sepsis in preterm infants (Dani et al., 2015; 

Jenke et al., 2012). Major risk factors of LOS typically include low birthweight and 

gestational age, as well as previous antimicrobial exposure (Downey et al., 2010). In 

terms of prevention, there is limited evidence to suggest lactoferrin decreases LOS in 

preterm infants (Pammi & Suresh, 2017), as well as early feeds which importantly 

needs to be balanced against the risks of developing NEC (Downey et al., 2010) 

(discussed further in Section 1.6.3.). 

 

1.6.2. Spontaneous intestinal perforation 

Spontaneous intestinal perforation (SIP), also known as focal intestinal perforation 

(FIP), is a life-threatening condition that again predominantly affects VLBW, ELBW and 

preterm infants. It is defined as an isolated perforation (i.e., a hole forming in the organ 

wall) most commonly occurring in the terminal ileum. SIP has a mortality rate of ~14% 

(Farrugia et al., 2003), although this varies by study, and a worse prognosis is 

associated with those who have concomitant sepsis and those who have undergone 

laparotomy (Fisher et al., 2014). Similar to LOS, survivors often have poorer outcomes 

such as growth failure and neurodevelopmental delay. Furthermore, complications of 

SIP include but are not limited to surgical complications, prolonged hospital stays and 

increased risk of short bowel syndrome (Krishnan & Lotfollahzadeh, 2023). SIP is 

managed either medically or surgically and is the most common surgical disease in the 

differential diagnosis of NEC, described further in Section 1.6.3.  
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The pathogenesis of SIP is unclear and previous studies are limited with many tending 

to group NEC and SIP together when looking for hallmarks of disease due to both 

diseases sharing similar clinical presentation. 

 

1.6.3. Necrotising enterocolitis 

NEC is a devastating GI disease affecting up to 10% of infants born prematurely. It is 

responsible for severe mortality in this population, as well as considerable long-term 

morbidity, such as growth failure and neurodevelopmental delay (Jones & Hall, 2020). 

Low birthweight and prematurity are well recognised risk factors; however, NEC can 

also affect infants born full-term, with these cases often co-existing with other co-

morbidities (Short et al., 2014).  

 

NEC is characterised by severe inflammation, radiological finding of pneumatosis 

intestinalis and necrosis of the bowel. Unlike SIP, which is an isolated focal perforation, 

NEC is an inflammatory disease that usually has systemic with multi-organ affection 

(Elgendy et al., 2021), with perforation occurring as a complication of disease (Farrugia 

et al., 2003). Unfortunately, it remains a difficult disease to diagnose, with early clinical 

presentation often being variable, and typical features (e.g., pneumatosis intestinalis) 

generally found during the later stages of disease (Beck et al., 2021). Furthermore, 

there are additional challenges in differentiating NEC from other morbidities that 

primarily affect this population, such as LOS and SIP, as clinical features are shared 

amongst these morbidities (Berrington & Embleton, 2022). There is also increasing 

belief that NEC can be considered more of an umbrella term for what appears to be 

several different disease subsets (Neu et al., 2018), that manifest in a common 

endpoint.  

 

The aetiology of NEC is considered ‘multifactorial’, and the pathophysiology remains 

poorly understood. Considering the likelihood of NEC to encompass different disease 

endotypes, each with different pathophysiology, this is unsurprising (Neu, 2020; Neu 

et al., 2018). One of the classically proposed pathways to disease onset is the 

imbalance in pro-inflammatory signalling pathways. The balance between anti- and 

pro-inflammatory signalling is mediated by TLR4, which recognises LPS on the cell 

surface of Gram-negative bacteria (Hackam & Sodhi, 2018) (Figure 1.3). There is 

evidence to suggest that expression of TLR4 is increased and that mutations in the 
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TLR4 signalling pathway have been observed in preterm infants with NEC (Alganabi 

et al., 2019). Further evidence to support the role of this signalling pathway in NEC 

pathophysiology include knockout studies, whereby ∆TLR4 mice which lack the ability 

to express TLR4 in epithelial cells do not go on to develop NEC (Liu et al., 2021). In a 

recent study, the role of in utero factors on TLR4 signalling and NEC development has 

been uncovered. Here, researchers showed that a diet rich in indole-3-carbinole 

activates the aryl hydrocarbon receptor, reducing TLR4 signalling and preventing NEC 

in new-born mice (Lu et al., 2021). Indeed, the role of the gut microbiome in NEC 

pathophysiology has been demonstrated, with GF animals not developing the disease 

and those receiving faecal microbiota transplants from NEC patients developing 

intestinal injury (He et al., 2021). 

 
 

 

Figure 1.3. Proposed pathophysiology of NEC. A reduction in Bifidobacterium, 
increase in pathobionts and LPS from Gram-negative bacteria increases TLR4 
signalling, which is uncontrolled, resulting in intestinal inflammation, intestinal barrier 
injury and therefore translocation of microbes. The translocation of microbes can result 
in intestinal ischemia and eventually necrosis.  
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1.6.4. NEC risk factors 
There are various factors thought to be associated with the onset of NEC, including 

prematurity, antibiotics, feeding and the gut microbiome (Esmaeilizand et al., 2018; 

Stewart et al., 2016; Sullivan et al., 2010). Prematurity is the only consistently identified 

NEC risk factor in case-control studies, where disease risk is inversely correlated with 

gestational age. This can be explained by the immaturity of the intestinal tract at 

younger gestational ages (Henry & Moss, 2008). A number of observational studies 

have found that preterm infants who receive an exclusively human breast milk diet 

have a lower NEC incidence than those who are formula fed, although the mechanism 

of protection here is not fully understood (Herrmann & Carroll, 2014). Furthermore, 

previous studies have shown that infants receiving pasteurised donor human milk 

(DHM) have lower growth rates but reduced risk of developing NEC and feed 

intolerances when compared to formula-fed infants (Stoltz et al., 2021). In addition, 

one study showed that lipase digestion of formula milk, but not breast milk, caused 

death of neutrophils, endothelial and epithelial cells in vitro, which could have broad 

implications in NEC pathophysiology (Penn et al., 2012). However, some infants who 

receive formula do not go on to develop NEC and some who only ever receive breast 

milk can unfortunately go on to develop NEC, suggesting the precise composition of 

breast milk to also be of importance. Aside from milk source, there have also been a 

number of studies investigating timing of enteral milk feeding on NEC incidence, 

including whether early introduction of enteral feeding increases the risk of NEC and 

vice versa. However, according to a 2022 Cochrane meta-analysis of 14 trials, it seems 

that delaying progressive enteral feeds may not reduce the risk of NEC or death in very 

preterm or VLBW infants (Young et al., 2022b). Furthermore, whilst delayed 

introduction may slightly reduce feed intolerance, it probably increases the risk of LOS 

(Young et al., 2022b) (described in Section 1.6.2.). 

 

The occurrence of NEC has also been associated with antibiotic use in neonates. 

Previous studies have shown that prolonged empiric antibiotic treatment was 

associated with increased risk of NEC development (Esmaeilizand et al., 2018). 

However, this association is complex, and the use of antibiotics is clinically necessary 

when EOS is suspected, amongst other things. One study found that short empiric 

antibiotic use of <72 hours actually reduced the risk of NEC when compared to those 
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who underwent prolonged antibiotic treatment and those who received no antibiotic 

treatment (Dierikx et al., 2022).   

 

In terms of gut microbiome structure, the most consistent findings associated with 

disease progression point to lower bacterial diversity, higher Proteobacteria (Taft et al., 

2015), and lower Bifidobacterium (Olm et al., 2019; Pammi et al., 2017; Stewart et al., 

2019). The largest metagenomic study to date analysing samples prior to NEC 

diagnosis found a significant increase in Klebsiella spp., bacteria encoding fimbriae, 

and bacteria encoding secondary metabolite gene clusters related to quorum sensing 

and bacteriocin production (Olm et al., 2019). Further to this study, there has been 

evidence to suggest a higher bacterial diversity and Bifidobacterium abundance is 

protective against NEC development (Stewart et al., 2016). Nevertheless, whilst broad 

associations have been noted and individual studies have identified taxa of interest, 

no single causative agent has been consistently associated with disease and it also 

remains difficult to distinguish between cause and effect. 

 

1.6.5. NEC prophylaxis and prevention 

1.6.5.1. Breast milk feeding and human milk oligosaccharides 
Due to their association with NEC, the role of the gut microbiome and breast milk-

derived HMOs on NEC onset are now active areas of research. Trying to unpick the 

mechanisms that underly the apparent protection of breast milk, a recent study found 

that the concentration of a single HMO, disialyllacto-N-tetraose (DSLNT), was 

significantly lower in MOM received by infants with NEC compared with controls (Masi 

et al., 2020), and that DSLNT was protective against NEC in rats (Jantscher-Krenn et 

al., 2012). Furthermore, studies have shown other components of milk, such as IgA, to 

be protective against the development of NEC (Gopalakrishna et al., 2019). Together 

these studies highlight the potential for specific breast milk components to be predictive 

biomarkers of NEC, and guide future clinical decisions surrounding breast milk such 

as selecting milk with the highest IgA and DSLNT content for infants most at risk of 

NEC. 

 

1.6.5.2. Probiotics 
The association between the gut microbiome and NEC (i.e., lower Bifidobacterium and 

higher Proteobacteria) has led, in part, to an increased use of probiotics across NICUs. 
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Although, probiotic-using units are still in the minority. Probiotics are live 

microorganisms, such as bacteria and yeasts, thought to promote health benefits and 

are generally considered as safe, therefore, have received a lot of interest as an 

intervention to manipulate the gut microbiome. 

 

In the context of NEC, a number of studies (both observational and randomised 

controlled trials; RCTs) have been conducted to look at the impact of probiotics on 

NEC incidence and on the gut microbiome itself. Probiotic treatments are generally 

focused on the use of various Lactobacillus spp. and Bifidobacterium spp. 

Bifidobacterium in particular are considered particularly important in the infant gut due 

to their association with health, and their known ability to utilise HMOs and produce 

short chain fatty acids (SCFAs) and indole derivatives, which have proven anti-

inflammatory effects on intestinal epithelial cells (Ehrlich et al., 2020). For example, 

Bifidobacterium have been shown to do reduce production of pro-inflammatory 

cytokines, enhance tight junction barrier function between intestinal epithelial cells and 

reduce permeability across this membrane (Al-Sadi et al., 2021; Bergmann et al., 

2013). It is through these means, and other mechanisms, that probiotic strains may 

provide their protection against NEC.  

 

Despite this, previous studies have yielded inconsistent results, for example a 

retrospective review of probiotic use in the Newcastle Royal Victoria Infirmary (RVI) 

NICU by Granger et al. (2022) found no change in the risk of NEC, LOS, mortality and 

no change in the proportion of surgical NEC cases with probiotic use (Granger et al., 

2022). However, the study did find a NEC risk reduction in sub-group analysis of infants 

born >28 weeks of gestation (Granger et al., 2022). Conversely, some retrospective 

observational studies have noted a reduction in NEC following probiotic use 

(Robertson et al., 2020). Similarly, some RCTs note a reduction in NEC amongst 

infants receiving probiotics (Jacobs et al., 2013), whilst others do not (Costeloe et al., 

2016). A Cochrane meta-analysis of 56 trials conducted in 2020 concluded that 

probiotic use in very preterm and VLBW infants may reduce the risk of NEC, serious 

infection and death – although evidence was of “low certainty” (Sharif et al., 2020). 

Further to this, a more recent meta-analysis of 70 studies looking at both term and 

preterm infants, concluded that probiotics significantly reduced NEC, overall mortality, 

and NEC-related mortality (Wang et al., 2023). 
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Despite the increased interest in and use of probiotics in the NICU, the efficacy of 

probiotics in preventing NEC and LOS remains inconclusive. Furthermore, there are 

very low but important risks reported in the literature from contamination and probiotic 

bacteraemia/sepsis (Acuna-Gonzalez et al., 2023; Dani et al., 2015; Esaiassen et al., 

2016; Jenke et al., 2012) which need to be considered. It is likely that these probiotic 

species entered the bloodstream via translocation from the gut due to the immaturity 

of the preterm intestinal barrier, as previously discussed. These concerns have led, in 

part, to studies evaluating alternative probiotic administrations routes i.e., via the 

lactating mother, with varying results (Dotterud et al., 2015; Rahkola et al., 2023), 

suggesting direct administration in fact to have the strongest effect.  

 

1.6.5.3. Antibiotics 
Despite prolonged use of antibiotics being associated as a risk factor for NEC, 

antibiotic use in preterm infants is still a clinically necessary practice. Bacterial 

infections are a frequent complication of preterm birth and as such, empirical antibiotics 

are administered to the majority of VLBW infants in the first few days of life (Flannery 

et al., 2018), as previously discussed. In terms of a preventative treatment for NEC, 

the hypothesis is that intravenous use shortly after birth would slow down initial 

bacterial colonisation, potentially reducing the risk of TLR4-mediated NEC by not 

overwhelming the immune system (Shen et al., 2022). However, as a prophylaxis, 

there are conflicting data surrounding the effectiveness of antibiotic use, with a number 

of studies finding no change in NEC prevalence. Nonetheless, as discussed in section 

1.6.4., a recent observational study found that short term empiric antibiotic use of <72 

hours reduced the risk of NEC (Dierikx et al., 2022). Indeed, there are studies currently 

ongoing assessing early antibiotic use as a preventative treatment for NEC which aim 

to optimise early antibiotic use in preterm infants (Shen et al., 2022). Ultimately, finding 

the balance (i.e., timeframe, antibiotic type etc.) remains a difficult challenge. 

 

1.7. Methodology for microbiome and NEC research 
1.7.1. ‘Omic’ technologies 

The term ‘omics’ encompasses many technologies, including genomics, 

metagenomics, transcriptomics, proteomics, and metabolomics. Next generation 

‘omic’ technologies have allowed for a much more detailed understanding of host 
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genetics and functional genetics in relation to disease (Karczewski & Snyder, 2018). 

In addition, meta-omics studies (i.e., metagenomics, metatranscriptomics, 

metaproteomics and metabolomics) have increasing use in studying the gut 

microbiome community, with their ability to provide an insight into strain level 

taxonomic resolution, functional and metabolic capabilities of the microbiome (Knight 

et al., 2018). 

 

These technologies have demonstrated powerful potential in clinical research and 

provided insight into ‘omic’ signatures of neonatal disease. For instance, improvement 

in molecular sequencing coupled with rapidly declining costs has enabled research 

into the differences in the microbiome between individuals, populations, and species. 

The ability to model multi-omic data and correlate this with clinical findings allow the 

possibility to identify underlying biomarkers and other modifiable factors that will allow 

for early detection of disease. Thus, increasingly, ‘omic’ technologies can be used to 

target therapies to treat these varied pathologies. 

It is noteworthy that experimental design is critical to generating accurate and 

actionable results. Cohort studies are important to understand neonatal disease such 

as NEC, where various samples can be analysed using ‘omic’ pipelines, including 

stool, serum, urine and resected tissue (Embleton et al., 2017). Stool samples are 

important non-invasive samples for understanding what the intestine is exposed to; 

urine includes the host metabolites which are excreted from the body; blood gives a 

representative overview of the systemic response to disease and resected tissue can 

give information on the response mounted at the site of disease (D’Adamo et al., 2021; 

Haas et al., 2017). Notwithstanding, the complexity and individual variation in clinical 

and environmental exposures can pose significant challenges in data analysis that is 

ultimately underpinned by the quality and granularity of accompanying metadata. 

1.7.2. 16S rRNA gene sequencing and metagenomics 
Gene sequencing techniques for microbiome characterisation can be broadly split onto 

one of two categories: gene amplicon sequencing and shotgun metagenomic 

sequencing. The former relies on a phylogenetic marker gene, typically the 16S rRNA 

gene, to provide genus-level identification of bacterial members within the microbiome 

(Beck et al., 2021). 16S rRNA gene sequencing is relatively inexpensive, it can be used 
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for low abundance samples due to the amplification during library preparation and 

analysis can be relatively quick due to smaller number of sequences. Although 

sometimes referred to as a ‘metagenomic’ technology, this is not strictly true as 16S 

rRNA gene sequencing does not involve sequencing of all the genes present in a 

sample.  

Metagenomic sequencing on the other hand, sometimes referred to as shotgun 

sequencing, involves the untargeted sequencing of host and microbial genes present 

in a sample, not just targeted sequencing of a single gene (Quince et al., 2017). 

Despite the increased costs and computational demand, this technique has its 

advantages over 16S, allowing both species- and strain-level classification (Beck et 

al., 2021). Furthermore, metagenomics is not limited to bacteria and allows the 

analysis of all microbial species (i.e., bacteria, viruses, fungi and archaea), and the 

functional potential of the microbiome, which is important due to the complexity of 

microbial communities and their genetic content (Beck et al., 2021). The variability of 

species within a genus and strains within a species is important to note, and these 

subtleties could impact on health and disease. 

There are various sequencing platforms available for metagenomic studies, one of the 

more popular being Illumina sequencing, which relies on a sequencing by synthesis 

approach, producing paired read libraries (Bragg & Tyson, 2014). Typically, a 

metagenomic or 16S rRNA gene sequencing study would comprise the following 

workflow: (a) sample collection; (b) DNA extraction; (c) sequencing; (d) bioinformatic 

processing of sequencing reads; (e) taxonomic (and for metagenomics, functional) 

profiling and statistical analysis, and (f) validation. 

It is noteworthy that characterisation using sequencing methods is not necessarily 

restricted to the genetic capacity of the microbiome. Whilst metagenomics offers some 

limited insight into the functional capacity (i.e., which genes are present), it fails to 

capture whether species are active members (i.e., which genes are switched on, which 

gene products are present and which metabolites are present).  
 

1.7.3. Metabolomics 
The complex, dense, community of microorganisms in the GI tract is also responsible 

for the production of a number of metabolic compounds (Vernocchi et al., 2016). 
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Metabolites are functional small molecules that represent the intermediate or end 

product of metabolism. They modulate a variety of signalling pathways which facilitate 

intestinal mucosa homeostasis (Vernocchi et al., 2016), and form the basis of 

communication between microbes and host cells. The host metabolome is therefore 

heavily intertwined with and connected to gut microbial communities. Metabolomics is 

the study of all the metabolites from a given ecosystem, providing insight into the 

function of the microbiome, host tissue and the host metabolic profile. Compared to 

metagenomics where functional annotation is based on capacity and prediction, 

metabolomics detects the actual end products of cellular reactions. Metabolite profiles 

can differ between healthy and disease subjects in a range of conditions and 

pathologies, some of which can be detected at unrelated body sites. For instance, the 

detection of metabolites in urine in relation to conditions that primarily impact the gut 

or brain. Such detection of metabolic alterations provides targets for non-invasive 

biomarkers and enables the mechanisms of disease development to be elucidated. 

Metabolomic studies typically utilise Mass Spectrometry (MS) or nuclear magnetic 

resonance (NMR) based techniques. For MS-based techniques, metabolites are first 

separated using one of a variety of methods, including but not limited to gas 

chromatography (GC) and ultra-performance liquid chromatography (UPLC) 

(Vernocchi et al., 2016). The choice of chromatography will impact which metabolites 

are retained and subsequently detected by MS. The choice of column used is therefore 

important and should reflect the study hypotheses or multiple different columns could 

be used, such as combining reverse-phase liquid chromatography and hydrophilic 

interaction liquid chromatography (Contrepois et al., 2015). Recent efforts have also 

focused on combining different chromatograph techniques to maximize the number of 

metabolites detected. NMR spectroscopy, on the other hand, exploits the local 

magnetic field that exists around atomic nuclei, allowing the molecular structure of 

metabolites to be elucidated. MS-based techniques are more sensitive than NMR but 

require known standards to be run alongside samples in order to identify metabolites 

of interest (Emwas et al., 2019). Without doing so, any identified feature can only be 

putative and therefore most features in a liquid-chromatography (LC)-MS experiment 

will remain unidentified. Further to this, within the context of the gut microbiome, the 

origin of numerous metabolites remains elusive, as they could potentially arise from 
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either the microbiota or the host itself. This emphasises the need for further 

experimental work to better understand these intricacies.  

1.7.4. High-dimensional immune profiling 

Although perhaps not strictly an ‘omic’ technology, high-dimensional immune profiling 

using flow cytometry (FC) or mass cytometry by time of flight (CyTOF) are important 

techniques to consider when studying preterm infants at risk of NEC. These techniques 

look to measure protein abundance and can be used to study immune cells by, 

spanning a broad range (i.e., B-lymphocytes, T-lymphocytes, natural killer cells, 

monocytes etc.) or homing in on more specific sub-populations of an immune cell type 

such as the T-lymphocyte population (i.e., γδ T-lymphocytes, Th17 lymphocytes, 

mucosal-associated invariant T (MAIT) cells etc.). Different immune cells will express 

different protein markers in varying abundance and these signatures can then be used 

to identify immune cell populations and sub-populations. 

Both techniques rely on the tagging/labelling of a panel of antibodies with either 

fluorescent dye (for FC) or metal isotopes (for CyTOF), which then give off a signal 

during the run. Antibody panels are designed to target antigens of interest, that are 

indicative of specific cell populations. Fluorescence intensities (for FC) or ion counts 

(for CyTOF) are assumed to be proportional to the expression levels of these antigens 

of interest (Nowicka et al., 2017). 

Conventional analysis of both FC and CyTOF data includes gating, whereby different 

cell populations can be identified usually through use of scatter or contour plots. Cells 

 
 
Figure 1.4. Schematic of manual gating of FC and CyTOF data. Cells are 
plotted in 2 dimensions and cell populations chosen based on different 
parameters. 
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can be plotted based on various parameters (i.e., antigen markers) on the X and Y axis 

and populations can be identified and selected for. The selected cell population can 

then be further gated based on different parameters, and so on (Figure 1.4). Gating is 

a manual process which is time consuming and can result in marker combinations 

often going unexamined (Van Gassen et al., 2015), particularly with increasing number 

of markers.  

1.7.5. Multi-omics 

Single omics approaches have provided important progress in the understanding of a 

range of complex diseases. Individually, however, these tools are often unable to 

capture the true biological complexity of most diseases (Karczewski & Snyder, 2018), 

including NEC. For instance, changes in specific bacterial species using microbiome 

sequencing may have little or very profound impacts on the overall function of the 

microbiome and microbe–host interaction. Advances in systems biology have enabled 

the integration of multiple types of omics data, termed multi-omics, which allows for a 

more comprehensive analysis and may provide important advances in the field. This 

is especially true in the case of diseases like NEC, which arises as a result of the 

interplay between a range of host and environmental factors. Thus, integrative 

approaches are advantageous, particularly when studying these kinds of diseases, as 

they provide a more holistic view. The advent of this more recent integrative approach 

paves an exciting possibility for the future of NEC research in preterm infants. 

1.7.6. Challenges in multi-omic and microbiome data analysis 

The advent and development of high-throughput techniques has driven the evolution 

of bioinformatic pipelines, computational tools and statistical methods used for 

microbiome characterisation. Without which, the handling and analysis of big data 

would prove impossible. Yet, omic data poses many challenges, as often big datasets 

do. 

 

For downstream analysis (i.e., taxonomic and functional profiling) of metagenomic and 

16S rRNA gene sequencing data, various statistical approaches and computational 

packages can be implemented. Microbiome data represents a unique challenge for 

analysis, in that it is compositional by definition. This is because reads are constrained 

to the upper bound of sequencing instruments, and that the abundance of any one 
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fragment is only interpretable relative to another within a given sample. Therefore, the 

total number of reads for a given stool sample does not reflect the absolute number of 

microbes present in the gut lumen (Weiss et al., 2017). This is implicitly acknowledged 

when microbiome data is rarefied, normalised or converted to relative abundance 

values (Gloor et al., 2017). As such, inferences can be difficult to make and certain 

analyses, such as correlation analyses between gut members, can be difficult to 

conduct. These specific challenges are not unique to microbiome data, but also 

metabolome data.  

 

Some of the further challenges that come with multi-omic experiments involving clinical 

samples include the sheer complexity and presence of confounding variables. Instead 

of using standard univariate statistical approaches, such as T-tests, which will fail to 

account for the complexity of the data, multivariate analyses such as multiple 

regression models are required (Chen & Li, 2016). Put simply, these models allow 

multiple independent variables to be incorporated, each of which are controlled for 

when calculating the associated variance and significance of each individual variable.  

 

There is increasing interest in analysing the temporal development of the infant gut 

microbiome (Stewart et al., 2017; Stewart et al., 2018; Yassour et al., 2016). 

Longitudinal datasets introduce repeated measures whereby samples are not 

independent from one another, which again cannot be analysed using standard 

statistical approaches. Instead, this data is often dealt with by splitting the dataset into 

multiple timepoints, and treating each timepoint like cross-sectional data, with 1 sample 

per patient per timepoint. However, this approach has its limitations, such as losing 

potentially important data pertaining to within-subject changes, over-simplification and 

reducing the statistical power within each cross-section. Alternatively, mixed effects 

models, sometimes referred to as mixed models or linear mixed effects models (LMMs) 

can be fit to data that has a repeated measures nature. Linear mixed effects models 

are an extension on simple linear regression models and an extension on multiple 

regression models, allowing for both fixed and random effects to be fit. Fixed effects 

are factors of primary interest, and generally include things such as treatments and 

demographic variables. As with multiple regression models, potential confounders can 

be controlled for by incorporating them as fixed effects. Random effects tend to refer 

to factors that are not of primary interest, and almost always include subject identifiers 
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in order to estimate population variance (Bolker et al., 2009). Therefore, for longitudinal 

data where there are multiple samples from each patient, the subject identifier (i.e., the 

variable that will be responsible for much of the variation, but which we are not 

interested in), can be included as a random effect in the model. Dependent on the error 

distribution of data, mixed effects models can be described as linear (i.e., when the 

error distribution is normal/gaussian) or generalised linear (i.e., when the error 

distribution is non-normal). There are various types of generalised linear mixed models 

(GLMMs), for example binomial mixed regression models, for which the dependent 

variable is binary. LMMs and GLMMs can be used to model various kinds of complex 

microbiome data structures, but in practice are primarily used to model alpha diversity 

metrics (i.e., diversity related to within a single sample), categorical outcomes such as 

microbial community clusters (Rozé et al., 2020) and specific taxon abundances. 

 

Manual fitting of models works well for hypothesis-driven statistical testing of 

microbiome data, and for testing singular feature-wise associations. However, due to 

the highly sparse nature of microbiome data (i.e., zero-inflation) and high-

dimensionality, computational approaches have been optimised to accommodate 

these challenges. MaAsLin 2 (Microbiome Multivariable Associations with Linear 

Models) is one such package, which employs a multi-model framework to analyse 

community data (Mallick et al., 2021). This tool enables the user to identify features, 

such as specific microbial taxa associated with each covariate in the model from an 

entire feature table.  

 

Other statistical analyses for microbiome data include beta diversity analysis, which 

refers to diversity between samples or groups of samples. Specifically, beta diversity 

measures can be used to determine whether composition vectors of a sample (i.e., the 

relative abundance of each feature within a sample) differ between samples. One of 

the most commonly used beta diversity measures is Bray-Curtis dissimilarity, which 

looks to identify the overall dissimilarity between two composition vectors (Gail et al., 

2021). Ordination plots can then be used to visualise beta diversity analyses, reducing 

multi-dimensional microbiome data usually into 2 or 3-dimensions. Samples that are 

more similar based on beta-diversity distance measures, are plotted closer together 

on a scatterplot. Commonly used ordination approaches include non-metric multi-
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dimensional scaling (NMDS), principal coordinate analysis (PCoA), principal 

component analysis (PCA) and redundancy analysis (RDA) (Qian et al., 2020). 

 
1.7.7. Animal models and primary cell lines 

Omic studies are limited to identifying associations rather than cause and effect. In 

order to fully appreciate and characterise the relationship between microorganisms 

and their host, and to better understand the underlying disease mechanisms, 

interaction studies are crucial. These types of experiments have typically involved in 

vitro, in vivo or ex vivo techniques such as the use of animal models or cell lines. For 

example, a recent study used Caco-2 cells, which are typically used as a model of the 

intestinal epithelial barrier, to assess the impact of synthetic HMOs on the intestinal 

barrier transcriptome (Wu et al. 2022). The study found that transcriptome profiles of 

cells exposed to synthetic HMOs bearing similar side chains, to cluster with one 

another, and there to be little overlap in gene regulation shared by all synthetic HMOs 

(Wu et al., 2022). Further, there are a number of groups using animal models to study 

NEC specifically, including mice, rats and piglets (Lopez et al., 2023). The induction of 

NEC in these animal models will vary but typically involve a combination of feeding 

with infant formula, exposure to hypoxia and/or hypothermia, and the addition of LPS 

or gut microbes obtained from human infants with NEC. However, there are some 

limitations to these approaches, including the complexity and ethical issues 

surrounding the use of animal models and the fact that both animal models and cell 

culture lines are not necessarily representative of specific human tissue types (Mead 

& Karp, 2019). Culture lines in particular fail to recapitulate all the intestinal cell types 

(Foulke-Abel et al., 2014), and animal models have an altered endogenous gut 

microbiome in comparison to humans. As such, emerging technologies have aimed to 

address these limitations for studying NEC including the use of human intestinal-

derived organoids. 

 

1.7.8. Organoids 
Organoids are 3D culture structures generated from stem cells (tissue-derived or 

induced pluripotent stem cells) and have been used to study various diseases and 

human physiological processes. Human intestinal-derived organoids have been 

developed as a model to study the human intestine. The architecture of the human 

intestinal epithelium comprises (1) the villus; which is composed of enterocytes, goblet, 
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enteroendocrine and tuft cells, and (2) the crypts; where Paneth and Lgr5+ stem cells 

reside (Figure 1.5A). The apical surface of intestinal epithelial cells faces the gut 

lumen, which represents the side that cells are exposed to various microorganisms, 

microbial products and dietary compounds (Blutt et al., 2018). Human intestinal-

derived organoids are generated from the intestinal crypts of tissue (i.e., biopsy sample 

or resected tissue from surgery) that contains Lgr5+ stem cells, which are able to 

generate a continuously expanding, self-organising epithelial structure reminiscent of 

the intestine (Sato et al., 2009). However, one of the unique challenges introduced by 

using these organoid models is that the apical surface, where cells would be exposed 

to microorganisms or metabolites etc. in vivo, is enclosed within the organoid structure 

(Figure 1.5B). 
 

Figure 1.5. Example organoid model for gut microbiome studies. (A) Intestinal 
epithelium architecture comprising the villus and crypt. (B) Typical human intestinal-
derived organoid model system set up from isolation of intestinal crypts to dissociation 
of 3D organoid structure to 2D monolayer of differentiated intestinal cells. 
 

To overcome these challenges, researchers have employed various methods such as 

dissociating organoid structures into 2D monolayers, then differentiating cells to 

represent the various intestinal cell types (Figure 1.5B). This has the additional 
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benefits of being optimised to reflect the oxygen condition of the intestinal environment, 

for example, by having the apical surface exposed to anaerobic conditions to enable 

the growth of intestinal anaerobic microorganisms (Fofanova et al., 2019). Other 

methods to overcome these challenges include microinjection to introduce microbes 

and other products to the organoid ‘lumen’ and controlling epithelial cell polarity 

thereby having the apical surface facing outward (Co et al., 2019). Additionally, some 

groups have looked at seeding 2D monolayers into microfluidic systems, termed the 

‘intestine-on-chip’ model (Chapman & Stewart, 2023). These can be used to provide a 

fluidic flow of nutrients, metabolites or microbes in a manner that intestinal cells would 

normally be subject to within the lumen, however, they are labour intensive and 

complex to use (Chapman & Stewart, 2023). More recently, researchers have 

established apical-out intestinal organoids as an inflammatory model for NEC (Liebe 

et al., 2023). 

 

1.8. Aims 
The broad aims of this study were to understand how infant factors shape the gut 

microbiome in preterm infants at risk of NEC. The specific aims were as follows: 

• Define infant factors that shape the gut microbiome in healthy preterm infants. 

• Identify infant factors and gut microbiome signatures associated with the 

development of NEC in preterm infants. 

• Identify associations and relationships between clinical data, the gut 

microbiome, metabolome and circulating T-lymphocytes in preterm infants.  

Based on these aims, it was hypothesised that the gut microbiome of healthy preterm 

infants will be influenced by infant factors such as probiotic use and the consumption 

of breast milk, and that the gut microbial composition of these infants will be distinct to 

that of infants who go on to develop NEC. Finally, it was hypothesised that there will 

be associations between infant factors, the neonatal gut ecosystem and systemic 

immunity. 
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2. Methods 
2.1. Ethics, sample collection and storage 

Infants were recruited to the Supporting Enhanced Research in Vulnerable Infants 

Study (SERVIS) with written parental consent covering data and sample collection. 

The study protocol was approved by Newcastle Hospitals NHS Foundation Trust, 

NRES Committee North East and N. Tyneside 2 10/H0908/39, and the research 

complies with all relevant ethical regulations. All work with clinical samples, including 

organoids, is covered within these ethical approvals. For Chapter 5, in addition to the 

ethical cover of SERVIS, infants were recruited to the ‘Interactions between the diet 

and gut microbes and metabolism in preterm infants’ (INDIGO; 17/NE/0169) RCT, with 

written parental consent covering data and sample collection.  

 

All infants were cared for in the NICU of the RVI, Newcastle, with standardised feeding 

and antibiotic and antifungal guidelines (prophylactic fluconazole). The earliest 

included infants were born in 2011 and probiotics were introduced into routine use in 

2013. Between 2013 and 2016, infants received the probiotic Infloran (Bifidobacterium 

bifidum 1 × 109 colony forming units; CFU, and Lactobacillus acidophilus 1 × 109 CFU); 

then, due to lack of availability, after mid-2016 Labinic (B. bifidum 0.67 × 109 CFU., 

Bifidobacterium longum subsp. infantis 0.67 × 109 CFU and L. 

acidophilus 0.67 × 109 CFU) was used. Stool samples used in the analysis were 

collected longitudinally from day 0 until day 120, alongside extensive clinical metadata 

for each infant, including demographics and treatments such as feed exposures. The 

clinical variables used vary by chapter and are outlined in section 2.3. Stool and blood 

samples were collected and stored in the NICU at -20°C before being transferred and 

stored at -80°C.  

 

2.2. Patient cohorts, sampling overview and study design 
Patient demographics pertaining to each of the cohorts are presented within each of 

the three results chapters. The overall patient cohorts are described below. 

 

2.2.1. Patient cohort: Chapter 3 
The study described in Chapter 3 included 123 preterm infants (n = 1431 stool 

samples) born at <32 weeks’ gestation without congenital anomaly, EOS, LOS, NEC, 
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FIP/SIP or other intestinal pathology. These morbidities were excluded because they 

are most strongly associated with changes in the gut microbiome. 

 

2.2.2. Patient cohort: Chapter 4 

The study described in Chapter 4 included 199 preterm infants born at <32 weeks’ 

gestation. Of these infants, 124 (n = 1494 stool samples) were from ‘healthy control’ 

infants without congenital anomaly, EOS, LOS, NEC, FIP/SIP or other intestinal 

pathology. Additionally, 75 infants were diagnosed with NEC (n = 547 stool samples), 

of which 24 infants also developed LOS. Diagnoses of NEC were made using a 

combination of clinical, x-ray and histological findings and blindly agreed by two 

neonatal clinicians, Dr Janet Berrington and Prof. Nicholas Embleton. 

 

For the cohort used in the 1:1 matched cross-sectional analysis, a single sample from 

each NEC patient (where possible) was chosen closest to the day of NEC onset. 

Samples were chosen up to 11 days prior to diagnosis or within four days following 

diagnosis. A sample from within ± 3 days was then chosen from a healthy control infant, 

matched to the NEC patient based on gestational age and birthweight. For the 1:1 

matched longitudinal analysis, the same matchings were used, and pre-NEC samples 

that could be matched by day of life (DOL; within ± 3 days) to a healthy control were 

included in the analysis. For analyses, early NEC was defined as NEC diagnosed 

before the median day of onset of the matched cohort (≤21 days) whilst late NEC was 

defined as NEC diagnosed after the day of onset of the matched cohort (≥21 days). 

 

2.2.3. Patient cohort: Chapter 5 

The study described in Chapter 5 included 66 preterm infants born <32 weeks of 

gestation. Stool samples used in this analysis were collected longitudinally (n = 266) 

across 5 timepoints. As part of the INDIGO RCT, infants were randomised to either 

an exclusive human milk diet (intervention) or standard care (control). The control 

group consisted of feeding with MOM and the use of preterm formula milk to make up 

any shortfall MOM supply. The intervention group consisted of MOM with the use of a 

ready-to-feed pasteurized human milk product (RTF 26, Prolacta Biosciences, Los 

Angeles, California) to make up any shortfall in MOM. BMF was used and aimed to 

start within 48 hours of achieving a milk intake of 150 mL/kg per day. Infants in the 
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control group received commercially available, bovine-derived fortifier (Nutriprem 

[Nutricia Ltd] or SMA Fortifier [SMA Nutrition UK]) and infants in the intervention 

group received a pasteurized human milk–derived fortifier (P+6, Prolacta 

Biosciences). Importantly, the amount of formula, BMF and MOM used will vary 

widely between infants. 

A subset of 101 samples from 56 infants were sent for metabolomics; 85 were the 

same stool sample as was used for 16S rRNA gene sequencing, 8 were a stool sample 

from the same day and the remaining 8 were a stool samples from within ± 3 days. A 

further subset of 41 samples were matched for blood from 24 infants and sent for T-

lymphocyte profiling using CyTOF (Figure 2.1). Where probiotics were used, infants 

received Labinic. 

 

Figure 2.1. Schematic overview of INDIGO study design and sample collection. 
 

2.3. Clinical variables 
Clinical data was collected alongside samples to look for associations with data. 

Variables that are fixed through time (e.g., gestational age, birth mode, sex, etc,), are 

described on a per-infant basis and thus constant for all samples from a given infant. 

Other variables were categorised to reflect exposure in relation to time (e.g., 

antibiotics, receipt of MOM, etc.), and therefore are on a per-sample basis. 

 

2.3.1. Clinical variables: Chapter 3 

The clinical variables used in the statistical analyses for Chapter 3 were gestational 

age at birth (continuous; range 23–31), birthweight (continuous; range 500–2,000 g), 

birth mode (vaginal/caesarean), sex (male/female), season at birth 

(winter/spring/summer/autumn), intravenous antibiotics in the past 7 days (no/yes), day 
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of full feed (continuous; range 6–39), MOM (never/during/after), breast milk fortifier 

(BMF; never/before/during/after), formula (never/before/during/after), probiotics (no 

probiotic/Infloran/Labinic) and weight z-score difference between birth and discharge 

(continuous; range −5.4 to 1.1). The variables included are based on variables that 

have either been identified in previous studies (either term or preterm infant) to be 

associated with changes in the gut microbiome e.g., various dietary factors, antibiotics, 

birth mode. Gestational age at birth and birthweight were included to control for the 

degree of prematurity/health status at birth, season at birth was included as a proxy for 

changes in the neonatal unit microbial environment over the year and weight z-score 

difference between birth and discharge was included as a proxy for health status. 

Additional clinical information, such as ethnicity, were not readily available, but it is 

important to note that these variables not included, as well as unknown confounders, 

may be clinically relevant and associated with changes in the gut microbiome. 

 

For the persistence analysis (described further in section 2.12.7.) all co-variates 

needed to be on a per-infant basis restricting the analysis to gestational age, 

birthweight, birth mode, sex, season, total number of antibiotic courses, day of full feed, 

BMF ever (no/yes), formula ever (no/yes), probiotics and weight z-score change. MOM 

could not be included in this particular analysis because there was only one baby who 

did not receive MOM in this subset.  

 

2.3.2. Clinical variables: Chapter 4 
The clinical variables used in the statistical analyses for Chapter 4 were gestational 

age at birth (continuous; range 23–31), birthweight (continuous; range 500–2,000 g), 

birth mode (vaginal/caesarean), sex (male/female), intravenous antibiotics in the past 

7 days (no/yes), day of full feed (continuous; range 6–120, for infants who died before 

reaching full feeds, day 120 was used), MOM (never/before/during/after), BMF 

(never/before/during/after), formula (never/before/during/after), probiotics (no 

probiotic/Infloran/Labinic) and NEC (no-NEC/pre-NEC/post-NEC) or NEC ever 

(no/yes). Season at birth and weight z-score were not included in this chapter due to 

this data not being readily available for a number if infants in this cohort, and these 

variables being shown to have no significant association with the healthy preterm gut 

microbiome. 
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For the persistence analysis (described further in Section 2.12.7.) all co-variates 

needed to be on a per-infant basis restricting the analysis to gestational age, 

birthweight, birth mode, sex, total number of antibiotic courses, day of full feed, BMF 

ever (no/yes), formula ever (no/yes), probiotics and NEC ever (no/yes). The same 

variables were used for the microbiome stability analysis (described in more detail in 

Section 2.12.7.), except for day of full feeds. 

 

2.3.3. Clinical variables: Chapter 5 
The clinical variables used in the statistical analysis for Chapter 5 were again similar 

to those used in the previous two chapters: gestational age at birth (continuous; range: 

23 – 29.4), birthweight (continuous; range: 475 - 1620), birth mode 

(vaginal/caesarean), sex (male/female), intravenous antibiotics in the past 7 days 

(no/yes) and day of full feed (continuous; range: 9 - 47). The feeding variables used 

were different to those used in Chapter 3 and 4, and instead included % MOM in 

previous 3 days (continuous; range: 0-100%) and fortifier at time of sample (no/yes).  
 

For the microbiome stability analysis (described in more detail in Section 2.12.7.) all 

co-variates needed to be on a per-infant basis restricting the analysis to gestational 

age, birthweight, birth mode, sex, total days on antibiotics, day of full feeds and total 

days of MOM. Fortifier could not be included in this particular analysis as the model 

would not converge.  

 

2.4. Stool DNA extraction 
DNA was extracted from ~0.1g of stool using the DNeasy PowerSoil Kit (QIAGEN) 

following the manufacturer’s protocol, with minor modifications. Samples were 

vortexed at maximum speed for 20 min using a Vortex Adapter tube holder and eluted 

in ~70µl of solution C6 before being stored at -80°C. Subsequent steps were performed 

according to the protocol. A kit negative control (i.e., with no stool sample) was 

extracted with every batch of 24 samples. 

 
2.5. Metagenomic shotgun sequencing, taxonomic and functional 

profiling 
Metagenomic sequencing was performed either by Astarte medical or by Baylor 

College Medicine and subsequent profiling by the Alkek Centre for Metagenomics and 
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Microbiome Research (Baylor College Medicine, USA). Library prep was performed 

using the Nextera DNA Flex Kit. Sequencing was performed on the HiSeq X Ten 

(Illumina) with a target read depth of 10M reads per sample with a read length of 150bp 

paired end reads. Raw fastq files were quality trimmed and Illumina adapters removed 

using bbduk (BBMap version 38.69) (Truong et al., 2015). Trimming parameters 

included kmer length of 19, allowing one mismatch, and a minimum Phred score of 20. 

Post-trimming, reads with a minimum average Phred <17 and length <50 bp were 

discarded. Host contamination reads were identified by mapping trimmed fastq files to 

a combined database containing the hg38 reference human genome and PhiX 

(standard Illumina spike in) using bbmap (BBMap version 37.58) (Truong et al., 2015) 

with kmer length of 15, bloom filter enabled, and fast search settings. 

 

Host reads were subsequently removed, and taxonomic profiling of subsequent files 

was performed by using MetaPhlAn v.2.0 (Segata et al., 2012) (bacterial, archaeal and 

fungal taxonomic classification) and VirMAP v.1.0 (Ajami et al., 2018) (viral taxonomic 

classification) based on default settings. Functional profiling was performed using 

HUMAnN v.2.0 (Franzosa et al., 2018) based on default settings. The Comprehensive 

Antibiotic Research Database was used to identify antibiotic resistance genes within 

the metagenomic dataset based on the standard resistance gene identifier protocol 

with default parameters (McArthur et al., 2013). Microbial enzymes (level-4 enzyme 

commission (EC) categories) were quantified by Dr. Tommi Vatanen, by summing the 

abundances of individual gene families mapping to each EC number based on 

UniRef90-EC mapping from UniProt (Bateman et al., 2017). B. infantis HMO genes (as 

previously described (Casaburi et al., 2021)) were also quantified by Dr. Tommi 

Vatanen, by first identifying the corresponding UniRef90 gene families and then 

utilising B. longum-stratified gene quantifications (quantifying UniRef90 gene families) 

from HUMAnN v.2 (Vatanen et al., 2019). Samples with >90% of the genes in these 

six genomic loci (H1, H2, H3, H4, H5 and a urease gene cluster) were classed as 

having B. infantis. 

 

2.6. 16S rRNA gene sequencing and taxonomic profiling 

V4 16S rRNA gene sequencing was performed by NU-OMICS at Northumbria 

University using the following protocol. The V4 region of the 16S rRNA gene was 

amplified by polymerase chain reaction using the barcoded Illumina adapter-containing 
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primers 515F and 806R (Caporaso et al., 2012). Sequencing was performed on the 

Illumina MiSeq platform, with a target read depth of 10k and a read length of 250 bp 

paired end. Raw data processing was performed, where merging allowed zero 

mismatches and a minimum overlap of 50 bases. Merged reads were trimmed at the 

first base with a q less than or equal to 5 and samples were rarefied at 2000 reads per 

sample. Subsequent fastq files were processed by the Alkek Centre for Metagenomics 

and Microbiome Research (Baylor College Medicine, USA). 16S rRNA gene 

sequences were assigned operational taxonomic units (OTUs) based on a similarity 

cut-off value of 97% using the UPARSE algorithm. OTUs were then mapped to the 

SILVA Database containing only the 16S V4 region, to determine taxonomies. 

Abundances were then recovered by mapping the demultiplexed reads to the OTU file. 

 

2.7. Untargeted metabolomics 
2.7.1. Untargeted metabolomics: Chapter 3 

For the metabolomics in Chapter 3, a subset of 10 stool samples representative of 

each preterm gut community type (PGCT) and matched serum were selected for LC-

MS. As PGCTs were strongly associated with DOL at sampling, samples were primarily 

chosen to match for DOL between PGCTs to mitigate confounding by age at sampling. 

Other clinical variables were matched in addition, including gestational age, 

birthweight, birth mode and sex. Based on these criteria, no clinical variable was 

significantly different between PGCTs (all P > 0.05). 

Metabolomics was performed by the Marsland Lab in the Department of Immunology 

and Pathology (Monash University, AU), using the following protocol. Metabolites were 

extracted using a methanol solvent solution, supplemented with 1 µM MS internal 

standards (CAPS, CHAPS and PIPES) and 5 µM 2,6-di-tert-butyl-4-methylphenol. 

Serum samples were centrifuged at 800 xg for 5 min, supernatants collected, and the 

solvent solution added at a 4:1 ratio. Samples were shaken for 1 h at 4 °C, centrifuged 

at 14,000g for 10 min and supernatants collected. Liquid from stool samples was 

evaporated using a Speedvac (Thermo Fisher Scientific) and a solvent solution was 

added at a ratio of 300 µl per 10 µg. Samples were shaken for 1 h at 4 °C, followed by 

centrifugation at 14,000g for 20 min, and supernatants collected. 
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The LC–MS data were acquired on a Dionex Ultimate 3000 rapid separation high-

performance liquid chromatography system (Thermo Fisher Scientific) coupled with a 

Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific). Chromatographic 

separation was performed on a ZIC-pHILIC column (5 µm, polymeric, 150 × 4.6 mm2, 

SeQuant, Merck). Mobile phase (A) was 20 mM ammonium carbonate and (B) 

acetonitrile. The gradient programme started at 80% (B) and reduced to 50% (B) over 

15 min, then reduced to 5% (B) over 3 min, where washing occurred for 3 min; finally, 

there was an 80% (B) re-equilibration for 8 min. The flow rate was 0.3 ml min−1 and the 

column compartment temperature was 40 °C. Total run time was 32 min with an 

injection sample volume of 10 µl. The mass spectrometer operated in positive and 

negative polarity, switching at 35,000 resolution and 200 m/z with detection range of 

85–1,275 m/z in full-scan mode. An electrospray ionization source (ESI) was set to 

3.5 kV voltage for positive mode and 4.0 kV for negative mode, sheath gas was set to 

50 and aux gas to 20 arbitrary units, capillary temperature 300 °C and probe heater 

temperature 120 °C. Serum samples were analysed as a single batch, as were stool 

samples. Each sample set was randomised to account for system drift. Mixtures of 

pure authentic standards containing approximately 320 metabolites were acquired as 

separate injections and used to confirm retention times. 

The raw LC–MS data of both serum and stool samples were independently processed 

as stated in the metabolome–lipidome–MS-DIAL pipeline using MS-DIAL v.4.8 

(Tsugawa et al., 2020). Metabolomic processing was conducted in positive and 

negative ion mode. Default parameters were applied unless otherwise stated. Peak 

detection parameters included a minimum peak amplitude of 100,000. Peaks were 

identified using the MassBank database v.2021.02 (Horai et al., 2010) with a retention 

time tolerance of 0.1 min, accurate mass tolerance of 0.002 Da and identification score 

cut-off of 80%. Peaks were aligned using a retention time tolerance of 0.3 min and 

accurate mass tolerance of 0.002 Da, with gap filling by compulsion. MS/MS was 

exported and further processed for secondary annotation using the Global Natural 

Products Social Molecular Networking feature-based molecular networking tool 

(Nothias et al., 2020). 

Peak intensity tables were exported from MS-DIAL and the R package pmp v.1.6.0 

(Jankevics et al., 2021) was used for the following quality control (QC) and pre-
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processing steps. Peaks were filtered for intensities at least fivefold higher than LC–

MS blanks, samples with >80% missing values, features with >20% missing values 

and peaks filtered based on the percentage of variation in the QC samples with a 

maximum relative standard deviation of 25%. Based on this, one stool sample from 

PGCT-2 was excluded. Data were normalised using probabilistic quotient 

normalisation, followed by Random Forest missing data imputation using the 

missForest R package v.1.4 (Stekhoven & Bühlmann, 2012) and subsequent 

generalised logarithmic (glog) transformation. MS1 data were further annotated using 

the human metabolome database (HMDB, v.4, July 2021) (Wishart et al., 2018), with 

an AMT of 0.002 Da. Any unannotated features were removed. The remaining dataset 

was subject to manual feature curation in MS-DIAL, where poor quality spectral 

features were removed. 

2.7.2. Untargeted metabolomics: Chapter 5 

Metabolomics was performed on a subset of 101 samples from 56 infants by 

Metabolon (North Carolina, US) using the following protocol (methods taken from 

https://www.metabolon.com/support/portal/experimental-procedures/) . Samples were 

prepared using the automated MicroLab STAR® system from the Hamilton Company. 

Proteins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills 

GenoGrinder 2000) followed by centrifugation. The resulting extract was divided into 

fractions: two for analysis by separate reverse phase (RP)/UPLC-MS/MS methods with 

positive ion mode ESI, one for analysis by RP/UPLC-MS/MS with negative ion mode 

ESI, and one for analysis by hydrophilic interaction liquid chromatography 

(HILIC)/UPLC-MS/MS with negative ion mode ESI. Samples were placed on a 

TurboVap® (Zymark) to remove the organic solvent and sample extracts were stored 

overnight under nitrogen before preparation for analysis.  

All methods utilised a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive 

high resolution/accurate mass spectrometer. The sample extract was dried then 

reconstituted in solvents compatible to each of the methods. Each reconstitution 

solvent contained a series of standards at fixed concentrations. One aliquot was 

analysed using acidic positive ion conditions, chromatographically optimised for more 

hydrophilic compounds. In this method, the extract was gradient eluted from a C18 

column (Waters UPLC BEH C18-2.1×100 mm, 1.7 µm) using water and methanol, 

https://www.metabolon.com/support/portal/experimental-procedures/
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containing 0.05% perfluoropentanoic acid and 0.1% formic acid. Another aliquot was 

also analysed using acidic positive ion conditions, however it was chromatographically 

optimised for more hydrophobic compounds. In this method, the extract was gradient 

eluted from the same C18 column with the addition of acetonitrile and 0.01% FA 

instead of 0.1%, and was operated at an overall higher organic content. Another aliquot 

was analysed using basic negative ion optimized conditions using a separate 

dedicated C18 column. The basic extracts were gradient eluted from the column using 

methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth 

aliquot was analysed via negative ionisation following elution from a HILIC column 

(Waters UPLC BEH Amide 2.1×150 mm, 1.7 µm) using a gradient consisting of water 

and acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated 

between MS and data-dependent MSn scans using dynamic exclusion. The scan 

range varied slighted between methods but covered 70-1000 m/z.  

Raw data was extracted, peak-identified, QC processed and biochemical 

identifications made using Metabolon’s in-house hardware and software. Peaks were 

quantified using area-under-the-curve.  

2.8. Preterm intestinal organoid co-culture system 

A human intestinal organoid line was generated from preterm intestinal ileum tissue 

after surgical resection for NEC (Stewart et al., 2020). The infant was a male born at 

24 weeks’ gestation and had surgery on DOL 10. Organoids were established and 

propagated using a method described previously by Stewart et al. (Stewart et al., 

2020). Dr. Andrea Masi prepared all media and isolated intestinal crypts from tissue. 

In brief, ~5 mm2 of tissue was minced and washed with complete chelating solution 

supplemented with 2.5 µg/ml Amphotericin b (Gibco) and 100 µg/ml 

Penicillin/Streptomycin (Gibco). To isolate intestinal crypts, tissue was incubated twice 

in 3 ml complete chelating solution with 0.03 M Ethylenediaminetetraacetic acid 

(EDTA) then 0.04 M of EDTA shaking for 30 min at 300 rpm (4°C). Supernatant was 

collected after each incubation and centrifuged for 5 min at 1000 rpm (4°C). Isolated 

crypts were resuspended in 70 µl Matrigel (Corning), dispensed into a 24-well tissue 

culture plate and incubated with 500 µl high Wnt media supplemented with 10 µM Y-

27632 (Sigma Aldrich). Media was changed every 2-3 days and supplemented with 
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2.5 µg/ml Amphotericin b and 100 µg/ml Penicillin/Streptomycin for the first 3 

passages.  

 

To passage cells, media was removed from wells and Matrigel was disrupted with 500 

µl of cold (4°C) Complete Media Growth Factor negative (CMGF-). Organoids were 

collected and pooled from well-to-well and mechanically disrupted using a 25-gauge 

needle. Cells were centrifuged for 5 min at 1000 rpm (4°C), resuspended in Matrigel 

(sufficient to seed ~30 µl in each well) and incubated as above. 

 

To generate monolayers, transwell inserts (6.5 mm, 0.4 µm pore size; Corning) were 

coated with 100 µl of Matrigel diluted 1:40 in phosphate buffered saline (PBS) and 

incubated at 37 °C. Organoids were washed in 0.5 mM EDTA, incubated with 1 ml 

0.05% Trypsin – 0.5 mM EDTA for 5 min at 37 °C, passed through a 40 µm cell strainer 

and centrifuged for 5 min at 1200 rpm (4°C). Excess PBS was removed from transwells 

and inserts were seeded with 5x105 cells suspended in 200 µl CMGF+ media 

supplemented with 10 µM Y-27632. In addition, 650 µl of media was added to the 

basolateral side. Transepithelial electrical resistance (TEER) was measured every day 

using the Millicell® ERS-2 (Electrical Resistance System), and differentiation media 

was used after TEERs reached ~300 Ohm. The media was renewed every other day. 

Intestinal organoid monolayers (n = 3 technical replicates) were exposed to pooled 

faecal supernatants representing each PGCT and a control containing no faecal 

supernatant. Sterile faecal supernatants were prepared using a modified method 

described elsewhere (Henrick et al., 2021). Briefly, ~0.25 g of stool (n = 10) was pooled 

for each PGCT and diluted in 25% (w/v) sterile PBS before being vortexed for 20 min 

with glass beads. Faecal slurries were centrifuged for 20 min at 1,600g (4 °C), the 

supernatant was re-centrifuged for 10 min at 14,000g and 4 °C, and the resulting 

supernatant was serially filtered (0.45 µm and 0.22 µm). Faecal supernatant was stored 

at −80 °C until use. Intestinal organoids were seeded as monolayers on 0.4 µm 

Transwells (Corning) and, after reaching confluence (~2 d), were differentiated for 

4 days (Ettayebi et al., 2016). 

Co-culture of preterm intestinal organoid monolayers with sterile faecal supernatants 

was performed for 24 h using the organoid anaerobe co-culture (OACC) model 
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(Fofanova et al., 2019), after 4 days of monolayer differentiation. The sterile faecal 

supernatants were added apically, corresponding to the intestinal lumen. The OACC 

model was used to recapitulate the steep oxygen gradient across the epithelium and 

mimic the low oxygen gradient of the ileum. A gas mix containing 5% O2, 5% CO2 and 

90% N2, was supplied to the basolateral side. TEER was measured at the end of the 

experiment to confirm that all monolayers remained intact, and cells were contiguous. 

2.9. RNA-sequencing 
After 24 h of xposure, RNA was extracted from organoid monolayers using the 

RNeasy kit (QIAGEN) before undergoing RNA-sequencing (RNA-seq) at the 

Newcastle University Genomics Core Facility. One sample from the PGCT-5 

exposure failed QC and was not included in the subsequent analysis. Briefly, 

stranded messenger RNA-seq libraries were prepared using the TruSeq Stranded 

mRNA kit (Illumina) and IDT for Illumina TruSeq RNA UD Index adapters following 

the manufacturer’s protocol. All samples had an A260/A280 ratio ~2.0 (purity 

measure) and an RNA integrity number (RIN) score of >7. Libraries were quantified 

using a TapeStation 4200 (Agilent Technologies) and Qubit 4 (Thermo Fisher 

Scientific) and equimolar pooled. The pooled library was sequenced at ~50 million 

100 bp single-reads per sample on a NovaSeq 6000 using an S2 100 cycle flow cell 

(Illumina). Data for individual samples were demultiplexed into separate FASTQ files 

using Illumina’s bcl2fastq software. 

QC of raw reads was performed using fastq_quality_trimmer from the FASTX Toolkit 

v.0.0.14 before being mapped to the human transcriptome (GRCh38.p13) using 

Salmon v.0.13.1 (Patro et al., 2017) to estimate transcript abundance. Estimated count 

data were aggregated at the gene level by tximport (Soneson et al., 2016) for 

downstream analysis. DESeq2 v.1.32.0 (Love et al., 2014) was used to normalize 

RNA-seq count data and identify differentially expressed genes (DEGs) between 

PGCT and control replicates. Genes were considered differentially expressed if they 

displayed an absolute positive or negative fold-change of ≥1.5 and a false discovery 

rate (FDR)-adjusted P < 0.05. A Venn diagram of DEGs was produced using the 

VennDiagram package v.1.7.1 (https://cran.r-

project.org/web/packages/VennDiagram/index.html). 

 

https://cran.r-project.org/web/packages/VennDiagram/index.html
https://cran.r-project.org/web/packages/VennDiagram/index.html
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2.10. Mass cytometry 
CyTOF was performed on 41 matched blood samples from 24 infants. Dr. Christopher 

Lamb and Dr. Rebecca Payne were involved in the initial design of the antibody panel 

(Table 2.1). Dr. Thomas Sproat prepared all of the samples and the Newcastle 

University Flow Cytometry Core Facility ran the samples, using the following protocol. 

Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples (~350 

– 500 µl blood) by re-suspending samples in HBSS (Sigma-Aldrich®) to a final volume 

of 1.2 ml. The suspension was pipetted on top of 5ml lymphoprep (Stemcell 

technologies) before centrifugation at 1200 ɡ for 20 min with an acceleration of 6 and 

deceleration of 1. The mononuclear layer containing PBMC’s was identified and 

aspirated with a 2 ml Pasteur pipette, washed twice with PBS before being counted. 3-

6 x 106 PBMC’s were isolated and stained with Cell-ID™ Cisplatin (Fluidigm®) and 

incubated for 5 min before staining with the primary antibody stain with antibodies 

bound to fluorochromes followed by the secondary antibody stain with remaining cell 

surface antibodies, both for 30 min. Cells were then fixed for 1 h with 3.2% 

formaldehyde and stored in freezing media (10% dimethyl sulfoxide in foetal bovine 

serum) at -80°C. Prior to mass cytometry, cells were defrosted at room temperature, 

permeabilised with Triton Perm Buffer (PBS + 2% FBS + 0.1% Triton X100), 

suspended in heparin for 10 min then incubated with intracellular antibodies overnight. 

Cells were incubated with Maxpar fix and perm buffer with 125 nM Cell-ID™ 

Intercalator (Fluidigm®) for 1 h, washed, and filtered through a 40 µm filter. All steps 

were performed with washes in between. Cells were counted using a BD Accuri™ C6 

flow cytometer. Samples were then diluted in 10% EQ™ Four Element Calibration 

Beads (Fluidigm®) milli-Q water to a final concentration of 5 x 105 cells/ml. Cells were 

analysed on a Helios mass cytometer (Fluidigm®). Sample acquisition occurred at a 

flow rate of 30 µl/min and each sample was run for 30 min, aiming for an acquisition of 

5 x 105 events per sample. 
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Table 2.1. Antibody panel used for CyTOF. 
 

Metal isotope Marker 
89Y CD45 

CD113 CD19 
141Pr CD196 (CCR6) 
142Nd CTLA4 
143Nd TCR γδ 
144Nd CD3 
145Nd CD4 
146Nd CD8a 
147Sm CD161 
148Sm CD86 
149Sm CD25 
150Nd CD199 (CCR9) 
151Eu CXCR3 
152Sm CD1d 
153Eu CD56 
154Sm CD49b 
155Gd CD45RA 
156Gd CD335 

(NKp46) 157Gd Anti-FITC 
158Gd CD279 (PD-1) 
159Tb CD197 (CCR7) 
160Gd Valpha7.2 
161Dy Tbet 
162Dy FoxP3 
163Dy CD294 

(CRTH2) 164Dy CD69 
165Ho TIGIT 
166Er Granzyme B 
167Er Gata3 
168Er RORγ 

169Tm CXCR5 
170Er Anti-PE 
170Yb Valpha24 
171Yb CD28 
172Yb CD14 
173Yb CD117 
174Yb HLADR 
175Lu CCR4 
176Yb CD127 
209Bi CD16 
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2.11. Enzyme-linked immunosorbent-assay 

Interleukin (IL)-8 was measured from apical and basolateral media harvested after the 

co-culture using the DuoSet Enzyme-linked immunosorbent-assay (ELISA) Kit (R&D 

Systems) following the manufacturer’s instructions with some modifications. The 

volumes used at each step were halved, except for the addition of substrate solution 

and stop solution which were added at the suggested volumes. The absorbance at 450 

nm was measured in a microplate reader. A standard curve was fit to the data using 

the ‘lm’ function from the R stats package V.4.1.3., from which sample concentrations 

were determined. A Kruskal-Wallis test was used to determine whether there was a 

significant difference between groups. 

2.12. Statistical analysis and data visualisation 
All statistical analyses were performed in R (https://www.r-project.org/) V.4.0.2. Unless 

stated otherwise, all visualisations were plotted using the ggplot2 package V.3.3.2 

(Wickham, 2016). All appendices in this thesis can be found on GitHub 

(https://github.com/laurencbeck/supplementary_tables).  

 

2.12.1. Alpha diversity 

Shannon diversity and species richness were calculated for each sample using the 

vegan package V.2.5-7 (https://cran.r-project.org/web/packages/vegan/index.html). 

Alpha diversity measurements and relative abundance data were modelled using 

locally estimated scatterplot smoothing (LOESS) regression and plotted with 95% 

confidence intervals (CI). For 16S data (Chapter 5), whilst alpha diversity analyses 

were based on OTU, all other microbiome analyses were based on genera. 

 

2.12.2. Determining PGCTs  
Dirichlet Multinomial Mixtures (DMM) was used to cluster samples within each 

cohort/chapter on the basis of microbial community structure (Holmes et al., 2012) to 

determine PGCTs. Five PGCTs was found to be optimal for samples in Chapter 3 

based on the lowest LaPlace approximation score. The same number of PGCTs were 

used throughout this thesis for consistency. PGCTs were manually ordered youngest 

(PGCT-1) to oldest (PGCT-5) based on the average DOL of samples within each 

PGCT. The Linear discriminant analysis Effect Size (LEfSe) (Segata et al., 2011) 

https://www.r-project.org/
https://github.com/laurencbeck/supplementary_tables
https://cran.r-project.org/web/packages/vegan/index.html
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method was used to determine the bacterial species that discriminated each cluster 

based on linear discriminant analysis (LDA), using default parameters. 

 

2.12.3. Determining T-lymphocyte sub-populations 

The initial manual gating of the CyTOF data to identify CD45+ CD3+ T-lymphocytes 

was performed by Dr. Thomas Sproat as follows. Data was processed using CyTOF 

software (Fluidigm®) and normalised using the EQ™ Calibration beads followed by 

Gaussian normalisation of the data. The subsequent gating strategy was implemented 

in FCS Express, with the exclusion of dead cells and doublets followed by positive 

gating of CD45+CD3+ T-lymphocytes. These populations were then ensured to be 

CD19, CD66b, and CD14 negative. FCS files containing data on T-lymphocyte cells 

only were then imported into R where clusters were defined using Flow self-Organising 

Maps (FlowSOM) (Van Gassen et al., 2015) based on marker expression to identify T-

lymphocyte sub-populations. The subsequent sub-populations were then validated by 

manual gating in FlowJo V.10.8.1. Uniform Manifold Approximation and Projection 

(UMAP) was used to visualise sub-populations based on 1000 cells per sample using 

the umap R package V.0.2.8.0. 

 

2.12.4. Determining Preterm Metabolic Profile Types and Preterm T-

lymphocyte Profile Types 

Metabolite data were clustered initially using DMM as was used to determine PGCTs, 

these clusters were to be termed Preterm Metabolic Profile Types (PMPTs). Clustering 

was then attempted using a consensus-based algorithm, three clusters were found to 

be optimal which were then defined using a hierarchical clustering approach based on 

complete linkage. The same approach was used to cluster T-lymphocyte data into 

Preterm T-lymphocyte Profile Types (PTPTs), for which two clusters were found to be 

optimal. 

 

2.12.5. Permutational multivariate analysis of variance  

To determine which clinical co-variates were associated with the various features 

explored in each chapter while accounting for repeated measures, multiple cross-

sectional analyses by permutational analysis of variance (PERMANOVA) using the 

‘adonis’ function from the vegan package were performed. Data were split into nine 

specific time windows based on DOL (Chapter 3 and 4) which were chosen to both 
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maximize the number of samples within each window and also reflect the progression 

of enteral feed independence as follows: establishing enteral feeds (0–9), reaching full 

feeds (10–14), independent of PN (15–19) and maturation on full enteral feeds (20–

24, 25–29, 30–34, 35–39, 40–49, 50–69). For Chapter 5, data were split into five pre-

defined time-points (A, B, C, D and E) for the 16S rRNA gene sequencing data, into 

three timepoints including merged timepoints (AB, CD and E) for the metabolomics 

data and into pre and post fortification for the CyTOF analysis. This was done to reflect 

the INDIGO study design and how samples were collected, in order to maximise the 

number of samples in each group. Only a single sample per infant, the earliest 

available, was included within each time window. The association of clinical variables 

(defined in Section 2.3.2) on the various feature tables was tested, based on Bray–

Curtis dissimilarity. Each test was performed in a stepwise manner and subsequent P-

values were adjusted for multiple comparisons using FDR adjustment (Benjamini–

Hochberg procedure (Benjamini & Hochberg, 1995)). 

For Chapter 3, to assess whether there was a statistically significant difference in 

serum and stool metabolite profiles based on PGCT assignment, PERMANOVA was 

performed using MetaboAnalyst v.5.0 (Pang et al., 2021). 

2.12.6. Ordination 

For all data, ordinations were performed using NMDS based on Bray–Curtis 

dissimilarity matrices using the ‘metaMDS’ function from the vegan package, unless 

stated otherwise. For RNA-seq data, euclidean distance on regularized logarithm 

(rlog), transformed, normalised count data was used. The mean centroid for each 

group was calculated and plotted. P-values were calculated using the ‘adonis’ or ‘envfit’ 

function from the vegan package. 

For metabolite analysis of stool and serum samples in Chapter 3, ordinations were 

performed on all data using partial least-squares discriminant analysis (PLS-DA) using 

MetaboAnalyst v.5.0 (Pang et al., 2021). 

2.12.7. Linear mixed models and generalised linear mixed models 
Various LMMs and GLMMs were fit to the data using the glmmTMB package 

V1.0.2.1(Brooks et al., 2017), or alternatively the logistf package (https://cran.r-

project.org/web/packages/logistf/index.html) V.1.24, which was used to fit logistic 

https://cran.r-project.org/web/packages/logistf/index.html
https://cran.r-project.org/web/packages/logistf/index.html
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regressions using Firth's bias-Reduced penalised-likelihood, when there was quasi-

complete or complete separation. To detect separation and infinite maximum likelihood 

estimates in binomial logistic regression models, the ‘detect_separation’ and 

‘check_infinite_estimates’ functions from the brglm2 package (https://cran.r-

project.org/web/packages/brglm2/index.html) V.0.7.1 were used. Model validity was 

assessed using diagnostic residual plots, generated by the DHARMa package 

(https://cran.r-project.org/web/packages/DHARMa/index.html) V.0.3.3.0. Diagnostic 

residual plots were not generated for models fit by logstif. The general formula for each 

of the LMMs fitted was as follows: 

 

Y ~ X1 + X2 + … Xn + (1|SubjectID) 

    

To determine which clinical co-variates were significantly associated with the five 

PGCTs for each chapter, individual mixed-effects binomial logistic regression models 

were fit, one for each cluster versus all other clusters. Each model contained the same 

clinical co-variates (outlined in Section 2.3.2) plus DOL as fixed effects and subject ID 

as a random group intercept. 

 

For Chapter 3, mixed-effects binomial logistic regression models were also fit to assess 

the prevalence of probiotic species. DOL had an effect on the relative abundance of 

probiotic species, so the before, during and after probiotic groups are nested in time. 

To account for this, the control group of samples from infants who had taken no 

probiotic was subset into three distinct time bins. These specific time bins were based 

on the mean start DOL for probiotics (8 DOL) and the mean stop DOL for probiotics 

(44 DOL). Mixed-effects binomial logistic regressions were fit separately within groups 

(before, during and after probiotics) for each probiotic species. They were also fit 

separately between groups (Infloran and Labinic) for each species. 

To assess the persistence of probiotic species following probiotic cessation, 

persistence analysis was performed in Chapter 3 and Chapter 4. All infants receiving 

probiotics that had at least two samples after probiotics were stopped were included in 

the analyses. Infants were classed as ‘non-persister’ for a species if there were two 

consecutive samples with a relative abundance of zero. This criterion was found to be 

optimal and babies could be separated quite clearly into ‘persisters’ and ‘non-

https://cran.r-project.org/web/packages/brglm2/index.html
https://cran.r-project.org/web/packages/brglm2/index.html
https://cran.r-project.org/web/packages/DHARMa/index.html
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persisters’. Binomial logistic regressions were fit for each probiotic species to 

determine which co-variates were significantly associated with persistence, using the 

logistf package as previously described above. The models included the subject-level 

co-variates as described in Section 2.3.1.  

In Chapter 4 and Chapter 5, to assess the stability of the microbiome between PGCTs 

and whether this was associated with clinical information, microbiome stability analysis 

was performed. All infants with at least two microbiome samples were included in the 

microbiome stability analysis. To find out which covariates were significantly 

associated with microbiome stability, a binary outcome (stable/unstable) was used. For 

Chapter 4, infants were classified as stable if their microbiome had made one transition 

and unstable if their microbiome had made two or more transitions between PGCTs. 

For Chapter 5, infants were classified as stable if their microbiome had made no 

transitions and unstable if their microbiome had made one or more transitions between 

PGCTs. These cut-offs were chosen based on the most optimal way to split the data. 

For Chapter 5, as this analysis was looking across the entire time-course, the number 

of transitions between PGCTs as a continuous outcome (0, 1, 2, 3) was also assessed. 

Mixed effects models were fit using the binomial (binary outcome) and Gaussian 

distribution (continuous outcome). All covariates included in the ‘adonis’ analysis plus 

the number of samples from a given infant were included as fixed effects in the models, 

and subject ID was included as a random group intercept.  

 

Where used, global P-values for fixed effects from the final models were obtained by 

analysis of variance (ANOVA; Type II Wald Chi-square test) from the car package 

V.3.0-10 (Fox & Weisberg, 2019). All post-hoc analysis was performed using either 

pairwise comparisons (Tukey HSD method) or treatment vs control comparisons 

(Dunnet’s test), both adjusting for multiple comparisons, using the emmeans package 

(https://cran.r-project.org/web/packages/emmeans/index.html) V.1.5.4.  

 

2.12.8. MaAsLin analysis to determine significant features associated with 
each co-variate 

The MaAsLin2 package v.1.2.0 (Casaburi et al., 2021; Mallick et al., 2021) was used 

to determine features significantly associated with clinical co-variates, while adjusting 

for potential confounders. All clinical co-variates used in the ‘adonis’ analysis for each 

https://cran.r-project.org/web/packages/emmeans/index.html
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respective chapter plus DOL were included as fixed effects in the analysis and subject 

ID was included as a random effect. The arcsin square root transformation was 

performed on relative abundance data and default MaAsLin2 parameters were used. 

All P values were adjusted by MaAsLin2 for multiple comparisons using FDR 

adjustment (Benjamini–Hochberg procedure) and the default q-value cut-off of 0.25 

was used to identify significant results. 

 
2.12.9. RNA-seq enrichment and network analysis 

Significance analysis of microarray and metabolites was performed in MetaboAnalyst 

(Pang et al., 2021) with a Delta threshold of 1.0 to identify specific metabolites 

discriminating PGCT-3 from PGCT-4/-5 and vice versa in both stool and serum. GO 

and enrichment analysis were performed using the gprofiler2 package v.0.2.1 

(Peterson et al., 2020), with default parameters and a customized genetic background. 

The top 25 most significant GO biological processes for PGCT-4 and PGCT-5 were 

reported. A network of interactions was inferred using String V.12.0 (https://string-

db.org/), removing nodes that were not connected.  

 

2.12.10. Microbiota age and microbiota-for-age Z score 
A random forest regression model was used to determine microbiota maturity, using 

the ‘randomForest’ (https://cran.r-

project.org/web/packages/randomForest/randomForest.pdf) R package, as previously 

described (Subramanian et al., 2014). The model was trained on a dataset of 29 

‘healthy’ infants who received no probiotic (n = 462 samples, 22.6% of overall cohort), 

based on the relative abundance of 19 age-discriminatory species. The model was 

used to predict age based on DOL. The age of the subject predicted by this model was 

termed microbiota age and was further used to determine microbiota-for-age Z (MAZ)-

scores, as previously described. To generate MAZ scores, the microbiota ages of 

study members predicted by this model were compared to the median microbiota age 

of chronologically age-matched children in the healthy reference group. 

 

2.12.11. Multiple co-intertia and generalised Procrustes analysis 

Multiple co-inertia analysis (MCIA) was performed using the omicade4 R package 

V.1.32.0 to integrate the datasets. P-values were obtained by pairwise Monte-Carlo 

Tests on the sum of eigenvalues from the MCIA. Generalised Procrustes analysis 

https://string-db.org/
https://string-db.org/
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
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(GPA) was performed using the vegan package using PCoAs generated for the three 

datasets generated in Chapter 5. Microbiome coordinates were used as the original 

reference to superimpose the metabolome PCoA onto, then the mean of the 

superimposed configuration (i.e., the mean between each pair of co-ordinates from the 

microbiome and metabolome PCoAs) was used as the reference to superimpose the 

T-lymphocyte PCoA onto. P-values were obtained using the ‘protest’ function from the 

vegan package. 
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3. Characterising the healthy preterm gut microbiome 
3.1. Abstract 

The development of the gut microbiome from birth plays important roles in short- and 

long-term health, but factors influencing preterm gut microbiome development 

are poorly understood. Metagenomic sequencing was used to analyse 1431 

longitudinal stool samples from 123 very preterm infants (<32 weeks’ gestation) who 

did not develop intestinal disease or sepsis over a study period of ten years. During 

the study period, one cohort had no probiotic exposure whilst two cohorts were given 

different probiotic products: Infloran (B. bifidum and L. acidophilus) or Labinic (B. 

bifidum, B. longum subsp. infantis, and L. acidophilus). MOM, BMF, antibiotics, and 

probiotics were significantly associated with the gut microbiome, with probiotics being 

the most significant factor. Probiotics drove microbiome transition into different 

PGCTs, each enriched in different Bifidobacterium spp. and significantly associated 

with increased postnatal age. Functional analyses identified stool metabolites 

associated with PGCT and in preterm-derived organoids, sterile faecal supernatants 

impacted intestinal organoid monolayer gene expression in a PGCT-specific manner. 

The current study identifies specific influencers of gut microbiome development in very 

preterm infants, some of which overlap with those impacting term infants. The results 

highlight the importance of strain-specific differences in probiotic products, and their 

impact on host interactions in the preterm gut. The results in this chapter are published.  
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3.2. Introduction 
Host and environmental factors shaping gut microbiome development have been well-

defined in term infants (Stewart et al., 2018), but less well defined in significantly 

preterm infants. In term infants, birth mode (Mitchell et al., 2020; Reyman et al., 2019; 

Rutayisire et al., 2016; Sordillo et al., 2017) and receipt of breast milk (Azad et al., 

2016; Hesla et al., 2014; Sordillo et al., 2017; Stewart et al., 2018) are the main factors 

influencing the gut microbiome over the first year. Related work in preterm infants has 

yielded inconsistent results, particularly regarding birth mode and sex, potentially 

reflecting smaller cohorts and lack of longitudinal sampling (Aguilar-Lopez et al., 2021; 

Gregory et al., 2016; Stewart et al., 2017a). This ultimately highlights the complexities 

affiliated with disentangling preterm environmental exposures, clinical factors, and 

individual variation. Ultimately, these inconsistencies underscore the need for a 

focused investigation into the factors influencing normal gut microbiome structure and 

function in preterm infants in the absence of intestinal pathologies such as NEC, or 

LOS.  

 

Preterm infants born <32 weeks of gestation will initially be cared for on the NICU. This 

unique setting plays a crucial role in the acquisition and development of the gut 

microbiome, both directly (i.e., NICU environment) and indirectly (i.e., high antibiotic 

use). Resultantly, preterm infants experience lower microbial diversity and increased 

colonisation of pathobionts in comparison to their healthy term counterparts. The gut 

microbiome of preterm infants has been associated with life-threatening disease 

including NEC (Olm et al., 2019; Stewart et al., 2016; Torrazza et al., 2013; Warner et 

al., 2016) and LOS (Stewart et al., 2017b; Taft et al., 2015). This has led to increased 

interest in and use of probiotics in the NICU, although the efficacy of probiotics in 

preventing NEC and LOS remains inconclusive (Costeloe et al., 2016) and the 

potential benefits from probiotic-mediated protection against NEC, LOS or mortality 

reduction (Sharif et al., 2020; van den Akker et al., 2020) need to be balanced against 

low but important risks reported in the literature from contamination and probiotic 

sepsis (Bertelli et al., 2015; Dani et al., 2015; Esaiassen et al., 2016; Jenke et al., 

2012). Studies exploring the impact of probiotics on gut microbiome development are 

few in the preterm population, but have shown that Bifidobacterium spp. in particular 

are able to colonise the gut long-term (Alcon-Giner et al., 2020; van Best et al., 2020; 

Yousuf et al., 2020).  



 

 54 

 

In the current study of preterm infants in the absence of intestinal disease or LOS, the 

aims were to 1) characterise the longitudinal development of the preterm gut 

microbiome throughout their stay on the NICU and 2) determine the influence of co-

variates on the developing bacterial community and function during this critical period 

of early life. 
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3.3. Results 
The current metagenomic analysis included a total of 1431 samples collected 

longitudinally from 123 very preterm infants born <32 weeks’ gestation during their stay 

in a single United Kingdom NICU (Figure 3.1).  
 

 
 
Figure 3.1. Healthy preterm sampling overview. Samples used in the study from 
birth to day 120. Dashed lines represent the overall mean start and stop day of probiotic 
treatment. 
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Samples were collected between birth (DOL 0) and DOL 120, with the median 

(interquartile range; IQR) DOL for final sample collection occurring on DOL 57 (43 – 

77). Infants each contributed a median (IQR) of 11 samples (9-14). Comprehensive 

demographic information is described in the methods and presented in Table 3.1. Most 

babies received some MOM at some point (92.7%), with receipt of formula increasing 

with age. All samples had known milk exposure (MOM, formula or both) (Figure 3.2) 

and antibiotic exposure. In order to include infants from before probiotics were 

introduced, the cohort in this study were admitted over a 10-year period, covering 

before probiotic introduction, and during two sequentially administered probiotics, as 

described in methods Section 2.1. Infants born between 2011 and 2013 received no 

probiotics. Probiotics were then introduced to the NICU in 2013; Infloran (B. bifidum 

1x109 CFU and L. acidophilus 1x109 CFU) was supplemented until mid-2016; after 

which Labinic (B. bifidum 0.67 x109 CFU, B. longum subsp. infantis 0.67 x109 CFU, and 

L. acidophilus 0.67 x109 CFU) has been used. 
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Table 3.1. Patient demographics of the analytical cohort. 
 No probiotics Infloran Labinic Overall 

Number of subjects 28 24 71 123 

Number of samples 424 253 754 1431 
 

Median no. of samples per subject (IQR) 

17 (11.8 - 18.3)  
9.5 (8.8 - 13) 

 
10 (9 - 12.5) 

 
11 (9 - 14) 

 
Median gestational age (IQR) 

27.2 (25.5 – 28.6) 26.2 (24.8 -- 26.9) 27.9 (26 - 29) 27 (25.7 – 28.7) 

Median birthweight (g) (IQR) 970 (862 - 1199) 735 (627 - 861) 960 (780 - 1170) 900 (715 - 1138) 

Median day of first feed (range) 2 (0 - 11) 2 (1 - 6) 2 (0 - 9) 2 (0 - 11) 

Median day of full feed (IQR) 14 (11 - 18) 14 (13 - 19) 13 (12 - 15) 14 (12 - 16) 

Median no. of antibiotic courses (IQR) 2 (1 – 3) 3 (2 – 4.25) 2 (1 – 3) 2 (1 – 3) 

Median weight Z score change (IQR) 1.5 (2.2 - 0.3) 1 (2 - 0.2) 1.3 (1.8 - 0.75) 1.3 (-2 - 0.55) 

MOM ever 25 (89.3%) 23 (95.8%) 66 (93.0%) 114 (92.7%) 

Formula ever 15 (62.5%) 42 (59.2%) 19 (67.9%) 76 (61.8%) 

Median start day of probiotics (IQR) / 7 (5 - 8) 7 (5.5 - 9) 7 (5 - 9) 

Median stop day of probiotics (IQR) / 57 (45.8 - 67.8) 41 (28.5 - 50) 45 (31.5 - 55) 

Birth mode     

Caesarean 12 (42.9%) 11 (45.8%) 44 (62.0%) 67 (54.5%) 

Vaginal 16 (57.1%) 13 (54.2%) 27 (38.0%) 56 (45.5%) 

Sex     

Male 20 (71.4%) 8 (33.3%) 40 (56.3%) 68 (55.3%) 

Female 8 (28.6%) 16 (66.7%) 31 (43.7%) 55 (44.7%) 

Season     

Winter 6 (21.4%) 10 (41.6%) 18 (25.4%) 34 (27.6%) 

Autumn 6 (21.4%) 6 (25%) 29 (40.8%) 41 (33.3%) 

Summer 10 (35.7.%) 2 (8.3%) 9 (12.7%) 21 (17.1%) 

Spring 6 (21.4%) 6 (25%) 15 (21.1%) 27 (22.0%) 

Antibiotics in past 7d samples     

No 318 (75%) 176 (69.6%) 549 (72.8%) 1043 (72.9%) 

Yes 106 (25%) 77 (30.4%) 205 (27.2%) 388 (27.1%) 

MOM samples     

Never 49 (11.6%) 10 (4.0%) 50 (6.6%) 109 (7.6%) 

During 318 (75%) 221 (87.4%) 624 (82.8%) 1163 (81.3%) 

After 57 (13.4%) 22 (8.7%) 80 (10.6%) 159 (11.1%) 

BMF samples     

Never 181 (42.7%) 73 (28.9%) 225 (29.8%) 479 (33.5%) 

Before 125 (29.5%) 62 (24.5%) 213 (28.2%) 400 (28.0%) 

During 95 (22.4%) 105 (41.5%) 241 (32.0%) 441 (30.8%) 

After 23 (5.4%) 13 (5.1%) 75 (9.9%) 111 (7.8%) 

Formula samples     

Never 128 (30.2%) 108 (42.7%) 342 (45.4%) 578 (40.4%) 

Before 97 (28.9%) 86 (34%) 206 (27.3%) 389 (27.2%) 

During 186 (43.9%) 50 (19.8%) 203 (27.0%) 439 (30.7%) 

After 13 (3.1%) 9 (3.6%) 3 (0.4%) 25 (1.7%) 
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Figure 3.2. Descriptive overview of diet and the healthy preterm gut microbiome 
in the first 120 days of life. (A) Proportion of samples where infants were receiving 
MOM, formula or, MOM and formula. (B-F), LOESS fit (95% CI shaded in grey) over 
time for (B) richness and Shannon diversity (C) aerobic, facultative anaerobic and 
obligate anaerobic bacteria (D) Gram-positive and Gram-negative bacteria (E) the top 
four phyla and (F) the top five genera. 
 

3.3.1. Overview of taxonomy  

Non-bacterial microbes were explored based on Metagenomic Phylogenetic Analysis 

(MetaPhlAn; fungi and archaea) and VirMap (virus). No archaea and only 11 fungal 

species were detected. Candida albicans and Candida glabrata were the most 

abundant and prevalent fungi, but only detected in 26 samples (14 infants) and 15 

samples (nine infants), respectively. This method allowed detection of DNA viruses, of 

which only two were detected, Cytomegalovirus was found in eight samples from 

seven infants and Betapolyomavirus was detected in two samples from the same infant 

(data not shown). Importantly, the methods used were tailored towards bacterial 

profiling (e.g., extraction method and relatively low sequencing depth), which is why 
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other microorganisms particularly those of a lower biomass (i.e., fungi and archaea) 

may not have been detected. In total, 394 bacterial species were identified, and thus 

subsequent analysis was focused on bacteria.  

 

Species richness declined slightly over the first 10 days of life, corresponding to a loss 

of aerobic bacteria (Figure 3.2B). After day 10, species richness increased 

consistently until day 120 and Shannon diversity increased exponentially from birth 

until day 45, with a modest increase from day 45 to the end of study (day 120; Figure 
3.2B). There was a general increase in the relative abundance of obligate anaerobic 

bacteria from birth until day 80, after which the gut microbiome consisted of 

approximately 1:1 facultative and obligate anaerobes (Figure 3.2C). Staphylococcus 

dominated the earliest samples and accounted for most of the Gram-positive bacteria 

during the first month of life. Relative abundance of Bifidobacterium (Actinobacteria 

phylum) increased from birth until discharge and from day 30 was the most abundant 

genera. Escherichia and Klebsiella, both Gram-negative organisms from the 
Proteobacteria phylum, increased in relative abundance over the first month of life 

before gradually declining in relative abundance (Figure 3.2D, E, F). Proteobacteria 

were found to carry significantly more ARGs, whilst the opposite was true of Firmicutes 

(Figure 3.3). 
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Figure 3.3. Proteobacteria carry the highest number of ARGs. The overall relative 
abundance of (A) ARG-carrying Proteobacteria in relation to other ARG-carrying 
bacteria and overall Proteobacteria in relation to other phyla, across time and (B) ARG-
carrying Firmicutes in relation to other ARG-carrying bacteria and overall Firmicutes in 
relation to other phyla, across time. The centre lines denotes the median, the box limits 
denote the IQR and whiskers extend to the limits. Points outside the whiskers represent 
outliers. Only one sample per infant per timepoint is included, P-values are based on 
Mann-Whitney-U tests and are FDR adjusted. 
 
DMM modelling of bacterial species determined five clusters to be optimal, herein 

termed PGCTs. PGCTs were numbered 1-5 based on the average age of samples 

within that cluster and richness and Shannon diversity expectedly increased through 

each PGCT (Figure 3.4A, B). Enterococcus (E. faecalis and E. faecium) and 

Staphylococcus (S. epidermidis and S. haemolyticus) discriminated PGCT-1; 

Escherichia (E. coli and an unclassified sp.) discriminated PGCT-2; Klebsiella (K. 

oxytoca and an unclassified sp.) discriminated PGCT-3; several Bifidobacterium (B. 

longum, B. bifidum, and B. animalis) and Lactobacillus (L. acidophilus and L. 
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rhamnosus) discriminated PGCT-4; and a single species, Bifidobacterium breve, 

discriminated PGCT-5 (Figure 3.4C).  
 

 
Figure 3.4. DMM clustering into PGCTs. (A) Heatmap of all samples showing the 
relative abundance of the most dominant species, coloured by phyla, stratified by 
PGCT. (B) Box plots showing the alpha diversity (richness and Shannon diversity) for 
each PGCT. The centre line denotes the median, the box limits denote the IQR and 
whiskers extend to the limits. (C) LEfSe identifying discriminatory features of each 
PGCT based on LDA. Coloured bars denote PGCTs. 
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3.3.2. Factors shaping the preterm gut microbiome  
Mixed-effects models were used to assess the association of clinical metadata with 

Shannon diversity and the total number of ARGs. Shannon diversity was significantly 

associated with DOL, probiotics (no probiotic/Infloran/Labinic), receipt of MOM 

(never/during/after), BMF (never/before/during/after), and antibiotics in the past 7 days 

(no/yes) (Table 3.2). The total number of ARGs was significantly associated with DOL, 

probiotics, MOM, BMF, antibiotics, formula (never/before/during/after) and gestational 

age (Table 3.2). The direction of these effects is described further in later sections. To 

determine co-variates significantly associated with overall bacterial profiles, univariate 

PERMANOVA was performed using ‘adonis’. DOL explained 4% of the total variance 

(effect size) in bacterial profiles (P <0.001) and post-conceptional age explained 3.5% 

(P <0.001), while unique patient identifier explained 1.8% of the variance (P = 0.016).  

 
Table 3.2. Association of clinical co-variates with Shannon diversity and total 
number of ARGs. Global P-values were calculated based on ANOVA on fitted models. 
 

 Shannon Total no. ARGs 

 Chisq P-value Chisq P-value 
Gestational age 3.156 0.076 5.127 0.024 

Birthweight 0.145 0.703 0.39 0.533 
Birth mode 2.019 0.155 0.19 0.663 

Sex 0.212 0.646 0.739 0.39 
Season 2.27 0.518 3.949 0.267 

Antibiotics 7d 47.665 <0.001 4.416 0.036 
MOM 8.998 0.011 23.486 <0.001 
BMF 8.927 0.03 16.852 <0.001 

Day full feed 0.006 0.94 0.506 0.477 
Formula  0.296 0.961 10.886 0.012 

Probiotic 7.047 0.03 6.275 0.043 
Weight Z score 0.469 0.494 3.628 0.057 

DOL 78.809 <0.001 85.396 <0.001 
 
 

    

Antibiotics, MOM, BMF, and probiotics were significantly associated with bacterial 

taxonomy at one or more time points (Figure 3.5A). Probiotics were statistically the 

most significant (all P < 0.05) and were associated with the bacterial community at all 

time points, except day 0-9 (P = 0.351) which contained samples collected largely 

before administration began on day 7 (Table 3.1). Complementary analysis on the 

functional metabolic capacity of the microbiome revealed only probiotics to be 

significantly associated, at days 10-14, 25-29, 30-34, 35-39 and 50-69 (Figure 3.5B). 
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Notably, gestational age, birthweight, birth mode, formula milk, and sex were not 

associated with overall bacterial community composition at the taxonomic or functional 

level.  

 

 
Figure 3.5. Significance and explained variance of 12 clinical co-variates at 
different timepoints based on taxonomic profiles, modelled by ‘adonis’. Bubbles 
show the amount of variance (R2) explained by each covariate at a given timepoint, 
and significant results (FDR < 0.05) are surrounded by a red box. (A) Taxonomic 
profiles at the species level. (B) Functional metagenomic capacity at the enzyme level 
using EC numbers. 
 
 

To further validate these results, a previously published metagenomic study by Olm et 

al. (Olm et al., 2019) containing 86 control preterm infants (n = 513 stool samples), not 

receiving probiotics, was used. While feeding information was less granular than in the 

current study, the results were generally consistent between cohorts with no significant 

association of any tested co-variate on the gut microbiome (Figure 3.6). 

  

 

(A) (B)
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Figure 3.6. Explained variance of 7 clinical co-variates at different timepoints to 
validate the findings in this study, using a published metagenomic dataset from 
Olm et al. (Olm et al., 2019), modelled by ‘adonis’. Bubbles show the amount of 
variance (R2) explained by each covariate at a given timepoint. NA values are used 
when analyses could not be carried out, due to only one level of the variable existing 
in that given timepoint. No results were found to be significant based on taxonomic 
profiles at the species level.  
 

3.3.3. Role of probiotics in shaping the gut community 

Binomial mixed-effects models showed that infants who did not receive probiotics were 

significantly more likely to transition into the Klebsiella-enriched PGCT-3 (P = 0.021), 

which was also associated with a lower gestational age at birth (P = 0.043; Figure 

3.7A and Table 3.3). Infants receiving Infloran were significantly more likely to 

transition into PGCT-5 and those receiving Labinic to PGCT-4 (both P < 0.001; Figure 
3.7A and Table 3.3). Samples from PGCT-4 and PGCT-5 were from significantly 

higher DOL (both P < 0.001; Table 3.3) and thus reflected the oldest infants. PGCT-5 

was dominated by B. breve and associated with a higher gestational age (P = 0.008; 

Table 3.3.). PGCT-4 was generally dominated by the species present in Labinic™ 

including B. longum, B. bifidum and L. acidophilus, but also B. animalis (Figure 3.4).  
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Figure 3.7. Probiotics impact the transition of the preterm gut microbiome over 
time. Transition model showing the progression of samples through each PGCT from 
DOL 0 to DOL 69, based on probiotic type. The nodes and edges are sized based on 
the total counts; nodes are coloured according to PGCT and edges by the transition 
frequency. 
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Table 3.3. Association between PGCTs and clinical co-variates in healthy 
preterm infants. Global P values and adjusted odds ratios (aORs) with 95% CIs are 
based on the fitted mixed-effects logistic regression models, with patient ID as a 
random effect.  
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MaAsLin2 analysis confirmed the relative abundance of genera (Table 3.4) and 

species (Table 3.5) present in each probiotic were significantly higher in infants 

receiving that probiotic. Notably, B. breve was significantly associated with Infloran (P 

< 0.001, Q = 0.007) and B. animalis was the most significant taxa associated with 

Labinic (P < 0.001, Q < 0.001), despite these species not being named as present in 

the probiotics (Table 3.5). Using culture-based approaches, B. breve could not be 

cultured from Infloran but B. animalis was consistently cultured from Labinic. Given 

these results, B. animalis is considered to be present in Labinic in subsequent analysis. 

Aside from probiotic species, the influence of probiotics on other naturally occurring 

taxa showed a significant increase in the relative abundance of Enterococcus faecium 

(P < 0.001, Q = 0.004), and a significant decrease in the relative abundance of 

Veillonella parvula (P < 0.001, Q = 0.022) and Propionibacterium acnes (now known 

as Cutibacterium acnes) (P = 0.001, Q = 0.030) in infants supplemented with Infloran 

(Table 3.5). No non-probiotic species were significantly increased or decreased in 

infants supplemented with Labinic (all Q > 0.05; Table 3.5). 
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Table 3.4. MaAsLin2 results for significant taxa associated with clinical co-
variates at the genus level in healthy preterm infants. Mixed-effects linear models 
using a variance-stabilising arcsin square root transformation on relative abundance 
phyla data were used to determine the significance. Patient ID was included as a 
random effect. 
 

 Level Genus Coeff Standard 
error pval qval 

Gestational age Gestational age Bifidobacterium 0.093 0.035 0.009 0.12 
Birthweight Birthweight Citrobacter 0.031 0.011 0.005 0.079 
Birth mode Vaginal Enterobacter -0.089 0.036 0.014 0.161 

Season Autumn Klebsiella 0.156 0.058 0.008 0.112 
Antibiotics 7d Yes Bifidobacterium -0.153 0.022 <0.001 <0.001 
Antibiotics 7d Yes Staphylococcus 0.119 0.022 <0.001 <0.001 
Antibiotics 7d Yes Enterobacter -0.045 0.014 0.001 0.026 
Antibiotics 7d Yes Propionibacterium -0.013 0.005 0.019 0.178 
Antibiotics 7d Yes Lactobacillus -0.017 0.007 0.023 0.204 

MOM After Staphylococcus -0.201 0.066 0.003 0.053 
MOM After Bifidobacterium 0.238 0.086 0.006 0.093 
MOM During Bifidobacterium 0.209 0.083 0.013 0.154 
MOM During Staphylococcus -0.157 0.063 0.013 0.157 
MOM During Lactobacillus -0.082 0.034 0.017 0.169 
BMF After Clostridium 0.039 0.009 <0.001 0.001 
BMF Before Lactobacillus -0.067 0.021 0.002 0.04 
BMF During Lactobacillus -0.062 0.021 0.004 0.061 
BMF Before Enterococcus -0.15 0.053 0.005 0.082 
BMF After Veillonella 0.043 0.016 0.01 0.12 
BMF During Corynebacterium 0.016 0.007 0.017 0.165 
BMF After Anaerococcus -0.014 0.006 0.016 0.165 
BMF During Escherichia 0.171 0.076 0.025 0.216 

Formula During Staphylococcus -0.109 0.038 0.005 0.073 
Formula During Actinomyces 0.014 0.006 0.019 0.178 

Probiotic Infloran Bifidobacterium 0.414 0.064 <0.001 <0.001 
Probiotic Labinic Bifidobacterium 0.297 0.051 <0.001 <0.001 
Probiotic Infloran Propionibacterium -0.053 0.012 <0.001 0.001 
Probiotic Labinic Lactobacillus 0.086 0.021 <0.001 0.003 
Probiotic Labinic Pseudomonas -0.046 0.012 <0.001 0.011 
Probiotic Infloran Veillonella -0.051 0.016 0.001 0.036 
Probiotic Infloran Lactobacillus 0.085 0.027 0.002 0.04 
Probiotic Infloran Pseudomonas -0.048 0.016 0.003 0.054 
Probiotic Labinic Propionibacterium -0.029 0.009 0.003 0.057 
Probiotic Labinic Anaerococcus 0.01 0.004 0.007 0.093 
Probiotic Labinic Klebsiella -0.158 0.06 0.01 0.12 
Probiotic Infloran Staphylococcus -0.118 0.047 0.015 0.161 
Probiotic Infloran Klebsiella -0.171 0.076 0.027 0.225 

Weight Z score Weight Z score Pseudomonas -0.013 0.005 0.016 0.165 
Weight Z score Weight Z score Veillonella 0.012 0.005 0.022 0.199 
Weight Z score Weight Z score Citrobacter 0.016 0.007 0.024 0.21 

DOL DOL Staphylococcus -0.098 0.013 <0.001 <0.001 
DOL DOL Finegoldia 0.011 0.001 <0.001 <0.001 
DOL DOL Bifidobacterium 0.084 0.013 <0.001 <0.001 
DOL DOL Propionibacterium 0.019 0.003 <0.001 <0.001 
DOL DOL Veillonella 0.021 0.004 <0.001 <0.001 
DOL DOL Clostridium 0.01 0.002 <0.001 <0.001 
DOL DOL Klebsiella 0.046 0.012 <0.001 0.008 
DOL DOL Anaerococcus 0.005 0.002 0.003 0.053 
DOL DOL Streptococcus 0.012 0.004 0.003 0.053 
DOL DOL Actinomyces 0.005 0.002 0.016 0.165 
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Table 3.5. MaAsLin2 results for significant taxa associated with clinical co-
variates at the species level in healthy preterm infants. Mixed-effects linear models 
using a variance-stabilising arcsin square root transformation on relative abundance 
phyla data were used to determine the significance. Patient ID was included as a 
random effect. 
  

Level Species Coeff Standard 
error 

pval qval 

Gestational age Gestational age Staphylococcus epidermidis -0.048 0.018 0.008 0.104 
Gestational age Gestational age Clostridium perfringens 0.009 0.004 0.023 0.205 
Gestational age Gestational age Bifidobacterium bifidum 0.053 0.024 0.026 0.219 

Birthweight Birthweight Citrobacter freundii 0.022 0.007 0.002 0.046 
Birthweight Birthweight Citrobacter unclassified 0.015 0.006 0.008 0.104 
Birthweight Birthweight Escherichia unclassified 0.036 0.016 0.023 0.208 
Birthweight Birthweight Klebsiella unclassified 0.028 0.012 0.025 0.214 
Birthweight Birthweight Propionibacterium acnes -0.009 0.004 0.026 0.219 
Birth mode Vaginal Bifidobacterium animalis 0.032 0.011 0.006 0.095 
Birth mode Vaginal Citrobacter freundii -0.025 0.01 0.011 0.122 
Birth mode Vaginal Enterobacter cloacae -0.089 0.036 0.014 0.143 
Birth mode Vaginal Citrobacter unclassified -0.017 0.008 0.031 0.243 

Sex Male Bifidobacterium breve -0.085 0.039 0.032 0.243 
Season Summer Staphylococcus aureus 0.048 0.016 0.004 0.073 
Season Summer Citrobacter freundii 0.036 0.013 0.008 0.104 
Season Summer Citrobacter unclassified 0.029 0.011 0.009 0.105 
Season Autumn Klebsiella unclassified 0.044 0.018 0.019 0.179 

Antibiotics 7d Yes Staphylococcus haemolyticus 0.107 0.013 <0.001 <0.001 
Antibiotics 7d Yes Bifidobacterium bifidum -0.056 0.012 <0.001 <0.001 
Antibiotics 7d Yes Bifidobacterium longum -0.063 0.016 <0.001 0.004 
Antibiotics 7d Yes Enterobacter cloacae -0.045 0.014 0.001 0.026 
Antibiotics 7d Yes Pseudomonas aeruginosa 0.02 0.006 0.002 0.043 
Antibiotics 7d Yes Bifidobacterium breve -0.046 0.016 0.004 0.067 
Antibiotics 7d Yes Enterococcus faecium 0.022 0.008 0.007 0.097 
Antibiotics 7d Yes Staphylococcus warneri 0.013 0.005 0.009 0.104 
Antibiotics 7d Yes Staphylococcus lugdunensis 0.007 0.003 0.009 0.105 
Antibiotics 7d Yes Lactobacillus acidophilus -0.014 0.005 0.011 0.125 
Antibiotics 7d Yes Corynebacterium tuberculostearicum 0.002 0.001 0.013 0.137 

Day full feed Day full feed Propionibacterium acnes 0.008 0.003 0.003 0.058 
MOM After Lactobacillus rhamnosus -0.063 0.017 <0.001 0.009 
MOM After Staphylococcus aureus -0.079 0.023 0.001 0.026 
MOM During Staphylococcus aureus -0.074 0.022 0.001 0.03 
MOM During Lactobacillus rhamnosus -0.05 0.016 0.003 0.058 
MOM During Lactobacillus acidophilus -0.069 0.023 0.004 0.068 
MOM During Staphylococcus haemolyticus -0.096 0.036 0.009 0.104 
MOM After Klebsiella pneumoniae 0.187 0.078 0.018 0.174 
MOM During Klebsiella pneumoniae 0.18 0.077 0.021 0.189 
BMF After Clostridium perfringens 0.024 0.008 0.002 0.042 
BMF During Corynebacterium kroppenstedtii 0.021 0.007 0.003 0.058 
BMF During Escherichia unclassified 0.074 0.025 0.004 0.067 
BMF Before Enterococcus faecium -0.051 0.019 0.007 0.097 
BMF Before Staphylococcus haemolyticus 0.065 0.024 0.007 0.097 
BMF Before Lactobacillus acidophilus -0.039 0.015 0.009 0.107 
BMF During Enterococcus faecium -0.046 0.018 0.013 0.137 
BMF After Lactobacillus acidophilus -0.042 0.017 0.013 0.137 
BMF During Bifidobacterium bifidum -0.086 0.035 0.014 0.144 
BMF Before Bifidobacterium bifidum -0.085 0.035 0.016 0.159 
BMF During Lactobacillus rhamnosus -0.023 0.01 0.025 0.215 
BMF After Veillonella parvula 0.029 0.013 0.029 0.232 
BMF Before Bifidobacterium animalis -0.03 0.014 0.032 0.243 

Formula After Pseudomonas aeruginosa -0.102 0.026 <0.001 0.004 
Formula Before Staphylococcus epidermidis -0.077 0.023 0.001 0.03 
Formula During Staphylococcus epidermidis -0.08 0.026 0.003 0.058 
Formula During Bifidobacterium breve 0.125 0.043 0.004 0.073 
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Formula During Lactobacillus acidophilus 0.031 0.013 0.022 0.197 
Formula During Bifidobacterium longum -0.068 0.03 0.027 0.219 
Formula During Klebsiella pneumoniae 0.093 0.042 0.03 0.238 

Probiotic Labinic Bifidobacterium animalis 0.115 0.013 <0.001 <0.001 
Probiotic Labinic Bifidobacterium longum 0.258 0.031 <0.001 <0.001 
Probiotic Infloran Bifidobacterium bifidum 0.222 0.044 <0.001 <0.001 
Probiotic Labinic Lactobacillus acidophilus 0.059 0.015 <0.001 0.004 
Probiotic Infloran Enterococcus faecium 0.091 0.023 <0.001 0.004 
Probiotic Infloran Bifidobacterium breve 0.236 0.061 <0.001 0.007 
Probiotic Infloran Veillonella parvula -0.044 0.013 0.001 0.022 
Probiotic Infloran Propionibacterium acnes -0.025 0.008 0.001 0.03 
Probiotic Infloran Lactobacillus acidophilus 0.055 0.018 0.003 0.064 
Probiotic Infloran Staphylococcus epidermidis -0.089 0.032 0.007 0.097 
Probiotic Labinic Pseudomonas aeruginosa -0.032 0.012 0.008 0.104 
Probiotic Labinic Lactobacillus rhamnosus 0.026 0.01 0.011 0.124 
Probiotic Labinic Propionibacterium acnes -0.015 0.006 0.012 0.132 
Probiotic Infloran Propionibacterium avidum -0.026 0.01 0.013 0.137 
Probiotic Labinic Bifidobacterium bifidum 0.084 0.035 0.017 0.168 
Probiotic Infloran Veillonella unclassified -0.015 0.006 0.018 0.174 
Probiotic Infloran Bifidobacterium longum 0.09 0.039 0.025 0.216 

Weight Z score Weight Z score Citrobacter unclassified 0.008 0.004 0.031 0.242 
DOL DOL Staphylococcus epidermidis -0.079 0.01 <0.001 <0.001 
DOL DOL Finegoldia magna 0.011 0.001 <0.001 <0.001 
DOL DOL Propionibacterium avidum 0.018 0.002 <0.001 <0.001 
DOL DOL Veillonella unclassified 0.013 0.002 <0.001 <0.001 
DOL DOL Streptococcus salivarius 0.009 0.001 <0.001 <0.001 
DOL DOL Bifidobacterium breve 0.057 0.01 <0.001 <0.001 
DOL DOL Lactobacillus rhamnosus 0.013 0.002 <0.001 <0.001 
DOL DOL Lactobacillus acidophilus -0.015 0.003 <0.001 <0.001 
DOL DOL Streptococcus vestibularis 0.009 0.002 <0.001 <0.001 
DOL DOL Bifidobacterium animalis -0.018 0.004 <0.001 0.001 
DOL DOL Bifidobacterium bifidum 0.027 0.007 <0.001 0.009 
DOL DOL Veillonella atypica 0.005 0.002 0.001 0.022 
DOL DOL Klebsiella unclassified 0.011 0.004 0.004 0.067 
DOL DOL Staphylococcus warneri -0.008 0.003 0.004 0.073 
DOL DOL Bifidobacterium longum 0.027 0.01 0.005 0.089 
DOL DOL Veillonella parvula 0.009 0.003 0.006 0.09 
DOL DOL Staphylococcus haemolyticus -0.023 0.008 0.006 0.095 
DOL DOL Klebsiella pneumoniae 0.024 0.009 0.007 0.103 
DOL DOL Escherichia coli 0.029 0.011 0.008 0.104 
DOL DOL Klebsiella oxytoca 0.02 0.008 0.008 0.104 
DOL DOL Clostridium perfringens 0.004 0.002 0.028 0.23 
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Strain-level analyses to detect the presence of B. longum subsp. infantis and 

differentiate from non-probiotic B. longum strains was conducted using the B. infantis 

HMO gene clusters (H1, H2, H3, H4, H5 and urease), whereby samples with >90% of 

the genes present in those clusters were classed as having B. infantis (Casaburi et al., 

2021). B. infantis was detected in 672 samples, of which 666 (>99%) were from infants 

receiving Labinic™. Additional analysis on the B. infantis HMO gene clusters identified 

homologs present in B. breve, B. bifidum and B. pseudocatenulatum (Figure 3.8).  
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Figure 3.8. Prevalence of the B. infantis HMO gene clusters among other 
species. 
 

Bifidobacterium spp. were also present naturally within the population, with B. breve, 

B. dentium and B. longum identified in infants who never received probiotics, and 

before probiotics were ever used on the unit (i.e., no possibility of cross-colonisation) 

(Figure 3.9). 
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Figure 3.9. Relative abundance of Bifidobacterium species over time. LOESS fit 
(95% CI shaded in grey) over time for the top 5 most dominant Bifidobacterium spp. 
 
The impact of the different probiotics is further demonstrated by significantly higher 

Shannon diversity and in infants receiving Labinic compared to infants receiving no 

probiotic (P = 0.035) (Figure 3.10A). Furthermore, the total number of ARGs was 

found to be significantly lower in infants receiving Labinic compared to infants receiving 

no probiotic (P = 0.033) (Figure 3.10B). 
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Figure 3.10. Shannon diversity and total number of ARGs differs dependent on 
probiotic use. Estimated marginal means (95% CIs) representing (A) Shannon 
diversity and (B) total number of ARGs for each probiotic type, obtained from the 
respective LMMs adjusted for gestational age, birthweight, birth mode, sex, season, 
antibiotics, day of full feed, MOM, BMF, formula, weight z-scores, DOL and patient ID. 
The statistical significance shown is after adjustment for multiple comparisons using 
two-tailed Tukey’s HSD method. 
 

The impact of clinical data on prevalence (defined as a binary yes/no) and persistence 

(defined as two consecutive samples where the corresponding species was detected) 

of the species contained within each probiotic (see Methods) was next explored. 

Compared to DOL-matched infants who never received probiotics, the probiotic 

species were significantly more prevalent before, during, and after administration of 

the respective probiotic (Figure 3.11). Comparing between the probiotic groups, the 

prevalence of B. bifidum was significantly higher in Infloran® compared to Labinic 

during (P < 0.001) and after (P < 0.001), but L. acidophilus prevalence was comparable 

before, during, and after (all P > 0.05). While not present in Infloran®, B. longum was 

significantly more prevalent compared to DOL-matched infants who received no 

probiotic, during Infloran treatment (P < 0.001), and B. animalis prevalence was highly 

specific to Labinic exposure (Figure 3.11). 
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Figure 3.11. Prevalence of probiotic species before, during and after probiotic 
treatment, stratified by probiotic type. Samples from infants who took no probiotic 
have been subset into three discrete time bins based on the average start and stop 
days for probiotic treatment (8 DOL and 44 DOL, respectively). The statistical 
significance shown is within probiotic summary groups (that is, before, during and after) 
following adjustment for multiple comparisons using Dunnett’s method, whereby 
samples from infants who took no probiotic were used as the control for each group. 
Navy represents no probiotic, red represents Infloran and gold represents Labinic. 
 
 
Analysing persistence of B. bifidum and L. acidophilus after treatment showed further 

strain-specific differences between the probiotics, with no clinical covariates other than 

probiotic type being significantly associated with the persistence of either species (P = 

0.001 and P = 0.019, respectively). Analyses also showed increased persistence of 

Bifidobacterium spp. compared to L. acidophilus. L. acidophilus did not persist in any 

infant receiving Infloran and only in a minority of those receiving Labinic, whereas B. 

bifidum persisted in all infants receiving Infloran with non-persistence observed in 

infants receiving Labinic only (Figure 3.12). 
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Figure 3.12. Percentage persistence of probiotic species in Infloran and Labinic. 
B. animalis included owing to detection of this species within Labinic. 
 

In accordance with taxonomic profiles, probiotics were found to be the only covariate 

significantly associated with the overall functional EC profile at any timepoint (Figure 

3.5). However, unlike taxonomic composition where probiotic groups were more 

dissimilar to each other than the no probiotic group (Figure 3.13A), functional profiles 

for infants who took any probiotic were more similar than infants who never took 

probiotics, regardless of which product was received (Figure 3.13B). This suggests 

similar functional potential regardless of Bifidobacterium-dominated communities (i.e., 

functional redundancy between Bifidobacterium spp.). MaAslin2 analysis corroborated 

these findings, with 346/754 (46%) significant EC numbers found to be commonly 

associated with both probiotic products 

(https://github.com/laurencbeck/supplementary_tables - Appendix 1). Amongst the 

significantly positively associated EC numbers, a large number of glycosylases and 

ligases involved in forming carbon-oxygen and carbon-nitrogen bonds were identified. 
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In contrast, the relative abundance of numerous oxidoreductases acting on a sulphur 

group and other nitrogenous compounds as donors were found to be negatively 

associated with probiotics. 

 
Figure 3.13. Probiotics differentially impact taxonomic profiles but have similar 
impact on functional potential. NMDS plot of (A) taxonomic profiles and (B) 
functional (EC number profiles) for all samples, showing the mean centroid for each 
probiotic type. 
 

3.3.4. Functional implication and wider significance of PGCTs 

To understand how PGCTs relate to samples from full-term infants, the cohort 

described was compared to the TEDDY study cohort, a study that looked to 

characterise the microbiome in early life term infants in a large, multi-centre population 

(Stewart et al., 2018). This was conducted based on the earliest sample from each full-

term infant. Samples from both PGCT 4 and in particular PGCT-5, were found to be 

most similar to those from infants born full-term (Figure 3.14). This was true based on 

all samples (Figure 3.14A) and based on just one sample per infant per PGCT (Figure 
3.14B). 
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Figure 3.14. PGCT-4 and PGCT-5 are least dissimilar to full-term infant gut 
communities. NMDS plot of (A) all samples and (B) 1 sample per PGCT, showing the 
mean centroid for each PGCT and for samples from infants born full-term from the 
TEDDY cohort (Stewart et al., 2018). The earliest sample was chosen for each patient 
from the term cohort. 
 

It was next sought to understand if the PGCTs, defined based on microbial taxonomy, 

were associated with the functional capacity of the gut microbiome. Analysing EC 

number showed PGCTs significantly differ in their overall composition (P = 0.001; 

Figure 3.15A), however, no single enzyme or pathway was found to discriminate 

PGCTs from one another. To further explore the functional impact of PGCTs, a subset 

of 10 stool samples representative of each PGCT (n = 49; one sample failed QC, see 

Methods) and matched serum samples (n = 50) were selected for untargeted 

metabolomics (Table 3.6). Overall stool metabolite profiles were found to significantly 

differ between samples based on PGCT (P = 0.043, Figure 3.15B), whereas matched 

serum metabolite profiles did not (P = 0.151; Figure 3.15C). 
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Table 3.6. Clinical data for samples chosen for metabolomics and organoid 
experiments. P-values are based on Chi-squared test for categorical data and 
Kruskal-wallis for continuous data. 

 
 

 
Figure 3.15. Functional implication of PGCTs. (A) NMDS plot of EC number profiles 
for all samples showing the mean centroid for each PGCT. The statistical significance 
was based on PERMANOVA, with permutations constrained within the patient. (B,C) 
PLS-DA plots of metabolite profiles (n = 50) showing 95% confidence ellipses for each 
PGCT for stool (B) and serum (C). The statistical significance was based on 
PERMANOVA. (D) NMDS plot of preterm intestinal organoid transcriptome profiles 
showing the mean centroid for each PGCT. CTRL, control. (E) Venn diagram showing 
the number of DEGs compared with control for each PGCT. Zero values were removed 
for clarity. 
 

Specific metabolites significantly enriched in PGCT-3 (associated with no probiotic 

infants) compared to PGCT-4/5 (associated with probiotic infants) and vice versa were 

next explored. In stool, a single unknown metabolite was found to be significantly 

  PGCT-1  PGCT-2  PGCT-3  PGCT-4  PGCT-5  P-value  
Number of subjects  10  10  10  10  10    
Number of samples  10  10  10  10  10    
Mean DOL (±SD)  53.3 (± 8.3)  53.8 (± 8.9)  51.2 (± 5.9)  51 (± 9.3)  52.9 (± 9.07)  0.885  
Median gestational age 
(IQR)  

27 (24.5 –  
27.8)  

26 (25 –  
27.8)  

26 (25 –  
28)  

27 (26.2  
– 27)  

26.5 (25.2 –  
28.8)  

0.918  

Median birthweight 
(IQR)  

828 (615 –  
985)  

910 (782 –  
970)  

928 (782 –  
974)  

960 (639  
– 1055)  

880 (775 –  
1130)  

0.914  

Birth mode (% Vaginal)  20  30  60  20  50  0.220  
Sex (% Male)  50  30  70  80  60  0.194  
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enriched in PGCT-3 compared to PGCT-4/5 (P < 0.001, Q = 0.0493). In serum, a single 

metabolite, LysoPC 20:3, was found to be significantly enriched in PGCT-4/5 

compared to PGCT-3 (P < 0.001, Q = 0.01) and there was no metabolite 

correspondingly enriched in both stool and serum. 

 

To explore the impact of small molecules from each PGCT on preterm epithelial barrier 

function, a preterm intestinal-derived organoid model from an infant at 25 weeks 

corrected gestation under physiological oxygen conditions was employed. The same 

10 stool samples from each PGCT used for metabolomics were used to create sterile 

faecal supernatants, before being added to differentiated intestinal organoid 

monolayers for 24 hours. It was confirmed that monolayers remained viable and 

confluent via the TEER measurements following co-culture (median 3215.5 Ω, IQR 

3170.75 – 3265.5 Ω).  

 

Transcriptome profiles from organoids revealed a specific host response to each 

PGCT faecal supernatant, with PGCT-4 and PGCT-5 clustering distinctly from the 

other conditions on the X-axis (Figure 3.15D). This is further supported by PGCT-4 

and PGCT-5 exposed organoid monolayers showing the most DEGs compared to the 

media control (Figure 3.15E). Due to insufficient DEGs being identified for other 

PGCTs vs control, GO and enrichment analysis was carried out for PGCT-4 and 

PGCT-5 exposed monolayers only. First grouping genes up-regulated in PGCT-4 and 

PGCT-5 exposed monolayers by GO revealed various biological processes to be 

enriched, with a number of cellular and metabolic processes, including cellular protein 

metabolic processes (Table 3.7). Some immune related genes were also commonly 

differentially expressed, for example amongst those down-regulated were interleukin-

23-receptor (IL23R; binds the pro-inflammatory cytokine IL23), CD58 (a ligand of the 

T-cell co-stimulatory molecule, CD2) and tumour-necrosis-factor superfamily member 

15 (TNFSF15; a pro-inflammatory cytokine). Furthermore, other immune related genes 

were down-regulated in PGCT-5 exposed organoids, only including interleukin-18 

receptor 1 (IL18R1; binds the pro-inflammatory cytokine IL18) and IgA-inducing protein 

homolog (IGIP; enhances IgA secretion from B-cells) Conversely, Leukocyte Receptor 

Cluster Member 1 (LENG1) was significantly up-regulated for both. Networks of 

interactions were inferred for both PGCT-4 and PGCT-5, based on their DEGs, and 

following exclusion of disconnected nodes (Figure 3.16 and Figure 3.17). There was 
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a significant positive enrichment of genes encoding phosphoproteins for both PGCT-4 

and PGCT-5 (both FDR < 0.001), and genes encoding proteins involved in metabolic 

processes (P = 0.044 and P < 0.001, respectively), as seen based solely on GO. This 

was particularly true for PGCT-5 (Figure 3.17). Interestingly, positively enriched genes 

common for both PGCT-4 and PGCT-5 exposed monolayers included a number of 

genes involved in DNA damage response such as growth arrest and DNA damage 

inducible (GADD45) a and  b, and DNA damage inducible transcript 4 (DDIT4) (Figure 
3.16 and Figure 3.17).  
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Table 3.7. Top 30 most significantly enriched GO terms based on biological 
processes for PGCT-4 and PGCT-5.  

  ID Description Adj. pval 
Term 
size 

Gene 
ratio 

PGCT-4 GO:0008150 biological process 1.99E-164 20908 419/437 
 GO:0009987 cellular process 3.67E-162 19222 408/437 
 GO:0044237 cellular metabolic process 6.72E-131 12747 346/467 
 GO:0008152 metabolic process 1.01E-129 14260 356/459 
 GO:1901564 organonitrogen compound metabolic process 1.18E-111 6329 245/467 
 GO:0002181 cytoplasmic translation 2.98E-107 148 71/464 
 GO:0071704 organic substance metabolic process 4.30E-107 13734 332/467 
 GO:0044238 primary metabolic process 3.20E-105 12480 317/467 
 GO:0044260 cellular macromolecule metabolic process 2.64E-97 5737 221/467 
 GO:0043043 peptide biosynthetic process 2.90E-97 738 105/465 
 GO:0006518 peptide metabolic process 1.96E-96 895 111/465 
 GO:0006412 translation 5.49E-96 713 103/465 
 GO:0043604 amide biosynthetic process 3.21E-95 867 109/465 
 GO:0006807 nitrogen compound metabolic process 7.10E-95 11970 300/467 
 GO:1901566 organonitrogen compound biosynthetic process 1.89E-94 1697 136/465 
 GO:0043603 cellular amide metabolic process 7.59E-94 1165 119/465 
 GO:0019538 protein metabolic process 1.72E-89 5380 207/467 
 GO:0044267 cellular protein metabolic process 2.05E-87 4787 195/467 
 GO:0009058 biosynthetic process 2.99E-83 5954 209/467 
 GO:0044249 cellular biosynthetic process 8.84E-83 5792 206/467 
 GO:1901576 organic substance biosynthetic process 1.20E-82 5867 207/467 
 GO:0034645 cellular macromolecule biosynthetic process 3.82E-82 1563 122/467 
 GO:0044271 cellular nitrogen compound biosynthetic process 1.25E-74 4733 180/467 
 GO:0043170 macromolecule metabolic process 1.21E-73 12227 277/467 
 GO:0034641 cellular nitrogen compound metabolic process 3.17E-71 8684 233/467 
PGCT-5 GO:0009987 cellular process 4.941e-324 19222 829/903 
 GO:0008150 biological process 4.941e-324 20908 824/866 
 GO:0008152 metabolic process 3.10E-266 14260 887/1281 
 GO:0065007 biological regulation 2.00E-257 12840 833/1276 
 GO:0044237 cellular metabolic process 6.17E-251 12747 827/1281 
 GO:0050789 regulation of biological process 2.09E-244 12123 797/1276 
 GO:0071704 organic substance metabolic process 1.84E-241 13734 844/1281 
 GO:0050794 regulation of cellular process 5.81E-239 11057 758/1276 
 GO:0044238 primary metabolic process 8.27E-234 12480 799/1281 
 GO:0006807 nitrogen compound metabolic process 2.61E-210 11970 755/1281 
 GO:1901564 organonitrogen compound metabolic process 3.97E-200 6329 548/1281 
 GO:0050896 response to stimulus 1.02E-188 8811 623/1276 
 GO:0044260 cellular macromolecule metabolic process 7.54E-185 5737 506/1281 
 GO:0043170 macromolecule metabolic process 1.88E-184 12227 729/1281 
 GO:0019538 protein metabolic process 4.27E-177 5380 482/1281 
 GO:0048518 positive regulation of biological process 1.90E-162 6086 491/1276 
 GO:0051716 cellular response to stimulus 8.55E-157 7343 530/1276 
 GO:0044267 cellular protein metabolic process 1.74E-156 4787 432/1281 
 GO:0048522 positive regulation of cellular process 1.52E-154 5553 461/1281 
 GO:0051179 localization 1.76E-143 6414 474/1255 
 GO:0031323 regulation of cellular metabolic process 7.59E-138 5919 452/1276 
 GO:0019222 regulation of metabolic process 6.93E-137 7208 498/1276 
 GO:0071840 cellular component organization or biogenesis 1.51E-129 7917 509/1256 
 GO:0009058 biosynthetic process 2.42E-129 5954 445/1293 
 GO:0080090 regulation of primary metabolic process 1.14E-126 5692 429/1281 
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Figure 3.16. Protein-protein network analysis inferred from significantly up-
regulated genes from PGCT-4 exposed organoids. Network analysis was 
performed by STRING V.12.0, based on a minimum interaction score of 0.4 (medium 
confidence) where edge thickness represents the level of confidence and disconnected 
nodes have been excluded. Green: phosphoproteins; Blue: proteins involved in 
metabolic processes.  
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Figure 3.17. Protein-protein network analysis inferred from significantly up-
regulated genes from PGCT-5 exposed organoids. Network analysis was 
performed by STRING V.12.0, based on a minimum interaction score of 0.7 (high 
confidence) to better visualise the network. Edge thickness represents the level of 
confidence and disconnected nodes have been excluded. Green: phosphoproteins; 
Blue: proteins involved in metabolic processes. 
 

In addition to transcriptome profiles, IL-8, a known inflammatory chemokine, was 

measured from both apical and basolateral media following organoid co-culture. There 

was no relationship observed between IL-8 production levels and PGCT faecal 

supernatant exposure in apical media. However, in basolateral media IL-8 production 
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appeared to be higher for PGCT-3 exposed organoids (Fig 3.18), although there was 

no statistically significant difference in IL-8 concentration between groups (P = 0.251). 

 
Figure 3.18. Preterm organoids did not differentially produce IL-8 dependent on 
PGCT faecal supernatant exposure. IL-8 concentration in (A) the apical and (B) 
basolateral media following 24-hour incubation with faecal supernatants. IL-8 
concentration was measured by ELISA, and P-values were calculated by Wilcoxon 
rank test.  
 

3.3.5. Modulation of the infant microbiome by diet and antibiotics 

Receipt of BMF, receipt of MOM, and antibiotics were significantly associated with 

Shannon diversity (Table 3.2) and the gut microbiome profiles around 1 month of life 

only (Figure 3.5). Shannon diversity was significantly higher after receipt of MOM 

compared to never receiving MOM (P = 0.012; Figure 3.19A) and was significantly 

reduced in samples where antibiotics had been given in the previous 7 days (P < 0.001; 

Figure 3.19B).  
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Figure 3.19. MOM and antibiotics are significantly associated with the preterm 
gut microbiome. (A,B) Estimated marginal means (95% CI) representing Shannon 
diversity for (A) MOM and (B) antibiotics, obtained from the Shannon diversity LMMs 
adjusted for gestational age, birthweight, birth mode, sex, season, day full feed, BMF, 
formula, probiotics, weight z-scores, DOL, and patient ID. Significance shown is after 
adjustment for multiple comparisons by Dunnet’s method, whereby ‘never’ or ‘no’ was 
used as the control, respectively. (C,D) Box plots showing the relative abundance of 
Bifidobacterium and Staphylococcus in (C) MOM groups and (D) antibiotic groups. The 
centre lines denote the median, the box limits denote the IQR and whiskers extend to 
the limits. Points outside the whiskers represent outliers. Significance is based on P-
values from MaAsLin2. 
 
 
Samples collected during BMF were more likely to belong to Escherichia dominant 

PGCT-2 (Table 3.3), have higher Escherichia genus (Table 3.4) and an unclassified 

Escherichia sp. (Table 3.5). Compared to infants who never received MOM, the 

relative abundance of Bifidobacterium was significantly higher in samples collected 

during (P = 0.013, Q = 0.154) and after (P = 0.006, Q = 0.09) receipt of MOM, and the 

relative abundance of Staphylococcus was significantly lower during (P = 0.013, Q = 

0.157) and after (P = 0.003, Q = 0.053) (Figure 3.19C and Table 3.4). Analysis at the 

species level did not find specific Bifidobacterium spp. to be significantly enriched with 

MOM, whereas lower Staphylococcus was primarily driven by S. aureus (Table 3.5). 

Inverse associations were observed in infants who received antibiotics, where receipt 
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of antibiotics in the previous 7 days significantly reduced the relative abundance of 

Bifidobacterium (P < 0.001, Q < 0.001) and increased Staphylococcus (P < 0.001, Q < 

0.001) (Figure 3.19D and Table 3.4). At the species level, B. bifidum, B. longum, B. 

breve, were significantly reduced (all P < 0.01, Q < 0.1) and S. haemolyticus, S. 

warneri, and S. lugdunensis were significantly increased (all P < 0.01, Q <0.2); Table 

3.5). 

 

At a functional level, across all samples, MOM, BMF, and antibiotics were also found 

to be significantly associated with the total number of ARGs (Table 3.2). Post-hoc 

analysis revealed the total number of ARGs to be significantly higher after receipt of 

BMF compared to during (P = 0.001) and higher during and after (P < 0.001) receipt 

of MOM compared to infants who never received MOM. ARGs were also higher when 

antibiotics had not been given in the 7 days before compared to if they had (P = 0.036). 

 

Furthermore, the relative abundance of a single enzyme, a transaldolase (EC 2.2.1.2), 

was found to be the most significantly associated EC number both during and after 

receipt of MOM (https://github.com/laurencbeck/supplementary_tables - Appendix 1). 

The relative abundance of various other transferases were also found to be positively 

associated during and after receipt of MOM, particularly glycosyltransferases and 

those involved in the transfer of one-carbon and phosphorus- containing groups. In 

contrast, the relative abundance of the majority of EC numbers were negatively 

associated with receipt of antibiotics in the past 7 days, such as enzymes involved in 

forming carbon-nitrogen bonds and transfer of one-carbon groups 

(https://github.com/laurencbeck/supplementary_tables - Appendix 1). ECs positively 

associated with antibiotics, include oxidoreductases acting on sulphur groups and 

those acting on paired donors.  

 

3.4. Discussion  
The current study represents the largest longitudinal metagenomic analysis of 

significantly preterm infants who did not develop intestinal complications or sepsis. 

Where administered, probiotics were the primary factor influencing the preterm gut 

microbiome, followed by receipt of antibiotics, MOM, and BMF. Two different probiotic 

products altered the transition of the microbiome into different PGCTs, both 

characterised by samples collected at the oldest postnatal ages. The PGCTs were 

https://github.com/laurencbeck/supplementary_tables
https://github.com/laurencbeck/supplementary_tables
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enriched in different Bifidobacterium spp. and showed differences in their functional 

characteristics and interaction with the host epithelium. 

 

Other findings such as the lack of association with other clinical data, were further 

validated using the Olm et al. cohort(Olm et al., 2019), highlighting important 

differences in comparison to term infants (Bokulich et al., 2016; Chernikova et al., 

2018; Reyman et al., 2019). Birth mode was not associated with the microbiome and 

the total variance explained by co-variates was around 10-fold lower than observed in 

term infants (Stewart et al., 2018). This suggests that NICU practices and environment 

dominate the preterm microbiome, which is important when interpreting findings from 

different settings. Additionally, it could be that the unit-wide use of antibiotics 

immediately following birth in this population may mask the changes that would have 

been seen between vaginal and caesarean born infants. 

 

Over this 10-year observational study, the impact of two different probiotic products 

that were used during discrete time periods, and prior to probiotics ever being used, 

was investigated. Once a probiotic was in use, probiotic species were detected in stool 

before deliberate administration. This ‘unit cross-colonisation’ has been seen in 

previous studies (Costeloe et al., 2016; Hickey et al., 2014; Jacobs et al., 2013) and 

has important implications for probiotic trial design. For example, future RCTs may 

benefit from separately housing infants based on trial arm or using multi-centre studies 

that follow similar clinical practices. That said, it is important to note that multi-centre 

studies would need to carefully consider potential confounders based on clinical 

practices. The findings of cross-colonisation described here may explain why RCT 

results have varied so much, and why some probiotic studies have not found any 

effects on NEC. 

 

Previous studies in preterm infants have shown probiotics to alter the gut microbiome 

(Abdulkadir et al., 2016; Alcon-Giner et al., 2020; Nguyen et al., 2021; van Best et al., 

2020; Yousuf et al., 2020). In the present study, the probiotic product was identified as 

the main driver in shaping the bacterial community at both a taxonomic and functional 

level. Supplementation of either Infloran or Labinic was associated with transition into 

two different Bifidobacterium spp. enriched PGCTs (PGCT-4 and -5), both of which 

reflected samples obtained from the oldest infants. Previous studies have found 
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Bifidobacterium enriched PGCTs to be associated with positive health outcomes 

(Stewart et al., 2016), but the functional implications of this have not previously been 

explored. 

 

To determine the relevance of PGCTs on host-microbial interaction, metabolomics was 

performed on matched stool and serum samples, and an experimental preterm 

intestinal organoid model was used. Overall metabolite profiles of stool, but not serum, 

were associated with the PGCT. In addition, sterile faecal supernatants containing the 

metabolites and other components of stool were found to impact preterm epithelial 

response in a PGCT-specific manner. Of note, although a healthy section of tissue with 

viable crypts was used for organoid generation, intestinal organoid models derived 

from preterm infants require a patient to have a clinical complication requiring surgery 

(in this case NEC) and so are not healthy individuals. The intestinal region (i.e., small 

or large intestine) and maturity of the patient may also impact host transcription (Masi 

et al., 2021). Although further work is needed to determine the potential biological 

significance of the functional changes resulting from probiotic administration, this 

demonstrates that transition into different PGCTs, which was driven by probiotic use, 

has associated functional implications. 

 

It is important to note that excretion of supplemented strains in stool collected during 

treatment does not necessarily imply intestinal colonisation. Therefore, an assessment 

of the persistence of strains after stopping probiotics was included, hypothesising that 

colonised strains would persist, and lack of persistence would indicate a strain was not 

truly colonising. Several studies have shown individual difference in probiotic and 

transient microbe colonisation (Maldonado-Gómez et al., 2016; Zhang et al., 2016; 

Zmora et al., 2018), as well as differences in the persistence of probiotic species 

following treatment, particularly higher persistence of bifidobacterial strains compared 

to lactobacilli (Alcon-Giner et al., 2020; van Best et al., 2020; Yousuf et al., 2020). 

Individualised differences in probiotic colonisation were also observed. All 

Bifidobacterium species showed higher persistence compared to L. acidophilus and 

the persistence of B. bifidum and L. acidophilus (i.e., the two strains present in both 

probiotics) were dependent upon the probiotic used. The lower persistence of L. 

acidophilus may reflect the preterm gut ecosystem not being optimal for this species, 

as it is not a commonly abundant or persistent member of the preterm gut microbiome 
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(Abdulkadir et al., 2016; Alcon-Giner et al., 2020; Esaiassen et al., 2018; Yousuf et al., 

2020). Alternatively, it could be that because L. acidophilus colonises the small 

intestine, it is less likely to be detected in stool thereafter (Yousuf et al., 2020). These 

results highlight altered short- and long-term colonisation depending upon the 

probiotic/strains used, emphasising the importance of better understanding short- and 

long-term impacts at strain-level. 

 

Despite the apparent importance of probiotics in this population in providing an early 

source of Bifidobacterium spp., natural Bifidobacterium colonisers were identified, 

namely B. breve, B. dentium, and B. longum subsp. longum. It has been widely 

reported that MOM has a bifidogenic effect through the provision of HMOs (Garrido 

et al., 2015; Lawson et al., 2020; Ruiz-Moyano et al., 2013; Turroni et al., 2010). All 

Bifidobacterium species detected in this preterm cohort have been previously shown 

to utilise HMOs for growth, with notable variation at the strain level (Lawson et al., 

2020). Notably, MOM was found to be associated with an increased relative 

abundance of Bifidobacterium and decreased relative abundance of Staphylococcus, 

whereas antibiotics showed opposing results, being associated with a decreased 

relative abundance of Bifidobacterium and increased relative abundance of 

Staphylococcus. Although the positive effects of MOM and breastfeeding are 

indisputable, and it is noted here that MOM is associated with a higher Shannon 

diversity and the Bifidobacterium genus, associations with specific taxa at the 

species level were not identified. This is likely due to the extensive provision of MOM 

in this NICU resulting in a lack of power, and also the administration of probiotics 

which likely mask a lot of the changes. Another limitation is the use of samples from a 

single NICU, which could affect the generalisability of these findings. However, in 

doing so, the source of variation in this study was reduced and ensured the 

standardisation of clinical variables.  

 

The impact of antibiotic use on the emergence of specific ARGs and the emergence 

of drug-resistant pathogens is well-recognised, but underexplored in preterm infants 

(Gibson et al., 2016; Nguyen et al., 2021). Here, antibiotic use was found to be 

associated with a lower total number of ARGs, likely reflecting the reduced bacterial 

richness as a consequence of antibiotic treatment. Proteobacteria were further found 

to carry the highest number of ARGs in relation to their relative abundance, a 
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potentially important finding given the widely reported link between Proteobacteria and 

NEC onset (Olm et al., 2019; Pammi et al., 2017; Stewart et al., 2019).  
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3.5. Limitations 
This data presented in this study was obtained from a single centre, and therefore the 

findings may not be entirely relevant or applicable to other cohorts. It is important to 

consider potential variations in patient demographics, clinical care regimes and 

environmental factors between centres, as these factors can influence the observed 

outcomes. Additionally, the data collected was across a 120-day period (the majority 

being earlier samples) during the infant stay on the NICU. This timeframe may not fully 

capture the extent of longitudinal changes of the gut microbiome, and it is important to 

consider changes that may occur beyond this monitored period (i.e., post-discharge). 

It would be interesting to evaluate the impact of probiotics post-discharge and future 

studies may consider this. In terms of the collected metadata, information on feeding 

lacks granularity (i.e., % of enteral milk received) and therefore the precise role of 

breast milk may not have been fully captured. Furthermore, these data are based on 

relative abundance which as described in Section 1.7.6, does not give us information 

on the true abundance of taxa and should therefore be interpreted with caution. 

 

The methods used in the current study and data presented in subsequent chapters, 

such as the DNA extraction from stool samples and the metagenomic sequencing 

method, were designed with a primary focus on bacterial profiling. Notably, the 

relatively low sequencing depth used may have contributed to the limited detection of 

other microorganisms and although few other microorganisms were detected (e.g., 

fungal species), this is not to say that these are not present and important in the 

preterm gut environment. 

 

Finally, the organoid experiments were carried out using a single cell line in triplicate 

for each condition, and so repeats are technical rather than biological replicates. 

Consequently, the extent to which the experimental findings can be generalised is 

restricted, especially since IL-8 production and gene expression profiles are likely to 

differ somewhat between preterm cell lines. However, the experiment has been run as 

a proof of concept in order to offer mechanistic evidence to support the primary focus 

of the study surrounding the computational analysis.  
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3.6. Conclusions 
In summary, this study has shown in a large and extensively longitudinally sampled 

population of preterm infants, that the choice of probiotic product impacted 

development of the gut microbiome in different ways, accelerating transition into 

Bifidobacterium dominant PGCT-4 or -5, which reflected bacterial communities of the 

oldest samples. In addition, these PGCTs showed differences in their functional 

implications and interaction with the host epithelium. These results help provide a 

framework and identify important aspects for consideration when designing 

interventional trials targeting the gut microbiome of preterm infants. 
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4. Microbial signatures of necrotising enterocolitis in preterm 

infants 
4.1. Abstract 

NEC is a devastating GI disorder primarily affecting preterm infants and is responsible 

for significant morbidity and mortality. Thought to have a multifactorial aetiology, NEC 

has been associated with changes in the gut microbiome, with previous studies 

pointing to an increase in Proteobacteria and decrease in Bifidobacterium to be 

associated with disease. This decrease in Bifidobacterium has led, in part, to an 

increased interest in probiotics in the NICU. However, whilst more broad associations 

with disease have been made, no single causative agent has ever been identified, and 

the pathogenesis of disease remains poorly understood. Here, metagenomics was 

performed on extensive longitudinal stool samples (n = 2041) from infants who went 

onto develop NEC (n = 75) alongside those who did not (n = 123). The findings reveal 

that before clinical diagnosis of NEC, the relative abundance of Proteobacteria such 

as Klebsiella variicola is higher whilst the relative abundance of Actinobacteria, mainly 

Bifidobacteria is lower, concordant with other studies. In the first study of its kind, 

exploring the microbial origins of NEC in the context of probiotic use, both the type and 

administration of probiotics influenced the microbial association observed with NEC, in 

particular the colonisation patterns of different probiotic and probiotic-associated 

strains. The results of this study have provided important insights into microbial 

changes that occur preceding NEC onset, and informed follow-up studies to further 

identify potential biomarkers for disease. 
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4.2. Introduction 
 
NEC is a devastating GI disorder affecting up to 10% of preterm infants and is 

responsible for significant morbidity and mortality. Thought to have a multifactorial 

aetiology, alterations in the gut microbiota have been implicated in its pathogenesis, 

although no definitive causative agent has been identified. Results typically vary 

between studies and cohort, but in general, previous findings have pointed towards a 

higher abundance of Proteobacteria, and lower abundance of beneficial Bifidobacteria 

in NEC cases. Notably, a large metagenomic study by Olm et al. (Olm et al., 2019) of 

1163 faecal samples from 160 preterm infants (n = 34 NEC infants and 282 NEC 

samples), found samples prior to NEC diagnosis to have a greater abundance of 

Klebsiella spp. as well as bacteria encoding fimbriae and gene clusters related to 

quorum sensing and biofilm formation. Other studies have also found a link between 

NEC and a greater abundance of Klebsiella spp. (Casaburi et al., 2022; Coleman et 

al., 2023), as well as Enterobacter spp. (Casaburi et al., 2022) and other 

Gammaproteobacteria (Warner et al., 2016). Aside from the study by Olm et al. (Olm 

et al., 2019) the majority of previous studies investigating the link between the gut 

microbiome and NEC onset have largely depended on the use of 16S rRNA gene 

sequencing. Whilst informative and in many circumstances sufficient, this technique is 

limited to genus-level identification and therefore will not capture more granular 

changes in species or strains. In addition, many studies are constrained to smaller 

cohorts and cross-sectional data, which fails to capture temporal changes and makes 

it difficult to appreciate the dynamics of the preterm gut microbiome. A longitudinal 

metagenomic study in a large cohort is therefore necessary to address these 

limitations. 

 

Understanding the microbial landscape proceeding NEC onset represents an 

important aspect of study, as identification of abnormal microbial signatures may help 

to inform future therapeutics and diagnostic tools. The association of the gut 

microbiome with NEC has led to an increased interest in the use of probiotics as a 

potential preventative measure. Comparison of microbial characteristics and whether 

biomarkers of health or disease differ dependent on probiotic consumption, represents 

a novel element of investigation which is yet to be explored. 
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Building on the groundwork described in Chapter 3, in the current chapter extensive 

longitudinal stool samples (n = 2041) from preterm infants who went onto develop NEC 

alongside those who did not, were analysed. This represents the largest metagenomic 

study of NEC described to date. The aims of this chapter are to identify microbial 

signatures of NEC before disease diagnosis and compare these between the probiotic 

groups (i.e., no probiotic/Infloran/Labinic) analysed in Chapter 3. The results of this 

study will provide important insights into microbial changes that occur preceding NEC 

onset, which will help inform directions for future research into therapeutic and 

diagnostic tools. 
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4.3. Results 
The current metagenomic analysis included 2041 samples from 199 preterm infants 

born <32 weeks of gestation. Of these infants, a total of 75 were diagnosed with NEC 

(n = 547 samples), 24 of whom also developed LOS, and a total of 124 were neither 

diagnosed with NEC, LOS nor any other GI disease (n = 1494 samples) (Table 4.1). 

Of the NEC samples, 252 were collected prior to NEC diagnosis or on the day of NEC 

diagnosis (pre-NEC) and 295 were obtained following NEC diagnosis (post-NEC; 

Figure 4.1). For infants who developed NEC, the median (IQR) day of onset was 19 

(13 – 33) (Table 4.1). 
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Table 4.1. Patient demographics of the analytical cohort. P-values are based on 
Chi-squared test for categorical data and Kruskal-Wallis test for continuous data. 

 All Healthy NEC P-value 
No. of subjects 199 124 75  
No. of samples 2041 1494 547  

Median no. samples per subject (IQR) 10 (7 – 13.5) 11 (9 – 14.3) 6 (3 – 10)  

Median day of NEC diagnosis (IQR)   19 (13 – 33)  

Median gestational age (IQR) 26.7 (25.3 – 28.1) 27 (25.7 – 28.7) 26 (24.4 – 27.8) 0.007 

Median birthweight (g) (IQR) 860 (697.5 – 1065) 902 (718 – 1136) 800 (625 – 970) 0.002 

Median day of first feed (range) 2.5 (2 – 4) 2 (2 – 4) 3 (2 – 4) 0.118 

Median day of full feed (IQR) 14 (12 – 20) 12 (14 – 16) 18 (13 – 30) <0.001 

Median no. of antibiotic courses (IQR) 3 (2 – 5) 2 (1 – 3) 5 (3 – 6) <0.001 

Mother’s own milk ever 189 (95.0%) 115 (92.7%) 74 (98.7%) 0.129 

Formula ever 133 (66.8%) 75 (60.5%) 58 (77.3%) 0.048 

Median start day of probiotics (IQR) 5 (7 – 10) 5 (7 – 9) 4 (7 – 12) 0.477 

Median stop day of probiotics (IQR) 47 (32 – 56) 45 (31 – 54) 49 (36.8 – 60) 0.051 

Birth mode    1 

Caesarean 109 (54.8%) 68 (54.8%) 41 (54.7%)  

Vaginal 90 (45.2%) 56 (45.2%) 34 (45.3%)  

Sex    0.312 

Male 117 (61.6%) 69 (55.6%) 48 (64%)  

Female 82 (43.2%) 55 (44.3%) 27 (36%)  

Probiotic type    0.006 

No probiotic 41 (20.6%) 29 (23.4%) 12 (16%)  

Infloran 54 (27.1%) 24 (19.4%) 30 (40%)  

Labinic 104 (52.3%) 71 (57.3%) 33 (44%)  

Antibiotics in the past 7 days samples    <0.001 

Yes 656 (32.1%) 411 (27.5%) 245 (44.8%)  

No 1385 (67.9%) 1083 (72.5%) 302 (55.2%)  

MOM samples    <0.001 

Never 117 (5.7%) 110 (7.4%) 7 (1.3%)  

Before 11 (0.5%) 7 (0.5%) 4 (7.3%)  

During 1566 (76.7%) 1202 (80.5%) 364 (66.5%)  

After 347 (17.0%) 175 (11.7%) 172 (31.4%)  

BMF samples    <0.001 

Never 908 (44.5%) 506 (33.9%) 402 (73.5%)  

Before 498 (24.4%) 418 (28.0%) 80 (14.6%)  

During 487 (23.9%) 447 (30.0%) 40 (7.3%)  

After 148 (7.3%) 123 (8.2%) 25 (4.6%)  

Formula samples    <0.001 

Never 720 (35.3%) 603 (40.4%) 117 (21.4%)  

Before 603 (29.5%) 406 (27.2%) 197 (36.0%)  

During 682 (33.4%) 454 (30.4%) 228 (41.7%)  

After 36 (1.8%) 31 (2.1%) 5 (0.9%)  

 



 

 99 

  

 
 
Figure 4.1. Healthy and NEC infant sampling overview. Samples used in this 
study from birth to day 120, coloured based on the sample timing in relation to NEC 
diagnosis. Dashed line represents the median day of NEC onset at DOL 19. 
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4.3.1. Validation of MetaPhlAn v3.0 output 
In comparison to Chapter 3, in this chapter, microbiome data was based on an updated 

version of MetaPhlAn (MetaPhlAn v3.0) and functional data based on an updated 

version of HUMAnN (HUMAnN v3.0). The same samples analysed in Chapter 3 were 

re-incorporated here to serve as ‘healthy’ control samples, but all samples were re-ran 

using the updated bioBakery tools (i.e., MetaPhlAn and HUMAnN) as described in the 

methods. 

 

As the 1431 samples analysed in Chapter 3 were re-mapped using the updated 

MetaPhlAn pipeline, which includes additional marker genes in the curated database, 

the first aim was to assess comparability with the previous work in Chapter 3. Based 

on the MetaPhlAn v3.0 output, no archaea and only nine fungal species were detected 

(contrasting the 11 fungal species identified using MetaPhlAn v2.0 in Chapter 3). 

Despite the slight reduction, the same fungal species were identified across the two 

datasets. However, using MetaPhlAn v3.0, C. parapsilosis and M. restricta were not 

detected, which were both identified previously, albeit at low abundance. The reads 

that were previously assigned to these species did not appear to be re-assigned to any 

other fungal or bacterial species. Similar to the findings of Chapter 3, C. albicans was 

the most abundant and prevalent fungi, but only detected in 22 samples (13 infants). 

Considering the extremely low prevalence of viruses identified in Chapter 3 from the 

VirMAP pipeline, this aspect was omitted from the current analysis. 

 

In total, 537 bacterial species were identified with MetaPhlAn v3.0, compared with 394 

identified in Chapter 3 using MetaPhlAn v2.0. Due to the dominance of bacterial 

species in the dataset, subsequent analysis was again focused primarily on bacteria. 

Consistent with Chapter 3, the most abundant bacterial genera were Bifidobacterium, 

Escherichia, Enterococcus, Klebsiella and Staphylococcus and the most abundant 

species were E. coli, E. faecalis, B. longum, B. breve and K. pneumoniae. Similar 

trends were observed longitudinally, with the relative abundance of Bifidobacterium 

increasing over DOL and Staphylococcus decreasing, corresponding with the relative 

abundance of Actinobacteria and Firmicutes, respectively (Figure 4.2A, B). 
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4.3.2. Determining preterm gut community types 

DMM modelling of bacterial profiles was used to determine PGCTs, as previous. Based 

on Laplace approximation score, 6 clusters were found to be optimal, however, data 

were clustered into 5 PGCTs for consistency with Chapter 3. PGCTs were numbered 

1–5 based on the average age of samples within that cluster. Species richness 

expectedly increased through PGCTs (P < 0.001), with a significant difference in 

richness observed between each PGCT (P < 0.001) (Figure 4.3A). Similarly, Shannon 

diversity also increased based on PGCTs (P < 0.001), with a significant difference 

observed between each PGCT (P < 0.001), apart from PGCT-3 and PGCT-4 (Figure 
4.3B).  
  

 
 

Figure 4.2. Overview of the preterm gut microbiome in healthy and NEC 
infants. LOESS fits with 95% CI modelling the relative abundance of (A) the most 
abundant genera and (B) the most abundant phyla over the first 120 days of life.  
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LefSE was used to determine the most discriminatory taxa for each PGCT, using a cut-

off Log10LDA score of 4. PGCT-1 was discriminated by Enterococcus faecalis and 

Staphylococci (Staphylococcus epidermidis, S. argenteus and S. warneri); PGCT-2 

was discriminated by Enterobacter cloacae, E. coli and two members of the K. oxytoca 

complex (K. michiganensis and K. oxytoca); PGCT-3 was discriminated by various 

members of the K. pneumoniae complex (K. pneumoniae, K. variicola and K. 

quasipneumoniae); PGCT-4 was discriminated by B. breve, E. faecium and 

Lactobacillus casei, and PGCT-5 was discriminated by B. longum, B. bifidum, 

Cutibacterium avidum and L. rhamnosus (Figure 4.4A,B). PGCTs were generally 

comparable to those identified in Chapter 3, with the earliest PGCTs being more 

Staphylocci-dominant and later PGCTs being more Bifidobacterium-dominant. 

Interestingly, members of either the K. oxytoca complex or K. pneumoniae complex 

were not found to co-exist (Figure 4.4A).  

 
 
Figure 4.3. Alpha diversity differs based on PGCTs. (A) Shannon diversity and (B) 
species richness. P-values are based on global P-values obtained from ANOVAs on 
fitted LMMs, controlling for patient ID.  
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Figure 4.4. PGCT discriminatory features. (A) Heatmap of all samples (n = 2041) 
showing the relative abundance of the most dominant species, stratified by 
PGCT. (B) LEfSe identifying discriminatory features of each PGCT based on LDA. 
Coloured bars denote PGCTs.  
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4.3.3. Longitudinal development and stability of the preterm gut microbiome 
in NEC infants prior to and following diagnosis 

The impact of NEC on longitudinal development and stability of the preterm gut 

microbiome was first explored. Transition plots showed NEC (i.e., healthy vs NEC) to 

impact the temporal development of the gut microbiome, altering transition through 

PGCTs (Figure 4.5). 

To elucidate differences in the gut microbiome occurring prior to disease onset to those 

occurring as a consequence of disease, binomial mixed models were fit to explore the 

association of NEC (i.e., no-NEC/pre-NEC/post-NEC) with PGCTs. Infants who 

developed NEC were significantly less likely to transition into PGCT-5 (P < 0.001), and 

significantly more likely to remain in PGCT-1 following NEC diagnosis (i.e, post-NEC) 

but not prior to NEC diagnosis (i.e., pre-NEC), compared to healthy infants (P = 0.003; 

Figure 4.5, Table 4.2). PGCT-1 was also significantly associated with a lower DOL (P 

< 0.001), as well as samples taken before BMF (P = 0.037), when antibiotics had been 

used in the previous 7 days (P < 0.001) and when infants had not been fed MOM (P < 

0.001). Conversely, PGCT-5 was significantly associated with a higher DOL (both P < 

0.001), as well as Labinic use (P = 0.004) and use of MOM (P = 0.002). Transition into 

PGCT-5 was significantly less likely after formula use (P = 0.019). 

 

 
 
 
Figure 4.5. NEC impacts the transition of the preterm gut microbiome over 
time. Transition plot showing the progression of samples through each PGCT from 
DOL 0 to DOL 69, based on whether an infant developed NEC or not. The nodes 
and edges are sized based on the total counts; nodes are coloured according to 
PGCT and edges by the transition frequency. 
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Table 4.2. Association between PGCT and clinical co-variates in healthy and NEC 
preterm infants. Global P-values and aORs with 95% CIs are based on the fitted 
mixed-effects logistic regression models, with patient ID as a random effect.  
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Microbiome development over the initial weeks of life was next assessed, which 

represents the critical window preceding NEC diagnosis. This was analysed based on 

the number of unique PGCTs an infant transitions into, with infants who remained in 

the same PGCT throughout this period being classed as “stable”, and those 

transitioning to two or more unique PGCTs being classed as “dynamic”. Infants with 

three or more samples in the first two weeks of life were analysed (n = 91), to see 

whether NEC or other clinical variables were significantly associated with this measure. 

Infants who developed NEC were significantly more likely to remain in the same PGCT 

(i.e., stable) in the first two weeks of life (P = 0.044). These observations were 

irrespective of the number of samples from that infant within the 2-week period (P = 

0.757). 

 

To further explore the impact of NEC and other clinical variables on microbiome 

maturation and development, microbiota age and MAZ scores were calculated, as 

previously described (Subramanian et al., 2014). In brief, a model containing 19 age-

discriminatory species was used to predict the DOL of samples not used in the training 

dataset (see Methods). This predicted DOL is referred to as the microbiota age. MAZ 

scores were generated using the microbiota age of a sample and the median 

microbiota age from DOL-matched infants in the training dataset. Both the microbiota 

age and MAZ score was significantly lower in infants who developed NEC (P = 0.003 

and P < 0.001, respectively; Figure 4.6A, B, Table 4.3). Specifically, MAZ scores were 

significantly lower in post-NEC samples compared to both no-NEC samples (P < 

0.001) and pre-NEC samples (P < 0.001), but not pre-NEC samples compared to no-

NEC samples (P = 0.679). This association with NEC remained significant independent 

of antibiotic use in the previous 7 days (P < 0.001). For microbiota age in the 

unmatched dataset, NEC cases could not be split into pre-NEC and post-NEC as time 

is strongly associated with changes in the gut microbiota and pre-NEC and post-NEC 

are nested in time (i.e., pre-NEC are generally earlier samples whilst post-NEC are 

generally later samples). Aside from NEC, antibiotic use in the previous 7 days was 

significantly associated with a decreased microbiota age and MAZ score (P < 0.001 

and P = 0.017, respectively) and MOM, BMF and formula use were also significantly 

associated with both microbiota age and MAZ score (all P < 0.05; Table 4.3). 

Furthermore, increasing gestational age was significantly associated with an increased 
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MAZ score (P = 0.009) whilst increasing day of full feeds were significantly associated 

with a decreased MAZ score (P = 0.020; Table 4.3). 

 

To further explore the association between microbiota age and NEC onset (i.e., pre-

NEC only compared to DOL-matched controls), and to better control for potential 

confounding variables, the analysis was repeated on a subset of NEC infants who had 

been matched 1:1 to healthy control infants based on gestational age and birthweight, 

and their samples matched by DOL (see Methods; Table 4.4). Other patient-level 

clinical data, such as the number of infants from each probiotic group are also 

described in Table 4.4. Based on this stratified analysis of samples prior to NEC 

diagnosis and healthy matched controls, there was no significant difference in 

microbiota age (P = 0.376) or MAZ score (P = 0.171). Aside from NEC, BMF and 

formula use were also significantly associated with both microbiota age and MAZ score 

(all P < 0.001). Additionally, MOM and antibiotic use in the previous 7 days were both 

significantly associated with microbiota age (P < 0.001) and gestational age at birth 

was significantly associated with MAZ score (P = 0.008; Figure 4.6C, D, Table 4.3). 
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Figure 4.6. MAZ score and microbiota age are significantly lower post-NEC 
but not pre-NEC.  (A) microbiota age in the unmatched dataset (B) MAZ score in 
the unmatched dataset, (C) microbiota age in the matched dataset and (D) MAZ 
score in the matched dataset. P-values are based on LMMs adjusted for 
gestational age, birthweight, birth mode, sex, season, day of full feed, BMF, 
formula, probiotics, DOL and patient ID. 
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Table 4.3. Association between MAZ score and microbiota age with clinical co-
variates. Wald’s Chi-squared test statistic for fixed effects are based on Type II 
ANOVA on the fitted LMMs, with patient ID as a random effect.  
 
 
 Unmatched: 

microbiota age 
Unmatched: 
MAZ score 

Matched: 
microbiota age 

Matched: 
MAZ score 

 Chisq pval Chisq pval Chisq pval Chisq pval 
Gestational 

age 
0.507 0.477 6.865 0.009 0.035 0.851 0.718 0.397 

Birthweight 0.501 0.479 2.770 0.096 0.494 0.482 2.263 0.133 
Birth mode 0.370 0.543 1.030 0.310 0.013 0.909 0.157 0.692 

Sex 0.001 0.972 0.199 0.656 0.735 0.391 0.150 0.700 
Antibiotics 242.103 <0.001 5.678 0.017 17.475 <0.001 5.015 0.025 

Day full 
feeds 

0.033 0.857 5.413 0.020 1.738 0.187 2.646 0.104 

MOM 29.028 <0.001 25.288 <0.001 36.537 <0.001 14.742 0.002 
BMF 230.505 <0.001 30.888 <0.001 20.680 <0.001 21.510 <0.001 

Formula 32.921 <0.001 17.440 <0.001 6.857 0.077 5.324 0.150 
NEC 8.562 0.003 157.763 <0.001 0.784 0.376 1.872 0.171 

Probiotics 2.721 0.257 3.610 0.165 4.741 0.093 2.680 0.262 
 

Table 4.4. Clinical data for the matched data analysis. P values are based on Chi-
squared test for categorical data and Kruskal-Wallis test for continuous data. 

 Healthy NEC P-value 
No. of infants 60 60  

No. of samples 172 172  
Median gestational age (IQR) 26 (25.0 - 27.9) 25.8 (24.4 - 27.9) 0.505 
Median birthweight (g) (IQR) 785 (620 - 944) 778 (600 - 882) 0.395 

Delivery mode   1 
Caesarean 30 (50%) 31 (51.7%)  

Vaginal 30 (50%) 29 (48.3%)  
Sex   0.143 

Male 28 (46.7%) 37 (61.7%)  
Female 32 (53.3%) 23 (38.3%)  

Probiotic type   0.058 
No probiotic 14 (23.3%) 7 (11.7%)  

Infloran 14 (23.3%) 25 (41.7%)  
Labinic 32 (53.3%) 28 (46.7%)  

 
 
Temporal stability was further explored by investigating the impact of NEC (i.e., healthy 

vs NEC) on intra and inter-individual gut microbiome variation based on Bray-Curtis 

dissimilarity. There was greater temporal variation within infants who developed NEC 

compared to those who did not (P = 0.034) as well as between those infants (P < 0.001; 

Figure 4.7A, B). To further explore whether this was the case prior to diagnosis and 
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not just a consequence of disease, the same analysis was conducted on the 1:1 

longitudinal matched dataset as above. There was no significant difference in intra-

individual variability prior to NEC diagnosis (i.e., pre-NEC) compared to matched 

controls (P = 0.581; Figure 4.7C). However, there was significantly less inter-individual 

variability between infants who developed NEC, prior to diagnosis, compared to 

matched controls (P < 0.001; Figure 4.7D).  
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Figure 4.7. Gut microbiome community dissimilarity in healthy and NEC 
infants. Median Bray-Curtis dissimilarity between samples. (A) for the entire cohort 
(both pre-NEC and post-NEC samples) within patients, (B) for the entire cohort 
(both pre-NEC and post-NEC samples) between patients, (C) for the matched 1:1 
longitudinal cohort (pre-NEC samples) within patients and (D) for the matched 1:1 
longitudinal cohort (pre-NEC samples) between patients. P-values are based on 
Wilcoxon test. 
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4.3.4. Alpha and beta diversity of the preterm gut microbiome in NEC infants 
prior to and following diagnosis 

Since previous studies have found an association between gut microbial diversity and 

NEC onset, the impact of NEC (i.e., no-NEC/pre-NEC/post-NEC) on alpha diversity 

measures was next explored, whilst controlling for confounders. Both species richness 

and Shannon diversity were significantly associated with NEC (P < 0.001). Post-hoc 

analysis revealed that samples collected post-NEC had a significantly lower Shannon 

diversity than those collected pre-NEC (P < 0.001) or from infants who never 

developed NEC (P < 0.001). However, there was no significant difference in Shannon 

diversity between pre-NEC and no-NEC samples (P = 0.780). On the other hand, 

species richness was significantly lower in pre-NEC samples (P < 0.001) and post-

NEC (P < 0.001) compared to no-NEC samples, as well as lower post-NEC compared 

to pre-NEC (P = 0.009) (Figure 4.8, Table 4.5). 
 

  

 
 
Figure 4.8. NEC is significantly associated with alpha diversity measures. 
Estimated marginal means (95% CIs) representing (A) Shannon diversity for NEC, 
and (B) species richness for NEC obtained from linear mixed-effects models 
adjusted for gestational age, birthweight, birth mode, sex, season, day of full feed, 
BMF, formula, probiotics, DOL and patient ID. The statistical significance shown is 
after adjustment for multiple comparisons using the two-tailed Dunnett’s method, 
whereby ‘No-NEC’ was used as the control. 
  



 

 113 

Table 4.5. Association of clinical co-variates with Shannon diversity and 
richness. Global P-values and Wald’s Chi-squared test statistic for fixed effects are 
based on Type II ANOVA on the fitted LMMs, with patient ID as a random effect. 

 Shannon Richness 
 Chisq pval Chisq pval 
DOL 74.371 <0.001 196.616 <0.001 
Gestational age 6.266 0.012 2.508 0.113 
Birthweight 0.186 0.666 0.028 0.866 
Birth mode 2.252 0.133 2.815 0.093 
Sex 0.019 0.891 0.258 0.611 
Antibiotics 55.326 <0.001 28.025 <0.001 
Day full feeds 0.289 0.591 0.007 0.934 
MOM 28.325 <0.001 23.645 <0.001 
BMF 17.489 <0.001 10.221 0.017 
Formula 2.539 0.468 2.714 0.438 
NEC 25.509 <0.001 61.464 <0.001 
Probiotics 7.999 0.018 18.942 <0.001 

 

To determine whether NEC, or other co-variates were associated with overall bacterial 

profiles, PERMANOVA was performed using ‘adonis’. DOL explained 2.3% variation 

in bacterial profiles of healthy infants, compared to 1% variation in infants who 

developed NEC (both P < 0.001). Similarly, unique patient identifier explained 3.8% in 

healthy infants, compared to 2.1% in infants who developed NEC (both P < 0.001). 

Data was split into cross-sectional time-points based on DOL, each with one sample 

per patient, as done in Chapter 3. Similar to the results from Chapter 3, probiotics were 

the most significant co-variate, associated at every timepoint after DOL 0-9, and MOM, 

BMF and antibiotics were also significantly associated at various timepoints (Figure 
4.9A). In addition, birthweight and gestational age were both significantly associated 

at various timepoints, and day of full feeds and delivery mode were significantly 

associated at one timepoint. NEC status was significantly associated at DOL 15-19 

only, which is around the median DOL onset for NEC (DOL 19) in this cohort (Figure 

4.9A). 

 

The ‘adonis’ analysis was then stratified by control vs NEC. As previous, probiotics 

were the main driver of the gut microbiome in healthy infants being the most significant 

factor associated with overall bacterial profiles, significant at every time-point (all FDR 

= 0.001) except DOL 0-9. There were also additional clinical co-variates significantly 

associated at various time-points, not identified in Chapter 3 (Figure 4.9B). In contrast, 
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for infants who developed NEC, no clinical co-variates were significantly associated 

with gut bacterial profiles at any time-point, including probiotics (Figure 4.9C).  

 
4.3.5. Specific taxonomic signatures of the preterm gut microbiome in NEC 

infants prior to and following diagnosis 
To understand whether there were more specific microbial signatures of NEC, 

taxonomic analyses were conducted to look for associations at the phylum, genus and 

species level. At the phylum level, the relative abundance of Proteobacteria was 

 

 
 
 
Figure 4.9. Significance and explained variance of clinical co-variates at 
different timepoints based on taxonomic profiles, modelled by ‘adonis’. 
Bubbles show the amount of variance (R2) explained by each co-variate at a given 
timepoint and significant results (FDR < 0.05) are surrounded by a red box for (A) 
both healthy and NEC infants (B) healthy infants only and (C) NEC infants only. 
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significantly higher both pre-NEC (P = 0.015, Q = 0.078) and post-NEC (P = 0.002, Q 

= 0.014) compared to samples from infants who did not develop NEC, whilst the 

relative abundance of Actinobacteria was significantly lower both pre-NEC (P = 0.011, 

Q = 0.062) and post-NEC (P < 0.001, Q < 0.001). At the genus level, there was only 

one significant feature associated with pre-NEC samples compared to samples from 

infants who did not develop NEC. Bifidobacterium relative abundance was significantly 

lower pre-NEC onset (P = 0.024, Q = 0.178), whilst controlling for confounders such 

as DOL, probiotics and unique patient identifier. At the species level, B. animalis (P = 

0.049, Q = 0.23) and B. longum (P = 0.035, Q = 0.186) were significantly lower in pre-

NEC samples, whereas L. rhamnosus (P = 0.022, Q = 0.144) and K. variicola (P = 

0.056, Q = 0.246) relative abundance were higher in pre-NEC samples, based on the 

default threshold of Q < 0.25. There were also a number of features identified as 

significantly associated with post-NEC samples compared to samples from infants who 

did not develop NEC. It is important to note, however, that there are differences in the 

number of control vs NEC samples across probiotic eras (Figure 4.10), which could 

be contributing to the results observed for the Labinic-associated probiotic species, B. 

animalis and B. longum. As reported in Chapter 3, B. animalis and B. longum are 

present in Labinic and their prevalence and abundance are closely linked to the receipt 

of this probiotic in healthy infants. As there were approximately twice as many Labinic 

healthy infants than NEC infants (Figure 4.10), the analysis was repeated including 

just 33 randomly selected healthy Labinic infants to match the number of Labinic NEC 

infants. The differences in the relative abundance of B. animalis and B. longum were 

no longer observed.  
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4.3.6. Investigating the gut microbiome of preterm infants before NEC 

diagnosis in a cross-sectional and longitudinal 1:1 matched case 

control cohort 

To further probe whether any microbial signatures could be identified around the time 

of NEC onset, infants from the 1:1 matched dataset were analysed (Table 4.4). This 

analysis was first performed on cross-sectional data, using a single sample per patient 

close to the day of NEC onset (see Methods) and a matched control sample. Based 

on this, there was no significant difference in the relative abundance profiles using 

Bray-Curtis dissimilarity (P = 0.920; Figure 4.11A). Following this, it was determined 

whether there was a significant difference dependent on medically managed NEC and 

those that underwent surgery (i.e., a recognised proxy for NEC severity). There was 

also no significant difference in relative abundance profiles when stratifying by NEC 

severity (P = 0.836; Figure 4.11B). Nor was there a significant difference when looking 

at ‘early NEC vs control’ (P = 0.473; Figure 4.11C) or ‘late NEC vs control’ (P = 0.182; 

Figure 4.11D). To see whether there was a difference based on more rare taxa, the 

analysis was repeated using Jaccard distance (i.e., presence or absence of taxa 

instead of relative abundance). This had little impact and again there was no significant 

difference in overall profiles in NEC vs control (P = 0.882), NEC severity vs control (P 

 
 
 
Figure 4.10. Proportion of healthy vs NEC infants and samples across 
probiotic groups. The raw number of infants and samples in each group is shown. 
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= 0.808), early NEC (P = 0.471) or late NEC (P = 0.193). Further to this, no species, 

genus or phylum was significantly associated with NEC or control, even when further 

stratifying by severity and early/late onset.  
 
 
  

 
 
Figure 4.11. There is no significant difference in overall gut bacterial profiles 
between NEC and control infants at the time of NEC diagnosis based on the 
cross-sectional 1:1 matched case control cohort. NMDS plots based on Bray-
Curtis dissimilarity with the mean centroid plotted and coloured based on (A) healthy 
vs NEC, (B) healthy vs medical or surgical NEC, (C) early NEC and (D) late NEC. 
P-values were calculated using Envfit. 
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The matched patient analysis was then extended to include multiple samples from 

each NEC patient prior to disease onset (see Methods), and corresponding control 

samples matched to the DOL, as used in previous analyses (Table 4.4). Based on 

multiple pre-NEC samples per patient, and matched control samples, there was a 

significant difference in overall bacterial profiles (P < 0.001), whilst controlling for 

repeated measures. There was also a significant difference when stratifying by NEC 

severity (P < 0.001), early NEC onset (P = 0.011) and late NEC onset (P < 0.001). As 

with the previous cross-sectional analysis, no specific genera were significantly 

associated with NEC or control, even when further stratifying by NEC severity. 

However, consistent with the non-matched case/control analysis, the relative 

abundance of the Proteobacteria phylum was significantly higher in all NEC vs control 

samples (P = 0.012, Q = 0.096), whilst Actinobacteria was significantly lower in all NEC 

vs control samples (P = 0.021, Q = 0.125). Also similar to the non-matched control 

analysis, K. variicola was significantly higher in all NEC vs control samples (P = 0.010, 

Q = 218), as well as in the stratified analysis for NEC severity, with the relative 

abundance of K. variicola being significantly higher in medical NEC samples 

specifically compared to control (P = 0.003, Q = 0.138), but not surgical NEC samples 

(P = 0.121, Q = 0.653). Regarding stratified analysis for ‘early NEC vs control’ and ‘late 

NEC vs control’, the relative abundance of Streptococcus genus was significantly lower 

in early NEC vs control samples (P < 0.001, Q = 0.049). No other phyla or species 

were significantly associated with ‘early NEC vs control’ or ‘late NEC vs control’. 

 

Relating to the onset of NEC, microbial patterns were identified, with Proteobacteria 

and specifically K. variicola significantly increasing in the days leading up to NEC 

diagnosis whilst controlling for patient ID (both P < 0.001; Figure 4.12). Actinobacteria 

and Bifidobacterium significantly decreased in the days leading up to NEC diagnosis 

whilst controlling for patient ID (both P = 0.022; Figure 4.12), but specific 

Bifidobacterium species, B. animalis and B. longum, identified in the MaAslin2 

analysis, did not (P = 0.210 and P = 0.401, respectively).  

  



 

 119 

 

4.3.7. Microbial signatures of NEC prior to and following diagnosis in the 

context of probiotic use 
Since probiotics were significantly associated with the gut microbiome of healthy 

infants, but not infants who developed NEC (Figure 4.9B, C), the next aim was to 

further explore the association between the gut microbiome and NEC in the context of 

probiotic use.  

 

Binomial mixed model analysis was used to determine which clinical co-variates were 

significantly associated with each PGCT, stratifying by healthy vs NEC infants to 

 

 
 
Figure 4.12. Microbial signatures of NEC in the days leading up to diagnosis. 
The relative abundance of Proteobacteria, K. variicola, Actinobacteria and 
Bifidobacterium identified in the MaAslin2 analysis to be significantly higher in pre-
NEC samples compared to no-NEC samples, over the 20 days preceding NEC 
diagnosis. P-values are based on linear mixed effects models where patient ID was 
included as a random effect. 
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investigate whether there was a differential impact of probiotics in these infants. 

Healthy control infants who received Labinic were significantly more likely to transition 

into PGCT-5 than those who did not receive any probiotic (P = 0.006). However, NEC 

infants who received Labinic, were not more likely to transition into PGCT-5 than 

infants never exposed to probiotics (P = 0.230) (Figure 4.13). In fact, of all the infants 

who received Labinic, only 6.6% of samples from NEC infants were classified as 

PGCT-5, compared to 23.6% of samples from healthy infants. The same was not true 

for infants who received Infloran, whereby infants were significantly more likely to 

transition into PGCT-4 compared to infants who received no probiotic (P < 0.001), 
regardless of whether or not they developed NEC (Figure 4.13). 

Given the differential impact of Labinic on NEC infants, the analysis was next stratified 

by probiotic type. This allowed further investigation into the impact of NEC within 

probiotic groups, and whether differences were observed prior to diagnosis (i.e., pre-

 

 
 
Figure 4.13. NEC differentially impacts the transition of the preterm gut 
microbiome over time, dependent on probiotic use. Transition plot showing the 
progression of samples through each PGCT from DOL 0 to DOL 69, within each 
probiotic group based on whether an infant developed NEC or not. The nodes and 
edges are sized based on the total counts; nodes are coloured according to PGCT 
and edges by the transition frequency. 
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NEC) or as a consequence of diagnosis (i.e., post-NEC). Only one sample from the no 

probiotic infants and two samples from the Labinic infants were classed as PGCT-4, 

supporting the significantly strong association observed between Infloran and PGCT-

4. Therefore, a PGCT-4 model could not be built for no probiotic or Labinic infants. 

Similar to the un-stratified analysis, no probiotic infants were significantly more likely 

to transition into PGCT-1 following NEC diagnosis (P < 0.001) compared to infants who 

did not develop NEC (Table 4.6). Despite the strong association between PGCT-4 and 

Infloran infants (40.7% of Infloran samples), those who developed NEC were also 

significantly more likely to be in PGCT-1 prior to and following diagnosis, compared to 

those who did not (P = 0.03) (Table 4.7). This was not true for infants who received 

Labinic, where there was no significant association between transition into PGCT-1 

and NEC (P = 0.0818; Table 4.8). Furthermore, in keeping with the un-stratified 

analysis, the association observed between transition into PGCT-5 and NEC infants 

was again observed in no probiotic infants and those who received Labinic. 

Specifically, infants who received no probiotic or received Labinic were significantly 

less likely to transition into PGCT-5 following NEC diagnosis compared to infants who 

did not develop NEC (P = 0.048 and P = 0.001, respectively; Table 4.6 and 4.8). In 

infants who received Infloran, there was no significant association between transition 

into PGCT-4 and NEC (P = 0.106). Consequently, although there were more NEC 

infants that associated with PGCT-1 (Table 4.7), there was no significant impact on 

transition into PGCT-4, consistent with the stratified analysis of healthy and NEC 

infants. Finally, compared to healthy controls, infants who received Labinic were 

significantly more likely to be in PGCT-3 both prior to NEC diagnosis and following 

diagnosis (P = 0.029; Table 4.8), which was not the case for infants who received 

Infloran (P = 0.288; Table 4.7), and infants never exposed to probiotics (P = 0.098; 

Table 4.6).  
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Table 4.6. Association between PGCT and clinical co-variates in infants who 
never received probiotics. Global P-values and aORs with 95% CIs are based on 
the fitted mixed-effects logistic regression models, with patient ID as a random effect. A 
model could not be fit for PGCT-4 as only 1 sample was classified as PGCT-4. 
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Table 4.7. Association between PGCT and clinical co-variates in infants who 
received Infloran. Global P-values and aORs with 95% CIs are based on the fitted 
mixed-effects logistic regression models, with patient ID as a random effect. MOM 
could not be included in the models for PGCT-2, 3 or 5.  
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Table 4.8. Association between PGCT and clinical co-variates in infants who 
received Labinic. Global P-values and aORs with 95% CIs are based on the fitted 
mixed-effects logistic regression models, with patient ID as a random effect. A model 
could not be fit for PGCT-4 as only 2 samples were classified as PGCT-4. 
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It was next sought to look at the association between clinical data and alpha diversity 

stratified by each of the probiotic groups (i.e., no probiotic/Infloran/Labinic). In infants 

who received no probiotic, Shannon diversity was significantly lower in samples 

collected post-NEC than those collected pre-NEC (P < 0.001). However, there was no 

significant difference in Shannon diversity between pre-NEC and no-NEC samples (P 

= 0.264) or post-NEC and no-NEC samples (P = 0.119; Figure 4.14, Table 4.9). 

Species richness was significantly lower in post-NEC samples (P = 0.012) compared 

to no-NEC only (Figure 4.14, Table 4.9). In infants who received Labinic, Shannon 

diversity was significantly lower in samples collected post-NEC than those collected 

pre-NEC (P = 0.002) and post-NEC compared to no-NEC (P = 0.008; Figure 4.14, 
Table 4.10). However, there was no significant difference in Shannon diversity 

between pre-NEC and no-NEC samples (P = 0.843, Figure 4.14, Table 4.10). As seen 

with the unstratified analysis, for these infants, species richness was significantly lower 

pre-NEC compared to no-NEC (P < 0.001) and post-NEC compared to no-NEC (P < 

0.001; Figure 4.14, Table 4.10). The same was true in infants who received Infloran, 

whereby species richness was significantly lower in samples collected pre-NEC 

compared to no-NEC (P = 0.026) and post-NEC compared to no-NEC (P = 0.002; 

Figure 4.14, Table 4.11). Unlike the no probiotic and Labinic infants, there was no 

significant association between NEC (no-NEC/pre-NEC/post-NEC) and Shannon 

diversity (P = 0.939) in Infloran infants (Figure 4.14, Table 4.11). There was, however, 

a significant association with antibiotics, whereby samples taken from infants who had 

been administered antibiotics in the previous 7 days had a significantly lower Shannon 

diversity than those who did not (P = 0.003).   
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Figure 4.14. NEC is significantly associated with alpha diversity measures, but 
there are differences dependent on probiotic intake. Estimated marginal means 
(95% CIs) representing Shannon diversity and species richness for NEC, stratified 
by probiotic type, obtained from linear mixed-effects models adjusted for gestational 
age, birthweight, birth mode, sex, season, day of full feed, BMF, formula, probiotics, 
DOL and patient ID. The statistical significance shown is after adjustment for 
multiple comparisons using the two-tailed Dunnett’s method, whereby ‘No-NEC’ was 
used as the control. 
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Table 4.9. Association of clinical co-variates with Shannon diversity and 
richness in infants who received no probiotic. Global P-values and Wald’s Chi-
squared test statistic for fixed effects are based on Type II ANOVA on the fitted LMMs, 
with patient ID as a random effect. 

 Shannon Richness 
 Chisq pval Chisq pval 

DOL 41.997 <0.001 61.123 <0.001 
Gestational age 0.013 0.910 0.326 0.568 

Birthweight 3.095 0.079 0.025 0.875 
Birth mode 0.060 0.807 0.179 0.672 

Sex 1.501 0.221 0.335 0.562 
Antibiotics 3.942 0.047 6.485 0.011 

Day full feeds 0.541 0.462 0.350 0.554 
MOM 16.906 <0.001 32.087 <0.001 
BMF 6.944 0.074 4.726 0.193 

Formula 2.082 0.556 9.854 0.020 
NEC 21.809 <0.001 10.850 <0.001 

 

Table 4.10. Association of clinical co-variates with Shannon diversity and 
richness in infants who received Labinic. Global P-values and Wald’s Chi-squared 
test statistic for fixed effects are based on Type II ANOVA on the fitted LMMs, with 
patient ID as a random effect. 

 Shannon Richness 
 Chisq pval Chisq pval 

DOL 48.895 <0.001 128.107 <0.001 
Gestational age 7.282 0.007 0.896 0.344 

Birthweight 0.0007 0.979 1.591 0.207 
Birth mode 2.291 0.130 1.235 0.266 

Sex 0.214 0.644 0.019 0.891 
Antibiotics 39.452 <0.001 14.523 <0.001 

Day full feeds 0.064 0.800 1.184 0.277 
MOM 25.485 <0.001 6.290 0.098 
BMF 8.477 0.037 3.204 0.361 

Formula 4.929 0.178 4.294 0.231 
NEC 14.084 <0.001 37.058 <0.001 
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Table 4.11. Association of clinical co-variates with Shannon diversity and 
richness in infants who received Infloran. Global P-values and Wald’s Chi-squared 
test statistic for fixed effects are based on Type II ANVOVA on the fitted LMMs, with 
patient ID as a random effect. 
 

 Shannon Richness 
 Chisq pval Chisq pval 

DOL 3.430 0.064 31.571 <0.001 
Gestational age 1.359 0.244 1.623 0.203 

Birthweight 1.672 0.196 1.096 0.295 
Birth mode 1.260 0.262 2.013 0.156 

Sex 1.092 0.296 0.037 0.848 
Antibiotics 9.087 0.003 3.217 0.073 

Day full feeds 0.053 0.819 1.400 0.237 
MOM 2.021 0.568 6.082 0.108 
BMF 4.358 0.225 3.403 0.334 

Formula 1.209 0.751 2.366 0.500 
NEC 0.126 0.939 12.640 0.002 

 

Following on, stratifying the MaAslin2 analysis into probiotic groups revealed no 

significant associations with any clinical variable in each of the groups, likely due to 

over-fitting of the models (i.e., too many clinical variables included as fixed effects for 

sample size). This analysis was repeated within each probiotic group but only including 

DOL and NEC (no-NEC/pre-NEC/post-NEC) as fixed effects and patient ID as a 

random effect, as DOL and patient ID explained the most variation in gut profiles aside 

from probiotics. In the no probiotic era, there was no significant association between 

any phyla and pre-NEC samples, although relative abundance of Actinobacteria was 

significantly lower post-NEC (P < 0.001, Table 4.12). During both probiotic eras, the 

relative abundance of Actinobacteria was significantly lower pre-NEC compared to no-

NEC (lnfloran: P = 0.118, Q = 0.203, Labinic: P < 0.001, Q < 0.001; Table 4.12), whilst 

the relative abundance of Proteobacteria was significantly higher pre-NEC compared 

to no-NEC during the Labinic era only (P = 0.024, Q = 0.036; Table 4.12), as seen in 

previous analyses. The relative abundance of Bacteroidetes was significantly higher 

pre-NEC during the Infloran era (P = 0.05, Q = 0.150; Table 4.12). 
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Table 4.12. MaAsLin2 results for significant taxa associated with NEC at the 
phylum level. Mixed-effects linear models using a variance-stabilizing arcsin square 
root transformation on relative abundance phyla data were used to determine the 
significance. DOL was included as a fixed effect and unique patient ID as a random 
effect in each of the probiotic models. 
 
 

Feature Variable 
Level 

Coeff Standard 
Error 

Pval Qval 

No probiotic Actinobacteria Post-NEC -0.361 0.076 <0.001 <0.001  
Firmicutes Post-NEC 0.242 0.121 0.052 0.155 

Infloran Bacteroidetes Pre-NEC 0.012 0.006 0.05 0.15 
 Actinobacteria Pre-NEC -0.111 0.07 0.118 0.203 
 Actinobacteria Post-NEC -0.24 0.067 0.001 0.003 
 Firmicutes Post-NEC 0.13 0.073 0.08 0.178 

Labinic Actinobacteria Pre-NEC -0.219 0.057 <0.001 <0.001 
 Proteobacteria Pre-NEC 0.178 0.078 0.024 0.036 
 Actinobacteria Post-NEC -0.435 0.059 <0.001 <0.001 
 Proteobacteria Post-NEC 0.227 0.081 0.006 0.01 
 Firmicutes Post-NEC 0.139 0.069 0.045 0.05 

 
 

There was no genus consistently significantly associated prior to NEC diagnosis 

across the probiotic groups (i.e., with pre-NEC samples). However, the relative 

abundance of Clostridium spp. was consistently significantly lower post-NEC (no 

probiotic: P = 0.05, Q = 0.129; Infloran: P < 0.001, Q < 0.001; Labinic P = 0.002, Q = 

0.009; Table 4.13). In infants never exposed to probiotics, the relative abundance of 

Enterococcus was significantly higher pre-NEC (P = 0.105, Q = 0.248), whilst 

Streptococcus was significantly lower (P = 0.009, Q = 0.032; Table 4.13). For infants 

who received Infloran, relative abundance of Clostridium was similarly significantly 

lower pre-NEC as seen post-NEC (P = 0.07, Q = 0.249) and Staphylococcus was 

significantly higher (P = 0.003, Q = 0.014; Table 4.13). In infants who received Labinic, 

relative abundance of Bifidobacterium was significantly lower pre-NEC (P < 0.001, Q 

= 0.003), whilst Klebsiella (P = 0.08, Q = 0.171) and Citrobacter (P = 0.108, Q = 0.212) 

were significantly higher (Table 4.13). To ensure that the differential genera associated 

with NEC between probiotic groups were not an artifact of the timing surrounding NEC 

onset (i.e., earlier onset in Infloran infants where Staphylococcus is higher pre-NEC, 

later onset in Labinic infants where Klebsiella is higher pre-NEC), the day of NEC onset 

was compared between probiotic groups. There was no significant difference in day of 

onset between groups (P = 0.873). 
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Table 4.13. MaAsLin2 results for significant taxa associated with NEC at the 
genus level. Mixed-effects linear models using a variance-stabilizing arcsin square 
root transformation on relative abundance genera data were used to determine the 
significance. DOL was included as a fixed effect and unique patient ID as a random 
effect in each of the probiotic models. 
 
  Feature Variable 

Level 
Coeff Standard 

Error 
Pval Qval 

No probiotic Streptococcus Pre-NEC -0.076 0.028 0.009 0.032 
 Enterococcus Pre-NEC 0.164 0.1 0.105 0.248 
 Bifidobacterium Post-NEC -0.319 0.09 0.001 0.004 
 Finegoldia Post-NEC -0.032 0.01 0.003 0.013 
 Streptococcus Post-NEC 0.071 0.025 0.006 0.024 
 Cutibacterium Post-NEC -0.071 0.03 0.019 0.062 
 Staphylococcus Post-NEC 0.224 0.093 0.02 0.062 
 Veillonella Post-NEC -0.047 0.02 0.023 0.066 
 Enterobacter Post-NEC 0.163 0.079 0.046 0.124 
 Clostridium Post-NEC -0.029 0.014 0.05 0.129 
 Actinomyces Post-NEC -0.031 0.017 0.079 0.193 

Infloran Staphylococcus Pre-NEC 0.146 0.048 0.003 0.014 
 Clostridium Pre-NEC -0.011 0.006 0.073 0.249 
 Bifidobacterium Post-NEC -0.241 0.068 0.001 0.004 
 Clostridium Post-NEC -0.015 0.006 0.012 0.043 

Labinic Bifidobacterium Pre-NEC -0.202 0.058 0.001 0.003 
 Klebsiella Pre-NEC 0.117 0.067 0.08 0.171 
 Citrobacter Pre-NEC 0.029 0.018 0.108 0.212 

 Bifidobacterium Post-NEC -0.424 0.061 <0.001 <0.001 
 Finegoldia Post-NEC -0.017 0.004 <0.001 0.001 
 Klebsiella Post-NEC 0.217 0.069 0.002 0.007 
 Clostridium Post-NEC -0.019 0.006 0.003 0.009 
 Veillonella Post-NEC -0.04 0.013 0.003 0.009 
 Cutibacterium Post-NEC -0.032 0.012 0.007 0.02 
 Anaerococcus Post-NEC -0.015 0.006 0.009 0.027 
 Corynebacterium Post-NEC -0.015 0.006 0.015 0.041  

Enterococcus Post-NEC 0.131 0.057 0.023 0.058 
 
 

Finally, when focusing on specific species, the relative abundance of B. longum was 

consistently lower pre-NEC onset compared to no-NEC in both probiotic eras (Infloran: 

P = 0.041, Q = 0.155; Labinic: P < 0.001, Q = 0.002), but was significantly higher pre-

NEC when no probiotic was received (P < 0.001, Q = 0.002; Table 4.14). Although, 

this could be explained by the low number of NEC infants who never received any 

probiotic and had at least 1 sample prior to diagnosis (n = 8 infants, compared to n = 

24 and n = 28 infants for Infloran and Labinic, respectively). In infants who received no 
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probiotic, relative abundance of Streptococcus salivarius was significantly lower pre-

NEC (P = 0.023, Q = 0.078; Table 4.14). Aside from B. longum, in infants who received 

Infloran, S. epidermidis was significantly higher pre-NEC (P < 0.001, Q = 0.003), as 

was L. rhamnosus (P = 0.039, Q = 0.153; Table 4.14). Finally, in infants who received 

Labinic, B. bifidum was significantly lower pre-NEC (P = 0.105, Q = 0.199), as was C. 

acnes (P = 0.109, Q = 0.202; Table 4.14). Conversely, relative abundance of various 

members of the K. pneumoniae complex were significantly higher pre-NEC, including 

K. variicola (P = 0.022 Q = 0.054), K. pneumoniae (P = 0.025, Q = 0.061) and K. 

quasipneumoniae (P = 0.076, Q = 0.158; Table 4.14), in keeping with the binomial 

mixed model analysis where infants who received Labinic and developed NEC were 

significantly more likely to transition into PGCT-3 (dominated by K. pneumoniae 

species complex). Additionally, relative abundance of S. salivarius (P = 0.017, Q = 

0.045) and E. faecalis (P = 0.091, Q = 0.176) was also significantly higher pre-NEC 

(Table 4.14). It is important to note that some of the differences observed could be 

attributable to other confounding variables that were unable to be controlled for, 

outside of DOL and patient ID, such as antibiotic use or dietary variables. To validate 

the observation that the relative abundance of S. epidermidis was higher in pre-NEC 

Infloran infants (i.e., a pathobiont known to cause LOS), the number of S. epidermidis-

associated LOS cases was compared between probiotic groups. Although more of the 

Infloran NEC infants developed LOS (n = 13/54), compared to no probiotic (n = 5/41) 

or Labinic infants (n = 6/104), of those cases, the number of S. epidermidis-associated 

LOS cases were comparable between groups (P = 0.654). Furthermore, S. epidermidis 

was detected ubiquitously across numerous non-LOS infants (Figure 4.4A).  
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Table 4.14. MaAsLin2 results for significant taxa associated with NEC at the 
species level. Mixed-effects linear models using a variance-stabilizing arcsin square 
root transformation on relative abundance species data were used to determine the 
significance. DOL was included as a fixed effect and unique patient ID as a random 
effect in each of the probiotic models. 
  

Feature Variable 
Level 

Coeff Standard 
Error 

pval qval 

No probiotic Streptococcus salivarius Pre-NEC -0.056 0.024 0.023 0.078 
 Streptococcus salivarius Post-NEC 0.072 0.022 0.001 0.007 
 Finegoldia magna Post-NEC -0.032 0.011 0.004 0.018 
 Bifidobacterium breve Post-NEC -0.234 0.084 0.008 0.032 
 Staphylococcus haemolyticus Post-NEC 0.102 0.043 0.019 0.067 
 Veillonella parvula Post-NEC -0.048 0.021 0.028 0.089 
 Enterobacter cloacae complex Post-NEC 0.163 0.083 0.054 0.167 
 Bifidobacterium dentium Post-NEC -0.058 0.031 0.067 0.194 
 Cutibacterium avidum Post-NEC -0.05 0.027 0.066 0.194 
 Klebsiella michiganensis Post-NEC -0.071 0.039 0.077 0.214 

Infloran Staphylococcus epidermidis Pre-NEC 0.134 0.035 <0.001 0.003 
 Lactobacillus rhamnosus Pre-NEC 0.073 0.034 0.039 0.153 
 Bifidobacterium longum Pre-NEC -0.063 0.031 0.041 0.155 
 Bifidobacterium longum Post-NEC -0.104 0.029 0.001 0.005 
 Bifidobacterium breve Post-NEC -0.17 0.074 0.026 0.106 

Labinic Bifidobacterium longum Post-NEC -0.292 0.051 <0.001 <0.001 
 Bifidobacterium longum Pre-NEC -0.177 0.049 <0.001 0.002 
 Streptococcus salivarius Pre-NEC 0.032 0.013 0.017 0.045 
 Klebsiella variicola Pre-NEC 0.053 0.023 0.022 0.055 
 Klebsiella pneumoniae Pre-NEC 0.105 0.046 0.025 0.061 
 Klebsiella quasipneumoniae Pre-NEC 0.039 0.022 0.076 0.158 
 Enterococcus faecalis Pre-NEC 0.09 0.053 0.091 0.176 
 Bifidobacterium bifidum Pre-NEC -0.05 0.031 0.105 0.199 
 Cutibacterium acnes Pre-NEC -0.007 0.004 0.109 0.202 
 Finegoldia magna Post-NEC -0.018 0.005 <0.001 0.001 
 Bifidobacterium bifidum Post-NEC -0.112 0.032 <0.001 0.002 
 Clostridium perfringens Post-NEC -0.018 0.006 0.004 0.014 
 Enterococcus faecalis Post-NEC 0.157 0.055 0.005 0.017 
 Corynebacterium kroppenstedtii Post-NEC -0.014 0.005 0.005 0.017 
 Klebsiella pneumoniae Post-NEC 0.134 0.047 0.005 0.018 
 Klebsiella variicola Post-NEC 0.065 0.023 0.006 0.019 
 Bifidobacterium breve Post-NEC -0.104 0.038 0.007 0.021 
 Veillonella parvula Post-NEC -0.026 0.01 0.009 0.025 
 Cutibacterium avidum Post-NEC -0.027 0.01 0.011 0.03 
 Bifidobacterium animalis Post-NEC -0.041 0.021 0.051 0.119 
 Klebsiella quasipneumoniae Post-NEC 0.044 0.022 0.055 0.123 
 Veillonella atypica Post-NEC -0.014 0.008 0.091 0.176 
 Lactobacillus rhamnosus Post-NEC -0.017 0.011 0.126 0.228 
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4.3.8. The association between NEC and the persistence of probiotic species  
Following on from the persistence analysis in Chapter 3, where probiotic type was the 

only co-variate associated with the persistence of B. bifidum and L. acidophilus, the 

same analyses were conducted, including NEC infants. Again, probiotic type was 

significantly associated with the persistence of both species, with significantly greater 

persistence of Infloran-derived B. bifidum than Labinic-derived (P < 0.001), and greater 

persistence of Labinic-derived L. acidophilus than Infloran-derived (P < 0.001). In 

addition, the development of NEC, was significantly negatively associated with the 

persistence of B. bifidum (P = 0.014). To further unpick whether this association was 

reflective of antibiotic use, the analysis was repeated controlling for the total number 

of antibiotic courses used, after which NEC remained significant (P = 0.048). 

Furthermore, the total number of antibiotic courses used was not itself significantly 

associated with B. bifidum persistence, independent of NEC (P = 0.105). Whilst 

significantly associated with B. bifidum persistence, NEC was not significantly 

associated with the persistence of L. acidophilus (P = 0.539), although use of formula 

was (P = 0.021), with L. acidophilus persisting more in formula-fed infants. 

 

The analyses were then repeated to look specifically at the persistence of Infloran-

derived probiotic species and associated species (B. bifidum, L. acidophilus and B. 

breve) and the persistence of Labinic-derived probiotic species and associated species 

(B. bifidum, B. longum, L. acidophilus and B. animalis). When stratifying to Infloran 

infants only, no clinical variable was significantly associated with the persistence of B. 

bifidum or L. acidophilus, including NEC (P = 0.555 and P = 0.181, respectively). NEC 

was also not significantly associated with the persistence of B. breve, however, BMF 

was (P = 0.049), with B. breve persisting more/less in infants who received BMF. When 

stratifying to Labinic infants only, no clinical variables were significantly associated with 

persistence of B. bifidum or B. animalis, including NEC (P = 0.083 and P = 0.142). The 

persistence of L. acidophilus in Labinic infants was significantly associated with 

formula use (P = 0.044), with L. acidophilus persisting more in formula-fed infants, as 

seen in the analysis across both probiotic cohorts. The persistence of B. longum 

following Labinic cessation could not be analysed as there were only two infants for 

which B. longum did not persist.  

 



 

 134 

4.3.9. Comparative functional analysis of the gut microbiome in preterm 
infants with NEC 

To determine whether NEC, or other co-variates were associated with overall 

functional profiles (based on EC number), PERMANOVA was performed using 

‘adonis’. Similar to taxonomic profiles, DOL explained 2.4% variation in functional 

profiles of healthy infants, compared to 1.3% variation in infants who developed NEC 

(both P < 0.001). Similarly, unique patient identifier explained 5.3% in healthy infants, 

compared to 1% in infants who developed NEC (both P < 0.001). As previous, data 

was split into cross-sectional time-points based on DOL, each with one sample per 

patient. Similar to taxonomic analysis and to the results from Chapter 3, probiotics were 

the most significant co-variate, associated at every timepoint apart from DOL 0-9, DOL 

20-24 and DOL 50-69. MOM and NEC were also significantly associated DOL 40-49 

(Figure 4.15A). The ‘adonis’ analysis was then stratified by control vs NEC as done 

with the taxonomic analysis. Probiotics were the main driver of functional profiles in 

healthy infants, being the most significant factor associated with overall profiles, 

significant at all the same timepoints as seen with the above analysis on all infants 

(Figure 4.15B). In addition, gestational age and day of full feeds were significantly 

associated at DOL 10-14. Similar to the taxonomic analysis, for infants who developed 

NEC, probiotics were not significantly associated at any timepoint, and only MOM was 

significantly associated at a single timepoint, DOL 40-49 (Figure 4.15C).  
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Figure 4.15. Significance and explained variance of clinical co-variates at 
different timepoints based on functional profiles (EC numbers), modelled by 
‘adonis’. Bubbles show the amount of variance (R2) explained by each co-variate at a 
given timepoint and significant results (FDR < 0.05) are surrounded by a red box for (A) 
both healthy and NEC infants (B) healthy infants only and (C) NEC infants only. 
 

To further explore the functional potential of the gut microbiome in control and NEC 

infants, MaAsLin2 analysis was used. A total of 56 EC numbers were significantly 

associated with pre-NEC samples compared to no-NEC samples, whilst controlling 

for various measures (i.e., all confounders included in the adonis analysis) and 

subject ID (https://github.com/laurencbeck/supplementary_tables - Appendix 2). Of 

these, all were positively associated. Specifically, the relative abundance of genes 

encoding EC 2.1.1.17 (phosphatidylethanolamine N-methyltransferase), EC 3.5.1.38 
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methyltransferase) were the most significant. Of the 56 significant features, 12 were 

phosphotransferases, seven were methyltransferases and five were oxidoreductases 

acting on the CH-OH group of donors with NAD(+) or NADP(+) as the acceptor. 

Additionally, 202 EC number were significantly associated with post-NEC samples 

compared to no-NEC samples (https://github.com/laurencbeck/supplementary_tables 

- Appendix 2). Of these, 91 were negatively associated whilst 111 were positively 

associated. Specifically, the relative abundance of genes encoding EC 3.2.1.96 

(mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase; negative association), 

EC 2.3.1.191 (UDP-3-O-(3-hydroxyacyl)glucosamine N-acyltransferase; positive 

association) and EC 6.3.4.6 (urea carboxylase; negative association) were the most 

significant. 28 of the 56 EC numbers that were significantly positively associated with 

pre-NEC samples were also significantly positively associated with post-NEC 

samples.  

 

 

 

 

https://github.com/laurencbeck/supplementary_tables
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4.4. Discussion 
The present study represents the largest metagenomic longitudinal study in preterm 

infants who developed NEC. Aiming to gain insights into the gut microbial landscape 

of infants with NEC in the context of probiotic use, the findings shed light on this 

previously unexplored aspect of NEC research. Post-diagnosis, NEC was found to 

have a significant impact on the gut microbial community, which interestingly was not 

necessarily driven by antibiotic usage. For example, MAZ scores were significantly 

lower post diagnosis compared to healthy control infants, irrespective of antibiotic use. 

Notably, more subtle changes were observed preceding clinical diagnosis, including 

the enrichment of Proteobacteria such as K. variicola and a reduction in the relative 

abundance of Actinobacteria, namely Bifidobacteria. The observed microbial 

associations with NEC were dependent on whether probiotics were administered, or 

the type of probiotic that was administered suggesting probiotics to perhaps impact the 

microbial origins of NEC. Further to this, there were clear differences observed in the 

engraftment and colonisation patterns of probiotic strains in infants who developed 

NEC, dependent on probiotic type.  

 

Previous gut microbiome studies in preterm infants with NEC typically point towards a 

gut community that is lacking in diversity. For example, studies have shown Shannon 

diversity, which takes into account the evenness of a community, to increase 

temporally in control infants but decrease in those that developed NEC (Stewart et al., 

2016). Furthermore, a number of studies have found various diversity measures to be 

significantly lower prior to NEC diagnosis (McMurtry et al., 2015; Warner et al., 2016; 

Zhou et al., 2015). However, this has not been a completely universal finding, with 

other studies noting no significant difference (Torrazza et al., 2013). In this cohort, 

Shannon diversity was significantly lower post-diagnosis, but there was no discernible 

change preceding diagnosis. Instead, Shannon diversity in pre-NEC samples was 

comparable to no-NEC samples, suggesting the difference in Shannon diversity to be 

a consequence of disease or related clinical treatments/procedures, as opposed to a 

cause of disease. This was the case for infants who never received probiotics, and 

those that received Labinic. On the other hand, species richness was significantly 

lower prior to diagnosis in infants who received either probiotic but not in infants who 

received no probiotic. It could be that the probiotic species outcompete or inhibit the 

growth of other species, thereby reducing species richness, but not thereafter 
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dominating the community, hence the lack of change in Shannon diversity. In 

summary, the observed relationship between probiotic use, species richness and NEC 

diagnosis is intriguing but needs further investigation to provide more insight, such as 

a RCT combined with in-depth metagenomic analysis. Whilst it is important to 

characterise the signatures of NEC, it is also important to consider the clinical 

implications and translation of these findings. Using richness and diversity measures 

as indicators of clinical susceptibility to NEC would unlikely prove effective. 

 

Aside from alpha diversity measures the temporal development of the gut microbiome 

was also explored. At the start of life, NEC infants were found to have a more ‘stable’ 

gut community, typically transitioning less between PGCTs. Further, in the 1:1 matched 

case control cohort, infants who developed NEC had a gut microbial community 

significantly more similar to other infants who developed NEC pre-diagnosis, than 

matched healthy control infants had to other healthy control infants. These findings 

corroborate one another, supporting the idea that healthy control infants have a more 

dynamic gut microbiome at the start of life, and transition more quickly between 

PGCTs. This contrasts previous findings, suggesting the preterm gut microbiome of 

NEC infants to be highly dynamic and individual, including prior to diagnosis (Stewart 

et al., 2016). Additionally, the findings also challenge the ‘Anna Karenina principle’ for 

animal microbiomes. According to this principle, the microbial community composition 

of ‘dysbiotic’ individuals will vary more than the community composition in healthy 

individuals (Zaneveld et al., 2017). In contrast, the findings presented here suggest 

that infants who later go on to develop NEC exhibit a more uniform gut microbiome. 

These unexpected results may indicate a distinct trajectory in gut microbiome 

development of NEC infants which is instead characterised by an initial phase 

pathobiont dominance. Thereafter, the community is unable to develop and mature in 

the same way that is observed in healthy preterm infants. 

 

The microbial signatures of NEC were consistent with those described in previous 

studies. Increased Proteobacteria such as K. variicola was consistently observed in 

both the unmatched and matched datasets and during the Labinic era. Previous 

studies have yet to implicate K. variicola specifically in NEC, however, this is likely due 

to the extensive use of 16S rRNA gene sequencing and therefore no species-level 

identification in previous studies, and also the frequent misidentification of K. variicola 
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as K. pneumoniae in clinical settings (Rodríguez-Medina et al., 2019; Seki et al., 2013). 

Nonetheless, Klebsiella spp. have been associated with NEC onset in numerous 

studies (Coleman et al., 2023; Olm et al., 2019; Paveglio et al., 2020; CStewart et al., 

2016), and K. pneumoniae in particular has been found to induce NEC-like injury in 

mice (Zhang et al., 2012). Klebsiella are found ubiquitously in the preterm gut, 

emerging as one of the most abundant and prevalent genera observed in these infants, 

irrespective of NEC diagnosis (Beck et al., 2022; Underwood et al., 2014). Competition 

in the preterm gut between members of the K. pneumoniae species complex and 

members of the K. oxytoca species complex has recently been described, with the 

preterm gut being found to be dominated by one group or the other (Coleman et al., 

2023). This suggests overlapping niches and competition for luminal resources 

(Coleman et al., 2023), with the host environment likely playing a role in which species 

complex dominates and which is excluded. This was similarly observed in the current 

study, with PGCT-2 being dominated by members of the K. oxytoca species complex 

whilst PGCT-3 was dominated by member of the K. pneumoniae species complex, with 

little co-occurrence observed between the two. Despite infants who received Labinic 

being significantly more likely to be in PGCT-3 prior to NEC diagnosis, previous work 

has found members of either complex to be associated with the disease (Coleman et 

al., 2023; Paveglio et al., 2020). 

 

Interestingly, infants who received Infloran or never received probiotics were not 

significantly more likely to transition into PGCT-3 prior to diagnosis, unlike Labinic 

infants. Instead, infants who took Infloran were significantly more likely to transition 

into PGCT-1 (Staphylococcus and E. faecalis dominant) prior to diagnosis. 

Furthermore, the relative abundance of S. epidermidis specifically was found to be 

higher in pre-NEC samples compared to no-NEC samples from Infloran infants. Unlike 

Klebsiella spp., Staphylococcus are considered early colonisers and pioneer species 

of the preterm gut (Rao et al., 2021), and both genera display temporal dynamics in 

healthy and NEC infants (Figure 4.2). Further to this, K. pneumoniae has in fact been 

shown to exploit S. epidermidis in order to effectively colonise the preterm gut (Rao et 

al., 2021). Therefore, it was considered whether the differences in microbial patterns 

of NEC between probiotic groups was in fact reflective of the day of onset of NEC i.e., 

whether Infloran infants had earlier onset NEC than Labinic infants. However, this was 



 

 140 

not the case, and there was no significant difference in day of NEC onset between 

probiotic groups. 

 

More historical studies on NEC, have also associated Staphylococci, and coagulase 

negative staphylococcal infections with the disease (Mollitt et al., 1988). Additionally, 

S. epidermidis, has been found to be the most common cause of LOS (Dong et al., 

2018), which in itself is associated with NEC (Wang et al., 2020). Interestingly, more 

of the Infloran NEC infants developed LOS (n = 13/54), compared to no probiotic (n = 

5/41) or Labinic infants (n = 6/104). That said, the number of S. epidermidis-associated 

LOS cases were comparable between groups, and S. epidermidis was similarly 

detected in numerous non-LOS infants and therefore the association with S. 

epidermidis was not confounded by S. epidermidis LOS cases. Together, the data 

suggest that there may be differences in the microbial origin of NEC between these 

probiotic eras. This is an intriguing possibility that could be a direct consequence of the 

specific probiotic products themselves, which differ in only one species (B. longum 

subsp. infantis present in Labinic but not Infloran), although they do have different 

strains. For example, if strains of a certain product were able to outcompete specific 

pathobionts (i.e., by physical displacement, or by altering the metabolic state of the gut 

environment (Mercer & Arrieta, 2023)). This would potentially give rise to others and 

allow them to establish a niche instead. This hypothesis further supports the results 

pertaining to species richness, previously described. Alternatively, this could be more 

reflective of the time course over which samples have been collected, as probiotics 

were administered during discrete time periods on the NICU. It stands with reason that 

various pathobionts would persist in the NICU environment (Hartz et al., 2015), and 

that this community of environmental microbes would change over time, altering the 

reservoir of hospital-acquired microbes. For example, a previous study in a newly built 

neonatal unit found an increase in the relative abundance of environmental Klebsiella, 

Staphylococcus, Pseudomonas and Streptococcus spp. over time following the 

introduction of patients (Zachariah et al., 2021). In concordance, whilst the majority of 

NEC cases are sporadic, NICU-specific outbreaks and clusters of NEC cases over 

time have been previously described (Meinzen-Derr et al., 2009; Wendelboe et al., 

2010). 
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Also consistent with previous NEC research, the relative abundance of Bifidobacteria 

and therefore Actinobacteria were consistently lower preceding NEC diagnosis in both 

the unmatched and matched datasets, as well as during the Labinic era. The 

mechanisms of protection by Bifidobacterium are thought to vary by species, and 

include reducing the expression of inflammatory cytokines, improving barrier function 

and altering SCFA production (Al-Sadi et al., 2021; Khailova et al., 2009; Underwood 

et al., 2014). It is difficult to pinpoint the exact reason for the discrepancies seen in 

preterm gut Bifidobacterial populations, as some infants have ‘lower’ Bifidobacterium 

despite receiving breast milk (i.e., a source of HMOs to feed Bifidobacterium spp.) and 

probiotics (i.e., direct source of Bifidobacterium). However, it could be speculated that 

this may reflect differences in the internal host environment in some way, that is either 

favourable or unfavourable to Bifidobacterium. Aside from Actinobacteria and 

Bifidobacterium, in Infloran infants, the relative abundance of Clostridium spp. were 

also significantly lower prior to and following diagnosis, and lower following diagnosis 

in no probiotic and Labinic infants. The negative association between Clostridium spp. 

and NEC in Infloran infants is intriguing. For example, studies have similarly found the 

Clostridia class to be negatively associated with NEC, with the relative abundance of 

Clostridia to be lower preceding NEC diagnosis (McMurtry et al., 2015; Warner et al., 

2016). However, it is likely that there are more subtleties to this relationship. By way of 

explanation, a recent study by Kiu et al. found that some C. perfringens strains were 

positively associated with NEC, whilst others were considered hypovirulent or 

‘commensal-like’ (Kiu et al., 2023).    

 

Functional analysis revealed a number of genes encoding various EC numbers to be 

significantly positively associated with pre-NEC samples. These findings indicate 

differences in the functional potential of the gut microbiome between control and NEC 

infants, suggesting a potential imbalance in lipid metabolism, amino acid metabolism 

and RNA modification, based on the most significant EC numbers. However, it is 

important to note that these findings surround the functional potential of the gut 

microbiome, and does not necessarily reflect whether these genes are actively 

expressed. Further work is also necessary to explore the functional capacity of the gut 

microbiome and its association with NEC. Whilst the use of metagenomic sequencing 

has provided more granular analysis of gut microbial species and their function within 

the community, future work may wish to do strain-level analysis, which is one of the 
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key advantages of metagenomic sequencing. This would help to separate strains that 

may be harmful and contribute to disease from those that do not. For example, the 

study by Kiu et al. on C. perfringens-associated NEC, found that strains encoding the 

toxin, perfringolysin O, were more likely to cause disease and were responsible for 

significantly more cellular damage in both in vitro and in vivo experiments (Kiu et al., 

2023). Furthermore, strain-level analysis could prove a useful tool for further exploring 

NEC outbreaks within the NICU over the 12-year time-period. It may also be useful to 

further explore the functional aspect of the microbiome. Whilst metagenomics offers 

some insight into this, it is of course limited to functional capacity and fails to capture 

which genes are expressed and what the metabolic landscape looks like. Doing 

metabolomics on pre-NEC and matched control samples would offer further insight into 

this. Moreover, exposing organoids to stool-derived metabolites or identified bacterial 

signatures of NEC (i.e., K. variicola) or of health (i.e., Bifidobacterium spp.) would allow 

better understanding of the host response, and help validate the associations found. 

 

Aside from the differential taxa observed, one of the most notable observations were 

the differences in probiotic species colonisation patterns between NEC and control 

infants, dependent on probiotic type. Infants who received Infloran were significantly 

associated with transition into PGCT-4, enriched, in particular, by B. breve. This strong 

association was also observed in infants who developed NEC, although to a lesser 

extent. Furthermore, development of NEC was not associated with the persistence of 

B. breve, or of other Infloran species B. bifidum and L. acidophilus, following the 

cessation of probiotic treatment. Conversely, healthy infants who took Labinic were 

significantly associated with transition into PGCT-5, whilst those who developed NEC 

were not. Furthermore, persistence of B. bifidum which is present in both products, is 

significantly impacted by the development of NEC, with a lack of persistence occurring 

following the cessation of probiotics. It was hypothesised that this impact was driven 

by lack of persistence in Labinic NEC infants specifically, rather than Infloran NEC 

infants. Although not reaching significance in the stratified analysis on Labinic infants 

(P = 0.083), the proportion of non-persisters in Labinic infants was greater than for 

Infloran. Whilst the differential colonisation dynamics of probiotic species has been 

previously explored (Beck et al., 2022), and investigated in Chapter 3, the impact of 

NEC development on these colonisation patterns and persistence of probiotic species 

has not yet been described. 
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Many of the differences observed were following NEC diagnosis rather than preceding, 

some of which, but not all, are likely due to antibiotic treatment and other aspects of 

NEC clinical management including nil by mouth. NEC onset can occur early in life 

making it often difficult to capture the timeframe leading up to disease. Alternatively, 

disease onset can occur much later during NICU stay, which despite being easier to 

analyse the timeframe preceding diagnosis, is likely a different subtype of NEC to those 

diagnosed earlier, characterised under the same umbrella term. In fact, it is now fairly 

widely accepted that NEC likely encompasses several disease sub-types (Berrington 

& Embleton, 2022; Neu et al., 2018), and with a great sample size across multiple sites, 

stratifying into these different sub-types could be a future possibility to unravel the 

complexities of disease. Furthermore, whilst some NEC cases are of clear microbial 

origin, and associated with over-representation of specific pathobionts such as K. 

pneumoniae, others are less-so and may not be of direct microbial origin. For example, 

blood transfusions have long been associated with the development of NEC 

(Mohamed & Shah, 2012; Neu et al., 2018). Whilst it is not yet clear whether this 

association is due to the transfusion itself, or the underlying cause of transfusion i.e., 

anaemia (Patel et al., 2016), it has been speculated that if it is the latter, the reduced 

delivery of oxygen to the gut may drive TLR4 expression and signalling resulting in the 

proinflammatory cascade that leads to NEC (Hackam, 2022).  

 

4.5. Limitations 
In addition to the limitations discussed in Chapter 3, surrounding data collection, the 

main limitation of the results described here are that this was largely an observational 

study. Observational studies can of course provide insight into the microbial 

associations with NEC but cannot prove causality. For example, the identified features 

such as K. variicola and Bifidobacterium cannot be proven to cause or protect against 

NEC from the results outlined. To address this, the identified associations would need 

to be tested either in vitro or in vivo i.e., by exposing a tissue culture line, organoids or 

a mouse model to strains. Furthermore, there were multiple confounding variables in 

the unmatched cohort (Table 4.1), which although controlled for in all analyses by 

including as fixed effects in models, could still have impacted the results. Hence, the 

use of the 1:1 matched case control cohort. This cohort was better matched, and 

confounders therefore better controlled for, however, the sample size was much 
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smaller and therefore may not have had the power to identify nuances and subtle 

changes. That said, compared to other cross-sectional studies on NEC, this was still a 

large cohort.  

 

4.6. Conclusions 

In summary, this is the largest longitudinal metagenomic study on the gut microbiome 

of preterm infants with NEC, shedding light on different microbial signatures of NEC, 

particularly in relation to probiotic use. The findings reveal that before clinical diagnosis 

of NEC, the relative abundance of Proteobacteria such as K. variicola is higher whilst 

the relative abundance of Actinobacteria, mainly Bifidobacteria is lower, concordant 

with other studies. The type and administration of probiotics influenced the microbial 

association observed with NEC, especially the colonisation patterns of different 

probiotic and probiotic-associated strains and potentially the microbial origins of NEC. 

The research underscores the complexities of studying NEC, and points towards the 

need for more focused studies surrounding strain-level analysis, metabolomics and 

further distinction between disease sub-types, to better understand the role of the gut 

microbiome in NEC development. 
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5. Characterising the preterm gut microbiota, metabolome and 

circulating T-lymphocytes 
 

5.1. Abstract 
Preterm infants have immature and naïve immune systems, and are subject to 

abnormal microbial colonisation, a combination which can increase the risk of disease. 

Characterising the complex relationship between temporal development of the gut 

microbiome (both structure and function) and systemic immunity, alongside clinical 

information, is therefore of significant importance. In this study, 266 longitudinal stool 

samples from 66 very preterm infants underwent 16S rRNA gene sequencing to 

analyse gut microbial structure. To further explore the functional status of these gut 

members, and immune profile in this population, a subset of these samples underwent 

stool metabolomics (n = 101), and a further subset were matched for blood (n = 41) to 

explore T-lymphocyte sub-populations using CyTOF. 

 

The strongest associations were found with age for both the gut microbiota (P < 0.001) 

and metabolite profiles (P < 0.001). There was no significant association between 

clinical information and T-lymphocyte profiles, including no association with age (P > 

0.05). Relationships between the three datasets were next explored, finding the most 

concordance between the gut microbiome and metabolome, with 706 significant 

correlations after FDR adjustment identified between the top ten most abundant taxa 

and all 977 identified metabolites. Lactobacillus had the highest number of significant 

correlations (31%), amongst which was a strong positive correlation with equol 

sulphate, an oestrogen produced by intestinal bacteria. Despite no correlation between 

gut microbiota or metabolite profiles and T-lymphocyte sub-populations, significant 

relationships were found with specific T-lymphocyte markers including a positive 

correlation between 3-hydroxybutyrate (BHB) and γδ T-cell receptor (TCR). 

 

This study provides an important insight into the potential network of relationships 

underlying preterm gut microbiome structure and function with the host immune 

system. Very little correlation was found between the microbiome or metabolome with 

circulating T-lymphocyte populations, aside from when looking at specific markers. 
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Further work with a higher number of matched samples is needed to confirm these 

findings. 
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5.2. Introduction 
Adaptive immunity, also known as acquired immunity, is a component of the immune 

system that plays a crucial role in protecting against invading pathogens and 

eliminating infectious agents. Unlike the innate immune system, which is a non-specific 

defence mechanism, the adaptive immune system is programmed and educated to 

respond to specific antigens. The neonatal immune system needs to detect, 

differentiate, and eliminate potentially harmful pathogens, whilst recognising 

commensal or probiotic microbes that will go on to form the basis of the early life 

microbiome. This is a delicate task that needs to be achieved for proper immune 

development. The gut microbiome in infancy is intrinsically linked to the immune 

system, in particular circulating T-lymphocyte populations which are key in recognising 

and eliminating pathogens. 

 

CyTOF is an application of mass cytometry which is used for real-time analysis of 

single cells. In brief, CyTOF relies on the detection of heavy metal ions which are 

conjugated to a panel of antibodies. This technique can be useful for identifying and 

characterising specific T-lymphocyte sub-populations, based on a panel of markers 

which conjugated antibodies are able to bind to. In the context of preterm infants, 

CyTOF has been successfully used to probe major mucosal immune cell populations 

of infants with SIP (Olaloye et al., 2023) and NEC (Olaloye et al., 2021) compared to 

control infants. 

 

The gut microbiome is a complex and dynamic ecosystem involving microbe-microbe 

and microbe-host interaction. Adding to the complexity, gut microbes produce a wide 

variety of metabolites, which are small molecules that serve as the basis of 

communication with other microbes and host cells. These metabolites may play a key 

role in modulating the immune system, potentially driving the differentiation and 

proliferation of different T-lymphocyte populations. In previous early life studies, the 

gut microbiome has been shown to mediate the immune system. For example, a low 

abundance of Bifidobacterium was found to be associated with changes in T-helper 2 

(Th2) and Th17 responses as well as B. infantis-derived indole-3-lactic acid being 

shown to upregulate immunoregulatory galectin-1 in Th2 and Th17 cells (Henrick et 

al., 2021). Despite this, no study has integrated blood CyTOF data with both gut 

microbiome and metabolome in the preterm population specifically. Therefore, 
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understanding the complex relationships between gut microbes, metabolites and the 

host immune system is a novel area of research, especially in the preterm population 

where normal immune development may be altered due to abnormal bacterial 

colonisation. Further to this, preterm infants are at increased risk of inflammation and 

infection, due in part to their naïve immune systems. For instance, this population is 

more likely to develop NEC which is the leading cause of death in preterm infants and 

has been hypothesised to develop due to a hyperinflammatory immune response to 

microbial colonisation of the gut (Mara et al., 2018). A better understanding of the 

cellular and molecular mechanisms underlying these processes may help to inform 

future research into targeted interventions.  
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5.3. Results 
5.3.1. Sampling overview 

The current study focuses on analysing data that was collected as part of the INDIGO 

RCT. The aims of INDIGO were to test the effects of an exclusively human milk diet in 

comparison to a diet containing bovine products. The standard care in the Newcastle 

RVI NICU at the time of the study was for cow’s milk formula to be used should there 

be a shortfall of MOM, and cow’s milk-based fortification if needed after achieving full 

enteral feeds. Infants enrolled in INDIGO were part of either the control or intervention 

trial arm. Those in the control trial arm received standard care whereas those in the 

intervention trial arm were supplemented with fortified human milk should there be a 

shortfall of MOM, and human milk-based fortification if needed after achieving full 

enteral feeds. 
 

As part of that trial, extensive clinical information was collected alongside gut 

microbiota information (16S rRNA gene sequencing) from four sites, including 66 

infants from the Newcastle RVI NICU (n = 266 samples). Two of the sites used 

probiotics routinely which were found to be the main driver of the preterm gut 

microbiome (Chapter 3), including Newcastle, where all samples were collected during 

the Labinic era (see Methods). To fulfil the primary objective of the INDIGO trial, the 

16S rRNA gene sequencing results were previously published from all units, with a 

specific focus on the trial (Embleton et al., 2023). 

 

In order to expand on this work, additional data was collected for subsets of the 

Newcastle babies only, including stool metabolome and blood CyTOF data. For these 

reasons, for the multi-dataset analysis presented in this thesis chapter, samples from 

Newcastle infants only were analysed. Clinical information is presented in Table 5.1. 
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Table 5.1. Patient demographics of the analytical cohort, Newcastle samples 
only. P-values are based on Chi-squared test for categorical data and Kruskall-Wallis 
test for continuous data 

 
 All Control Intervention pval 

No. of subjects 66 36 30  
No. of samples 266 152 114  

Median no. samples per subject (IQR) 4 (4 – 5) 5 (4 – 5) 4 (3.25 – 5)   

Median gestational age (IQR) 27.3 (26 – 28.1) 27.1 (26.1 – 28) 27.5 (26 – 28.1) 0.657 

Median birthweight (g) (IQR) 912.5 (675 – 1110) 860 (640 – 1008) 1040 (730 – 1155) 0.098 

Median day of full feed (IQR) 13 (11 – 18) 13 (11 – 18) 13 (12 – 17.5) 0.479 

Median days on antibiotics (IQR) 11 (6 – 16.5) 10 (6 – 18.2) 12.5 (5.25 – 16) 0.949 

Median days of MOM (IQR) 46.5 (27.5 – 66.8) 54 (29.2 – 67.5) 42 (26 – 64) 0.395 

Birth mode    0.512 

Caesarean 37 (56.1%) 22 (61.1%) 15 (50%)  

Vaginal 29 (43.9%) 14 (38.9%) 15 (50%)  

Sex    0.289 

Male 36 (54.5%) 17 (47.2%) 19 (63.3%)  

Female 30 (45.5%) 19 (52.8%) 11 (36.7%)  

NEC or LOS    1 

No 54 (81.8%) 29 (80.6%) 25 (83.3%)  

Yes 12 (18.2%) 7 (19.4%) 5 (16.7%)  

Antibiotics in the past 7 days     1 

No 141 (53.0%) 81 (53.3%) 60 (52.6%)  

Yes 125 (47.0%) 71 (46.7%) 54 (47.4%)  

Median % enteral MOM in previous 3d 100 (37.75 – 100) 100 (93 – 100) 100 (25.8 – 100) 0.069 

BMF at time of sample    0.805 

No 156 (58.6%) 88 (57.9%) 68 (59.6%)  

Yes 110 (41.4%) 64 (42.1%) 46 (40.4%)  

 
 

The datasets making up this analysis included 266 longitudinal 16S rRNA gene 

sequencing samples (referred to as the microbiome dataset), collected from 66 very 

preterm infants during their stay at the Newcastle RVI NICU. These samples were 

collected across five pre-defined timepoints (A, B, C, D and E) reflecting the first 

sample, a sample after DOL 7, full milk enteral feeds, DOL 21-28 and study end, 

respectively (Figure 5.2). As outlined in the methods, of those 266 samples, 41 

samples from 24 infants were matched for blood, taken either pre-fortifier (typically 

corresponding to time point C) or post-fortifier following full enteral feeds (typically 

corresponding to time point E). PBMC’s isolated from these samples were sent for T-

lymphocyte profiling using CyTOF. A different subset of 101 samples from 56 infants 

were sent for metabolomics; 85 were the same stool sample as was used for 16S rRNA 

gene sequencing, 8 were a stool sample from the same day and the remaining 8 were 
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a stool sample from within ± 3 days. 25 of the samples chosen for metabolomics had 

also been matched for blood so spanned all three datasets. Due to the sparsity of 

samples after DOL 50 for the microbiome and metabolomics data, all subsequent 

analysis directly including DOL as a continuous variable was restricted to between 

DOL 0 and 50 (Figure 5.1). 

 
Figure 5.1. INDIGO sampling overview. Samples used in the study from birth to day 
90, coloured by pre-defined time-point and shaped based on the dataset(s) the sample 
was used for. 
 

5.3.2. 16S rRNA gene sequencing data overview 
The top five most abundant genera were Enterobacter/Klebsiella (cannot be separated 

based on V4 sequencing), Bifidobacterium, Escherichia/Shigella (cannot be separated 

based on V4 sequencing), Staphylococcus and Enterococcus. Combined, these five 
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taxa accounted for a total of 91% of reads across all samples, and a total median 

relative abundance of 98% (IQR – 89% - 100%). First, relationships between clinical 

information and overall bacterial profiles were explored. Time had a significant impact 

on both the overall bacterial profiles. Age measured continuously explained 6.7% and 

6.1% of the total variation for DOL and corrected gestational age (CGA), respectively 

(both P < 0.001). Time-point (i.e., categorical grouping) individually explained 10.5% 

of the total variation (P < 0.001). Since the study was designed for a sample to be 

taken from each patient during each time-point where possible, data was split into 

these cross-sectional groups, each with no more than one sample per patient. There 

was no significant association found for any of the clinical variables assessed with 

overall bacterial profiles at any time-point (i.e., gestational age at birth, birthweight, 

birth mode, sex, trial arm, antibiotics in the previous 7 days, day of full feeds, % enteral 

MOM in previous 3 days, BMF at the time of a sample and NEC or LOS disease status).  

 

It was next investigated as to whether there were any associations between clinical 

data and specific genera, rather than the overall bacterial profile. MaAsLin2 analysis 

revealed some significant associations between clinical data and specific genera, 

largely attributable to the specific timepoints, corroborating the above findings (Table 
5.2) and those from Chapters 3 and 4. Specifically, Enterobacter/Klebsiella was found 

to have a significantly higher relative abundance in time-points D (P = 0.001, Q = 0.044) 

and E (P < 0.001, Q = 0.02) compared to A, whilst the opposite was true of 

Staphylococcus, which was lower in relative abundance in E (P < 0.001, Q = 0.004) 

compared to A (Figure 5.2A). Bifidobacterium relative abundance was higher in time-

point C (P < 0.001, Q = 0.036) compared to A, and was observed consistently across 

all timepoints after timepoint B, as well as over continuous DOL, likely reflecting that 

all samples were collected during the Labinic era (product containing B. bifidum, B. 

longum subsp. infantis and L. acidophilus) (Figure 5.2A, B). Veillonella was also found 

to be significantly higher in samples where fortifier was used at the time of the sample 

(P = 0.001, Q = 0.043). There was no relationship observed between time (either 

timepoint or DOL) and the relative abundance of Escherichia/Shigella or Enterococcus, 

which remained relatively consistent over time (Figure 5.2A, B).  
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Table 5.2. MaAsLin2 results for significant taxa associated with clinical co-
variates in the INDIGO cohort. Mixed-effects linear models using a variance-
stabilizing arcsin square root transformation on relative abundance phyla data were 
used to determine the significance. Patient ID was included as a random effect. 
 

 

 
Variable 
level 

Feature Coeff Standard 
error 

pval qval 

Trial arm Intervention Lactobacillus -0.032 0.014 0.023 0.215 
Antibiotics 7d Yes Bifidobacterium -0.121 0.039 0.002 0.056 

Day of full feeds  Bifidobacterium -0.06 0.021 0.007 0.11 
% enteral breast milk  Veillonella -0.029 0.009 0.002 0.055 
% enteral breast milk  Lactobacillus -0.021 0.007 0.003 0.073 

Fortifier Yes Veillonella 0.063 0.019 0.001 0.044 
Fortifier Yes Staphylococcus -0.162 0.07 0.023 0.215 

NEC or LOS Yes Bifidobacterium 0.16 0.059 0.009 0.122 
Timepoint E Staphylococcus -0.401 0.093 <0.001 0.004 
Timepoint E Enterobacter/Klebsiella 0.374 0.099 <0.001 0.017 
Timepoint C Bifidobacterium 0.233 0.067 0.001 0.036 
Timepoint D Enterobacter/Klebsiella 0.307 0.094 0.001 0.044 
Timepoint B Bifidobacterium 0.154 0.055 0.006 0.104 
Timepoint D Staphylococcus -0.247 0.089 0.006 0.104 
Timepoint E Bifidobacterium 0.175 0.071 0.014 0.182 
Timepoint D Bifidobacterium 0.165 0.068 0.016 0.193 
Timepoint C Enterobacter/Klebsiella 0.223 0.093 0.017 0.193 
Timepoint B Escherichia/Shigella -0.138 0.059 0.021 0.215 
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Figure 5.2. Descriptive overview of the most abundant genera. Relative 
abundance of the five most abundant genera in this cohort across (A) categorical time-
points and over (B) continuous DOL up to DOL 50. 
 

Shannon diversity significantly increased based on both increasing time-point and DOL 

(both P < 0.05) (Figure 5.3A, B), but OTU richness was not significantly associated 

with either time-point (P = 0.309) or DOL (P = 0.506) (Figure 3.4C, D).  
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Figure 5.3. Alpha diversity of the gut microbiome in the preterm gut. Shannon 
diversity based on OTUs across (A) categorical timepoints A-E and over (B) 
continuous DOL. Bacterial OTU richness across (C) categorical timepoints A-E and 
over (D) continuous DOL.    
 

DMM modelling of bacterial profiles was used to determine PGCTs which were 

numbered 1–5 based on the average age of samples within that cluster, as previous. 

LefSE was used to determine the most discriminatory taxa for each PGCT, using a cut-

off Log10LDA score of 5. PGCT-1 was discriminated by Staphylococcus, PGCT-2 was 

discriminated by Enterococcus, PGCT-3 was discriminated by Escherichia/Shigella, 

and PGCT-4 was discriminated by Enterobacter/Klebsiella (Figure 5.4A, B). There 

was no single discriminatory feature using this threshold identified for PGCT-5 (Figure 
5.4A, B), which was characterised as having a significantly higher Shannon diversity 

(all adj. P < 0.001) in comparison to all other PGCTs (Figure 5.4C). This lack of 

dominance by a single taxon is also evident in the NMDS ordination, where the 95% 

CI ellipsis of PGCT-5 shows large overlap with the other PGCTs (Figure 5.4D). There 

was little association between clinical variables and PGCT (Table 5.3) based on 

binomial mixed effects models, controlling for patient ID. Namely, samples where 

fortifier was used at the time of sample were significantly less likely to belong to PGCT-

1 (P = 0.005) and samples from infants belonging to the control trial arm (cow’s milk 
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formula and fortification if needed) were significantly more likely to belong to PGCT-5 

(P = 0.047). 

 
Figure 5.4. Discriminatory features of PGCTs. (A) Heatmap of all samples showing 
the relative abundance of the most dominant taxa, stratified by PGCT. (B) Relative 
abundance of the top five most abundant taxa across PGCT. (C) Box plot showing 
Shannon diversity for each PGCT. The centre line denotes the median, the box limits 
denote the IQR and whiskers extend to the limits. (D) NMDS ordination based on gut 
bacterial profiles, with 95% CI ellipses, coloured by PGCT. 
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Table 5.3. Association between PGCT and clinical co-variates in the INDIGO 
cohort. Global P values and aORs with 95% CIs are based on the fitted mixed-effects 
logistic regression models, with patient ID as a random effect.  
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5.3.3. Stool metabolome overview 
A total of 977 unique metabolites were identified, of these, 833 had confirmed identity 

using standards (85.3%). Based on super-pathways, the majority of identified 

metabolites were amino acids. The most abundant super-pathways and all sub-

pathways were found to remain relatively constant over time, apart from the 

xenobiotics super-pathway which increased up to around DOL 20 before decreasing, 

and the sub-pathway “food component/plant” (i.e., part of the xenobiotics super-

pathway) which followed the same trend (Figure 5.5A, B).  
 

 
Figure 5.5. Overview of gut metabolome profiles. Relative abundance based on 
LOESS fits (95% CI) over DOL of (A) the most abundance sub-pathways and (B) 
the most abundant super-pathways. (C) The explained variance of 10 clinical co-
variates at different time-points based on overall gut metabolomic profiles, 
modelled by ‘adonis’. Bubbles show the amount of variance (R2) explained by each 
covariate at a given timepoint and significant results (FDR < 0.05) are surrounded 
by a red box. 

 

First, relationships between clinical information and the metabolome were explored. 

Comparable with bacterial profiles, time had a significant impact on the metabolome 

with DOL individually explaining 3% of the overall variation in metabolite profiles (P < 

0.001) and CGA explaining 2.4% (P < 0.001). As with bacterial profiles, time-point also 

explained the most variation in the overall metabolite profiles, individually explaining 

6% of the overall variation (P = 0.002). However, due to lower sample numbers in 
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timepoints A (n = 3) and D (n = 3), timepoints A and B were combined, as were C and 

D. For two of the samples in timepoint D, these infants already had a sample in 

timepoint C and so the samples from timepoint D were removed from the analysis. The 

combined timepoints (AB, CD and E) remained significantly associated with overall 

metabolite profiles (P < 0.001). Of the clinical variables assessed, % enteral MOM in 

the previous 3 days and day of full feeds were significantly associated with changes in 

the overall metabolome at timepoints CD, and E (all FDR P < 0.05). Additionally, 

fortifier at the time of a sample and trial arm were significantly associated with changes 

in the overall metabolome at timepoint E (both FDR P < 0.05) (Figure 5.5C). As with 

the bacterial analysis, it was next determined what specific metabolites were 

significantly associated with the extensive clinical data using MaAsLin2. The majority 

(42%) of significant metabolites were attributable to trial arm (i.e., human vs bovine-

based fortifier), including a number of unnamed metabolites 

(https://github.com/laurencbeck/supplementary_tables - Appendix 3). Alpha-

tocopherol and alpha-tocopherol acetate were amongst the most significantly enriched 

metabolites in the control trial arm (cow’s milk formula and fortification if needed) 

(https://github.com/laurencbeck/supplementary_tables - Appendix 3). Day of full feed 

had the second highest number of significant metabolites (26%), then timepoint (17%) 

(https://github.com/laurencbeck/supplementary_tables - Appendix 3). These findings 

contrast the bacterial profiling results where the majority of significant associations 

were attributed to timepoint (80%), compared to the metabolite profiles where trial arm 

had the highest percentage of associations (42%) (Figure 5.6). Furthermore, nine co-

variates returned significantly associated metabolites, which is considerably more than 

bacterial genera which only had significant features for age and fortifier. 

  

https://github.com/laurencbeck/supplementary_tables
https://github.com/laurencbeck/supplementary_tables
https://github.com/laurencbeck/supplementary_tables
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Figure 5.6. Percentage of significant features identified by MaAslin2 analysis 
attributed to each clinical variable. Based on the microbiome (gut bacterial profiles) 
and metabolome (gut metabolite profiles). The majority of significant associations with 
gut bacterial profiles were attributed to age at sampling (timepoint), compared to 
metabolite profiles where trial arm had the highest percentage of associations. 
 

Due to fortifier being the only clinical variable found to be significantly associated with 

bacterial profiles other than timepoint (specifically, Veillonella was higher during fortifier 

use), the specific metabolites associated with fortifier was further probed. The 3 

metabolites significantly associated with fortifier use were all acylcarnitines 

(myristoylcarnitine (C14), margaroylcarnitine (C17) and 3-hydroxyoleoylcarnitine) and 

were all positively associated.  

 

Akin to the microbiome analysis, DMM modelling was used in an attempt to cluster 

samples into PMPTs based on their metabolite profiles (see Methods), DMM modelling 

was used. However, all samples were found to cluster together and the lowest Laplace 

approximation was one (i.e., the optimal number of clusters was one). Clustering was 

then attempted using a consensus-based algorithm, three clusters were found to be 
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optimal which were then defined using a hierarchical clustering approach based on 

complete linkage. However, one sample was found to cluster by itself, and another 

cluster contained just six of the 103 samples. This likely reflects the relatively 

comparable metabolite profiles between samples. Due to the limited utility of these 

clusters, no further analysis was performed based on PMPTs. 

 

5.3.4. Blood T-lymphocyte profile overview 
After positive gating of CD45+ CD3+ T-lymphocytes, FlowSOM was used to define 20 

sub-populations based on marker expression which were then validated by manual 

gating (Figure 5.7A, B). The median ratio of CD4:CD8 T-lymphocytes in samples was 

2.687 (IQR; 1.955 - 3.604), with the majority of cells being classified as either naïve 

CD4+ (47.96%) or naïve CD8+ (23.96%). The majority of cells were found to have a 

somewhat naïve phenotype, expressing naïve markers (CD45RA and CCR7) to a 

relatively high degree, with T-lymphocyte subsets lacking expression of both CD45RA 

and CCR7 accounting for only ~7% of cells.  

 
Figure 5.7. Defining circulating T-lymphocyte populations. (A) Heatmap depicting 
relative signal intensity of the antibody markers by T-lymphocyte sub-populations that 
were defined using FlowSOM. High expression denoted by red and lower by blue. (B) 
UMAP plot based on 1000 cells per sample, coloured by FlowSOM clusters. 
 

 
As with bacterial and metabolite profiles, relationships between clinical information and 

T-lymphocyte profiles were explored. Unlike the other datasets, there was no impact 

of time (DOL, CGA, or time-point) on the T-lymphocyte profile of samples (P = 0.581, 
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P = 0.6564, and P = 0.881, respectively), or the overall marker expression of samples 

(P = 0.854, P = 0.863, and P = 0.968, respectively). As time was not a significant driver 

of blood T-lymphocyte profiles, instead, T-lymphocyte data was split into pre-fortifier 

treatment and post-fortifier treatment groups, each with one sample per patient, 

reflecting the study design for blood sample collection in the INDIGO study. Pre- and 

post-fortifier treatment were also not significantly associated with T-lymphocyte profiles 

(P = 0.525), Assessing the same clinical co-variates as for the other datasets, there 

was no significant association found with overall T-lymphocyte profiles (all P > 0.05) or 

overall marker expression (all P > 0.05). There was also no significant association with 

the ratio of CD4:CD8 T-lymphocytes and any of the clinical variables (including DOL, 

CGA, or time-point) whilst controlling for patient ID (all P > 0.05). More in-depth 

analysis on changes in specific T-lymphocyte subsets and marker expression with 

clinical data using MaAsLin2 further revealed no significant associations. 

 

Following on from this, as with bacterial and metabolomic profiles, samples were 

further clustered based on their overall T-lymphocyte profiles (i.e., based on the 

proportion of the different 20 identified T-lymphocyte sub-populations) to characterise 

PTPTs (see Methods). Using a consensus-based algorithm, two clusters were found 

to be optimal which were then defined using a hierarchical clustering approach based 

on complete linkage. A binomial mixed effects model found that no clinical variable that 

was tested for, was associated with PTPTs whilst controlling for patient ID. 

 

5.3.5. Stability of the microbiome and T-lymphocyte profile over time 
Infants with two or more samples were analysed for microbiome stability (n = 61). Infant 

PGCT was found to change once on average across all timepoints, and expectedly 

increased with the number of samples given (P = 0.031). Aside from sample number, 

microbiome stability was only found to be associated with trial arm (P = 0.008), with 

infants in the control trial arm (cow’s milk formula and fortification if needed) being 

found to have a significantly more ‘unstable’ microbiome. A second model was fit to 

look at the number of transitions between PGCTs as an outcome, with both sample 

number (P = 0.038) and trial arm (P = 0.006) again being significantly associated. To 

better control for the number of samples given by each infant, since this was 

significantly associated, rather than rely on adjustment within the model, the same 

analyses were carried out on infants who had a sample in all five of the timepoints (n 
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= 30 infants, 45% of the cohort). The same clinical co-variates were included, and none 

were found to be significantly associated with microbiome stability based on the binary 

outcome (stable/unstable) or the number of transitions between PGCTs. Specifically, 

trial arm, which was associated with microbiome stability and the number of transitions 

when adjusting for the number of samples given in the model, was no longer significant 

(microbiome stability P = 1; number of transitions P = 0.086). However, it is important 

to note that there were expectedly far fewer infants classed as ‘stable’ (n = 2) for the 

microbiome stability model, as the analysis spanned all time points, which limits the 

reliability and applicability of this model. 

 

Overall T-lymphocyte profiles were found to be stable over time within infants, with 

PTPTs remaining stable post versus pre-fortification. Specifically, of the 14 infants who 

had two or more CyTOF samples, 13 of them were found to have the same PTPT pre- 

and post-fortification.  

 

5.3.6. Associations between datasets 

5.3.6.1. Gut microbiome and stool metabolome 

To determine if there were any associations between the three datasets, first focusing 

on the gut microbiome and stool metabolome, PERMANOVA was used. Based on this, 

PGCT had a significant association with the overall metabolome, explaining 2.35% of 

variation in the data whilst stratifying by patient ID (P = 0.038; Figure 5.8). Specifically, 

82 metabolites were significantly associated with the different PGCTs when PGCT-1 

(Staphylococcus dominant) was used as a reference (including both positive and 

negative coefficients), based on MaAsLin2 analysis (Table 5.4). Amongst the most 

significant for each PGCT included three amino acids for PGCT-2 (Enterococcus 

dominant), two involved in tyrosine metabolism; tyramine O-sulphate and tyramine, 

and one involved in lysine metabolism, 5-hydroxylysine. For PGCT-3 

(Escherichia/Shigella dominant), there were 41 significantly associated metabolites, 

including 20 amino acids, six of which were involved in leucine, isoleucine and valine 

metabolism, and 11 lipids. There were 13 metabolites significantly associated with 

PGCT-4 (Enterobacter/Klebsiella dominant), five of which were lipids including 

lysophospholipids and phosphatidylethanolamines. There were 93 metabolites 

significantly associated with PGCT-5 (diverse cluster), the majority of which (60%) 

were attributable to unknown/unnamed metabolites. 
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Figure 5.8. Gut metabolite profiles significantly differ based on gut PGCT. NMDS 
based on gut metabolite profiles, coloured by PGCT. P-value is based on 
PERMANOVA.  
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Table 5.4. MaAsLin2 results for significant metabolites associated with PGCTs. 
Mixed-effects linear models using a variance-stabilising arcsin square root 
transformation on metabolite data were used to determine the significance. Patient ID 
was included as a random effect. 
 

PGCT Coeff stderr pval qval Super pathway Sub pathway Chemical name 

2 0.016 0.005 0.001 0.044 Amino Acid Tyrosine Metabolism tyramine 

2 0.018 0.005 0.001 0.033 Amino Acid Lysine Metabolism 5-hydroxylysine 

2 0.032 0.007 <0.001 0.003 Amino Acid Tyrosine Metabolism tyramine O-sulfate 

3 0.021 0.004 <0.001 0.002 Amino Acid Polyamine Metabolism putrescine 

3 0.02 0.005 <0.001 0.016 Energy TCA Cycle fumarate 

3 0.009 0.002 0.001 0.033 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

isoleucine 

3 0.009 0.002 <0.001 0.026 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

leucine 

3 -0.017 0.005 <0.001 0.027 Amino Acid Glycine, Serine and 
Threonine Metabolism 

betaine 

3 -0.045 0.011 <0.001 0.013 Amino Acid Alanine and Aspartate 
Metabolism 

asparagine 

3 0.02 0.004 <0.001 0.005 Amino Acid Tyrosine Metabolism tyramine 

3 0.034 0.009 <0.001 0.03 Amino Acid Phenylalanine Metabolism phenethylamine 

3 0.019 0.005 0.001 0.039 Lipid Phosphatidylethanolamine 
(PE) 

1-palmitoyl-2-oleoyl-GPE 
(16:0/18:1) 

3 0.024 0.005 <0.001 0.005 Amino Acid Lysine Metabolism cadaverine 

3 -0.028 0.007 <0.001 0.011 Nucleotide Pyrimidine Metabolism, 
Cytidine containing 

2'-deoxycytidine 

3 -0.05 0.012 <0.001 0.007 Carbohydrate Aminosugar Metabolism glucuronate 

3 0.031 0.008 <0.001 0.015 Amino Acid Tryptophan Metabolism 3-indoxyl sulfate 

3 0.015 0.004 0.001 0.032 Lipid Fatty Acid, Monohydroxy 3-hydroxymyristate 

3 0.069 0.013 <0.001 0.001 Lipid Secondary Bile Acid 
Metabolism 

7-ketodeoxycholate 

3 0.041 0.011 <0.001 0.03 Lipid Secondary Bile Acid 
Metabolism 

7-ketolithocholate 

3 0.019 0.004 <0.001 <0.001 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

N-acetylisoleucine 

3 0.015 0.004 <0.001 0.029 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

alpha-hydroxyisovalerate 

3 0.018 0.005 0.001 0.048 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

2-hydroxy-3-
methylvalerate 

3 0.026 0.004 <0.001 <0.001 Lipid Lysophospholipid 1-palmitoyl-GPE (16:0) 

3 0.027 0.005 <0.001 0.001 Lipid Lysophospholipid 1-oleoyl-GPE (18:1) 

3 0.015 0.004 <0.001 0.023 Lipid Corticosteroids cortisone 21-sulfate 

3 0.025 0.006 <0.001 0.005 Cofactors and 
Vitamins 

Pantothenate and CoA 
Metabolism 

pantoate 

3 0.026 0.007 <0.001 0.016 Lipid Phospholipid Metabolism trimethylamine N-oxide 

3 0.038 0.011 0.001 0.043 Amino Acid Tyrosine Metabolism tyrosol 

3 0.011 0.002 <0.001 0.002 Xenobiotics Food Component/Plant indolin-2-one 

3 0.016 0.003 <0.001 <0.001 Amino Acid Tryptophan Metabolism N-formylanthranilic acid 

3 0.021 0.005 <0.001 0.01 Lipid Lysophospholipid 1-palmitoyl-GPG (16:0)* 

3 0.024 0.007 0.001 0.032 Amino Acid Tyrosine Metabolism tyramine O-sulfate 

3 0.03 0.007 <0.001 0.011 Amino Acid Glutathione Metabolism 2-hydroxybutyrate/2-
hydroxyisobutyrate 

3 0.017 0.005 0.001 0.048 Energy TCA Cycle 2-
methylcitrate/homocitrate 

3 0.017 0.004 <0.001 0.016 Lipid Phosphatidylethanolamine 
(PE) 

1,2-dipalmitoyl-GPE 
(16:0/16:0)* 

3 0.018 0.005 <0.001 0.027 Amino Acid Polyamine Metabolism (N(1) + N(8))-
acetylspermidine 

3 0.013 0.004 0.001 0.031 Lipid Corticosteroids 11-
dehydrocorticosterone 
sulfate 
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3 0.027 0.007 <0.001 0.019 Amino Acid Phenylalanine Metabolism N-succinyl-phenylalanine 

3 0.029 0.007 <0.001 0.014 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

N-succinyl-leucine 

3 0.066 0.013 <0.001 0.001 Amino Acid Polyamine Metabolism N-carbamoylputrescine 

3 0.063 0.011 <0.001 <0.001 Unknown Unknown 12216 

3 0.027 0.005 <0.001 <0.001 Unknown Unknown 13729 

3 -0.018 0.004 <0.001 0.002 Unknown Unknown 22162 

3 -0.033 0.009 0.001 0.032 Unknown Unknown 23654 

4 0.012 0.003 0.001 0.033 Amino Acid Polyamine Metabolism 1,3-diaminopropane 

4 0.018 0.005 <0.001 0.02 Lipid Phosphatidylethanolamine 
(PE) 

1-palmitoyl-2-oleoyl-GPE 
(16:0/18:1) 

4 -0.041 0.01 <0.001 0.01 Carbohydrate Aminosugar Metabolism glucuronate 

4 0.012 0.003 <0.001 0.011 Amino Acid Leucine, Isoleucine and 
Valine Metabolism 

N-acetylisoleucine 

4 0.017 0.003 <0.001 0.002 Lipid Lysophospholipid 1-palmitoyl-GPE (16:0) 

4 0.018 0.005 <0.001 0.014 Lipid Lysophospholipid 1-oleoyl-GPE (18:1) 

4 -0.01 0.003 0.001 0.043 Cofactors and 
Vitamins 

Tocopherol Metabolism gamma-CEHC 
glucuronide* 

4 0.022 0.004 <0.001 0.001 Lipid Lysophospholipid 1-palmitoyl-GPG (16:0)* 

4 0.015 0.004 <0.001 0.014 Lipid Phosphatidylethanolamine 
(PE) 

1,2-dipalmitoyl-GPE 
(16:0/16:0)* 

4 -0.017 0.003 <0.001 0.001 Unknown Unknown 22162 

4 0.019 0.004 <0.001 0.004 Unknown Unknown 25837 

4 -0.017 0.005 0.001 0.038 Unknown Unknown 25950 

4 0.012 0.003 <0.001 0.015 Unknown Unknown 25955 

5 0.015 0.003 <0.001 0.004 Nucleotide Purine Metabolism, 
Adenine containing 

1-methyladenine 

5 0.037 0.009 <0.001 0.005 Amino Acid Polyamine Metabolism N-acetylputrescine 

5 0.044 0.01 <0.001 0.005 Amino Acid Phenylalanine Metabolism phenethylamine 

5 0.073 0.02 0.001 0.032 Energy TCA Cycle tricarballylate 

5 0.026 0.007 <0.001 0.019 Amino Acid Lysine Metabolism N6-acetyllysine 

5 0.018 0.004 <0.001 0.001 Amino Acid Urea cycle; Arginine and 
Proline Metabolism 

dimethylarginine (SDMA 
+ ADMA) 

5 0.027 0.007 <0.001 0.025 Amino Acid Tyrosine Metabolism tyramine O-sulfate 

5 0.03 0.007 <0.001 0.004 Peptide Dipeptide cyclo(pro-sulfo-tyr)* 

5 0.02 0.006 0.001 0.044 Amino Acid Histidine Metabolism 1-methyl-5-
imidazolelactate 

5 0.024 0.004 <0.001 <0.001 Lipid Primary Bile Acid 
Metabolism 

chenodeoxycholic acid 
sulfate (2) 

5 0.012 0.003 <0.001 0.014 Unknown Unknown 12708 

5 0.011 0.003 0.001 0.049 Unknown Unknown 13553 

5 0.022 0.005 <0.001 0.014 Unknown Unknown 13729 

5 0.032 0.007 <0.001 0.005 Unknown Unknown 19220 

5 0.026 0.006 <0.001 0.005 Unknown Unknown 19917 

5 0.027 0.006 <0.001 0.003 Unknown Unknown 19921 

5 0.027 0.007 0.001 0.031 Unknown Unknown 19928 

5 0.088 0.026 0.001 0.043 Unknown Unknown 23662 

5 0.026 0.008 0.001 0.037 Unknown Unknown 23908 

5 0.026 0.007 <0.001 0.03 Unknown Unknown 24474 

5 0.057 0.013 <0.001 0.004 Unknown Unknown 25053 

5 0.017 0.004 <0.001 0.019 Unknown Unknown 25823 

5 0.021 0.005 <0.001 0.014 Unknown Unknown 25830 

5 0.096 0.024 <0.001 0.013 Unknown Unknown 25832 

5 0.013 0.003 <0.001 0.014 Unknown Unknown 25853 
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Spearman’s rank correlation analyses between all the 977 metabolites and the 10 most 

abundant taxa (Enterobacter/Klebsiella, Bifidobacterium, Escherichia/Shigella, 

Staphylococcus, Enterococcus, Veillonella, Lactobacillus, Bacteroides, Acinetobacter 

and Ligilactobacillus) revealed 706 significant relationships after FDR adjustment (427 

positive and 279 negative). The highest number of significant correlations were 

attributable to Lactobacillus (31%), the most significant of which were three xenobiotics 

(equol sulphate, ferulic acid 4-sulphate, enterolactone sulphate) which were all 

positively correlated to Lactobacillus relative abundance. Staphylococcus also had a 

high number of significant correlations (26%), both positive and negative. The three 

most significant were negative correlations with phospholipids including 

lysophospholipid and phosphatidylethanolamine (all P < 0.001). In contrast, these 

metabolites were significantly positively correlated to Enterobacter/Klebsiella relative 

abundance, and correspondingly were all also found to be significantly enriched in 

PGCT-4 (Enterobacter/Klebsiella dominant). There were 37 metabolites that were 

significantly correlated with Veillonella relative abundance, both positive and negative, 

with a positive correlation being identified with one of the acylcarnitines significantly 

associated with fortifier use.  

 
5.3.6.2. Gut microbiome and blood T-lymphocyte profiles 

There was no significant association between PGCT and overall T-lymphocyte profile 

(P = 0.2809), based on PERMANOVA whilst stratifying by patient ID. There was also 

no significant association between PGCT and CD4:CD8 ratio based on LMMs (P = 

0.779), whilst controlling for patient ID. However, there was a significant association 

between PGCTs and T-lymphocyte marker expression profile (P = 0.025), whilst 

stratifying by patient ID. Based on MaAsLin2 analysis, RORγ was significantly higher 

in PGCT-3 (P < 0.001, Q = 0.011) and PGCT-4 (P< 0.001, Q = 0.011) associated 

samples, compared to PGCT-1 (Figure 5.9). CD49b and CD16 were also significantly 

lower in PGCT-4 (P < 0.001, Q = 0.011 and P = 0.001, Q = 0.046, respectively) 

associated samples compared to PGCT-1 (Figure 5.9). 
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Figure 5.9. Relative signal intensity of T-lymphocyte markers across matched 
gut PGCTs. Significance is based on MaAsLin2 analysis, where (**) denotes P < 0.01 
and (***) denotes P < 0.001. 
 
Spearman’s rank correlation analysis was carried out between the 10 most abundant 

taxa identified in patients with CyTOF data (Enterobacter/Klebsiella, Bifidobacterium, 

Escherichia/Shigella, Staphylococcus, Enterococcus, Veillonella, Ligilactobacillus, 

Bacteroides, Acinetobacter and Clostridium), and the 20 T-lymphocyte subsets. No 

significant correlations were identified after adjustment for multiple comparisons. The 

same analyses were carried out to look for correlations between the same top 10 taxa 

and specific markers, as well as CD4:CD8 ratio, further showing no significant 

correlations after adjustment for multiple comparisons. 

 

5.3.6.3. Stool metabolome and blood T-lymphocyte profiles 

Associations between the metabolome and T-lymphocyte profiles were next explored. 

Spearman’s rank correlation analyses between all the 977 metabolites and the 20 T-

lymphocyte subsets revealed no significant associations after adjustment for multiple 

comparisons. Looking at correlation between metabolites and the CD4:CD8 ratio also 

revealed no significant correlations after adjustment for multiple comparisons. 

 

There was, however, five significant associations between all the metabolites and 

marker expression, after adjustment for multiple comparisons. These included a strong 

positive correlation between phosphate and CXCR3 (P = 0.033) and a strong negative 

correlation between 1-methylhypoxanthine and CXCR3 (P = 0.034) (Figure 5.10A, B). 

A strong positive correlation was observed between N-propionylmethionine and CD69 
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(P = 0.012), whilst a strong negative correlation between ribotol and CD69 (P = 0.012) 

was identified (Figure 5.10C, D). Finally, a strong positive correlation between BHB 

and γδ TCR (P < 0.001) was identified (Figure 5.10E). 
 

 
Figure 5.10. Specific gut metabolites are significantly correlated with specific T-
lymphocyte markers. Correlation plots for the relative abundance and relative signal 
intensity (respectively) of (A) Phosphate and CXCR3, (B) 1-methylhypoxanthine and 
CXCR3, (C) N-propionylmethionine and CD69, (D) Ribotol and CD69, and (E) 3-
hydroxybutyrate (BHB) and TCRγδ. 
 

5.3.6.4. Multiple co-inertia analysis and Procrustes analysis 
Finally, MCIA and PA were used to integrate the three datasets (bacterial, metabolite 

and T-lymphocyte marker profiles) and visualise any relationships between them. 

MCIA is a multivariate co-inertia analysis that looks to identify co-relationships between 

multiple datasets, transforming and plotting datasets onto the same projection. For the 

MCIA, the figure shows the projection of all samples from the different datasets onto 

the first two principal components of the MCIA, where the datasets have been 

transformed into the same projection (Figure 5.11A). The coordinates of the samples 

in each of the three datasets are connected by edges, the length of which indicates the 

divergence (i.e., the shorter the line, the higher the level of concordance) between the 

datasets for a particular sample/matched sample (i.e., stool sample and matched 

blood). Pairwise Monte-Carlo Tests on the sum of eigenvalues from the MCIA revealed 

no significant correlation between any of the datasets (bacterial – metabolite: RV 

coefficient = 0.140, P = 0.995; bacterial – T-lymphocytes: RV coefficient = 0.355, P = 
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0.264; metabolite – T-lymphocytes: RV coefficient = 0.191, P = 0.510). Although 

samples and matched samples were found to cluster somewhat into PGCT groups 

(Figure 5.11A). 

PA is similar to MCIA, and again can be useful for evaluating relationships between 

multiple datasets. For the PA, PCoA coordinates for each of the three datasets were 

transformed and superimposed onto the same space (Figure 5.11B). Again, edges 

connect the three datasets from a centroid. In contrast to the MCIA, pairwise correlation 

analyses between the transformed PCoA coordinates for each of the three datasets 

revealed a significant correlation between bacterial and metabolite profiles 

(dissimilarity parameter m2 = 0.398, P = 0.002) but not between bacterial and T-

lymphocyte marker profiles (dissimilarity parameter m2 = 0.457, P = 0.519) or 

metabolite and T-lymphocyte marker profiles (dissimilarity parameter m2 = 0.534, P = 

0.617). 

 

Figure 5.11. Gut bacterial and metabolite profiles are significantly correlated, but 
neither are correlated with circulating T-lymphocytes. (A) MCIA plot of the three 
datasets where edges connect bacterial profiles (square), metabolite profiles (triangle) 
and T-lymphocyte profiles (triangle) for each individual sample or matched sample, 
coloured by PGCT. Samples have been projected into the same dimensional space 
based on the first two principal components, each explaining 26.7% and 18.39% of 
variation in the data, respectively. Shorter edges depict greater similarity between 
datasets. (B) PA based on superimposition of coordinates from PCoA of bacterial 
profiles (square), metabolite profiles (triangle) and T-lymphocyte profiles (circle). 
Samples and matched samples are connected by edges with the shorter edges 
representing greater similarity between datasets. 
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5.4. Discussion 
In this longitudinal multi-omic study, the relationship between clinical data, the 

microbiome, metabolome and circulating T-lymphocytes in preterm infants was 

investigated. Additionally, the correlation between the three datasets and how they 

might be interrelated was explored. The aims of this research were to contribute to an 

enhanced understanding of the link between preterm infant clinical characteristics, 

their gut microbiome, metabolome and systemic immunity. 

 

As part of the clinical information, the impact of time (DOL, CGA and time-point) on the 

microbiome, metabolome and T-lymphocyte populations was examined. The results 

showed that whilst time had no significant impact on changes in the overall T-

lymphocyte populations of preterm infants, it did impact the microbiome and 

metabolome. Time-point was found to explain the most variation in both datasets, likely 

due to the focus on discrete time-points in the INDIGO study design and sample 

collection based around these (rather than regular temporal sampling). It is important 

to note that in both instances, DOL explained more variation than CGA, which was 

similarly observed in Chapter 3. There is an existing debate as to whether time since 

birth or CGA (taking into account gestational age at birth) is best used as a measure 

of time in longitudinal studies of preterm infants. The current results highlight that DOL 

may be a more reliable measure of time in comparison to CGA, when measuring 

preterm gut bacteria and luminal metabolites. It is also worth highlighting that although 

no significant association between time and circulating T-lymphocytes was identified, 

this could be due to the limited number of samples (n = 41) that were mostly in two 

timepoints (C and E). Therefore, this could reflect that there were not enough samples 

spanning the breadth of time to robustly analyse the impact and any changes over this 

shorter time frame could not be captured. It could be that a difference may have been 

found when analysing samples taken at the start of life with a later sample. 

 

When analysing other clinical factors aside from time, there was no significant impact 

on overall bacterial profiles at the different timepoints. This is consistent with previous 

research in the Newcastle cohort, where the main drivers of microbial structure in 

healthy preterm infants were time and probiotic use (Beck et al., 2022) (Chapter 3). 

Additionally, no clinical factors were found to be significantly associated with the 

healthy preterm gut in the Olm et al. cohort (Olm et al., 2019), a US based cohort of 
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preterm infants who did not take probiotics. All samples in this cohort were taken during 

the Labinic era, so the impact of probiotics was not evaluated.  

 

Similarly, no clinical factors were found to be significantly associated with T-

lymphocyte sub-population or marker expression before or after fortifier treatment. On 

the other hand, a significant association between clinical data and the overall 

metabolite profiles was found at merged timepoint CD and in particular time-point E. 

All of the significant covariates were surrounding feeding in some way (e.g., % enteral 

MOM in previous 3 days, day of full feeds, fortifier at time of sample and trial arm). 

Although these factors were identified to be significantly associated with changes in 

the overall metabolome at one or more timepoints, the explained variance was found 

to be much lower than that observed for the microbiome or T-lymphocytes, despite 

none of these being identified as significant. 

 

Upon investigation of the association between clinical data and the relative abundance 

of bacteria and metabolites, several significant associations were identified, particularly 

with specific metabolites. Of the five significant associations with bacterial genera, 

fortifier use was the only clinical factor found to be significantly associated with any 

bacteria aside from time. Use of fortifier was found to be significantly associated with 

an increase in the relative abundance of Veillonella, as well as the abundance of three 

specific acylcarnitines. One of these acylcarnitines was found to be directly correlated 

with the relative abundance of Veillonella, as well as five additional acylcarnitines. 

Veillonella has been shown to produce hydrogen sulphide (Washio et al., 2014), which 

has been reported to inhibit the transport of acylcarnitines into the mitochondria for 

beta oxidation (Giangregorio et al., 2016). This could have led to an accumulation of 

acylcarnitines which have been subsequently excreted and detected in the stool, 

potentially explaining the correlation between Veillonella and acylcarnitines. Aside from 

this, the majority of the 120 significant associations between clinical data and the 

metabolome were attributable to trial arm. It is likely, however, that these differences 

in metabolites are in fact reflective of the nutritional differences between cows’ milk 

and human milk-based fortifier which provide a direct source of metabolites to the gut.  

 

The study found 706 significant relationships between the top 10 most abundant taxa 

in the gut and all 977 metabolites, after adjusting for multiple comparisons. The majority 
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of these associations (31%) were observed with Lactobacillus, the three most 

significant of which were positive correlations with xenobiotics. It is interesting to note 

that equol, which is an oestrogen known to be produced by intestinal bacteria, is 

positively correlated with Lactobacillus in its sulphate form, as Lactobacillus is a known 

producer of equol (Kwon et al., 2018). However, although this study is one of the 

largest combining bacterial and metabolite profiling in preterm infants, it should be 

noted that many of these significant correlations may be influenced by outliers.  

 

Analysis revealed limited association between T-lymphocyte populations or the ratio of 

CD4:CD8 T-lymphocytes and the microbiome or metabolome. However, a number of 

significant associations when looking at T-lymphocyte markers were found. Microbial 

PGCT was found to be significantly associated with T-lymphocyte marker expression, 

with some markers being significantly associated with specific PGCTs. RORγ, for 

example, was found to be significantly positively associated with PGCT-3 and PGCT-

4 when compared to PGCT-1. RORγ is usually expressed on Th17 cells, which play a 

role in maintaining mucosal homeostasis and clearing extracellular pathogens from 

these mucosal sites (Khader et al., 2009). Whilst the microbes dominating these 

PGCTs have not been previously implicated in relation to RORγ, it is worth mentioning 

that previous studies have established a link between the gut microbiota and RORγ T-

lymphocytes (Ohnmacht et al., 2015). 

 

Regarding specific metabolites associated with T-lymphocyte markers, five significant 

associations between specific metabolites and marker expression were identified. One 

particularly interesting finding was that BHB, which is a ketone, had a strong positive 

correlation with TCRγδ. Previous research has shown that ketogenic diets can activate 

protective γδ T-lymphocyte responses (Goldberg et al., 2019). Furthermore, that the 

elevation of ketone bodies in the circulatory system has been implicated in 

immunological barriers, impacting the microbiota, mucosal layer and mucosal tissue 

by various means (Qi et al., 2022). BHB is involved in the formation of milk fats in the 

mammary gland and known to be secreted in breast milk, having been detected in 

previous human milk metabolomic studies (Alexandre-Gouabau et al., 2019). 

Receiving BHB through breast milk may therefore have an impact on systemic γδ T-

lymphocyte proliferation, but this would need to be confirmed experimentally in future 

work. 
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Finally, the three datasets were integrated, looking for interconnections and how they 

might be linked together. Despite the lack of significance from the Monte-Carlo tests 

on the sum of eigenvalues from the MCIA, clustering into the different PGCTs across 

all three datasets was observed. PA analysis further revealed significant concordance 

between bacterial and metabolite profiles, but not between bacterial or metabolite 

profiles and T-lymphocyte markers. Further to this, the data demonstrated clear 

clustering into PGCTs across all three datasets. The results suggest a link between 

microbes and metabolites in the gut, which is supported by previous results in preterm 

infants, as shown in Chapter 3 (Beck et al., 2022). When considering circulating T-

lymphocytes it is perhaps unsurprising that there is less correlation with the contents 

of the gut lumen, which again is supported by previous research and results presented 

in Chapter 3, suggesting little correlation between the gut microbiome and blood 

metabolome (Beck et al., 2022).  This could be due to the lack of stability and dynamic 

nature of the preterm gut. In adult populations, where the gut microbiome is thought to 

be more stable, a much greater correlation has been seen between the gut lumen and 

blood contents (Diener et al., 2022). 

5.5. Limitations 

Limitations in the immunological aspect of this study include the sole focus on T-

lymphocyte populations, without investigating other immune components such as B 

cells, natural killer cells or macrophages. Biases toward the study of this specific 

population of immune cells however could be explained by the study design, whereby 

a marker panel that was specifically designed to analyse T-lymphocyte sub-

populations was set up. This specific panel would not have been sufficient for 

investigating other immune cell sub-populations. In this study, there was only a 

relatively minor impact on T-lymphocyte populations by clinical data, microbiome and 

metabolome, which could be due to blood reflecting only systemic and not gut-specific 

impacts, with direct gut impacts perhaps not being captured in blood. However, it is 

possible other immune components are impacted by these factors. To overcome this, 

future studies should design panels that include additional markers to allow more in-

depth analysis and comprehensive overview of other immune components.  
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Further to this, if considering the study of additional immune cells, consideration may 

be necessary regarding blood sample collection and storage, depending on the 

targeted leukocyte population. This is because some blood cells, mostly those of 

myeloid origin such as macrophages and neutrophils, have a half-life time of less than 

24 hours (Diks et al., 2019). Furthermore, different leukocytes populations have 

different preferred storage conditions, including temperatures and buffer preferences. 

In addition, the number of matched blood samples available for the microbiome was 

low (n = 41) and even lower when including the metabolome (n = 21). This aspect of 

the study was therefore not powered to find robust associations with circulating T-

lymphocytes. Instead of casting a broader net with additional markers as discussed 

above, future work may consider remaining focused on T-lymphocyte populations but 

increasing the sample size instead. This could be done in combination with using an 

alternative method to CyTOF altogether, such as FC, which offers greater resolution 

whilst targeting fewer markers. 

 

Regarding the gut microbiome, this was based on 16S rRNA gene sequencing data 

and so was restricted to genus-level identification. It is possible that a deeper analysis 

using shotgun metagenomics to allow species and strain level identification may have 

revealed species or strain-specific interactions with circulating T-lymphocytes. 

 

Finally, this analysis is descriptive in nature, and cause or effect cannot be determined, 

as with previous chapters. Furthermore, from these datasets it cannot be determined 

whether metabolites were host, diet or microbially derived. Future work may therefore 

consider experimentally determining whether specific metabolites of interest were 

microbially derived (i.e., whether preterm bacterial strains produce specific metabolites 

in culture), and where relevant, these metabolites could be cultured with immune cell 

lines to determine whether they impact T-lymphocyte or other immune populations. 

Ultimately, these data therefore provide an important basis for future experiments and 

analysis. 

 

5.6. Conclusions 

In summary, age was found to have the biggest impact on both the gut microbiome 

and metabolome but was not found to impact circulating T-lymphocytes, over the time 

frame of the current study. The greater similarity between gut microbiome and gut 
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metabolome was continuously observed, and these datasets showed the most 

concordance, likely due to the direct proximity of these gut/stool-based data. In 

contrast, fewer relationships were found with circulating T lymphocytes, particularly 

specific sub-populations, for which no significant associations were observed. This 

could reflect that the relationships between blood and the gut lumen in preterm infants 

are too dynamic to capture, especially in relation to their spatial proximity. Looking at 

specific features of the data rather than overall profiles, no significant associations 

between specific T-lymphocyte markers and PGCT as well as various specific luminal 

metabolites were found, suggesting there may be some very specific connections 

between the gut lumen and systemic immunity. To confirm these findings, further work 

would be needed with a higher number of CyTOF samples. Additionally, experimental 

validation of the associations identified would be needed to determine cause or effect. 

 

Overall, this chapter demonstrates the potential to perform and integrate multiple omic 

datasets from a range of longitudinal preterm infant samples, within the framework of 

a RCT. Metabolomics revealed the most significant features associated with the RCT 

trial arm. However, it is important to note that this may ultimately reflect the nutritional 

differences, which introduce a direct source of distinct metabolites. Incorporating 

temporal sampling and multi-omic analysis into future RCTs in preterm infants holds 

immense potential for mechanistic exploration and ensure added valuable insights 

when evaluating novel clinical interventions. 
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6. General discussion 
6.1. Discussion 

The gut microbiome is a complex community of microorganisms residing in the GI tract, 

that has been implicated in preterm health and disease, including its association with 

the onset of NEC (Coleman et al., 2023; McMurtry et al., 2015; Olm et al., 2019; Pammi 

et al., 2017; Stewart et al., 2012; Stewart et al., 2016; Warner et al., 2016). Whilst there 

is substantial knowledge regarding host and environmental factors that influence the 

gut microbiome of infants born full-term, our understanding of what drives gut microbial 

changes in preterm infants is comparatively more ambiguous. Delineating infant 

factors that influence the preterm gut microbiome is therefore increasingly important. 

 

The studies in Chapter 3 and 4 represent two of the largest longitudinal metagenomic 

studies in a healthy preterm cohort and a NEC cohort, respectively. Previous studies 

have found conflicting results, which may owe to smaller cohorts, cross-sectional data 

and use of 16S rRNA gene sequencing. Therefore, this data allows a much more in-

depth exploration of microbial changes, otherwise difficult to capture cross-sectionally, 

due to the highly dynamic nature of the preterm gut microbiome. 

 

Infant factors shaping the gut microbiome in preterm infants who did not go onto 

develop NEC were identified and explored, revealing the specific features 

underpinning those associations. Probiotics were found to be the main driver of 

changes to the gut microbiome, and different probiotic products were found to have 

differential impact on the taxonomic composition of the communities. Regardless, both 

products drove transition into Bifidobacterium-rich communities, that were more 

functionally comparable than infants who did not receive probiotics. The study provided 

a highly necessary foundation and will help provide a framework for identifying 

important aspects for consideration when designing interventional trials targeting the 

gut microbiome of preterm infants.  

 

Comparing this ‘healthy’ cohort to infants who went on to develop NEC revealed 

differential patterns in microbiome development at the start of life and microbial 

signatures prior to NEC onset such as an increase in the relative abundance of K. 

variicola and a decrease in the relative abundance of Bifidobacterium spp. Notably, K. 
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variicola has been noted as an emerging human pathogen (Rodríguez-Medina et al., 

2019), likely previously misidentified as K. pneumoniae. Whilst not specifically 

implicated in disease onset in previous studies, Klebsiella spp. and in particular K. 

pneumoniae have previously been found to be significantly higher in the days leading 

up to disease onset (Coleman et al., 2023; Olm et al., 2019; Paveglio et al., 2020; C. 

Zhang et al., 2012). That said, Klebsiella were one of the most abundant genera in the 

healthy cohort and so are not solely responsible for NEC based on their high 

abundance, in fact the onset of NEC is clearly much more complex, hence being 

described a multifactorial disease (Neu, 2020). Conversely, the reduction in the relative 

abundance of Bifidobacterium supports the notion that Bifidobacterium have more 

health promoting benefits, and are potentially protective against NEC in preterm 

infants, although a mechanism of protection is not fully understood. Whilst these results 

do support those associations found in previous studies (Coleman et al., 2023; Olm et 

al., 2019; Pammi et al., 2017; Stewart et al., 2016; Warner et al., 2016), it is also 

important to note that the results described here all rely on relative abundance data. 

Relative abundance data refers to the proportion of each microbe in relation to the total 

number of microbes. This means that absolute numbers cannot be deduced, and it is 

therefore unclear whether K. variicola, for example, truly increases prior to disease 

onset or whether another microbe decreases (i.e, Bifidobacterium) or vice versa. To 

overcome this, absolute quantification of significant features identified, such as qPCR 

could be used to validate findings. Alternatively, future studies where data is yet to be 

acquired could look to use internal standards, for example the spike-in method (either 

DNA-based or cell-based), where known quantities of synthetic DNA or DNA/cells from 

rare gut microbes are added to samples (Rao et al., 2021; Zaramela et al., 2022).  

 

Differences were observed dependent on whether probiotics were received, or the type 

of probiotic received. This is the first-time microbial signatures of NEC have been 

explored within the context of probiotics and it was evident that the two products 

showed differences in persistence and engraftment of their respective species in 

infants who developed disease. This in itself represents an interesting point for 

discussion regarding targeted probiotic intervention, and further exemplifies how 

probiotics unlikely follow a ‘one-size-fits-all’ convention, with microbial changes being 

highly individualised. The only consistent predicters of probiotic persistence was the 

type of probiotic used (i.e., the different strains between the different products) and 
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whether an infant developed NEC. Whilst the latter cannot feasibly be used clinically 

to target probiotic intervention, since there is no specific indication preceding 

diagnosis, this still warrants further research. 

 

Probiotics were found to significantly influence alpha diversity measures in healthy 

infants, with Shannon diversity being significantly higher in Labinic infants. 

Interestingly, whilst Shannon diversity has been found to be significantly lower before 

NEC diagnosis in other studies (McMurtry et al., 2015; Warner et al., 2016; Zhou et al., 

2015), this was not the case in this cohort. Instead, whilst species richness was 

significantly lower prior to diagnosis, Shannon diversity was similar to no-NEC controls. 

This indicates that although there was a reduction in the number of species (richness) 

pre-NEC, the distribution of remaining species was unaffected. Whilst the gut 

microbiome clearly plays an important role in the development of NEC, demonstrated 

by some of the associations described here and elsewhere, it is evident that other 

factors (i.e., probiotics, age, individual subject) explain more variation in the gut 

microbial population of preterm infants. This is perhaps unsurprising, with NEC now 

being commonly accepted as an umbrella term for multiple disease subtypes 

(Berrington & Embleton, 2022; Neu et al., 2018), alongside the difficulty in being able 

to fully capture the period of time during which more subtle microbial changes occur 

prior to disease onset. Interestingly, the microbial origins of NEC appeared different 

dependent on probiotic use. Whilst these differences were observed, suggesting 

probiotics to potentially affect the microbial origins of NEC, it is important to note 

numerous confounding clinical variables could also explain the changes observed. In 

fact, this is potentially more reflective of the different discrete time periods during which 

different probiotics were administered. Regardless, this poses an intriguing avenue for 

follow-up study. 

 

NEC can be considered an immune-mediated inflammatory disease, making the 

immune system in preterm infants an infinitely important aspect of consideration. In 

Chapter 5, data surrounding preterm systemic immunity was integrated with gut 

microbial and metabolomic data, in order to better understand the relationships 

between these parameters and to unpick this complex interplay within the population. 

Whilst previous studies have explored the microbial-immune axis in preterm infants 

(Lemme-Dumit et al., 2022; McDavid et al., 2022), no study to date has integrated 
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metagenomics, metabolomics and T-lymphocyte data. In fact, a recent study exploring 

gut microbiome and immune development in preterm infants suggested the use of 

metagenomics and metabolomics to better resolve microbial species and functionality 

(McDavid et al., 2022). Therefore, incorporating multiple high-dimensional datasets, 

allowed for a more holistic understanding of this complex system and a more 

comprehensive view of the interactions that occur between microbes, the host, and the 

environment. The gut microbiome and metabolome showed the greatest concordance, 

with little robust correlation seen between the circulating host immune system and the 

gut environment, consistent with the stool and serum metabolomics data presented in 

Chapter 3. It is likely that the majority of microbiota-mediated immune effects are site-

specific and that these interactions between the gut microbiome and the immune 

system remain localised, meaning the impact on circulating T-lymphocytes would be 

minimal. Despite this, working with multiple high-dimensional datasets in this 

population still provides an important groundwork and direction for future studies. 

Together, this highlights the need to look at potential associations between the gut 

microbiome and immune system at more specific sites i.e., using resected intestinal 

tissue.  

 

Whilst potentially important bacterial features of NEC were identified, consistent with 

previous research (Coleman et al., 2023; Olm et al., 2019; Pammi et al., 2017; Stewart 

et al., 2016; Warner et al., 2016), these identified associations would need to be 

incorporated into models of disease such as organoids. This would help to validate the 

identified associations and whether certain taxa offer anti-inflammatory, pro-

inflammatory or other effects on host cells. In addition, building on identified 

associations with these models may offer mechanistic insights as to how these 

microbes may influence disease state. In summary, whilst metagenomic studies offer 

a huge amount of information, and a view of potential associations between the gut 

microbiome and NEC, following up with disease models is essential to transition from 

observational correlations to a deeper understanding of causality and mechanism, 

paving the way for therapeutic developments. 

 
6.2. Future work 

Since the focus of the results presented are largely based on observational studies 

and identified associations, future work should focus primarily on validating these 
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findings and confirming causality. Following on from the findings in Chapter 4 in 

particular, whereby potential biomarkers of NEC were identified, future work should 

focus on building on these identified associations. For example, these studies may 

wish to test specific bacteria on preterm organoids or other models of NEC and 

assessing whether they exacerbate or reduce inflammation, impact barrier integrity or 

alter gene expression profiles. This would help to better understand the 

pathophysiology of NEC and whether these identified associations are cause or effect. 

In addition, the correlations observed between specific metabolites and T-lymphocyte 

markers in Chapter 5 warrants validation using an immune cell model. 

 

Furthermore, the work described in this thesis pertains to a single NICU and it is 

therefore important to consider differences across sites. To validate these findings, 

external cohorts could be used such, as done in Chapter 3. 

 

One of the major drawbacks when integrating stool metabolomics and metagenomics, 

is that it cannot be easily deduced using current methodology whether metabolites are 

microbially derived, or whether they are derived from the host or as a direct dietary 

source. Although this is a near impossible challenge to fully deduce the origin of gut 

metabolites, future work may wish to use functional metagenomic data in parallel to 

see whether some of the metabolites identified could potentially be produced by the 

gut microbiota, and which members at least have the capacity of producing these. This 

may help to further unpick the complex interplay between diet, microbiota, metabolome 

and the immune system. Further to this, the associations identified with specific T-

lymphocyte markers could be tested experimentally on T-lymphocyte lines in the lab 

i.e., exposing cells to the metabolites and pooled gut communities and assessing 

marker expression. 

 

Finally, much of the work relies on the use of relative abundance, which as described 

can be misleading and is not necessarily an accurate representation of true 

abundance. To quantify significant taxa, qPCR could be used to confirm 

increases/decreases in relative abundance between groups. Additionally, future 

studies may wish to consider quantification using a spike-in method, as previously 

described. 
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