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Abstract

Depending on the required scale, modern data-orientated applications are built on top of

either many-core or distributed OLTP databases. In both architectures, database concurrency

control is a performance critical component. Additionally, in distributed OLTP databases,

where a transaction can span across multiple data partitions, distributed atomic commitment is

a necessity; unless the latter is designed judiciously, it can significantly degrade performance.

This thesis explores both facets to address the inefficiencies and limitations of existing

work. The wait-hit protocol is a serializable concurrency control protocol that is designed to

offer high performance across all scale points. This thesis also investigates mixed serialization

graph testing by applying the recently revived graph-based approach to concurrency control,

which minimizes unnecessary aborts, to cater for transactions running at weaker isolation

levels, a phenomenon common in practice. Protocols are developed for ensuring reciprocal

consistency and edge-order consistency in distributed graph databases, guarantees unique

to graph databases which without sufficient concurrency control can be violated causing

irreparable data corruption. Finally, we demonstrate that epoch-based distributed databases

can amortize atomic commitment costs. In addition to developing an analytical model

for choosing the optimal epoch size in such databases, this thesis presents epoch-based

multi-commit which can reduce wasted work when database nodes fail.

Each protocol has been subjected to extensive performance evaluation either through

simulations or implementation. Our experiments show that each protocol offers a marked

improvement over the current state-of-the-art.
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Modern data-orientated applications are built on top of online transaction processing

(OLTP) database management systems (DBMSs). These DBMSs are either many-core,

single-node systems with 10s or 100s of cores, or distributed, multi-node systems each

storing a disjoint portion of the database. In both types of database, concurrency control

is a performance critical component. Concurrency control approaches are typically clas-

sified as pessimistic or optimistic [12]. The performance of each approach differs based

on workload characteristics and database type. Many-core databases opt for optimistic

approaches [58, 110, 122], whereas it has been demonstrated that for distributed databases

pessimistic approaches generally perform better [54]. Thus, transitioning from a many-core

to distributed deployment often requires re-architecting the concurrency control strategy

to avoid poor performance, which is not compatible with the modern cloud environment

and user expectations. Contemporary cloud providers offer users a wide range of hardware

options, enabling them to scale easily from a single-core machine to a many-core machine,

to deployments spread across data centers and the globe. Naturally, when users deploy

DBMSs in the cloud they expect performance to scale seamlessly as hardware resources are

scaled, without needing to consider the performance implications imposed by the underlying

concurrency control strategy.

In OLTP DBMSs, another aspect that significantly impacts performance is the isolation

guarantee provided. The gold standard isolation level is Serializability, which guarantees that

concurrent transactions appear to have been isolated from each other, sequentially executing

over the database which, assuming transactions are individually correct, guarantees a correct

DBMS state [12]. In practice, efficient implementation of serializable transaction processing

is challenging and its performance often unpalatable for applications’ requirements [85,

99]. Thus, DBMSs allow transactions to be executed at different, weaker isolation levels,

e.g., Read Committed [1, 51]. Weaker isolation levels increase the number of permissible

executions compared to Serializability, which allows for more concurrency, thus higher
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throughput and lower latency. But, this comes at the cost of potential non-serializable,

anomalous behaviour. Despite the ubiquitous usage of weak isolation in practice, the

majority of research has focused on making the processing of transactions with Serializable

isolation performant [85], leaving the efficient support of processing transactions with weaker

isolation guarantees underserved.

The quest for high DBMS performance at scale, combined with the misguided notion

that transactions are inherently non-scalable, fueled the development of numerous distributed

NoSQL databases, e.g., DynamoDB [26]. These databases forgo cross-partition transactional

semantics, at best offering transactions within a single partition. This is suitable for databases

with a key-value or document data model, but problematic for one class of database: graph

databases (GDBMS) [92]. Graph databases use the labelled property graph data model in

which data is modeled as nodes and edges, which additionally can be labelled and have

properties. Unfortunately, system designers have attempted to build graph databases by

adding a graph layer on top of NoSQL databases, e.g., JanusGraph [61]. The lack of

cross-partition concurrency control can violate graph integrity and cause irreparable data

corruption [41].

In distributed DBMSs that do provide cross-partition, distributed transactions, getting all

partitions to agree on the outcome of a transaction requires an atomic commitment protocol

(normally, two-phase commit (2PC) [12]), which is a well-established bottleneck that can

significantly degrade performance. Numerous techniques have tried to avoid or minimize

distributed transactions [23, 24], or avoid 2PC all together [71, 104]. One promising approach

is epoch-based commit, which proposes that 2PC be executed only once for all transactions

processed within a time interval called an epoch, rather than executed per-transaction [72].

However, determining the right epoch size for a given workload and cluster configuration

remains a challenge and is key to achieving the desired throughput and latency. Additionally, a

unfortunate drawback with epoch-based commit is if a database node fails then all transactions
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within the group must be rolled back and re-executed, potentially resulting in a significant

degree of wasted work.

1.1 Research Challenges

In this section, given the outstanding issues introduced above we now describe in more

depth the research challenges in OLTP database concurrency control and atomic commitment

addressed in this thesis.

A Concurrency Control Protocol for Any Scale

Modern cloud providers enable users to scale easily from a many-core machine, to a de-

ployment spread across data centers and the globe through the provision of a wide array

of hardware options. Naturally, when users deploy DBMSs in the cloud they expect the

performance of a DBMS to scale as hardware resources are scaled. A critical component

in realizing high performance in a DBMS is concurrency control. Unfortunately, many

concurrency control protocols are not designed to scale well; a protocol architected for one

scale point inevitably needs to be re-adapted for another. This thesis addresses the challenge

of designing a high-performance concurrency control protocol that can effectively scale from

a single core, to multicore, to the globe whilst offering good performance at each scale point,

without having to relax from the gold standard isolation level, Serializability.

High Performance Weak Isolation

Weak isolation is common in practice, with practical DBMSs in fact being mixed systems,

supporting a range of weaker isolation levels. Yet research has primarily focused on improv-

ing serialization transaction processing performance. A recent development in serializable

transaction processing has been the revival of graph-based concurrency control, which was



1.1 Research Challenges 5

historically deemed nonviable due to concerns over the computational costs of maintaining

an acyclic conflict graph. Graph-based concurrency control has the theoretically optimal

property of accepting all and only valid schedules and has been demonstrated to offer com-

parable, and often higher, performance when compared to traditional and contemporary

concurrency control protocols in a many-core database. This thesis explores the question,

how can graph-based concurrency control be extended to a mixed DBMS supporting transac-

tions executed at weak isolation levels, whilst accepting all and only valid executions? Such

an approach would permit higher concurrency and performance.

Preserving Edge Consistency

Several contemporary distributed graph databases (e.g., JanusGraph) use existing NoSQL

databases (e.g., Apache Cassandra) as a storage backend, adapting them with an API in

order to handle a graph data model. This approach is attractive as the underlying store offers

high scalability. However, it only offers weak isolation guarantees across database nodes

which has serious ramifications for the integrity of graph database systems and can lead to

irreversible database corruption. This thesis will address the challenge of developing a suite

of lightweight concurrency control protocols tailored for graph database workloads, which

maintain graph integrity and offer suitable transactional throughput and latency.

Optimizing Epoch-Based Commit

Achieving good performance in an epoch-based distributed database requires the database

operator to select the right epoch size. This thesis develops two analytical models to estimate

throughput and average latency in terms of epoch size taking into account load and failure

conditions. Additionally, this thesis addresses the challenge of developing an epoch-based

commit protocol that avoids rolling back all transactions within an epoch in the event of a
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single node failure. Reducing wasted work decreases system load resulting from retries, and

improves performance and user experience.

1.2 Contributions

The work presented in this thesis addresses the research challenges in Section 1.1 and makes

the following contributions:

(i) Development and evaluation of the wait-hit protocol (WHP), a general purpose con-

currency control protocol for any scale. It can effectively scale vertically, as the core

count is increased on a given machine and horizontally, as the number of machines is

increased in a cluster, whilst providing Serializable isolation.

(ii) Design and evaluation of mixed serialization graph testing (MSGT), a concurrency

control protocol for mixed DBMSs. MSGT extends graph-based concurrency control to

mixed environments using Adya’s mixing-correct theorem [1]. It preserves the desirable

property of minimizing the number of aborted schedules, whilst providing database

operators with a selection of isolation levels.

(iii) Three concurrency control protocols that guarantee the preservation of graph integrity in

a distributed graph database are introduced and evaluated. Specifically, these protocols

ensure reciprocal consistency [41] and edge-order consistency, guarantees unique to

graph databases, are maintained.

(iv) Development of two analytical models of epoch-based commit to aid database adminis-

trators in selecting the epoch size that offers the desired trade-off between throughput

and latency.
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(v) Proposal of epoch-based multi-commit, which aims to minimize number of aborted

transactions when failures occur, but also performs identically to epoch-based commit

when failures do not occur.
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1.3 Thesis Structure

This section provides the thesis structure, with an abridged chapter-by-chapter summary. The

thesis structure is summarized in Figure 1.1.

Thesis

Concurrency Control (Chs.3-5)

Atomic Commitment (Ch.6)

Serializability (Ch.3)

Weak Isolation (Ch.4)

MSGT Protocol

Implementation

Wait-Hit Protocol

Implementation

Reciprocal Consistency (Ch.5)

Delta Protocol

Simulation

Det-RC Protocol

Simulation

Epoch-based Commit

Simulation

Epoch-based Multi Commit

Simulation

Fig. 1.1 Thesis Structure. Topics are given in boxes with square corners. Algorithmic
contributions are illustrated with rounded boxes and shaded in orange; the performance
evaluation technique used is shaded in blue.

Chapter 1 presents the motivations behind the work carried out as part of this thesis, high-

lights the main contributions of the research, and describes the related peer-reviewed

publications produced across the course of the PhD.

Chapter 2 describes the necessary technical background material closely linked with the

work performed in the chapters of this thesis.

Chapter 3 develops the wait-hit protocol, an optimistic multi-versioned concurrency control

protocol that scales vertically, with the core count, and horizontally, with the cluster size.

We compare the protocol’s performance against classical and state-of-the-art protocols

on metrics such as throughput, latency, and proportion of aborted transactions.
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Chapter 4 investigates the widespread availability of weak isolation in commercial and

open source database systems, and proposes mixed serialization graph testing. A

concurrency control protocol that gives high performance on servers with many-

cores minimizes the number of unnecessary aborts, and crucially permits concurrent

transactions to be executed at a range of isolation levels. We evaluate the protocol’s

performance using several popular transaction processing benchmarks that have been

augmented to generate workloads containing transactions declared with different

isolation requirements.

Chapter 5 outlines the design of two protocols that preserve reciprocal consistency and one

that preserves edge-order consistency in a distributed graph database. Approximate

models are developed for each protocol to allow for a comprehensive performance

evaluation. To the best of our knowledge this is the first attempt to develop concurrency

control protocols specifically catered for graph databases.

Chapter 6 develops two analytical models of epoch-based commit. These allow for the

choosing of an epoch size that maximizes throughput, minimizes average response

time, or seeks a trade-off between them. Additionally, epoch-based multi-commit is

presented which aims to minimize transaction aborts in the event of node failures. We

execute a performance study of the protocols.

Chapter 7 summarizes the conclusions of each chapter in this thesis and outlines the areas

for future work.

1.4 Publications

Across the course of my PhD I have contributed to nine peer-reviewed publications, five of

which have directly contributed to this thesis. Contributing publications are listed below in
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reverse chronological order, with the relevant thesis chapter indicated. A short description is

provided for each publication.

Waudby, J., Ezhilchelvan, P., Mitrani, I. and Webber, J., 2022. A Performance Study of

Epoch-based Commit Protocols in Distributed OLTP Databases. To appear: In 41st

International Symposium on Reliable Distributed Systems, SRDS. [Chapter 6]

Description: distributed OLTP systems execute the high-overhead, 2PC protocol at the end

of every distributed transaction. Epoch-based commit proposes that 2PC be executed only

once for all transactions processed within a time interval called an epoch. Increasing epoch

duration allows more transactions to be processed before the common 2PC. It thus reduces

2PC overhead per transaction, increases throughput but also increases average transaction

latency. Therefore, the ability to choose the right epoch size that offers the desired trade-off

between throughput and latency is required. To this end, we develop two analytical models to

estimate throughput and average latency in terms of epoch size taking into account load and

failure conditions. We then present epoch-based multi-commit which, unlike epoch-based

commit, seeks to avoid all transactions being aborted when failures occur, and also performs

identically when failures do not occur. Our performance study identifies workload factors

that make it more effective in preventing transaction aborts and concludes that the analytical

models can be equally useful in predicting its performance as well.

Waudby, J., Ezhilchelvan, P., and Webber, J., 2022. Pick & Mix Isolation Levels: Mixed

Serialization Graph Testing. To appear: In Proceedings of the 14th TPC Technology

Conference on Performance Evaluation & Benchmarking. [Chapter 4]

Description: Serialization graph testing (SGT) faithfully implements the conflict graph

theorem by aborting only those transactions that would actually violate serializability (intro-

duce a cycle), thus maintaining the required acyclic invariant. Historically, SGT was deemed

unviable in practice due to the high computational costs of maintaining an acyclic graph.
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Research has however overturned this historical view by utilizing the increased computational

power available due to modern hardware. Furthermore, a survey of 24 databases suggests

that not all transactions demand conflict serializability but different transactions can perfectly

settle for different, weaker isolation levels which typically require relatively lower overheads.

Thus, in such a mixed environment, providing only the isolation level required of each

transaction should, in theory, increase throughput and reduce aborts. This paper extends

SGT for mixed environments subject to Adya’s mixing-correct theorem and demonstrates

the resulting performance improvement. We augment the Yahoo! Cloud Serving Benchmark

(YCSB) benchmark to generate transactions with different isolation requirements. Mixed

serialization graph testing can achieve up to a 28% increase in throughput and a 19% decrease

in aborts over SGT.

[115] Waudby, J., 2022. High Performance Mixed Graph-Based Concurrency Control. In

Proceedings of the VLDB 2022 PhD Workshop co-located with the 48th International

Conference on Very Large Databases. [Chapter 4]

Description: this is an abridged version of “Pick & Mix Isolation Levels: Mixed Serialization

Graph Testing”.

[116] Waudby, J., Ezhilchelvan, P., Webber, J. and Mitrani, I., 2020. Preserving reciprocal

consistency in distributed graph databases. In Proceedings of the 7th Workshop on

Principles and Practice of Consistency for Distributed Data (pp. 1-7). [Chapter 5]

Description: reciprocal consistency is an important property that must be preserved in

distributed graph databases, failure to do so seriously undermines the integrity of the database

itself in the long term. Reciprocal consistency can be maintained as a part of enforcing

any known isolation guarantee and such an enforcement is also known to lead to reduction

in performance. Therefore, in practice, distributed graph databases are often built atop

basically available soft state (BASE) databases with no isolation guarantees, benefiting from
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good performance but leaving them susceptible to corruption due to violations of reciprocal

consistency. This paper designs and presents a lightweight, locking-free protocol and then

evaluates the protocol’s abilities to preserve reciprocal consistency and also offer good

throughput. Our evaluations establish that the protocol can offer both integrity guarantees

and sound performance when the value of its parameter is chosen appropriately.

[40] Ezhilchelvan, P., Mitrani, I., Waudby, J. and Webber, J., 2019, November. Design and

Evaluation of an Edge Concurrency Control Protocol for Distributed Graph Databases.

In European Workshop on Performance Engineering (pp. 50-64). Springer, Cham.

[Chapter 5]

Description: a new concurrency control protocol for distributed graph databases is described.

It avoids the introduction of certain types of inconsistencies by aborting vulnerable transac-

tions. An approximate model that allows the computation of performance measures, including

the fraction of aborted transactions, is developed. The accuracy of the approximations is

assessed by comparing them with simulations, for a variety of parameter settings.

Other Publications

The remaining four peer-reviewed publications result from collaboration with the Linked

Data Benchmark Council (LDBC) Social Network Benchmark (SNB) Benchmarking Task

Force of which I am a member. These are not included in the thesis, but are demonstrations

of my research skills.

Szarnyas, G.,Waudby, J., Steer, B., Szakallas, D., Birler, A., Wu, M., Zhang, Y., and Boncz,

P. 2023. The LDBC Social Network Benchmark: Business Intelligence workload. To

appear: In Proceedings of the VLDB Endow. 2023.

Description: the LDBC SNB’s Business Intelligence (BI) workload is a comprehensive graph

OLAP benchmark targeting analytical data systems capable of supporting graph workloads.
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This paper presents SNB BI experiments on both a relational and a native graph database

system. SNB BI advances the state-of-the art in synthetic and scalable analytical database

benchmarks in many aspects.

[118] Waudby, J., Steer, B., Prat-Perez, A., and Szarnyas, G., I., 2020. Supporting Dynamic

Graphs and Temporal Entity Deletions in the LDBC Social Network Benchmark’s

Data Generator. In Proceedings of the 3rd Joint International Workshop on Graph

Data Management Experiences & Systems (GRADES) and Network Data Analytics

(NDA) (pp. 1-8).

Description: this work extends the LDBC SNB data generator by introducing lifespan

attributes for the creation and deletion dates of its graph entities to allow for the generation

of a temporal dynamic graph. This allows for the definition of complex deletions in LDBC

SNB benchmarks which further challenges the performance of graph processing systems.

[117] Waudby, J., Steer, B., Karimov, K., Marton, J., Boncz, B., and Szarnyas, G., I., 2020.

Towards Testing ACID Compliance in the LDBC Social Network Benchmark. In

Proceedings of the 12th TPC Technology Conference on Performance Evaluation &

Benchmarking.

Description: verifying ACID compliance is an essential part of database benchmarking,

because the integrity of performance results can be undermined as the performance benefits of

operating with weaker safety guarantees (at the potential cost of correctness) are well known.

Traditionally, benchmarks have specified a number of tests to validate ACID compliance.

However, these tests have been formulated in the context of relational database systems and

SQL, whereas our context is systems for graph data, many of which are non-relational. This

paper presents a set of data model-agnostic ACID compliance tests for the LDBC SNB suite’s

Interactive workload, a transaction processing benchmark for graph databases. We test all
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ACID properties with a particular emphasis on isolation, covering 10 transaction anomalies

in total. We present results from implementing the test suite on five database systems.

[77] Mhedhbi, A., Lissandrini, M., Kuiper, L., Waudby, J., and Szarnyas, G., I., 2021.

LSQB: A Large-Scale Subgraph Query Benchmark. In Proceedings of the 3rd Joint In-

ternational Workshop on Graph Data Management Experiences & Systems (GRADES)

and Network Data Analytics (NDA) (pp. 1-11).

Description: this paper introduces Labelled Subgraph Query Benchmark (LSQB), a new

large-scale subgraph query benchmark. LSQB tests the performance of database management

systems on an important class of subgraph queries overlooked by existing benchmarks. LSQB

contains a total of nine queries and leverages the LDBC social network data generator for

scalability. The benchmark gained both academic and industrial interest and is used internally

by 5+ different vendors.
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Summary

This chapter provides core background material underpinning the work conducted in this

thesis; later chapters introduce additional material as and when neccessary. Section 2.1

outlines database concurrency control, specifically, the concepts of Serializability and

weak isolation, along with various concurrency control strategies and how these have

been applied in many-core and distributed DBMSs. In Section 2.1, we also discuss recent

advances in mitigating against the overhead of 2PC. Section 2.2 provides an overview of

graph processing, focusing on graph databases. It introduces the notions of Reciprocal

Consistency and Edge-Order Consistency outlining how they can be violated given

insufficent concurrency control in a common distributed graph database architecture.

Lastly, in Section 2.3 we describe the evaluation techniques used in the thesis and the

evaluation frameworks used at various points throughout the thesis to analyze protocol

performance. Where appropriate we state which chapter the background material is

relevant to.

2.1 Database Concurrency Control

Definition 1 (OLTP DBMSs) Online transaction processing (OLTP) DBMSs respond to

and concurrently process a large number of relatively simple database transactions in

real-time.

Concurrency control is an integral component in an OLTP DBMS. Even if transactions are

individually correct and there are no system failures, the operations of concurrently executing

transactions can interleave in a manner such that the database state is left inconsistent.

Concurrency control is responsible for ensuring that the effects of concurrently executing

transactions are logically isolated from each other, providing each with the illusion of running

alone in the DBMS.



2.1 Database Concurrency Control 17

Definition 2 (Concurrency Control) A concurrency control mechanism is used in order for

OLTP DBMSs to maintain data consistency when executing multiple database transactions

at the same time.

2.1.1 Serializability (Relevant to Chapter 3)

Definition 3 (Database Isolation) Database isolation is a database’s ability to allow a

transaction to execute as if it is alone in the system, even though there may be a large

number of concurrently running transactions. The degree of isolation is determined by the

concurrency control mechanism. The strongest isolation level is Serializability.

The DBMS component responsible for providing concurrency control is the scheduler,

which enforces a correctness criterion called Serializability. An execution of transactions is

serializable if it produces a database state equivalent to some serial execution of the same set

of transactions; assuming transactions are individually correct, a serial execution trivially

ensures a consistent database state [12].

In practice, schedulers enforce a stronger condition called Conflict Serializability, which

is sufficient to ensure an execution is serializable. An execution of transactions in a DBMS

can be represented by a schedule, a time ordered sequence of their operations. For example,

consider transactions T1, T2, and T3 shown in schedule s below; a write on item x by

transaction Ti is denoted by wi[x], a read by ri[x], and a commit operation by ci.

s = w1[x] r2[x] r2[y] w1[y] w2[z] w3[z] r3[x] c1 c3 c2

As shown in Figure 2.1, the schedule s can be represented by a conflict graph CG(s). Each

transaction is represented by a node in the graph. A conflict exists between two transactions

if they both operate on the same data item and at least one operation is a write, thus, changing

the order of these operations could alter the behaviour of at least one of the transactions.
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In a conflict graph, conflicting operations ai of Ti and b j of Tj such that ai[x] < b j[x],

where Ti ̸= Tj, are represented by an edge Ti→ Tj in the graph; possible conflict pairs are

(a,b) ∈ [(r,w),(w,r),(w,w)]. For example, in s, T2 reads x after T1 writes to x, thus there

exists an edge from T1 to T2 in Figure 2.1. An execution of transactions and its corresponding

schedule is conflict serializable if a serial ordering of transactions that satisfies all conflict

edges can be found. Such a serial ordering exists iff the conflict graph is acyclic. This is

known as the conflict graph theorem [12]. Note, s is not conflict serializable because CG(s)

in Figure 2.1 contains a cycle.

Theorem 1 (Conflict Graph Theorem) A schedule s is conflict serializable iff its corre-

sponding conflict graph CG(s) is acyclic.

T1 T2 T3

Fig. 2.1 Conflict graph representation of s.

2.1.2 Weak Isolation (Relevant to Chapter 4)

Definition 4 (Weak Isolation) Weak isolation refers to the set of databases isolation levels

weaker than Serializability. Here weaker means the database increases the number of

allowable executions.

Weak isolation refers to the set of isolation guarantees that increase the number of allowable

executions compared to Serializability. Permitting more executions can increase performance,

at the cost of possible non-serializable behaviour. Weak isolation levels were first introduced

in [51], which describes four “degrees of consistency” (Degree 0-3) that provide transac-

tions with increasing levels of protection from concurrent transactions. However, these
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definitions are only applicable to single-versioned systems using lock-based concurrency

control (see Subsection 2.1.3). The ANSI/ISO SQL-92 [76] specification aimed to define an

implementation-independent standard for weak isolation, supporting lock, validation, and

timestamp-based concurrency control mechanisms (see Subsection 2.1.3). The isolation

levels proposed in the ANSI/ISO SQL-92 specification are written down informally in terms

of anomalies1 they prevent: Read Uncommitted prevents no anomalies, Read Committed

disallows Dirty Reads, Repeatable Read disallows both Dirty Reads and Fuzzy Reads, while

Serializable additionally disallows Phantoms.

Flaws with the ANSI/ISO SQL-92 specification were identified in [11]. Their informal

definitions offer multiple interpretations, some of which result in inconsistencies. Further,

they do not account for known anomalies such as Lost Updates and Dirty Writes, or concur-

rency control mechanisms used in multi-versioned systems. Thus, Berenson et al. in [11]

proposed a new set of correct, precise, isolation definitions, but acknowledged these defini-

tions were disguised redefinitions of the earlier lock-based characterization in [51]. To rectify

this Adya [1] introduced a framework extending the theory of multi-versioned serialization

graphs to weak isolation; the differences between isolation levels being expressed in terms of

specific cycles they prohibit in the serialization graph.

Using Adya’s formalism the authors of [8] analyzed ACID2 isolation levels and replicated

data consistency guarantees through the lens of high availability. They proposed several new

isolation levels: Monotonic Atomic View, Predicate-Cut and Item-Cut and provided a new

definition for Snapshot Isolation. Building on [8] a new isolation level called Read Atomic

was proposed in [9]. Recently, a new client-centric state-based formalization for isolation

levels was proposed by [22].

Despite the aforementioned theoretical advancements, database concurrency control

research has primarily focused on improving the performance of Serializable transaction

1Anomalies are colored red.
2Atomicity, consistency, isolation, durability.
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processing [85]. Yet weak isolation is more commonly used in practice than Serializable

isolation [85] and Read Committed is in fact the default isolation level for the majority of

databases [8]. In Chapter 4, we attempt to address this disconnect by leveraging Adya’s

formalization of weak isolation to develop a high performance concurrency control protocol

for many-core databases that supports transactions executing at a range of isolation levels.

2.1.3 Concurrency Control Approaches (Relevant to Chapter 3)

The algorithms used by schedulers vary and have developed in response to changes in

hardware (technological advancements and costs reductions) and workload profiles. Broadly

speaking, there are four types of concurrency control algorithms: lock-, timestamp-, graph-

and validation-based, with some systems using a hybrid approach [113]. Additionally,

these algorithms are classified into pessimistic, which assumes non-serializable behaviour

will happen and pro-actively prevents such behaviour by delaying transactions, and opti-

mistic approaches, which assume non-serializable behaviour will not happen and only fixes

things when such behaviour is detected, normally by aborting and restarting the offending

transaction(s).

We now provide a brief summary of each concurrency control approach.

Lock-based Lock-based concurrency control is a pessimistic approach in which transac-

tions acquire locks to access data items. There is a variety of locking schemes, the simplest

being shared/read and exclusive/write locks. Transactions hold all locks they have acquired

(growing phase) until they have completed their operations, at which point they release

locks (shrinking phase), this approach is known as two-phase locking (2PL); if all acquired

locks are released together it becomes strict two-phase locking (S2PL) [39]. Locking can

delay transactions but avoids rollbacks unless deadlocks occur. In 2PL deadlocks can occur

when several transactions are waiting for a resource held by one of the others and none

can progress. There are several deadlock management strategies: (i) maintain a waits-for
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graph (deadlocks manifest as cycles), (ii) use timestamps and employ either wait-die or

wound-wait to determine whether transactions should abort or wait for the lock, and (iii)

prevent deadlocks happening; normally achieved by making transactions access data in some

fixed order.

Timestamp-based Timestamp-based concurrency control is known as timestamp ordering

(TO) and is an optimistic approach in which transactions are assigned unique (logical or

real-time) timestamps, and additional meta-data is stored with each data item. Specifically,

for a data item, the DBMS stores the timestamps of the latest reading transaction, and the

latest writing transaction, along with a commit flag, indicating whether the latest writing

transaction is active or not. The scheduler uses this information to determine whether a

transaction’s operations are physically realizable, or the transaction must be aborted and

restarted. As a general rule, TO is more suited to workloads consisting mostly of read-only

transactions, but will suffer when conflicts are high and will result in frequent aborts and

retries. Compared with 2PL, TO does not delay transactions but can cause rollbacks, which

leads to a more serious delay and wasted resources. Note, if the DBMS stores multiple

versions per data item then multi-version TO, often referred to as multi-version concurrency

control (MVCC) can be used, which decreases the chance a read operation will cause a

transaction to abort. The scheduler now creates a new version of a data item for each valid

write, assigned with the writing transactions timestamp. When scheduling a read operation it

locates the version that was written immediately before the transaction started.

Validation-based Validation-based concurrency is also an optimistic approach (often

referred to as optimistic concurrency control (OCC)) that allows transactions to proceed

without acquiring locks or checking timestamps, but at the appropriate time performs some

validation before aborting or committing a transaction [66]. For a transaction, OCC requires

the scheduler be informed of its write and read sets prior to execution. Then, a transaction
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is executed in three phases: (i) read, the transaction executes all reads in its read set and

computes all values arising from writes in its write set into a private workspace; (ii) validate,

the scheduler validates the transaction by comparing its write and read sets with other

transactions. If successful the transaction proceeds to the next phase, else it is aborted; (iii)

write, each write in the transaction’s private workspace is written into the database. There

are two validation strategies, (i) backward-oriented, validate the read set of the validating

transaction with the write set of all transactions that were not committed before the start of

the validating transaction, or (ii) forward-oriented, the write set of the validating transaction

needs to be disjoint with all concurrent read-phase transactions.

Graph-based In graph-based concurrency control, often referred to as serialization graph

testing (SGT), the scheduler maintains an acyclic serialization graph over the execution

it controls. When a transaction desires to execute an operation, all resulting conflicts are

calculated and corresponding edges inserted into the conflict graph. The operation proceeds

provided the introduction of new edges did not create a cycle, in such cases the transaction

is aborted. SGT has the theoretically optimal property of accepting all and only conflict

serializable executions, offering a higher degree of concurrency and minimizing aborted

transactions compared to alternative approaches. Several SGT variants exist [12] in addition

to basic-SGT described above. Conservative-SGT never rejects any operations, but requires

transactions to predeclare write and read sets so operations can be scheduled and executed

with respect to some order that preserves the acyclicity of the conflict graph. In certifier-SGT,

transactions execute operations optimistically, detecting conflicts as they progress, followed

by a certification at commit time. There are several issues unique to SGT that must be

addressed, specifically, (i) when nodes can be safely deleted from the conflict graph, (ii) how

to detect conflicts, and (iii) how to check for cycles efficiently. SGT was, in fact, considered

impractical due to (iii) the costs of cycle checking.
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2.1.4 Many-Core Database Concurrency Control (Relevant to Chapters 3 and 4)

Definition 5 (Many-Core Databases) A many-core database is a DBMS that is running on

a single machine that has several CPU cores, often up to 100 cores.

The strategies described in Subsection 2.1.3 do not scale well with recent hardware

trends, namely, the advent of machines with many-cores, often in the magnitude of 100

cores. Due to 2PL’s poor performance in such a setting, systems employ an optimistic

strategy using timestamp allocation. These protocols have three key problems: (i) OCC

requires an exclusive verification phase at commit time, which as the number of cores is

increased, leads to high contention during this phase, resulting in extremely low throughput,

(ii) such protocols require a global counter for timestamp allocation which can also become a

bottleneck, and (iii) when there is a significant amount of conflict (high contention) between

transactions then optimistic protocols typically exhibit a high number of aborts. These

pitfalls have led to numerous protocols each offering new optimizations with performance

varying dependent on workload characteristics, e.g., data skew, read ratio, payload size, table

cardinality, and transaction size. Several notable examples are: Silo [110], MOCC [113],

TicToc [122], BCC [123], and SGT [34] which are now described; for the interested reader

see [25, 32, 42, 53, 58, 62, 63, 69, 88, 100, 114, 120, 121] for other contemporary protocols.

To combat problems with timestamp allocation Silo introduces a novel way to calculate

transaction ids. The bits of transaction ids are divided in two, with higher bits representing a

system-wide global epoch counter of the transaction’s commit time, and lower bits being used

to distinguish transactions within the same epoch. However, the lower bits do not capture the

relative order within the same epoch, as a consequence only read-write dependencies can be

captured, which restricts concurrency. To avoid assigning global timestamps to transactions

TicToc lazily computes timestamps from a range of parameters such as read and write sets.

TicToc then checks whether these timestamps are valid.
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Mostly optimistic concurrency control (MOCC) attempts to mitigate OCC’s poor perfor-

mance under high contention by combining it with 2PL. For highly contended tuples, MOCC

uses 2PL and falls back to OCC for less contended ones. This is an appealing approach but

introduces the challenge of correctly detecting hot tuples, this behaviour is often transient

and can vary largely over time. Balanced Concurrency Control (BCC) attempts to reduce the

number of unnecessary aborts (false positives) in backward-oriented OCC. It proposes an

improved validation rule to determine non-serializable transaction schedules that exploits

essential dependency patterns. This vastly reduces aborts in high contention workloads,

however, this approach uses the same execution model as vanilla OCC and thus suffers from

the drawbacks of an exclusive verification phase.

Serialization Graph Testing takes a radically different approach in tackling the aforemen-

tioned problems with optimistic protocols. It dusts down the longtime discarded graph-based

concurrency control strategy. SGT possesses the theoretically optimal approach to concur-

rency control, but has never been subjected to exhaustive research, nor has it been deployed

in any commercial DBMS. An explanation for this is the general consensus that the approach

is merely impractical, due to the costs associated with cycle checking. In [34] this claim is

successfully refuted. Their key contribution was a highly concurrent graph data structure

used to represent the CG. Access to their graph data structure is governed by a node-level

locking structure. There are two types of node locks, shared locks, and exclusive locks.

Shared locks allow concurrent edge insertion and cycle checks. Exclusive locks are taken

only for commit critical checks. As stated in [12] a safe commit condition is to wait until a

node in the CG has no incoming edges, thus, the exclusive lock can be taken and released

quickly. If incoming edges exist, commitment is delayed. It has been demonstrated that

this approach scales well on modern, many-core, hardware: (i) cycle checking proceeds in

parallel, removing the bottleneck of OCC’s single-threaded validation phase, (ii) nodes in the

graph double up as transactions ids removing any dependence on global timestamps, and (iii)
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it accepts all conflict serializable schedules, removing all unnecessary aborts. SGT is used as

the basis for the development of the Wait-Hit Protocol in Chapter 3 and Chapter 4 utilizes

the concurrent graph data structure from [34] in the development of MSGT.

2.1.5 Distributed Database Concurrency Control (Relevant to Chapter 3)

Definition 6 (Distributed Databases) A distributed database is a DBMS that is running

across multiple machines. In this thesis, a distributed database is assumed to have a shared-

nothing architecture, with each machine responsible for managing a disjoint portion of the

total database.

A distributed, shared-nothing, DBMS is comprised of a number of partitions3, each

holding a disjoint portion of the complete database. In such a system, transactions can access

data at multiple partitions. These transactions are known as distributed or multi-partition

transactions (MPTs). Distributed transactions typically have one partition responsible for

coordinating their execution, which issues remote operations to the required remote partitions.

The fundamental difference between distributed and centralized transaction processing is

that the logically single commit/abort operation must now take place in multiple places.

The challenge here is two-fold. Firstly, it is important that each partition involved in the

processing of a transaction agree on its outcome, that is, if one partition desires to abort then

all must. Secondly, the nature of failures takes on a different complexion in a distributed

database.

Definition 7 (Atomic Commitment Protocols) An atomic commitment protocol, such as

two-phase commit (2PC), is responsible for ensuring a collection of servers participating in

a transaction, in the presence of partial failures, agree on the outcome of said transaction.

3Also referred to as shards or sites.
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In a centralized DBMS, failure is binary, either the system is up and transactions can

be processed, or it has failed and no transactions can be processed at all. In a distributed

system, however, there can be partial failures, some partitions may be functional while others

have failed. Thus, the challenge can be reformulated as achieving consistent termination

in the presence of partial failures. This challenge is delegated to an atomic commitment

protocol, such as two-phase commit (2PC), which is used by the transaction’s coordinator at

commit time to bring the set of servers participating in the transaction to agreement on the

transaction’s termination status (commit or abort) in a manner which is resilient to failures.

2PC consists of two phases: prepare and commit. During the prepare phase, the coordi-

nator requests a vote from the set of partitions involved in the transaction (participants) on

whether they wish to commit or abort the transaction. Once the coordinator has collected the

responses the commit phase begins. If any participant, the coordinator included, has voted to

abort the transaction, the coordinator issues an abort message to all participants. Else, the

coordinator broadcasts a commit message. When participants receive the commit or abort

message, they perform any necessary clean up, and send an acknowledgment back to the co-

ordinator. The coordinator also performs clean up during this phase but only responds to the

client with the transaction outcome after it receives acknowledgments from all participants.

A simplistic view is that 2PC can be merely glued onto any concurrency control protocol.

This is true for 2PL, which differs in a distributed database only in that locks are held until

participants have received the commit/abort message during 2PC. However, other concurrency

control protocols, such as OCC, require slightly different integration. For example, in OCC,

the validation phase is now performed when a participant receives the prepare message from

the coordinator. The outcome of the validation phase informs the response to the prepare

message.

A comprehensive performance evaluation of distributed concurrency control was per-

formed in [54], comparing four of the classic protocols described in Subsection 2.1.3: 2PL,
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TO, MVCC, OCC. The study investigated: (i) the impact of workload factors: degree of

contention, update rate, and the percentage of

MPTs, (ii) scalability: increasing the number of partitions/servers, (iii) the performance

over wide-area networks (WAN), and (iv) various different application scenarios, namely,

TPC-C [109] and the Product-Parts-Supplier (PPS) workload. Overall, the outlook on

distributed concurrency control performance was bleak. This is illustrated by the MPT

experiment, when transactions involved 2-4 partitions, throughput dropped by 12-40% across

all protocols. The study attributed the performance inhibition of MPTs to: (i) overhead of

sending remote requests, stalling and resuming execution, and (ii) 2PC. On a brighter note,

the scalability experiment did demonstrate that performance gains are possible, albeit limited.

Only once scaled to 64 servers did protocols display a 1.7–3.8× increase in throughput over

single-server throughput. However, as workload contention increased this dropped to a

0.2–1.5× gain.

Interestingly, whilst research in many-core concurrency control has shunned lock-based

approaches for optimistic ones, across the range of experiments performed it was 2PL with

NO-WAIT deadlock detection that performed best. OCC’s poor performance was attributed to

the overheads of validation and copying during transaction execution, whereas both MVCC

and TO block newer transactions that conflict until the older ones commit, which when data

items are highly contended can increase latency, even if the overall abort rate is low.

The differing optimal approaches for many-core and distributed databases is not com-

patible with cloud environments in which users expect matching performance increases as

resources are scaled up and out. For example, users may initially scale up their system

and thus opt for an optimistic approach, before then scaling out and then being left with a

sub-optimal concurrency control protocol for their new scale point. This raises the following

question: how to design a concurrency control protocol that performs equally well in both

many-core and distributed databases. Designing such a protocol is tackled in Chapter 3.
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2.1.6 2PC: Research Strikes Back (Relevant to Chapter 6)

Given the somewhat bleak picture of distributed transaction processing emphasized by the

study in [54], it has become a fertile area of research and numerous approaches to improve

performance have been proposed.

Several systems attempt to minimize or eliminate distributed transactions. Schism uses

a workload-driven partitioning scheme to minimize distributed transactions [23], while G-

Store [24] and LEAP [70] eliminate them through dynamic data repartitioning. Mandating

determinism also avoids 2PC [90, 103, 104]. The idea behind deterministic databases is to

order and replicate transactional inputs prior to execution using a centralized sequencing

layer, thus eliminating coordination between servers [103]. There are two key advantages to

this approach, atomic commitment can be avoided, and it greatly simplifies replication [91].

The study in [54] included one deterministic approach, Calvin [104]. In most experiments

Calvin performed the best, but the dice were unfairly weighted as it avoids 2PC and other

message passing. Calvin suffers when transactions involve conditional operations, may

internally abort, or involve foreign key lookups. The study found when the workload included

these most protocols’ throughput was only affected by 2–10%, but Calvin experienced a

36% decrease – determinism is not a silver bullet. An important caveat with deterministic

databases is that transactions’ read and write sets be known prior to execution. If it cannot be

met, a reconnaissance phase is executed to discover these sets which amounts to running a

transaction twice. Aria [71] avoids this caveat by using a deterministic reordering mechanism,

but its performance suffers under high contention workloads [72]. Prognosticator [60]

circumvents this limitation by using symbolic execution to build key-level transaction profiles,

which are used to execute transactions with a high degree of parallelism.

Another category of systems weaken isolation and relax consistency guarantees to achieve

better performance, offering Snapshot Isolation [33, 36, 96] or highly available transactions

(HATs) [8]. Another group of systems opt for a blended approach by combining concurrency
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control, replication, and commitment into a unified protocol to amortize the costs of 2PC.

The principal aim here is to minimize the number of WAN round trips and hence latency

is reduced (see MDCC [64], TAPIR [124], Ocean Vista [43], Janus [79], Helios [81], and

G-PAC [74]). Another related technique is CockroachDB [98] which uses Parallel Commits

to halve the latency of distributed transactions by concurrently performing consensus round

trips required to commit a transaction.

Several recent OLTP databases utilize epochs to exchange improved throughput for higher

latency. Obladi tackles the problem of data access privacy by combining Oblivious RAM

and epochs to hide access patterns [21] from cloud providers. STAR [73] runs distributed

transactions and single-node transactions in different epochs. COCO [72] leverages epochs

to mitigate against the costs of 2PC and synchronous replication. In Chapter 6 we evaluate

the performance of epoch-based commit and develop epoch-based multi-commit, which to

our knowledge, is the first protocol to combine epochs and data access patterns to minimize

aborts in the presence of node failures.

2.2 Graph Processing (Relevant to Chapter 5)

Graphs have long been a useful mathematical abstraction and commonplace data structure

across many facets of computer science. Recent years have seen a proliferation of the

development and use of dedicated graph processing technologies [14]. The emergence of

these technologies appears to be motivated by organizations recognizing the potential value

that can be extracted from rich, highly-connected data sets, and the perceived shortcomings

of existing relational database management systems (RDBMSs) which are not suitable

for serving graph workloads. Thus, organizations often complement their existing data

processing pipelines with graph processing systems [93].

It is well established there is no single “one-size-fits-all” data management technology

that can serve all possible uses of data efficiently [97] which holds true within the realm of



30 Background

graph data management, owing largely to the variety exhibited across graph workloads. As

such graph processing systems broadly fall into one of three categories:

• Graph databases focus on transactional online graph persistence and are accessed

in real time from some application. Queries are either: (i) local, involving a single

vertex or edge, (ii) neighborhood, retrieve all edges attached to a given vertex, or (iii)

traversals, exploring a part of the graph beyond a single neighborhood. In each case

only a subset of the graph is required to satisfy a query. Examples include Neo4j [92],

JanusGraph [61], TigerGraph [106], and Dgraph [29].

• Graph Analytical Frameworks focus on offline analytics, supporting global graph

algorithms such as clustering and community detection. Most computations involve

the whole graph. Examples include GraphX [50], Giraph [49], and GraphChi [67].

• Graph Streaming Engines focus on supporting analytics over a continuously changing

graph. Typically these systems offer a simple graph-based data model and lack

transactional support [13]. Examples include Aspen [30], Kineograph [19], and

GraphOne [65].

Given the expressiveness of graphs and the variety of system types, application areas are

wide reaching from healthcare, to social networks and fraud detection [35]. The work in this

thesis (Chapter 5) is primarily concerned with graph databases. In such systems data, the

most common data model is the labeled property graph [92]. In the property graph model

each vertex has a unique ID, a label indicating the type of vertex, a set of incoming and a set

of outgoing edges and a collection of key-value properties. Each edge has a unique ID, its

start and end vertices, a relationship type label and a collection of properties.
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2.2.1 Graph Data Consistency

Definition 8 (Reciprocal Consistency) Reciprocal consistency is an invariant that ensures

the two physical edge pointers that comprise a logical edge in a graph database point to one

another.

Regardless of application-level semantics, the property graph data model imposes a

fundamental consistency guarantee that must always remain valid: Reciprocal Consistency.

In the property graph model, edges have direction and each edge runs from a source vertex

to a destination vertex. In the storage layer, however, edge directionality does not exist; both

the source and the destination vertices store information about each other. This allows edge

traversal to be bidirectional and speeds up query performance.

Consider, for example, the statement: “Tolkien wrote The Hobbit”. It is expressed using

vertex a for “Tolkien” and vertex b for “The Hobbit”, and an edge wrote running from

a (source) to b (destination). Corresponding openCypher [83] code 4 is given below and

Figure 2.2(a) shows the model level view of edge ab.

MATCH (a:Person), (b:Book)

WHERE a.name = ‘Tolkien’ AND b.title = ‘The Hobbit’

CREATE (a)-[w:WROTE]->(b)

Figure 2.2(b) depicts the internal representation of a graph arising from JanusGraph [61]

and TitanDB [108]. A vertex, such as a, is represented by a record that contains one or more

properties of that vertex, followed by a sequence of edge pointers pointing to all those vertices

to which this vertex is related either as a source or a destination. The sequence of edge

pointers is also called the adjacency list. It can be seen in Figure 2.2(b) that a’s adjacency

4There are many graph query languages, with each vendor often developing their own proprietary lan-
guage. Many offer a declarative language, e.g., Neo4j’s Cypher [45], TigerGraph’s GSQL [106] and Oracle’s
PGQL [84], with others offering the Gremlin API [107]. There have been a few concerted efforts to stan-
dardized graph query languages. Efforts include G-Core [5], OpenCypher [83], and more recently, GQL and
SQL/PGQ [27].
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list has an edge pointer entry that stores “a wrote b” while b’s list has a corresponding entry

storing the reciprocal (or inverse) information “b written by a”. When the adjacency list

entries for a given edge refer to each other in a complementary manner like this, that edge is

said to exhibit Reciprocal Consistency.

Consider a query: “list all titles by the author who wrote The Hobbit”. This query needs

to start from b which represents the only entity specified explicitly in it. Thanks to the

reciprocal information in b, it can reach a from b, even though edge ab is “directed” from a

to b, and then compile the necessary list from a. Note that Reciprocal Consistency is assumed

to prevail when a query reads only the source or destination vertex of an edge.

a:Person b:Book

name:Tolkien title:The Hobbit

:WROTE

(a) Logical view.

a:Person name:Tolkien →→→ wrote b edge edge

b:Book property title:The Hobbit ←←← written by a edge

vertex id property property edge edge
...

...
...

...
...

vertex id property edge edge edge

(b) Storage view.

Fig. 2.2 Logical and storage views of a reciprocally consistent edge ab.

2.2.2 Distributed Graph Databases

Definition 9 (Distributed Graph Databases) A distributed graph database is a distributed

DBMS that is designed for managing graph data spread across several machines.

In practice, graphs can be extremely large, sometimes in the magnitude of 100 billion

edges [93], exceeding the storage capacity of a single-node graph database and motivating the

need for distributed graph databases. A distributed graph database employs a shared-nothing
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architecture, partitioning a graph among loosely cooperating servers. Graph partitioning is

non-trivial and a common approach is to use a k-balanced edge cut [56]. The objective of such

an approach is to minimize the proportion of edges that span partitions and also to balance

the distribution of vertices to partitions. Figure 2.3 depicts a graph database partitioned

across three servers, Si, i = 1,2 and 3. Typically, each partition would be replicated for fault

tolerance and availability. Intra-partition and inter-partition edges are respectively referred to

as local edges and distributed edges (shown using dashed lines in Figure 2.3). The proportion

of distributed edges is not negligible and can range from 25-75% [56].

S1

S2

S3

Fig. 2.3 Local and distributed edges

2.2.3 Data Corruption in Distributed Graph Databases

Recent work [41, 119] highlighted that a common distributed graph database architecture

permits violations of Reciprocal Consistency in distributed edges, introducing corruption into

the database. Such an architecture uses a NoSQL database [89], e.g., Apache Cassandra [6],

for storage and is then adapted with a query language expressed in terms of edges and vertices

along with some glue-code to bind that interface to the underlying database. Opting for

this design appears to be a good choice: it offers the application programmer the modeling

convenience of graphs together with the operational characteristics of the underlying highly

scalable NoSQL database. However, a major problem with this design option is, in a desire

to offer higher performance, a lack of transactional semantics from the underlying database
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which seldom provide guarantees for multi-operation, multi-object transactions that span

partitions. Without concurrency control across partitions, concurrent updates of distributed

edges can interleave and violate Reciprocal Consistency.5 Moreover, due to the scale-free

property exhibited by many real world graphs, this corruption can propagate through the

database at alarming rates, rendering it irreversibly corrupt. We now describe in detail the

mechanism by which this corruption can occur.

Suppose that the edge (a)-[:WROTE]->(b) is a distributed edge, with vertices a and b

in servers Si and S j, j ̸= i, respectively. When a transaction writes this edge ab: (i) two writes

are performed: reciprocal entries in the adjacency lists of nodes a and b are updated, and (ii)

write order is unconstrained: a transaction is equally likely to write a then b as it is to write b

then a. Concurrent transactions Tx and Ty can interleave in the following three ways and each

one is depicted in Figure 2.4:

(a) Tx starts before Ty; it writes a at Si first and then proceeds to S j across the network; Ty

operates the other way round, beginning with S j and proceeding to Si (see Figure 2.4(a)).

The net effect is: Tx→ Ty at Si and at Ty→ Tx at S j, where T → T ′ at S denotes that T

precedes T ′ at server S.

(b) Same as the previous case, except that Ty starts earlier than Tx (see Figure 2.4(b)).

(c) Same net effect as in previous two cases, except that both Tx and Ty start their first writes

at Si, Tx→ Ty, but Ty overtakes Tx in reaching S j where Ty→ Tx (see Figure 2.4(c)).

We could envisage three more corresponding cases (a’) - (c’) where the roles of Tx and

Ty in cases (a) - (c) are simply interchanged; e.g., in case (a’), Ty starts before Tx, writes

a at Si first and then proceeds to S j across the network; Tx operates the other way round,

beginning with S j and proceeding to Si. Thus, there are only six ways concurrent Tx and Ty

can interleave. The arguments we make based on cases (a) - (c) of Figure 2.4 equally apply,
5The concurrency control primitives provided by NoSQL databases are typically sufficient to ensure

Reciprocal Consistency for local edges.
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Si S j

Ty

Tx

(a)

Si S j

Ty
Tx

(b)

Si S j

Tx
Ty

(c)

Fig. 2.4 Interleavings of concurrent writes to a distributed edge by transactions Tx and Ty.

by symmetry, to cases (a’) - (c’) and so, for brevity, we will not consider the latter. At the

end of each case in Figure 2.4, the last update on a is by Ty and that on b is by Tx. Unless

updates of Tx and Ty are commutative, ab cannot be reciprocally consistent. Note that the

case of Figure 2.4(c) can be avoided easily by using sequence numbers and by exploiting

the fact that both Tx and Ty modify the edge starting from the same end Si. Each end of a

distributed edge maintains start sequence number (ssn) to indicate the number of transactions

that modified the edge starting from its end. It also maintains a finish sequence number

( f sn) to indicate the number of transactions that modified the edge starting from the other

end. A transaction (such as Ty) should not modify the edge at the remote end (at S j) until its

ssn is equal to one less than the f sn found at the remote server. After modification(s), the

transaction sets f sn = ssn. Thus, only cases (a) and (b) of Figure 2.4 are of concern. As an

example, suppose that Tx deletes the wrote edge while Ty concurrently appends a property

year:

// Tx

MATCH (a:Person)-[w:WROTE]->(b:Book)

WHERE a.name = ‘Tolkien’ AND b.title = ‘The Hobbit’

DELETE w

// Ty

MATCH (a:Person)-[w:WROTE]->(b:Book)
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WHERE a.name = ‘Tolkien’ AND b.title = ‘The Hobbit’

SET w.year = 1937

a:Person b:Book

name:Tolkien title:The Hobbit

:WROTE
year:1937

(a) Logical view.

a:Person name:Tolkien →→→ wrote b edge edge

b:Book year:1937 title:The Hobbit edge

vertex id property property edge edge
...

...
...

...
...

vertex id property edge edge edge

(b) Storage view.

Fig. 2.5 Logical and storage views of a reciprocally inconsistent edge ab.

The interleaving patterns depicted in Figure 2.4 leave ab in violation of Reciprocal

Consistency, as shown in Figure 2.5. When Tx and Ty do not interleave, either Ty→ Tx or

Tx→ Ty holds at both servers Si and S j; in that case, the last update on both a and b would

be by either Tx or Ty, respectively. That is, when transactions update at both ends of ab

in some arbitrarily chosen but identical order, ab is left reciprocally consistent after each

transaction’s update. When interleaving updates leave ab reciprocally inconsistent, ab can be

said to have become half-corrupted because if Ty→ Tx is the chosen order between Ty and

Tx, then the edge pointer in b of ab is in error; otherwise, the edge pointer in a is erroneous.

Thus, a reciprocally inconsistent edge ab certainly has a corrupt half but the question of

exactly which half is corrupt is decided by what happens subsequently. Suppose that a future

transaction Tw first reads the edge pointer of reciprocally inconsistent ab, say, at vertex a.

(Note that when Tw reads an edge, it does not check for reciprocal consistency). At that

moment, Tw (implicitly) chooses the order Tx→ Ty and thereby invalidates the other order
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Ty→ Tx that prevails at vertex b. Thus, from that moment onward, the b end of edge ab

becomes the corrupt end and, conversely, the a end becomes the correct end.

// Tz

MATCH (b:Book),(u:Person)

WHERE NOT (:Person)-[:WROTE]->(b:Book)

AND u.name = ‘unknown’

CREATE (u)-[:WROTE]->(b)

If no transaction ever reads the edge pointer at vertex b, then the order Tx→ Ty effectively

prevails and the half-corruption of ab remains invisible to the rest of the database. However,

if Tz is to subsequently read the edge pointer at b and write another edge based on what it

read, i.e., The Hobbit has unknown author, then it is introducing updates not consistent with

what Tw read earlier; it thus introduces semantic corruption into the database. Further writes

based on reading semantically corrupt data also spread corruption. A database is said to be

operationally corrupt when a significant proportion of its data records are in a semantically

corrupt state [41].6

To illustrate the severity of this problem, the authors of [41, 119] constructed an analytical

model to analyze the time until operational corruption. They found for fair assumptions

regards database size, proportion of distributed edges, and network latencies, even with

modest transaction arrival rates the database was often found to be operationally corrupt in

under 50 hours!

Definition 10 (Edge-Order Consistency) Edge-order consistency is the guarantee that up-

dates by transactions to multiple edges happen in the same order across all edges.

6Two relevant remarks on past works: a half-corrupted edge is due to a dirty write (ANSI P0 [11], Adya G0
[2]) in the context of distributed graph databases. If the database provides the ANSI isolation level Read
Uncommitted across all objects, it will identically order the writes of concurrent transactions and this would
prevent all interleaving patterns shown in Figure 2.4 and thus avert half-corruption altogether.
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Following on from Reciprocal Consistency, we also observe a different type of possible

conflict that can arises when transactions update more than one edge during their lifetime.

Suppose that transactions TA and TB both update edges e and e′, and do without interference

either among themselves or with other transactions. It may happen that e is updated by

TA before TB, while e′ is updated by B before A, as illustrated in Figure 2.6 (here time

flows from left to right and the conflict-free reciprocally consistent updates are collapsed to

single instants). Such an occurrence, if allowed, would violate the property of Edge-Order

Consistency between transactions.

✲

✲

✲Edge e

Edge e′

t1 t2 t3 t4 time

TB

TB TA

TA

Fig. 2.6 Edge-Order Consistency violation

These issues will be taken up in Chapter 5 where we develop lightweight concurrency

control protocols for maintaining Reciprocal Consistency and Edge-Order Consistency, thus

avoiding data corruption.

2.3 Performance Evaluation Techniques

The performance of the protocols presented in this thesis are evaluated and benchmarked

using a range of techniques: analytic models, simulations, and direct implementations

allowing for experimentation with real hardware.

Analytic models allow for the representation of a protocol and its interactions within

a system as mathematical expressions. Once derived, such models have a number of ad-

vantages [75]. They can be used to quickly garner insights into protocol behaviour under
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a variety of different conditions allowing for a quicker feedback loop compared to direct

implementations as the critical factors that influence protocol can be easier distilled. Ad-

ditionally, the process itself of deriving analytic models can be helpful in improving the

theoretical understanding of protocols. Lastly, analytic models act as a useful litmus test

that can inform the decision of moving to a more labour-intensive implementation within

a real system. Analytic models are not without their limitations. They are dependent on

their simplifying assumptions, which make them tractable, but can result in a mismatch with

reality, as George Box said, "All models are wrong, some are useful". Therefore, validation

against real-world data is imperative for ensuring the applicability of analytic models in

accurately predicting protocol performance.

Simulations are step up from analytic model in terms of how closely they approximate

reality, attempting to mimic an often complex protocol through a virtual model [78]. Sim-

ulations share many advantages and limitations with analytic models. They allow for the

systematic exploration of a wide range of scenarios through the varying of simulation param-

eters. Some of these scenarios may be difficult to reproduce in reality, either due to time or

financial constraints, hence simulations are often much more cost-effective than direct imple-

mentations. However, simulations are also sensitive to the validity of the assumptions made

within them. This can have a large impact on the accuracy of the simulation’s predictions.

Again, as with analytic model it must be emphasized that validation with real-world data is

vital for extracting reliable insights from simulations and caution must always be exercised

when interpreting simulated results.

Direct implementations are the closest approximation to the reality protocols will ex-

perience in practice, but they are by far the most costly in terms of implementation effort

and hardware resources. Being an accurate representation of the complexity faced in the

real world means that direct implementation can undercover issues not considered during

the modeling phases, which can in turn facilitate the development of improved models.
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Therefore, direct implementation is important for the validation of analytic models and

simulations. With direct implementations there is the challenge of selecting or developing an

appropriate benchmark [59]. In Subsection 2.3.1, the evaluation framework used for direct

implementations is presented along with the benchmarks used and why they were selected.

2.3.1 Evaluation Framework (Relevant to Chapters 3 and 4)

At various points in this thesis protocols are implemented in our evaluation framework7.

The framework contains a prototype in-memory many-core database, which has a single

versioned storage layer and a modular transaction scheduler, and is extendible for multiple

workloads; requiring the implementation of a parameter generator, loader, and stored proce-

dures. Within the framework each core acts as an independent client generating transactions,

thus the protocols experience a truly concurrent workload.

Unless stated otherwise, experiments were performed using an Azure Standard D48v3

instance with 48 virtualized CPU cores and 192GB of memory. Prior to each experiment,

tables are loaded, followed by a warm-up period, before a measurement period; both are of

configurable length, we use 60 seconds and 5 minutes respectively in this thesis. We measure

the following metrics:

• Throughput: number of transactions committed per second.

• Abort rate: rate at which transactions are being aborted.

• Average latency: the latency time of committed transactions (in ms) averaged across

the measurement period.

We now describe the workloads implemented in the evaluation framework: YCSB,

SmallBank, and TATP. There are several OLTP workloads that could have been selected for

implementation; OLTP-bench [31] lists 15. The workloads described below were chosen as

7https://github.com/jackwaudby/spaghetti

https://github.com/jackwaudby/spaghetti
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they offer sufficient coverage to empirically exercise protocols under a breath of scenarios.

The transactions in the TATP workload generate few conflict cycles, so there should be

few aborts. Whereas, SmallBank was specifically designed to generate non-serializable

executions, hence there should be a higher abort rate. It would be expected that optimistic

protocols would perform better on TATP, and pessimistic protocols on SmallBank. Lastly,

YCSB offers a high degree of configuration, which allows us to explore performance when

other workload dimensions change, e.g., proportion of update transactions. A notable

exception from the evaluation framework is TPC-C [109], which was excluded a some of

its transactions require functionality, such as scans, that are not currently supported in the

framework. The workloads are summarized in Table 2.1

Workload Tables Columns Transactions Read-Only Transactions
TATP 4 51 7 40%
YCSB 1 11 6 50%

SmallBank 3 6 6 15%
Table 2.1 Profiles for the evaluation framework workloads.

2.3.2 YCSB

The YCSB [20] was originally designed to evaluate large-scale Internet applications, it is

re-purposed in this thesis as an OLTP microbenchmark. It has one table with a primary key

and 10 additional columns each with 100B of random characters. For all our experiments

in this thesis, we use a YCSB table of 100K rows. There are two types of transaction: read

or update, each contains 10 independent operations accessing 10 distinct items. Update

transactions consist of 5 reads and 5 writes that occur in random order. Read transactions

consist solely of read operations. The proportion of update transactions is controlled by the

parameter, U . Data contention, when multiple transactions try to read or write the same

database items, follows a Zipfian distribution, where the frequency of access to sets of hot

records is tuned using a skew parameter, θ . When θ = 0, data is accessed with uniform
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frequency, and when θ = 0.9 it is extremely skewed (high contention). For Chapter 4, in

order to measure the impact of transactions running at weaker isolation we introduce an

additional parameter, ω , which controls the proportion of transactions running at Serializable

isolation. The remaining transactions are split between Read Committed (90%) and Read

Uncommitted (10%).

2.3.3 SmallBank

SmallBank mimics a basic banking application and comprises of six transactions that per-

form simple operations on customers’ accounts. It was designed to generate non-serializable

schedules when executed at weak isolation levels (in contrast to TPC-C) [3]. The workload

configuration used in this thesis is derived from OLTP-bench [31], a standardized bench-

marking tool, thus 25% of all operations are executed on a hotspot area of 100 accounts.

The contention levels are varied by adjusting the number of accounts: high contention (100

accounts), mid contention (1000 accounts), and low contention (10000 accounts).

2.3.4 TATP

The Telecommunication Application Transaction Processing (TATP) benchmark models

a telecommunications application [102]. It consists of three read-only transactions and

two update transactions. As regards contention, the primary key distribution uses a non-

uniform row access pattern to increases tuple contention. The interesting property of this

workload is that TATP transactions can generate few conflict cycles. In fact, only if two

UpdateSubscriberData transactions interleave by accessing the same keys can a cycle be

created in the conflict graph. As a consequence, schedulers that accept all valid executions

should seldom abort.



Chapter 3

Wait-Hit Protocol
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Summary

This chapter presents the design of the Wait-Hit Protocol, a general purpose concurrency

control protocol for any scale. It can effectively scale vertically, as the core count is

increased on a given machine and horizontally, as the number of machines is increased

in a cluster, without having to relax the gold standard isolation level (Serializability).

The protocol takes an optimistic approach, letting transactions collect dependencies

efficiently as they execute, and before performing a commit time validation. Based

on the type of dependencies collected (write-write, write-read, read-write) a validating

transaction will: (i) abort (hit) in-flight transactions that if allowed to commit could result

in non-serializable behaviour, and/or (ii) delay itself (wait) for an in-flight transaction to

complete so that dirty reads are avoided.

3.1 Introduction

Cloud providers enable seamless scaling from a few-core machine, to a many-core machine,

to deployments spread across data centers and the globe. Users deploying databases in the

cloud expect OLTP DBMS performance to scale with hardware resources. Unfortunately,

as seen in Subsections 2.1.4 and 2.1.5, many concurrency control protocols do not scale

well [54]; a protocol architected for one scale point inevitably needs to be re-adapted for

another, or a different strategy altogether used. This raises the challenge of designing

high-performance concurrency control protocols that can effectively scale from few-core,

to many-core, to the globe whilst offering good performance at each scale point, without

having to relax from Serializable isolation. This chapter describes the design and evaluation

of the Wait-Hit Protocol which has been developed specifically for this task. To be precise,

the Wait-Hit Protocol is a family of optimistic concurrency control protocols each targeting

a different deployment.
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The rest of this chapter is structured as follows. We begin in Section 3.2 by discussing the

design goals of the Wait-Hit Protocol. Section 3.3 presents the principles behind the wait-hit

approach. Section 3.4 gives a description of the Basic Wait-Hit Protocol, implementation

details, and an evaluation demonstrating the need for the many-core adjustments. Section 3.5

then presents the Many-Core Wait-Hit Protocol, discusses implementation details and op-

timizations, before evaluating the protocol’s performance. Next, Section 3.6 describes the

Distributed Wait-Hit Protocol. Finally, Section 3.7 draws conclusions and discusses future

work.

3.2 Design Goals

We focus on two database architectures, many-core and distributed. Recall from Subsec-

tion 2.1.4, optimistic approaches typically perform better than pessimistic approaches in

many-core databases. Moreover, high performance can be achieved by: (i) avoiding global

timestamp allocation, (ii) avoiding an exclusive validation phase, and (iii) minimizing unnec-

essary aborts. As described in Subsection 2.1.5, for distributed databases the converse is true:

pessimistic approaches generally perform better than optimistic approaches. For optimistic

approaches performance is constrained by the validation phase. For example, in OCC more

than 50% of time can be spent in the validation phase, or in a queue waiting to enter the

validation phase [54]. An optimistic approach that reduces validation overheads could offer

performance comparable to lock-based approaches in distributed databases. Note, it must

be stated that 2PC is the dominating performance factor in a distributed database, but the

chosen concurrency control protocol still influences performance [54].

A concurrency control protocol that scales well with cores and database nodes should

satisfy all the above criteria. Of recently proposed many-core concurrency control protocols,

SGT achieves all many-core design goals. However, unfortunately SGT once again appears

impractical in a distributed database. Consider the distributed SGT sketch in [34], each
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partition stores a local graph representing conflicts between its local transactions, with a

special node type indicating a remote partition; this must store information needed to correctly

resolve all edges in the global conflict graph. The commit procedure remains unchanged in

that transactions delay until they have no incoming edges, but now they must execute 2PC

after this. The problem is that SGT effectively validates each operation before execution via a

cycle check, which in a distributed database incurs significant remote access overhead. Cycle

checking would require traversing a graph distributed across several machines, incurring

network hops each in the magnitude 1-10ms. Additionally, due to non-locality of access

during traversals, servers not directly involved in the processing of the validating transaction

may be contacted. These two factors conspire to increase the time a transaction spends in

the database, in turn increasing contention. Contention implies more conflicts and hence

increases size of the conflict graph to be traversed, thus more time spent cycle checking and

large transaction lifetimes – a vicious circle.

SGT’s validation strategy minimizes unnecessary aborts, but maintaining this property

appears too costly in a distributed environment. The wait-hit approach borrows aspects from

SGT, but crucially allows some unnecessary aborts in order to gain a highly parallelizable

lightweight validation strategy which performs well in both a many-core and distributed

database.

3.3 Wait-Hit Approach

The wait-hit approach aims to get transactions in and out of the database as fast as possible

through optimistic execution and a low-overhead validation phase, minimizing the window

in which transactions can contend. Similarly to SGT, it is assumed transactions can cheaply

detect conflicts via meta-data existing on data items. An important point is that the wait-hit

approach detects all direct and transitive conflicts collectively referred to as a transaction’s

predecessors. To illustrate this consider Ti reads x, Tj then writes x, then Tk writes x. Tk
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directly conflicts with Tj and transitively conflicts with Ti, thus Tk’s predecessors are Tj

and Ti. For example, in Table 3.1, for the data item "Jack", T2 would detect T1 and T0 as

predecessors.

During execution, rather than converting conflicts into edges, inserting them into a

conflict graph, and performing a cycle check as in SGT, predecessors are grouped based on

whether the conflict was detected by a write operation (ww and rw conflicts), referred to as

predecessors-upon-write, or by a read operation (wr conflicts), referred to as predecessors-

upon-read.

At commit time the compressed representation of a transaction’s conflict information is

used to perform validation. A transaction’s predecessors reflect its local view of the expected

serialization order. However, local serialization orders across transactions may differ, i.e.,

there exists a cycle in the (global) conflict graph. Thus, validation must ensure that, using

per-transaction predecessor-upon-write and predecessor-upon-read information, the acyclic

invariant is preserved. The wait-hit approach achieves this through a combination of forcing

a transaction’s predecessors to abort, making transactions check if they themselves have been

forced to abort, and by waiting for transactions’ predecessors to terminate.

To implement these rules, in addition to transactions tracking their predecessors, the

wait-hit approach relies on a hit list containing the predecessors of previously committed

transactions. If these predecessors are permitted to commit it could result in non-serializable

behaviour (details to follow). When validating, transactions check if they exist in the hit

list, aborting if so, this rule is referred to as the hit rule and is a key aspect of the wait-

hit approach. Additionally, the wait-hit approach requires a terminated list containing the

outcome (commit/abort) of terminated transactions. Note, all transactions enter their outcome

in the terminated list. The validation is divided into two stages: hit phase and wait phase.

The first step in the hit phase for transaction T is checking whether another transaction

has forced it to abort by entering it in the hit list. After this, T considers each of its
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predecessors-upon-write and attempts to forcibly abort (hit) them. There are four cases

to consider for each predecessor P in the set of predecessors-upon-write for T : (i) P has

committed, but did not have T as a predecessor, (ii) P has committed and detected T as

one of its predecessors-upon-write, (iii) P has aborted, and (iv) P is still executing, i.e., it is

in-flight.

In case (i), P cannot be involved in a cycle with T , as if it had directly or transitively

conflicted with T , then T would have been present among P’s predecessors-upon-write and

hence entered T into the hit list, thus P can be ignored. In case (ii), T must abort as P and T

are involved in a cycle. By traversing conflicts, T is reachable from P and P from T , thus

there exists a cycle in the conflict graph. Note by the hit rule, P will have entered T into the

hit list, thus the hit check ensures T aborts. For case (iii), an aborted P cannot introduce a

cycle with T so can be ignored. Lastly, for (iv) if T completes validation it will then enter

P into the hit-list, essentially “hitting” them ensuring that P aborts when it validates by the

same logic as case (ii). This avoids non-serializable behaviour occurring, but is pessimistic

as it is possible that P does not have T as a predecessor and unnecessarily aborts.

The second step considers predecessors-upon-read. As in SGT, the wait-hit approach

allows transactions to optimistically read dirty records. Thus, for each predecessor P in the

set of predecessors-upon-read for T there are three possibilities to consider: (i) P has aborted,

(ii) P has committed, or (iii) P is in-flight.

For case (i), T must also abort. This is required to ensure T has not acted upon aborted

data. For case (ii), T has read from a committed transaction which is permissible and no

further action is needed. As regards case (iii), the fate of P is unknown, it may commit or

abort. If T is permitted to wait until P has terminated, then correct action could be taken

(case (i) or (ii)), unfortunately this could lead to a deadlock. Consider if T had P as a

predecessor-upon-read, and vice-a-versa, then both would indefinitely wait for the other to

terminate! Note that if T and/or P are read-only transactions, then there is no possibility
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of a deadlock – a feature we will exploit later in Subsection 3.5.2. For now, deadlocks

are resolved by employing a zero-wait strategy, i.e., in the event of case (iii), T would

simply abort itself. This is, of course, a heavy-handed, potentially abort-heavy strategy that

may result in unnecessary aborts. However, given that the wait-hit approach essentially

compresses conflict information it is necessary, unlike SGT which, by storing a conflict

graph, can execute a cycle check to arrive at the correct decision. We present a smarter wait

strategy in Subsection 3.5.2.

To summarize, the wait-hit approach validates a transaction by: (i) aborting predecessors-

upon-write, that is, hitting them and checking if itself has been hit, and (ii) delaying until its

predecessors-upon-read completes, that is waiting. This is the core essence of the wait-hit

approach which simplifies validation greatly. We position this approach as a middle ground

between a graph-based approach, e.g., SGT [34], and a single-threaded execution model, e.g.,

H-Store [97].

3.4 Basic Wait-Hit Protocol

In this section, we describe the Basic Wait-Hit Protocol which implements the wait-hit

approach in Section 3.3 using exclusive data structures to represent: (i) hit list, (ii) termi-

nated list; an entry with -1 denotes the corresponding transaction aborted and 1 denotes it

committed, and (iii) transaction id generator. To ensure exclusive access to data structures

the hit and terminated lists are wrapped with a Mutex lock and the transaction id generator

uses an atomic counter. Each transaction stores two per-transaction data structures to track a

transaction’s predecessors-upon-read and predecessors-upon-write. In discussions here we

assume the database has a set of threads called workers that execute transactions.
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3.4.1 Protocol Description

Before execution of transactions the database initializes the hit list, terminated list, and

transaction id generator. When a worker receives a transaction T it gets an id from the id

generator and initializes the predecessors-upon-write and predecessors-upon-read containers

for that transaction.

The database optimistically executes T collecting predecessors encountered using the

per-item access history (see Table 3.1) and records them as either predecessors-upon-read or

predecessors-upon-write depending on the operation performed (see Algorithm 1). When

T performs a read operation it reads the latest version of a given item and includes the ids

of all transactions that previously wrote to that item amongst its predecessors-upon-read.

Note, the predecessor may be still in-flight (at the time of reading). When T performs a write

operation on an item it stores the id of all transactions that wrote and read the item before

among its predecessors-upon-write. After executing an operation a transaction appends its id

and operation type to the access history for the item it accessed.

At commit time, T enters the validation procedure given in Algorithm 2 consisting of

two phases, a wait phase and a hit phase. First, T enters the hit phase, acquires the exclusive

lock and checks whether it exists in the hit list (Lines 1-2, Algorithm 2). If it does, then

another already terminated transaction has directly or transitively conflicted with it and there

is a possibility of non-serializable behaviour, so validation fails, the lock is released, and the

abort procedure given in Algorithm 3 is executed: T removes itself from the hit list, then

acquires the terminated list lock and appends itself with -1. Else, it continues to the next

step: T adds its predecessors-upon-write into the hit list after filtering out those which have

already terminated for garbage collection reasons explained in Subsection 3.4.2 (Lines 4-7,

Algorithm 2). The wait phase (Lines 10-15, Algorithm 2) deals with predecessors detected

upon a read. For each predecessor, if it has committed no further action is needed, else (it is
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in-flight or aborted) T is aborted. Upon completion of the hit and wait phases, T acquires the

lock on the terminated list and appends itself with 1 (Line 18, Algorithm 2).

Algorithm 1: Conflict Pair Detection
Data: Transaction thisTx, Operation op, List accessHistory
Result: Boolean opSuccess

1 foreach elem ∈ accessHistory do
2 if op.type == read then
3 if elem.type == write then
4 thisTx.readPredecessors(elem.tid)
5 if op.type == write then
6 thisTx.writePredecessors(elem.tid)
7 return true

3.4.2 Implementation Details

We implemented the Basic Wait-Hit Protocol in our prototype in-memory database introduced

in Subsection 2.3.1. We explain here how conflicts are detected and how the size of the hit

and terminated lists are managed.

Conflict Detection In order to efficiently detect conflicts each row in the database stores

with it a sequential history of accesses. Each access stores the associated type, read or write,

and the associated transaction id. An example of the required meta-data is given in Table 3.1.

This information is sufficient for transactions to correctly identify conflicts as they execute,

as from it all types of conflict: wr, rw, and ww can be deduced. The corresponding conflict

graph is given in Figure 3.1.

T0 T1 T2

T3 T4

Fig. 3.1 Conflict graph representation of the access histories in Table 3.1.
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Algorithm 2: Basic Wait-Hit Protocol commit procedure.
Data: Transaction thisTx, List terminated, List hit
Result: Boolean successfullyCommitted
/* hit phase */

1 hit.lock()
2 if thisTx ∈ hit then
3 hit.unlock()
4 return !abort() // hit by another txn

5 else
6 foreach pred ∈ thisTx.writePredecessors do
7 if pred /∈ terminated then
8 hit.add(pred) // hit predecessors

9 hit.unlock()
/* wait phase */

10 while thisTx.readPredecessors ̸= /0 do
11 foreach pred ∈ thisTx.readPredecessors do
12 if pred ∈ terminated then
13 if terminated[pred].state == 1 then
14 thisTx.readPredecessors.remove(pred) // read from committed txn
15 else
16 return !abort() // read from aborted txn

17 else
18 return !abort() // zero-wait policy

19 terminated.lock()
20 terminated.add(thisTx,1)
21 terminated.unlock()
22 return true

Epoch-based Garbage Collection The protocol presented in Subsection 3.4.1 requires two

data structures that without space management mechanisms would grow monotonically over

time. Firstly, two elements of the algorithm in Subsection 3.4.1 ensure the space requirements

of the hit list are bounded. When a transaction is adding its predecessors into the hit list (after

successfully validating) it uses the terminated list (T L) to merge only its predecessors that are

in-flight. The merged transactions are now effectively doomed to eventually abort and when

a transaction aborts, it removes itself from the hit list. Thus, the size of the hit list is bounded

by the maximum number of in-flight transactions in the database. However, the same is not

true of the terminated list which requires a different garbage collection mechanism.
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Algorithm 3: Basic Wait-Hit Protocol abort procedure.
Data: Transaction thisTx, List terminated, List hit
Result: Boolean successfullyAborted
/* remove from hit list */

1 hit.lock()
2 if thisTx ∈ hit then
3 remove thisTx from hit
4 hit.unlock()
/* add to terminated list */

5 terminated.lock()
6 terminated.add(thisTx,−1)
7 terminated.unlock()
8 return true

Name Age Access History
Jack 27 {0,w}→ {1,w}→ {2,r}

Stuart 61 {1,w}→ {4,r}
Holly 21 {0,w}→ {3,r}→ {4,r}

Heather 56 {2,w}
Table 3.1 Example table with access history {transaction id, operation type}.

A transaction Ti can safely be removed from the terminated list when no in-flight transac-

tion can identify Ti as a predecessor. This is true when Ti has terminated and has removed

history of its access from records involved in Ti. This is ensured using an epoch-based

garbage collector. Time is divided into epochs, e = 1,2, ..., and a global counter E displays

the current epoch. Associated with each epoch is a counter denoting the number of in-flight

transactions in that epoch, A(e), that is, transactions that started in that epoch but have not

yet terminated.

When a transaction Ti begins it records the current value of E as its start epoch ei,s and

increments A(ei,s) by 1. When a transaction Ti terminates it records the current value of

E as its finish epoch ei, f (ei,s ≤ ei, f ) and decrements A(ei,s) by 1. Thus, the lifetime of a

transaction can be expressed as an epoch tuple (ei,s,ei, f ). Intuitively, once all transactions

started during Ti’s lifetime (ei,s,≤ e≤ ei, f ) have terminated Ti will never be identified as a

predecessor and can be removed from the terminated list.
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Let α be the smallest epoch number with at least 1 in-flight transaction, hence, all

transactions that started with es < α have terminated: (A(α) > 0)∧ (∀e < α : A(e) = 0).

Note, as all transactions eventually terminate (commit or abort) A(e) will eventually become

0 for all epochs. As, Ti ∈ T L will have no in-flight transaction referring it as a predecessor if

ei, f < α . Then, all T ∈ T L with e f < α can be removed from T L. In practice, periodically,

the garbage collector increments the epoch, computes α , and removes all transactions with

e f < α from the terminated list.

3.4.3 Evaluation

To measure the protocol’s scalability the SmallBank workload with high contention described

in Subsection 2.3.3 was used. Figure 3.2 displays throughput, abort rate, and average latency.

It is evident from Figure 3.2 that the Basic Wait-Hit Protocol does not scale as the core

count increases. In Figure 3.2(a) the throughput drops from over 1.25M transactions/s with a

single-core to below 100K with 40 cores. This is reflected in the abort rate in Figure 3.2(b),

across 1-40 cores it increases linearly, peaking at over 40% when the database has 40 cores.

The increase in average latency in Figure 3.2(c) across the range is also near-linear.

3.4.4 Discussion

It is evident from Subsection 3.4.3 that the Basic Wait-Hit Protocol does not scale. This

can be attributed to its single-threaded validation phase, that is, the hit and terminated lists

require exclusive accesses; additionally it uses a centralized transaction id generator. These

two elements are known causes of bottlenecks and thus performance degradation in many-

core environments (see Section 3.2). However, this does not mean the underlying wait-hit

approach is not compatible with scalability as we now demonstrate in Section 3.5.
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Fig. 3.2 SmallBank – 100 customers (high contention).
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3.5 Many-Core Wait-Hit Protocol

In short, the Many-Core Wait-Hit Protocol avoids global timestamp allocation and parallelizes

the validation phase. We assume there are n worker threads to process transactions, τ =

1,2, ...,n. Each worker thread receives a transaction and executes it to completion before

receiving additional work, thus can have at most one in-flight transaction at any moment.

Each worker thread stores a local termination list, a list of entries for each transaction

the worker thread has executed. Each entry denotes the transaction’s state, in-flight: -1,

aborted: 0, or committed: 1. Also, as in Section 3.4, each worker thread maintains two per-

transaction data structures to track the predecessors-upon-read and predecessors-upon-write

of the transaction it is currently managing.

With this configuration a centralized hit list is no longer required, as assuming that

transactions can access other transactions’ entries in termination lists stored on other workers,

then a transaction Ti can "hit" Tj by setting Tj’s state to aborted: -1. Additionally, a central-

ized termination list is not required as a validating transaction is concerned only with the

termination statuses of its predecessors, which again, assuming transactions can access other

transactions’ entries in termination lists stored on other workers, it can directly look up as

and when needed.

The key observation in scaling the wait-hit approach here is that the hit list and terminated

list can be combined into a single data structure, called the termination list, and distributed

across worker threads, with each storing only information on the transactions they are

responsible for executing.

In summary, each worker thread τ needs to maintain two thread-local data structures:

• Transaction id generator (IDτ ). A thread-local counter, or sequence number, used

in combination with the thread id to assign transactions with unique ids (thread-id,

seq-num).
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• Termination list (TLτ ). A sequence of entries for each transaction the thread has dealt

with, indexed by transaction id. Each entry denotes the corresponding transaction’s

state (in-flight, aborted, or committed), e.g., Transaction Ti on thread τ has the entry

TLτ(i) ∈ {0,−1,1}.

Also, each worker thread maintains two data structures for each transaction to track the

predecessors-upon-read and predecessors-upon-write of the transaction is it currently manag-

ing. We denote the predecessors-upon-read for transaction Ti on worker thread τ as PuRτ(i)

and the predecessors-upon-write as PuWτ(i).

The Many-Core Wait-Hit Protocol has two benefits over the Basic Wait-Hit Protocol.

Firstly, the transaction id generation process is distributed across workers mitigating this

bottleneck. Secondly, during validation, transactions only need to access the termination lists

of the workers who manage its predecessors, avoiding the exclusive validation phase of the

Basic Wait-Hit Protocol. Additionally, workers’ termination lists do not require exclusive

access through a global lock, instead individual entries can have their own §locks, which

again increases parallelism.

3.5.1 Protocol Description

Prior to execution of transactions the database initializes the termination list on each worker

thread τ , TLτ = /0 and the transaction id generator, IDτ = 0. When worker thread τ receives

a transaction, T , it gets a new id i from IDτ and initializes the predecessor lists for that

transaction Ti, PuRτ(i) = /0 and PuWτ(i) = /0.

Worker thread τ optimistically executes Ti, collecting predecessor transactions encoun-

tered, and recording them in PuRτ(i) or PuWτ(i) as appropriate. Conflict detection is the

same as in the Basic Wait-Hit Protocol (see Algorithm 1). For each update of either PuRτ(i)

or PuWτ(i) by thread τ , the worker can check the status of TLτ(i), aborting Ti if TLτ(i) =−1.

This reduces wasted work when transactions are doomed to abort.
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Thread τ completes the optimistic execution of transaction Ti and invokes the commit

procedure in Algorithm 4. The validation phase again consists of a wait and a hit phase. In

the hit phase (Lines 3-9, Algorithm 4), for each predecessor the transaction has detected

when performing write operations during its lifetime, it accesses the transaction’s state on the

corresponding worker’s thread and acquires an exclusive lock on the entry. It sets the state to

−1 if the predecessor is in-flight (hit). In the wait phase, for each predecessor, it accesses the

transaction’s state on its worker’s thread and aborts itself if the predecessor state is either

−1 or 0; assuming a zero-wait policy (Lines 12-19, Algorithm 4). Note, in between each

phase the transaction checks if it has been hit. Upon completion of the hit and wait phases

the transaction sets its state to 1 in its thread-local termination list (Line 23, Algorithm 4).

3.5.2 Optimizations

Read-only Transactions The zero-wait policy in the Many-Core Wait-Hit Protocol (Lines

16-19, Algorithm 4) can be troublesome for transactions consisting solely of read operations.

It is, however, harmless for read-only transactions to wait until all predecessors-upon-read

have terminated. This adjustment is permissible as a read-only transaction cannot be a

constituent in a wait deadlock.

Deadlocks arise in the wait phase when transactions mutually read what each other

has written, in other words, a cycle forms consisting of wr edges. Consider a read-only

transaction Ti. A predecessor that exists in Ti’s predecessor-upon-read list (Tj ∈ PuR(i)) must

be an update transaction, Tj cannot be a read-only transaction, it must have written at least

one record in order for Ti to read it. Consider the case in which Ti waits for Tj which is an

update transaction. Tj or no other update transaction can be waiting for Ti to commit because

Ti cannot be PuRτ of Tj, as it has not written anything. Thus, Tj cannot be involved in a wait

cycle with Ti. Therefore, no update transaction a read-only transaction may wait for during
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Algorithm 4: Many-Core Wait-Hit Protocol commit procedure.
Data: Transaction thisTx, Thread thisThread, Set<Thread> otherThreads
Result: Boolean successfullyCommitted
/* hit check */

1 if thisThread.terminated[thisTx.id] == -1 then
2 return false // hit by another tx
/* hit phase */

3 while thisTx.writePredecessors ̸= /0 do
4 foreach pred ∈ thisTx.writePredecessors do
5 otherThread = otherThreads.get(pred.thread)
6 pred.state = otherThread.terminated[pred.id]
7 if pred.state == 0 then
8 set pred.state = -1 // hit predecessor
9 thisTx.writePredecessors.remove(pred)
/* hit check */

10 if thisThread.terminated[thisTx.id] == - 1 then
11 return false

/* wait phase */
12 while thisTx.readPredecessors ̸= /0 do
13 foreach pred ∈ thisTx.readPredecessors do
14 otherThread = otherThreads.get(pred.thread)
15 pred.state = otherThread.terminated[pred.id]
16 if pred.state == 1 then
17 thisTx.readPredecessors.remove(pred) // read from committed tx
18 else
19 return !abort() // zero-wait policy/read from aborted tx

/* hit check */
20 if thisThread.terminated[thisTx.id] == - 1 then
21 return false // hit by another tx
22 else
23 set thisThread.terminated[thisTx.id] = 1 // commit tx
24 return true

Algorithm 5: Many-Core Wait-Hit Protocol abort procedure.
Data: Transaction thisTx, Thread thisThread
Result: Boolean successfullyAborted

1 set thisThread.terminated[thisTx.id] = -1
2 return true

the wait phase can give rise to a deadlock, read-only transactions may safely wait until all

predecessors have terminated.
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AIMD Wait Policy This section describes an optimization to the Many-Core Wait-Hit

Protocol that improves the wait-policy in the wait-phase; note, it can also be applied to

both Basic Wait-Hit Protocol and Distributed Wait-Hit Protocol. Thus far the wait phase

has adopted a zero-wait policy, that is, if a predecessor arising from a read operation is

in-flight when a transaction is validating then the validation fails. Such a strategy achieves:

(i) correctness, alleviates the possibility of reading from a transaction that subsequently

aborts, and (ii) avoids deadlocks in which transactions are waiting for each other to terminate.

However, this approach could lead to spurious aborts that could be avoided by a limited

degree of waiting. We now describe a wait policy based on the additive increase/multiplicative

decrease (AIMD) algorithm, of which the zero-wait policy is a special case. It is fashioned

after a similar use in the TCP/IP congestion model. The principles of the AIMD algorithm

are waiting continues for δ time (one wait cycle). At the end of a wait cycle, if a positive

outcome is seen then the wait cycle duration is increased δ = δ +a; otherwise waiting is

decreased δ = δ ×b. After some upper wait limit, waiting is terminated, else another wait

cycle is executed.

The AIMD wait policy is given in Algorithm 6 and has four parameters: δ is the initial

wait time which reflects the time period needed to pass before most predecessors have

terminated, W denotes a high watermark which imposes a bound on the maximum time spent

waiting, a is the additive increase which is applied each time the set of predecessors does not

decrease, and b (0 < b < 1) is the multiplicative decrease which is applied when the set of

predecessors decreases in size. If there is a deadlock, the size of the set of read predecessors

will not decrease after a point and δ is guaranteed to fall below the low watermark, and the

transaction will abort. Note, in the zero-wait policy: δ = 0 and a = 0.
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Algorithm 6: AIMD wait-phase
Data: Transaction thisTx, Thread thisThread, Set<Thread> otherThreads, W

watermark, δ delta, a additive increase, b multiplicative decrease
Result: Boolean successfulWaitPhase

1 while (δ ≥W )∨ ( thisTx.readPredecessors ̸= /0) do
2 S = thisTx.readPredecessors.size()
3 wait δ

4 foreach pred ∈ thisTx.readPredecessors do
5 otherThread = otherThreads.get(pred.thread)
6 pred.state = otherThread.terminated[pred.id]
7 if pred.state == 1 then
8 thisTx.readPredecessors.remove(pred) // read from committed tx
9 else if pred.state == -1 then

10 return !abort() // read from aborted tx
11 else
12 continue
13 if thisTx.readPredecessors.size() < S then
14 δ = δ +a
15 else
16 δ = δ ∗b
17 if (thisT hread.terminated[thisT x.id] ==−1)∨ (δ <W ) then
18 return false
19 else
20 return true

3.5.3 Implementation Details

The Many-Core Wait-Hit Protocol requires the database to use a thread-per-core model, with

each worker thread pinned to its respective core. As each thread can access the terminated

list on other threads it is necessary such accesses are thread-safe, for example, each entry in

the list is guarded by a Mutex. For space reasons, the terminated list must be pruned, this

next section describes the epoch-based garbage collection mechanism used.

Epoch-based Garbage Collection The Many-Core Wait-Hit Protocol adapts the epoch-

based garbage collector mechanism in Subsection 3.4.2. Again, time is divided into epochs

numbered, e = 1,2, .... Let E denote the current epoch number, which the garbage collector

periodically increments and asynchronously informs the threads of the new E. Thus, each



62 Wait-Hit Protocol

thread τ maintains its own local view of E, which is denoted as Eτ . Eτ ≤ E at any time. In

addition, the garbage collector maintains a list A of the number of active transactions that

started in epoch e: A(e) indicates the number of transactions that started in epoch e and are

still known to be active. When τ starts a new transaction Ti, it records Eτ as start time ei,s,

for Ti : ei,s = Eτ and increments A(Eτ) by 1. When Ti terminates, τ records the current value

of Eτ as its finish epoch ei, f → (ei,s ≤ ei, f ) and decrements A(ei,s) by 1.

Let α be the smallest epoch number across all threads with at least 1 in-flight transac-

tion, hence, all transactions Ti that started with ei, f < α have terminated. Therefore, such

transactions will never be predecessor and can be garbage collected. The garbage collection

thread periodically views the local views of ατ and computes the global view of α by taking

the minimum value of ατ across all threads. α is then broadcast back to threads, who use it

to safely remove all entries in TLτ where eτ, f < ατ . This approach is appealing as it does

not require threads’ views of E and α to be synchronously updated.

3.5.4 Evaluation

In this section, we experimentally compare the Many-Core Wait-Hit Protocol, referred to

as MC-WHP, with the many-core SGT implementation described in Subsection 4.2.2 and

with classical strict 2PL (Subsection 2.1.3) in which locks are held until commit point; the

evaluation framework does not support predicate locks, thus only read/write locks are used.

To be precise, we focus on ascertaining the performance implications and scalability of the

Many-Core Wait-Hit Protocol’s lightweight validation strategy and determining how the

wait-hit approach compares to a graph-based approach. We include 2PL as it is still used in

several commercial systems, e.g., [87, 92].
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3.5.5 SmallBank

Firstly, we test the protocols using the SmallBank workload described in Subsection 2.3.3.

We consider the case of high contention by setting the database to contain only 100 customers;

transaction requests are uniformly distributed spread across the 100 customers. As can be seen

from Figure 3.3(a), as the core count is increased MC-WHP offers comparable throughput to

SGT (within 2% difference) and exceeds that of 2PL by over 4x. However, in Figure 3.3(b),

MC-WHP does have around a 2x increase in aborts over SGT, but half as many as 2PL.

This is anticipated as the Many-Core Wait-Hit Protocol’s validation strategy is designed to

sacrifice some executions in order to be lightweight and highly parallelizable. For average

latency displayed in Figure 3.3(c), SGT and MC-WHP’s performance is indistinguishable

(within a 1% difference).

3.5.6 YCSB

Then, we further investigate protocol performance using YCSB with the following workload

factors: we opt for a medium contention level, θ = 0.8, and a balanced read/update transaction

mix, U = 0.5. The observed pattern is similar to Subsection 3.5.5. However, interestingly

in Figure 3.4(a) the Many-Core Wait-Hit Protocol is able to outperform SGT at 30 cores,

showing a 1.3% increase in throughput and 36% increase at 40 cores. Again, the abort rate

is around 3x higher in MC-WHP compared to SGT in Figure 3.4(b), even though after 30

cores the gap shrinks to 2x. Lastly, in Figure 3.4(c), SGT has marginally lower latency up to

30 cores after which MC-WHP has lower average latency. Across all metrics, SGT and the

Many-Core Wait-Hit Protocol outperform 2PL.

3.5.7 TATP

Finally, we examine the scalability of the protocols using the TATP workload. TATP is

interesting as its transactions generate few conflict cycles, thus the abort rate is naturally
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Fig. 3.3 SmallBank – 100 customers (high contention).
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Fig. 3.4 YCSB – Performance measurements for the protocols as the core count is increased
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lower. We anticipate that due to this the performance difference between MC-WHP and

SGT will be narrow. This is what we observe in Figure 3.5, whilst SGT does outperform the

Many-Core Wait-Hit Protocol across all metrics, the magnitude of difference is lower than in

previous experiments.

3.5.8 Discussion

All three workloads considered so far have featured a non-negligible proportion of aborts,

however, in reality abortion may rarely take place in some workloads. Under these conditions

the Many-Core Wait-Hit Protocol protocol with a zero-wait policy again has an advantage

over its competitors.

Firstly, consider the case when infrequent aborts arise from low contention in the work-

load. A lack of contention implies transactions are not accessing the same data concurrently,

which for the Many-Core Wait-Hit Protocol translates to few predecessors being collected

and therefore a quicker validation phase. Secondly, there is the case when there is high

contention in the workload, but this does not translate to cycles and thus the abort rate still

remains low. In this case, as stated in Subsection 3.5.2, the zero-wait policy could lead to

spurious aborts, hence the AIMD wait policy could be used. This however is not a panacea,

as in the case when a transaction has incorrectly waited and aborted, we have in effect

increased the transaction’s time spent in the system. An increased transaction lifetime means

an increased contention window and therefore the overall abort rate in the system may rise as

a sequence of transactions that are ‘doomed’ to abort needlessly wait for one another.

3.6 Distributed Wait-Hit Protocol

In this section, we show how the wait-hit approach can be adapted to a distributed database.

The Distributed Wait-Hit Protocol assumes a shared-nothing database consisting of several
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machines, or shards. Each shard is responsible for managing a disjoint partition of the

database. Each multi-partition transaction, which involves data stored in multiple partitions

has a home shard, which is the shard responsible for coordinating the transaction on behalf of

the client and a set of remote shards. From a shard’s perspective, transactions for which it is

the coordinator are referred to as local transactions, whereas, transactions that are managed

by another shard, but execute on the shard, are referred to as foreign transactions.

A multi-partition transaction begins at its home shard and is assigned to a coordinator

thread. The multi-partition transaction then visits at least one remote shard, where it is

managed by a surrogate thread on the remote shard. In summary, within each shard there is a

set of threads designated for transaction management, which are further divided into two sets:

(i) coordinator threads: responsible for handling all local transactions and coordinating

with remote shards if transactions are multi-partition. (ii) surrogate threads: responsible for

handling foreign transactions. Each thread, τ , has a number of thread-local data structures:

• Transaction ID generator: used to assign a transaction with a database-wide unique

id. It is a combination of the shard id, thread id, and a thread-local sequence number.

(Coordinator thread only).

• Termination list (TLτ ). A list of entries for each transaction the thread has dealt

with, indexed by transaction id. Each entry denotes the corresponding transaction’s

state (in-flight: 0, aborted: -1, or committed:1). Note, if the thread is the coordinator

thread then all entries will be local transactions, else it is a surrogate thread and all

transactions will be foreign transactions.

Additionally, as in Sections 3.4 and 3.5 each worker maintains two per-transaction data struc-

tures to track the predecessors of the transaction (local or foreign) it is currently managing:

predecessors-upon-read and predecessors-upon-write.
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3.6.1 Protocol Description

The Distributed Wait-Hit Protocol consists of three stages: initialization, execution, and

commitment. The commitment stage is broken into two phases: wait and agreement. This

section describes each stage from the perspective of the coordinator thread and the surrogate

threads. The normal execution flow of the protocol is provided in Subsection 3.6.3, orange

circles link to key points in the execution flow. Messages are introduced as and when needed;

a summary of messages sent in the protocol is given in Subsection 3.6.3.

Coordinator Thread

Initialization A shard in the database receives a transaction request from a client. The

shard then allocates the transaction to a thread. This thread is the coordinator thread for the

transaction and it performs three actions: (i) assigns the transaction with an id using its ID

generator, (ii) appends the transaction to its termination list, and (iii) creates transaction-local

predecessor upon read/writes lists, 1 .

Execution The coordinator thread optimistically executes the operations within the transac-

tion. If read/write predecessors are encountered while accessing local data, they are recorded

into the appropriate predecessor list. An important point to note is that if the operation is a

write operation and predecessors are detected then they are proactively hit and their state set

to aborted once the operation has completed. Whilst this may induce more aborts it simplifies

atomic commitment (details to follow in Subsection 3.6.2). If the transaction requires remote

data on another shard, the coordinator forwards the operation to the relevant shard using a

REMOTE-OP message, 2 . Note, the remote shard will return the result of the REMOTE-

OP request; if the remote operation is a write operation then any predecessors-upon-write

detected on the remote shard will also be proactively hit on the remote shard. This process

repeats until the completion of all operations within a transaction and it is ready to commit at
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which point the coordinator sends a VALIDATE message to participant shards (including

itself) contacted during the transaction’s execution in order to begin the commit procedure,

3 .

Commit Due to proactive hitting when the commit procedure is called all of a transaction’s

predecessors-upon-write will have been aborted globally. Thus, the commit procedure con-

tains a single validation phase: wait. In the wait phase the coordinator iterates through its

predecessor-upon-read list, if the predecessor is committed it is removed from the list, else

the predecessor has aborted or is in-flight, thus the coordinator must abort the transaction.

Additionally, concurrent with this procedure the coordinator is listening for FAILED mes-

sages from remote shards; such a message is sent by surrogate threads on remote shards to

indicate the transaction has failed validation locally. If the coordinator fails the wait phase

locally or receives such a message then it terminates the transaction, informs the client, and

sends ABORT to all surrogate threads. Else, the wait phase is completed and the coordinator

delays until it has received a VERIFIED message from all remote shards at which point all

surrogates have completed the wait phase and the transaction has globally been validated.

The coordinator now enters the agreement phase and sets the transaction state to committed

in its termination list. This is the point of no return, once here the transaction must and will

always commit.

In the agreement phase the coordinator simply sends COMMIT, 5 , to all remote shards

and waits until it has received COMMITTED from all participants before responding to the

client, 7 .

Surrogate Thread

Initialization When a shard receives a REMOTE-OP it allocates the request to a surrogate

thread. The request will include the transaction id assigned by the coordinator thread. It

adds the REMOTE-OP’s corresponding transaction to its termination list; indexed by the
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corresponding transaction ID (assigned by the coordinator thread). The surrogate thread then

creates transaction-local predecessor upon read/writes lists, 2 . Note, these lists only store

predecessors detected from operations executed for this transaction on this remote shard.

Execution The surrogate thread optimistically executes the operation and any subsequent

operations for this transaction, detecting predecessors and installing them into the appropriate

predecessor list. If the remote operation is a write operation then any predecessors-upon-write

detected on the remote shard are proactively hit. The surrogate thread then delays until it

receives VALIDATE from the coordinator thread and then enters the commit procedure, 4 .

Note, at any time during execution if an ABORT message is received the surrogate thread

aborts the transaction.

Commit In the commit procedure, the surrogate performs the wait procedure, iterating

through its predecessor-upon-read list: if the predecessor is committed it is removed from

the list, else the predecessor has aborted or is in-flight, thus the surrogate thread must abort

the transaction and sends a FAILED message to the home shard. If the wait phase is

successful then a VERIFIED message is sent to the coordinator and the surrogate waits for

a COMMIT message before proceeding to the agreement phase. In the agreement phase, the

surrogate simply sets the transaction state to committed and replies with COMMITTED to

the coordinator, 6 .

3.6.2 Discussion

To summarize, the Distributed Wait-Hit Protocol follows a similar pattern to other optimistic

concurrency control protocols in that it integrates the validation phase with the first round

of 2PC: the validation phase maps to the prepare phase of 2PC. In the Distributed Wait-Hit

Protocol this is enabled by proactively hitting any predecessors-upon-write detected at the

end of each write operation performed. Without proactive hitting an additional phase (round
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trip) in the commit procedure would be needed to ensure that all predecessors-upon-write are

globally hit across all participant shards. The additional latency incurred per-transaction for

another round trip would potentially be unpalatable for most OLTP applications.

The benefit of Distributed Wait-Hit Protocol is that validation at each shard (remote and

home) can proceed independently in parallel, a clear advantage over distributed SGT which

requires distributed cycle check and thus a high-level of inter-shard communication. The

validation phase also possesses the same benefits as that in the Many-Core Wait-Hit Protocol

in that it is extremely lightweight, compared to OCC, the Distributed Wait-Hit Protocol does

not have the overheads of copy items during transaction execution. Compared to MVCC and

TO which block newer transactions that conflict until the older ones commit, the Distributed

Wait-Hit Protocol effectively allows transactions to race, thus should increase throughput in

situations when data items are highly contended, but the overall abort rate is low.

In Subsection 3.5.8 the performance of the Many-Core Wait-Hit Protocol under a work-

load with infrequent aborts was discussed. We now discuss the possible implications of such

a workload for the Distributed Wait-Hit Protocol. When the abort rate is low due to low

contention the performance of the protocol is bound by the network speed for performing

validation. In the case there is contention (thus predecessors lists are non-empty) and a

non-zero wait policy is employed, the drawbacks of incorrectly waiting are more pronounced

than in the Many-Core Wait-Hit Protocol as the lifetime of a transaction is already higher

due to the network calls required for validation, so the contention window of transactions

would increase. This could lead to cascading aborts, degrading system performance.

3.6.3 Messages

This section summarizes the messages exchanged between servers in the execution of a

distributed transaction.
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• REMOTE-OP: issued by a coordinator thread to a remote shard in order to access

data on the remote server. The acknowledgement to a REMOTE-OP can include the

results to read operations if required.

• VALIDATE: issued by a coordinator thread to indicate its transaction has completed

execution and wishes to be committed. Sent to all surrogate threads to initiate their

validation phase.

• VERIFIED: sent by surrogate threads to the coordinator thread to indicate they have

completed the wait phase and locally successfully validated.

• FAILED: sent by surrogate threads to the coordinator thread to indicate it has failed

validation locally.

• COMMIT: issued by the coordinator thread to surrogate threads if they have all

responded with VERIFIED (all completed validation).

• ABORT: issued by a coordinator thread to surrogate threads if at least one surrogate

thread responded with FAILED.

• COMMITTED: sent by surrogate threads to the coordinator thread to indicate it has

completed the agreement phase and successfully committed.

3.7 Conclusion

In this chapter we presented Wait-Hit Protocol, an optimistic concurrency control protocol

that is designed to scale vertically, as the core count is increased, and horizontally, as

database nodes are added. This is achieved through a lightweight validation phase that is

highly parallelizable. We have experimentally demonstrated that the wait-hit approach can

offer comparable performance with contemporary high performance protocols in a many-core
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environment at the cost of some additional aborts. The validation phase is designed in a

manner that addresses previous shortcomings of optimistic protocols in distributed databases.

3.7.1 Further Work

Additional Experiments As part of future work we wish to extend our evaluation frame-

work to allow for the implementation of several classical and state-of-the-art distributed

concurrency control protocols. Doing so will allow us empirically to compare the per-

formance of Distributed Wait-Hit Protocol with other protocols such as distributed OCC,

MVCC, and SGT, enabling us to validate our design and gain empirical support for the claims

made in Subsection 3.6.2.

Prior work on evaluating distributed concurrency control protocols focused on perfor-

mance in a single data center [54]. Future work could expand to large-scale distributed

database systems that span multiple data centers and geographic regions. In such a setting the

communication overhead imposed by optimistic methods (such as the Distributed Wait-Hit

Protocol) for validation may increase latency and reduce system throughput to unpalatable

levels. This challenge presents an opportunity to explore incorporating several mitigation
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strategies into the protocol. One such strategy would be aggregating multiple transactions

into batches to amortize the network overheads over many transactions, this could increase

the latency of individual, but maintain a stable average latency making for an improved user

experience. Another approach would be to exploit advances in modern hardware and use

technologies such as programmable switches [16] to design optimistic protocols that interact

better with the underlying hardware to maximize performance.

Integration with Machine Learning Another fertile area for exploration is the impact

machine learning (ML) can have on improving the performance of concurrency control

protocols in database systems. Some initial work has focused on making improved scheduling

decisions in many-core main memory database systems [95], it would be interesting to

investigate whether similar techniques could be applied in a distributed context in combination

with the wait-hit approach. Additionally, other recent work [112] has leveraged ML to develop

a learning-based framework that adapts the concurrency control protocol to the workload,

future work could determine if a similar approach could be used to optimize the variants of

the Wait-Hit Protocol to the workload and the scale point it is targeting.

Fault Tolerance and Availability For fault tolerance and availability, shards within a

distributed database are normally replicated. Balancing fault tolerance and availability with

transactional performance and system consistency is a delicate act. One approach future

work could explore is how the wait-hit approach can be integrated with strong replication

strategies such as Raft [82] and Paxos [68]. However, using these protocols can lead to

increased latency due to the extra communication between replicas to guarantee consensus,

also reducing throughput. On the other hand, weaker replication strategies offer improved

performance at the cost of weak consistency guarantees in the face of component failures

and network partitions, which may not match up with user expectations.
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Switching The motivation for developing the family of optimistic concurrency controls

in this Chapter was to have a single protocol that can scale from a many-core environment

to a large-scale deployment within a data center or across multiple data centers. Protocols

have been presented for each of these scale points, but missing from discussions was how to

facilitate the transition between them. Therefore, an open and interesting avenue for future

work is to investigate how to dynamically switch from the Many-Core Wait-Hit Protocol to

the Distributed Wait-Hit Protocol as resources are added and removed. This will help satisfy

users’ expectations of seamless elastic database scaling as hardware resources are altered.

The goal to strive for when switching from the Many-Core Wait-Hit Protocol and the

Distributed Wait-Hit Protocol from the client perspective is for there to be no performance

drop, for there to be no read or write unavailability to the system, and for the transition

to be tolerant to faults. One key issue to be addressed is whether the single-node running

the Many-Core Wait-Hit Protocol would become part of the distributed system running the

Distributed Wait-Hit Protocol or not. Such an in-place transition would be resource efficient,

but the bootstrap time to form the distributed cluster may impact performance. This could be

particularly pronounced if the cluster is running at near peak load as the underlying thread

pool would be reduced due to division between coordinator threads and surrogate threads for

the Distributed Wait-Hit Protocol.

An alternative approach would be to start a shadow cluster, avoiding the need for a boot-

strap phase, and use a database proxy to mirror traffic to the system running the Distributed

Wait-Hit Protocol- keeping them in sync. This approach would be less resource efficient

compared to an in-place transition, but this may be tolerable in a cloud environment as the

server running the Many-Core Wait-Hit Protocol can be decommissioned as soon as the

switch has been made. Running a hot shadow cluster would also possibly provide more

flexibility around data sharding. Before the transition the shadow cluster can move data

between shards without the concern of impacting throughput or latency, whereas, with the
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in-place switch the initial cluster running the Many-Core Wait-Hit Protocol would have a

imbalanced data partitioning which could yield unstable performance.





Chapter 4

Mixed Serialization Graph Testing
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Summary

Serialization Graph Testing faithfully implements the conflict graph theorem described

in Subsection 2.1.1 by aborting only those transactions that would actually violate

serializability (introduce a cycle), thus maintaining the required acyclic invariant. All

other known approaches, such as 2PL and the Wait-Hit Protocol, disallow certain valid

schedules to increase throughput. Thereby, Serialization Graph Testing has the theoreti-

cally optimal property of accepting all and only conflict serializable schedules. However,

as discussed in Subsection 2.1.2, not all applications require conflict serializability, but

can perfectly settle for various, known weaker isolation levels which typically require

relatively lower overheads; we corroborate this with a survey of the isolation levels

supported by 24 databases in Section 4.3. In such a mixed environment, providing only

the isolation level required of each transaction should, in theory, increase throughput and

reduce aborts. This chapter extends Serialization Graph Testing for mixed environments

subject to Adya’s mixing-correct theorem and confirms improvement in performance.

Mixed Serialization Graph Testing can achieve up to a 28% increase in throughput and

a 19% decrease in aborts over Serialization Graph Testing.

4.1 Introduction

Compared to the other approaches described in Subsection 2.1.3, the graph-based approach1

to serializable transaction processing possesses the desirable theoretical property of accepting

all conflict serializable schedules. Other approaches approximate the complete space of

conflict serializable schedules, but in doing so sacrifice a degree of concurrency in an attempt

to achieve higher throughput.

This can be illustrated by the following example. Consider two transactions, T1 and

T2, execute in a database running 2PL. Both transactions concurrently attempt to access
1Also referred to as Serialization Graph Testing (SGT)
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a single data item, x; assume T1 and T2 access no other items and that there are no other

transactions executing in the system. T1 wishes to write x and T2 wishes to read x. Let us say

T1 accesses x first and thus acquires a write lock on x. When T2 attempts to acquire a read

lock on x, depending on the deadlock detection strategy used, either T1 or T2 will be aborted.

This discounts a valid conflict serializable schedule, as no interleaving of T1 and T2 could

introduce a cycle in the conflict graph (either T1→ T2, or T2→ T1).

Despite Serialization Graph Testing’s theoretical upper-hand, it was historically dis-

counted as a viable strategy because the associated computational costs of maintaining an

acyclic graph were deemed impractical. However, recent research has refuted this perceived

wisdom. In [34] it was demonstrated how SGT can be implemented efficiently in a many-core

database, offering comparable, and often higher, performance when compared to traditional

and contemporary concurrency control protocols.

In spite of recent advances, serializable transaction processing performance often remains

unsatisfactory for application demands. As introduced in Subsection 2.1.2, another tool

at databases’ disposal to increase performance is to execute transactions at weak isolation

levels, e.g., Read Committed. Here, the number of permissible schedules is increased at

the expense of potentially allowing non-serializable behaviour, e.g., Fuzzy Reads. Weak

isolation is pervasive in real world systems, with most systems offering a range of isolation

levels; a comprehensive survey of the isolation levels supported by commercial and open

source databases is given in Table 4.1. A database that allows concurrent transactions to be

executed at different isolation levels is said to be mixed [1]. For example, transaction TRC

can run at Read Committed and transaction TS at Serializable.

The classical method to implement a mixed DBMS is to opt for a 2PL-variant in which

transactions vary the duration they hold locks [51]. For example, TRC would release read

locks on data items immediately after performing the read operation, whereas TS holds all

locks until commit time. This mechanism and others used in mixed DBMSs suffer from
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the same problem as their serializable equivalents: some valid executions are prevented

leading to unnecessary aborts. This begs the question: how can SGT be extended to allow

some transactions to be executed at weak isolation levels, whilst accepting all and only valid

executions? Such an approach would permit higher concurrency and performance.

This chapter presents Mixed Serialization Graph Testing (MSGT), which accepts all

valid schedules under Adya’s mixing-correct theorem [1], thus maintaining SGT’s property

of minimizing aborts. We evaluate MSGT’s performance using a range of popular OLTP

benchmarks.

The remainder of this chapter is structured as follows: Section 4.2 provides a detailed

overview of SGT and the many-core implementation presented in [34]. Section 4.3 provides

a survey of the isolation levels provided by ACID and NewSQL [86] databases highlight-

ing the prevalence of mixed DBMSs and demonstrating the utility of MSGT. Section 4.4

describes Adya’s formalism of weak and mixed isolation levels. Section 4.5 presents Mixed

Serialization Graph Testing. Section 4.6 gives results, before Section 4.7 concludes.

4.2 Serialization Graph Testing

This section presents Serialization Graph Testing. Subsection 4.2.1 provides a description

of the protocol. Subsection 4.2.2 describes the many-core optimized concurrent graph data

structure used by the SGT implementation in [34]. Where appropriate we draw comparisons

with the Wait-Hit Protocol in Chapter 3.

4.2.1 Protocol Description

In this chapter we focus on basic-SGT [12], which operates as follows:

1. When the database scheduler receives transaction Ti it creates a node in its conflict

graph for Ti.
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2. Then, for each operation on item x, opi(x), within Ti,

(a) Conflicts are determined. opi(x) conflicts with op j(x) of Tj if op j(x)< opi(x),

and if opi(x) is a read and op j(x) is a write (wr conflict), or if opi(x) is a write

and op j(x) is a read or write (rw/ww conflicts).

(b) For each conflict, an edge is inserted into the graph from the conflicting transac-

tion, Tj→ Ti; provided an edge Tj→ Ti does not already exist. Note, transactions

only insert incoming edges to themselves.

(c) Then, a cycle check is performed before executing the operation. If executing the

operation would introduce a cycle Ti is aborted and its outgoing edges removed.

3. At commit time, a Ti delays until it has no incoming edges and then removes its

outgoing edges. The removal of outgoing edges ensures conflicting transactions will

commit. Note, if Ti has no incoming edges then it cannot be involved in a cycle.

Delaying the commitment of transactions until they have no incoming edges achieves:

(i) safe node deletion, (ii) recoverability, and (iii) order preservation. To illustrate this

consider schedule s, which contains transactions T1, T2, T3, and T4. Recall, a write on item

x by transaction Ti is denoted by wi[x], a read by ri[x], and a commit operation by ci. The

corresponding conflict graph CG(s) is shown in Figure 4.1.

s = w1[x] r2[x] r2[y] w1[y] w2[z] w3[z] r3[x] r3[a] w4[a] c1 c3 c2 c4

T1 T2 T3 T4

Fig. 4.1 Conflict graph representation of s.
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Due to space constraints nodes must be pruned from the conflict graph. Allowing

transactions to commit with incoming edges can lead to subtle serialization violations.

For example, assume in Figure 4.1, T3 has committed and T2 is still executing. If T3 is

removed upon commitment, T2 may subsequently perform an operation that introduces a

cycle with T3, but which goes undetected due to T3’s removal, introducing a serialization error.

For a node to be involved in a cycle it must have at least one incoming and one outgoing edge.

As transactions only insert edges incoming to themselves during execution, after issuing

a commit request, no more incoming edges are added. Thus, once all incoming edges are

removed from the committing node, via the parent node terminating, it will not be in a cycle.

Recoverability ensures failures do not leave the database in an inconsistent state. In s, T1

writes x, then T2 reads x. If T2 commits before T1, T1 may subsequently abort, at which point

T2 has read from a value that never existed. Delaying T2’s commit until it has no incoming

edges prevents this issue; if T1 aborts then T2 is also aborted.

Order preservation ensures the real-time commit order matches the serialization order.

In s, T4 overwrites the value a read by T3, thus in the serial order: T3→ T4. If T4 commits

before T3 no recoverability issues are introduced, but the real-time commit order does not

match the serialization order. Delaying T4’s commit until it has no incoming edges avoids

this, providing users with an improved, more intuitive, experience.

Note, the Wait-Hit Protocol in Chapter 3 bears resemblance to SGT in that for each

operation within a transaction conflicts are detected, but rather than converting this informa-

tion into edges in a conflict graph, the Wait-Hit Protocol compresses conflict information

into predecessor-upon-read and predecessor-upon-write sets. Thus, exact cycle detection in

Wait-Hit Protocol is not possible and some schedules are unnecessarily aborted. However,

the Wait-Hit Protocol’s compressed conflict information allows the protocol’s validation

to scale horizontally in a partitioned database, whereas in SGT’s cycle checking across
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partitions would incur significant network overheads for each conflict detected. In summary,

Wait-Hit Protocol is trading off some unnecessary aborts for scalability.

4.2.2 Many-Core Implementation

SGT was efficiently implemented in [34] using a graph data structure designed to facilitate

concurrent cycle checking and avoid the pitfalls of other many-core concurrency control

protocols.

As stated in Subsection 2.1.4, many-core DBMSs use optimistic approaches as their

pessimistic counterparts suffer from poor performance as the core count increases. A

common bottleneck in optimistic approaches is an exclusive single-threaded verification

phase. Regarding SGT, in [34], to avoid a global lock for graph operations, the graph data

structure utilizes a node-local locking protocol. Nodes in the graph each store a transaction

status (committed, active, aborted) and two sets of pointers representing incoming and

outgoing edges. Nodes can then be locked in two modes:

• Shared mode: transactions can concurrently access the node for edge insertions, edge

deletions, and cycle checking. Edge sets guarantee thread-safe concurrent access for

scans, insertions, and deletes under the shared lock.

• Exclusive mode: used for the commit-critical check for incoming edges.

The node-level locking protocol works as follows: when a transaction Tx identifies a

conflict with transaction Ty it first checks if an edge already exists from Ty to Tx, if so, no

additional work is needed. Else, Tx acquires a shared lock on Ty’s node. If Ty is active, then

an edge pointer to Tx is inserted into Ty’s outgoing edge set and an edge pointer from Ty is

inserted into Tx’s incoming edge set. Tx then checks for a cycle using a reduced depth-first

search (DFS) algorithm. Reduced DFS begins at the validating node (Tx) and traverses only

the portion of the graph that is needed; each step holds nodes in shared lock mode. At commit
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time, Tx acquires an exclusive lock on its node and checks for incoming edges. If there are

none, Tx commits and shared locks are acquired on each node in Tx’s outgoing edge set and

the edge from Tx removed. Else, there exists at least one incoming edge and the exclusive

lock is released and the check is repeated until either the transaction commits or is aborted.

Note, the exclusive lock is needed to prevent other transactions traversing Tx during their

cycle checking or from adding in outgoing edges from Tx.

Another common bottleneck is the reliance on a global timestamp allocator, this is

avoided in [34] by letting conflict graph nodes double up as transaction ids.

SGT requires a mechanism to derive conflicts. In [34] database rows store a sequential

history of accesses. Each access stores the operation type, read or write, and the transaction id.

Decoupling the access information from the graph data structure decreases contention. Note,

sequentially ordered access is ensured by per-row spin-locks which are released immediately

after the operation completes, i.e., the lock is not held until commit time, an improvement

over lock-based approaches.

In summary, the SGT implementation in [34] decouples conflict detection from the

management of the conflict graph, and employs graph structure that allows concurrent cycle

checking. In particular, the commit critical check only shortly blocks other threads from

accessing a node and only the part of the serialization graph needed for validation is traversed.

Lastly, nodes in the graph double up as transaction ids, avoiding a well established bottleneck

in other protocols. It achieves this whilst also minimizing the number of unnecessary

aborts, accepting all conflict serializable schedules and provides an ideal baseline for the

development of MSGT.
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4.3 Mixing in the Wild

This section motivates the development of a mixed graph-based scheduler that minimizes

unnecessary aborts by surveying the isolation levels supported by commercial and open

source DBMSs.

It is rare that practical DBMSs offer applications only a singular isolation, instead

permitting transactions to be run at different isolation levels. In order to assess this claim we

surveyed the isolation levels offered by 24 ACID and NewSQL database systems in Table 4.1.

Classification was performed based on each database’s public documentation. We found

seven isolation levels represented: Read Uncommitted (RU), Read Committed (RC), Cursor

Stability (CS), Snapshot Isolation (SI), Consistent Read (CR), Repeatable Read (RR), and

Serializable (S). Note, the exact behaviour of each isolation level is highly system-dependent.

Interestingly, we found 18 databases supported multiple isolation levels. Of systems offering

a single isolation level Serializable was the most common; these systems were typically

NewSQL [86] systems, e.g., CockroachDB [98]. This may suggest a trend away from mixed

databases, however, TiDB [55, 105] recently added support for Consistent Read isolation

indicating the utility of weaker isolation remains.

Our survey’s findings are corroborated by a 2017 survey of database administrators on

how applications use databases [85], the survey found the majority of transactions execute

at Read Committed. In short, this evidence illustrates the ubiquity of mixed databases and

motivates the development of MSGT.

4.4 Mixing Theory

This section presents the correctness criteria utilized by MSGT. Subsection 4.4.1 reproduces

the system model from [1], which is used to define weak isolation levels in Subsection 4.4.2,

before the mixing-correct theorem is defined.
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Table 4.1 Isolation Levels Supported by ACID and NewSQL Databases

Database Isolation Level
System RU RC CS SI CR RR S
Actian Ingres 11.0 ✓ ✓ ✓ ✗ ✗ ✓ ✓∗

Clustrix 5.2 ✗ ✓e ✗ ✗ ✗ ✓∗c ✓

CockroachDB 20.1.5 ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

Google Spanner ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

Greenplum 6.8 ✓b ✓∗ ✗ ✗ ✗ ✓ ✗

Dgraph 20.07 ✗ ✗ ✗ ✓∗ ✗ ✗ ✗

FaunaDB 2.12 ✗ ✗ ✗ ✓ ✗ ✗ ✓∗

Hyper ✗ ✗ ✗ ✗ ✗ ✗ ✓

IBM Db2 for z/OS 12.0 ✓ ✓a ✓∗ ✗ ✗ ✓ ✗

MySQL 8.0 ✓ ✓ ✗ ✗ ✗ ✓∗ ✓

MemGraph 1.0 ✗ ✗ ✗ ✓∗ ✗ ✗ ✗

MemSQL 7.1 ✗ ✓∗e ✗ ✗ ✗ ✗ ✗

MS SQL Server 2019 ✓ ✓∗ ✗ ✓ ✗ ✓ ✓

Neo4j 4.1 ✗ ✓∗ ✗ ✗ ✗ ✗ ✓

NuoDB 4.1 ✗ ✓ ✗ ✗ ✓∗ ✗ ✗

Oracle 11g 11.2 ✗ ✓∗ ✗ ✓ ✗ ✗ ✗

Oracle BerkeleyDB ✓ ✓ ✓ ✓ ✗ ✗ ✓

Oracle BerkeleyDB JE ✓ ✓ ✗ ✗ ✗ ✓∗ ✓

Postgres 12.4 ✓b ✓∗ ✗ ✗ ✗ ✓c ✓

SAP HANA ✗ ✓∗ ✗ ✓ ✗ ✗ ✗

SQLite 3.33 ✓ ✗ ✗ ✗ ✗ ✗ ✓∗

TiDB 4.0 ✗ ✗ ✗ ✓∗ ✓ ✗ ✗

VoltDB 10.0 ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

YugaByteDB 2.2.2 ✗ ✗ ✗ ✓∗ ✗ ✗ ✓
∗ Indicates the default setting.
a Referred to as Read Stability.
b Behaves like Read Committed due to MVCC implementation.
c Implemented as Snapshot Isolation.
d Requires manual lock management.
e Behaves like Consistent Read.
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4.4.1 System Model

In Adya’s system model, transactions consist of an ordered sequence of read and write

operations to an arbitrary set of data items, book-ended by a BEGIN operation and a COMMIT

or an ABORT operation. The set of items a transaction reads from and writes to is termed its

item read set and item write set. Each write creates a version of an item, which is assigned a

unique timestamp taken from a totally ordered set (e.g., natural numbers) version i of item

x is denoted xi; hence, a multiversioned system is assumed. All data items have an initial

unborn version ⊥ produced by an initial transaction T⊥. The unborn version is located at the

start of each item’s version order. An execution of transactions on a database is represented

by a history, H. This consists of a partial order of events, which reflects (i) each transaction’s

read and write operations, (ii) data item versions read and written and (iii) commit or abort

operations, and a version order, which imposes a total order on committed data item versions.

There are three types of dependencies between transactions, which capture the ways in

which transactions can directly conflict. Read dependencies capture the scenario where a

transaction reads another transaction’s write. Antidependencies capture the scenario where a

transaction overwrites the version another transaction reads, they can be seen as the opposite

of read dependencies. Write dependencies capture the scenario where a transaction overwrites

the version another transaction writes. Their definitions are as follows:

Read-Depends Transaction Tj directly read-depends (wr) on Ti if Ti writes some version xk

and Tj reads xk.

Anti-Depends Transaction Tj directly anti-depends (rw) on Ti if Ti reads some version xk

and Tj writes x’s next version after xk in the version order.

Write-Depends Transaction Tj directly write-depends (ww) on Ti if Ti writes some version

xk and Tj writes x’s next version after xk in the version order.
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Using these definitions, from a history H a direct serialization graph DSG(H) is con-

structed. Each node in the DSG corresponds to a committed transaction and edges correspond

to the types of direct conflicts between transactions. Anomalies can then be defined by stat-

ing properties about the DSG. To illustrate the difference between an Adya history and

a classic schedule, s is given with versions accessed by each operation (version order:

[x0≪ x1,y0≪ y1,z2≪ z3]). This is visualized in Figure 4.2.

H = w1[x1] r2[x1] r2[y0] w1[y1] w2[z2] w3[z3] r3[x1] c1 c3 c2

T1 T2 T3
wr ww

wr

rw

Fig. 4.2 Direct serialization graph (DSG) representation of H.

The above item-based model can be extended to handle predicate-based operations [1].

Database operations are frequently performed on sets of items provided a certain condition

called the predicate, P, holds. When a transaction executes a read or write based on a

predicate P, the database selects a version for each item to which P applies, this is called the

version set of the predicate-based denoted as Vset(P). A transaction Tj changes the matches

of a predicate-based read ri(Pi) if Ti overwrites a version in Vset(Pi).

4.4.2 Weak Isolation Levels

Using the system model in Subsection 4.4.1, definitions of isolation levels are given via a

combination of constraints and the prevention of types of cycles in the DSG. In total 11

isolation levels are presented in [1]. In this chapter we consider a subset: Read Uncommitted,

Read Committed, Repeatable Read, and Serializable.
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Read Uncommitted Read Uncommitted isolation prevents anomaly Dirty Write (G0), that

is, the DSG cannot contain cycles consisting entirely of write-depends edges. HG0 below

contains a Dirty Write (G0) anomaly and the corresponding DSG is shown in Figure 4.3.

Informally, this means writes to different data items must be ordered consistently across

transactions.

HG0 = w1[x1] w2[y2] w1[y1] w1[x1] c1 c2

T1 T2

ww

ww

Fig. 4.3 DSG(HG0) displays a Dirty Write (G0) anomaly.

Read Committed Read Committed isolation prevents G0 and anomalies, (i) Aborted Read

(G1a), transactions cannot read data item versions created by aborted transactions (HG1a), (ii)

Intermediate Reads (G1b), transactions cannot read intermediate data item versions (HG1b),

and (iii) Circular Information Flow (G1c), the DSG cannot contain cycles consisting of

write-depends and read-depends edges (HG1c, DSG in Figure 4.4). Informally, this means

transactions only read committed information.

HG1a = w1[x1] r2[x1] a1 c2

HG1b = w1[x1] w1[x2] r2[x1] c1 c2

HG1c = w1[x1] r2[x1] w2[y2] r1[y2] c1 c2
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T1 T2

wr

wr

Fig. 4.4 DSG(HG1c) displays a Circular Information Flow (G1c) anomaly.

Serializable Serializable isolation prevents anomalies G0, G1, and G2, the DSG cannot

contain cycles containing one or more anti-depends edges. In short, the DSG cannot con-

tain any cycles. HG2 below contains a G2 anomaly and the corresponding DSG is shown

in Figure 4.5.

HG2 = r1[x0] w2[x1] r2[y0] w1[y1] c1 c2

T1 T2

rw

rw

Fig. 4.5 DSG(HG2) displays a G2 anomaly.

4.4.3 Mixing of Isolation Levels

To define a correctness criteria for a mixed DBMS, a DSG variant is used to represent a

mixed history, referred to as a mixed serialization graph, MSG(H). A MSG only includes

relevant and obligatory conflicts. A relevant conflict is a conflict that is pertinent to a given

isolation level, e.g., read-depends edges are relevant to Read Committed transactions but not

Read Uncommitted transactions. An obligatory conflict is a conflict that is relevant to one

transaction but not the other, e.g., an item-anti-depends edge between a Read Committed

transaction and a Serializable transaction is relevant to the Serializable transaction and not the

Read Committed transaction but still must be included in the MSG. Adya defines the edge

inclusion rules for an MSG as follows:
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1. Write-depends edges are relevant to all transactions regardless of isolation level thus

always included.

2. Read-depends edges are relevant for edges incoming to Read Committed, Repeatable

Read, or Serializable transactions.

3. Item-anti-depends edges are included for outgoing edges from Repeatable Read and

Serializable transactions.

4. Predicate-anti-depends edges are included for outgoing edges from Serializable trans-

actions.

Now in a mixed DBMS, a history is correct if each transaction is provided the isolation

guarantees that pertain to its level leading to the mixing-correct theorem [1]. Figure 4.6

illustrates the differences between DSG (Figure 4.2) and MSG representations of a history

with the non-relevant and non-obligatory edges removed.

Theorem 2 (Mixing-Correct Theorem) A history H is mixing-correct if MSG(H) is

acyclic and phenomena G1a and G1b do not occur for Read Committed, Repeatable Read,

and Serializable transactions.

T1

Serializable

T2

Read Committed

T3

Read Uncommitted

wr ww

Fig. 4.6 Mixed serialization graph representation of H.

4.5 Mixed Serialization Graph Testing

In this section, we describe mixed serialization graph testing, focusing on the adjustments to

the SGT algorithm (sketched in Subsection 4.2.1) and the concurrent graph data structure
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described in Subsection 4.2.2. Subsection 4.5.2 discusses several potential performance

optimizations.

4.5.1 Protocol Description

For MSGT we use the graph data structure and node-level locking protocol in Subsection 4.2.2

to represent an MSG, which requires one alteration: nodes include transactions’ required

isolation levels. MSGT proceeds in the same manner as SGT, with one key exception: for

each operation, edge insertion of a detected conflict is subject to MSG’s edge inclusion rules

enumerated in Subsection 4.4.3. MSGT’s edge insertion algorithm is given in Algorithm 7.

First, if an edge already exists for this conflict type no further action is needed, else a

cascading abort check is performed. If the parent node has aborted and the inserting node is

Serializable or Read Committed it must also abort to avoid G1a anomalies. Then, the edge is

inserted iff it satisfies MSG’s inclusion rules, before a cycle check is executed. If a cycle

is found the transaction must abort. At commit time the transaction delays until it has no

incoming edges.

4.5.2 Optimizations

Restricted DFS Our first optimization arises from the following observation: the reduced

DFS used in the SGT implementation described in Subsection 4.2.2 can result in a transaction

aborting due to detection of a cycle it is not involved in. For example, assume Ti has detected

a conflict with Tj, thus inserted Tj → Ti. Now, assume Tj and Tk are involved in a cycle,

Tj → Tk → Tj. It is possible for the cycle check initiated from Ti to detect this cycle and

unnecessarily abort. This can be solved by restricting the DFS to only detect cycles involving

the edge which has just been inserted. Informally, this is correct as if adding an edge

introduces a cycle into the graph, then it and the two nodes it connects will be members of

the cycle. Restricted DFS can benefit both SGT and MSGT.
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Algorithm 7: MSGT Edge Insertion
1 Input: Node& this, Node& from, Conflict cType
2 if (from.id,cType) /∈ this.inSet then
3 if cType != RW ∧ this.iso == (RC ∨ S) ∧ from.state == aborted then
4 return false // cascading abort
5 if cType == ww then
6 this.inSet.add(from.id)
7 from.outSet.add(this.id)
8 else if cType == wr ∧ this.iso != RU then
9 this.inSet.add(from.id)

10 from.outSet.add(this.id)
11 else if cType == rw ∧ from.iso == S then
12 this.inSet.add(from.id)
13 from.outSet.add(this.id)
14 else
15 return true // not relevant/obligatory
16 cycle = cycleCheck(thisNode)
17 return !cycle
18 else
19 return true // edge already exists abort

Relevant DFS The second optimization can be attributed to the observation that reduced

DFS is blind to the type of edge being traversed and thus the type of cycle found, which can

also contribute to unnecessary aborts. In other words, transactions can unnecessarily abort

due to a detecting cycle that is not applicable to its isolation level. For example, the cycle

involving T1 and T2 in Figure 4.7(a) is a G2 cycle, which is relevant to T2 the Serializable

transaction (Figure 4.7(c)), but not to T1 the Read Committed transaction (Figure 4.7(b)).

Without explicit consideration, T1 could detect the cycle, which results in T2 also (cascadingly)

aborting due to the wr edge between T1 and T2. To address this we propose the following

heuristic: assuming restricted DFS, if Ti has inserted a rw edge between itself and Tj, if Ti is

a Read Committed or Read Uncommitted transaction, then if a G2 cycle is detected then

Tj is aborted, else Ti aborts. We term this relevant DFS. Informally, this works as if a cycle

is detected then it can be broken by aborting either transaction connected by the edge. In



96 Mixed Serialization Graph Testing

T1

PL-2

T2

PL-3wr

rw

(a) MSGT

T1

PL-2

T2

PL-3wr

(b) T1’s view

T1

PL-2

T2

PL-3wr

rw

(c) T2’s view

Fig. 4.7 MSGT and individual transaction’s relevant views.

the case of a G2 cycle, we leverage this to selectively abort the transaction with a higher

isolation level where possible to minimize the impact of cascading aborts.

Early Commit Rule The third optimization comes from the observation that a non-relevant

incoming edge can delay a transaction from committing. For example, consider Ti (Read

Committed) is attempting to commit, but has a single incoming anti-depends edge from

Tj (Serializable), Tj
rw−→ Ti. Recall from Section 4.2, delaying commitment until a node

has no incoming edges simplifies node deletion, ensures recoverability, and provides order-

preservation. However, in the example, Ti can never lie on a cycle relevant to its isolation

level (G0 or G1c cycle.), thus under the early commit rule a transaction can commit without

delay with incoming edges, provided these are not relevant to the transaction’s isolation

level, i.e., Ti could commit immediately. Such a scheme should provide lower latency for

transactions that require weaker isolation levels via this more flexible commit rule. In the

example, Ti would not unnecessarily waste CPU cycles checking its incoming edge set.

Care, however, must be taken regarding node deletion if the early commit rule is used.

To illustrate this, Ti may still be a member in a cycle for a transaction committing at a

higher isolation level, e.g., Tj may insert the edge Ti
rw−→ Tj. Similarly to that described

in Subsection 4.2.1, removing the node upon commit would allow the possibility of missed

cycles and hence executions not permitted under the mixing correct theorem. Thus, regardless

of isolation level a node can only be scheduled for removal once all incoming edges have

been removed. A possible implementation is to offload the management of early committed

nodes to a background thread that periodically checks if all edges have been removed, at
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which point the nodes can be deleted and recycled; this would allow nodes to be accessed, if

needed, during cycle checking initiated by other nodes.

4.5.3 Discussion

MSGT has several benefits. Firstly, most DBMSs offer weak isolation levels and thus a

considerable portion of real world applications are built atop such guarantees. Normally,

weak isolation is an afterthought as DBMSs chase better performance, with MSGT weak

isolation catered for as a first-class citizen. Such an approach provides a higher degree

of concurrency and hence performance, whilst also providing the optimal property of no

unnecessary aborts. The relevant DFS optimization further minimizes aborts and the early

commit rule promises lower latency for transactions that require weaker isolation levels.

There are multiple drawbacks that must also be considered. It is worth noting the utility

of weak isolation is limited to applications that can tolerate potentially non-serializable

behaviour. Additionally, if a workload exhibits low contention or is designed in a manner

such that anomalies provably do not occur [44], then the additional overhead of managing

the MSG has little benefit. Unfortunately, if the early commit rule is deployed, the real-time

commit order may no longer match the serialization order, i.e., order-preservation is violated.

However, in the search for high performance this may be a trade-off the database operator is

willing to make.

4.5.4 Implementation Details

MSGT was implemented in our prototype in-memory database (Subsection 2.3.1). The

DBMS has a pool of worker threads and each transaction is pinned to a specific worker thread

for its duration. Each worker thread has an independent workload generator. Thus when a

transaction is committing we repeatedly execute the commit routine (check for incoming

edges).
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To ensure high operation throughput under a concurrent workload, the necessary data

structures use atomic operations where appropriate. The use of totally ordered transaction

ids was avoided using the address of the transaction’s node in the graph as the transaction

id to avoid contention updating a global atomic counter. For safe memory reclamation in a

concurrent environment epoch-based garbage collection is used [46] and nodes’ edge sets

are recycled after a transaction is committed and deleted.

Adya’s system model is defined in terms of a multiversion model, but as the MSGT

scheduler allows transactions to optimistically read dirty records, the possibility of cascading

aborts is introduced. Unwinding writes due to cascading aborts lead to unnecessary system

load and are not useful for either the user of the system. Therefore, only one uncommitted

transaction is allowed to modify a data item. Also, the prototype DBMS does not currently

support predicate-based operations, thus a simple read/write model is assumed. Hence, some

isolation levels, e.g., Repeatable Read, can not be captured.

4.6 Evaluation

In this section, we experimentally compare MSGT with SGT focusing on two implementa-

tions: a graph-based scheduler (SGT) and a mixed graph-based scheduler (MSGT). To be

precise, we focus on answering the following questions:

• What are the performance benefits of MSGT vs. SGT under a workload with transac-

tions executed at different isolation levels?

• Under what workload conditions does MSGT exhibit better performance than SGT?

• What is the overhead of MSGT vs. SGT when all transactions are executed at Serializ-

able isolation?

Our first set of experiments in Subsections 4.6.1 to 4.6.4 use YCSB (described in Sub-

section 2.3.2) as a microbenchmark. This benchmark allows various aspects of an OLTP
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workload to be altered to measure how the protocols perform under a variety of workload

conditions. Specifically, we tweak the proportion of serializable transactions, vary the pro-

portion of update transactions, differ the contention level, and increase the core count to

measure scalability. YCSB’s workload factors are summarized in Table 4.2. The next set of

experiments in Subsections 4.6.5 and 4.6.6 model different application scenarios, namely,

SmallBank and TATP described in Subsection 2.3.3 and Subsection 2.3.2 respectively. Small-

Bank is helpful in addressing our research question of ascertaining the overhead of MSGT

compared to SGT, as all SmallBank transactions are executed at Serializable isolation. TATP

also provides an ideal candidate for measuring the overhead of MSGT in comparison with

SGT. However, TATP permits all transactions to be executed at Read Committed isolation.

Thus, it is useful to help determine whether MSGT can still provide performance gains in

workloads with a low abort rate.

Table 4.2 YCSB Workload Factors

Symbol Meaning Values
ω Contention Level 0.6-0.9
U Proportion of update transactions 0.0-1.0
θ Proportion of Serializable transactions 0.0-1.0

cores DBMS core count 1-40

4.6.1 Isolation

We begin with measuring the impact of increasing the proportion of transactions executing at

Serializable isolation (ω) from 0% to 100%. This aims to test MSGT’s ability to leverage its

theoretical properties to offer increased performance when transactions are run at weaker

isolation levels. For this experiment, we opt for a medium contention level by setting θ = 0.8,

and the framework is configured to run with 40 cores.

In Figure 4.8(a), SGT’s throughput is invariant to the proportion of Serializable transac-

tions, this is anticipated as it is unable to take advantage of transactions’ declared isolation
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Fig. 4.8 Isolation – SGT and MSGT with 40 cores when varying the proportion of Serializable
transactions from 0% to 100% with medium contention θ = 0.8 and 50% update rate.
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levels, in effect, executing all transactions at Serializable. Meanwhile, the throughput of

MSGT decreases as ω is increased, converging towards SGT’s throughput. When there are

no Serializable transactions (ω = 0.0), MSGT achieves a 39% increase in throughput. At

ω = 0.4, this drops to a 21% increase and at ω = 0.8 a 4% gain is exhibited. When ω = 1.0,

SGT marginally outperforms MSGT, this can be attributed to the additional overhead of

managing the MSG. This relationship is reflected in the abort rate displayed in Figure 4.8(b),

across the range of ω , SGT’s abort rate varies from a 3x increase over MSGT’s abort rate to

an equivalent abort rate when all transactions are executed at Serializable. A higher abort rate

degrades the user experience, reduces throughput and, as can be seen in Figure 4.8(c), harms

latency.

4.6.2 Update Rate

For the next experiment, we explore the effect of varying the proportion of update transactions

(U). For this experiment, we opt for a medium contention level, θ = 0.8, set the proportion

of Serializable transactions to ω = 0.2, with the framework configured to run with 40 cores.

When U = 0.0, the workload is read-only thus no (ww, wr, rw) conflicts are generated.

Thus, no edges are inserted and neither SGT or MSGT are required to perform any work,

which explains why performance is indistinguishable across all metrics in Figure 4.9. As

U is increased more updates are executed and more conflicts occur, thus both schedulers

have work (edge insertion/cycle checks) to perform, which explains the downward trend

in throughput in Figure 4.9(a). MSGT’s throughput decreases at a slower rate as it is able

to leverage its selective conflict detection rules, achieving between 11% and 27% higher

throughput compared to SGT.
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Fig. 4.9 Update Rate – Performance measurements at 40 cores for the protocols as the
proportion of update transaction (U) is varied from 0% to 100% with medium contention,
θ = 0.8, and a low proportion of Serializable transactions, ω = 0.2.
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4.6.3 Contention

In the next experiment we measure the effect of increasing contention in the system by

varying θ from 0.6 to 0.9. In theory, contention increases the chance of conflicts between

transactions. This should translate into an increase in the number of edges inserted into the

conflict graph. Under SGT all edges are inserted, whereas MSGT utilizes isolation levels to

be more selective over edge insertions (only adding relevant or obligatory edges) hence it

inserts fewer edges into the conflict graph, and should find fewer cycles (aborts) compared to

SGT. We set the proportion of Serializable transactions to ω = 0.2. Again the experiment

was run with 40 cores.

Figure 4.10(a) displays the throughput of SGT and MSGT as the contention is increased.

As θ increases the throughput decreases for both protocols. For low levels of contention

SGT performs marginally better than MSGT (<1% difference), but under high contention

this reverses and MSGT offers a 24% increase in throughput. Figure 4.10(b) shows that after

θ = 0.7, the abort rate begins increasing for both protocols. At the highest level of contention

(θ = 0.9), 0.1% of the data is accessed by 35% of the queries, and SGT aborts 17% more

transactions than MSGT. Lastly, in Figure 4.10(c), above θ = 0.7, MSGT achieves between

a 9% and 28% reduction in the average latency.

4.6.4 Scalability

The previous three experiments have investigated the impact of several workload factors in

a database with 40 cores. In this experiment we fix the workload factors and vary the core

count (1 to 40) to evaluate MSGT’s scalability compared to SGT. We anticipate that MSGT

scales better than SGT as its scheduler generally performs less work (edge insertions and

cycle checking). From Figure 4.11(a) it can be seen that until 20 cores the throughput of both

protocols is indistinguishable; in fact, up to 10 cores SGT exhibits between a 1.2% and 3.1%

increase over MSGT. After this point, a gap appears, at 30 cores MSGT has 13.1% higher
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Fig. 4.10 Contention – SGT and MSGT with 40 cores when varying the contention (skew
factor) in the YCSB workload with ω = 0.2, and U = 0.5.
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throughput and at 40 cores this difference increases to 27.9%. In Figure 4.11(b) it can be

seen the abort rate of the protocols starts to diverge after 10 cores: SGT has an abort rate of

1.65% and 3.39% at 30 and 40 cores respectively, whereas MSGT’s is 0.50% and 1.54%.

4.6.5 SmallBank

Next we test the protocols using the SmallBank workload. In this workload all transactions

are executed at Serializable isolation, we consider the case of unusual high contention by

setting the database to contain only 100 customers; transaction requests are uniformly

distributed across the 100 customers. This creates a worst case scenario for MSGT, the

high contention results in a significant number of edge insertions, and it cannot leverage

its selective edge insertion rules due to all transactions requiring the highest isolation level.

Therefore, this allows us to quantify the overheads of MSGT compared to SGT.

It is clear from Figure 4.12 that MSGT has a non-negligible overhead, with SGT display-

ing improved performance across all metrics. Thus, if a workload requires all transactions to

execute at Serializable isolation then SGT is the better choice. In Figure 4.12(a), at 30 cores,

SGT has a 6% increase in throughput over MSGT. From Figure 4.12(b), it can be seen that

SGT surprisingly has a lower abort rate than MSGT, this can be explained by Figure 4.12(c),

which shows the average latency is higher under MSGT. The longer transactions are in

the database, the more their chances for conflict increases, which results in more aborted

transactions.

4.6.6 TATP

Lastly, we examine the scalability of the protocols using the TATP workload. TATP is inter-

esting as its transactions generate few conflict cycles. Thus, aborts are naturally minimized

especially for a protocol that accepts all conflict serializable schedules (SGT). However, it

also only requires transactions to be executed with Read Committed isolation. This provides
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Fig. 4.11 Scalability – Performance measurements for the protocols as the core count is
increased from 1 to 40 cores with medium contention, θ = 0.8, low proportion of Serializable
transactions, ω = 0.2, and a medium update rate U = 0.5.
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Fig. 4.12 SmallBank – 100 customers (high contention) with all transactions executed at
Serializable isolation.
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a situation to evaluate whether MSGT can still provide a performance gain in workload with

low abort rates, i.e., when cycles are not common.

Figure 4.13 demonstrates in realistic workloads with a low conflict rate, MSGT can

outperform SGT across all metrics, provided transactions are run at weaker isolation levels.

In Figure 4.13(a), at 40 cores MSGT achieves at 10% increase in throughput, this is matched

with a significant decrease in the abort rate and latency (Figures 4.13(b) and 4.13(c)).

4.6.7 Concurrency Control Overhead

To separate the concurrency control overhead from the actual transaction workload, we

turned off the tuple access history, conflict detection, cycle checking, and restarted handling

for both protocols. We re-ran the TATP and SmallBank experiments, and ran YCSB with

high contention (θ = 0.9), balanced read/update transaction mix (U = 0.5), and half of the

transactions running at Serializable isolation (ω = 0.5). All workloads were run with 40

cores. Note, the only concurrency control requirement for “No CC” is that tuple accesses are

serialized.

Table 4.3 displays the results. In all experiments, both protocols spend the majority of

time for concurrency control: tuple access history, conflict detection, cycle checking, and

restart handling. SGT has marginally lower overhead in the SmallBank experiment, which

contains all Serializable thus MSGT wastes cycles unnecessarily checking if it can avoid

inserting an edge. In TATP and YCSB, MSGT exhibits a 1.3% and 4.9% less overhead

compared to SGT. In these workloads, MSGT is able to insert fewer edges, which results

in few cycle checking invocations and a smaller graph to explore when cycle checking is

required.
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Fig. 4.13 TATP – 100 entries all transactions executed at Read Committed isolation.
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Table 4.3 Overhead of maintaining accesses, conflict detection, cycle tests, aborts, and
live-lock handling. Reported metric is throughput at 40 cores.

Benchmark SmallBank TATP YCSB

No CC 26.7M 36.9M 3.88M
SGT 7.57M 13.4M 0.67M

MSGT 7.41M 15.2M 0.72M

SGT Overhead 71.7% 63.7% 82.7%
MSGT Overhead 72.3% 58.8% 81.4%

4.6.8 Optimizations

In this section, we explore the performance implications of the optimizations described

in Subsection 4.5.2.

Cycle Checking Strategies In this experiment, we compare the performance of reduced,

restricted, and relevant DFS cycle checking strategies for MSGT. We repeat the isolation

experiment from Subsection 4.6.1, varying the proportion of transactions executing at Se-

rializable isolation from 0% to 100%; medium contention, θ = 0.8, balanced read/update

transaction ratio, U = 0.5, and 40 cores.

Interestingly, as seen in Figure 4.14(b) reduced DFS has a lower abort rate than restricted

DFS. One explanation is under restricted DFS cycle checking takes longer, as any discovered

cycles must include the inserted edge, increasing the transaction lifetime and hence resulting

in more conflicts and cycles. This hypothesis is supported by Figure 4.14(c) in which

MSGT with restricted DFS has the highest average latency. In Figure 4.14(b), relevant DFS

displays the lowest abort rate, between a 6% and 16% decrease compared to reduced DFS.

Surprisingly, this does not translate into higher throughput or lower latency in Figures 4.14(a)

and 4.14(c). One explanation for this it that transactions with lower isolation are still delayed

from committing as they have incoming edges from higher isolation transactions that will
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subsequently abort. Potentially, this can be solved with the early commit rule, which is now

given preliminary investigation.

Early Commit Rule To investigate the potential usefulness of the early commit rule, the

above experiment was repeated, however now when a Read Uncommitted or Read Committed

transaction was committing we checked whether it could have committed early, computing

the proportion of transactions that would have benefitted from the rule, ce. When ω = 0.0,

we found ce = 0%, as there were no Serializable transactions to introduce rw edges into the

MSG. At ω = 1.0, we also found ce = 0%, as there are no weaker isolation transactions to

leverage the rule. In between the extremes, we found that up to 2.5% of weaker isolation

transactions were prevented from committing early due to non-relevant edges, when ω = 0.8.

Such a non-negligible proportion surely would impact performance, thus these provisional

findings motivate a full implementation and evaluation of the early commit rule.

4.7 Conclusion

In this chapter we presented mixed serialization graph testing, a graph-based scheduler

that leverages Adya’s mixing-correct theorem to permit transactions to execute at different

isolation levels. When workloads contain transactions running at weaker isolation levels,

MSGT is able to outperform serializable graph-based concurrency control by up to 28%.

Additionally, MSGT scales as the number of cores is increased, an important property

given modern hardware. Like SGT, MSGT minimizes the number of aborted transactions,

accepting all useful schedules under the mixing-correct theorem, which greatly improves

user experience. Additionally, we presented several optimizations: restricted DFS, relevant

DFS, and early commit that aim to further reduce aborts and decreases latency respectively.

In summary, this work in this chapter strengthens recent work refuting the assumption that

graph-based concurrency control is impractical.
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Fig. 4.14 MSGT with various cycle checking strategies when varying the proportion of
Serializable transactions from 0% to 100% with medium contention θ = 0.8, 50% update
rate, and 40 cores.
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4.7.1 Further Work

Additional Isolation Levels As demonstrated in Section 4.3, databases offer a wide range

of isolation levels and Adya provides a definition of several (11 in total [1]) which could

possibly be expressed by the MSGT protocol. Of notable interest would be the popular

Snapshot Isolation [11].

The simplest extension would be to incorporate Adya SI [1] . To model this isolation

level, Adya extends the system model to include a transaction’s logical start and commit

timestamps. This graph is referred to as a start-ordered serialization graph, SSG(H), and

adds start-dependency edges between the nodes, i.e., two transactions Ti and Tj are start-

ordered if the commit timestamp of one precedes the start timestamp of the other. The

simplest implementation would use a centralized timestamp allocator to add the start and

end timestamp nodes. This however reintroduces a global bottleneck which could negatively

impact performance.

Additional Experiments As part of future work we wish to extend our performance

evaluation to include industry standard benchmarks, e.g., TPC-C [109], and analyze their

isolation requirements to help understand where various transaction types occur in practice.

Another avenue for further work would be to evaluate MSGT’s performance against other

mixed concurrency control protocols such as mixed 2PL. This will allow for validation of the

claim that MSGT accepts all valid schedules under the mixing-correct theorem and hence

reduces aborts.

Distributed MSGT Another avenue for future work is exploring how MSGT can be

integrated into a distributed shared-nothing database. Specifically, how isolation levels, e.g.,

Read Committed, can be highly available [8] in the presence of concurrent transactions

executing at isolation levels that are provably unavailable, e.g., Serializable.
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Mixed Wait-Hit Protocol Also as part of future work we will explore how the Wait-Hit

Protocol can be extended to mixed environments. As in MSGT the inclusion of a given

edge is determined when the associated conflict is detected this should also be feasible in the

Wait-Hit Protocol with certain edges now not included in either the predecessor-upon-read

or predecessor-upon-write sets.



Chapter 5

Edge Consistency in Distributed Graph

Databases
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Summary

This chapter discusses the design and evaluation of protocols for ensuring the preserva-

tion of edge consistency in distributed graph databases. Three protocols are presented:

Delta protocol, Deterministic Reciprocal Consistency Protocol, and Deterministic Edge

Consistency Protocol. The first two focus on preserving Reciprocal Consistency and

leverage the fact that the updating of end pointers of a distributed edge must immediately

follow each other and the small interval between them is the sole raison d’être for

Reciprocal Consistency violations.

The Delta protocol is a lightweight, locking-free protocol, which depending on the

choice of the protocol’s parameter, ∆, still permits inconsistencies. Evaluations establish

that the protocol can offer both integrity guarantees and sound performance when the

value of its parameter is chosen appropriately.

The Deterministic Reciprocal Consistency Protocol ensures no possibility of Reciprocal

Consistency violations. The protocol associates metadata with each update of an edge

pointer, which is tracked and used to identify violations, aborting the relevant transaction

if so. Corruption is thus prevented, at the expense of some aborted transactions.

The Deterministic Edge Consistency Protocol extends the Deterministic Reciprocal

Consistency Protocol to provide an additional guarantee: Edge-Order Consistency. This

protocol is a simplified version of the Wait-Hit Protocol. Performance evaluations

investigate the magnitude of aborts under various system configurations.

5.1 Introduction

Section 2.2 introduces graph databases, specifically two important edge consistency guaran-

tees in these systems: Reciprocal Consistency and Edge-Order Consistency. Further in Sub-

section 2.2.3, we illustrated how Reciprocal Consistency can be violated in a distributed graph

database built atop a NoSQL database. Importantly, the resulting data corruption can swiftly



5.1 Introduction 117

propagate throughout the database rendering it in a state with little operational value. This

motivates the development of protocols that prevent said violations, and as a consequence,

slow or avert this corruption from spreading. To this end, two protocols have been developed.

The Delta protocol is presented in Section 5.2 and is exclusively designed for one

purpose only: Reciprocal Consistency in distributed edges. The protocol assumes that the

interval that elapses between a transaction updating both pointers of a distributed edge can be

estimated. Thus, by selecting the parameter ∆ to be larger than this value, it can be assured

when a transaction is updating an edge pointer, that both updates of previous updates to

that distributed edge have completed. If a preceding update within ∆ is encountered the

updating transaction aborts (although in some cases this may be unnecessary). Therefore,

none of the conflicts arising from concurrent writes outlined in Figure 2.4 will occur and

semantic corruption will not spread; a correctness reasoning is provided in Subsection 5.2.2.

However, there is a chance that the selected value for ∆ is an underestimate and violations

of Reciprocal Consistency still occur. To measure the efficacy of the Delta protocol the

model developed in [41, 119] for measuring the degradation of distributed graph databases

built atop NoSQL databases is augmented. This requires an adjustment of the conflict

probability, qi, which is derived in Subsection 5.2.3. The evaluation uses two metrics that

measure the protocol’s ability to avoid inconsistencies (ensuring safety) and unnecessary

aborts (enhancing throughput); Subsection 5.2.3 explains the strategies used for evaluating

these metrics. The evaluations in Subsection 5.2.4 establish that the protocol can offer

both integrity guarantees and sound performance when the value of its parameter is chosen

appropriately.

The Deterministic Reciprocal Consistency Protocol is then presented in Section 5.3,

the key distinction between itself and the Delta protocol is that Reciprocal Consistency is

preserved under all eventualities. This is achieved using a collision detection mechanism
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which leverages metadata associated with each update of an edge pointer to identify violations.

When violations are detected the offending transactions are aborted.

We then extend Deterministic Reciprocal Consistency Protocol in Section 5.4 to pre-

vent violations of Edge-Order Consistency, a different type of conflict that can arise when

transactions update multiple edges during their lifetime. The Deterministic Edge Consis-

tency Protocol combines collision detection with a mechanism called order arbitration, to

enforce Reciprocal Consistency for distributed edge and Edge-Order Consistency between

transactions respectively. Collision detection is applied at every update and may trigger

an immediate abort. Transactions that survive collision detection may, if necessary, go to

order arbitration. The latter may also result in an abort. To investigate the performance of

the Deterministic Edge Consistency Protocol protocol, we develop an approximate model

that allows for the computation of performance measures, including the fraction of aborted

transactions and average transaction response time. The accuracy of the approximations is

assessed by comparing them with simulations, for a variety of parameter settings.

5.2 Delta Protocol

As stated in Subsection 2.2.3, a violation of Reciprocal Consistency is a manifestation of

a Dirty Write in the context of a distributed graph database. A straightforward solution to

preventing dirty writes is for transactions to take long duration write locks [11], releasing

them only after the acquiring transaction has committed or aborted. To prevent deadlock,

a policy such as NO-WAIT deadlock avoidance is used, which was shown to be the optimal

policy in a distributed, partitioned database [54].

The Delta protocol employs principles behind all these well-tested strategies but has two

crucial differences: (i) no locks are used, and (ii) a write operation need not wait until the

preceding write commits, but can proceed if at least ∆ duration (measured by local clock)

has elapsed. These differences lead to several advantages in the context of graph databases
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which are characterized by the following two aspects. First, there is usually a subset of

edges that are traversed and modified with a very high frequency, e.g., critical sections of

motorway in a road network, leading to high contention. Secondly, graph transactions tend to

be longer-lived than those in other databases. So, having to wait for earlier writes to terminate

while transactions are long lived will severely limit the scope for concurrent processing and

reduce throughput in a highly contentious environment.

With these concerns in mind the Delta protocol was developed as a protocol that neither

uses locks nor requires transactions to wait until earlier transactions terminate.1 The Delta

protocol aims at preventing edges from becoming half-corrupted and hence quashing the

seed of corruption whilst keeping performance at an acceptable level.

5.2.1 Protocol Description

Recall from Subsection 2.2.3, each end of a distributed edge maintains start sequence number

(ssn) to indicate the number of transactions that modified the edge starting from its end. It

also maintains a finish sequence number ( f sn) to indicate the number of transactions that

modified the edge starting from the other end.

The Delta protocol has five rules:

1. A transaction Ti’s write on an end pointer of an edge is initially tentative which would

become permanent only if that transaction is permitted to commit.

2. A tentative write at the final end is possible only if the end pointer is either in a

committed state or the immediately preceding tentative write was done at least ∆ time

before (where time is measured as per local clock) and f sn = ssni−1 at the server,

where ssni is the sequence number Ti obtained when it started modifying the distributed

edge.

1The Delta protocol is a concurrency control mechanism only for distributed edge updates; it does not
concern itself with updates on vertices.
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3. If Ti performs all its tentative writes, then it is permitted to commit; otherwise, it must

abort.

4. A transaction commits when all its tentative writes are made permanent, e.g., by using

an atomic commit protocol.

5. Tentative writes of an aborting transaction are ignored. An ignored tentative write can

make a new transaction abort unnecessarily for up to ∆ time after it was created; it is

harmless thereafter and can be garbage collected at any time.

5.2.2 Correctness Reasoning

Let us define δ as the bound estimate on the interval that may elapse between a transaction

completing its update at one end of a distributed edge at one server and starting its update at

the other end of the same edge at another server. To aid readability Figures 2.4(a) and 2.4(b)

are reproduced in Figure 5.1.

Si S j

Ty

Tx

(a)

Si S j

Ty
Tx

(b)

Fig. 5.1 Interleavings of concurrent writes to a distributed edge by transactions Tx and Ty.

Let ∆ be chosen such that ∆ > δ . Now consider the interleaving in Figure 2.4(b) and let

tx be the (global) time when Tx starts at server Si; similarly ty be the time Ty starts at server

S j. Since Tx starts after Ty in Figure 2.4(b), tx > ty, i.e. (tx− ty)> 0.

Say Ty reaches Si at time ty +dy, where dy is the actual time elapsed between Ty com-

pleting a tentative write at one end and starting at another end, let us assume that dy ≤ δ .
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When Ty arrives at Si it will find a tentative write already done at time tx. In this case,

ty+dy−tx = dy−(tx−ty)< dy≤ δ <∆; so, Ty will abort, preventing writes from interleaving

and half-corrupting the edge. Similar arguments can be made for the scenario in Figure 2.4(a),

if dx ≤ δ where dx is the actual time elapsed between Tx completing a tentative write at one

end and starting at another end. Note that ty > tx and Tx will abort because it will find out, on

reaching server S j for its next tentative write, that tx +dx− ty = dx− (ty− tx)< dx ≤ δ < ∆.

Assume that dx > δ or dy > δ is possible, i.e., the estimate δ can fail to hold. In

Figure 2.4(b), interleaving writes are avoided only if ty + dy− tx = dy− (tx− ty) < dy <

∆; otherwise, Reciprocal Consistency can be violated. Similarly, interleaving writes of

Figure 2.4(a) are avoided only if tx +dx− ty = dx− (ty− tx)< dx < ∆; otherwise, Reciprocal

Consistency can be violated. Thus, the probability of reciprocal consistency not being

guaranteed is the probability that ∆≤ max {dx,dy}.

In summary, the Delta protocol eliminates interleaving of transactions during edge writes,

so long as ∆ remains larger than the interval d that elapses between a transaction completing

its write at one end of a distributed edge and starting at the other end. Since the exact value

of d taken by a transaction cannot be known in advance, its bound δ is estimated with the

best effort and ∆ is chosen to be ∆ > δ .

The larger the value of ∆ used, the more likely it is that ∆ > d holds and half-corruption

and thereby operational corruption are averted; also, on the downside, the more likely it

is that non-interleaving transactions will find their tentative writes within ∆ time of each

other and the later ones choose to abort unnecessarily. In the extreme case, choosing a very

large ∆ (∆ ≈ ∞) totally eliminates any risk of Reciprocal Consistency violation but does

not allow any tentative write until the preceding one is made permanent. It is equivalent to

enforcing NO-WAIT policy, wherein a requesting transaction that finds the requested record

being locked, must abort.
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Our performance evaluation in Subsection 5.2.3 will therefore measure the following two

metrics for various values of ∆:

• Time to operational corruption: time taken for γ% of a large database to be corrupted,

• Abort rate: number of transactions aborted per second.

If the actual time between completing at one end and starting at the other, d, is exponentially

distributed with mean 1/µ , the probability of d exceeding ∆ is e(−µ∆). The values of ∆

chosen will explore a range of probabilities of ∆ being exceeded.

5.2.3 Performance Evaluation Strategies

To assess the time to operational corruption, the model developed in [41] is adapted for the

Delta protocol. For ease of the reader, the model is explained here before we discuss the

adaptation. We note that an empirical evaluation of the time to operational corruption using a

real system would be impractical due to the sheer length of time and the cost it would take

to run the experiment. (For certain values of ∆, the model predicts anywhere between 1-75

years for operational corruption!)

Degradation Model As stated in Subsection 2.2.3, when an edge is updated, both reciprocal

entries in the adjacency lists of the source and the target nodes must be updated. From a

modeling perspective, an update to a local edge is assumed to be instantaneous. For a

distributed edge, a write operation is carried out first on one of its servers and then, after a

small but non-zero delay, d, on the other. This implementation of distributed writes makes it

possible for edge records to become half-corrupted. The interleavings illustrated in Figure 2.4

will be referred to as conflicts.

One end of a half-corrupted edge may be considered correct, but an external observer

cannot tell which is which. The question of exactly which half is corrupt is decided by what
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happens subsequently. Suppose that a future transaction first reads one edge pointer of a

half-corrupted edge say, at vertex a. At that moment, the transaction implicitly chooses

the order and thereby invalidates the other order that prevails at vertex b. Thus, from that

moment onward, the b end of an edge ab becomes the corrupt end and, conversely, the a end

becomes the correct end.

A subsequent transaction which happens to read the correct entry of a half-corrupted

edge, and completes a write operation for it without a conflict, will repair the fault and make

the edge record clean again. Else, if it reads the incorrect entry and writes any edge, it causes

the target to become semantically corrupted, or simply corrupted. The correct and incorrect

reads are equally likely, so each occurs with probability 1/2.

Any edge can become corrupted by being written on the basis of reading incorrect

information. Corrupted edges cannot be repaired, since there is no post-facto solution to

the graph repair problem in the general case. Transactions that update edges arrive in a

Poisson stream with rate λ per second (TPS). We assume that each transaction contains a

random number of read operations, K, followed by one write operation. This is a conservative

assumption, since more than one write per transaction would increase the rate of corruption.

The variable K can have an arbitrary distribution, P(K = k) = rk, k ≥ 0. In practice K tends

to be at least 2, i.e., r0 = r1 = 0. The K edges read, and the one written by the transaction

are assumed to be independent of each other (but note below that they are not equally likely).

The edges in the database are divided into T types, numbered 1,2, ...,T . The probability

that a read or a write operation accesses an edge of type i is pi, with p1 > p2 > ... > pT .

That is, type 1 is most popular, type 2 is the second most popular and so on. The number of

edges of type i is Ni, and typically N1 < N2 < ... < NT . The total number of edges is N. In

every type, a fraction f of the edges are distributed and the rest are local. The probability

of accessing a particular edge of type i, for either reading or writing, is pi
Ni

. At time 0, all

edges are clean (free from corruption). When a certain fraction, γ (e.g., γ = 0.1), of all
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edges become corrupted, the database itself is said to be corrupted for practical purposes,

i.e., operationally corrupt. The object of the model is to provide an accurate estimate of the

length of time that it takes for this to happen. In summary, at any moment in time, an edge

belongs to one of the following four categories: category 0: local and clean, category 1:

distributed and clean, category 2: half-corrupted, and category 3: semantically corrupted.

Figure 5.2 visualizes the various edge states and possible transitions between them.

0 1 2 3

a2,1

a1,2

a2,3

a0,3

a1,3

Fig. 5.2 Edge transitions between clean, half-corrupted and semantically corrupt states.

Only distributed edges can be in category 2, but any edge, including local ones, can be

in category 3. Denote by ni, j(t) the number of type i edges that are in category j at time t.

The set of vectors ni = [ni,0(t),ni,1(t),ni,2(t),ni,3(t)], for i = 1,2, ...,T , defines the state of

the database at time t. At all times, the elements of vector ni add up to Ni. Any state such that

T

∑
i=1

ni,3(t)≥ γN (5.1)

will be referred to as an absorbing state. The absorbing states correspond to an operationally

corrupt database. The value of interest is U , the average first passage time from the initial

state where ni = [(1− f )Ni, f Ni,0,0] (i.e., a clean database), to an absorbing state. The above

assumptions and definitions imply that a read operation performed at time t would return a

correct answer with probability α , given by

α =
T

∑
i=1

pi

Ni
[ni,0(t)+ni,1(t)+

1
2

ni,2(t)] (5.2)
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Note that the last term accounts for the read operation choosing the correct end of a

half-corrupted, category 2 edge which happens with probability 1/2. The probability, β , that

all the read operations in a transaction arriving at time t return correct answers, is equal to

β =
∞

∑
k=1

rkα
k (5.3)

Suppose that the distribution of K is geometric with parameter r, starting at k = 2; in

other words, rk = (1− r)k−2r. Then the above expression becomes

β =
α2r

1−α(1− r)
(5.4)

Consider now the probability, qi, that a transaction accessing an edge of type i arriving at

time t and taking a time d to complete a write operation, will be involved in a conflict. That

is the probability that another transaction accessing an edge of type i arrives between t and

t +d and writes the same edge, but starting at its other end. This can be expressed as

qi = 1− e−
1
2 λ pid/Ni; i = 1,2, ...,T (5.5)

If the time to complete a distributed write is not constant, but is distributed exponentially

with mean d, then the conflict probability would be

qi =−
λ pid

2Ni +λ pid
; i = 1,2, ...,T (5.6)

When d is small, there is very little difference between these two expressions. An

incoming transaction that is involved in a conflict would change the category of a dis-

tributed edge from 1 to 2, provided that all read operations of both queries return correct

results. Hence, the instantaneous transition rate, ai,1,2, from state [ni,0,ni,1,ni,2,ni,3] to state

[ni,0,ni,1−1,ni,2 +1,ni,3] can be written as
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ai,1,2 =
λ pini,1

Ni
qiβ

2 (5.7)

Conversely, an incoming transaction writing a category 2 edge can change it to a category

1 edge, provided that all its read operations return correct results and it is not involved in a

conflict. Hence, the instantaneous transition rate, ai,2,1, from state [ni,0,ni,1,ni,2,ni,3] to state

[ni,0,ni,1 +1,ni,2−1,ni,3(t)], is given by

ai,2,1 =
λ pini,2

Ni
(1−qi)β (5.8)

The other possible transitions convert an edge of category 0, 1 or 2 into an edge of

category 3. This happens when a transaction writes after receiving an incorrect answer to at

least one of its reads. Denoting the corresponding instantaneous transition rates by ai, j,3, for

j = 0,1,2, we have

ai, j,3 =
λ pini, j

Ni
(1−β ) (5.9)

Using these transition rates, one can simulate the process of corrupting the database

and obtain both point estimates and confidence intervals for the average time to operational

corruption, Uγ .

Delta Protocol Adaptation. The Delta protocol reduces the conflict probabilities qi,1≤

i ≤ T and thus we now compute qnew
i . The new probabilities qnew

i are used in the model

and simulations of [41] to estimate Uγ . The arrival time, a, of a conflicting transaction, T ,

is assumed exponentially distributed with rate ρ . Where ρ = λ pi
2ni

is the probability a given

operation accesses the incorrect record of a half-corrupted edge of type i. Recall, the time

interval, d, that elapses between transaction T completing its tentative write at one end of a

distributed edge and starting at another end, is assumed exponentially distributed with rate µ .
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Consider the interleaving in Figure 2.4(a) and assume Tx arrives at Si at time 0. Then, Tx

arrives at S j after dx. Assume Ty arrives at S j at some time a. Then, Ty arrives at Si at time

a+dy. Half-corruption occurs under the following conditions:

(i) At S j, dx > a+∆

(ii) At Si, a+dy > ∆

The conflict probability, qnew
i , for edge type i is given by,

qnew
i = P [(dx > a+∆)∩ (dy > ∆−a)]

=
∫

∆

0

λ pi

2ni
e−

λ pi
2ni

ae−µ(∆+a)e−µ(∆−a)da+
∫

∞

∆

λ pi

2ni
e−

λ pi
2ni

ae−µ(∆+a)da

= e−2aµ −

(
µ

λ pi
2ni

+µ

)
e−(

λ pi
2ni

+2µ)a (5.10)

From the perspective of computing qnew
i , Figure 2.4(b) is equivalent to Figure 2.4(a) and

the above expression holds. Then, qnew
i for each edge type can be used with the transition

rates to simulate the process of corrupting the database under the Delta protocol, obtaining

estimates of the average time to operational corruption, Uγ .

Number of aborts per second. To evaluate this metric for various values of ∆, a second

simulation that focuses specifically on the subset of most frequently accessed distributed

edges was performed.

Note that both metrics that we set out to evaluate will be influenced by several parameters

that characterize the database and other aspects:

• Database Size. Size is expressed by the total number of edges N, and the fraction f of

distributed edges.
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• Workload. Measured as transactions per second (TPS). Significant for measuring Uγ

are: the fraction of this load that writes after reads and the number of reads that precede

a write.

• Distributed Write Delays and Choosing ∆. The smaller the delays the less likely the

bound ∆ is violated. Conversely, smaller ∆ is the more likely the bound ∆ is violated.

We describe how to choose ∆ below.

Choosing ∆. To choose to bound ∆ consider the probability of the message delay exceeding

∆:

P [M > ∆] = 1− e−δ∆

1− e−δ∆ = 1− ε

e−δ∆ = ε

∆ =− ln(ε)
δ

(5.11)

Substituting ∆ into the above equation yields the conflict probability for a given ε .

For example, ε = 0.001 gives a 0.1% probability the message delay exceeds ∆, for this

∆ = 0.035s,

5.2.4 Evaluation

The following parameter choices are inline with industry experiences. The graph ana-

lyzed consisted of seven edge types, n1 = 104,n2 = 105,n3 = 106,n4 = 107,n5 = 108,n6 =

109,n7 = 1010, totaling 11 billion edges, with access probabilities p1 = 0.5, p2 = 0.25, p3 =

0.13, p4 = 0.06, p5 = 0.03, p6 = 0.02 and p7 = 0.01; a graph of this size would have approx-

imately 1 billion vertices. The number of read operations before a write per transaction is
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geometrically distributed starting at 2, with an average of 15. In all edge types, f = 0.3 are

distributed, the remainder are local, in proportion with a good graph partitioning algorithm.

The delay d between a transaction completing a tentative write at one end and starting

at another end is exponentially distributed with a mean of 5ms. The database is initially

clean and considered to be operationally corrupted when 10% (γ = 0.1) of all edges are

semantically corrupted. The time taken until operational corruption, U , is measured in

days. We consider a range of transaction arrival rates, λ = (1000, ...,10000); a typical graph

workload comprises of 90% read-only transactions and 10% read-write transactions [4],

hence the chosen range reflects a total workload (10000, ...,100000). The following ∆

values were considered ∆ = 50,75,100ms. For each ∆ the probability that d exceeds ∆ is

P(d > ∆) = 4.5−5,3.1×10−7,2.1×10−9 respectively.

The results for measuring the impact of ∆ on the time until operational corruption are

given in Figure 5.3 (where the y-axis is in log scale). With no concurrency control (U =NA),

U ranges between 50-500 days. For ∆ = 50ms, U increases to 1-75 years. For ∆ = 75,100ms

the time to corruption is significantly large as shown in Figure 5.3.

To evaluate the number of aborts that occurred per second (α), simulations were run for

10 seconds for each arrival rate, λ = (1000, ...,10000). Figure 5.4 reports the fraction α

λ

for various values of λ . This fraction is also the probability that an incoming transaction is

aborted due to the Delta protocol. For ∆ = 50 ms, the abort probability is between 1−5%,

this increases to between 1−7% for ∆ = 75 ms and 1−9% for ∆ = 100 ms.

5.3 Deterministic Reciprocal Consistency Protocol

The Deterministic Reciprocal Consistency Protocol preserves Reciprocal Consistency in

all eventualities, in other words, there is zero probability for the violation of Reciprocal

Consistency. This is achieved through a mechanism, referred to as collision detection, that

enforces Reciprocal Consistency for distributed updates.
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Fig. 5.4 Fraction of aborts.

Like many concurrency control protocols in the literature (e.g., [38, 66]), the Deterministic

Reciprocal Consistency Protocol treats updates as being provisional initially. They become

permanent only if, and when, the transaction that contains them is allowed to commit.

Provisional updates on a given record can occur only one at a time and each is time-

stamped using the local server’s clock. Thus, when a transaction attempts to update a given

record, it can identify all other transactions, called predecessors (if any), that have earlier

updated that record provisionally (similarly to the Wait-Hit Protocol in Chapter 3). Read

operations receive the latest committed version of a record and ignore any provisionally

updated values.

5.3.1 Protocol Description

Collision detection. Recall from Subsection 2.2.1 that an update operation by a transaction Tx

for a distributed edge has a part 1, carried out at the first server visited (e.g., Si in Figure 5.1),

and part 2, performed at the second server (e.g., S j in Figure 5.1) after a network delay. The

corresponding provisionally updated records are now given label 1 and label 2, respectively,

and are associated with the id of that transaction.
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These labels act as history meta-data indicating the server where a transaction started

and completed its update. After performing part 1 at say Si, Tx remembers the labels of all

predecessors that have operated on the edge at that server before it. When arriving at S j to

perform part 2, Tx retrieves the labels of transactions (predecessors) that have operated on

that edge at S j before it. The following rule is applied at S j:

Cancellation rule: If, by the time part 2 is performed, a previous provisional update

labeled 1 has been observed for a predecessor, but the corresponding label 2 has not been

observed, then this update is canceled. In other words, an update is canceled if it has observed

the start of a previous attempt by a transaction, but not its completion. When an update is

canceled, the transaction containing it is aborted and all its provisional records are erased.

According to the this rule, Tx in Figure 5.1(a) is canceled because it observes a predecessor

Ty with label 1 in S j, but has not observed Ty’s label 2 in Si. Whether Ty is canceled or not

depends on whether Tx’s provisional updates remain or have been erased by the time Ty

performs part 2.

We now describe an extension to the Deterministic Reciprocal Consistency Protocol that

additionally ensures Edge-Order Consistency (see Subsection 2.2.3) before developing an

analytical model and evaluating the protocol’s performance.

5.4 Deterministic Edge Consistency Protocol

The Deterministic Edge Consistency Protocol extends the Deterministic Reciprocal Consis-

tency Protocol to ensure there is also zero probability for the violation of Edge-Order Consis-

tency. Deterministic Edge Consistency Protocol employs two mechanisms: (i) Deterministic

Reciprocal Consistency Protocol’s collision detection to enforce Reciprocal Consistency for

distributed updates, and (ii) order arbitration to enforce Edge-Order Consistency between

transactions.
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As before, the Deterministic Edge Consistency Protocol treats updates as being provi-

sional initially and they become permanent only if, and when, the transaction that contains

them is allowed to commit. Also, again provisional updates on a given record can occur only

one at a time and each is time-stamped using the local server’s clock. Hence, when updating

a record, a transaction can identify all predecessors (if any), that have earlier updated that

record provisionally. Read operations receive the latest committed version of a record and

ignore any provisionally updated values.

5.4.1 Protocol Description

For a transaction, collision detection is applied at every update it executes and may trigger an

immediate abort. Transactions that survive collision detection may, if necessary, go to order

arbitration. The latter may also result in an abort.

Order arbitration. The purpose of this mechanism is to detect and prevent edge-order

inconsistencies between transactions. It only applies to transactions that contain more than

one distributed update. Those with a single update that have not been aborted by collision

detection are allowed to commit and depart.

Using the records relating to provisional updates, each multi-update transaction maintains

a predecessor list containing all predecessor transactions it encountered during its provisional

updates. If that list is empty when the transaction successfully completes all its provisional

updates, then it commits and departs. Otherwise it goes to arbitration.

The arbiter is a special service, assumed here to have been implemented in a dedicated

server. A list called the hit-list is maintained. It contains transactions which, if allowed to

commit, risk violating edge-order consistency. Transactions arriving for arbitration join a

queue and are served in order of arrival. If the transaction at the head of the queue is not

present in the hit-list, it commits. All transactions in its predecessor list are added to the

hit list if not already there. If it is in the hit list, it aborts and all its provisional updates are
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erased. What has happened in this case is an overtaking: the current transaction was named

as a predecessor by a transaction that committed earlier.

Note that order arbitration is a simple version of the Wait-Hit Protocol in Chapter 3.

Additionally, it is also possible here to adopt a pattern similar to the Distributed Wait-Hit

Protocol from Section 3.6 and execute a validation and commit phase, instead here we opt

for a centralized arbiter.

✲

✲

✲Edge e

Edge e′

t1 t2 t3 t4 time

TB

TB TA

TA

Fig. 5.5 Edge-Order Consistency violation

We can informally argue that our approach is correct by considering the edge-order

inconsistency depicted in Figure 2.6 (reproduced from Figure 2.6 for convenience). It can

be seen that TA will have TB in its predecessor list while updating e′, and TB will observe TA

as a predecessor while updating e. Both TA and TB must approach the arbiter because they

update more than one edge and have a non-empty predecessor list. If the first transaction

to be processed by the arbiter is allowed to commit, the second one will be entered in the

hit list and will abort. Thus only one of TA and TB, but not both, can commit and edge order

inconsistency is always avoided.

Note that this approach to arbitration is pessimistic. It aborts a transaction as soon as

it detects a risk of edge-order violation, even though the actual violation may not occur.

Consequently, some transactions are aborted unnecessarily, just because they are overtaken

by their successors. To eliminate unwarranted aborts, the arbiter would have to keep much

more detailed information about the updates performed by all transactions, and would have

to do considerably more processing.
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We now proceed to the task of evaluating certain performance measures, such as the

average number of transactions that are aborted per unit time, the offered load at the arbiter,

and the average time a transaction remains in the system. Since the processes involved are

rather complex, such an evaluation will inevitably entail approximations. That, in turn, will

necessitate an assessment of the accuracy of those approximations.

5.4.2 Approximate Model

We are concerned with updates performed on distributed edges in a distributed graph database

(i.e., edges whose source and destination nodes are stored on different servers). These edges

are divided into T types, numbered 1, 2, . . ., T . The number of edges of type i is Ni, and the

probability that an update operation is aimed at an edge of type i is pi. All edges of a given

type are equally likely to be addressed, so that the probability of accessing a particular edge

of type i is pi/Ni.

Transactions arrive into the system in a Poisson stream, at the rate of λ per second. Each

transaction performs a random number, K, of updates for different distributed edges. The

distribution of K is arbitrary: P(K = k) = rk (k = 1,2, . . .). The average number of updates

per transaction is κ . Thus, the arrival rate of updates at a particular distributed edge of type

i, ξi, is equal to

ξi =
κλ pi

Ni
; i = 1,2, . . . ,T . (5.12)

The first approximation is to assume that the arrival process of updates for a particular

distributed edge of type i is Poisson with rate ξi.

We wish to estimate the probability, ui, that a transaction, Tx, containing an update for

an edge of type i, is cancelled due to a collision with another transaction, Ty, containing an

update for the same edge. That is, either Ty arrives in the opposite server during the network

delay of Tx (Figure 2.4 case (a)), or Tx arrives in the opposite server during the network
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delay of Ty (case (b)), or Ty arrives in the same server during the network delay of Tx and its

network delay completes before that of Tx (case (c)).

Assume that the network delays are i.i.d random variables distributed exponentially with

parameter δ (mean 1/δ ). This may or may not be an approximation.

Updates for a particular distributed edge of type i arrive in one of the two servers involved

in storing the edge at rate ξi/2. Moreover, a given network delay completes before another

with probability 1/2. Hence, we can estimate the probabilities of cases (a), (b), and (c), u(a)i ,

u(b)i and u(c)i , as

u(a)i = u(b)i =
ξi

ξi +2δ
; u(c)i =

1
2

ξi

ξi +2δ
; i = 1,2, . . . ,T , (5.13)

where ξi is given by (Equation (5.12)) and δ is the parameter of the network delay. The

overall probability, ui, that at least one of those events will happen, is

ui = 1− (1−u(a)i )(1−u(b)i )(1−u(c)i )≈ 2.5ξi

ξi +2δ
; i = 1,2, . . . ,T . (5.14)

The last approximation in the right-hand side holds when the rate ξi is small compared to δ .

The unconditional probability, u, that an arbitrary update is cancelled by the collision

detection mechanism, is given by

u =
T

∑
i=1

piui . (5.15)

The probability, vk, that a transaction containing k updates is aborted because one of them

is involved in a collision, is equal to

vk = 1− (1−u)k , (5.16)
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and the unconditional probability, v, that a transaction is aborted due to a collision is given by

v =
∞

∑
k=1

rkvk . (5.17)

Now consider the average run time, ak, of a transaction that contains k update operations.

Assume that each update takes time b, on the average. Those times include read operations

and computations, as well as network delays. If the first j− 1 provisional updates are

completed successfully but the j-th update is cancelled as a result of a collision, then the

average run time would be jb. Hence, ak is given by

ak =
k

∑
j=1

jb(1−u) j−1u+ kb(1−u)k , (5.18)

where u is given by (Equation (5.15))

With a little manipulation, this expression can be simplified to

ak = b
k

∑
j=1

(1−u) j−1 = b
1− (1−u)k

u
. (5.19)

The unconditional average run time of a transaction, a, is equal to

a =
∞

∑
k=1

rkak . (5.20)

If all provisional updates in a transaction are completed successfully, and if either there

was only one update, or there were no predecessors, then the transaction commits. Otherwise

it goes to the arbiter. The time a transaction spends queueing and being served by the arbiter

will be referred to as the arbitration time.

Assume (this is another approximation) that each transaction joins the arbiter queue with

probability α , independently of the others. That is, the arrival process is Poisson, with rate
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λα . The arbiter’s average service time, s, is a given parameter. Thus the offered load at the

arbiter is ρ = λαs.

Treating the arbiter as an M/M/1 queue, we estimate the average arbitration time, w, as

w =
s

1−ρ
, (5.21)

provided that ρ < 1. If ρ ≥ 1, then w = ∞. The total average time that a transaction spends

in the system is

W = a+αw , (5.22)

where a is given by (Equation (5.20)).

We shall now develop an iterative fixed-point approximation for α . Denote by d j,k the

average lifetime of the j-th update within a transaction containing k updates, excluding any

possible arbitration time. By an argument similar to the one that led to (Equation (5.19)), we

obtain

d j,k = b
k+1− j

∑
i=1

(1−u)i−1 = b
1− (1−u)k+1− j

u
. (5.23)

The lifetime of a randomly chosen update within a transaction containing k updates, dk

(again excluding arbitration), is given by

dk =
1
k

k

∑
j=1

d j,k = b
(k+1)u+(1−u)k+1−1

ku2 . (5.24)

Hence, the total average time spent in the system by an arbitrary update (including the

arbitration time), d, is equal to

d =
∞

∑
k=1

rkdk +αw , (5.25)

where w is given by (Equation (5.21)).

Now, let γi be the probability that an update of type i has a predecessor, i.e., the probability

that such an update arrives while a preceding update for the same edge is still in the system.
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Assuming that the update residence times are distributed exponentially with mean d given by

(Equation (5.25)), this can be approximated as

γi =
ξid

1+ξid
, (5.26)

where ξi is given by (Equation (5.12)).

The unconditional probability, γ , that an arbitrary update has a predecessor, is

γ =
T

∑
i=1

piγi . (5.27)

If a transaction contains k updates, the probability that at least one of them has a prede-

cessor, αk, is

αk = 1− (1− γ)k . (5.28)

Remembering that a transaction goes to the arbiter if it has more than one update and all

updates avoid collisions and at least one of them has a predecessor, we write

α =
∞

∑
k=2

rk(1−u)k
αk . (5.29)

Note that the right-hand side of (Equation (5.29)) depends on α , via (Equation (5.25))

and (Equation (5.26)). In other words, we have a fixed-point equation of the form

α = f (α) . (5.30)

This can be solved by a simple iterative scheme. Start with an initial guess, α0, say α0 = 0.

At iteration n, compute

αn = f (αn−1) , (5.31)

stopping when two consecutive iterations are sufficiently close to each other.
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The probability α allows us to evaluate the offered load at the arbiter queue, and hence

estimate the average response time of a transaction, W . Another important performance

measure is the rate of aborts, R, i.e. the average number of transactions that are aborted

per unit time. Note that a transaction may be aborted due to a collision, with probability v

given by (Equation (5.17)), or it may be aborted because it finds itself on the arbiter’s hit list.

Denoting the probability of the latter occurrence by β , we can write

R = λ [v+(1− v)β ] . (5.32)

To find an expression for the probability β , note that a transaction, A, is aborted by the

arbiter if (i) A goes to the arbiter and (ii) another successfully committing transaction, B,

which arrived at the arbiter before A, had A in its list of predecessors (A would then have

been added to the hit list). That is, B arrives in the system during the run time of A, tries to

update one of the edges that A has updated, completes before A, goes to the arbiter and is

allowed to commit.

Suppose that A contains k updates, and let t be the instant when the j-th of those updates

is attempted. The average interval from t until the completion of A, given that all updates

succeed, is (k+1− j)b. If the j-th update is of type i, let hi be the average interval from t

until the completion of the next transaction, B, that updates the same edge and then goes to

the arbiter. That average can be estimated as

hi =
1

ξiα
+

κ− r1

2(1− r1)
b , (5.33)

where α is given by (Equation (5.29)). The multiplier of b in the right-hand side is half of

the average number of updates in a transaction, given that there are more than one.

Denote by βi jk the probability that B arrives after the j-th update out of the k in A, and

completes before A, and A goes to the arbiter but is aborted because B commits, given that
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the j-th update is of type i. We write

βi jk = α(1−β )
(k+1− j)b

hi +(k+1− j)b
. (5.34)

Removing the conditioning on the type of update, we get the probability, β jk, that A is

aborted by the arbiter due to the j-th of its k updates:

β jk =
T

∑
i=1

βi jk pi . (5.35)

The probability, βk, that at least one of the k updates will cause A to be aborted, is

βk = 1−
k

∏
j=1

(1−β jk) . (5.36)

Finally, the unconditional probability, β , that an arbitrary transaction is aborted by the

arbiter, can be expressed as

β =
∞

∑
k=2

βkrk . (5.37)

The right-hand side of this equation depends on α , which has already been computed, and

also on β . Thus, we have another fixed-point equation which can be be solved by an iterative

procedure of the type (Equation (5.31)).

One might wish to measure the performance of the system by a cost function of the form

C = c1W + c2R , (5.38)

where c1 and c2 are some coefficients reflecting the relative importance given to the average

response time and number of aborts. There are trade-offs that may need to be controlled. If,

for example, the arbiter is overloaded, leading to large or infinite response times, a ‘voluntary

abort’ policy may be introduced. If a transaction cannot commit upon completion (because
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its predecessor list is non-empty), it tosses a biased coin and, with probability σ , aborts

instead of going to the arbiter. The offered load at the arbiter queue would then be reduced

to ρ = λα(1−σ)s. The optimal value of σ would be chosen so as to minimize the cost

function C.

5.4.3 Evaluation

The purpose of this section is to assess the accuracy of the model estimates by comparing

them with simulations. In order to reduce the number of parameters to be set, we focus on

the smallest and most frequently accessed class of edges, ignoring the larger classes where

conflicts are very unlikely to occur. The examples we have chosen contain a single class with

N distributed edges, each of which is equally likely to be the target of an update. The size

and traffic parameters are typical of a large scale-free graph database (see also [119]).

In the first example, N is varied between 5000 and 25000 edges. The arrival rate is fixed

at λ = 1000 transactions per second. The average network delay is assumed to be 5ms (i.e.,

δ = 200). That is also the value of b (the average time per update). The distribution of

the number of updates in a transaction is geometric, with mean κ = 5. The average arbiter

service time is s = 0.01 and that value will be kept fixed in the following examples.

In Figure 5.6, the total average number, R, of transaction aborted per unit time by the

collision detection and by the order arbitration parts of the protocol, is plotted against the

number of edges. The estimated points are computed by the algorithm described in Subsec-

tion 5.4.2, while each simulated point represents the result of a simulation run where one

million transactions pass through the system.

Intuitively, we expect that when the number of edges increases, there will be fewer

collisions and instances of overtaking, and therefore fewer aborts. Indeed, that is what is

observed. The model consistently underestimates the number of aborts, but the relative errors

are not large. They vary from 9% at N = 5000 to 5% at N = 25000. That underestimation is
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Fig. 5.6 Abort rate as a function of N
λ = 1000, κ = 5, δ = 200, b = 0.005, s = 0.01

probably caused by the simplifying assumptions used in deriving the approximate estimates.

On the other hand, the times taken to produce the two plots were vastly different: the model

plot took a small fraction of a second to compute, while the simulation runs were several

orders of magnitude slower.

From now on, the number of edges will be fixed at N = 10000 and the effect of different

parameters will be explored. In the second example, the arrival rate λ is varied between 700

and 1200 transactions per second, while the other parameters are kept as before.

In Figure 5.7, the average number of aborted transactions per second, R, is plotted against

the arrival rate λ , using both the model approximation and simulations. Each simulated point

is again the result of a run where one million transactions pass through the system. Once

more, we observe that the model slightly under-estimates the values of R, but the relative

errors are quite small; they are of the order of 6% or less, over the entire range.

The average response time of a transaction, W , was about 25ms; its value changed very

little over this range of arrival rates.
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Fig. 5.7 Abort rate as a function of λ

κ = 5, δ = 200, b = 0.005, s = 0.01

For these parameter values, the model predicts that the arbiter queue becomes unstable

when the arrival rate is about λ = 1500. The simulation agrees. The observed rate at which

transactions join the arbiter queue exceeds the service rate, µ = 100, for that value of λ .

For the next experiment, the average network delay is doubled to 10ms, δ = 100. Intu-

itively, this should have the effect of increasing the rate at which transactions are aborted,

and also should increase the offered load at the arbiter queue.

Figure 5.8 confirms our intuition. The relative errors of the model estimates are still

quite low, of the order of 9% or less. The arrival rate is now varied between λ = 600 and

λ = 1000. Both the model and the simulation agree that the arbiter queue becomes unstable

when λ = 1100.

In the fourth experiment, the network delay is back to 5ms, but the number of updates

in a transaction, K, has a different distribution and mean. The assumption now is that K

is uniformly distributed on the range [1,19], with a mean of 10. The results are illustrated

in Figure 5.9.
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Fig. 5.9 Different distribution of updates
κ = 10, δ = 200, b = 0.005, s = 0.01

The larger number of updates per transaction leads to both higher likelihood of collisions

and more visits to the arbiter. The saturation point for the arbiter queue is now a little below

λ = 550. As Figure 5.9 illustrates, the model approximation is still accurate, with relative

errors of the order of 8% or less.
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It is perhaps worth noting that in the last three examples, the rate of aborts increases

roughly linearly with λ . For all arrival rates in example 2, between 1% and 2% of the

incoming transactions are aborted. In example 3 that fraction is between 2% and 3%, while

in example 4 it is between 3% and 4%.

5.5 Conclusion

Database concurrency control has been a long researched area, however to the best of our

knowledge this is first attempt at developing protocols specific for distributed graph databases.

The Delta protocol is a lightweight protocol for providing Reciprocal Consistency and

mitigating the problem of high contention in a distributed graph database. It leverages

the fact that writes to distributed edges always consist of two sequential writes to entries

in the adjacency lists of vertices that are connected by the edge. Since it is concerned

only with edges (and not vertices) in a graph, it provides guarantees weaker than Read

Uncommitted isolation (the weakest ANSI isolation level). The Delta protocol, we believe,

is valuable in practice given the popularity of NoSQL distributed graph databases and the

rate at which semantic corruption can spread if Reciprocal Consistency is left unchecked.

Simulations indicate that when ∆ values are chosen to be reasonably large, the protocol rules

out corruption resulting from half-corrupted distributed edges while keeping the abort rate

considerably small.

The Deterministic Edge Consistency Protocol is comprised of two distinct mechanisms:

collision detection from Deterministic Reciprocal Consistency Protocol and order arbitra-

tion between transactions to provide Reciprocal Consistency and Edge-Order Consistency.

The order arbitration mechanism is built on the same principles as the Wait-Hit Protocol

from Chapter 3. To evaluate the protocol’s impact on system performance, in terms of aborted

transactions and load on the arbiter an approximate model was developed and solved. It

provides estimates for the average number of transactions that are aborted per unit time, the
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probability that a transaction will need to go to arbitration, and the average response time of

a transaction. The accuracy of the solution was examined by comparisons with simulations

and was found to be very high under a variety of parameter settings.

5.5.1 Further Work

Complex Constraints. The current generation of GDBMSs generally does not support

constraints much more complex than Reciprocal Consistency; sometimes domain and primary

key constraints (in case indexes are supported). In the future, it is anticipated that GDBMSs

will evolve to support complex constraints. Beyond equivalents of the relational ones, graph

databases might introduce graph-specific constraints, such as (partial) compliance to a schema

formulated on top of property graphs, rules that guide the presence of labels or structural

graph constraints such as connectedness of the graph, absence of cycles, or arbitrary well-

formedness constraints [94]. Each poses an interesting challenge to database architects on

how to ensure performance whilst maintaining correctness.

Empirical Performance Evaluation. The protocols can be implemented in a distributed

graph database to assess the validity of the simulations and to enable comparisons with other

concurrency control protocols.

Stronger Isolation. Moreover, we plan on investigating the suitability of higher isolation

levels in distributed graph databases, Read Atomic isolation [9] seems particularly well

suited and has been implemented in Facebook’s graph store TAO [18]. Similar to the edge-

order inconsistency examined here, there may also be node-order inconsistency, occurring

when transactions interfere while updating the same set of nodes. Eliminating node-order

inconsistencies will be addressed in future work. It is well known in the database literature

that there is a hierarchy of approaches which achieve various degrees of isolation (see [2]).

Selecting a level for a given application typically involves a trade-off between consistency
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requirements and performance, which levels are suitable for distributed graph databases

without introducing significant overheads or violating graph integrity remains an open

question. For example, it is not uncommon for distributed graph transactions to access

multiple partitions (often 5+ [17]) and it was established in [54] athat s the number of

partitions accessed by MPTs increases performance severely degrades. Potentially, this makes

Serializable isolation unfeasible. Another interesting direction is incorporating awareness

of application-level invariants and types of common graph operations into the protocols

to determine which can be preserved without coordination and which require it [10]. For

example, concurrent edge insertion between two nodes is commutative and does not require

coordination.





Chapter 6

A Performance Study of Epoch-based

Commit Protocols
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Summary

Distributed OLTP systems execute the high-overhead 2PC protocol at the end of every

distributed transaction. Epoch-based commit proposes that 2PC be executed only once

for all transactions processed within a time interval called an epoch. Increasing epoch

duration allows more transactions to be processed before the common 2PC. It thus

reduces 2PC overhead per transaction, increases throughput but also increases average

transaction latency. Therefore, required is the ability to choose the right epoch size that

offers the desired trade-off between throughput and latency. To this end, this chapter

develops two analytical models to estimate throughput and average latency in terms

of epoch size taking into account load and failure conditions. Simulations affirm their

accuracy and effectiveness. This chapter then presents epoch-based multi-commit which,

unlike epoch-based commit, seeks to avoid all transactions being aborted when failures

occur, and also performs identically when failures do not occur. Our performance

study identifies workload factors that make it more effective in preventing transaction

aborts and concludes that the analytical models can be equally useful in predicting its

performance as well.

6.1 Introduction

When a single-node database reaches its capacity limits, a common option is to partition data

across multiple nodes forming a distributed database [97]. High levels of scalability ensue

when transactions access data within a single node, there is no need for any coordination,

and hence communication, between nodes. However, when workloads contain distributed

transactions accessing data from multiple nodes, an atomic commitment protocol, typically

(2PC) [12], needs to be executed so that distributed transactions are guaranteed of atomicity

and durability when nodes are prone to failures.
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As discussed in Subsection 2.1.5, executing 2PC generally extracts a high performance

cost [52, 54]. It involves two sequential network round trips, one for each of its phases,

and two sequential durable writes. Depending on hardware deployment, when 2PC is

executed at the end of each distributed transaction, it increases the transaction latency by

an additional delay of up to 10ms. In addition, as 2PC execution prolongs the lifetime

of a distributed transaction within the database, the potential for data contention among

transactions (distributed or otherwise) intensifies which, in turn, leads to further performance

degradation. For these reasons, a significant strand of distributed transactions research

focuses on minimizing the costs inflicted by 2PC executions (see Subsection 2.1.6).

A recent practical proposal is epoch-based commit [72]. Based on the widely-held notion

that node failures are getting less frequent with modern hardware, it takes the view that 2PC

need not be executed at the end of every distributed transaction. Instead, 2PC is executed

once for all transactions that arrive and get processed within a time interval called an epoch.

Thus, an epoch is the base unit for doing 2PC and all transactions processed within it either

commit or abort through one common 2PC execution. (This idea is a distributed extension of

group-commit proposed in [28] to reduce disk I/O latency for single-node databases.)

The cost of one 2PC execution is thus amortized over multiple transactions processed

within an epoch. Moreover, transactions whose processing is completed can release their

locks instead of waiting until they commit at the epoch end; this reduces scope for contention.

They can also asynchronously log their writes to persistent storage. The effects of all these

features are two-fold. On the up side, throughput increases substantially – by four times (4x)

as per the experiments conducted in [72]. On the down side, a transaction’s results cannot

be released until the epoch end when all its writes have become durable. This means that

the earlier a transaction arrives during an epoch, the longer it waits before its results can be

released; i.e., the average latency of transactions increases.



152 A Performance Study of Epoch-based Commit Protocols

It is important to note that amortization of 2PC cost over multiple transactions also tends

to increase the throughput as epoch size increases, when nodes do not fail. However, if a

node fails, then the number of transactions aborted at the end of an epoch (which is when that

failure is globally detected) will be large if the epoch was chosen to be long; this wasted work

obviously reduces throughput. Thus, the possibility of node failures favors shorter epochs. In

fact, there is an optimum epoch length at which throughput is maximized which can be used

if increased latency is a minor concern. (Increased latency is acceptable for many workloads,

see [21, 80, 110].) On the other hand, a user may want a reasonably high throughput as well

as an acceptably moderate latency. Such a trade-off requires the means to choose appropriate

epoch length. These requirements for adopting epoch-based commit in clusters were left as

future work in the original paper [72] and are being fully addressed here.

We derive analytical solutions for estimating throughput and average latency in terms of

epoch length and some system and load parameters. Estimating average latency accounts for

aborted transactions being completed in subsequent epochs. Our derivations make certain

simplifying assumptions, such as times to node failures and recovery are exponentially

distributed and the cluster has at most one failed node at any time which holds if failures are

independent and less frequent and if a failed node recovers before another node fails.

The protocol of [72] proposes that all transactions executed during an epoch be aborted

in case of a node failure. This assumes that each node has directly or indirectly accessed

the failed node at some time during the epoch and therefore all transactions it executed

accessed some data now lost due to failure. We examine and find this assumption to be

overly pessimistic and develop an epoch-based multi-commit version. Each node maintains a

list of nodes it interacted with, and uploads the list to the 2PC coordinator. The latter then

constructs disjoint commit groups such that a node within a given commit group would have

interacted, directly or transitively, only with other nodes in that group during the epoch. In
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case of a node failure, only those nodes in the commit group containing the failed node will

abort their transactions and the rest will commit the transactions they processed.

It is easy to see that when a workload contains no distributed transaction, each commit

group will have just one node and all operative nodes can commit their transactions in the

event of a failure. At the other extreme, if the workload has many distributed transactions

that cause every node to interact with every other node during an epoch, then there is only

one commit group and a failure will cause all operative nodes to abort all their transactions

as in the epoch-based commit protocol. Thus, our multi-commit version can automatically

take advantage of favorable workload conditions in the event of a failure and avoid excessive

aborts, while performing identically to the original version during failure-free epochs.

This chapter makes three major contributions. Analytical models for estimating through-

put and average latency are developed in Section 6.2 for the epoch-based commit protocol.

They allow an appropriate epoch size to be judiciously chosen for maximum throughput

or minimum latency or seeking a trade-off between the two. Secondly, the epoch-based

multi-commit protocol is presented in Section 6.3, together with a popular benchmarking

case study carried out to support its core design rationale. Finally, a range of simulation

experiments involving a cluster of 64 nodes operating for a 100-day period are carried out.

They (i) demonstrate the accuracy and efficacy of the models of Section 6.2 for choosing

the appropriate epoch size, (ii) point to workload features that can aid the multi-commit

protocol in minimizing aborts when failures occur, and (iii) affirm the effectiveness of the

models in selecting the right epoch size also for multi-commit version. Section 6.4 presents

the strategies adopted for performance study, followed by the presentation and discussion of

results in Section 6.5. Section 6.6 concludes the chapter and summarizes future work.
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Fig. 6.1 Work and 2PC intervals of a cycle in the epoch-based commit protocol.

6.2 Analytical Models for Epoch-Based Commit

6.2.1 Protocol Description

The epoch-based commit protocol is briefly described before presenting analytical solutions

for estimating protocol performance. For greater detail on the protocol, readers are referred

to [72].

Consider a distributed system consisting of a coordinator node and N,N > 1 participant

nodes that are simply called nodes. A large OLTP database is partitioned among the latter

which execute transactions and 2PC under the control of the coordinator. A (participant) node

can fail in a fail-stop manner: it functions correctly when operative and fails only by ceasing

to be operative. The coordinator, however, is assumed to be built reliably and never fails.

More precisely, we assume that the coordinator is internally replicated (primary-backup or

state machine replication using atomic broadcast such as [82] or [68]), maintaining a single

server abstraction.

The coordinator starts a cycle by starting an epoch timer for an interval of a and instructs

the nodes to work on transactions. The epoch is referred to as work interval in Figure 6.1

during which transactions are executed but not made durable and their results also not

released to end-users. A transaction will release the locks it holds at the end of its execution
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even though it is not committed. This reduces lock contention but makes the effects of earlier

transactions visible to the later ones. This is not a concern as all transactions of a given work

interval commit or abort together at the end.

At the end of epoch timer a, the coordinator calls for an execution of 2PC which, as shown

in Figure 6.1, has two phases: prepare and commit. In the prepare phase, the coordinator

sends a Prepare message1 to each participant node. (Messages exchanged during 2PC are

shown by blue arrows in Figure 6.1.)

When a node receives Prepare, it force-logs: (i) ids of all ready-to-commit transactions it

executed, and (ii) current epoch number. (These durable writes by participants are indicated in

Figure 6.1 by red squares labeled A.) It then responds with Prepare-Ack to the coordinator.

It is expected that the underlying concurrency control protocol has durably logged the

individual writes by the ready-to-commit transactions before the prepared write record is

logged. Note, some transactions executed within the epoch may have aborted earlier due to

conflicts and violation of application-level integrity constraints. These aborted transactions

do not cause the whole epoch to fail, but the result of them is still not released until the epoch

terminates.

In the commit phase, the coordinator collects responses from participant nodes. If any

node has not replied with a Prepare-Ack message, all nodes are instructed to abort all

transactions they executed during the work interval. Else, the coordinator force-logs a commit

record with the current epoch number (shown as a red square labeled B in Figure 6.1) and

sends a Commit message to all participant nodes. When a node receives a Commit message,

it commits the transactions it executed and releases the results to clients. It then sends

Commit-Ack to the coordinator and awaits the latter to start the next cycle of work and 2PC

intervals.

In summary, multiple transactions are executed during the work interval of each cycle;

they are committed (or aborted) in a common 2PC execution. The design rationale behind

1Message types are indicated using mono-spaced font.
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this approach is that the time taken to execute even a distributed transaction is negligibly

small compared to the mean time before failure (MTBF) of nodes. So, the probability of

several transactions being executed without encountering any node failure is fairly high.

When the common 2PC execution leads to commit, its overhead per committed transaction

becomes very small which, in turn, leads to an increased throughput.

Several studies [15, 48, 111] analyzing node failures in clusters confirm the assumption of

MTBF being considerably larger than transaction processing times. For example, Garraghan

et al. [48] analyze Google Cloud Platform traces and find 5056 out of 12532 nodes exhibiting

8954 failure events over a 29 day period. A node’s MTBF turns out to be 12.71 hours!

Another metric analyzed in [48] is also relevant for our analytical models: the mean time to

repair (MTTR) is around 6-30 times smaller than MTBF. So, a failed node is most likely to

have recovered well before another failure occurs.

6.2.2 Modeling Assumptions

We make two assumptions in our analytical modeling and derivation of expressions for

estimating maximum throughput and average latency.

Assumption 1: A failed node recovers before another node in the system fails; i.e., between

any two consecutive node failures, there is a recovery event of the first failed node.

A common observation in the literature (e.g., [15, 48, 111]) is that MTBF of nodes is

much larger compared to their MTTR: a failed node is almost certain to be repaired before

the next failure occurs. This near certainty is here assumed to be a certainty for the number

of nodes typically found in a distributed OLTP system. Thus, there is at most one failed node

in the system at any time.

Assumption 2: As soon as a node receives a Prepare message from the coordinator, it

instantly completes any ongoing transaction execution and enters the 2PC execution.
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In reality, some non-zero amount of time will elapse for a node to complete its ongoing

execution (if any) and then respond with Prepare-Ack. This assumption can lead to an

overestimation of throughput.

Our simulations do not have these assumptions and therefore will assess the accuracy of

the expressions derived.

6.2.3 Maximum Throughput

We derive an analytical expression for estimating maximum attainable throughput by assum-

ing that a node always has a transaction to execute and is never idle.

A participant node fails at exponentially distributed intervals with a low rate, ξ . The

repair times are also distributed exponentially with a higher rate η >> ξ . Recall that nodes

go through cycles, each consisting of a work interval, U , followed by a random 2PC interval

V in which 2PC executed. To start with, we will regard U as random (as opposed to being

fixed as a constant a as explained earlier). Denote the probability density functions of U and

V by fU(x) and fV (x), respectively. Let also fW (x) be the convolution of fU(x) and fV (x),

i.e., the p.d.f. of the sum U +V .

During a work interval, transactions are served at rate Nµ (transactions per unit time),

if all nodes are operative, and at rate (N− 1)µ if one of them has failed. At the end of a

work and 2PC cycle, either the commit operation completes successfully and all transactions

executed during the work interval U depart from the system, or a node failure has occurred

and all transactions executed during U are aborted and remain in the system for re-execution.

The probability, α , that N operative nodes complete one cycle successfully (i.e., with

none of them failing), is

α =
∫

∞

0
fW (x)e−Nξ xdx = w̃(Nξ ) = ũ(Nξ )ṽ(Nξ ) , (6.1)
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Fig. 6.2 Observation period with full cycles having N− 1 operative nodes, N− 1 and N
operative nodes, and N operative nodes.

where ũ(s), ṽ(s) and w̃(s) are the Laplace transforms of fU(x), fV (x) and fW (x), respectively.

Consider an interval between two consecutive node failures, to be referred to as the

observation period, indicated in Figure 6.2. The probability that exactly m consecutive work

and 2PC cycles are completed successfully during the observation period is

pm = α
m(1−α) . (6.2)

Hence, the average number of successful cycles during that period is

m̄ =
α

1−α
. (6.3)

The observation period begins with the repair period of the node that had failed. During that

period there are only N−1 operative nodes. By analogy with (Equation (6.1)), the probability,

β , that they will complete one work and 2PC cycle before the failed node recovers, is

β =
∫

∞

0
fW (x)e−ηxdx = ũ(η)ṽ(η) . (6.4)
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Consequently, the average number of consecutive cycles during the repair period (colored

red in Figure 6.2) is

m̄1 =
β

1−β
. (6.5)

The total average number of transactions departing during these cycles, J1, is equal to

J1 = m̄1E(U)(N−1)µ , (6.6)

where E(U) =−u′(0) is the average length of work intervals.

Then we have a cycle that overlaps the repair completion instant (marked in parts with

red and green in Figure 6.2). In addition, if the repair instant falls during the work interval of

that cycle, then for the remainder of that interval there is an extra node (i.e., the repaired one)

available. The average number of transactions, J2, departing during this cycle, given that the

repair is completed within it, can be expressed as

J2 = E(U)(N−1)µ +
µ

1−β
E(U−R) , (6.7)

where E(U −R) is the expected remaining work interval, given that the repair completes

within the cycle. Averaging over the distribution of U , we can write

E(U−R) =
∫

∞

0
fU(x)

∫ x

0
(x− y)ηe−ηydydx . (6.8)

After carrying out the integration and substituting the result into (Equation (6.7)), the latter

becomes

J2 = E(U)(N−1)µ +
µ

1−β

[
E(U)− 1− ũ(η)

η

]
, (6.9)

where ũ(s) is the Laplace transform of fU(x).
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Finally, the total average number of departures during fail-free cycles with N operative

nodes (marked green in Figure 6.2), with their average number being m̄− m̄1−1, is given by

J3 = (m̄− m̄1−1)E(U)Nµ . (6.10)

The system throughput, T , defined as the average number of departures per unit time, is

obtained by dividing the total average number of departures during the observation period by

the average length of the observation period:

T = (J1 + J2 + J3)Nξ . (6.11)

Now consider the total average number of transactions, D, that are lost during the

observation period. Losses occur either during the initial repair period, when transactions

attempt to access the failed node, or when the last cycle in the observation period is interrupted

by the next node failure.

As soon as a transaction is admitted into a node, it produces a list of a random number, k,

of other nodes that it would need to access. If the failed node is on that list, the transaction

is instantaneously dismissed and is lost. That procedure is repeated with the transaction

that follows, so following a service completion there may be a series of transactions lost

instantaneously.

The probability, γ , that a transaction admitted into an operative node has the failed node

on its list is

γ =
E(k)
N−1

, (6.12)

where E(k) is the average size of the list. This is a given parameter. The average number of

transactions lost instantaneously following a service completion during the repair period is

therefore equal to γ/(1− γ).



6.2 Analytical Models for Epoch-Based Commit 161

We conclude that the average number of transactions lost during the m̄1 successful work

and commit cycles within the repair period is

D1 = J1
γ

1− γ
, (6.13)

where J1 is given by (Equation (6.6)).

To find the average number, D2, of transactions lost during the work and 2PC cycle

overlapping the repair instant, we proceed as in the derivation of (Equation (6.7)), but

count only the transactions completed before the repair instant. This leads to the following

expression:

D2 =
(N−1)µ

1−β

γ

1− γ

[
1
η
[1− ũ(η)]− ũ′(η)

]
. (6.14)

Finally, we need the average number, D3, of transactions that are lost from the last work

and commit cycle in the observation period, the one that is interrupted by the next failure

instant. Since all transactions executed during that cycle are lost, we can write

D3 = E(U)Nµ . (6.15)

The overall rate of transaction losses, D, is given by the total average number of losses

during the observation period, divided by the average length of the observation period:

D = (D1 +D2 +D3)Nξ . (6.16)

The work interval U is set by the control policy as a constant, a. On the other hand, the

commit operation is affected by communication delays, so it is more natural to assume that

V is random, possibly distributed exponentially with mean b. In that case, we would have

ũ(s) = e−as ; ṽ(s) =
1

1+bs
. (6.17)
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6.2.4 Average response time

We will no longer regard that nodes are always busy but assume that transactions arrive in a

Poisson stream with rate λ and, if there are no available nodes, wait in an external first in

first out (FIFO) queue. After being processed, a transaction does not depart immediately but

is held in the queue until the end of the current cycle. If commit is the 2PC outcome, all

transactions that were executed during the work interval depart together. Otherwise, they are

aborted and continue to remain in the queue. The performance measure of interest here is

the steady-state average response time, W , defined as the interval between the arrival of a

transaction into the system and its departure.

This type of system has been referred to in the literature as a queue with bulk services. At

certain service instants, batches of transactions are removed from the queue. More precisely,

if the size of the current batch is m and the number of transactions present just before the

service instant was n, then just after the service instant there are n−min(n,m) transactions

present. A model where the intervals between service instants have a general distribution and

all batches have the same fixed size was analyzed by Bailey [7] more than half a century ago.

Bailey’s result cannot be used in our case because the number of transactions departing

at a service instant, i.e., when 2PC execution completes, depends on whether a breakdown

occurred during the cycle or not, and also on whether there were N or N−1 operative servers.

We propose two estimates for W : the first is pessimistic and can be treated as an upper bound

on the response time; the second is clearly optimistic and will provide a lower bound.

6.2.5 Upper bound, Wu

The first estimate is obtained by assuming that the consecutive intervals between service

instants are i.i.d. random variables distributed exponentially with mean a+b, where a is the

average work interval and b is the average 2PC interval. The parameter of that distribution

will be denoted by ν = 1/(a+b). The reason why this is a pessimistic assumption is that
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the coefficient of variation of the exponential distribution is 1, while in practice the work

interval is likely to be constant, or nearly constant. The 2PC interval tends to be much smaller

than the work interval, so even if it is random, the coefficient of variation of a full cycle

(comprising both work and 2PC intervals) would tend to be closer to 0 than to 1.

Under the exponential assumption, the probability that a full cycle is not interrupted by a

node failure is now approximated by

α =
ν

Nξ +ν
. (6.18)

When Nξ is small, this value is very close to the one produced by (Equation (6.1)).

Hence, a service batch is of size 0 with probability q0 = 1−α .

Since the average period during which there are N−1 operative servers is 1/η and the

average period during which there are N operative servers is 1/Nξ , we can say that a 2PC

interval has N−1 operative servers with probability q1 = αNξ/(Nξ +η), and has N servers

with probability q2 = αη/(Nξ +η). In the former case, an average of m1 = a(N− 1)µ

transactions are served during the cycle, and in the latter case m2 = aNµ transactions are

served.

The above arguments support an assumption that the service batch size, m, is equal to

m =


0 with probability q0

m1 with probability q1

m2 with probability q2

. (6.19)

If m1 and m2 are not integers, their integer parts are taken.

The average batch size, B, is

B = m1q1 +m2q2 = aNµα
(N−1)ξ +η

Nξ +η
. (6.20)
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The necessary and sufficient condition for the stability of the bulk service queue is that

the transaction arrival rate should be strictly less than the average service capacity:

λ < νB . (6.21)

When the failure rate is small and the repair rate is significantly higher, the right-hand side

of this inequality is very close to the maximum throughput, T , obtained in the previous

section. Thus, requirement (Equation (6.21)) is almost identical to the more accurate stability

condition λ < T .

Let πn be the steady-state probability that there are n transactions present in the queue.

Because of the bulk service assumption, any transactions that are in fact being served, are

considered to be in the queue until the next service instant. The number n increases by 1 at

arrival instants, and it decreases by 0, m1 or m2 at service instants. Equating the up and down

transition rates across the boundary between states n and n+1, we obtain the following set

of balance equations.

λπn = ν

[
m1

∑
j=1

(q1 +q2)πn+ j +
m2

∑
j=m1+1

q2πn+ j

]
;n = 0,1, . . . (6.22)

We shall obtain the general solution to this set of equations in geometric form:

πn =Czn
1 , (6.23)

where C and z1 are some positive constants. Substituting (Equation (6.23)) into (Equa-

tion (6.22)), we find that the equations are satisfied as long as z is a zero of the following

polynomial of degree m2.

P(z) = λ −ν

[
m1

∑
j=1

(q1 +q2)z j +
m2

∑
j=m1+1

q2z j

]
. (6.24)
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In addition, in order that we may obtain a probability distribution, z1 must be a positive real

number in the interval 0 < z1 < 1.

We have P(0) = λ > 0 and P(1) = λ − ν(m1q1 + m2q2) < 0, according to (Equa-

tion (6.21)). Therefore, P(z) has a real zero, z1, in the interval (0,1). This provides a

normalizable solution to the set of balance equations and allows us to write

πn = (1− z1)zn
1 ; n = 0,1, . . . . (6.25)

It is possible to prove formally that P(z) has no other zeros in the interior of the unit disk,

but this also follows from the fact that an ergodic Markov process cannot have more than one

normalizable distribution.

The steady-state average number of transactions in the system, L, is obtained from

(Equation (6.25)):

L =
∞

∑
n=1

nπn =
z1

1− z1
. (6.26)

The upper bound of the average response time, Wu, is then provided by Little’s theorem:

Wu =
L
λ
. (6.27)

6.2.6 Lower bound, Wd

A very simple lower bound is derived by making two optimistic assumptions. The first is

that the work interval and 2PC interval are constant, of lengths a and b, respectively. The

second is that the transactions arriving during the work interval are cleared at the end of

that cycle, while those arriving during the commit operation are cleared during the next

cycle, provided that no breakdown occurs in the meantime. That would be a reasonable

assumption if the total average number of arrivals during work and 2PC intervals of a cycle is
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smaller than the average number that can be served by N−1 servers during a work interval:

λ (a+b)< a(N−1)µ .

When the cycle duration is constant at (a+ b), the probability that a cycle does not

involve a node failure is

α = e−Nξ (a+b) . (6.28)

In that case a transaction arriving during a work interval remains in the system for an average

of half a work interval plus 2PC interval, while an arrival during a 2PC interval remains

in the system for an average of half 2PC interval plus a full cycle. The probabilities that

an incoming transaction arrives during a work interval or a 2PC interval are a/(a+b) and

b/(a+b), respectively. Hence, the average sojourn time given that the cycle is failure-free

can be written as [
(
a
2
+b)

a
a+b

+(
b
2
+a+b)

b
a+b

]
=

a+3b
2

.

In the event of a node failure, the average sojourn time is half a cycle plus a full cycle.

Thus, the lower bound on the response time becomes

Wd = α
a+3b

2
+(1−α)

3(a+b)
2

. (6.29)

Remember that the average work interval, a, is not a system characteristic but is set by

the operating policy. It is natural to ask therefore, how should that interval be chosen in order

to minimize W? On the one hand, increasing a may improve the throughput (although that

effect is mitigated by an increase in the probability of a node failure during a full cycle). On

the other hand, transactions are kept in the system for longer. Intuitively, there should be an

optimal value for a.

Note that the lower bound (Equation (6.29)) tends to be an increasing function of a.

Therefore, if Wd is taken as a criterion, the optimal a is the smallest value that justifies the

assumption made above, i.e. that the average number of transactions arriving during a cycle
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should be significantly smaller than the number that N−1 servers can serve during a work

interval. We suggest as an empirical rule of thumb that one should chose the smallest a that

satisfies the inequality λ (a+b)< 0.8a(N−1)µ . This yields the value, a∗, that minimizes

Wd as

a∗ =
λb

0.8(N−1)µ−λ
. (6.30)

If the upper bound is minimized, the optimal work interval will, in general, be different.

These differences will be investigated experimentally.

6.3 Epoch-based Multi-commit

6.3.1 Rationale and Approach

Coordinator

Node N1

Node N2

Node N3

2PCWORK
PREPARE

A

A

A

c0 = {N1,N2},
c1 = {N3}

dep = {n2}

dep = {n1}

dep = {}

COMMIT

B

1
2

3

4

Fig. 6.3 A cycle in epoch-based multi-commit. A node’s epoch-dependency list is indicated
as dep.

Epoch-based commit assumes that uncommitted data within any node is used, directly

or indirectly, by every other node during a work interval. Hence, all transactions executed

are aborted in case of a node failure. In reality, this assumption is pessimistic and does not
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always hold. For example, if a node is to fail shortly after it starts its work interval, it would

be very unlikely that each operative node executes a distributed transaction in that short

duration preceding the failure and uses uncommitted data held by the node that goes on to

fail later.

Epoch-based multi-commit avoids, where possible, aborting all transactions and thereby

seeks to improve throughput and reduce average latency. Interactions between nodes are

monitored in a lightweight, low-overhead manner to determine whether a node needs to abort

its transactions, when another node is found to have failed. Interactions that call for aborting

of transactions need not just be directly with the failed node but can also be transitive in

nature, as explained in the scenario below.

Suppose that node Nk updates an object; these updates do not become durable until Nk

commits and will be lost if Nk fails before that. Let N j process a (distributed) transaction

by reading an uncommitted update at NK and updating some local objects which are in

turn read by a third Ni while processing another transaction. If Nk crashes, N j must abort

its transactions as some of them involved reading dirty data from Nk; this in turn leads to

cascading aborts at Ni even though there is no direct interaction between Ni and Nk.

We will express the pattern of node interactions during each work interval as a symmetric

and transitive binary relation between nodes. This relation is called epoch dependency and is

defined as follows: Node Ni has epoch dependency with N j during a given work interval iff:

(i) Ni accesses data from N j during that work interval or vice versa, or (ii) there is another Nk

for that work interval such that Ni has epoch dependency with Nk and Nk with N j.

Two remarks are in order. First, the above definition does not distinguish whether a node

interaction involves accessing uncommitted or committed data, even though the latter does

not call for cascading aborts. Despite some advantages in making this distinction, we avoid

it in order to keep the overhead of monitoring node interactions as small as possible.
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Secondly, epoch dependency is also reflexive by definition, as each node accesses data

from itself. So, it is an equivalence relation defined on participant nodes. It therefore

partitions the nodes into disjoint subsets which we call commit groups: each node is in

exactly one group, any two nodes of a group are related by epoch dependency, and no node

has epoch dependency with any node not in its own group. Therefore, if a commit group has

no failed node, then its member nodes can commit during 2PC; otherwise, they must abort.

Referring to Figure 6.3, we see nodes N1 and N2 interacting with each other during

the work interval and N3 executing no distributed transactions. So, N1 and N2 have epoch

dependency with each other and N3 only with itself; thus, two commit groups, c0 = {N1,N2}

and c1 = {N3}, emerge. If N3 fails, N1 and N2 can commit their transactions because they

did not access any data from N3. If N1 fails, N2 ∈ c0 must abort its transactions, while N3 is

unaffected.

A failed node can thus prevent nodes of only one group from committing. That is, if

node interactions during a work interval lead to multiple commit groups emerging at the

end, then all nodes do not have to abort their transactions in the event of a failure. On the

other hand, if only one commit group exists at the end of a work interval, then a node failure

will cause all operative nodes to abort, i.e., the epoch-based multi-commit defaults to the

original, epoch-based commit. For example, had N1 and/or N2 in Figure 6.3 interacted with

N3 during the work interval, then c0 = {N1,N2,N3} would be the only commit group and any

node failure would mean all other nodes aborting their transactions.

6.3.2 Motivation: TPC-C Case Study

For multi-commit protocol to minimize aborts, multiple commit groups should emerge at the

end of a work interval. Such an outcome depends primarily on three workload characteristics:

(i) proportion of distributed transactions, (ii) average number of remote nodes accessed by

distributed transactions, and (iii) node affinity or the likelihood of a transaction in a given
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node accessing data in another given node due to correlations between data partitions hosted

by the two nodes.

The smaller the proportion in (i), the larger is the likelihood of multiple groups. In the

limit, if there are no distributed transactions at all, then each commit group is a singleton

with a distinct node - as c1 in Figure 6.3. The smaller the average in (ii) and the stronger the

affinity, the more likely it is that multiple groups emerge even if the workload has a higher

proportion of distributed transactions. In what follows, we consider a canonical benchmark

system to motivate the multi-commit scheme can be very useful in practical settings and its

performance is worthy of a detailed evaluation.

TPC-C is the canonical benchmark for evaluating performance of OLTP databases [109].

It models a warehouse order-processing application and consists of five transaction types.

Only two types, Payment and NewOrder, involve accessing remote nodes. A Payment

transaction involves updating the payment amounts for a given warehouse and then updating

customer information. The customer belongs to remote warehouse on another server with

a 15% probability. In short, the Payment transaction accesses at most two partitions. A

NewOrder transaction updates 5-15 items in the stock table. Of these items, 99% are local to

its home partition, while 1% are at a remote partition.
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Fig. 6.4 Number of commit groups vs proportion of distributed transactions. The red line
indicates the threshold after which single commit group is the only outcome.
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In our experiment, the epoch size was fixed to 10ms and a throughput of 300K transactions

per second in a cluster with 64 servers was assumed. Figure 6.4 depicts the number of commit

groups formed when the the proportion of distributed transactions is varied from 1% to 15%.

Commit groups are numerous when the proportion of distributed transactions does not

exceed 8% which is the typical proportion of distributed transactions encountered in practical

settings. Thus, multi-commit is indeed a practical alternative to the original scheme.

6.3.3 Multi-Commit Protocol Description

This protocol is identical to epoch-based commit described in Section 6.2, except for the

following two additions.

Monitoring node interactions. When node Ni executes a distributed transaction and

sends a Remote-Op message to another node N j, it enters the remote N j in its local epoch-

dependency list. Similarly, when N j receives Remote-Op message from Ni, it enters the latter

in its list. Thus, interacting nodes have each other in their epoch-dependency lists.

Computing commit groups. This is done by the coordinator node if some participant node

has not responded to it with Prepare-Ack in the prepare phase of 2PC execution. Recall

that the coordinator executes 2PC at the end of work interval by sending a Prepare message

to all participant nodes. (2PC messages are shown in blue in Figure 6.3.) Each operative

node will, in turn, respond to the coordinator by sending a Prepare-Ack message which

will now include its epoch-dependency list as indicated in Figure 6.3.

If the coordinator receives Prepare-Ack from all nodes, then a Commit message is sent

to all nodes. Otherwise, it constructs a graph where a vertex represents a participant node

and an edge represents an epoch-dependency as reported within the epoch-dependency lists

it received. Commit groups are then found by using Tarjan’s algorithm to identify strongly

connected components [101]. Participant nodes of commit groups that contain no failed

node are sent a Commit message and the rest an Abort message. Based on the descriptions
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in Subsection 6.3.1, it is easy to see that a node is sent Commit, if and only if it has not

interacted with a failed node directly or transitively, during the work interval.

6.4 Performance Evaluation Strategies

The principal aim of simulations is two-fold: to assess the accuracy of the analytical models

and explore circumstances in which the epoch-based multi-commit can perform better than

the original epoch-based commit. The former will assist database administrators in choosing

a suitable work interval, a, to accomplish their performance targets and the latter will help to

demonstrate that the multi-commit protocol is a practical alternative to the original. Recall

that multi-commit cannot perform worse than the original in any circumstance; this is because

the former differs from the latter only when a node fails at which time the coordinator expends

a small computational cost on trying to minimize aborts.

In assessing the efficacy of the expression for maximum throughput, our discrete event-

based simulations [78] will follow the experimental setup in [72]: nodes will spawn a new

transaction as soon as they finish executing the current one. Thus, the nodes are never idle

and the resulting throughput will be the maximum attainable. In measuring the average

latency, simulations will consider such values for transaction arrival rates that the system is

kept in a steady state; i.e., the number of transactions waiting to be processed will not grow

monotonically with time. Under this steady state condition, throughput is the same as the

arrival rate and hence not measured.

In our simulations, incoming transactions are distributed ones with 10% probability which

is larger than the threshold 8% observed in Figure 6.4 for having multiple commit groups at

the end of a work interval. Thus, we seek to explore the effects of node-affinity when the

proportion of distributed transactions does not favor the emergence of multiple groups.

A distributed transaction interacts with one remote node and we consider two policies for

choosing that remote node: random and paired affinity. In the former, the remote node is
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randomly chosen; in the latter, nodes are paired and a distributed transaction originating in a

given node accesses the paired node with 90% probability and a randomly chosen one with

10% probability. Node-pairing captures data correlations between the partitions hosted by

the paired nodes.

Note that if a remote node chosen for data access is crashed, then processing of that

transaction ceases and all effects of having processed it are undone. Such a transaction is

called ‘dropped’ in Subsection 6.2.3 and not counted in throughput. Also, 10% of transactions

accessing one remote node sets E(κ) = 0.1 in (Equation (6.12)).

Table 6.1 Parameters of the analytical models and simulation.

Symbol Meaning Values
N Number of participant nodes 64
a Work interval (ms) 4-1800
b Mean time to commit (ms) 1.7
µ Node’s transaction service rate (txn/ms) 1

1/ξ Mean time between failure (hr) 12
1/η Mean time to repair (min) 30
E(κ) Remote servers accessed by transactions 0.1

λ † Transaction arrival rate (txn/s) 30000,40000
† Average response time model only.

The parameters of the analytical models and their values used in simulations are summa-

rized in Table 6.1. The selected values were chosen in a way to be representative of a practical

OLTP database configuration and workload. A cluster size of 64 nodes and one coordinator

is similar to that used in the experimental analysis of concurrency control protocols in [54].

The choice of µ = 1 is guided by the fact that OLTP transactions’ useful work consumes

about one millisecond and they seldom have user stalls, rather they are executed as stored

procedures [97]. The mean time to execute 2PC is represented by b. To estimate b, it was

assumed a disk flush takes 10µs and database nodes are co-located within the same datacenter

with a round trip time of 1ms. Thus, as 2PC operations involve 2 sequential disk writes and

1.5 network calls before results are released back to clients, b is set to 1.7ms. Following [48],
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the mean time between failure 1/ξ and the mean time to repair 1/η are taken to be 12 hours

and 30 minutes respectively.

Given that N = 64, it is possible to encounter more than one failed node in simulations

even though 1/ξ ≫ 1/η . (Note: the larger the value of N, the less likely it is for Assumption

1 to hold.) Thus, any loss of accuracy due to Assumption 1 in Subsection 6.2.2 is assessed.

Simulations measure the following metrics:

System throughput (TTT ): Number of transactions committed per second.

Lost transaction rate (DDD): Rate at which transactions are being aborted or dropped due to

failures.

Committed transactions during failures (CCCTTT fff ): Average number of transactions committed

in cycles with failures.

Average Response time (WWW ): The response time is measured from the point when a transac-

tion enters the system, to the point when it departs, after potentially several retries. Since

transactions are processed in batches and some may not be committed in their first execution,

the average value (in ms) is computed over the simulation period.

Operational commit groups (CCCGGG): the number of commit groups that do not contain a failed

node, given that node failure has occurred in a given cycle. It is zero for the epoch-based

commit where nodes always form one single commit group.

6.5 Evaluation

Each simulation run took approximately 12 hours to complete and simulated a cluster

operational period of 100 days in order to have thousands of cycles with node failures. (Note:

Experiments in [72] did not study the impact of node failures.) For example, when a = 40 ms,

10,972 cycles had failures out of a total of 207 million cycles simulated. So, the number

of operational commit groups reported here would be an average of at least 10,000 values

obtained. We observed up to 10 cycles having multiple node failures when a = 1800 ms.



6.5 Evaluation 175

59.0 K

60.0 K

61.0 K

0 250 500 750 1000 1250 1500 1750
work interval (a)

sy
st

em
 th

ro
ug

hp
ut

 (
T

)

model multi original

(a) System throughput vs. a in ms.

0.00

0.05

0.10

0.15

0 250 500 750 1000 1250 1500 1750
work interval (a)

co
m

m
it 

gr
ou

ps
 (

C
G

)

multi original

(b) Operational commit groups vs. a in ms.

Fig. 6.5 Maximum throughput as work interval a varied from 40 to 1800 ms.
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6.5.1 Maximum Throughput

Figure 6.5(a) plots the maximum attainable throughput values against the work interval a

which is varied from 40 to 1800 ms. Throughput estimated using the expression in Sub-

section 6.2.3 is referred to as ‘model’ and those measured in simulations for epoch-based

commit and epoch-based multi-commit are labeled as ‘original’ and ‘multi’ respectively.

Simulations used the random assignment policy when a distributed transaction sought to

interact with a remote node.

We can make three observations from Figure 6.5(a). First, the estimated throughput

very closely tracks the simulated values at all a. In fact, the maximum difference ever

observed was around 3.8%. This suggests that Assumptions 1 and 2 of Subsection 6.2.2 have

a negligible impact on the accuracy and the analytical model is nearly exact.
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Fig. 6.6 System throughput estimates vs. a. Green dotted lines indicate regions with different
gradients.

Secondly, throughput values of both protocols are nearly identical. This is explained by

Figure 6.5(b) that presents the number of operative commit groups (CG) formed in cycles with

node failures. CG takes the maximum value of just 0.15 and rapidly falls as a increases. Such

insignificantly small values of CG in multi-commit are due to the proportion of distributed

transactions (10%) in the workload and the random policy employed for choosing the node
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to interact with. These two factors lead to almost all operative nodes interacting, directly or

indirectly, with the failed node by the time the work interval a completes. This effect is more

pronounced for larger a values. Consequently, multi-commit cannot perform significantly

better than the original when nodes fail. Moreover, even this minute performance advantage

of multi-commit during cycles with failures nearly vanishes when average throughput is

taken over all cycles, because failure-free cycles far out-number those with failures. (Recall,

when there are no failures, multi-commit performance is identical to the original.)

Finally, the analytical expression of Subsection 6.2.3 can be reliably used in choosing

appropriate aT when maximum throughput is the primary concern. For convenience, Fig-

ure 6.5(a) is reproduced in Figure 6.6 without simulated throughput values so that throughput

estimates for various a are clear. Referring to Figure 6.6, we observe that throughput does

not decrease until a = 1500 ms; thus, optimal a∗T is 1500 ms. For some workloads, a work

interval around 1500 ms will offer unsatisfactory latency and be unacceptable. Thus, finding

a smaller aT that still offers an acceptable maximum throughput may be desirable and can

be guided by the observation that increasing a need not fetch a proportional increase in

throughput. Figure 6.6 shows four distinct regions where the rate of throughput increase

is markedly different: the gradient is very large, fairly large, small and very small when

a ∈ [40,100), a ∈ [100,300), a ∈ [300,500) and a ∈ [500,1500] ms respectively.

6.5.2 Average Response Time

Our second set of experiments focuses on assessing the effectiveness of the average response

time analytical models in Subsections 6.2.5 and 6.2.6. Simulations retain the random

assignment policy for distributed transactions; transaction arrival rate per second is taken

to be λ = 30,000 which is approximately 90% of the maximum throughput when a = 5ms

to ensure the system is in a steady state. Figure 6.7 plots the model estimates of the lower

(Wd) and upper(Wu) bounds and the simulation values measured for the epoch-based commit



178 A Performance Study of Epoch-based Commit Protocols

10

20

30

40

4 8 12 16 20
work interval (a)

re
sp

on
se

 ti
m

e 
(W

)

original Wd Wu

Fig. 6.7 Average response time (ms) in epoch-based commit vs. a in ms.

protocol as a is varied from 4 to 20 ms. (The range choice for a is guided by [72] where

experiments used a = 10 ms.)

The response times measured in simulations are well within the upper and lower bound

estimates. The latter increase linearly with a as expected. The Wu plot predicts the optimum a

for minimizing the average response time as: a∗ = 6 ms which is consistent with simulations.

Though the analytical expression for Wu (Subsection 6.2.5, Equation (6.27)) identifies a∗

reasonably accurately, the actual response times are much closer to Wd as a increases and the

maximum difference we observed was 6 ms. So, to summarize, analytical expressions for

Wu and Wd are reasonably accurate in predicting a∗ and the actual response times for a≥ a∗

respectively. The simulation response times obtained for multi-commit were very close to

those presented for the original for reasons explained in Subsection 6.5.1 and hence they are

not shown.

6.5.3 Paired Affinity

We ran the maximum throughput simulation experiment using the paired affinity selection

policy for distributed transactions. Figure 6.8(a) displays the number of operational commit

groups (CG) formed whenever failures occurred in a cycle. In sharp contrast to Figure 6.5(b),
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(c) Transactions committed in cycles with node failure CTf vs. a.

Fig. 6.8 Simulations under paired-affinity as work interval a varied from 10 to 100 ms.
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CG for multi-commit starts at a much larger value of 35 when a = 10 ms and falls steadily

to 5 as a increases to 100 ms. This suggests a strong potential for reducing the number of

aborts when failures occur.

Figure 6.8(b) plots the lost transaction rates (D) for both protocols and shows that D for

multi-commit is consistently smaller than the original. For small a, the difference is small,

because the number of transactions lost due to failures is small for both protocols. But as

a increases, D for the original increases almost linearly while that for multi-commit does

not start increasing significantly until a = 50 ms; at that point, multi-commit shows 83%

reduction in D with the corresponding CG being around 17 in Figure 6.8(a). As a increases

further, CG for multi-commit starts dropping significantly in Figure 6.8(a) and consequently

D for multi-commit starts increasing rapidly.

Finally, Figure 6.8(c) shows the average number of transactions committed by the pro-

tocols in those cycles where node failures occur (CTf ). From Figure 6.8(c) it is clear that

multi-commit avoids a significant number of aborts; note that CTf = 0 in the original. How-

ever, these differences in CTf make insignificant difference when throughput and latency

are averaged over the simulation period, because cycles without failures far outnumber

(by four orders of magnitude) those with failures and both protocols perform identically

in fail-free cycles. Thus, the average maximum throughput and average latency for both

protocols, plotted in Figures 6.9(a) and 6.10(a), are almost identical. This implies that the

analytical expressions obtained for epoch-based commit under the random policy have a wide

applicability: comparing Figures 6.9(a) and 6.10(b) with Figures 6.9(b) and 6.7 respectively

suggests that those expressions are equally applicable for (i) obtaining appropriate a for

epoch-based multi-commit, and (ii) epoch-based protocols under paired affinity policy.



6.5 Evaluation 181

52.0 K

54.0 K

56.0 K

58.0 K

60.0 K

25 50 75 100
work interval (a)

sy
st

em
 th

ro
ug

hp
ut

 (
T

)

multi original

(a) Simulations using paired affinity.

52.0 K

54.0 K

56.0 K

58.0 K

60.0 K

25 50 75 100
work interval (a)

sy
st

em
 th

ro
ug

hp
ut

 (
T

)

model

(b) Model using random affinity.

Fig. 6.9 Maximum throughput as work interval a varied from 10 to 100 ms.
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Fig. 6.10 Average response time (ms).
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6.6 Conclusion

In this chapter two analytical models for the epoch-based commit protocol have been devel-

oped which allow database operators to maximize throughput, minimize average response

time, or seek a trade-off between them. The accuracy of these models has been validated

through a simulation study that considered a cluster of 64 nodes operating for 100 days.

We also developed epoch-based multi-commit, which aims to minimize transaction aborts

in the event of node failures, but performs identically to the original version under other

circumstances. Our simulation study affirms that multi-commit performs better when dis-

tributed transactions originating at a given node tend to access specific other nodes in their

remote interactions. When failures are rare, the analytical expressions derived for the original

protocol can also be used in determining the right epoch intervals for the multi-commit

version as well. Thus, we offer a practical alternative to epoch-based commit and analytical

solutions to efficiently tune the parameter of epoch-based commit protocols in practical

settings.

6.6.1 Further Work

Dynamic work intervals. For a variety of reasons, users often operate their databases

at a near full load. So when a failure occurs they can experience a significant spike in

transactions’ average latency whilst the problem is resolved. However, these systems seldom

implement an appropriate back-pressure mechanism, i.e., the rate of new transactions into

the work queue remains unchanged. As a consequence, the system takes a long time to return

to the average latency prior to the failure event (if plotted, average latency would follow a

short spike followed by a slow decline to normal behaviour). This is unaligned with user

expectations: they desire a return to “normal” behaviour swiftly. A potential avenue for

future work is to explore the efficacy of dynamically adjusting the size of the work interval

in response to the occupancy levels of the external work queue. Such a mechanism could
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prove useful in smoothing average latency in response to failures. Additionally, workloads

vary over time due to a number of factors. An example of this is demonstrated in the LDBC

Interactive workload [37], which features spiking trends, increased activity in the social

network in response to real world events, e.g., elections and natural disasters. Thus, dynamic

epoch-based commit may be also of practical use during normal operation.

Decentralized epoch-based multi-commit. A drawback of epoch-based commit is its

sensitivity to imbalanced workloads, a straggler node processing a long-running transaction

can prevent the whole epoch from committing, as a result increasing the average latency

of all transactions. Future work could explore how to decentralize the coordinator node

across the cluster. In a decentralized iteration of the protocol, each participant node would

manage its own local epoch that it periodically attempts to increment. In effect, different

nodes would move through epochs at different rates. Multi-commit’s epoch dependency

tracking mechanism would remain the same, with the difference that now when a node tries

to increment its local epoch counter it must determine its epoch commit group and elect

a leader to manage the commitment of said epoch. This could be achieved by a simple

approach such as the node with the highest process id being elected leader. Note, due to

the transitive nature of epoch dependencies, leader election could take a long time as nodes

discover the members of the commit group. This approach would allow nodes that have not

interacted with any straggler nodes processing long-running transactions to continue to make

forward progress, which should lower the average latency of transactions.

Geo-distributed epoch-based multi-commit. Geo-distributed databases replicate data

across the world to keep data close to users, for fault-tolerance, and for regulatory require-

ments, e.g., GDPR. Discussions in this chapter thus far have been restricted to deployment in

a single datacenter. Another area for further work is exploring how multi-commit could be

used in a geo-distributed database. Consider a company that operates in three jurisdictions,
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US, Germany, and Japan. The company’s customer data is partitioned to reflect users in

each area, i.e., partitions contain data solely from one location. These partitions are then

replicated across three data-centers, one in each location. One anticipates that the majority

of transactions would access data for a single location. Therefore, an epoch coordinator

could be deployed in each datacenter, primarily responsible for coordinating commit over the

partitions holding data for that location. If transactions access data from multiple locations

then some degree of coordination would be needed between each location’s coordinators in a

similar vein to decentralized multi-commit.





Chapter 7

Conclusions
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Summary

This chapter summarizes the work presented in this thesis, addressing the inefficiencies

and limitations of existing research in database concurrency control and distributed

atomic commitment. The contributions and limitations of these works are outlined,

before we discuss open challenges in the area.

7.1 Thesis Summary

In this thesis we have explored concurrency control in the context of many-core and dis-

tributed OLTP databases. Additionally, we have investigated how the limitations of existing

work on distributed atomic commitment can be addressed.

In Chapter 3, we developed the wait-hit protocol, an optimistic Serializable concurrency

control protocol that scales vertically, with the core count, and horizontally, with the cluster

size. The motivation behind this work was an attempt to create a concurrency control protocol

catered for modern cloud environments that does not need to be re-adapted for different

scale points, thus is better suitable to an environment in which users can easily scale from

a many-core machine, to a deployment spread across data centers. We demonstrated that

the Wait-Hit Protocol has comparable performance with the state-of-the-art many-core

concurrency control protocols.

Next in Chapter 4 we focused on efficient implementation of weak isolation on servers

with many-cores. Mixed Serialization Graph Testing minimizes the number of unnecessary

aborts, and crucially permits concurrent transactions to be executed at a range of isolation lev-

els. The performance of MSGT is demonstrated using several popular transaction processing

benchmarks.

Chapter 5 focuses on concurrency control in specialized distributed graph databases,

specifically the design of two protocols that preserve Reciprocal Consistency and one which
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preserves Edge-Order Consistency are presented. The Delta protocol provides probabilistic

guarantees of data integrity, whereas Deterministic Reciprocal Consistency Protocol and

Deterministic Edge Consistency Protocol ensure there is no chance of inconsistencies. De-

terministic Edge Consistency Protocol builds on the same principles as those presented

in Chapter 3. Approximate models were developed for each protocol to allow for a compre-

hensive performance evaluation.

Lastly, in Chapter 6 we investigated epoch-based distributed databases and developed

two analytical models of epoch-based commit. These models facilitate the choosing of

an epoch size that maximizes throughput, minimizes average response time, or seeks a

trade-off between them. We also developed epoch-based multi-commit which can minimize

transaction aborts in the event of node failures depending on various workload characteristics.

7.2 Limitations

The lack of performance evaluation of the Distributed Wait-Hit Protocol, either through mod-

eling, simulations, or implementation, is an important limitation of this thesis as it prevents

us from truly ascertaining the performance benefits compared to Distributed Serialization

Graph Testing. However, in the future a full implementation of Distributed Wait-Hit Protocol

is planned and will allow for comparison with a range of protocols, similar to the study

executed in [54].

A key limitation of the work performed in Chapter 4 is the lack of comparison with other

mixed concurrency protocols such as Mixed-2PL. Additionally, there still remains a question

mark over the practical utility of such a protocol and of weak isolation in general [99].

Another limitation of the work conducted in the thesis is concerned with the protocols

developed in Chapter 5. All three protocols are concerned only with maintaining the consis-

tency of one class of objects, edges, however, any practical graph databases must preserve
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the integrity of nodes, labels, and properties. It remains unclear how the protocols developed

in Chapter 5 could be efficiently integrated into a wider concurrency control protocol.

Additionally, the work on the Distributed Wait-Hit Protocol in Chapter 3 and the edge

consistency protocols in Chapter 5 do not consider replication. Any practical system typically

employs some level of replication to enable fault-tolerance or availability. It is unclear how

these protocols would be efficiently integrated into a replicated DBMS.

Lastly, the benefits of epoch-based multi-commit appear limited to specific situations.

Additionally, the work in Chapter 6 does not address other shortcomings of epoch-based

commit, such as increased latency owing to stragglers and/or unbalanced workloads.

7.3 Future Research Directions

In this section, future areas of research are outlined arising from the lessons learnt throughout

the PhD.

Additional Implementation and Experiments Extending our evaluation framework de-

scribed in Chapter 2 would allow for the implementation of distributed concurrency control

protocols. Therefore, the performance of the (i) Distributed Wait-Hit Protocol, (ii) Delta

protocol, (iii) Deterministic Reciprocal Consistency Protocol, and (iv) Deterministic Edge

Consistency Protocol could be empirically evaluated and the results used to corroborate the

conclusions drawn in the thesis. Additionally, it would be useful to expose each protocol

developed in this thesis to a wider range of workloads, such as, TPC-C [109] or RAMP-TAO

[18].

Comparing Distributed Transactions Approaches One observation made when conduct-

ing the work in the thesis was the challenge of comparing different distributed transaction

protocols. There are several obvious dimensions on which protocols differ, e.g., isolation
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level provided, but across protocols that provide the same guarantees it is hard to disam-

biguate between what can be attributed to superior protocol design, and what is merely a

better implementation. This is not helped by the partial evaluation of the breadth of protocols

in most studies, with each typically comparing a subset of existing approaches with their

“new” approach. The challenge is compounded as different papers use different hardware and

system configurations, it truly is oranges vs apples comparison.

Therefore, an interesting area of future research would be developing a framework to

reason about the space of distributed transaction protocols. This would help better understand

the trade-offs of each design decision and help to better quantify the magnitude of the

performance gain each optimization could have. For example, if the read/write access set of

a workload can be known, how much will the throughput and latency improve by if I factor

this into my protocol design.

Such a framework would allow database designers to compose protocols from the set of

optimizations bespoke for their workload or data model, which could lead to the discovery of

several interesting new distributed transaction protocols.

Understanding Graph Transactions and Workloads Transactions are important in graph

databases, however determining what consistency requirements they need provide to avoid

violating graph integrity remains an open question and an interesting area for future research.

Read Atomic isolation [9] was found suitable for TAO [18], but it is unclear how gener-

alizable this is; Sortledon, a recent transactional graph data structure provides Serializable

isolation [47]. The uncertainty here can be largely attributed to the lack of publicly available

graph transactional workloads which inhibits workload-driven protocol design, existing

transactional workloads, e.g., LDBC Interactive [37], only include insert operations.

Another interesting direction is incorporating awareness of application-level invariants

and types of common graph operations into the protocols to determine which can be preserved

without coordination, e.g., concurrent edge insertion between two nodes is commutative, but
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concurrent node deletion and edge insertion requires coordination. Extending the CRDT

developed in [10] to a partitioned graph database is an appealing direction.

Epoch-based Databases Epoch-based databases are a promising direction for achieving

high performance distributed transactions, but current designs have several drawbacks: (i)

they are sensitive to imbalanced workloads, one long-running transaction can block the

complete epoch, (ii) they are sensitive to straggler nodes, one node slow to reply to a

Prepare message can increase latency for all transactions, (iii) all transactions executed in

an epoch are aborted if one nodes fails, leading to a lot of wasted work, and (iv) retrying the

work of a failed epoch could result in a metastable failure [57] if users are operating their

databases at a near full load.

One direction for ameliorating drawbacks (i) and (ii) is decentralizing the coordinator

node across the cluster, this would allow database nodes that have not interacted with any

straggler nodes or ones processing long-running transactions to continue to potentially make

forward progress. Case (iii) was addressed in Chapter 6 through epoch-based multi-commit.

As regards case (iv), dynamically adjusting the size of the epoch in response to the occupancy

levels of the external work queue could help smooth average latency in response to failures.
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