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Abstract

Synthetic biologists build novel biological networks to perform predefined functions. The

majority of work in this field has concentrated on engineering synthetic gene networks in

bacteria, which coopt the host’s genetic regulatory machinery for applications including

biosensing, bioremediation and biocomputing.

The engineering of these synthetic gene networks is an expensive and time-consuming

process that involves multiple iterations of a design-build-test-learn (DBTL) cycle. Often

the results are impressive, and the synthetic gene network performs very well, but only

in the environment in which they were engineered originally. The core problem is that

the performance of a synthetic gene network relies fundamentally on factors external to

the network itself — the context that the network is placed in. This includes for example

the activity of the host’s transcriptional machinery, or the genetic material close to the

network, or the specific growth rate of the host.

Here I use a case study of a well-known synthetic gene network library to demonstrate that

qualitative differences in network performance arise from changes in context and degrade

the quality of the library. However I also show advantages to considering the context as a

parameter of the library, and a cross-context library is of better quality than the original

according to the metrics developed here.

At the population level it is often space that dominates context and spatial gradients may

exist in any number of important factors. Bacteria such as Escherichia coli have developed

chemotaxis systems to provide sensing of spatial gradients and motility to “solve” this

problem for individuals. But it is not always desirable or possible for individuals to simply

relocate. Natural systems that operate at the level of a populations often operate with

space as a parameter, where individuals specialise and differentiate to contribute effectively

to the overall function of the system.

In this work I take one such system, the electroactive biofilm, and show how two classical

synthetic gene networks, the genetic toggle switch and the repressilator, can be designed

not only to deal with spatial gradients, but also to fundamentally rely on them. The

mathematical models developed are implemented in software and are modular, in the

sense that other synthetic gene networks could easily be modeled using the same software.

The results provide a foundation for moving toward more sophisticated work in synthetic

electrogenetic networks.
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Chapter 1

Introduction

This chapter outlines the content and an overall theme of the thesis.
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Chapter 1: Introduction

A typical bacterial genome contains several thousand genes. Levels of expression of subsets

of these genes can be strongly correlated and make up a gene network. These natural

gene networks control the behaviour of bacteria, helping them to adapt to changes in their

environment by sensing a wide variety of signals and adjusting expression of their genes.

Synthetic biology engineers novel (new to nature) gene networks which sense particular

signals as input and adjust their gene expression in a predefined manner. A crucial aspect

of engineering these networks is modeling of the processes that regulate gene expression to

simulate the networks in silico. These simulations make predictions about performance

of the network and are used to select the network topologies, genes and other genetic

components that are likely to produce the best results.

1.1 Problem statement

In reality the expression of the genes of the network depends not only on the direct

influence of a particular input signal, but also on the combined indirect influence and

complex interactions of many other factors that define a ‘context’ for the synthetic gene

network.

Therefore identical synthetic gene networks will perform differently in different contexts.

Context can negatively affect the modularity and reusability of synthetic gene networks

which are key aims for the field of synthetic biology.

Context cannot be disregarded because it is impossible (and indeed undesirable) to turn

synthetic biological networks into completely closed systems. Context is therefore an

aspect of synthetic biology that must be tackled.

1.2 Solution approach

This work uses modeling to look at how context affects the performance of synthetic gene

networks and explores approaches for dealing with context in synthetic biology.

One such approach is to measure the effect of context by analysis of experimental data

about identical synthetic gene networks in different contexts. Once the performance in

different contexts is characterised, these characterisations can be used in existing synthetic

2



Chapter 1: Introduction

biological design workflows. In Chapter 3 this analysis is done with a library of well-known

genetic logic gates. Although this approach relies on the collection of experimental data

in each context, which can be an expensive process, it is shown here in silico how using

cross-context libraries of genetic logic gates can lead to better libraries and potential added

value in the design process.

Another approach is to model not only the synthetic gene network but also the contextual

factors that affect its performance. Of course modeling all of the context is intractable, so

instead these models should be focused on contextual factors that are considered most

significant. In Chapter 4 and 5 two classical synthetic gene networks, the toggle switch and

repressilator, are redesigned to have a significant dependence on the redox environment in

an electroactive biofilm. The interaction between the biofilm and these gene networks is

modeled in order to determine design principles that allow these systems to operate well

in spite of differences in context. It is shown in silico how these models can predict how

to modify synthetic biological designs to recover functionality that is lost due to context

changes.

1.3 Thesis outline

This thesis is organised as follows:

• Chapter 2 provides background on synthetic biology with a focus on well studied gene

networks such as genetic logic gates, toggle switches and oscillators. It introduces

some modeling frameworks that are typically used to describe these systems and will

be used later for the modeling in this work. What is meant by ‘context’ in synthetic

biology is also more precisely defined. Exoelectrogenic bacteria and the electroactive

biofilm they form are introduced in this chapter, to be used in Chapters 4 and 5 as

an example of an environment where space produces significant contextual effects.

• Chapter 3 analyses the performance of a genetic NOT logic gate library using

experimental data collected in seven different contexts. I did not generate this

data, but it was shared with me by a collaborator. Two contextual parameters are

considered, the host organism and the plasmid vector used to engineer the library.

Models are used to quantify the difference in performance between contexts, and the

relative importance of the two contextual parameters is discussed based on these

3



Chapter 1: Introduction

measures. The notion of library quality is defined and computed in various ways.

These include the number of gates in the library whose individual performance is

satisfactory up to a threshold tolerance, the number of pairs of gates from the library

which can be connected together, and the maximum length of a chain of such pairs of

gates. These measures of quality are used to evaluate the utility of mixing different

contexts to create new libraries with improved quality. A previously described

statistical model is adapted and fitted to data about constitutive gene expression in

three of contexts considered, with good results. The parameters of the model have a

physical interpretation which suggests a mechanistic explanation for the observed

differences in expression between the contexts. Finally, an existing combinatorial

genetic circuit design framework built for one context is used to engineer a simple

logic circuit using the characterisation of experimental data from a different context.

• Chapter 4 develops a partial differential equation modeling framework for an elec-

troactive biofilm into which synthetic gene networks can be embedded, so as to

predict the performance of these networks in the context of the electroactive biofilm.

The framework is used for the design of the electrogenetic toggle switch, an adap-

tation of the genetic toggle switch that is a hybrid electronic-genetic system. The

electroactive biofilm is seen to be a heterogeneous environment with implications for

the electrogenetic toggle switch. It is shown that designs which exhibit the required

behaviour in homogeneous environments do not in general operate well in the pres-

ence of biofilm gradients. Inclusion of the contextual effect of space in the biofilm

in this model is used to predict changes to the parameters of the genetic portion of

the switch which make the system more robust to these gradients. Nevertheless, the

model highlights further challenges that emerge as a result of spatial gradients that

also change over time.

• Chapter 5 uses the same electroactive biofilm model for a case study where a genetic

oscillator is designed for operation in the biofilm. It is shown how the biofilm might

be used to address the problem of phase drift in the individual oscillators. This is

an example of how context can be used to improve the performance of a synthetic

biological network.

• Chapter 6 is a summary and general discussion of the presented results.

4



Chapter 1: Introduction

1.4 Publications arising from this thesis

Parts of the work in this thesis have previously been published and are listed here.

• Grozinger, L., Amos, M., Gorochowski, T.E. et al. Pathways to cellular supremacy in

biocomputing. Nat Commun 10, 5250 (2019). https://doi.org/10.1038/s41467-019-13232-z
∗

• Tas, H., Grozinger, L., Stoof, R. et al. Contextual dependencies expand the re-

usability of genetic inverters. Nat Commun 12, 355 (2021). https://doi.org/10.1038/

s41467-020-20656-5 ∗

• Tas, H., Grozinger, L., Goñi-Moreno, A., de Lorenzo, V., Automated design and

implementation of a NOR gate in Pseudomonas putida, Synthetic Biology, Volume

6, Issue 1, (2021), https://doi.org/10.1093/synbio/ysab024

• Grozinger, L., Heidrich, T., Goñi-Moreno, A., An electrogenetic toggle switch design,

BioRxiv (2022), https://doi.org/10.1101/2022.05.19.492718 ∗ †

A significant amount of software was written as part of this work and is made publicly

available.
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Other publications I have authored or contributed to but do not form directly a part of

this thesis.
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• Stoof, R., Grozinger, L., Tas, H., Goñi-Moreno, A., FlowScatt: enabling volume-

independent flow cytometry data by decoupling fluorescence from scattering, BioRxiv

(2020), https://doi.org/10.1101/2020.07.23.217869
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Chapter 2

Background

Parts of this chapter are adaptations of Grozinger et al [36], a review paper which presents

promising approaches towards increasing complexity and utility in cellular biocomputing, of which

I was the first author.
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Chapter 2: Background

Figure 2.1: The central dogma of molecular biology. Genetic information is preserved
by replication of DNA. Genetic information is expressed by transfer from DNA to RNA to
proteins through the molecular processes of transcription and translation. Proteins can go on
to control the expression of other genetic information (or their own information). One way
they do this is by intervening in the transcription process.

Synthetic biology is the application engineering principles to rationally design novel

biological systems [2]. These synthetic biological systems find application in bioproduction

[17], bioremediation [21] and medicine [75] and biocomputation [1], as well as being of

academic interest in the study of fundamental cellular processes.

The methodology used for building synthetic biological systems borrows from more tradi-

tional engineering disciplines and increasingly resembles a DBTL cycle [12]. In the design

stage the synthetic biologist use their existing knowledge to conceive of a system a priori

which might perform the desired function. At this stage the system is accompanied by a

model which predicts how well the system will meet its objective. The build stage utilises

technique from the biological and molecular sciences to realise the design, or often a library

of the best design candidates. Testing characterises the actual performance of the system,

the results of which are analysed in the learning stage, where new knowledge about the

processes in the system is gained. This learning is used to adjust the model such that

it’s predictions are closer to the real performance of the tested system, and the design

is modified so that the model’s prediction for the new design more closely resembles the

desired function. The cycle is started over again and is iterated until the performance of

the synthetic biological system is satisfactory.

The focus of this thesis is on the design stage of bacterial synthetic biology, using gene

networks, to perform biocomputations and to construct networks which display simple but

interesting dynamical behaviours.

2.1 Gene networks

The flow of genetic information can be described using the central dogma of molecular

biology shown in Figure 2.1. Information flows from DNA to RNA and to proteins via the

8



Chapter 2: Background

Figure 2.2: A schematic of a mechanism for transcriptional regulation by a repressive
transcription factor. In A expression of the gene is on, since RNAP can bind to the promoter
region to initiate transcription. In B the TF has bound to the promoter region and obstructs
the recruitment of RNAP, stopping transcription and turning gene expression off. In C a
more abstract representation of this repression interaction is shown.

processes of transcription and translation. Transcription transfers information from DNA

molecules to RNA molecules, and translation transfers data from RNA molecules to newly

synthesised proteins. The overall flow of information from DNA to protein is called the

‘expression’ of a gene.

The expression of one gene can effect the expression of another. There is more than one

way this can happen, but in this thesis the focus is on the transcriptional regulation shown

in Figure 2.1 as the feedback from protein to transcription. Genes can express proteins

called TFs which bind to specific regions of DNA known as promoters. Promoters initiate

the transcription of downstream DNA by recruiting RNAP, the enzyme that synthesises

RNA from DNA. TF binding to promoters affects the affinity of RNAP for the promoter

region and the recruitment of RNAP. Activators are TFs that encourage the recruitment

of RNAP and so up regulate (activate) the expression of a gene. Repressors are TFs that

obstruct the recruitment of RNAP, and so down regulate (repress) the level of expression

of a gene.

The diagram of Figure 2.2 shows how repression works for some types of TF. Usually

RNAP binds to the promoter region and initiates transcription of the DNA downstream,

leading to the synthesis of RNA, which can be translated to express the protein for which

the gene encodes. This is sketched out in Figure 2.2A. In the presence of TF with some

affinity for DNA in the promoter region, TF may bind to the promoter region and prevent

the binding of RNAP. Without RNAP transcription is not initiated and the gene is not

expressed, as in Figure 2.2B. A more compact representation for this kind of interaction is

shown in Figure 2.2C, and this sort of diagram will be used for representing gene networks

throughout the rest of this work.

9
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A collection of genes whose levels of expressions are connected in this way is a gene network.

Naturally occurring gene networks are responsible for much of the ‘decision making’ of

bacteria, for example in order to adapt to stimuli from the environment. Synthetic biology

has developed sophisticated tools for engineering synthetic versions of gene networks using

transcriptional regulation to connect genes in ways that are novel or ‘new-to-nature’. These

synthetic biological networks display a wide range of dynamic behaviours that can be

useful for a variety of applications.

Synthetic biological genetic logic gates

Previous work has used synthetic networks of genes to perform biocomputations, notably

to implement combinatorial logic [59, 92, 81, 34]. These gene networks are designed as

modular units called genetic logic gates that are composed into larger networks that

implement arbitrary combinatorial logic circuits.

Two examples of genetic logic gates are shown in Figure 2.3. In Figure 2.3A a schematic

of a genetic NOT gate is shown which implements the logical negation operation from

Boolean algebra. This gate uses a single gene A and a single output gene Z. If A is highly

expressed then expression of Z will be repressed. Conversely if A is not highly expressed

then Z will be. If high expression is labeled 1 and low expression as 0, the inputs and

outputs can be tabulated as in Figure 2.3A.

The second example is of a NOR logic gate. As shown in Figure 2.3B this gate is composed

from two NOT gates controlling the same output gene Z. The logical operation it performs

is shown in the accompanying table, but in summary, expression of Z is only turned on if

both inputs A and B are not expressed.

Connected genetic NOR gates should in principle be able to perform any combinatorial

logic computation desired due to their universality. Therefore a key goal of synthetic

biology is to make these kind of synthetic gene networks into modular devices so that they

can be composed and reused to construct increasingly complex networks with predefined

behaviours. In [59] it was shown that NOR gates could indeed be connected together with

TFs in order to perform more complex combinatorial logic computations.

However combinatorial logic circuits require orthogonality of the logic gates in order to

circuits to function as expected. Unwanted interactions (also known as cross-talk) between

gates can lead to failure of the computation. This means that the same TFs cannot be
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Figure 2.3: In A a gene network designed to use transcriptional repression to perform a
logical negation operation ¬ on the expression of the input gene A to give expression of the
output gene Z = ¬A. Therefore if A is highly expressed, Z is not, and vice versa, as shown
in the table of A. As a modular device this is a genetic NOT gate. In B two of these NOT
gates are combined with a common output Z, in order to construct another modular device,
the genetic NOR gate. This network has two input genes A and B. The network is designed
so that Z is highly expressed unless both A and B are highly expressed, performing the
operation Z = ¬(A ∨B), as shown in the table of B.

used in multiple gates in the same network, to prevent unwanted interactions between

gates. This motivates the construction of libraries of genetic logic gates which perform the

same operation, but which maintain their orthogonality through the use of different TFs

[77].

A well known example of such a library was introduced by Nielsen et al as part of the

Cello genetic design automation software [59]. The study characterised and optimised 20

genetic NOT gates for use in E. coli as well as developed software which could transform

descriptions of combinatorial logic circuits into specifications of synthetic gene networks

which composed the 20 gates to implement the circuits. This approach allowed the authors

to automatically generate genetic designs for combinatorial logic circuits consisting of

several gates [59].

Flow cytometry

The testing stage of the DBTL requires experimental data collected about the performance

of the synthetic gene network. In most cases this amounts to measuring the levels of gene

expression from the network. Flow cytometry is an experimental technique which is widely

11
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Figure 2.4: Flow cytometry is a fundamental experimental technique for measuring ex-
pression in synthetic gene networks. In A a schematic is shown of a flow cytometer. The
population to be sampled is guided using microfluidics through a light beam of known
wavelength. The light is scattered by the sample, filtered by a series of mirrors, and measured
by a optical sensor. B illustrates how flow cytometers can be used to measure expression of
fluorescent proteins in bacteria, and C shows how this technique is often used to measure
expression of other genes, using a co-expressed fluorescent gene as a proxy.

used for this purpose in synthetic biology[91].

Flow cytomers have a fluidic device which can direct bacterial cells to pass through the

beam of a laser. The bacterial cells scatter the light of this laser which is separated by a

system of mirrors into wavebands whose intensity is measured by optical sensors. Flow

cytometers are capable of taking many samples (measurements of individual bacteria) of

large populations very quickly [91]. A rough schematic of this setup is shown in Figure

2.4A.

Bacteria can be genetically engineered to express fluorescent proteins such as YFP. The laser

of the flow cytometer can also excite fluorescent proteins, and when excited these proteins

emit light in specific wavebands that can detected by the optics of the flow cytometer

(Figure 2.4B). As such the flow cytometer can be used to measure the expression of

fluorescent proteins in bacterial cells [26].

In order to measure expression of a gene which is not fluorescent a synthetic gene network

can be engineered to co-express a fluorescent gene with the gene of interest as in Figure

2.4C. The expression of the fluorescent protein can then be assumed to be proportional to

the expression of the gene of interest, and fluorescence measurements can be used as a

proxy or approximation for the expression of the gene of interest. This approach underpins

much of the work characterising the performance of synthetic gene networks.

12
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2.2 Modeling gene networks

A model of a gene network is an analog for the real network under study. Modeling is

a fundamental part of synthetic biology, particularly in the design and learn stages of

the DBTL cycle, where modeling can save the effort and expense associated with wet lab

experiments [72]. In order to be useful the model must make indicative predictions about

the performance of gene networks, and generate useful counterfactual predictions relevant

to the design of the synthetic gene networks and testable through experiment.

It is for this reason that design choices available to the synthetic biologist inform the

formulation of the model and in particular which features to include and at what level of

abstraction. For example, if one of the choices to be made in the design is which promoter

region to use, the model should be able to predict the consequences of that choice, that is

it should answer the question “If I built my gene network with this promoter instead of

this other one, what would happen?”. However most synthetic biologists do not consider

distance between the genetic components as a design parameter, so this detail is often

(appropriately) left out of the model [72]. In contrast Stoof et al [79] do consider the

distance between their genetic components as designable, and accordingly diffusion of TF

molecules is included in their model.

Ordinary differential equations for gene network models

Concerning mathematical representations of gene network models, a variety of formalisms

and frameworks can be used for be used to meet a range of model requirements. In this work

I make extensive use of ordinary differential equations as a formalism to mathematically

model gene expression and other reaction networks. ODEs are used for deterministic

models of gene expression with continuous state variables. The state variables keep track

of the concentrations of each of the species in the model, for example the proteins that are

being expressed, or the RNA that is being transcribed. The equations describe the rate of

change of the state variables as a function of their concentrations:

∂tu = f(u(t);p) (2.1)

where t is an independent variable for time, u(t) is the vector of the state variables at time

t, u(t) = (u1, ..., un) and p is a vector of parameters for the system. f is a function which
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Figure 2.5: Modeling expression of a single gene u1 with an ODE. The model (A) uses two
parameters α and γ, the expression rate and degradation/dilution rate, in a single differential
equation. B plots the equation against the expression level. This line intersects with zero
at a fixed point of the equation. In C Time course simulation of the equation shows that
trajectories that start from different initial conditions converge toward that fixed point.

describes the rate of change of u(t) with respect to time. Solving the ODE means finding

the functions u(t) which satisfy the equation. Actually, we usually want one particular

function, the one where u(t) = u0 where u0 are the initial concentrations or the ‘starting

state’ of the system.

The approach is illustrated by application to a simple model of expression of a single gene

in Figure 2.5. The model keeps track of the concentration of a protein u1 over time, which

increases as it’s gene is expressed at a rate of α, and decreases as it is diluted or degraded

proportionally to its concentration at rate γ. The balance of rates of these two processes

is the overall rate of change of u1 and is written as:

∂tu1(t) = production rate − dilution rate

= α− γu1(t) (2.2)

This equation is plotted in Figure 2.5B for α = γ = 0.5. For u1 < 1 it can be seen that

the rate of change of u1 is positive, so that the concentration of u1 is increasing. For

u1 > 1 it can be seen that the rate of change of u1 is negative, so that the concentration

of u1 is decreasing. An important point is u1 = 1 at which the rate of change is 0. The

concentration of u1 is neither decreasing or increasing, and will no longer change over time.

u1 = 1 is called a fixed point of the system.

The idea is generalisable to higher dimensions, where a fixed point is defined as a u for

which ∂tu = 0, where 0 is the vector of zeros. At a fixed point, none of the state variables
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of the system are changing anymore, so the ODEs predict their values will remain the

same forever (in the absence of some external perturbation).

ODEs can be used to plot trajectories of the state variables over time. This is shown in

Figure 2.5C where the trajectory of u1 is plotted. In the case of this model it can be seen

that all the trajectories approach the fixed point at u1 = 1 as time goes on. The exact

trajectory taken depends only on the initial conditions u0, since ODEs are a deterministic

mathematical model.

Modeling activation and repression with Hill equations

To model more complex gene networks with more than one gene, Hill equations can be

useful to describe mathematically the effects of repression and activation on the expression

of the target genes. The Hill equation is derived from mass action kinetics and describes

the relationship between the concentrations of bound and unbound ligands to proteins as

a function of the ligand concentration x.

h(x) =
Unbound protein

Total protein
=

xn

Kn + xn
(2.3)

where K is the concentration of ligand for which half the protein is bound (h(x) = 1
2
) and

n is a hill coefficient.

The justification for use of a Hill function for repression and activation of gene expression

considers TFs as ligands and the promoter regions of DNA as the protein to be bound. The

process of binding and unbinding of TF is often assumed to take place at a much faster

rate than genetic processes such and reach equilibrium quickly. Under this assumption

h(x) is usually assumed proportional to the transcription rate from the promoter region

and to gene expression [15].

For n > 1 the Hill equation is used for modeling activation of gene expression by TF. For

n < −1 the Hill equation can be used for modeling repression of gene expression by TF.

n = 1 is a special case where the Hill equation reduces to the Michaelis Menten equation

which is a well-used model of enzyme kinetics. Figure 2.6A plots examples of these classes

of Hill equations.

The Hill equation is incorporated into the ODE model by modifying Equation 2.2 as
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Figure 2.6: A plots examples of Hill equations for 3 different cases. For positive n (blue
line), the Hill equation increases with x and so is useful for modeling activation of gene
expression by a TF. For negative n (orange line) the Hill equation decreases with x and can
model repression of gene expression by a TF. At n = 1 the Hill equation is the Michaelis
Menten equation which is widely used in enzyme kinetics. B plots Equation 2.4 for n = −2,
α = 1, K = 0.75 and γ = 0.1. There is a single fixed point and it can be shown (by Descartes
rule) that this is the only type of dynamical behaviour possible for this system.

follows:

∂tu1(t) = αh(u1(t))− γu1(t)

=
αu1(t)

n

Kn + u1(t)n
− γu1(t) (2.4)

Equation 2.4 is plotted in Figure 2.6B for n = −2, modeling negative feedback from u1 to

itself. This plot is similar to Figure 2.5B. There is still a single fixed point for the system,

but now the rate of change is nonlinear in u1. Nonlinearity can admit more complex (and

interesting) dynamical behaviours such as bistability and oscillations, which are introduced

in Sections 2.3 and 2.3.

Hill equations are routinely used as rates in all kinds of chemical reaction networks [58, 32],

and are also a standard tool in synthetic biology for modeling transcriptional regulation in

gene networks [65, 34, 86].

Partial differential equations for spatial models

ODEs described the rate of change of u(t), which only depended on a single independent

variable t. In some models the state variables are dependent on several independent
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variables. This often occurs in spatial models such as the biofilm model I develop in

Chapter 4, where the concentrations of species in the model changes not only in time but

also in space, for these models PDEs may be used as a mathematical description.

A common use case for PDEs is for the modeling of diffusion. For example if u(x, t) are

state variables diffusing in a single dimension x, then Fick’s second law is a PDE which

describes their change over time:

∂tu(x, t) = D∂2
xu(x, t) (2.5)

where D is the diffusion coefficient (‘rate’ of diffusion) and ∂2
xu(x, t) is the second order

differential of u(x, t) with respect to x (the rate of change of the rate of change of u(x, t)

with x). The PDEs used later in this thesis take this form.

Most PDEs cannot be easily solved analytically. Solving numerically involves discretisation

of the spatial dimension using a finite difference scheme which approximates ∂2
xu(x, t).

The approach I take for numerical simulation in this thesis is to discretise x into an evenly

spaced grid of points ∆x from each other as shown in Figure 2.7. I choose the second

order central difference scheme:

∂2
xu(x, t) ≈

u(x−∆x, t)− 2u(x, t) + u(x+∆x, t)

∆x2
(2.6)

Using this scheme the PDE can be transformed into a system of ODEs, one for each point

on the grid, which approximates the original PDE.

Just as with systems of ODEs the initial conditions must be specified. In addition special

care must also be taken at the boundaries of the spatial domain x. The boundary conditions

used here are of two types, Neumann and Dirichlet. Neumann boundary conditions specify

the derivative ∂xu(x, t) at the boundary and can be used to describe flux across the

boundary as shown in Figure 2.7. Dirichlet boundary specify the value of u(x, t) and are

used modeling fixed conditions at the boundary.

PDEs are a common mathematical framework in synthetic biology when diffusion needs

to be modeled. This often arises when modeling signaling between bacteria in multicel-

lular systems[19], but also within bacterial cells when spatial effects are considered as

important[79]. In this thesis they are used for mathematical modeling of the electroactive

biofilm, following the example of previous studies in modeling bioelectrochemical systems
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Figure 2.7: Finite difference discretisation of a spatial domain in order to solve a PDE
numerically as a system of ODEs. The spatial dimensional x, which has boundaries at x = 0
and x = L is split into a grid of points spaced ∆x apart. An ODE describes the rate of
change at each point i, using surrounding points to approximate the second derivative as in
Equation 2.6. At the boundaries conditions are applied which can specify the value of u(x, t),
or its partial derivative with respect to x, depending on what happens at the boundary in
the model.

[29, 67, 45].

Other approaches to modeling in synthetic biology

ODEs and PDEs are staples in modeling all kinds of physical systems including synthetic

gene networks. ODEs in particular are extremely common, and it is relatively straightfor-

ward to formulate a system of ODEs for a set of chemical reactions from a gene network or

other biochemical system. In addition an enormous variety of in silico tools are available

for working with and solving ODEs numerically or which include ODEs as part of a suite

of modeling tools(for example [70, 41, 93, 16]). Furthermore, ODEs were used to design

and engineer many of the canonical synthetic gene networks such as the toggle switch [27]

and the repressilator [23]. [37].

However, other approaches have been developed including some that address one of the

primary limitations of ODE modeling. That is, in the limit of small copy numbers of RNA

and protein, the stochasticity of the processes that contribute to genetic expression can

have significant impact on the dynamical behaviours of gene networks. Discrete stochastic

models are often used in these cases in order to predict the effect of noise on the time

course of gene expression [72]. The family of Gillespie simulation algorithms are the most

often used for simulating these kinds of models [33]. Simulation with these algorithms give
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an ensemble of stochastic trajectories which can be used to predict statistical properties of

gene expression.

Another aspect of discretisation becomes important when considering that synthetic

biological systems often operate at the population level. Individual cells have their own

internal dynamics as well as those through which they interact with their environment. In

this case, heterogeneity, space, and complex interactions between individuals can shape

population level behaviour and require multi-scale hierarchical descriptions of synthetic

biological systems[]. Agent-based simulations are a natural approach to investigating these

kinds of effects and platforms have been developed capable of mixing both deterministic

and stochastic models at multiple scales[58, 10].

There are also examples where the choice of modeling framework can elucidate new kinds

of dynamics for gene networks that go undetected when modeled using ODEs. For example,

negative autoregulation in a single gene network can only produce a system with a single

fixed point when modeling deterministically with ODEs. However it has been shown, using

a modified version of the Gillespie algorithm, that the addition of stochastic delays to

negative autoregulatory networks can produce oscillations [9]. The choice of mathematical

framework is therefore of fundamental importance when studying the dynamics of gene

networks.

2.3 Dynamics of gene networks

The dynamics of a system is the way that its state changes over time. In the previous

section the idea of a fixed point of a system was introduced by saying that when a system

arrives at a fixed point, its state no longer changes over time. This is a very simple kind

of dynamics.

In gene networks the dynamics is the way in which the level of expression genes change

over time. Generally there are two classes of dynamical behaviour of interest in synthetic

gene networks, (multi)stability and oscillation, and these are the dynamics available to

the synthetic biologist.
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Figure 2.8: An illustration of bistability in dynamical systems. In A a one dimensional
terrain is shown with 1 peak (B) and 2 valleys(A and C). A ball rolling along the terrain may
be balanced at A, B or C, but will be unstable at B — it is easily pushed away. In contrast
resting at A and B are stable — the ball will return to rest in the same position if perturbed.
B shows how the same idea applies to positive feedback in gene expression. If the rate of
change in expression is plotted there are 2 stable and 1 unstable fixed point. The nature of
the stability of each is determined by the slope of the curve as it crosses the horizontal axis.

Bistability

Fixed points are classified as stable or unstable depending on the local behaviour of the

system around the fixed point. The system tends to move toward fixed points that are

stable away from those that are unstable. A good analogy is the ball moving along the

one dimensional terrain shown in Figure 2.8A. The ball can be balanced in three positions

A, B and C. It is clear that if the ball is balanced B, any small perturbation will push the

ball out of balance, and the ball will not return spontaneously to B. In contrast, small

perturbation to balls at A or C will be damped, and the ball will return to rest at its

initial position and that these positions are stable.

This system is bistable, meaning that there are 2 stable fixed points of the system (and

one unstable fixed point). Bistability in gene networks is achieved using positive feedback

[50], as is illustrated in Figure 2.8B. In this example the rate of change of gene expression

with positive feedback is plotted against the level of gene expression.As discussed in the

previous section, fixed points are those where the curve intersects with the x-axis — where

rate of change ∂tu(t) = 0. Stable fixed points are those where the rate of change of the rate

of change is negative at the fixed point — the curve crosses the x-axis with downwards

slope. This condition can be written mathematically as ∂2
t u(t) < 0 at the fixed point.

Bistability is a fundamental dynamical behaviour both in natural and synthetic biology

[5, 95]. In the context of biocomputing, bistability is particularly important in constructing
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Figure 2.9: The genetic toggle switch is classic synthetic gene network. A schematic of the
gene network in shown in A, where the mutual repression of the genes u and v produces
bistability. In addition the repressive activity of u and v can be impaired by inducers I1
and I2, in order to flip the switch. B shows a bifurcation diagram of the system where
parameter α1 is varied and the fixed points of the system are plotted. C shows the toggle
switch behaviour over time, including two inductions which flip the switch between the two
stable states.

single-bit memories or transitions between discrete states of the system [18].

Genetic toggle switch

The genetic toggle switch was one of the first synthetic gene networks to be engineered in

E. coli and is capable of exhibiting bistable dynamics. The networks is shown in Figure

2.9A and uses two genes that repress one another to achieve positive feedback and admit

the possibility of bistability[27].

A key part of the study was a mathematical model of the switch consisting of two ODEs,

the analysis of which predicts what kind of genetic components would be required for
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bistability to emerge in the network. These two equations are used to simulate the time

course operation of the switch in Figure 2.9.

A mathematical model is useful because not all gene networks with the topology of mutual

inhibition are bistable. In order to save the effort of a trial and error approach to finding

suitable networks, parameter values which produce bistability in the model can be identified

in silico, and subsequently inform choices of suitable genetic components.

This can be done with a bifurcation analysis of the mathematical model, which is an

analysis of how the system’s dynamics change as a particular parameter is varied. A

bifurcation diagram of the genetic toggle switch is shown in Figure 2.9B. The parameter

that is varied is α1, which is the maximal rate of expression of u. Plotted against α1 are

the branches of fixed points of the system and their stability. It can be seen that below

α1 ≈ 5 (left orange circle) the system has only one stable (thick lines) fixed point, so is

monostable. Beyond this the dynamics of the system change to have 3 fixed points, two

stable and on unstable (thin line). This bistability exists until α1 ≈ 33, where two of the

fixed points disappear and the system is monostable again. This kind of analysis has been

used frequently to study the dynamics of synthetic biological networks [62], and I use this

approach in Chapters 4 and 5.

The bistable region gives the genetic toggle switch its switching behaviour. In Figure 2.9C

the expression levels of the two toggle genes u and v are plotted against time. The system

rests in states where either u or v are highly expressed by the other not. The introduction

of inducer I1 when v is highly expressed moves the system to a resting state where u is

highly expressed and ‘switches off’ v. This transition is reversible with the introduction of

inducer I2.

The genetic toggle switch and its mutual inhibition motif is foundational in synthetic

biology. The topology of the gene network implementing the genetic toggle switch has also

been embedded into larger networks to produce more complicated dynamics, to produce

for example the AC-DC gene network [64], whose dynamics may be bistable or oscillatory

or indeed both, depending on its parameters [65].

Since the switch’s positive feedback motif is known to admit bistability, the main challenge

for the design of synthetic biological switches is the identification of parameter sets in

which bistability emerges [55]. There are strategies based on chemical reaction network

theory that constrain these sets [63], and numerical techniques for detecting bistability

(and in general multistability) in networks [71].
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Figure 2.10: A simple pendulum without damping, an example of a oscillator. The
pendulum in A can be modeled using two state variables, θ for the displacement angle and
v for the pendulums velocity. The system can be described with two coupled ODEs. The
vector field of these equations is shown in B which shows how trajectories flow (blue arrows)
around the system. One example trajectory is shown in orange, and this trajectory is plotted
over time in C for θ. θ oscillates with a specific period of 2π and amplitude of π.

Oscillation

It may be the case that a system never arrives at a fixed point. If this is the case then

the system may display oscillatory behaviour, where the state variables move along a

trajectory that repeats itself every period of time, and continues to do so indefinitely, never

coming to rest. An example of an oscillator is an undamped pendulum, which swings

back and forth periodically, and which without any damping force (for example due to

air resistance or friction) will continue to do so forever. An illustration of this oscillating

system is shown in Figure 2.10.

Repressilator

The repressilator was one of the first synthetic gene networks to be engineered. The

networks consists of three transcriptional repressor genes connected in a negative feedback

loop, and expression of the genes in the network can under certain conditions exhibit

oscillations [23]. The schematic of this synthetic gene network is shown in Figure 2.11A.

As with the genetic toggle switch a mathematical model of the repressilator was developed

using the ODEs in Equations 2.7-2.12, in order to inform the engineering of the gene

network and predict which networks would be most likely to oscillate.
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∂tm1 =
αmp

n
3

Kn + pn3
− γmm1 (2.7)

∂tm2 =
αmp

n
1

Kn + pn1
− γmm2 (2.8)

∂tm3 =
αmp

n
2

Kn + pn2
− γmm3 (2.9)

∂tp1 = αpm1 − γpp1 (2.10)

∂tp2 = αpm2 − γpp2 (2.11)

∂tp3 = αpm3 − γpp3 (2.12)

where m1,2,3 are the concentrations of mRNA for each repressor, p1,2,3 are the repressor

concentrations, αm and αp are the maximal transcription and translation rates, and γm and

γp are the degradation/dilution rate of mRNA and repressor. The repressive interactions

are modeled using Hill equations (Section 2.2) with half maximal repression concentration

K and Hill coefficient n.

In the repressilator network, only one of p1, p2 or p3 may be highly expressed at one

time. They oscillate in sequence as shown in the timecourse simulation in Figure 2.11C.

These oscillations emerge at Hopf bifurcation points which can be identified and plotted

in bifurcation diagrams just as for the analysis of the genetic toggle switch, a bifurcation

diagram for Equations 2.7-2.12 in plotted in Figure 2.11C.

I will use the same analysis, as well as timecourse simulations, in Chapter 5 for a elec-

trogenetic oscillator, an adapted version of this synthetic network which incorporates an

electrogenetic component, and which produces oscillations in electrical current.
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Figure 2.11: Numerical analysis of the repressilator. In A the synthetic gene network is
shown, implemented with a negative feedback loop between three repressors p1, p2 and p3.
B shows the bifurcation diagram with the half maximal repression concentration K as the
bifurcation parameter. A single Hopf bifurcation point exists at K ≈ 0.011, below which
oscillations emerge (orange shaded area). C shows the time course for the case of K = 0.005.
All repressor concentrations exhibit sustained oscillations.
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2.4 Context in gene networks

The construction of a perfectly closed synthetic biological system is neither possible nor

desirable. Synthetic gene networks for example rely on co-option of the transcriptional and

translational machinery of their host, and the usefulness of synthetic biological systems in

general stems from their ability to interact with and affect their environment.

In the study of thermodynamics a distinction is drawn between the system under study

and the surroundings. The system is the thing under study, and is usually imagined as

spatially separate from the rest of the universe, its surroundings. Context in synthetic

biology is a similar idea, though the line between the system and its surroundings is

smudged considerably.

Here I try to sharpen the line again by defining context in synthetic biology in terms of

the design stage of the DBTL cycle. Context is everything that the synthetic biologist is

unwilling or unable to engineer. This may change depending on the system being designed,

but for most synthetic gene networks, would include for example the availability of RNAP,

ribosome [94], host or vector DNA nearby the engineered DNA [82], growth rate of the

host organism [60, 44], growth media [8], or pH [99]. All these factors and their effects

combined are the context of the synthetic biological system.

The development of a synthetic biological device can be a long and expensive process

involving many iterations of the design, build, test and learn cycle. Ideally this optimisation

process would be performed only once, producing a modular synthetic biological device that

could be deployed any context. However the dependence of synthetic genetic circuits on

contextual parameters such as bacterial host is widely cited, and frustrates the development

of such perfectly modular systems [57].

One solution might be to include contextual effects in the mathematic modeling, but in

general the whole of the intracellular and extracellular environment can be considered as

context. Models that take into account some contextual dependencies for genetic circuits

can be successfully developed [94]. However modeling contextual effects means models

become larger and less tractable from the point of view of bottom-up design. Efforts to

increase tractability through modularisation of contextual effects have been made using

an “aspect-oriented” design paradigm[7]. However, ultimately a model must include some

aspects of the context and exclude others to remain useful, with the consequence that

model predictions for one context may not be valid for another context.
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Another solution is to have a control strategy for the synthetic biological network which

estimates the state of the system and provide correcting feedback if the state deviates

from predefined setpoints. This kind of control strategy has previously been implemented

in silico, where real time measurements are available and real time control signals can be

provided [14, 56], but control strategies can also be built in to the synthetic biological

network itself, for example using integral or proportional-integral-derivative feedback

control [3, 11].

If the application allows it might be possible to eliminate the performance differences

associated with contextual effects by standardising the context in which synthetic gene

networks are deployed. Current work toward identifying and developing standard chassis

organisms [20], including hosts that are designed and minimised to perform in specific

environments [53], may help improve reproducability of research [83] and also generate

insights into the impact of context.

Avoiding the use of a host organism altogether may also be used to eliminate or at least

limit the effects of context. Synthetic biology using cell-free systems offers the opportunity

for more control over environment and can remove some of the complexity that produces

intricate contextual effects [85]. The degree to which these systems are open to their

environment varies, and so also it is to be expected that the significance of context varies

also, but both open [38] and closed [98] systems have impactful applications.

The broad range of contextual effects has previously been split into classes [13]. I present

some classifications here with specific examples, some of which appear in the work of later

Chapters of this thesis.

Genetic context

Synthetic gene networks can behave differently depending on the spatial organisation of

their genetic material. This means that when composing synthetic gene networks, the

choice of position in the DNA for individual components can their behaviour, this is

known as ‘compositional context’ [13]. A good example is the ‘roadblocking’ phenomena

observed when two promoter regions are in close proximity, where transcription rate from

the promoters was seen to depend on their ordering [59]. In this case the phenomena

could be measured and included as rules in the automated design processes to bring this

otherwise contextual parameter under control. Another aspect of compositional context is
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retroactivity, which has been shown to make modularity difficult in gene networks [22],

and which is addressed in designs of synthetic gene networks using insulating components

[59].

In bacterial synthetic biology, gene networks are often synthesised into plasmid vectors

which contain other genetic components, such as antibiotic resistance genes and plasmid

replication machinery [54]. These components provide a genetic context for synthetic gene

networks and I show in Chapter 3 that this context can affect the performance of gene

networks.

Host context

Synthetic gene networks usually rely on the machinery and resources provided by their

host in order to express genes [8]. Of most direct importance for gene networks is the

availability of RNAPs[39] and ribosomes[90], which both affect and are affected by the

expression of exogenous genes in synthetic gene networks.

The dynamics of gene expression in general is also intimately linked with the growth rate

of the host organism. The interaction of growth rate and synthetic gene networks has

been predicted to affect the behaviour of simple gene regulatory motifs, as well as the

emergence of bistability in genetic switches [44]

Other factors of the relationship between host and synthetic gene networks include issues

of orthogonality of the synthetic genetic components and those belonging to the host.

Synthetic genetic components that are orthogonal to one organism are not guaranteed

to be orthogonal in another, leading to intended interactions between the host and the

network that can lead to failure of the latter [92].

In Chapter 3 I measure the differences performance of synthetic gene networks in different

hosts.

Spatial context

The intracellular space is often assumed to be homogeneous in synthetic biological design.

This assumption is useful but it has been shown in some cases that spatial arrangement of

biological networks within the cell can influence their behaviour. For example, the distance

between transcription events of a transcription factor and its cognate promoter has been
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suggested to affect transcriptional regulation [79], and in particular the noise profile of

gene expression [35].

As mentioned previously, synthetic biological systems should be open to the environment

in order to do useful work. But this often exposes the system to fluctuations or changes

in the environment that might affect their performance. The range of environmental

variables that constitute context is extremely broad. Temperature can affect the rates of

transcription from promoter regions [69]. Growth medium has been found to affect the

activity of promoter regions [13].

Some of these environmental variables may be homogeneous in space, particularly if the

environment is well-mixed. In Chapters 4 and 5 however, I explore spatial effects in a

heterogeneous and asymmetrical environment, the electroactive biofilm, and show that the

extent of heterogeneity can change the dynamics of synthetic gene networks.

2.5 Microbial redox and electrochemistry

Bacteria can respire by coupling the oxidation of organic substrates to the reduction of

inorganic ones to generate energy. Oxidation and reduction are redox reactions, where

electrons are gained and lost, respectively. In aerobic respiration oxygen is the electron

acceptor, but in general other acceptors are possible.

Exoelectrogenic bacteria are capable of anaerobic respiration using extracellular acceptors,

of exporting electrons generated from the oxidation of substrate directly to the extracellular

environment, in a process known as EET. This ability allows us to engineer systems in

which the terminal electron acceptor is a solid electrode, effectively linking central metabolic

pathways such as the TCA cycle to electrochemistry. These systems are MESs and can

link bacteria to electronics.

Linking exoelectrogens to the electrode

The mechanisms by which bacterial EET is linked to the electrochemistry of an electrode

can be divided into two categories.

• Direct EET (Figure 2.12A) can occur if the bacteria are in contact with or very close

to (several nanometres) the electrode [47]. Proteins called cytochromes are displayed
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Figure 2.12: Redox and electrochemistry connects exoelectrogens to the electrode. In A
close contact between outer membrane cytochromes (blue circles) and the electrode facilitates
the transport of electrons generated by bacterial metabolism to the electrode. In B this
scheme is extended for case where exoelectrogens secrete redox mediator molecules (hexagons)
which diffuse between electrode and cytochrome, cycling between reduced and oxidised
states to shuttle electrons. C illustrates cytochromes bound in the extracellular matrix of
an electroactive biofilm. The matrix physically connects the electrode and the bacteria,
and electron transport is achieved by successive exchanges of electrons between nearby
cytochromes, forming a chain of ‘hops’ that end at the electrode interface.

on the outer membrane of the exoelectrogenic bacteria. These cytochromes typically

have several redox centres that can be oxidised or reduced, and participate directly

in redox reactions with the electrode [42, 88].

• Mediated EET can occur at longer ranges. Some exolectrogens produce and secrete

redox shuttles, which diffuse back and forth between bacteria and electrode to trans-

port electrons [52, 46] (Figure 2.12B). Alternatively, populations of exoelectrogens

may form biofilms whose extracellular matrix contains cytochromes, and electrons

can be transported by hopping between cytochromes that form a chain [47, 42]

(Figure 2.12C). There is also evidence for conductive pili being produced in biofilms

for the purpose of transporting electrons over greater distances [4, 51].

In later chapters the biofilm and electron transport by hopping is modeled. I use the term

electroactive biofilm to mean biofilms comprised of exoelectrogens and an extracellular

matrix of cytochromes capable of facilitating electron transport to an electrode.

Biofilm electrochemistry

At the interface of the electrode and the biofilm electrochemical reactions occur to exchange

electrons between the electrode and cytochromes in contact with it. The movement of

electrons across this interface can generate a measurable electrical current and the rate

at which the reactions occur depend on the potential of the electrode. Thus there is a
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Figure 2.13: The effect of electrode potential V on the rates of electrochemical reactions and
the redox environment in the biofilm. A shows a the well-known Butler-Volmer theory which
relates V and the rate of electrochemical reactions. The rate of reduction of the electrode
increases with V (blue line in A) and tends to extract electrons from the biofilm, increasing
the proportion of oxidised redox centres (shown in B as orange circles). The rate of oxidation
of the electrode decreases as V increases (orange line in A) and tends to push electrons into
the biofilm, increasing the proportion of reduced redox centres (shown in C as blue circles).
Current I is proportional to the net electrochemical rate, which is shown in green in A.

relationship between electrode potential and current.

Electrode potential is usually reported against a reference potential ∗. The extended

Butler-Volmer relation describes the current as a function of electrode potential and the

concentration of reduced and oxidised species at the electrode interface:

I = j0 ∗
(
ueA(E−Eeq) − u+e−B(E−Eeq)

)
(2.13)

Where j0 is the electron exchange rate at equilibrium, u and u+ are the concentrations of

reduced and oxidised species at the electrode interface, E is the electrode potential and

Eeq is the equilibrium potential for the redox species participating in the reaction.

A and B are constants related to the thermodynamics of the electrode reaction, I assume

A = B = F
2RT

from now on. I also define V = E − Eeq.

I = j0 ∗
(
ueAV − u+e−AV

)
(2.14)

Equation 2.14 serves as a model for the rate of electrochemical reactions at the electrode
∗Since potential is really the potential difference between the electrode and a reference electrode
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that is used frequently in existing models of electrochemical reactions [45, 29, 67]. It

links electrode potential V and current I as shown in Figure 2.13. It also describes a

relationship between the V and the concentrations of oxidised and reduced redox centres

in the biofilm. The ratio of these concentrations defines a specific reduction potential and

redox environment inside the biofilm which can be thought of as a type of context.

Electrogenetics and electrogenetic synthetic biology

There exist in nature transcription factors whose activity depend on their redox state.

A commonly cited example in SoxR, a transcription factor which is known to be active

only when oxidised [30]. Such redox sensitive transcription factors can link the redox

environment to transcriptional regulation in gene networks.

Interest in co-opting these redox-sensitive systems for synthetic biology is growing, partly

owing to the implication that synthetic biology might help advance existing bioelectrochem-

ical systems in bioremediation, biofuel production and power generation [40]. Recently the

SoxR was used as the basis for the development of libraries of synthetic redox-sensitive pro-

moters [48]. Engineered synthetic gene networks whose expression can be controlled using

the potential of an electrode have been demonstrated [87, 84], as well as the integration of

electrogenetics in a CRISPR system [6].

In Chapters 4 and 5 I will take these electrogenetic synthetic biology tools as given, and

model how they link the synthetic gene networks described there to the redox context of

an electroactive biofilm.
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Genetic logic gates library with genetic

and host context

This chapter adapts the analysis first presented in Tas, Grozinger, Stoof, de Lorenzo and Goñi-

Moreno [82]. I performed the analysis of data collected and preprocessed by Tas and Stoof. Many

of the ideas used in the characterisation of the library, as well as the library itself, are adapted

from Nielsen et al [59].
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3.1 Introduction

Synthetic biology has developed sophisticated tools for engineering synthetic gene networks.

These networks connect genes together using the same genetic regulatory processes that

connect genes in naturally occurring networks. An example is transcriptional regulation,

where the product of one gene either inhibits or activates the transcription of another gene

(or itself).

Previous work has used synthetic networks of genes connected with transcriptional regula-

tion to perform biocomputations, in particular to implement combinatorial logic circuits

[59]. These synthetic networks were designed as modular units called genetic logic gates,

which could be composed to construct more larger networks and implement many combi-

natorial logic circuits not included in the initial study. A software was developed which

transformed descriptions of computations as Boolean formulae into specifications for syn-

thetic gene networks which implemented these computations using a collection of genetic

logic gates called a library. This approach allowed the automated design of genetic logic

circuits using libraries of individual genetic logic gates.

Synthetic biological genetic logic gates

The individual logic gates making up the library are synthetic gene networks implementing

NOT gates, whose topology is shown in Figure 2.3A. The expression levels of the input

gene A and output gene Z are discretised into levels 1 and 0, corresponding to high and

low expression, in order to represent the logical variables of combinatorial logic. The gene

product of A is chosen so that it inhibits transcription from the promoter upstream of

the output gene Z. Expression of A therefore represses the expression of Z, and so high

expression levels of A lead to low expression levels of Z, and low expression levels of A

allow Z to be expressed at high levels. The genetic NOT gate takes a single input and

inverts it into the output using transcriptional regulation, transforming 0 into 1 and 1 into

0 as shown in the table of Figure 2.3A.

The NOT gate performs implements the simple logical negation operation on a single

input. However this library of NOT gates was previously used to design and build circuits

that implemented far more complex logical operations [59]. This was possible because 2

NOT gates can be composed together to build a NOR gate, as seen in Figure 2.3B. The

NOR gate takes two inputs and transforms them to a single output as shown in the table
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of 2.3B, while also a relatively simple operation, the NOR gate has the special property

of functional completeness, meaning that any combinatorial logic circuit containing any

variety of gates can be built by composing only NOR gates together. The property makes

the genetic NOR gate an extremely powerful synthetic gene network from the perspective

of biocomputing, and in turn makes the construction of well-characterised and modular

libraries of NOT gates fundamental in pursuing the goal of engineering genetic logic circuits

for a wide variety of biocomputing applications.

Challenges for genetic combinatorial logic circuits

Connected genetic NOR gates should in principle be able to perform any combinatorial

logic computation desired due to their universality. In [59] it was shown that NOR gates

could indeed be composed together in order to perform more complex combinatorial logic

computations.

This has a number of implications for genetic logic circuits. First, the gates making

up the circuit must use different molecules to represent their input and output signals,

otherwise there will be significant cross-talk between gates because gates that should not

be connected in the circuit will be connected by the signal molecules they have in common.

For this library of genetic NOT gates, this means using a different repressor molecule for

each gate in a circuit. Unfortunately the differing properties of the repressor molecules

and their cognate promoters means that the performance of each gate will differ also. As

shown below these differences in performance must be taken into account in the design

stage and affect the quality of the genetic NOT gate library.

Context is also a problem for libraries because it limits the ability for reuse. The large

experimental effort expended on the characterisation (and optimisation) of the library’s

individual gates is inexorably tied into the experimental conditions that provide the

context for the synthetic gene networks. Using the library in different host organisms

is a large change in the context which might be expected to produce a large change in

circuit performance. However other more subtle changes, such as the plasmid vector into

which the circuit is inserted, will also affect performance. If genetic logic circuits are to be

deployed for applications in the field, where context can vary and is not under experimental

control, it will be necessary to understand the effects of context on synthetic gene networks

and account for these in the design stages.

35



Chapter 3: Genetic logic gates library with genetic and host context

Objectives

1. Develop an implementation of a workflow for the characterisation of a library of ge-

netic NOT gates. The workflow should take flow cytometry data and produce models

of the measured synthetic gene networks that can later be used for combinatorial

logic circuit design.

2. Apply the workflow to characterise a previously designed library of genetic NOT

gates, in 7 different contexts, where each context is defined by the host and plasmid

vector used.

3. Compare the characterisations from different contexts in order to measure the extent

of the contextual effects.

4. Develop and apply metrics for assessing the quality of the genetic NOT gate library

and compare these metrics across contexts.

5. Measure the qualities of libraries in merged contexts, libraries which make use of

multiple plasmid vectors or host organisms.

3.2 Characterisation of library using flow cytometry

data

The library used for this study is a collection of genetic NOT gates whose performance was

previously optimised and characterised in the Escherichia coli strain NEB10β with plasmid

vector pAN [59]. Here the same library is characterised using 7 different combinations of

host organism and plasmid vectors which provide 7 different contexts for the genetic NOT

gate library. These contexts are those listed in Table 3.1.

The library itself consists of 20 distinct NOT gates as synthetic gene networks with the

structure shown in Figure 3.1A. Gates are implemented using different repressors (R) and

their cognate promoters (PR), as well as variations in a, which is a RBS. Accordingly NOT

gates can be uniquely identified as R_a, and there are 20 such gates in the library, using

12 different repressors R.

The automated design workflow relies heavily on experimental data collected about the

behaviour of the individual gates in the library [59]. Experimental data for the genetic
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Host Backbone (Plasmid vector)
KT2400 pSeva221
KT2400 pSeva231
KT2400 pSeva251

CC118λpir pSeva221
CC118λpir pSeva231

DH5α pSeva221
DH5α pAN

Table 3.1: The contexts used in the study. Seven different combinations of from three host
organisms and four plasmid vectors were tested.

NOT gate library was previously collected using flow cytometry by replacing output

gene of each gate by a gene encoding YFP. Each gate in the library was then inserted

into a plasmid vector and subsequently transformed into a population of bacterial hosts.

Measurements of the distribution of YFP expression across a large (on the order of 104)

sample of the engineered cell population were made to determine the behaviour of each

NOT gate in the presence of different concentrations of IPTG. These experiments were

performed in each of the contexts listed in Table 3.1.

3.3 Results

Processing of flow cytometry data

Flow cytometry for each gate is performed at different levels of IPTG induction in order

to obtain output gene expression distributions corresponding to different input gene

expression levels. An example of how these distributions change in response to IPTG

concentration is shown in Figure 3.1B. It can be seen that higher IPTG concentrations

produce narrower distributions whose medians (dashed lines in Figure 3.1B) decrease

as IPTG concentration increases. This is because IPTG binds to and inactivates LacI,

preventing it from repressing transcription of R from the PTac promoter, turning on the

expression of R. In turn R represses transcription of YFP from the PR and turns off the

expression of YFP. The distributions shown in Figure 3.1B, as well as those shown in the

remaining figures in this Chapter, are based on a single flow cytometry experiment for

each of the 12 IPTG concentrations tested.

The characterisation is completed by measuring the how expression from the PTac promoter
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Figure 3.1: A shows the network used to characterise the genetic NOT gate with repressor R.
In this network, IPTG binds to and inactivates LacI, relieving the inhibition of R expression
by LacI. Expression of R inhibits the expression of YFP, which is controlled by the cognate
promoter of R. B Flow cytometry measures the distributions of YFP expression in the
presence of different concentrations of IPTG, the dashed lines indicate the median expression
levels. The overall effect is that higher concentrations of IPTG lead to lower median expression
of YFP. However, the distributions also overlap for each concentration of IPTG.

Figure 3.2: A shows the network used to characterise the inputs to the NOT gates. In this
network, IPTG binds to and inactivates LacI, relieving the inhibition of YFP expression by
LacI. B Flow cytometry measures the distributions of YFP expression in the presence of
different concentrations of IPTG, the dashed lines indicate the median expression levels. The
overall effect is that higher concentrations of IPTG tend to produce higher median expression
of YFP. The networks appears fairly insensitive to IPTG and distributions overlap until
500µM , where expression increases sharply and is more differentiated.
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changes in response to IPTG concentration. This is done using flow cytometry of the

network shown in Figure 3.2A, again at differing concentrations of IPTG to obtain

distributions of YFP such as those shown in Figure 3.2B. It can be seen that higher

IPTG concentrations produce broader distributions whose medians increase with IPTG

concentration. These expression distributions are used as a proxy for the expression

distribution of R in the network of Figure 3.1A. The combination of these two flow

cytometry experiments at a given level of IPTG characterises the expression of YFP from

the promoter PR in response to the expression of R.

In total this characterisation was performed for 135 different gate–host–plasmid combina-

tions, and at 12 different IPTG concentrations, using 1620 flow cytometry experiments.

Standardisation and conversion to relative units

The expression distributions obtained from flow cytometry were standardised using the

FlowScatt software. FlowScatt aims to account for the effects of heterogeneous cell volume

(perhaps due to different growth rates or phases of individual cells) by marginalising the

expression distribution on the scattered light measurements for each sample [78]. The

output is a distribution of expression that is conditional on the volume of a cell.

Additional flow cytometry was performed in each context with the autofluorescence (1201

Figure 3.3A) and normalisation (1717 Figure 3.4B) synthetic gene networks for the

purposes of converting the results of the NOT gate cytometry into RPUs. This process

further standardises gene expression distributions by subtracting background fluorescence

measured with the 1201 network. It also normalises the expression distribution to the

level of expression of YFP from the 1717 network. This process is designed to enable the

comparison of experiments and account for differences in experimental setups and test

conditions [43].

The conversion to RPUs was performed according to a previously described procedure [82]

and can be summarised as follows:

1. Produce the histogram of the raw flow cytometry data.

2. Use FlowScatt [78] to produce a distribution conditioned on the mean cell volume.

3. Shift the distribution by subtracting the median of the corresponding autofluorescence

(1201) experiment from all the samples.
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Figure 3.3: A shows the network used to measure the autofluorescence of the bacterial cells.
In this network LacZα is expressed from the PLac at a level controlled by the concentration of
IPTG. LacZα is not a fluorescent protein, so it is expected that any measured fluorescence is
background. B shows the results of flow cytometry of this network in host organism KT2400
and with plasmid vector pSeva221. The flow cytometry is repeated at different concentrations
of IPTG. As expected the results show very little response to IPTG.

4. Normalise the intensity values of the distribution by scaling them with the median

of the corresponding normalisation (1717) experiment.

The analysis presented in the rest of this section uses RPUs to quantify gene expression,

unless stated otherwise.

The response function model of the genetic NOT gate

Rational design of synthetic gene networks using the library requires a model for each

genetic NOT gate which predicts how the input is transformed into the output. For the

NOT gate in Figure 3.1A we require a model which describes the relationship between the

expression levels of R and YFP.

I use a modified Hill equation, introduced in Section 2.2 as a simple model which gives a

deterministic mapping between these input and output levels.

fY FP (R) =
(f1 − f0)k

n

kn +Rn
+ f0 (3.1)

The Hill equation is modified so that it’s minimum is at f0, and the maximum is at f1.

The parameters f0, f1, k and n characterise the output gene expression fY FP , given the
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Figure 3.4: A shows the network used to measure the expression of YFP from the
normalisation promoter JS23101. In this network YFP is expressed constitutively. B show
the results of flow cytometry of this network in host organism KT2400 and with plasmid
vector pSeva221, and at different concentrations of IPTG.

input gene expression of R. These parameters must be fitted to the experimental data for

each genetic NOT gate, that is, fitted to experimentally obtained values for fY FP (R) and

R. Adapting the approach previously taken to characterise the library in E. coli [59] these

values are obtained as follows:

R is measured as described in the previous section with flow cytometry of the network in

Figure 3.2. An example for the NOT gate Lmra_N1 is shown in Figure 3.5A. For each

concentration of IPTG the median of the distribution is taken as a point estimate of the

expression level Ri. These can be plotted against IPTG concentration as in Figure 3.5C.

fY FP is measured with flow cytometry of the network in Figure 3.1. Again the medians,

shown as dashed lines in Figure 3.5B, are taken as point estimates for the expression level

at each IPTG concentration. These are also plotted against IPTG concentration in Figure

3.5C.

fY FP (Ri) is then obtained by combining fY FP and Ri according to IPTG concentration.

The data points (circles) in Figure 3.5D plot this combination, and are used to fit Equation

3.1 and obtain the response function characterisation of the gate (solid line). In this work,

least squares fitting (Levenberg–Marquardt algorithm) is used to find the parameters of

Equation 3.1 and define fY FP (R) for all 135 genetic NOT gates. Table 3.2 lists the fitted

parameters.
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Figure 3.5: A show the expression distributions for the synthetic gene network of Figure
3.2A, at different concentrations of IPTG. In B the distributions for the synthetic gene
network of Figure 3.1 for the same IPTG concentrations. The medians of these distributions
are plotted against IPTG concentration in C. Plotting the medians of each set of distributions
against one another produces the data points (circles) in D, which are used as data for the
estimation of the parameters of Equation 3.1 to define the response function curve (solid
line).

42



Chapter 3: Genetic logic gates library with genetic and host context

Figure 3.6: The response functions (Equation 3.1) for the gate Lmra_N1 in all 7 contexts
are plotted for comparison. There are significant quantitative and qualitative differences in
the performance across the 7 contexts, despite the synthetic gene network being identical in
all cases.

Context f0 f1 k n
KT2400 pSeva221 0.52 2.53 0.24 2.26
KT2400 pSeva231 0.49 1.97 0.13 1.55
KT2400 pSeva251 0.12 0.45 0.07 2.2
DH5α pSeva221 - - - -

DH5α pAN 0.51 1.43 0.63 19.36
CC118λpir pSeva221 0.8 1.18 0.87 17.8
CC118λpir pSeva231 0.62 1.76 0.72 10.76

Table 3.2: The estimated best-fitting parameters for the Lmra_N1 gate in each context.

NOT gate behaviour differs between contexts

The response functions for the same NOT gate in different contexts differ. Since the

synthetic gene networks making up the NOT gates themselves are identical this suggests

these differences arise from contextual effects on the synthetic gene networks. An example

is shown in Figure 3.6, where the response functions of the gate Lmra_N1 are shown in all

seven contexts from Table 3.1. The response functions for genetically identical gates can

differ significantly between contexts, and Table 3.2 shows how the parameters of Equation

3.1 change with context for this particular NOT gate. This result is found for across

the entire library — the response function of a gate in one context does not indicate the

response function of the gate in another.

The Fréchet distance was used to quantify the contextual effects on the NOT gates, by

measuring the similarity between the response function curves characterised in different
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Figure 3.7: A heatmap showing the normalised Fréchet distances between the response
function models for the NOT gate Lmra_N1 in each context. Dark areas are those where the
models are most similar, and lighter areas are those where the models are most different. It
can be seen that the gate performance in the E. Coli strains is more consistent (bottom left
corner) than in the P. Putida strain KT2400 (top right corner). For this gate, the contexts
KT2400 with pSeva221 and DH5α with pSeva221 where found to have the greatest difference
is performance according to Fr’echet distance.
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Figure 3.8: A heatmap presenting the normalised sum of Fréchet distances between the
response function models for the all the NOT gates characterised in all 7 contexts. Dark
areas are those where the models are most similar, and lighter areas are those where the
models are most different. Overall performance varied more in Pseudomonas putida than E.
coli, despite there being 2 different strains of E. coli being characterised and only a single P.
putida strain. It is also notable that the KT2400 with pSeva221 context appears to be the
most different from all others.

contexts. Figure 3.7 shows a matrix of pairwise Fréchet distances for the NOT gate

Lmra_N1. The results suggest that variability between the E. coli strains tested is quite

low, in particular between the two CC118λpir contexts and the DH5α with pAN context.

Certainly, there appears to be more variability between contexts of different organisms than

with different backbones. This is not surprising since synthetic gene networks interact with

the host machinery in many different ways, including transcription, translation, protein

folding, and indeed plasmid replication.

Figure 3.8 shows the similarity between contexts by summation of the Fréchet distances for

all twenty NOT gates between each pair of contexts. Again, host organism appears to be the

most important aspect of context in terms of variability in performance between contexts.

These distances show that there is much more variability in the single Psuedomonas putida

strain than in the 2 E. coli strains. Interestingly, the two most different contexts were

KT2400 with pSeva221 and DH5α with pSeva221, despite having the same plasmid vector.
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Assessing the quality of the library under the response function model

Since the performance of NOT gates varies between contexts it is possible to ask which

is the best context in terms of NOT gate performance. A NOT gate should invert gene

expression levels, transforming high input expression into low output expression and vice

versa. Since Equation 3.1 is monotonically decreasing, higher input expressions always

produce lower output expressions. However, in order to more easily interpret the outputs

of the genetic NOT gates and to reduce failure due to measurement or process noise of the

gates, it is desirable to separate the high and low output expression levels. This separation

is achieved by applying thresholds to the output of the NOT gate which define high output,

low output and ambiguous regions. In this work these thresholds are defined according to

previous studies with the same library [59].

For the high output region:

fY FP (R) >
f1
2

(3.2)

and for the low output region:

fY FP (R) < 2f0 (3.3)

Which means that outputs that are greater than half the maximum possible output (f1)

are interpreted as high outputs, whilst those outputs that are less than twice the minimum

possible output (f0) are interpreted as low. These thresholds are marked for a Lmra_N1

NOT gate in Figure 3.9 as horizontal dashed lines, which separate the output into high,

low and ambiguous regions.

To ensure an unambiguous interpretation of the high and low outputs requires that:

f1
2

> 2f0 (3.4)

Meaning that there is a nonzero separation between the high and low regions. If there is

no separation between these regions then the gate is considered nonfunctional. As such,

a possible quantitative measure of the quality of a library in a particular context is the

number of NOT gates which are functional according to this definition.
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Figure 3.9: The response function model for a NOT gate. The x-axis is the RPU of
expression from the gene network in Figure 3.2A which characterises the input to the NOT
gate. The y-axis is the RPU of expression of YFP from the network in Figure 3.1A, in this
particular case the NOT gate Lmra_N1 in context KT2400 with pSeva221. The circles
show the medians from each distribution and the solid line is the hill equation fitted to these
data points. The dashed lines are the input and output thresholds that divide the response
function into 3 regions, one with low input and high output (top left), one with high input
and low output (bottom right) and an ambiguous region where the NOT gate is neither in a
high or low state. The existence of the ambiguous region means the NOT gate is considered
functional under the response function model.

Context Functional NOT gates Compatible Pairs
KT2400 pSeva221 6 1
KT2400 pSeva231 10 5
KT2400 pSeva251 4 0
DH5α pSeva221 18 70

DH5α pAN 20 38
CC118λpir pSeva221 18 6
CC118λpir pSeva231 20 24

Table 3.3: The number of functional NOT gates and the number of compatible pairs of
gates in the library for each context.
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Using this measure the library has the highest quality in those contexts with E. coli hosts

and in fact there are two contexts in which all 20 NOT gates are functional. This is not

surprising since the NOT gates were previously optimised for another E. coli strain [59].

It is clear that the quality of the library as measured by the number of functional NOT

gates varies due to contextual effects. However it is also possible in some cases to improve

the quality of the library by using more than one context. For example if both the pSeva221

and pSeva231 plasmid vectors are used in KT2400 to construct a library, 2 additional

functional NOT gates are available, without need for the redesign and recharacterisation

that would be necessary to introduce new gates into the library.

Compatibility of NOT gates as a quality score

In order to build circuits the individual NOT gates of the library must be connected in such

a way that the output of one gate serves as the input of another. However it is essential

that both the gates to be connected ‘agree’ on the levels of expression that represent high

and low states, specifically that the output levels of the first gate are interpreted correctly

as inputs to the second. Since more compatible pairs of gates in a library represents more

degrees of freedom in the combinatorial design of circuits, the number of compatible pairs

of NOT gates was calculated in order to measure the quality of the library.

This was done by calculating the input thresholds for each NOT gate, where the low

input threshold is defined as the level of input expression r for which fY FP (r) =
f1
2
, and

where the high input threshold is defined as the level of input expression r for which

fY FP (r) = 2f0. As with the output thresholds, these input thresholds divide the input

expression into 3 regions, the high input, low input and ambiguous regions, as shown in

the example of Figure 3.9 (vertical dashed lines). The thresholds are calculated as follows:

IH =

(
kn(f1 − 2f0)

f0

) 1
n

(3.5)

IL =

(
knf1

(f1 − 2f0)

) 1
n

(3.6)

where IH and IL are the high and low input thresholds. Figure 3.10 shows how compati-

bility is assessed for two example gates. In the case of this example where the first gate is
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Figure 3.10: The response function model defines requirements for NOT gates to be
connected. If the output of one gate (left) is to be connected to the input of a second (right),
then the high(low) output threshold of the first gate must be greater than (less than) the
high(low) input threshold of the second. This is meant to ensure that a high(low) output
signal from the first gate is interpreted as a high(low) input by the second. Large margins
between the thresholds (gray areas) are desirable to minimise the chances of misinterpretation
of the signals between the two gates.

Srpr_S1 and the second gate is Qacr_Q1, both in the context of KT2400 with pSeva221

plasmid vector, the gates are defined as compatible, since the high output threshold of

the first gate is greater than the high input threshold of the second (purple dashed lines),

and the low output threshold of the first gate is lower than the low input threshold of the

second (orange dashed lines).

A pairing of gates is defined as compatible in case that:

OHA > IHB and OLA < ILB (3.7)

where OH = f1
2

is the high output threshold, OL = 2f0 is the low output threshold, and

IH and IL are defined as in Equations 3.5 and 3.6. The subscripts A and B refer to

the first and second gates in the pair. An additional requirement is that the gates are

orthogonal, which in this work requires only that each gate uses a different repressor

molecule.

Not all pairs of gates in a library are compatible under this definition. As such the number

of compatible pairs of NOT gates in a library can be used as a measure of the quality of the

library. Figure 3.11 shows that the library in the context of KT2400 with pSeva221 plasmid

vector, only 1 pair of NOT gates can be connected together. This is important since there
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Figure 3.11: Grid showing the different connected pairs of NOT gates in the library with the
output of gate A (x axis) serving as the input of gate B (y axis). Pairs which are compatible
can be connected together correctly and are coloured in orange. This grid shows the results
for the library characterised in the context KT2400 with the pSeva221 plasmid vector. There
is only a single pair of compatible gates.

are 6 different functional NOT gates but only a single pair of those are compatible.

It is also notable that the quality of the library can be different when measured by the

number of functional gates compared to the number of compatible pairs. In Table 3.3 for

example, the library in the contexts DH5α with pSeva221 and CC118λpir with pSeva221

have the same number of functional gates. However, the number of compatible pairs in

each of these contexts differ with 70 pairs in the DH5α context and only 6 in CC118λpir.

Contexts can be combined in order to increase the number of compatible pairs and the

quality of the library. Figure 3.12 shows how allowing the freedom of choice in the plasmid

vector for the library increases the number of compatible pairs in the host KT2400. The

same library of 20 NOT gates can be placed in different contexts and connected together

to increase the number of compatible pairs from 1 to 12.

This approach applied to context in general can improve the quality of the library further.

Figure 3.13 shows that freedom in both plasmid vector and host organism can increase
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Figure 3.12: Grid showing the different connected pairs of NOT gates in the library with the
output of gate A (x axis) serving as the input of gate B (y axis). Pairs which are compatible
can be connected together correctly and are coloured in orange. This grid shows the results
for the library in the host KT2400 but where gates can be placed in plasmid vectors pSeva221,
pSeva231 or pSeva251. There are 12 pairs of compatible gates.

the number of pairing further, from 12 to 368. This is much greater than is possible in

any single host (in DH5α 126 pairs, in CC118λpir 32 pairs and in KT2400 12 pairs).

Maximum chained length of compatible inverters as a quality score

The complexity of combinatorial logic circuits can be measured by their depth. Depth

in a circuit is achieved by connecting the output of one gate to the input(s) of another.

Here I interpret the maps of compatible pairs presented in the previous section as the

adjacency matrix of a directed graph, in order to compute the longest possible chain of

connected and compatible NOT gates for each library. I use the length of such a chain as

an upper bound on the depth of circuits built using the library, and an upper bound on

circuit complexity.

The maximum length of chain was computed for each individual context (host and plasmid
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Figure 3.13: Grid showing the different connected pairs of NOT gates in the library with the
output of gate A (x axis) serving as the input of gate B (y axis). Pairs which are compatible
can be connected together correctly and are coloured in orange. This grid shows the results
for the library where gates from any of the seven contexts can be connected. There are 368
pairs of compatible gates.

Strain Plasmid Maximum depth (number of NOTs)
KT2400 pSeva221 2
KT2400 pSeva231 2
KT2400 pSeva251 1
DH5α pSeva221 3
DH5α pAN 2

CC118λpir pSeva221 2
CC118λpir pSeva231 4
KT2400 pSeva221 or 231 or 251 3
DH5α pSeva221 or pAN 4

CC118λpir pSeva221 or 231 4
Any Any 9

Table 3.4: A table of the depths, measured in number of sequentially connected NOT gates,
for the single context libraries, libraries with variable plasmid vector, and the complete library
using all hosts and plasmid vectors.
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Figure 3.14: Connecting NOT gates in a sequence of compatible gates. In A the maximum
length of such a chain when using just the KT2400 and pSeva221 context is 2. In B the
maximum length increases to 3 when other plasmid vectors are allowed, and in C a chain of
length 9 is made possible by allowing the use of all hosts and plasmid vectors.

vector pairing) as well as each strain with any available plasmid, and for the complete

library including all contexts. There are again differences in this measure according to

context as shown in Table 3.4. CC118λpir with pSeva231 was the best performing single

context library, despite having fewer compatible pairs of gates than both DH5α contexts.

The maximum length of chains increases when context gates from different contexts are

added as expected. An specific example is shown in Figure 3.14, where a depth of 2 gates

is possible using the single context library of KT2400 and pSeva221, adding different

plasmids to the library increases possible depth to 3, and finally adding the option of using

different hosts allows for a depth of 9.

Statistical model of the synthetic gene networks

The raw flow cytometry data produces histograms of the samples of each population. The

response function model is useful in that it is very easy to work with and straightforward
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to interpret, but the fact that it is based on point estimates means that some information

obtained in the experiment is not included in the model [26]. In particular, the higher

moments of the data, such as the variance and skewness (2nd and 3rd moments) are not

represented in the reponse function model. These are important in the setting of synthetic

biological design because they impact on the reliability of gene networks and in particular

reflect the likelihood that noise in the network will result in incorrect interpretation of the

input and output signals.

Functional gates with confidence intervals

This can be seen in Figure 3.1 where significant overlap exists between the distribution

of expression at IPTG concentrations that should induce different output states of the

NOT gate. This is more clearly shown by constructing the distribution of the differences

between expression levels of gates at an IPTG concentration of 0 and of 2000µM . The

distribution of the differences is approximated by drawing samples from the distribution

at 0 IPTG, and subtracting samples drawn from the distribution at 2000µM IPTG. For a

correctly functioning NOT gate this difference is expected to be positive, since the presence

of IPTG should be interpreted as a 1 signal and the output expression should be high to

represent a 1 signal. In Figure 3.15A this distribution is shown for the gate Bm3r1_B1,

but it can be seen that the expectation of the distribution is roughly 0. This means that

the expression of YFP from the NOT gate for both levels of input is almost the same,

making it very likely that the output is interpreted incorrectly.

In contrast Figure 3.15 shows a good example of the NOT gate Lmra_N1. The expected

value of the difference distribution is positive. In addition 95% of samples from the

difference distribution are above 0, meaning that output expression in response to low

inputs are higher than output expression in response to high inputs with 95% probability,

which is the intended function of the NOT gate.

This probability might be used to score the quality of NOT gates and as a basis for

measuring the quality of a library of gates. Table 3.5 shows these probabilities for gates in

the context of KT2400 with the pSeva221 plasmid vector. In order to interpret these scores

as corresponding to functional or nonfunctional gates, a threshold or confidence interval

can be chosen above which the gate is considered functional. Table 3.6 shows how many

gates in each context are considered functional under two different confidence intervals,

95 and 66%. This is a measure of the quality of each library that takes into account the
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Figure 3.15: Two examples of difference distributions for genetic NOT gates. These are
constructed by drawing samples from the flow cytometry data for the NOT gate at an IPTG
concentration of 0, and subtracting samples drawn from the flow cytometry data collected at
an IPTG concentration of 2000µM . In A the difference distribution of the gate Bm3r1_B1
in KT2400 with pSeva221. In this case it is clear that the NOT gate does not perform well,
and in fact the output expression provides almost no information about the induction level.
In B the difference distribution of the gate Lmra_N1 in the same context. The NOT gate
performs much better, where the uninduced state produces a higher output expression for
almost 95% of samples.

information on the variability of expression given by the flow cytometry distributions of

the NOT gates.

Comparison of these scores with those of Table 3.3 it can be seen that both measure agree

that the library is of better quality in the E.coli hosts. At a 95% confidence interval

the library in CC118λpir with the pSeva231 plasmid vector is significantly better than

any other, but it is notable that even at a modest 66% interval, not all NOT gates are

functional. It is also worth mentioning that in Table 3.6 the order of the different contexts

changes depending on the size of the interval considered.

An appropriately chosen statistical model can capture higher moments in the data and

model the entirety of the experimentally obtained histogram. The aim is to choose proba-

bility distributions for each synthetic gene network that reliably predicts the probability

of finding a sample with a particular value for an experiment. That is we want a model

P (x; θ), where:

∫ ∞

−∞
P (x; θ) = 1 (3.8)

and P (x; θ) = y, where y is the probability of a cell sampled in the flow cytometry

experiment having a YFP fluorescence signal of x. The parameters of the model are θ,
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Host Plasmid vector Gate Success percentage
KT2400 pSeva221 Amer_f1 0.63
KT2400 pSeva221 Amtr_a1 0.87
KT2400 pSeva221 Beti_e1 0.67
KT2400 pSeva221 Bm3r1_b1 0.55
KT2400 pSeva221 Bm3r1_b2 0.63
KT2400 pSeva221 Bm3r1_b3 0.51
KT2400 pSeva221 Hiyiir_h1 0.93
KT2400 pSeva221 Lcara_i1 0.96
KT2400 pSeva221 Litr_l1 0.92
KT2400 pSeva221 Lmra_n1 0.95
KT2400 pSeva221 Phif_p1 0.61
KT2400 pSeva221 Phif_p2 0.68
KT2400 pSeva221 Phif_p3 0.91
KT2400 pSeva221 Psra_r1 0.75
KT2400 pSeva221 Qacr_q1 0.93
KT2400 pSeva221 Qacr_q2 0.85
KT2400 pSeva221 Srpr_s1 0.95
KT2400 pSeva221 Srpr_s2 0.87
KT2400 pSeva221 Srpr_s3 0.93
KT2400 pSeva221 Srpr_s4 0.88

Table 3.5: The percentage of samples where uninduced expression is higher than induced
expression in NOT gates in the KT2400 with pSeva221 context. Higher percentages indicate
better NOT gates, since expression should be higher in the NOT gate in the uninduced
condition.

Host Plasmid vector 95% Functional 66% Functional
KT2400 pSeva221 1 15
KT2400 pSeva231 3 13
KT2400 pSeva251 1 8

CC118λpir pSeva221 2 13
CC118λpir pSeva231 10 17

DH5α pSeva221 4 15
DH5α pAN 4 17

Table 3.6: The number of NOT gates that are functional in each context. The number
of functional gates is shown for two tolerances, 95% and 66%, where this percentage is the
required percentage of samples for which the distribution of the difference between uninduced
and induced expression is above zero.
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and are to be estimated from the data. P is a probability density function, and the choice

of P could be made for each of the four types of synthetic gene network characterised

in this work, in order to reflect the different processes occurring in each to contribute to

fluorescence output.

Statistical model for constitutive expression

The synthetic gene network used for normalisation (shown in Figure 3.4A) constitutively

expresses YFP and is the simplest network expressing fluorescent protein for which data

was available. It has been previously reported that a Gamma distribution can be used to

model steady state concentrations of constitutively expressed proteins in populations of

bacterial cells [25].

The Gamma distribution has the probability density function:

P (x; k, θ) =
xk−1e

−x
θ

Γ(α)θk
(3.9)

This probability density function is derived from the chemical master equation for a simple

model of gene expression shown in Figure 3.16 that includes the processes of transcription

and translation. For this reason the parameters of the distribution, k and θ, enjoy a

physical interpretation and the results of parameter estimation for this model can to some

extent be interpreted mechanistically. Specifically, the parameter k relates to the number

of RNA bursts per cell cycle, produced as a result of transcription events. The parameter

θ relates to the number of proteins produces per RNA, as a result of translation events.

The gamma distribution model captures the variance in gene expression levels due to the

stochastic nature of the processes involved in transcription and translation. Here we adapt

this model slightly into a hierarchical model to also capture heterogeneity in the bacterial

population. The model is written as follows:

ki ∼LogNormal(µ1, σ1) (3.10)

θi ∼LogNormal(µ2, σ2) (3.11)

Yi ∼Gamma(ki, θi) (3.12)
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where Yi is the expression level of the ith sample from the flow cytometry experiment, and

ki and θi are the k and θ parameters for the ith sample. In this model each sample has its

own parameters k and θ and the result of parameter estimation yield the distributions of

k and θ over the sample population.

The model is written as a probabilistic program and Markov chain monte carlo methods

are used to estimate the parameters µ1,2 and σ1,2 from Equations 3.10. Figure 3.16 shows

the results of the estimation for constitutive expression from the synthetic network shown

in Figure 3.4A, in the context of KT2400 with pSeva221 plasmid vector in the absence of

IPTG. ki and thetai have a joint distribution shown in A. Visualising this joint distribution

is important to understand that there is a correlation between these two variables, such that

they should be sampled together, and is also useful for comparing the relative dispersion

of both. The marginal distributions of ki and θi across the population are shown in B and

C. These marginal distributions show that ki is more widely dispersed than θi. In D, a

histogram of samples from the experimental data (blue bars) is plotted with the density

(orange line) of the posterior predictive distribution for Yi. The posterior predictive shows

good agreement with the sample frequency density shown in the histogram.

The interpretation of the estimation is difficult for a single experiment in a single context.

Although the models parameters have a physical meaning (in the sense that they determine

the distributions of the variables k and θ, which have a mechanistic meaning as described

above), the units of these parameters are not calibrated like the RPU units of expression

used in the previous section. For example, the spread of the distributions in k and θ shown

in Figures 3.16 B and C cannot be interpreted as being large or small in the absence of a

suitable scale — k and θ are both dimensionless [25].

However, meaningful comparison can still be made between experiments or contexts. In

order to solely identify the contextual effects of host and plasmid vector the posteriors

for k and θ can be estimated and their difference compared. These differences should

correspond to effects of the context, where they occur.

3.4 Discussion

Synthetic biological networks are dependent on the context in which they are placed at a

fundamental level. For the case of the genetic logic gate library studied in this chapter,

the results presented here clearly show that synthetic gene networks perform differently in
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Figure 3.16: The results of using a Hamiltonian monte carlo markov chain algorithm
to estimate the parameters of the model in Equations 3.10 from data sampled from flow
cytometry for a constitutively expressed YFP in the context KT2400 with pSeva221. A
shows the joint distribution of the variables k and θ sampled from the posterior. Their
marginal distributions are shown in B and C. D shows the posterior distribution of YFP
expression predicted by the model (orange line), against a frequency density histogram of
another (testing) sample from the same population (flow cytometry experiment).
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different contexts, despite being genetically identical.

As such the usefulness of the library for the design and construction of genetic logic circuits

is also variable depending on the context in which the library is deployed. Most notably,

quantitative and qualitative differences in the performance of the gates mean that the

number of gates in the library which operate as intended in a particular context varies. A

consequence of this variability is that the usefulness of the library can be improved by

deploying different gates in different contexts, adding host organism and plasmid vector as

a parameter in the design of genetic logic circuits.

This is an example of being able to use context as a parameter to engineer better synthetic

biological networks. However this approach is based on differences between performance

observed in experiments. Under the response function model it is difficult to interpret a

physical meaning for the parameters and extract the information that would be required to

understand why these differences in performance are observed. The model cannot be used

to extrapolate to unseen contexts, or indeed to unseen network topologies, because this

requires an understanding of the changes to the mechanisms which manifest as difference

in performance between contexts.

Quantified differences between gate performance

A model of the gene networks can be used for the quantification of the differences in

performance between contexts. Initially a response function model, an hill equation fitted

to point estimates of expression data, was used to model the gene networks. Comparison of

these models functions as a proxy for comparison of the performance of the gene networks

themselves, at the cost of the comparison ‘inheriting’ the limitations of the model. For

example, the response function model ignores variance and heterogeneity in gene expression,

because it is based on point estimates of actual expression data.

Seven contexts were used in this study to highlight these differences. The two variable

elements of the contexts were the plasmid vector into which the gene networks were syn-

thesised, and the host organism into which these plasmids are transformed. Quantification

of the differences in performace between contexts shows that the impact of these aspects

of context vary. Figure 3.8 shows how host organism has more impact on performance

than plasmid vector, with the differences between E. coli and P. putida contexts being

greater than contexts in the same host with different plasmid vector. This is reasonable,
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since the host provides all the machinery for genetic expression and regulation required by

the genetic logic gates, as well as the machinery for replication of the plasmid vector.

At the level of individual gates, inspection of the response function models suggests that

there is a complex interaction between both of the host organism, plasmid vector and

gene network that produces the differences in performance. For example, there are cases

where the type of transformation due to change of plasmid vector seen in one host is not

reflected by the same change of plasmid vector in another. In Figure 3.6 this is seen for

the case of a change of plasmid vector pSeva221 to pSeva231 — in the host KT2440, this

results in a decrease in maximum expression, whereas in host CC118λpir, an increase in

the maximum expression is observed.

Contextual differences as design parameters

The NOT gate should transform low expression levels into high expression levels and vice

versa, but for some gates in some contexts this is not true. In these cases the gate is

nonfunctional and the response function model can be used to determine (and actually

define) this. The number of NOT gates in a particular library can be used to measure the

library’s quality, and this quality score is shown to depend on the context in which the

library is used. Unsurprisingly the E. coli contexts, for which the library was previously

optimised, scored most highly under this measure. Since some gates are functional in some

contexts and not others, mixing contexts can improve this quality score. Synthesising

different parts of a genetic circuit in different plasmid vectors for example might be

considered, integrating context as a parameter in the design stage in order to exploit

contextual effects on the individual gates.

The compatibility of pairs of NOT gates was also used to score the quality of the library

for each context. This is important since circuits are built from composing individual

gates, and gates can only be composed if they are compatible. Here the choice of model is

important, and the model is used to define the notion of compatibility. Again it was seen

that the quality of the library varied with context. Some contexts (such as KT2440 with

pSeva251) had no compatible pairs of gates. However it can also be seen that combining

different contexts, that is placing the pair of gates in two different contexts, can significantly

increase the number of compatible pairs in the library. This can be seen as the increase of

such compatible pairs in Figures 3.11, 3.12 and 3.13, suggesting that contextual parameters

could be used to increase degrees of freedom in the combinatorial design of genetic logic
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circuits.

Deterministic models based solely on point estimates of the flow cytometry distributions,

such as the response function model of Equation 3.1, ignore information about population

level heterogeneity that is contained in the experimental data. Since gene expression is an

inherently noisy process [24] there is always a chance that a NOT gate will fail to perform

as expected. The question really is how often the NOT gate can be expected to perform

well. This question is only answered well by considering the entire distribution of gate

performance as in Figure 3.15, where the difference distribution between the NOT gate in

the ‘on’ and ‘off’ states is sampled. Assessment of the quality of the gate library using

this approach can be significantly less optimistic than using the response function model.

Future work

Here we suggest how to use context as a parameter to engineer better synthetic biological

networks using this library. However the approach is based on differences between

performance observed in experiments. Under the response function model it is difficult to

interpret a physical meaning for the parameters and extract the information that would

be required to understand why these differences in performance are observed. The model

cannot be used to extrapolate to unseen contexts, or indeed to unseen network topologies,

because this requires an understanding of the changes to the mechanisms which manifest

as difference in performance between contexts.

The use of probabilistic programming as part of the characterisation of the synthetic

gene networks of this library is a promising in this respect. The parameters of the model

presented in Equations 3.10 have a rough physical interpretation as relating to two processes

fundamental to the behaviour of gene networks (transcription and translation). Potentially

this could lead to understanding of mechanistic details of contextual effects.

Further since these programs (actually models) are composable they lend themselves to

the combinatorial design process, and could possibly be used to extrapolate and make

predictions about the performance of unseen gene networks in different contexts. In

addition they capture the inherent heterogeneity of bacterial populations, a feature that is

captured by flow cytometry experiments but is ignored by deterministic models based on

point estimates (such as the response function model). Future work will develop further

the probabilistic programs for the synthetic constructs in this library that build on the
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model shown in Figure 3.16 to extract mechanistic details of performance that depend on

context.
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Chapter 4

Toggle switch in the spatial context of

the electroactive biofilm

This chapter adapts the publication Grozinger, Heidrich and Goñi-Moreno [37] which has been

accepted for publication in Microbial Biotechnology. I performed the design, modeling and numerical

analysis of the switch, which is the focus of this chapter.
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4.1 Introduction

It is described in Section 2.5 how exoelectrogenic bacteria can couple the oxidisation of a

substrate to the reduction of an electrode to produce a MES. The balance of reduction and

oxidisation reactions occurring at the electrode can be measured as an electrical current.

The rate at which the bacteria in MESs metabolise substrate correlates with the electrical

current that flows at the electrode. Ueki et al [89] used this principle to demonstrate

genetic control of the electronic output of Geobacter sulfurreducens. By controlling the

expression of genes required for acetate metabolism, such as gltA (citrate synthase) and

ato1 (acetyl-CoA transferase), the electronic output of the Geobacter could be switched

on or off using a synthetic gene network.

The potential of the electrode is an important property of the MES that can be sensed in a

variety of ways by different bacteria [40, 4, 49]. Tschirhart et al [87] used the redox sensitive

promoter pSoxR to control rates of transcription in a synthetic gene network hosted by

Escherichia coli. In that study redox mediator molecules were used to communicate the

potential of an electrode to the synthetic gene network that controlled the expression

of genes of interest. The electrode potential can be set using electronics, so this system

demonstrates electronic control of gene expression.

A synthetic biological system which combines both the electronic control of gene expression

and the genetic control of electronic output has not yet been presented in the literature.

This Chapter first presents a design for a synthetic biological network which adapts the

genetic toggle switch [27] such that it can:

• Be hosted by bacteria in a MES.

• Take electronic input in the form of electrode potential.

• Process this input using a synthetic gene network.

• Produce electronic output in the form of electrical current at the electrode.

• Retain the qualitative dynamics of a toggle switch (bistability).

A simple model of a MES which includes its important components and interactions

between them is shown in Figure 4.1. Using this model it is possible to design a synthetic

network which combines genetic control of substrate metabolism and feedback from the
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Figure 4.1: An abstract view of a MES where the overall reaction is substrate oxidation
coupled with electrode reduction to produce electrical current. The substrate (left) is taken
up by the electrogenic bacteria and metabolised. The resultant electrons are exported to
electron acceptors in the redox environment surrounding the bacteria. The redox environment
connects the bacteria to the terminal electron acceptor, the electrode, where electrochemical
reactions can produce current (I). If the bacteria are engineered with synthetic gene network
which controls their metabolic rate (marked as ?), then genetic control of current (I) can
be achieved [89]. As well as the metabolic activity of the bacteria, the potential (V ) of the
electrode affects the redox environment by changing the ratio of oxidised to reduced electron
acceptors at equilibrium. If synthetic gene networks can sense this ratio then electronic
control of gene expression can be achieved [87].

redox environment to produce bistability. We call this network the ‘electrogenetic toggle

switch’.

However, problems arise because previous studies have presented evidence that show the

redox environment cannot be assumed to be homogeneous [76]. The electroactive biofilm

is actually an asymmetrical spatial domain with an electrode at one boundary that acts

as a sink for electrons, and a bulk substrate solution at another boundary acting as an

electron source.

This asymmetry gives rise to gradients that mean bacteria close to the electrode are

presented with a different redox environment than those that are farther from the electrode.

Of course, when designing a synthetic biological network, we might expect that it behaves

homogeneously

Considering this heterogeneous context it is not obvious that an electrogenetic toggle

switch within the biofilm would admit the emergence of bistability under conditions that

are physiological relevant. Here we develop a model combining elements of previous

modelling studies of electroactive biofilms and a model of the electrogenetic toggle switch

to answer this question.
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4.2 Results

Model of wildtype electroactive biofilm

Exoelectrogens such as Geobacter form biofilms attached to electrodes. The biofilm

provides the redox environment for the bacteria and connects the bacteria to the electrode.

The bacteria oxidise substrate and export the resultant electrons to the biofilm which

transports them to the electrode. A simple model for this process in a single step is as

follows:

s+Q
αq−−→ q (4.1)

s is the substrate. Q is free capacity for electrons in the biofilm. The electroactive biofilm

has a finite capacity for electrons that limits the rate at which it can transport electrons,

and consequently limits the rate at which the bacteria can export electrons (Figure 4.3D).

q is the electrons that are exported to the biofilm and αq is the rate of the overall reaction.

At the electrode, electrochemical reactions exchange electrons between the biofilm and

electrode to convert q into Q and vice versa.

q
kf (V )
−−−⇀↽−−−
kr(V )

Q (4.2)

kf and kr are the rates of the forward and reverse electrochemical reactions, which depend

on the potential of the electrode V . The current that is observable at the electrode is

proportional to the net rate ∗ with proportionality constant F , the Faraday constant. The

electrical current I therefore also depends on V , q and Q:

I(V ) = F (qkf (V )−Q0kr(V )) (4.3)

kf(V ) and kr(V ) are defined as in other modeling frameworks using the Butler-Volmer

relationship [45].
∗The current is here defined as positive in the anodic direction, that is, the reduction of the electrode

results in positive current and oxidation in negative current.
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Figure 4.2: q plotted against its rate of change for two models of current production from an
electroactive biofilm attached to an electrode. Fixed points of the systems are shown where
the rate crosses 0. In A the simplified wild type model from Equation 4.6 and sketched in
the inset. The only type of behaviour this system can exhibit is monostability, owing to the
linear rate of change in q, negative slope and positive domain of q. In B the same simplified
model but with positive feedback for q, written as in Equation 4.18. The positive feedback
allows more varied dynamical behaviour, including bistability as shown in this example.

kf (V ) = j0e
AV (4.4)

kr(V ) = j0e
−AV (4.5)

where A is assumed to be a constant A = F
2RT

and j0 is the rate at which electrons are

exchanged with the electrode at equilibrium potential of the electrode and biofilm, so that

j0 = kf (0) = kr(0).

The goal of the electrogenetic toggle switch is to design a system where I(V ) can come to

rest at two different values for the same V . This is clearly only possible if q can come to

rest at two different values for the same V .

With the assumptions of constant substrate s contributing to an overall electron export

rate of α, constant finite biofilm capacity Q0 and electrode potential V a single ODE

equation can model the system’s evolution over time, where q(t) is the concentration of q

at time t ∗.

∂tq(t) = (α + j0e
−AV )(Q0 − q(t))− q(t)j0e

AV (4.6)

∗In the following I will abreviate state variables y(t) with y where it is clear enough from context that
y(t) is meant
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In this Equation there are two terms, one for production of q and one for depletion of q.

Where these terms are balanced there will be a fixed point of the system. An example is

shown is Figure 4.2A where q is plotted against its rate of change ∂tq. Since ∂tq is linear

in q, there is a single fixed point. Furthermore, this fixed point is stable since for q above

the fixed point, depletion is higher than production and q will decay back to the fixed

point, and for q below the fixed point, the opposite is true. In fact, Figure 4.2A provides

the geometric argument that there can only be exactly one stable fixed for this system.

Therefore bistability, which requires three fixed points cannot exist in this system.

Adding limiting substrate

In Equations 4.6 and 4.18 substrate is assumed constant and not limiting. To relax this

assumption I model substrate as entering the biofilm by diffusing through the interface

between the bulk media and biofilm. The bulk media has a constant concentration of

substrate S0 and diffuses into the biofilm in the direction of the gradient across the interface

at a rate Ds as shown in Figure 4.3B. This means that substrate can be depleted in the

biofilm if it is consumed faster than it can enter.

Available substrate is consumed by the exoelectrogens in the biofilm at a rate modeled

here using the Michaelis Menten equation. The model now must include a state variable

s(t) for substrate concentration.

∂tq =

(
αqs

Ks + s
+ j0e

−AV

)
(Q0 − q)− qeAV (4.7)

∂ts = Ds(S0 − s)−
(
αqs(Q0 − q)

Ks + s

)
(4.8)

Adding transport through the biofilm

The previous models do not include any spatial dimensions of the biofilm. If both substrate,

s, and electrons, q, are transported infinitely fast there is no need to model space, since the

concentrations of s and q will be homogeneous throughout the biofilm. However there is

certainly a finite rate of transport in the biofilm, and there is good evidence that transport

of q in the biofilm can be a limiting factor in current production.

In Equations 4.6 and 4.18 substrate is assumed constant and not limiting, and both
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substrate and electrons can be transported through the biofilm instantaneously so that

space does not need to be modeled. Now these assumptions are relaxed. Initially a model

is considered which includes a single spatial dimension of the biofilm x, and the transport

of both s and q through the biofilm. The electrode is placed at x = 0 and the bulk-biofilm

interface at x = L. Typical values for L are in the tens of microns.

As described above, substrate enters the biofilm through the bulk-biofilm interface. Once in

the biofilm the substrate diffuses at a rate of Ds as in shown in Figure 4.3B. Substrate cannot

diffuse through the electrode-biofilm interface. This leads to the boundary conditions in

Equations 4.14 and 4.17. The diffusion of substrate in x is described using Fick’s second

law to derive a PDE for s(x, t), the concentration of substrate at position x at time t.

s(x, t) is modeled with the PDE in Equation 4.12.

Electron transport is modeled here as occurring by hopping between nearby redox centres

that are bound to the extracellular matrix of the biofilm. This hopping process is illustrated

in Figure 4.3A. Each redox centre in the model can be occupied by only a single electron,

such that electrons cannot hop to centres that are already occupied (Figure 4.3C). The

concentration of occupied redox centres at position x in the biofilm is q(x, t) and the

maximum q(x, t) is the total capacity of the biofilm for electrons Q0. The ratio of occupied

to unoccupied redox centres defines the redox environment q(x,t)
Q0+q(x,t)

.

To model the transport of electrons by hopping the biofilm the following set of reactions

are considered in a one dimensional biofilm discretised into n sections:

qi + q+i+1
k−−→ q+i + qi+1 for i ∈ [1, n)

qi + q+i−1
k−−→ q+i + qi−1 for i ∈ (1, n]

where qi are occupied redox centres in the ith section of the biofilm, q+i are unoccupied

redox centres in the ith section of the biofilm, and k is the rate of electron hopping between

redox centres. Using the assumptions of mass action kinetics to convert these reactions

into an ODE gives:

∂tqi = k
(
qi−1q

+
i + qi+1q

+
i − qiq

+
i−1 − qiq

+
i+1

)
(4.9)

Since biofilm capacity is assumed finite and constant, Q0 = qi + q+i , and this ODE can be
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written as:

∂tqi = k Q0 (qi−1 − 2qi + qi+1) (4.10)

= kQ0∆x

(
qi−1 − 2qi + qi+1

∆x2

)
(4.11)

The right hand side of this equation is the central finite difference approximation of

Dq∂
2
xq(i, t), if Dq = kQ0∆x, where ∆x is the length of the discretised sections of the

biofilm. Making this substitution allows for modeling electron hopping as diffusion, and I

will use this approach to model electron transport in the biofilm.

Exchange of electrons between the electrode and the biofilm is really the exchange of

electrons between the electrode and those redox centres close to or in contact with the

electrode as shown in Figure 4.3B. In the spatial model of the biofilm this electron exchange

that produces current is written using the boundary condition of Equation 4.15. Through

the biofilm-bulk interface no electron transport occurs and the corresponding boundary

condition is Equation 4.16.

The full biofilm-electrode model is as follows.

∂ts(x, t) = Ds∂
2
xs(x, t)−

αq(Q0 − q(x, t))s(x, t)

Ks + s(x, t)
(4.12)

∂tq(x, t) = kQ0∆x∂2
xq(x, t) +

αq(Q0 − q(x, t))s(x, t)

Ks + s(x, t)
(4.13)

∂xs(0, t) = 0 (4.14)

∂xq(0, t) = j0
(
q(0, t)eAV + q(0, t)e−AV −Q0e

−AV
)

(4.15)

∂xq(L, t) = 0 (4.16)

s(L, t) = S0 (4.17)

Gradients form in the biofilm with this model

Equations 4.12-4.16 describe a model which permits the formation of gradients in both

substrate and electrons in the biofilm. For example, substrate can be abundant in some
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Figure 4.3: Illustration of the mechanisms of transport in the electroactive biofilm. A
shows how electrons q are transported by hopping between neighboring redox centres. It
is the electrons that move not the redox centres. Redox centres are the electrode interface
exchange their electrons with the electrode and generate current. Hopping can only occur
from occupied (q) to unoccupied (Q) redox centres, as shown in C. Substrate diffuses into
and through the biofilm at rate Ds shown in B. Substrate s is converted into q and exported
to the biofilm’s unoccupied redox centres Q, shown in D.

regions of the biofilm (close to the biofilm-bulk interface) and depleted in others (close to

the electrode). The magnitude of the gradients depends on the rates of biofilm transport,

but also on the activity of the bacteria in exporting electrons.

This is seen in Figure 4.4A and B where substrate and electron concentration gradients

are plotted from numerical simulations of Equations 4.12-4.16. Substrate tends to be more

available closer to the biofilm-bulk interface than at the electrode, where it is depleted.

Figure 4.4A predicts that substrate is almost completely absent at the electrode-biofilm

interface if activity of the bacteria (αq) is high, whereas it is almost fully available at the

biofilm-bulk interface. The same is true for electron concentration in the biofilm in Figure

4.4B, meaning that unoccupied redox centres Q are most available at the biofilm-electrode

interface, whereas the biofilm is almost at capacity close to the biofilm bulk interface.

Increased αq also allows the biofilm to consume more substrate and produce more current

density at the electrode as shown in Figure 4.4C. However it also produces a more

heterogeneous context for the bacteria in the biofilm. In Figure 4.4D shows the contribution

at each x position in the biofilm to the overall steady state current density. This shows the

real consequence of gradients in the substrate and electron concentration — the bacteria

rely on exporting electrons to derive energy from the substrate, so some bacteria will be

able to grow while others starve. This is an aspect of the biofilm that I do not model here.

In general, the model predicts that increased activity of the bacteria in terms of increased

αq leads to larger magnitude gradients of all the state variables of the model and more

72



Chapter 4: Toggle switch in the spatial context of the electroactive
biofilm

Figure 4.4: Plots of the gradients in electroactive biofilms and the current they produce,
predicted using numerical simulation of Equations 4.12-4.17. A shows the gradient in
substrate, which tends to be more available deeper in the biofilm and depleted close to
the electrode. At high activities of the bacteria (αq) this difference is the largest. The
concentration of electrons q in the biofilm also exhibits this kind of gradient with a different
shape shown in B. Again high αq produces larger gradients. C shows the current density
I over time at the electrode for the various αq, and D shows the contributions to I from
different depths in the biofilm.

heterogeneity in the biofilm.

Altogether the biofilm presented here offers a heterogeneous context where the environment

in which any bacteria finds itself depends on its x position in the biofilm. This extends to

any synthetic gene networks that the bacteria host.

Introducing bistability into the model

As described in Section 2.3, the toggle switch requires bistable dynamics. Figure 4.2A

makes a geometric argument showing that bistability is impossible in the wild type system,

and so modifications must be made to the wild type model in order to produce the

bistability required for the electrogenetic toggle switch.
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Figure 4.5: Bifurcation diagram for the wild type model of Equation 4.6 and the model with
positive feedback of Equation 4.18. The bifurcation parameter is V and is plotted against
the fixed point current outputs I. The solid lines are branches of stable fixed points (steady
states). The wild type model (blue line) increases monotonically and resembles a sigmoid
that approaches a current maximum asymptotically. The model with feedback is similar up
to a V ≈ 0.22 where bistability emerges. Within the bistable region there is a branch of
unstable fixed points (green line) and two additional stable fixed points.

Since in this model the output current density I is a function of the state of the biofilm

q(x, t), bistability in q(x, t) will result in bistability in I as well. This electronic output

measures the state of the electrogenetic switch.

Both I and the state of the biofilm q(x, t) also depend on the potential of the electrode

V , another electronic input. The convenience of controlling the state of the biofilm

electronically makes it attractive to use V to induce changes in the state of electrogenetic

toggle switch that can be measured with I. For this reason the bifurcation analysis here

will focus on V as a bifurcation parameter, and looks for bistability in I.

The modification that is required is positive feedback for q. Figure 4.2B uses Equation

4.18 to plot q against its rate of change when positive feedback is introduced. This positive

feedback can be modeled using a modification to Equation 4.18.

∂tq =

(
αq2

K2 + q2
+ j0e

−AV

)
(Q0 − q)− qeAV (4.18)

Where K is the value of q which produces half-maximal activation of q. This new ODE

admits bistability. Figure 4.2B shows an example, where there are one unstable fixed point

between two stable fixed points.

Figure 4.5 shows two examples I-V plots which I use for bifurcation analysis. The blue
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line in Figure 4.5 plots the steady states of I against V for the model in Equation 4.6. For

all values of V this equation has a single stable fixed point and so a single steady state I,

indicating that the system is monostable. The orange line in Figure 4.5 plots the same

analysis for the modified Equation 4.18, displaying the qualitatively different behaviour of

bistability.

The strategy for obtaining bistability in the electrogenetic toggle switch will be to engineer

this positive feedback for q. Just as in the genetic toggle switch [27] this can be done by

introducing a second component and using mutual inhibition. In the following I model q’s

positive feedback by adding a hypothetical genetic network with a single gene a, whose

expression both is repressed by and represses q, as shown in Figure 4.7A.

Equation 4.18 can be modified, and another ODE added for a, in order to model this

system, without taking into account spatial context.

∂tq =
αqa

na(Q0 − q)

Ka
na + ana

+ (Q0 − q)j0e
−AV − qeAV (4.19)

∂ta =
αaq

nq

Kq
nq + qnq

− γaa (4.20)

Where αq is the maximum overall electron export rate, αa is the maximum rate of a

expression, γa is the degradation/dilution rate of a, Ka and Kq are the half maximal

repression coefficients for a and q, and na and nq are the Hill coefficients for the repression

of q and a.

The existence of mutual inhibition between a and q provides the positive feedback for

q that is needed to admit bistability. However, not all values for the parameters of the

system will actually produce bistability, and an objective of the models presented here

is to predict those which do. I am particularly interested in the parameters Kq, Ka, na,

nq, since they can be modified using synthetic gene networks. That is, they are not part

of the context of the system and can be engineered using standard synthetic biological

approaches.

In order to aid in the search for bistable parameter sets, I use some simplifying assumptions

in order to produce a simplified nondimensional system. First an implicit assumption in

Equation 4.18 is that substrate is not limiting and can be regarded as constant. Second a

new assumption is introduced that the current density I is linear in q. This is approximately
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true for small V . Equation 4.19 is modified to produce:

∂tq =
αqa

na(Q0 − q)

Ka
na + ana

− γ1q (4.21)

where γ1 is the proportionality constant of current density to q. The rate at which q

‘degrades’ in this simplified model.

The dimensionless variables τ = t
tc

, A = aca and B = bcq are introduced. I also let

na = nq = 2. Using the chain rule we obtain:

∂τA = tcac∂ta =
tcacαa

1 + B
K2qc

2 − tcγaA (4.22)

∂τB = tcbc∂tq =
tcbcQ0 − tcB

1 + A
K1ac

2 − tcγ1B (4.23)

The following substitutions were made for the characteristic constants, tc =
Kq

αqQ0
, ac = 1

Ka

and bc =
1
Kq

to obtain:

dA

dτ
=

P1

1 +B2
− P2A (4.24)

dB

dτ
=

1− P3B

1 + A2
− P4B (4.25)

where P1 =
Kqαa

αqKaQ0
, P2 =

Kqγa
αqQ0

, P3 =
Kq

Q
and P4 =

Kqγ1
αqQ0

.

The nullclines of Equations 4.24 and 4.25 are plotted in Figure 4.6A. I used inspection

of these curves to adjust parameters P1,2,3,4 so that there are three intersections of these

nullclines and produce the bistability that is shown in Figure 4.6B. From this set of

dimensionless parameters the following parameter relationships can be identified.

αa

γa
= 10Ka (4.26)

Q0 = 5Kq (4.27)

Using these relationships to set the values of the parameters Ka and Kq produces bistability
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Figure 4.6: Bifurcation analysis of the dimensionless Equations 4.24 and 4.25. A plots the
nullclines and shows that they can be made to have three intersections, marked with circles,
which is a requirement for bistability. B shows a bifurcation diagram where A is plotted
against the bifurcation parameter P4. There is a shaded region of bistability from P4 ≈ 0.025
to P4 ≈ 0.12.

in the system of Equations 4.19 and 4.20. Figure 4.7B shows the bifurcation analysis for

this case. The timecourse simulation in Figure 4.7E reveals that the bistability manifests

as switching behaviour, where the switching between high and low current states can be

achieved by transient steps in the electrode potential V (Figure 4.7C). This behaviour

does not occur without the mutual inhibition shown in Figure 4.7A, and the timecourse in

Figure 4.7D confirms that this wild type system is monostable, and that transient steps in

V have only a transient effect on the current output I.

Bifurcation analysis of a limited substrate model

In Equations 4.7 and 4.8 I introduced the possibility of limitation of substrate using

Michaelis Menten kinetics. This is a standard approach to modeling enzyme kinetics

with ODEs. These Equations can also be modified to include the positive feedback loop

implemented with mutual inhibition shown in Figure 4.7A.
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Figure 4.7: A shows an abstract model of the mutual inhibition of q and a, amounting to
positive feedback for q. Substrate s, for example acetate, is converted to exported electrons
via the exoelectrogen’s TCA cycle at a rate which is repressed by a gene a. Exported electrons
in the biofilm are q and are transported to the electrode to produce current. q can be sensed
by the exoelectrogens and result in the repression of a, completing the positive feedback loop.
In B this model is shown to produce bistability for a small range of electrode potentials V .
V can be used as a signal as in C, to switch the system between the high and low current
states in E by taking advantage of hysteresis in the system. D shows a timecourse for a wild
type system without a feedback loop, and without bistable switching dynamics.
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Figure 4.8: Bifurcation analysis for the model which includes substrate limitation, but not
spatial context. The size of the bistable region is smaller than when substrate is assumed
nonlimiting and constant, as shown in A. Ks is the parameter which relaxes these assumptions.
Higher Ks increases the impact of substrate depletion on q production, and also reduces the
size of the bistable region. Bistable region size is plotted against Ks in B. Ks = 0.1 is the
value taken from the literature which I use in this thesis.

∂tq =
αqa

na(Q0 − q)s

(Ka
na + ana)(Ks + s)

+ (Q0 − q)j0e
−AV − qeAV (4.28)

∂ts = Ds(S0 − s)− αqa
na(Q0 − q)s

(Ka
na + ana)(Ks + s)

(4.29)

∂ta =
αaq

nq

Kq
nq + qnq

− γaa (4.30)

These new Equations allow substrate depletion to affect the rate at which q is produced.

This system is still capable of producing bistability as is shown in Figure 4.8A. However,

the bistable region is smaller as compared to the case presented in Figure 4.7B.

Substrate limitation therefore seems to reduce the robustness of the bistability in the

model. Figure 4.8B shows how the bistable region shrinks as Ks increases. At Ks = 0 the

model reduces to that without substrate limitation (the case shown in Figure 4.7B) and

the bistable region is largest. With increasing Ks more substrate concentration is required

to achieve high substrate conversion rates, and the bistable region shrinks. The value of

Ks I use in the rest of this study is taken from [45] and is marked with a vertical line.
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Bifurcation analysis of the full model

Until now bifurcation analysis has been performed on models where the spatial context, the

position x in the biofilm, has been considered insignificant. This assumption is reasonable

where transport of q and diffusion of s through the biofilm are quick enough compared to

the rate of electron export αq that gradients of q and s do not form. The biofilm can be

considered as homogeneous and ODEs are sufficient to model the system mathematically.

As stated in Section 4.1 this is often not a good assumption [76]. In this case it is necessary

to use a system of PDEs such as Equations 4.12-4.17 to include the spatial context in the

model. I modify this set of Equations to include the gene a and the mutual inhibition of a

and q, by first adding an Equation for ∂ta(x, t):

∂ta(x, t) =
αaq(x, t)

nq

Kq
nq + q(x, t)nq

− γaa(x, t) (4.31)

where αa is the maximum expression rate of a, nq and Kq are the Hill coefficient and half

maximal concentration for the repression of a by q, and γa is the degradation/dilution

rate of a. a is modeled as unable to diffuse through the biofilm, it is intracellular only.

Additionally Equations 4.12 and 4.13 are modified to take into account the repression of

electron export rate by a:

∂ts(x, t) = Ds∂
2
xs(x, t)−

αq(Q0 − q(x, t))s(x, t)a(x, t)na

(Ks + s(x, t))(Ka
na + a(x, t)na)

(4.32)

∂tq(x, t) = kQ0∆x2∂2
xq(x, t) +

αq(Q0 − q(x, t))s(x, t)a(x, t)na

(Ks + s(x, t))(Ka
na + a(x, t)na)

(4.33)

The extent to which gradients form depend on the parameters Ds and k. Ds is the diffusion

coefficient of the substrate and here I use a value obtained from the literature for acetate

diffusion in a biofilm [45]. There are no explicit measurements of k in the literature, but

instead I perform the analysis across a range of k spanning several orders of magnitude.

Figure 4.9A show how bistability can be lost as k decreases and biofilm gradients become

more significant. For example the system exhibits bistability at k = 10, but an identical

system where k = 1 displays only monostable behaviour. With all else being equal,

bistability will emerge for certain values of k, as shown in Figure 4.9B, where for this
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Figure 4.9: Bifurcation analysis for the full model, including spatial context of the biofilm,
using numerical analysis of Equations 4.31, 4.32 and 4.33. A shows how the parameter k,
which is the rate of q transport through the biofilm, can affect the emergence of bistability. The
bistability that exists at high rates of transport disappears at lower rates, which correspond
to higher magnitude gradients in the biofilm. B shows the relationship between k and the
size of the bistable region. Bistability emerges at k ≈ 5.82 and corresponds to the largest
bistable region, as shown in A (pink branch). The size of the region drops off as k increases
further, but levels off as k > 10.

example it is only values of k above 5.82 that exhibit bistability.a

The model presented here can be used to predict the affect of changes to the synthetic

network making up the genetic part of the switch. This is useful for discovering changes

to the parameters of the gene network which can recover bistable dynamics despite slow q

transport. As an example Figure 4.10A performs a bifurcation analysis on the system with

k = 1, which previously displayed only monostability. However, there are values of Ka

(Kq = 0.8 and Kq = 0.49 in Figure 4.10A), which is a parameter related to the repression

of a by q, for which bistability can be recovered. The range of values for Ka which produce

bistable dynamics can be found numerically, and is shown in Figure 4.10B for this case to

be between Kq ≈ 0.49 and Kq ≈ 3.6.

Parameter values for the wild type model

Physiologically reasonable parameter values can be extracted from the literature and

are summarised in the following table, along with justification for their values. I divide

these into parameters that are part of the synthetic gene network (Table 4.2 and so are

potentially engineerable, and parameters that are part of the context (Table 4.1 and cannot

be engineered with ease.
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Figure 4.10: Bifurcation analysis for the full model with k = 1. A shows how bistability can
be recovered by modifying the parameter Ka, which is a parameter related to the repression
of a by q and can be engineered. Increasing Ka from 0.1 (which produces bistability in the
nonspatial model but in the spatial one for k = 1) to 0.8 recovers the bistable dynamics. B
shows the relationship between Ka and the size of the bistable region. Bistability emerges at
Kq ≈ 0.49 where the size is at a maximum. This is shown in A as the green branch. The
size of bistable region decreases until it disappears at Kq ≈ 3.6, beyond which the system in
once again monostable.

Parameter Value Unit Justification
j0 3× 10−2 s−1 Taken from [45]
Q0 10 mol m−3 Calculated from [73]
αq 1.3× 10−1 s−1 Chosen to produce

1 A
m2 at V = 0.6 [73]

S0 1 mol m−3 Default value taken from [45]
Ks 0.1 mol m−3 Taken from [45]
Ds 5.5× 10−10 m2s−1 Taken from [45]
V - volts Reasonable values between

−1 and 1 volts
k 10 m3 mol−1 s−1 Unknown variable
∆x 1× 10−6 m Dependent on discretisation

Table 4.1: A table of parameters related to the biofilm, electrode or substrate. With the
exception of electrode potential V these parameters are not easy to engineer.
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Parameter Typical Value Unit Justification
αa 0.01 s−1 Variable
γa 1 s−1 Variable
Kq 1 mol m−3 Variable
Ka 0.01 mol m−3 Variable
nq 2 - The lowest necessary for bistability
na 2 - The lowest necessary for bistability

Table 4.2: A table of parameters related to synthetic gene network of the electrogenetic
toggle switch, in particular the level of gene expression of a and the parameters of the two
mutual inhibitions. The parameters are to a greater extent amenable to engineering with
synthetic biology tools.

4.3 Discussion

The analysis presented here suggest that an electrogenetic toggle switch could be engineered

using a synthetic gene network. The electrogenetic toggle switch could be hosted by

exoelectrogenetic bacteria, growing in a electrode-attached biofilm, and can produce

bistable dynamics for parameters of the biofilm and electrode that are physiologically

relevant. It is a hybrid device which takes an electronic input (electrode potential V ),

processes the input using a biological and gene network, and produces an electronic output

(current density I). The input is in this case used to switch between high and low output

states. This takes advantage of (engineered) bistability and hysteresis of the electroactive

biofilm-electrode system.

Spatial homogeneity is a useful assumption for reducing the complexity of models that

are used for the design of synthetic gene networks [79]. This is especially useful when the

environment is well-mixed. However, a key prediction of the model is that the biofilm

environment is heterogeneous, a phenomena also observed experimentally [76]. Since

the electrogenetic toggle switch interacts with the biofilm in a fundamental way, this

heterogeneity is important in the design of the switch since it changes the set of parameters

for which bistability is present. I show that there are parameter sets for which bistability

is predicted to emerge in a homogeneous biofilm (for example in Figure 4.7B) but for

which bistability is lost when biofilm heterogeneity is taken into account (for example in

Figure 4.9B. Despite this additional complexity, the model can also be used to predict the

changes to the electrogenetic network that recover bistability in a number of the cases I

present, and this just by engineering the synthetic gene network.

The results highlight some of the challenges involved in redesign of classic synthetic biolog-
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ical networks as electrogenetic systems, particularly in the context of the heterogeneous

environments that are typical in electroactive biofilms. The work presented here also

provides a basis for future work in addressing these challenges and toward the rational

design of hybrid synthetic biological device that can be measured and controlled both

genetically and electronically.

The electrogenetic toggle switch in context

The exoelectrogens are connected to the electronic input and output of the switch by the

redox state of the biofilm. This is a desirable property of the switch because it constitutes

a closed-loop system that can monitored and controlled by electronics via the electrode.

This offers opportunities for ‘online’ control strategies and real-time collection similar to

the capabilities offered by optogenetics [14].

The rate of transport of electrons (and more generally, charge) through the biofilm is a

contextual parameter that can affect the dynamics of the switch, but which cannot be

eliminated from consideration since the bacteria depend on the biofilm for communication

with the electrode. Instead it is necessary to engineer a synthetic gene network which

can tolerate slower electrons transport rates and the gradients that form as a result.

Fortunately the model I present here predicts that this is possible in a least some cases.

Possible implementations of the electrogenetic switch

The model I present here is abstract, only describing at a high level, and with lumped

parameters, the repression interactions between electrons in the biofilm q and a hypothetical

gene a which limits the rate at which these electrons are exported. Implementations of

the electrogenetic toggle switch will have to identify suitable genes and mechanisms to

create the required repressive interactions.

In Geobacter it has been shown that control of expression of gltA can be used to modulate

their current output [89]. gltA encodes for a citrate synthase, which is a key enzyme for the

metabolism of acetate in the TCA cycle. In the study expression of gltA was activated using

IPTG, but this synthetic gene network could be also be modified or integrated into larger

networks to be repressed. gltA seems like a good candidate for a in an implementation of

the electrogenetic toggle switch.

84



Chapter 4: Toggle switch in the spatial context of the electroactive
biofilm

It is also required that q can be sensed by the bacteria and that this redox signal can be

transduced to repress a. Redox sensitive promoters such as pSoxR can be used to sense the

redox state of the intracellular environment, but also rely on exogenous redox mediators to

communicate with the electrode [87]. Perhaps more promising is the introduction of two

component systems such as Arc systems into Geobacter. Arc systems have been shown to

link the redox state of the periplasmic quinone pool to gene expression levels in E. coli

[31]. This periplasmic quinone pool is linked with the redox state of the biofilm via outer

membrane cytochromes such as OmcB and OmcZ in Geobacter, making such systems

potentially useful for linking q to synthetic gene networks.

Future work

The model I present here should be expanded to include more details of the mechanisms

implementing the interactions between q and a. This will help inform the choice of

implementation, as described above. Once an implementation is built it can be used to

generate experimental data for fitting the model and tuning it’s parameters.

As discussed in Section 4.1, positive feedback for q is a requirement for bistability to

emerge, and the original genetic toggle switch implemented this positive feedback using

mutual inhibition, that is, using two repression interactions in a loop so that the overall

effect is a positive feedback. This was necessary in order to be able to easily switch ‘on’

and ‘off’, since the inducers could only deactivate their target repressor molecules. This

is not the case for the electrogenetic switch presented here, since the electrode potential

can be used as an induction signal to both decrease (deactivate) or increase (activate) q,

allowing the electrode to be used as an inducer in both ‘directions’. There may therefore be

an opportunity to implement the electrogenetic switch using a different network topology

involving activations instead of repressions. Here the model could be useful to identify any

advantages in terms of robustness for either topology, can perhaps open up more options

for simpler physical implementations of the switch.

Additional spatial dimensions might also be included in future modeling work, the current

model assumes that the only positional information that matters in the biofilm is depth,

the distance from the electrode. Adding spatial dimensions and comparing the results

should confirm this.

The biofilm is important in providing context for the electrogenetic toggle switch, but
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Figure 4.11: Bifurcation diagrams of biofilms of different depths, L. Numerical analysis
of identical synthetic gene networks in the context of different biofilm depths reveals that
bistable dynamics that are present in thinner biofilms (blue and purple lines) can be lost in
thicker biofilms (green line)

the biofilm itself is a dynamical system that can grow and shrink over time. Figure 4.11

shows how biofilms can lose bistability as they become thicker, perhaps because they

are more likely to have greater heterogeneity than thinner biofilms. In this simulation,

biofilms of depth 10 and 20µm exhibit bistability whereas an indentical switch in a 40µm

biofilm does not. Complicating matters is that the growth rate of the biofilm should be

dependent on the activity of the bacteria, so that higher current densities lead to more

growth. Therefore it is possible that the depth of the biofilm at a given time depends

on the state history of the switch. Considering this complexity, it would be valuable to

include growth in the model in order to aid the design of an electrogenetic toggle switch

that can function correctly in a dynamic biofilm.
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Chapter 5

Repressilator in the spatial context of

the electroactive biofilm

This chapter adapts the model I developed in the previous chapter to examine a design of a

electrogenetic oscillator. I adapt the synthetic biological network from the repressilator [23], and

perform numerical analysis of the model.
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5.1 Introduction

The previous Chapter analyses an electrogenetic gene network intended to produce bistable

dynamics. In Section 2.3 I introduced oscillatory dynamics as another class of fundamental

behaviours. In this Chapter I adapt the design of the well studied repressilator, a synthetic

gene network oscillator, in a similar manner as the genetic toggle switch.

This electrogenetic repressilator should:

• Be hosted in an electroactive biofilm by bacteria in a MES.

• Include a synthetic gene network.

• Produce an electronic output in the form of electrical current at the electrode.

• Retain the qualitative dynamics of the repressilator (oscillations).

A key issue for oscillating gene networks is phase drift [68]. At the population level

oscillatory dynamics are the result of contributions from individual synthetic gene networks

hosted in individual cells. These gene networks are subject to both extrinsic and intrinsic

noise that can cause the oscillations to lose coherence, such that the population as a whole

no longer exhibits oscillations, even if their initial conditions are identical.

One well known solution that has received attention is the global coupling of the individual

oscillators. Such a coupling was previously implemented for a population of genetic

oscillators by using quorum sensing for intercellular communication, with the result of

sustained, synchronised oscillations in a growing population of Escherichia coli [19].

By integrating the repressilator network with the biofilm, it is possible that biofilm electrons

q might also constitute an intercellular communication network that amounts to a global

coupling of individual oscillators. If so the synchronisation of oscillations might come ‘for

free’ with the electrogenetic repressilator as a result of linking it to the redox context of

the biofilm.

Here I make a preliminary analysis of the feasibility of this global coupling, as well as

perform bifurcation analyses of the model.
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5.2 Results

Figure 5.3A shows a schematic of the network of the proposed oscillator. There are two

genes, p1 and p2, and the biofilm electron concentration q, arranged in a negative feedback

loop. q is sensed by bacteria and represses the expression of p1, p1 represses the expression

of p2, and p2 inhibits the rate of electron export to effectively repress the production of q,

completing the loop.

Model formulation

Here I adapt the BioModels SBML model for the repressilator for modeling the synthetic

gene network [61]. This includes state variables m1 and m2 for the mRNA encoding for p1
and p2. The PDEs for the gene network are as follows:

∂tm1(x, t) =
αmq(x, t)

nq

Kq
nq + q(x, t)nq

− γmm1(x, t) (5.1)

∂tm2(x, t) =
αmp1(x, t)

np

Kp
np + p1(x, t)np

− γmm2(x, t) (5.2)

∂tp1(x, t) = αpm1(x, t)− γpp1(x, t) (5.3)

∂tp2(x, t) = αpm2(x, t)− γpp2(x, t) (5.4)

where αm is the maximal transcription rate, γm is the mRNA degradation/dilution rate,

αp is the translation rate of the mRNA, γp is the degradation/dilution rate of protein, Kp

is the half maximal repression concentration of transcription by the protein, and np is the

Hill coefficient for the repression.

As with the electrogenetic toggle switch the mRNA and protein are intracellular species

that do not diffuse in the biofilm.

The model is completed by the PDEs for q and s, and their boundary conditions, which

are the same as those first presented in Chapter 4.
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∂ts(x, t) = Ds∂
2
xs(x, t)−

αqp2(x, t)
np

Kp
np + p2(x, t)np

· (Q0 − q(x, t))s(x, t)

Ks + s(x, t)
(5.5)

∂tq(x, t) = kQ0∆x∂2
xq(x, t) +

αqp2(x, t)
np

Kp
np + p2(x, t)np

· (Q0 − q(x, t))s(x, t)

Ks + s(x, t)
(5.6)

∂xs(0, t) = 0 (5.7)

∂xq(0, t) = j0
(
q(0, t)eAV + q(0, t)e−AV −Q0e

−AV
)

(5.8)

∂xq(L, t) = 0 (5.9)

s(L, t) = S0 (5.10)

where the only difference from Equations 4.32 and 4.33 is that production of q is now

repressed by p2 instead of a. Parameters in common with the toggle switch and biofilm

model have the same interpretation. Additional parameters are listed in Table 5.1 along

with their typical values.

Parameter Typical Value Unit Justification
αm 3.011× 10−5 mol m−3 s−1 Calculated from [61]
γm

ln(2)
120

s−1 Taken from [61]
αp 0.1155 s−1 Calculated from [61]
γp

ln(2)
60

s−1 Taken from [61]
Kp 5× 10−3 mol m−3 Variable
nq 3 - Variable
np 3 - Variable
Kq 0.2 mol m−3 Variable

Table 5.1: A table of parameters related to synthetic gene network of the electrogenetic
repressilator. The model shares some parameter with the previous model of the electrogenetic
toggle switch, and these parameters are the same as listed in Tables 4.2 and 4.1 if not listed
here.

Numerical timecourse simulation with these parameter values reveals oscillatory dynamics

with a period of around 15 minutes as shown in Figure 5.1A. Oscillations are present in

current output I as a result of oscillations in the concentration of electrons q at the electrode

interface. In Figure 5.1B a heatmap of q(x, t) is plotted where the y-axis represents position

in the biofilm and the x-axis shows the evolution over time. The oscillations in q are

present at all depths in the biofilm, with a slight gradient between the electode and bulk

interfaces. This result shows that it is possible for oscillatory dynamics to emerge for this

electrogenetic oscillator.
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Figure 5.1: A timecourse simulation of the electrogenetic repressilator, with parameter
values as listed in Table 5.1. In A the current density I is plotted over time and exhibits
oscillations with a period of around 15 minutes. In B the electron (charge) concentration
(z-axis) at each x position in the biofilm (y-axis) is shown against time (x-axis). There is
a small gradient in the biofilm, and oscillation amplitude is seen to be greater at higher x,
deeper in the biofilm.

Bifurcation analysis to identify oscillatory regions

The bifurcation analysis with parameter V is plotted in Figure 5.2A, shows a single Hopf

bifurcation at V = 0.11 marking the emergence of oscillations. In contrast to the results

from the electrogenetic toggle switch, the region for which the desirable dynamics are

present is large. This analysis was performed for k = 1, which is a relatively slow rate of

electron transport which produced significant gradients in the biofilm for the electrogenetic

toggle switch and for which the synthetic gene network had to be adjusted to produce

bistability.

This result might suggest that the electrogenetic oscillator might be in some sense easier to

engineer, and more robust to electron transport rate, than the toggle switch. The analysis

in Figure 5.2B supports this conclusion. Oscillations can emerge over at least 4 orders

of magnitude for k, marked by the shaded region, with 1− 3 hopf bifurcations, and the

system oscillates over wide ranges of V (though always for V > 0.1).

Oscillations can be switched on and off using the electrode potential to move the system

between the oscillatory and nonoscillatory regions shown in Figure 5.2B. A timecourse

simulation of this switching is shown in Figures 5.3B, C, and D. From an initial monostable

state with V = 0.07, oscillations can be induced by stepping V to 0.2, and switched off

again by stepping V back down to 0.07. The effect on q(x, t) is as expected, shown in
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Figure 5.2: Bifurcation analysis of the Equations 5.1-5.10. In A the bifurcation parameter V
is plotted against I, for the case where k = 1. A hopf bifurcation point marks the emergence
of oscillatory dynamics at V ≈ 0.1. The shaded orange region shows the minimum and
maximum of the oscillations. B plots the existence and positions of hopf bifurcations as k is
varied. At low k two hopf points (orange lines) bound a narrow oscillatory region (shaded).
As k increases a third hopf point emerges and finally collides with the second to produce the
large region of oscillations with a single hopf point that characterises the system dynamics
until the reemergence of the second at k ≈ 6.

Figure 5.3B.

Comparison with nonspatial model

In the limit of large k the electrons can be transported infinitely fast and the q is

homogeneous. Here I use the ODEs 5.11-5.16 to model a homogeneous biofilm without a

spatial dimension, and compare bifurcation analysis of this model with that presented in

the previous section.
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Figure 5.3: In A a diagram showing the interactions of the electrogenetic repressilator. q,
p1 and p2 form a negative feedback loop just as in the orginal repressilator design, and under
certain conditions their concentrations will oscillate, as will the consumption of substrate
through the TCA cycle, which is repressed by p2. B, C and D show the results of a timecourse
simulation of Equations 5.5-5.10, with parameters from Table 5.1 and k = 1. Oscillatory
dynamics can be switch on and off using V as shown in C, which produces the observed
current density I shown in D. Oscillations in q correspond to those in I, and can similarly
be switched on or off as shown in B.
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Figure 5.4: A bifurcation analysis comparing the homogeneous and heterogeneous model for
bifurcation parameter V . The homogeneous model of Equations 5.11-5.16 does not include
space and has two hopf bifurcation points bounding a relatively small region of bistability
surrounded by monostable dynamics. The heterogeneous model of Equations 5.1-5.10 produce
a single hopf point and much larger regions of oscillatory dynamics, in this example the case
of k = 1 is shown.

∂tm1 =
αmq

nq

Kq
nq + qnq

− γmm1 (5.11)

∂tm2 =
αmp

np

1

Kp
np + p

np

1

− γmm2 (5.12)

∂tp1 = αpm1 − γpp1 (5.13)

∂tp2 = αpm2 − γpp2 (5.14)

∂tq =
αqp

np

2

Kp
np + p

np

2

· (Q0 − q)s

Ks + s
− j0

(
qeAV + qe−AV −Q0e

−AV
)

(5.15)

∂ts = Ds(S0 − s)
αqp

np

2

Kp
np + p

np

2

· (Q0 − q)s

Ks + s
(5.16)

For the same parameter values and compared to the heterogeneous model, the region of

oscillatory dynamics in this nonspatial model is much smaller, lying between V = 0.11

and V = 0.23. The addition of space into the model seems to allow the system to oscillate

over a much greater range of V . Again this suggests that spatial context increases the

robustness of the oscillator, whereas in Chapter 4 it seemed that robustness was degraded

by this contextual effect.
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Figure 5.5: A heatmap of electron concentration q throughout the biofilm over time. In
this simulation each region of the (discretised) biofilm has initial conditions which place the
electrogenetic repressilator out of phase with one another. It is seen that after an initial
transient period (until around 30 seconds), the coupling of these individual oscillators by
the biofilm pulls them into phase with one another so that consistent oscillations begin to
emerge.

Global coupling to prevent phase drift

I return to the heterogeneous model of Equations 5.5-5.10 to investigate the impact of

space in the biofilm on phase drift in the electrogenetic oscillator. Figure 5.5 shows a

heatmap of q(x, t) in the biofilm. For this simulation the electron transport rate k = 1 and

each discretised section of the biofilm is started in initial conditions that correspond to

the oscillators being in randomly selected phases. That is, it is a simulation of individual,

but identical, oscillators started at different times, and coupled together with the biofilm.

The results show that up to 30 minutes q increases substantially, particularly deeper in

the biofilm. After this the biofilm exhibits oscillations with period of around 15 minutes,

which could be expected as this matches the period seen in Figure 5.1. It seems as though

the individual regions of the biofilm were able to synchronise their oscillations, perhaps

through the global coupling facilitated by the electron transport and substrate diffusion

processes.

5.3 Discussion

Numerical simulations suggest that the proposed electrogenetic oscillator could be built

using a synthetic genetic network. The electrogenetic oscillator is hosted in an electroac-
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tive biofilm by exoelectrogenic bacteria and produces oscillations that can be detected

electronically as electrical current flowing through an electrode.

Bifurcation analysis of the model shows that this oscillator is more robust than the

electrogenetic toggle switch to changes in the electron transport rate (k) in the biofilm

(Figure 5.2). This is encouraging as this rate is a contextual effect that might differ between

individual biofilms under different environmental conditions [96, 97, 66].

Another contrast with the electrogenetic toggle switch is the effect of spatial heterogeneity

on the emergence of the desired dynamics. Interestingly this electrogenetic oscillator

has a smaller region of oscillatory dynamics when spatial dimensions are neglected, and

seemingly spatial distribution of the gene network encourages the emergence of oscillations.

This might be a case then, where linking synthetic gene networks with their environmental

context helps achieve the desired function.

Softer gradients in the electrogenetic oscillator

Even at relatively low electron transport rates (k = 1) the model predicts that the gradient

of q in the biofilm will have a small magnitude, as shown in Figure 5.1B for example. An

explanation for this might be that in the electrogenetic oscillator q has negative feedback

(implemented using a loop of three repressive interactions), and that negative feedback

is known to stabilise expression[28]. This might have important implications for dealing

with spatial gradients in context for other synthetic gene networks and homogenising the

electroactive biofilm.

Global coupling synchronises oscillations

In Figure 5.5 it is shown that a biofilm of oscillators starting in random phases tends toward

synchronised oscillations. This reflects other results that have shown that intercellular

coupling can solve the phase drift problem, for example by using diffusing quorum sensing

molecules to couple synthetic gene oscillators [74]. It seems that the electroactive biofilm

can also solve this problem, despite the asymmetry in the spatial domain and the overall

tendency of electrons to flow toward the electrode.
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Future work

As with the electrogenetic toggle switch, the model should be expanded to include the

details of the interactions between q and p1 and also between p2 and the electron export

rate that produces q. The goal is to engineer the synthetic gene network so that it

can be tested and the model improved, and the model can help to inform the choice of

implementation of these interactions.

It would also be interesting to explore the dependence of the period and amplitude of

oscillations on the parameters of the model. This includes the dependence on V , where it

would be interesting to see if identical gene networks can be induced to give quantitatively

different oscillations in response to electrode potential. This has been a key aim for

the engineering of synthetic biological oscillators for some time, and control of genetic

oscillator’s period or amplitude has previously been achieved by altering inducer levels

[80] or by redesign of the gene network [86].

Although the numerical simulation in Figure 5.5 suggests that the dephasing problem

could be solved by global coupling mediated by the biofilm, the results might not be

convincing since I have used a deterministic model of the system. The root of the

dephasing problem appears to be the intrinsic and extrinsic noise acting on the gene

network, and the deterministic model fails to capture the effects of this noise. Future work

might therefore require nondeterministic models using stochastic differential equations

or Gillespie simulations, before concluding that the biofilm can help produce sustained

coherent oscillations.
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Conclusion

This chapter summarises the work presented and offers some conclusions and final remarks.
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In this thesis I have used mathematical modeling to investigate the impact of host, genetic

and spatial context on the performance of three classes of synthetic gene network that are

fundamental and widely used in biocomputing.

In Chapter 3 I used previously collected experimental data on a library of genetic logic

gates to quantify the differences in the performance of the library due to changes in to

contextual parameters, host organism and plasmid vector. Building circuits of genetic logic

gates is a popular approach implemented the combinatorial logic model of computation

for the purposes of biocomputation, but increasing the complexity of circuits relies on the

modularity a reusability of the individual gates, both of which are impeded to some extent

by contextual effects. My analysis reveals significant differences in gate performance due to

context that seem difficult to predict a priori, since the performance of the gates changed

not only in quantitative but also a qualitative sense.

I use metrics such as number of valid NOT gates (with given thresholds), number of

compatible NOT gates, and an upper bound on maximum circuit depth to measure the

usefulness of the library in each context, and in cross-context libraries. Although these

metrics do not always agree which library is the most useful, in all cases usefulness is

found to increase as more contexts are added to the library, suggesting the incorporation of

context as a design parameter can be advantageous for combinatorial design of increasingly

complex genetic logic circuits.

In Chapter 4 I propose a design for a synthetic biological network which is bistable

and is intended to operate in an electroactive biofilm. Bistability is a fundamental type

of dynamics in biocomputing and computing in general, in particular for providing a

‘memory’. However, a biofilm provides a heterogeneous environment, presenting the same

synthetic gene network with different environments at the same time, depending on their

spatial position in the biofilm. The model I describe here predicts that this spatial and

environmental context can degrade the performance of this electrogenetic toggle switch to

the point that it loses bistable dynamics.

Fortunately the model also predicts that bistable dynamics can be restored by altering

the genetic components that make up the synthetic gene network. In the case of the

electrogenetic toggle switch the effects of context on the gene network are unavoidable,

but the model can predict how they can be accounted for in order to preserve function.

Chapter 5 follows on from the electrogenetic toggle switch and I propose another redesign

of a classical synthetic gene network, the repressilator, for integration into an electroactive
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biofilm. This electrogenetic repressilator has oscillatory dynamics, another fundamental

class of dynamics in computing which can be used as a clock to synchronise the transitions

other computing operations, for example in sequential logic circuits∗.

Again the biofilm provides a spatial context for the gene network in the oscillator. However

in this case the model predictsthat this spatial context will improve robustness of system

and expand the set of parameters for which the desired oscillatory dynamics can be

observed. The reason for this is not clear, though it may have to do with the coupling

of the gene networks that is mediated by the biofilm. The model also predicts that the

same coupling will improve the coherence of oscillations in the system, and pull individual

oscillators into phase with one other, even if they have initial conditions that are out of

phase.

Final remark

Context is often framed as an unsolved problem in synthetic biology that prevents the

scaling of biocomputational complexity, and the establishment of engineered cells as a

dominant computing substrate for applications beyond simple biosensors or toy examples

of logic circuits.

But it is no small irony that the very thing frustrating the emergence of this dominance also

makes the proposition attractive in the first place. Context arises from living computational

systems interacting with their environment, which is precisely what grants them potential

in computational domains within which conventional computers are just not comfortable.

Synthetic biology should not hope to eliminate the effects of context but rather think

about them as signposts on the way to computational domains — ones in which living

systems will outperform nonliving ones. Growth, noise, evolution and spatial distribution

are all things that conventional computers struggle with, but that biocomputers do not.

The way to deal with context in synthetic biology is to consider it a first-class citizen that

is included in the very beginning of the design stage of a synthetic biological system.

∗Sequential logic circuits are similar to combinatorial logic circuits but can have feedback loops,
meaning the output of computations can depend on previous as well as current inputs
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