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Abstract 

As industrial processes become more integrated and complex, the impact of faults 

rises, and process monitoring, and maintenance becomes more challenging. Though 

fault detection is crucial for mitigating risk, a comprehensive understanding of fault 

diagnosis and prognosis is essential for identifying the root causes and ensuring 

systemic safety. Previously, fault diagnosis based on reconstruction methods using 

principal component analysis (PCA) has been oriented towards sensor faults outside 

of the control loop, neglecting the intricacies of process fault that impact multiple 

variables due to intricate correlations between these variables. This thesis bridges 

this gap by offering enhanced statistical and machine learning methodologies for 

diagnosing and prognosing process faults. 

Typically, a process fault will cause process measurements to move in a specific 

direction within the measurement space. The first principal component (loading 

vector) of a PCA model, when applied to known faulty data, can effectively capture 

the primary characteristics of the fault, thereby delineating the direction of 

deviation. This study enhances fault reconstruction methodologies by applying 

PCA to historical fault data, thereby establishing a fault direction matrix that 

encapsulates the multidimensional nature of process faults. It is imperative to note 

that this approach presupposes the availability of historical fault data for model 

training and is primarily effective for previously encountered faults. For emergent 

faults, without historical data, alternative methods or the incorporation of new data 

types would be necessary for effective diagnosis. 

In this study, fault prognosis focuses on the long-range prediction of the 

reconstructed fault magnitudes. In this thesis, time series prediction models based 

on machine learning are developed, utilizing reconstructed fault magnitude data 

from historical process data and are used to predict future fault magnitudes. The 

thesis presents using extreme learning machine (ELM) models and long short-term 

memory (LSTM) networks to build fault magnitude prediction models, as well as 

autoregressive (AR) models as a baseline for comparison. ELM models show 

improved prediction results compared to AR models. Nevertheless, during the 

training phase, the adjustment of the ELM network's parameters is confined to the 

output weights. The hidden layer weights and biases, initially set at random, remain 

unchanged. This design choice, made by the developer, aims to streamline the 
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training process, but it may lead to less consistent predictive performance across 

different datasets. In contrast, LSTM networks, with their memory units, are better 

suited for modelling dynamic relationships and handling long-term dependencies. 

To enhance the reliability and accuracy of long-range prediction, this study employs 

an LSTM network model for multi-step prediction of fault magnitude. The 

applicability of this method is illustrated through a simulated continuous stirred 

tank reactor (CSTR) process, suggesting that such model could be beneficial in 

industries such as chemical production, pharmaceutical manufacturing, and energy 

generation. This model could be integrated into monitoring systems to optimize 

predictive maintenance, enabling early fault detection, and preserving the integrity 

of production processes. 

While this thesis primarily focuses on the individual contributions and applications 

of PCA-based methods, ELM, and LSTM models in process fault prediction, it 

acknowledges the potential of their integrated use. The combination of these 

methods, although not explored in depth within this work, poses a promising avenue 

for future research. Such a hybrid approach could synergistically utilize the early 

detection strengths of PCA-based methods, the rapid prediction capabilities of ELM, 

and the long-term dependency learning of LSTM models. This integrated model 

could potentially lead to more advanced, robust, and comprehensive fault prediction 

systems, forming an exciting and valuable direction for future research endeavours. 
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Chapter 1 Introduction 

1.1 Background 

With the integration of advanced computer technology in modern industrial 

processes, the complexity of production systems in industrial plants has increased 

significantly. These systems have evolved from simpler single loop control systems 

to more sophisticated multivariable control systems. Many industrial processes now 

feature continuous, large-scale production with complex reaction mechanisms. 

These processes are characterized by nonlinear behaviour and time-varying 

dynamics, often exhibiting strong correlations between numerous inputs and 

outputs. Additionally, uncertainties in feedstock and operational parameters add 

further complexity to monitoring these industrial production processes.  

Modern large-scale production system typically composed numerous 

interconnected and interdependent process units. This integration enhances 

production and energy efficiency, yielding considerable economic benefits. 

However, it also means that a fault in one component can have a cascading effect, 

potentially impacting the entire production process. Minor faults, if not addressed 

promptly, can disrupt normal operations, or even necessitate a complete shutdown. 

While less severe faults might merely degrade performance, affecting the quality 

and quantity of output, serious faults can lead to complete system shutdowns, 

equipment damage, and in extreme cases, casualties. For examples, on April 22, 

1992, a gas explosion took place in Guadalajara Mexico, due to the pipeline 

corrosion leading to fuel leaks to the sewer and a short circuit of the wire detonated 

the fuel (Bilbao and Alcerreca, 1994). More than 200 people were killed and 1470 

injured. In 2004, an explosion occurred at an LNG plant in Skikda, 500 kilometres 

east of the Algerian capital, because of the pressure in the tank reached the limit 

resulting in a larger amount of steam leakage and leading a secondary explosion, 

which caused death of 27 people and 74 injured (Reddy and Yarrakula, 2016). On 

November 22, 2013, the rupture of the oil pipeline of Sinopec Pipeline Company in 

Qingdao, Shandong Province, China, caused the leakage of crude oil. During the 

repairs, a fire broke out and the accident caused 62 deaths, 136 injuries and direct 

economic losses of 750 million yuan ('TCE: Asia: Sinopec publicly reprimanded 

over pipeline blast,' 2014). On November 30, 2017, an accident occurred in the heat 

exchanger repair operation of PetroChina Urumqi Petrochemical Company's oil 

refinery, resulting in five deaths and 16 injuries (Pelayo et al., 2017). Therefore, in 
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order to avoid the occurrence of serious accidents, reduce general accidents, prevent 

or eliminate the occurrence of faults, and enable modern industrial processes to 

achieve a higher level of safety, reliability and efficiency, industrial process 

monitoring has become increasingly important (Abbasi et al., 2019). With the 

widespread use of distributed control systems, various intelligent instruments and 

control devices have been deployed in modern industrial processes and large 

amounts of process data are collected and stored. This data, encapsulating vital 

information about the process's operating status, is frequently underutilized. 

Therefore, a key area of interest is exploring how this data can be effectively 

leveraged for process monitoring. This topic has garnered significant attention in 

recent years, becoming a prominent research focus in the fields of automation and 

control within the process industry. 

1.2 Process Monitoring Research  

Generally, any unacceptable abnormal behaviour that causes a system or process to 

deviate from its normal operating conditions or state is considered a process fault 

(Isermann, 1997). 

In the process industry, faults can be classified according to their source, such as 

sensor faults that affect process measurements, actuator faults that affect the 

manipulated variables, faults caused by malfunctions, and faults in the system 

components of process equipment (Chiang et al., 2001). These faults can occur 

suddenly, such as the abrupt fault of process equipment, or they can occur slowly 

over time, such as faults caused by gradual wear and tear of equipment or scaling 

of pipework. 

Process monitoring is defined as the real-time and effective monitoring of possible 

faults or abnormal events in the process to ensure that the system meets the specified 

performance requirements during operation and that the correct diagnosis is made 

in a timely manner. Information derived from process monitoring allows process 

maintenance personnel to accurately and promptly determine if an abnormal 

condition is occurring in the process and to quickly take appropriate action to 

eliminate the cause of the abnormal condition. Process monitoring reduces the time 

that faults are present throughout the process, thereby increasing the reliability and 

safety of the equipment and minimising the damage caused by the faults. As the 

industrial age continues to evolve, process monitoring can be divided into three 

areas: fault detection, fault diagnosis and fault prognosis (Reis and Gins, 2017a). 
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Fault detection is the process of identifying and detecting abnormal behaviour or 

faults in a system or process. It is typically the first step in a fault diagnosis and 

prognosis system, as it alerts operators or maintenance personnel that something is 

wrong and requires further investigation.  The process of identifying the specific 

cause of a detected failure or abnormal behaviour is known as fault diagnosis. 

Typically, this involves analysing sensor data and other system information to find 

the main cause of the problem and to isolate the impacted component or system. 

The objective of fault diagnosis is to promptly and precisely identify the problem 

so that the necessary maintenance or repairs can be performed to minimise system 

downtime and maintain system performance. Fault prognosis is a proactive method 

for predicting system faults or failures before they occur or before they become 

significant. The aim of this approach is to improve system reliability and reduce 

downtime through preventative maintenance and repair. To achieve this goal, 

sensors, data analysis techniques and machine learning algorithms are used to 

monitor the performance of the system and identify any trend or anomalies that may 

indicate the possibility of a fault.  

Process monitoring can be traced back to the 1970s when the American academic 

Beard laid the foundations of process monitoring theory by proposing the idea of 

using analytical redundancy instead of physical redundancy for fault monitoring 

and diagnosis (Das et al., 2012). With the development of computer technology, 

artificial intelligence and expert systems, methods and techniques designed for 

process monitoring have spanned several areas such as mathematical analysis, 

signal processing, statistics, and artificial intelligence. Process fault monitoring 

methods are often classified as model-based, knowledge-based and data-based 

methods (Venkatasubramanian et al., 2003a; Venkatasubramanian et al., 2003b; 

Venkatasubramanian et al., 2003c). The model-based approach relies on a model 

of the monitored process usually developed from the internal working of the 

production process or the transfer mechanism of the material flow. Residuals from 

the model are calculated by comparing the measured information of the monitored 

process with the estimated system information expressed by the model, which then 

serves to evaluated and diagnosis of faults. With a precise mathematical model, the 

model-based method for process monitoring is highly accurate, but such a model is 

usually difficult to obtain. Typical model-based methods include the parameter 

estimation method, the state estimation method, and the parity relations method. 
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Knowledge-based methods usually rely on process operation experience and 

process knowledge and tend to provide more intuitive monitoring results, but 

building a process knowledge base is always a time-consuming and difficult 

operation requiring long-term expertise and experience, represented by methods 

such as fault trees, expert systems, fuzzy reasoning, etc.  

Modern industrial production processes are complex, and it is difficult to obtain 

accurate mechanistic models. It is also difficult to organise and establish a 

systematic expert knowledge base. Therefore model-based and knowledge-based 

methods are only applicable to certain processes and mechanistically explicit unit 

devices. Modern industry has been equipped with a large number of sensors and 

other instrumentation equipment, resulting in a huge amount of process history data. 

Along with the significant development of multivariate statistical analysis, machine 

learning, deep learning and other process data analysis techniques, data-based 

methods have become the mainstream method and research hotspot for process 

monitoring in the process industry in the past 20 years, which do not require the 

establishment of accurate mechanistic models, nor do they rely heavily on expert 

knowledge. Thus data-driven monitoring approaches have the advantages of easy 

implementation, simplicity, and good generality. 

1.3 Motivation 

From the above discussion, the data-based approaches are more suitable for the 

monitoring of modern industrial processes.  

In the field of process monitoring, earlier data-based approaches have used 

multivariate statistics, signal processing and pattern recognition techniques to 

extract and model data derived from actual process operations. This information 

was then used to evaluate the current state of the process and implement process 

monitoring. In recent years, new research results have emerged from machine 

learning technology, represented by deep learning, which has provided strong 

technical support for data-based methods, making data-based process monitoring 

increasingly accurate. Based on the models used, the various types of data-driven 

process monitoring methods can be classified as multivariate statistical analysis-

based, signal processing-based and deep learning-based methods. All three types of 

methods are extensively used in real-world industrial process monitoring, fault 

diagnosis and prognosis. 
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Despite the widespread use of data-based process monitoring techniques, there are 

several issues that need to be addressed in practice. This research has highlighted 

the following important issues： 

a) Fault complexity. Most of the research on fault diagnosis based on fault 

reconstruction approach in chemical processes has concentrated on sensor 

faults on non-control loops, which do not propagate to other variables. This 

type of faults is typically caused by the failure of the sensors in the measured 

variables and can be characterised by the contribution of the single variable 

affected, as it is the only variable that breaks its correlation pattern with all 

other variables in the model. However, relatively less research has been 

conducted on the reconstruction of process faults, most of which arise from 

fundamental changes in the process and imply deviations from operating 

conditions, such as contamination by impurities in the concentration of 

reactants, and accumulation of debris and blockages in hydraulic cylinders, 

etc. Others arise in control loops, where sensor reading are used for 

feedback control, and the sensor faults can lead to inefficient or inaccurate 

control. These faults can have minor to extremely serious consequences and 

have an impact on multiple process variables, so the study of process faults 

is essential. 

b) Incipient faults. Three types of faults can be distinguished according to their 

time dependence: abrupt faults, incipient faults, and intermittent faults. 

Incipient faults usually develop very slowly and are difficult to detect and 

diagnose. Early detection and prognosis of incipient faults are important and 

need to be further investigated. Therefore, incipient faults are a greater 

concern and research challenge in this thesis, and more accurate and 

sensitive approaches will be developed. 

c) Fault prognosis and trend analysis. From the existing research results, the 

research work in the field of data-based process monitoring is mainly 

focused on the evaluation of the system condition and fault diagnosis, the 

concern is the "current" operating state of the system, i.e., whether a fault 

has occurred, the location of the fault, etc. However, in real industrial 

processes, many production processes are subject to demanding operating 

conditions. It is no longer sufficient to provide fault detection and diagnosis 

in the event of a fault, as the fault may be found in a dangerous operating 
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area, where it is difficult for the operator to restore the system to normal 

conditions, or where the fault has a serious impact on the economic 

efficiency of production. The prediction of fault propagation and trends is 

therefore of great benefit to the optimisation of industrial maintenance 

strategies. 

1.4 Aims and Objectives 

The main aim of this research is to enhance methodologies for fault diagnosis and 

fault severity prediction in industrial processes, with a particular focus on data-

based methods. By integrating advanced statistical and machine learning techniques 

within a data-driven framework, this research seeks to offer more precise and 

reliable fault detection and prediction solutions. Emphasizing a data-driven 

approach, the objective is to contribute to the enhancement of safety and efficiency 

in industrial operations through improved fault analysis techniques. In order to 

achieve this aim, the following objectives are set: 

a) Review existing techniques for fault diagnosis and prognosis in industrial 

processes. 

b) Improve and optimise process fault detection and fault reconstruction-based 

fault diagnosis methods. As most of the reported works on fault 

reconstruction focus on sensor faults on non-control loops, a method for 

formulating the fault direction matrix for process faults is investigated. 

c) Develop a new method for predicting process fault magnitudes by using 

ELM and LSTM network to provide long range fault magnitude prediction, 

based on reconstructed fault magnitudes. 

d) Validate of the proposed method through simulated Continuous Stirred 

Tank Reactor. 

1.5 Contributions 

This thesis contributes to the field of process monitoring and fault diagnosis in 

several significant ways, particularly focusing on the complexities of process faults 

in industrial settings. The specific technical contributions reported in this thesis are 

as follows:  

a) Enhancement of Fault Reconstruction Methods for Process Faults: This 

research contributes to the field by enhancing existing fault reconstruction 

methods to better accommodate the complexity of process faults in 
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industrial systems. By adapting the fault direction matrix to reflect the 

multi-dimensional nature of process disturbances more accurately, the study 

provides a refined diagnostic method that improves upon the precision of 

fault characterization. This enhancement allows for a more nuanced 

understanding of process faults, which is critical for the effective diagnosis 

of such faults in industrial applications. 

b) Advancement in Machine Learning Methods for Fault Prognosis: In this 

thesis, distinct machine learning models, namely ELM and LSTM networks, 

are developed to predict the magnitude of process faults in industrial 

processes. These models are individually tailored to capitalize on historical 

fault data, with ELM models offering quick prediction capabilities and 

LSTM networks providing a deep analysis of time-series data to capture 

long-term dependencies. The study presents a critical evaluation of each 

model's predictive performance, offering insights into their applicability in 

the chemical process when compared to traditional AR models and 

highlighting the superiority of neural network approach in handling 

complex data structures and time dependencies. 

c) Validation of Methods through Simulation of an Industrial Process: The 

thesis validates the developed fault diagnosis and prognosis methods using 

a simulated CSTR process. This simulation not only serves as a proof of 

concept but also illustrates the potential for these methods to be applied in 

actual industrial settings. The findings demonstrate how the models might 

be integrated within existing process monitoring frameworks, suggesting 

improvements for process fault reconstruction and fault magnitude 

prediction. This contribution underscores the practical relevance of the 

research and its applicability to enhancing operational safety and efficiency 

in industrial processes. 

In conclusion, this thesis presents several methodological advancements in the 

domain of process monitoring and fault diagnosis. By developing new approaches 

for the diagnosis and long-range prognosis of process faults, this work seeks to 

supplement existing methodologies, addressing specific limitations they possess. 

While the full extent of the impact on industrial safety, efficiency, and economic 

outcomes will be contingent on practical application and further empirical 

validation, the contributions of this thesis provide a foundation for such 
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improvements. The expectation is that, with further development and integration 

into industrial practices, these contributions could offer valuable tools to enhance 

the management of industrial processes. 

1.6 Structure of the Thesis 

Chapter 1 provides an overview of the PhD topic, underscoring the purpose and 

significance of the research. It offers an introductory discourse on fault diagnosis 

and prognosis techniques, laying out some of the prominent issues within the 

current research landscape, leading to the focus and main content of this thesis.  

Chapter 2 in-depth review of various methods used in fault detection and diagnosis 

in industrial processes. It covers a range of techniques, including model-based, 

knowledge-based, and data-based methods, and explores their applications and 

principles. The chapter also delves into fault prognosis methods, discussing model-

based and data-driven approaches. This comprehensive review sets the stage for the 

thesis by highlighting the evolution of these methods. 

Chapter 3 focuses on technical preliminaries and detailed descriptions of the 

algorithms used in the thesis. It begins with an overview of multivariate statistical 

process monitoring, including principal component analysis and its application in 

fault detection. The chapter then explores various data-driven modelling techniques 

for fault prediction, such as AR models, ELM, and LSTM neural networks. This 

chapter lays the foundational knowledge and methodological framework essential 

for the research conducted in subsequent chapters. 

Chapter 4 elaborates on the enhancement of the reconstruction-based process fault 

diagnosis method. It discusses the development and application of a fault direction 

matrix for process faults, enhancing the precision and effectiveness of fault 

detection and diagnosis. The chapter validates these methods through simulation, 

demonstrating their practicality in industrial scenarios. 

Chapter 5 focuses on predicting fault magnitudes using AR models and ELM. The 

chapter details the development of these models, discusses their application in fault 

magnitude prediction based on reconstructed fault data, and compares their 

performance, showcasing their effectiveness in fault prognosis. 

Chapter 6 presents the long-range fault prognosis models using LSTM and Gated 

Recurrent Unit (GRU) networks. The chapter explores the optimization of these 
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models through various experiments and compares their predictive performances, 

emphasizing their potential in industrial process monitoring. 

Finally, in Chapter 7, the main conclusions are summarised, innovative points are 

extracted. It also outlines potential directions for future research, emphasizing the 

practical implications and the potential integration of these methodologies in 

industrial process fault diagnosis and prognosis. 
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Chapter 2 Literature Review 

Before automation technology was widely used in industrial processes, human 

operators were primarily responsible for regulating process plants. as the scale and 

complexity of modern industry has expanded, it has become increasingly 

challenging to rely solely on human supervision to deal with abnormal events and 

emergencies. Whereas the gradual spread of computer control technology in the 

process industries has allowed many production processes to be automated, 

marking a significant milestone in industrial development.  

Process monitoring is the monitoring or supervision of an industrial process to 

ascertain that the operational state of the system aligns the specified performance 

requirements. It also enables effective detection and diagnosis of potential faults or 

abnormal events in real-time. The process monitoring encompasses the following 

tasks: 

1) Gaining insight into the current process operating status. 

2) Performing Real-time analysis of the operating status and interaction with 

process maintenance personnel. 

3) Detecting abnormal process operating conditions promptly and providing 

timely information regarding the cause of the condition. 

4) Swift and effective elimination of abnormal process conditions and 

maintenance of process stability. 

5) Evaluating the impacts of faults on product quality and minimising product 

quality degradation through adjustments to process operating conditions. 

The key components of process monitoring include process modelling, fault 

detection, fault diagnosis, fault identification, fault isolation and process recovery, 

as shown in Figure 2.1. The process begins with determining whether a fault has 

occurred, followed by diagnosing the location and root cause of the fault, and finally 

minimising the effects of the fault based on the diagnostic information. 

 

Figure 2.1 A diagram of process monitoring 
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An industrial plant primarily comprises sensors, actuators, various process units and 

their connections through pipes and valves. Given the prolonged exposure of most 

of these components to external conditions, a variety of factors can cause faults, 

such as component deterioration, defects of process equipment such as pumps and 

valves, non-compliant operating conditions, etc. Faults are different from 

deviations of parameters triggered by external environmental disturbances, as the 

latter can often be corrected promptly by an automatic control system, while the 

former typically requires manual intervention to resolve. In an industrial process, 

undetected faults may reduce the system's performance or cause certain functions 

to malfunction, or even fail. In this context, the definitions of failure and 

malfunction are not to be confused - a malfunction is defined as an intermittent 

irregularity in the operation of a system, whereas a failure is a permanent 

interruption in the system's ability to perform its tasks under defined operating 

conditions (Hamadache et al., 2019). A fault in an industrial process is defined as 

an unacceptable deviation of at least one of the process characteristics (or variables) 

from acceptable behaviour, potentially leading to system performance deterioration 

(Severson et al., 2016). The underlying cause of a fault can be several different 

reasons with the common ones including sensor faults, actuator faults and system 

faults. 

In the operation of industrial processes, sensors and actuators play a pivotal role. 

Sensors detect, measure and transmit signals of any changes in the process and 

feedback to the control system, while actuator are used to receive control signals 

and execute control actions. A sensor fault refers to a significant deviation between 

the measured and actual values, resulting in inaccurate measurements of process 

variables, such as bias error, drift error, gain error, etc. An actuator fault refers to a 

significant discrepancy between the input command of the actuator and its actual 

output, such as a stuck valve. 

System faults typically occur within the process itself, usually triggered by external 

changes or abrupt operating condition changes, resulting in sudden parameter 

changes within the system. As a result of these changes, the interrelationships and 

information interactions between different variables are affected. Such faults can 

be caused by conditions such as fouling inside a distillation column or heat 

exchanger, changes in feed concentration, pipe ruptures or leaks. Generally, these 

faults manifest as gradual changes in the process variables. 
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Depending on the time variation, faults are often categorized as abrupt fault, 

incipient fault, and intermittent fault (Zhang et al., 2002). Incipient faults are slow 

changes in process characteristics and parameter drift. These faults generally do not 

significantly damage the process in the short term. However, their cumulative effect 

can eventually have a major impact on the process. In large plants, such as power 

generation and chemical plants, incipient faults may be precursors to catastrophic 

accidents. An abrupt fault is a sudden change in the characteristics of a component, 

or a step change in certain parameters, which can significantly impact system 

performance. An abrupt fault typically takes the form of a jump fault, e.g., a sensor 

output of a constant value independent of the measured parameter or an actuator 

jamming, etc. Such faults can have a catastrophic effect on the control system. 

Intermittent faults represent deviations or variations that appear and disappear 

repeatedly over time.  

The procedure of process monitoring can be summarised as follows: 

1) Process modelling: Developing a mathematical model of the process being 

monitored based on the a priori information, process operation data, and 

input-output relationships of a process. 

2) Fault detection: Using models to assess the operational state of the process 

and determine whether the process is in a normal or abnormal operating 

condition. Fault detection forms the foundation of process monitoring 

technology. 

3) Fault isolation: After a fault has been detected, this step isolates the 

component or subsystem where the root variable of the fault is located. 

4) Fault diagnosis and identification: Determining the cause of the detected 

fault in the process, determine when the fault occurred, estimate its size, and 

identify its type. 

5) Process recovery: Remedying the fault through various measures to restore 

the process to normal operation and devising countermeasures to manage 

potential adverse effects of the fault. 

6) Fault prognosis: After fault detection and diagnosis, fault prognosis is the 

next task of process monitoring. It consists of two main levels: health state 

prediction and remaining useful life (RUL) estimation. The health state 

forecast determines the current state of the component or system during its 

health degradation process, such as normal state, degraded performance 
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state or fault state, etc. RUL estimation determines the RUL of a component 

or system based on its current state, historical state, and other information, 

using a suitable prognosis model. 

2.1 Overview of Various Methods Used in Fault Detection and Diagnosis 

Traditional classification concepts categorise fault detection and diagnostic 

techniques into three primary categories: model-based methods, knowledge-based 

methods, and signal-processing-based methods (Frank, 1990). However, with the 

rapid advancements in technology and the rise of big data, these classifications have 

been compelled to evolve. Specifically, within the context of process monitoring, 

the introduction of data-driven methods, which utilise substantial quantities of 

process data for decision-making, has prompted significant changes in the 

classification of fault detection and diagnosis techniques. 

 

Figure 2.2 Classification of fault detection and diagnosis methods 
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Consequently, researchers and industry professionals now typically categorise fault 

diagnosis and prognosis techniques into three distinct groups: model-based 

methods, knowledge-based methods, and data-driven methods, as illustrated in 

Figure 2.2. This categorization encapsulates the progression within the field, where 

traditional model-based techniques, dependent on robust mathematical 

formulations of systems, and knowledge-based techniques, rooted in expert 

understanding and rule-based logic, are being increasingly complemented by data-

driven methods. These contemporary methods utilize the wealth of data available 

from industrial processes, applying advanced algorithms to extract insights. The 

inclusion of data-driven methods within this classification signifies the field’s shift 

towards leveraging empirical data, thereby integrating analytical and experiential 

knowledge bases with powerful computational analysis to push the boundaries of 

fault detection and diagnosis. 

2.1.1 Model-based Methods 

Developing earlier than other methods, the model-based methods primarily involve 

analysing the internal mechanisms and external influencing factors of the process 

objects. The aim is to establish accurate input-output models, followed by the 

construction of a residual signal from the actual process data and the predicted 

output of the mathematical model, which is then used for fault detection and 

diagnosis. Methods for fault detection and diagnosis mainly include parameter 

estimation methods, state estimation methods and parity relations methods (Zhang 

et al., 2000). The parameter estimation method integrates modelling theory with 

parameter identification to describe faults by comparing significant jumps in the 

identified parameters with the fault threshold (Isermann, 1991). The state 

estimation method uses the state space model of the system and the observer to 

reconstruct the state of a controlled process. By comparing these with actual 

measurements, this method diagnoses process faults by analysing the sequence of 

residuals (Ge and Fang, 1988; Zarei and Shokri, 2014). The parity relation method 

transforms the system equations into the frequency domain, checks the equivalence 

of the mathematical model of the system through the actual measurements of 

system input and output signals to obtain the residual signals (Kinnaert, 1993).  

2.1.2 Knowledge-based Methods 

Knowledge-based methods depend on the analysis of priori information about the 

system operation mechanism, fault characteristics, and the causal relationship 
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between fault behaviour and its causes. They use logical reasoning to detect and 

isolate faults. The main methods used include uncertain information theory, 

qualitative model, expert systems, and graph theory methods. The uncertain 

information theory method uses fuzzy theory to construct membership functions 

that represent the relationship between changes in process parameters and the cause 

of faults to achieve fault detection and diagnosis (Coito et al., 2005). It may also 

use rough set theory to perform attribute reduction and remove unimportant process 

variables to achieve simplification of fault feature information and reduction of 

diagnostic rules (Zarei and Shokri, 2014). However, this type of method relies 

heavily on prior system knowledge to determine affiliation function or attribute 

reduction. The qualitative model-based method uses qualitative knowledge of 

equipment to build models that describe the structure and function of the process. 

Thus, the predicted qualitative behaviour of the system can be derived, and fault 

detection and diagnosis can be achieved by comparing it with the actual system 

behaviour (Zhou et al., 2017). This method is only suitable for describing known 

system faults and cannot accurately diagnose unknown faults. The expert systems 

method uses the practical expert experience to create a knowledge base and 

simulates the reasoning and decision-making process for diagnosis (Zinn et al., 

2020). However, the method requires a comprehensive knowledge base to build a 

expert system of the considered process. The graph theory method uses cause–

effect relationships between process variables and faults to detect and diagnose 

faults (Kościelny et al., 2022). Although it is straightforward to build for simple 

systems, the method becomes complex and often ambiguous when used for more 

complex systems due to the conflicting variable effects. 

Common to these qualitative fault diagnosis methods is their ability to establish a 

qualitative model based on subjective qualitative knowledge by delving deeper into 

process information such as the internal structure of the process industry, the 

process mechanism, and the relationships between variables in the process. 

Evidently, the knowledge-based approach does not require a precise mathematical 

model and can determine fault propagation through inference and deduction. 

However, the efficacy of this technique depends on the expert's understanding of 

the production process and extensive production expertise. As the complexity of 

the process industry has increased, accumulating expert knowledge has become 

more challenging, making the knowledge-based approach less adaptable. 
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2.1.3 Data-based Methods 

Data-based methods serve as effective alternative to model-based and knowledge-

based methods, particularly when the process to be monitored lacks a precise 

mathematical- mechanistic model or an adequate expert knowledge base. Modern 

industrial systems demonstrate high levels of automation and instrumentation, 

typically accumulating large volumes of process data. Earlier data-based 

approaches used multivariate statistics, signal processing and pattern recognition to 

extract and model useful information from the historical process operation data. 

These techniques are then used to evaluate the current operational state of the 

process, consequently implementing detection and diagnosis based on the model. 

With the simplicity and versatility of their models, data-based methods have 

become one of the most popular research areas in fault detection and diagnosis. In 

recent years, data mining techniques represented by machine learning and deep 

learning, have provided robust technical support to data-based approaches, 

enhancing their performance. 

Data-based fault detection and diagnosis methods can be categorised into signal 

processing-based methods, multivariate statistics-based methods, and machine 

learning-based methods. 

1. Signal Processing Methods 

Fault signal analysis and processing is a quantitative fault diagnosis method, which 

has been quite mature in practical engineering applications. It mainly uses the 

wavelet transform method (Ravikumar et al., 2022), empirical mode decomposition 

method (Du and Du, 2018) and dynamic time warping theory (Sun et al., 2020) to 

process and transform the monitored signals of the system to obtain the effective 

information reflecting the fault, i.e., the fault signatures, and uses the deviation 

degree to realize the fault diagnosis by comparing the actual signals with these fault 

signatures quantitatively. By comparing the actual signals with these fault 

signatures quantitatively, the degree of deviation is used for fault diagnosis.  

Different faults lead to different characteristics in the spectrum of the measured 

signal and can thus be diagnosed through spectral analysis of the signal spectrum. 

In (Drif et al., 2002), the energy spectrum of the stator of an induction motor was 

analysed for the fault diagnosis of squirrel-cage rotors in motors. The spectral 

analysis of smooth signals is frequently used in the diagnosing of system faults. 
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Although this method is intuitive and simple, it is relatively ineffective in detecting 

system faults. 

2. Machine Learning Methods 

Machine learning models are divided into statistical machine learning and deep 

learning models. The statistical machine learning comprises support vector machine 

(SVM), K-means clustering algorithm and decision trees. Deep learning includes 

deep belief network (DBN), convolutional neural network (CNN) and recurrent 

neural network (RNN). 

SVM is a supervised machine learning method that projects data samples onto a 

high-dimensional feature space, maximising the distance between the hyperplane 

and the nearest observations from differing classes. It is commonly employed for 

fault classification and has been applied in steel production processes (Russo et al., 

2021), laser welding processes (Chen et al., 2019), optical grinding processes 

(Zhang et al., 2015), and intermittent distillation towers (Taqvi et al., 2018). 

The K-means algorithm is an unsupervised learning technique that partitions n data 

points into k clusters based on minimizing the sum of squared distances between 

each data point and its assigned cluster's mean. Originally introduced in signal 

processing, it is now applied to diverse areas including monitoring of multimodal 

processes and fault classification. Researchers have proposed PCA-K-means 

(Gokilavani, and Bharathi, 2021), adaptive K-means (Tong et al., 2013), etc., and 

applied them to the field of fault detection and identification for continuous and 

batch processes. 

Decision trees represent the relationships between variables in a tress structure in 

machine learning. It was first used in decision analysis, and was later introduced 

into fault detection and diagnosis, for instance, diagnosing faults in pressurised 

water reactors (Mena et al., 2022), and also improved decision trees based on SVM 

(Demetgul, 2013) and decision trees incorporating feature selection methods 

(Arockia et al., 2022) have been applied to process fault diagnosis. 

Deep learning models, such as DBN, CNN, and RNN, have also been introduced 

into the realm of fault detection and diagnosis by numerous researchers. As an early 

form of deep learning models, DBN are more maturely used in fault detection and 

diagnosis. In (Shao et al., 2017), a scalable DBN-based fault diagnosis model is 

proposed which combines two DBN sub-networks for extracting features in the 
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spatial and temporal domains and using mutual information technology for fault 

classification based on variable selection. In (Tang et al., 2018), an adaptive 

learning rate DBN network containing Nesterov momentum is proposed, which was 

experimentally validated on data sets from gearbox and locomotive bearing test 

stands, and the results showed that the fault identification rate of the method was 

significantly improved, demonstrating the accuracy and robustness of the method. 

Pan et al. (Pan et al., 2019) proposed a mechanical fault diagnosis of high-voltage 

circuit breakers based on DBN and transfer learning strategy method. DBN was 

used to achieve deep mining and adaptive extraction of fault features from sample 

data and combined with the transfer learning method to enhance fault diagnosis by 

adjusting the weights of auxiliary and target samples to enhance the weights of 

training samples through the TrAdaboost algorithm. The results show that the 

method can obtain stronger generalisation capability.  

CNN were initially applied to image recognition designs and later applied to fault 

diagnosis for fault feature extraction and classification. Junior et al. (Junior et al., 

2022) employed vibration data derived from multiple sensors as input to a multi-

headed one-dimensional CNN model in order to diagnose faults in induction motors. 

The one-dimensional CNN in each head consists of batch normalisation, two 

convolutional layers, two pooling layers, a fully connected layer, and a SoftMax 

layer, with each output corresponding to a motor operating condition. The approach 

produces a diagnosis accuracy of 99.92 % through experimentation and parameter 

optimization, and the network is quick to train and test. Wang et al. (Wang et al., 

2018) used raw vibration signals of each fault pattern to train a one-dimensional 

CNN model to detect and recognize data features. The acquired features were then 

utilised to train a Hidden Markov Model (HMM) classifier for fault diagnosis. The 

classification results were compared with those of CNN, SVM and BP neural 

networks and showed that the model gave accurate classification for different 

bearing datasets. In (Zhong et al., 2020), a method is proposed for the intelligent 

classification of raw vibration signals for fault location and prediction of damage 

levels. By converting the dataset into a spectrogram, the original information of the 

starting signal is retained to the maximum extent and later trained by a deep fully 

convolutional neural network. The results show that this method has a faster 

convergence rate, higher accuracy, and better generalisation capability. In (Pan et 

al., 2018), to address the problem of poor diagnostic accuracy due to noisy signals, 
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a new CNN-based architecture (LiftingNet) was proposed, which includes a 

segmentation layer, a prediction layer, an update layer, a pooling layer and a fully 

connected layer, with the main learning processes of segmentation, prediction, 

update and cycling. The classification performance of the method was validated 

using the CWRU dataset to improve the diagnostic accuracy at different motor 

speeds. 

RNN-based fault diagnosis is a method that utilizes time sequences as input data 

and the depth of the network is determined by the length of the input sequence. This 

approach is commonly used in monitoring dynamic industrial processes. Abed et al. 

(Abed et al., 2015) used RNN for bearing fault diagnosis. The fault features were 

first extracted and filtered by discrete wavelet transform, and then used as inputs to 

RNN for fault classification. The results show that the method can be used for 

accurate diagnosis of bearing faults even under non-stationary operating conditions. 

Malhotra et al. (Malhotra et al., 2016) designed a denoising autoencoder network 

with the help of LSTM to perform non-linear prediction of the next period based on 

the vibration values of the previous period and anomaly detection based on 

reconstruction errors, and the algorithm has strong generalisation capability to 

different fault modes. In (Bie et al., 2021), a model based on complete ensemble 

empirical model decomposition (CEEMD) and LSTM for fault diagnostics of 

reciprocating pumps was presented. The vibration signal is processed using 

CEEMD and singular spectral entropy to generate feature vectors for fault 

diagnostics using an LSTM classifier. In comparison to traditional neural network 

approaches, the LSTM has the best classification accuracy. In  (Liu et al., 2018) a 

new RNN-based method for bearing fault diagnosis was proposed. The method 

utilises GRU-based non-linear predictive denoising autoencoders with high 

generalisation capability. Multiple vibration values for the next cycle are predicted 

from the previous cycle, and the reconstruction error between the next cycle data 

and the output data generated by the GRU-based non-linear predictive denoising 

autoencoders is then used to detect anomalies and classify faults. The results show 

that the method has excellent performance with strong robustness and high 

classification accuracy. In (Jiang et al., 2018), CNN and LSTM are combined to 

build a convolutional bi-directional LSTM using CNN to extract local features from 

the original data and then combined with the bi-directional LSTM to extract 



20 

 

temporal correlations, and finally stacking a fully connected layer and linear 

regression layer for RUL prediction.  

3. Multivariate Statistical Methods 

The multivariate statistical process monitoring (MSPM) method is an approach that 

leverages large volumes of historical data to understand the performance of system. 

The advantages of the MSPM method, which is most attractive because of its ease 

of design and simplicity of implementation, have made the MSPM technique 

popular for monitoring many industrial processes. The basic idea of MSPM 

technology is to provide the process engineer with a concise collection of 

monitoring statistics that describe the desired process behaviour. The method uses 

a multivariate projection approach to partition the original multivariate data space 

into a low-dimensional projection subspace consisting of primary meta-variables 

and a subspace consisting of residual variables. The statistics and thresholds in each 

of the two low-dimensional subspaces are constructed to indicate if there has been 

a change in process behaviour. For the monitored sample measured in the process, 

the sample data is projected into the two subspaces by means of a projection vector 

to obtain the corresponding monitoring statistics, which are used to monitor the 

process operation (Yao and Gao, 2009; Qin, 2012; Yin et al., 2014a). 

Common MSPM methods include PCA, Partial Least Squares (PLS), Independent 

Component Analysis (ICA), etc. PCA simplifies the complexity of analysing the 

original data space by reducing its dimensionality. It applies a linear transformation 

to explicit process variables to derive a smaller set of implicit variables, thereby 

retaining the primary information features contained in the original data. The PLS 

method was proposed in (Wold, 1973), and it is a commonly employed technique 

for monitoring quality-related processes. It operates by identifying correlations 

between process and quality variables, accomplishing this by maximizing their 

covariance. This leads to the formation of orthogonal latent variables, which enable 

data reduction while preserving crucial information. Consequently, PLS 

decomposes the process variable space into two orthogonal subspaces: one directly 

linked to quality and another that is quality independent. By establishing monitoring 

statistics for each of these subspaces, PLS effectively identifies the emergence of 

quality-related faults. 

Both multivariate statistical methods, PCA and PLS, require data to satisfy the 

assumption of a Gaussian distribution. However, the real-world industrial process 
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data often exhibit non-Gaussian characteristics. The ICA-based method is designed 

to cope with this non-Gaussian. Compared to PCA and PLS, ICA uses the higher 

order statistics of process data to extract mutually independent non-Gaussian 

components. This characteristic of ICA allows it to more effectively analyse non-

Gaussian process data, as it can capture more complex, higher-dimensional data 

relationships. However, the ICA-based fault detection method has its drawbacks. 

Firstly, the ICA algorithm is more complex compared to the solution algorithms of 

the PCA and PLS models. Secondly, the independent components estimated by the 

ICA model must have a non-Gaussian distribution (or at most one Gaussian 

variable), and if there are more than two Gaussian variables, the ICA method will 

fail.  

The three MSPM methods mentioned above have all been developed as a result of 

the increasing use of MSPM. The introduction of the PCA algorithm to process 

monitoring was first implemented in (Wise et al., 1990). As the PCA algorithm is 

a static process monitoring method and cannot address dynamic processes, an 

improved dynamic PCA algorithm was proposed, and the algorithm was applied to 

distillation column process monitoring (Ku et al., 1995). Multi-block PCA 

algorithms (Chen and McAvoy, 1997) have been proposed to address the problem 

that standard PCA algorithms are too computationally intensive and difficult to 

perform fault identification when dealing with processes with many variables. The 

standard PCA algorithm is a linear time-invariant model (Ding et al., 2013; Yin et 

al., 2014b), but many real industrial systems are slowly time-varying, so adaptive 

recursive PCA algorithms have been proposed. Since the standard PCA algorithm 

is a linear algorithm and many real industrial process systems are strongly nonlinear, 

some scholars have proposed the kernel PCA algorithm (KPCA), while others have 

used localization methods to obtain nonlinear PCA algorithms (Wang et al., 2008). 

The literature (Liu et al., 2013) proposes a multi-level PCA (Multi-level PCA) 

based fault detection and diagnosis method. In (Kresta et al., 1991), the PLS 

algorithm was first introduced to industrial processes for process monitoring. The 

standard PLS algorithm assumes a linear relationship between the predictor and 

response variables. However, in cases where the relationship is nonlinear, the 

standard PLS method may not provide accurate results. To address this limitation, 

some scholars have proposed the introduction of the kernel approach to the standard 

PLS algorithm to obtain the kernel PLS algorithm (KPLS) (Wen et al., 2012), which 
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has good process monitoring results in strongly non-linear industrial processes. 

However, in the standard KPLS algorithm, the projected data needs to be centred 

in the feature space, which can lose some of the features reflected in the original 

data. Therefore, to address this problem, a KPLS algorithm based on the optimal 

preference matrix is proposed in the literature (Yi et al., 2017) to solve this problem. 

Besides, improved algorithms of the total projection to latent structures (T-PLS) 

algorithm have also been proposed by some scholars. The literature (Zhao and Sun, 

2014) gives the T-PLS method in multivariate space and applies this method to 

online process monitoring. Kano et al. (Kano et al., 2003) were the first to apply 

the ICA algorithm to process monitoring. The standard ICA algorithm is also linear, 

so many learned improvements have been made to make ICA a non-linear process. 

The literature (Zhang and Qin, 2007) focuses on ICA process monitoring methods 

applied to non-linear systems, and also introduces kernel methods into the ICA 

algorithm to obtain the kernel ICA algorithm (KICA) as a way to monitor non-

linear systems (Zhang et al., 2014).  

Among the data-based fault detection and diagnosis methods, multivariate 

statistical process monitoring methods have the largest number of research papers 

and application cases. As the most central of these methods, PCA will be described 

in detail in the following section, along with its principles and the corresponding 

fault detection statistics. 

2.2 Overview of Fault Prognosis Methods 

Fault typically exhibit a gradual deterioration process before they trigger severe 

implications. Once such a fault transpires, the process slowly follows a trajectory 

to reach a new steady state or gradually deteriorates until it collapses. Traditional 

fault detection and diagnosis technologies only issue alerts and diagnoses after the 

monitored statistics exceed their corresponding control limit. However, by this 

stage, the fault has already escalated significantly. If faults can be detected at an 

early stage and measures can be taken to prevent them from occurring in the first 

place, damage to the entire process can be reduced or even avoided. Therefore, to 

enhance process safety and stability, minimise the damage caused by faults, and 

prevent faults from beaching the normal operating zone, it is crucial to anticipate 

the process’s future state. As a result, process fault prognosis technology has 

become a new research trend in process monitoring. 
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Figure 2.3 Classification of fault prognosis methods 

In Figure 2.5, a classification of methods for fault prediction techniques is provided. 

The advent of fault prediction technology can be traced back to the research 

conducted for online maintenance systems (Lu and Saeks, 1979). However, the 

development of fault prognosis, which studies the operational characteristics of the 

fault’s early stage, has been hindered by the small magnitude of faults and the 

difficulty in detecting system signs. Recently, with advances in fault detection and 

diagnosis technology, fault prognosis technology has encountered new 

development opportunities (Reis and Gins, 2017b). 

Following the classification of fault detection and diagnosis methods, fault 

prognosis methods can be divided into model-based methods and data-driven 

methods (Figure 2.5). 

2.2.1 Model-based Methods 

Model-based fault prognosis methods often use the physics of the monitored 

process and process monitoring data to predict the process state. Commonly used 

methods include mechanistic model-based methods and filter-based methods (Hu 

et al., 2018). 

1. Mechanistic Model-based Methods 
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The mechanistic model-based approach is focused on examining the internal 

mechanisms of a system, such as steady-state or transient loads, temperature, as 

well as other online measurement information obtained from the monitored system. 

It integrates mathematical representations of the study object's failure mechanisms 

with macroscopic and microscopic laws of physiochemistry to establish models of 

performance degradation. These models are then employed to simulate processes 

for fault prediction. The Paris-Erdogan (PE) model describing the trend of crack 

expansion was first proposed in the literature (Paris and Erdogan, 1963) and is one 

of the most applied mechanistic models in mechanical fault prognosis. (Bechhoefer 

et al., 2008) employed a PE model to construct health indicators for predicting the 

RUL of a bearing. In  (Zhao et al., 2013) the PE model was used to describe the 

degradation process of a cracked gear and Bayesian estimation was implemented to 

updates to the model parameters and estimate the RUL of the gear. There are many 

other physical models besides the PE model, for example, in (Hu et al., 2016a) the 

Norton creep rate is used to describe the creep degradation process of a turbine and 

combined it with a stochastic filtering method to achieve RUL estimation. In 

(Oppenheimer and Loparo, 2002) the Foreman crack growth law is used to predict 

the RUL of a rotating shaft. In (Jianhui et al., 2003), the model of an automotive 

suspension system was simulated by using the combining of singular perturbation 

methods of control theory and dynamic state estimation techniques and the time-

averaged mode probabilities are used to predict the RUL. In (El-Tawil and Jaoude, 

2013) the stochastic description is used to develop a non-linear damage model for 

predicting the RUL of pipes. The mechanistic model of fault can clearly show the 

internal structure and connections of the object of study, so that the corresponding 

physical meaning can be explained in detail, giving intuitive prediction results with 

high prediction accuracy. However, a more accurate mechanistic model can only 

be constructed with a deep understanding of the fault mechanism of the object of 

study, and with the increasing complexity and uncertainty of modern equipment, 

the cost of acquiring knowledge of the fault mechanism is significantly high. At the 

same time, mechanistic models of fault are based on assumptions and 

simplifications of macroscopic and microscopic laws, which differ to a certain 

extent from the actual fault process, so this fault prognosis method receives certain 

limitations in its application. 

2. Filter-based Methods 
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Filter-based methods often require a highly accurate mathematical model of the 

monitored system, and such methods include mainly Kalman filter-based and 

particle filter-based methods. Kalman filter-based methods process the observed 

signals with noise through the state space model of the system to minimise the state 

estimation error and use the dynamic information of the process to obtain a set of 

equations for recursive estimation, which is also widely used in the field of 

forecasting because it also obtains the forecast equations of the system. In (Yang 

and Liu, 1999), a Kalman filter is used to track and estimate the speed of a DC 

motor, while a multi-step prediction formula is derived based on a single-step 

prediction formula to achieve fault prediction of a DC motor. In (Lim et al., 2017) 

multiple Kalman filters are integrated together to model the degradation process by 

first dividing the degradation process of the system into stages and then adapting 

different Kalman filters to the different stages for state prediction and verified the 

effectiveness of the algorithm with an aero-engine dataset. In (Harrath et al., 2019), 

the Extended Kalman Filter (EKF) is used to extract several features online in the 

time, frequency, and time-frequency domains from the vibration data of a real 

mechanical bearing and evaluated the best features at each instant to obtain an 

accurate estimate of the RUL. The method has shown good results in prediction 

over a long-time range. 

The particle filter-based prognosis method first models the system dynamics and 

obtains a minimum variance estimate of the system state by finding a set of random 

sample approximations that propagate through the state space to represent the 

probability density and replacing the integration operation with the sample mean. 

The method can handle non-linear Gaussian systems, which has led to its wide 

application in the field of audio processing and fault prognosis. In (Orchard and 

Vachtsevanos, 2009), a non-linear state space model and a particle filter algorithm 

are used to update the estimate of the current state and calculate the probability 

density of the RUL of the failed subsystem, and finally validated the method using 

planetary gear plate fault data. A machine health condition prediction integrating 

LSTM and particle filter is proposed in (Niu et al., 2018). The LSTM is trained 

offline on historical data, followed by a Bayesian approach to construct a prognostic 

model, and finally a particle filter is used to calculate the posterior probability 

density function and implement state prediction. The validity of the method is 

demonstrated on experimental vibration data from a ring gearbox. An Improved 
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Unscented Particle Filter (IUPF) is proposed in (Rathnapriya and Manikandan, 

2020). The relationship between the input and predicted faults is first quantified, 

and later the error and computation time in measuring the distance between actual 

and observed particles is reduced by introducing relative entropy into the Unscented 

Particle Filter. The accuracy and efficiency of the forecast is effectively improved. 

In summary, model-based process monitoring methods use knowledge of a priori 

mechanisms such as laws of material and energy conservations in real processes to 

accurately reflect process changes, with high detection rates, low false alarm rates, 

high reliability and high interpretability. However, such methods rely heavily on 

the mechanistic analysis and deep internal knowledge of the modelled object. The 

process industry often involves multiple variables and multiple states, and the 

variables are strongly correlated with non-linear behaviour, while the constant 

changes in the actual process industry and the random disturbances in the external 

environment make it difficult to establish an accurate process mechanism model. 

Therefore, the analytical model-based approach has limitations in the process 

industry and is more suitable for simple industrial equipment where precise 

mechanisms are easily accessible. 

2.2.2 Data-driven Methods 

Although model-based fault prognosis methods can accurately predict faults in real 

time by studying the inherent characteristics and properties of the monitored object, 

their broad applicability is often compromised due to the complexity of the 

monitored processes. On the other hand, data-driven fault prognosis methods have 

gained popularity in recent years due to their wide applicability, high prediction 

accuracy and easy modelling process. These attributes have led to an accumulation 

of numerous remarkable research outcomes. Thus, this chapter introduces some of 

the mainstream data-driven fault prognosis methods: Time Series Analysis methods, 

Stochastic Process methods and Machine Learning methods. 

1. Time Series Analysis Methods 

In time series analysis, historical data from the monitored system are collected at 

certain time intervals to form a time series. A corresponding time series model of 

the data is constructed and extrapolated to the future for prediction. Additionally, a 

model can be fitted based on known historical data to enable future value 

predictions. For any future time point, the forecast value can be estimated using the 
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fitted model. This method is effective under the assumption that past development 

patterns will persist into the future, as short-term forecasting is better with this 

method. A commonly used time series model for fault prediction is the 

autoregressive (AR) model. 

The AR model is the fundamental and practically applicable time series model. Its 

coefficients coalesce important information about the state of the system. Other 

commonly used time series models include the moving average (MA) model, the 

autoregressive moving average (ARMA) model, and the autoregressive integrated 

moving average (ARIMA) model. These methods build on the dependence between 

adjacent observations to fit the time series mathematically. A dynamically 

compensated AR model for fault prognosis in complex dynamic systems was 

proposed in (Wang and Han, 2019). This model overcomes the limitations of the 

linear AR model by dynamically compensating for residuals induced by faults. 

Applying the algorithm to the Tennessee Eastman (TE) Process model 

demonstrates its efficacy by achieving multi-step advance prognosis and yielding 

more accurate trend predictions by dynamically compensating for residuals. In (Cai 

et al., 2021) a multi-stage fault prognosis method is presented that combines stage 

identification with Bayesian networks (BNs) and ARMA models to address multi-

stage fault prognosis under complex operating conditions. The method was tested 

and validated using data from a permanent magnet synchronous motor (PMSM) 

degradation experiment covering multiple degradation types and stages. The results 

show that the proposed model performs better in terms of overall prognosis 

accuracy and stage prognosis accuracy compared to a single model. In (Gómez-Pau 

et al., 2020), a method is presented for predicting the RUL of medium voltage 

power connectors based on the resistance degradation trajectory. The method 

involves analysing time series data on electrical resistance using the ARIMA model. 

Several connectors' experimental results demonstrate the viability and precision of 

the proposed method for online RUL prediction of power connectors. The method 

enables the implementation of predictive maintenance schedules and helps to 

determine when power connectors need to be replaced.  

2. Stochastic Process Methods 

The stochastic process-based approach refers to the use of mathematical statistics 

to construct stochastic process models to describe process failure trends. As 

uncertainty and fluctuating environments can modify equipment’s failure 
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mechanisms in real time, stochastic process models excel describing the time-

varying uncertainties in currently operating equipment’s the failure generation 

mechanisms and operating environments.  

Among these methods, the most common one is the Markov chain-based approach, 

which assumes that the degradation state of the monitored system follows Markov 

rows. Meaning, the degradation state at the time 𝑡 + 1 is only related to the current 

degradation state at the time t and is unaffected by the previous degradation states. 

In (Yan et al., 2011), degradation state classification was performed using fuzzy C-

means, followed by the implementation of fault prognosis using a dynamic 

multiscale Markov model, and applied to the RUL estimation of rotor equipment. 

In (Tang et al., 2019), the dynamics of the conditional degradation model are 

characterised by quantifying the degradation signal through a discrete-time Markov 

chain and used for RUL estimation of turbofan engines. In many cases, however, 

the degradation process contains many hidden states that cannot be directly 

observed. HMM have been introduced into the field of fault prediction for such 

cases. The method first calculates the current possible degradation states based on 

performance data, then calculates the mean and variance of each state, and finally 

sums each state to achieve a RUL estimate. In (Chinnam and Baruah, 2003; Baruah 

and Chinnam *, 2005), the application of various improved HMM models for fault 

diagnosis, fault prognosis and estimation of probability density functions for 

remaining service life is investigated. In (Tobon-Mejia et al., 2011), a degradation 

model of bearing is established by feature extraction of the sensor data and then 

using the  extracted feature to build a Gaussian mixture HMM for the estimation of 

the RUL. In (Galagedarage Don and Khan, 2019), a Hidden Markov Model-

Bayesian Network hybrid system is combined with a new fault prediction technique 

to perform fault prognosis. The HMM is trained using normal operating data and 

then is used to estimate the historical log likelihood of the data and predict future 

system states. Bayesian network is used to isolate several different industrial faults. 

The method was validated by predicting and isolating process faults in the TE 

process. However, the time complexity of failure prediction methods based on 

HMM and their improvements is large, while a large amount of whole-life 

performance data is required for state modelling. Furthermore, only the mean and 

variance of the RUL can be calculated, and the probability density function 
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distribution of the RUL cannot be obtained, which are not conducive to their 

application in fault prognosis and health management. 

3. Machine Learning Methods 

Machine learning based fault prognosis methods are an important branch of the 

field of data-driven fault prognosis, enabling more accurate predictions of fault 

trends and RUL. Depending on the depth of the machine learning model structure, 

the approach can be divided into two parts: the conventional machine learning 

approach and deep learning approach.  

The conventional machine learning approach for fault prediction aims to use the 

original measurement data or the features extracted from the original measurement 

data as the input to the neural network, continuously adjust the structure and 

parameters of the network through certain training algorithms, and use the 

optimised network to predict the process fault trend and remaining life online, 

without any a priori information in the prediction process and based entirely on the 

prediction results obtained from the monitoring data. Current methods based on 

conventional machine learning mainly include Back Propagation (BP) Neural 

Network, Radial Basis Function (RBF) Neural Network and Extreme Learning 

Machine (ELM). 

BP neural network is a multilayer forward network with unidirectional propagation. 

In (Shao and Nezu, 2000), an early study of RUL estimation methods based on BP 

neural networks was carried out and compared with the ARMA model. The 

experimental results verified that the RUL estimation methods based on BP neural 

networks have better long-term prediction capabilities than the ARMA model. In 

(Gebraeel et al., 2004), BP neural network-based prediction models for individual 

bearings and batch bearings are developed. Using the vibration monitoring 

information during the life cycle and fusing the parameters of each bearing indicator 

regression model with certain weights, an online parameter updating method is 

proposed, which effectively ensures the accuracy of the RUL prediction. The time 

series analysis was able to predict the trend of data changes, and the BP neural 

network adjusted the prediction error in real time to ensure the accuracy of the RUL 

prediction. In (Gebraeel et al., 2004), a genetic algorithm-BP neural network 

approach for the prediction of RUL is investigated, and the weights of the BP neural 

network are globally optimized using the genetic algorithm, and the results showed 

that the genetic algorithm-BP neural network method was superior to the 
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conventional BP neural network method. The artificial neural network was trained 

with accelerated life data at different temperatures and the experimental analysis 

showed that the life data predicted by the artificial neural network were in good 

agreement with the actual life data. 

RBF neural networks are three-layer feedforward networks with a single hidden 

layer and are capable of approximating any continuous nonlinear function with 

arbitrary accuracy (Powell, 1987; Bors, 2001). The main difference between RBF 

neural networks and BP neural networks is that the output of each hidden neuron is 

a function of the distance between the input vector and the centre of the RBF of this 

hidden neuron, rather than the weighted sum of the input vector. In recent years 

RBF neural networks have been successfully applied in signal processing, system 

modelling, process control, fault diagnosis and fault prognosis, and have shown 

extraordinary advantages. It is proposed in (Liu et al., 2010) that the key to RBF 

neural network models lies in the correct selection of suitable RBF centres, and the 

number and locations of RBF centres in the hidden layer directly affect the 

approximation capability of the network. In (Chen et al., 2016), a multivariate grey 

RBF hybrid model was proposed for the RUL estimation of industrial equipment, 

incorporating the advantages of the grey model and RBF neural network, which 

effectively ensures the prediction accuracy and has practical engineering 

application value. 

ELM is a novel learning algorithm for single hidden layer feedforward neural 

networks. The basic idea of the training process lies in randomly selecting the input 

weights and the bias values of the hidden layer, manually selecting the number of 

neurons in the hidden layer based on practical engineering experience and 

determining the output weights through the least squares method to achieve rapid 

determination of the network structure and parameters. Because ELM has the 

characteristics of fast learning speed and strong generalization ability, it has now 

attracted widespread attention from scholars and engineers in the fields of fault 

diagnosis, fault prediction and reliability assessment of engineering equipment. In 

(Liu et al., 2015), the features reflecting the bearing degradation process were 

extracted by the joint approximate diagonalisation method of the two-layer feature 

matrix, and the extracted features were input into the ELM model to achieve 

accurate prediction of the RUL of the bearing. The advantage of the ELM method 

is that it enables fast fault prognosis and reduces the model training time, while not 
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using the gradient descent algorithm and avoiding the problem of falling into local 

minima easily. However, due to the random generation of input weights and hidden 

layer bias values, there is no guarantee that the ELM network training will have a 

stable effect. 

In recent years, subject to the increase of computing power, the increase of big data 

and the development of effective algorithms, deep learning techniques combined 

with brain-like cognitive mechanisms for data processing have opened the 

bottleneck of traditional neural networks in practical applications. As a new 

representation learning tool, deep learning has been widely used in the fields of 

computer vision and natural language processing (Young et al., 2018; Karthikeyan 

and Priyakumar, 2021). Deep learning uses multi-hidden layer networks to extract 

information from input data in a layer-by-layer learning manner, and its deep 

architecture allows it to form high-level representations, attributes or categories 

through multiple levels of abstraction (Chang, 2015), which has led to an increasing 

interest in deep learning methods for process monitoring. Neural networks have 

achieved more extensive research and application in the field of industrial process 

monitoring due to their self-learning and self-adaptive characteristics (Sohaib et al., 

2017). However, whether the fault sample data is sufficiently complete and 

representative, as well as the convergence of deep learning algorithms, training 

speed and real-time diagnosis are all constraints on the development of traditional 

neural network-based fault diagnosis techniques. Therefore, how to combine deep 

learning algorithms to design new data-driven process monitoring methods has 

become a hot research topic in the field of process control in recent years. Current 

methods based on deep learning method mainly include Deep Belief Network 

(DBN), Convolutional Neural Network (CNN) and Recurrent Neural Network 

(RNN). 

In (Zhang and Zhao, 2017), high prediction accuracy for the RUL was achieved by 

using DBN to extract features from the capacity decay of Li-ion batteries and using 

the extracted features as the inputs to a correlation vector machine. In (Zhang et al., 

2017), a multi-objective evolutionary algorithm was combined with a traditional 

DBN training technique to simultaneously evolve multiple DBNs into two 

conflicting objectives, and then the evolved DBNs were used to construct an 

integrated model for RUL estimation. Yu et al. (Yu et al., 2020) proposed a DBN 

model consisting of improved condition restrict Boltzmann Machines (ICRBMs) to 
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predict the RUL of a hydraulic pump by adding timing linkage factors and 

constraint variables to nodes on the same layer enhanced the original RBM. 

Following Bispectral analysis, the normalised data of the vibration signal’s features 

were utilised for the training and testing of the DBN model. Comparative 

experiments show that the improved DBN model can achieves higher prediction 

accuracy than the original DBN, BP neural network, and SVM models. A DBN-

based model for backlash error prediction was proposed by (Li et al., 2017). The 

DBN is first constructed by stacking RBMs, and later the backlash error is used as 

model input to predict the future state. The method was verified to be superior by 

comparing with streamwise learning, support vector machines and back 

propagation neural networks. In  (Deutsch et al., 2017; Deutsch and He, 2018), a 

method is proposed for predicting the RUL of a rotating equipment by fusing DBN 

and feedforward neural networks (FNN), combining the feature extraction 

capability of DBN with the predictive performance of FNN. Based on this, DBN 

and particle filtering are effectively combined to obtain the probability distribution 

of the RUL, which further improves the prediction accuracy. However, DBN can 

only give good results in short-term forecasting and its long-term forecasting 

performance is poor. As can be seen from the above, the fault diagnosis method 

based on DBN networks has certain advantages for the processing of unlabelled 

data of low dimensional data of industrial processes due to its simple structure and 

self-learning during unsupervised training. The layer-by-layer training process also 

helps to extract higher order non-linear features of complex sample data and avoids 

the diffusion problem of deep networks. However, due to the complex stacking of 

the network structure, the training speed and training efficiency are relatively low. 

In (Cheng et al., 2018), a new online data-driven framework is proposed to predict 

the RUL of bearings using CNN. The training data were first processed using the 

Hilbert-Huang transformation and a new non-linear degradation metric was 

constructed. A CNN was then used to identify hidden patterns between the 

degradation metric and the vibration data, resulting in an automatic estimation of 

bearing degradation. In (Ren et al., 2018), a CNN is applied to predict the RUL of 

a bearing. By combining the extracted features of the bearing degradation process 

into an image through the spectral principal energy vector, the CNN can give 

accurate prediction of the RUL and achieve the prognosis. In (Mazaev et al., 2021), 

a Bayesian convolutional neural network-based fault prognosis method for solenoid 
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valves is proposed. Significant physical features extracted from the 

electromechanical data (valve current signal images) are used as network inputs to 

improve the accuracy of fault prediction. The CNN-based fault prognosis method 

is suitable for long-term prognosis of large amounts of data, where the size of the 

convolutional kernel in the convolutional layer controls the extraction of locally 

spatially relevant features of the input information, which can enhance certain 

features of the original signal while reducing the effect of noise; the pooling layer 

replaces single point values with statistics of features in adjacent regions, reducing 

the amount of data processing while retaining valid information. CNNs can 

therefore effectively target industrial data from multiple sources (time series, 

spectrograms, monitoring images, etc.). Convolutional computation of local links 

is also useful for learning and describing local association information for strongly 

correlated industrial process data. However, at the same time, the complexity of 

CNNs requires significant training time and a large amount of network inputs with 

labelled 2D data, increasing the upfront workload. 

The basic idea of the RNN-based fault prognosis method is to use RNN to model 

the development of faults. In (Heimes, 2008), RNN-based prediction of the RUL is 

implemented and the model is trained by the back propagation through time (BPTT) 

algorithm and an extended Kalman filtering method. The experiments showed that 

the performance of the proposed method was significantly better than that of the 

multilayer perceptron -based method. In (Peng et al., 2017), a fault prognosis 

method for transmission system gearboxes using the noise signal ratio of the current 

signal as a system health indicator is proposed. An RNN model was developed, and 

a real time recurrent learning algorithm was used to implement online prognosis. 

System health thresholds are used to determine the system health status and to 

develop appropriate maintenance strategies. Li et al. (Li et al., 2019) predicted the 

deterioration tendency of rolling bearings using RNN and reinforcement learning. 

The singular spectral entropy of the vibration signal was used to characterise the 

bearing's deterioration, and the trend of deterioration was separated into multiple 

phases by moving average noise reduction. Then, reinforcement learning is used to 

optimise the number of hidden layers and the number of nodes within each hidden 

layer of the RNN model. In terms of prediction accuracy and convergence speed, 

the reinforcement-learning RNN model outperforms ELM, SVM, and the original 

RNN model. 
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RNNs have been applied to a wide range of sequential data problems with excellent 

results. Because of the length of the sequence, the gradients of the model error with 

respect to network weights W (the weight matrix from the input layer to the hidden 

layer) and U (the weight matrix from the hidden layer outputs) during network 

training decay or amplify exponentially as time goes forward, resulting in vanishing 

gradient (the gradient is close to zero and the network parameters cannot be updated) 

and gradient explosion (the gradient tends to infinity and the model parameters are 

unstable and cannot converge). Thus, while simple recurrent networks can 

theoretically establish dependencies between states at long intervals, in practice 

only short-term dependencies can be learned due to the presence of exploding or 

vanishing gradients, which is known as the long-term dependency problem. The 

gradient dispersion and gradient explosion problems were first discovered by 

(Hochreiter and Schmidhuber, 1997) and have been effectively solved due to the 

increasing research and application of deep neural network structures in recent 

years. LSTM networks and gated recurrent unit networks avoid the long-term 

dependency problem by introducing gates that enable each recurrent unit to 

adaptively capture dependencies at different time scales (Cho et al., 2014). In 

contrast to the recursive calculation of the system state established by the RNN, the 

three gating units of the LSTM establish a self-loop in the internal state of the 

network: the input gate determines the update of the internal state by the input at 

the current time and the system state at the previous time; the forgetting gate 

determines the updating of the internal state at the previous time to the current 

internal state; and the output gate determines the update of the internal state to the 

system state. In view of the different contributions of different gates to the learning 

ability, GRU network simplifies the structure of the neural network and improves 

the learning efficiency by removing the gates with small contributions and their 

corresponding weights, and evolves into two gates, the update gate and the reset 

gate. The function of the reset gate is similar to that of the input gate of the LSTM 

unit, while the update gate implements the functions of both the forget gate and the 

output gate. In (Zhang et al., 2018), a RUL prediction model for Lithium batteries 

was developed using LSTM, which has more stable performance in long-term 

prognosis than SVM and conventional RNN. The probability distribution of the 

RUL was also obtained using Monte Carlo simulation method. In (Long et al., 

2022), a fault prognosis method based on gated recursive units is proposed, where 

noise and outliers are eliminated by data pre-processing. The prognosis results 
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using back propagation neural network and LSTM were compared with those of 

GRU. It is shown that GRU gives more accurate predictions for different prediction 

starting points. The method was validated using a dataset of hydrogen fuel cells. 

RNN-based fault prognosis methods can be trained by combining the predicted state 

of the previous moments with the predicted state for the current moment, which not 

only improves the accuracy and stability of the prognosis, but also speeds up the 

convergence of the algorithm, and these make it play an important role in the field 

of fault prognosis and RUL estimation. Moreover, its memorability and chain-

connected patterns facilitate the extraction and representation of non-linear features 

of industrial process dynamics. Also, for the variable length and irregular sampling 

of industrial processes, RNNs have a more stable performance in learning and 

testing different sequence lengths. 

2.3 A Simulated Continuous Stirred Tank Reactor Process 

In this thesis, a simulated CSTR process with feedback control (Yoon and 

MacGregor, 2001) is used to demonstrate the feasibility of the proposed fault 

diagnosis and fault magnitude prediction method. An exothermic irreversible first-

order reaction (𝐴 → 𝐵) takes place in the reactor. The process diagram is shown in 

Figure 2.8.  

 

Figure 2.4 A continuous stirred tank reactor process 

The simulation model can be described by the following differential equations, 

which are developed from mass and energy balances: 
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where 𝐶𝐴 is the product concentration, 𝑇 is the temperature of the reaction, 𝑇𝐶 is the 

cooling water temperature, 𝑇0  is the inlet temperature, and 𝐶𝐴0  is the inlet 

concentration which is presented as two parts, the reactant and the solvent (𝐶𝐴0𝐹0 =

𝐶𝐴𝐴𝐹𝐴 + 𝐶𝐴𝑆𝐹𝑆 ). Through the empirical relationship (𝑈𝐴 = 𝑎𝐹𝐶
𝑏 ), there is a 

correlation between the heat transfer coefficient and coolant flow rate. Random 

process noise stem from poisoning of the reaction and fouling of cooling coils are 

introduced as pre-coefficients (𝑎1 and 𝑎2) for reaction constants and heat transfer 

coefficients. 

𝑘 = 𝑎1𝑘0𝑒
−
𝐸
𝑅𝑇;   𝑈𝐴 = 𝑎2𝑎𝐹𝐶

𝑏 (2.46) 

The form of process noise is unified as the following first-order function: 

𝑥𝑡 = 𝑥𝑡−1 + 𝜎𝑒𝑒𝑡 (2.47) 

where 𝑡 represents the current sampling time, 𝑒𝑡~𝑁(0, 1), and 𝜎𝑒𝑒𝑡  is the white 

noise contained in the system. 

In the simulation, the measured process variables are the input concentrations (𝐶𝐴𝐴, 

𝐶𝐴𝑆 ), the inlet temperature (𝑇0 ), the product concentration (𝐶𝐴 ), the reactor 

temperature (𝑇), the inlet flow rates (𝐹𝐴, 𝐹𝑆), the cooling water flow rate (𝐹𝑐), and 

the temperature of cooling water (𝑇𝐶).  

The product concentration (𝐶𝐴) and reactor temperature (𝑇) are controlled variables 

and are controlled by reactant flow rate (𝐹𝐴 ) and cooling water flow rate (𝐹𝐶 ) 

respectively. Measurement noise and process noise are added to the system 

measurement variables and process variables, respectively, to simulate real 

situations. At steady state, 𝐶𝐴 = 0.265𝑘𝑚𝑜𝑙 𝑚
3⁄ ,   𝑇 = 394𝐾. 

The measured process variables in the system are: 

𝑥 = [𝑇  𝐶𝐴  𝐹𝐶   𝐹𝐴  𝑇0  𝐶𝐴𝐴  𝐶𝐴𝑆  𝑇𝐶   𝐹𝑆]
𝑇 
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The other variables are constants during the simulation process, and the process is 

controlled by PI controllers. The system variables and initial conditions are shown 

in Table 2.1. 

Simulation 

parameters 

𝐹 = 1𝑚3 𝑚𝑖𝑛⁄ ; 𝑉 = 1𝑚3; 𝜌 = 106 𝑔 𝑚3⁄ ;                 

𝑘0 = 1 × 10
10𝑚𝑖𝑛−1; 𝐸 𝑅⁄ = 8330.1𝐾;                   

𝐶𝑃𝐶 = 1𝑐𝑎𝑙 (𝑔𝐾)⁄ ; 𝜌𝑐 = 10
6 𝑔 𝑚3⁄ ;                 

−∆𝐻𝑟𝑥𝑛 = 130 × 10
6 𝑐𝑎𝑙 (𝑘𝑚𝑜𝑙)⁄ ; 𝐶𝑃 = 1𝑐𝑎𝑙 (𝑔𝐾)⁄ ; 

𝑏 = 0.5; 𝑎 = 1.678 × 106 (𝑐𝑎𝑙 𝑚𝑖𝑛⁄ ) 𝐾⁄  

Controller 

parameters 
𝐾𝐶(𝑇) = 2; 𝑇𝑖(𝑇) = 3; 𝐾𝐶(𝐶𝐴) = −3; 𝑇𝑖(𝐶𝐴) = 2.72 

Initial conditions 

𝑇0 = 323𝐾; 𝑇𝑐𝑖𝑛 = 365𝐾; 𝑇 = 368.25𝐾;                   

𝐹𝐶 = 15𝑚
3 𝑚𝑖𝑛⁄ ; 𝐶𝐴 = 0.8 𝑘𝑚𝑜𝑙 𝑚

3⁄ ;                       

𝐹𝐴 = 0.1𝑚
3 𝑚𝑖𝑛⁄ ; 𝐹𝑆 = 0.9𝑚

3 𝑚𝑖𝑛⁄ ;                       

𝐶𝐴𝐴 = 19.1 𝑘𝑚𝑜𝑙 𝑚
3⁄ ; 𝐶𝐴𝑠 = 0.1 𝑘𝑚𝑜𝑙 𝑚

3⁄  

Table 2.1 Parameters and conditions in CSTR model 

2.4 Conclusion 

In conclusion, process monitoring proves critical to the management of industrial 

operations. It discovers and corrects faults in order to ensure safety, efficiency, and 

product quality. As the complexity of industrial processes escalates, process 

monitoring becomes increasingly important, given that faults can lead to significant 

impacts in such highly integrated and intensified processes. This chapter elucidates 

the fundamental tasks, components, and implementation stages of industrial process 

monitoring, along with the numerous sorts of failures that can arise in industrial 

processes.  

Additionally, an overview of various fault detection and diagnosis methods, 

particularly in the context of industrial processes has been provided and delves into 

different techniques in data-based approaches such as signal processing, 

multivariate statistical-based methods, and machine learning-based methods 

(including deep learning techniques), comparing the advantages and limitations of 

these fault detection and diagnosis methods based on a literature review. Following 
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that, because previous process monitoring methods have primarily focused on fault 

detection and diagnosis, there is a scarcity of research on fault prediction in process 

systems, a review of fault prediction methods for industrial processes is presented 

to emphasise the importance of data-driven methods. 

Moreover, a simulated CSTR process has been introduced, which serves as a case 

study to illustrate the feasibility of the proposed fault diagnosis and magnitude 

prediction method in the following chapters. This model offers an exothermic 

irreversible first-order reaction scenario, incorporating elements of feedback 

control. This simulation is characterized by a set of developed differential equations 

based on mass and energy balances and includes factors such as product 

concentration, reactor temperature, cooling water temperature, and inlet 

concentration. Several failure modes will be simulated to demonstrate the 

robustness and applicability of the methods discussed in the context of real-world 

industrial processes. 
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Chapter 3 Technical Preliminaries and Algorithm Descriptions 

In the preceding chapter, an extensive literature review was delved, highlighting the 

significant advancements, and identifying the knowledge gaps in the realm of data-

based process monitoring. This chapter aims to build on that foundation by 

presenting a detailed mathematical exposition of the computational techniques that 

are pivotal in fault diagnosis and severity prediction. It serves as a crucial link 

between the theoretical underpinnings reviewed in Chapter 2 and the practical 

applications and case studies explored in Chapter 4. Here, we begin with a 

comprehensive discussion on Principal Component Analysis (PCA), a cornerstone 

technique in data analysis and reduction, laying out its mathematical structure and 

significance in process monitoring. Subsequent sections will further elaborate on 

other critical algorithms such as AR model, ELM, and LSTM networks, each 

playing a unique role in advancing fault diagnosis and prediction methodologies. 

3.1 Multivariate Statistical Process Monitoring 

3.1.1 Principal Component Analysis 

Principal component analysis (PCA) aims to identify a smaller set of principal 

components (also referred to as latent variables) that represent the underlying 

structure of larger set of variables by reducing the dimensionality of the data. 

Considering a data matrix with 𝑛  observations of 𝑚  variables with certain 

dependencies, a smaller number of composite variables (principal components) are 

created. These new variables allow the information contained in the original 𝑚 

variables to be captured more concisely. The technique involves determining the 

maximum variance direction in the data and extracting each principal component 

in decreasing order of variance. These principal components (PCs) are orthogonal 

i.e., they are uncorrelated and independent. Generally, each PC is a linear 

combination of the original variables, and their number is typically much smaller 

than that of the original variables. The PCs retain most of the information of the 

original variables and are uncorrelated with each other. 

The prerequisite for performing PCA on process variables is the acquisition of 

sample data within the normal range of variation, from which to construct a PCA 

statistical model that reflects the characteristics of normal production conditions. 

Suppose the matrix 𝑋𝑜 ∈ 𝑅𝑛×𝑚 contains process data collected from the process 

under normal operation conditions, with 𝑛 representing the number of samples, 𝑚 
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representing the number of observed variables. As different variables can have 

considerably different magnitudes, each column 𝑋𝑜(𝑖) of the measurement data 𝑋𝑜 

must first be standardized to eliminate any unjustified effects that may arise from 

the different magnitudes: 

𝑋(𝑖) =
𝑋𝑜(𝑖) − 𝐸(𝑋𝑜(𝑖))

(𝑉𝑎𝑟(𝑋𝑜(𝑖)))

1
2

         𝑖 = 1,2,⋯ ,𝑚 (3.1)
 

This equation transforms the original data set 𝑋𝑜 into a standardised data set 𝑋, with 

mean of 0 and a variance of 1 for each column. 

The matrix 𝑋 can be decomposed into the sum of the outer product of the 𝑚 vectors: 

𝑋 = 𝑡1𝑝1
𝑇 + 𝑡2𝑝2

𝑇 +⋯+ 𝑡𝑚𝑝𝑚
𝑇 = 𝑇𝑃𝑇 (3.2) 

Here, 𝑝𝑖 = [𝑝𝑖1, 𝑝𝑖2, ⋯ , 𝑝𝑖𝑚]
𝑇 ∈ 𝑅𝑚×1  represents the loading vector, and 𝑡𝑖 =

[𝑡𝑖1, 𝑡𝑖2, ⋯ , 𝑡𝑖𝑛]
𝑇 ∈ 𝑅𝑛×1  is the score vector. Additionally, 𝑃 = [𝑝1, 𝑝2, ⋯ , 𝑝𝑚] ∈

𝑅𝑚×𝑚 is the loading matrix, and 𝑇 = [𝑡1, 𝑡2, ⋯ , 𝑡𝑚] ∈ 𝑅
𝑛×𝑚 is the score matrix, 

representing the projection of 𝑋 in the load directions.  

Each score vector is orthogonal to each other, which means that for any 𝑖 and 𝑗, 

𝑡𝑖
𝑇𝑡𝑗 = 0 holds true when 𝑖 ≠ 𝑗. Each loading vector is also orthogonal to each other, 

and the length of each loading vector is 1: 

𝑝𝑖
𝑇𝑝𝑗 = 0

𝑝𝑖
𝑇𝑝𝑗 = 1

      
𝑖 ≠ 𝑗

𝑖 = 𝑗
(3.3) 

Multiplying both sides of equation (2.2) by 𝑝𝑖, we get: 

𝑡𝑖 = 𝑋𝑝𝑖 (3.4) 

The above equation shows that the score vector is the projection of the data matrix 

𝑋  in the direction of its corresponding loading vector. The PCA of matrix 𝑋 

involves an eigenvector analysis of the covariance matrix of 𝑋, 𝑋𝑇𝑋. The loading 

vector of matrix 𝑋 is the eigenvector of 𝑋𝑇𝑋. If the score vectors are arranged in 

order of their length as follows: 

‖𝑡1‖ > ‖𝑡2‖ > ⋯ > ‖𝑡𝑚‖ (3.5) 

then, the loading vector 𝑝1 represents the direction of the largest variations in the 

data matrix 𝑋, 𝑝2 represents the second largest variations in the data matrix 𝑋, and 

𝑝𝑚 represents the direction of the smallest variations in the data matrix 𝑋. If there 
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is a notable linear correlation among the variables in the matrix 𝑋, the variation be 

principally in the direction of the first 𝑘 (𝑘 < 𝑚) loading vectors. The projection 

of 𝑋 on the remaining (𝑚 − 𝑘) loading vectors will be relatively small, mainly due 

to the measurement noise.  

The PCA model splits the monitoring space into two orthogonal subspaces, which 

are principal component subspace (PCS), where normal data variation is captured, 

and the residual subspace (RS), where abnormal variation and noise are captured 

(Joe Qin, 2003; Elshenawy and Mahmoud, 2018), Figure 3.1 display this division. 

Each data vector can subsequently be decomposed into two orthogonal vectors by 

projecting onto these subspaces. 

 

Figure 3.1 Projection of data using PCA 

Let 𝑃 = [𝑝1   𝑝2    ⋯   𝑝𝑘] , �̃� = [𝑝𝑘+1   𝑝𝑘+2    ⋯   𝑝𝑚] , 𝑇 = [𝑡1   𝑡2    ⋯   𝑡𝑘]  and 

�̃� = [𝑡𝑘+1   𝑡𝑘+2    ⋯   𝑡𝑚], with 𝑘 representing the number of the retained PCs. The 

loading matrix 𝑃 is an orthogonal matrix, meaning that 𝑃𝑃𝑇 = 𝐼 , therefore, the 

following equation is valid. 

𝑋 = �̂� + �̃� = 𝑇𝑃𝑇 + �̃��̃�𝑇

= 𝑋𝑃𝑃𝑇 + 𝑋�̃��̃�𝑇 = 𝑋𝑃𝑃𝑇 + 𝑋(𝐼 − 𝑃𝑃𝑇)
(3.6) 

Equation (3.6) reveals that the original data matrix 𝑋 can be decomposed into two 

sections, �̂� and �̃�, which are projections of data matrix 𝑋 on the subspace PCS and 

RS, respectively.  

In many practical applications, 𝑘  is often much smaller than 𝑚. If the residual 

matrix �̃�, which is mainly caused by the measurement noise, is neglected, it can 

have the effect of eliminating the noise without causing any significant loss of 

useful information in the data. Thus, the data matrix 𝑋 can be approximated as: 

𝑋 ≈ �̂� = 𝑇𝑃𝑇 (3.7) 
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There are primarily two methods for solving the loading vector in PCA: 

Firstly, the eigen decomposition of the covariance matrix of the data. Suppose the 

covariance matrix of the matrix 𝑋 is denoted as 𝑆: 

𝑆 =
1

𝑛 − 1
𝑋𝑇𝑋 (3.8) 

The equation above reflects the eigenvalue decomposition of S:  

𝑆 = [𝑃 �̃�] [
Ʌ̂ 0
0 Ʌ̃

] [𝑃 �̃�]
𝑇 (3.9) 

where the eigenvalue matrix contains the real non-negative eigenvalues (𝜆1 ≥ 𝜆2 ≥

⋯ ≥ 𝜆𝑚 ≥ 0) in decreasing order along its diagonal, Ʌ̂ = 𝑑𝑖𝑎𝑔(𝜆1, ⋯ , 𝜆𝑘) and 

Ʌ̃ = 𝑑𝑖𝑎𝑔(𝜆𝑘+1, ⋯ , 𝜆𝑚). The orthogonal column vectors in the matrix 𝑃 serve as 

the loading vectors.  

The singular value decomposition (SVD) method provides another way to compute 

the loading vectors of the matrix 𝑋, represented as: 

𝑋 = 𝑈𝛴𝑉𝑇 (3.10) 

The parameters involved in above equation are given as follows: 

𝑈 = [𝑢1   𝑢2    ⋯   𝑢𝑛] ∈ 𝑅
𝑛×𝑛

𝑉 = [𝑣1   𝑣2    ⋯   𝑣𝑚] ∈ 𝑅
𝑚×𝑚

𝛴 =

[
 
 
 
 
 
𝜎1 0 ⋯ 0
0 𝜎2 ⋯ 0

⋯
0 0 ⋯ 𝜎𝑚

⋯
0 0 ⋯ 0 ]

 
 
 
 
 

∈ 𝑅𝑛×𝑚
(3.11) 

where (𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚)  are the singular values of matrix 𝑋 . The singular 

values of the data matrix 𝑋 are the square roots of the eigenvalues of its covariance 

matrix Ʌ ∈ 𝑅𝑚×𝑚 , which contains non-negative real eigenvalues of decreasing 

magnitude (𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0), and the loading vector 𝑝𝑖 is given by each 

column vector 𝑣𝑖 in the matrix 𝑉. 

Geometrically, the essence of PCA is to translate and rotate the original coordinate 

system so that the origin of the new coordinates coincides with the centre of gravity 

of the data group points. The first axis of the new coordinate system corresponds to 

the largest direction of variation in the data, the second axis of the new coordinate 

system is standardly orthogonal to the first axis and corresponds to the second 
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largest direction of variation in the data, and so on. These new axes are the loading 

vectors, 𝑝𝑖, 𝑖 = 1, 2, … ,𝑚. If the first 𝑘 axes of the new coordinate system describe 

the variation of the original data very effectively, then the original data group points 

can be approximated by a projection onto the new k-dimensional space.  

In three dimensions, the geometric interpretation of the PCA is given by Figure 3.2, 

where (a) is the distribution of observations in the measurement space, 𝑃1 in (b) is 

the first load direction and 𝑃2 in (c) is the second load direction. The data are mostly 

distributed in the same plane, so that only 2 PCs are needed to describe the set of 

data effectively. 

 

Figure 3.2 Geometric interpretation of the PCA 

3.1.2 Fault Detection based on PCA 

The PCA based process monitoring model describes the correlation among process 

variables under normal operating conditions due to constraints such as material 

balance, energy balance and operational limitations. This method projects the 

process data vectors onto two orthogonal subspaces (PCS and RS), creating 

separate statistics on the corresponding subspaces to perform hypothesis testing for 

determining the process operation. Two commonly used fault detection statistics 

include the Hotelling’s 𝑇2  statistic and squared prediction error (𝑆𝑃𝐸) statistic, 

which represent the degree of variation in the data projection in the principal 

component subspace and the residual subspace, respectively. By comparing them 

with the corresponding control limits, it is possible to determine whether a fault has 

occurred in the process. 

a. Hotelling’s 𝑇2 

The Hotelling’s 𝑇2 monitoring index is the weighted sum of squares of the score 

vectors. It represents the extent to which each sample deviates from the model in 

terms of trend and magnitude and is a measure of the variability within the model, 
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which measures the variations of the sample in the PC subspace by the estimated 

value �̂� of the correlation matrix. The definition of 𝑇2 statistic is:  

𝑇2 = 𝑋𝑇�̂�−1𝑋 = 𝑋𝑇𝑃Ʌ̂−1𝑃𝑇𝑋 (3.12) 

where 𝑃  is the loading matrix containing the first k loading vectors and 𝑆  is a 

diagonal matrix composed of the first 𝑘 major eigenvalues of the covariance matrix 

(the number of PCs kept in the PCA model) and �̃� = 𝑚 − 𝑘 represents the number 

of neglected PCs. 𝑇2 reflects changes in multivariate variables through fluctuations 

in the principal vector modes within the principal component model. 

The control limits of 𝑇2  statistic can be calculated using the F distribution as 

follows: 

𝛿𝑇
2 =

(𝑚 − 1)(𝑚 + 1)𝑘

𝑚(𝑚 − 𝑘)
𝐹𝛼(𝑘,𝑚 − 𝑘) (3.13) 

where m is the number of variables, 𝑘 is the number of PCs kept in the PCA model, 

and  𝐹𝛼(𝑘,𝑚 − 𝑘) is the function of the 𝐹 distribution with degrees of freedom 𝑘 

and 𝑚− 𝑘 at a confidence level of 1 − 𝛼.  

b. Squared prediction error  

The squared prediction error of the PCA model is also known as the Q-statistic, 

which represents the variation of data in the RS. The 𝑆𝑃𝐸 at the sample 𝑖 is a scalar 

measure of the deviation of the measurements, 𝑥(𝑖), from its PCA model prediction, 

�̂�(𝑖), and is a measure of the variability of the data outside the model. The definition 

of 𝑆𝑃𝐸 statistic is: 

𝑆𝑃𝐸 = ‖�̃�‖
2
= 𝑋𝑇�̃��̃�𝑇𝑋

= [(𝐼 − 𝑃𝑃𝑇)𝑋]𝑇(𝐼 − 𝑃𝑃𝑇)𝑋
(3.14) 

The 𝑆𝑃𝐸 statistic represents the variation in the data that is not accounted for by the 

PCA model. When the 𝑆𝑃𝐸 is too large, it indicates that the current measured data 

sample does not obey the PCA model developed from the normal process operation 

data and, hence, deviates from normal process operation. The control limit of 𝑆𝑃𝐸 

is calculated as: 

𝛿𝑆𝑃𝐸
2 = 𝑎(𝑏 + 𝑐𝑧𝛼)

𝑑 (3.15) 

where 𝛼  is the significance level, 𝑧𝛼  is the standard normal distribution with a 

confidence level of (1 − 𝛼) × 100%, and other parameters are as follows. 
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𝑎 = ∑ 𝜆𝑖

𝑚

𝑖=𝑘+1

𝑏 = 1 + [𝜃2ℎ0(ℎ0 − 1)] 𝑎
2⁄

𝑐 = (√2𝜃2ℎ0) 𝑎⁄ ;    𝑑 = 1 ℎ0⁄

 

𝜃2 = ∑ 𝜆𝑖
2

𝑚

𝑖=𝑘+1

;  𝜃3 = ∑ 𝜆𝑖
3

𝑚

𝑖=𝑘+1 
ℎ0 = (1 − 2𝑎𝜃3) (3𝜃2

2)⁄

(3.16) 

Here 𝜆𝑖 is the 𝑖𝑡ℎ largest eigenvalue of the covariance matrix 𝑆. The 𝑆𝑃𝐸 statistic 

measures the deviation between 𝑋 and PCS, indicating the deviation from the main 

correlation between the variables. Therefore, a large 𝑆𝑃𝐸 means that the variable 

relationship under normal operating conditions is destroyed, and a process failure 

has occurred.  

After the PCA model is established, the multivariate process can be monitored by 

monitoring the 𝑇2 and 𝑆𝑃𝐸 statistics and the process is considered under normal 

operation if the following conditions are satisfied: 

𝑇2 = ‖Ʌ̂−(1/2)𝑃𝑇𝑋‖
2
≤ 𝛿𝑇

2 (3.17) 

𝑆𝑃𝐸 = ‖(𝐼 − 𝑃𝑃𝑇)𝑋‖2 ≤ 𝛿𝑆𝑃𝐸
2 (3.18) 

Here, 𝛿𝑇
2 and 𝛿𝑆𝑃𝐸

2  are the control limits of the 𝑇2 and 𝑆𝑃𝐸 respectively. 

Although both 𝑇2 and 𝑆𝑃𝐸 are applied to process monitoring, they are different 

ways of describing the degree of change in a process. The 𝑆𝑃𝐸 statistic reflects the 

extent to which the data deviates from the PCA model in the residual subspace, 

measuring changes that break the correlation of normal processes, often implying 

anomalies. The 𝑇2 statistic, on the other hand, reflects the extent to which the data 

deviates from the PCA model in the principal component subspace, measuring the 

distance from the centre of the model for changes in the principal directions. 

Because the principal component subspace contains normal process variations, 

which have large variance and usually represent signals, and the residual subspace 

contains variations with small variance, which usually represent noise, the control 

limits of 𝑇2 are larger than those of 𝑆𝑃𝐸 in terms of the magnitude of the control 

limits. If the 𝑇2  control limit is exceeded, the magnitude of the fault must be 

relatively large, whereas the 𝑆𝑃𝐸 control limit only contains the noise part of the 

normal process, so even if the magnitude of the fault is small, it can be detected by 



46 

 

𝑆𝑃𝐸. If the 𝑇2 statistic of a sampled data exceeds the control limits, but the 𝑆𝑃𝐸 

statistic does not, then this means that the data did not break the normal correlation 

between the variables, but simply shifted in the main PCA subspace. This could be 

a fault, or it could be a change in the operational range. 

3.2 Data-driven Modelling Techniques for Fault Prediction  

3.2.1 Autoregressive Model 

The AR model is a special case of the ARMA model, and it is important to first 

understand the structure of the ARMA model. Assuming that the response of a 

system at time 𝑡 is a stationary time series {𝑥𝑡}, if the value of 𝑥𝑡 is related not only 

to the response at the previous 𝑞  moments (𝑥𝑡−1, 𝑥𝑡−2, ⋯ , 𝑥𝑡−𝑞) but also to the 

disturbances at the previous 𝑝  (𝑤𝑡−1, 𝑤𝑡−2, ⋯ ,𝑤𝑡−𝑝) , the general structure of 

ARMA (𝑞, 𝑝), following the idea of multiple regression, is as follows: 

{
 

 
𝑥𝑡 =∑𝜑𝑖𝑥𝑡−𝑖

𝑞

𝑖=1

−∑𝜃𝑗𝑤𝑡−𝑗 + 𝑤𝑡

𝑝

𝑗=1

𝑤𝑡~𝑁𝐼𝐷(0, 𝜎
2)

(3.19) 

where 𝑞 and 𝑝 represent the orders of the autoregressive and moving average parts 

respectively. The parameter 𝜑𝑖 (𝑖 = 1, 2,⋯ , 𝑛)  represents the regression 

coefficients, the parameter 𝜃𝑗 (𝑗 = 1, 2,⋯ ,𝑚)  represents the moving average 

coefficients, and 𝑤𝑡 represents a normal independent distribution with mean 0 and 

variance 𝜎2 (white noise). 

If the 𝑥𝑡 relates only to the response at the previous moment, then: 

{
𝑥𝑡 =∑𝜑𝑖𝑥𝑡−𝑖

𝑞

𝑖=1

+ 𝑤𝑡

𝑤𝑡~𝑁𝐼𝐷(0, 𝜎
2)

(3.20) 

The above equation is then the mathematical structure of the AR (q) model. 

The process of building the AR model is the process of linear parameter estimation, 

which aims to select the appropriate parameters so that the residuals 𝑤𝑡  of the 

model are white noise series. Therefore, the data needs to be pre-processed before 

using the AR model. The AR model is only valid if the time series data needs to 

meet the steadiness requirement. The judgement is based on whether the 

autocorrelation coefficient 𝜌𝑞 of the time series data can rapidly converge to zero 

as the value of 𝑞  increases. If so, the steadiness requirement is met. The 
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autocorrelation coefficient is a measure of the degree of correlation between any 

two elements of the series 𝑥𝑡 . For stochastic processes, the autocorrelation 

coefficient between two elements at two time instances is defined as follows: 

𝜌𝑞 =
𝑐𝑜𝑣(𝑥𝑡 , 𝑥𝑡+𝑞)

√𝑣𝑎𝑟𝑥𝑡𝑣𝑎𝑟𝑥𝑡+𝑞
(3.21) 

For non-stationary data, the difference method is usually used to adjust the 

smoothness of the data, and the expression for the first order difference is: 

𝑥𝑡 = 𝑥𝑡+𝑞 − 𝑥𝑡 (𝑞 > 1) (3.22) 

Repeat the differential transformation until a stationary time series is obtained. 

The next step is to determine the order of the AR model. For model fitting of a 

stationary random series, the estimation of the model order is an important issue. 

An improper choice of order can seriously affect the accuracy of the fitted results. 

The appropriate order of the model is usually determined using a criterion that 

considers the accuracy of the model fitting and the number of model parameters. 

There are two commonly used criteria. 

The first one is the Akaike Information Criterion (AIC) criterion, which was 

proposed by the Japanese scholar Akaike in 1973 and is also known as the minimum 

information criterion. For a stationary time series {𝑥𝑡}  fitted to an AR model, the 

AIC criterion function is defined by the formula: 

𝐴𝐼𝐶(𝑞) = ln(�̂�𝑞
2) + 2𝑞 𝑁⁄ (3.23) 

where 𝑞 is the order of the model, 𝑁 is the length of the time series and 𝜎𝑞
2 is the 

maximum likelihood estimates of the noise variance for the 𝑞𝑡ℎ  order model. 

𝐴𝐼𝐶(𝑞)  decreases as the order 𝑞  increases where the ln(�̂�𝑞
2)  term decreases. 

Therefore, the order corresponding to the smallest value of 𝐴𝐼𝐶(𝑞) is taken to be 

the optimal order. 

The second is the Bayesian Information Criterion (BIC), which was proposed by 

Schwarz and is defined as follows: 

𝐵𝐼𝐶(𝑞) = ln(�̂�𝑞
2) +

𝑞 ln𝑁

𝑁
(3.24) 
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In the information criterion approach, there is a preference for models that produce 

a minimum value criterion, which can be used as a basis for model selection by 

comparing the AIC and BIC values of different models.  

Once the sample series has been smoothed and the model order has been determined, 

the parameters of the AR model can be estimated. There are various methods, and 

this section only uses least squares estimation to estimate the model parameters. 

When the optimal order of the model is 𝑞, the AR (q) model can be expressed as: 

{
𝑥𝑡 = 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 +⋯+ 𝜑𝑞𝑥𝑡−𝑞 +𝑤𝑡

𝑤𝑡~𝑁𝐼𝐷(0, 𝜎
2)

(3.25) 

By parameter estimation, the parameters 𝜑𝑖 (𝑖 = 1,2,⋯𝑞) and 𝜎2  are estimated 

from the known observations {𝑥𝑡} (𝑡 = 1,2,⋯𝑁). For the residuals {𝑤𝑡} of the 

model, the above equation gives: 

𝑤𝑡 = 𝑥𝑡 − 𝜑1𝑥𝑡−1 − 𝜑2𝑥𝑡−2 −⋯− 𝜑𝑛𝑥𝑡−𝑞 (3.26) 

According to the least squares estimation, the residuals equation of the 𝑞𝑡ℎ order 

autoregressive model has the following linear expansion form when minimising the 

sum of squares of the model residuals: 

{
 

 
𝑤𝑞+1 = 𝑥𝑞�̂�1 + 𝑥𝑞−1�̂�2 +⋯+ 𝑥1�̂�𝑞 − 𝑥𝑞+1
𝑤𝑞+2 = 𝑥𝑞+1�̂�1 + 𝑥𝑞�̂�2 +⋯+ 𝑥2�̂�𝑞 − 𝑥𝑞+2

⋮
𝑤𝑁 = 𝑥𝑁−1�̂�1 + 𝑥𝑁−2�̂�2 +⋯+ 𝑥𝑁−𝑞�̂�𝑞 − 𝑥𝑁

(3.27) 

Then the following matrix can be obtained: 

𝑊 = [

𝑤𝑞+1
𝑤𝑞+2
⋮
𝑤𝑁

] �̂� = [

�̂�1
�̂�2
⋮
�̂�𝑞

] 𝑋 = [

𝑥𝑞 𝑥𝑞−1 ⋯ 𝑥1
𝑥𝑞+1 𝑥𝑞 ⋯ 𝑥2
⋮ ⋮ ⋱ ⋮

𝑥𝑁−1 𝑥𝑁−2 ⋯ 𝑥𝑁−𝑞

] 𝑌 = [

𝑥𝑞+1
𝑥𝑞+2
⋮
𝑥𝑁

] (3.28) 

Then the residuals equation can be rewritten as: 

𝑊 = 𝑋�̂� − 𝑌 (3.29) 

The least squares solution of the estimated model parameters matrix �̂� is then: 

(Chatfield et al., 2019) 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (3.30) 
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3.2.2 Extreme Learning Machine 

In the traditional gradient based neural network training algorithms, the network 

weights are obtained through multiple iterations of the learning algorithm. This 

training process is not only time-consuming, but also computationally intensive, 

resulting in low network training efficiency. In the implementation of the gradient 

based neural network training algorithms, the training process can easily be trapped 

in local minima. To address the above problems, Huang et al. (2006) proposed the 

ELM neural network. In contrast to previous gradient based neural network training 

algorithms, the ELM randomly selects weights and biases in the hidden layer, and 

then calculates the weights in the output layer by a regularized linear regression 

method. 

An ELM neural network is basically a single hidden layer neural network shown in 

Figure 3.3, where the numbers of neurons in the input, hidden and output layers are 

𝐼, 𝑙, 𝑂, respectively.  

 

Figure 3.3 Structure diagram of the Extreme Learning Machine Neural Network 

Let the connection weights between the input layer to the hidden layer and the 

hidden layer to the output layer be w and v respectively: 

𝑤 = [

𝑤1
𝑤2
⋯
𝑤𝑙

] = [

𝑤11 𝑤12 ⋯ 𝑤1𝐼
𝑤21 𝑤22 ⋯ 𝑤2𝐼
⋯ ⋯ ⋱ ⋮
𝑤𝑙1 𝑤𝑙2 ⋯ 𝑤𝑙𝐼

]

𝑙×𝐼

(3.31) 

𝑣 = [

𝑣1
𝑣2
⋯
𝑣𝑙

] = [

𝑣11 𝑣12 ⋯ 𝑣1𝐼
𝑣21 𝑣22 ⋯ 𝑣2𝐼
⋯ ⋯ ⋱ ⋮
𝑣𝑙1 𝑣𝑙2 ⋯ 𝑣𝑙𝑂

]

𝑙×𝑂

(3.32) 
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The hidden layer bias is: 

𝑏 = [

𝑏1
𝑏2
⋯
𝑏𝑙

] (3.33) 

The activation function is 𝑔(𝑥) , then for an output 𝑌  with 𝑁  samples can be 

expressed as: 

𝑌 = 𝐻𝑣 (3.34) 

where, 𝐻 is the hidden layer output matrix: 

𝐻 = [

𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) 𝑔(𝑤2 ∙ 𝑥2 + 𝑏2) ⋯ 𝑔(𝑤𝑙 ∙ 𝑥1 + 𝑏𝑙)

𝑔(𝑤1 ∙ 𝑥2 + 𝑏1) 𝑔(𝑤2 ∙ 𝑥2 + 𝑏2) ⋯ 𝑔(𝑤1 ∙ 𝑥2 + 𝑏𝑙)
⋯ ⋯ ⋱ ⋮

𝑔(𝑤1 ∙ 𝑥𝑁 + 𝑏1) 𝑔(𝑤2 ∙ 𝑥𝑁 + 𝑏2) ⋯ 𝑔(𝑤1 ∙ 𝑥𝑁 + 𝑏𝑙)

]

𝑁×𝑙

(3.35) 

The following theorems were proposed by Huang et al. (Huang et al., 2006): 

1. Given a single hidden layer forward neural network (SLFN) with 𝑙 hidden 

layer neurons, 𝑁 distinct samples (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝐼]
𝑇 ∈

𝑅𝐼  and 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2, ⋯ , 𝑦𝑖𝑂]
𝑇 ∈ 𝑅𝑂 , and an infinitely differentiable 

function 𝑔(𝑥) , then for any assignment 𝑤𝑖 ∈ 𝑅
𝐼  and 𝑏𝑖 ∈ 𝑅 , there is a 

hidden layer output matrix 𝐻 that is invertible and satisfies ‖𝐻𝑣 − 𝑌‖ = 0.  

2. Given any small error 휀(휀 > 0), and an infinitely differentiable function 

𝑔(𝑥), for 𝑁 distinct samples (𝑥𝑖 , 𝑦𝑖), there exists a SLFN with 𝑀 (𝑀 ≤ 𝑁) 

hidden layer neurons that has a hidden layer output matrix 𝐻  that is 

invertible and satisfies ‖𝐻𝑣 − 𝑌‖ < 휀 for any assignment 𝑤𝑖 ∈ 𝑅
𝐼 and 𝑏𝑖 ∈

𝑅. 

From the above two theorems, if the number of hidden layer neurons 𝑙 is greater 

than or equal to the number of training samples 𝑁, and the input weight 𝑤 and 

biases 𝑏  are randomly assigned, then the ELM network can approximate the 

training samples with zero error. Thus, training for the SLFN model is also 

equivalent to solving the equation (3.34) for the least-and-multiply solution �̂�. 

‖𝐻(�̂�1, ⋯ , �̂�𝑀, �̂�1, ⋯ , �̂�𝑀)�̂� − 𝑌‖ = min
𝑣
‖𝐻(𝑤1, ⋯ ,𝑤𝑀, 𝑏1, ⋯ , 𝑏𝑀)𝑣 − 𝑌‖ (3.36) 

However, when 𝑁 is large, an excessive number of hidden layer nodes imply a 

larger computational effort, so the size of the hidden layer nodes can be reduced to 

𝑀 so that the training error can be approximated by an arbitrarily small 휀. In this 
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case, the Moore-Penrose generalised inverse matrix 𝐻+ of 𝐻 can be used to solve 

for equation (3.36). 

�̂� = 𝐻+𝑌 (3.37) 

The most common method currently used to solve the generalized inverse matrix 

𝐻+ is the singular value decomposition method, regardless of whether 𝐻𝑇𝐻 is a 

singular or non-singular matrix. 

In contrast to traditional single hidden layer feedforward neural networks, ELM 

randomly selects weights and biases in the hidden layer and then calculates the 

weights of the output layer by a regularised linear regression method (Huang et al., 

2004). Even though the weights of the hidden layer are randomly generated, ELM 

maintains the universal approximation capability of SLFN. Therefore, from the 

perspective of learning efficiency, ELM networks are not only simple to operate, 

but also learn faster and have better global search capability, which can overcome 

the problem of traditional neural networks falling into local optima. 

3.2.3 Long Short-term Memory Neural Network 

RNN usually uses the backpropagation through time algorithm for training, but as 

the time information stored in the RNN network increases, the gradient tends to 

disappear or explode (Pascanu et al., 2013). To solve this problem, in (Hochreiter 

and Schmidhuber, 1997) a long and short-term memory network structure 

containing memory units is proposed. A typical LSTM neural network cell is shown 

in Figure 3.4. Both LSTM and RNN are trained with similar parameters on the 

neural network structure, with the main difference being on the recurrent neuron 

nodes. 

 

Figure 3.4 LSTM cell architecture 
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In Figure 3.4, ℎ𝑡 is the hidden state, which represents short-term memory, and 𝐶𝑡 is 

the cell state, which represents long-term memory. Compared to the RNN basic 

recurrent neurons, the LSTM has an extra state or memory for storing long-term 

memory and another for storing short-term memory. The long-term state is updated 

slowly and stores mainly long-term dependent information, while the short-term 

state is updated faster and changes more under different moments of the neuron. 

The LSTM also introduces three gated cyclic units to control the updating and 

forgetting of memories, ensuring that important information is always remembered, 

and less important information is forgotten, and enabling the storage and flow of 

memories in the hidden layer units. In Figure 3.4, 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are, respectively, 

the forget gate unit, input gate unit, and output gate unit, which are used to 

implement information discarding, updating, and status updating respectively, and 

𝑊𝑓 ,𝑊𝑖 ,𝑊𝑐 ,𝑊𝑜 are weight matrices. The specific internal process of LSTM can be 

summarized into the following three stages.  

First is the forgetting phase, where for the LSTM neural unit at time t, the input 

information received includes the input 𝑋𝑡 at the current time, the cell state 𝐶𝑡−1 

and hidden state ℎ𝑡−1 at the previous time step. However, the LSTM discards some 

information from the cell state to make room for new information from the input of 

current time. Here the forget gate unit uses the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  activation function to 

selectively retain the important information, by outputting a value between 0 and 1, 

where 1 indicate complete retention and 0 indicates complete discard. The forget 

gate unit can be calculated using the following equation. 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3.38) 

Next comes the memory selection phase, where input gate unit 𝑖𝑡 sifts through the 

input 𝑋𝑡 and short-term memory ℎ𝑡−1 at the current time to determine how much 

information will be stored in the cell state and updates the cell state. This step is 

divided into two main stages, first using the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 layer to update the input 

values, then using the 𝑡𝑎𝑛ℎ layer to create a candidate state �̃�𝑡 and update the cell 

state by multiplying the candidate state with the input values. The specific 

implementation is as follows.  

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3.39) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.40)

The updated cell state can be expressed as 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (3.41) 

The last is the output stage. After the first two phases have finished updating and 

filtering the information, it will be up to the output gate unit to decide what 

information is to be output at the next time step. The 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 layer is first used to 

determine which part of the cell state is to be output, and then the output of the 

𝑡𝑎𝑛ℎ  and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  layers are multiplied together to obtain the remaining state 

values: 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3.42) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛 ℎ(𝐶𝑡) (3.43)

where, 𝑏𝑓, 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜 are the bias vectors of each layer. 

The LSTM model training process uses the backpropagation through time (BP) 

algorithm, which can be roughly divided into 4 steps: 

1. The output value of each neuron is calculated using equations (3.38) to 

(3.43). 

2. The error term for each neuron is calculated. Like the RNN, the 

backpropagation of the LSTM error term consists of two directions: one is 

the backpropagation along time starting from the current time 𝑡, where the 

error term is computed at each time period; the other direction of 

propagation of the error term is towards the upper layer. 

3. The gradient of model error with respect to each weight is calculated 

according to the corresponding error term. 

4. Apply a gradient-based optimisation algorithm to update the weights. 

There are many different gradient-based optimisation algorithms, such as stochastic 

gradient descent (SGD) (Amari, 1993), Adagrad (Duchi et al., 2011), RMSProp 

(Yeung et al., 2018) and others. This thesis uses the adaptive moment estimation 

(Adam) algorithm (Kingma and Ba, 2014), which is an effective gradient-based 

stochastic optimisation method that combines the advantages of the Adagrad and 

RMSProp algorithms to calculate adaptive learning rates for different parameters 

and uses less storage resources and is used in practical applications. The overall 

performance is better. 

Overall, the LSTM network enables a shift in the information transfer pattern of the 

original RNN, and the gating mechanism introduced produces paths where 
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gradients continue to flow for long periods of time, thus fundamentally solving the 

gradient disappearance or explosion in RNN. 

3.3 Conclusion 

This chapter has provided a comprehensive understanding of the mathematical 

algorithms and computational techniques fundamental to fault diagnosis and fault 

magnitude prediction. This chapter began with a detailed examination of PCA, its 

mathematical framework, and its application in fault detection and reconstruction 

of industrial process. It then expanded into a discussion of other vital algorithms 

such as autoregression, Extreme Learning Machines (ELM), and Long Short-Term 

Memory (LSTM) networks for fault magnitude prediction.  

This chapter has bridged the theoretical concepts introduced in the previous chapter 

with their practical application, which will be further explored in the following 

chapters. The algorithms and techniques detailed here are essential for developing 

robust fault diagnosis and prognosis systems, and their implications extend far 

beyond theoretical applications, setting the groundwork for real-world 

implementations and evaluations in complex industrial processes. 
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Chapter 4 An Improved Reconstruction Approach for Process 

Fault Diagnosis 

4.1 Introduction 

As the industrial sector continues to advance, the development of efficient and 

robust fault diagnosis methods for sensor and process faults has become 

increasingly critical. A variety of innovative approaches have been proposed to 

address the challenges inherent in continuous time-varying chemical processes. For 

instance, an improved method for Residual Based Contribution (RBC) plots to 

diagnose sensor faults with reduced computational demands introduced in 

(Elshenawy and Mahmoud, 2018). Similarly, a reconstruction method employing 

Bayesian Lasso for regression analysis has been put forward in (Yan et al., 2018), 

enhancing the robustness of abnormal process data reconstruction. The utilization 

of PCA has been particularly prominent, evidenced by the work in (Bose et al., 

2005) leveraged principal component score contributions to analyse and reconstruct 

data from failed sensors in a closed-loop controlled CSTR. This theme continues 

with the application of PCA in various settings, from monitoring the effects of faults 

in high-temperature gas-cooled reactors (Uren et al., 2015; Uren et al., 2016) to 

detecting and diagnosing faults in nuclear research reactors (Penha et al., 2001) and 

screw-type water-cooled chiller sensors (Hu et al., 2016b). 

This chapter proposes an improvement to the process fault reconstruction method. 

To validate the practicability of the proposed method, a simulated CSTR process 

with feedback control is analysed as a case study. A PCA model is constructed using 

normal operating history data, and the Hotelling 𝑇2 statistic and squared prediction 

error (𝑆𝑃𝐸) statistic are used for fault detection. PCA models constructed with 

historical fault data for different faults are used to extract the fault directions. The 

fault direction of each fault is obtained from the first loading vector under that fault. 

As a result, the process fault direction matrix can be quickly extracted by combining 

the major loading vectors of historical fault data for different faults. Based on this 

fault direction matrix, process fault identification and estimation of fault magnitude 

can be achieved.  

The chapter is organized as follows: Section 4.2 introduces the fault direction 

matrix and fault detectability. Section 4.3 reviews current fault diagnosis methods 

and suggests enhancements to the reconstruction-based approach. Section 4.4 
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details the steps of the proposed fault diagnosis method. Section 4.5 applies the 

method to a simulated CSTR process, and Section 4.6 concludes with a summary 

of the chapter's key insights. 

4.2 Fault Detectability in PCA based Method 

By establishing a PCA model under normal operating conditions, fault detection is 

carried out by projecting the newly collected process data into the principal 

component and residual subspaces, establishing the corresponding monitoring 

statistics 𝑇2  and 𝑆𝑃𝐸 , and comparing them with their control limits. A fault is 

detected if one or both monitoring statistics exceed the corresponding control limits. 

Since PCA analysis does not make use of the information from the process 

mechanism model, it is difficult to carry out a theoretical analysis of the 

fundamental issues such as fault detectability and identifiability. With the 

introduction of the concept of fault direction matrices by Qin and co-workers, these 

important issues have been partially solved and have provided new ideas for further 

development of the theory (Dunia and Joe Qin, 1998a; Qin et al., 2001). 

4.2.1 Fault Direction Matrix 

For the monitored process, the known 𝐽 ∈ 𝑍∗ system faults can be defined as a fault 

ensemble {𝐹𝑖} where 𝑖 = 1,2,⋯ , 𝐽, based on the process information recorded in 

the historical process operation data. By analysing the propagation pattern of the 

faults, each of these faults can be expressed as a subspace in 𝑅𝑚, where 𝑚 is the 

number of monitored variables in the system. Denote {𝛯𝑖} as the ensemble of fault 

direction matrix corresponding to the set of faults {𝐹𝑖}, where the fault direction 

matrix 𝛯𝑖  is standard orthogonal. For faults that affect only a single variable or 

dimension of the data, the direction matrix is a column vector. Conversely. for faults 

that impact multiple variables or dimensions of data at the same time, the direction 

matrix becomes a multi-dimension matrix 𝑑𝑖𝑚(𝛯𝑖) = 𝑙𝑖 > 1.  

The fault direction matrix characterizes how the fault influences the monitored 

variables in the process. When fault 𝐹𝑖 is present, the resulting sample vector 𝑥 can 

be represented by the following: 

𝑥 = 𝑥∗ + 𝛯𝑖𝑓 (4.1) 

where 𝑥 ∈ 𝑅𝑚  denote a sample vector of 𝑚  variables under fault operation 

conditions, 𝑥∗  represents the sample vector under normal operating conditions, 
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which is unknown when a fault occurs, and 𝑓 is the fault parameter, which is a 

scalar for one-dimensional faults and a vector for multi-dimensional faults, which 

may change over time, depending on how the actual fault develops, and ‖𝑓‖ 

represents the magnitude of fault. 

The underlying assumption in this study is the superposition of faulty data onto 

normal operating data, which stems from the premise that the process variables' 

correlation structure can be effectively approximated by a limited number of 

principal components. This approximation is generally valid in steady-state 

conditions where process variables exhibit relative stability. Under such conditions, 

it is postulated that changes in the correlation structure, potentially induced by faults, 

are sufficiently minor and thus can be encapsulated within the principal components. 

The focus of this research is predominantly on faults emerging post-attainment of 

the process's steady state. Given that these faults arise during a period of assumed 

stability, the correlation structure of the process variables is unlikely to undergo 

significant alterations. Consequently, the superposition assumption maintains its 

validity within this context. 

However, it is acknowledged that certain fault types, particularly non-linear faults 

or those inducing considerable system disturbances, may challenge this assumption. 

Similarly, the presumption may falter in scenarios where process variables exhibit 

insensitivity to faults or when faults remain undetectable within these variables. 

These scenarios present avenues for future research, aiming to refine and expand 

the applicability of the proposed methodologies. 

4.2.2 SPE-based Fault Detectability 

The problem of fault detectability based on SPE statistics is a critical aspect in 

process monitoring. SPE quantifies the deviation of a process variable vector, 

denoted as x, from its projection onto the PC subspace. When the fault 𝐹𝑖 occurs, it 

influences this deviation, and this influence is captured by the fault direction matrix 

𝛯𝑖. This matrix maps the effect of the fault on the process variables. 

The 𝑆𝑃𝐸  statistic corresponding to a sampled data vector 𝑥  is mathematically 

expressed as: 

𝑆𝑃𝐸(𝑥) = ‖�̃�‖2 = ‖(𝐼 − 𝑃𝑃𝑇)𝑥‖2 (4.2) 
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where �̃�  is the projection of 𝑥  onto the residual subspace and 𝑃  represents the 

matrix of principal component loadings.  

Upon the introduction of a fault, the sample vector 𝑥 is represented as equation (4.1), 

and substituting equation (4.1) into (4.2) yields: 

𝑆𝑃𝐸(𝑥) = ‖�̃�‖2 = ‖(𝐼 − 𝑃𝑃𝑇)(𝑥∗ + 𝛯𝑖𝑓)‖
2 = ‖�̃�∗ + 𝛯�̃�𝑓‖

2
(4.3) 

where 𝛯�̃� = (𝐼 − 𝑃𝑃
𝑇)𝛯𝑖 represents the projection of 𝛯𝑖 onto the residual subspace 

and �̃�∗ = (𝐼 − 𝑃𝑃𝑇)𝑥∗ represents the projection of 𝑥∗ onto the residual subspace. 

If 𝛯�̃� = 0, it indicates that the fault has no impact on the residual subspace. In this 

situation, and thus, the 𝑆𝑃𝐸 statistical would not register any deviation due to the 

fault.  

However, when 𝛯�̃� ≠ 0 , the fault impacts the residual subspace. Applying the 

triangle inequality to the 𝑆𝑃𝐸 equation, which gives: 

‖�̃�‖ = ‖�̃�∗ + 𝛯�̃�𝑓‖ ≥ ‖𝛯�̃�𝑓‖ − ‖�̃�
∗‖ (4.4) 

This leads to the equation: 

‖�̃�‖ ≥ ‖𝛯�̃�𝑓‖ − ‖�̃�
∗‖ (4.5) 

From here, it follows that for the 𝑆𝑃𝐸  statistic to detect a fault, its value must 

exceed a predetermined threshold, signifying that the deviation under fault 

conditions is sufficiently large to be distinguished from normal operational 

variations. If ‖𝛯�̃�𝑓‖ − ‖�̃�
∗‖ > 𝛿𝑆𝑃𝐸, then ‖�̃�‖ > 𝛿𝑆𝑃𝐸 must hold and the fault can 

be detected by the 𝑆𝑃𝐸  statistic. Furthermore, since ‖�̃�∗‖ ≤ 𝛿𝑆𝑃𝐸 , a sufficient 

condition for a fault to be detectable based on the 𝑆𝑃𝐸 statistic is: 

‖𝛯�̃�𝑓‖ > 2𝛿𝑆𝑃𝐸 (4.6) 

where 𝛿𝑆𝑃𝐸 is the predetermined threshold for detectability. 

4.2.3 𝑻𝟐-based Fault Detectability  

A study of fault detectability based on 𝑇2 statistics using the concept of fault 

direction matrix is given by (Dunia and Joe Qin, 1998a). When fault 𝐹𝑖 occurs, the 

value of the 𝑇2 statistic corresponding to the sampled data vector 𝑥 is given by: 

𝑇2 = 𝑥𝑇𝑃Ʌ𝑘
−1𝑃𝑇𝑥 = ‖Ʌ𝑘

−(1 2⁄ )
𝑃𝑇𝑥‖

2
(4.7) 
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where Ʌ𝑘 ∈ 𝑅
𝑘×𝑘 is the diagonal array of eigenvalues corresponding to the first 𝑘 

PCs.  

Substituting equation (4.1) into equation (4.7): 

𝑇2 = ‖Ʌ𝑘
−(1 2⁄ )

𝑃𝑇(𝑥∗ + 𝛯𝑖𝑓)‖
2

= ‖Ʌ𝑘
−(1 2⁄ )

𝑃𝑇𝑃𝑃𝑇(𝑥∗ + 𝛯𝑖𝑓)‖
2

= ‖Ʌ𝑘
−(1 2⁄ )

𝑃𝑇(�̂�∗ + �̂�𝑖𝑓)‖
2

= ‖Ʌ𝑘
−(1 2⁄ )

𝑃𝑇�̂�∗ + Ʌ𝑘
−(1 2⁄ )

𝑃𝑇�̂�𝑖𝑓‖
2

(4.8) 

Let 𝛩𝑖 = Ʌ𝑘
−(1/2)

𝑃𝑇�̂�𝑖 . When 𝛩𝑖 = 0, then ‖Ʌ𝑘
−(1/2)

𝑃𝑇𝑥‖
2
= ‖Ʌ𝑘

−(1/2)
𝑃𝑇�̂�∗‖

2
≤

𝛿𝑇
2. From equation (4.8) the fault corresponding to the fault direction matrix 𝛯𝑖 is 

not detectable by the 𝑇2statistic value at this point, no matter how large the fault 

magnitude ‖𝑓‖ is. Therefore, the necessary condition for a fault to be detectable by 

the 𝑇2 statistic is: 

𝛩𝑖 ≠ 0 (4.9) 

From here, we can deduce a condition for fault detectability: 

‖Ʌ𝑘
−(1/2)

𝑃𝑇𝑥‖ ≥ ‖𝛩𝑖𝑓‖ − ‖Ʌ𝑘
−(1/2)

𝑃𝑇�̂�∗‖ (4.10) 

This implies that for the 𝑇2 statistic to detect a fault, the deviation caused by the 

fault must be sufficiently large compared to normal operational variations. If 

‖𝛩𝑖𝑓‖ − ‖Ʌ𝑘
−(1/2)

𝑃𝑇�̂�∗‖ > 𝛿𝑇, then ‖Ʌ𝑘
−(1/2)

𝑃𝑇𝑥‖ > 𝛿𝑇 must hold and the fault 

is detectable by the 𝑇2  statistic. Furthermore, since ‖Ʌ𝑘
−(1/2)

𝑃𝑇�̂�∗‖ ≤ 𝛿𝑇 , a 

sufficient condition for a fault to be detectable based on the 𝑇2 statistic is: 

‖𝛩𝑖𝑓‖ > 2𝛿𝑇 (4.11) 

4.3 Fault Diagnosis through Reconstruction 

In (Dunia and Joe Qin, 1998b) a geometric analysis method based on the fault 

direction matrix is proposed and applied to solve the PCA-based fault 

reconstruction problem in process fault identification. This fault reconstruction 

method is based on an optimisation approach to find the optimal estimate of the 

fault magnitude, which eliminates the effect of the fault on the data and estimates 

the normal value of the data. Through fault reconstruction, the severity (magnitude) 

of the fault can be estimated, and the type of fault can be identified so that 
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corresponding measures can be taken to effectively eliminate the impact of the fault 

on the industrial process. 

a. 𝑆𝑃𝐸-based fault reconstruction 

Fault reconstruction is an intermediate part of PCA based monitoring and is 

important for the determination of fault types, as well as for the separation and 

identification of faults. Fault reconstruction is the process of estimating the normal 

value of data by eliminating the influence of faults on the data. Once the fault 

direction matrix has been obtained, the normal part 𝑥∗ of the original fault data 𝑥 

can be reconstructed using the PCA model. Suppose that when a fault 𝐹𝑖 occurs, the 

reconstruction of 𝑥 along the fault direction matrix 𝛯𝑖 is: 

𝑥𝑖 = 𝑥 − 𝛯𝑖𝑓 (4.12) 

where, 𝑥𝑖 represents the reconstructed normal operation data, 𝑓 is an estimate of the 

actual fault parameters in the 𝛯𝑖 direction. Theoretically the best reconstruction is 

to minimize ‖𝑥𝑖 − 𝑥
∗‖ for a certain fault size 𝑓. However, 𝑥∗is unknown when the 

fault occurs, so this idea is not feasible. From equations (4.5) and (4.12), if 𝑥𝑖 

approaches 𝑥∗  along the fault direction matrix 𝛯𝑖 , the 𝑆𝑃𝐸  statistic for 𝑥𝑖  will 

gradually decreases to below the corresponding control limit. Thus, an estimate of 

the fault parameters 𝑓 in the direction of the fault 𝛯𝑖 can be obtained if the 𝑆𝑃𝐸 

value (𝑆𝑃𝐸(𝑥𝑖) = ‖�̃�𝑖‖
2 = ‖�̃� − 𝛯�̃�𝑓‖

2
) of the reconstructed data is kept below its 

control limit. 

Then the estimated of the fault parameter on residual subspace is: 

𝑓 = (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇�̃� (4.13) 

And ‖𝑓‖  is the estimation of the actual fault magnitude along the direction of 𝛯𝑖. 

Substituting (4.13) into (4.12) gives the reconstructed normal sample vector on 

residual subspace: 

�̃�𝑖 = (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃� (4.14) 

b. Reconstruction-based fault identification 

Once a fault has been detected in the process using 𝑆𝑃𝐸 statistics, the actual fault 

type can be identified from the set of possible faults {𝐹𝑖 , 𝑖 = 1,2,⋯ , 𝐽 } by means of 

a fault reconstruction method based on 𝑆𝑃𝐸 statistics. 
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When the 𝑆𝑃𝐸 statistics exceed its control limit then a fault is detected. Before 

performing fault diagnosis, since the root cause of the fault is not known in advance, 

each fault in the set of possible faults {𝐹𝑖 , 𝑖 = 1,2,⋯ , 𝐽 } is first assumed to be a real 

fault in turn. The data will be reconstructed for each fault in the given set of possible 

faults of the system {𝐹𝑖 , 𝑖 = 1,2,⋯ , 𝐽 }  one by one for the corresponding fault 

direction 𝛯𝑖. 

Suppose that fault 𝐹𝑗  occurs, the data 𝑥  is reconstructed using the subspace 𝛯𝑖 

corresponding to the fault 𝐹𝑖, i.e., for the 𝑖𝑡ℎ fault, 𝑖 ∈ [1, 𝐽]: 

𝑥𝑖 𝑗⁄ = (𝐼 − 𝛯𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) 𝑥 (4.15) 

Projection of 𝑥𝑖/𝑗 onto the residual subspace: 

�̃�𝑖 𝑗⁄ = (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃� (4.16) 

Then the projection �̃� of the sampling vector 𝑥 onto the residual subspace when the 

fault 𝐹𝑗 occurs can be expressed in terms of the fault direction matrix 𝛯𝑗 as: 

�̃� = �̃�∗ + �̃�𝑗𝑓 (4.17) 

Substitute (4.17) into (4.16), the reconstructed vector �̃�𝑖/𝑗 can be related to the fault-

free vector �̃�∗ as follows: 

�̃�𝑖 𝑗⁄ = (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�∗ + (𝐼 − �̃�𝑖 (�̃�𝑖

𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�𝑗𝑓 (4.18) 

From the above equation, it can be found that (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�𝑗𝑓 = 0 if the 

reconstruction of 𝐹𝑖 used for the hypothesis is exactly the actual faulty 𝐹𝑗, i.e. when 

𝛯𝑖 = 𝛯𝑗 . At this point, the projection of the reconstructed value in the residual 

subspace is not related to 𝑓: 

�̃�𝑖 𝑗⁄ = (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�∗ (4.19) 

Since (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�∗  is the projection matrix of �̃�∗ , we have‖(𝐼 −

�̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�∗‖ ≤ ‖�̃�∗‖  , then the 𝑆𝑃𝐸 value of the sampled vector obtained 

by the reconstruction should satisfy the following conditions: 
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𝑆𝑃𝐸(𝑥𝑖 𝑗⁄ ) = ‖�̃�𝑖 𝑗⁄ ‖
2

= ‖(𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�∗‖ = 𝑆𝑃𝐸(𝑥∗) ≤ 𝛿𝑆𝑃𝐸

2
(4.20) 

From the above equation, when the reconstruction is performed using the fault 

direction matrix corresponding to the true fault, the 𝑆𝑃𝐸 value of the reconstructed 

data will be within the control limits. If 𝛯𝑖 ≠ 𝛯𝑗, then this indicates that the fault 

direction matrix used in the reconstruction does not correspond to the true fault, 

which also indicates that (𝐼 − �̃�𝑖 (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖
𝑇) �̃�𝑗𝑓 ≠ 0  and that the 𝑆𝑃𝐸  will 

exceed the control limit under the condition that 𝑓 is sufficiently large. Based on 

the above description, the following fault identification index can be defined: 

𝐹𝐼𝑆𝑖/𝑗 =
𝑆𝑃𝐸(𝑥𝑖/𝑗)

𝑆𝑃𝐸(𝑥)
(4.21) 

The values of this index are distributed between 0 and 1. If it is close to 1, then the 

hypothetical fault 𝐹𝑖 used for reconstruction cannot be the real fault, because it does 

not serve to correct the 𝑆𝑃𝐸 statistic for the original data. If the index is close to 0, 

then the hypothetical fault 𝐹𝑖 used for reconstruction is a real fault (𝑗 = 𝑖) and the 

fault is diagnosed. In practice, a diagnostic threshold 𝑟 can also be defined based 

on engineering experience, and if 𝐹𝐼𝑆𝑖/𝑗 ≤ 𝑟 then the fault direction matrix used 

for reconstruction is of the same type as the real fault. If any of the faults in the set 

of fault direction matrix have a discrimination index greater than the diagnostic 

threshold for the current data reconstruction, then it is likely that a new unidentified 

fault has emerged.  At this point, process knowledge can be combined to determine 

if this is a new fault type. Once identified, the fault direction matrix can be added 

to the existing set of fault direction matrix, so this method has some learning 

capability. 

c. Improved fault direction matrix extraction 

In reconstruction-based fault identification studies, the premise is that the fault 

direction matrix of each type of fault is known, whereas in practice, the fault 

direction matrix is unknown and needs to be extracted from historical data based 

on the characteristics of the fault. The literature (Dunia and Joe Qin, 1998b) first 

proposed a sensor and process fault reconstruction method based on the fault 

direction matrix with PCA model for the general process fault. Then, in (Yue and 

Qin, 2001) a combined index is used to more effectively determine the direction of 
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failure for individual and multiple sensors. In the case of sensor faults on non-

control loops, the fault direction matrix is easier to obtain because the faults only 

occur in the sensor itself and causing the measured values of the variables to deviate 

from their normal values, but do not directly cause anomalies in the remaining state 

variables in the process. Therefore, the fault direction matrix for the single sensor 

fault reconstruction, the direction matrix is generally expressed as a column vector, 

for example: 

𝛯𝑖𝑠 = [0 1 0   ⋯ ]𝑇 (4.22) 

The above equation represents the fault vector corresponding to the second sensor 

fault in the sampling vector 𝑥. 

When multiple sensors fail at the same time, the fault direction matrix is represented 

by a matrix, for example: 

𝛯𝑖𝑠 = [
0 1 0 0 ⋯
0 0 1 0 ⋯

]
𝑇

(4.23) 

The above equation represents the subspace of faults corresponding to the 

simultaneous faults of the second and third sensors in the sampling vector 𝑥. 

For process faults, as there is a certain correlation between measured variables in 

the production process, so when a process fault occurs, it will cause a set of sensor 

measurements with a strong correlation to change at the same time. At this time, 

the fault direction matrix determination method for sensor faults cannot be used. In 

this case, fault direction matrix could be extracted from the historical process data 

of various types of faults. 

The direction matrix can also be projected to the PCS and RS subspaces as:  

𝛯𝑖 = �̂�𝑖 + �̃�𝑖 (4.24) 

where �̂�𝑖 = 𝑃𝑃
𝑇𝛯𝑖 and �̃�𝑖 = (𝐼 − 𝑃𝑃

𝑇)𝛯𝑖. 

In practical fault reconstruction, the residuals of faults are much larger than the 

residuals of normal values, so reconstruction-based fault identification often uses 

the projection of the fault direction matrix 𝛯𝑖 onto the residual subspace �̃�𝑖, then the 

extraction process of the fault direction matrix 𝛯𝑖  can be transformed into the 

extraction of �̃�𝑖 by the following method. 

If the fault 𝐹𝑖  occurs, then the projection of the data vector 𝑥  in the residual 

subspace can be expressed as: 
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�̃� = �̃�∗ + �̃�𝑖𝑓 (4.25) 

Since the normal process operation data used to construct the PCA model is scaled 

to zero mean and unit variance, and the normal part of fault data projected on the 

residual subspace �̃�∗ is small, therefore, it is reasonable to disregard its contribution 

when the fault magnitude is relatively large in comparison to the normal variations 

(‖�̃�∗‖ ≪ ‖�̃�𝑖𝑓‖): 

�̃� ≈ �̃�𝑖𝑓 (4.26) 

Selecting 𝑞 consecutive observations from the sample data corresponding to the 

fault 𝐹𝑖: 

𝑋𝑖
𝑇 = [𝑥(1), 𝑥(2),⋯ , 𝑥(𝑞)] (4.27) 

According to equation (4.26) the projection of 𝑋𝑖 in the residual subspace is: 

�̃�𝑖
𝑇 = �̃�𝑖[𝑓(1), 𝑓(2),⋯ , 𝑓(𝑞)] (4.28) 

This show that �̃�𝑖 and �̃�𝑖
𝑇 have the common subspace. Then we apply SVD on �̃�𝑖

𝑇: 

�̃�𝑖
𝑇 = 𝑈𝑖𝐷𝑖𝑉𝑖

𝑇 (4.29) 

where the matrix 𝑈𝑖 is a unitary matrix, matrix 𝐷𝑖 is a diagonal matrix containing 

the singular values (𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚) in descending order along its diagonal.  

This gives the projection of fault direction matrix in the residual subspace for 

process faults as. 

�̃�𝑖 = 𝑈𝑖 (4.30) 

However, as mentioned by (Yue and Qin, 2001), in practice, it is necessary to use 

the singular vector 𝑈𝑖(: , 1) corresponding to the highest singular value as the initial 

fault direction matrix for reconstruction. If the reconstruction can bring the process 

to a normal operation region, as indicated by the 𝑆𝑃𝐸 index, then 𝑈𝑖(: , 1) suitable 

as the fault direction matrix �̃�𝑖. Otherwise, the singular value vector corresponding 

to the next highest singular value is incorporated into the fault direction matrix used 

for the preceding reconstruction. This process is repeated up to 𝐽 times, until the 

𝑆𝑃𝐸 statistics of the reconstructed data fall within the normal operational range.  At 

this point, �̃�𝑖 = 𝑈𝑖(: , 1: 𝐽) is chosen as the fault direction matrix.  

However, this is sufficient for sensor faults reconstruction, but still cannot be 

effectively used for process fault reconstruction. Since there is a strong correlation 
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between process variables, process faults can have different effects on multiple 

process measurements, which can be characterized by monitoring the affected 

measurements during abnormal operation. However, when multiple variables are 

affected, it is difficult to reconstruct the fault data and distinguish all fault categories. 

In order to successfully reconstruct the faults, the features of the considered faults 

need to be discovered. Due to the correlation among process variables, a process 

fault typically causes process measurements to move in a particular direction in the 

measurement space. The first loading vector 𝑃𝑓 of the PCA model for faulty data 

can effectively extract fault characteristics to represent the fault direction and plays 

a role in assisting fault reconstruction. Therefore, the fault direction matrix for 

process faults will be extended as: 

�̃�𝑖𝑝 = 𝑈𝑖𝑃𝑓 (4.31) 

where 𝑃𝑓 is the first loading vector of the loading matrix in PCA fault modelling. 

This makes it possible to derive the fault direction matrix for process faults 

intuitively and quickly.  

4.4 PCA-based Fault Detection and Diagnosis Process 

 

Figure 4.1 Flow diagram of PCA-based fault detection and diagnosis process 
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Fault detection and diagnosis based on PCA consists of establishing a PCA model 

offline, performing fault detection and fault diagnosis online as shown in Figure 4.1.  

In the offline PCA modelling phase, standardised historical process data from 

normal operations are used to establish a baseline PCA model, ensuring zero mean 

and unit variance. The optimal number of principal components (PCs) is selected 

based on this model. Moreover, for enhanced fault detection, PCA is also applied 

separately to historical fault data when available. This process yields fault specific 

PCA models, from which fault direction matrices are extracted for each fault type. 

These matrices are critical for the accurate reconstruction and diagnosis of faults, 

allowing for a comprehensive fault detection system.  

During online monitoring, the 𝑆𝑃𝐸  and 𝑇2   statistics of the current sample are 

calculated and compared with their control limits. If one or both monitoring 

statistics exceed their control limits, then it is detected that the process is under 

faulty operation and fault diagnosis needs to be carried out. The fault reconstruction 

method is used to diagnose the fault.   

4.5 Fault Detection and Reconstruction 

In this study, a variety of failure modes can be simulated during the process and 

only 7 faults are considered, as listed in Table 4.1. 

Fault 

No. 
Fault description Type of Fault 

1 
Decrease in heating medium temperature causes a 

slow decrease of inlet temperature 𝑇0 

Process fault 

(Incipient fault) 

2 

Exposure of cooling water pipes to external heat 

sources or high external ambient temperatures, 

resulting in a slow increase in the cooling water 

temperature 𝑇𝐶 

Process fault 

(Incipient fault) 

3 
The control valve stuck in the fixed position causes a 

constant inlet solvent flow rate 𝐹𝑆 

Process fault 

(Abrupt fault) 
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4 

Deactivation of the catalyst leads to a reduction in 

the rate of reaction, resulting a slow increase in the 

flow of inlet reactant flow rates 𝐹𝐴 

Process fault 

(Incipient fault) 

5 
Incorrect calibration of the temperature sensor leads 

to a bias in measurement of output temperature 𝑇 

Process fault 

(Abrupt fault) 

6 
Inconsistent mixing or stirring resulting in a slow 

increase of inlet reactant concentration 𝐶𝐴𝐴 

Process fault 

(Incipient fault) 

7 
Electrical interference causes a drift in measurement 

of inlet temperature 𝑇0 

Sensor fault 

(Incipient fault) 

Table 4.1 Process and sensor faults 

The simulation of different types of faults is implemented by representing them in 

the following way: 

𝑋𝑓 = 𝐶1𝑋𝑛 + 𝐶2𝑋𝑛𝑡 + 𝐶3 (4.32) 

where 𝑋𝑛  and 𝑋𝑓  represent the normal and faulty states of individual process 

variables, respectively, with 𝑡 donates the time since the fault onset. Parameters 𝐶1, 

𝐶2, and 𝐶3 specify fault characteristics and magnitude. The values of 𝐶1, 𝐶2, and 𝐶3, 

are chosen to represent abrupt and incipient faults. For example, an incipient fault 

can be expressed as, 𝐶1 = 1, 𝐶2 indicating the rate of change of the fault magnitude, 

and 𝐶3 = 0. 

For the faults designed in this study, we select one of the magnitudes of each fault 

to demonstrate its impact on the process variables. Table 4.3 displays the 

parameters for each designed fault, and each set of fault data comprises 900 samples. 

Among the faults listed in Table 4.2, faults 3 and 5 are abrupt faults while others 

are incipient faults. The parameters chosen for the simulation of faults in the CSTR, 

as listed in Table 3.1, are based on theoretical considerations and operational norms 

of CSTR systems (Venkateswarlu et al., 1992; Yunus and Zhang, 2010; Hu et al., 

2017; Wang, 2017; Ji et al., 2019). In each of the cases, the fault was introduced to 

the process at the 201𝑠𝑡 sampling point and the process variables under these faults 

are shown in Figures 4.2 to 4.8. 
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Table 4.2 Parameters of each fault 

Fault No. 𝐶1 𝐶2 𝐶3 

1 1 −2.36 ∗ 10−6 0 

2 1 1.28 ∗ 10−5 0 

3 0 0 0.42 

4 1 6.54 ∗ 10−6 0 

5 1 0 5.91 

6 1 9.49 ∗ 10−5 0 

7 1 3.69 ∗ 10−6 0 

Table 4.3 Parameters of each fault 

 

Figure 4.2 Measurements of process variables under Fault 1 
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Figure 4.3 Measurements of process variables under Fault 2 

 

Figure 4.4 Measurements of process variables under Fault 3 
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Figure 4.5 Measurements of process variables under Fault 4 

 

Figure 4.6 Measurements of process variables under Fault 5 
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Figure 4.7 Measurements of process variables under Fault 6 

 

Figure 4.8 Measurements of process variables under Fault 7 
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The considered process faults can affect at least two process variables, as shown by 

the monitoring plots of the process variables presented above. Despite the fact that 

introduced faults could be identified by examining the classical univariate plots, 

this method has several limitations, such as its inability to capture the correlation 

between multiple process variables, its inability to detect incipient faults or 

anomalies, and a lack of scalability and adaptability. Hence, PCA-based fault 

detection and reconstruction-based fault diagnosis methods are used in this study to 

enhance fault diagnosis performance. 

Pre-processing of the data is required prior to performing PCA. The data collected 

under normal process operation conditions, comprising of 900 samples with 9 

process variables, is arranged in a data matrix with each variable scaled to zero 

mean and unit variance. The PCA-based fault detection method relies on the 

principle that normal data should encapsulate normal variations to accurately 

represent the common cause variation of a process. PCA aims to identify the 

directions, or PCs, which exhibit the most significant variability. These components 

enable a more concise description of the covariance structure of the normal data, 

making the selection of the right number of PCs crucial for both detection and 

diagnostic performance. The appropriate number of PCs is a critical model 

parameter, and several methods are available for its determination, including scree 

plot, Kaiser criterion, cross-validation, average eigenvalue, imbedded error 

function, and cumulative percent variance (CPV), among others (Berbache et al., 

2019). In most applications, the CPV index is the most widely utilized method for 

selecting the optimal number of PCs due to its effectiveness and simplicity of 

implementation. 

CPV is calculated from the eigenvalues of the covariance matrix, which are 

identical to the principal component variances of the data matrix. CPV is expressed 

as: 

𝐶𝑃𝑉 =
∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

(4.33) 

where, 𝑘 represents the number of PCs and 𝜆𝑖 represents the sample variance of the 

𝑖𝑡ℎ principal component. CPV is used to represent the proportion of the total data 

variation explained by the first 𝑘  PCs, hence providing a measure of how 

effectively these components capture the underlying data variation. Figure 4.9 and 

Table 4.3 show the explained variance of each principal component, as well as the 
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cumulative explained variance, obtained after using PCA on the normal operating 

condition data, and it can be concluded that with three PCs we can capture over 99% 

of the variance. 

 

Figure 4.9 Explained and cumulative explained variances for PCA 

Number of 

Principal 

Components 

1 2 3 4 5 

CPV (%) 75.345 93.451 99.694 99.995 100 

Table 4.4 Explained variance of each principal component 

In general, a higher CPV threshold indicates that the PCs capture more of the total 

data variation. However, we cannot arbitrarily set the CPV threshold to 99%, as this 

could capture noise in the data. There is not universally accepted CPV threshold, 

but some general rules can be used as a guidance. Choosing a threshold that explains 

between 95% and 99% of the total data variance, for instance, guarantees that most 

of the key information is retained while reducing the dimensionality of the data. 

Another strategy involves incrementally adding principal components and 

observing the additional variance they explain. This process is continued until the 

increase in explained variance by adding an additional principal component 
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becomes marginal. This marginal increase can be quantitatively defined as a 

threshold, for example, when the addition of a new principal component contributes 

less than 1% to the cumulative explained variance. This threshold is a balance 

between capturing most of the variability in the data and avoiding the inclusion of 

components that mainly capture noise or redundant information. Setting this 

threshold helps in determining the optimal number of principal components, 

ensuring each added component contributes significantly to the model’s 

performance without overcomplicating the model (Abdi and Williams, 2010). The 

exact percentage can vary based on the dataset characteristics and the specific 

requirements of the analysis.  

The aim of this study is to improve the reconstruction efficiency with as much 

accuracy as possible, and later in this section, the appropriate CPV threshold will 

be discussed according to the impact of different numbers of PCs on reconstruction 

performance. Here, the threshold for CPV is first tentatively set at 99%, which 

would suggest that the number of PCs is chosen to be three.  

With the above information, fault detection can be achieved by comparing the 

monitoring statistics with their control limits. As the incipient faults have a more 

pronounced trend in fault magnitude, the results for faults 1, 2, 4 and 6 are given in 

Figures 4.10 to 4.13 respectively.  

 

Figure 4.10 Monitoring statistics of process data and reconstructed normal data 

under Fault 1 
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Figure 4.11 Monitoring statistics of process data and reconstructed normal data 

under Fault 2 

 

Figure 4.12 Monitoring statistics of process data and reconstructed normal data 

under Fault 4 
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Figure 4.13 Monitoring statistics of process data and reconstructed normal data 

under Fault 6 

In these figures, the black curves represent monitoring statistics for the 

corresponding faults, the blue curves represent the monitoring statistics after fault 

reconstruction, and the red and blue horizontal dashed lines represent the 95% and 

99% control limits respectively. As mentioned previously, all faults were 

introduced at the 200th sampling point and as can be seen from the detection times 

obtained for different faults case given in Table 4.4, both statistics can detect the 

occurrence of faults, but the 𝑆𝑃𝐸 is more sensitive to incipient faults compared to 

𝑇2, as it measures the change in correlation between the variables in the sampled 

data.  

Fault 

type 

Detection time with 𝑇2 

(samples) 

Detection time with 𝑆𝑃𝐸 

(samples) 

Fault 1 113 9 

Fault 2 122 18 

Fault 4 132 9 

Fault 6 106 39 

Table 4.5 Detection time for different faults 
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Once faults are detected, PCA models are built by using historical fault data and 

these PCA models for various faults are used to extract fault direction matrix �̃�𝑖𝑝  

according to equations (4.25) - (4.31). A reconstruction of the process data affected 

by the fault is then achieved by estimating the normal data using a fault direction 

matrix. If the statistics of the reconstructed normal data are below the control limits, 

then the corresponding fault is considered as the fault occurred in the process. If the 

statistics of the reconstructed normal data are above the control limits, then the 

corresponding fault is not the correct fault and reconstruction is continued using the 

next fault direction matrix until the statistics fall below the control limits. The solid 

blue lines in Figures 4.10 to 4.13 represent the statistics of the normal data estimated 

by the reconstruction, which are below the control limits, indicating the correct 

faults being diagnosed.  

However, it can be observed that the monitoring statistics of the reconstructed 

normal data do not particularly follow the actual data prior to the onset of the fault. 

This may be because, firstly, the CSTR process is a dynamic process that is 

influenced by various interacting factors, such as reaction kinetics, mass and heat 

transfer, and, secondly, it may be that the random noise introduced into the 

simulation to simulate the real process results in the process not being completely 

consistent from run to run, thus affect the quality of the reconstructed normal data. 

 

Figure 4.14 Comparison of estimated and actual fault magnitude for Fault 1 
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Figure 4.15 Comparison of estimated and actual fault magnitude for Fault 2 

 

Figure 4.16 Comparison of estimated and actual fault magnitude for Fault 4 
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Figure 4.17 Comparison of estimated and actual fault magnitude for Fault 6 

Meanwhile, further estimation of the fault magnitudes is performed based on the 

reconstruction method, as shown in Figures 4.14 to 4.17, where the blue and red 

line represent the actual and reconstructed fault magnitude respectively. The actual 

fault magnitude was determined by comparing the measurements taken at the time 

of the fault with the expected measurements under normal operation conditions. 

Specifically, the expected measurements were generated using our process model 

under normal operation conditions, serving as a reference point. Although there is 

some fluctuation in the estimated magnitude of faults, the trend of the estimated 

magnitude of faults remains consistent with the actual trend. With the results 

presented above, it can be demonstrated that the PCA-based approach enables the 

detection of process faults and the estimation of fault magnitude for diagnosis, 

followed by a discussion of the effect of the selection of the principal components 

of the PCA model on the diagnostic performance of the model. The reconstruction-

based fault diagnosis relies on the fault direction matrix, which is derived from the 

projection of the fault data to the residual subspace, and the number of PCs is a 

crucial factor in determining the dimension of the PCA subspace.  

Choosing more PCs can capture a larger percentage of the total variance in the fault 

data, which can certainly better represent the fault. However, using too many PCs 
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may introduce the effect of noise and thus reduce the fault magnitude estimation 

accuracy, whereas using too few PCs would reduce the model's sensitivity to noise 

in the data, allowing it to focus more on the variation caused by the faults, but may 

result in a loss of information in the data. To clarify the fault magnitudes designated 

as M1 to M5 represent varying degrees or scales of faults in the industrial process. 

Specifically: 

• M1: Represents minor deviations or the earliest stage of a fault. 

• M2: Indicates a fault of low to moderate severity, with noticeable impact on 

the process. 

• M3: Represents a moderate to high severity fault, significantly impacting 

process performance. 

• M4: Designates a high severity fault, leading to major process disruptions. 

• M5: Indicates a critical fault level, where the process is at a near-failure or 

failure stage. 

Fault 1 M1 M2 M3 M4 M5 Average MSE 

Five PCs 0.0400 0.2084 0.5903 0.6861 1.7601 0.65577 

Four PCs 0.0628 0.5992 0.6234 0.6524 2.3199 0.85154 

Three PCs 0.2482 0.6806 0.5853 0.5949 1.5652 0.73484 

Two PCs 0.1090 0.4944 0.6169 0.6431 1.9294 0.63511 

Table 4.6 MSE of the estimated fault magnitude for fault 1 

Fault 2 M1 M2 M3 M4 M5 Average MSE 

Five PCs 0.0343 0.0448 0.0445 0.0547 0.0635 0.04436 

Four PCs 0.0666 0.1275 0.0461 0.0590 0.0617 0.07218 

Three PCs 0.0323 0.1301 0.0435 0.0467 0.0590 0.06232 

Two PCs 0.0265 0.2203 0.045 0.0238 0.0699 0.0771 

Table 4.7 MSE of the estimated fault magnitude for fault 2 
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Fault 4 M1 M2 M3 M4 M5 Average MSE 

Five PCs 1.79*10-7 2.26*10-7 5.82*10-7 6.14*10-7 5.14*10-7 3.8300*10-7 

Four PCs 3.95*10-7 4.95*10-7 5.76*10-7 6.56*10-7 6.56*10-7 5.5560*10-7 

Three PCs 4.04*10-7 5.62*10-7 5.41*10-7 4.43*10-7 4.89*10-7 5.0780*10-7 

Two PCs 3.07*10-7 4.20*10-6 4.36*10-7 4.76*10-6 5.28*10-6 2.9966*10-6 

Table 4.8 MSE of the estimated fault magnitude for fault 4 

Fault 6 M1 M2 M3 M4 M5 Average MSE 

Five PCs 0.0266 0.0131 0.0587 0.4630 0.5361 0.1955 

Four PCs 0.0490 0.0743 0.0672 0.4526 0.6548 0.25958 

Three PCs 0.0197 0.0436 0.0498 0.4025 0.4999 0.2710 

Two PCs 0.0692 0.1444 0.1099 0.4947 0.5883 0.2813 

Table 4.9 MSE of the estimated fault magnitude for fault 6 

Tables 4.5 to 4.8 give the mean squared error (MSE) between the estimated fault 

magnitude and the actual fault magnitude for faults 1, 2, 4 and 6. For each fault case, 

PCA models were constructed for each of the five different magnitude data (M1-

M5) to examine the accuracy of the reconstruction using different numbers of PCs. 

The magnitudes of the faults increase progressively from M1 to M5 in the table 

above. As the magnitudes of the faults increase, the estimation accuracy might 

decrease due to various factors, including the complexity of the underlying 

relationships, increased noise in the data, or non-linearity of the data. It is 

challenging to determine the optimal number of PCs from the smaller fault 

magnitudes (M1 and M2), nonetheless, it can be observed that the MSE values 

calculated using three PCs (in bold) are consistently lower for larger fault 

magnitudes (M3, M4, and M5) than those calculated using other numbers of PCs. 

This would suggest that the selection of three principal components, aiming for a 

99% CPV threshold, was intended to achieve a balance between capturing 

significant data variation and minimizing the impact of potential noise in fault cases. 
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This threshold aligns with standard PCA practices, ensuring that major data features 

are included while disregarding minor fluctuations possibly representing noise or 

irrelevant variations. However, the point raised about white noise contamination 

merits consideration. White noise may influence the variance captured by PCs. In 

situations where measurements include white noise, the required number of PCs for 

achieving the same CPV could increase, potentially affecting PCA model 

performance.  

Acknowledging that this study assumed relatively clean measurement data, it's 

pertinent to note the inevitability of measurement noise in practical scenarios. 

Future research should, therefore, examine how different noise levels, particularly 

white noise, influence PC selection in PCA. Conducting sensitivity analyses to 

assess the impact of white noise on CPV and PCA performance would provide 

valuable insights, leading to more robust criteria for PC selection under various 

noise conditions. 

4.6 Conclusion 

This chapter presents a comprehensive study of the application of PCA-based 

process fault reconstruction methods. Most previous research has focused on 

reconstruction methods for diagnosing sensor faults in systems without feedback 

control and less on process faults. In this study, the diagnosis of individual process 

faults affecting multiple variables and the extraction of fault magnitudes is achieved 

by improving the extraction method of the process fault direction matrix. This 

chapter demonstrates the feasibility and effectiveness of the proposed method by 

simulating multiple fault types in CSTR processes. 

Fault detection is achieved by comparing the monitoring statistics with their control 

limits. The results show that the 𝑆𝑃𝐸 monitoring statistics allow the detection of 

faults at a relatively early stage, making the method more reliable for the detection 

of incipient faults than directly observing variable changes from a classical 

univariate chart. After a fault has been detected, fault identification is accomplished 

by extracting fault direction matrices from historical fault data and reconstructing 

normal data. The results suggested that the proposed method could effectively 

identify fault types and provide estimations of fault magnitudes. Although there is 

some fluctuation in the estimated magnitudes due to noise and imperfect 

representation of the actual fault behaviour, the trend in fault magnitudes is not 
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overly biased and can still be used in the next prediction stage. In addition, this 

chapter emphasises the importance of selecting optimal number of PCs (CPV 

threshold) balancing the need to capture a larger percentage of the total variance in 

fault data while minimizing the impact of noise on fault magnitude estimation 

accuracy.  

Overall, this chapter has demonstrated that the proposed method can be a valuable 

tool for diagnosing process faults. However, there are some parts that need to be 

improved, such as the fluctuations in the estimated magnitudes. First, this may be 

because the fault direction matrix was extracted from historical fault data and may 

not perfectly represent the actual fault behaviour of the process. Secondly, it may 

be that the actual process behaviour is masked by the random noise introduced in 

the simulation, making fluctuations in the estimated fault magnitudes likely to come 

from variations in the noise, affecting the accuracy of the fault magnitude estimates. 

Further research could explore ways to improve the generalisability of the models 

by increasing the variety of historical faults to refine the fault direction matrix, 

optimising the selection of principal components, or incorporating other advanced 

techniques to improve fault detection and reconstruction performance.
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Chapter 5 Fault Magnitude Prediction based on Autoregressive 

Model and Extreme Learning Machine 

5.1 Introduction 

The focus of research on fault prognosis varies across four main stages: the fitting 

and prediction of the fault development trend, the implementation of early warnings 

for faults, the computation of the RUL of equipment, and the establishment of a 

fault prognosis and health management system. This thesis primarily concentrates 

on the prediction of fault magnitude trends. Central to this research are fault 

prognosis techniques, which play a pivotal role in anticipating the potential future 

states of the system. These techniques involve extracting information about the 

possible development of system faults in future time periods, primarily based on 

historical data. Typically, this extracted information is consolidated and formulated 

into a fault prognosis model. With the acceleration of advancements in data 

acquisition, network communication, and data storage technologies, a surfeit of data 

is continuously amassed in the process industry. A significant portion of this data 

comprises high-dimensional, non-linear, and non-Gaussian time series data, 

spurring the widespread application of statistical and neural network time series 

prediction methods in industrial fault prognosis. 

The commonly used statistical methods are the autoregressive (AR) model and the 

autoregressive moving average (ARMA) model. These two models are mainly 

applied to stationary linear time series. In (Yan et al., 2004), an ARMA model is 

integrated with a logistic regression analysis based on a maximum likelihood 

estimate to evaluate the equipment condition and RUL, and the results show that 

the equipment failure process may be dynamically anticipated and updated. While 

traditional methods like the AR and ARMA models are effective for short-term, 

stationary time series prediction, they often fall short with non-linear or non-

stationary industrial process data. In contrast, neural network algorithms, despite 

their inherent complexity, offer a more robust solution for such data. Their ability 

to model complex, non-linear relationships makes them extensively used in 

industrial fault prognosis. It's important to note that while neural networks are 

complex, their adaptability and advanced learning capabilities outweigh the 

challenges posed by their complexity, especially in the context of intricate industrial 

datasets. 
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Neural networks are pivotal in fault prediction due to their unique advantages. 

These include their superior nonlinear fitting ability, essential for modelling 

complex systems, and their simple yet effective learning rules. This makes them 

particularly suited for scenarios where traditional linear models fail. Among neural 

networks, back propagation (BP) networks are the most widely used, but BP 

networks suffer from long training time and can fall into local minima during 

training. In (Huang et al., 2006), a new single hidden layer feedforward neural 

network learning algorithm, generally known as ELM, is proposed. In an ELM, the 

connection weights between the input layer and the hidden layer, as well as the 

biases of the hidden layer, are randomly set and not changed during training. The 

output layer weights are obtained analytically in one step based on the training data. 

Thus, ELM can be trained very quickly and can have better generalization 

performance compared to some classical neural networks. In (Yang et al., 2016b), 

an ELM-based method for RUL prediction is proposed and compared with BP 

artificial neural networks. It is shown that the ELM-based model is slightly inferior 

to the BP artificial neural network-based model in terms of prediction accuracy and 

stability, but it can significantly reduce the training time. 

In this chapter AR models are developed as a baseline for comparison, and to cope 

with the non-linearity of many industrial processes, ELM models are proposed in 

this chapter for fault prognosis. These AR and ELM models can be trained using 

time series data of fault magnitudes. However, such time series data for fault 

magnitudes are usually not available in industry. Therefore, the fault reconstruction 

approach described in Chapter 3 can be used to restructure fault magnitude data for 

the development of fault prognosis models. 

This chapter is organised as follows. Section 5.2 presents an overview of fault 

prognosis strategies, including direct and iterative method. Section 5.3 gives details 

of the establishment of the AR and ELM based fault magnitude prognosis models. 

Section 5.4 shows the fault magnitude prognosis results for the AR and ELM 

models and the corresponding analysis. Finally, Section 5.5 summarises the 

conclusions from this chapter. 
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5.2 Fault Magnitude Prediction Strategies 

5.2.1 Single-Step prediction 

For a fault magnitude varying with time 𝑡 , the discrete set composed of its 

observations constitutes a time series 𝑋 = {𝑥𝑡|𝑡 = 1, 2,⋯ , 𝑁} , where 𝑁  is a 

positive integer representing the total number of observations in the time series and 

𝑥𝑡 donates the observations at time step 𝑡. The aim of time series prediction is to 

estimate unknown future states based on past and present observations. For one-

step ahead prediction, the model can be expressed as �̂�𝑡+1 = 𝑓(𝑋), where �̂�𝑡+1 

represents the predicted value at the time 𝑡 + 1 and 𝑓 symbolizes the prediction 

model. While one-step predictions provide immediate insights into the near future, 

they have limitations in capturing long-term trends. Therefore, the exploration of 

multi-step ahead prognosis methods becomes essential as it offers a broader 

perspective on future trends, which is crucial for effective process management (Hu 

et al., 2005).  

5.2.2 Multi-Step Ahead Prediction 

For industrial processes requiring longer-term fault trend analysis, multi-step ahead 

prognosis becomes crucial. Common approaches for multi-step prognosis strategies 

include the direct method and the iterative method (Liu et al., 2016b). 

1. Direct Method 

The direct method was proposed by Cox (Cox, 1961), with this method, a distinct 

prediction model is developed for each prediction time step, which means 𝐻 

different models are used to predict ℎ steps ahead. (Franses and Legerstee, 2009) 

Assume the prediction step size of multi-step prediction is ℎ , then ℎ  distinct 

prediction models would need to be developed. The first step in this process 

involves partitioning the original observed series into ℎ subsets.  Each subset is then 

used to train a corresponding model denoted as 𝑓ℎ: 

𝑦𝑡+ℎ = 𝑓ℎ(𝑥𝑡) (5.1) 

where, 𝑥𝑡 ∈ {𝑥𝑡 , 𝑥𝑡−1, ⋯ , 𝑥𝑡−𝑑+1}, 𝑦𝑡+ℎ = {𝑥𝑡+1, 𝑥𝑡+2, ⋯ 𝑥𝑡+ℎ} , 𝑡 ∈ {𝑑, 𝑑 +

1,⋯ ,𝑁 − ℎ}, 𝑑 is the embedding dimension of the input variable (the number of 

past values taken used to predicting a future value), 𝑁 is the number of observations 

and ℎ ∈ {1,2,⋯ ,𝐻}. 
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Next, after the learning process, a prediction model is built for each data subset, and 

the prognosis output of a multi-step prognosis with step size 𝐻 can be expressed as: 

�̂�𝑡+ℎ = 𝑓ℎ(𝑥𝑡 , 𝑥𝑡−1, ⋯ , 𝑥𝑡−𝑑+1)    ℎ = 1,2,⋯ , 𝐻 (5.2) 

where 𝑓ℎ represents the prognosis model built on the data subset. As can be seen 

from the above equation, the multi-step ahead prediction based on the direct method 

involves building separate models for each future time step. Consequently, there is 

no direct correlation between the models, and the predictions made by each model 

are independent, which gives this approach some limitations such as lack of 

correlation between forecast values, high functional complexity, and large 

computational time for multiple models.  

2. Iterative Method 

Compared with the direct method, the iterative prognosis method is simpler and 

more intuitive. The model prediction at time t+1 is fed back to the model input to 

further predict the model output at time t+2, and so on. A general dth order time 

series model can be represented as: 

�̂�𝑡+1 = 𝑓(𝑥𝑡 , 𝑥𝑡−1, ⋯ , 𝑥𝑡−𝑑+1) (5.3) 

Then, the multi-step ahead prognosis based on the iterative method is given as: 

�̂�𝑡+ℎ = {

𝑓(𝑥𝑡 , 𝑥𝑡−1, ⋯ , 𝑥𝑡−𝑑+1) 𝑖𝑓  ℎ = 1

𝑓(�̂�𝑡+ℎ−1, ⋯ , �̂�𝑡+1, 𝑥𝑡 , ⋯ , 𝑥𝑡−𝑑+ℎ) 𝑖𝑓  ℎ ∈ {2,⋯ , 𝑑}

𝑓(�̂�𝑡+ℎ−1, ⋯ , �̂�𝑡+ℎ−𝑑) 𝑖𝑓  ℎ ∈ {𝑑 + 1,⋯ ,𝐻}

(5.4) 

where, 𝑓 represents the prognosis model, 𝑡 is the discrete time, ℎ ∈ {1,2,⋯ ,𝐻}is 

the prediction horizon of multi-step prediction, and 𝑑 is the embedding dimension 

or model order.  

Compared with the direct method, the recursive approach to multi-step ahead 

prediction can be considered better than the direct approach, mainly due to its 

efficiency in requiring only one model for all prediction horizons. This advantage 

provides significant savings in computational resources, training time and model 

maintenance, as well as scalability and model consistency across time steps. 

Furthermore, when compared to the direct method, where the best model must be 

selected and refined at each time step, the recursive approach streamlines the model 

selection process.  Therefore, the iterative methods are selected as the multi-step 

prediction strategy here. 
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5.3 Fault Magnitude Prediction 

5.3.1 Fault Magnitude Prediction based on AR Model 

The fault magnitude prognosis in this section is based on the fault magnitude data 

obtained from fault reconstruction in the previous chapter. After data pre-

processing, model order selection and parameter estimation, a suitable AR model 

can be obtained, which can then be used to predict future fault magnitudes. The L-

step prognosis of the AR(q) model then refers to the estimation of future values at 

moment 𝑡 + 𝐿 based on actual observations at the current moment 𝑡 and previous 

moments. 

The steps for the L-step prognosis are to first calculate the prediction for step L=1, 

then calculate the prediction for 𝐿 = 2 based on that prediction, and so on, until the 

prediction for step 𝐿 is found, with the following recursive process: 

{
  
 

  
 

�̂�𝑡(1) = 𝜑1𝑥𝑡 + 𝜑2𝑥𝑡−1 +⋯+ 𝜑𝑞𝑥𝑡−𝑞+1
�̂�𝑡(2) = 𝜑1�̂�𝑡(1) + 𝜑2𝑥𝑡 +⋯+ 𝜑𝑞𝑥𝑡−𝑞+2

⋮
�̂�𝑡(𝑞) = 𝜑1�̂�𝑡(𝑞 − 1) + 𝜑2�̂�𝑡(𝑞 − 2) + ⋯+ 𝜑𝑞𝑥𝑡

⋮
�̂�𝑡(𝐿) = 𝜑1�̂�𝑡(𝐿 − 1) + 𝜑2�̂�𝑡(𝐿 − 2) +⋯+ 𝜑𝑞�̂�𝑡(𝐿 − 𝑞)  (𝐿 > 𝑞)

(5.5) 

where �̂�𝑡(𝑖) (𝑖 = 1,2,⋯ , 𝐿) is the predicted value, 𝜑𝑖 (𝑖 = 1,2,⋯ , 𝑞) is the model 

parameter, and 𝑥𝑡   is the historical observation. 

The one-step ahead prognosis from the AR model is an estimate of the fault 

magnitude value at moment 𝑡 + 1 based on the actual observation at the current 

moment 𝑡  and past moments𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2, ⋯ . Then, in the iterative multi-step 

prediction, a single model is trained to predict one step ahead, and then the predicted 

value is recursively fed back into the model to generate prediction for further 

prediction horizons.  

First, the assumed maximum order 𝑞𝑚𝑎𝑥 of the AR model is set and the matrices 𝑋 

and 𝑌 are obtained according to equation (3.28). 

𝑋 = [

𝑥𝑞 𝑥𝑞−1 ⋯ 𝑥1
𝑥𝑞+1 𝑥𝑞 ⋯ 𝑥2
⋮ ⋮ ⋱ ⋮

𝑥𝑁−1 𝑥𝑁−2 ⋯ 𝑥𝑁−𝑞

]

𝑌 = [

𝑥𝑞+1
𝑥𝑞+2
⋮
𝑥𝑁

]

(5.6) 
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where, 𝑞 = 1,2,⋯𝑞𝑚𝑎𝑥 . After which the corresponding matrix of model 

coefficients �̂� at order 𝑞 is calculated by (3.30) and the mean square deviation 𝜎 

can be calculated according to the following equation: 

𝜎2 = 𝐸 (𝑥𝑡 −∑ 𝜑𝑗𝑥𝑡−𝑗
𝑝

𝑗=1
)

2

(5.7) 

The appropriate model order 𝑞  can then be determined according to the AIC 

criterion, and finally the predicted data can be obtained according to equation (3.25). 

The training progress of AR model is shown in Figure 5.1. 

 

Figure 5.1 AR model algorithm flow 

5.3.2 Fault Magnitude Prediction based on ELM 

When applying ELM to prognosis, the correct selection of model order and model 

parameters is crucial to the outcome of the prediction. The model order of the 

nonlinear time series model refers to the number of past values used in the model 

inputs, while the model parameters include the network weights and the number of 
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hidden layer nodes. Appropriate selection of model order and model parameters 

will enable effective prediction of future fault magnitudes. 

The ELM modelling process is as follows: 

1. The dataset was first scaled to zero mean and unit variance. It was then 

divided into training, testing and validation sets. Using the training set to set 

up the input matrix and the corresponding desired output matrix. For a 

sequence of fault magnitudes with N samples, assuming the input sequence 

dimension (model order) is 𝑞, then the input and output matrices can be 

expressed as follow: 

𝑋 =

[
 
 
 
𝑓1 𝑓2 ⋯ 𝑓𝑞
𝑓2 𝑓3 ⋯ 𝑓𝑞+1
⋮ ⋮ ⋮ ⋮

𝑓𝑁−𝑞 𝑓𝑁−𝑞+1 ⋯ 𝑓𝑁−1]
 
 
 

𝑌 =

[
 
 
 
𝑓𝑞+1
𝑓𝑞+2
⋮
𝑓𝑁 ]

 
 
 

(5.8) 

2. Set the number of neurons in the hidden layer and their activation function. 

3. Randomly generate the input and hidden layer connection weights and bias. 

4. Calculate the hidden layer output matrix based on equations (3.34) and 

(3.35).  

5. Calculate the optimal output layer weights of the network using equation 

(3.37). 

The training process of the ELM neural network is convenient in terms of obtaining 

the network weights with fast-learning speed and the training accuracy is also 

relatively high.  

To predict the fault magnitude value at the next time step, it is only necessary to 

substitute the relevant time series into the trained prediction model as described 

above.  

5.4 Result and Analysis 

Based on the reconstructed fault magnitudes given in chapter 4, it can be seen from 

Figures 5.16 and 5.19 that the fault magnitudes do not change significantly in the 

first half of the period and show a rapid upward trend from roughly the 400th 

sampling point, so we used the last 500 sampling points for the development of 

prediction models of the fault magnitudes data for different faults.  

The training data set contains the reconstructed fault magnitude data at six different 

fault development speeds (6 × 500 = 3000 samples) and the testing data set contains 
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the reconstructed fault magnitude data at two different fault development speeds (2 

× 500 = 1000 samples). The validation data set also contains the reconstructed fault 

magnitude data at one different fault development speeds (500 samples). Table 5.1 

gives the fault developing speeds of these data sets. 

Training 

datasets 

Fault 1 Fault 2 Fault 4 Fault 6 

-0.12×10-6 0.92×10-5 3.09×10-6 0.47×10-5 

-1.03×10-6 1.28×10-5 4.22×10-6 1.56×10-5 

-2.36×10-6 3.62×10-5 5.13×10-6 3.84×10-5 

-3.39×10-6 5.26×10-5 6.54×10-6 5.23×10-5 

-4.66×10-6 7.49×10-5 7.92×10-6 7.58×10-5 

-6.42×10-6 9.33×10-5 8.15×10-6 9.49×10-5 

Testing 

datasets 

-5.45×10-6 2.85×10-5 2.01×10-6 6.74×10-5 

-7.14×10-6 4.42×10-5 1.14×10-6 8.31×10-5 

Validation 

dataset 
-8.28×10-6 1.52×10-5 0.33×10-6 1.85×10-5 

Table 5.1 Fault magnitudes under different fault development speeds in the 

datasets 

5.4.1 AR Model 

As a single AR model can only predict for one time series, separate AR prediction 

models are required for each fault. To present the results more clearly, the AR 

models designed for the following incipient process faults, faults 1, 2, 4 and 6. 

These models are designed with orders ranging from 1 to 10, and their respective 

AIC values are shown in Table 5.2.  
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Model 

Order 

AIC for Fault 

1 

AIC for Fault 

2 

AIC for Fault 

4 

AIC for Fault 

6 

1 -4.3929 -3.9274 -4.6603 -4.8069 

2 -4.6995 -4.1856 -4.9353 -4.9993 

3 -4.8228 -4.3143 -5.0470 -5.1034 

4 -4.8972 -4.3343 -5.0597 -5.1277 

5 -4.9038 -4.3371 -5.1086 -5.1351 

6 -4.8998 -4.3597 -5.1058 -5.1396 

7 -4.8990 -4.3617 -5.1404 -5.1363 

8 -4.8941 -4.3584 -5.1378 -5.1361 

9 -4.8913 -4.3535 -5.1593 -5.1314 

10 -4.8914 -4.3499 -5.1585 -5.1299 

Table 5.2 AIC values of AR (1) to AR (10) models for incipient process faults 

It can be seen that the AR models constructed for faults 1, 2, 4 and 6 yield the 

smallest AIC determination values at order 5, 7, 9 and 6 (in bold), respectively. The 

optimal order for each AR model is the order corresponding to the smallest AIC 

value. The AR model parameters for faults 1, 2, 4 and 6 are then obtained from 

equations (3.19) - (3.30) as: 

�̂�𝐹1 = [0.1800 0.2320 0.2327 0.2529 0.1004]

�̂�𝐹2 = [0.2455 0.1908 0.2297 0.0777 0.0274 0.1429 0.0814]

�̂�𝐹4 = [0.2908 0.1862 0.2062 0.0186 0.1254 0.0055 0.2072 0.0278 0.0581]

�̂�𝐹6 = [0.4444 0.1197 0.1898 0.1236 0.0325 0.0887]

 

Using these models, one-step ahead and multi-step ahead predictions of the fault 

magnitude of the testing data set can be made based on equations (5.3) and (5.4), 

and the results are shown in Figures 5.2 to 5.5, where the prediction results for the 

testing set corresponding to each fault are shown. In these figures, the solid black 

line represents the actual reconstructed fault magnitudes, the dashed blue line 

represents the one-step ahead predicted fault magnitudes, and the dotted red line 

represents the multi-step ahead predicted fault magnitudes.  



93 

 

 

Figure 5.2 Prediction of fault magnitude for fault 1 based on the AR model 

 

Figure 5.3 Prediction of fault magnitude for fault 2 based on the AR model  
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Figure 5.4 Prediction of fault magnitude for fault 4 based on the AR model 

 

Figure 5.5 Prediction of fault magnitude for fault 6 based on the AR model 

When using the AR model for time series prediction, the model uses a linear 

combination of past values to capture the linear dependence of the time series. As 



95 

 

can be seen from Figures 5.2 to 5.5, the one-step ahead prediction based on the AR 

model performs well for fault magnitude predictions of different magnitudes for 

various faults. This is because the one-step prediction values of the AR model are 

based on the closest observations to the current prediction moment, which can 

reasonably capture the dynamics of the time series over a short period.  

However, for multi-step ahead prediction, the predictions are generated based on 

the model's own previous predictions. The process begins at a specific time step, 

determined by the optimal model orders obtained through the Akaike Information 

Criterion (AIC), as shown in Table 5.2. For instance, for fault type 1, with an 

optimal model order of 5, the prediction starts at time step 5, using the previous 5 

time steps of historical data. The prediction for each subsequent time step is 

iteratively generated by combining both historical data and the model's own 

previous predictions. As the prediction moves further into the future, the predicted 

value becomes increasingly dependent on its own predictions and model 

coefficients rather than on past observations. This iterative process is consistently 

applied to different fault types, as determined by their respective optimal model 

orders. The ability to capture trends deteriorates progressively as the model inputs 

are entirely replaced by the predicted values. This is one of the reasons why the 

performance of the AR model declines sharply and exhibits a flat line after multiple 

prediction steps equal to the order of the model. Furthermore, when discussed from 

a data perspective, a fundamental assumption of the AR model is that the data is 

required to be stationary, meaning that the statistical properties of the data (mean, 

variance and autocorrelation) should remain constant over time. Failure magnitude 

data, on the other hand, are usually non-linear time series data with trend in nature, 

and even after they have been detrended and normalised, all non-stationary 

components may not be completely eliminated, which may also be the reason for 

the unsatisfactory multi-step prediction results. Owing to the subpar performance 

of the AR model for multi-step predictions, only its root means square error (RMSE) 

and mean absolute percentage error (MAPE) for one-step predictions on the testing 

sets are acquired here as shown in Tables 5.3 to exhibit the model's predictive 

capabilities. 

The RMSE and MAPE are defined as: 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦(𝑘) − �̂�(𝑘))

2
𝑁

𝑘=1

𝑀𝐴𝑃𝐸 =
100

𝑁
∑|

𝑦(𝑘) − �̂�(𝑘)

𝑦(𝑘)
|

𝑁

𝑘=1

(5.9) 

where, 𝑦(𝑘) is actual value at sampling 𝑘, �̂�(𝑘) is prediction value at sampling 𝑘, 

and 𝑁 is length of time series. These metrics indicate the deviation of the predicted 

values from the actual values, with lower values signifying better model predictions. 

Testing 

sets 

Fault 1 Fault 2 Fault 4 Fault 6 

First 

testing 

set 

Second 

testing 

set 

First 

testing 

set 

Second 

testing 

set 

First 

testing 

set 

Second 

testing 

set 

First 

testing 

set 

Second 

testing 

set 

RMSE 0.4380 1.2636 0.0819 0.2772 
2.4511× 

10-4 

6.3382× 

10-4 
0.0331 0.1371 

MAPE 

(%) 
5.1106 6.3738 5.0066 6.6027 5.5746 7.3772 5.3269 7.2324 

Table 5.3 One-step prediction accuracy of the AR model for test sets across 

different types of faults 

5.4.2 ELM Model 

In order to address nonlinear challenges in the fault magnitude prediction, ELM 

models are developed for fault prediction. Here the same reconstructed fault 

magnitude datasets of varying severity as in the previous section were used to 

construct the ELM models, and the number of hidden nodes in each ELM model is 

determined by trial and error. The data for ELM modelling is split into training data 

set, testing data set, and validation data set. 

In this thesis, the ELM neural network is employed for fault magnitude prediction. 

To prepare the data for ELM modelling, the data are first normalized to have zero 

mean and unit variance. This ensures that the input features have the same scale and 

improves the model’s performance. The hidden layer uses the sigmoid activation 

function, and the output layer uses a linear activation function. The optimal number 
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of hidden nodes and input sequence dimensions, i.e., model order, for each ELM 

model is determined through trial and error. The possible range for the input 

sequence dimension is set to integers between 1 to 40, while the number of hidden 

layer nodes corresponding to each time length of the dimension can vary from 10-

1000. The performance of the ELM models with different input sequence 

dimensions and hidden layer nodes is evaluated using RMSE and MAPE on the 

validation set. By analysing the RMSE and MAPE results for different ELM models 

with varying input sequence dimensions and hidden layer nodes, the optimal model 

configuration can be identified.  

The process of determining the optimal input sequence dimension and the number 

of hidden layer nodes for each fault involves training and validating several ELM 

models with different configurations. This means that for each combination of input 

sequence dimension and hidden layer neuron nodes, an ELM model is trained using 

the training data and its performance is evaluated using the validation data. The 

error metrics, such as RMSE and MAPE, are calculated for each of these ELM 

models to assess their prediction accuracy, and the optimal parameters that allowed 

for the best accuracy of the ELM prediction models for faults 1,2,4 and 6 are given 

in Table 5.4.  

Fault number Fault 1 Fault 2 Fault 4 Fault 6 

Input sequence dimension 36 38 40 39 

Hidden layer nodes 310 620 330 280 

RMSE 0.5038 0.3319 1.7749×10-4 0.0482 

MAPE (%) 4.7425 7.4580 3.5929 7.2038 

Table 5.4 Optimal model parameters configuration for each fault type using the 

ELM model 

The ELM neural network is known for its fast-training capabilities as it randomly 

generates the connection weights between the input and hidden layers and the bias 

of the hidden layer neurons. These parameters are not adjusted during the training 

process, which leads to the instability of its prediction results, and even after several 

trials to select the best combination of input sequence dimension and hidden layer 

neuron nodes. To address the instability issue, 10 distinct ELM models were built 

for each test set of fault magnitude during testing phase. These models share 
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commonalities in their input vector dimensions and the number of hidden layer 

nodes, both of which are the optimal combination of parameters previously 

identified. The differences lie in the weights and biases of the hidden layers, which 

are randomly selected for each model.  

 

Figure 5.6 Prediction of fault magnitude for testing sets of Fault 1  

 

Figure 5.7 Prediction of fault magnitude for testing sets of Fault 2 
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Figure 5.8 Prediction of fault magnitude for testing sets of Fault 4 

 

Figure 5.9 Prediction of fault magnitude for testing sets of Fault 6 
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As shown in Figures 5.6 to 5.9, where the solid black lines indicate the original test 

set data for the reconstructed fault magnitudes, the blue dotted lines represent one-

step predicted fault magnitudes, and the red dashed lines are the multi-step 

predicted fault magnitudes.  

The results demonstrate the ELM models maintain good one-step prediction 

performance, almost matching the actual values with minimal error, while the 

multi-step predictions are greatly improved compared to the AR models. In the 

application of ELM models for multi-step prediction, the specific time step at which 

these predictions commence is crucial. This initiation point is directly determined 

by the input sequence dimension, as indicated in Table 5.4. The input sequence 

dimension is pivotal as it represents the number of past observations the model uses 

to make its initial prediction. This ensures that the model has sufficient historical 

data to accurately forecast future values, which is particularly vital in the complex, 

non-linear data scenarios of fault magnitude prediction. Once the multi-step 

prediction process begins, the ELM model utilizes historical data for its early 

predictions. Gradually, as it extends further into the future, the model transitions to 

relying on its own previous predictions. This iterative process allows each 

subsequent prediction to build upon the last, encapsulating the data's underlying 

trends. Despite this, the drawbacks of the ELM are obvious. As can be seen from 

multi-step prediction results in Figures 5.6-5.9, a significant observation in the 

ELM model's multi-step predictions is the variation in trends, although the 10 

models have the same network structure, their prediction results do not remain 

consistent due to the ELM randomly initialising the weights and biases of the 

hidden layer neurons. As these parameters are not adjusted during training, different 

models with the same network structure can yield varying outcomes. These multiple 

prediction trends, illustrated by various red lines in the figures, highlight the unique 

predictive characteristics and challenges inherent in the ELM model when applied 

to multi-step prediction scenarios. 

Table 5.5 lists the multi-step prediction accuracy of the ELM models with the best 

prediction performance on the test sets for each fault. 
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Testing 

sets 

Fault 1 Fault 2 Fault 4 Fault 6 

First 

testing 

set 

Second 

testing 

set 

First 

testing 

set 

Second 

testing 

set 

First 

testing 

set 

Second 

testing 

set 

First 

testing 

set 

Second 

testing 

set 

RMSE 0.4032 1.3298 0.2646 0.3286 
1.3234× 

10-4 

4.5212× 

10-4 
0.0456 0.1737 

MAPE 4.3892 5.2613 7.3260 7.5296 3.1828 4.8789 7.0259 8.0573 

Table 5.5 Multi-step prediction accuracy of ELM models 

5.5 Conclusions 

This chapter focused on the prediction of incipient process faults by developing two 

distinct prediction models: the AR model and the ELM model. Both models were 

tested on four different types of incipient process faults (faults 1, 2, 4, and 6). The 

analysis showed that the AR model performs well for one-step predictions, 

capturing the trend of the time series data. However, its multi-step ahead prediction 

performance was subpar due to its linear nature and the assumption of data 

stationarity. In contrast, the ELM model, which is designed to handle nonlinear data, 

showed significant improvement in multi-step predictions. Its fast-training 

capabilities and performance optimization based on input sequence dimensions and 

hidden layer nodes were notable advantages. However, the inconsistency of ELM 

predictions due to the random weights and biases of the hidden layers was a 

drawback. Overall, the ELM model outperformed the AR model for incipient 

process fault prognosis. It demonstrated better capabilities in capturing the trends 

and patterns in the fault magnitudes, offering enhanced multi-step ahead predictions. 

This improved performance makes the ELM model a more suitable choice for 

multi-step fault prognosis.  

However, it is important to acknowledge the limitations and assumptions of this 

study. First, the analysis focused on a specific type of industrial process data, which 

might limit the generalizability of this chapter to other types of processes or datasets. 

Future research could investigate the performance of the AR and ELM models in 

different contexts or with other types of data. Second, this chapter did not explore 

potential optimizations of the ELM model, which could further enhance its 
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performance in long-range fault prediction. The practical implications of this 

chapter are valuable for both academic researchers and industrial practitioners, as 

they provide guidance on selecting the most suitable modelling approach for long-

range fault prediction in industrial processes. By choosing the ELM model over the 

AR model, industry professionals can improve the effectiveness of their fault 

prediction strategies, potentially reducing downtime, maintenance costs, and safety 

hazards. 

In light of this chapter and existing literature, the ELM model emerges as a valuable 

tool for long-range fault prediction in industrial processes. While the ELM model 

shows promise with its superior multi-step prediction capabilities, its performance 

could be further enhanced through a hybrid approach with PCA. Future research 

should explore integrating PCA's robust feature extraction and dimensionality 

reduction capabilities with ELM's efficient learning mechanism. This synergy could 

address ELM's prediction inconsistencies and improve overall fault prognosis 

accuracy. Such a hybrid model, leveraging the complementary strengths of PCA 

and ELM, has the potential to offer a more comprehensive solution for long-range 

fault prediction in industrial processes. In additional, future work can also focus on 

optimizing the ELM model to further enhance its stability, incorporating additional 

data or features, examining the potential benefits of integrating it with other 

modelling approaches or techniques and exploring other advanced machine 

learning models. In addition, give the limitations in long-range prediction 

performance of the ELM model, there is a need to further explore more advanced 

machine learning models, such as recurrent neural networks (RNNs), which are 

better suited to long-range sequential prediction tasks, and the next chapter 

examines the potential of RNNs to enhance long-range prediction of fault 

magnitudes in industrial processes. The aim is to enhance the understanding of how 

more complex and continuous data-driven models can provide more accurate and 

reliable predictions, thereby contributing to the wider quest for effective and 

efficient industrial process fault prediction. 
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Chapter 6 Fault Magnitude Prognosis in Chemical Processes 

based on Long Short-Term Memory and Gated Recurrent 

Unit Network   

6.1 Introduction 

In recent years, with the continuous development of deep learning techniques, some 

deep learning models have been gradually applied to the study of time series data. 

A deep learning model, characterized by a deep neural network with multiple non-

linear mapping layers, has the inherent ability to perform both abstraction and 

feature extraction from the input signal. This is achieved through a layer-by-layer 

process, enabling the model to uncover intricate patterns hidden within the data 

Among the various deep learning models, recurrent neural networks introduce the 

concept of time series into the network structure design, making them more 

adaptable in time series data analysis. Among the many RNN variants, the Long 

Short-Term Memory (LSTM) network compensates for conventional RNN issues 

such as gradient vanishing, gradient explosion, and lack of long-term memory 

capacity. This allows LSTMs to effectively harness long-range time-series 

information. However, the Gated Recurrent Unit (GRU), another RNN variant, has 

also gained attention. GRUs, like LSTMs, capture the association between long 

sequences and mitigate the gradient vanishing or explosion phenomenon effectively. 

Furthermore, the GRU's simpler structure, in comparison to the LSTM, allows for 

faster training.  

LSTM models have been used successfully in a number of applications in the study 

of time-series data in different fields, including text-to-language related language 

modelling, speech recognition, machine translation, multimedia-related audio and 

video data analysis, image caption modelling, road transport-related traffic flow 

prediction, etc. However, in the field of process industry fault prediction, the 

application of LSTM models is very limited, especially for the research problem of 

fault magnitude prediction. 

In this chapter, a long-range fault prognosis method based on LSTM recurrent 

neural networks is proposed. The detailed design of the network structure, and the 

implementation of training and prediction are given. The proposed method is 

applied to the simulated CSTR system, and the results are compared with those of 
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the ELM model. The results demonstrate the superior performance of the proposed 

LSTM model in long range fault prognosis. 

The remaining part of this chapter is organised as follows. Section 5.2 presents the 

structure of the LSTM-based fault prognosis model and describes the LSTM 

training and prognosis process in detail. Section 5.3 adjusts the input sequence 

structure and network model construction of the LSTM through different 

experiments, which are used to determine the optimal model to be used for fault 

prognosis. Section 5.4 shows the results of the LSTM model for fault magnitude 

prediction and the corresponding analysis. Finally, Section 5.5 presents the 

conclusions. 

6.2 Fault Prognosis based on LSTM 

The overall framework for building the LSTM prediction model is shown in Figure 

6.1 and it includes five functional modules: input layer, hidden layer, output layer, 

network training and network prediction.  

 

Figure 6.1 LSTM fault prognosis modelling framework 



105 

 

The input layer is responsible for the initial processing of the original fault 

magnitude time series to meet the network input requirements, the hidden layer uses 

the LSTM cells represented in Figure 6.1 to build a recurrent neural network, the 

output layer provides the prediction results, the network training uses the Adam 

optimisation algorithm mentioned in Chapter 3, and the network prediction uses an 

iterative prediction method. 

6.2.1 Process of Training the LSTM Neural Network 

In this thesis, the primary focus is on training the hidden layer of the network. First, 

in the input layer, a training set consisting of the fault magnitude time series 

obtained by using the reconstruction is defined as follows. 

𝐹 = [𝐹1, 𝐹2, ⋯ , 𝐹𝑚]
𝑇 ∈ 𝑅𝑚×𝑛 (6.1) 

𝐹𝑖 = [𝑓1𝑖 𝑓2𝑖  ⋯  𝑓𝑛𝑖] (6.2) 

In the above equations, 𝐹 represents the set of data with different fault magnitudes 

obtained by fault reconstruction under specific type of fault. Here, 𝐹𝑖 refers to the 

time series of 𝑖𝑡ℎ (𝑖 = 1,2,⋯ ,𝑚) magnitude of this specific fault, 𝑚 represents the 

total number of different magnitudes of this fault, and 𝑛 is the number of samples 

in each time series. The training set are normalised to zero mean and unit variance. 

The normalized training set 𝐹′ can be expressed as: 

𝐹′ = [𝐹1
′, 𝐹2

′, ⋯ , 𝐹𝑚
′ ] (6.3) 

𝐹𝑖
′ = [𝑓1𝑖

′  𝑓2𝑖
′  ⋯ 𝑓𝑛𝑖

′ ] (6.4) 

As fault magnitude prediction is a time series-based problem, the model cannot be 

trained directly on a feature vector and, instead, the model should be trained on a 

vector sequence. Therefore, to accommodate the hidden layer input features, the 

data segmentation approach is applied to each fault magnitude data 𝐹𝑖
′, and the 

segmentation window length is set to take the value 𝐿. The matrix obtained after 

segmentation of each fault magnitude used for training can be represented as 𝑋𝑆𝑖. 

𝑋𝑆𝑖 = [

𝑓1
′ 𝑓2

′ ⋯ 𝑓𝐿
′

𝑓2
′ 𝑓3

′ ⋯ 𝑓𝐿+1
′

⋮ ⋮ ⋯ ⋮
𝑓𝑛−𝐿
′ 𝑓𝑛−𝐿+1

′ ⋯ 𝑓𝑛−1
′

] ∈ 𝑅(𝑛−𝐿)×𝐿 (6.5) 
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By applying segmentation to each fault magnitude data, the final input training data 

set is transformed into an array of cells consisting of multiple matrices of segmented 

fault magnitude data. 

𝑋 = {𝑋𝑆1, 𝑋𝑆2, ⋯ , 𝑋𝑆𝑚} (6.6) 

Then the input sequence 𝑋𝑠, 𝑠 = 1,2,⋯ , 𝑛 − 𝐿  of each LSTM cell can be 

represented as each row vector in the cell array. 

Similarly for the corresponding desired output 𝑌 for each fault magnitude used for 

training is: 

𝑌 = {𝑌𝑆1, 𝑌𝑆2, ⋯ , 𝑌𝑆𝑚}

𝑌𝑆𝑖 = [

𝑓2
′ 𝑓3

′ ⋯ 𝑓𝐿+1
′

𝑓3
′ 𝑓4

′ ⋯ 𝑓𝐿+2
′

⋮ ⋮ ⋯ ⋮
𝑓𝑛−𝐿+1
′ 𝑓𝑛−𝐿+2

′ ⋯ 𝑓𝑛
′

] ∈ 𝑅(𝑛−𝐿)×𝐿
(6.7) 

Next, 𝑋 is fed into the hidden layer. As can be seen from Figure 6.1, the hidden 

layer contains 𝑛 − 𝐿 isomorphic LSTM cells connected by time, and the output of 

𝑋 after passing through the hidden layer can be expressed as: 

𝑃 = [𝑃1, 𝑃2, ⋯ , 𝑃𝐿] (6.8) 

𝑃𝑝 = 𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑋𝑝, 𝐶𝑝−1, 𝐻𝑝−1), 1 ≤ 𝑝 ≤ 𝑛 − 𝐿 (6.9) 

where 𝐶𝑝−1 and 𝐻𝑝−1 are the cell state and hidden state of the previous LSTM cell, 

respectively, and 𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑤𝑎𝑟𝑑  represents the forward calculation method for 

LSTM. In this case, 𝑆, refers to the number of LSTM units, hence the dimensions 

of the cell state vector and previous LSTM cell’s output  𝐶𝑝−1  and output vector 

𝐻𝑝−1 are set to this dimensionality. It can be seen that the hidden layer output 𝑃, 

the model input 𝑋  and the desired output 𝑌  are all two-dimensional arrays of 

dimension (𝑛 −  𝐿) ×  𝐿. 

The mean square error is chosen as the error calculation formula and the training 

process of the loss function can be defined as: 

𝑙𝑜𝑠𝑠 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

(6.10) 

Given the learning rate, the number of training steps and an optimisation objective 

of minimising the loss function. The Adam optimization algorithm is applied to 

continuously update the network weights to obtain the final hidden layer network. 
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6.2.2 Prediction 

The trained LSTM model (denoted as 𝐿𝑆𝑇𝑀∗) is now used for prediction. The 

prediction process proceeds iteratively.  

First, the first 𝐿 data from the test set are used as the initial input to the network. 

𝑋𝑡𝑠 = [𝑓1
′ 𝑓2

′  ⋯ 𝑓𝐿
′] (6.11) 

The 𝐿𝑆𝑇𝑀∗ model take 𝑋𝑡𝑠  as input and generates an output sequence. The last 

value of this output sequence denoted as �̂�𝐿+1 is considered as the predicted value 

for the next time point. Then, the network output can be expressed as: 

𝑃𝑡𝑠 = 𝐿𝑆𝑇𝑀
∗(𝑋𝑡𝑠) = [𝑝2, 𝑝3, ⋯ , �̂�𝐿+1] (6.12) 

For the next iteration, the sequence 𝑋𝑡𝑠 is updated by removing the first element 𝑓1
′  

and appending the newly predicted value �̂�𝐿+1 to the end. This forms the new input 

sequence 𝑋𝑡𝑠+1: 

𝑋𝑡𝑠+1 = [𝑓2
′ 𝑓3

′  ⋯ �̂�𝐿+1] (6.13) 

This process is iteratively performed where each new prediction is appended to the 

sequence while the oldest value is removed, and the updated sequence is fed back 

into the 𝐿𝑆𝑇𝑀∗  model for the next prediction. The prediction process stops when 

the required number of future points has been generated.  

This generates a sequence of future predictions: 

�̂�𝑡𝑠+𝑛 = 𝐿𝑆𝑇𝑀
∗(𝑋𝑡𝑠+𝑛−1) = [�̂�𝐿+1, �̂�𝐿+2, ⋯ , �̂�𝑛] (6.14) 

Next, the prediction sequence corresponding to the test set 𝑋𝑡𝑒𝑠𝑡 is scaled back to 

the original scale.  

6.3 Model Structure and Parameter Determination 

The dataset used in this chapter is the same as the estimated process fault magnitude 

datasets used for ELM in Chapter 5, as shown in Table 5.1. In this chapter, the 

LSTM network used the following model initial parameters: one LSTM hidden 

layer, 200 hidden layer neuron nodes, the solver was set to 'Adam' and trained for 

400 epochs, while the gradient bias was set to 1 to prevent gradient explosion. The 

initial learning rate was 0.005 and was reduced to 0.001 after 125 epochs. 
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6.3.1 Determination of Segmentation Length 

The segmentation length (model order) can be defined as the quantity of previous 

data points, which essentially refers to the amount of historical information 

encompassed within a training sequence. By adjusting the segmentation length, the 

performance of the model for multi-step prediction can be enhanced.  

Different data segmentation length sizes, ranging from 2 to 40, were compared 

using the initial LSTM parameters. The comparison was based on the RMSE and 

MAPE on the validation set for different segmentation lengths. From the result in 

Table 6.1 it can be observed that the optimal segmentation length varies for different 

faults. For instance, the best performance on the validation set for fault 2 was 

achieved with a segmentation length of 38, while for fault 6, a segmentation length 

of 30 yielded the best results. Therefore, the chosen data segmentation lengths for 

faults 2 and 6 are 38 and 30, respectively. This indicates that different faults may 

have different optimal time horizons for prediction, which could be due to the 

varying dynamics and complexities of different faults.  

Faults  Fault 1 Fault 2 Fault 4 Fault 6 

Appropriate 

Segmentation 

lengths 

26 38 18 30 

RMSE for 

validation set 
0.4051 0.1819 1.4546×10-4 0.0308 

MAPE (%) for 

validation set 
4.5104 4.3429 3.0598 4.8756 

Table 6.1 Performance with suitable segmentation lengths for each fault 

6.3.2 Determination of LSTM Structures 

The structure of the neural network determines its complexity and capability to 

capture patterns from the data. This experiment compares the depth of various 

LSTMs based on the RMSE and MAPE on the validation set.  

Six different LSTM models were evaluated, each with different number of nodes in 

the hidden (LSTM) layer and the drop rate of dropout layer. These configurations 

are selected based on the performance after several trials and exclusions. This 

experiment was conducted using the optimal segmentation length previously 

determined for each fault. 
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The six models compared were: 

Model 1: Single LSTM layer with 100 nodes. 

Model 2: Single LSTM layer with 200 nodes. 

Model 3: Two LSTM layers with 100 and 200 nodes, respectively, separated by a 

dropout layer of drop rate 0.2. 

Model 4: Two LSTM layers with 200 and 200 nodes, respectively, separated by a 

dropout layer of drop rate 0.2. 

Model 5: Three LSTM layers with 100, 200 and 200 nodes, respectively, each with 

a dropout layer with drop rate of 0.2 between them. 

Model 6: Four LSTM layers with 100, 200, 200 and 200 nodes, respectively, each 

with a dropout layer with drop rate of 0.2 between them. 

LSTM 

structure 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

RMSE 0.4258 0.4189 0.5743 0.5340 0.5488 0.3991 

MAPE (%) 4.6676 4.6525 5.9555 5.4202 5.6240 4.4741 

Table 6.2 Comparison of the depth of LSTM for Fault 1 

LSTM 

structure 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

RMSE 0.0833 0.0923 0.0790 0.0824 0.1891 0.0943 

MAPE 

(%) 
4.2649 5.0933 4.0857 4.4126 9.5973 5.0458 

Table 6.3 Comparison of the depth of LSTM for Fault 2 

LSTM 

structure 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

RMSE 
2.1882×1

0-4 

2.2677×1

0-4 

2.5471×1

0-4 

4.2336×1

0-4 

2.2646×1

0-4 

1.3771×1

0-4 

MAPE 

(%) 
4.9542 4.1352 5.4127 8.7884 4.7845 3.8186 

Table 6.4 Comparison of the depth of LSTM for Fault 4 
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LSTM 

structure 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

RMSE 0.0396 0.0516 0.0694 0.0341 0.0459 0.0401 

MAPE 

(%) 
6.4089 6.8713 10.6874 5.6500 7.0113 6.5809 

Table 6.5 Comparison of the depth of LSTM for Fault 6 

It can be seen from Tables 6.2 to 6.5 that the performance of LSTM models varies 

significantly with different architectures for different faults. For example. Model 6, 

which has the most complex structure, performed the best for Faults 1 and 4, 

indicating that these faults may have more complex patterns that require a deeper 

model to capture. However, for Fault 2, Model 3 performed the best, suggesting 

that a simpler model may be sufficient for this fault. This indicates that the optimal 

structure for an LSTM model depends on the characteristics of the specific fault, 

and that simply increasing the complexity of the model does not always improve 

performance. This experiment was conducted under the condition of the optimal 

segmentation length for each fault. 

6.3.3 Determination of Dropout Rate 

In deep training process of deep learning models, it's not the case that only some of 

the nodes are active while others are dormant. Rather, all nodes participate in the 

learning process but with varying degrees of influence on the output This can be 

problematic as the model may become overly reliant on certain nodes, leading to 

overfitting. Overfitting occurs when the model overlearns the training data, which 

results in high prediction accuracy and a small loss function on the training data, 

but poor performance on the test data, resulting in a larger loss function and lower 

prediction accuracy.  To mitigate this issue, dropout layers are introduced into the 

network to randomly deactivate a fixed percentage of nodes in each layer during 

training. The purpose of this approach is not to train every node equally, but rather 

to prevent the model from relying too heavily on specific sets of nodes. By 

deactivating a subset of nodes, dropout layer promotes a more dispersed and 

resilient representation of the data across the network, as the network cannot depend 

on the presence of any one node. This process helps to reduce overfitting by 

encouraging redundancy in the model, thus improving the model's ability to 

generalize. In effect, various subsets of nodes are trained on different mini-batches 
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of data, allowing each node to learn and contribute to the model's comprehension 

of the data over the course of the training process.  

In this experiment, the dropout rate was selected in the range from 0.1 to 0.5 with 

increment of 0.1 and the best value was determined by the lowest RMSE of the 

validation data set.  

Drop rate 0.1 0.2 0.3 0.4 0.5 

RMSE 0.4856 0.3086 0.4615 0.6235 1.0728 

MAPE (%) 5.1905 4.5548 4.8954 6.1237 10.2452 

Table 6.6 Comparison of the drop rate of LSTM for Fault 1 

Drop rate 0.1 0.2 0.3 0.4 0.5 

RMSE 0.1050 0.0978 0.0786 0.2729 0.0787 

MAPE (%) 5.4269 5.3793 4.2913 13.7883 4.6067 

Table 6.7 Comparison of the drop rate of LSTM for Fault 2 

Drop rate 0.1 0.2 0.3 0.4 0.5 

RMSE 
4.0830×10-

4 

1.1512×10-

4 

2.5933×10-

4 

2.6203×10-

4 

2.5294×10-

4 

MAPE 

(%) 
9.6852 4.0129 5.2154 5.2461 5.3208 

Table 6.8 Comparison of the drop rate of LSTM for Fault 4 

Drop rate 0.1 0.2 0.3 0.4 0.5 

RMSE 0.0367 0.0439 0.0343 0.0369 0.0493 

MAPE (%) 5.7134 7.2128 5.5009 5.9115 6.7082 

Table 6.9 Comparison of the drop rate of LSTM for Fault 6 

Tables 6.6 to 6.9 shows the prediction accuracy of the LSTM models with different 

dropout rates for faults 1, 2, 4, and 6 respectively. It can be seen that the optimal 
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dropout rates differ for different faults. For instance, Faults 1 and 4 achieved the 

best performance with a dropout rate of 0.2, while Faults 2 and 6 performed best 

with dropout rates of 0.3. These results demonstrate the importance of tuning the 

dropout rate to strike the right balance between learning the underlying patterns in 

the data and avoiding overfitting. 

6.4 Results and Analysis 

This section describes the prediction results and correlation analysis of the proposed 

model, with a particular focus on the multi-step prediction capabilities of LSTM 

and GRU networks. Among the many deep learning models, RNN introduces the 

concept of time series into the network structure design, making it highly adaptable 

for time series data analysis. However, as mentioned in Chapter 3, the gradient 

vanishing and explosion problems of RNNs make them less capable of solving long 

time series problems, so LSTM networks have been proposed to improve this 

problem. However, the relatively complex internal structure of the LSTM has led 

to its relatively low training efficiency (longer training time). In order to 

comprehensively compare the LSTM and GRU, this section follows the same 

experimental approach in Section 6.3 for GRU models. This approach involves 

determining the optimal parameters and model structure for the GRU network and 

comparing it directly with the LSTM. The goal is to evaluate the relative strengths 

and weaknesses of each model, particularly in terms of the proposed LSTM model.  

In these experiments, optimal parameters were determined for the GRU model for 

different types of faults, which are presented in Table 6.10. While LSTM and GRU 

share similarities in terms of addressing the vanishing gradient problem and 

capturing long-term dependencies, they have some differences in their internal 

structure. 

Fault  Fault 1 Fault 2 Fault4 Fault 6 

Segmentation length 37 36 36 29 

GRU structure Model 3 Model 4 Model 5 Model 3 

Dropout rate 0.1 0.2 0.2 0.1 

Table 6.10 The optimal parameters and structure for GRU network 
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The optimal parameters and structure of the model built using the GRU layer are 

similar to those of the model built using the LSTM, with the difference that the 

model structure is simpler and requires lower dropout rate. This is because the GRU 

network has a simpler architecture compared to the LSTM network through 

combining the input and forgetting gates of the LSTM into a single update gate. 

This reduces the number of parameters and calculations involved and making the 

model more compact. Furthermore, the simple structure reduces the risk of 

overfitting, which also makes it possible that the GRU model may require a lower 

dropout rate during training. 

Figures 6.2 to 6.5 illustrate, respectively, the multi-step prediction results of the test 

sets of faults 1, 2, 4, and 6 using LSTM and GRU optimal models. In these figures, 

the solid black line indicates the actual fault magnitudes, the blue dotted line 

indicates the multi-step prediction results of the GRU models, and the red dashed 

line is the multi-step prediction results of the LSTM models. A critical aspect of 

our multi-step prediction approach using LSTM and GRU involves maintaining a 

consistent length for the input sequence. For instance, for fault type 1, with a 

segmentation length of 37 as shown in Table 6.10, the model uses these 37 historical 

data points to predict the value at the 38th time step. Subsequently, to maintain a 

constant sequence length, the earliest time step data is discarded, and the newly 

predicted value is added to the input sequence. This process of updating the input 

sequence continues with each subsequent prediction step, gradually replacing all 

historical data with predicted values. This methodology is pivotal for practical 

applications, illustrating the models' ability to shift from historical data dependency 

to relying on their own predictive outputs, especially relevant for ongoing, real-time 

monitoring and prediction tasks in industrial settings. 

Compared to the ELM model, although these two models are more time-consuming 

during their training process, as the weights and biases of the network are updated 

at each time step, they allow the models to effectively tap into the intrinsic trends 

of the time series and the correlations between the sequences, and ultimately give 

more stable and accurate multi-step prediction results. 
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Figure 6.2 Comparison of LSTM and GRU for the testing sets of Fault 1 

 

Figure 6.3 Comparison of LSTM and GRU for the testing sets of Fault 2 
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Figure 6.4 Comparison of LSTM and GRU for the testing sets of Fault 4 

 

Figure 6.5 Comparison of LSTM and GRU for the testing sets of Fault 6 

Table 6.11 gives the training times of the LSTM and GRU models for different 

faults. The training time consumption of the GRU model is relatively less compared 
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to the LSTM model due to its simple structure (only have update and reset gates), 

smaller number of parameters and no additional cell states are required.  

Fault types Fault 1 Fault 2 Fault 4 Fault 6 

LSTM 

training time 
5 mins 10 secs 

10 mins 40 

secs 

9 mins 30 

secs 
6 mins 

GRU 

training time 
4 mins 23 secs 9 mins 

7 mins 10 

secs 

5 mins 10 

secs 

Table 6.11 Training time consumption for LSTM and GRU models 

Prediction 

accuracy 

Frist testing set Second testing set 

RMSE MAPE (%) RMSE MAPE (%) 

LSTM 0.4001 4.4526 1.2400 4.7929 

GRU 0.4131 4.3455 1.3042 5.5272 

Table 6.12 Prediction performance for the testing sets of Fault 1 

Prediction 

accuracy 

Frist testing set Second testing set 

RMSE MAPE (%) RMSE MAPE (%) 

LSTM 0.0815 4.2537 0.2497 5.6804 

GRU 0.1155 6.5349 0.3029 7.0400 

Table 6.13 Prediction performance for the testing sets of Fault 2 

Prediction 

accuracy 

Frist testing set Second testing set 

RMSE MAPE (%) RMSE MAPE (%) 

LSTM 1.2089×10-4 3.5011 1.9385×10-4 3.6237 

GRU 1.3222×10-4 4.7417 4.0059×10-4 4.4273 

Table 6.14 Prediction performance for the testing sets of Fault 4 
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Prediction 

accuracy 

Frist testing set Second testing set 

RMSE MAPE (%) RMSE MAPE (%) 

LSTM 0.0315 4.9269 0.1281 6.4687 

GRU 0.0400 6.6686 0.1651 7.9593 

Table 6.15 Prediction performance for the testing sets of Fault 6 

The RMSE and MAPE were then used to evaluate the performance of the model 

and the results are shown in Tables 6.12 to 6.15. The RMSE, by squaring the 

residuals, quantifies the average magnitude of the prediction errors or residuals, 

thus reflecting the concentration of these errors and thus provides insight into the 

magnitude of large errors made by the model. On the other hand, MAPE, an 

absolute percentage error metric, provides an average model performance by 

showing the relative error between the predicted and actual values in percentage 

terms. It can be seen that in terms of prediction accuracy LSTM is more accurate 

than GRU. 

6.5 Conclusions 

In this chapter, an LSTM-based process fault magnitude trend prediction model is 

developed, which is an important step in understanding and predicting process 

faults. The principal strength of LSTM-based model lies in its ability to learn and 

remember long-term dependencies in time series data. 

Various experiments and analyses demonstrate the robustness of the proposed 

LSTM model. Compared to the GRU method, the overall accuracy of the proposed 

method is higher than the GRU model as well as the ELM model in Chapter 4, 

although the training process is more time-consuming. Tests across multiple 

magnitudes of different faults revealed that distinct prediction models could be 

constructed for each fault, demonstrating the flexibility and adaptability of the 

LSTM-based approach. Furthermore, these models exhibited excellent long-term 

prediction results, demonstrating the model's potential for practical applications in 

predicting process faults over extended periods. 

On the other hand, there are still certain limitations of this approach that need to be 

recognised. One of the main challenges is the optimal selection of LSTM model 

parameters. While the model performed well in our experiments, it is well-known 
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that LSTM models can be sensitive to the choice of hyperparameters. The process 

of hyperparameter tuning can be computationally intensive and time-consuming, 

which may limit the practicality of the LSTM-based model in some real-world 

scenarios. Another potential weakness lies in the model's reliance on historical data. 

While this data-driven approach has proven effective, it is worth noting that the 

accuracy of predictions depends largely on the quality and comprehensiveness of 

the data used for training. In scenarios where historical data is limited, inaccurate, 

or biased, the model's performance could be significantly compromised. 

Nevertheless, these limitations also open up avenues for further research. The 

potential next step in this research is to explore a sophisticated hybrid model that 

effectively integrates PCA, ELM, and LSTM. Such a model would employ PCA 

for initial data preprocessing, enhancing data quality, followed by ELM for rapid 

pattern recognition. The process would culminate with LSTM's strength in 

capturing long-term dependencies. This integrative approach promises to refine 

fault prognosis by combining the unique strengths of each method, potentially 

leading to more accurate and reliable predictions. Further enhancement could also 

focus on developing more effective methods for LSTM parameter optimization, 

which could potentially lead to more accurate and reliable predictions. The data-

dependency issue could be addressed by integrating domain knowledge into the 

model. As highlighted in this chapter, the next step is to apply key features and 

elements extracted from domain knowledge related to reliability. This forward 

study of reliability prediction methods could potentially augment the LSTM 

model's predictive power by providing additional context and guidance to the 

learning process, particularly in scenarios where historical data is scarce or flawed. 
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Chapter 7 Conclusions and Recommendations for Future Works 

This chapter summarizes the substance of this thesis, outlining the findings of the 

current study, as well as limitations and areas in need of further development. It 

also proposes potential topics for deeper exploration in future studies. 

7.1 Conclusions 

Fault detection and diagnosis play an essential role in ensuring the safety and 

reliability of the process industry. This area has become increasingly significant in 

the realm of industrial process control. In recent years, with the advancement of 

industrial big data analytics, data-driven approaches have gained prominence and 

are now more frequently employed than model-based and knowledge-based 

methods. Research and applications in data-based fault detection and diagnostic 

systems have proliferated, reflecting the growing interest and importance of this 

field. Improvements to traditional multivariate statistical method are provided in 

this thesis with the goal of assuring the process industry's safe and dependable 

functioning. With the increasing automation and complexity of the process industry, 

traditional approaches to process maintenance which typically involve addressing 

faults after they have occurred, are becoming less effective. It is preferred to take 

measures to eliminate the effects of the fault before or at the beginning of the fault 

in order to reduce maintenance costs and improve process stability. As a result, fault 

prognosis technology has become a new research focus on the process monitoring 

field.  

This thesis proposes an enhanced fault reconstruction approach for process fault 

detection and diagnosis, as well as a novel model for fault magnitude prediction, 

based on classic multivariate statistical and machine learning methods, in order to 

maintain the safety and reliability of industrial processes. The following are the 

conclusions drawn from the work reported in this thesis: 

1. Previous work using fault reconstruction approaches for fault diagnosis has 

mainly focused on sensor fault diagnosis, where sensor measurements were 

not utilized for closed-loop control of processes. Process fault 

reconstruction is more challenging than those sensor fault reconstruction 

because a process fault typically affects a large number of variables to 

various degrees, making it difficult to generate a fault direction matrix. It is 

assumed that relevant process fault data is accessible for analysis. Under 
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this premise, the fault direction matrix for a process fault can be effectively 

extracted through PCA of the corresponding process data recorded during 

the fault condition. The loading matrix of the fault data is introduced into 

the fault direction matrix, allowing for a more intuitive and rapid derivation 

of the fault direction matrix for process faults. The enhancements made in 

fault reconstruction methodologies have demonstrated tangible benefits, 

particularly when applied to a simulated Continuous Stirred Tank Reactor 

(CSTR) process. These improvements include more accurate fault 

identification, quicker response times to anomalous conditions, and a better 

understanding of the fault's impact on process dynamics. 

2. This thesis develops an AR-based fault magnitude prediction model as well 

as an ELM-based fault magnitude prediction model. The AR prediction 

model was used as a baseline since the reconstructed fault magnitudes 

acquired by the fault reconstruction approach are time series. The results 

show that the AR model can offer very accurate single-step forecasts. While 

effective in single-step predictions, the AR model's performance 

significantly diminishes in multi-step forecasting, particularly with non-

linear industrial process data. This is primarily due to its reliance on past 

values and linear assumptions, which become less representative as 

predictions extend into the future. Consequently, the model's ability to 

accurately predict fault magnitudes over longer horizons is limited. 

Therefore, an ELM neural network-based prediction model was suggested, 

and the results demonstrate that the ELM fault prediction model could 

provide relatively accurate long-range fault magnitude predictions. 

However, while the prediction results of ELM model are far more accurate 

than those of the AR model, the fact that its hidden layer parameters are 

chosen at random and the network is not iteratively updated causes its 

prediction results to be inconsistent, necessitating several training sessions 

based on empirical judgement to find the appropriate number of hidden 

nodes and model order of the time series model. Furthermore, even with 

appropriate model parameters, stable prediction results are not always 

produced as demonstrated in the result analysis. 

3. This thesis then proposes both LSTM and GRU based process fault 

magnitude trend prediction models to overcome the ELM prediction 

model's low stability. The resilience and performance of both LSTM and 
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GRU approaches are investigated and compared through several tests. 

Optimal model inputs, network parameters, and structure are identified for 

various faults. Both approaches are subjected to testing across a variety of 

fault magnitudes. The findings suggest that robust prediction models can be 

built for a wide range of faults, achieving good long-term prediction 

outcomes. A specific emphasis has been placed on the LSTM-based model 

due to its demonstrable advantages in the performed tests. 

The results in this thesis contribute to the ongoing research in process monitoring, 

reflecting a progression from the foundational efforts of previous scholars in the 

field. Although it has made contributions to the field of process monitoring research 

in certain ways, it still needs to be improved, particularly in terms of model 

parameter optimization. Machine learning and deep learning models have more 

model complexity and more model parameters than multivariate statistical analysis 

models, such as the number of hidden layer nodes, network learning rate, input 

sequence length, and so on. However, several of the parameters rely on experience 

to calculate the approximate value interval, which inadvertently increases the 

difficulty of model optimization and diminishes the model's effectiveness. To deal 

with the challenge of optimising model parameters so that the model can retain a 

higher performance when dealing with changing data sets, several adaptive 

approaches or optimisation algorithms are required. 

7.2 Recommendations for Future Works 

Taking some of the experiences obtained from the research work conducted in this 

thesis, as well as the most recent trends in current advances in the field of process 

monitoring, the following are some possible future research directions. 

1. Building upon the separate strengths of PCA-based methods, ELM, and 

LSTM models explored in this thesis, future research can aim at developing 

hybrid models. Such models would combine the best attributes of these 

methods to form more robust and reliable process fault prediction systems. 

For example, PCA and ELM could be used for early fault detection and 

identification, while LSTM could be employed for long-range fault 

prediction due to its ability to learn and remember long-term dependencies 

in time series data. 

2. This thesis develops certain diagnostic and prognostic approaches based 

only on multivariate statistical and machine learning methods or ideas. 
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Although obtaining precise mechanistic models for large-scale process 

industries is challenging, it is still feasible to build sufficiently accurate 

mechanistic models for individual processes or units. A suitable and 

sufficient mixture of mechanistic models is expected to enhance large-scale 

process diagnosis and prognosis. Furthermore, there is tremendous value in 

the experience of specialists or operational engineers, which, when 

employed properly, has the ability to increase fault diagnosis and prognosis 

accuracy. Therefore, more research into diagnosis and prognosis in the 

process industry from the perspective of hybrid intelligence that integrates 

mechanical, data and empirical knowledge has the potential to address the 

limitations of current diagnostic and prediction methods and lead to more 

accurate and reliable results. 

3. The models in this thesis were primarily tested on a specific type of 

industrial process. Hence, future research could aim to apply these models 

to a wider range of industrial processes or datasets. This would not only test 

the generalizability of the models but also potentially increase their 

applicability across different industries and sectors. Attention could also be 

given to the real-time implementation of these models in industrial settings. 

This would involve designing experiments to validate the performance of 

the models when used for online monitoring and prediction of process faults. 

The findings could then be used to further refine the models and make them 

more suited for real-world applications. 

4. To address the challenges associated with the selection of model parameters, 

future research could investigate automated hyperparameter tuning methods 

like Bayesian optimization, grid search, or genetic algorithms. This could 

make the training process more efficient and enhance the predictive 

performance of the models. 
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