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Abstract 

Rehabilitative robotics holds tremendous promise in improving the quality of life for individuals 

with motor impairments. The integration of signal processing and machine learning algorithms 

into rehabilitative robotics systems has emerged as a powerful approach to enhance the 

effectiveness and efficiency of rehabilitation therapies. This thesis aims to explore and 

contribute to the advancements in this exciting field. 

The first part of this research focuses on signal processing techniques applied to the analysis and 

interpretation of sensor data in rehabilitative robotics. Various signal processing methods such 

as filtering, feature extraction, and time-frequency analysis are investigated to extract relevant 

information from sensory signals captured by robotic devices. These processed signals serve as 

valuable inputs for subsequent machine learning algorithms. 

The second part of the thesis delves into the application of machine learning algorithms in 

rehabilitative robotics. Supervised, unsupervised, and reinforcement learning techniques are 

studied to model and predict user intent, adapt robot behaviour, and optimize rehabilitation 

exercises. These algorithms play a pivotal role in personalizing the rehabilitation process, 

enabling tailored interventions based on individual needs and progress. 

The integration of signal processing and machine learning presents unique opportunities for 

real-time adaptation and closed-loop control in rehabilitative robotics. The combination of 

sensor data processing and machine learning enables the creation of intelligent robotic systems 

that can dynamically adjust therapy parameters, ensuring optimal engagement and challenging 

the user at an appropriate level. In addition to technological advancements, this research also 

addresses practical challenges in the implementation of signal processing and machine learning 

algorithms in real-world rehabilitative robotics applications. Considerations such as 

computational efficiency, robustness to noise and variability, and user acceptance are carefully 

examined to ensure the feasibility and effectiveness of the proposed approaches. Overall, this 

thesis aims to contribute to the field of rehabilitative robotics by advancing the integration of 

signal processing and machine learning algorithms.  
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Chapter 1 

Introduction 

Rehabilitative robotics, a multidisciplinary field that combines robotics, signal processing, and 

machine learning, has emerged as a powerful approach to improving the rehabilitation 

process for individuals with motor impairments. By integrating sophisticated signal processing 

techniques and machine learning algorithms into robotic systems, researchers have been able 

to enhance the effectiveness, efficiency, and personalization of rehabilitation therapies. This 

introduction provides an overview of the advancements in rehabilitative robotics achieved 

through the integration of signal processing and machine learning algorithms, and outlines 

the objectives and contributions of this thesis. 

 

The Need for Rehabilitative Robotics 

Stroke is the third leading contributor that causes disability in the long-term in many countries 

[1, 2]. It can have far-reaching effects such as speech impairment, paralysis, cognition 

impairment, memory loss, coma or even death. One of the most devastating effects of stroke 

is the impairment of mobility skills in the upper extremity (UE). This can have a significant 

impact on one’s Quality of Life (QoL). Studies in neuroscience show that neuroplasticity is an 

effective means of helping stroke patients to retrain themselves to perform basic tasks that 

may have been impaired due to a stroke [3]. Through repetitive training, it is possible to create 

new pathways between neurons to restore the lost motor skills.  

Task-oriented repetitive training has been shown to be an effective means of restoring the 

impaired motor skills [4]. The neuroplasticity phenomenon has been shown to be present in 

individual from birth through adulthood [5]. Over the years, much work has been done to 

take advantage of this understanding to make full use of neuroplasticity in the rehabilitation 
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process. In conventional therapy, patients have to undergo numerous hours of rehabilitation 

training with physiotherapists. This adds a great deal of cost and may also not be a practical 

solution for the care-givers and patients. Furthermore, the evaluation of the progress is very 

subjective and dependent on the therapist.  

 

1.1 Robot-Assisted Therapy (RT) 

Due to the shortcomings of the conventional therapy, the notion of Robot-Assisted therapy 

has taken on a greater spotlight, with many researchers looking into this area [6]. For a start, 

robot-assisted therapy provides significant reduction in cost and reliance on manpower [7]. It 

also holds distinct advantages in its ability to provide an objective and quantifiable measure 

of performance of the user [8]. This is due to the ability of such systems to measure several 

parameters, such as, reflex, level of voluntary control and range of movement. It enables 

much more accurate training evaluation which in effect helps to cater a more personal 

training programme for the patient [9-12]. 

 

1.2 Research Gaps and Challenges 

Motor impairments resulting from various conditions such as stroke, spinal cord injuries, and 

neuromuscular disorders significantly impact an individual's ability to perform daily activities 

and reduce their overall quality of life. Traditional rehabilitation methods often rely on labour-

intensive, therapist-led interventions, which can be time-consuming and costly. Rehabilitative 

robotics offers a promising alternative by providing automated, precise, and repetitive 

training with the potential for continuous monitoring and feedback. This technology has the 

potential to augment traditional therapy and extend rehabilitation opportunities beyond the 

clinical setting. 

1.2.1 Limitations 

One of the main advantages of robot-assisted rehabilitation systems is its ability to deliver 

training with high intensity and repeatability. However, there is no clear consensus on 

clinically accepted robotic structures for effective rehabilitation. The effectiveness of the 

design is very much based on large clinical trials [13]. 
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It is also important to be able to quantify if the effects observed during the training sessions 

can be transformed into improvements in the motor skills of the patients and their ability to 

perform ADLs in the real world [13, 14]. 

There is also a need for adaptive control algorithms that can adjust and control the training 

movement repetitively and in a more natural way [15].  The effects of brain neuroplasticity 

are also not being fully taken advantage of, in the current systems [16]. 

1.2.2 Research Gaps 

For Activities of Daily Living (ADL), the movements are generally dynamic and abnormal 

muscle synergies in stroke patients interfere with their movement goals and restrict their 

movement. The initial literature review reveals some gaps in this area that need to be 

addressed. 

 

Multisensory Control and Feedback 

It is important the motor control loop is closed, so that the patient is able to have a clear 

understanding of his progress. This can be achieved through visual and audio means, and also 

through EMG feedback. With the aim of enhancing Neuroplasticity, it is also important to 

incorporate EEG feedback through BCI systems. This will allow the patients to understand the 

importance of the brain in the rehabilitation process. 

 

Whole Arm & Fine Motor Skills Training 

Many robotic systems have demonstrated effectiveness in guiding major body parts such as 

shoulder and elbow. However, many ADL’s require fine motor control, such as being able to 

turn a door knob, or use a spoon. These are still challenging tasks that require good control 

of the wrist, hand as well as independent fingers. Devices that are able to fulfil these 

requirements with a high-level of comfort and safety are in demand.  

Assist-as-Needed Control 

The main rationale behind this is to ensure that rehabilitation is provided only as much as 

needed to complete the activity without overdoing it. This is important as providing too much 
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assistance may result in negative consequences for the motor learning process. Some work 

has been done in the area of self-adaptive algorithms. However, they are still lacking an 

autonomous system that is able to adaptively configure the exercise parameters and settings 

to guide the user automatically. 

Brain Neuro-Plasticity 

The highly complex brain has the ability to adapt and learn based on the inputs that it receives. 

A learned action can also be relearned if the nature of the input signals changes. This is the 

reason why individuals, through various types of physiotherapy and repetitive actions, re-

learn how to perform basic actions after experiencing some motor movement challenges due 

to an accident or illness. A robotic rehabilitative system should be able to mimic this 

neuroplasticity of the human brain for it to be effective and applicable for a wide range of 

users. 

 

1.2.3. Challenges 

Developing rehabilitative robotic systems poses several challenges that need to be addressed 

to ensure their effectiveness and successful implementation. Some of the key challenges 

include: 

1. User Variability: Individuals undergoing rehabilitation exhibit a wide range of 

impairments, capabilities, and preferences. Designing robotic systems that can 

accommodate and adapt to this variability is a significant challenge. 

2. Safety and Robustness: Ensuring the safety of users during robotic interactions is 

paramount. Robotic systems must be robust enough to handle unexpected events or 

user behaviour, minimizing the risk of injury or accidents. 

3. Real-time Adaptation: Real-time adaptation is critical for tailoring rehabilitation 

interventions to each individual's changing needs and abilities. Developing adaptive 

algorithms and control strategies that can continuously monitor user performance 

and adjust therapy parameters accordingly is a challenge. 
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4. Human-Robot Interaction: Promoting natural and intuitive interaction between 

humans and robots is crucial for user engagement and motivation. Designing effective 

human-robot interfaces and interaction modalities that are user-friendly and easy to 

use can be challenging. 

5. Ethical Considerations: Integrating robotic systems into rehabilitation raises ethical 

concerns related to privacy, autonomy, and the potential replacement of human 

therapists. Addressing these ethical considerations and ensuring the responsible use 

of technology in rehabilitative settings is essential. 

6. Cost and Accessibility: Cost-effective and accessible robotic systems are necessary to 

ensure widespread adoption and availability of rehabilitative robotics. Developing 

affordable and easily deployable solutions that can be used in various settings, 

including hospitals, clinics, and home environments, is a challenge. 

7. Long-term Efficacy and Adaptation: Assessing the long-term efficacy of rehabilitative 

robotic interventions and understanding how the therapy can adapt as the user 

progresses is a challenge. Longitudinal studies and personalized approaches are 

needed to optimize long-term outcomes. 

8. Integration with Existing Rehabilitation Practices: Seamless integration of robotic 

systems with existing rehabilitation practices and workflows is crucial for their 

successful implementation. Collaboration with clinicians, therapists, and healthcare 

professionals is essential to ensure the compatibility and acceptance of rehabilitative 

robotic systems. 

9. Regulatory and Reimbursement Issues: Compliance with regulatory standards and 

navigating reimbursement policies are challenges faced in the development and 

adoption of rehabilitative robotic systems. Addressing these issues is necessary for the 

widespread acceptance and sustainability of these technologies. 

10. User Acceptance and Engagement: Ensuring user acceptance and engagement is 

critical for the success of rehabilitative robotic systems. Overcoming scepticism, 

building trust, and promoting the benefits of robotic-assisted rehabilitation are 

challenges that need to be addressed. 
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Addressing these challenges requires a multidisciplinary approach, involving collaboration 

between engineers, clinicians, therapists, and researchers. By addressing these challenges, 

rehabilitative robotic systems can be developed to effectively support and enhance the 

rehabilitation process, ultimately improving the outcomes and quality of life for individuals 

with motor impairments. 

 

1.3 Research Aim & Objective 

One of the primary advantages of integrating signal processing and machine learning 

algorithms into rehabilitative robotics is the ability to personalize and adapt rehabilitation 

therapies based on individual needs and progress. By continuously monitoring user 

performance through sensor data, the robotic system can dynamically adjust therapy 

parameters, such as assistance level, resistance, or task difficulty, to ensure optimal 

engagement and challenge. This personalized approach promotes active participation, 

motivation, and neuroplasticity, leading to more effective and efficient rehabilitation 

outcomes. To achieve such an outcome, this research aims to identify effective methods in 

encouraging a deeper level of involvement from the patients that involves feedback, assist-

as-needed approach and adaptive control. This encompasses the research gaps that have 

been earlier identified and explained. 

 

This research aims to achieve the following outcomes: 

• Investigate the use of physiological signals such as EEG and EMG to accurately decode 

and classify a range of real-world actions. 

• Investigate and evaluate various signal processing techniques for the analysis and 

interpretation of physiological data. This includes filtering methods, feature extraction 

algorithms, and time-frequency analysis tools. 

• Exploring the application of different machine learning algorithms, such as supervised, 

unsupervised, and reinforcement learning, for modelling user intent and optimizing 

rehabilitation exercises. 
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• Develop a novel inference system that is able to mimic the neuroplasticity of the brain 

such that it is able to accurately decode and classify motor actions based on the 

available physiological signals. 

 

In conclusion, rehabilitative robotics holds great promise for improving the quality of life for 

individuals with motor impairments. The integration of signal processing and machine 

learning algorithms into robotic systems offers the potential for more effective, efficient, and 

personalized rehabilitation therapies. This thesis aims to contribute to the field by 

investigating and advancing the use of signal processing and machine learning algorithms in 

rehabilitative robotics. Through this thesis, we aim to enhance and inspire research in the 

application of these novel techniques and algorithms in the field of rehabilitative robotics. 
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Chapter 2 

Literature Review 
 

2. 1 The Human Brain 

The human body is a complex organism and the brain is its master. The brain weights only 

three pounds but carries many advanced operations. It is the main intelligence mechanism in 

the body which has to perform interpretation of senses, initiate movement of the body, and 

control the behaviour of the individual. It is protected with a soft bony shell and lies amongst 

a fluid that helps protect it. It is very much the pride and glory of the human body [17]. 

The brain has always been a fascination amongst philosophers and scientists. For the longest 

time, they viewed as something too complex to comprehend. However, advances in Science 

and Technology in the past 30 years have enabled us to get a peek into the internals of the 

brain. Great progress in the areas of behavioural science and neurological studies have helped 

to accelerate our understanding of this crown jewel. In the USA, the 1990s was also terms to 

be the “Decade of the Brain”. Many research organizations all over the world see the potential 

of the brain and have set-up their own research centres to focus on this research.  The 

cumulative effort of all these research groups has helped us achieve a far deeper 

understanding of the human brain than was ever thought possible.  

2.1 1. Brain Anatomy 

The brain weighs just 3 pounds, but yet it essentially controls all our bodily functions by 

continuously gathering information from the external world, and processing it to provide the 

appropriate response. The brain is protected by the skull and comprises the brainstem, 

cerebellum and cerebrum. The cerebellum is connected to the spinal cord through the brain 

stem, and so is the cerebrum. These function as a relay centre. 
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Our five senses of hearing, taste, touch, sight and smell generate signals for the brain. This 

happen frequently with multiple such signals being sent to the brain simultaneously. The data 

is packaged into messages in a way that allows the brain to interpret it into a meaningful 

output. These messages can also store information into our memory. Many aspects of our life 

like our thoughts, speech, memory, organ functions and motor control movements are 

controlled by the brain.  

 

2.1.2. Brain Regions 

Figure 2.1 shows the main regions and directions of the human brain [18]. The four visible 

lobes are Frontal, Parietal, Temporal and Occipital. The two hidden lobes are Insula and 

Medial Temporal Lobe.   

 

Figure 2.1: Regions and Directions of the Human Brain 

The activities of higher-level cognition, motor skills, expressive language and reasoning are 

associated with the frontal lobe. Near the vicinity of central sulcus, at the rear of the frontal 

lobe, lies the motor cortex. Information is sent to the brain through various lobes of the brain 

so that it can process it and carry out the appropriate motor movements. When there is any 

form if damage or injury to the frontal lobe, many effects can be observed. There include 

changes to the attention capacity, sexual habits interpersonal communication and behaviour, 

as well as being more prone to risk.  
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The brains middle section is where the parietal lobe is found. Tactile sensory data, such as 

those associated with pain, touch and pressure are processed in this area. Within this 

particular lobe, there is a separate portion labelled the somatosensory cortex. The senses of 

the body are processed here. If there is any form of damage or injury to the parietal lobe, 

there can be challenges in the areas of language, eye gaze, as well as verbal memory.  

In the bottom area of the brain, the temporal lobe is positioned. Interpretation of the sounds 

and language are processed in the primary auditory cortex which is located within the 

temporal lobe. The ability to form memories is linked with the hippocampus and this is also 

located within the temporal lobe. If there is any injury or damage to this section of the brain, 

it can potentially lead to challenges in language, perception of speech and memory.  

Interpretation of the data obtained through visual input and its associated processing is 

carried out by the occipital lobe. This is located towards the back of the brain. Data obtained 

from the eyes retinas are channelled to the primary visual cortex which is found within the 

occipital lobe. Any injury or damage to the primary lobe will cause effects in the identification 

of colours, recognition of words and identifying objects. 

 

2.2 Nervous System 

The nervous system is made up of many critical organs which include the spinal cord, the brain 

sensory organs and the extensive array of nerves that inter-connect all the various organs of 

the body. The central nervous system (CNS) is formed by the spinal cord and the brain. This is 

where the vast array of information from the various organs if processed and a decision is 

made. The peripheral nervous system (PNS) is made up of sensory nerves and sense organs 

that monitors the state of the various organs and send this information to the CNS.  

Within the nervous system, there are cells of two classes. They are neuroglia and neurons. 

Neurons (Figure 2.2) communicate within the body by transmitting signals through the 

electrochemical form.  Neurons have a unique look due to the long cellular processes that 

play a significant role in fulfilling their function. Most of the other cellular organelles, together 

with the mitochondria and nucleus, are contained within the cell body. Dendrites are small 

structures that resemble a tree-type structure. They extend away from the cell body into the 
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surrounding environment to pick up stimuli from sensory receptor cells or other neurons.  

Effector Cells and other neurons pick up signals transmitted through the Axons of 

neighbouring neurons. 

  

Figure 2.2: Structure of a Neuron [19] 

 

The nervous system has sub-divisions, namely the Somatic Nervous System (SNS), Central 

Nervous System (CNS), Autonomic Nervous System (ANS), Peripheral Nervous System (PNS), 

, and the Enteric Nervous System (ENS). 

The brain and the spinal cord together form the Central Nervous System (CNS). It acts as the 

central command centre of the entire body by providing critical functions related to memory, 

processing and regulation. There is an extensive array of subconscious and conscious sensory 

data that is generated throughout the body. The CNS acts as the central point where all this 

information is relayed. Based on the data that it receives, the CNS makes decisions about the 

actions it must take, maintain the homeostasis of the body, and in general, ensure its survival. 

The CNS also takes responsibility for higher level brain functions like emotions, expressions, 

creativity, language and personality. It very much determines and shapes our unique 

individuality. 

The Peripheral Nervous System (PNS) comprises of all the other areas within the nervous 

system, excluding the brain and the spinal cord.  
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The Somatic Nervous System (SNS) is a portion of the PNS that comprises the efferent neurons 

that are voluntary. Voluntary conscious effort effectively control the SNS, and is generally 

responsible for the stimulation of the skeletal muscles that are in the body. 

The Autonomic Nervous System (ANS) is a part of the PNS that comprises the efferent neurons 

that are involuntary. It controls subconscious activities that involve effector neurons, such as 

gland tissue, muscle tissue and cardia tissue. 

The Enteric Nervous System (ENS) is a part of the ANS that takes charge of the controlling the 

functional aspects of the digestive organs as well as regulating digestion. 

 

2.2.1 Action Potential 

Neurons transmit information (signals) throughout the body through a process known as 

action potential. This is a part of the process that takes place whenever a neuron is fired. 

Concentration gradients play a key role in supporting and triggering this phenomenon in 

neurons. It refers to the difference in the concentration of the ions between the inside and 

outside of the neuron. As long as there is a higher concentration of a particular charged ion 

on one side of the neuron as compared to the other, a large concentration gradient would be 

formed. Regardless of the charge of the ions, both polarity ions will move in directions that 

would eventually balance the gradient. 

 

2.2.2 Resting Membrane Potential 

Most of the time, neurons have a negative concentration gradient. This is possible, as outside 

the cell, there are positively charged ions in high concentration. This regular state is also 

referred to as a resting membrane potential. When the neuron is in this state, the number of 

sodium ions Na+ is higher outside as compared to inside. Similarly, there is also an increased 

number of potassium ions K+ inside as compared to outside. The concentration of ions isn’t 

constant and the neurons constantly flow in and out of the neurons to equalize and maintain 

the negative concentration gradient. 
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2.2.3 During Action Potential 

When there is a sudden movement of ions in and out of the neuron, a resultant change in the 

neuron’s membrane potential is realized, which is effectively the action potential. When a cell 

body sends out an impulse, the sodium channels will open and there is an increase in the 

inflow of sodium ions into the cell. At some point, a threshold will be reached, which will 

cause an action potential to trigger (firing of neurons), and this sends the signal down its axon. 

It is based on an all-or-nothing law, where the neurons fire or they don’t. There is no in-

between. This behaviour allows nerves to fire at their full-strength for the signal to be 

propagated to neighbouring neurons. 

 

2.2.4 After Action Potential 

Once the neuron has completed firing, it goes through a refraction cycle. During that period, 

it is not possible to have one more action potential. After this cycle, the neuron will be able 

to return to its normal resting potential. It is then possible to have another action potential.  

It is the firing of neurons in the brains that we aim to capture and assist us in decoding the 

signals to get a better understanding of how they reflect our thoughts and actions. 

With this understanding of the human brain, we will now proceed to look at Stroke and its 

effects. 

 

2.3 Understanding Causes for Motor Movement Challenges 

The two broad reasons for muscular issues are stroke and muscular system diseases. We will 

discuss both of them to better understand their causes and effects. 

 

2.3.1 Stroke 

The brain is filled with arteries, and they are affected in any way, it can lead to a stroke. In the 

USA, it is one of the main causes of disability. It is also the fifth highest cause of death. The 

blood vessels in the brain supply it with nutrients and oxygen. If it bursts or some clot is 
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formed, a stroke occurs. When a portion of the brain is unable to get sufficient oxygen and 

blood, the brain cells will die [20]. For this reason, Stroke is also referred to as a 

cerebrovascular disease.  

 

2.3.1.1 Causes of Stroke 

• Ischemic Stroke (Clots) 

When a blood vessel supplying blood to the brain faces some form of obstruction, it causes 

an Ischemic stroke. About 87 percent [20] of the reported strokes belong to this category. 

Atherosclerosis is the condition when fatty deposits start to line the walls of the arteries. This 

is the main cause for such type of strokes. The deposit of fatty lining can cause 2 types of 

obstruction: 

Within the vessel of the blood, the fatty plaque can cause a blood clot and this is known as 

Cerebral Thrombosis. 

In other cases, a blood clot can form in some other location within the body. This is known as 

cerebral embolism. This is generally the heart, as well as large arteries within the vicinity of 

the neck and upper chest. A portion of the blood clot dislodges and enters the circulatory 

system which allows it to travel to the blood vessels in the brain. At some point, the vessels 

in the brain may be too small to allow it to go through. One of the main causes of this is a 

heartbeat that is irregular. This is also known as embolism.  

• Silent Stroke 

A silent stroke is also known as a silent cerebral infarction (SCI). In many cases, the person 

experiencing this may not know that it is actually a stroke. It is most likely related to a blood 

clot which interrupts the flow of blood in the brain.  

The irregular beating of the heart, also known as atrial fibrillation, enhances the chance for a 

person to get SCI. There are also other risk factors such as hypertension, high systolic blood 

pressure and increased levels of blood homocysteine. Early detection and treatment can help 

prevent the onset of a silent stroke. 
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• Hemorrhagic Stroke 

Approximately 13% of strokes are caused by this haemorrhagic stroke. When a blood vessel 

weakens, it has the possibility to rupture and cause bleeding in the surrounding brain area. 

As the blood start to accumulate in the brain area, it causes compression in that part of the 

brain. 

Intracerebral Haemorrhage and subarachnoid Haemorrhage are the dual types of 

haemorrhagic strokes. The main cause of such strokes are weakened blood vessels which can 

be classified as arteriovenous malformations (AVMs) and aneurysms.  

In some cases, blood vessels that are abnormally formed can create a cluster and this is known 

as an arteriovenous malformation (AVM). When one of the vessels ruptures, the bleedings 

within the brain will begin. For aneurysm, a part of the blood vessel that is weakened will start 

to balloon. If it is not detected and treated, it can also eventually rupture and cause bleeding 

in the brain.  

• TIA (Transient Ischemic Attack) 

Another name for a mini-stroke is Transient Ischemic Attack (TIA). However, it should be taken 

as a major warning. The nature of this is temporary, where the blood flow to the brain may 

be affected for a short period of time. Since there is no permanent damage, many people 

tend to ignore it. However, this is very dangerous as a TIA may be precursor to a full-fledged 

stroke later on.  

Some of the warning signs that should not be ignored are: 

- Dizziness 

- Constant Pounding headache without any particular reason 

- Blindness in one or both of the eyes 

- Slurred speech or challenges in understanding and analysing 

- Weakness or numbness in part of the body. 
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• Cryptogenic Stroke or Stroke of "Unknown Cause" 

A blood clot that obstructs blood from reaching the brain is the most common cause of a 

stroke. However, there are always instances where eve after extensive testing, the actual 

cause for the stroke can’t be determined. Such strokes are classified as being “cryptogenic”. 

About 25% of stroke survivors tend to have a similar stroke event in the future [20]. By finding 

the root cause of the stroke, appropriate treatment and preventive measures can help to 

lower the likelihood of experiencing another one. When the cause of stroke is not known, it 

can be quite stressful for the patient. However, with proper follow-up with the medical team, 

it is possible to make critical changes in your lifestyle to help prevent another stroke from 

occurring. 

• Brain Stem Stroke 

When a person has brain stem stroke, it is a challenge to diagnose and the patient tends to 

experience complex symptoms which include dizziness, vertigo and high levels of imbalance. 

These usually occur together without the typical symptom of experiencing weakness on a 

particular side of the body. It can also cause slurred speech, blurred vision and a lack of the 

consciousness.  

 

2.3.1.2 Effects of Stroke 

There are multiple effects of stroke that can range from impairment of speech, memory loss, 

paralysis, loss of ability to reason, and in more severe cases, coma and even death [21]. One 

of the impairments that is commonly reported is that of the loss of partial or complete ability 

to move the Upper Extremity (UE). This generally causes a distinct negative impact on a 

person’s quality of life as it affects the ability of the person to perform the Activities of Daily 

Living (ADL) [22]. Stroke and its impact is very subjective as it depends greatly on the 

individual, the severity, typo s stroke and any other medical conditions the person may 

already have. Rehabilitation is critical to minimize the chance of these effects being 

permanent. 
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Repetitive training that is task-oriented, can help to enhance and potentially restore the 

motor skills that had been impaired by a stroke [23]. This is possible due to the neuroplasticity 

of the brain. That is its ability to change and adapt through re-learning [24]. Neural pathways 

can be restored and motor skills can be improved through targeted rehabilitation techniques. 

This can help improve the ADL for patients with Spinal Cord Injuries (SCI) and stroke. In recent 

decades, there has been a better understanding of the brain and this has helped in the 

development of tools and devices that can aid in repeated, targeted movements of the body. 

Together with that, there has also been much attention in the area of robot-assisted 

rehabilitation. 

 

2.3.2 Muscular System Disease 

Such diseases affect the ability of the user to control the muscles and can also cause issues 

with the nerves. In some cases, the disease is a side-effect of another condition.  

 

2.3.2.1 Muscular System 

Muscle’s play a very important role in our Activities-for-Daily-Living (ADL). These include a 

wide range of activities like standing, sitting, walking, eating, talking, and even blinking. The 

muscles in our body, more than 600 of them, can be broadly classified into three types. 

• Skeletal Muscle 

These are tissues that consist of tough cords and are generally connected to the bones. 

They are also supported through tendons that play a significant role when the muscles 

contract and expand. They are also linked to the bone structure through ligaments 

and play an important role in maintaining the form of the skeletal structure of the 

body. 

 

• Smooth Muscle 

The internal organs of the body, such as the intestines, stomach and blood vessels are 

made up of smooth muscles. The actions carried out by these muscles are involuntary 

but are very critical to fulfil the needs of the function. 
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• Cardiac Muscle 

This is found in the heart and its main role is ensuring that the contractions within the 

heart are coordinated to allow it to pump blood to all parts of the body efficiently. It 

consists of muscles that are made out of stretched fibres. 

 

2.3.2.2 Muscular System Diseases 

Such diseases can generally be classified as Primary or Secondary. 

Primary Muscle Diseases 

• Polymyositis (PM) 

Also known as inflammatory myopathy, it causes inflammation of the muscle and the 

surrounding tissue, as well as blood vessels. Patients may experience challenges in recovering 

from falls and even have difficulty swallowing. It is treatable, even though there is no known 

cure. 

• Dermatomyositis (DM) 

It causes rashes, weakness of the muscles and pain. There is no known cure, but it can be 

treated with therapies and medications. 

• Muscular Dystrophy (MD) 

It causes loss of muscle mass and weakness. It is an inherited disease and its onset can occur 

at any age. Once the disease starts to be active, it becomes worse over time and eventually, 

the patients lose the ability to walk. Treatments like therapy and orthopaedic devices can help 

to improve their ADL.  

Secondary Muscle Diseases 

These diseases are generally a side-effect and appear alongside another health condition. 

These can include things like metabolic disorders, vascular diseases, infectious diseases and 

endocrine diseases. 
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Causes of Muscular Diseases 

One of the main causes is genetics, where it can be inherited or due to a mutated gene. In 

some cases, it can also be classified as an autoimmune disease where an individual’s immune 

system starts attacking its own muscle tissues. Other causes include injury, cancers, 

infections, medications, etc. 

Diagnosis 

The Electromyography (EMG) is the most pervasive tool that can help a medical professional 

assess muscular diseases. Tis can be accompanied with specific tests administered by 

physiotherapists to gauge the level of the issue.  

Treatment 

Medications and Therapy are well established methods to treat such patients. Therapy done 

with supervision and guidance will be most helpful in ensuring the patient is performing the 

correct actions so as to achieve the desired outcome. 

 

2. 4 Robot-Assisted Therapy 

Traditional therapy methods have several shortcomings, such as its high cost, the need for 

extensive labour, and the challenges of evaluating the performance and effectiveness of such 

therapies. Robot-Assisted Therapy (RT) is a field that has been growing in recent years to 

overcome these shortcomings and provide a more holistic rehabilitation experience to 

patients [7]. Neuronal plasticity is based on the ability of the brain to establish pathways to 

close the sensory motor loop. Multisensory feedback is critical to achieve this objective [25]. 

There has been a wide range of multi-sensory feedback techniques that have been 

investigated. These include Brain Computer Interface (BCI) technology [26], Virtual Reality 

(VR) [27], Electromyography (EMG) feedback [28], and Haptic Stimuli [29], amongst many 

others. The neuron rehabilitation process is achieved through the multisensory feedback 

which is enabled through the use of robotics and appropriate electrical stimulation. 

In this research, a detailed literature review was executed to understand the state-of-the-art 

that is currently in this field, clearly identify the research gaps and look at the potential areas 
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for future work. Figure 2.3 shows the main categories of the papers that were selected for 

this research. The selection was made based on the alignment with the current research 

focus. 

 

Figure 2.3: Categories of Robot-Assisted Therapy 

 

2.5 Neuroplasticity 

Animals have complex brain interconnections that are able to absorb vast amounts of 

information, process it and take meaningful action according to their needs. The 

interconnections between the various sections of the brain are fully formed at birth. They 

have to be learned over time, and this learning journey varies according to the species and 

the tasks involved.  

Neuroplasticity is the ability of the brain to adapt itself by varying the connection strengths 

between its neurons [30]. Neural Networks present a flexible and powerful framework for 

solving many complex challenges. Their ability to mimic the brain’s neuronal structure by 

developing a set of weights with varying strengths is its key idea. Finding the correct weights 

and its internal connections has been proven to be challenging. 

In the area of supervised learning of a feed-forward network, both the output and input of a 

feed-forward network are earlier known, and error propagation is used to train the network 
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[31]. Though this approach has been largely successful, it is not something that is plausible in 

the biological sense as it requires backwards propagation [32-35].  

For unsupervised neural learning, we do not specify the network’s output. Utilizing the 

statistical characteristics of the input data, the network is able to tune itself and present the 

output. Many methods have been shown to train networks using this approach [36, 37]. 

Alternatives to this were also proposed in [38].  

2.5.1 Hebb Learning 

In [39], the manner in which the synaptic strengths between neurons changed was 

hypothesized. The Hebb Theory supported the notion of long-term synaptic potentiation 

(LTP) in which there is a consistent increase in the synaptic strength between neurons as long 

as they were continuously stimulated [40]. However, the Hebbian formula demonstrated two 

clear limitations [41]: 

- The synaptic weights are uni-directionally positive. They can only increase 

monotonically. 

- The potentially large values for the synaptic weights did not make much sense for 

biological applications. 

2.5.2 BCM Theory of Metaplasticity 

The most well-known and widely accepted alternate theory to the Hebbian formula was the 

BCM Theory [42]. Similar to Hebb, repeated firing of neurons strengthens their synaptic 

weights. However, the weights will be continuously regulated in an associative and 

dissociative manner. It offered a new approach which made use of a sliding threshold 

mechanism to maintain stable and realistic levels of the weights. Figure 2.4 illustrates this 

concept. 
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Fig 2.4: Sliding Theory using BCM Theory [42] 

2.6 Motor Learning and Neuroplasticity 

Evidence from various brain analysis techniques have indicated that neuron organization 

occurs as a patient undergoes rehabilitation after stroke, and this is regardless of the age of 

the patient [43]. These include functional magnetic resonance imaging (fMRI), transcranial 

magnetic stimulation (TMS) and the transcranial direct current stimulation (tDCS). Repetitive 

training is a key-enabler to aid in motor skills restoration of patients [44]. 

Traditionally, neurological-focused rehabilitation therapies were designed to be bottom-up. 

At the lower-level (bottom), physical movement was exerted with the aim of influencing the 

neuronal system (top). In recent years, the approach has been reversed. In [45], tDCS and 

TMS was used to aid in the rehabilitation of a hand that was impaired. In [46], Functional 

Electrical Stimulation (FES) was evaluated to analyse its effectiveness in improving a patients 

grasping and reaching functions. The results of this research showed that mere repetitive 

movements alone are not sufficient and motivation was a key factor to aid in the progression 

of such patients [47]. People are generally motivated when there is positive feedback and 

they are able to see some tangible effects of their work [48]. Where training is task-specific 

and goal-oriented, the results are more lasting [49]. 

 

2.6.1 Motor-Learning Assessment 

There are a wide range of quantitative evaluation methods to assess the progress of motor 

skills through the rehabilitation process.  
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Action Research Arm Test (ARAT) 

The upper extremity is assess using this methodology. A ordinal score on 19 items is used. 

Where there is no movement, a score if 0 is assigned. Normal movement is assigned a score 

of 3. A summation is then carried out to create four subscale scores which consist of the 

following: gross motor (maximum of 9pts), grasp (maximum of 18 pts), grip (max of 12 pts), 

and pinch (max of 18pts). The maximum score an individual can get will be 57, and this 

indicates normal performance [50]. 

 

Fugl-Meyer Assessment (FMA) 

The Fugl-Meyer Assessment is a performance-based, stroke-specific index for impairment. A 

wide range of assessment is performed in areas like balance, joint range of motion, sensation, 

motor functioning, and joint pain. The scale consists of 5 domains with a total of 155 items. 

Scoring is based on direct observation of the patient’s performance. A 3pt ordinal scale is used 

where 2 points is given when the task can be fully performed, 1 point when it is partially 

performed and 0 points when the task cannot be performed [51].  

Motor Status Scale (MSS) 

The Motor Status Score measures wrist, finger and hand movements (with a maximum score 

of 42) and the measurement of the shoulder and elbow (maximum score of 40) [52].It 

provides an expansion of the upper extremity measurement defined by FMA.  

Wolf Motor Function Test (WFMT) 

The WFMT is a method that is based on time and is used to perform an evaluation of the 

performance of the upper extremity. It also provides insights into the total limb and joint-

specific ability [53]. 

Blocks and Box Test (BBT) 

The Blocks and Box Test requires an individual to move blocks between different 

compartments in a box. The assessment is based upon the time taken the perform this task. 

The validity and reliability of this methodology has been well established [54].  
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Jebsen-Taylor Hand Function Test (JTHFT) 

The JHFT provides and objective and standardized evaluation of gross and fine motor hand 

movements based upon Activities of Daily Living (ADL). The assessment is done based only on 

speed and not the performance quality [55].  

Nine-Hole Peg Test (NHPT) 

The NHPT was designed with the aim of measuring finger dexterity. It is a relatively 

inexpensive teset and can be carried out quickly. It should be used together with other tests 

to get a clearer picture of the functional ability of the patient [56]. 
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Table 2.1: Comparison of Motor Learning Assessment 

Method Estimated MCID Strengths Weaknesses Time 

MSS [52] Upper Extremity 66 points It assesses the whole UE 

which includes the fingers, 

hand, wrist, forearm, elbow 

and shoulder. 

Lack of precision in 

evaluating fine hand 

movement. 

15-20 min 

UE-FMA [51] Finger, wrist and hand (max 

score = 42). 

Shoulder and Elbow (max 

score = 40). 

Valid and reliable 

assessment of UE disability 

and impairment. 

Challenging and consumes a 

lot of time. 

20-25 min 

WMFT [53] Chronic Stroke: 1.5 – 2s 

Acute Stroke: 19s 

Standard instructions. 

Applicable at various stages 

of the recovery 

Takes longer time 30 min 

BBT [54] 6 blocks using the affected 

hand. 

Easy and quick. Requires a minimal distal 

control 

5-10 min 

ARAT [50] Chronic Stroke: 6 pts 

Acute Stroke (dominant 

hand): 12 pts 

Acute Stroke (non-dominant 

hand): 17 pts 

Fast and Easy to test. 

Applicable at various stages 

of the recovery. 

Non-commercial product. 

Need to self-build. 

10 -15 min 

NHPT [56] Using affected hand: 38s Quick and Cheap Better for individuals who 

are on a better recovery path 

10 min 

JHFT [55] - Standard Steps Requires a minimal distal 

control 

15-40 min 

                      *MCID:  Minimal Clinically Important Difference
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2.7 Rehabilitative Robotics 

Regardless of the level of impairment, a patient may use robotic-based systems for their 

therapy. Such systems allow us to obtain a quantifiable measurement of the performance of 

a particular task. It also helps in the savings and cost of therapists by easily enabling repetitive 

movements automatically [57, 58]. Traditional modes of therapy require numerous sessions 

which could make them unaffordable for many patients. At a reasonable cost, robot-assisted 

therapy can provide a practical solution to these patients [59]. They have the ability to be 

consistent with the accuracy, precision and measurement of the patient’s tasks and can also 

assist in providing tactile feedback that can help to correct the patients’ movements. 

Importantly, they can help in data collection and analysis that will help therapists have a clear 

view of their progress [27]. 

Robotic rehabilitation also opens up another area of development where it can be fused with 

other technical levers like Brain-Computer Interface (BCI), Virtual Reality (VR) or others [26, 

29, 60]. Another key advantage is that robotics makes rehabilitation more accessible. It can 

be carried anytime, in any location, much to the convenience of the patient.  

Though there are several advantages of robot-assisted therapy, there are still some 

challenges. Patients may not clearly understand the deliverables of a robotic-based system 

and have unrealistic expectations. This may de-motivate them in continuing with such a 

therapy. There must also be a means to effectively measure the extent to which such activities 

are carried out to achieve the optimum gain. Customization of such devices may also be a 

challenge as most commercial products may have only a limited scope for it. Patients need to 

be able to have a long-term view of their therapy and have a better understanding on how 

the robot-assisted therapy helps them in improving the activities for daily living (ADL). Safety 

is also a critical issue on their mind. Proper fail-safe mechanisms need to be built into the 

system at both the Hardware and Software level to ensure that any error or failure in the 

system does not have an adverse impact on the patient. In many cases, the high cost of such 

robotic systems can also be a deterrent for hospitals and clinics to invest in such methods of 

rehabilitation [61, 62]. These challenges facing the research and engineering community 

inspire innovation and creativity in their solutions. Only a small number of patients who 
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require these are actually able to get it, but the cost of those left behind create a significant 

impact to the rest of the community [63].  

 

2.7.1 Rehabilitation Robotics targeted towards hand recovery 

There are generally two main categories when designing such devices. They are either the 

exoskeleton or the end-effector. The end-effector device is focused on higher-level 

movements targeted at related ADL. There is usually a distal support that aids in the training 

and the proximal joints are not directly affected by the system. These could result in some 

abnormal or unnatural joint movements if the system is not carefully designed. These devices 

also tend to be more flexible as they cater to coarse-level movements. The exoskeleton is a 

wearable that is focused on closely following the joint layout of the hand. It helps to follow-

through on the user’s movements, by providing some level of assistance. They tend to be 

more customized to closely match the dimensions of the user. As they are able to closely 

follow the joints movements, they are able to minimize any erroneous actions by the user. 

Due to the need to support more joint movements, exoskeletons tend to be more expensive 

compared to end-effectors. A comparison of these devices in summarized in Table 2.2. 

 

Table 2.2: Comparison between End-Effector and Exoskeleton 

 End-Effector Exoskeleton 

Movements Coarse-Level Fine-Level 

Joint-Control Not at fine motor level Yes 

Adaptability Yes, easy to adjust and cater to 

individual 

No, needs to be customized to 

each individual. 

Cost Low High 

 

These devices can also be categorized into active and passive. When the system doesn’t 

detect any voluntary muscular contraction, the robot may still be able to control the actions 

of the hand. These can include activities like reaching, grasping and holding. In the active 

mode, the patient is able to exert some level of muscular force, and, the system is able to 
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detect that intention to provide a certain level of assistance to the user [64]. The system can 

be designed to provide Assist-As-Needed (AAN) support to ensure that such actions also 

trigger the neuro-rehabilitation process.  

 

2.7.2 Coarse Motion Rehabilitation Robots 

Depending on the target size and area of the body, it is possible to classify rehabilitation as 

being coarse motion or fine motion. We will first look at some of the highly-cited work in this 

area. 

A breakthrough system that was designed with the objective of integrating neurological 

rehabilitation with the physical aspect, was, MIT_MANUS [65]. Though it was a stable and 

safe system, its range of motion was limited to two dimensions, being focused on the elbow 

and shoulder regions. An improvement to that was seen in MIME [66], where there was an 

added control of the forearm. The ARM Guide [67] provided a system that was able to guide 

a patient to be able to move their arm on a path that resemble a straight line. Those earlier 

systems in the past, have now been overshadowed by more complex systems that are highly 

portable, light-weight and with more Degrees of Freedom (DOF).  

The ARMin-II [68] is a 6-DOF exoskeleton that targets a wide range of body parts, like the 

wrist, forearm, elbow and shoulder. It is equipped with a variety of sensors to measure 

torque, force and position. It also provides audio-visual feedback to aid with the patient’s 

therapy. HapticMaster [69] is a 3-DOF multi-sensory platform designed to be generic towards 

applications where there is a requirement for human interaction. It has high joint stiffness 

together with increased force sensitivity. NeReBot [70] is known to be a safe robot with 3-

DOF which can be easily transported. Two industrial robots were integrated to create the 

REHAROB therapeutic system [71] with 12 DOF. Though it is able to provide a full range-of-

motion of the elbow and shoulder, it is limited to passive training only. The table below 

summarizes the review of these systems. The CADEN-7 system [72] is an active-assisted 

robotics system that is able to provide a total of 7 DOF. It is equipped with built-in safety 

features and is able to avoid any erratic motion by the user.  A summary of this work is   

available in Table 2.3.



39  

Table 2.3: Coarse Motion Rehabilitation 

Name DOF Inputs Actuators Target Features 

ARM [67] 3 Forearm position and 

torque 

Magnetic Particle 

Brake and DC 

motor 

Elbow and 

Shoulder 

End-effector  

InMotion ARM 

[73] 

3 Angular velocity and 

torque, joint positions. 

Brushless DC 

motors 

Elbow and 

shoulder 

Active, Passive 

and Interactive 

MIT-Manus [65] 2 Torque and Joint Brushless DC 

Motors 

Elbow and 

Shoulder 

End-effector  

Bi-Manu-Track 

[73] 

1 Not mentioned Not mentioned Forearm and 

Wrist 

Commercial 

system. 

ARMin [68] 6 Torque, Force and 

Position 

Not mentioned Wrist, Forearm, 

Elbow and 

Shoulder 

Haptic System 

with audio-

visual display. 

GENTLE/s [74] 6 Torque, Velocity and 

Position 

Brushed DC 

motors 

Elbow, Shoulder 

and Forearm. 

Based on Haptic 

Master 

HapticMASTER 

[69] 

3 Torque, Velocity and 

position 

Brushed DC 

Motors 

Shoulder, Elbow 

and Wrist 

Virtual Exercise 

with feedback 

REHAROB [71] 12 End-Point Torque Electrical Motor Shoulder and 

Elbow 

CORDIS Project 

MIME [66] 6 Forearm Brushed DC 

Servos 

Shoulder, Elbow 

and Forearm 

Can program 

trajectories 

NeReBot [70] 3 Motor Positions DC Motors Shoulder, Elbow 

and Forearm 

Wire Support 

CADEN-7 [72] 7 Torque, Force, 

Position 

Cable Pulley, 

Motors 

Should, Elbow 

and Forearm 

Active, Passive 

L-EXOS [75] 5 End-Point Torque Brushed Motors Elbow, Shoulder, 

Forearm 

End Effector 

 

The Light Exoskeleton (L-EXOS) [75, 76] system focuses on allowing the patient to fulfil a 

particular trajectory with the aid of virtual reality.  It is equipped with a wide variety of sensors 

and is able to provide 5 degrees of freedom.     
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2.7.3 Fine Motion Rehabilitation Robotics 

Coarse motion rehabilitation systems are not able to handle issues related to the arm and 

hand stiffness. ADL’s requires the ability to have better control of the fingers which is also not 

addressed by such systems. Systems designed to address these concerns are reviewed here. 

Amadeo [4, 77] was verified to show improvements in pinching and grasping through the FMA 

arm motor scale and Jebsen-Taylor Test. Cybergrasp [78] is a glove with force-feedback 

designed for use in therapy sessions. The system was evaluated in virtual environments that 

presented a wide range of feedback. Another device aimed at helping patients by fusing 

various sensors and promoting motor relearning was the Hand of Hope. The InMotion HAND 

robot [79] is highly customizable system that can provide consistent training and feedback to 

the user. The Gloreha rehabilitation glove is lightweight and comfortable. It is able to support 

a wide range of exercises with a different motion range for the various fingers.  

The Rutgers Hand Master [80] is a glove with force-feedback that is used together with a 

virtual environment. In HEXORR, we saw a system that was able to provide the full range-of-

motion for all the fingers[12]. A cable-based device was observed in HandCARE, where the 

main focus was to provide assistance to the patient to help open and close the hand, while 

being reasonably flexible to accommodate a broad range of finger shapes and sizes [81].  

There are also many commercial systems in the area of rehabilitative robotics. One of the 

pioneers is the ReoGo system, Though it was designed to assess and train the upper extremity 

of stroke patients [82], it was also able to provide a fair amount of training for the hand and 

finger movements. For patients who have lost the ability to voluntarily activate their arm 

muscles, the ArmeoPower [83] proved to a valuable device. RUPERT is a lightweight 5-DOF 

whole arm exoskeleton. It is fitted with pneumatic muscle actuators and is able to assist the 

patient with a wide range of motion like shoulder, elbow, forearm, and wrist. It is able to 

provide qualitative feedback to the user to aid in the therapy [84].  

With four degrees of freedom, the Biomemetic Orthosis for Neurorehabilitation (BONES) [85] 

is inspired by the biomechanics of humans. It is an active rehabilitative device that is able to 

provide a variety of motion. A summary of these devices can be seen in Table 2.4. 
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Table 2.4: Rehabilitative Robotic Systems focused on Arm and Finger Movements 

Name DOF Inputs Actuators Target Area Features 

Hand Mentor 1 Wrist angle 1 Pneumatic Wrist, 

fingers 

Wearable 

HWARD 3 Joint angles 3 Pneumatic Wrist, 

fingers 

Stationary 

Haptic Knob 2 Wrist, forearm 2 DC brushed 

motors 

Forearm, 

wrist 

Stationery 

T-WREX 5 Join angles None Shoulder, 

fingers 

Wheelchair 

mounted 

ReoGo 2 Position of end-

point 

4 electric 

motors 

Shoulder, 

elbow, 

forearm, 

fingers 

End-effector 

based 

Armeospring 7 Joint angles Not specified Whole arm Commercial 

ArmeoPower 6 Joint angles 6 DC Motors Whole arm Commercial 

BONES 4 Joint angles 5 DC Motors Upper Limb Safety, End-

Effector 

 

It can be observed that there are many commercial and research-based devices in the area of 

rehabilitative robotics that can aid a patient’s recovery.  However, each system has its 

challenges which can be a hindrance to the general acceptance of such devices. A 

rehabilitative robotic system must be able to answer a few fundamental questions: 

1. How can the patient achieve a natural movement, considering the trajectory and the 

force? 

2. How can the robot provide the right level of assistance that is required by the patient? 

3. What kind and frequency of feedback is necessary to enhance the therapy? 

4. What are the safety and portability concerns?  
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2.8 Clinical Evidence 

In Table 2.5, we review the literature which has demonstrated that RT-based therapy has 

been effective in a patient’s therapy and recovery process.  

 

Table 2.5: Quantitative summary of RT-based clinical evidence 

Device Size Baseline Duration Outcome Conclusion 
      
MIME 27 UE-FMA  

= 24.8/66 
FIM  
= 54.5/63 

2 months 
 

FMA-proximal  
= ∆3.3 
FIM = ∆2.2 

Improvements seen 

MIT-
MANUS 

56 FMA-WH  
= 0.0 
MSS-SE=3.6 

5 weeks FMA-WH=1.0 
MSS-SE=13.1 

Improved 
Performance 

REHAROB 12 FIM=106.875 20 days FIM = ∆6.7 Decreased 
spasticity 

ARM 19 FS=0.7 8 weeks FS=0.79 Improvement 
NeReBot 35 FMA-SE=8.0 

FMA-
WH=0.0 

5 weeks FMA-SE=12.8 
FMA-WH=3.0 

RT + CT is effective 

T-Wrex 23 UE-
FMA=24.0 

8 weeks UE-FMA = ∆3.7 Improvement 

InMotion 62 UE-
FMA=20.3 

6 weeks UE-FMA = ∆2.94 Improvement 

GENTLE/s 31 UE-
FMA=30.0 

9 sessions UE-FMA=45.0 Improvement 

 

Abbreviations: UE: Upper Extremity, FMA: Fugl-Meyer Assessment, SE: Shoulder and Elbow 

Score, FIM: Functional Independence Measure, CT: Conventional Therapy, RT: Robot-Assisted 

Therapy. 

Symbol: ∆ increase in gain 
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2.9 Control Algorithms 

From the human perspective, achieving complex multi-joint movements may seem like a 

trivial task. In essence, it involves the integration of multi-sensory information from various 

parts of the body, together with the processing of this information in the brain, to achieve 

such an outcome. Depending on the objective of the rehabilitation system, various control 

strategies can be implemented to suit the requirements.  

 

• Passive Control 

The patient has limited control of the movements and the robotic system dominates the 

actions. Full control is given to the system to allow the patient to achieve a desired objective. 

 

• Active Control 

The patient has a significant level of control on the desired action. The robot will aid the 

patient to move towards the final goal. It has been reported [47] that such active control 

strategies help in the reorganization of the neural-connectivity in the brain. This in-turn has a 

cyclic positive effect on the overall effectiveness of the physiotherapy.  

 

Assist as Needed (AAN) 

In active assistance/control, a key objective is always to provide the right amount of 

assistance as required to complete the task [86]. In these cases, the robot can assist and also 

help to correct the movement of the patient. To achieve this objective, the system must be 

able capture multi-sensory data and perform the necessary adjustments to the system while 

it is being used. To perform this task effectively, the system must employ algorithms that can 

detect the strain a patient is feeling while attempting an activity and attempt to provide the 

correct amount of assistance through the various actuators.  
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2.10 Review of Rehabilitative Robotic Devices 

In this chapter, we have seen that there are wide variety of rehabilitative robotic devices, 

both in the research and commercial space. They have been designed to evaluate or assess 

the feasibility of such systems and the results achieved so far are promising. One of the key 

challenges still facing users is the ability to customize such devices to suit individual physical 

attributes, as most of these exoskeletons are made with rigid material that has limited scope 

for any fine-adjustment. Furthermore, there is also a lack of simple and effective Graphical-

User Interface (GUI) for the user to carry out the required exercises with proper feedback and 

guidance. Another key element, is the lack of such systems to be able to log the patient’s data 

and provide meaningful data analytics into the performance of the patient at the end of each 

therapy session. Such information will be highly beneficial to the patient and the 

physiotherapist.  

There have also been fair number of reports [22, 57, 87, 88] that there was a lack of significant 

difference between conventional therapy and robotic therapy, and that in some of these 

cases the conventional approach showed better results. It was highlighted that there could 

be other factors such as the intensity, stage of recovery and duration, that can affect the 

efficacy of such robot-assisted therapy. 

Besides that, a wide number of papers [6, 89-92]have observed improvement in the motor 

movement ability of the hand in the areas of grip strength, push and pull. These were mainly 

proven through the Fugl-Meyer Assessment (FMA) and the Functional Independence 

Measure FMI).  

With continued research and development in this area, we can very soon expect the 

proliferation of such devices in individual patients’ homes.  
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2.11 Sensors and Signal Processing 

Movement of any part of the body is representative of neuromuscular activities. Capturing 

such signals is critical to designing systems that act upon the intent of the user. They also play 

a key role in the rehabilitation assessment process and can help to provide a more objective 

assessment of a patient’s recovery.  

The human skeletal muscular framework was first modelled by in 1938 and was known as the 

Hill-type model [93]. Three main electrical elements of series, parallel and contractile were 

used to model and replicate the nature of human muscles. This model was used as the basis 

for the design and implementation of a exoskeleton arm in  [94], and was used in subsequent 

research activities. However, the complexity of the several arm parameters made it 

challenging as they were very dependent on an individual’s physiological characteristics. 

When using EMG signals for rehabilitation, we are in understanding the neuromuscular 

activation that is observed in the various muscles during different activities, such as, 

functional movements, activities of daily living, and training. There are two main classes of 

resistance-training exercises, and they are isometric and isotonic contractions. In the field of 

rehabilitation, both types of concentrations are widely used, while isotonic contractions are 

commonly observed in areas where the focus is on athletic and strength goals.  

 

2.11.1 Isotonic 

In isotonic contractions, we will observe muscular contractions that oppose resistance, and 

the length of the muscle will also change. By varying the muscle’s length, the contraction is 

able to generate a force. The type of contraction can be eccentric or concentric. In concentric 

contractions, the muscles tend to shorten [95]. During this time, the tension within the muscle 

is constant [96]. In eccentric concentration, the muscles elongate as they face resistance. 

When the external force is greater than what can be generated by the muscle, it goes through 

a forced lengthening. Many normal activities, like walking, are considered eccentric and are 

thus a popular area of study [97]. Many muscular injuries are also associated with eccentric 

contractions [98].  
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2.11.2 Isometric 

In isometric contractions, the muscle length does not change, however, the energy and 

tension within the muscles keep fluctuating, and this allows the production of a force. 

Typically, isometric contractions are observed when there is an action performed towards a 

fixed object without any resultant movement.  

 

2.11.3 Application of Isotonic and Isometric Contractions 

The study of muscular fatigue and neuromuscular diseases can be performed through EMG 

signals that are obtained through isotonic conditions [99, 100]. Many assistive robotic 

systems, exoskeletons, and lower-limb orthoses, are designed based on isotonic and 

isometric contractions [101, 102]. A wide variety of techniques have been described in various 

literature that focus on applying these signals for the purpose of controlling a rehabilitative 

robotic device [103-106].  

 

2.11.4 Electromyography (EMG) 

The EMG is a complex signal [107] and has many dependencies on the physiological and 

anatomical properties of the underlying muscles. The most convenient approach to obtaining 

EMG signals is through the surface of the skin. Thus, it is also known as sEMG (surface EMG). 

However, the signals obtained through this method also tend to have a lot of noise due to 

inputs from other neighbouring motor units. A wide variety of signal processing and feature 

extraction techniques have to be utilized to obtain a detailed analysis of the data obtained. 

In our brains, the nerves conduct electrical potentials to convey information. A similar 

phenomenon is observed with muscles. The motor unit action potential (MUAP) is the 

combined effect of the various muscle fibres associated with a single motor unit. It can be 

modelled using this formula: 

𝑥(𝑛) =  ∑ ℎ(𝑟)𝑒(𝑛 − 𝑟) + 𝑤(𝑛)

𝑁−1

𝑟=ℎ(𝑟)0

 Eq. 2.1 
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In the formula, 𝑁 is the number of motor units that are firing, 𝑤(𝑛) represents the white 

noise, ℎ(𝑟) represents MUAP, 𝑒(𝑛) is the processed point and 𝑥(𝑛) is the modelled EMG 

signal. Generally, many integrated sensors may perform some basic signal processing 

techniques using some HW. These include amplification, filtering to remove artefacts and 

amplitude detection. They may also provide the raw data to allow custom signal processing 

and feature extraction techniques. The general steps to the use of EMG signals is shown in 

the Figure 2.5. 

 

Figure 2.5: Block Diagram for the use of EMG signals 

 

2.11.5 Signal Processing 

Signal Processing is critical to ensure that we are able to obtain useful information from the 

collected data. Various techniques have been explored and the results of the processed 

signals are then fed to different controllers to perform the required actuation to achieve the 

therapeutic effect.  

One of the first steps in data collection is the process of windowing. Data of varying lengths 

has been shown to have a direct effect on the final classification error [108]. When the 

window length was smaller than 128ms, it was shown to have a high level of bias and the 

features also had a high variance [109]. In similar studies [104, 110], it was shown that if the 
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segment length was increased from a value of 125ms up to 500ms, the classification accuracy 

also increased. Increasing the window allows us to capture more information about the signal 

which leads to a smaller bias and variance in the extracted features. This also helps in the real-

time response of rehabilitative systems [111] which should be within 300ms [112]. 

We can use either adjacent windowing or overlapping windowing technique. The choice is 

dependent on the amount of work that needs to be done within that time interval. For longer 

time intervals, some overlap may be necessary to ensure that we are able to achieve the 

required real-time response.  

We will now review some commonly used signal processing techniques used for physiological 

data. 

 

• Frequency-Selective Digital Filters 

Filters like low-pass, high-pass, band-pass and band-stop are commonly used to focus the 

attention on specific frequency bands to perform the necessary detailed analysis. In [113], a 

band-pass filter with a range of 20Hz – 500Hz was used to remove motion artefacts. In the 

study of signals from lower-limbs, different filtering techniques were employed. In [114], a 

6Hz Low-Pass Filter was applied. [115] made use of a low-pass filter of 6th order and a cut-off 

frequency of 5Hz, while [116] used a 5Hz to 500 Hz band-pass filter. To reduce the impact of 

motion artefacts, [113] used a band-pass filter with the frequency range of 20Hz to 500Hz. In 

most of these observations, noise was still present and very difficult to be totally removed 

[117]. 

 

• Adaptive Filtering 

In Adaptive Filtering (AF), we perform iterative analysis to establish a relationship between 

two signals. An advantage of AF is that it is able to modify the signal’s features while 

performing filtering even if there is some overlap of the spectrum [118]. In order to remove 

ECG artefact, [119] evaluated the use of AF techniques and found it to be effective. In the 

application of AF, an adaptive whitening filter was used in [120].  
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• Common Average Referencing (CAR) 

In CAR, spatial filters are applied across several electrodes. This allows us to compute the 

mean across the various channels. With this approach, the overall Signal-to-Noise ratio (SNR) 

improves and it can lead to better classification results. In [121], a 60% increase in 

performance was seen with the use of CAR. In [122], an improved classification accuracy was 

observed with the use of CAR. 

 

• Surface Laplacian (SL) 

Surface Laplacian is a technique that helps in improving the SNR and identifying effective 

signal sources. [123] found that SL was more effective in removing artefact noise compared 

with CAR in multi-electrode systems. In multi-channel sEMG recordings, [124] was able to 

distinguish data from the various sensors using the SL approach.  

 

2.11.6 Feature Extraction 

Feature extraction is critical for a rehabilitative system to extract meaningful information 

from the signals obtained. It involves transforming raw sensor data into feature vectors that 

can then be used in the Machine Learning layer. These features are generally divided into 

three main categories. They are Frequency Domain (FD), Time Domain (TD) and Time-

Frequency Domain (TFD) features. For TD, the features can be related to the amplitude 

variations of the signal over time, and also the time-correlated parameters between adjacent 

signals or from signals obtained from various electrodes. Feature extraction within the Time-

Domain allows the computational complexity of the system to be kept low as no further 

transformation is needed. For FD features, the most common one is the computation of the 

Power Spectral Density (PSD). The PSD value can be used to obtain features based on different 

frequency bands that the sensor may exhibit. The TFD approach is able to provide us with 

very useful information on how the frequency component of the signal varies with time. This 

is well-suited for non-stationary signals.  
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Time Domain (TD) Features 

We will first look at some commonly-used TD features proposed by [125].  

 

• Mean Absolute Value (MAV) 

To obtain the MAV, we sum the data points of signal within the region of interest. We then 

divide this sum by the total number of samples within that region. This is given as 

𝑀𝐴𝑉 =  
1

𝑁
∑|𝑥𝑛|

𝑁

𝑛=1

 Eq. 2.2 

 

where 𝑥𝑛 represents the data points and 𝑁 is the number of samples.  

• Mean Absolute Deviation (MAD) 

MAD is an extension to MAV. After calculating the MAV, we obtain the absolute difference 

between each data point and the MAV and sum them up. This sum is then divided by the total 

number of samples within the data region. 

𝑀𝐴𝐷 =  
1

𝑁
∑|𝑀𝐴𝑉 − 𝑥𝑛|

𝑁

𝑛=1

 Eq. 2.3 

 

• Mean Absolute Value Slope (MAVSLP) 

As a modification to MAV, the differences between adjacent values are computed.  

𝑀𝐴𝑉𝑆𝐿𝑃𝑖 = 𝑀𝐴𝑉𝑖 − 𝑀𝐴𝑉𝑖−1 Eq. 2.4 

 

• Simple Square Integral (SSI) 

Simple Square Integral uses the energy of the sEMG signal as a feature. 

𝑆𝑆𝐼 = ∑|𝑥𝑛|2
𝑁

𝑛=1

 Eq. 2.5 
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• Root Mean Square (RMS) 

To calculate the RMS, the arithmetic mean of the square of all the signals is computed. 

𝑅𝑀𝑆 =  √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 Eq. 2.6 

 

 

• Variance (VAR) 

To compute the variance, we compute the squared distances between the mean and each 

signal, and then divide it by the mean. In the equation �̅� represents the mean of the signal. 

𝑉𝐴𝑅 = 
∑(𝑥𝑖 − �̅�)2

𝑁 − 1
 Eq. 2.7 

 

• Standard Deviation (SD) 

The square-root of the variance gives us the standard deviation. 

𝑆𝐷 = √
∑(𝑥𝑖 − �̅�)2

𝑁
 Eq. 2.8 

 

• Waveform Length (WL) 

WL is the cumulative length of the waveform over the time duration of interest. It is related 

to the time, frequency and amplitude of the signal.  

𝑊𝐿 = ∑|𝑥𝑛+1 − 𝑥𝑛|

𝑁−1

𝑛=1

 Eq. 2.9 

• Zero Crossing (ZC) 

ZC refers to count of the instances where the amplitude of the signal crosses over the zero 

axis. A threshold condition is introduced in the computation that allows the signal to abstain 
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from any background interference. This feature also embodies from frequency domain 

elements. 

𝑍𝐶 = ∑[𝑠𝑔𝑛(𝑥𝑛. 𝑥𝑛+1) ∩ |𝑥𝑛 − 𝑥𝑛+1| ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]

𝑁−1

𝑛=1

 

𝑠𝑔𝑛(𝑥) =  {
1,     𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Eq. 2.10 

 

• Slope Sign Change (SSC) 

This is quite similar to the idea of ZC. For 3 consecutive segments, the number of times there 

is a change between the negative and positive slope is measured.  

𝑆𝑆𝐶 =  ∑[𝑓[(𝑥𝑛 − 𝑥𝑛−1). (𝑥𝑛 − 𝑥𝑛+1)]]

𝑁−1

𝑛=2

 Eq. 2.11 

 

• Skew (SKEW) 

This is a measure of how the probability distribution of the signal values is asymmetric. It is 

also commonly known as the third standardized moment. 𝜎 refers to the standard deviation 

of the signal. 

𝜇3̃ = 𝐸 [(
𝑋 − �̅�

𝜎
)
3

] Eq.2.12 

 

• Kurtosis (KURT) 

This measures the extent to which the effect of outliers affects the tails of the distribution. 

𝐾𝑈𝑅𝑇(𝑋) = 𝐸 [(
𝑋 − �̅�

𝜎
)
4

] Eq. 2.13 

 

In [106], it was observed that when the sampled data was 200ms, it took around 10ms to 

perform the feature extraction. A combination of the above-mentioned TD signals were used 

in [126, 127] to detect the movement of the hand and interpret EMG signals while performing 
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specific hand-lifting tasks with load. It those papers, it was found that the use of RMS and 

MAV, together with SD, was an effective feature vector. 

In another study, fuzzy approximate entropy (fApEn) [128] was used to measure the dynamics 

of EMG signals of patients. In [129], Skewness (SKEW) and Kurtosis (KURT) were used with 

promising results. In [111], moving ApEn was found to effective in classifying the various 

stages of muscle contraction. RMS was found to be effective in capturing features from multi-

channel EMG sensors in [113]. In another study, [115], RMS was found to be more effective 

than other TD features for electrode selection. In [130], several TD features were studied and 

it was concluded that each had their own strengths and weaknesses. The next step in feature 

selection was considered critical to the overall effectiveness of such systems. Table 2.6 shows 

a summary of the TD features and the classification accuracies achieved.  

 

Table 2.6: Quantitative summary of TD features 

Reference Features Classification Accuracy 

[126] Max Amplitude 

Standard Deviation 

Root Mean Square 

% Error = 4.1% - 26.2% 

% Error = 9.3% - 14.8% 

% Error = 4.1% - 26.2% 

[116] Waveform Length 

Standard Deviation 

Mean Absolute Value 

% Error = 3% – 8% 

% Error = 2% - 6% 

% Error = 4% - 6% 

[105] Mean Absolute Value 

Simple Square Integral 

Waveform Length 

Zero Crossing 

Slope Sign Change 

Root Mean Square 

Variance 

86.49 ± 9.6 % 

78.63 ± 9.1 % 

88.72 ± 7.2 % 

86.93 ± 8.1 % 

88.31 ± 7.7 % 

86.21 ± 9.4 % 

78.42 ± 9.2 % 

[131] Skew 87.84% – 97.66% 

[132] Slope Sign +  

Waveform Length +  

 

85.6 ± 4.8 % 
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Auto-regressive Coefficients 

[133] Moving Average + 

Waveform Length + Zero 

Crossing + slope Sign 

Change 

 

Root-Mean-Square + Auto-

Regression 

95 ± 4% 

 

 

 

 

96 ± 3% 

 

 

Frequency Domain (FD) Features 

There are a wide range of FD features that can be used for EMG signals and physiological 

signals in general. In the case of rehabilitation, they have been used quite extensively in the 

areas of muscle fatigue assessment and motor unit analysis [96]. The mean power frequency 

(MPF) of EMG signals is able to provide information regarding the complex signal changes 

generated by muscles. For stroke patients, it has been shown that the MPF is lower for their 

paretic muscles as compared to the contralateral muscles.  

Signals captured through muscle contractions can be characterized through the use of the 

median power frequency (MNP), mean frequency (MNF) and power spectral density (PSD). 

From these, you can compute the mean, median from the power spectrum or amplitude 

spectrum, and use them as features. This is summarized in Table 2.7. 

 

Table 2.7: Quantitative summary of FD features 

Reference Features Accuracy 

[115] Mean Frequency,  

Median Frequency,  

Signal-to-Noise Ratio 

Repeatability: 75% 

Repeatability:75% 

Repeatability:64.29% 

[116] Spectral Energy Classification: 91.3 ± 3.5% 

[105] Peak Frequency 

Spectral Moment 

Classification: 44.63 ± 7.2% 

Classification: 80.29 ± 9.1% 
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Mean Power Frequency 

Total Power 

Frequency Ratio 

Variance of Central 

Frequency  

Power Spectrum Ratio 

Classification: 78.31 ± 9.3% 

Classification: 78.61 ± 9.1% 

Classification: 69.81 ± 8.9% 

Classification: 16.93 ± 2.6% 

 

Classification: 49.72 ± 8.9% 

 

Time-Frequency Domain (TFD) Features 

Studies that have explored both TD and FD features seem to suggest mixed-results with no 

clear conclusion on which approach would be better [100, 101, 105, 106]. As an alternative, 

TFD features have been proposed as a means to overcome the shortcomings of TD features 

due to their stationary nature. In [134], it was found that the use of wavelet packet transform 

features yielded a lower classification error of 6.25%, when compared to the use of TD 

features which had an error 9.25%. TFD features like short-time fourier-transform (STFT) and 

wavelet transform (WT) are able to localize the time-frequency energy and are suitable for 

capturing the information in EMG signals [135]. One of the challenges of TFD features seems 

to be the high dimensionality together with the high-resolution of the feature vectors [117]. 

Thus, it is critical to perform a reduction in dimensionality while maintain the ability to 

discriminate the features [101, 111]. To reduce the dimensionality, we can perform feature 

projection, where the original features are projected to a new feature space that is smaller. 

In feature selection, we look at the optimal combination of features to form a new set, 

according to a rule-base. The types of TFD features are as shown here. 

 

• Continuous Wavelet Transform (CWT) 

The Fourier Transform functions by breaking up a signal into a combination of sines and 

cosines that are infinite. This causes it to lose its time-localization data. Wavelets represent 

minute oscillation that have a high localization representation in time. The CWT allows us to 

decompose a signal into wavelets which gives us a good representation of the time-frequency 

localization.  
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The continuous wavelet transform of a function 𝑥(𝑡) at a scale ((𝑎 > 0) and translational 

value 𝑏 ∈ ℝ is expressed by the following integral 

𝑋𝑤(𝑎, 𝑏) =
1

|𝑎|1 2⁄
∫ 𝑥(𝑡)�̅�

+∞

−∞

(
𝑡 − 𝑏

𝑎
)𝑑𝑡 Eq. 2.14 

 

where 𝜓(𝑡) is a continuous function in the time-frequency domain and it is referred to as the 

mother wavelet.  

• Discrete Wavelet Transform (DWT) 

In DWT, the wavelets are sampled discretely. They offer the same advantage over the Fourier 

Transform by offering time-frequency localization information. It has been used extensively 

in a wide range of applications. Two popular domains where it has been widely used are in 

data compression and filtering. A wide range of wavelets have been proposed and used and 

the most common ones are the Haar wavelet and the Daubechies wavelet.  

We can compute the DWT of a signal 𝑥 by pasing it through a filter series. At the first stage, 

the signal is convoluted with an impulse response 𝑔 and passed through a low pass filter.  

𝑦[𝑛] = (𝑥 ∗ 𝑔)[𝑛] =  ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

 Eq. 2.15 

 

A high-pass filter ℎ is also used to decompose the signal simultaneously. We then obtain two 

outputs simultaneously. They are the output form the high-pass filter, also known as the 

detail coefficients. We also have the output from the low-pass filter, the approximation 

coefficients.  

We are then able to perform subsampling by 2 by passing the signal through new filters 𝑔 and 

ℎ with the cut-off frequency being halved as compared to the previous one.  

𝑦𝑙𝑜𝑤[𝑛] =  ∑ 𝑥[𝑘]𝑔[2𝑛 − 𝑘]

∞

𝑘=−∞

 Eq. 2.16 

𝑦ℎ𝑖𝑔ℎ[𝑛] =  ∑ 𝑥[𝑘]ℎ[2𝑛 − 𝑘]

∞

𝑘=−∞

 Eq. 2.17 
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This decomposition technique is continuously repeated to allow us to have a higher frequency 

resolution, and this is represented using a binary tree that shows the time-frequency 

localization. This binary tree, as shown in Figure 2.6, is also referred to as the filter bank. 

 

Fig 2.6: Three-Level Filter Bank 

Due to the nature of the decomposition process, we need to ensure that the signal is a 

multiple of 2𝑛 where 𝑛 is the number of levels. If we have a signa with 32 samples and the 

range is from 0 to 𝑓𝑛, with three levels of decomposition, we will generate 4 output scales. 

This can be seen in Figure 2.7. 

 

 

Fig 2.7: DWT Frequency Domain Representation 

 

2.11.7 EEG-based Approach 

Over the years, we have seen advances in the brain science domain that has allowed the 

development of many brain-computer interface (BCI) devices. Many of these devices are 

targeted towards being applied in the area of neurorehabilitation. This aims to assist those 

with physical challenges that may be physical, neural or both. Such systems have extensive 

signal processing and machine learning techniques due to the complex nature of the brain 

wave signals.  
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The idea of developing a robotic arm using brain signals was first introduced in [136]. The aim 

of BCI systems was to capture the activity in the brain and use it to interpret the intention of 

the person [137]. Such BCI systems can be feedforward-based where the intention is decoded 

and translated into an action. The feedback-based approach aims to capitalize on the neural 

plasticity nature of the human brain to aid in the rehabilitation process [138-142].  

 

A wide variety of invasive and non-invasive techniques have been utilized over the years, with 

the non-invasive ones being the more popular and widely accepted one. These include 

magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG) and near-infrared spectroscopy (NIRS).  The ability to non-

invasively measure brain signals in a portable and inexpensive device allowed EEG to be 

preferred signal acquisition method for many BCI devices. Though EEG-based devices have 

had many application, they have also shown great promise in the area of assistive robotic 

therapy [143]. Those who face any physical challenges, either through muscular or through 

neurological deficits can utilize EEG signals to control external devices [144].  

BCI-based devices have to be designed with a specific protocol based on the desired inputs 

and outputs. Experiments are then carried out pertaining to the protocol to capture the 

acquired data which is then analysed. 

 

Motor-Imagery (MI) Based BCI 

In motor-imagery, an individual is tasked with imagining a particular movement. In [145], it 

was established that the brain activity during an imagined tasks highly correlates with the 

brain activity of the actual task. This technique involves two main approaches, the 

sensorimotor rhythm (SMR) and the imagined body kinematics (IBK).  

• Sensorimotor Rhythms (SMR) 

In SMR, the imagined movement involves that of body parts like the tongue, hands and feet, 

and this translates into changes in the brain activity [146]. This translates to a phenomenon 

known as event-related desynchronization (ERD) and event-related synchronization (ERS). 

This is observed in the mu (8 – 12 Hz) frequency range and the beta (18 - 26Hz) frequency 
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range. They are most prominently observed in the C3 and C4 electrode locations which are 

located in the area of the sensorimotor cortex [147].  A wide range of signal processing and 

classification strategies have been attempted to use SMR for practical BCI applications. In 

[148], a strategy to control a cursor in two-dimensions was demonstrated using SMR. A 

variety of classification methods were investigated for right/left hand imagery in [149], and 

SVM proved to generate the best results. A summary of the research done with the use of 

SMR is shown below in Table 2.8. 

Table 2.8: Motor Imagery-based BCI Systems 

Task Feature Classification Reference 

1D Cursor Control Mu rhythm (8 – 12 

Hz) amplitude 

N/A [150] 

2D Cursor Control FFT & mu rhythm 

amplitude 

Linear Regression [151] 

Prosthetic Hand 

Control 

Peak mu band power Logistic Regression [152] 

Rehabilitation Robot 

Control 

CSP features N/A [153] 

Rehabilitation Robot 

Control 

Time-Frequency 

Power in alpha, 

theta and beta 

bands 

LDA [154] 

 

 

•  Imagined Body Kinematics (IBK) 

Though SMR has been used extensively in many BCI applications, one of its main drawbacks 

is that it lacks intuitive and natural control [155]. The features extracted from SMR can give 

us general information on the body part that we intend to control, however detailed 

parameters like the velocity and position are missing. IBK originally had its roots in invasive 

BCI [156, 157] but non-invasive techniques have found that it is possible to extract meaningful 

information from low-frequency signals (less than 2Hz).  
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It has been shown that the EEG signals in the low-frequency range ( < 2Hz) that are located in 

the sensorimotor cortex region exhibit kinematic data. In [158], this technique was used to 

decode and classify wrist extension and rotation at varying speeds. In [159] and [160], the 

authors were able to extract and classify two-dimensional and three-dimensional data 

respectively.  

 

• Steady-State visual evoked potential (SSVEP) 

In SSVEP, subjects are shown a flickering target. Different targets may flicker at different rates. 

It has been observed that there is a strong correlation between the frequency of flickering for 

the targets and the response observed in the EEG signals. Though it has proved to a be a viable 

system for some applications, it is not suitable for those with visual impairment, and can also 

cause fatigue for users.  

 

• Error-related potential (ErrP) 

In error-related potential, we are able to detect whenever the resultant action has a mismatch 

with the intention. For example, if a user wants to move a cursor in a particular direction, but 

the movement is in the opposite direction, then an error signal can be observed. This was 

found to be most pronounced within a 200 to 700ms window around the central and frontal 

lobes. Such techniques were tested to be effective in some studies [161]. 

 

• Hybrid Approach 

A hybrid system consists of one or more physiological parameters where at least one of the 

input is EEG. It can be a case where EEG signals are decoded and processed with a variety of 

techniques and the combined outputs of these subsystems can control a BCI application. This 

idea can be extended so that it can be combined with other physiological signals to create a 

more robust system for BCI applications. A summary of these various techniques by 

researchers is shown in Table 2.9. 
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Table 2.9: Applications of BCI-based systems 

Task Hybrid Paradigm Reference 

Assistive Robotic Arm P300 & SSVEP [162] 

2D cursor task Mu/Beta & P300 [163] 

Robotic Grasp Motion SSVEP, Mu [164] 

Quadcopter control Mu/Beta & CCA [165] 

Point and Select Mu/Beta & CCA [166] 

  A more detailed review and study can be found in these articles: [167-169]  

 

2.12 Classification & Machine Learning (ML) Models 

We will first review some of the commonly used Classification and ML techniques before 

looking at their application in this domain.  

• Multilayer Perceptron (MLP) 

The MLP is used quite loosely to refer to feedforward Artificial Neural Networks (ANNs) in 

general. It consists of an input layer, an in-between hidden layer, and an output layer. The 

MLP is a model that utilizes supervised learning using a common backpropagation technique 

[170]. To closely resemble the natural behaviour of biological neurons, a non-linear activation 

function is used. Though sigmoids have been commonly used in the past, in more recent 

times, the rectified linear unit (ReLU) has gained more acceptance and popularity. A simplified 

model is shown in the Figure 2.8. 

 

Fig 2.8: Multilayer Perceptron 
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• Support Vector Machine 

SVM’s are a popular prediction model that is based upon statistical learning [171]. It is a 

supervised learning model, where, given a set of training data that is already labelled into 

categories, the algorithm develops a model that is able to assign new data samples into the 

appropriate category. The algorithm aims to maximize the gap between the categories to 

enable a higher level of classification accuracy. An example is shown in Figure 2.9. 

 

Fig 2.9: SVM Hyperplane 

• Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA), also commonly known as the Discriminant Function 

Analysis, is a generalized form of the Fisher’s Linear Discriminant. The aim of this technique is 

to find a set of features in a linear combination that is able to separate classes of objects. It is 

closely linked to another technique, Principal Component Analysis (PCA).  

 

In [131], the objective was to reduce the distance that was observed amongst the samples 

within the same class, while maximizing the distance that was observed amongst the center’s 

of the different classes. The Orthogonal Fuzzy Neighbourhood Discriminant Analysis (OFNDA) 
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was proposed as a means to achieve this objective. In [133], the Support Vector Machine 

(SVM) was compared against the Linear Discriminant Analysis (LDA) and the Multilayer 

Perceptron (MLP). It was shown that the SVM was able to yield higher classification accuracies 

as compared to the other two models. In [105], a comprehensive study was done to compare 

the performance of the following techniques: Random Forests (RF), Linear Discriminant 

Analysis (LDA), Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbour 

(kNN), Quadratic Discriminant Analysis (QDA) and Multi-Layer Perceptron Neural Networks 

(MLP-NN). It was shown that LDA provided a classification accuracy of 98.87% by utilizing 

Time-Domain features. In [172], the authors used MLP to on TFD features for forearm motions 

to achieve a 99% classification accuracy. 

Table 2.10: Machine Learning Techniques and their Results 

Reference Model Classification Accuracy 

[131] Orthogonal Fuzzy Neighbourhood 

Discriminant Analysis 

87.84% - 97.66% 

[133] Support Vector Machine 

Linear Discriminant Analysis 

Multilayer Perceptron 

95.5 ± 3.8% 

94.5 ± 4.9% 

89.5 ± 4.8% 

[105] Linear Discriminant Analysis 98.87 ± 0.8% 

[172] Multilayer Perceptron 99% 

 

2.13 Deep Learning 

In recent times, deep-leaning based techniques have been widely used in many machine 

learning applications that involve physiological signals like EMG and EEG. We will first review 

some of the basics of this approach. 

A. Basics of Deep Learning 

The main idea behind deep learning is that it uses multiple hidden networks to learn high-

level characterizations of input data. The network grows deeper as the number of hidden 

layers increases. This idea originated in Hinton et. al. [36] who utilized unsupervised greedy 

training methods to train deep belief networks.  
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Convolutional Neural Network (CNN) 

The CNN was first proposed in [173] by LeCun et.al, to classify handwritten digits. Over the 

years, the CNN has been adapted to create many other variants, such as, VGGNet, LeNet, and 

AlexNet. CNN’s generally consist of two stages, convolution and pooling. Using a range of 

filters in the convolution stage, several features are first extracted from an image 

automatically. In the pooling layer, the most significant features of the original image are kept 

while decreasing the number of features. This process is repeated a few times and the 

extracted features and fed into fully-connected layers and an output layer to perform the 

classification. While a MLP has fully connected neurons, with each neuron connecting with all 

the neurons in the next layer, the CNN only has local connections between the neurons and 

adjacent layers.  

 

Recurrent Neural network (RNN) 

Originally called the Elman Network, it was presented in 1990 by Elman et.al. [174]. Generally, 

neural networks do not consider the temporal relationship between individual data points 

and tend to fit the input data into individual labels. The purpose of the RNN was to represent 

this temporal information within a sequence. Its structure is similar to a MLP, where there is 

an input layer, output layer and hidden layers. The key difference is that the nodes in the 

hidden layer are connected with earlier nodes. Thus, the current input, together with the 

state of the previous hidden layer is sent to the current hidden layer. This allows the network 

to learn the relationship between the input sequences.  

RNN’s have an issue with the amount of information it can retain due to the issues of gradients 

exploding or disappearing. The Long-Short Term Memory [175] was proposed as a solution to 

this issue. The LSTM block has a forget gate which allows a means to control how much of the 

preceding information should be retained or forgotten.  

 

Auto-Encoder (AE) 

The Auto-Encoder (AE) was first proposed in 1987, and its main benefit was its ability to 

perform well with unsupervised pre-training [176]. AE has shown promise in areas such as 
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fault-detection, medical imaging and other applications. It consists of an input encoder and 

an output decoder. Using appropriate loss functions, the network aims to minimize the 

differences between the input data and output labels. At times, AE is also used as a data 

dimension reduction tool.  

 

Deep-Belief Network (DBN) 

The Restricted Boltzmann Machine (RBM) is the basic component of the DBN. The RBM 

belongs to a special type of Markov Random Field, which consists of a visible layer and a 

hidden layer. Similar to the AE, without the use of a predefined label, the RBM is able to 

reconstruct data using a unsupervised machine learning method. Cascading multiple RBM’s 

creates a DBN, with each layer being trained using a greedy algorithm. The DBN attempts to 

gain a better understanding of the data without any prior knowledge of the tasks carried out.  

A summary of the use of Deep Learning techniques and their results is shown in Table 2.11. 

 

Table 2.11: Comparison of Deep Learning Techniques 

Dataset Network Accuracy Ref 

NinaPro DB2 Two Stream CNN 75% - 84% [177] 

28 Participants DBN 88% - 89.29% [178] 

5 Conditions LSTM 87% - 94% [179] 

NinaPro DB3 CNN 73.31% [180] 

 

2.14 Edge Computing 

 

Research into novel signal processing and machine learning techniques are generally 

conducted using high-end computing platforms with its accompanying software tools. 

However, to deploy such algorithms and models onto devices for daily use, they need to be 

ported to embedded platforms. These platforms need to be able to perform complex 

computations on the end device, and hence such a technique is also known as “Edge 

Computing”. 
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There are many advantages of performing machine learning "at the edge". In particular, lower 

latency and reliability, as the information is processed close to the sensors, without needing 

to transmit it to the cloud. The communication with the cloud would usually require 

milliseconds of latency, compared to the microsecond that can be achieved with a low power 

microcontroller. Improved data protection, as the data are not transferred to another 

computer through the Internet or by other wireless or wired communication. No wireless or 

wired communication is needed — or if it is needed — a much lower bandwidth is required, 

as the processed information is an order of magnitude less than the raw data. For example, 

several kilobytes would be needed to send an image of an apple, but after the image has been 

classified as an apple, the fact that it's an apple could be communicated to the cloud in just 

one byte. The Machine Learning can be processed in a low-power microcontroller, which 

consumes only milliwatts of power. Moving Machine Learning from the cloud, to the edge, 

and to the extreme edge, working with microcontrollers, means it can run inside small, low-

energy, battery-operated devices, including wearables such as earbuds. However, despite the 

benefits, this requires us to work with processors that have vastly lower computation 

resources. Rather than several trillions of operations per second, a processor such as the Arm 

Cortex- M4 may only perform several million operations. What's more, the memory is also 

significantly reduced from several terabytes to a maximum of a few megabytes in the best 

case. It's important to note that in supervised Machine Learning the inference step might 

require millions of operations that are mainly multiplications and additions. So, memory is 

necessary to store the data, the parameters of learning, and the results of the run-time 

calculations. Running these operations on a high-performance embedded processor, such as 

the Cortex-M4, minimizes the time for inference as much as possible by exploiting the core 

digital signal processor extension and the floating-point unit to run the model in the most 

efficient way. The main goal of Machine Learning on microcontrollers is to design a deployable 

and optimized solution on low-power resource-constrained hardware. 

 

Review of Edge Computing 

Internet of Things Devices, mobile platforms, embedded solutions, etc. rely on 

Microcontrollers, which are devices with resource-constraints. Microcontrollers are single-

chip solutions which integrate the Central Processing Unit (CPU), Memory and Power 

subsystems, together with other peripheral blocks into a single package. Some of the popular 
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microcontrollers and their basic specifications are as shown in Table 2.12. 

Table 2.12: Comparison of Microcontrollers 

Processor Name Clock Memory 

ATMega328P Arduino Uno 16 MHz Flash: 32KB, RAM: 2KB 

ATMega2560 Arduino Mega 16 MHz Flash: 256KB, RAM: 8KB 

ARM Cortex M3 STM32F2 120 MHz Flash: 2 MB, RAM: 128KB 

ARM Cortex M4 STM32F4 180 MHz Flash: 2 MB, RAM: 384KB 

ARM Cortex A53 RPi 3B 1.2 GHz Flash: SD Card, RAM: 1GB 

    

Machine-Learning algorithms are computationally intensive and General-Purpose 

Microcontrollers alone are not efficient in handling such tasks. Dedicated Hardware 

Accelerators can be used to supplement the Microcontroller to provide it with the necessary 

computing power that is needed. These include devices like the ARM Ethos NPU, BeagleBone 

AI, Intel Movidus NCS, NVIDIA Jetson NANO and many others. These hardware accelerators 

are computationally efficient, but not optimized for power consumption.  

 

TinyML is a machine learning approach that focuses on integrating optimized and compressed 

machine learning models to be well suited for deployment in low-power microcontrollers. It 

boasts a range of advantages ranging from data security, reduced latency, energy efficiency, 

and many others. Table 2.13 shows the popular TinyML frameworks and their details. 

 

Table 2.13: Comparison of TinyML Framework 

TinyML Framework Algorithm Platform 

ARM-NN Neural Networks ARM Cortex-M 

ARM Cortex-A 

ARM Mali 

TensorFlow Lite Neural Networks ARM Cortex-M 

CMSIS-NN Neural Networks ARM Cortex-M 

STM32Cube AI Neural Networks STM32 

MicroMLGen SVM ESP32 

ESP8266 
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In [181], research was carried out to investigate the ability for a network to auto-configure its 

radio and IP stack by utilizing ML techniques. Using the IBM PPC and a ARMv7 processor, a 

the SVM algorithm was implemented. It was found that the deployment of the SVM was 

efficient only with specific optimizations of the algorithm. These include tradeoff between 

execution speed and accuracy by foregoing floating point operations. This reduced the overall 

accuracy of the system, though execution saw an improvement. The authors in [182] used the 

FRDM-K64F board and deployed a Gaussian Mixture Model (GMM) onto it to evaluate the 

ability to rform real-time analysis of sensor data. The NXP ISF (Intelligent Sensor Framework) 

was used to manage the sensor data. The GMM algorithm was inherently computationally 

intensive with extensive matrix and vector operations. It was found that by computing sensor 

data using fixed-point representation, the computational power requirements were reduced 

at the expense of accuracy. In [183], the research investigated the deployment of Deep Neural 

Networks across a range of IoT platforms with a focus on reduced power consumption. A 

System-on-Chip (SoC) hardware accelerator is used to infer the trained model. Several 

optimization techniques had to be employed, such as reducing weights and biases from 32-

bit to 16-bit, and improving the quantization process. The results demonstrated that it was 

possible to implement a deep learning model on SoC based devices. The authors in [184] 

integrated ML algorithms onto wearable devices to perform all the required processing on 

the device. This included sampling, feature extraction and performing the classification on a 

SVM model. The objective was to avoid the need for cloud-based computing and perform all 

operations on the embedded device. It was shown that by performing all processing on the 

device, the battery life of the device was extended many-fold as compared to performing 

cloud-based processing. This is achieved through the use of appropriate SoC hardware. In 

[185], researchers focused on developing a novel technique to employ low precision 

arithmetic with the aim of optimizing the power consumption of the device. Several number 

conversion techniques were utilized to reduce the overall computational complexity. The 

proposed technique showed good accuracy with reduced complexity.  

 

2.15 Summary of Literature Review 

From this comprehensive literature review, it is clear that there have been extensive 

techniques and approaches used by researchers in the area of rehabilitative robotics. These 
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include the use of different types of sensors, signal processing techniques, as well as machine 

learning techniques. There still various other techniques that can be explored to design and 

develop more advanced systems. They should be able to adapt to the user’s progress in real-

time as well as for them to get qualitative feedback about their progress.  

 

2.16 Scope of Focus of this Research 

The aim of this research is to investigate various aspects of designing and developing systems 

that can aid in the rehabilitation of patients. This research aims to achieve the following 

outcomes: 

• Investigate the use of physiological signals such as EEG and EMG to accurately decode 

and classify a range of real-world actions. 

• Develop novel signal processing techniques that utilizes the unique temporal and 

spatial relationships between various physiological signals to aid in the rehabilitation. 

• Develop a novel inference system that is able to mimic the neuroplasticity of the brain 

such that it is able to accurately decode and classify motor actions based on the 

available physiological signals. 

 

Publication: 
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Chapter 3 

Novel EEG Model 

3. 1 The EEG Signal 

In the Literature Review, we understood the basics of the brain’s anatomy and how signal is 

transmitted through the brain via its neurons. The vast network of neurons generates 

electrical impulses that transcend throughout the brain network depending on the stimulus 

or intended action. In this chapter, we will look at the brain structure in more detail and how 

EEG signals can be deciphered to better understand the intent. It is possible to use basic signal 

processing and feature extraction methods to build a simple rehabilitative system. However, 

such a system would be limited in its ability to fully decode variations and details in the user’s 

intent. We will now explore the use of EEG signals and more complex techniques in decoding 

the intention of the user. 

Mapping of The Human Anatomy to the Brain 

For many years, the widely accepted mapping of the regions of the brain were based on the 

findings and publications of Korbinian Brodmann, a German anatomist [186]. The Brodmann 

areas have been debated extensively and it has gone through changes whenever new data 

was available. Many of these areas have internal structures that are complex. A topographic 

map allows us to map parts of the body or at a higher-level of abstraction to a region in the 

cortex. The mapping that is of significance in this research is that of the somatosensory cortex. 

We are able to observe electrical signals in the neurons in those areas when there is a 

corresponding muscular movement.  

Over the years, technological improvements such as the functional magnetic resonance 

imaging (fMRI) allow us to capture blood flow patterns in the brain in real-time. Other 
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techniques have complemented each other to help us obtain a more detailed analysis of the 

activities of the brain. The Human Connectome Project [187] allowed us to have a 

breakthrough in the mapping of the brain and analyse parts of the brain that were missed in 

other studies.  

Capturing EEG Signals 

EEG signals can be acquired through a variety of sensor-based devices. There are commercial 

devices with just one or two sensors, right up to those that incorporate more than a hundred 

sensors. These devices generally follow the 10-20 electrode placement strategy. Using the 10-

20 system, the position of electrodes on the scalp is fixed according to a pre-set convention 

that has assigned labels to each sensor. With this labelling, we are able to study and compare 

the data acquired through different experiments, using similar scalp locations.   

 

3.2 Dataset 

Acquiring a dataset of physiological signals presents many challenges. In most countries, 

regulatory approval is needed at both the national and educational/research institute level to 

conduct human trials. There are also many other administrative matters to be resolved. We 

also need to fairly compensate the participants for their time and effort. In order not to be 

delayed in the data collection process, many researchers prefer to use publicly available 

datasets that have experimental data that matches the research they are doing. A similar 

approach has been taken with this research thesis. 

 

Selection and Structure of Dataset 

The dataset selected for this research is obtained from Luciw, M et al. [188]. In this dataset, a 

total of 3936 grasp and lift trials were conducted with varying friction and weight. Multiple 

physiological signals were captured for each trial. These include the 32 channel EEG data, 5 

EMG sensor data, and the force/torque of experienced during the action as well as the 3D 

position of the object. One of the key objectives of collecting this dataset was to investigate 

the effect of EEG signals in the context of multisensory control systems. A total of twelve 

participants took part in this data collection exercise and. During all the trials, the participants 
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went through a different series of object’s properties which were not known to them 

beforehand. In these series, the weight (165, 330 or 660g) and the contact surface 

(sandpaper, suede, or silk) were the varying parameters. In some trials one of them changed 

and in some cases, both of them changed. The dataset was captured and neatly organized 

into separate MATLAB files that allowed researchers to quickly extract out the relevant 

information depending on their focus. A more detailed explanation of the experimental 

procedure and the equipment used can be obtained from the reference.  

 

3.3 Methodology 

In this section, we look at the various signal processing techniques that were utilized to extract 

meaningful features from the dataset. Subsequently, we look at the machine learning models 

and the results obtained from the various techniques. 

 

3.3.1 Data Preparation 

The chosen dataset has a wide variety of ‘Series’ that allows the participants to use different 

weights with the same surface (weight series) or, use the same surface with different weights 

(surface series). There are 3 different sets of weight used, 165g, 330g and 660g. In the 

following analysis, three series from each participant using the 330g weight is extracted. In 

each series, there are 10 lifts with the expected weight.  

Each lift starts off with a rest period of 2s, followed by a forward movement of 2s. The 

movement is triggered when the participant observes an LED being ON. The weight is held in 

a fixed position until the LED goes OFF. After that, the weight is lowered and the arm returns 

to the original position.  

In this analysis, the focus is on using the EEG signals to accurately decode the Rest and Active 

state of the arm. This can be done using the first 4s of data, with the first 2s representing the 

Rest state and the next 2s representing the Active state.  

 

 



73  

3.3.2 Signal Processing & Feature Extraction 

From the Literature Review, we understand that one of the well-established signal processing 

techniques was the power band information. The frequency bands of theta, alpha, beta and 

gamma are computed and analysed. 

During the acquisition of the dataset, the first 2 seconds of the data capture are during the 

rest state of the participant. Subsequently, the indicator LED is switched ON, and the 

participant reaches forward to grab the weight and lift it up. This step takes another 2 

seconds. Looking at the first 4 seconds of the data, we are able to divide it into 2 separate 

sections that represent both the rest state and the active state. Figure 3.1 shows both the 

time domain plot and frequency domain plot of this data.  

 

Figure 3.1: Time and Frequency Domain Plots of C3 for the first 4 seconds of data capture. 

In the subsequent signal processing techniques, the signal is windowed into 100ms intervals. This gives 

us 20 data points each, for the Rest and Active states. We have 10 lifts per series and 1 series per 

participant. That gives us 40 data points each for Rest and Active. For the 12 participants, we have a 

total of 240 data points for each state and a total of 480 data points.  
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• Power Band Analysis 

The signal is band-pass filtered from 0.5Hz to 50Hz. This represents the frequency band of 

interest that is observable in EEG signals. The signal is then split into TWO 2-second parts. The 

first 2s data represents the ‘Rest’ state and the next 2s data represents the ‘Active’ state. The 

various frequency power bands are computed across the rest and active states. This is 

performed using the periodogram function in MATLAB which is defined as follows: 

𝑃(𝑓) =  
∆𝑡

𝑁
|∑ 𝑥𝑛𝑒−𝑗2𝜋𝑓∆𝑡𝑛

𝑁−1

𝑛=0

|

2

−
1

2
∆𝑡 < 𝑓 ≤

1

2
∆𝑡 Eq. 3.1 

Where ∆𝑡, is the sampling interval, 𝑁 is the number of samples, 𝑓 is the frequency and 𝑥𝑛 is 

each sample. The following box plot in Figure 3.2 shows the power band values when they 

are computed across the entire 2s window of both rest and active. It can be observed that 

both the Alpha and Beta bands exhibit a greater difference in their values when comparing 

the rest and active states. This applies to both the median and the interquartile range of the 

data. 

 
 

Figure 3.2: Plot of C3 channel Power Bands 
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The following Scatter Plots in Figure 3.3 show the data and how they are distributed across 

the different power bands. Each row is represented by PSD values for both rest and active for 

a particular band.  

  

Plot of Alpha-Theta PSD Plot of Gamma-Theta PSD 

Figure 3.3 Scatterplot of PSD values 

It can be observed that the plots between Alpha-Theta PSD exhibit a high degree of 

correlation. The plots of other PSD pairs are similar to the pattern exhibited by the Gamma-

Theta PSD, where they have a high degree of variance. We can now examine the correlation 

coefficients to better this. 

 

• Correlation Coefficient Analysis 

The correlation coefficient between two sets of data is a measurement of their linear 

dependency to each other. The Pearson correlation coefficient can be defined as such: 

𝜌(𝐴, 𝐵) =  
1

𝑁 − 1
∑(

𝐴𝑖 − 𝜇𝐴

𝜎𝐴
) (

𝐵𝑖 − 𝜇𝐵

𝜎𝐵
)

𝑁

𝑖=1

 Eq. 3.2 

 

where 𝜎𝐴 and 𝜇𝐴 relate to the standard deviation and mean of A respectively, and 𝜎𝐵 and 𝜇𝐵 

relate to the standard deviation and mean of B. The coefficient values for the scatterplots are 

as shown in Table 3.1. It can be observed that the correlation coefficients for the Theta-Alpha, 

Alpha-Beta and Theta-Beta bands and high, which indicate that they behave similarly during 

the rest and active states.    
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Table 3.1: Correlation Coefficient Analysis for PSD 

Theta - Alpha 0.9834 

Alpha - Beta 0.8982 

Beta - Gamma 0.2499 

Theta-Beta 0.8273 

Theta-Gamma -0.0210 

Alpha-Gamma 0.0029 

 

• ERD/ERS Analysis 

Event-related potentials (ERPs) represent changes in the signal during the onset of some 

stimuli. These changes can be observed through the analysis of the signal in time, frequency 

or time-frequency domain. The extent to which these signals may change is dependent on an 

individual’s response and is a variable factor. It has been shown [189, 190], that we can 

observe frequency specific power band changes in the time-zone surrounding the onset of an 

event. They reflect the activity that represents an action or imagined action. This 

phenomenon is called ERD/ERS (Event-Related Desynchronization / Event-Related 

Synchronization) and it represents the neuronal activity of a node with respect to itself or 

another node, and across different power bands. The exact behaviour may vary depending 

on the signals being compared. The approach to compute ERD/ERS is given as such: 

1. Bandpass Filtering based on the various trials. 

2. Obtaining the PSD values across the trial 

3. Compute a reference PSD value based on the ‘Rest’ period 

4. Compute ERD/ERS based the following formula 

𝐸𝑅𝐷 𝑜𝑟 𝐸𝑅𝑆 (%) =  
(𝐴 − 𝑅)

𝑅
× 100 Eq. 3.3 

 

where 𝐴 refers to the PSD of interest and 𝑅 refers to the reference PSD. 

The ERD/ERS plot is obtained for C3 during the first 4s of data capture is shown in Figure 3.4. 



77  

 

Fig 3.4: ERD/ERS Plot of C3 

It can be observed that both alpha and beta exhibit synchronization during the Rest period (0 

– 2s) and exhibit desynchronization during the active period (2 – 4s). We can now examine 

ways of extracting meaningful information from the ERD/ERS signals from the alpha and beta 

bands.  

 

3.3.3 Classification Algorithms 

One of the widely used and effective classification algorithms is the kNN. We perform a 10-

fold cross validation using the dataset. In cross-validation, every fold will train the model using 

the in-fold observations and perform a prediction using the observations from the out-fold.  

• Power Band Features 

The kNN model was first trained using the PSD values of the two states. Figure 3.5 shows the 

Scatter Plot and the Confusion Matrix 
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Fig 3.5: Scatter Plot and Confusion Matrix for kNN Classification using Alpha and Beta PSD 

features 

The kfoldLoss (L) which indicates the average loss across all the folds was 0.4104. Using the 

Confusion Matrix, we can calculate the classification accuracy using the formula below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Eq. 3.4 

 

Where TP = True Positive, TN = True Negative, FP = False Positive and FN = False Negative 

The accuracy for the above classification is 
(143+140)

(143+140+97+100)
=

283

480
= 58.96%  

From the Scatterplot, we can observe that there is significant overlap between the datapoints 

for both states, hence the poor accuracy. Further analysis was done using different 

combination of PSD features. Table 3.2 shows the results. 

 

Table 3.2: Plots and Values for various PSD Combinations 

Theta and 

Alpha PSD 

L = 0.4188 

Accuracy = 

58.13% 

 
 

Clustering of Data 
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Beta and 

Gamma PSD 

L = 0.4083 

Accuracy = 

59.66% 

 

 

 

Alpha and 

Gamma PSD 

L = 0.4271 

Accuracy = 

57.29% 

 

 

 

Theta and 

Beta PSD 

L = 0.4063 

Accuracy = 

59.38% 

 

 

 

Theta and 

Gamma PSD 

L = 0.4188 

Accuracy =  

58. 13% 

 

 

 

 

Accuracy Range = 57.29% - 59.17%  

Clustering of Data 

Clustering of Data 

Clustering of Data 

Clustering of Data 
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• ERD/ERS Features 

The kNN model is trained using ERD/ERS features and a similar classification process is carried 

out.  Table 3.3 shows the results obtained for the various Power Bands. 

Table 3.3: Plots and Values for various ERD/ERS Combinations 

Theta and Alpha 

ERD/ERS 

L = 0.1771 
Accuracy = 82.29% 
Sensitivity = 82.16% 
Specificity = 82.43% 
Precision = 82.5% 

 

 
 

Alpha and Beta ERD/ERS 

L = 0.1729 
Accuracy = 82.71% 
Sensitivity = 83.12% 
Specificity = 82.31% 
Precision = 82.08% 

 

 

 

Beta and Gamma 

ERD/ERS 

L = 0.3146 
Accuracy = 68.54% 
Sensitivity = 67.45% 
Specificity = 69.78% 
Precision = 71.67% 

 

 

 

Alpha and Gamma 

ERD/ERS 

L = 0.2708 
Accuracy = 72.92% 
Sensitivity = 73.50% 
Specificity = 72.36% 
Precision = 71.67% 
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Theta and Beta ERD/ERS 

L = 0.2146 
Accuracy = 78.54% 
Sensitivity = 78.19% 
Specificity = 78.90% 
Precision =79.17% 

 

 

 

Theta and Gamma 

ERD/ERS 

L = 0.2417 
Accuracy = 75.83% 
Sensitivity = 75.00% 
Specificity = 76.72% 
Precision = 77.50% 

 

 

 

 

Accuracy Range = 68.54% - 82.71% 
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• Detection of Gamma Peak 

From Figure 3.6, it can be observed that there is a Gamma Peak around the time where the 

Active state occurs.  

 

Fig 3.6: Gamma Peak Observation around Rest/Active Transition 

Integrating the Gamma ERD/ERS values for the classification yields the following results for 

the following two combinations that showed the best results so far. 

Table 3.4: Results for Theta-Alpha-Gamma ERD/ERS features 

 

 

Scatter Plot for Theta-Alpha ERD/ERS 

 

 

Scatter Plot for Alpha-Gamma ERD/ERS 
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Confusion Matrix for Theta-Alpha-Gamma ERD/ERS 

L = 0.1563, Accuracy = 84.38% 

 

Table 3.5: Results for Alpha-Beta-Gamma ERD/ERS features 

 

 

Scatter Plot for Alpha-Beta  ERD/ERS 

 

 

Scatter Plot for Beta-Gamma ERD/ERS 

 

 

Confusion Matrix for Alpha-Beta-Gamma ERD/ERS 

L = 0.1813, Accuracy = 81.88% 
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It can be observed that the results shown in Table 3.4 for the Theta-Alpha-Gamma ERD/ERS 

and in Table 3.5 for the Alpha-Beta-Gamma ERD/ERS are both comparable to the earlier 

results obtained in Table 3.3 where the Gamma PSD features were not included. This is 

because the Gamma signal is not entirely correlated with the Alpha and Beta bands. The peak 

of the Gamma is the key feature to be captured to be an indicator for the Active State. It was 

also observed that the peak occurs within a range of ±100ms from the moment of the Active 

state. 

3.3.4 Novel Signal Processing and Classification Model 

Based on the results gathered, there is a need to detect the Gamma values and correlate its 

peak with the ERD/ERS events happening between the other power bands. The proposed 

model, as shown in Figure 3.7, provides a 50ms delay for each ′𝑧−1′ unit. This allows us to 

capture the windowed signal and perform a slope and peak detection. The output data from 

the block is then fed to the kNN classifier together with the other Power Bands.  

 

Fig 3.7: ERD/ERS with Gamma Peak Classification Model 

• Slope and Peak Detection 

The slope and peak detection are performed using the following steps for a vector 𝑋 with 

length 𝑚. 

Step 1: Diff Computation 

𝐷𝑖𝑓𝑓 (𝑌) = [𝑋(2) − 𝑋(1)   𝑋(3) − 𝑋(2) …    𝑋(𝑚) − 𝑋(𝑚 − 1)] Eq. 3.5 

 

Where 𝑋(𝑚) refers to the 𝑚𝑡ℎ sample 
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Step 2: Moving Average 

Using a window length of 3, the average is computed using the centre value its surrounding 

neighbours using the following approach.  

 

𝜇 =
1

𝑁
∑𝐴𝑖

𝑁

𝑖=1

 Eq. 3.6 

  

Where 𝜇 is the Moving Average, 𝑁 is the number of samples and 𝐴𝑖  is each sample 

Step 3: Peak Detection 

Peak Detection is then carried out by checking each data point across its neighbours. The 

threshold value selected is the median value of the last 5 samples. If the current peak value 

is greater than 30% of the threshold value, it will be detected as a valid peak. Figure 3.8 shows 

an example of the peaks being detected. 

 

Fig 3.8: Plot of C3 ERD/ERS Gamma PSD with Peak Detection Threshold of 1 
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3.4 Results and Discussion 

The results of the improved ERD/ERS model with Gamma Peak are as shown below in Table 

3.6. 

Table 3.6: Results for ERD/ERS with Gamma Peak 

Theta-Alpha-Gamma ERD/ERS 

L = 0.1042 

Accuracy = 89.58% 

Sensitivity = 89.26% 

Specificity = 89.92% 

Precision = 90.00% 

 

 

Alpha-Beta-Gamma ERD/ERS 

L = 0.0771 

Accuracy = 92.29% 

Sensitivity = 92.47% 

Specificity = 92.17% 

Precision = 92.08% 

 

 

 

It can be observed that the overall accuracy is now in the range of 89.58% to 92.29%. This is 

an increase of approximately 7.7% - 7.91%.  

It can be deduced that relying solely on PSD parameters for motor movement classification is 

not practical from the results obtained. The ERD/ERS feature set can provide us with a 

substantial improvement in the overall results. The Gamma peak around the region of active 

movement is an effective indicator of the user's intention. The proposed model with slope 
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and peak detection, combined with temporal shift, can better capture this peak and use it as 

an essential feature in our classifier. A comparative study of the results was performed with 

research papers with comparable results. For datasets that are publicly available, the 

methodology proposed in this paper was used to obtain results to provide a fair comparison. 

The results of this comparative study are summarized in Table 3.7 

 

In [191], the temporal correlation of EEG signals was explored across two different datasets. 

The private dataset was based on finger-tapping. The public dataset [192] pro-vides a rest 

state and active state that comprises four other tasks. The proposed meth-od generated a 

classification accuracy of 81.24% for the Rest and Active states as compared to the accuracy 

of 72.24% - 76.07%. In [193], 25 participants performed 11 different movement tasks and 

multiple physiological signals were captured during the experiments. The classification 

accuracy for the ‘Active’ State task was within the range of 58% - 59%, with a S.D. of around 

0.04. The proposed method generated a classification accuracy of 77.28%. From Table 3.7, 

we can observe that the proposed method has achieved a higher classification accuracy with 

a single channel.  

Table 3.7: Comparison of Results 

Ref Metrics No. of 

Channels 

Dataset Features Classifier 

[191] Accuracy = 72.24% - 73 % 3 [192] LRTC LDA 

[191] Accuracy = 75.69% - 76.07 

% 

3 Private LRTC LDA 

[193] Accuracy = 58% - 59% 60 [193] CSP LDA 

      

*Current 

Paper 

Accuracy = 92.99% 

Sensitivity = 92.47% 

Specificity = 92.12% 

Precision = 92.08% 

 

1 [188] ERD/ERS kNN 
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*Current 

Paper 

Accuracy = 81.24% 

Sensitivity = 80.12% 

Specificity = 79.41% 

Precision = 80.15% 

 

1 [192] ERD/ERS kNN 

*Current 

Paper 

Accuracy = 77.28% 

Sensitivity = 75.51% 

Specificity = 76.43% 

Precision = 76.89% 

 

1 [193] ERD/ERS kNN 

 

Discussion 

It can be seen that the proposed Gamma-Peak methodology is able to generate a feature set 

that is more clearly separable for the various classes. Using a single channel, we are able to 

achieve high-levels of accuracy and demonstrate its consistency across different datasets. We 

will now study methods of decoding and classifying EMG signals. 
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Chapter 4 

EMG Decoding and 

Classification 

Movement of any part of the body is representative of neuromuscular activities. Capturing 

such signals is critical to designing systems that act upon the intent of the user. They also play 

a key role in the rehabilitation assessment process and can help to provide a more objective 

assessment of a patient’s recovery. The use of EEG signals to detect a person’s intention to 

provide rehabilitation was explored in the earlier chapter. In this chapter we will explore 

another approach with the use of EMG signals. 

4. 1 Physical Movement 

The human skeletal muscular framework was first modelled by in 1938 and was known as the 

Hill-type model [93]. Three main electrical elements of series, parallel and contractile were 

used to model and replicate the nature of human muscles. This model was used as the basis 

for the design and implementation of a exoskeleton arm in  [94], and was used in subsequent 

research activities. However, the complexity of the several arm parameters made it 

challenging as they were very dependent on an individual’s physiological characteristics. 

When using EMG signals for rehabilitation, we are in understanding the neuromuscular 

activation that is observed in the various muscles during different activities, such as, 

functional movements, activities of daily living, and training. There are two main classes of 

resistance-training exercises, and they are isometric and isotonic contractions. In the field of 
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rehabilitation, both types of concentrations are widely used, while isotonic contractions are 

commonly observed in areas where the focus is on athletic and strength goals.  

4.1.1 Isotonic 

In isotonic contractions, we will observe muscular contractions that oppose resistance, and 

the length of the muscle will also change. By varying the muscle’s length, the contraction is 

able to generate a force. The type of contraction can be eccentric or concentric. In concentric 

contractions, the muscles tend to shorten [95]. During this time, the tension within the muscle 

is constant [96]. In eccentric concentration, the muscles elongate as they face resistance. 

When the external force is greater than what can be generated by the muscle, it goes through 

a forced lengthening. Many normal activities, like walking, are considered eccentric and are 

thus a popular area of study [97]. Many muscular injuries are also associated with eccentric 

contractions [98].  

4.1.2 Isometric 

In isometric contractions, the muscle length does not change, however, the energy and 

tension within the muscles keep fluctuating, and this allows the production of a force. 

Typically, isometric contractions are observed when there is an action performed towards a 

fixed object without any resultant movement.  

4.1.3 Application of Isotonic and Isometric Contractions 

The study of muscular fatigue and neuromuscular diseases can be performed through EMG 

signals that are obtained through isotonic conditions [99, 100]. Many assistive robotic 

systems, exoskeletons, and lower-limb orthoses, are designed based on isotonic and 

isometric contractions [101, 102]. A wide variety of techniques have been described in various 

literature that focus on applying these signals for the purpose of controlling a rehabilitative 

robotic device [103-106].  

4.1.4 Electromyography (EMG) 

The EMG is a complex signal [107] and has many dependencies on the physiological and 

anatomical properties of the underlying muscles. The most convenient approach to obtaining 

EMG signals is through the surface of the skin. Thus, it is also known as sEMG (surface EMG). 

However, the signals obtained through this method also tend to have a lot of noise due to 
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inputs from other neighbouring motor units. A wide variety of signal processing and feature 

extraction techniques have to be utilized to obtain a detailed analysis of the data obtained. 

In our brains, the nerves conduct electrical potentials to convey information. A similar 

phenomenon is observed with muscles. The motor unit action potential (MUAP) is the 

combined effect of the various muscle fibres associated with a single motor unit. It can be 

modelled using this formula: 

𝑥(𝑛) =  ∑ ℎ(𝑟)𝑒(𝑛 − 𝑟) + 𝑤(𝑛)

𝑁−1

𝑟=ℎ(𝑟)0

 Eq. 4.1 

 

In the formula, 𝑁 is the number of motor units that are firing, 𝑤(𝑛) represents the white 

noise, ℎ(𝑟) represents MUAP, 𝑒(𝑛) is the processed point and 𝑥(𝑛) is the modelled EMG 

signal. Generally, many integrated sensors may perform some basic signal processing 

techniques using some HW. These include amplification, filtering to remove artefacts and 

amplitude detection. They may also provide the raw data to allow custom signal processing 

and feature extraction techniques.  

 

• Signal Overview 

When muscle fibres contract, an electric potential is generated within them, and this is what 

the EMG electrode picks up. EMG sensors are categorized into imEMG (intramuscular EMG) 

and sEMG (surface EMG). Though imEMG sensors can provide signals with better SNR [194], 

their setup is difficult and causes a great deal of discomfort to the user. As a result, the use of 

sEMG signals is a preferred choice for many such applications. The electrodes generally come 

in a pair of poles, though they also have monopole types. The EMG signal generated is greatly 

impacted by the distance between poles and their diameters [195].  

Though the intention of using theses sensors is to explore the electric potentials within the 

nerves, the sEMG electrodes are actually measuring the muscle cell potentials when the 

motor nerves excite them. As there is a high correlation between these two readings [196], 

sEMG provides a practical approach to decoding muscle activity data.  
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The various muscle groups in the forearm are shown in Figure 4.1. Electrodes can be placed 

in a targeted approach where it is positioned exactly above the specific muscle we are 

interested in. It can also be placed in a non-targeted fashion where the location is in the 

vicinity of the specific muscle. It was demonstrated that it is possible for both techniques to 

generate good results if appropriate signal processing and pattern recognition techniques are 

used. 

 

 

Figure 4.1: Longitudinal and transverse representation of the forearm muscles. [194] 

 

• Signal Processing 

Many different approaches have been described by authors in this area, and it is highly 

dependent on the type of sensor used and its related data acquisition hardware. The common 

techniques used are amplification, band-pass filtering and power-line interference 

suppression, and digitization. In amplification, an operational amplifier can be used to provide 

the required gain [197]. As the actual voltages are very small, the amplification can go be in 

the range of a few hundred to a few thousand. The cut-off frequencies, for the band-pass 

filtering can be in the range of 10 to 50Hz for the lower cut-off and around 400 to 500 Hz for 

the upper cut-off [198-200]. The power line interference must also be suppressed. In most 

papers, the authors have chosen to use the notch-filter to easily perform his task. Other 

techniques that have been explored in this area include Regression [201], Spectrum 
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Interpolation [202] and Adaptive Laguerre filters [203].The filtered signal is then digitized for 

further processing. The sampling rate is generally in the 1kHz to 2kHz range.  

 

• Sensor Arrays 

As an alternative to focused electrode placement, sensor arrays allow us to capture signals 

from a range of sensors. This allows us to capture the desired EMG signals from multiple 

sources. Such an approach adds computational complexity to the overall system as well as 

the cost of any practical solution. In [204], the authors used 57 EMG channels. They were able 

to demonstrate a high degree of classification accuracy for the classification of gestures. 

However, continuous retraining was required for each session. High-density electrode arrays 

were studied in [205-207]. These techniques provided a high degree of accuracy with a 

corresponding increase in the post-processing computational power requirements. The 

authors suggested using feature reduction techniques to reduce the number of EMG 

channels. 

 

4. 2 Dataset 

The dataset selected for this research is obtained from Luciw, M et al. [188], and is as 

described in Section 3.2 

 

The 5 EMG sensors were placed on pertinent right arm muscles. The chosen locations were 

the anterior first dorsal interosseus, common extensor digitorum, flexor digitorum, 

brachioradial and the deltoid muscles. The positions of the sensor on a participant can be 

seen in Figure 4.2.  
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Fig 4.2: EMG sensor placement: 1-anterior deltoid, 2-brachioradialis, 3-flexor digitorum, 4-common 

extensor digitorum, 5-first dorsal interosseus 

 

In each trial, the participants performed the same task of moving their arm forward to pick-

up an object to a fixed height. This was cued by an LED being turned ON. When the LED is 

turned OFF, the participant would lower the object and return the arm back to the resting 

state. The sequence of the movements is shown in Fig 4.3. 

 

(a) Initial Rest State 

 

(b) Red LED ON 
 

(c) Reach Forward 

 

(d) Grip 

 

(e) Lift Up 

 

(f) LED Off & Put Down 

 

(g) Pull Back 

 

(h) Back to Rest 

Figure 4.3: Sequence of ARM Movements 

 

The raw data captured from the EMG sensors is shown in Figure 4.4. The green line indicates 

the time where the LED was turned ON, and the red line indicates the time when the LED was 

turned OFF.  
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Fig 4.4: Raw EMG Channels 

4. 3 Signal Pre-Processing 

4.3.1 Band-Pass Filtering 

The raw data is pre-processed to aid in the feature extraction stage. In the first step of pre-

processing, a 4th order Butterworth Bandpass filter with cut-frequencies of 10Hz and 500Hz is 

used. After filtering, the signal still has both positive and negative values. In order to remove 

the negative portion, the signal is rectified by taking the absolute value of the signal.  

 4.3.2 RMS Value 

The EMG time-domain signal is “noisy” with many spikes and troughs at high frequency. In 

order to get a better understanding of the signal’s response, the Root-Mean-Square of the 

Signal is computed. This gives a smoothed response of the data while preserving the 

important transients. The waveforms for the various stages (Anterior Deltoid) are shown in 

Fig 4.5. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Fig 4.5: (a) Raw Data, (b) Filtered Data (c) Rectified Data (d) RMS Data 

 

The complete flow of the signal processing blocks is shown in Figure 4.6 

 

 

Figure 4.6: Signal Pre-Processing Blocks 

 

The original signals with their RMS signals for all the EMG sensors are shown in Fig 4.7 
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Fig 4.7: All EMG Channels – RMS – Red, Raw – Blue 

 

4. 4 Feature Extraction 

4.4.1 Discrete Wavelet Transform 

For any given signal 𝑠 that has a length of 𝑁, the Discrete Wavelet Transform (DWT) will be 

made up of 𝑙𝑜𝑔2𝑁 steps. We start with the original signal 𝑠, and the first step generate two 

sets of coefficients, the Detail Coefficients 𝑐𝐷𝑖  and the Approximation Coefficients 𝑐𝐴𝑖. This 

is obtained by performing a convolution with the high-pass filter 𝐻𝑖𝐷, and the low-pass filter 

𝐿𝑜𝐷. The results of the filtering operation are then down-sampled to obtain 𝑐𝐷𝑖 and 𝑐𝐴𝑖. This 

is shown in Figure 4.8. 
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Figure 4.8: DWT Operation 

A four-level DWT decomposition is performed on the signal and a decomposition vector 

containing the approximation and detailed coefficients is obtained as shown in Figure 4.9. 

 

Figure 4.9: Four-Level DWT Decomposition 

 

In Figure 4.10, we can see the wavelet transformed signals for the AD channel. 
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Figure 4.10: Multilevel decomposition for AD signal 

4.4.2 Entropy 

Entropy is the measure of information contained within a signal. It can be defined as an 

additive function where 𝐸(0) = 0 and  

𝐸(𝑠) =  ∑𝐸(𝑠𝑖)

𝑖

 Eq. 4.2 

 

Where 𝑠𝑖 represents each sample. The entropy values for the various decomposition values 

are as shown in Table 4.1. 

Table 4.1 Entropy value for entire duration 

 AD BR FD CED FDI 

CA1 343.7317 282.1905 142.6223 298.5561 144.2554 

CD1 0.0017 0.00016805 0.00054175 0.00061189 0.0012 

CD2 0.0182 0.002 0.0053 0.0064 0.0098 

CD3 0.1298 0.0198 0.0290 0.0440 0.0430 

CD4 0.4989 0.1347 0.0932 0.1433 0.1082 

 

The values from the CA1 are able to indicate the activation of the various muscles in the arm. 

However, analysis of the entire duration is not suitable in a real-world application where the 

controlled device is required to react in real-time. Furthermore, a single-value attained across 

the entire duration of the trial is not able to distinguish between the various stages of the arm 

movement. 
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4.4.3 Real-Time Signal Processing 

In order to be able to make decisions in real-time, the incoming data is segmented into 

windows of 500ms, giving us a total of 16 windows for the 8s data. Performing the DWT on 

the windows gives us the following waveforms for the AD Channel, as shown in Figure 4.11. 

 

 

 
0ms – 500ms 

 

 
500ms – 1000ms 
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3000ms – 3500ms 
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7000ms – 7500ms 

 

 
7500ms – 8000ms 

Fig 4.11: Wavelet Decomposition of AD over 16 windows (500ms each) 

 

 

In the Tables 4.2 to 4.6, we examine the entropy values obtained for the various windows 

together with the corresponding arm movement. 
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Table 4.2: AD Windowed Entropy 

State (a) (a) (a) (a) (b)-> (c) (c) (d) (d)-> (e) Stay at (e) Stay at (e) (f) -> (g) (g) (g) (g)-> (h) (h) (h) 

𝑐𝐴4 0.91110 0.34336 0.33363 0.30034 16.36376 15.28840 7.29507 -47.8944 9.04632 4.08091 -2.30032 9.08831 0.34709 8.97632 2.71557 0.45164 

𝑐𝐷4 0.01679 0.00806 0.00823 0.01003 0.15978 0.50924 0.62912 0.75110 0.47001 0.65565 0.53610 0.41543 0.29886 0.13052 0.01531 0.01007 

𝑐𝐷3 0.06419 0.03648 0.03471 0.03476 0.99250 2.48889 3.50421 3.84979 3.25261 3.43541 3.59718 2.50890 1.72576 0.66125 0.12275 0.04553 

𝑐𝐷2 0.10285 0.05505 0.05598 0.05096 3.38998 8.37189 11.79911 9.76368 8.40861 11.04215 11.71331 8.11229 5.61222 1.46100 0.46619 0.08729 

𝑐𝐷1 0.10306 0.05079 0.05583 0.04421 4.98423 13.32184 11.55383 10.64924 11.41212 9.37020 12.99664 11.06937 6.77439 3.00313 0.49767 0.06618 

Time(ms) 0 - 500 500 – 1000 1000 – 1500 1500 – 2000 2000 – 2500 2500 – 3000 3000 – 3500 3500 – 4000 4000 – 4500 4500 – 5000 5000 – 5500 5500 – 6000 6000 – 6500 6500 – 7000 7000 – 7500 7500 - 8000 

Label Rest Forward Grip Lift Stay Down Reverse Rest 

 

Table 4.3: BR Windowed Entropy 

State (a) (a) (a) (a) (b)-> (c) (c) (d) (d)-> (e) Stay at (e) Stay at (e) (f) -> (g) (g) (g) (g)-> (h) (h) (h) 

𝑐𝐴4 5.16210 0.48592 0.37935 0.34845 7.01254 6.55060 14.50718 18.85079 18.02945 20.34798 20.01326 16.84822 14.05994 15.29040 12.40804 0.44155 

𝑐𝐷4 0.02013 0.01236 0.00850 0.00800 0.02486 0.02121 0.04023 0.04132 0.04779 0.03582 0.04096 0.04519 0.02842 0.04316 0.05630 0.01144 

𝑐𝐷3 0.10255 0.05297 0.03702 0.03985 0.16798 0.12961 0.29939 0.27845 0.33944 0.22466 0.22211 0.30674 0.18462 0.25694 0.27467 0.05237 

𝑐𝐷2 0.31602 0.08126 0.07307 0.05640 0.66897 0.44841 1.50759 1.32311 1.44717 1.19066 1.22457 1.27348 0.87457 1.12268 1.22657 0.07640 

𝑐𝐷1 0.67267 0.08583 0.06366 0.05911 1.88969 0.82140 5.03684 3.64853 4.49656 3.19691 3.49172 3.27551 3.00454 2.55175 2.48572 0.08067 

Time(ms) 0 - 500 500 – 1000 1000 – 1500 1500 – 2000 2000 – 2500 2500 – 3000 3000 – 3500 3500 – 4000 4000 – 4500 4500 – 5000 5000 – 5500 5500 – 6000 6000 – 6500 6500 – 7000 7000 – 7500 7500 - 8000 

Label Rest Forward Grip Lift Stay Down Reverse Rest 

 

Table 4.4: FD Windowed Entropy 

State (a) (a) (a) (a) (b)-> (c) (c) (d) (d)-> (e) Stay at (e) Stay at (e) (f) -> (g) (g) (g) (g)-> (h) (h) (h) 

𝑐𝐴4 1.37528 1.18288 0.98642 0.94881 2.70466 5.18911 11.66454 12.21466 9.22322 6.76625 4.68005 6.02627 10.86100 9.69764 1.34182 1.13031 

𝑐𝐷4 0.01749 0.01693 0.01655 0.01348 0.02612 0.05976 0.17893 0.17021 0.11332 0.06352 0.04525 0.06825 0.20985 0.24491 0.01224 0.01319 

𝑐𝐷3 0.07363 0.07708 0.06285 0.07167 0.14138 0.30867 1.10515 0.92275 0.63529 0.37314 0.26071 0.38374 0.98991 1.29853 0.06275 0.06143 

𝑐𝐷2 0.13235 0.15533 0.15394 0.18134 0.37379 0.76801 2.30035 2.83001 1.67197 1.50472 0.69083 1.18516 3.13005 3.23651 0.18147 0.18922 

𝑐𝐷1 0.19989 0.28159 0.18917 0.16091 0.40155 1.05962 3.04648 3.19856 2.45254 1.70379 0.71219 1.43605 3.04909 2.24181 0.21695 0.17910 

Time(ms) 0 - 500 500 – 1000 1000 – 1500 1500 – 2000 2000 – 2500 2500 – 3000 3000 – 3500 3500 – 4000 4000 – 4500 4500 – 5000 5000 – 5500 5500 – 6000 6000 – 6500 6500 – 7000 7000 – 7500 7500 - 8000 

Label Rest Forward Grip Lift Stay Down Reverse Rest 
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Table 4.5: CED Windowed Entropy 

State (a) (a) (a) (a) (b)-> (c) (c) (d) (d)-> (e) Stay at (e) Stay at (e) (f) -> (g) (g) (g) (g)-> (h) (h) (h) 

𝑐𝐴4 8.35882 5.33607 3.67097 3.92296 3.98115 12.82452 16.59909 18.97961 18.50493 18.27692 17.71798 18.90394 17.76524 13.32908 9.30891 2.44950 

𝑐𝐷4 0.08215 0.03392 0.03008 0.03250 0.04600 0.10603 0.22788 0.25735 0.23074 0.22295 0.19845 0.24297 0.27050 0.12679 0.08446 0.01610 

𝑐𝐷3 0.42425 0.21818 0.15764 0.18438 0.22622 0.64857 1.34424 1.21965 1.04731 1.21371 0.99124 1.43898 1.56317 0.71224 0.48718 0.09148 

𝑐𝐷2 1.09159 0.83345 0.72043 0.57446 0.53421 1.64606 3.92332 3.23371 3.34492 3.19086 3.13588 3.93788 4.99656 2.25924 1.55168 0.31778 

𝑐𝐷1 2.20308 1.59933 0.89519 1.16740 0.67816 2.76358 5.36669 4.27777 4.00822 4.17105 4.08770 5.15076 6.56204 3.03656 2.09344 0.56143 

Time(ms) 0 - 500 500 – 1000 1000 – 1500 1500 – 2000 2000 – 2500 2500 – 3000 3000 – 3500 3500 – 4000 4000 – 4500 4500 – 5000 5000 – 5500 5500 – 6000 6000 – 6500 6500 – 7000 7000 – 7500 7500 - 8000 

Label Rest Forward Grip Lift Stay Down Reverse Rest 

 

Table 4.6: FDI Windowed Entropy 

State (a) (a) (a) (a) (b)-> (c) (c) (d) (d)-> (e) Stay at (e) Stay at (e) (f) -> (g) (g) (g) (g)-> (h) (h) (h) 

𝑐𝐴4 2.73608 0.82797 0.94037 0.61297 2.54765 5.10758 -0.65546 14.45859 12.08920 11.13030 11.19211 6.64524 4.75710 3.63076 1.34840 0.96100 

𝑐𝐷4 0.01569 0.01481 0.01511 0.01197 0.03125 0.15125 2.10429 0.51755 0.46759 0.27082 0.31516 0.18141 0.12184 0.09035 0.01699 0.01653 

𝑐𝐷3 0.08920 0.06495 0.07540 0.04870 0.17433 0.63757 7.94533 2.21787 1.96381 1.45338 1.37258 0.86377 0.52406 0.35296 0.08361 0.08073 

𝑐𝐷2 0.23332 0.14608 0.18607 0.10230 0.33671 1.03470 13.00275 4.08079 3.73848 2.80962 2.82053 1.34603 1.00400 0.51874 0.17312 0.18509 

𝑐𝐷1 0.28012 0.15379 0.15541 0.11508 0.42542 1.10977 7.78838 3.22486 3.25561 2.05462 1.95008 1.08259 0.90156 0.43353 0.15355 0.12566 

Time(ms) 0 - 500 500 – 1000 1000 – 1500 1500 – 2000 2000 – 2500 2500 – 3000 3000 – 3500 3500 – 4000 4000 – 4500 4500 – 5000 5000 – 5500 5500 – 6000 6000 – 6500 6500 – 7000 7000 – 7500 7500 – 8000 

Label Rest Forward Grip Lift Stay Down Reverse Rest 

 

 

The states represent the position and movement of the arm during the various stages of the trial.   They can be translated to the labels shown 

in the last row of each table.  These labels will be used in the training and testing of the ML model. 
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4. 5 Machine Learning & Classification 

4.5.1 Data Preparation 

The data is first prepared by arranging the data and labels according to the specific 

classification we wish to perform. At the first level, a classification of both the ‘Rest’ and 

‘Active’ states is performed as this is critical in the application of such systems in a natural 

setting. We will take 1s data of the ‘Rest’ state and 1s data from the ‘Active’ state for each of 

the EMG sensors. The label set will also be prepared to represent the states. Table 4.7 shows 

the data for the AD channel. 

Table 4.7: Input Data and Label for ‘Rest’ and ‘Active’ State 

Input 

𝑐𝐴4 0.33363 0.30034 16.36376 15.28840 

𝑐𝐷4 0.00823 0.01003 0.15978 0.50924 

𝑐𝐷3 0.03471 0.03476 0.99250 2.48889 

𝑐𝐷2 0.05598 0.05096 3.38998 8.37189 

𝑐𝐷1 0.05583 0.04421 4.98423 13.32184 

Output Label 
1 1 0 0 

0 0 1 1 

 

 

4.5.2 Neural Network 

A feedforward neural network of 3 layers and 1 hidden layer is first created. The hidden layer 

is programmed to have 10 neurons. The layout is as shown in Fig. 4.12. 

 

Fig. 4.12: ANN Model 

The entire dataset is split into 3 sections: 70% for Training, 15% for Validation and 15% for 

Testing. The results for the various channels are shown in Table 4.8. 
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Table 4.8 Classification Accuracy for Individual Channels 

AD Channel 

 

 

 

 

 

Overall Classification Accuracy: 88.5% 

BR Channel 

 

 

 

 

 

Overall Classification Accuracy: 76.7% 
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FD Channel 

 

 

 

 

 

Overall Classification Accuracy: 66.7% 

CED 

 

 

 

 

 

Overall Classification Accuracy: 79.9% 
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FDI 

 

 

 

 

 

Classification Accuracy = 67.5 % 

 

It can be seen that the AD Channel has the highest classification accuracy of 88.5%. As the AD 

channel corresponds to the shoulder area, it naturally has a great deal of activity when the 

arm starts to move forward from the rest state. A similar approach is taken to differentiate the 

Forward / Reverse actions and the Raise/Lower actions of the arm. The results are as shown below in 

Table 4.9. 

Table 4.9: Classification Accuracy Summary 

EMG Channel Forward / 

Reverse 

Raise / 

Lower 

AD 78.9% 87.9% 

BR 76.5% 61.3% 

FD 73.1% 62.1% 

CED 52.9% 77.8% 

FDI 49.5% 83.5% 

 

The raise and lower actions can be accurately classified using the AD, CED and FDI channels, 

while the forward and reverse actions can be classified using the AD, BR and FD channels.  
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4.6 Unified Model 

In order to improve the accuracy of EMG-based classification, the correct sensor signals 

should be used for the various actions. The proposed unified EMG model, as shown in Fig. 

4.13, utilizes this approach to deliver high classification accuracies. 

 

Fig 4.13: Unified EMG Classification Model 

 

The model has five stages. 

• Stage 1 

In this stage the raw EMG data is captured using appropriate sensor hardware. 

• Stage 2 

Here, the Band-Pass filtering, RMS feature extraction, DWT coefficient computation and 

Entropy calculations are performed.  

• Stage 3 

 In Stage 3, the Network to classify Rest/Active is first utilised. The output of this network is 

then used to ‘Enable’ the two other Networks only if it classified the data as representing the 

‘Active’ state. This would help prevent unnecessary computation during the ‘Rest’ state of the 

system. 

• Stage 4 

Here, two separate networks process the features in parallel. The network for the Forward 

and Reverse classification received the BR, AD and FD features while the network for the raise 

and lower classification receives the CED, AD and FDI. Both these networks receive these 
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features with a 500ms delay (window size). This allows the outcome from Stage 3 and its 

associated data to arrive at the same time in Stage 4.  

• Stage 5 

In this final stage, the outputs are updated according to the received data. 

 

4.7 Results & Discussion 

From Table 4.9, we can see that the accuracy for the Rest/Active classification remains the 

same as before. This is because the same AD channel is used for the network. The 

forward/reverse accuracy has increased from 78.9% to 91.9%, while the raise/lower accuracy 

has increased from 87.9% to 93.5%.  

 

Table 4.9: Classification Accuracy of Unified Model 

State Accuracy 

Rest / Active 88.5% 

Forward / Reverse 91.9% 

Raise / Lower 93.5% 

 

The increase in the classification accuracy is due to networks being trained with a synergy of 

channels that presented the highest accuracy in the individual stages. The proposed model 

is able to decode the selected channels based upon the active state of the sensors. 

 

4.8 Conclusion 

A comparison of state-of-the-art is shown in Table 4.10. In [208], the authors used Deep 

Learning to classify open/close and various finger movements. An accuracy of 93% was 

achieved, though their approach was computationally complex and required the use of 2 EMG 

channels. In [209], the use of Temporal Convolutional Networks (TCN) for up to 8 EMG 

channels was investigated for hand and finger movements, yielding accuracy results of 

89.76%. [210] investigated the use of a hybrid Convolutional Neural Network (CNN and 

Recurrent Neural Network (RNN) on different datasets and achieved accuracies ranging from 

87% to 99%. 
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Table 4.10: Comparison of State-of-the-Art 

Ref. Number of Channels Accuracy 

[208] 2 93% 

[209] 8 89.76% 

[210] 8 – 16 87% - 99% 

 

 

The proposed model is able to deliver a high level of accuracy using only 5 EMG channels. The 

layered approach allows the use of specific EMG channels for targeted activities. It also 

provides a means of putting the unused blocks in a low-power mode when the system is in 

the ‘Rest’ state. The results are promising and the future work of this would be the 

implementation of the proposed algorithm on a stand-alone embedded board. 

Now that we have obtained a good understanding of these physiological signals and their 

associated signal processing and classification techniques, we can go deeper into developing 

a more robust architecture that more efficiently understands these signals. 

Publication: 

Motor State Classification based on Electromyography (EMG) Signals using Wavelet Entropy 

and Neural Networks 

2021 International Conference on Computational Science and Computational Intelligence 

(CSCI) 2021-12 | Conference paper 

DOI: 10.1109/csci54926.2021.00248 

CONTRIBUTORS: Ravi Suppiah; Khalid Abidi; Noori Kim; Anurag Sharma 
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Chapter 5 

FIS-LSTM Network 

In Chapters 3 and 4, we performed signal processing and machine learning on EEG and EMG 

signals. The ML techniques at that time used data that was sampled at specific instances of 

time and analyzed how the extracted features represented the intention of the user. To be 

able to make sense of these feature changes over a time-interval, a more holistic approach 

would be to analyze the data over the timeframe of the entire action. In this chapter we will 

apply this approach to both EEG and EMG signals. 

5.1 EEG ANALYSIS 

EEG signals exhibit both time and frequency changes in specific electrode regions associated 

with the type of activity or stimulus. To fully understand the changes in these signals, we need 

to be able to analyze its change over a subset of time. This requires a solution that has the 

ability to remember and detect specific patterns in the signals over time. The Long Short-Term 

Memory (LSTM) is a network that is able to achieve this objective. It has been utilized in the 

analysis of various time-series data which are representative of many biological signals [211, 

212]. LSTM has also been utilized in many other applications that require memory and the 

“context” of the data with respect to its past. Natural Language Processing (NLP) is such an 

example. 

 

LSTM Architecture 

An LSTM network, as shown in Figure 5.1, is a form of Recurrent Neural Network (RNN). RNN’s 

are able to effectively learn short-term dependencies but they have an issue with long-erm 
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dependencies. LSTM’s were designed to address the issue so that it can effectively learn both 

short and long term patterns in the data [213].  

 

Fig 5.1: LSTM Layer Architecture 

Figure 5.2 illustrates the manner in which data flows through a LSTM layer. It shows a time 

series 𝑋, with 𝐶 features (channels) with a length of 𝑆. The cell state at any time step 𝑡, is 

denoted by both ℎ𝑡 and 𝑐𝑡. The various cell-state components are described in Table 5.1. 

The initial state of the LSTM block is used for the first LSTM block, together with the first-time 

step of the feature sequence. At any time-step 𝑡, there is a new set of inputs. Each LSTM block 

uses the current network state ( 𝑐𝑡−1, ℎ𝑡−1) to compute the output and provided the updated 

cell state 𝑐𝑡. The hidden state (output state) at time step 𝑡, provides the LSTM layer output 

for that particular time step. Information learned from previous time steps is contained within 

the cell state. The cell state is constantly updated to either add or remove information from 

it. This is achieved through the use of Gate. The hidden state and the cell state of each layer 

are controlled by the following components. 

Table 5.1: Cell State Components of LSTM Network 

Component Purpose 

Input Gate (𝒊) Control level of cell state update 

Forget Gate (𝒇) Control level of cell state reset (forget) 

Cell Candidate (𝒈) Add information to cell state 

Output Gate (𝒐) Control level of cell state added to hidden 

state 
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The flow of data at a particular time step 𝑡, is shown below.  

 

Fig 5.2: LSTM Cell 

The input weights 𝑾, the recurrent weights 𝑹,   and the bias 𝒃, are the learnable weights of 

the LSTM layer. These inputs are concatenated to form the following matrices 𝑾,𝑹 and 𝒃. 

Further concatenation of the matrices give us the following: 

𝑊 =

[
 
 
 
𝑊𝑖

𝑊𝑓

𝑊𝑔

𝑊𝑜]
 
 
 
, 𝑅 =

[
 
 
 
𝑅𝑖

𝑅𝑓

𝑅𝑔

𝑅𝑜]
 
 
 
, 𝑏 =

[
 
 
 
𝑏𝑖

𝑏𝑓

𝑏𝑔

𝑏𝑜]
 
 
 

, Eq. 5.1 

At any time, the state of the cell is given by 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 Eq. 5.2 

 

The hidden state is computed as 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜎𝑐(𝑐𝑡) Eq. 5.3 

The state activation function is represented by 𝜎𝑐. The LSTM function uses the hyperbolic 

tangent function (tanh) to compute the state activation function.  

The formulae in Table 5.2 are used to compute the components at time 𝑡. 

Table 5.2: Activation Formulae for Cell State Components of LSTM Network 

Component Formula  

Input Gate (𝒊) 𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) Eq. 5.4 

Forget Gate (𝒇) 𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) Eq. 5.5 
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Cell Candidate (𝒈) 𝑔𝑡 = 𝜎𝑐(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) Eq. 5.6 

Output Gate (𝒐) 𝑜𝑡 = 𝜎𝑔(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) Eq. 5.7 

 

The gate activation function 𝜎𝑔 uses the sigmoid function defined as 

𝜎(𝑥) = (1 + 𝑒−𝑥)−1 Eq. 5.8 

 

Dataset 

The authors have used the dataset provided in [188] in this research, as described in Section 

3.2 

 

Data Preparation 

The chosen dataset has a wide variety of 'Series' that allows the participants to use different 

weights with the same surface (weight series) or use the same surface with different weights 

(surface series). There are 3 different sets of weight used, 165g, 330g and 660g. In the 

following analysis, three series from each participant using the 330g weight is extracted. A 

single weight is chosen to ensure that the experimental setup is consistent across all the 

participants. In each series, there are 10 lifts with the expected weight. Each lift starts with a 

Rest period of 2s, followed by a forward movement of 2s. The action is triggered when the 

participant observes an LED being ON. The weight is held in a fixed position until the LED goes 

OFF. After that, the weight is lowered, and the arm returns to its original position. All the 

participants performed their trials using the Right Arm. It corresponds with the C3 channel of 

the EEG electrode placement. The remaining analysis will be performed using this channel 

alone to reduce the system's overall complexity. This analysis focuses on using the EEG signals 

to decode the arm's FOUR different actions: Forward, Grip & Lift, Down & Release, Reverse. 

The time-lines of these events can be seen in Figure 5.3. 
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Figure 5.3: CH3 Data for Trial Duration with Event Markers 

For the Forward and Reverse actions, 2s of data was used in the analysis, while for the Grip 

and Release actions, 0.5s of data was selected. Figures 5.4-5.5 show the overlapped signals 

for these two event pairs.  

 

Fig 5.4: CH3 Data for the Forward (Blue) and Reverse (Red) movements 

 



117  

 

Fig 5.5: CH3 Data for the Grip_Up (Blue) and Release_Down (Red) movements 

The above data pairs are extracted for all the trials for all 12 participants and arranged into 

cells as required by the lstm MATLAB library. In the first phase, the normalized time domain 

data is used to train the LSTM network. 

5.2 LSTM Training and Testing 

The LSTM Network was configured to have 100 cells with two fully connected layers. The 

processed data was split into 70% Training and 30% Testing sets. Both training and testing 

was done for 50 epochs with 10-fold cross validation being performed. Accuracy, Recall, 

Precision and F1-Score were computed based on the True Positive (TP), True negative (TN), 

False Positive (FP) and False Negative (FN) values.  

 

Forward – Reverse Analysis 

Figure 5.6 shows the Training and Testing Phase for the LSTM Network. 
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(a) Training Phase 

 

 

(b) Testing Phase 

Fig 5.6: LSTM performance for Training (a) and Testing (b) Phase 
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The confusion matrix for the training and testing phases are shown in Figure 5.7. 

 

 

 

(a) Training 

Accuracy = 66.3% 

Precision = 70.9% 

Recall = 55.4% 

 

 

(b) Testing 

Accuracy = 65.1% 

Precision = 66.7% 

Recall = 60.5% 

Fig 5.7: Confusion Matrix for Training (a) and Testing (b) 

As can be seen, the classification accuracy based on raw time domain data is quite low, in 

the range of 65.1% - 66.3%.  
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Grip_Up – Release_Down Analysis 

Figure 5.8 shows the Training and Testing Phase for the LSTM Network. 

 

 

(a) Training Phase 

 

 

(b) Testing Phase 

Fig 5.8: LSTM performance for Training (a) and Testing (b) Phase 
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The confusion matrix for the training and testing phases are shown in Figure 5.9. 

 

 

 

(a) Training 

Accuracy = 72.3% 

Precision = 68% 

Recall = 84.2% 

 

 

(b) Testing 

Accuracy = 59.3% 

Precision = 60.5% 

Recall = 53.5% 

Fig 5.9: Confusion Matrix for Training (a) and Testing (b) 
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Time and Frequency Features 

Table 5.3 shows the formulae for the time and frequency domain features that were 

computed.  

Table 5.3: Time and Frequency Domain Features 

Feature Formula  Symbols 

Mean 
𝜇 =

1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 Eq. 5.9 
N: Number of 

Samples 

𝑥𝑖: Each Sample 

𝜇: Mean 

𝑓: frequency 

∆𝑡: Sample 

Interval 

Skewness 

𝑆 =

1
𝑁

∑ (𝑥𝑖 − 𝜇)3𝑁
𝑖=1

(
1

𝑁 − 1
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 )

3
2⁄
 Eq. 5.10 

Power Spectrum 

Density (PSD) 𝑃(𝑓) =  
∆𝑡

𝑁
|∑ 𝑥𝑛𝑒−𝑗2𝜋𝑓∆𝑡𝑛

𝑁−1

𝑛=0

|

2

    Eq. 5.11 

 

The PSD was computed for the various bands, Delta (0.5 – 4Hz), Theta (4 – 8Hz), Alpha (8 – 

12Hz), Beta (12 – 30Hz), and Gamma (30 – 50Hz). The Forward and Reverse movements had 

2s of data each, while the Grip and Release movements each had 1s of data each. Table 5.4 

shows the various testing results obtained for the features using various window sizes ranging 

from 50ms to 250ms after performing 10-fold cross-validation with the dataset. The highest 

classification accuracy of 73.8±1.2%, as highlighted in the table, was obtained for the Alpha 

PSD feature with a 50ms window.  

Table 5.4: LSTM Classification accuracy (Forward & Reverse) for different window size 

Feature 10ms 25ms 50ms 100ms 150ms 200ms 

Time-Series 60.2±1.2% 59.3±1.3% 61.5±3.1% 59.7±1.2% 54.1±1.2% 49.3±1.6% 

Mean 61.7±1.1% 61.3±1.9% 60.3±2.1% 58.5±1.5% 52.3±1.9% 48.9±1.5% 

Skewness 60.3±2.1% 60.4±1.8% 60.7±1.5% 55.3±1.9% 50.2±1.3% 48.3±1.4% 

Theta PSD 51.7±1.2% 53.3±2.5% 58.2±1.3% 52.4±1.2% 51.9±2.3% 50.7±1.9% 

Alpha PSD 62.2±1.7% 67.3±1.7% 73.8±1.2% 64.9±2.2% 57.3±1.7% 53.1±1.2% 

Beta PSD 59.2±1.2% 59.9±2.3% 68.5±1.9% 54.6±2.2% 52.8±1.8% 49.5±1.6% 

Gamma PSD 57.7±1.7% 56.2±1.6% 58.9±2.2% 51.8±1.9% 45.9±1.3% 45.5±1.7% 
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Figure 5.10 shows the PSD values for the different windows for the Alpha Channel. From the 

results in Table 5.4, it can be observed that the accuracy is highest for the Alpha PSD channel 

for a 50ms window. As the accuracy is highest for the 50ms window, PSD analysis will focus 

on this window size. 

 

 
 

Figure 5.10: Alpha PSD Distribution for 50ms Window 

 

Table 5.5: LSTM Classification accuracy (Grip_Up & Release_Down) for different window size 

Feature 10ms 25ms 50ms 100ms 150ms 200ms 

Time-Series 51.4±2.4% 50.1±1.3% 53.2±1.8% 47.2±1.9% 45.3±1.2% 39.5±2.2% 

Mean 55.3±1.1% 56.1±1.9% 50.9±2.1% 43.5±1.5% 40.2±1.9% 38.1±1.5% 

Skewness 59.5±2.1% 54.5±1.8% 51.2±1.5% 45.6±1.9% 41.2±1.3% 38.3±1.4% 

Theta PSD 60.5±1.2% 61.3±2.5% 56.4±1.3% 51.7±1.2% 48.2±2.3% 42.7±1.9% 

Alpha PSD 60.5±1.7% 61.8±1.7% 69.3±1.2% 50.2±2.2% 47.1±1.7% 43.1±1.2% 

Beta PSD 53.2±1.2% 54.4±2.3% 61.2±1.9% 49.4±2.2% 45.2±1.8% 42.5±1.6% 

Gamma PSD 50.1±1.7% 51.2±1.6% 56.8±2.2% 48.2±1.9% 43.2±1.3% 41.5±1.7% 
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The highest classification accuracy of 69.3±1.2%, as highlighted Table 5.5, was obtained for 

the Alpha PSD feature with a 50ms window.  However, the classification accuracy is low and 

more analysis needs to be done. Figure 5.11 shows the Alpha distribution for the 50ms 

window. 

 

 
 

Figure 5.11: Alpha PSD Distribution for 50ms Window 

It can be observed from Figure 5.11, that the GripUp and RelDown movements have a similar 

PSD distribution through time. This explains the low classification accuracy. 

 

Further Analysis of PSD Bands 

We can observe the Alpha and Beta Bands overlay in Figure 5.12. 

 

 
 

 

 
 

Figure 5.12: Alpha and Beta Overlays for Forward and Reverse Action 
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The key step would be to obtain a unified value that uses both the Alpha and Beta PSD values 

for each movement. This brings us to the next phase of this research. 

5.3 Fuzzy Logic 

Fuzzy Logic allows us to relate classes of objects without clearly defining any boundaries. It 

classifies objects based on membership functions that are formed as a matter of degree. It 

can also be viewed as a methodology for interpreting descriptive words rather than numbers, 

and in this manner, it is able to very closely approximate human reasoning. This give a very 

good balance between significance and trade-off. 

Fuzzy Sets and Membership Functions 

The basic idea that drives fuzzy systems are fuzzy sets. In normal set theory, elements that 

are assigned a value of 1 are interpreted to be a belonging to the set 𝑋, while those elements 

with a value of 0 do not belong to set 𝑋. 

𝜇𝑎 = 𝑋 → {0,1} Eq. 5.12 

 

In a fuzzy set, we are able to add flexibility to the rules and this allows a more human-like 

interpretation of the data. This can be achieved by allowing values in-between 0 and 1.  

�̅� = {(𝑥, 𝜇𝑎(𝑥))|𝑥 ∈ 𝑈} Eq. 5.13 

 

Where 𝜇𝑎(𝑥) is a membership function (MF) of �̅�, where �̅� is a fuzzy set in the universe 𝑈. 

The membership function is what determines the degree of participation of each input. Each 

input has a weighted value which ay have some overlap with other inputs. The output value 

is finally determined using a set of rules that interpret these inputs. Some examples of 

Membership Functions (MF) are shown in the Figure 5.13. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.13: Types of Membership Function: (a) Gaussian, (b) Sigmoid, (c) Triangular 

Fuzzy Operations 

As shown in Figure 5.14, we can also perform Logical Operations such as, AND, OR and NOT, 

on Fuzzy Sets. The same logical concepts as digital logic applies, except that now we apply it 

to the MFs. 
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Figure 5.14: AND and OR operators for MFs 

Fuzzy Classification 

Fuzzy Classification is performed using a set of if-then rule statements that make use of 

fuzzy logic. In its simplest form, you can take it as such: 

𝐼𝑓 𝑥 𝑖𝑠 𝐴, 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵 

You can add many fuzzy inputs and multiple rules to the system. 

𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑧 𝑖𝑠 𝐺 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵 

 

There are two-steps to interpret the if-then rules. 

Step 1: Antecedent Evaluation: This involves fuzzifying the inputs and applying the necessary 

fuzzy operators 

Step 2: Applying the result to the consequent 

 

Defuzzification 

The fuzzy inputs and the membership functions generate a range of output values that 

encompasses all of them. This must be defuzzified to obtain a single output value. There are 

many techniques available, and the most commonly used one is the centroid method. As 
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shown in Figure 5.15, This approach computes the center of the area of the whole area under 

the combined fuzzy set output.  

 

Figure 5.15: Defuzzification using Centroid Method 

 

5.4 Applying Fuzzy Logic to EEG Signals 

Observation of the Alpha and Beta PSD Signals for the Forward and Reverse Actions, it can be 

noted that there is a underlying behavioral pattern. However, unifying them to a single value 

is challenging with traditional methods. Fuzzy Logic provides a means to interpret it in a more 

interpretable form based on its natural fluctuations. 

Methodology 

Step 1: Initialization 

We first initialize a Mamdani Fuzzy Inference System (FIS). Such a system allows us to 

generate a final fuzzy output which can then be utilized in the next phase of the LSTM 

network. 

Step 2: Membership Functions (MF) 

We define membership functions to map the raw PSD values to new outputs based on the 

MF. A Gaussian MF was selected with PSD values in the range of 0 – 100 with an interval of 

10 for values from 0 – 60 and with an interval of 20 beyond that. This was applied to both the 

Alpha and Beta PSD Bands. The MF of Alpha PSD is shown in Figure 5.16. 
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Fig 5.16: MF of Alpha PSD 

Step 3: Specifying Rule Base 

In this step, we specify the rules that will fuse the Alpha and Beta PSD values to generate a 

single psd_score. 

Table 5.6: Rule Base for Alpha and Beta PSD values 

Rule #1 "If alpha is vvlow and beta is vvlow then psd_score is vvlow" 

Rule #2 "If alpha is vlow and beta is vlow then psd_score is vlow" 

Rule #3 "If alpha is lmedium and beta is lmedium then psd_score is lmedium" 

Rule #4 "If alpha is mmedium and beta is mmedium then psd_score is 

mmedium" 

Rule #5 "If alpha is hmedium and beta is hmedium then psd_score is 

hmedium" 

Rule #6 "If alpha is high and beta is high then psd_score is high" 

Rule #7 "If alpha is vhigh and beta is vhigh then psd_score is vhigh" 

Rule #8 "If alpha is high and beta is vlow then psd_score is mmedium" 

Rule #9 "If alpha is high and beta is vvlow then psd_score is lmedium" 

Rule #10 "If alpha is vhigh and beta is vlow then psd_score is hmedium" 

Rule #11 "If alpha is vhigh and beta is vvlow then psd_score is mmedium" 

Rule #12 "If alpha is vvlow and beta is high then psd_score is hlow" 

Rule #13 "If alpha is vvlow and beta is vhigh then psd_score is mmedium" 
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Rule #14 "If alpha is vlow and beta is high then psd_score is lmedium" 

Rule #15 "If alpha is vlow and beta is vhigh then psd_score is hmedium" 

 

Step 4: Completing the FIS 

 

The FIS model is complete when all the blocks are interconnected. The surface plot gives a 

pictorial view of the interpretation of the rules. The complete FIS model and its surface plot 

can be seen in Figure 5.17. 

 

 

 

 

 

Figure 5.17: Complete FIS Model and Surface Plot 
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Testing and Results 

The raw Alpha and Beta PSD values are fed into the FIS model and the output is generated 

as shown below in Figure 5.18. 
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Fig 5.18: Alpha and Beta Raw PSD Values and their corresponding  

PSD Score from the FIS Model 

The PSD Score is then used as the input for the LSTM model and the results are as shown in 

Figure 5.19. 
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Fig 5.19: Results for FIS+LSTM Model (Forward/Reverse Action) 

We are able to achieve a classification accuracy of up to 94.2% for the Forward/Reverse 

Action. This is an approximately 28% improvement from using the LSTM with Time-Series 

Data and 20% improvement from using LSTM raw PSD Data. 
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5.5 EMG ANALYSIS 

EMG signals exhibit both time and frequency changes in the specific sensors that are 

associated with the type of activity or stimulus. To fully understand the changes in these 

signals, we need to be able to analyze the signal over a subset of time. This requires a solution 

that has the ability to remember and detect specific patterns in the signals over time. The 

Long Short-Term Memory (LSTM) is a network that is able to achieve this objective. It has 

been utilized in the analysis of various time-series data which are representative of many 

biological signals [211, 212]. LSTM has also been utilized in many other applications that 

require memory and the “context” of the data with respect to its past. Natural Language 

Processing (NLP) is such an example. 

 

Sensor Placement 

The 5 EMG sensors were placed on pertinent right arm muscles. The chosen locations were 

the anterior first dorsal interosseus, common extensor digitorum, flexor digitorum, 

brachioradial and the deltoid muscles. The positions of the sensor on a participant can be 

seen in Figure 5.20.  

 

Fig 5.20: EMG sensor placement: 1-anterior deltoid, 2-brachioradialis, 3-flexor digitorum, 4-

common extensor digitorum, 5-first dorsal interosseus  



135  

In each trial, the participants performed the same task of moving their arm forward to pick-

up an object to a fixed height. This was cued by an LED being turned ON. When the LED is 

turned OFF, the participant would lower the object and return the arm back to the resting 

state. The sequence of the movements is shown in Fig 5.21. 

 

(i) Initial Rest State 

 

(j) Red LED ON 

 

(k) Reach Forward 

 

(l) Grip 

 

(m) Lift Up 

 

(n) LED Off & Put 

Down 

 

(o) Pull Back 

 

(p) Back to Rest 

Fig 5.21: Sequence of Actions performed by Participant 

The raw data captured from the EMG sensors is shown in Figure 5.22. The markers for the 

LEDOn, LEDOff, GripUp and RelDown are shown.  
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Fig 5.22: Raw EMG Data with Time Markers 

The data is then filtered and the RMS is computed. The waveforms are as shown below in 

Figure 5.23. 
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Fig 5.23: RMS Data (Red) with Raw EMG Data (Blue) with Time Markers 

 

5.6 LSTM Training and Testing 

The LSTM Network was configured to have 100 cells with two fully connected layers. The 

processed data was split into 70% Training and 30% Testing sets. Both training and testing 

was done for 50 epochs with 10-fold cross validation being performed. Accuracy, Recall, 

Precision and F1-Score were computed based on the True Positive (TP), True negative (TN), 

False Positive (FP) and False Negative (FN) values.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Eq. 5.14 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 Eq. 5.15 

 

In the first stage, the raw RMS values are used to train and test the LSTM network. 
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Forward – Reverse Analysis for AD channel 

Figure 5.24 shows the Training and Testing Phase for the LSTM Network. 

 

 

(a) Training Phase 

 

 

(b) Testing Phase 

Fig 5.24: LSTM performance for Training (a) and Testing (b) Phase 

The confusion matrix for the training and testing phases are shown in Figure 5.25. 
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Accuracy = 48.5% 

Precision = 49.2% 

Recall = 92.1% 

 

 

 

Accuracy = 50.0% 

Precision = 50.0% 

Recall = 100% 

Fig 5.25: Confusion Matrix for Training and Testing Phase 

As can be seen, the classification accuracy based on RMA time domain data is very low, in 

the range of 48.5 – 50.0%.  The RMS time-series analysis was carried out for the remaining 

EMG sensors. The results are as shown in Table 5.7.  
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Table 5.7: Forward/Reverse Classification Accuracy for RMS Time-Series Data 

Channel Accuracy Range F1-Score 

AD 48.5% - 50.0% 0.4855 

BR 47.2% - 49.3% 0.4723 

FD 44.7% - 50.5% 0.4632 

CED 45.6% - 48.2% 0.4511 

FDI 43.3% - 47.5% 0.4387 

 

As can be observed, using a single channel’s EMG RMS time-series is not very effective to 

provide a high level of classification accuracy for the Forward / Reverse motion. 

 

Grip_Up – Release_Down Analysis 

The methodology is repeated for the Grip Up / Release Down analysis. Figure 5.26 shows 

the Training and Testing Phase for the LSTM Network. 

 

 

(a) Training Phase 
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(b) Testing Phase 

Fig 5.26: LSTM performance for (a) Training and (b) Testing Phase 

 

The confusion matrix for the training and testing phases are shown in Figure 5.27. 

 

 

 

Accuracy = 51.0% 

Precision = 50.5% 

Recall = 93.1% 
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Accuracy = 50.0% 

Precision = 50.0% 

Recall = 100.0% 

Fig 5.27: Confusion Matrix for Training and Testing Phase 

The RMS time-series analysis was carried out for the remaining EMG sensors. The results are 

as shown in Table 5.8. 

Table 5.8: GripUp / RelDown Classification Accuracy for RMS Time-Series Data 

Channel Accuracy Range F1-Score 

AD 50.0% - 51.0% 0.4921 

BR 49.1% - 50.2% 0.4865 

FD 45.2% - 49.5% 0.4521 

CED 44.2% - 49.1% 0.4344 

FDI 42.9% - 46.4% 0.4289 

 

As can be observed, using a single channel’s EMG RMS time-series is not very effective to 

provide a high level of classification accuracy for the GripUp / RelDown motion. 
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5.7 Applying Fuzzy Logic to EMG Signals 

Observation of the RMS Signals for the Forward and Reverse Actions, it can be noted that 

there is a underlying behavioral pattern. However, unifying them to a single value is 

challenging with traditional methods. Fuzzy Logic provides a means to interpret it in a more 

interpretable form based on its natural fluctuations. We first analyze the EMG signals for all 

5 sensors for the different windows. Figure 5.28 shows the Forward movement window for 

all EMG channels. It can be observed from the figure, that the range of the values of each of 

the sensors in distinct. In order to fuse these signals together in the FIS, the range has to 

uniform. The first step is to perform a normalization and keep all sensor values in the range 

of 0 to 1.  

 

 

(a) Actual 

 

 

(b) Normalized 

Figure 5.28: EMG RMS values for all 5 sensors 

With these normalized values, we can now proceed with the creation of the FIS.   
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Methodology 

Step 1: Initialization 

We first initialize a Mamdani Fuzzy Inference System (FIS). Such a system allows us to 

generate a final fuzzy output which can then be utilized in the next phase of the LSTM 

network. 

Step 2: Membership Functions (MF) 

We define membership functions to map the raw RMS values to new outputs based on the 

MF. As shown in Figure 5.29, a Gaussian MF was selected with RMS values in the range of 0 – 

1 with an interval of 0.2 for all values.  This was applied to both the Forward and Reverse 

movements across all five channels. 

 

 

Fig 5.29: MF of AD Sensor 

Step 3: Specifying Rule Base 

Table 5.9 specifies the rules that will fuse the AD, FD and BR values to generate a single 

emg_score. 

Table 5.9: Rule Base for AD, BR and FD RMS values (Forward / Reverse) 

Rule #1 "If ad is vlow and br is vlow then emg_score is vlow" 

Rule #2 "If ad is mlow and br is mlow then emg_score is lmedium"; 

Rule #3 "If ad is hmedium and br is hmedium then emg_score is hmedium"; 
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Rule #4 "If fd is vlow and br is vlow then emg_score is vlow"; 

Rule #5 "If fd is mlow and br is mlow then emg_score is lmedium"; 

Rule #6 "If fd is hmedium and br is hmedium then emg_score is hmedium"; 

Rule #7 "If ad is high and br is high then emg_score is high"; 

Rule #8 "If ad is vhigh and br is vhigh then emg_score is vhigh"; 

Rule #9 "If ad is high and br is vlow then emg_score is mmedium"; 

Rule #10 "If fd is high and br is high then emg_score is high"; 

Rule #11 "If fd is vhigh and br is vhigh then emg_score is vhigh"; 

Rule #12 "If fd is high and br is vlow then emg_score is mmedium"; 

Rule #13 "If ad is vhigh and br is vlow then emg_score is hmedium"; 

Rule #14 "If ad is vlow and br is high then emg_score is lmedium"; 

Rule #15 "If ad is vlow and br is vhigh then emg_score is hmedium"; 

 

Step 4: Completing the FIS 

The FIS model is complete when all the blocks are interconnected. The surface plot gives a 

pictorial view of the interpretation of the rules. The complete FIS model and its surface plot 

is shown in Figure 5.30. For the interpretation of the Forward and Reverse movements, only 

the AD, BR and FD channels are used. 

 

 

 

 

Figure 5.30: Complete FIS Model and Surface Plot 
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Testing and Results 

The raw AD, BR and FD RMS values are fed into the FIS model and the output is generated. 

Figure 5.31 shows the RMS values (left column) and the generated RMS scores (right column). 

 

 

 

 

 

 

 

 

 

Fig 5.31: AD, BR and FD channel RMS values and their corresponding EMG Score from the 

FIS Model 

The EMG Score is then used as the input for the LSTM model and the results are computed. 

We are able to achieve a classification accuracy of up to 95.1% for the Forward/Reverse 

Action. This is an approximately 45% improvement from using the LSTM with Time-Series RMS 

Data. 
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Analysis of GripUp & RelDown movements 

A similar analysis is done for the GripUp and RelDown movements. For these actions, the FD, 

CED and FDI channels are more prominent and are used in the FIS rules, as shown in Table 

5.10. 

Table 5.10: Rule Base for AD, BR and FD RMS values (GripUp / RelDown) 

Rule #1 "If ced is vlow and fdi is vlow then emg_score is vlow" 

Rule #2 "If ced is mlow and fdi is mlow then emg_score is lmedium"; 

Rule #3 "If ced is hmedium and fdi is hmedium then emg_score is hmedium"; 

Rule #4 "If fd is vlow and fdi is vlow then emg_score is vlow"; 

Rule #5 "If fd is mlow and fdi is mlow then emg_score is lmedium"; 

Rule #6 "If fd is hmedium and fdi is hmedium then emg_score is hmedium"; 

Rule #7 "If ced is high and fdi is high then emg_score is high"; 

Rule #8 "If ced is vhigh and fdi is vhigh then emg_score is vhigh"; 

Rule #9 "If ced is high and fdi is vlow then emg_score is mmedium"; 

Rule #10 "If fd is high and fdi is high then emg_score is high"; 

Rule #11 "If fd is vhigh and fdi is vhigh then emg_score is vhigh"; 

Rule #12 "If fd is high and fdi is vlow then emg_score is mmedium"; 

Rule #13 "If ced is vhigh and fdi is vlow then emg_score is hmedium"; 

Rule #14 "If ced is vlow and fdi is high then emg_score is lmedium"; 

Rule #15 "If ced is vlow and fdi is vhigh then emg_score is hmedium"; 

The FIS model and its surface plot are as shown in Figure 5.32. 

 

 

 
 

Figure 5.32: FIS Model and Surface Plot for FD & FDI channels (GripUP / RelDown) 
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In Figure 5.33, we can see the raw EMG signals and the combined emg_score obtained 

through the FIS.  

 

 

 

 

 
 

 

 

 

Figure 5.33: FD, CED and FDI channel RMS values and their corresponding  

EMG Score from the FIS Model 

 

The EMG Score is then used as the input for the LSTM model and the results are computed. 

We are able to achieve a classification accuracy of up to 96.7% for the GripUp/Release Action. 

This is an approximately 47% improvement from using the LSTM with Time-Series RMS Data. 

 

A comparative study was performed to evaluate the effectiveness of LSTM against other Deep 

Learning Techniques such as Convolutional Neural Networks (CNN) and Deep-Belief Networks 

(DBN). For the proposed Long Short-Term Memory (LSTM) network, the average accuracy was 
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95.9% with an F1 score of 0.9467. For the DBN, the accuracy achieved was 92.3% with an F1 

score of 0.9021, and for the CNN, the accuracy was 88.1% with an F1 score of 0.8213. The 

Receiver Operator Characteristic (ROC) [214] is a probability curve that plots the True-Positive 

(TP) against the False-Positive (FP). The area under the ROC, referred to as the Area Under 

the Curve (AUC) is the measure of the ability of a classifier to distinguish between different 

classes. The higher the AUC, the better the performance of the model at distinguishing 

between the positive and negative classes. It can be seen from Figure 5.34 that the AUC for 

the LSTM network is greater than the CNN and DBN. 

 
Figure 5.34: AUC for comparison of Deep Learning Methods 

 
 

6.8 FOUR-WAY Classification using FIS+LSTM Model 

In the final phase, 4-way classification is done with the data. Leveraging on the existing 

methodology, the FIS Rules are updated to incorporate all the rules for both Forward/Reverse 

and GripUp/RelDown action pairs. 

 

Figure 5.35 shows the various emg_scores obtained through the combined FIS model. 
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Figure 5.35: EMG scores obtained through the combined FIS model 

With the combined FIS model, the overall classification accuracy for the various actions are 

as shown in Table 5.11 and Figure 5.36. 

Table 5.11: Classification Accuracy for Various Movements 

Movement Accuracy 

Forward 91.3±0.7% 

Reverse 90.1±1.1% 

GripUp 89.5±0.9% 

RelDown 88.9±0.6% 
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Figure 5.36: Four-Way Classification Accuracies 

The associated confusion matrix is as shown in Fig 5.37. 

 

Fig 5.37: Four-Way Classification Accuracy 

A comparison study was also performed to evaluate the proposed methodology using other 

deep learning networks and classifiers, such as CNN, DBN, Support Vector Machine (SVM), k-

Nearest Neighbour (kNN), and the Artificial Neural Network (ANN). With the same features 
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and Fuzzy Rule Base, the following networks were tested: Fuzzy+CNN, Fuzzy+DBN, 

Fuzzy+SVM, Fuzzy+kNN, and Fuzzy+ANN. The classification accuracy results are shown in 

Figure 5.38. In Table 5.12 we can observe the critical network parameters together with the 

average four-class classification accuracies for them. 

 

 

Figure 5.38: Four-Class Accuracy Comparison 

 

The classification results are shown in Table 5.12.  

Table 5.12: Accuracy and F1-Score 

Classifier Accuracy F1-Score 

Fuzzy+LSTM 

Parameters: 

HiddenUnits: 100, StateActivation: tanh, 

GateActivation: sigmoid 

90.4±2.4% 0.8992 

Fuzzy+CNN 

Parameters: 

ConvolutionalLayers: 3, maxPoolingLayers: 3, Solver: 

Stochastic Gradient Descent with Momentum (SGDM) 

88.9±1.3% 0.8805 

Fuzzy+DBN 

Parameters: 

ActivationFunction: tanh, Momentum: 0.5, Output: 

Sigmoid 

88.1±2.3% 0.8785 

Fuzzy+SVM 

Parameters: 

Kernel Function: Linear, Solver: Iterative Single Data 

Algorithm (ISDA) 

87.5±1.6% 0.8621 
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Fuzzy+kNN 

Parameters: 

Distance: Euclidean, NumNeighbours: 6 

85.8±2.9% 0.8454 

Fuzzy+ANN 

Parameters: 

Hidden Layer: 1, Num of Neurons: 10 

88.1±1.9% 0.8623 

 

Conclusion 

In this chapter, we have explored the use of integrating Fuzzy Logic with LSTM to classify 

physiological signals. It can be seen that the proposed methodology is able to achieve high 

classification accuracies for 4-classes. We will now look at improving the overall design further 

to incorporate other real-world characteristics of physiological signals. 
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Chapter 6 

BIO-inspired-Fuzzy-

Inference-System 

(BIOFIS) 
 

In this chapter, we introduce the novel Bio-Inspired-Fuzzy-inference-System. We will discuss 

the motivation behind the creation of this system, review its design and implementation 

details, and finally benchmark its performance across other Neuro-Fuzzy Inference Systems. 

 

6.1 Motivation 

The earlier chapters outlined several techniques employed to perform the various aspects of 

a complete system. These include signal processing, feature extraction, machine learning and 

classification. In terms of signal processing and feature extraction, several techniques have 

been explored: such as Discrete Wavelet Transform and Power Spectral Density. We have 

looked at fusing these signals together through Fuzzy Inference System with rules formed by 

observation and understanding of the underlying physical phenomena. The gap in these 

current techniques is that the features that are extracted from sensor data may not be 

consistent across different individuals. This is especially so when there are underlying physical 

and neuro-muscular issues, such as physical injury, stroke, lesions, etc.  
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The aim of BIOFIS is to: 

• detect signals that are prominent based on each individual’s underlying neuro-

muscular state 

• extract and unify features across different data points  

• select the most prominent features while discarding the rest to simplify the overall 

architecture 

• auto-generate fuzzy-inference-rules based on these features 

• employ short-term memory blocks to capture the temporal characteristics of the 

features 

 

The overall design of the BIOFIS model is shown in Figure 6.1



156  

6.2 Design & Implementation 

 

Figure 6.1: BIOFIS Model 

 

The labels for the different signals of the system are as described in Table 6.1. 
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Table 6.1: Terms used in BIOFIS Model 

𝑋[𝑛] Multi-channel Physiological Data 

𝑛 represents the n-th channel. 

𝑊[𝑛]
𝑖  Windowed feature set where 𝑛 represents the 

channel and 𝑖 represents the 𝑖𝑡ℎ window. 

𝑍[𝑗] Fuzzy Clusters generated dynamically by the 

features.  

𝑍𝑗
𝑖  Fuzzified output window generated by  

𝑊[𝑛]
𝑖  input using 𝑍[𝑗] clusters and inference rules  

𝑌𝑖 Fuzzified output window. 𝑖 represents the output of 

each fuzzy rule 

𝑉𝑛1,𝑓1
1  weight between 𝑛𝑡ℎ  node of 3rd layer and  𝑓𝑡ℎ 

hidden node of 4th layer from ith  channel 

𝑉𝑓𝑖,𝑓𝑗

2  weights between 𝑓𝑖
𝑡ℎ, 𝑓𝑗

𝑡ℎ  hidden node of 4th layer 

and 𝑓𝑖
𝑡ℎ, 𝑓𝑗

𝑡ℎ  hidden node of 5th layer 

𝐶𝑖𝑗
1  Weighted combination of inputs from all possible 

data streams  

𝐶′𝑖𝑗
1  Selected features based on feature ranking 

𝑉3 LSTM Network trained on selected features 

𝑉4 Output Classifier Label 

𝑛𝑐 Number of channels of data 

𝑛𝑜 Number of samples per data vector 

 

1st Layer – Signal Processing & Feature Extraction 

An appropriate bandpass filter is applied to the input signals  

𝑋[𝑛], to extract and focus on the frequency range of interest. For EEG signals, the range of 0 

to 50Hz while for EMG signals, a range of 0 – 500Hz is used. After filtering, feature extraction 

techniques are employed. These include operations like Power Spectral Density (PSD), 

Wavelet Entropy (DWT), etc. The data that is obtained after the filtering and feature 

extraction, 𝐖 ∈ ℝ𝑛𝑝×𝑛𝑐, are used as inputs to the second layer. 
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2nd Layer – Dynamic Fuzzy Inference System 

In this stage, we first perform Fuzzy C-means (FCM) clustering. FCM is a clustering method 

that allows each data point to belong to multiple clusters with varying degrees of 

membership. This allows us to naturally identify natural groupings of data from a large dataset 

to produce a representation that is more concise and relatable to the systems behaviour. To 

determine the optimal number of clusters, the Calinski-Harabasz clustering evaluation 

criterion is used. Well-defined clusters are those that generate a large between-cluster 

variance and a small within-cluster variance. The system will also automatically generate the 

fuzzy inference rules based on the clusters and the relationship between the input data and 

the output labels. In Fig 6.2, we can observe the membership functions automatically created 

using the clusters and the input/output data. 

 

 

 

 

Fig 6.2: Generation of fuzzy inference rules based on the input/output data 

 



159  

3rd Layer – Short Term Memory 

Physiological signals exhibit temporal relationships and the network must be able to capture 

these events to gain a better understanding of these signals.  The proposed network, a serial-

in, parallel-out shift register memory is used to keep the data for short window. The size of 

the window is configurable and can be set based on the characteristics of the signal being 

captured. The fuzzified data 𝑍[𝑗] is passed to a rectangular window  

𝑓𝑤 to produce 𝑍𝑗
𝑖. The rectangular window function is computed using equations (6-1) and (6-

2). 

 𝑓𝑤(𝑛) ≜ {
1   𝑠𝑡 ≤ 𝑛 ≤ 𝑁
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 6.1 

 

 𝑍𝑖
𝑗
= 𝑓𝑤(𝑛)𝑍[𝑗];   ∀ 𝑛 ∈  [𝑠𝑡, 𝑁] Eq. 6.2 

  

Where 𝒁𝑖
𝑛 denotes the nth sample of the ith channel of the windowed data and 𝑠𝑡 is the start 

point of the window. 

Z is represented as the input to the 3rd layer.  

 𝑍 =  [𝑧𝑖, … . . 𝑧𝑛𝑐
] Eq. 6.3 

 

4th & 5th Layers – Connectivity Features 

In this layer, we connect feature vectors formed from different windows across different input 

streams. This allows us to capture relationships across different sensors placed in different 

parts of the body.  

However not all the extracted features (𝐶𝑖𝑗
1 ) are relevant and might have an adverse effect on 

the classifier. Furthermore, if there are a high number of features, then the next layer would 

be computationally heavy and inefficient. To reduce the number of selected features, the 

class separability criteria is used in this research. 
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The class separability factor for each feature is measured using the histograms of the feature 

vectors for both classes. The features are then sorted in descending order of the distances 

(larger distance = better separability = lower error). Following that, a significant number of 

features 𝑛𝑜 are selected. The value of 𝑛𝑜 is selected based on the largest gap in the sorted 

table. 

The indices of the most significant features are then used to generate the output for the 5th 

layer using equation (6-4)   

 𝚰 ∈  {0,1}𝑛𝑜 , =  𝚰 =  𝑓𝑟(𝑐
′, 𝑛𝑜), Eq. 6.4 

Where the 𝑓𝑟 denotes the feature ranking function and 𝚰 denotes the indices of activated 

hidden nodes at the 4th layer. These selected features would then be the inputs for the next 

layer. 

6th Layer – Classification 

An LSTM network is a form of Recurrent Neural Network (RNN). RNN’s are able to effectively learn 

short-term dependencies but they have an issue with long-erm dependencies. LSTM’s were designed 

to address the issue so that it can effectively learn both short- and long-term patterns in the data. The 

LSTM network will generate the output label 𝑉4. 

7th Layer – Evaluation 

The output label is then compared with the class labels to generate the classification results. 

Based on the results, the network will adjust the number of clusters dynamically and 

reevaluate the results. This is an iterative process until the most optimum number of clusters 

is obtained. 

Learning & Testing 

The learning process consist of the following stages. 

Stage 1: Performing the necessary Signal Processing and Feature Extraction Techniques 

Stage 2: Initiate the Fuzzy Network with 2 clusters and generate the inference rules. 

Stage 3: Generate interconnections within signals formed from temporal differences within 

the same sensor and from different sensors. 
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Stage 4 & 5:  Perform a ranking from the features and select the top N features as the once 

that demonstrate the most significant class separability. 

Stage 6: Train the LSTM network based on the data generated from Stage 5 

Stage 7: Evaluate the trained network. 

 

6.3 Evaluation of BIOFIS based on Physiological Data 

As mentioned in the earlier sections, the physiological data is obtained from existing dataset. 

The signal processing and feature extraction techniques are as what has been described 

before. The performance of the BIOSFIS network was compared against other networks and 

techniques. The results for EEG data are shown in Table 6.2 and those for EMG data are shown 

in Table 6.3. 

Table 6.2: Summary of Feature Selection and Classification Techniques for EEG Data 

Classifier – Feature Selection Classification Accuracy 

Accuracy (%) Precision (%) F1-score 

BIOFIS – ERD/ERS 98.16±1.15 97.76±1.62 0.9782 

BIOFIS – PSD 95.12±1.11 94.98±1.36 0.9691 

BIOFIS – Moving Average 89.47±0.37 88.41±1.43 0.8981 

BIOFIS – Wavelet Coefficients 85.34±0.75 83.28±1.28 0.8412 

kNN – ERD/ERS 89.18±0.69 89.13±0.94 0.8807 

kNN – PSD 90.51±1.39 88.56±1.02 0.8942 

kNN – Moving Average 85.28±0.73 83.12±1.19 0.8476 

kNN – Wavelet Coefficients 80.16±1.15 78.34±1.34 0.7865 

SVM – ERD/ERS 91.23±1.29 90.25±1.11 0.8932 

SVM – PSD 89.51±1.86 89.14±0.37 0.8734 

SVM – Moving Average 86.28±0.27 82.34±0.74 0.8595 

SVM – Wavelet Coefficients 80.25±0.41 80.06±0.59 0.7805 

LSTM – ERD/ERS 92.91±1.43 90.43±1.22 0.9105 

LSTM – PSD 90.45±1.07 89.91±0.56 0.8804 

LSTM – Moving Average 87.45±0.97 87.23±0.11 0.8602 
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LSTM – Wavelet Coefficients 85.22±0.45 83.15±0.24 0.8498 

ANFIS – ERD/ERS 90.48±0.69 90.12±0.73 0.8909 

ANFIS – PSD 89.93±0.45 88.78±1.68 0.8843 

ANFIS – Moving Average 88.25±1.17 87.25±1.25 0.8751 

ANFIS – Wavelet Coefficients 87.78±1.22 86.23±1.13 0.8673 

 

Table 6.3: Summary of Feature Selection and Classification Techniques for EMG Data 

Classifier – Feature Selection Classification Accuracy 

Accuracy (%) Precision (%) F1-score 

BIOFIS – RMS 97.18±1.16 97.09±1.64 0.9742 

BIOFIS – PSD 93.22±1.30 94.03±0.82 0.9471 

BIOFIS – Moving Average 89.47±0.98 88.41±0.98 0.8893 

BIOFIS – Wavelet Coefficients 84.49±0.74 82.45±1.35 0.8314 

kNN – RMS 90.18±0.98 89.13±0.42 0.8945 

kNN – PSD 90.51±1.17 87.67±1.29 0.8975 

kNN – Moving Average 85.28±1.24 83.12±1.17 0.8431 

kNN – Wavelet Coefficients 78.56±1.57 77.56±1.78 0.7793 

SVM – RMS 90.32±0.51 89.35±1.13 0.8909 

SVM – PSD 87.72±0.73 87.36±0.80 0.8702 

SVM – Moving Average 85.42±1.82 81.52±0.41 0.8352 

SVM – Wavelet Coefficients 79.45±0.15 79.26±0.14 0.7906 

LSTM – RMS 91.92±0.60 90.43±1.96 0.9103 

LSTM – PSD 90.45±1.74 89.01±1.73 0.8904 

LSTM – Moving Average 87.45±1.29 86.36±1.58 0.8675 

LSTM – Wavelet Coefficients 85.22±0.96 83.15±0.55 0.8464 

ANFIS – RMS 88.67±0.68 88.32±0.53 0.8892 

ANFIS – PSD 86.03±0.22 86.89±0.91 0.8678 

ANFIS – Moving Average 87.37±1.57 87.25±1.17 0.8719 

ANFIS – Wavelet Coefficients 89.03±1.66 88.51±1.29 0.8892 
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For each classifier the feature that generated the highest accuracy is extracted for easier 

comparison. In the EEG domain the extracted combinations are: BIOFIS - ERD/ERS 

(98.16±1.16), kNN - PSD (90.51±1.39), SVM - ERD/ERS (91.23±1.29), LSTM – ERD/ERS 

(92.91±1.43), ANFIS – ERD/ERS (90.48±0.69). These results are shown in Figure 6.3. 

 

Fig 6.3: EEG Four-Class Accuracy for All Movements 

In the EMG domain, the extracted combinations are: BIOFIS – RMS(97.18±1.16), kNN-PSD 

(90.51±1.17), SVM – RMS (90.32±0.51), LSTM – RMS (91.92±0.60), ANFIS – Wavelet 

Coefficients (89.03±1.66). These results are shown in Figure 6.4. 

 

Fig 6.4: EMG Four-Class Accuracy for All Movements 
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6.4 Applications of BIOFIS 

One of the key requirements for a rehabilitative system is to be able to adapt itself to 

individuals who may have physiological signals impaired due to many reasons such as stroke, 

lesions, injury, etc.   The testing and results of BIOFIS demonstrate that it is able to outperform 

other models built using a combination of feature-sets and machine learning techniques.  

A feature ranking is first performed using the Minimum Redundancy Maximum Relevance 

(MRMR) algorithm. This algorithm aims to find an optimal feature set that is both mutually 

and maximally dissimilar, while being able to effectively represent the response variable 

effectively. The feature ranking is as shown in Figure 6.5. 

 

 

Figure 6.5: Feature Ranking of topmost EEG features 

It can be seen that the first five predictors, Channels C3, C4, Cz, FC1 and CP1 have the 

greatest predictor importance scores for the EEG features.  
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Figure 6.6: Feature Ranking of EMG features for the Forward/Reverse Movement 

The feature ranking for the EMG data is shown in Figure 6.6. It can be seen that the AD channel 

has a significantly higher importance than the rest of the channels.  

 

6.5 Reduced Physiological Signals 

In order to measure the performance of the system in an environment where the signals are 

diminished we selected the top-ranking feature and removed it from the system in both the 

training and testing phase. For the EEG domain, the C3 channel was removed and for the EMG 

domain, the AD channel was removed. Figures 6.7 shows the classification accuracy for these 

cases. 

 

 

 

 

Figure 6.7: Classification accuracy with Key Feature Reduced 
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In both cases, it can be seen that the BIOFIS model outperforms the other classifiers in the 

reduced feature set experiment. In the EEG domain the classification accuracy dropped to 

90.06±1.66%, a drop of about 8% from the full feature set. In the EMG domain, the 

classification accuracy dropped by around 12% to 85.18±2.26%. In the EEG feature set, there 

were other channels beside C3 with a high predictor importance score, and this allowed the 

system to still retain a high accuracy score with the reduced feature set. In the EMG feature 

set, the AD channel had a significantly higher importance score compared to the channels. AS 

such, the overall accuracy dropped further as compared to the EEG domain. These results 

demonstrate that the BIOFIS system is able to naturally adapt itself to the nature of the 

physiological signals that it is exposed to without being overly reliant on any particular group 

of signals. In a rehabilitative setting, such a system will be able to learn the limitations of the 

signals generated by individuals and train itself to maximize its classification accuracy using 

the available signals. 

 

6.6 Alternate Dataset 

NinaPro-DB7 

Myoelectric and Inertia (IM) data was collected from 12 sensors placed on the arm.  Eight 

sensors were equally spaced around the forearm, two were placed to target the extrinsic hand 

muscles, and the other two were placed on the biceps and triceps muscles. Data were 

collected from 20 subjects who performed a series of 40 motions, including individuated-

finger, hand, wrist, grasping and functional movements. Each movement was repeated six 

times and trials were interleaved with sufficient resting periods. Using sEMG signals alone, a 

classification accuracy of 60.0 ± 11.5% was achieved across all subjects and classes in  [215]. 

 

NinaPro-DB1 

sEMG and kinematic signals of the hand and wrist were obtained from 27 healthy subjects 

performing a total of 52 hand movements. These include basic finger movements, isometric 

and isotonic hand configurations and grasping and functional movements. Eight active 

electrodes are uniformly placed around the forearm. Two additional sensors are placed on 
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the large flexor and extensor muscles of the forearm. An average classification accuracy of 

75.7 ± 4.5% was achieved across all subjects and classes [216]. 

 

Assessment of BIOFIS with Alternate Datasets 

The BIOFIS model was tested using these datasets with the various combinations of the model 

with different combinations of feature extraction methods. The RMS and PSD features 

produced this highest classification accuracies as shown below:  

NinaPro-DB7: RMS -> 78.9±1.6%, PSD -> 75.1±2.7% 

NinaPro-DB1: RMs -> 87.3±2.3%, PSD -> 83.7±1.9% 

The results, as summarized in Table 6.4, demonstrate that the proposed model is able to 

outperform the state-of-the-art. 

Table 6.4: Highest Classification Accuracies for Alternate Datasets 
 

 RMS PSD 

NinaPro-DB7 78.9±1.6% 75.1±2.7% 

NinaPro-DB1 87.3±2.3% 83.7±1.9% 

 

The results demonstrate that the proposed model is able to outperform the state-of-the-art. 
 

Ablation Study 

It can ben seen from the results that the proposed BIOFIS model is able to consistently 

outperform existing methods with high levels of classification accuracy. To further understand 

the significance of the model, we perform an ablation study to understand it significant 

contributions. 

The BIOFIS model has 3 main sections that be used in this study. They are 

- Fuzzification of Input Features 

- Short-Term Memory and Connectivity Features 

- Feature Ranking 
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We proceed to remove each of these sections individually to understand its impact on the 

overall performance of the system. 

In the removal of the fuzzification component, we directly feed the feature set into the short-

term memory blocks of the system which are then processed as before. In the case of the 

short-term memory and connectivity features, we directly feed the fuzzified features into the 

feature ranking block. When we remove the feature ranking block, the connectivity features 

are sent directly to the LSTM block. Tables 6.5 and 6.6 show the results of this study for EEG 

and EMG features respectively. We use the features that generated the highest classification 

accuracy for the complete BIOFIS model. 

Table 6.5: BIOFIS Ablation Study for EEG Features 

Classifier – Feature Selection Classification Accuracy 

Accuracy (%) Precision (%) 

BIOFIS – ERD/ERS 98.16±1.15 97.76±1.62 

BIOFIS – ERD/ERS with fuzzification removed 72.32±3.15 71.85±2.47 

BIOFIS – ERD/ERS with short-term memory 

and connectivity features removed 

71.56±1.21 72.82±1.42 

BIOFIS – ERD/ERS with feature ranking 

removed 

83.63±2.49 82.18±0.56 

 

Table 6.6: BIOFIS Ablation Study for EMG Features 

Classifier – Feature Selection Classification Accuracy 

Accuracy (%) Precision (%) 

BIOFIS – RMS 97.18±1.16 97.09±1.64 

BIOFIS – ERD/ERS with fuzzification removed 74.86±2.05 73.19±0.92 

BIOFIS – ERD/ERS with short-term memory 

and connectivity features removed 

73.94±1.09 73.94±3.13 

BIOFIS – ERD/ERS with feature ranking 

removed 

84.81±1.73 83.26±1.92 

 



169  

The study is repeated with reduced physiological signals, as described in Section 6.5. The 

results are as shown in Tables 6.7 and 6.8. 

Table 6.7: BIOFIS Ablation Study for EEG Features with C3 removed 

Classifier – Feature Selection Classification Accuracy 

Accuracy (%) Precision (%) 

BIOFIS – ERD/ERS 90.06±1.66 90.56±1.62 

BIOFIS – ERD/ERS with fuzzification removed 65.47±2.06 62.98±1.99 

BIOFIS – ERD/ERS with short-term memory 

and connectivity features removed 

63.78±2.76 64.15±1.46 

BIOFIS – ERD/ERS with feature ranking 

removed 

56.78±1.48 53.97±0.93 

 

Table 6.8: BIOFIS Ablation Study for EMG Features with AD removed 

Classifier – Feature Selection Classification Accuracy 

Accuracy (%) Precision (%) 

BIOFIS – RMS 85.18±2.26 86.01±0.74 

BIOFIS – ERD/ERS with fuzzification removed 64.35±1.36 61.92±0.38 

BIOFIS – ERD/ERS with short-term memory 

and connectivity features removed 

62.83±1.04 62.58±2.39 

BIOFIS – ERD/ERS with feature ranking 

removed 

55.24±0.93 54.12±1.82 

 

6.7 Discussion 

The BIOFIS model has been shown to be able to generate high classification accuracies across 

different datasets. It outperformed existing techniques by a significant margin. This 

performance can be attributed to the three main blocks of the model. Firstly, it is the dynamic 

fuzzy clustering model that generates a fuzzy output from the features. The rule-base used in 

the process closely resembles our understanding of the physiological signals and their 

behavior. With fuzzified signals, we are able to better represent the nuances of the various 
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channels in a more natural way. Next, the short-term memory block and the connectivity 

features mimic the natural flow of the physiological signals in our body. In our body, anytime 

a neuron fires, it activates other neurons around it within a time-window. The firing strength 

of each neuron is dependent on many other neurons around it. This natural phenomenon is 

replicated by this block as it establishes a relationship between various nodes. Finally, the 

feature ranking block allows the model to rank features based on their significance. This 

ensures that only those features that are important affect the final outcome. These unique 

features of the BIOFIS model have enabled it to consistently generate high accuracy results. 

The ablation study reveals some important characteristics about the model. With the full set 

of features, the feature ranking feature has a lesser effect on the classification accuracy. The 

accuracy dropped to around 83%-84%with the feature ranking removed, compared to the 

range of 71%-72% with the fuzzy clustering and short-term memory sections removed. 

However, in the case of the reduced feature set, we can see that the feature ranking feature 

had the most impact on classification accuracy, dropping to the range of 54%-56% when it 

was removed, compared to 62%-64% when the fuzzy clustering and short-term memory 

sections removed. This shows that while all three blocks are critical, the feature-ranking block 

plays a significant role, especially in the real-world scenario where the user may have a 

reduced set of features due to underlying physiological conditions. 

 

6.8 Conclusion 

In Chapters 3 to 6, we have developed advanced models to analyze and efficiently classify 

physiological signals to decode the user’s intention. The high classification accuracies 

obtained from real-world scenarios demonstrate the effectiveness of the proposed methods. 

These results have been obtained through the use of high-powered computing systems with 

extensive resources. In a practical rehabilitative device, the solution would need to be 

compact and built into a standalone system that is portable. This requires the use of an 

embedded computing platform that would be able to perform advanced signal processing 

and machine learning algorithms. We will study this approach in the next chapter. 

  



171  

Chapter 7 

Edge Computing 

7.1 Overview 

In this final chapter, we will look at applying signal processing and machine learning techniques 

onto an embedded platform. This step allows to realize the potential of porting complex 

algorithms onto a device that can act on its own without the need for cloud connectivity. It 

allows us to create a stand-alone rehabilitative device that can really benefit from the extensive 

research in this area. 

 

Artificial Intelligence is an umbrella term for all the studies that aim to replicate human 

reasoning with computer systems. You use aspects of this technology every day in a wide 

range of applications, such as facial recognition and voice recognition, autonomous driving, 

stock market trading, disease symptom detection, predictive maintenance, handwriting 

recognition, content distribution on social media, detection of fraudulent credit card 

transactions, machine translation and shopping recommendations. Machine Learning is a 

subset of Artificial Intelligence that refers to a computerized system capable of using relevant 

data to improve at a specific task. Machine Learning involves two steps, the training step and 

the inference step. During the training step, the machine uses past or known data to train a 

model and calculate the "learning" parameters of the model. During the prediction or 

inference step, the machine uses the trained model with the trained parameters to make 

predictions from new data that were unavailable when the machine was trained. This new 

data could be arriving in real time, for example as new images from a camera or as an audio 

stream from a microphone. In supervised learning, labeled datasets — such as images of fruit 

labeled with the type of fruit — are used to train the models. The inference step uses the 

previously trained model and predicts the output, ideally in real time. The model can also 
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include the feature extraction that is processed on the input data. Usually, the training step 

must be performed on a desktop computer as it is the most computationally intensive task. 

On the other hand, the inference step can be performed on a smaller, low-powered processor 

such as the Arm Cortex-M family processors that will be used in this course. In this case, the 

Machine Learning is "at the edge" as opposed to "in the cloud". 

 

7.2 Design & Implementation 

The system will comprise of both Hardware (HW) and Software (SW) implementation. We will 

be using an ARM-based microcontroller that has the required processing power and memory 

to perform the required machine learning algorithm.  

 

Hardware Setup 

The STM32L496ZGTx is used as the microcontroller chosen for the design. It belongs to a class 

of low-power microcontrollers based upon the high-performance 32-bit ARM Cortex-M4 

processors. Its built-in floating-point unit (FPU) makes signal processing computations more 

effective. Its internal memory of 320 Kbyte of SRAM and 1 Mbyte of Flash provide adequate 

memory for many Edge-Computing applications to host its own neural network. Its wide 

range of peripheral devices like Analog-to-Digital Converters (ADCs), General Purpose Timers, 

Pulse-Width Modulation (PWM) blocks and many others provides adequate subsystems for a 

complete single-chip solution. 

 

The STM32 microcontroller is the main device that will perform all the necessary 

computations. These include the signal processing, machine learning, and actuator control. 

To compare the performance of the embedded solution to the offline solution implemented 

in Matlab, the same dataset is used. Instead of performing live data capture using the EMG 

sensor, the samples associated with each trial are sent from the PC to the STM32 through a 

serial interface. The results of the classifier are sent back through the serial interface. 

 

Software Design 

The software design has several steps as we need to train the neural network weights and 

interconnections first before deploying them onto the embedded platform. 
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7.3 Training and Finalizing the Network 

 

Step 1: Tensorflow 

 

We need to install Python and several associated support packages on the PC. These include 

pandas, jupyter, scikit, tensorflow, and matplotlib. These packages are needed to ensure that 

we can train and develop the required machine learning models using Python. 

 

Step 2: Load Dataset 

 

With the necessary packages installed, we proceed to load the dataset into the environment. 
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Step 3: Create and train a Multi-Layer Perceptron Model 

 

Step 4: Train the Model 

 

Step 5: Test the Model 

 

 

Step 6: Save the Model 

Once the model has been trained and tested, we can save the model 
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7.4 MCU Deployment 

Validation 

Using STM32 Cube AI and STM32 Cube IDE, we will be able to deploy the model onto the 

STM32 embedded board. Figure 7.1 shows the STM32 microcontroller on the board.  

 

Fig 7.1: Pin-Out Configuration on the STM Cube MX 

In the STM Cube MX IDE, we will be able to perform the necessary pinout configuration as 

well as install the required Cube AI Software Pack. With that, we can upload the model that 

we created in Jupyter Notebook and validate it.  

The validation process is shown in Figure 7.2. Once validated, we can proceed to implement 

an application with the model. 

 

 

Fig 7.2: Validation Analysis on the MCU Target  
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Application Development 

Once the model has been validated, we can implement an application with the model. 

Regenerating the code from STM Cube AI, an application file ‘app_x-cube-ai.c’ will be 

generated. Within this file, we will be able to perform the necessary data acquisition, signal 

processing and feature extraction.  

 

7.5 Testing the Network 

In order to gauge the performance of the network on the embedded board, raw data for each 

participant is extracted from the dataset and sent to the board through the serial interface. 

The application code on the board will perform the various signal processing and feature 

extraction techniques before passing on the data to the trained network. The classification 

result from the network is displayed on the board and PC.   

 

Phase 1 

In the first instance, the algorithm as described in [217] is developed and deployed on the 

MCU. In it the raw signal is first pre-processed with a bandpass filter of 10Hz – 500Hz followed 

by a Root-Mean-Square (RMS) extraction to smoothen the signal. In the next phase, the 

Discrete Wavelet Transform is performed on the signal to generate the detailed and 

approximate filter coefficients. Using these, a final decomposition vector is generated. The 

Entropy value for vector is then computed as the final data point for the classifier. Figure 7.3 

shows the confusion matrix plot for the AD channel for two different pairs of hand 

movements. 
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(a) Forward/Reverse Movement 

 

 

(b) Raise/Lower Movement 

Fig 7.3: Confusion Matrix for two different pairs of movements 

Figure 7.4 shows the classification accuracies for the various channels based on these two 

pairs of movements. A comparison is made with the results obtained from the paper. 

 

Figure 7.4: Comparison of Classification Accuracies between the  

PC-based system (PC) and the Embedded Controller (uC). 
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When porting a Neural Network architecture from a PC-based solution like Matlab or Python 

over to an embedded platform, the accuracy will naturally be lower. There are two main 

reasons for this. Firstly, the PC-based platform runs on a 64-bit processor and the resolution 

of the weights used in the network are higher. Secondly, the STM32 Cube AI needs to 

generate a network that can be compressed within the resource constraints of the controller. 

As such, it does auto-pruning of weights that have a low value so as to strike a trade-off 

between resources and accuracy.  

In the paper, the authors observed that different channels had a varied effect on the overall 

accuracy of the system. The AD, CED and FDI channels were more prominent in the Raise and 

Lower actions while the AD, BR and FD channels played a greater role in the Forward and 

Reverse actions. Based upon this observation, the authors proposed a novel Unified 

Classification model that made use of TWO separate Neural Networks trained using these 

different combinations of channels. As a result, the overall accuracy of the system increased.  

FIVE-WAY Real-Time Classification 

The solution of two distinct neural networks is feasible in a PC-based environment. However, 

it is highly impractical in an embedded solution. Resource-Constraint Microcontrollers have 

the ability to at most host a single network. As such, the solution proposed by the authors 

cannot be directly applied in the context of embedded solutions. There have to be 

improvements in the areas of signal processing and feature extraction to solve this challenge.  

 

7.6 Improved Methodology 

Proposed Algorithm using Cepstral Analysis 

Cepstral[218] analysis is tool that allows us to analyze the periodic segments of a signal within 

its frequency range. It is a nonlinear operation that has wide range of applications in image, 

speech and other types of signals. Though there are many variants, the most common ones 

are the real, compex and power cepstrum.  

Real Cepstrum is defined as the inverse Fourier transform of the real logarithm of the 

magnitude of the Fourier transform of a sequence. 
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𝐶𝑟 = ℱ−1{𝑙𝑜𝑔(|ℱ{𝑓(𝑡)}|)} Eq. 7.1 

 

The output generated by performing the cepstrum analysis provides us with information 

about the rate of change that is observed in the various spectrum bands. 

Discrete Wavelet Transform 

Prior to performing the Cepstrum Analysis, the Discrete Wavelet Transform is first performed. 

In DWT, the wavelets are sampled discretely. They offer the same advantage over the Fourier 

Transform by offering time-frequency localization information. It has been used extensively 

in many applications, and two popular domains are data compression and filtering. A wide 

range of wavelets have been proposed and used, and the most common ones are the Haar 

wavelet and the Daubechies wavelet.  

We can compute the DWT of a signal 𝑥 by passing it through a filter series. At the first stage, 

the signal is convoluted with an impulse response 𝑔 and passed through a low pass filter as 

shown in Equation (7.1), where 𝑛, denotes the length of the filter, 𝑦, refers to the output 

samples and 𝑘 represents the amount of shifting applied to the signal as part of the 

convolution process. 

𝑦[𝑛] = (𝑥 ∗ 𝑔)[𝑛] =  ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

 Eq. 7.2 

 

A high-pass filter ℎ is also used to decompose the signal simultaneously. We then obtain two 

outputs simultaneously. They are the output form of the high-pass filter, also known as the 

detail coefficients. We also have the output from the low-pass filter, the approximation 

coefficients. We are then able to perform subsampling by 2 by passing the signal through new 

filters 𝑔 and ℎ, as whosn in Equations (7.2) and (7.3), with the cut-off frequency being halved 

as compared to the previous one. 

𝑦𝑙𝑜𝑤[𝑛] =  ∑ 𝑥[𝑘]𝑔[2𝑛 − 𝑘]

∞

𝑘=−∞

 Eq. 7.3 
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𝑦ℎ𝑖𝑔ℎ[𝑛] =  ∑ 𝑥[𝑘]ℎ[2𝑛 − 𝑘]

∞

𝑘=−∞

 Eq. 7.4 

 

This decomposition technique is continuously repeated to allow us to have a higher frequency 

resolution, and this is represented using a binary tree that shows the time-frequency 

localisation. This binary tree is also referred to as the filter bank. 

For any given signal 𝑠 that has a length of 𝑁, the Discrete Wavelet Transform (DWT) will be 

made up of 𝑙𝑜𝑔2𝑁 steps. We start with the original signal 𝑠, and the first step generates two 

sets of coefficients, the Detail Coefficients 𝑐𝐷𝑖  and the Approximation Coefficients 𝑐𝐴𝑖. This 

is obtained by performing a convolution with the high-pass filter 𝐻𝑖𝐷, and the low-pass filter 

𝐿𝑜𝐷. The results of the filtering operation are then down-sampled to obtain 𝑐𝐷𝑖 and 𝑐𝐴𝑖. This 

is shown in the figure below. 

 

Figure 7.5: DWT operation 

By reconstructing the signal from the Detailed Coefficients, we focus on the high-frequency 

changes in the signal that represent the patterns related to the user’s movements that we 

intend to capture and classify. 

Root-Mean Square 

As the results of the Cepstrum Analysis contain both positive and negative values, the Root-

Mean-Square (RMS) is performed to convert all signals to positive values. 

The overall flow of the proposed algorithm is as shown in Figure 7.6. 
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Fig 7.6: Flow of Proposed Algorithm 

Real-Time Software Architecture 

The embedded software is designed using the FreeRTOS [219] framework. FreeRTOS is an 

open-source Real-Time Operating System designed for use in the embedded domain. It 

includes a kernel and several libraries that can be used across a wide range of industrial 

applications. Due to its open-source nature, there are continuous improvements and 

upgrades to the libraries and APIs through contributions from the community.  

The overall architecture is as shown in Figure 7.7. There is a total of EIGHT tasks and 1 Timer 

Interrupt. The objectives of each of these are as follows: 

Timer Interrupt: 

The Timer block is configured to generate a periodic 250ms interrupt. In the Interrupt Service 

Routine (ISR), the osSemWin() is released. osSemWin() is a Binary Semaphore initialized with 

a starting value of 0 in main().  

tWindow: 

The tWindow() task starts by attempting to acquire the osSemWin() semaphore. Since the 

initial value is 0, it goes to a BLOCKED state during the first run. When the Timer ISR is 

executed, the Sempahore is released and this UNBLOCKS the tWindow() task. Once 
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unblocked, the task proceeds to capture a 500ms window of the raw data. This data is then 

posted to the tDWT_MessageQueue.  

 

tDWT: 

This task is in a BLOCKED state until data arrives on its internal message queue, 

tDWT_MessageQueue. Once a new data packet arrives, it will perform the DWT operation on 

the packet and then reconstruct the signal using the Decomposition Vectors. This output is 

then posted to the tCepstrum_MessageQueue. 

 

tCepstrum: 

This task is in a BLOCKED state until data arrives on its internal message queue, 

tCepstrum_MessageQueue. Once a new data packet arrives, it performs the Cepstrum 

Analysis on the DataPacket. Following that, the RMS operation is performed. The output is 

then posted to the tANN_MessageQueue. 

tANN: 

This task is in a BLOCKED state until data arrives on its internal message queue, 

tANN_MessageQueue. Once a new data packet arrives, it performs the classification using 

the model trained and deployed earlier using the STM32 Cube AI. Based on the classification 

result, the appropriate Semaphore is released to perform the appropriate motor movement. 

tForward, tReverse, tGrip and tRelease: 

These tasks work in a similar way, they are BLOCKED until the appropriate Semaphore is 

released from tANN. osSemForward() unblocks tForward, osSemReverse() unblock, tReverse, 

osSemGrip() unblocks tGrip, and osSemRelease() unblocks tRelease. When any of these tasks 

is unblocked, the mototMutex() is first acquired. This mutex allows exclusive access to the 

motors to ensure that once a motor movement has been started, it will run to completion 

before starting the next move.  
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Fig 7.7: RTOS Architecture 

 

Testing and Results 

Figure 7.8 shows the scatter plot from the features generated by the proposed algorithm. It 

can be seen that using just two channel, AD and BR, there is a good distinction between the 

various actions performed by the users with minimal overlap. This allows us to achieve an 

average classification accuracy of 97.51% for all four movements. 
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Fig 7.8: Scatter Plot for AD and BR channel 

 Implementing the proposed solution on the Embedded Platform generates the following 

classification accuracies as shown in Figure 7.9. 

 

Fig 7.9: Five-Way Confusion Matrix 
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It can be seen that the ‘Reverse’ class has a 100% classification accuracy as its feature space 

is clearly distinct from the other features. For the other classes there is a small overlap in the 

feature space which leads to some loss. The overall classification accuracy for the whole 

system is 95.31%.  

 

7.7 Discussion 

Designing a system that encapsulates all the elements of a complete solution onto an 

embedded platform has many challenges. Firstly, the proposed solution has to tried and 

tested on a PC-based platform. Through research and experimentation, the final set of feature 

selection and machine learning methods are decided. The machine learning model is then 

trained and saved on the PC. To port this model over to the microcontroller, specialized 

software tools provided by the manufacturer have to be used. Using these tools, we can 

implement the trained model directly onto the hardware blocks within the microcontroller. 

Once that is done, we need to implement the signal processing and machine learning 

algorithms on the embedded board to complete the whole design.  

Dealing with real-time data requires a lot of computing resources as several signal processing 

and feature extraction methods need to executed before the machine learning model is used 

for the final classification. This can be achieved through the use of a multi-threading 

framework provided through a Real-Time Operating System. Several tasks can be performed 

concurrently allowing real-time classification of the signals with minimum delay.  

The solution discussed in this paper has proposed a novel signal processing and feature 

extraction technique through the use of Cepstral features. This allows a good clean separation 

of the feature set with minimal overlap, leading to high classification accuracies. The 

computational requirement does not delay the system due to the use of the RTOS. Utilizing 

the proposed solution, we are able to achieve high classification accuracies on the embedded 

platform. 

Designing a system that encapsulates all the elements of a complete solution onto an 

embedded platform has many challenges. Firstly, the proposed solution has to tried and 

tested on a PC-based platform. Through research and experimentation, the final set of feature 
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selection and machine learning methods are decided. The machine learning model is then 

trained and saved on the PC. To port this model over to the microcontroller, specialized 

software tools provided by the manufacturer have to be used. Using these tools, we can 

implement the trained model directly onto the hardware blocks within the microcontroller. 

Once that is done, we need to implement the signal processing and machine learning 

algorithms on the embedded board to complete the whole design.  

Dealing with real-time data requires a lot of computing resources as several signal processing 

and feature extraction methods need to executed before the machine learning model is used 

for the final classification. This can be achieved through the use of a multi-threading 

framework provided through a Real-Time Operating System. Several tasks can be performed 

concurrently allowing real-time classification of the signals with minimum delay. The solution 

discussed in this paper has proposed a novel signal processing and feature extraction 

technique through the use of Cepstral features. This allows a good clean separation of the 

feature set with minimal overlap, leading to high classification accuracies. The computational 

requirement does not delay the system due to the use of the RTOS. Utilizing the proposed 

solution, we are able to achieve high classification accuracies on the embedded platform. 

With these developments, we will be able develop rehabilitative robotic systems that are able 

to be fully deployed on the edge without the need for any network connectivity. It will benefit 

many users in the activities-for-daily-living. 
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Chapter 8 

Conclusion and  

Future Work 
 

The time-series nature of physiological signals like EEG and EMG require the use of novel 

techniques and architectures to extract meaningful and accurate information from them. 

The Novel EEG Model proposed in Chapter 3 introduced the Gamma-Peak feature. This was 

able to accurately determine the temporal vicinity of the motor movement based on a single 

channel data. The ‘Slope & Peak Detection’ algorithm together with the ERD/ERS features 

provided high levels of accuracy in the range of 89.58% to 92.29%. Using a single channel, 

these results exceeded other methods mentioned in the Literature. 

In Chapter 4, we introduced the Novel EMG model. Other techniques in the Literature used 

a fixed set of sensor data in order to classify different movements. In the proposed approach, 

we used different combinations of sensor data for different movements. The proposed 

approach used a combination of features such as Root-Mean-Square (RMS), Discrete Wavelet 

Transform (DWT), and Entropy to generate the feature set. Together with the Feedforward 

Neural Network, it was able to accurately classify four different movements with an accuracy 

level of up to 93.5%. 

Chapter 5 introduced the integration of Fuzzy Logic together with the Long Short-Term 

Memory (LSTM) network. Physiological signals exhibit both time and frequency changes in 

specific electrode regions associated with the type of activity or stimulus. To fully understand 

the changes in these signals, we need to be able to analyze its change over a subset of time. 

This requires a solution that has the ability to remember and detect specific patterns in the 

signals over time.  

The Long Short-Term Memory (LSTM) is a network that is able to achieve this objective. LSTM 
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has also been utilized in many other applications that require memory and the “context” of 

the data with respect to its past. As the data is inherently embedded in the signals of 

different sensors, the use of Fuzzy Logic allows to naturally integrate this information 

together to get a better context of the data. The use of LSTM+Fuzzy Logic demonstrated a 

significant improvement in the classification accuracy for both EEG and EMG signals. A 

comparison study across different Deep Learning Techniques demonstrated the superiority 

of the proposed method. 

A novel BIO-Inspired Fuzzy Inference System (BIOFIS) was proposed in Chapter 6. Using this 

model, we are able to capture the temporal intra-channel relationship together with the 

inter-channel relationship. Together with an improved self-clustering fuzzy rule-base, we are 

able to generate higher classification accuracies. 

Compared to the mentioned methods in the Literature, the proposed technique in this paper 

uses an approach that considers the inter-channel and intra-channel relationships between 

various sensors. Most of the current research in this area is focused on small movements that 

isolate a body part, like the opening or closing of the hand. In this research, what we have 

demonstrated is the ability of the proposed system to accurately decode and classify actions 

that are full-range in nature. These actions represent real-world movements used in ADL. 

The proposed methodology fuses multiple signals together and selects that most prominent 

ones for the classification, instead of relying of predefined signals. This is significant as in a 

real-world scenario, the user may have certain physiological challenges that may impair the 

quality of data captured from certain sensors. BIOFIS adapts to the available signals and is still 

able to generate high classification accuracies compared to the state-of-the-art. 

The achieved accuracy of up to 98% for the 4-class classification is a good result the 

demonstrates the effectiveness of the BIOFIS model. 

To come full-circle, in Chapter 7, we implemented signal processing and machine learning 

techniques on an advanced ARM-based microcontroller platform to perform edge 

computing. Using this microcontroller, together with a real-time operating system to achieve 

concurrency, we were able to achieve a high-level of accuracy on an embedded platform 

with limited computing power and resources.  
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In conclusion, rehabilitative robotics holds great promise for improving the quality of life for 

individuals with motor impairments. The integration of signal processing and machine 

learning algorithms into robotic systems offers the potential for more effective, efficient, 

and personalized rehabilitation therapies. This thesis has significantly contributed to the 

field by investigating and advancing the use of signal processing and machine learning 

algorithms in rehabilitative robotics. Through the exploration of various techniques, this 

research seeks to enhance the rehabilitation process and ultimately improve the recovery 

outcomes and quality of life for individuals who need it. 

The future direction of this research should focus on integrating more advanced machine 

learning algorithms onto embedded platforms. This will allow the proposed models to be 

further enhanced with improved accuracy. Transformer models are gaining widespread 

popularity at the moment. With further improvements in the model, in the areas of memory 

footprint and power consumption, transformer models may prove to be very promising in 

embedded platforms that perform edge computing. Another direction would be the 

development of complete rehabilitative robotic systems that integrate the models that have 

been developed in this thesis. This will allow further improvements in the overall system in 

signal processing and machine learning techniques for a wide range of sensors and robotic 

platforms.  
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