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Quantum Fluids provide an exquisitely tuneable playground to study numerous
areas of Physics. One such area is that of turbulence. Turbulence was famously
touted by Feynman as the last unsolved problem in classical physics and remains a
vastly studied topic to this day. Bose-Einstein condensates - a type of quantum fluid
- are dictated by quantum mechanics. This means that phase defects are quantised,
allowing a simplified system to understand the nature of turbulence compared to
their classical counterparts. We begin by touching upon the creation and detec-
tion of solitons within one-dimensional condensates. Here, we learn the basics
of computational methods in the simulation of Bose-Einstein condensates. Using
this knowledge, we then move onto more complicated three-dimensional systems,
where phase defects are vortices; long strings of empty space that stretch though
a condensate. We work to answer three questions in these three-dimensional sys-
tems. Firstly, we investigate how the nature of a condensate affect its time-of-flight
expansion. Condensate experiments are notoriously difficult to image; experimen-
talists often release the condensate from its trap and take images as it rapidly ex-
pands out. These time-of-flight images are known to be affected by the phase de-
fects within them. Here, we develop a computational technique to have a remesh-
ing computational domain so that sizes of expanded condensates previously im-
possible to simulate are now reachable. We use this to study how vortices affect
an expanding condensate. We then follow on by modelling the only current exper-
imentally viable method of creating quantum turbulence in a Bose-Einstein con-
densate. The strong granulation and small vortex rings created give power laws
not observed previously; we prove that precursory predictions of a Kolmogorov
or Vinen type turbulence in these driven systems do not accurately describe our
observed dynamics and further name our observed turbulence as “strong turbu-
lence”. Such a result naturally makes one question how one can experimentally
create Kolmogorov or Vinen turbulence in a condensate. We thus propose a method
using an imaging device which one can tune to realise a range of turbulence types.
We also study how experimental results would look from such a setup before fi-
nally postulating on further work needed to understand how one can apply this
method in an experiment.
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1 Introduction

Turbulence, characterised as the chaotic and unpredictable flow of fluids, has been
a subject of fascination for scientists and engineers for centuries. There exist early
mentions - mere hints - of the observation of the chaotic motion of water air in
classical literature. Plutarch [1], for example, tells the story of birds falling from
the sky due to the disruption of air. The first known documented attempt at the
understanding of turbulence comes much later in the 16th century; Leonardo da
Vinci observed and documented turbulent flow in his studies of water and air [2].
He left behind many intricate sketches of water flow, comparing the shape of water
eddies to the hair of a woman. An eddy is a circular or swirling motion of fluid,
such as air or water, that forms when fluid flows past an obstacle or when there is a
disruption to the the velocity or direction of the fluid flow. Eddies can vary in size
and intensity, from small vortices of the size of micrometres across to large-scale
eddies that can be several kilometers in diameter.
It wasn’t, however, until the 19th and 20th centuries that turbulence began to be
studied systematically and scientifically. Turbulence can be seen in everyday life,
from the swirling eddies in a river to the bumpy ride on an airplane during a tur-
bulent flight; turbulence has become increasingly important for engineers seeking
to design more efficient and safer aircraft, ships, and cars [3]. Today, the study of
turbulence remains an active and ongoing area of research, with many unsolved
mysteries yet to be answered.
Turbulence is notoriously difficult; Richard Feynman is often quoted stating that
turbulence is the last unsolved problem in classical physics [4]. Aside from water
and air, turbulence can be observed in a number of systems and states of matter,
one of which is within a quantum fluid. There exist a few types of quantum fluids;
such examples include Helium-3 and Helium-4 and Bose-Einstein condensates [5].
Quantum fluids are systems of particles that exhibit fluid-like behaviour at very
low temperatures. At low temperatures, quantum mechanics governs the behaviour
of the particles, and their wave-like nature becomes more apparent. A fascinating
consequence of the dominance of quantum mechanics in this system is that vor-
ticity and velocity fields are singular. In particular, due to quantum mechanical
constraints, vorticity is confined to one dimensional objects known as quantum
vortices [6].
These vortices are characterized by a quantized circulation, which means that the
rotation of the fluid flowing around the vortex is always a multiple of a fundamen-
tal unit of circulation. This fundamental unit is related to the Planck constant - a
foundational constant with an impactiful effect on quantum mechanics, and the
mass of the atom. Classical vortices can have any size, strength (circulation), shape
and orientation. This is strongly dissimilar from quantum vortices whose size and
strength are prescribed by quantum mechanics. The quantum nature of these vor-
tices, of fixed width, can create vortex tangles which with interact and reconnect -
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described as Vinen turbulence. A system of quantum vortices can also mimic their
classical counterpart with the bundling of like-sign vortices. This mechanism cre-
ates pseudo-classical eddies which result in the appearance of classical Kolmogorov
turbulence.
In this thesis, the focus of the research will be Bose Einstein Condensates. A Bose-
Einstein condensate (BEC) is a unique state of matter that occurs when a collection
of bosons (particles with an integer spin) are cooled to extremely low tempera-
tures and collapse into the same quantum state. In a BEC, the bosons no longer
act as individual atoms and begin to behave as a single entity, with a vast number
of the particles occupying the same quantum state. This results in some remark-
able properties, such as coherence and superfluidity, that are not observed in other
more “ordinary” states of matter. This phenomenon was first predicted by Albert
Einstein and Satyendra Nath Bose in 1920s, however it was not until 1995 that it
was observed in a laboratory.
The vast majority of experimental turbulent work in quantum fluids come from He-
lium, where two types of vortex turbulence can be observed. Nevertheless, a small
number of cold atom experiments have resulted in the reporting of visible turbu-
lence within experiments. In these experiments, a condensate is driven at large
length scales by magnetic potentials causing a turbulent cascade. The condensate
is then released and the condensate imaged. Some computational modelling has
been published, however a full numerical explanation to experimental results is
yet to be realised. The turbulent experiments brought up questions, such as for in-
stance the nature of the momentum distribution, the role of waves and vortices on
this and the nature of the turbulence created in the turbulence experiments. Two
main experimental groups have lead the development and observation of turbu-
lence within a three-dimensional BEC;
The first experimental evidence of turbulence within a BEC was in 2009, by the
group of Vanderlei Bagnato at USP, Brazil [7]. Here, a harmonically trapped cigar
condensate is driven out of equilibrium by a a large, off-axis oscillatory magnetic
field. In their first reported experiment, they observe randomised vortex struc-
ture, which they relate to turbulence, in their condensate. Later, they quantified the
cascade of the turbulence through the 1D momentum distribution obtained exper-
imentally [8], with comparisons to theoretical predictions on the cascade by differ-
ent types of turbulence. Recently, the concept of universality in a driven system has
been discussed in terms of turbulence in the USP group obtained from these same
momentum distributions [9].
The group of Zoran Hadzibabic at Cambridge University, UK, developed a tech-
nique of using light sheets to create a homogeneous BEC within a box [10]. Using
this, they followed the USP technique of driving the system to produce their own
predictions of the type of turbulence within. They reported similar momentum
distribution scaling laws, however came to different conclusions onto the nature
of the turbulence they have created [11]. Whereas USP report a type of vortex tur-
bulence, Cambridge report to have detected wave turbulence. Recently, the group
has also focused on the concept of universality in various aspects of their quenched
box-trapped system, with a paper specifically on the universality of an Equation of
State for wave turbulence [12].
This thesis aims to answer the following:
Firstly, when an experimentalist releases a condensate from its trap, one expects
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the condensate to rapidly expand out. As the condensate expands, its density falls
and thus imaging becomes easier. An experimentalist passes light through the con-
densate. The expansion is affected by both the temperature of the system and the
shape. An anisotropically shaped (such as a cigar, or a pancake) condensate will,
when released, change its shape during expansion; the more strongly trapped di-
rections will expand quicker, so that after a given time, the condensate shape will
be the inverse of the originally trapped condensate. In a turbulent condensate, this
does not happen; the expansion of a turbulent condensate is self-similar and thus it
retains its original shape. This self-similar expansion is referred to as a signature of
turbulence itself and it has been proposed analytically that the existence of vortices
within a condensate inhibits the inversion of the aspect ratio of the condensate.
Nevertheless, to date there have been no full study on this mechanism.
Secondly, imaging of out-of-equilibrium condensates is difficult; if a vortex is not
perpendicular to the experimental imaging pane then it is almost indistinguishable
to the background density. To quantify turbulence within a system, one typically
measures the velocity field of the system to gain the energy spectrum, or the to-
tal length of the quantum vortices. This is obtainable experimentally in Helium
systems, but not in BECs; the only true measure of turbulence in an experimental
condensate has to come from the expanded density, which allows one to quan-
tify the momentum distribution, but not, for instance, the energy spectrum or the
vortex configuration. Consequently, one is not able to fully quantify the nature of
turbulence in a Bose-Einstein condensate by experimental data.
On the other hand, the beauty of computational studies of turbulent Bose-Einstein
condensate means that we can carefully pick, and study it in a pseudo-infinite, ho-
mogeneous system (unlike in experiments), removing any extra parameters that
can add more complications to a study. One can tune the starting conditions of
their study in order to pick the type of turbulence they wish to study. From there,
a physicist can have access to and conduct any study she so desires; from the 3D
wavefunction one is able to fully ascertain the velocity fields and vortices formed.
One is also able to gain other measures such as individual energies.

1.1 Outline of Thesis

In this thesis, we aim to answer some of the questions put forward by experimen-
talists on the topic of quantum turbulence in a Bose-Einstein Condensate. We be-
gin by studying a one-dimensional system and present a method of detecting soli-
tons within a one-dimensional condensate. We also show a mathematical curiosity
whereby solitons can be created in a box potential by the manipulation of said po-
tential.
We follow on by the discussion of three-dimensional computational methods. We
also discuss a way of modelling the expansion of a condensate. The ordinary
method of modelling a condensate relies on using a fixed computational domain.
If one wishes to model an expansion of a condensate, then one quickly realises that
the grid needed is excessively, and potentially impossibly, large. As a consequence,
we develop a method in which the computational domain changes as the conden-
sate is released. As such, we are able to expand the system to the same order of
size as a typical experiment. We go further and use this computational routine to
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see how vortices affect the expansion of a condensate before comparing results to
previously reported analytical predictions.
After ascertaining the nature of expansion, we next model the generation of tur-
bulence within a condensate, driven through experimental means. Here, we study
how the large-scale driving, used by experimental groups, drives the condensate
out of equilibrium. We compare our results to experimental data kindly provided
by group of Vanderlei Bagnato. What we find is not what we had originally ex-
pected; the nature of the turbulence is not one which is discussed in previous lit-
erature but a limiting case of documented Vinen turbulence coupled with large
density fluctuations.
Finally, we propose a new method of generating turbulence within a condensate.
We deliberately ensure the method is viable using experimentally accessible tech-
niques. Here, it is shown that we can reproduce the strong turbulence characterised
earlier, but in a cleaner manner that eases computational study. We also demon-
strate that the more typical Vinen turbulence is achievable from such a driving. We
end this by bringing together our driving technique and our adaptive computa-
tional grid code to begin to present the beginnings of a study on how the disorder
in a condensate affects the momentum distribution obtained from the time-of-flight
images.
We end this thesis on the discussion of the areas of this thesis which can be built
upon at a later date. The author hopes that this thesis brings a small step toward an
enhanced understanding on both quantum turbulence and turbulence as a whole.

1.2 Papers

The work presented in this thesis has resulted in published papers outlined below.

• The work regarding the detection and characterisation of solitons in 1D con-
densates in Chapter 4 was published in Europhysics Letters [13].

• Data from the Chapter 6 was used to create a figure referencing the differ-
ences between Kolmogorov, Vinen and strong turbulence is used in a paper
accepted in AVS Quantum Science [14].

• The computational modelling of the generation of vortex turbulence in a Bose-
Einstein condensate presented in Chapter 6 has been accepted by Physical
Review Research [15].

Two paper drafts have been created and will be submitted to journals after the
submission of this thesis. These two topics are:

• Computational verification of analytical predictions of the effect of vortices
on the expansion of Bose-Einstein condensates, as shown in Chapter 5.

• A proposal for a tunable method of creating turbulence within a condensate,
as outlined in Chapter 7.
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Part I

Prelude:
A Study of Cold Atoms
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2 A Study in the Underpinnings
of Bose-Einstein Condensates

In order to understand cold atom physics, one must have a comprehensive knowl-
edge of many areas of physics, from statistical mechanics, to quantum mechanics
to fluid dynamics. In this Chapter, we introduce the reader first to the idea of Bose-
Einstein statistics before deriving our chosen method of modelling of condensates
- the Gross-Pitaevskii equation. We then move our focus onto turbulence where we
begin by determining some results often used in the field of quantum turbulence,
before then following on with a comparison between turbulence in classical and
quantum fluids. Finally, we reflect on typical experimental techniques one would
see in any cold atom experiment, from cooling to imaging of the atomic cloud.

2.1 Bose-Einstein statistics in an ideal Bose gas

If one has N identical particles in M available quantum states in a cubic box, then
the number of different arrangements of the particles is

W =
(N + M − 1)!
N!(M − 1)!

. (2.1)

The wavefunction describing a collective of atoms forming a plane-wave in the
space x = (x, y, z) and momentum k = (kx, ky, kz) is

Ψ(x) =
1

V1/2 exp (ik · x), (2.2)

where

k =

(
2πnx

Lx
,

2πny

Ly
,

2πnz

Lz

)
, (2.3)

where Lx,y,z are the lengths of the system in each direction, nx,y,z are integers, and
V is the volume of said system (V = LxLyLz). We can evaluate the system as a
sphere with a number of thin shells with radii ks and a thickness δks. A infinitesimal
volume d3k = dkxdkydkz of k-space contains

V
(2π)3 d3k, (2.4)

states. A single shell can therefore have

M = 4πk2
s δks

V
(2π)3 , (2.5)
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states, the energy of which is given by

ϵk =
h̄2k2

2m
, (2.6)

where h̄ is the reduced Planck’s constant h̄ = h/2π and m is the particle mass. The
number of states between ϵs and ϵs + δϵs is

M =
Vm3/2ϵ1/2
√

2π2h̄3 δϵs. (2.7)

In many textbooks, this is often written in the form

M = Vg(ϵs)δϵs, (2.8)

where g(ϵ) is referred to as the density of states per volume,

g(ϵ) =
m3/2

√
2π2h̄3 ϵ1/2. (2.9)

Reminding ourselves of statistical mechanics [16], we know that the entropy of a
system S is related to the total microstates, W of a given energy E via

S = kB ln W. (2.10)

where kB is the Boltzmann constant. The total number of microstates of the whole
system can be calculated from Eq. (2.1) by

W = ∏
S

WS = ∏
S

(NS + MS − 1)!
NS!(MS − 1)!

. (2.11)

Assuming NS and Ms ≫ 1 we can use the Stirling approximation

ln(α!) = α ln α − α +O(ln α). (2.12)

Substituting Eq. (2.12) into Eq. (2.11), the total entropy of the system is therefore

S = kB ∑
[
(Ns + Ms) ln(Ns + Ms)− Ns ln Ns − Ms ln Ms

]
, (2.13)

In this system, particles organise in such a way to maximise the entropy of the
system. The total internal energy of the system is

U = ∑
s

ϵsNs. (2.14)

The total norm (number of particles) of the system is N = ∑s Ns and stays con-
stant (as does the total energy, U). To find the maxima of Eq. (2.13), one uses the
Lagrange multiplier method such that

∂S
∂Ns

− kBβ
∂U
∂Ns

+ kBβµ
∂N
∂Ns

= 0. (2.15)
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We can follow through by differentiating the above equation to find,

ln (NS + MS)− ln (NS)− βϵs + βµ = 0. (2.16)

Rearranging this, one obtains

Ns =
Ms

exp [β(ϵ − µ)]− 1
. (2.17)

This can be redefined as the famous Bose-Einstein occupation number:

fBE =
1

exp [β(ϵ − µ)]− 1
. (2.18)

To understand β and µ one has to recall the first law of thermodynamics

dS =
1
T
(dU + PdV − µdN), (2.19)

where T is the temperature of the system and P is the pressure. Using Eq. (2.17), it
can be shown that

dS = ∑
s

∂S
∂Ns

dNs, (2.20)

which goes to
dS = kBβ(dU − µdN). (2.21)

One can therefore see that β = 1/kBT. The constant µ is simply the chemical po-
tential of the system. Using these results, we can various useful results such as the
critical temperature of the gas, and the condensate ratio - the ratio of condensate to
thermal atoms at a given temperature.
The total particles in a system is the summation over all wavevectors of the Bose-
Einstein distribution,

N = ∑
k

fBE(ϵk). (2.22)

If instead of a proverbial box, we go towards an infinite case, this summation tends
toward an integral

N =
V

(2π)3

∫
fBE(ϵk)d3k, (2.23)

and the subsequent particle density, n, is N/V. Recalling the previously defined
density of states, we can define the particle density as

n =
∫ g(ϵ)

exp ([ϵ − µ]− 1)
dϵ. (2.24)

The fugacity of the system can be defined as z = exp (βµ). Using this and x = βϵ,
one can rewrite Eq. (2.24) as

n =
(mkbT)3/2
√

2π2h̄3

∫ ∞

0

z exp (−x)
1 − z exp (−x)

x1/2dx. (2.25)
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One can expand this integrand to find that

z exp (−x)
1 − z exp (−x)

=
∞

∑
q=1

zq exp (−qx), (2.26)

so that ∫ ∞

0

z exp (−x)
1 − z exp (−x)

x1/2dx =
1

q3/2

∫ ∞

0
y1/2 exp (−y)dy. (2.27)

This integral is in the form of a standard integral one can find in any textbook,
where

Γ(t) =
∫ ∞

0
yt−1 exp (−y)dt. (2.28)

The term Γ(t) is simply the gamma function which for our system will be Γ(3/2) =√
π/2. We recall the fugacity earlier and now express the density of a system as a

function of it, such that

n =

(
mkBT
2πh̄2

)3/2
∞

∑
q=1

zq

q3/2 . (2.29)

The summation will obviously diverge for |z| ≥ 1 but converges for |z| < 1.
The summation above can be labelled as g3/2(z). We therefore assume z is only
between z ∈ (0, 1). The critical temperature of a gas in a homogeneous system is
therefore given by the value in which g3/2(z) reaches its maximum (2.612). This
works out to be

Tc =
2πh̄2

kBm

(
n

2.612

)3/2

. (2.30)

When the temperature of the system T < TC, out of N particles, N0 can fall down
and occupy the lowest quantum state ϵk = 0. Rearranging the Bose-Einstein distri-
bution in terms of the chemical potential µ,

µ = −kBT ln

(
1 +

1
N0

)
≈ −kBT

1
N0

. (2.31)

As the number of particles in the lowest mode goes to infinity, the chemical po-
tential of the system goes to 0. The ratio of particles in the condensate mode then
becomes

n0

n
= 1 −

(
T
TC

)3/2

. (2.32)

Up until now, the condensate is assumed to be either in an infinite system or in a
simple 3D box. In experiments, this does not happen. The critical temperature of
a condensate is defined by its background density. The typical trap for an experi-
mental condensate is that of a harmonically trapped condensate with a harmonic
potential defined as

V(x, y, z) =
1
2

mω2
xx2 +

1
2

mω2
yy2 +

1
2

mω2
z z2, (2.33)
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where ωx, ωy and ωz are the individual potential oscillator frequencies in each
cartesian directions. The wave function from Eq. (2.2) is now given as

Ψ(x, y, z) =
(m(ωxωyωz)1/3

πh̄

)3/4
exp

[
− m

2h̄
(ωxx2 + ωyy2 + ωzz2)

]
. (2.34)

The derivation of the critical temperature can be shown by following the derivation
of Bagnato et al. [17] to be

T0
c = 0.94

h̄(ωxωyωz)1/3

kB
N1/3, (2.35)

with the condensate ratio being

N0

N
= 1 −

(
T
T0

C

)3

. (2.36)

2.2 A weakly interacting Bose gas

Now that we understand the mathematics behind bosons and the temperature for
condensation we can behind to derive a mean-field method of modelling a conden-
sate. We now no longer assume that the bosons are ideal and that the individual
atoms interact weakly. For a system of bosons with a particle number N, a linear
combination of single-particle operators can be used to define so-called creation
and annihilation field operators. These creation and annihilation operators at a
position x = x, y, z at a time t are

Ψ̂(x, t) = ∑ â(t)ϕ(x, t), (2.37)

and
Ψ̂†(x, t) = ∑ â(t)ϕ⋆(x, t), (2.38)

respectively, where ⋆ denotes the complex conjugate. The Hamiltonian operator of
a system is associated to the total energy of the system, and hence reads as follows

Ĥ = P̂ + V0. (2.39)

where P̂ and V0 are the momentum and potentials energies of the system. Writing
this in terms of field operators, this becomes

Ĥ =
∫ [ h̄2

2m
∇Ψ̂†(x)∇Ψ̂(x)

]
dx

+
1
2

∫
[Ψ̂†(x)Ψ̂†(x′)V0(x′ − x)Ψ̂(x)Ψ̂(x′)

]
dx.

(2.40)
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Due to our system being bosonic, these fields operators satisfy the following com-
mutation relations:

[Ψ̂(x), Ψ̂†(x′)] = δ(x − x′), (2.41a)

[Ψ̂(x), Ψ̂(x′)] = 0. (2.41b)

where δ(x − x′) is defined as the Kronecker delta function. The Heisenberg picture

ih̄
∂

∂t
Ψ̂(x, t) =[ ˆΨ(x, t), Ĥ]

=
[
− h̄2

2m
∇2

+
∫

Ψ̂†(x′, t)V0(x′ − x)Ψ̂(x′, t)dx′
]
Ψ̂(x, t),

(2.42)

The integral of the effective potential V0(x′ − x) integrates to V =
∫

V0dx. From the
Born approximation this can be shown to be

g =
4πh̄2a

m
, (2.43)

where a is the s-wave scattering length. With the system being a low temperature
dilute Bosonic gas, we can state that the field operator Ψ̂(x) is made up of both
the condensate and non-condensate parts (be that thermal modes or other) we can
express that

Ψ̂(x) = ψ(x) + δΨ̂(x). (2.44)

There are issues in this approach, however in a large particle system (such as in the
condensates we will study in this thesis) they can be neglected. Assuming that the
number of the non-condensate particles can be neglected (as can be assumed in a
very low temperature system), we can substitute the commutator relations (2.41)
back into Eq. (2.40), to find a the quasi-classical Gross-Pitaevskii equation,

ih̄
∂

∂t
ψ(x, t) =

[−h̄2∇2

2m
+ V(x, t) + g|ψ(x, t)|2

]
ψ(x, t). (2.45)

where V(x, t) is the external potential applied to the system.
The Gross-Pitaevskii equation has a conserved norm (number of particles),

N =
∫

|Ψ(x, t)|2dx, (2.46)

and linear momentum

p =
ih̄
2

∫
[ψ⋆(x, t)∇ψ(x, t)− ψ(x, t)∇ψ⋆(x, t)]dx. (2.47)

Equation (2.45) was derived separately by Gross [18] and Pitaevskii [19]. Further
modifications can be made in order to model finite temperature effects, but these
are beyond the scope of this thesis. The interaction parameter g given in Eq. (2.45)
is a function of the scattering length. This scattering length can be of any value and
the sign of which dictates the type of condensate formed. In this thesis, we focus
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on repulsive condensates, i.e., when g > 0.
We can obtain the energy functional of the system in order to see the separate ener-
gies of the system,

E =
h̄2

2m
|∇ψ(x, t)|2 + V|ψ(x, t)|2 + g

2
|ψ(x, t)|4. (2.48)

These different energies will be used throughout the thesis and will thus be identi-
fied here. Assuming the trapping potential, V is time-independant, the total energy
of the system is conserved in time,

Etot =
∫ [ h̄2

2m
|∇ψ(x, t)|2 + V|ψ(x, t)|2 + g

2
|ψ(x, t)|4

]
dx. (2.49)

The first term of Eq. (2.48) when integrated is the kinetic energy of the condensate,

Ekin =
∫ h̄2

2m
|∇ψ(x, t)|2dx, (2.50)

the second being the potential energy of the condensate,

Epot =
∫

V|ψ(x, t)|2dx, (2.51)

and the third being the interaction energy,

Eint =
∫ g

2
|ψ(x, t)|4dx. (2.52)

From the energy integrand, Eq. (2.48), One useful measure from fluid dynamics is
the velocity field, which is related to the phase of the wavefunction by

v(x, t) =
h̄
m
∇S(x, t)dx. (2.53)

The wavefunction of the condensate, ψ(x, t) can be separated into real and imagi-
nary parts by the Madelung transformation,

ψ(x, t) =
√

n(x, t) exp [iS(x, t)], (2.54)

where n(x, t) is the density of the condensate, n(x, t) = |ψ(x, t)|2. One can use the
Madelung transform and substitute it back into the GPE, Eq. (2.45). If one then
separates the real and imaginary parts of this, one obtains the Euler equation

m
∂v
∂t

= −∇
(1

2
mv2 + V + gn − h̄2

2m
∇2√n√

n

)
, (2.55)

and the continuity equation

∂v
∂t

+∇ · (nv) = 0. (2.56)
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The last term in Eq. (2.55) is referred to as the quantum pressure of the system, and
is related to the zero-point quantum mechanical motion of the condensate.
Substituting Eq. (2.54) into the energy integrand Eq. (2.48) reveals two terms, the
quantum kinetic energy,

Eq =
∫ h̄2

2m
|∇
√

n(x, t)|2dx, (2.57)

and the fluidic kinetic energy

EK =
∫ 1

2
mn|v(x, t)|2dx. (2.58)

The fluidic kinetic energy of the condensate can be split into two parts; the com-
pressible (associated with density fluctuations) and the incompressible energies
(associated with the quantum vortices),

EK = Ei + Ec. (2.59)

Defining a density averaged velocity field [20],

w(x, t) =
√

n(x, t)v(x, t), (2.60)

and separating with the Helmholtz theorem with ∇·wi(x, t) = 0 and ∇×wc(x, t) =
0, the incompressible and compressible energies are defined as

Ei =
∫ m

2
|wi(x, t)|2dx, (2.61)

and
Ec =

∫ m
2
|wc(x, t)|2dx, (2.62)

respectively. The incompressible energy of a turbulent system is often given in
Fourier space as a one-dimensional spectra, referred to as the incompressible en-
ergy spectrum. Defining the incompressible energy in Fourier space,

Ei(k, t) =
∫ m

2
|w̃i(k, t)|2dk, (2.63)

where k denotes the Fourier spacial domain, and w̃ is the Fourier transform of the
density averaged velocity field. The one dimensional incompressible energy spec-
tra is thus the angle-averaged incompressible energy,

E(1D)
i (k) = 4πk2Ei(k). (2.64)

The wavefunction of the condensate is both dependant on both space and time. We
can instead find a time-independant solution by

ψ(x, t) → ψ(x) exp

(
− iµt

h̄

)
. (2.65)
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Substituting Eq. (2.65) back into the GPE, one finds the time independant GPE to be(
− h̄2

2m
∇2 + V(x) + g|ψ(x)|2 − µ

)
ψ(x) = 0. (2.66)

Equation (2.66) is surprisingly useful and has a few applications. The first of these
will be discussed later, where it is employed computationally to find the ground
state of any repulsive system for a given norm N. Secondly, it provides a good
approximation for the shape of a condensate given its potential. Assuming a large
collective of atoms, we can assume that the ∇2 term in Eq. (2.66) is negligible such
that we can arrange to

µψ − V(x)ψ(x) + g|ψ(x)|2ψ. (2.67)

For a box trap where the potential is

V(x) =

{
0, where x < L,
A, otherwise,

(2.68)

where A ≫ µ. This gives a Thomas-Fermi profile as a top-hat function where
|ψ|2 = µ/g where V = 0 and 0 otherwise. For a harmonic condensate, the potential
is defined as

V(x) =
1
2

mω2
xx2, (2.69)

the corresponding Thomas-Fermi profile is given as

n(x) =


µ
g

(
1 − x2

R2
x

)
, where x < Rx,

0, otherwise.
(2.70)

The term Rx is defined as the “Thomas-Fermi” radius of the condensate and pro-
vides a useful measure for the width of the condensate. Akin to the time-independent
GPE, these density functions offer a suitable first guess to find the ground state of
a system. Although the Thomas-Fermi profile and radii were derived here using
the TIGPE (time-independent Gross-Pitaevskii Equation), they can be used to find
approximations for the collective modes and expansion of a given harmonic con-
densate. As well as the oft-used estimation of the shape of a condensate, one can
also categorise the smallest scale-length of the system. Looking at the Thomas-
Fermi shape of a condensate in a box [Eq. (2.68)], the density of the condensate is
uniform at all locations that the potential is V = 0. In reality this is not the case;
towards the edges of the box, the condensate has to fall to zero, with the width
of this change being able to be defined (see Fig. 2.2). If we assume for now that
we have a one-dimensional GPE with a hard-wall potential V(x ≤ 0) = A and
V(x > 0) = 0. If A = ∞, the boundary conditions of the wavefunction must state
that Ψ(x = 0) = 0 and Ψ(x → ∞) =

√
µ/g. A solution that satisfies this is

Ψ(x) =
√

µ

g
tanh

(
x
ξ

)
. (2.71)
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FIGURE 2.1: The Thomas-Fermi density profiles of a condensate in
a 1D box potential (left) and a harmonic potential (right) with back-

ground potentials marked in black.

The parameter ξ denotes the minimum scale length in which Ψ can spatially alter
and is referred to as the “healing length” of the system; the healing length of a
condensate is given as

ξ =
h̄

√
mµ

. (2.72)

FIGURE 2.2: The potential (left) of a hard-wall and (right) the cor-
responding density profile at this edge. Marked is the boundary of

the wall (dashed) and the peak density n0 = µ/g.

2.3 Non-dimensionalising the Gross-Pitaevskii Equation

In this thesis, we use two different kinds of nondimensionalizing for the Gross-
Pitaevskii equation. For the majority of this work we use natural units, where the
length and time is dictated by the healing length ξ = h̄/

√
mµ such that x′ = x/ξ,

t′ = t/τ, where τ = h̄/µ, the energy being rescales by µ and V ′ = V/µ so that

i
∂ψ′

∂t′
= −1

2
∇2ψ′ + |ψ′|2ψ′ + V ′ψ′. (2.73)



2.4. Toplogical Defects in Bose-Einstein Condensates 17

The system is normalised such that the peak density n0 = 1.
In Chapter 6, to match the given experimental parameters we use the harmonic os-
cillator units. The units of time and length are now a function of the harmonic
oscillator length ℓ =

√
h̄/mωr, where the trapping frequency in the r direction, ωr.

The lengths are therefore x′ = x/ℓ and t′ = tωr so that

i
∂ψ′

∂t′
= −1

2
∇′2ψ2 + C|ψ′|2ψ′ + V ′ψ′, (2.74)

and the interaction energy is given as C = 4πasN/ℓ, where N is the number of
atoms in the condensate. The condensate is normalised so that

∫
|ψ′|2d3x′ = 1. The

trapping frequencies, ω′
r and ω′

z are a ratio of ωr such that ω′
r = 1 (and is therefore

left out). The interaction strength C is chosen by assuming a Thomas-Fermi profile
in the harmonic trap where the potential is V(x, y, z) = 1

2 (x2 + y2 + ω
′2
z z2), such

that

C = µ′5/2 16
√

2ωr

15ωz
, (2.75)

where µ′ is the rescaled chemical potential, µ′ = µ/h̄ωr. From now on, primes are
ignored.

2.4 Toplogical Defects in Bose-Einstein Condensates

2.4.1 Solitons

A soliton is a non-dispersive, localised wave which travels at a constant velocity;
whereas a normal wave will break down in time, the balance of the dispersive
nature of the system and the nonlinearity means that it is able to preserve its shape.
There are different types of solitons. In a repulsive condensate (the focus of this
thesis), dark solitons are a solution to the reduced dimensionality Gross Pitaevskii
equation. The Gross-Pitaevskii equation given in three-dimensions in Eq. (2.45)
in a harmonic potential can be reduced down to be applicable to one-dimensional
systems. One can make the ansatz that the wavefunction,

ψ(x, y, z, t) = ψx(x, t)Gy(y)Gz(z), (2.76)

where Gy,z are Gaussian functions. In this limiting case of h̄(ωxωy) ≫ µ and ωx,y ≪
ωz, one can derive the Gross-Pitaevskii equation in the one dimensional limit,

∂ψ

∂t
= − h̄2

2m
∂2ψ

∂z2 + g1D|ψ|2ψ +
1
2

mω2
z z2 − µ1Dψ, (2.77)

where
g1D =

g
2πℓxℓy

, (2.78)

and

µ1D = µ − h̄ωx

2
−

h̄ωy

2
. (2.79)

A black soliton is a stationary state in the 1DGPE equations. As well as this station-
ary state, the GPE allows semi-stationary states known as dark solitons (technically,
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these are not solitons, however are considered as such in both optical and atomic
physics [21]). The 1DGPE in Eq. (2.77) has a non-trivial solution [22], defined as

ψ(z, t) =
√

n0

(
B tanh

[B(x − vt)
ξ

]
+ i

v
c

)
, (2.80)

where B =
√

1 − v2/c2, u is the speed of the soliton and c is the speed of sound
at x. The density dip and width of a soliton is directly related to the speed of
the soliton, ∆n = n0(1 − v2/c2); the faster the soliton, the shallower the shape,
and example of a dark soliton with speed v = 0.5c is shown in Fig. 2.3. The

FIGURE 2.3: The density (left) and phase (right) of a dark soliton in
a homogeneous 1D background, with a speed of v = 0.5c.

black soliton (v = 0) is a special case of a dark soliton and is stationary. A dark
soliton in a homogeneous system will travel to infinity. In practice, however, an
infinitely large homogeneous condensate is not possible and so of use is the study
of a vortex in a harmonically trapped condensate or a soliton in a hard-wall box.
The background condensate in a harmonically trapped condensate is varying, and
as such a vortex moving in one direction will change speed corresponding to the
change in the background density. At the point in which n(z) = ∆n, the soliton will
change direction. This movement corresponds to an oscillatory motion through
the condensate with the frequency ω = ωz/

√
2 [23]. A dark soliton colliding with

a hard wall will also rebound and change direction [24]. As solitons traverse a
trapped condensate, they will also emit sound [25]; the soliton-sound interaction is
as well studied. Various other decay mechanisms for dark solitons in condensates
have been reported, such as due to the trap shape [26] and the temperature of the
system [27]. Originally postulated by Carr et al in 2001 [28], the combination of
phase-imprinting and density-engineering was shown by Fristch et al [29] in 2020
to give a dark soliton of any arbitrary speed. Early techniques [30, 31], were also
able to create solitons of the experimentalist’s choice, albeit only ones with a large
speed (and hence shallow shape).
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2.5 Vortices in condensates

Dark solitons are inherently unstable in 3D systems and break down into density
waves and ring vortices [32]. There is, however, another phase defect in conden-
sates - vortices. Vortices are ubiquitous in nature; whether they are a few millime-
tres, metres or thousands of kilometres wide, vortices are a natural occurrence that
appear in every aspect of our universe. A quantum fluid is no exception with vor-
tices being observed in both liquid helium and condensates, although their nature
is significantly different as result of quantum mechanical constraints.
As v = (h̄/m)∇ϕ, the velocity field is irrotational,

∇× v = 0. (2.81)

However, BECs may sustain topological defects, where the phase has a singular-
ity and the amplitude of ψ → 0. These topological defects are effectively one-
dimensional and the quantum fluids is expelled from their core. Furthermore, the
whole vorticity of fluid is confined on these 1D objects: quantised vortices. The
term “quantised” is related to a peculiar characteristic regarding the circulation of
the velocity field. The wavefunction of the condensate is single valued, and ergo it
must be that the change of phase ∆ϕ around the closed contour around the vortex’s
axis much be a multiple of 2π

∆ϕ =
∮

∇ϕ · dl = 2πq, (2.82)

where q is any integer. The circulation around this is therefore,

Γ =
∮

v · dl =
h
m

q. (2.83)

Any circulation of a quantised vortex is therefore quantised by units of h/m. If
q ̸= 0, the closed contour contains a vortex. Although allowed mathematically, due
to the scaling of energy associated with the circulation of the condensate scaling
with q2, any “multiply-charged” vortex (that is, a vortex with |q| > 1) is inherently
unstable and will break up into q vortices each with unitary circulation [33].
Vortices are valid solutions in both two-dimensional and three-dimensional sys-
tems. The dynamics of vortices is heavily dependant on the dimensionality of the
system. When two 2D vortices meet the do not reconnect (as 3D vortices do), but
form either a vortex-anti vortex pair, rotate around each other or annihilate. This
thesis concerns only 3D vortices and therefore will be the focus here, but interest-
ing 2D vortex dynamics can be reviewed in Ref. [34] and references therein. In 3D
systems, vortices can either be lines (where the ends terminate at the condensate’s
boundaries) or rings (where the vortex is in a closed loop). Almost immediately
after the first experimental creation of condensates, methods of creating vortices in
condensates were proposed and used to observe the first vortex structures in con-
densates [35–38]. For example, from a method proposed by Williams and Holland
in 1999 [38], Matthews et al [39] were able to observe vortices in a two component
system. Any attempt at a complete inventory of the early techniques of vortex cre-
ation and studies would be non-exhaustive, however a detailed historiography of
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early vortex experiments in BECs can be found in [34]. Examples regarding the cre-
ation of vortices include Leanhardt et al’s imprinted vortices by imprinting phases
[40], Henn et al.’s creation of vortices via the superposition of oscillating [41] and
the merging of condensates to create vortices [42]. As well as in simple bosonic
systems, vortices have also been created in strongly interacting Fermi systems [43]

When two 3D vortices approach each other, they combine and then split apart,
referred to as a reconnection and shown in Fig. 2.4. Here, they get close enough that

(a) (b) (c) (d)

FIGURE 2.4: Two oppositely charged vortices reconnecting; (a) two
vortices of opposite sign (denoted by the arrows) are near each other,
(b) they begin to interact and thus approach, (c) they combine and

then (d) travel apart, having exchanged tails.

they exchange tails and the topological nature of the system changes. Multiple pos-
sibilities have been postulated on reconnection characteristics. One such is how the
minimum distance between two vortices δ(t) scales with time before and after the
reconnection [44–51]. Many of these authors have postulated and computationally
shown that a the minimum distance goes as δ(t) ∼ t1/2 scaling [44–53]. It has re-
cently been shown [54] that there is a further scaling law for larger times, δ(t) ∼ t.
This exchange is not conservative; as the reconnection occurs, the vortices release
a sound pulse which adds density waves into the system [55]. In a system with a
large amount of vortices, reconnections occur constantly. Due to the sound emis-
sion, the overall incompressible energy of the vortices in the condensate falls as it is
converted to compressible energy associated with sound emission and a cascade of
energy is observed; in a system where this happens again and again, this becomes
vortex turbulence [14].

2.6 Turbulence

In this thesis we study quantum turbulence. In order to understand quantum tur-
bulence, we must first have an understanding of the principles of classical turbu-
lence. The Navier Stokes equations govern the flow of a classical fluid where for a
system with density ρ, velocity v, fluidic pressure p and viscosity ν,

ρ
∂v
∂t

= −ρ(v · ∇)v −∇p + ρν∇2v. (2.84)

We start by a qualitative description of classical turbulence before introducing the
mathematics. Classical turbulence is determined by the large scale driving of a
system which creates eddies at a large length scale (eddies being a rotation of fluid;
a tornado or a whirlpool). These large-scale eddies are inherently unstable due
to the chaotic nature of three-dimensional turbulence and begin to break down
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and “seed” eddies at smaller length scales. These eddies break further and further
down until the smallest eddies where energy is dissipated by viscosity. it is useful
to introduce a non-dimensional parameters known as the Reynolds number

Re =
vℓ
ν

, (2.85)

where u is the typical velocity of the system at the large scale ℓ of the flow ν is
the kinematic viscosity of the system. To a nonspecialist, the Reynolds number
of a flow is what often tells the observer the nature of the flow being analysed.
When it is small, the flow is smooth and laminar. When the Reynolds number of
the system, however, rises then we begin to see the chaotic nature of flow. When
Re → 1, viscous dissipative effects cannot be neglected, implying that at small
scales viscocity is important. At larger k scales, the only relevant phenomenon is
ϵ. We define here the velocity and length scale of the largest eddies to be u and ℓ
respectively and the velocity and length scale for the smallest eddies to be v and η.
The rate of strain at the lowest scale is given by sij → u/v. Another useful measure
is the rate of dissipation of the energy at the small scalelength, η, which is defined
by ϵ → vsijsij = v(υ2/η2). From this, we can define two useful relations which are
used later on

η =

(
v3

η

ϵ

)1/4

, (2.86)

and
υ = (vϵ)1/4. (2.87)

We here derive two useful measures from classical turbulence which will be used
in this thesis to study quantum turbulence. The first is the correlation function,
specifically for the velocity of a turbulence system. The velocity correlation func-
tion is defined as the workhorse of turbulent theory by Davidson [3] and we will
follow his derivations here. The velocity correlation function is defined as

Qij(rêx) = ⟨v′i(x)v′j(x + rêx)⟩, (2.88)

where the primed velocity fluctuation v′ is the velocity at x = x, y, z minus the mean
velocity of the system, and ⟨⟩ denotes the ensemble averaging. We now ignore
primes for aesthetic reasons as assume the mean flow of our example system is
0. In real terms, the correlation of the system defines how similar the velocities at
two locations separated by a distance r are. Describing this qualitatively, one can
think of an arbitrary distance r and a size of an eddy R. If r ≪ R, then it can be
assumed the two points are well correlated. If, however, r ≫ R, we can assume
the correlation is small or negligible. We define a longitudinal velocity correlation
function f (r), where Qxx(rêx) = v2 f (r). One can therefore define a scalelength, l to
denote a measure corresponding

l =
∫ ∞

0
f (r)dr (2.89)
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or expressed differently,

l =
∫ ∞

0

⟨v′i(x)v′j(x + rêx)⟩
⟨v′i(x)v′j(x)⟩

dr. (2.90)

Rescaling the correlation length may come across as otiose, however rescaling by
the v(x)2 provides a worthwile relative measure which is more workable for us for
comparisons between systems and times, t. The quanity l provides a useful mea-
sure to define the length of the largest eddies in the turbulent system. In a system
of decaying turbulent system, it can be assumed that as the size of the eddy grows
smaller, the measure l will also. In this thesis, we now refer to f (r) as the corre-
lation function as it is more useful to our work than the strict correlation function
Q(r).
This correlation function, f (r) can be useful to determine the map of the velocities
of our hypothetical system of classical turbulence. Also useful would be to use this
to gain a measure on how the kinetic energy of the system exists at every scale-
length. We can define an incompressible kinetic energy spectra from the velocity of
the system. According to Davidson, we must first begin by defining a longitudinal
velocity increment,

∆v = v(x + rêx)− v(x), (2.91)

of which a second-order longitudinal structure function can be defined as

⟨[∆v]2⟩ = ⟨[v(x + rêx)− v(x)]2⟩. (2.92)

Simple algebraic manipulation can show that the second order structure function
and the correlation function are related by

⟨[∆v(r)]2⟩ = 2v2(1 − f ). (2.93)

If we consider a infinitely large r,

⟨[∆v(r → ∞)]2⟩ → 4
3
⟨1

2
k2⟩. (2.94)

If one stops thinking of eddy size and begins to think about wave numbers, it can
be proposed that one can look at the Fourier Transform to identify contributions
to the incompressible energies at different lengthscales. We can define this as the
energy spectrum where

E(k) =
2
π

∫ ∞

0
R(r)kr sin(kr)dr. (2.95)

We assume that the distribution of v globally is homogeneous and thus,

R(r) =
1
2
⟨v(x) · v(x + r)⟩. (2.96)

When taking r → 0, the incompressible energy of the system can be expressed as

1
2
⟨[∆v]2⟩ =

∫ ∞

0
E(k)dk. (2.97)
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It can be stated that ⟨[∆v]2⟩ can be expressed as a universal function F̂(u, ℓ, r, t, v).
Through dimensional analysis, it can be shown that this can be reduced down to

⟨[∆υ]2⟩ = υ2F
( r

η

)
. (2.98)

We obtain the Kolmogorov two-thirds law, which relates the longitudinal structure
function to the length r and ϵ at scales dictated by η < r < ℓ.

⟨[∆v]2⟩ = βϵ2/3r2/3, (2.99)

where β is a dimensionless parameter roughly equal to 2. Rewriting Eq. (2.99) in
terms of the incompressible energy, we obtain the famed Kolmogorov five-thirds law

E(k) = Cϵ2/3k−5/3, (2.100)

In classical fluids, C ≈ 0.76β as the Reynolds number goes to infinity [3, 56]; Sreeni-
vasan predicts C = 1.62 ± 0.17 [57].

2.6.1 Kolmogorov Turbulence in Quantum Fluids

We can split the wavefunction of our condensates, Ψ, into a density and a phase
using the Madelung transform

Ψ(x, t) =
√

n(x, t) exp is(x, t), (2.101)

where n and s denote here the density and phase of the quantum fluid, we can
substitute this into the Gross-Pitaevskii equation derived earlier, Eq. (2.45), one can
observe the results

m
∂v
∂t

= −∇
(

1
2

mv2 + V + gn − h̄2

2m
∇2√n√

n

)
, (2.102)

and
∂n
∂t

+∇ · (nv) = 0. (2.103)

In the limit of h̄ → 0, this equation resembles the Navier Stokes equation intro-
duced above in classical fluids. It can be proven that In the region of kD < k < kη ,
the energy transfer to the smallest (Kolmogorov) length scale, kη is self-similar and
the scaling of the incompressible kinetic energy scaling is E ∼ k−5/3, akin to that
of turbulence in classical fluids. There also is another scale present in the system
for a quantum system; an observable k−3 is present in the top pane of Fig. 2.5 be-
tween the kξ and kℓ, corresponding to the contribution on the scale of single vortex
lines. Stalp et al. [58] argued that the vorticity of a quantum fluid (Helium-II in
their example) is

ω = κL, (2.104)
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where κ is the quantum of circulation, κ = h/m, and L denotes the vortex line
length per unit volume of the system. They then further assumed that the dissipa-
tion of the turbulence in liquid helium must be

ϵ = v′κ2L2. (2.105)

From here the total turbulent energy of a system of size D is given by [59]

E =
∫ ∞

2π/D
Cϵ2/3k−5/3dk,

=
3
2

Cϵ2/3D2/3.
(2.106)

Knowing that the dissipation of the system is related to the decay in energy over
time, it can be shown that

ϵ = 27C3D2(t + t0)
−3, (2.107)

where t0 is simply a constant. We can therefore use the proposed relation in Eq.
(2.105) to find a relation on how the total vortex line length decays in time as

L =
(3C)3/2D

κv′1/2 (t + t0)
−3/2. (2.108)

In the majority of literature revolving quantum turbulence, this is simplified down
and presented as a relation to only the time, so that the vortex length length decays
in time as

L ∼ t−3/2. (2.109)

Kolmogorov turbulence has been numerically studied in multiple studies using
both the GPE and vortex filament method [60] for quantum fluids. It has also
been experimentally observed in liquid Helium with techniques including rotat-
ing propellers [61, 62], moving grids [63, 64], and wind tunnels [65]. In a conden-
sate, the healing length is on a comparable size to the condensate’s width (roughly
D/a0 ≈ 102) compared to the largest Helium experiments with ≈ 1010 [66]. In a
similar vein, vortices are easily imaged in the Helium using tracer particles [67].
One other distinct advantage of Helium is the ability to measure the local velocity
(and hence gain the incompressible energy spectrum) via multiple methods such
as Pitot tubes [61] and cantilever anemometers [62]. At this point, the reader may
consider the clash in the discussion of quantised vortices and the idea of vortex
size declining in characteristic size along the energy cascade: how can this picture
hold in the presence of quantised discrete vortices? The answer is in polarisation
of condensates; collectives of vortices come together and form a bundle of like sign
vortices within a quantum fluid [68–72]; these polarised bundles will act as if they
are a larger singular larger classcial eddy.
The theoretical prediction of the total vortex line length decaying as L ∼ t−3/2 has
been observed computationally and experimentally in Helium systems [63, 64, 73–
75]. Kolmogorov turbulence is yet to be observed experimentally in condensates.
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2.6.2 Vinen Turbulence

Alongside the pseudo-classical turbulence discussed above, we know of another
type of vortex turbulence within quantum fluids: Vinen turbulence. In some texts
this is also referred to as ultra-quantum turbulence [76]. Predicted by Vinen [77–79]
and observed experimentally in Helium [74, 76] it is often quantified by its lack of
classical signatures [80–82]. Many numerical studies in condensates have detected
the signatures of Vinen Turbulence, such as in a decaying multiply charged vortex
[83] and a thermal quench [84] in a BEC. The determination of the type of vortex tur-
bulence formed has been shown to be determined by the length-scale of the driving
[85, 86], where if a system is driven at a length-scale of > ℓ, a quasi-classical system
is created whereas driving on the scale of < ℓ gives a system of Vinen turbulence;
one difference between the two regimes is that of the decay of vortex length [87].
Another difference between Vinen and Kolmogorov turbulence is that of the polar-
isation discussed previously; Vinen turbulent tangles do not contain the bundles
of like-sign vortices. A consequence of this is a lack of the E(k) ∼ k−5/3 observed
in Kelvin turbulence. In this regard, the energy spectrum of Vinen turbulence is
distinctively different to that of Kelvin turbulence. If the velocity field of a single
straight vortex is defined as

v =
κ

2πr
, (2.110)

the corresponding energy spectra for a for a randomly oriented, non-polarised col-
lection of vortices is

E(k) =
κ2L
4π

k−1. (2.111)

The tangled vortices in a Vinen system do not correlate or orientate themselves.
Figure 2.5 shows the comparison between the two; where Kolmogorov turbulence
exhibits the famous five-thirds law, Vinen turbulence has a smaller scaling of k−1.
Although not observable in both subfigures of Fig. 2.3, both results will contain the
contributions of individual quantum vortices with a k−3 at the larger k scales. The
decay of the total vortex length in the system is given as

L ∼ t−1. (2.112)

2.7 A note on wave turbulence

As well as vortex turbulence, there is also turbulence relating to weakly interact-
ing, nonlinear out-of-equilibirum, dispersive waves in a system - wave turbulence.
Wave turbulence has applications in many areas of physics such as ocean mechan-
ics [88] and the cosmology [89]. Nazarenko defines wave turbulence as the out-
of-equilibrium statistical mechanics of random nonlinear waves and a system of waves
rather than vortices. In a Bose-Einstein condensates wave turbulence can be stud-
ied in two scenarios, the first of which is as a turbulence of fluctuations on a back-
ground condensate. Assuming a condensate in a box with length L, the Fourier
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FIGURE 2.5: The incompressible energy spectra (Eq. (2.64)) for (top)
Kolmogorov turbulence and (bottom) Vinen turbulence. Marked are
the scaling laws, k−5/3 (top) and k−1 (bottom) and the k values cor-
responding to the size of the domain D (dot-dashed) and the inter-

vortex spacing ℓ (dashed).
Image produced from data provided by L. Galantucci.
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transform of the wavefunction can be given as

ψ̂k =
1
L2

∫
ψ(x) exp (−ik · x)dx, (2.113)

where

k =

(
± 2πnx

L
,±

2πny

L
,±2πnz

L

)
(2.114)

where nx,y,z = [0, 1, 2, ...]. The wave spectrum of this system is given as

nk =
L2

4π2 ⟨|ψ̂k|2⟩. (2.115)

Assuming that the fluctuations upon the condensate are very small and in a homo-
geneous, infinite box, one can therefore define

nk =4π
∫

nk1 nk2 nk3 nk

[
1

nk
+

1
nk3

− 1
nk1

− 1
nk2

]
δ(ωk + ωk3 − ωk1 − ωk2)δ(k + k3 − k1 − k2)dk1dk2dk3.

(2.116)

The term ωk here is the dispersion relation

ωk = k2. (2.117)

Solutions to Eq. (2.116) are given in the form of

nk = Ckα, (2.118)

where C is a constant, and α denotes a scaling factor. For the direct energy cascade,
as measured experimentally in Ref. [11], is given as α = −3. Secondly, one can
study the effects of kelvin waves on a vortex in a quantum fluid, where six-wave
processes conserve both wave action and energy [90]. This mechanism - that of
kelvin waves upon vortices - is thought to be very important to the final state of
vortex turbulence [91].

2.8 Experimental Techniques

The rational for studying turbulence within a Bose-Einstein condensate is only
possible due to experimental achievements and advancements. It is therefore im-
perative for theorists to understand the basics of experimental procedures both
the physically inherent and contemporaneous limitations of experimental setups.
Some theoretical papers (whether that be focusing on turbulence or other aspects of
cold atoms studies) are published with results that are not experimentally repeat-
able with the current generation of cold atom experiments. Examples include sys-
tems with a very large homogeneous background density or in the measurement
of velocity fields. In this thesis I aim to explore the type of turbulence obtained
from the current level of experimental cold atom turbulence research and propose
possible methods which are viable for current experimentalists. We therefore, here,
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provide an investigation of current experimental methodologies, written for a the-
orist in mind. We focus our attentions on the techniques of the Sao Carlos group,
however also bring to light other experimental procedures.

2.8.1 Cooling and trapping of atoms

The thermal energy of an individual particle per degree of freedom as a function of
temperature, T, is

E =
1
2

kBT. (2.119)

We can equate this relation to the particle kinetic energy, i.e.

1
2

mv
′2
x =

1
2

kBT. (2.120)

The route-mean-squared velocity, vrms, in three dimensions can therefore be found
to be

vrms =

√
3kBT
m

, (2.121)

such that the the slower the atoms in the sample, the colder they become. Originally
proposed by Hansch and Schawlow [92], one can use this correspondence as the
basis for laser cooling, the first step in an experiment. When the frequency of a
laser is close to an atomic transition the absorption of the light by the atoms causes
a transfer of momentum, thus changing the kinetic energy of the atom. This implies
a slowing down of the atom in the given direction and thus it begins to cool. In an
experiment, this is applied in the three cartesian directions to cool the gas of atoms.
This is often referred to as an optical molasses [93]. There is a limit to the cooling
one can achieve in this setup called the “Doppler cooling limit”,

TD =
h̄Γ
2kB

, (2.122)

where TD is the Doppler temperature. For an example, one can cool a sample of
Sodium down to TD = 240µK using the optical molasses technique. The optical
molasses technique is not able to cool the sample enough to undergo condensation.
After the molasses cooling in the magneto-optical trap (MOT), the sample is trans-
ferred to another trap so that the sample can undergo evaporative cooling. If one
has a large sample of atoms, there will be a large range of temperatures (and there-
fore energies) present. Evaporative cooling, unlike that of the optical molasses, has
no mathematical lower limit to temperatures achieved [94]; the lowest temperature
possible is instead dictated by the experimental apparatus and discretion of the ex-
perimentalist.
The “typical” bosonic condensate is trapped within a magneto-optical trap where
the shape of the potential gives a non-homogeneous shape to the condensate. One
can use optical techniques to create a hard-box (and ergo has a quasi-uniform back-
ground) condensate in two and three dimensions [10]. Another semi-recent ad-
vancement of trapping involves a Digital Micrometer Device (DMD) [95], where
one can project an arbitrary 2D greyscale image onto a condensate, giving an infi-
nite number of combinations of condensate shapes.
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2.8.2 Generation of turbulence

As shown in Section 2.6, there have been multiple theoretical and computational
proposals for creating turbulence within a cold atomic system. At the time of writ-
ing, however, all experimental realisations of quantum turbulence in an atomic
system have been achieved by a large scale driving of the condensate. We give a
particular focus on the experiment of the Sao Carlos group in Brazil.
The Sao Carlos experiment took the proposal of Kobayashi and Tsubota [96] to
use two separate rotations in a trapped system [97]. With the equipment available
to them, they used the concept of the transfer of angular momentum via external
magnetic traps. A pair of anti-Hemholtz coils is applied in addition to the back-
ground harmonic potential, placed at an off-angle (roughly θ = 5◦ to the trap
axis). These coils are driven from 0 to the maximum in an oscillatory fashion,
I(t) = I0[1− cos Ωt] [41]. A small amplitude of excitement gives various oscillation
modes (dipole, monopole, scissor etc.). Above a given maximum amplitudes, vor-
tices are formed, then turbulence and then a final state of granulation [98], defined
as very small, spatially and phase separated bits of condensate. The fluctuations
and driving during the creation of granulations means that our Gross-Pitaevskii
framework employed in this thesis is not suitable; the mean-field Gross-Pitaevskii
equation assumes that the number of particles in the system is large and the system
is weakly interacting - very small fragmented parts of condensate therefore cannot
be assumed to be well modelled. Therefore, granulation is not studied here. After
the system has been driven, the condensate is left in the original harmonic trapping
potential for 20ms, before being released and imaged.

2.8.3 Imaging of condensates

The imaging of two-dimensional system has obviously provided more advanced
results compared to their three-dimensions counterparts. Here, vortices can been
shown in-situ [99] with multiple image captures taken from the same experiment.
Identification of the sign of vortices in a turbulent 2D condensate using Bragg scat-
tering [100]. Imaging in 3D systems is inherently much more difficult, but recent
advancements have been made. One such example is the use of absorption imag-
ing to visualise the reconnection of two vortices in a 3D cigar shaped condensate
[101]. Nevertheless, imaging of 3D condensates remains a challenge, especially if
one wishes to view a turbulent condensate. We will briefly reflect on the method of
absorption imaging, with focus on the Sao Carlos experiment.
An experimentalist will typically release a condensate from the trapping potential
to visualise it; the density of the condensate will fall and any phase defects (soli-
tons, vortices) will grow at a larger rate than the condensate; resulting in easier
observation of them. As a condensate expands outwards, a collimated laser beam
will be shone onto the sample. This beam will be resonant with one of the electronic
transitions of the imaged atom species. As the beam passes through the conden-
sate, some of the photons will be absorbed and scattered whereas some will pass
straight through. This results in a “shadow” image of the condensate, where the
absorption is proportional to the shape of the density profile of the system. Mul-
tiple images are taken. As well as an image of the cloud, an image of the imaging
beam is taken. Secondly, a “dark” image is taken, to negate any errors in the system
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(such as in the camera or any arbitrary light in the system). The resultant image is
known as an absorption image, which is an image of the density, integrated in the
direction of imaging,

n2D(x, z) =
∫

n(x, y, z)dy. (2.123)

Some experimental setups can image from more than one direction at the same
time, however the Sao Carlos experiment cannot. Assuming the condensate is uni-
form in the xy plane, one can make use of techniques such as the Abel transform to
create an estimated 3D profile of the cloud [8]. As well as a way of observing the
condensate itself, images from experiments can be used to estimate the number of
particles in the condensate by simply taking the norm,

N =
∫

n2D(x, z)dxdz. (2.124)

Also obtainable is the temperature of the system. When one is able to image the
expansion at a few different times, one is able to gain the velocity of expansion.
From this one can relate it to the temperature of the sample,

3
2

kBT =
1
2

mv2, (2.125)

where v is the velocity of the condensate. When imaging, one can obtain what is
referred to as a bimodal distribution; if the temperature of the system is high, one
can see both the condensate in the shape of a Thomas-Fermi profile surrounded
by the Gaussian shape of the thermal atoms. A useful measure obtained from the
integrated image is that of the momentum spectra, of which for a turbulent system
can contain a scaling law.
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3 Computational Approaches for
Three-Dimensional Condensates

In this chapter, we explain and derive the computational methods used in this the-
sis. To develop a code that both is able model the large driving of condensates
and also run on very large computational domains to model the Time-Of-Flight
of the system, we had to ensure the computational method is as robust and effi-
cient as possible to provide accurate, workable results in a practical timescale. The
code used to model all the work in this thesis was built upon an open-source GPE
code by George Stagg [102]. During this thesis, the codes were ran on Newcastle
University’s High Performance Computer ROCKET where we could benefit from
developing a highly-parallelised code to ensure it can run as effectively as possible.

3.1 Solving Partial Differential Equations

There are many ways where one can can solve a partial differential equation like a
Gross-Pitaevskii equation. For a discrete computational grid, we can split the grid
into spaces of dx and increment the solution forward in steps of dt. One popular
method is the split-step Fourier method, where if one knows the wavefunction at
time t, then one can calculate the wavefunction after the next time step t + dt. In
these examples we will express the GPE in the natural form (Eq. (2.73)). We define
our spatial domain as

x = dx[−NX/2 : NX/2] (3.1)

where NX is a integer and the length of the domain is NX + 1 points long. When
defining our computational method we must also contemplate boundary condi-
tions. If we are to model the expansion of a condensate, the wavefunction will
obviously move outwards and thus boundary conditions can be an issue. The ex-
panding wavefunction and the reflection from the edges collide, beating begins to
occur and oscillations are seen near the edge of the computational domain. Al-
though very small at first, this effect begins to build up. In time, this causes a
mis-shaping of a spherically shaped condensate as the condensate becomes large.
Therefore, we have to ensure that the computational box is much larger than the
expansion we wish to simulate. We keep to periodic boundary conditions, such
that for the edges of our domain,

x[−NX/2 − 1] → x[NX/2], (3.2)

and
x[NX/2 + 1] → x[−NX/2]. (3.3)
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We use here the fourth-order Runge-Kutta method which is the sterotypical one
used in such simulations. Provided one chooses an appropriate spatial step, dx and
time step dt, any Schrodinger equation can be we simulated to the RK4 method.
Returning to Eq. (2.73), we can denote a value k1 as the “right-hand side” of the
GPE so that,

k1 = ψ(t),

=
1
i

[
− 1

2
∇2ψ + |ψ|2ψ + Vψ

] (3.4)

k2 = ψ

(
t +

dt

2
, ψ + dt

k1

2

)
, (3.5)

k3 = ψ

(
t +

dt

2
, ψ + dt

k2

2

)
, (3.6)

and
k4 = ψ(t + dt, ψ + dtk3), (3.7)

One therefore states that the wavefunction at the next time step is a summation of
Eqs. (3.4) to (3.7),

ψ(x, y, z, t + dt) =
dt

6
(k1 + 2k2 + 2k3 + k4). (3.8)

The ∇2 term, signifying the second order spatial differential can be calculated on
a discrete grid by finite differences with a large order of accuracy [103]. For each
spatial direction ∇2 → ∂2ψ

∂x2 , this term is

∂2ψ

∂x2 ≈ 1
12dx2 [−ψ(x − 2) + 16ψ(x − 1)− 30ψ(x)

+ 16ψ(x + 1)− ψ(x + 2)] +O(dx2).
(3.9)

Usually, simulations use a “[−1, 0, 1]” grid

∂2ψ

∂x2 =
1
dx2 [ψ(x − dx)− 2ψ(x) + ψ(x + dx)], (3.10)

for the laplacian term, however this was shown to not have the required accuracy
for the work in this thesis (explained in Section 3.3). The ∇2 term for the edges of
the condensate is treated via the boundary conditions stated in Eqs. (3.2) and (3.3).
The discretisation of the computational domain is such that dx is set to half of the
healing length of the system, dx=0.5ξ and dt chosen to be an appropriate ratio of
dt/dx2.

The first step in any computational simulation is to find the ground state of the
system. To do this we must make a first initial guess of a condensate shape. We
recall the Thomas-Fermi density profile defined in Eq. (5.4) and use this as a initial
guess. One method of thus finding the ground state of the given system from this
is using the imaginary time method where one substitutes the time t → t − i∆t,
where i is the imaginary number. Given the Thomas-Fermi profile, it can be imag-
ined as a superposition of eigenstates. When running this through imaginary time,



3.1. Solving Partial Differential Equations 33

FIGURE 3.1: The density slice n(x > 0, y = 0, z = 0) of the ini-
tial Thomas-Fermi profile of a spherical condensate (dashed black)
and the corresponding ground state (red) ran to a tolerance δE =
E(t + δt)/E(t) = 10−10, where E is the total energy of the sys-
tem. The condensate is normalised such that the peak density

n0 = n(0, 0, 0) = 1.

all the eigenstates will decay, with the ground state delaying slowest. Therefore,
if running in imaginary time and ensuring the norm of the system is conserved,
we will be left with the ground state of the condensate - the lowest energy mode.
Figure 3.1 shows both our initial guess and the ground state of the system; the only
discernible difference is along the edges of the condensate.
We need to decide when we have a good enough ground state to use in our sim-
ulations; we can either monitor the change in the norm of the system, or the total
energy of the system (which we use in this work). We monitor the change in energy
over time δE = E(t + ∆t)/E(t) until it falls beneath a given tolerance. If the toler-
ance is too high, there will be too much excess energy in the system, leading to the
triggering of modes and density oscillations. In Fig. 3.2, we show how in time this
can happen; in the right pane where the total energy of the ground state oscillates
for the two largest tolerances to a large degree. This is due to excess energies still
left in the simulation.

3.1.1 Adding in Vortices

No true analytical solutions for vortices exist but various approximations exist.
One such well known one that is often used in analytical prediction of the density
profile of a vortex along the z direction in cylindrical coordinates, r =

√
x2 + y2, is

given as

ψ(r, z) =
√

r
1 + r2 exp (iκθ), (3.11)

where κ is the circulation and θ is the azimuthal angle around the vortex core.
In this thesis we instead use the approximation given by Berloff [104], where the
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FIGURE 3.2: The simulated time (in the natural units derived earlier
in Eq. (2.73)) to find the ground state of the system as a function of
the given energy tolerance (left) and the change in the total energy
when the ground state is ran in real time over a time of t = 200 for

various tolerances.

resulting approximation of the density of a straight line vortex in an infinite system
is given as

ψ(x, y, z) =

√
r2(0.3437 + 0.0286r2)

1 + 0.3333r2 + 0.0286r4 . (3.12)

A vortex does not have to just be a straight line but can be in the shape of a ring,
where the ends terminate on each other. This approximation can be adapted for
such a topology. If we assume the ring is aligned to the x, y plane and perpendicu-
lar to the z plane, with a given radius r at a location x0, y0 and z0. To computation-
ally add in the vortex ring, we define a wavefunction which can me multiplied into
the intended ground state of the system. As well as a vortex line, Berloff’s approx-
imation can be reworked into describing a vortex ring in a homogeneous system
such that

ψ(x, y, z) =ψ(x, y, z)

√
r2

1(0.3437 + 0.0286r2
1)

1 + 0.3333r2
1 + 0.0286r4

1

√
r2

2(0.3437 + 0.0286r2
2)

1 + 0.3333r2
2 + 0.0286r4

2

(z + iκS + r)(z − iκS − r)

(3.13)

where

r1 =

√
(z − z0)2 + (

√
x2 + y2 + r0)2, (3.14)

and

r2 =

√
(z − z0)2 + (

√
x2 + y2 − r0)2. (3.15)
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FIGURE 3.3: The one dimensional slice of the initial density approx-
imation (Eq. (3.12)) of a vortex line through the centre of a spherical
condensate (black) and the same condensate ran in imaginary time

to a tolerance of 10−8.

We add in vortices and then run through imaginary time again so that the vortex
state converges. Akin with the ground state solution, the given approximation will
converge to the lowest energy state. When looking for the ground state, running
through imaginary time will converge to the true ground state of the system if left
to run in infinite time (provided the wavefunction is normalised at every step). The
only choice one has to make is how low a tolerance to go to is the time in which it’ll
take to get there. We have to be careful, as a line vortex placed in a trapped system
running in imaginary time will move, and a ring vortex will shrink. Conversely, a
system with a vortex ran to too high a tolerance once ran in real time will result in
density waves emanating from the vortex core. We therefore have to be careful in
which tolerance we choose and run a few tests to make sure any vortex states we
create are as converged as possible. We look at two cases for two specific reasons.
Firstly, we look at a line vortex placed within the centre of a spherical condensate
ran to a few different energy tolerances. If not a good enough approximation, there
will be an introduction of compressible (sound wave) energy into the system. We
monitor this and see how the ratio of the compressible to incompressible energies
change when the system is ran in real time, as shown in Fig. 3.4. We find that
a tolerance of 10−6 gives a sufficient lack of creation of compressible energy. The
final test is when a vortex is placed off-centre in the same spherical condensate; a
vortex is placed at (x, y, z) = (5, 0, 0) with the system then ran in imaginary time.
Unlike in the previous two cases, this cannot be ran for an infinitely small tolerance
as the vortex will leave the system. If we monitor the location in the x direction as
a function of the energy tolerance the system has been ran to (see Fig. 3.5) for three
different locations in y then we see this shifting; very quickly, the location of the
vortex in x has changed. We have to weigh up the creation of density fluctuations
and the placement of vortices and therefore decide to run any vortex codes for a
tolerance of ∆E/E = 10−6.
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FIGURE 3.4: The ratio of the compressible energy created from the
shedding of energy from a vortex ran to a tolerance of 10−4 (black),

10−6 (red) and 10−8 (blue).

3.2 Detection of vortices

Vortices are detected in our condensates using an adapted method from Villois et al.
[105] and Galantucci et al. [101]. Two dimensional slices of the three-dimensional
wavefuction are used to pinpoint the locations of vortex points within them using
these slices. The algorithm calculates the pseudovorticity unit vector of the two
dimensional slice,

ω̂ =
∇ℜe(ψ)×∇ℑm(ψ)

|∇ℜe(ψ)×∇ℑm(ψ)| (3.16)

where ℜe(ψ) and ℑm(ψ) denote the real and imaginary part of the wavefunction.
Where this is larger than a ratio of 2π, and the density is lower than a ratio of
the peak density of the system (denoting the existence of an empty vortex core), it
decides the location of the vortex core in the 2D space. Using a steepest descent al-
gorithm, it can then work out which cores in each 2D slice correspond to the same
3D vortex, and can also obtain locations at a sub-grid resolution. From this, one
ends up with 1D arrays of locations corresponding to the core of the 3D vortex;
from this information, the length, locations and topologies of the individual lines
can be found, as well as the total line length of the condensate and the minimum
distances between the vortices.
In Chapter 6, the condensates generated contain many vortices as well as large
density fluctuations and fragmentation. To avoid the extraneous detection of the
large fluctuations as vortices, we calculate the correlation length of the density
fluctuations first. This quantity is found by computing the correlation lengths χx
(x = x, y, z,t) of the condensate’s density fluctuations at time t in the three Cartesian
planes, defined as

χi(t) =
∫ ∞

0

⟨n f l(x, t)n f l(x + ex · r, t)⟩
⟨n f l(x, t)2⟩ dr, (3.17)
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FIGURE 3.5: The change in energy (top) of a vortex placed at initially
at x = 5 ran in imaginary time, and the vortex location in x at z = 0

(black), z = 0.25Rz (blue) and z = 0.5Rz (red).

where n f l is the density of the condensate with a fitted Thomas-Fermi profile re-
moved, n f l = n − nTF, and i = (x, y, z). The overall correlation is then defined as
χ(t) = (χx(t) + χy(t) + χz(t))/3. If the algorithm detects a vortex in a location
where the local correlation length is as given ratio smaller than the average cor-
relation length of the system, it is ignored and defined as a fragmentation of the
condensate density.

3.3 Expansion of Condensates

In this thesis we model the time-of-flight of condensates in order to quantify both
how the structure within a condensate affects its expansion and the how the nature
of an expansion may give an experimentalist a better idea to what is inside the
condensate when it is released. This poses an instant issue to anyone who wishes
to model this expansion computationally. We recall that it was stated earlier that
the computational dx of the system is kept to ξ0/2, where ξ0 denotes the healing
length at the peak density, n0. With the healing length at n ̸= n0 being larger
than this value, this ensures that the system is well sampled and therefore well
modelled. This is a problem when wanting to expand the condensate; a simulation
to accurately describe the expansion on the same scale as an experimental TOF will
need to expand to ten times the original width of the condensate. An ordinary
spherically shaped condensate with a width typical of the condensates presented
in this thesis would require a computational grid of ∼ 15003. This is extremely
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costly both in terms of storage and CPU time (even with the use of the university
HPC and adequate usage or parallel computing). There is, however, an approach
one can implement. Thinking of the peak density of a system with Thomas-Fermi
widths defined in the three Cartesian direction, the peak density of a Thomas-Fermi
profile is given as

n0 =
8π

15
N

RxRyRz
(3.18)

Defining now a dimensionless scaling factor b (where the Thomas-Fermi in time
is expressed as Rx(t) = bx(t)Rx(t = 0), we know that as b(t) increases, the peak
density will change by

n0(t) =
n0

bx(t)by(t)bz(t)
. (3.19)

If the individual widths increase to twice the original size, the peak density will
fall and the healing length at the peak of the system will double. Using this, we
can therefore remesh the wavefunction onto a new, courser, grid once the healing
length has doubled. The concept of remeshing has been deployed in many areas of
physics [106], such as in transport equations [107], astronomy [108] and geophysics
[109]. While testing, many methods where tried, some more advanced than the
others. Interestingly, the simplest method is both very effective and resulted in the
fastest computations.

Remeshing algorithm:

• A condensate which we wish to measure the expansion of is produced in a
computational grid defined with dx = ξ/2, on the computational grid from
Eq. (3.1). The peak density at t = 0 is calculated by taking an average of the
largest 5% of the points of the density with the value kept as n(t=0).

• The potential of the system is set to zero, V = 0 so the condensate spreads
out in a way derived later in Eqs. (5.16) and (5.17).

• The peak density is monitored at every 0.1 time units (again by taking an
average of the largest 5% of the points of the density).

• Once this peak falls to a given ratio of the original peak density, we state that
the healing length grown large enough.

– For a spherical condensate, this ratio is that the peak density has fallen
to 1/8th of the original value at t = 0. For a cigar condensate, we instead
use a 1/16th - the anisotrophy of the expansion means that the z direc-
tion for the cigar condensate with ωz > ωx,y expands slowly comapred
to the radial direction.

• A new computational box, X1, is defined with dx = 2dx0 and x = dx[−NX/2 :
NX/2].

• Every second point in the original wavefunction,

X0([−NX/2,−NX/2 + 2, ...,−2, 0, 2, ..., NX/2 − 2, NX/2]) (3.20)
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is placed within the new wavefunction at

X1([−NX/4,−NX/4 + 1, ...,−1, 0, 1, ..., NX/4 − 1, NX/4]) (3.21)

• The areas of the grid where

X1([−NX/2,−NX/2 + 1, ...,−NX/4 − 2,−NX/4 − 1]) (3.22)

and
X1([NX/4 + 1, NX/4 + 2, ..., NX/2 − 1, NX/2]) (3.23)

are seeded with very small complex randomised noise on the scale of 10−10.
Although not needed for the background expanding condensate, it helps en-
sure that the phase profile of vortices is quickly adapted into the new area of
the computational domain. It was found that if the wavefunction at locations
denoted in Eqs. (3.22) and (3.23) were simply set to zero, the phase winding
of vortices developed a discrepancy.

• The wavefunction in the new grid is renormalised and the GPE continues.

• By the time the condensate bulk expands into the domain denoted in Eqs.
(3.22) and (3.23), the phase profile is as well defined as if the simulation was
ran on a hypothetical grid of dx0[NX, NX + 1, ..., NX − 1, NX].

To ensure that the reader agrees with us that the remeshing algorithm works, we
present a test case of a spherical condensate expanding with a single straight line
vortex through the centre of the condensate. We run this in an ordinary compu-
tational grid and on a computational grid that remeshes. We see in Fig. 3.6 that
both the total energy of the system and the individual energies of the system have
a percentage difference of lower than a single percent. It must also be stated that
there will be a slight error in the measurement of the energies themselves; since the
integration and differentiation methods used to calculate the energies presented
here rely on the dx value themselves, a certain amount of error will be due to that
difference. Indeed, if one measures the energies of the original grid only analysing
every second point, one finds that the percentage difference between the energies
measured on the remeshed grid and the sampled original grid is much smaller than
the one presented in Fig. 3.6.
As well as the energies, we must also study how if the shape of the condensate is
affected by the remeshing. Here, it must be stated, that we originally wrote the
algorithm to remesh constantly. It was found, however, that the simulation would
break down and the condensate would begin to take on a more squarish shape if
remeshed a second time; we thus remesh the grid of the simulation only once. This
limits our level of expansion, however with our computational resources we are
still able to observe an expansion of ∼ 15 times the original condensate’s size.
Figure 3.7 shows a 1D slice of the density of the expanding spherical condensate

with a vortex through the centre at a time t = 60. We see no difference between
the two simulations, the only noticeable difference is towards the edges and even
then is negligible. Now we know we can expand our condensate to a reasonable
degree with our adaptive grid, we can conclude that we have all the computational
resources to study both the expansion of condensates with systematically placed
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FIGURE 3.6: The percentage difference, ∆E(t), calculated from the
difference between in the individual energies between two simula-
tions (one remeshing, one not) of an expanding spherical condensate
with a vortex in the centre on a ordinary computational grid and a
remeshing one. The remeshing point happens at t = 38, on the left

edge of the graph.

FIGURE 3.7: The one dimensional density slice of an expanding
spherical condensate with a single line vortices in the centre of the
condensate at t = 60 on an ordinary computational domain (black
dotted) and remeshing computational domain (red). Inset is the per-
centage difference between the two, highlighting the very small dif-

ference between the two densities.
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vortices and density fluctuations and also the generation of turbulence (and the
expansion of such cases!).
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4 Creation and measurements of
solitons in One-Dimensional
Condensates

We begin the research of this thesis by using 1D systems as a test case. We first begin
by deriving a new method of measuring the speed of a soliton in a condensate. The
results of this Chapter was published in Europhysics Letters [13].

4.1 Detection of solitons in 1D systems

Quantifying the nature of turbulence in a three-dimensional (3D) Bose-Einstein
condensate requires a way of identifying individual phase defects present in the
system. Quantum turbulence proves to be an experimental challenge. Such an en-
tangled 3D system provides a difficult system to optically image; if the individual
vortices are not aligned with the direction of visualisation then they are barely vis-
ible within the turbulent cloud. This work was concluded as a test-bed to create a
method of detecting phase defects in condensates. We hence take a step back and
begin our journey with the study of one-dimensional (1D) repulsive Bose-Einstein
Condensates and the dark solitons within them. Solitons are present in many non-
linear systems, from optics [110–112], thin films [113, 114] and fluids [115–117] to
atomic BECs [21, 30, 31, 118–129]. Multiple methods of creating dark solitons [37,
130, 131] were proposed shortly after realisation of BECs [132–135] and the subse-
quent creation of low dimension condensates [136]. These methods can be broken
into two categories: phase imprinting [30, 31, 121, 137] and density engineering
[122, 124, 131], and also a combination of the two [129, 130]. Recently, new meth-
ods to create solitons [138] through quenching have also been discussed [139, 140].
Dark solitons are stable in BECs confined in quasi-1D geometries, at T = 0, and
under certain specific forms of trapping potential, such as a harmonic trapping po-
tential [141]. If any of these constraints are broken, the solitons are prone to decay,
due to unstable excitation of the dark soliton into vortex rings/pairs (the snake
instability) [32, 118, 142–146], thermal dissipation [27, 147, 148], and net sound
emission [23, 24, 26, 141], respectively. The first generation of dark soliton exper-
iments in BECs showed the possibility of non-dispersive solitary waves propagat-
ing through the background condensate [30, 31, 118, 132, 137]. In these particu-
lar experiments, propagation was very short-lived. Dark solitons were shown to
break down quickly due to a mixture of thermodynamic and dynamical instabili-
ties which occurred if the background density was not strongly enough within the
quasi-1D regime [143]. Unlike theoretical work based on the 1D mean field limit,
experimental quasi-1D condensates consist of cigar-like clouds of trapped atoms
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in which a strong radial confinement prevents excitations in the radial plane. The
second generation of experiments were able to both keep the condensate cold and
confined enough in the radial directions to sustain dark solitons for long periods
(that is, for at least one oscillation of the soliton) [121, 124]. Notable experiments
include verification of the oscillation frequency of the soliton in a harmonic trap
being ω/

√
2 (where ω is the trapping frequency of the 1D system) for systems

consisting of a single soliton [124, 149] and the deviation from this prediction for
multiple soliton systems [124]. Interesting theoretical models include the study of
interactions of multiple dark solitons [150, 151] and solitons in two-component sys-
tems [152–154]. Analysis of the complex structure present in a condensate - be that
a single vortex/ soliton or quantum turbulence [7, 11, 20, 155] - requires accurate
detection of the density. Techniques to image the density of the condensate in-
clude dispersive methods [156], absorption [157, 158] and phase-contrast imaging
[159, 160]. Each technique has its own advantages and disadvantages; the choice is
made depending on the type of experiment taking place. Imaging happens either
in situ (that is, imaging the trapped condensate) or during a time-of-flight (TOF)
expansion (releasing the condensate from the trap). Absorption methods, either in
situ or after TOF expansion, are inherently destructive - due to the heating of the
condensate by the imaging laser and the loss of the condensate in the case of TOF
imaging. The viability [161] and search for minimally/ non-destructive imaging
techniques has been an active topic recently [95, 99, 100]. A particularly effective
method of imaging the condensate with minimal destruction of the sample called
Partial Transfer Absorption Imaging (PTAI) was experimentally demonstrated by
Freilich et al [162] and perfected by Ramanathan et al [157] and has the distinct
advantage of working for almost any optical depth. A small given percentage of
atoms are outcoupled and imaged, leaving the original condensate almost unal-
tered. Using PTAI, the condensate can be imaged up to 50 times before breakdown
[157]; The PTAI method was used successfully to visualise solitonic vortices [163]
and reconnecting vortex lines [101, 164] in cigar shaped condensates. PTAI can be
particularly useful for studying the evolving dynamics of moving solitons within
a condensate. Shining light upon the outcoupled cloud and projecting this onto
a charge-coupled device camera, experimentalists can thus gain multiple column
integrated density profiles of the system [165, 166].
We will employ the success of the PTAI method to show that, by taking multiple
snapshots of a condensate, there is a link between the averaged density spectra and
the dark solitons present. In this chapter, we solve the Gross-Pitaevskii equation
for a harmonically trapped 1D system with dark solitons present. We will study
condensates with single and multiple solitons and introduce the idea of a spectral
shift to identify the depth of any soliton present. We utilise the density engineer-
ing method in order to study more experimentally valid systems and finally, will
discuss the implications for 3D condensates.

4.1.1 Model

In the zero temperature limit, the mean field approximation for the wavefunc-
tion ψ(x, y, z, t) of a condensate provides a quantitative model of the dynamics
in the form of the Gross-Pitaevskii equation (GPE) (Eq. 2.45). We can reduce
Eq. (2.45) [167] by taking the perpendicular trapping frequencies to be sufficiently
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large, ω⊥ ≫ ωx, and integrate out the dependence on y, z. We present the results
in this chapter using the natural units for a homogeneous condensate, as outlined
in section 2.3, so that the 1D GPE used is defined as

i
∂ψ

∂t
= −1

2
∂2ψ

∂x2 +
1
2

ω2x2ψ + |ψ|2ψ − ψ (4.1)

All results presented are for ω = 0.02, which ensures we are within the Thomas-
Fermi limit Rx ≫ ω(−1/2), where Rx denotes the Thomas-Fermi radius. Provided
this relation is satisfied, we can model the shape of the 1D condensate by the
Thomas-Fermi profile [168, 169]; for ω = 0.02, Rx ≈ 70. As discussed above, phase
defects in a repulsive 1D condensate take the form of dark solitons. The analytic
expression for a dark soliton of prescribed speed v in a homogeneous background
is [21],

ΨS(x, t) =
√

n
[

B tanh
{

B(x − x0(t))
}
+ iv

]
, (4.2)

where B =
√

1 − v2, and v = v/
√

n. The parameter x0(t) defines the location of the
soliton at time t, where x0(t) = vt + b, where b is an arbitrary constant denoting
the initial location of the soliton. To set up the initial condition for a numerical
simulation of a single soliton in our condensate we multiply Ψs by the ground state
Ψ of a harmonically trapped condensate. The density depletion at the minimum of
the resulting condensate and the speed of the soliton are related via,

∆n = 1 − v2. (4.3)

For clarity, hereafter primes are dropped throughout. In the numerical simula-
tions the GPE is solved via a fourth-order Runge-Kutta method using MATLAB with
dx = 0.1 and dt = 0.01. At desired times, we compute the density spectrum, de-
fined as the Fourier transform of the density of the condensate, ñ(k) = F (n(x)) =
|F (|Ψ(x)|2)|, using inbuilt MATLAB subroutines for the Fast Fourier Transform, where
k is the wavenumber k = 2π/x.

4.1.2 Ground state

We begin our investigation by first studying the density spectrum of the ground
state of a 1D harmonically trapped condensate. Figure 4.1 compares the density
spectrum of a ground state solution, obtained numerically, to the density spectrum
of its Thomas-Fermi approximation. The two spectra are consistent in the region
of k-space corresponding to the central region within the Thomas-Fermi width, Rx,
and the order of a few healing lengths, 5ξ (the scale of the edges of the condensate),
but they deviate at large wavenumbers.

4.1.3 Single Soliton

As discussed earlier, a condensate containing a single soliton is easily obtained by
multiplying the ground state wavefunction by the expression for a dark soliton,
Eq. (4.2), in a homogeneous system (see Fig. 4.2(a)). Upon comparing the spectrum
of the ground state and the spectrum of the single-soliton condensate, we notice
a shift rightwards towards the smaller length scale (larger k) region. We quantify
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FIGURE 4.1: The density spectra ñ of the ground state (black) and
of its Thomas-Fermi approximation, (red), vs wavenumber k; the
wavenumbers corresponding to the healing length (green) and the

Thomas-Fermi radius (blue) are marked as vertical lines.

this spectral shift and relate it to the soliton’s depth ∆n (hence its speed v), and
proceed in the following way. Consider a single soliton at the condensate centre. As
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FIGURE 4.2: (a) The density of a condensate with a soliton with a
depth ∆n = 0.9 inserted at the centre; (b) the scaled spectra ñ/ñ0
of a ground state condensate (red) and of a condensate containing
a soliton of depth ∆n = 0.1 (blue) and a soliton of depth ∆n = 0.9
(black), with ni marked by horizontal black line. The corresponding
intercept wavenumber kis are also marked by vertical dashed lines.
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mentioned earlier, a single soliton in a harmonically trapped condensate oscillates
around the trap’s minimum at frequency ω/

√
2 with an amplitude depending on

the soliton depth ∆n. We let the system evolve in time for t = 500, averaging
density spectra taken for every 0.5 time units. The total time of the simulation
equates to a few oscillations of the soliton on the trap, a timescale achievable in
experiments (using the trapping parameters of the experiment of Weller et al. [124],
this corresponds to a timescale of 20-30ms). We verify that the the resulting time-
averaged spectrum does not change in time, and also verify that the location of the
soliton at a given t does not affect the measurement. Figure 4.2(b) shows that the
addition of a soliton drastically shifts the density spectrum to larger wavenumbers
(compare the blue curve with the red and yellow curves). For the sake of making
comparisons, the density spectra ñ(k) we present are rescaled by ñ0, defined as
ñ for k → 0. To quantify the shift of density spectrum to larger wavenumbers
arising from the presence of solitons, we define the relative spectral shift ∆ki =

ki/k(0)i ; here ki, which we refer to as the intercept wavenumber, is the wavenumber

corresponding to the value ñi = 10−5ñ0 in the presence of the soliton, and k(0)i is
the intercept wavenumber of the ground state. For the ground state with ω = 0.02,
k(0)i = 1.22. Comparing ∆ki obtained for a variety of soliton depths from 0.1 to 0.9
we observe the following power law relation between soliton depth and relative
spectral shift of the density,

∆ki ∼ ∆nα, (4.4)

with α = 0.55 (see Fig. 4.3). Clearly, the deeper the soliton the larger the spectral
shift. We have verified that this result does not depend on the precise definition of
ni; all evaluated measurements of ni give a result for α of 0.55 ± 0.05. We have also
checked that Eq. 4.4 is valid for a variety of harmonically trapped condensates,
as long as these condensates are deeply in the Thomas-Fermi regime. Rescaling
n0 from 1, and hence altering the norm of the system, we have verified that the
norm of the condensate does not affect the spectral shift. If we look at systems with
ω ̸= 0.02, we find that for ω ≪ 1, the same relation (albeit with a different power
law) is present. When ω → 1, we see that it begins to falter; the condensate itself
begins to have structure on the same lengthscales as the dark solitons.

4.1.4 Two solitons

The strong dependence of the spectral shift on the depth of a single soliton mov-
ing within the condensate enables us to determine the depth, and hence speed, of
the soliton existing in the system. The next logical step is to assess how multiple
solitons affect the density spectrum, whether a spectral shift is still observable, and
finally whether it can be related to the number or the depths of the solitons.
For two solitons of equal depth, the power law relationship between the soliton’s
depth and the relative spectral shift (Eq. (4.4)) holds true. The combination of
two solitons of two different speeds, as presented in fig. 4.4(a), exhibits a more
complicated spectral signature. Figure 4.4(b) shows results for two solitons. We
immediately see that ∆ki depends mainly on the deepest soliton (the shallower
soliton having only a minor effect). Although direct determination of the depths
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FIGURE 4.3: The spectral shift ∆ki for different soliton depths ∆n on
a logarithmic scale (main Figure) and linear scale (inset; same ranges

as the main Figure).

FIGURE 4.4: (a) The density profile, n(x), of condensate with two
solitons with depths ∆n1 = 0.75 and ∆n2 = 0.5 respectively; (b)
the spectral shift ∆ki (values on the colorbar) obtained for a range of

values of ∆n1 and ∆n2.

(and hence speed) is not possible from the spectra, the concentric nature of the re-
sults presented in Fig. 4.4(b) shows that if we know the shift, we can easily narrow
down the depths to a range of results.

4.1.5 Many solitons

We have established that in a two-soliton system the spectral shift is mostly affected
by the deepest soliton. However, the methods of creating solitons, as discussed in
the introduction, can often lead to a train of solitons. To make better contact with
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experiments, in this section we describe the spectral shift caused by a relatively
large number, N, of solitons. We choose N = 9, with the first soliton of depth ∆n1
and the other eight of the same depth ∆nN−1, as shown by Fig. 4.5(a). Figure 4.5
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FIGURE 4.5: (a) Density of a condensate with N = 9 solitons: one
soliton has depth ∆n1 = 0.7 and the other eight solitons have depth
∆nN−1 = 0.3, (b) the resulting spectral shift ∆ki as a function of
∆nN−1 for varying ∆n1, with ∆n1/2 marked with vertical lines in

their corresponding colours.

further supports the previous finding that the deepest soliton contributes the most
to the shift of spectrum, hence a higher value of ∆ki. The spectral shifts shown in the
figure display the same dependence on solitons’ depth displayed in Fig. 4.4: that is
∆ki only begins to change when ∆nN−1 is comparable to ∆n1. More precisely, ∆ki
is noticeably affected only when ∆nN−1 is roughly half the value of ∆n1 (marked
with vertical lines in Fig. 4.5(b)).

4.1.6 Effects of perturbations

All results described in the previous sections refer to solitons imprinted into the
ground state. In many experiments, because of the method used to generate them,
solitons coexist with sound waves. The following density engineering method al-
lows us to mimic this more realistic situation numerically. We apply a Gaussian
potential of width σ and amplitude A for a time T in the centre of the trap, before
instantaneously removing it. This overall potential has the form

V(x, t) =

{
1
2 ω2x2 + A exp (−x2/σ2) for t ≤ T
1
2 ω2x2 for t > T

. (4.5)

This mimics the creation of solitons via density engineering methods and causes a
density dip to form at the centre of the condensate. When removed, both solitons
and sound waves are generated during the collapse inwards of the two sides, as
shown in Fig. 4.6(a). We measure the depth of the two main solitons created in
order to imprint them into a ground state for comparison (Fig. 4.6(b)). We choose
σ = 2, T = 5 and vary the amplitude, A, of the central Gaussian pulse. The larger
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FIGURE 4.6: (a) The density of a condensate after being excited by a
pulsed Gaussian potential with A = 1; note the creation of two main
deep solitons (here with ∆n ≊ 0.53) together with sound waves. For
comparison, (b) shows two solitons of the same depth ∆n = 0.53

imprinted into a ground state.

the amplitude A, the deeper the leading solitons created (see Fig. 4.7(a)). In Fig.
4.7(b), we compare the relative spectral shifts ∆ki resulting from solitons which are
imprinted in the ground state (red line) and density engineered (blue line). We see
immediately that although the spectral shifts ∆ki in the two systems are not equal,
the relationship between the soliton depths and the intercept wavenumbers still
holds, regardless of the presence of sound waves. When A → 0, no solitons are cre-
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FIGURE 4.7: (a) The depth ∆n of the leading solitons created by
a Gaussian pulse with amplitude A; (b) comparison between the
spectral shifts ∆ki arising from two solitons in the presence of sound
waves (black) and two solitons of the same depth imprinted in the
ground state (red) and (c) the repeated results from Fig. 4.3 for direct

comparison with the Gaussian results in (b).

ated. Notice the rapid change of the spectral shift for very small amplitudes A (Fig.
4.7(b)); these small spectral shifts correspond to systems with no detectable soli-
ton. The relation between the amplitude and the intercept wavenumber ki begins
to level off at roughly at A = 0.2, corresponding to two solitons of depth ∆n = 0.07.
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We conclude that sound waves can shift the density spectrum, but the shift is small
compared by the larger shift induced by solitons.

4.1.7 Conclusion

We have presented a method for accurately ascertaining the depth (and hence the
speed) of a single soliton in a harmonically trapped condensate from the density
spectrum alone. We have also shown that, in a system with multiple dark solitons,
the spectral shift is mainly determined by the deepest soliton.
The analysis of the spectral shift which we have presented here for 1D systems may
potentially be applied to 3D turbulent systems. A spectral shift of the momentum
of the condensate has indeed already been reported in an experiment with a turbu-
lent 3D condensate [8]. While 1D phase defects are solitons whose width depends
on its speed, the phase defects present in 3D system are vortices. Since multiply
charged vortices are unstable in most cases, the width of the vortex cores is con-
stant (although, in a harmonically trapped condensate, this width increases near
the edge). Therefore it may be possible to relate the measured spectral shift to the
number or the length of vortices present in the system, thus providing a quantita-
tive measure of the intensity of the turbulence in the condensate.
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5 The expansion of simple
Three-Dimensional condensates

The expansion of a condensate is used ubiquitously in experimental studies of
BECs. Here, an experimentalist is able to estimate the temperature of the system,
and thus if they have obtained a large enough condensate fraction. As the con-
densate expands rapidly out, the density falls and one is, hence, able to pass light
through the condensate in order to image any feature within the condensate. If a
spherically shaped condensate expands out, it simply grows larger. If a harmoni-
cally trapped condensate with uneven trapping expands, however, the condensate
will invert (see Fig. 5.1). It has been reported [11, 170] that when a turbulence con-

FIGURE 5.1: The expansion of (a) a spherical cloud and (b) and cigar
condensates.

densate expands, the inversion is not observable and one sees what is referred to
as a “self-similar” expansion. It has been predicted that this is due to the vortices
within a condensate. We therefore study here how phase-defects effect a conden-
sate and look at what analytical studies best model our computational results. We
also look at a couple of smaller problems, such as how the reconnection of vor-
tices is affected by expansion; it is often assumed that as soon as a condensate is
released, the interactions and motions within the condensate bulk freezes. We also
verify that the expansion is effected not by a generic addition of energy (modelled
here as large density fluctuations) but the vortices themselves that cause this diver-
sion of expansion scalings.
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5.1 Review of Time-of-Flight

Akin to the 1D case outlined previously, a set of equations can be derived using
the Thomas-Fermi radii and a scaling parameter b to give a approximated form of
the change of the Thomas-Fermi radii for an expanding condensate. This results
in a coupled ODE of the scaling factors br and bz, Reminding ourselves of the 3D
Gross-Pitaevskii equation,

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ|2ψ + Vψ − µψ, (5.1)

with a harmonic trapping potential of

V =
1
2

mω2r2. (5.2)

Assuming that the condensate does not change in time and the condensate is large,
the GPE can change to

µψ = gnψ + Vψ. (5.3)

For a harmonically trapped condensate, we can therefore express the Thomas-
Fermi profile of the condensate as

n =

n0

(
1 − r2

R2

)
0

(5.4)

where the peak density n0 = µ/g and the Thomas-Fermi width R =
√

2µ/mω2.
The wavefunction of the condensate can be expressed as a Madelung transform,
where

Ψ(x, t) =
√

n(x, t) exp (iS(x, t)) (5.5)

where n, as usual, is the density of the condensate and S denotes the phase. The
fluid velocity is defined as,

v(x, t) =
h̄
m
∇S(x, t). (5.6)

One can insert Eq. (5.5) into the GPE, and separate the real and imaginary parts to
gain two hydrodynamical equations. First, the continuity equation

∂n
∂t

+∇ · (nv) = 0, (5.7)

which dictates the conservation of atoms and

m
∂v
∂t

+∇
(mv2

2
+ ng + V − h̄2

2m
∇2√n√

n

)
= v × (∇× v). (5.8)

The
∇2√n√

n
(5.9)
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term denotes the quantum pressure and can, for now, be ignored but will become
important later. The right hand term of the second hydrodynamical equation can
be neglected for the ground state we consider here. When assuming ∂ψ/∂t = 0 in
Eq. (5.8), one can recover the Thomas-Fermi profile from Eq. (5.4). We can use the
above devices to work out scaling solutions. Assuming a static, large, harmonic
condensate, Eq. (5.8) becomes

∇
(1

2
m(ω2

xx2 + ω2
yy2 + ω2

z z2) + gn
)
= 0. (5.10)

Rearranging, for n > 0,

n =
2µ − m(ω2

xx2 + ω2
yy2 + ω2

z z2)

2g
. (5.11)

For a condensate of N atoms, the peak density of the condensate is given as

n0 =
15N

8πRxRyRz
. (5.12)

If we now consider a change in the trapping potential ω → ω(t), we can assume
that the Thomas-Fermi widths change in time, R → R(t) → b(t)R(t = 0) so that
the profile in time is

n(x, y, z, t) =
n0

bxbybz

(
1 − x2

b2
xR2

x
− y2

b2
yR2

y
− z2

b2
z R2

z

)
. (5.13)

We know that at t = 0, b(t = 0) = 1 and ∂b(t = 0)/∂t = 0. The velocity of the
system must satisfy the continuity equation and is therefore of the form,

v(x, t) =
1
2
(αx(t)x2 + αy(t)y2 + αz(t)z2) (5.14)

where αi(t) = bi(t)/ḃi(t). If one has a system where the trapping potential has
changed in time, one can define the trapping as the initial trapping potential ωi
and one changing in time ωi(t). One therefore ends up at

∂2bi

∂t2 + ω2
i (t)bi −

ω2
i

bibxbybz
= 0. (5.15)

where i = (x, y, z). For a condensate with x = y = r, the scaling solutions are
therefore

∂2br

∂t2 + ωr(t)2br −
ω2

r
b3

r bz
= 0, (5.16)

and
∂2bz

∂t2 + ωz(t)2br −
ω2

z
b2

r b2
z
= 0. (5.17)

Equations (5.16) and (5.17) can be used to model various modes such as the monopole
mode and the quadropole mode of the condensate. If we, instead of changing the
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trap, switch the trap off at t = 0, we can negate the trap in time in Eq. (5.16) and
(5.17), so that

∂2br

∂t2 − ω2
r

b3
r bz

= 0, (5.18)

and
∂2bz

∂t2 − ω2
z

b2
r b2

z
= 0. (5.19)

For the rest of this chapter onwards, we will express our results in natural units.
These coupled ordinary differential equations can be simply solved in MATLAB
using an ode45 solver; ode45 is an off-the-shelf technique solving differential equa-
tions using the Runge-Kutta technique. This results of which are shown in Fig. 5.2.
On the left is an ordinary spherical condensate with ωr,z = 0.08. On the right is a
cigar condensate with ωr,z = [0.08, 0.02]. Both have similarities; in the small time

FIGURE 5.2: The ODE prediction for the change in the Thomas-
Fermi width, Rx,y,z ≡ Rr, of an expanding spherical condensate
(left) and the Rr (blue) and Rz (red) of an expanding cigar conden-

sate (right), highlighting the aspect ratio inversion at t ∼ 60.

there is an acceleration outwards, followed by a linear regime. In the cigar case,
the tightly bound radial direction rapidly expands out compared to the axial and,
at a time 1/ωz, the shape of the condensate inverts. This signature inversion has
historically been used to identify to experimentalists whether they have achieved
condensation. We can recall the total energy of the condensate

E =
∫

d3x

[
1
2
|∇ψ(x, t)|2 + V|ψ(x, t)|2 + 1

2
|ψ(x, t)|4

]
, (5.20)

and can use this to model the energies of an expanding Thomas-Fermi profile. The
three terms in the integral are the kinetic, interaction and potential energies of the
system respectively. We see in Fig. 5.3 at the change in the scaling parameter b
in respect of time and the growth of the kinetic energy (from the rapid expansion
of the condensate) has almost exactly the same profile. As the interaction energy
becomes negligible, the condensate then expands linearly. A computational simu-
lation of an expanding ground condensate using our computational techniques is
given in Fig. 5.4.
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FIGURE 5.3: The (top) change in the scaling factor in time ∂b/∂t for a
spherical expanding condensate and the (bottom) interaction energy
(blue) and kinetic energy (red) of an expanding spherical Thomas-

Fermi profile.

5.2 Expanding ground states and quantification of width

The derivation of Eqs. (5.16) and (5.17) assumes a Thomas-Fermi profile with a
scaling parameter b(r,z). We see, however, that in our turbulent work (see later
in this thesis, e.g. Fig. 6.4) that such a quantification cannot be assumed. We
also know that experimentalists do not have access to quantifying a Thomas-Fermi
profile from an integrated TOF image. Through discussions with the Sao Paulo
group, we know that experimentalists quantify the width by simply looking at the
width in which the density falls down to a certain percentage of the measured peak
density. We first compare the expansion the ground state of a spherical and cigar
condensate with our remeshing computational grid. The spherical condensate has
a trapping potential of ω = 0.06 corresponding to a Thomas-Fermi radius of R =
23.5 while our cigar condensate here is defined by the trapping potentials ω(r,z) =
[0.08, 0.02] with the corresponding Thomas Fermi radii of Rr,z = [17.6, 70.7]. Fitting
is acheived using a least squared fitting of of the Thomas-Fermi profile. We see in
Fig. 5.5 that none of the percentages totally recover the Thomas-Fermi radii of the
system. Even so, the aspect ratio of the condensate is almost exactly replicates the
fitted Thomas-Fermi result for a width quantified by the location corresponding to
10% of the peak density given in the integrated density.



56 Chapter 5. The expansion of simple Three-Dimensional condensates

FIGURE 5.4: The expansion of a ground state cigar condensate at (a)
t = 0, (b) t = 100 and (c) t = 200.

FIGURE 5.5: The widths of the condensate quantified from a mea-
surement of the width given by a given percentage of the peak den-
sity from the integrated density compared with the fitted Thomas-
Fermi radii for a cigar condensate expanding in time in the (a) radial
and (b) axial directions and the (c) aspect ratio for different percent-
ages in coloured solid lines and the aspect ratio given from the mea-

sured Thomas-Fermi radii in black dashed lines.

5.3 Expansion of arbitrary vortex states

In order to quantify the mechanism behind self-similar expansion of condensates
originally trapped in an anisotropic trap, we do not jump straight into looking at
how turbulent systems expand but how states with arbitrary vortices expand and
the effect of interior structure changes the nature of expansion. Although for a sys-
tem with large numbers of vortices, this setup is specifically for when all vortices
have the same sign so the system has a net rotation. When considering a random
collection of vortices, although each vortex will have its own velocity field asso-
ciated with it, it can be assumed that the overall macroscopic velocity of the con-
densate will be negligible. Once again negating the term associated with quantum
pressure, Eq. (5.8) can therefore be expressed as

m
∂v
∂t

+∇
(

1
2

mv2 + gn + V

)
= 0. (5.21)
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The mv2/2 term can be equated to a turbulent kinetic term, which for now we
label as αn. Taking for now the steady states solution, Eq. (5.21) can therefore be
expressed as

∇(V + [α + g]n) = 0. (5.22)

This effectively rescales the interaction term so that

ĝ = g + α = g

(
1 +

α

g

)
, (5.23)

assuming that α ≪ g. This method does not give the intended result and instead
simply rescales the effective interaction parameter, g → ĝ. If one follows through
with a derivation of the coupled ODEs, one will find that the adding of the extra
energy term α simply changes the initial condition of the Thomas-Fermi profile and
gives a result for a ground state with a different initial Thomas-Fermi width,

R̂ = R

(
1 +

1
5

α

g

)
, (5.24)

and peak density

n̂0 = n0

(
1 − 3

5
α

g

)
. (5.25)

We can have a spherical system with a number of vortices N and see how the vor-
tices affect the Thomas-Fermi radii of the system, Eq. (5.24), to see how strong an
effect they have on the system. The total vortex line length is obtained from our
vortex detection method discussed in Section 3.2. Looking at Fig. 5.6 we see that
compared to the total vortex line length of the system, the effect is small; a standard
fitting procedure shows that if we find a value of α based on the vortex line length
of the system, α → βL, then we find β = 0.00359, i.e., that it is an exceptionally
small scaling. Here, we note a later result by Caracanhas et al. [171], where a con-
densate is filled with a vortex tangle with no direction of associated vorticity. From
this, they derived coupled ODEs, where the Thomas-Fermi radius of the turbulent
expanding condensate changes in time as

∂2Rj

∂t2 =14π
h̄2

m2

L(R2
x0 + R2

y0 + R2
z0)Rj(t)

(Rx(t)2 + Ry(t)2 + Rz(t)2)2 ln

(
ℓ

ξ

)

+
15h̄2as

m2
N

Rj(t)Rx(t)Ry(t)Rz(t)

(5.26)

where j = (x, y, z), L denotes the initial total vortex line density and ℓ denotes the
average inter-vortex spacing, ℓ ≈ L−1/2.

5.4 Analytical approximations of vortices

We begin by looking at the affect of vortices on the energy of the background con-
densate. As stated previously, a vortex can either be a line, where it terminates at



58 Chapter 5. The expansion of simple Three-Dimensional condensates

FIGURE 5.6: The rescaled Thomas-Fermi radii, R̂, as a function of
the total vortex line length in the system, L for the five condensates

we study the expansion of later.

edges of a condensate, or it can be a vortex ring, where it terminates on itself. We
first look at how the incompressible energy of the vortices scales with both the size
and topology of the vortex. The incompressible kinetic energy per unit length of a
line vortex in a condensate can be approximated and ends up as directly propor-
tional to the length of the vortex,

E =
Γ2

2π
n ln

(
ℓ

ξ

)
, (5.27)

where Γ is the phase winding 2π and ℓ here denotes the average inter-vortex length
ℓ = 1/

√
L/V . The parameter, V , refers to the volume of the condensate. For a

spherical harmonically trapped condensate, the volume can be calculated from the
standard volume of a sphere using a Thomas-Fermi radii. The kinetic energy of a
vortex ring per unit length [172, 173], however, can be expressed as

E =
n
2

Γ2

[
ln
(

8r
a

)
− 2

]
, (5.28)

where r is the radius of the ring, often with the stipulation r > a. We compare this
result with the energy calculated from computational means. We assess a spheri-
cally trapped condensate with ω = 0.02 and study both systems of lines and rings.
The above approximations make the assumption that the background density is
homogeneous; not the case for a harmonically trapped condensate. We therefore
first briefly see how the randomisation of vortices affects this approximation. We
then add in either randomised vortex lines with an arbitrary orientation, or vortices
of a given radius r and present these results in Fig. 5.7. Comparing the computa-
tionally calculated incompressible energy to the estimation gives an almost exact
result for the straight line vortices and rings or large radii. The system with the
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smallest radius (r = 5ξ) vastly overestimates the energy, however for all simula-
tions presented, the incompressible energy is proportional to the total length of the
system. It is worth pointing out in the straight line plots, that the first point is off
by a lot; this is simply because the randomized single vortex is by chance right on
the edge of the condensate, and therefore the approximation fails. We now move

FIGURE 5.7: The comparison of the calculated incompressible en-
ergy (black) and the straight line analytical result from Eq. (5.27) for
the incompressible energy for a condensate of straight vortices (top-

left) ring vortices a denoted radii.

on to looking at the approximation in Eq. (5.29) and how it works for our ring
setup. Due to the inhomogeneous background of the condensate, some rings are
far enough towards the edges of the condensate to become ”arc”-vortices and the
overall incompressible energy is therefore calculated to be

E =
N

∑
i=1

Li

C
n
2

Γ2

[
ln
(

8r
a

)
− 2

]
, (5.29)

where Li is the length of the individual vortex and C simply corresponds to the the
circumference of a circle, hereby considering that some of the randomized vortices
will be arc-vortices. We find smaller vortices, that the ring approximation works
better than the line approximation. For larger rings, however, the reverse is true.
To summarise, we find that both approximations work reasonably well for vortex
rings, when the ring is relatively large. For systems will small numbers of vortex
rings, the ring approximation becomes more precise. Both approximations fail for
when r → a. This is to be expected.
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FIGURE 5.8: The comparison of the calculated incompressible en-
ergy (black), the vortex line approximation (red) (Eq. (5.27)) and the

vortex ring approximation (blue) (Eq. (5.29)).

5.5 Expansion of arbitrary vortex states

Now we have analytical predictions for both the energy of vortices in a system
and a predicted ODE as a function of the vortex line density. We revisit the result
originally derived by Caracanhas et al. [171]. In our dimensionless formulation,
this can be shown to be

∂2Rj

∂t2 =
14LRj(t)(R2

x0 + R2
y0 + R2

z0)

[R2
x(t) + R2

y(t) + R2
z(t)]2

ln (ℓ)

+
2Rx0Ry0Rz0

Rx(t)Ry(t)Rz(t)Rj(t)
.

(5.30)

where j = (x, y, z). To see how this works, we begin by studying the expansion
of a spherical condensate before then moving to a cigar condensate to determine
whether vortices can cause a self-similar expansion.

5.5.1 Expansion of spherical condensates

We expand the condensates which were plotted in Fig. 5.6. This Figure plots the re-
sult as a function of the total vortex line length; in terms of number of vortices, these
results are for N = 1, 5, 10, 20 and 50 vortices; the vortices are orientated in random
orientations with a randomised circulation of either −1 or 1 with a random location
given between x ∈ [−0.75Rr 0.75Rr] (see Fig. 5.9). We expand these condensates
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for t = 150 and do a fitting to a Thomas-Fermi profile to quantify the width to
monitor the expansion in time. We compare these results to both the ground state
expansion ODE (Eqs. (5.18) and (5.19)) with a re-scaled effective Thomas-Fermi
radii and the predicted expansion dependant on the vortex density, Eq. (5.30). To

FIGURE 5.9: Isosurfaces of example spherical condensates with (left)
5 and (right) 50 vortices.

get vortex line density of the system, we evaluate the volume V over the areas of
density larger than n(x, y, z) ≥ 0.25 and calculate the total vortex line length. The
vortex line density is therefore

L = L/V. (5.31)

The intervortex spacing ℓ in our spherical system is

ℓ = L−1/2. (5.32)

Interestingly, for our spherical system, both techniques work well, as shown in Fig.
5.10. We see in spherical expanding systems that both methods accurately model
the change in the dynamics of expansion; the reliable matching of results presented
in Fig. 5.10 is also present in the other cases stated earlier. Looking at the expansion,
we see what can be thought of as the most obvious result - the more vortices in the
system, the faster it expands (Fig. 5.11).

5.5.2 Expansion of cigar condensates

We further use this to investigate a cigar condensate expanding. We align vortices
along the r directions in random locations and directions. We have a cigar conden-
sate of ωr,z = [0.08, 0.02] and let it expand for a time t = 150. We note that Eq.
(5.30) again gives a relatively good result. Where it falters is for the N = 100 case;
it wildly overestimates the ratio of the expansion in the late-time. It must be noted
also that the computational result for N = 100 failed after t ∼ 120; the condensate
expanded at such a rapid rate that it collided with the edges of the computational
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FIGURE 5.10: The predicted expansion of a spherical ground state
condensate (black dashed), the result from Eq. (5.30) (green), the re-
scaled ODE using the rescaled Thomas-Fermi radii (Eq. (5.24)) (red)
and the expansion modelled computationally (blue) of a condensate
expanding with N = 20 vortices. Inset: a zoomed in view of the

same data for reference.

domain at around t ∼ 130. We could not run many simulations or ensemble aver-
age the results due to the quantity of computing hours and storage requirements
of each simulation. The fact the ODE begins to give a poorer result for systems
with larger number of vortices makes sense; such a condensate will have the ratio
of ℓ/ξ → 1 and therefore ln(ℓ/ξ) → 0. As more vortices are added into the system,
the inter-vortex spacing of the condensate becomes smaller and smaller. As this
happens, there will be inter-vortex forces at play - something which is not taken
into account in the ODE model. The self similar expansion reported in Caracanhas
et al. [171] was found by minimising Eq. (5.30) for L and ℓ such that the ratio does
not change. It must be noted that even when the model disregards a lot of features,
it still holds a good estimation to the inhibition of the inversion of the aspect ratio
of the expanding cigar condensate.

5.5.3 Reconnections

The reconnection of vortex lines have been observed in both liquid Helium and
atomic condensates [164]. In 2D condensates, reconnections do not occur; vortex-
anti-vortex pairs instead undergo annihilation. Galantucci et al [54] proposed that
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FIGURE 5.11: The calculated widths of an expanding spherical con-
densate modelled computationally; one vortex (black), five vortices
(magenta), 10 vortices (green), 20 vortices (blue), and 50 vortices

(red).

in a homogeneous system that there are two scaling dynamics for the reconnec-
tion of two vortices and further went on to study reconnections in an inhomoge-
neous system, observing the reconnections for two vortices within. A harmonically
trapped condensate introduces numerous complications - such things include “im-
age” vortices, and the shape and density of the background condensate introduce
complexities to the system. We wish to focus primarily on the effect of expansion
and therefore keep the system as simple as possible. We first see how vortex recon-
nection is affected by the geometry of the condensate before moving onto studying
dynamics during expansion. We study vortices placed perpendicular to each other
(see Fig. 5.13) with a distance from 2ξ to 8ξ. We find that for systems with δ0 > 8ξ,
that the vortices begin to be too affected by the background density and hence do
not reconnect in a time feasible in our simulations. We follow Galantucci et al [54]
in monitoring the minimum distance δ with a rescaled healing length.
We first verify that the shape of the condensate by briefly looking at the differences
between three systems; two spherical condensates with ω = 0.025 and ω = 0.05
respectively and a cigar condensate of ω(r,z) = (0.050, 0.025). With different back-
ground condensates, we can test how expansion affects the condensates - as we
know from previous sections, the shape of the original condensate dictates the ex-
pansion. We chose these three setups as they will all give a different rate of expan-
sion. Visible in Fig. 5.14 is the time of expansion in the trapped systems; we are
therefore satisfied that the effect of the background condensate on the reconnection
can be neglected in our study. Now that we know how the vortices interact in
our system, we can now expand certain situations to see how the vortex dynamics
change. We first look at the time of reconnection akin to Fig. 5.14 to identify when
the reconnection is frozen. From this, we study the minimum distance δ(t) as a
function of time for the corresponding expanding condensate. We denote the time
of reconnection in the trapped condensate as t∗n. We find that if t∗n < 1/ωr, then
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FIGURE 5.12: The calculated widths of an expanding cigar con-
densate; a solid line denotes the computational result whereas the
dashed line denotes the ODE result (Eq. (5.26)) calculated using the
estimated vortex line length and inter-vortex spacing from the com-

putational result.

FIGURE 5.13: An example of a vortex reconnection; two perpendic-
ular vortices are placed within a spherical condensate and shown at

(a) t = 0, (b) t = 150 and c = 200.

the vortices will reconnect in the expanded case in a time close to t∗n, with a recon-
nection scaling ̸= t1/2 after reconnection. For systems approaching t∗n → 1/ωr, the
time for reconnection in the expanding case suddenly exponentially increases. For
systems with t∗n ≥ 1/ωr, the two vortices will never reconnect.

5.6 Expansion of noisy condensates

We have studied the way vortices in a BEC both affect and are effected by the ex-
pansion of condensates. As we know, turbulence is not just just a tangle of vortices
in a homogeneous background; it contains density fluctuations. The reconnections
of vortices is also a mechanism for which sound is introduced into a condensates,
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FIGURE 5.14: The time for reconnection of two perpendicular vor-
tices initially at distance δ in a trapped condensate of ω = 0.025

(red), ω = 0.05 (blue) and ω(r,z) = (0.05, 0.025).

FIGURE 5.15: The minimum distance between two vortices origi-
nally 7 healing lengths apart (left) and the same data rescaled (right)
to see the difference between the distance of the two vortices before

reconnection (red) and after reconnection (blue).

seeding more and more random fluctuations into the system. We therefore artifi-
cially add sound into our condensate by adding in randomised sinusoidal fluctua-
tions,

ψ = ψ + A
10

∑
i=1

sin (Λ̃z̃′ + ϕ̃i) (5.33)

where A is the amplitude, Λ̃ is a randomised wavelength, Λ̃ ∈ [0, 1] and z′ =
cos (ϕ̃0)r − sin (ϕ̃0)z with ϕ0,1 denoting a random angle ϕ0,1 ∈ [π/2, π/2]. The
resulting condensate (in Fig. 5.16) is then renormalised to the norm of the ground
state. We expand two different condensates with A = 0.1 and 0.2 respectively and
model both how quickly the condensate expands and how the aspect ratio changes.
Figure 5.16 shows that there is a slight change to the aspect ratio although one that
is relatively insignificant and on par with that of the effect from a single vortex. The
widths in the r and z directions show that overall the condensate expands quicker
than that of the ground state. We can conclude therefore that for the expansion of
a condensate, the vortices are indeed the most important aspect that governs the
way an excited condensate expands.
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FIGURE 5.16: The (a) one-dimensional density slice before expan-
sion and (b) aspect ratio of the expanding condensates, the width in
the (c) r (d) z directions for the ground state (black), A = 0.1 (blue)

and A = 0.2 (red).

5.7 Conclusion

After showing the derivation of the oft-quoted expansion scaling factors for a ground
state of a condensate, we began this chapter showing the use of our new compu-
tational system to model the expansion of condensates by using the example of an
expanding ground state. We study various analytical predictions, including how
good estimations of vortex energy are when applied to simulations before present-
ing the analytical prediction of another groups. We then verify the preciseness of
their prediction and conclude the result matches very well for a spherical expand-
ing condensate and matches well (to a limit) to the expanding cigar condensate. We
finally show that density fluctuations negligibly effect the nature of expansion in a
condensate and thus conclude it is indeed vortices that bring about the suppression
of the aspect ratio inversion.
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6 Generation of Turbulence in a
Mechanically Driven Condensate

6.1 A comment on experimental and numerical methods

The work presented in this chapter was in collaboration with the group of the Sao
Carlos group in Brazil and is the topic of a joint theory and experimental paper
submitted to Physics Research Reviews [15].

6.1.1 Experimental Procedures

A cloud of N = 3 × 105 87Rb atoms is confined in a magneto-optical trap, cooled to
around 140µK, and then transferred by radiation to a second magneto-optical trap,
which captures, accumulates and allows cooling to temperatures of a few µK. After
this new entrapment and cooling, the optical fields are switched off, and the atoms
are transferred to a magnetic trap composed of several coils forming a so-called
IOFFE-PRITCHARD trap. Once in this trap, radio-frequency fields operating at a
few MHz promote transitions causing the sample to evaporate. The loss of atoms
during this phase is compensated by cooling, reaching temperatures of the order of
100nK, where condensate begins and progresses, until we have a condensate frac-
tion ranging from 50% to 80% of the total atoms. The condensate is trapped into
a elongated harmonic potential with ωr = 2π × 21 and ωz = 2π × 130. Once the
condensate has been successfully cooled within the final trap, a secondary oscil-
lating magnetic field is applied to the condensate. Here, a pair of anti-Helmholtz
coils is applied close to the longitudinal axes of the static trap. The condensate is
driven for a time, before the anti-Helmholtz coils are turned off and the system is
left to evolve in the IOFFE-PRITCHARD trap. After the condensate is held for a
time, TH, it is allowed to expand freely for a period of 20 to 40 ms. At the end
of this free-flight, a resonant probe laser takes an absorption image, revealing the
2D projection of the expanded density. This projection allows the extraction of the
momentum distribution as well as the fluctuation profile. For more details on the
measurements and experimental techniques we refer to back to Refs. [7, 41, 174]).

6.1.2 Computational Methods

To match the experimental study with parameters reported to us from our collab-
orators, we reformulate the Gross-Pitaevskii equation into the harmonic oscillator
units, Eq. (6.1),

i
∂ψ

∂t
= −1

2
∇2ψ + C|ψ|2ψ + Vψ′ − µψ. (6.1)
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and the normalization
∫
|ψ|2dx = 1. The parameters are chosen to match those

of the experiment; the resulting dimensionless chemical potential and longitudinal
trapping frequency are respectively µ = 8. and ωz = 0.11. These values, com-
bined with the large oscillation which is imposed to the condensate, would require
a computational domain too large to simulate numerically. For this reason we in-
crease the longitudinal trapping frequency to ωz = 0.5. The dimensionless interac-
tion parameter C = 4πaN/ℓ is calculated using all the experimental values, albeit
with the stronger trapping in the longitudinal direction, obtaining C = 1715. The
mechanical driving detailed in Section 6.1.1 is modelled computationally. The trap-
ping potential here, V, is a combination of the aforementioned harmonic trapping
potential, Vharm and an oscillatory driving force,

Vosc(x, y, z, t) = Aµ[1 − cos(Ωt)]z′/Rz, (6.2)

and is visually represented in Fig. 6.2. The parameters A, Ω and z′/Rz denote the
amplitude, frequency and length of the driving with Rz being the Thomas-Fermi
radius in the z direction, Rz =

√
2µ/ωz and z′ being the direction of driving, z′ =

cos θzz − sin (θz), where θz = 5◦ to break the computational symmetry. We match
the value of the amplitude A, frequency Ω, and time TD to the experiment with
A = 1.25, and Ω = 0.97 and TD = 10π/Ω = 32.4 (all values are reported in non-
dimensional units). The direction of the driving is z′ = cos (θz)z − sin (θz)x where
θz = 5◦ breaks the symmetry of the system around the z-axis [7, 41, 174, 175]. For
t > TD, the condensate is left to evolve and oscillate for TH in the static harmonic
potential. In the experiments, images of the condensate are typically taken from a
light source which has travelled through the expanding condensate in the imaging
plane after the trapping harmonic potential has been switched off. During the time-
of-flight (TOF), the momentum distribution is obtained by observing the number
of atoms travelling different distances from the beginning of the ballistic motion.
Our group and others [11] have demonstrated the validity of the TOF technique to
obtain the 2D column-integrated density spectrum n(k) for a self-similar turbulent
cloud. In our original study, we did not expand the condensate but obtained the
momentum distribution from the column-integrated density,

n(x, z) =
∫

|ψ(x, y, z)|2dy. (6.3)

6.2 The onset of turbulence

Figure 6.2 shows the shape of the condensate during the evolution, from (a) the
initial ground state, to (b) the generation of deep density waves in the form of dark
solitons, to (c) the turbulent state.
It is natural to ask what nucleation process of vortex lines is in the absence of an ex-
ternal, small-scale stirring potential (‘laser spoon’) [176, 177]. The process is more
clear during the first oscillation of the condensate, before it is masked by large den-
sity fluctuations. For a large driving amplitude (A > 1), dark solitons (nonlinear
waves characterised by a localised dip in the density and a step in the condensate
phase) appear at the front of the condensate moving in the −z direction (Fig. 6.2(b)).
Solitons have previously been generated in condensates via a variety of techniques
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FIGURE 6.1: Three diagrams of a Thomas-Fermi profile in the driv-
ing potential (Eq. 6.2) at three times; (top) at t = 0, (middle) at
t = π/4Ω, and (bottom) at t = π/Ω (the drivings maximum) in
the (z, x) plane. Note that the effect in the x plane is exaggerated in
this diagram for the readers convenience. For π/Ω < t < 2π/Ω,
the Thomas-Fermi profile returns to the (top) position. As well as a
displacement in both the x and z plane, the potential also imparts a

slight rotation to the condensate.
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FIGURE 6.2: 2D density slices n(x, y = 0, z) of the simulated con-
densate at (a) t = 0.0 (the ground state), (b) t = 4.9 (nucleation of
solitons) and (c) t = 35.2 (turbulent state with vortices and strong

density waves).

FIGURE 6.3: The centre of mass motion x̄ in the x (blue) and z direc-
tion (red).

but are stable only in quasi-1D systems, as discussed earlier in the thesis. Indeed,
the solitons quickly break down into vortex lines and sound waves [178], which
respectively multiply and grow in size as the shaking continues (Fig. 6.2(c)). For
t > TD, the condensate moves unforced and undergoes large oscillations about the
minimum of the trapping potential, with a detectable breathing mode also present.
The change in the centre-of-mass of the condensate is shown in Fig. 6.3; in the be-
ginning there is an observable coupling in the centre-of-mass in both the x and z
directions, corresponding to the frequency of the driving, Ω, and the condensate’s
dipole frequency. Once driving have stopped at t = 32.4, the condensate moves in
each direction at the condensate’s dipole frequency (the dipole frequency in each
direction is equal to the trapping frequency in that direction). As well as the dipole
mode, the monopole mode is also triggered. During the oscillation, the condensate
retains a shape similar to the initial cigar-shaped profile only when the centre of
mass is near the the potential minimum at z = 0; it is most distorted when far from
this minimum, near the points where the centre of mass reverses its direction. The
most notable features of the obtained turbulent state at t > TD are the observed
large density oscillations shown in Fig. 6.4, where experimental absorption images,
necessarily 2D (Fig. 6.4(a)), are compared (Fig. 6.4(c)) to computed 2D column
integrated density fields n(x, z), defined in Eq. (6.3). To better appreciate the non-
homogeneous density characterising the turbulent state, in Fig. 6.4(b), (d) we also
report the corresponding 1D density profiles.
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(b)

(a) (c)

(d)

FIGURE 6.4: Panel (a) shows an absorption image of a turbulent con-
densate, at t=75 which has to be compared to panel (c) with the com-
puted 2D column integrated density n(x, z) at t=66.8 (as explained
in Methods, the computed condensate is less elongated in the longi-
tudinal direction). Panels (b) and (d) correspond to 1D slices of the
density at x = 0, showing large fluctuations on top of a background

density.

6.3 Momentum distribution of an expanding condensate

To quantify and characterise the observed density oscillations in their results, ex-
perimentalists typically measure the momentum distribution obtained from their
2D absorption images, denoted as n(k), where k is the magnitude of the wavenum-
ber. Due to the inability to measure complicated vortex structure and energies in
a turbulent BEC, the momentum distribution remains the main way of evaluat-
ing any cascade [8, 179]. To replicate this computationally, we employ the same
technique by measuring the column integrated density of the expanding turbulent
condensate,

nCI(x, z) =
∫

|ψ(x, y, z)|2dy, (6.4)

and expand the condensate from t = 66 (tE = 0). Due to the sinusoidal move-
ment of the driven condensate (shown in Fig. 6.3), we model the expansion of the
condensate in the moving frame,

i
∂ψ(x, t)

∂t
= −

[1
2
∇2 + C|ψ(x, t)|2 + ivx,t

∂ψ(x, t)
∂x

]
ψ(x, t), (6.5)

where the speed vx,t is calculated from the centre-of-mass of the condensate at time
t (see Fig. 6.3).
We compute the column integrated 2D density at different times tE after the begin-
ning of the expansion of the turbulent BEC at t = 66, and, assuming ballistic expan-
sion, and relate the position x on the enlarged condensate [8] to the wavenumber
k of the atoms before the expansion. Following the experimental procedure, we
assume isotropy such that k2 = k2

x + k2
z; by angle averaging over this 2D space,
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FIGURE 6.5: The momentum distributions obtained from (a) an ex-
panding numerical condensate released at t = 66 and (b) an average
of 10 experimental images of the expanding turbulent state at an ex-
pansion time of 30ms. The different distributions shown in (a) cor-
respond to the expanding condensate at expansion times texp = 0.5
(t = 66.5) (black), texp = 1.5 (t = 67.5) (blue) and texp = 2.5 (t = 68.5)
(red). The early time expansion of texp = 0.5 is given to highlight
the convergence in the later time results. The power law fits, super-
imposed to each graph for reference, are k−2.6 for both (a) and (b).

Figure (b) is presented in SI units.

one then gains a 1D momentum distribution. Doing this for both the column in-
tegrated density from Eq. (6.4) and the result from an average of 10 experimental
runs, we compare the momentum distributions obtained from the experimental
and computational methods. Although the experimental assumption of a point-
like density at t = 0 is not true for our computational results, we can immediately
see the agreement of the distributions in Figs. 6.5(a) and (b). As stated earlier the
distribution is reliant on the expanded image being much larger than the initially
trapped condensate - we therefore check for convergence in the distributions given
by the condensate at different times of expansion, tE = 2.0 to 2.8. Although the
width of the cascade is smaller in the computational result compared to that of the
experiment, the fitted exponents n(k) ∼ k−α, agree at α = 2.6. It can thus be con-
cluded that our computational modelling is indeed reproducing the experimental
results.
As discussed earlier in this thesis, the maximum value we can expand our conden-
sate to is smaller than that of experimentalists. We therefore check the convergence
of the value of the fitted exponent. Figure 6.6 shows that the power law behaviour
in the momentum distribution at different times does indeed show a rapid conver-
gence - the distribution in the region between the healing length and the core radius
averages shows . When the fitting for the exponent between k2ξ and k = 2π/4ξ,
the average power law is shown to be α = 2.6 (the inset to Fig. 6.6 shows the indi-
vidual α value at each time).
To ensure that the results of the momentum spectra are due to the nature of the tur-
bulence and not just the edge of the condensate’s shape, we also present the results
for a model condensate. We characterise the topology and length of the vortices
within the driven turbulent condensate (this characterisation of the vortices is ex-
plained in the next section and shown in Fig. 6.8), and expand a cigar condensate
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FIGURE 6.6: The momentum distributions from texp = 2.0 to 2.8
(t = 68.0 to 68.8) (going from dark to light) with the boundaries of
fitting marked by k = 2π/4ξ (vertical dashed line) and k = 2π/2ξ
(vertical dot-dashed line) and (inset) the power exponents for each

of the momentum spectra in the corresponding colour.

with vortices added in of the same nature as detected in our turbulent conden-
sate; we reproduce here both the locations and the radii and general shape of all
the detected vortices in the turbulent state. We see in Fig. 6.7, that an expanding
condensate with the same size and vortex structure does not reproduce the scaling
law that has been presented in both the experimental imaging and the computa-
tional modelling of the experiment; where both former results gave an exponent of
α = 2.6, the simplified model shows a lack of any clear scaling law. This disagree-
ment in results shows that the momentum distribution is not simply a measure of
the shape of the condensate or the vortices within, but has captured the compli-
cated dynamics of the driving.

6.4 Characterisation of vortices

Besides large density fluctuations and fragmentation, the turbulent condensate con-
tains vortex lines, clearly visible in the numerical simulations. Surprisingly, the
vortex configuration is very different from turbulence in superfluid helium. We
identify the vortex lines in the simulation using a vortex tracking algorithm es-
tablished elsewhere for homogeneous or smoothly-varying condensates [101, 105,
180]. In our highly-fragmented system, it is numerically challenging to identify
vortices when the condensate is off-centre in the trap (i.e. when the condensate is
most fragmented and loses a discernible shape). We hence focus on vortex recon-
struction when the condensate lies at the centre of the trap. The turbulent conden-
sate and vortex lines therein at t = 35.2 is shown in Fig. 6.8. It is apparent that there
are two kinds of vortex lines: small vortex rings (shown as blue lines in the figure)
and short open vortex lines which terminate at the condensate’s boundary (shown
as red lines). These open vortex lines are shorter versions of the U-shaped vortices
discussed in the literature of non-turbulent condensates [164, 181–183]. Both vor-
tex rings and U-vortices are small, of the order of the vortex core size a0. The lack
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FIGURE 6.7: The momentum distributions of the expanding turbu-
lent condensate at tE = 1.5 (black, reproduced from Fig. 6.5(a))
and a condensate with artificially inserted ring vortices expanded
at tE = 1.5 (red). The scaling law ∼ k−2.6 (black dashed) is plotted
for reference. Marked are the locations of the k values correspond-
ing to the healing length of the system kξ and the size of the vortex

core ka0 .

FIGURE 6.8: The isosurface of the condensate at t = 35.2 with vor-
tices marked. Line vortices that terminate at the condensate bound-
ary are denoted in red whereas ring vortices in blue. Note that
darker patches do not denote larger density, but reveal the frag-
mented nature of the condensate, as they result from the line of sight

crossing the semi-transparent density isosurfaces multiple times.
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(a) (b)

FIGURE 6.9: (a): The numerical incompressible energy spectra Ê(k)
of the condensate at times t = 35.2 (blue) and t = 92.0 (red). The
dashed line, ∝ k−3, is drawn for reference. The spectra are shifted
vertically for clarity. The vertical lines indicate the wavenumbers
kRz , kRr , and kξ corresponding in physical space to the longitudinal
and radial Thomas-Fermi radii Rz and Rr, and to the healing length
ξ, respectively. The wavenumbers kr (marked in blue and red at the
respective times) correspond to the average vortex radius size at the
given times. (b): total vortex line length L(t) vs time t; the dashed

line ∝ t−1 is given for reference.

of homogeneity of the vortex configuration is immediately visible in the figure.
Although just after TD vortices are distributed more-or-less uniformly throughout
the system, at later times most vortices reside at the back of the moving conden-
sate. When z̄ = 0, as shown in Fig. 6.8, the vortex rings tend to be located along
the central z-axis of the condensate, while U-vortices tend to be more clustered to-
wards the rear of the moving condensate which in Fig. 6.8 is moving towards left.
The orientation of the vortices, however, is fairly uniform. The vortex length in
each projected Cartesian direction falls between 30 and 40% of the total length at
each time analysed. It is therefore fair to conclude that in a turbulent condensate
the vortex tangle is isotropic but not homogeneous. It is interesting to remark that,
according to numerical simulations, small vortices have also been observed along
the edges of a condensate excited by oscillating a boxtrap potential [11].

6.5 Energies

We are able to computationally analyse the individual energies within the conden-
sate. The condensates potential energy varies largely over the time; this makes
sense considering the strong dipole motion of the condensate (see Fig. 6.3). When
the condensate is in the centre of the harmonic trapping, the incompressible energy
is largest. As we know, the incompressible energy of the system corresponds to the
phase defects (e.g. vortices).



76 Chapter 6. Generation of Turbulence in a Mechanically Driven Condensate

FIGURE 6.10: The percentage of each energy component of the cal-
culated total energy of the system at t > TD: potential (black), inter-
action (green), quantum (magenta), compressible (blue) and incom-

pressible energy (red).

6.5.1 Energy spectra

The current understanding of 3D quantum turbulence in superfluid helium arises
from combined experimental, numerical and theoretical investigations [184] of the
energy spectrum, Ê(k), defined by Ei =

∫ ∞
0 Ê(k)dk where k is the wavenumber and

Ei is the total, incompressible, turbulent kinetic energy. The importance of Ê(k)
is that it describes the energy distribution over the length scales, thus revealing
inter-scale energy transfers. The key property of classical turbulence (described by
the incompressible Navier-Stokes equation) is the celebrated Kolmogorov scaling
Ê(k) ∼ k−5/3. In superfluid helium there appear to be two limiting regimes of quan-
tum turbulence [185]: a Kolmogorov regime characterized by the same Ê(k) ∼ k−5/3

observed in classical turbulence, indicating the existence of an energy cascade; and
a Vinen regime, which is akin to a random flow, in which the energy spectrum peaks
at the mesoscales ∆ and decays as k−1 at lengthscales smaller than ∆ and larger than
the vortex core a0. Unfortunately, the energy spectrum of turbulent 3D condensates
is experimentally unavailable due to the lack of local velocity probes. There are also
two significant differences with respect to liquid helium. Firstly, condensates are
very compressible and become easily fragmented (whereas the Kolmogorov scal-
ing assumes constant density). Secondly, condensates are relatively small, so the
spectrum extends only over a limited range of length scales, hindering any scaling
law. In this respect, the comparison with liquid helium is staggering: the spatial
extension of an atomic condensate is typically of the order of 102 times the size of
a vortex core, whereas in helium experiments [186] the size of the system can be
as high as 1010 vortex cores. To make progress, in our numerical part of the study,
we obtain the energy spectrum Ê(k) of the turbulent condensate by extracting the
incompressible kinetic energy contribution, Ei, from the total kinetic energy via a
standard Helmholtz decomposition [187]. The spectrum computed at two different
times t > TD when z̄ = 0, is reported in Fig. 6.9(a), showing no significant tem-
poral dependence. The figure also shows the wavenumber corresponding to the
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average radius of the vortices at each time, defined as L/2π for vortex rings and
L/π for U-shaped vortices. In the range 1.5ka0 ≈ 10 < k < kξ ≈ 25 the energy
spectrum scales approximately as k−3, while no other scaling is observed at larger
scales. At later times (t = 92) the average radius decreases with the range of the k−3

scaling decreasing accordingly. The k−3 scaling, in contrast to both Kolmogorov’s
and Vinen’s spectra, directly stems from the small size of the vortices observed in
our turbulent condensate. In fact, the k−3 spectrum reported between ka0 and kξ

coincides, as expected, with the incompressible kinetic energy spectrum inside the
core of a quantum vortex [187]. On the other hand, at smaller k, we lack the k−1

spectrum (which one would assume given the random orientation of the vortices
[83]) precisely because the radii of the vortex rings are of the order of vortex core:
there is no separation of scales between the radii of the vortex rings and their core,
essential in order to observe the k−1 scaling. Indeed, if we compute the spectrum
of a homogeneous gas of small vortex rings, we recover the same k−3 scaling for
ka0 ≲ k ≲ kξ , without further scalings at large scales..

6.6 Vortex rings in homogeneous systems

It is known that the energy spectrum of a single straight vortex line of infinitesi-
mal thickness in a fluid of constant density decays as k−1. If the vortex line is in
the shape of a ring of radius R, the energy spectrum [188] rises as k2 for small k,
peaks at kR ≈ 1, and decays as k−1 at larger k with characteristic small amplitude
oscillations. A gas of random vortex rings [189] has a similar spectrum, the precise
crossover between the k2 and k−1 behaviours depending on the distribution of val-
ues of R. It is also known that in a homogeneous condensate, the kinetic energy
spectrum at very large wavenumbers in the region k ≤ kξ scales as k−3 due to the
presence of the singularity at the core [187]. Consider a gas of random vortex rings

FIGURE 6.11: An example isosurface for a gas of vortex rings in a
homogeneous background. The rings are placed randomly through-
out the computational box with random orientation and direction of
circulation (−1 or 1) with a radius randomly set between 4 and 6

healing lengths.
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in a condensate. If the radii are small (of the order of the vortex core size) the region
where the spectrum scales as k−1 disappears, and we are left with a k−3 spectrum
at large k. We have verified this result by computing such spectrum in a homoge-
neous condensate (see Fig. 6.11). In this calculation, the rings are randomly placed
within a homogeneous background, with a radius randomly, but uniformly, chosen
between 4ξ and 8ξ. This range of radii is chosen to follow the radii of the vortex
rings detected in our turbulent cigar condensate. The spectra of said homogeneous
condensate is presented in Fig. 6.12, where the spectra for systems of N = 1, 20 and
40 rings is shown. Figure 6.12 (a) shows that the incompressible energy spectra of
the turbulent condensate have the same k−3 scaling of the homogeneous conden-
sate in the large-k regime for k > ka0 . Figure 6.12 (b) highlights the differences in
the spectra in the condensate with smaller and larger rings.

FIGURE 6.12: The incompressible energy spectrum (a) of gas of
small vortex rings; N = 1 (green), N = 20 (blue) and N = 40 (red)
with the result of our turbulent spectra at t = 35.2 (black) with the
wavenumbers corresponding to the the Thomas-Fermi radius in r,
kR, the average width of the vortex core ka0 , and the radius of the
average ring size, kr. The (b) N = 1 result is repeated (black) ac-
companied by the spectra of a single large ring of radii 25 (red) with
the matching k numbers of the respective radii of the big ring case,
k(big)

r , the width of the vortex core ka0 , and the radii of the small ring

k(small)
r . The scalings ∝ k−3 (dashed), and ∝ k−1 (dot-dashed) are

marked for reference in blue.

6.7 Vortex decay

The random character of the vortex tangle is confirmed by the computed temporal
decay of the total vortex length, which is itself a characteristic feature of the tur-
bulent state. Indeed, by measuring the temporal behaviour of the vortex length
at all times when z̄ = 0, we find L(t) ∼ t−1±0.2 (Fig. 6.9(b)) matching the length
temporal decay in the Vinen (random flow) regime, observed both in helium [76]
and numerically in atomic condensates when the turbulence is created by the insta-
bility of antiparallel multicharged vortices [83]. This temporal decay behaviour is
clearly distinct from the L(t) ∼ t−3/2 decay observed in Kolmogorov superfluid he-
lium turbulence [58, 59, 190]. We note that we monitor the total vortex line length
and not the incompressible energy due to the large fragmentations which have a
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FIGURE 6.13: The measured (circles) values aspect ratio b = Rx/Rz
of the expanding condensate at time t, released at tE = 35.2 (black),
tE = 41.5 (red) and tE = 66.8 (blue), plotted with the analytical

predictions of the

vorticity, which means the incompressible energy is not from vortices alone in this
condensate.

6.8 Expansion of the turbulent state

In Section 6.3, we showed how modelling the expansion of the driven condensate in
the moving frame (Eq. 6.5) can be used to produce a momentum distribution which
matches the experimental data. As reported in experimental papers, a turbulent
condensate have a self-similar expansion.
We measure our aspect ratio in the same way as presented in Section 5.2, to find that
the expansions from later times (and therefore with less vortices) provide a change
in aspect ratio that inverts less compared to the earlier release time of tE = 35.2. We
find that there is no conclusive results for the lack of aspect ratio inversion (see Fig.
6.13) we therefore investigate this later.

6.9 Conclusion

In conclusion, we can see that we have been able to accurately model the Sao
Paulo experiment. We find that large scale driving of condensates creates large
scale modes, a lot of sound waves and small scale vortices within the condensate.
The nature of the vortices mean that the usual incompressible energy scaling of-
ten associated with Vinen turbulence is altered; the small rings mean that only the
k−3 scaling is detectable. Although different topologically to the usual vortex tur-
bulence in quantum fluids, they decay in the same way, with the well documented
L(t) = t−1 scaling observed. We modelled the only experimentally viable measure-
ment - the density spectrum, and concluded that it matches the experiment well.
There were difficulties in taking the Time-of-flight measurement of the condensate
- the large dipole mode means a difficulty in modelling the expansion. We use the
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GPE in the moving frame to counter-act this, however the range of expansion is
still small. One should state that even in this small time of expansion, the result of
α = −2.6 is a converged value.
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7 Proposal for the generation of
turbulence

So far in this thesis, we have developed an understanding to the expansion of con-
densates with uncomplicated layouts of vortices and sound waves. This includes
the artificial addition of vortices and density fluctuations. We have also provided
an explanation and understanding to the results of Vanderlei Bagnato’s experimen-
tal group with a brief look into the expansion there. We highlighted the issues in
the analytical and numerical study. In Chapter 6, the system had both a harmonic
potential Vharm and oscillating driving Vosc (Eq. (6.2)). This oscillatory driving pro-
vides a large-scale push in the −z direction and causes ring solitons. We also know
that it gives a very large dipole mode which causes difficulties in the computational
simulation. This strong, undamped, dipole motion also means that one cannot ex-
pand for a time on the scale of an experiment. The size of this dipole mode also
means that we have to keep the condensate smaller than, for example, the con-
densates in Chapter 5 so that we can run the system for a workable computational
domain. One thing not yet discussed in that the Sao Paulo and Cambridge [11]
have the same driving with a difference from the background potential. A dipole
mode is not seen in the Cambridge case and reminds one of the work discussed
in our early chapter in 1D condensates - changing the trapping frequency of a har-
monically trapped condensate gives a monopole mode - a perpetual expansion and
retraction of the condensate’s width. If however one alters the width of a trapping
potential in a 1D box potential, one creates a train of solitons and sound waves. This
difference in dynamics is likely the reason why such different results are reported
by the groups. We are therefore inspired to use this curious result to propose the
creation of turbulence which is independant on the shape of the condensate. Ide-
ally, we wish to create as many vortices as possible with as little ignition of any
modes, displacement of the condensate bulk or the production of noise. As shown
in the last chapter, the vortices created had very small individual length and such
the type of turbulence created was distinct from that previously derived analyt-
ically and modelled computationally. We therefore wish to be able to drive to a
state of vortices with large length in order to observe the traditional types of vortex
turbulence (be that Kolmogorov or Vinen) in an experimentally achievable way.

7.1 Form of potential

In Section 2.8 we outlined the use of a DMD, a proven way to create arbitrary poten-
tials on a condensate. With such a device, one is able to project a two-dimensional
image onto a condensate. If, for example, a bar of high potential is projected onto
a condensate, it will create a well of low density throughout the condensate. If this
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bar is removed, the two edges will collide and a train of solitons will be formed,
just as it was in the 1D system in Chapter 4. It must therefore be that if one im-
prints many bars onto a condensate in a striped manner and then subsequently re-
leases them, many solitons will be formed without imparting any net momentum
or movement that will cause numerical complications. We trialled a few different
ideas before settling on a relatively simple scheme. We therefore take inspiration
from Chapters 4 and 6 so propose a driving of the form.

Vosc(z′, t) = A sin (Ωtt) sin (Ωxz′). (7.1)

Here, one therefore applies sinusoidal bands of potential whose amplitude changes
over time, at a given direction z′ = z cos(θ) − x sin(θ). We assume that the po-
tential has no dependence in the y (imaging) direction. The amplitude, A, of the
driving needs to be sufficiently large so that the condensate’s density needs to fall
to 0. An example sketch is given in Fig. 7.1. Trying other patterns such as a grid or
checkered shape (inspired by liquid helium grid experiments) also created vortices,
however they resulted in small vortex rings akin to the Sao Paulo experiment.
There are four parameters in this proposal; the amplitude of driving A, the width
of the potentials bar defined as 2π/Ωx, the time-length of the driving 2Nπ/Ωt
with N drives and the direction of driving given by the angle of driving z′ =
z cos(θ) − x sin (θ). Due to the number of parameters, we simply cannot achieve

FIGURE 7.1: A simple sketch of the applied potential on a Thomas-
Fermi profile.

a full study on every possible combination of parameters. We therefore set the time
frequency of driving Ωt, the width Ωx, and the angle of driving, θ, and the number
of cycles in the driving Ncycle. Although not presented here, we studied how the
width of the driving affects the type of vortices formed. We found that a width too
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small resulted in a lack of soliton (and thus vortex) creation and a width too large
results in the warping of the condensate, as well as the appearance of oscillatory
modes. There is a “goldilocks” zone of driving width of which one can get the
largest number of solitons from avoiding as much as possible the subsequent con-
comitant of condensate warping. By trial and error, one finds this to be Ωz′ = 0.5.

7.1.1 Frequency of driving

The time frequency of the driving must be in such a way that it is (obviously!) nei-
ther to quick or too slow. As such, we look at three different frequencies see see
how it changes the driving. Figure 7.2 shows 2D density slices with (1a, 1b, 1c, 1d)
giving the results for Ωt = 1, (2a, 2b, 2c, 2d) for Ωt = 0.5 and (3a, 3b, 3c, 3d) show-
ing Ωt = 0.25. Four different times are shown (the explanation is given in the figure
caption) from the time t = TΩ = 2π/Ω until long after driving. For this test, we

(1a)

(1b)

(1c)

(1d)

(2a)

(2b)

(2c)

(2d)

(3a)

(3b)

(3c)

(3d)

FIGURE 7.2: The 2D density slices, n(x, y = 0, z) with (1a, 1b, 1c, 1d)
giving the results for Ωt = 1, (2a, 2b, 2c, 2d) for Ωt = 0.5 and
(3a, 3b, 3c, 3d) showing Ωt = 0.25. For each simulation, Ncycle = 1.
The different rows show the results at different time, (1a, 2a, 3a) at
t = TΩ, (1b, 2b, 3b) at t = TΩ + 20, (1c, 2c, 3c) at t = TΩ + 50 and

(1d, 2d, 3d, 4d) at t = TΩ + 80.

keep A = 2 and the condensate is driven at an angle of θ = 60◦. Immediately ap-
parent is that the condensates shape is strongly affected when Ωt = 1. Although it
(by sight alone) gives long vortices in the centre of the condensate (see Fig. 7.2(1c)),
the warping of the overall condensate shape means any analytics will be difficult.
The results for both Ωt = 0.25 and Ωt = 0.5 affect the condensate less but vortices
are easily visible throughout the cloud. By monitoring the average location of the
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vortices, the Ωt = 0.5 simulation gives a system with more vortices throughout the
condensate bulk whereas the Ωt = 0.25 case (see Fig. 7.2 (3d)) has vortices around
the edges, rather like the large scale driving in Chapter 6.

7.1.2 Angle of driving

We see in Fig. 7.3 that larger driving angles provide more overall vortex length. The
t−1 decay is observable for all simulations, however lasts much longer for θ = 60
and 80◦. We saw in Chapter 6 that the vortices formed in the large-scale driving
are very small and consist mostly of loops. Analysis of the average vortex length

FIGURE 7.3: The total vortex length of the decay of the turbulence
created in our tests cases; presented are different driving angles.

formed in the condensate reveals that the length of vortices in the larger θ cases
create not just more overall vortex length, but that the length of the individual
vortices increase at the driving angle increases; the average vortex length in the
θ = 60◦ case is double that of θ = 20◦. It can be assumed that this is due to the
initial bands across the condensate being longer for larger values of θ.

7.2 Expansion dynamics

We now investigate whether there is anything to be discerned from the expansion
of our turbulent condensate. As said numerous times throughout this thesis, the
expansion of a condensate, and measures done from the resulting images, remain a
ubiquitous technique in experimental condensates. In Chapter 5, we never did see
true self-similar expansion of condensates but saw a dramatic suppression of the
aspect ratio while the cigar condensate expands. We also did not see the self-similar
expansion in Chapter 6. We therefore give one last attempt at seeing if one observes
self-similar expansion. We also look at measuring the momentum distribution of
our turbulent condensates to see if one can gain a meaning from the power law of
the momentum distribution of the expanding condensate. As a first test, we ex-
pand our test simulation. We release the driven condensate at t0 = 44. Akin to the
previous Chapters, we use our remeshing code to expand for a comparatively long
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time. Presented in Fig. 7.4, we plot the aspect ratio, Rr/Rz, of a ground state con-
densate with the same harmonic trapping as the driven case (ωr,z = ×[0.05, 0.02])
(black line) for reference and plot the aspect ratio of the expanding turbulent state
(red circles). We see here that the condensate does not invert for the time-span sim-
ulated. it does, however, not stay at exactly the same aspect ratio for the whole
time; the ratio changes from 0.4 to 0.7. As in Section 6.3, we model the momentum
distribution of the expanding condensate for this example case. We show the resul-
tant 1D momentum distributions in Fig. 7.5 for different times of expansion, from
t = 40 to t = 140. We can study how the exponent of the power law changes as we

FIGURE 7.4: The change in aspect ratio Rr/Rz for an example
ground state (black line) and our turbulent state (red circles) of the

expanding condensate.

measure the spectra over different times, as shown in Fig. 7.6. When the expansion
is small, the absolute value of the exponent of the momentum distribution is large
but quickly diverges. From t = 100, the exponent of the momentum distribution,
n(k) ∼ k−α, settles with α = −2.88± 0.05. This shows that the given a large enough
expansion, the momentum distribution can be obtained computationally with the
Gross-Pitaevskii equation, as long as the time of expansion is sufficient. The scal-
ing of α = −2.88 is sufficiently close to that reported for wave turbulence. The 0.12
difference could occur due to a variety of reasons which need to be investigated -
the presence of large-scale vortices, the inhomogenous nature of a harmonic con-
densate or the granulation of the driven condensate around the edges. One natural
question is whether the scaling law we obtain is actually due to the presence of
wave turbulence or whether it is a artefact of any condensate simply expanding,
and whether the α = −2.88 constant remains at any point of turbulent decay.
One quantification of the nature of vortex turbulence is the decay of the total vortex
length - for our case here the total vortex length decays as t−1.
The incompressible energy spectra also decays as the vortices begin to reconnect
and lose length. We drive our condensate and let the simulation run long enough
for the vortices to completely decay. At different times of the decay, we release the
condensate and see how the scaling of the momentum distribution changes as a
function of the time of release, t0. In Fig. 7.7, we once again plot the t0 = 44 line
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FIGURE 7.5: The momentum distribution of our example turbu-
lent condensate, released at time t0, with the distributions gained

at times t0 + 40 to t0 = 140. Marked (black) is k−3 for reference.

from Fig. 7.5 alongside with the corresponding t0 + 80 results for different t0 val-
ues. Between t0 = 44 and t0 = 60, there is a noticeable shortening of the k−3 scale. It
has almost disappeared by t0 = 80 and is no longer distinguishable from t0 = 100.
It is worth pointing out here that depending on the drive given, the condensate can
expand up to 15 times the original size of the condensate.

7.3 Generalisation of system

In the previous section, we focused on one specific parameter set for the driving;
we briefly touched on the angle of driving but this was simply to see how the topol-
ogy of the vortices changes as a function of angle before sticking to θ = 60◦. We see
how there there is a noticeable t−1 scaling in the decay of the total vortex length.
As the condensate expands further and further, the exponent tails towards a value
(for our selected parameter, α = −2.88). We also showed that for when we hold
onto the condensate for longer and longer before expanding, the range of which
the exponent is visible gets smaller and smaller until it is no longer visible. This is
for a specific example and we therefore must look at a range of parameters to see
how much of a range of disorder we can obtain using this proposed system. As
stated many times in this thesis, we have access to the whole system whereas ex-
perimentalists have a very limited view on their condensates. One debate is that of
what the exact mechanism which dictates the exponent formed in the momentum
distribution. Another possible idea is to measure the correlation length from the
time-of-flight image.

7.3.1 Dynamics of vortices

Earlier in this thesis, we discussed the idea of granulation and quantified it with
a correlation length of the density; combining an averaged density around a point
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Name Maximum amplitude, A Number of cycles, N

(1a) 0.25 1

(1b) 0.25 5

(1c) 0.25 10

(2a) 0.50 1

(2b) 0.50 5

(2c) 0.50 10

(3a) 1.00 1

(3b) 1.00 5

(3c) 1.00 10

(4a) 2.00 1

(4b) 2.00 5

(4c) 2.00 10

(5a) 5.00 1

(5b) 5.00 5

(5c) 5.00 10

TABLE 7.1: A list of simulations ran and the parameters used. For
all simulations, θ = 60◦, Ωx = 0.5 and Ωt = 0.5.
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FIGURE 7.6: The exponent of the power law obtained from the
expanding momentum distribution for the condensate released at

t0 = 44.

and the correlation helped distinguish between whether a phase defect in a sys-
tem is an actual vortex or a subsequent of granulation of the condensate. In this
new case, the granulation of the condensate is only on the outer extremities of the
condensate so a much simpler method of vortex detection can be used for a wide
array of parameter sets. We decide to study the location of vortices at locations
within 70% of the calculated Thomas-Fermi profile of the system. Although there
can indeed be vortices along the edges of the condensate, we decide to leave these
out due to their co-existence with the granulation of the condensate bulk. We also
reiterate that any vortices at the edge boundary of the condensate are arbitrary and
contribute negligible energy compared to the ones in the condensate bulk. Akin to
our previous work we aim to first see how the total vortex line length falls after the
condensates have been driven. We see in Fig. 7.8 how the majority of simulations
have a noticeable decay that one can quantify. When the driving amplitude and
number of drives is low, the number of vortices formed are negligible and thus we
denote these with “no vortices”. This work is easier viewed in Table 7.2 where re-
sults are color-coded in order to see the clear domains. The term α simply denotes
here the cases where a decay is indiscernible due to the lack of vortex line length
created. The yellow section denotes areas of decay where L ∼ t−1.5, green where
L ∼ t−1. Finally, the blue areas denoted by β, where the granulation of the conden-
sate bulk makes any quantification of the decay constant unconvincing. We know
from Chapter 2 that these two decay constants, α = −1.5 and α = −1.0 denote
Kolmogorov and Vinen turbulence respectively.
As well as the decay laws, we also note the span of total vortex length detected
for each parameter in Fig. 7.8. the total range of vortex lengths detected go from
1 × 102 to 5 × 104; this can be compared of a total maximum vortex length (in ξ)
of roughly L = 1 × 103 in the recreation of the Sao Paulo experiment in Chapter 6,
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FIGURE 7.7: The momentum distribution of the expanding turbu-
lent condensate, taken at a time t = t0 + 80, where t0 is the time
of release from the harmonic potential. The distributions have been

artificially shifted to make the results readable.

(a) (b) (c)

FIGURE 7.8: The decay of the total line length, L as the function of
the hold time after driving th = t− 2Nπ/ωt for (a) N = 1, (b) N = 5
and N = 10 for a system driven at A = 0.25 (black), A = 0.50 (blue),

A = 1.00 (red) and A = 2.00 (green).

resulting in an improvement of up to roughly 50 times greater vortex length.
Also quantifiable is the average vortex length of the system. While doing this, we
negate all the vortices detected that have a length smaller than 5ξ. Unlike the de-
tection of the exponent of the decay, the average length of the vortices detected is
directly related to the amplitude and length of driving - the longer and harder the
drive, the larger the average vortex length (see Fig. 7.9).

7.3.2 Momentum distribution

We end this thesis by seeing if one is able to quantify the nature of the turbulence by
the exponent, n(k) ∼ k−α, taken from the momentum distribution; we know how to
quantify the disturbance within the condensate and thus wish to match these quan-
tifications with the exponents measured to see if there is a trend. We do this by sim-
ply repeating what has been done earlier in the thesis - by allowing each simulation
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A = 0.25 A = 0.50 A = 1.00 A = 2.00 A = 5.00
N = 1 no vortices no vortices -1.18 -0.922 granulation
N = 5 -1.60 -1.10 -1.23 -1.142 granulation
N = 10 -1.66 -1.68 -1.56 granulation granulation

TABLE 7.2: The term “no vortices” denotes a simulation of which no,
or negligible vortices, are formed. The term “granulation” denotes
a simulation where large granulation of the condensate resulted in
difficulty obtaining an acceptable measurement of the decay of the

total vortex line length.

FIGURE 7.9: The average vortex length at a time corresponding to
the peak total vortex length for simulations 1a, 1b and 1c (yellow),

2a, 2b, 2c (orange), 3a, 3b, 3c (pink) and 4a, 4b, 4c (purple).

to expand and measuring the exponent from the time-of-flight integrated image we
receive; each simulation ran is listed in Tab. 7.1. The results are presented in Fig.
7.10 where the colour of the marker corresponds to the colour scheme denoted in
Table 7.2. We note that three of the simulations failed; two of these corresponded
to simulations (5b) and (5c): the simulations expanded at such a rate that the sim-
ulation collided with the edges of the computational domain before the simulation
reached its end. The last missing simulation is (1a), this simulation simply did not
give a detectable power law (due to a lack of turbulence). The results obtained tell
something interesting: the result giving the steepest law was simulation (5a), where
A=5.00. This lead to a wildly fragmented state. In the integrated plane, it can be
assumed that this gives the closest result to a weak wave turbulent state. Also no-
ticeable is that the simulations corresponding to a Kolmogorov vortex decay has a
much smaller scaling law compared to those simulations corresponding to a Vinen
turbulent state.

7.4 Conclusion

In this Chapter we presented an experimentally viable method to create turbulence
within a condensate. Using a DMD, one would be able to drive a condensate to
turbulence and image the result. Here, we showed that non-negligible vortices are
created and that we can discern that most simulations we ran end in a turbulent
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FIGURE 7.10: The measured exponents for the different simulations,
with colours referencing the colour scheme in Table 7.2

state. By choosing the parameters of the driving, it is believed that one can, to
some extent, alter and manufacture the type of turbulence in their experimental
setup.
One must strongly warn the reader that the work presented in the expansion work
is not claimed to be a universal law. The condensates this work was based off is
a harmonically trapped condensate in a cigar shape. To run these 12 simulations
was extremely computationally intensive, both in CPU hours and in storage. It
was therefore not feasible at the time of writing to also be able to explore different
condensate shapes or even investigate how the exponent of the momentum distri-
bution changes when one changes other parameters kept the same in this chapter
(i.e., the angle and frequency of driving). We also did not take into affect the quan-
tification of the density fluctuations (i.e., the density correlation), and it is certainly
possible that these have a big role to play in the measured correlation. Ideally, extra
work must be done to explore the parameter regime - the goal is to achieve a con-
densate with the largest number of, and longest vortices. Here, one must optimise
the parameters to obtain the largest ratio of the incompressible to compressible en-
ergy in the condensate.
Nevertheless, even with such caveats, we have shown that it may indeed be possi-
ble to categorise the disorder in a given experimental image alone, or at least give
a strong indication to such a reading.



92

8 Conclusions and Further Work

In this thesis we have carried out a computational study of turbulence within a
Bose-Einstein condensate. This work can be seen as twofold; the modelling of time-
of-flight experiments and the creation of turbulence within a condensate. We com-
bine these two works to then study experimentally viable measurements. We have
developed a workable solution to model the expansion of condensates; this en-
sured that one can model the expansion of condensates to the scale of experiments.
Here, we have computationally verified analytical solutions regarding how vortex
tangles affect the expansion of condensates and discussed the different ways one
can produce analytical predictions. Interesting in itself, it has also meant that we
can make useful measurements for our later work and can model how experimen-
talists take the exponent for the experimental momentum distribution. We found
good agreement between the estimates given by an expanding condensate and the
analyical predictions on how vortices effect the expansion of a condensate.
In Chapter 6 we provided the first full computational modelling of the driving of
condensates to turbulence using experimentally viable means. Here, we concluded
that the turbulence created is not what was expected - as in, that is was not Kol-
mogorov turbulence. Although clearly turbulent in nature, the topology of the
vortices created give rise to a new turbulent range not previously predicted in lit-
erature. We showed that various measurements are similar to that of stereotypical
Vinen turbulence in quantum fluids. There are, however, differences, which are
due to the typical shape of the vortices.
In our final chapter we proposed a method to create turbulence in an experimen-
tally achievable manner. Here, we were able to show that one can indeed drive a
condensate to turbulence without bringing about the large dipole mode brought
on by the large scale driving in Chapter 6. Here, we showed evidence to say that
we can create larger scale vortices than in the large-scale diving case and that some
simulations showed evidence of a Kolmogorov vortex decay whereas some showed
evidence of a Vinen type of decay. We finally showed that a wide range of momen-
tum distribution can be measured from such an experiment.
There is a vast array of further work that can be investigated from the work con-
cluded in this thesis:
The method of a remeshable computational grid was a success for our harmon-
ically trapped condensates. Although not reported in the main thesis, trying to
model the expansion of a homogeneous, box-trapped condensate failed. Unlike in
the harmonically trapped cases, there is no analytical prediction to the change of
the shape of the condensate during expansion. In tests, the expanding ground state
can have such sharp fluctuations that remeshing onto a less line grid can cause er-
rors and artificial noise which will break the simulation. If one wishes to model
the expansion of a hard-wall condensate, one will have to develop a new system.
It is worth pointing out that no analytical study on the expansion of box-trapped
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condensate exists at the time of writing.
The biggest problem we encountered in the modelling of the Sao Paulo experiment
was the large dipole mode. Upon testing different methods of damping, it was
found that the behaviour of the condensate changed completely changed depend-
ing on how one implemented the damping. If, for example, one used a spatially
independant low damping everywhere in the system, the dipole mode would in-
deed die out but the dark soliton formation that seeds the vortex creation did not
occur. If one attempted to mimic a thermal cloud (which will sit around the edges
of the condensate) using a spatially dependant damping, then the result was com-
pletely dependant on how it defines such a damping (and thus shouldnt be used). If
one therefore wishes to model a spatially driven condensate and neglect the dipole
mode, it was concluded that one must use a coupled system where one simulates
both the condensate and the thermal cloud. Here, Zaremba, Nikuni, and Griffin
(ZNG) formalism can be employed [191], where a GPE equation is coupled with the
semiclassical Boltzmann equation which models the corresponding thermal cloud
of the system. Oscillatory modes are often used experimentally to detect the tem-
perature of the system, as they are widely affected by the temperature of the system
and the thermal cloud. The ZNG approach to modelling condensates has been suc-
cessfully used to model this oscillations so seem to be the best method to describe
any extra physics provided by the interaction of a condensate and thermal cloud.
It also would mean the decay of the dipole mode, which would provide a larger
timescale in which one could study the system.
This work on the driven system and the code developed is also in use by a Masters
student in the study of how condensates can be used as a Ramsey Interferometer.
The majority of open questions are without a doubt come from the work in Chapter
7. Of paramount importance is the verification of momentum distribution obtained
through experimental means. There have been claims of shifting of scaling when
one goes from a measurement from a 3D to a 2D system. In our cases, we mea-
sured a change of 0.2 in the scaling exponent. Bold claims have been made in the
determination of the type of turbulence from the experimental image, and detected
scaling exponent, but conclusive evidence has yet to be provided to link an expo-
nent and the nature of the disorder inside the condensate. We have presented the
start of a work that can investigate such a link. Using our tuneable method, one can
look at a range of level of disorder from small density fluctuations, our strong tur-
bulence of small vortex rings and large density fluctuations, to vortex turbulence,
to fragmentation. Modelling the expansion one could then see how the exponent
gained from TOF images changes accordingly. Ideally, one would be able to ob-
tain a Kolmogorov system with a large number of very long vortices from the same
driving technique; for all the turbulent states created, the total vortex length was
relatively small. It must be stated that this isn’t inherently due to the technique but
the shape of the condensate; the Thomas-Fermi radius in the radial direction was
28, or roughly on the order of the average vortex length shown in Fig. 7.9. We had
to chose a condensate of a smaller size so that the simulation of the expansion was
also workable. Although not included in this thesis, we did investigate the use of
passing grids through a condensate; this work gave a very similar to that of Helium
system. As discussed in our Background chapter, grids are the archetypal method
of inducing Kolmogorov turbulence into both classical fluids and liquid Helium.
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Indeed - some classical fluids texts use the terms “grid” and “Kolmogorov” inter-
changeably when discussing turbulence. We note that it might simply be that it
is not achievable to make large scale Kolmogorov turbulence experimentally in a
condensate. The healing length in Helium is decades smaller than the width of
the grid, both of which are decades and decades smaller than the total size of the
experimental container. At the time of writing this thesis, the width of trapped
condensates are typically only a decade larger than the healing length of the con-
densate. It may be that one has to wait until very large condensates can be created
in a laboratory to finally observe Kolmogorov turbulence in an experimental con-
densate.
Branching out to further questions, it is also imperative to understand the combina-
tion and interplay between wave turbulence and vortices. In this thesis we focused
more on the effect of vortices and how the turbulence changes depending on their
topological nature, and were not able to fully delve into wave turbulence. There
are questions that remain unanswered;

• A typical wave-turbulence is studied in a homogeneous system with small
perturbations. These systems are solvable analytically. What, therefore, is the
effect of a varying background density?

• In what limit can we study wave-turbulence with the GPE? Are we able to
resolve the range from the small density fluctuations to the beginnings of
fragmentation in the density?

• Kelvin waves on a quantised vortex [91] are predicted to be fundamental in
the final stages of decay of vortex turbulence [192]. How is this regime af-
fected by the topology of the vortex?; if the vortices one creates in strong
turbulence are typically much smaller than that of typical Vinen turbulence,
what does this mean for this “Kelvin wave” regime?

• Related to this, how does the short length of the vortex rings affect the final
stage? If there is a limit on the wavelength of the allowed Kelvin waves, how
does this change the final stage mechanism?

It must be stated that the author has most likely missed many other interesting
questions; any list would, without a doubt, be incomplete.
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