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Abstract

Skin tissue comprises distinct microanatomical regions across the epidermis, dermis and
hair follicles that are pivotal for its physiological roles, including barrier protection and
immunological surveillance. Within these regions, distinct cellular interactions occur
between diverse cell types to govern skin structure and function across the lifespan, which
can become perturbed in disease. Novel insights have recently been gained into skin
pathophysiology from single cell RNA-sequencing (SCRNA-seq) of adult healthy, psoriasis
and eczema skin. However, single-cell data derived from dissociated tissue loses valuable
information about gene expression in situ, which informs cellular communication and

identity.

The aims of this project were therefore to use spatial transcriptomics to profile adult skin
samples from healthy, lesional and non-lesional psoriasis and eczema skin, and leverage a
reference sCRNA-seq dataset to map cell states across tissue sections. Comparative
analyses of spatial data between healthy and disease conditions demonstrated widespread
changes in the tissue location of immune and non-immune cells and revealed functional

microanatomical cellular niches that become perturbed in psoriasis and eczema.

Based on these findings, the concept of functional skin cellular microenvironments was
then explored during skin and hair morphogenesis by annotating and spatially mapping
scRNA-seq data from first and second trimester prenatal skin. The analyses revealed
distinct cellular microenvironments and intercellular crosstalk supporting skin and hair
follicle development. Integrating adult hair follicle and hair-bearing skin organoid datasets
contextualised the differences with in vivo prenatal skin and provided support for

congenital skin and hair disease modelling in vitro.

Together, this spatially-resolved atlas of human skin in adulthood and during prenatal skin
development has provided unprecedented microanatomical detail and insight into
functional skin cell microenvironments. This has future applications for enhancing our
understanding of skin and hair disease pathogenesis, identifying novel therapeutic targets,
and facilitating tissue engineering for hair follicle and skin regeneration and

transplantation.
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Figure 1: Anatomy of human skin. Schematic representation of human skin in cross-
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Figure 2: Single cell RNA sequencing experimental workflow. Tissue samples are
dissociated to isolate single cells that are then isolated, barcoded and lysed. Reverse
transcription of MRNA molecules released from cells yields cDNA, which is amplified and
sequenced in order to generate single cell data. Image created with BioRender.com......... 6
Figure 3: Visium spatial transcriptomic experimental workflow. Tissue sections placed on
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Chapter 1: Background and literature overview

1.1. The structure and function of human skin

1.1.1. Skin anatomy

Human skin is a dynamic organ that comprises of multiple cell types organised in spatially
distinct skin layers and structures. The epidermis forms the superficial layer of the skin and
dermis lies deep to the epidermis, separated by a basement membrane. The interface
between the epidermis and dermis is known as the dermoepidermal junction (DEJ). The
skin has a neurovascular supply, with nerve endings and blood vessels located within the
dermal skin layer. The appendages of the skin include the hair follicles, sebaceous glands

and eccrine sweat glands (Figure 1).

Epidermis
Hair follicle
Sebaceous gland
Dermis Arrector pili muscle
Eccrine gland

Nerve ending

Adipose tissue I: Blood vessels

Figure 1: Anatomy of human skin. Schematic representation of human skin in cross-
section, showing distinct layers of the skin (epidermis and dermis), bloods vessels and
nerve endings located in the dermis and the microanatomical organisation of skin
appendages, including hair follicles, sebaceous glands and eccrine glands. Image created

with BioRender.com.



The epidermis is a stratified (or multi-layered) epithelium that is composed predominantly
of keratinocytes and varies in thickness depending on anatomical site, from less than
0.1mm in eyelid skin to approximately 1.5mm on the palms and soles (Kolarsick, Kolarsick
and Goodwin, 2011). The epidermis is arranged into four strata that represent different
stages of keratinocyte differentiation. The stratum basale, also known as the basal layer, is
made up of mitotically active undifferentiated cells that are continually producing
keratinocytes and are attached to the basement membrane by hemidesmosomes (Te Molder,
de Pereda and Sonnenberg, 2021). Basal keratinocytes then migrate superficially to form
the stratum spinosum, with desmosomes mediating strong cell-cell adhesions between
epidermal keratinocytes to maintain tissue integrity (Muller, Hatzfeld and Keil, 2021).
Keratinocytes begin to flatten as they differentiate further and migrate superficially to form
the stratum granulosum, then become anucleate as they form the uppermost stratum

corneum prior to being shed (Norlén, 2006).

In addition to keratinocytes, the epidermis contains other important cell types, including
melanocytes and Langerhans cells. Melanocytes are located in the basal layer of the
epidermis and produce melanin that is transferred to keratinocytes in melanosomes; this
process is responsible for skin pigmentation (Cichorek et al., 2013). Langerhans cells are
antigen-presenting cells that are predominantly located in the stratum spinosum (Deckers,
Hammad and Hoste, 2018) and determine adaptive immune responses after encountering

foreign substances within their local microenvironment (Clayton et al., 2017).

The dermis of the skin is relatively cell sparse compared to the epidermis; the dermal
extracellular matrix (ECM) is made up of a fibrous component containing collagen and
elastin fibres and an amorphous component containing glycosaminoglycans (Marks and
Miller, 2013). Cells that populate the dermis include fibroblasts that produce collagen and
other ECM components, endothelial cells and associated mural cells that form the vascular
and lymphatic networks, nerve cells and various innate and adaptive immune cells,

including macrophages, lymphocytes and mast cells (Nguyen and Soulika, 2019).

The appendages of human skin are specialised structures that originate from the epidermis
and include hair follicles and sebaceous glands that together form the pilosebaceous unit in
association with arrector pili smooth muscle. The hair shaft is the part of the hair follicle
unit that eventually protrudes from the skin and becomes visible, and it is made up of three
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concentric layers: the inner medulla, the cortex and the outer cuticle. The medulla is only
seen in larger thick hairs. The cortex consists of closely packed cortical cells containing
keratin filaments (Harland et al., 2014) and the outer cuticle layer of the hair shaft is a thin
layer that functions to protect the cortex (Mirmirani, Huang and Price, 2011). The hair
follicle is lined by an inner root sheath, which is composed of terminally differentiated
keratinocytes that anchors the hair shaft to the hair follicle and moves with the hair shaft
during hair growth, and an outer root sheath that forms a continuous layer with the basal
cell layer of the epidermis at the superficial end of the hair follicle and merges distally with
the hair bulb (Schneider, Schmidt-Ullrich and Paus, 2009). Hair grows in cycles that
involve distinct phases of anagen (active hair growth phase), catagen (transitional phase in
which hair growth ceases and the lower cycling portion of the hair follicle regresses) and
telogen (where follicles lie dormant in a resting phase) (Alonso and Fuchs, 2006;
Hawkshaw et al., 2020).

The skin appendages also include eccrine sweat ducts and glands that arise from the
epidermis and are located within the dermis. Larger apocrine sweat glands are found in the
axillary and groin regions. The density of other skin appendageal structures also varies
depending on anatomical site, with a high density of hair follicles in scalp skin and an
absence of hair follicles in palmar and plantar skin, and a high density of eccrine sweat
glands in the axillae, palms and soles (Wilke et al., 2007).

1.1.2. Skin physiology

Owing to the complex structure of human skin and diverse cell types present, skin tissue
has several functions that are important in protection from the external environment by
mechanical and immunological mechanisms, as well in maintaining various homeostatic
processes. The stratified epidermal skin layer is impermeable to water and functions as a
barrier to external insults, including physical, thermal and chemical trauma. Skin is also
protected from ultraviolet (UV) damage by the superficial layers of the epidermis as well
as by melanin, which both scatters and absorbs UV radiation to prevent penetration through

the epidermis (Brenner and Hearing, 2008).



The skin employs both barrier and immunological mechanisms to protect against different
types of microorganisms, including bacteria, viruses and fungi. Upon exposure to and
recognition of pathogens, an inflammatory cascade is initiated that involves cytokine
production by dendritic cells, recruitment of immune cells including neutrophils and
macrophages, and the production of antimicrobial peptides (AMPSs) by immune cells and
keratinocytes. AMPs include defensins and cathelicidins, and are important effector
molecules that function in pathogen defence and skin healing (Coates, Blanchard and
MacLeod, 2018). Other antimicrobial skin defences include the production of sebum,
which repels pathogens, and the colonisation of commensal bacteria and yeasts on the
surface of the skin, which can promote the expression of AMPs (Naik et al., 2015) and
enhance the development of cutaneous T cells (Laborel-Préneron et al., 2015; Naik et al.,
2012).

Human skin helps to regulate body temperature, whereby dilatation of cutaneous blood
vessels and production of sweat allows the loss of heat in warm environments or during
exercise, and cutaneous vasoconstriction conserves heat to protect from hypothermia
(Romanovsky, 2014). The skin is also a site of vitamin D synthesis following exposure to
sunlight. Keratinocytes convert 7-dehydrocholesterol into vitamin D and then converts
vitamin D into its active form, which is called 1,25 dihydroxy vitamin D (Bikle, 2012) and
has a key role in regulating calcium homeostasis (Khammissa et al., 2018). A further
important function of the skin is sensation, with specialised afferent neurones able to
distinguish touch, heat, cold, vibration, itch and pain, accounting for an additional

protective mechanism from external injury.

1.2. Applications of genomic technologies in skin research

1.2.1. Single-cell RNA sequencing

Our understanding of cellular gene expression and regulation during health and disease is
enabled by the ability to profile the transcriptome, or messenger ribonucleic acid (RNA)
transcripts, of cells. Early transcriptomic studies of individual cells began with the
development of single cell quantitative polymerase chain reaction (QPCR) technology
(Kurimoto et al., 2007; Subkhankulova, Gilchrist and Livesey, 2008) and whole



transcriptome analysis using microarrays (Kurimoto et al., 2007; Subkhankulova, Gilchrist
and Livesey, 2008). However, these methods were limited by the requirement of a priori
knowledge about sequences that were under investigation and difficulties in accurately
quantifying the expression of lowly and highly expressed transcripts (Kukurba and

Montgomery, 2015).

RNA sequencing was then adapted for use on individual cells, with the first report of
transcriptomes profiled by single cell RNA sequencing (SCRNA-seq) published in 2009
(Tang et al., 2009), only two years after the establishment of bulk RNA sequencing
(Kolodziejczyk et al., 2015). The primary drawback of bulk RNA sequencing is that
cellular heterogeneity within tissues is masked by measuring the average gene expression
across multiple cells. Transcripts cannot be attributed to individual cells, which may lead
to specific cell states and rare cell populations being undetected (Li and Wang, 2021). In
recent years, sSCRNA-seq has emerged as a highly robust and sensitive approach for
unbiased and high-throughput sequencing of single cell transcriptomes (Zheng et al., 2017)
with the ability to dissect cellular heterogeneity in many biological contexts, such as
embryonic development (Vento-Tormo et al., 2018; Popescu et al., 2019), immunology and
immunotherapy (Szabo et al., 2019; Stubbington et al., 2017), tumour microenvironments
and oncogenic processes (Tirosh et al., 2016; Durante et al., 2020) and infections and
autoimmune diseases (Reid et al., 2018; Steuerman et al., 2018; Jin et al., 2017). The
Human Cell Atlas project has arisen from the potential of SSRNA-seq technology, which
has become a global collaborative effort to profile the unique 37 trillion cells that make up
the human body, helping to transform our understanding of fundamental biological
processes and of diagnosing and treating disease (Rozenblatt-Rosen et al., 2017).

The experimental approach of sScRNA-seq involves multiple steps that are depicted below
(Figure 2).
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Figure 2: Single cell RNA sequencing experimental workflow. Tissue samples are
dissociated to isolate single cells that are then captured, barcoded and lysed. Reverse
transcription of mMRNA molecules released from cells yields cDNA, which is amplified and
sequenced in order to generate single cell data. Image created with BioRender.com.

The first step in the ScRNA-seq workflow involves processing tissue samples to yield single
cell suspensions, with various mechanical and enzymatic based protocols having been
optimised and utilised on different tissue types (Vieira Braga and Miragaia, 2019). Single
cells are then isolated, which can be achieved using several methods, including
microfluidic- and droplet-based techniques. Following single cell lysis, reverse
transcription is performed in order to select for mRNA transcripts by using poly(T) primers
and to obtain complementary deoxyribonucleic acid (cDNA) (Kolodziejczyk et al., 2015).
The minute quantities of cDNA resulting from this reaction is then amplified, often by
polymerase chain reaction (PCR), in order to generate sufficient material for library
preparation and sequencing. Computational approaches to examine the sequencing data
include quality control and filtering low quality data, clustering and annotation of cell
states, and downstream analyses of the dataset such as differential gene expression,
differential abundance, inferred cell-cell communication and trajectory inference (Luecken
and Theis, 2019) (Figure 2).



1.2.2. Spatial transcriptomics

Although scRNA-seq methodologies have enabled high dimensional analysis of human
tissues, data generation relies primarily on tissue digestion and dissociation in order to
obtain individual single cells in suspension, which negates valuable spatial information of
cells within their microanatomical tissue context. Several technologies for high-
dimensional spatially-resolved tissue analysis are available, which rely on targeted RNA
hybridisation, such as sequential or multiplexed Fluorescence In Situ Hybridisation (Seg-
FISH or MER-FISH) or in situ RNA sequencing (Shah et al., 2017; Xia et al., 2019;
Gyllborg and Nilsson, 2019). These spatial technologies are able to assess 100-1000
parameters simultaneously at single cell resolution by using combinatorial labelling and
sequential imaging, however, they are reliant on having highly-skilled operators and not all
are commercially available as robust platforms. These approaches, however, do measure a
greater number of parameters than protein-antibody labelling technologies such as imaging

mass cytometry, where only up to 100 antigens can be measured (Kuett et al., 2022).

Spatial transcriptomic technologies have been developed in recent years to address the loss
of microanatomical context in suspension data, which allows the generation of two-
dimensional positional RNA-sequencing data from histological tissue sections (Stahl et al.,
2016). Although the data derived is not of single cell resolution, it is unbiased, enabling the
whole transcriptome within the tissue overlying each spot of the capture area to be profiled.
Over the last 5 years since the technology was first developed, researchers globally have
adopted these methods to interrogate and explore various tissue types and disease states
(Williams et al., 2020; Ji et al., 2020; Maniatis, Petrescu and Phatnani, 2021). Furthermore,
spatial transcriptomic technologies continue to evolve to be able to profile tissue sections
with increasing resolution (Vickovic et al., 2019; Liu et al., 2020; Cho et al., 2021b; Fu et
al., 2021; Chen et al., 2021a).

A widely adopted spatial transcriptomic technology to profile tissue sections is called
Visium, which has been made commercially available by 10x Genomics and involves

several broad experimental processing steps that are depicted below (Figure 3).
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Figure 3: Visium spatial transcriptomic experimental workflow. Tissue sections placed on
a slide containing arrayed oligonucleotide primers with positional barcodes are
permeabilised to release mRNA. Captured mRNA is synthesised into cDNA, amplified and
sequenced to generate spatially-resolved data for downstream analysis. Image created
with BioRender.com.

The experimental approach taken during a Visium spatial transcriptomics experiment first
involves cryosectioning tissue samples and placing the tissue sections on slides that are
engineered with spots containing arrayed poly(dT) oligonucleotide primers with positional
barcodes. The Visium spots are approximately 55 um in size and the distance from the
centre of each spot is 100 um. Tissue sections are then fixed on the slide, stained using
haematoxylin and eosin (H&E) and imaged in order to provide histological context for the
spatial gene expression data. The same tissue section is then enzymatically permeabilised
in order to release mMRNA from the tissue sections, which is then captured by the
oligonucleotide primers on the slide via the poly(A) tail of mMRNA molecules. Reverse
transcription then produces spatially barcoded cDNA from captured mRNA, which is then
extracted, amplified and used to produce libraries for sequencing. The data generated using
this technology therefore allows spatial visualisation of the transcriptome by mapping



spatially-resolved genes back to specific locations on tissue sections (Pifieiro, Houser and
Ji, 2022). As Visium data is not of single cell resolution, spatial transcriptomic data can
also be combined with scRNA-seq data to map annotated cell states onto tissue sections
(Figure 3).

1.3. Investigating skin diseases using genomic technologies

1.3.1. Psoriasis

Psoriasis is a chronic immune-mediated inflammatory skin disease that affects
approximately 125 million people worldwide, with an overall prevalence of about 2-3%
(Parisi et al., 2013). The clinical manifestations of psoriasis include inflamed thickened red
scaly skin plaques, causing skin itching, burning and pain, which can involve the entire
body surface (Krueger et al., 2000). This is associated with dystrophy of the nails and joint
pain and swelling in a subset of patients (De Rie, Goedkoop and Bos, 2004). The onset of
psoriasis is typically between the ages of 15 and 35, however it can affect infants and
children, and the chronic natural history of psoriasis necessitates lifelong management and
support, which is associated with significant medical resource utilisation, healthcare costs
and socioeconomic loss from the impact on patients’ livelihood (Fowler et al., 2008).
Furthermore, psoriasis has a profound impact on the quality of life of patients (Salman et
al., 2018) and is associated with multiple comorbidities, including psoriatic arthritis,
cardiovascular disease, type 2 diabetes, anxiety and depression (Gottlieb, Chao and Dann,
2008).

The pathogenesis of psoriasis involves interactions between immune and non-immune cell
types that generate inflammatory circuits (Figure 4) and lead to the onset, persistence and
progression of the condition in genetically susceptible individuals (Albanesi et al., 2018).



Anti-IL-23 Anti-IL-17

risankizumab  secukinumab

; Th22 guselkumab ixekizumab
Plasmacytoid ?(?:;l:,r:f;m cell  tildrakizumab brodalumab

dendritic —’——L‘ /o
{ \ etanercept { ‘/ A —’k
cell e infliximab IL 27 o, WA / “ 19,1L:36 Keratmocyte Prohferaﬂo"
¢ . a, NJ_|__>|‘. o 2 \ Innate mmunltyT /
3 \_(/ (resistance to infections) ]
Y 4 @ )\ 5 AMPs: heD2,
op 2 S100A7, LL-37 /

Ve Ti7 cell 0 \( \ g LL37

» oIL 23 0|L 17 | @ZQ pmns]

' % 0 CXC chemokines:

)-«

\ ’>

LL-37° 2, o3 e CXCL1/2/3/5/8(IL-8) ¢
ADAMTSLS 126000 1178 > \Q)J '
Myeloid’ IL-29 TNEL [ ° “o g
dendritic ~€cL20 T17 cell 3
cell (mDC) \Q /| o CCR6+ <e||sT PmbC
4 Kera mnocytes (=} Synergistic
00 TNF, IL-1, i
Thi ceHT 0 CXCLI0/11 |LN6:|L-SI pro-lnﬂammatoryT

effect

Figure 4: Psoriasis pathogenesis. The schematic shows the immune-mediated effects of T
cells and dendritic cells on epidermal keratinocytes, and therapeutic targets for biologic
treatments (Hawkes, Chan and Krueger, 2017). TNF = tumour necrosis factor, IL =
interleukin, IFN = interferon, Th = T helper cell, AMP = antimicrobial peptide, PMN =

polymorphonuclear neutrophil.

Lesions of psoriasis are characterised by dense infiltrates of T cells and dendritic cells that
produce pro-inflammatory cytokines, such as interleukin (IL)-17 and 1L-23, which cause
an induction of keratinocyte proliferation, recruitment of epidermal neutrophils (known as
Munro’s microabscesses) and dendritic cells, upregulation of the innate immune response
via cationic AMPs (e.g. S100A7 and hBD2) and an induced transcription of
proinflammatory genes such as IL6 and IL8 that, synergistically with TNF, sustain the
inflammatory processes in psoriasis (Figure 4). Furthermore, increased vascularity within

psoriatic plagques is mediated by angiogenic factors (Mahil, Capon and Barker, 2016).

1.3.2. Eczema

The ongoing Global Disease Burden study has identified eczema as one of the most
prevalent diseases globally (Hay et al., 2014). Furthermore, a study of disability adjusted
life years (DALYSs) worldwide revealed that eczema represents a greater disease burden
than diabetes or tuberculosis (Hay et al., 2017). In the United Kingdom, eczema affects
over 10% of children and approximately 4% of adults, with approximately half of
childhood eczema cases persisting into adult life (Leung and Guttman-Yassky, 2017).

Robust evidence exists for clinically important associations between eczema and other
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allergies and co-morbidities, including asthma, atopic eye disease, allergic rhinitis, food
allergies, eosinophilic oesophagitis, neuropsychiatric and cardiovascular disease (Brunner
et al., 2017). Furthermore, the disease burden in terms of psychological impact and
socioeconomic consequences is substantial, with these allergic disorders costing the NHS

over one billion pounds annually (Gupta et al., 2004).

The aetiology of eczema is complex, involving an interplay of genetic and environmental
factors (Tanjung et al., 2017; Thomsen et al., 2007). Heterozygote mutation of a single
gene called filaggrin (FLG), which encodes a skin barrier protein, confers a substantially
increased risk of eczema, with an odds ratio of approximately four (Brown and McLean,
2012). Moreover, Genome Wide Association Studies (GWAS) have revealed susceptibility
links with innate immunity and T cell function genes for eczema, which are also shared
with asthma and allergic rhinitis (Paternoster et al., 2015). These results align with
consensus opinion that eczema pathogenesis involves a combination of perturbed skin
barrier function, epicutaneous allergen sensitisation and immune dysfunction (Figure 5).
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Figure 5: Eczema pathogenesis. Schematic showing the pathogenesis of eczema,
including an impaired skin barrier and the immune cells implicated, with therapeutic
targets for biologic treatments shown. Adapted from (Chu et al., 2021). B = B cell, EoS =
Eosinophil, FLG = Filaggrin, ILC2 = Type Il innate lymphoid cell, IDEC =

Inflammatory dendritic epidermal cell, [FNy = Interferon gamma, IL = Interleukin, LC =
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Langerhans cells, TARC = Thymus- and activation-regulated chemokine, Th = T helper

cell, TSLP = Thymic stromal lymphopoietin.

Eczema treatment remains challenging because existing options, including topical and
systemic steroids and non-specific systemic immunosuppression, do not prevent disease
progression or concomitant allergies, are not curative and are not personalised or stratified
(Nankervis et al., 2016; Olabi et al., 2020). The adverse safety profile of both topical and
systemic treatments also pose a significant barrier to their uptake by patients (Chong and
Fonacier, 2016).

1.3.3. Single cell transcriptomic analysis of healthy, psoriasis and eczema skin

Our research group recently published the findings form a systematic analysis of adult
healthy trunk skin and lesional and non-lesional skin from patients with psoriasis and
eczema using data generated from single-cell RNA-sequencing (SCRNA-seq) technology
(Reynolds et al., 2021). This dataset included over 500,000 cells and used Fluorescence-
activated cell sorting (FACS) to enrich for rare cell states. This study uncovered the cellular
and molecular processes occurring within adult skin in health and during disease. Thirty-
four cell states were identified in healthy human skin (Figure 6) and two inferred
trajectories for keratinocyte differentiation was uncovered. In lesional psoriasis, cytotoxic
T cells (Tc) and helper T cells (Th) expressing IL17A and IL17F, together named
Tcl7/Thl7 cells, were identified. Furthermore, clonally-expanded disease-associated
cytotoxic T cells (Tc IL13/IL22 cells) were identified in lesional eczema (Reynolds et al.,
2021).
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Figure 6: Healthy adult skin cell atlas. UMAP visualisation showing cell types/states in

adult healthy skin using scRNA-seq (Reynolds et al., 2021).

The dataset also included scRNA-seq from prenatal skin samples between 7 and 10 post
conception weeks (PCW), allowing cell states across development, health and disease to
be compared (Reynolds et al., 2021). These analyses revealed the co-optation of prenatal
developmental programs in eczema and psoriasis involving a subset of macrophages
(Mac2) and vascular endothelial cells (VE3). Furthermore, these cells were expanded in
lesional eczema and psoriasis compared with healthy skin and declined following eczema
treatment with methotrexate (Figure 7). CellPhoneDB analysis was used to predict
interactions between these two cell subsets, identifying that interactions between Mac2 and
VE3 are mediated by the CXCL8 ligand on Mac2 and the ACKR1 receptor on VE3, and
these transcriptional modules are involved in the recruitment of leucocytes into the skin
and in angiogenesis (Reynolds et al., 2021). CellPhoneDB analysis was also used to
interrogate the interactions between both Mac2 and VE3 with lymphocytes, which
demonstrated significant interactions in eczema and psoriasis in comparison to healthy skin
(Reynolds et al., 2021).
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Figure 7: Co-opted Mac2 and VE3 cell states across development and in eczema and

psoriasis. Panel A shows network visualisations of conserved pathways (Q value

represents gene enrichment score), and panel B shows jitter plots of cell counts in

immunostained tissue sections, demonstrating an increase in Mac2 and VE3 in disease

and reduction in eczema with methotrexate treatment (Reynolds et al., 2021). HA =

healthy adult, AD = atopic dermatitis (syn. eczema), P = psoriasis, MTX = methotrexate.

Spatially contextualising these SCRNA-seq data from healthy and diseased skin will provide

valuable information related to disease pathogenesis in situ. In the context of eczema and

psoriasis, the combined approach will allow these cutting-edge technologies to inform

dermatopathological microscopic visuospatial examination of cellular disorganisation from

skin biopsies.
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1.4. Investigating skin and hair follicle development using genomic

technologies

De novo human skin and hair follicle formation during prenatal development results from
a highly-coordinated series of cellular interactions in spatially distinct tissue regions
(Balana, Charreau and Leirds, 2015). Skin organogenesis begins during embryonic
development after gastrulation from two primary germ layers. The epidermis, melanocytes
and neuronal cells arise from ectodermal differentiation. The dermis, endothelial and mural
cells differentiate from embryonic mesoderm across most anatomical sites, except the facial
and cranial skin, where dermal cells arise from ectoderm-derived cranial neural crest cells
(Noden and Trainor, 2005; Hu et al., 2018). The epidermis is initially composed of a single
layer of ectodermal cells (Coolen et al., 2010). By 4 PCW, two layers can be observed: a
basal cell layer and an outer layer known as the periderm that represents the first
permeability barrier (King, Balaji and Keswani, 2013). Cells from the periderm are shed
into the amniotic fluid during the second trimester when the basal layer begins stratification
(Hardman et al., 1999). The process of stratification leads to a complex multi-layered
epidermal barrier (Liu, Zhang and Duan, 2013; Damen et al., 2021).

The skin appendages, including hair follicles and sebaceous glands, form in a cephalo-
caudal direction during prenatal life (Muller et al., 1991). Hair follicle morphogenesis is
initiated by the interaction between epidermal placodes (focal sites of epidermal layer
thickening) and dermal condensates (aggregates of dermal fibroblasts). With these
interactions, the prenatal hair follicle develops from the epidermal placode that penetrates
into the dermis around 11-14 PCW (King, Balaji and Keswani, 2013; Muller et al., 1991).
Subsequently, the keratinised hair shaft forms within the centre of the hair follicle, which
is surrounded by an epidermal hair sheath and a dermal root sheath (Hu et al., 2018).
Sebaceous glands start forming from around 16 PCW, and prenatal hair that protrudes from
the skin is observed around 18 PCW (Muller et al., 1991).

There is, however, a paucity of information about the precise cellular composition of

human prenatal skin over these developmental periods and whether cells interact in

functional microanatomical niches that support skin morphogenesis.
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1.5. Applications of organoid models in skin research

In recent years, significant advancements have been made in organoid engineering and its
application to biological and clinical research. Organoids are three-dimensional tissue
structures cultured in vitro that are derived from stem cells (Zhao et al., 2022) and have the
ability to recapitulate the cellular heterogeneity, tissue microarchitecture and physiology of
human organs (Cala et al., 2023). To date, organoids that mimic different organs have
successfully been generated, including brain, retinal, gastrointestinal, cardiac, vascular,
kidney, liver and lung organoids (Tang et al., 2022). Furthermore, the first hair-bearing
skin organoid was reported in 2020, which was derived from embryonic stem cells (ESC)
and induced pluripotent stem cells (iPSC) (Lee et al., 2020).

The skin organoid culture involves treating pluripotent stem cells with factors to promote
epidermal induction (including bone morphogenic protein 4 (BMP4) and a transforming
growth factor § (TGF) inhibitor) and factors to co-induce fibroblasts (including fibroblast
growth factor (FGF)). After about 50 days of culture, the epithelium stratifies and becomes
multi-layered, analogous to the organisation of prenatal skin with basal, suprabasal and
peridermal layers. Epithelial stratification is not seen, however, when epidermal induction
is carried out without fibroblast co-induction. Then, over a period of 4-5 months, pigmented
hair follicles emerge, with sebaceous glands alongside, representing mature pilosebaceous
units (Lee et al., 2020) that are observed later in prenatal skin development during the

second trimester.

Understanding the similarities and differences between in vivo skin and the in vitro skin
organoid model has the potential to identify molecular mechanisms that can further enhance
skin organoid models in future experimental settings, as well as highlight the potential

utility of using skin organoid models for disease modelling.
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1.6. Hypothesis

I hypothesise that human skin is comprised of distinct microanatomical cellular niches in
healthy adult skin that become perturbed in disease, and that specific cellular niches are

also observed during prenatal life that support skin and hair follicle development.

1.7. Aims of this study

The aims of this research study were to:

1. Generate and analyse spatial transcriptomic data on adult healthy, psoriasis and
eczema skin and understand the microanatomical cellular organisation of adult skin
during health and disease.

2. Comprehensively profile prenatal skin tissue at a single cell resolution across the
first and second trimester of gestation and to understand the spatial organisation of
cells that support skin development.

3. Dissect the cellular crosstalk underlying hair follicle morphogenesis and to
determine the extent to which skin organoids can be used to model skin and hair

disorders in vitro.
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Chapter 2: Materials and methods

2.1. Data generation

To address the aims and objectives of this study, data were generated from adult healthy
human skin tissue, adult diseased skin affected by psoriasis and eczema, and prenatal first
and second trimester human skin tissue. Skin tissue acquisition, processing and
experimental approaches are described below to detail how the data were generated for this
project.

2.1.1. Adult skin tissue

Adults were recruited for this research study and consented to provide healthy or diseased

skin that was used for spatial transcriptomic processing and analysis, detailed below.
2.1.1.1. Patient recruitment and ethical approval

All research ethics committee and regulatory approval were in place for the collection of
research samples at Newcastle and for their storage at the Newcastle Dermatology Biobank
(REC reference number: 19/NE/0004) (Appendix G).

Adult healthy skin was sampled from normally discarded surplus skin from skin surgery
during defect reconstructions. Multiple anatomical sites were sampled depending on the
site of skin surgery, including the face, limbs and trunk. Patients were provided with a
patient information leaflet (PIL) relevant to donating normally discarded surplus skin for
research (Appendix H) and an associated consent form was reviewed and signed by the
patient (Appendix I).

Patients with two common inflammatory skin diseases were recruited for this study:
psoriasis and eczema. In Newcastle, | recruited patients with chronic plaque psoriasis who

were naive to biologic treatment and who had not had systemic treatment (such as
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methotrexate) for at least 4 weeks prior to donating skin. | had also advised patients not to
apply topical steroids to the biopsy site (lower back or abdomen) for at least one week
before the biopsy was taken. Each patient had two adjacent 6 mm? punch biopsies taken
under local anaesthesia from lesional and non-lesional skin. Patients were provided with a
PIL relevant to donating skin (that is not normally discarded) for use in research (Appendix
J) and an associated consent form was reviewed and signed by the patient prior to

recruitment (Appendix K).

Patients with stable, chronic eczema were recruited for this study by Professor Graham
Ogg, based in Oxford, who runs specialist eczema research clinics. Eczema patients
fulfilled the same eligibility criteria as the psoriasis patients, in that they were naive to
biologic treatment and who have not had systemic treatment for at least 4 weeks are
biopsied following a wash out of topical steroid to the biopsy site for 1 week. Similarly,
lesional and non-lesional eczema skin was sampled from the trunk under local anaesthesia

and immediately frozen and embedded in OCT in the clinic rooms.

2.1.1.2. Sample transport, freezing and OCT embedding

Freshly obtained skin biopsy samples were frozen immediately in order to prevent RNA
degradation and avoid crystal formation, which can lead to morphological damage to the
skin tissue. In Newcastle, after the adult healthy and psoriasis (lesional and non-lesional)
skin was obtained, it was transferred to a vial of pre-cooled HypoThermosol® and
transferred from theatre to the lab immediately, located in an adjacent building. A bath of
isopentane cooled with dry ice was then prepared and a cryomold was labelled to mark the
orientation of the tissue. The cryomold was then half-filled with chilled OCT without
introducing bubbles. Using forceps, the skin tissue was placed into the OCT with care to
avoid crushing the tissue, and any exposed tissue surface was covered with additional OCT.
A light microscope was used to ensure there were no bubbles within the cryomould,
especially near the tissue, and if required, a 30G needle was used to carefully remove them.
The cryomold was then placed in the isopentane bath and left until the OCT was completely
frozen. The cryomould with embedded frozen tissue was then transferred on dry ice and

either placed in a sealed container at -80°C for storage or to the cryostat for cryosectioning.
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2.1.1.3. Visium spatial transcriptomics experiment

Adult skin was collected from 13 healthy donors, 5 patients with psoriasis and 5 patients
with eczema. The frozen, OCT-embedded skin tissue was used to generate spatial

transcriptomic data using the Visium Spatial Gene Expression platform by 10x Genomics.

2.1.1.3.1. Cryosectioning and tissue section placement

The OCT tissue block, tissue forceps, razor blades, brushes, specimen stages (chucks) and
slides were transferred to a OTF5000 cryostat (Bright Instruments, Bedfordshire, UK) and
left to equilibrate to the cryostat chamber temperature for 30 minutes before sectioning.
The main cryochamber maintains a stable temperature of -20°C and the specimen

temperature was set to -18°C.

Following equilibration, the chuck was filled with OCT and the OCT embedded tissue
block was then placed on the chuck with the cutting surface facing away from the chuck.
The chuck was then placed on the cryobar inside the cryostat chamber to allow the OCT
embedded tissue block to adhere to the chuck. The chuck was then installed onto the
specimen head of the cryostat and sectioning commenced until tissue was visible. The
temperature of the specimen head was adjusted during sectioning if required: if the sections
appeared cracked, the specimen head was too cold and if the sections appeared crumpled,

the specimen head was too warm.

The skin tissue was sectioned at 15 pum thickness (Ji et al., 2020) and once the desired
section was obtained, it was carefully flattened using cryostat brushes to touch the
surrounding OCT. It was then transferred to an equilibrated glass slide using forceps and
brushes, and once section placement was adequate, a finger was placed on the underside of

the slide for a few seconds to allow the section to adhere.

2.1.1.3.2. Assessment of tissue morphology by H&E staining

Prior to loading the skin tissue sections on to the Visium slides (10x Genomics),
morphology was assessed by staining tissue loaded on a glass microscopy slide with
haematoxylin and eosin (H&E). First, 800ml of Milli-Q water was dispensed into three
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separate beakers and 50ml into a centrifuge tube. The eosin mix was then prepared, which
comprised of 100ul eosin Y solution and 900ml tris-acetic acid buffer (0.45M, pH 6.0).

The slide was placed on a clean, non-absorbent surface and 500ul of isopropanol was added
to uniformly cover the tissue section. Following incubation for 1 minute at room
temperature, the reagent was discarded by holding the slide at an angle above a laboratory
wipe. Any excess liquid was removed from the under surface of the slide, without touching
the tissue sections, and the slide was then left to air dry for approximately 5 minutes.
Haematoxylin 1ml was then added to uniformly cover the tissue section, which was
incubated at room temperature for 4 minutes. The reagent was again discarded by holding
above a laboratory wipe, then the slide was immersed 5 times in the Milli-Q water in the
centrifuge tube. The slide was then immersed 15 times in the water in beaker 1 then 15
times in the water in beaker 2. Any excess liquid was then drained and wiped and the slide
was then placed back on the clean non-absorbent work surface. Bluing buffer was next
added to uniformly cover the tissue section and left to incubate for 2 minutes, after which
the slide was immersed 5 times in beaker 2. After draining and wiping any excess liquid,
the eosin mix prepared earlier was added and left to incubate for 1 minute. The slide was

then immersed 15 times in beaker 3 and left to air dry.

The glass slide containing the tissue section was then viewed using a Brightfield
microscope to assess the morphology of the tissue. Microanatomical landmarks were first
identified, to ensure that the tissue being cryosectioned included full thickness skin with
good representation of the epidermis and dermis. Furthermore, the overall morphology of
the tissue was assessed to ensure the skin was well preserved during the freezing and OCT
embedding process (for example, air pockets or uneven freezing that may crack or

morphologically damage the tissue).

2.1.1.3.3. Visium tissue optimisation procedure

Prior to proceeding with the generation of spatial gene expression libraries, | carried out a
tissue optimisation experiment to ascertain the optimum skin tissue enzymatic

permeabilisation time. This must be carried out for each tissue type of interest. Too little

tissue digestion results in no mMRNA release, whereas over-digestion results in tissue and
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MRNA degradation. Therefore, the duration of time that the permeabilisation enzyme is

left on the skin tissue to maximise mMRNA yield was determined.

The tissue optimisation procedure involved sectioning, fixing and staining tissue on capture
areas on a Visium Tissue Optimisation slide (10x Genomics). A proprietary
permeabilisation enzyme (10x Genomics) was then applied to each tissue section, which
releases mMRNA that become fixed to capture area oligonucleotides via poly(dT)-poly(A)
binding. The subsequent steps of the experiment involved synthesising fluorescent cDNA,
which was imaged to identify the maximum fluorescence signal (representing mRNA
release from the tissue) with the lowest signal diffusion (representing mRNA leakage). If
in the situation where the signal was the same at two time points, the longer
permeabilisation time was taken to be optimal.

2.1.1.3.3.1. Permeabilisation and reverse transcription

Skin tissue sections at 15 pum thickness were mounted onto 7 of the 8 capture areas on the
slide, leaving the eighth capture area for the positive mMRNA control. Following fixation
and staining with H&E, the slide was mounted with a coverslip using 70% glycerol and
was imaged using a Zeiss Axiolmager microscope (Carl Zeiss Microscopy, Jena, Germany)
at 20X using Brightfield imaging.

Next, the permeabilisation enzyme was resuspended and equilibrated at 37°C for 15
minutes and the coverslip was removed. The slide was then placed in a slide cassette, which
contains a removable gasket that corresponds to the capture areas on the slides, creating

leakproof wells for adding reagents (Figure 8).
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Figure 8: Visium slide cassette

The four tabs and insert clip at the back of the slide cassette ensure that the slide is firmly
secure in the cassette and care was taken not to apply excessive force to the slide during
insertion and removal from the cassette so as not to break the slide.

Varying permeabilisation time periods were selected based on the optimisation guidelines
by Visium and based on optimum times determined by other researchers investigating skin
tissue spatial gene expression (Ji et al., 2020). | chose to test the following time periods: 8
minutes, 14 minutes, 20 minutes, 26 minutes, 32 minutes and 38 minutes. The capture area
representing the negative control contained a tissue section not exposed to permeabilisation

enzyme and the positive control represented reference RNA without any tissue.

First, 2 pl of RNA (1 pg/pl) was added to the centre of the well representing the positive
control capture area. Permeabilisation enzyme was then added to the 6 wells containing
tissue without introducing bubbles, and the enzyme was not added to the wells representing
the positive and negative controls. Uniform coverage of the tissue sections was ensured and
tapping the slide cassette gently was done to help ensure this. Furthermore, 100 pl of 0.1X
saline-sodium citrate (SSC) buffer (Millipore Sigma) was added to the negative control
only. The slide seal was then applied to cover the wells and prevent evaporation during
permeabilisation, and the slide cassette was then placed on an Eppendorf Mastercycler Pro
thermal cycler (Thermofisher Scientific), which had been pre-equilibrated to 37°C.

After 8 minutes (which represented the first permeabilisation time period under

investigation), the slide cassette was removed from the thermal cycler and the seal was
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removed. The permeabilisation enzyme was removed from the well in which 8 minutes has
been assigned for permeabilisation time, and 100 ul of 0.1X SSC buffer was added. The
slide cover was then applied and the cassette was placed immediately in the thermal cycler
to continue incubation. After 6 minutes (which represented the interval between the
permeabilisation test times), the same process was repeated, with removal of the
permeabilisation enzyme from the well that was assigned 14 minutes for permeabilisation,
and with addition 100 pl of 0.1X SSC buffer to the same well. This process was repeated
until the sixth tissue section has been incubated for 38 minutes in total.

At this stage, all of the wells except the positive control contained tissue sections covered
with 0.1X SSC buffer. A proprietary Fluorescent Reverse Transcription (RT) Master Mix
(10x Genomics) was then prepared on ice, which contained: 221.8 pl of nuclease-free
water, 110 ul of RT Reagent C (which required minimal light exposure), 30.8 pl of the
Template Switch Oligo (TSO), 8.8 pl of Reducing Agent B and 68.6 pl of RT Enzyme D.
The total volume of this mix was 440 pl, which was the amount required for eight wells on
the slide plus an additional 10%. The mix was pipetted and centrifuged briefly to ensure

mixing of the reagents.

The 0.1X SSC buffer was then removed from each well and 50 ul of the Fluorescent RT
Master Mix was added to each well, ensuring uniform coverage of the slide surface. The
slide seal was then replaced and the cassette was placed on an Eppendorf Mastercycler Pro
thermal cycler (Thermofisher Scientific), programmed to the following settings for the

reverse transcription reaction:

Table 1: Reverse transcription protocol for fluorescently labelled cDNA synthesis

Pre-equilibrate 53°C Hold
cDNA synthesis 53°C 45
Hold 4°C Hold
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2.1.1.3.3.2. Tissue removal

Following removal of the slide cassette from the thermal cycler and removal of the slide
seal, the Fluorescent RT Master Mix was removed from the wells. 100 pl of 0.1X SCC
buffer was added to each well then removed again. A proprietary Tissue Removal Mix (10x
Genomics) was then prepared at room temperature, which was made up of 539 ul Tissue
Removal Buffer and 77 pl Tissue Removal Enzyme, which was mixed by pipetting and
briefly centrifuging. 70 pl of the Tissue Removal Mix was added to each well without
introducing bubbles and ensuring uniform coverage. The slide seal was then replaced and
the cassette was then placed on the Eppendorf Mastercycler Pro thermal cycler
(Thermofisher Scientific), which had been pre-equilibrated to 56°C and set to run for 1 hour
at 56°C then hold at 22°C.

At this stage, 45 ml 2X SCC-0.1%SDS was dispensed in a 50 ml centrifuge tube and pre-
warmed to 50°C in a water bath. Furthermore, 45 ml 0.2X SCC and 45 ml 0.1X SSC
buggers are dispensed in two separate 50 ml centrifuge tubes and maintained at room
temperature. Following the incubation on the thermal cycler, the Tissue Removal Mix is

removed from the wells and the slide is removed from the cassette.

The slide was then immersed 15 times in the pre-warmed 2X SSC - 0.1% sodium dodecyl
sulphate (SDS) solution, then 15 times in 0.2X SSC then 15 times in the 0.1X SSC. The
slide was then placed in a 50 ml centrifuge tube in a swinging bucket centrifuge and spun
for 30 seconds at 250 rcf. After ensuring that there was no remaining tissue on the slide and
that the slide case was covered in aluminium foil to reduce light exposure, the slide was

imaged under fluorescent settings.

2.1.1.3.3.3. Fluorescence imaging

The slide was visualised using the Zeiss Axiolmager with apotome microscope (Carl Zeiss
Microscopy, Jena, Germany) using the fluorescence imaging mode (Zeiss Axiocam 503
monochrome camera module, Zeiss Rhodamine B filter cube, and Colibri 7 LED light
source). All eight capture areas were imaged at once without using autoexposure and the

imaging parameters were adjusted to ensure that fluorescence spots were clear and in focus.
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The maximal fluorescence signal was considered to represent mMRNA release, thereby

allowing the optimal permeabilisation time for adult skin tissue to be determined.

2.1.1.3.4. Spatial gene expression library preparation

Having optimised the permeabilisation time for adult skin tissue, | proceeded with the
spatial gene expression experiment. OCT-embedded frozen adult skin tissue was
cryosectioned and placed on one of the 4 capture areas on the Visium Gene Spatial
Expression slide (10x Genomics). The gene expression slides are engineered to contain
approximately 5,000 barcoded ‘spots’ within each capture area, unlike the Tissue
Optimisation slides. Akin to the sScRNA-seq methods where barcoding is used to link single
cells to individual beads, the cDNA synthesised from the tissue liberated mRNA in the
spatial gene expression experiment is also barcoded to one of the 5,000 spatial spots. This
allows us to match up sequencing output with spatial location, building a map of gene

expression across the tissue on the slide (Figure 9).
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Figure 9: Visium Spatial Gene Expression slide, containing 4 capture areas (6.5 x
6.5mm) each defined by a fiducial frame. Each capture area has ~5,000 spots, each with
primers that include an Illumina (Read 1) sequencing primer, a spatial barcode, a unique
molecular identifier (UMI) and a poly(dT) sequence that captures poly(A) mRNA. Image

from the 10x Genomics Visium protocol.
In designing the experiment, I placed skin tissue from different conditions on the same gene
expression slide: for example, two captures areas were used for healthy skin tissue, one

capture area for lesional psoriasis skin and 1 capture area for non-lesional psoriasis skin.
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This was done to reduce technical artefact in the data when analysing the differences

between conditions.

2.1.1.3.4.1. Tissue sectioning and histology imaging

The OCT-embedded adult healthy and diseased skin tissue was cryosectioned at a thickness
of 15 pum using an equilibrated OTF5000 cryostat (Bright Instruments). The tissue sections
were carefully placed on one of the four capture areas on the Visium Spatial Gene
Expression slides (10x Genomics) to avoid tissue folding, crumpling or misplacement (as
described in section 2.1.1.3.1). The slide was then stored at -80 °C overnight. The following
day, the tissue on the slide was stained with H&E (as described in section 2.1.1.3.1) and
then mounted with a coverslip using 70% glycerol. The slide was then imaged using a Zeiss
Axiolmager with apotome microscope (Carl Zeiss Microscopy) and Brightfield imaging
(Zeiss Axiocam 105 48 colour camera module) at 20X magnification. The ZEN blue edition
V.3.1 (Carl Zeiss Microscopy) software was then used to acquire the images, adjust the z-
plane and light balance, as well as stitching the image tiles to retrieve the overall H&E

image file.

2.1.1.3.4.2. Tissue permeabilisation

The slide was then taken back to the lab and loaded into the slide cassette (Figure 8) in
order to commence tissue permeabilisation to release the mRNA. 70 ul of pre-warmed
permeabilisation enzyme (10x Genomics) was added to each of the 4 wells and the cassette
was then placed in an Eppendorf Mastercycler Pro thermal cycler (Thermofisher Scientific)
that had been pre-equilibrated to 37°C. The incubation time at this step corresponded to the

previously determined optimum permeabilisation time.
Following this incubation, the slide cassette was removed from the thermal cycler and the

slide seal was removed. The permeabilisation enzyme was then removed from the corners
of the 4 wells and 100 pl of 0.1X SSC was added to each well.
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2.1.1.3.4.3. Reverse transcription

The proprietary Reverse Transcription Master Mix (10x Genomics) was the prepared on
ice, which contained: 144.5 pL nuclease-free water, 82.5 ul Reverse Transcription Reagent,
23 pl Template Switch Oligo (TSO), 6.6 pl Reducing Agent B and 51.4 pl Reverse

Transcription Enzyme B. This was then pipette mixed and centrifuged briefly.

The 0.1X SSC buffer was then removed from the wells and 75 pl of the Reverse
Transcription Master Mix was added to each well. The slide seal was then applied and the
slide cassette was placed on an Eppendorf Mastercycler Pro thermal cycler (Thermofisher
Scientific), which had been pre-equilibrated to 53°C and programmed to run for 45 minutes
at 53°C then hold at 4°C.

2.1.1.3.4.4. Second strand synthesis and denaturation

The slide cassette was then removed from the thermal cycler and the Reverse Transcription
Master Mix was removed from the wells. 75 puL 0.08 M potassium hydroxide (KOH),
which was diluted from 8 M stock by mixing 5 pl KOH and 495 pl nuclease-free water,
was then added to each well and left to incubate for 5 minutes at room temperature. The
KOH was then removed from the wells and 100 ul Buffer EB (Qiagen) was added to each

well.

A proprietary mix of second strand synthesis reagents was then prepared on ice, which
contained: 305.8 pl Second Strand Reagent, 17.6 ul Second Strand Primer and 6.6 pl
Second Strand Enzyme. The mix was then vortexed and centrifuged briefly. The elution
buffer was next removed from the wells and 75 pl of the second strand mixture was added
to each well. The slide seal was then applied and the slide cassette was placed on an
Eppendorf Mastercycler Pro thermal cycler (Thermofisher Scientific), which had been

programmed according to the following settings:
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Table 2: Thermal cycler parameters for second strand synthesis

Pre-equilibrate 65°C Hold
Second strand synthesis 65°C 15
Hold 4°C Hold

Following the incubation, the reagents were removed from the wells and 100 pl of the
elution buffer was added to each well. The elution buffer was then removed and 35 pl 0.08
M KOH was then added to each well and left to incubate for 10 minutes for denaturation.
During this time, 5 pl Tris-hydrochloric acid (HCI) (1 M, pH 7.0) was added to 4 tubes in
an 8 tube strip and a 35 pl sample from each well was added to a corresponding tube

containing the Tris-HCI. This was vortexed and centrifuged briefly and placed on ice.

The following image summarises the reactions that take place on the Visium Spatial Gene

Expression slide, as described in the steps above:
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Figure 10: Sample processing steps on the Visium slide, including tissue
permeabilisation, reverse transcription, Template Switch Oligo priming, transcript
extension, second strand synthesis and denaturation in order to retrieve spatially-

barcoded cDNA molecules. Image from the 10x Genomics Visium protocol.
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2.1.1.3.4.5. cDNA amplification and quality control

The spatially-barcoded cDNA was then amplified in order to generate sufficient mass for
gene expression library construction. The number of PCR cycles was optimised to create
enough material for downstream gene expression library construction and, at the same time,
minimising resultant undesirable PCR amplification artefacts. In order to determine the
optimal number of PCR cycles for cDNA amplification, an optimisation quantitative PCR
(gPCR) was carried out. A proprietary quantitative PCR Mix (10x Genomics) was first
prepared on ice, which contained 20.4 pl nuclease-free water, 27.5 ul KAPA SYBR FAST
gPCR Matster Mix (requiring minimum light exposure by covering the Eppendorf tube
with aluminium foil) and 1.7 pl cDNA primers. This mix was then vortexed and centrifuged
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briefly. 9 ul of the gPCR Mix was then added to each well in a qPCR plate and 1 pl of the
sample that had undergone second strand synthesis was added to each qPCR plate well
containing the gPCR Mix. The gPCR plate was then placed on an Eppendorf Mastercycler
Pro thermal cycler (Thermofisher Scientific) programmed according to the following

settings:

Table 3: Thermal cycler parameters for gPCR and cycle number determination

1 98°C 180
2 98°C 5

4 63°C 30

5 Repeat from step 2 for 25 cycles

The optimal number of PCR cycles was then determined using the quantification cycle (Cq)
value, which was set along the exponential phase of the amplification plot at approximately
25% of the peak fluorescence value.

Next, the proprietary cDNA Amplification Mix (10x Genomics) was prepared on ice,
which contained 220 ul Amp Mix and 66 pl cDNA Primers. 65 ul of the cDNA
Amplification Mix was added to the remaining approximately 35 pl sample from the
second stand synthesis part of the experiment and pipette mixed and centrifuged briefly.
This was then placed in an Eppendorf Mastercycler Pro thermal cycler (Thermofisher

Scientific) for optimised cDNA amplification using the following settings:

Table 4: PCR protocol for cDNA amplification

1 98°C 180

2 98°C 15

3 63°C 20

4 72°C 60

. Repeat steps 2-4 for 14* cycles

(based on Cq value obtained in last step)

6 72°C 60

7 4°C Hold
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2.1.1.3.4.6. cDNA cleanup

The SPRIselect reagent (Beckman Coulter) was vortexed for resuspension and 60 pl (0.6X)
was added to each sample and pipette mixed. This was then incubated at room temperature
for 5 minutes and placed on the 10x Genomics Magnetic Separator on the high setting until
the solution cleared. The supernatant was then removed and 200 pl 80% ethanol was added
to the pellet. After 30 seconds, the ethanol was removed, and the ethanol wash step was
repeated. Any remaining ethanol was removed and then the tube strip was left to air dry for
2 minutes and removed from the magnet. 40.5 pl of an elution buffer was then added,
followed by pipette mixing and incubation at room temperature for 2 minutes. The tube
strip was then placed on the magnetic separator on the low setting until the solution cleared
and 40 pl of the sample was transferred to a new tube strip.

2.1.1.3.4.7. cDNA quality control and quantification

1 ul of the sample was then run on a 2100 Agilent Bioanalyzer (Agilent, Santa Clara, CA,
USA) High Sensitivity DNA chip. The cDNA concentration (pg/ul) reported by the
software was multiplied by the elution volume of the post cDNA amplification reaction
clean up sample and divided by 1,000 to obtain the total cDNA yield in ng.

2.1.1.3.4.7. Spatial gene expression library construction

The spatial gene expression library was prepared using 10 pl of the total purified cDNA
obtained previously (the remaining cDNA was stored at -20°C and kept for 4 weeks). The
10 ul cDNA sample was transferred to a tube strip and maintained on ice. 25 pl of an elution
buffer was added to each sample and 15 pl of a proprietary Fragmentation Mix (containing
22 pl Fragmentation Buffer and 44 pl Fragmentation Enzyme, 10x Genomics) was then
added to each sample. This was then pipette mixed and centrifuged briefly, then transferred
to an Eppendorf Mastercycler Pro thermal cycler (Thermofisher Scientific) that was

programmed as follows:
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Table 5: Thermal cycler incubation protocol for cDNA fragmentation

Pre-cool 4°C Hold
Fragmentation 32°C 5
End Repair and A-tailing 65°C 30
Hold 4°C Hold

The SPRIselect reagent (0.6X) was resuspended and 30 pl of this was added to each sample
and left to incubate for 5 minutes at room temperature. The tube strip was then placed on
the magnetic separator at the high setting until the solution cleared and then 75 pl of the
supernatant was transferred to a new strip. 10 ul of the SPRIselect reagent (0.8X) was then
added to each sample and left to incubate at room temperature for 5 minutes, then placed
on the magnet on High until the solution cleared. 80 pl of the supernatant was removed and
125 ul 80% ethanol was added to the pellet. After 30 seconds, the ethanol was removed.
The ethanol wash step was repeated then the tube strip was centrifuged briefly and placed
on the magnet on Low until the solution cleared. Any remaining ethanol was removed and
50.5 pl elution buffer was added to each sample and left to incubate at room temperature
for 2 minutes. It was then placed on the magnet on High until the solution cleared and 50

ul of the sample was transferred to a new tube strip.

An Adaptor Ligation Mix (10x Genomics) was then prepared: 88 ul Ligation Buffer, 44 pl
DNA Ligase and 88 ul Adaptor Oligos. 50 pl of this mix was added to the 50 pl sample
and pipette mixed and centrifuged briefly. It was then incubated in an Eppendorf
Mastercycler Pro thermal cycler (Thermofisher Scientific) for 15 minutes at 20°C then held
at 4°C.

For post ligation cleanup, 80 pl SPRIselect Reagent (0.8X) was added to each sample,
pipette mixed and left to incubate at room temperature for 5 minutes. It was then placed on
the magnet on High until the solution cleared and the supernatant was removed. 200 pl
80% ethanol was added to the pellet and removed after 30 seconds; this ethanol wash was
then repeated. After briefly centrifuging, the tube strip was placed on the magnet on Low,
any remaining ethanol was removed and this was left to air dry for 2 minutes. The tube
strip was then removed from the magnet and 30.5 pl of the elution buffer was added, pipette

mixed and left to incubate at room temperature for 2 minutes. This was then placed on the
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magnet on Low until the solution cleared and 30 pl of the sample was transferred to a new

strip.

For the sample index PCR procedure, 50 pl of the Amplification Mix (10x Genomics) was
added to 30 pl of the sample. 20 pl of an individual Dual Index TT Set (10x Genomics)
was also added. After briefly centrifuging, the mixture was incubated in an Eppendorf

Mastercycler Pro thermal cycler (Thermofisher Scientific) using the following PCR

protocol
Table 6: PCR protocol for cDNA sample indexing
1 98°C 45
2 98°C 20
3 67°C 30
4 72°C 20
5 Repeat steps 2—4 for 14 cycles
6 72°C 60
7 4°C Hold

Post sample index PCR double sided size selection was then carried out according to the
manufacturer’s instructions. Post library construction quality control (QC) was carried out
by running 1 pl of the sample (1:10 dilution) on a 2100 Agilent Bioanalyzer (Agilent, Santa
Clara, CA, USA) High Sensitivity DNA chip. The average fragment size was determined

from the Bioanalyser trace, which was used as insert size for library quantification.
Finally, the spatial gene expression libraries were pooled and submitted to the Wellcome

Genome Campus, Sanger, Cambridge for sequencing using the Illumina Novaseq 6000
(Hlumina, CA, USA).
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2.1.2. Prenatal skin tissue

2.1.2.1. Tissue acquisition and ethical approval

Prenatal first and second trimester human skin samples were acquired from the Human
Developmental Biology Resource (HDBR; http://www.hdbr.org), which is funded by the
MRC (Medical Research Council) and Wellcome Trust. The HDBR is licensed by the
Human Tissue Authority (HTA; www.hta.gov.uk) and adheres to the guidance set out in

the relevant HTA Codes of Practice. Ethical approval and written consent was granted by
the Newcastle and North Tyneside NHS Health Authority Joint Ethics Committee
(Research Ethics Committee (REC) reference number: 18/NE/0290) (Appendix L).

2.1.2.2. Single-cell RNA sequencing experiment

Prenatal human skin tissue from a total of 15 donors was digested into single cell
suspensions for the single-cell RNA sequencing (SCRNA-seq) experiment. The ages of the
donors ranged from 7 post conception weeks (PCW) to 16 PCW across the first and second

trimester of gestation.

2.1.2.2.1. Prenatal skin tissue digestion

Once prenatal skin tissue was transferred from HDBR, it was immediately processed and
digested into single cell suspensions. Skin tissue was initially transferred to a sterile 10 mm
tissue culture dish and, using a scalpel, sectioned into <Imm segments. The skin tissue was
then digested with type IV collagenase, the final concentration of which was 1.6 mg/ml
(Worthington) in RPMI (Sigma-Aldrich), and to which 10% heat-inactivated fetal bovine
serum (FBS; Gibco) was added. This was kept at 37°C for 30 minutes with intermediate

agitation.

A 100 pm cell strainer was then used to pass the digested prenatal skin tissue through, after
which the solution was centrifuged at 500g for 5 minutes at 4°C to collect cells in the
resultant pellet. At this stage, 1XRBC lysis buffer (eBioscience) was added to the cells for
5 minutes at room temperature. The cells were then washed once with Flow Buffer, which
was made up with phosphate-buffered saline (PBS) containing 5% (v/v) FBS and 2 mM
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EDTA. The prenatal skin cells were then counted using light microscopy, prior to antibody

staining for the next phase of the experiment.

2.1.2.2.2. Flow cytometry and fluorescence-activated cell sorting

The dissociated prenatal skin cells were stained with anti-CD45 antibody (3 microlitres
(uL) CD45 BUV395, clone: HI30, BD Biosciences) and left in the dark on ice for 30
minutes. The cells were then passed through a 35 um filter (Falcon) and DAPI (Sigma-
Aldrich) was added at a final concentration of 3 uM. Flow cytometry sorting was carried
out using the BD FACS Aria Fusion Flow Cytometer. After gating for single cells, the
CD45 positive fraction was sorted from the DAPI-CD45+ gate, and the CD45 negative
fraction was sorted from the DAPI-CD45- gate. The CD45 gating was contiguous so that
no live cells were lost during sorting. Each population was sorted into chilled PBS within

fluorescence-activated cell sorting (FACS) tubes.

2.1.2.2.3. Droplet-based scRNA-seq

2.1.2.2.3.1. GEM generation and barcoding

The live cell suspensions that had undergone sorting were then counted and loaded onto
the 10x Genomics Chromium Controller™, where Gel Beads-in-emulsion (GEM) were
generated by combining barcoded gel beads, the single cell suspension and a partitioning
oil on the Chromium chip (Figure 11). Cells in suspension were added at a low dilution so
that a single cell resolution can be attained, whereby over 90% of generated GEMSs contain

no cells and the remaining GEMs contain a single cell.
The prenatal skin DAPI-CD45+ or DAPI-CD45- FACS- isolated cell concentration that

was loaded was calculated to achieve a yield of 10,000 cells per reaction. The Chromium

single cell 3” v2 reagent kits from 10x Genomics were used.
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Figure 11: GEM generation, where single gel beads (shown in blue) become
encapsulated with single cells (shown in green) in each microfluidic droplet using a
partitioning oil. Image created with BioRender.com.

Following GEM generation, the cells were lysed within each microfluidic droplet and the
gel beads were dissolved. The gel beads are bound to oligonucleotides that consist of
various components: an Illumina sequencing primer, a 10x Genomics barcode that is
unique to each bead and therefore each encapsulated cell, a unique molecular identifier

(UMI) sequence that is unique to each oligonucleotide and a template switch oligo (TSO).

The single cells within each microfluidic droplet were then lysed, releasing cellular
messenger ribonucleic acid (MRNA). A mixture is made than contains the cell lysate,
released gel bead oligonucleotides, reverse transcription (RT) reagents and poly
deoxythymine (poly(dT)) RT primers. The poly(DT) primers then anneal to the poly
adenine (poly(A)) tail of the mMRNA molecules and the enzymatic RT reaction then takes
place, generating complementary cDNA from the mRNA molecules released from the
lysed prenatal skin cells. The TSO sequence allows the cDNA transcript to be extended
such that the UMI, 10x barcode and Illumina sequence is transcribed. Therefore, each
cDNA molecule is barcoded and associated with each individual cell in each microfluidic

droplet.

The RT reaction took place in an Eppendorf Mastercycler Pro thermal cycler (Thermofisher
Scientific) by incubating the reagents at 53 °C for 45 minutes, then 85 °C for 5 minutes.
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2.1.2.2.3.2. GEM cleanup

The GEM ‘cleanup’ process involved removing surplus RT reagents and partitioning oil
after the RT reaction was complete. A proprietary ‘Recovery Agent’ (10x Genomics) was
added to each sample at room temperature, and after 2 minutes, a biphasic mixture is seen,
containing the Recovery Agent and partitioning oil (that appears pink) and an agqueous
(clear) phase that contains the cDNA. The pink Recovery Agent/partitioning oil solution
was then removed and discarded, taking care not to remove any of the clear aqueous

solution.

Silane magnetic beads (10x Genomics) were then used to purify the barcoded first-strand
cDNA in the aqueous phase from the post GEM-RT reaction mixture. The magnetic beads
were added to each sample and pipette mixed, then incubated at room temperature for 10
minutes. The solution was then pipette mixed again to resuspend the settled magnetic
beads, before a magnetic separator (10x Genomics) was used to fix the cDNA whilst being
pipette washed twice with ethanol. The ethanol was then removed, and air drying took place
for 1 minute to ensure the residual ethanol evaporated. An Elution solution was then added
to separate the magnetic beads from the cDNA using the magnetic separator, then the
supernatant containing the cDNA was transferred to a new tube strip to progress with
cDNA amplification.

2.1.2.2.3.3. cDNA amplification

The barcoded full-length cDNA was then amplified via polymerase chain reaction (PCR)
using a proprietary cDNA amplification mix (10x Genomics) that contains cDNA primers
targeting common 3’ and 5 ends that were added during the GEM-RT phase of the
experiment. The amplification mix was added to each sample and pipette mixed 15 times
then centrifuged briefly. The mixture was then incubated in an Eppendorf Mastercycler Pro

thermal cycler (Thermofisher Scientific) with the following settings:
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Table 7: PCR protocol for cDNA amplification using the thermal cycler

1 98°C 180
2 98°C 15

3 63°C 20

4 72°C 60

5 Repeat steps 2—4 for 14 cycles

6 72°C 60

7 4°C Hold

The number of cycles was optimised to create enough material for downstream gene
expression library construction and, at the same time, minimising resultant PCR

amplification artefacts.

2.1.2.2.3.4. cDNA cleanup, quality control and quantification

The cDNA cleanup was achieved using a proprietary reagent called SPRIselect (Beckman
Coulter), which was added to each sample and pipette mixed 15 times then left to incubate
at room temperature for 5 minutes. Magnetic separators were then used to hold the cDNA
in situ, after which the cDNA was washed with ethanol twice then left to air dry for 2
minutes to allow the residual ethanol to evaporate. An Elution buffer (Qiagen) was then
added, pipette mixed 15 times, then left to incubate for 2 minutes at room temperature. The
magnetic separator was used again to retrieve the purified cDNA, and 40 ul from each

sample was transferred to a new tube strip.

To assess cDNA quality and to quantify the yield, 1 pl was taken and diluted at a ratio of
1:10. This was then run on a 2100 Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA)
according to the manufacturer’s instructions. The cDNA yield was calculated by
multiplying the cDNA concentration (pg/pl) that is reported by the bioanalyser software by
the elution volume of the purified amplified cDNA (40 pl), accounting for the dilution
factor, then dividing by 1000 to obtain the total cDNA yield in nanograms (ng).
Subsequently, 25% of the total cDNA yield was taken forward to 3’ gene expression library

preparation.
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2.1.2.2.3.5. Gene expression library construction

The amplified full-length cDNA that was generated from the polyadenylated mRNA was
next used to construct gene expression libraries. First, the cDNA transcripts were
enzymatically fragmented by adding a proprietary Fragmentation Enzyme and
Fragmentation Buffer (10x Genomics) to 25% of the cDNA yield and pipette mixing 15
times on ice. The samples were then run on the Eppendorf Mastercycler Pro thermal cycler
(Thermofisher Scientific), which had been pre-cooled to 4°C, using the following settings:

Table 8: Thermal cycler incubation protocol for cDNA fragmentation

Pre-cool 4°C Hold
Fragmentation 32°C 5
End Repair and A-tailing 65°C 30
Hold 4°C Hold

A cleanup step was then carried out following fragmentation to remove any surplus
reagents. The cleanup was carried out using SPRIselect (Beckman Coulter), a magnetic
separator and ethanol washes, as previously described.

Next, a proprietary Adaptor Ligation Buffer (10x Genomics) was mixed with a DNA ligase
and adaptor oligos, added to each sample and pipette mixed. The mixture was then
incubated on the Eppendorf Mastercycler Pro thermal cycler (Thermofisher Scientific) at
20°C for 15 minutes. This allows an lllumina Read 2 sequence to be appended. A further
cleanup step following ligation was carried out. Subsequently, a Dual Index TT Set (10x
Genomics) was used to add P5, P7, i5 and i7 sample indices, which were used to
deconvolute different samples when they were multiplexed in the sequencing run. The
sample indices were added to the samples along with a proprietary Amplification Mix (10x
Genomics), and were incubate in the Eppendorf Mastercycler Pro thermal cycler

(Thermofisher Scientific) using the following PCR protocol:
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Table 9: PCR protocol for cDNA sample indexing using the thermal cycler

1 98°C 45
2 98°C 20
3 54°C 30
4 72°C 20
5 Repeat steps 2—4 for 14 cycles
6 72°C 60
7 4°C Hold

Following the PCR run for cDNA indexing, a further cleanup step was carried out using
SPRIselect (Beckman Coulter), a magnetic separator and two ethanol washes. The purified
cDNA was then analysed on the 2100 Agilent Bioanalyzer (Agilent) in order to determine
the average fragment size from the bioanalyser trace, which is then used for library

quantification.

The following figure shows the structure of the resultant gene expression library, which

contains the P5 and P7 priming sites used in the lllumina sequencer:

10X
UMI TSO Insert 1 Read 2 Sample P7
barcode Index i7

Sample

P5 Index i5

Read 1

Figure 12: Single cell gene expression dual index library. Image created with
BioRender.com and adapted from 10x Genomics.

The prenatal skin gene expression libraries were then pooled and sequenced to achieve a
minimum target depth of 20,000 reads per cell using the lllumina Novaseq 6000 (Illumina,
CA, USA).

2.1.2.3. Multiplex RNA in situ hybridisation

Human prenatal skin tissue from a 15 PCW embryo was processed to carry out multiplex

RNA in situ hybridisation using the RNAScope Multiplex Fluorescent Detection Kit v2
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(ACDBIo0, Newcark, California, USA, catalogue number 323100). Thanks are due to
Sophie Pritchard and llaria Mulas at the Wellcome Sanger Institute in Cambridge for
carrying out the multiplex RNA in situ hybridisation experiment and to Kenny Roberts at
the Sanger for imaging the slides using confocal microscopy and carrying out the post-

imaging processing, detailed below.

2.1.2.3.1. Experimental design and procedure

The prenatal skin tissue was frozen and embedded in optimal cutting temperature
compound (OCT, Tissue-Tek). 4-plex single molecule fluorescence in situ hybridisation
(SmFISH) was performed according to the manufacturer’s instructions using the standard
pre-treatment for fresh frozen sections of 10-20 um and permeabilised with Protease IV at

room temperature for 30 minutes.

Human probes against SLC26A7, SHH, NDP and FOXP3 mRNA molecules were used (all
from ACDBIo catalog probes, Newark, California, USA). Opal dyes (Akoya Biosciences,
Marlborough, Massachusetts, USA) were used at a dilution of 1:1,000 for the fluorophore
step to develop each channel: Opal 520 Reagent Pack (FP1487001KT), Opal 570 Reagent
Pack (FP1488001KT) and Opal 650 Reagent Pack (FP1496001KT) and Atto-425. The

following table shows the channels, probes and fluorophores used:

Table 10: RNAScope channels, probes and fluorophores used in the prenatal skin

experiment
1 NDP Opal 520 Green
2 SHH Atto 425 Blue
3 FOXP3 Opal 650 Red
4 SLC26A7 Opal 570 Yellow

The slides were then counterstained with DAPI and a cover slip was then placed in order
to proceed with imaging using ProLong Gold Antifade Mountant (ThermoFisher, Canoga
Park, California, cat. no. P36930).
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2.1.2.3.2. Confocal imaging

Confocal imaging was performed on a Perkin Elmer Opera Phenix Plus High-Content
Screening System using a 40X (NA 1.1, 0.149 um/pixel) water-immersion objective with
a 2um z-step. Channels: DAPI (excitation 375 nm, emission 435-480 nm), Atto 425 (ex.
425 nm, em. 463-501 nm), Opal 520 (ex. 488 nm, em. 500-550 nm), Opal 570 (ex. 561 nm,
em. 570-630 nm), Opal 650 (ex. 640 nm, em. 650-760 nm).

Confocal image stacks were stitched as two-dimensional maximum intensity projections

using proprietary Acapella scripts provided by Perkin Elmer and visualised using OMERO
Plus (Glencoe Software).
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2.5. Data analysis

2.5.1. Spatial data analysis

2.5.1.1. Alignment, tissue annotation and quality control

Adult skin spatial transcriptomics data was mapped using Spaceranger v.1.3.0 using
GRCh38-2020-A reference and prenatal skin data was mapped using Spaceranger v.2.0.1
using GRCh38-1.2.0 reference. Adult skin tissue sections were annotated using the Loupe
browser (v 6.1.0; 10x Genomics) in order to define the following regions: epidermis,
dermis, pilosebaceous unit, adipose tissue and non-tissue areas. The UMI count was
analysed for each tissue section and annotated tissue region. In order to include tissue
regions with low UMI counts in downstream analyses, Visium spots that had UMI counts
of less than 500 were merged together to form meta-spots. First, all spots were organised
into a single level coarse hexagonal metaspot mesh, where each metaspot consists of seven
spots (one of a few possible meshes was chosen randomly). Then, spots that belong to the
same metaspot and that have total UMI counts below 500 were merged and their gene
counts were summed. Resultant counts were assigned to either the central spot in the
metaspot if its coverage was below 500 UMIs or to the one of merged spots that had the
highest coverage. Original spots that contributed to the merged ones were removed from
the object. All spots (or metaspots) that had coverage below 500 UMIs following the

abovementioned procedure were removed from the analyses.

2.5.1.2. Spatial cell type deconvolution

The reference scRNA-seq dataset for spatial cell type deconvolution of the adult skin
Visium data represented an combination of adult interfollicular healthy, psoriasis and
eczema skin data (Reynolds et al., 2021) and adult hair graft data (Takahashi et al., 2020).
In order to harmonise non-follicular cell annotations across both datasets, scanpy (v 1.9.1)
ingest was used. The reference scRNA-seq for deconvolution analysis of the embryonic
limb Visium data (Zhang et al., 2022) included prenatal skin data from samples <10 PCW.
Cell types where less than 20 cells were identified in these prenatal skin samples were

excluded from the reference dataset.
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To map cell types identified by scRNA-seq in the profiled spatial transcriptomics slides,
the Cell2location (v0.1) method was used (Kleshchevnikov et al., 2022). Firstly, a negative
binomial regression model was trained to estimate reference transcriptomic profiles for all
the cell types profiled with sScRNA-seq in the tissue. Lowly expressed genes were excluded
using the filtering strategy recommended by developers of the Cell2location package
(cell_count_cutoff = 5, cell_percentage_cutoff = 0.03, non_mean_cutoff = 1.12). Training
was performed for 250 epochs and reached convergence according to manual inspection.
Next, the abundance of cell types in the spatial transcriptomics slides was estimated using
reference transcriptomic profiles of different cell types. All slides were analysed jointly.
The following cell2location hyperparameters were used: (1) expected cell abundance
(N_cells_per_location) = 30; (2) regularisation strength of detection efficiency effect
(detection_alpha) = 20. The training was stopped after 50,000 iterations. All other
parameters were used at default settings. Cell2location estimates the posterior distribution
of cell abundance of every cell type in every spot. Posterior distribution was summarised
as 5% quantile, representing the value of cell abundance that the model has high confidence

in, and thus incorporating the uncertainty in the estimate used for downstream analysis.

2.5.1.3. Cell distance from dermoepidermal junction analysis

To map adult skin cell states to different tissue depths using the dermoepidermal junction
(DEJ) as a reference point, the DEJ was first defined as Visium spots annotated as
epidermis contacting spots annotated as dermis. The distance between each spot centre and
the centre of the nearest DEJ spot was then calculated in image scale (pixels). The distance
was divided by the interspot distance and rounded. Distances for non-epidermal spots were

multiplied by minus one. In real scale, the interspot distance is 100 pum.

All spots that were closer than 3 spots to annotated hair follicle regions were excluded from
the analyses. Cell2location-predicted cell type abundances were per spot normalized
(divided by total abundance). Cell type abundances in spots with the same distance from

the DEJ were averaged within each sample and used as independent observations.

45



2.5.1.4. Tissue microenvironment analysis

To identify microenvironments of co-locating cell types, non-negative matrix factorisation
(NMF) was used. The matrix of estimated cell type abundances was first normalised by
dividing the matrix by per-spot total abundances. Resulting matrix Xn of dimensions n x
¢, where n is the total number of spots in the Visium slides and c is the number of cell types
in the reference, was decomposed as Xn = WZ, where W is a n x d matrix of latent factor
values for each spot and Z is a d x ¢ matrix representing the fraction of abundance of each
cell type attributed to each latent factor. Here the latent factors correspond to tissue
microenvironments defined by a set of co-localised cell types. The NMF package for R
(Gaujoux and Seoighe, 2010) was used, setting the number of factors d = 10 and using the
default algorithm (Brunet et al., 2004). NMF coefficients were normalised by a per-factor
maximum. NMF was run 100 times to construct the consensus matrix. The best run was
then selected based on lower mean silhouette scores calculated on the consensus matrix; if
at least 2 runs had minimal mean silhouette scores, the run with the smallest deviance was

selected.

In order to compare spatial microenvironments between adult healthy trunk samples and
anatomical site matched disease samples from psoriasis lesional/non-lesional skin and
eczema lesional/non-lesional skin, the data was first subsampled prior to running NMF.
Four samples from each condition were randomly selected and 50% of the Visium spots
for each sample were randomly selected. NMF was then run on per-spot normalised
Cell2location predictions 100 times to construct the consensus matrix. Cell type pairs
between pairs of conditions were then compared by a proportion test and the difference

between consensus matrices.

For cell type abundance correlation analysis in prenatal skin, a per-spot normalised Xn
matrix was used. Pearson correlation coefficient was calculated for each pair of cell types
(all possible pairs computed) and each sample. For visualisation of correlation analysis,
selected cell pairs were plotted, guided by NMF results and by which cell groups and

categories formed microenvironments.
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2.5.2. scRNA-seq analysis

2.5.2.1. Alignment, quality control, clustering and annotation of prenatal skin dataset

The gene expression data were mapped with Cellranger 2.1.1 and 2.0.2 to an Ensembl 84—
based GRCh38 reference (10x Genomics—distributed 1.2.0 version). The Python package
emptydrops (https://pypi.org/project/emptydrops/) (v0.0.5) was used to detect cells in each
sample. Potential doublets were flagged by Scrublet (v0.2.1) (Wolock, Lopez and Klein,
2019). Low-quality cells were filtered out using the following parameters: minimum
number of genes = 100, maximum number of UMIs = 45000, maximum mitochondrial
UMI fraction = 0.15. Possible maternal contamination was identified using the Souporcell
pipeline (v2.4.0) (Heaton et al., 2020). Data pre-processing was performed using scanpy
(v1.4.3) (Wolf, Angerer and Theis, 2018). After pooling data from all samples, genes
detected in fewer than 3 cells were removed and data was normalised to 10,000 UMI per

cell and log1p transformed.

Highly variable genes were selected based on normalised dispersion
(scanpy.pp.highly variable genes with flavor = ”seurat”, min_mean = 0.0125, max_mean
= 3, min_dispersion = 0.5). Dimensionality reduction was done by Principal Component
Analysis (PCA) and the first 50 principal components (PCs) were used to compute nearest-
neighbour graph (scanpy.pp.neighbors with n_neighbors = 15). BBKNN (v1.3.3) (Polanski
et al., 2020) was used to generate a batch-corrected nearest-neighbour graph considering
each donor as a separate batch. Leiden algorithm was used to cluster cells based on the
corrected graph with a relatively low resolution (scanpy.tl.leiden with resolution = 0.3) into
coarse clusters which were manually annotated into broad lineages using known marker

genes.

For each broad lineage, the data was re-processed starting from highly variable gene
selection in order to better reveal the finer heterogeneity. At this level, Harmony (v0.1)
(Korsunsky et al., 2019) and BBKNN was used in parallel for batch correction (again
treating each donor as a separate batch and with batches under 10 cells removed) for every
broad lineage. Highly consistent embeddings and clustering were observed between the
Harmony and BBKNN approaches. For fibroblasts, the analysis was continued with
embeddings and clustering downstream of BBKNN and for all other broad lineages,
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Harmony was used. Leiden clusters at the highest-resolution were annotated manually
using marker genes identified through literature search and their alignment with
differentially expressed genes (DEGS) in each cluster. DEGs were calculated using the sctk
(Single Cell analysis Tool Kit) package (https://github.com/Teichlab/sctk), where filtering
is carried out then a two-sided Wilcoxon rank-sum test carried out based on pass-filter
genes only in a one-vs-all fashion. The sctk package also carries out comparisons between
the group of interest (one with highest expression) and the next group (second highly
expressed), where the maximum proportion of cells expressing the gene in question in the
second most highly expressed group was 0.2. For epidermal annotations, a combined
embedding of prenatal skin and skin organoid data (Lee et al., 2020) was created, integrated
using the Harmony pipeline, as described above. Harmony corrected PCs were used to
compute the batch-corrected nearest neighbourhood graph, and the Leiden algorithm was
used to cluster the integrated data, as described above. The sctk package was then used to
derive marker genes for derived Leiden clusters. Annotation was carried out on the clusters

based on marker genes and refined annotations in the skin organoid data (Lee et al., 2020).

Clusters of doublets were manually flagged and removed by taking into account marker
genes and previously calculated scrublet scores. To have a final global visualisation of the

atlas, a doublet-free UMAP was generated.

2.5.2.2. Processing, clustering and annotation of skin organoid data

Organoid data was preprocessed, filtered, clustered and annotated separately before
integration with prenatal skin data. Briefly, CellRanger (CellRanger 2.1.0 with GRCh38-
1.2.0 and CellRanger 3.0.2 with GRCh38-3.0.0) filtered cells from samples of two strains
each four time points were pooled and cell QC thresholds for UMI counts, gene counts,
percentage of mitochondrial genes and top 50 highly expressed genes were established.
The thresholds were: minimum number of genes = 450, maximum number of genes = 5731,
minimum number of UMIs = 1063, maximum number of UMIs = 25559, maximum
mitochondrial UMI fraction = 0.133, minimum cumulative percentage of counts for 50
most expressed genes in a cell = 23.7%, maximum cumulative percentage of counts for 50
most expressed genes in a cell = 56.6%. Highly variable gene selection, dimensionality
reduction and KNN graph construction was done using the same method and parameters as
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for prenatal skin. BBKNN was again used to generate a batch-corrected graph, treating
combinations of strains and 10x kit versions as batches. Broad lineages were annotated
based on known markers. Each broad lineage was then re-processed in the same way as
prenatal skin to annotate cell types at a higher resolution.

2.5.2.3. Integration of prenatal skin, adult skin and skin organoid cells

To integrate prenatal skin cells with organoid cells, the datasets were down-sampled for
each broad lineage to have roughly balanced cell counts per cell type before integration
with Harmony, treating datasets as batches (prenatal skin or organoid) and within dataset
batches as covariates (donor for prenatal skin and strain:10x kit version for organoid).

Leiden clusters were annotated using known markers.

To integrate prenatal skin, skin organoid and adult skin cells at a broad level, all datasets
were down-sampled to have roughly balanced cell counts per broad lineage before
integration with Harmony, treating datasets as batches and within-dataset batches as

covariates.

2.5.2.4. Differential abundance analysis

Differences in cell abundance associated with gestational age were tested for using Milo
(v1.0.0) (Dann et al., 2022). Cells were initially re-embedded into a batch-corrected latent
space with a dimension of 20 using the scVI model, as implemented in scvi-tools,
considering donor ID as batches. The model was trained using the 5000 most highly
variable genes identified using scanpy.pp.highly variable_genes with parameters:
flavor="seurat v3” and batch="donorID” ). Milo then constructed a KNN graph of cells
(buildGraph, k=15) based on distances in the latent space and assigned cells to
neighbourhoods (makeNhoods, prop=0.05). The number of cells belonging to each sample
in each neighbourhood was then counted (countCells) and cell type labels were assigned to
neighbourhoods based on majority voting (annotateNhoods) with those labelled as
“Mixed” if no single cell type represented more than 70% of the total cells in the
neighbourhood. To test for differential abundance across gestational age, the counts in each

neighbourhood were modelled using a negative binomial generalised model and a log-
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linear model to model the effects of age (post-conception week), with cell sorting method

as a categorical co-variable to account for its impact on cell abundance (testNhoods).

2.5.2.5. Cell state and developmental stage predictions using logistic regression

Comparison of cell type correspondence between datasets and probability prediction was
carried out using a logistic regression (LR) framework. A model was built using the
implementation of the sklearn.linear_model.LogisticRegression module from sklearn
package (v1.1.3) (parameters: penalty: L2, solver: saga, regularization strength C=0.1) and
trained on the gene expression matrix of the training dataset using all genes that passed QC.
The resulting model was used to predict the labels in the target dataset. The correspondence
between predicted and original labels in target dataset was computed as Jaccard index and
visualised as a heatmap. For comparison of developmental stages, a merged prenatal and
adult skin dataset was used as training data and the organoid dataset was used as a target.
For comparison of hair follicle cell states, merged prenatal and organoid data was used as

training and adult hair follicle data was used as a target.

2.5.2.6. Trajectory analysis

Prenatal skin single-cell trajectories and pseudotime were computed with Monocle3
(https://cole-trapnell-lab.github.io/monocle3) for the epithelial cells and fibroblasts and

utilities are available in the 'sctkr' R package (https://github.com/Teichlab/sctkr). Batch-

corrected principal components were used as input for Monocle3. The plot_trajectories()
and plot_heatmap() functions in sctkr package were used to respectively generate UMAPS
of inferred trajectories (coloured by celltype, PCW and pseudotime) and heatmaps of gene

expression along individual trajectories.

2.5.2.7. Cell-cell interaction analysis

The CellPhoneDB (v3.0.0) package (Efremova et al., 2020) was used to infer cell-cell
interactions within the prenatal skin SCRNA-seq dataset overall and by early/late gestation.
In the overall analysis, cell states were randomly subsampled into groups of no more than

200 cells. The subsampled dataset was analysed using the permutation-based method to
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establish statistical significance (p-value cut-off = 0.05). For the analysis by early/late
gestation, the prenatal skin SCcRNA-seq dataset was first split into early (< 11 PCW) and
late (> 12 PCW) gestation datasets, which were then subsampled (no more than 200 cells
per cell type) and analysed individually (p-value cut-off = 0.05).

A curated list of interactions was plotted for visualisation using ggplot2 (v3.3.6). Circos
plots were generated using the Circlize package (v 0.4.15) (Gu et al., 2014) were used for
downstream visualisations of selected significant (adjusted p-value <0.05) interactions

between co-locating cell types.

2.5.2.8. Gene set enrichment analysis

Gene set enrichment analysis was performed using the implementation of the Enrichr
workflow  (Chen et al, 2013) in the python package GSEApy
(https://gseapy.readthedocs.io/), with Gene Ontology (GO) Biological Process (2021) as

the query database. To determine the significantly overexpressed genes for gene set
enrichment analysis, differentially expressed genes between ILC3s present at different
gestational ages were identified using the Wilcoxon rank-sum test implementation in

Scanpy (scanpy.tl.rank genes groups, method = “wilcoxon”).
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Chapter 3: Spatial transcriptomic mapping reveals changes in
cellular localisation and altered functional microenvironments

in adult psoriasis and eczema skin

3.1. Introduction

Psoriasis and eczema are both highly prevalent inflammatory skin diseases worldwide (Hay
et al., 2014; Griffiths et al., 2017) that have a significant impact on patient morbidity and
quality of life (Hay et al., 2017). Both conditions are significantly associated with other
diseases, such as psoriatic arthritis, diabetes and metabolic syndrome in the case of
psoriasis (Gottlieb, Chao and Dann, 2008) and asthma, rhinitis, food allergies and
cardiovascular disease in the case of eczema (Brunner et al., 2017). Genetic susceptibility
is one aspect of the aetiology of both conditions (Brown and McLean, 2012; Paternoster et
al., 2015; Stuart et al., 2010); multiple environmental factors are also implicated in causing
disease (Langan et al., 2006; Luschkova et al., 2021; Xie et al., 2021; Vici¢ et al., 2021),
culminating in immune dysfunction and an infiltration of inflammatory cells into the skin
that have been therapeutically targeted in disease management. However, treatment
approaches to date do not prevent disease progression, are not curative, are not personalised
and often rely on non-specific immunosuppression. In the absence of reliable biomarkers
to stratify patients and guide treatment options, trial and error prescribing is often carried
out, resulting in poor outcomes for patients and a detrimental socioeconomic impact on
healthcare services (Strober et al., 2021; Davison et al., 2017; Brown, 2017).

In order to further our understanding of the cellular and molecular mediators of psoriasis
and eczema pathogenesis, our research group recently generated a comprehensive single
cell atlas of healthy, lesional and non-lesional psoriasis, and lesional and non-lesional
eczema skin (Reynolds et al., 2021). This study revealed changes affecting several immune
and non-immune cell states in disease, including a significant expansion of cytotoxic and
helper T cells expressing interleukin 17 (IL17A and IL17F) in psoriasis lesional skin,

cytotoxic T cells expressing 1L13 and IL22 in eczema lesional skin and an expansion of
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vascular endothelial cell subtype 3 in both psoriasis and eczema lesional and non-lesional
skin (Reynolds et al., 2021). Cell-cell communication analyses revealed disease-associated
interactions mediated by ACKR1 expressed on vascular endothelial cell 3 and CXCL8 on
macrophage subtype 2, which is implicated in lymphocyte recruitment and angiogenesis
(Reynolds et al., 2021).

Though samples in the ScCRNA-seq study were enzymatically and mechanically separated
into epidermal and dermal tissues prior to single cell profiling to provide a detailed
characterisation of the abundance of different cell states across skin compartments
(Reynolds et al., 2021), valuable information about the organisation of skin cells in situ
was still lost during the generation of single cell suspensions. Furthermore, analyses to infer
significant cell-cell communication analyses of the sScRNA-seq dataset were challenging to
systematically validate microanatomically; this was approached by immunostaining of
target molecules within focal tissue regions (Reynolds et al., 2021). The aim of my study
was therefore to generate a spatial transcriptomic atlas of healthy, psoriasis lesional/non-
lesional and eczema lesional/non-lesional skin to further our understanding of the
microanatomical changes underpinning disease. The spatial arrangement of cell
populations was mapped using reference scRNA-seq data, revealing disease-related
perturbations in cellular location and changes in tissue cellular microenvironments across

healthy, psoriasis and eczema skin.
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3.2. Results

3.2.1. Adult skin sample acquisition

Healthy adult skin samples that are normally discarded during surgical defect
reconstruction were collected from 13 patients. Skin samples from various anatomical sites
were obtained, including the face, scalp, arm, leg and trunk (Figure 13). Five patients with
psoriasis and five patients with eczema were also recruited into the study, where lesional
and adjacent non-lesional skin was sampled using punch biopsies (Figure 13). Patients
included in the study were naive to biologic treatment, had not had systemic treatment for
at least 4 weeks prior to the biopsies being taken and the biopsy site had not been treated
with topical steroids for at least one week prior. Clinical metadata was collected for all

donors, including their age and sex (Appendix M).

Donors Conditions

Healthy Face-4
Scalp-1
13 Arm-4
Leg-1
Trunk - 4

Psoriasis
Lesional

b ©F \ Non-lesional
Eczema
Lesional

Non-lesional

Figure 13: Adult skin sample overview. A summary of the healthy, psoriasis and eczema
skin samples collected in this study, including the anatomical sites that the healthy

samples were taken from. Image created with BioRender.com.
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3.2.2. Tissue optimisation for Visium

A tissue optimisation experiment was carried out to determine the ideal skin tissue
digestion time for spatial transcriptomics profiling using Visium. Following the protocol
detailed in section 2.1.1.3.3, adult healthy facial skin tissue was sectioned at 15um
thickness onto 7 of the 8 capture areas on the Tissue Optimisation slide (10x Genomics)
and H&E staining was initially carried out. Permeabilisation enzyme was subsequently

applied to each tissue section for varying periods of time (Figure 14).

Negative

cctrol 20 mins 32 mins 38 mins

Positive
control

8 mins 14 mins 26 mins

Figure 14: Tissue Optimisation experiment. Adult healthy facial skin was sectioned and
stained with H&E (upper panel). Permeabilisation enzyme was then applied to each skin
tissue section for varying time periods and the fluorescence signal, which reflects cDNA

abundance, was measured across the slide (lower panel).

The negative control, which reflected a tissue section that was not exposed to
permeabilisation enzyme, showed minimal fluorescence signal, and therefore was used to
help determine the background fluorescence when analysing the image. The positive

control, which reflected a sample of reference RNA without any tissue, showed a positive
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fluorescence signal, confirming that the reverse transcription reaction was successful

(Figure 14).

Focal regions of minimal fluorescence signal were observed across epidermal and dermal
regions of the skin tissue following 8 minutes of permeabilisation enzyme application,
suggesting insufficient tissue digestion. Beyond 20 minutes of permeabilisation,
progressively dimmer fluorescence signals were observed, reflecting RNA degradation
with prolonged periods of tissue digestion. The greatest fluorescence intensity with the least
signal diffusion was observed following 14 minutes of permeabilisation enzyme
application, where epidermal and appendageal structures are well-represented (Figure 14),

therefore, this time was chosen for the Visium workflow.

3.2.3. Adult skin sample processing

Adult healthy, psoriasis and eczema samples that were OCT-embedded and frozen were
processed to generate spatial transcriptomic sequencing data using the Visium protocol
described in Methods section 2.1.1.3.4. | processed 10 healthy samples and the psoriasis
samples in Newcastle, whereas the eczema samples and 3 healthy trunk samples were
processed by the Cellular Generation and Phenotyping (CGaP) at the Wellcome Sanger
Institute whilst | was on maternity leave. The following figure shows the number of tissue

sections that sequencing data is available for across the different conditions:

Healthy 41 2 2 2 4 2(1) 2 2 2 2 2(1) 2 4
c Psoriasis lesional 120 2 2 2
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T Psoriasis non-lesional 2 2(1) 2 2 2
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10 1 2 4 2
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Eczema non-lesional -
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runk -
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runk
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runk o o

= = -~ R~ =

P728, trunk
P729, face —
P730, face

P732, scalp o

P734, face and arm —
P736, leg -
P738, arm o

P742, trunk —
P746, face -
P747, arm -

8

P775
P777
P731
P735,

P737,

P743

P744,
AD2638,
AD2634,
AD2639,
AD2628,
AD2640, trunk

Donor, anatomical site

Figure 15: Spatial transcriptomic data overview. The number of skin tissue sections with
spatial transcriptomic data available for each donor and condition is shown. The
numbers in brackets denote the data available after filtering.
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The experiment was designed with the aim of generating data from two technical replicates
for each donor (Figure 15). This was achieved in the majority of cases, however, an
exception to this occurred when the psoriasis lesional block from donor P731 was
exhausted before the second technical replicate was carried out. Therefore, a single healthy
skin section from donor P728 was used in its place on the spatial genomic capture area in
order to avoid wasting resources. Furthermore, the H&E images for one experiment that
included two healthy (P736 and P748) and a lesional and non-lesional psoriasis sample
(P735) was unfortunately corrupted due to a software issue and could not be retrieved. The
corresponding sequencing data could not be interpreted fully, therefore the data for these
sections were filtered from the downstream analysis, as shown in brackets in Figure 15.
The lesional eczema sample from donor AD2638 produced poor quality sequencing data
that poorly aligned with the H&E image, and therefore this section was also filtered from
the analysable dataset (Figure 15). Four technical replicates were carried out by CGaP for
a healthy trunk sample from donor P777 and for a lesional eczema sample from donor
ADZ2628, and any eczema tissue samples where fewer than two technical replicates were
carried out represented a lack of remaining tissue in the blocks available for processing.

3.2.4. H&E staining for Visium

To be able to map the spatial transcriptomic sequencing data that was generated to specific
microanatomical tissue regions, H&E staining and imaging of each tissue section was
carried out as described in section 2.1.1.3.4.1. Representative H&E images for adult

healthy, psoriasis and eczema skin are shown below (Figure 16).

Healthy Psoriasis Eczema

Face (temple) Arm Lesional Non-lesional Lesional Non-lesional

&
&

Figure 16: H&E staining of adult healthy, psoriasis and eczema skin tissue.
Representative images for each condition are shown, including healthy skin from the face

and arm, and lesional and non-lesional skin from patients with psoriasis and eczema.
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All skin sections showed a good representation of the epidermis and dermis in each
condition, with appendageal structures also observed (Figure 16). The healthy facial skin
tissue section exhibited a high density of pilosebaceous units, with sebaceous glands shown
as large lobular pink dermal structures and associated hair follicles as smaller round
epithelial lined structures mostly seen in the superficial dermis (Figure 16). This finding is
in keeping with facial skin having one of the highest concentrations of pilosebaceous units
across the body (Fernandez-Flores, 2015). The healthy skin section sampled from the arm
showed a pilosebaceous unit, as well as a layer of subcutaneous adipose tissue (Figure 16).
The psoriasis lesional tissue section had a markedly thickened epidermal layer and reflects
the characteristic elevated, scaly plaques seen clinically (Murphy, Kerr and Grant-Kels,
2007). The non-lesional psoriasis sample taken from clinically uninvolved adjacent skin
did not show epidermal hyperplasia. At low magnification, there were no distinguishing
features observed in the lesional and non-lesional eczema samples (Figure 16); high
magnification histological findings in eczema samples are relatively non-specific and can
include spongiosis (intercellular oedema of the epidermis) and an inflammatory cell
infiltrate (Houck et al., 2004).

H&E images from each donor in the study, and 63 tissue sections overall, are shown below
(Figure 17). Images show characteristic histological features between conditions that have
been highlighted using the representative images, including epidermal hyperplasia in all
psoriasis lesional samples. The panel of H&E images across the study also demonstrates
that each tissue section is unique, reflecting various factors including donor, age, condition,
sampling site and sectioning plane. Corresponding metadata for each sample is shown in
Appendix M.
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Figure 17: H&E staining of adult healthy, psoriasis and eczema tissue. Images from each donor and skin tissue section is shown.



3.2.5. Tissue annotation

The tissue sections were then histologically annotated using a software package called
Loupe Browser (V6.1.0; 10x Genomics) in order to facilitate downstream analysis. Based
on the H&E images, skin tissue sections were segmented into the following discrete
compartments: epidermis, dermis, pilosebaceous units and adipose tissue. | was able to
carry out these tissue annotations based on my previous extensive clinical training in
dermatopathology. The following figure shows histologically annotated regions within

representative tissue sections from healthy, psoriasis and eczema skin:

Healthy Psoriasis Eczema

Face (temple) Arm Lesional Non-lesional Lesional Non-lesional

a )

@ Epidermis

@® Dermis

@ Pilosebaceous unit
@ Adipose tissue

Figure 18: Histological tissue annotation. Representative images for healthy, psoriasis
and eczema skin, showing segmentation into epidermal, dermal, pilosebaceous unit and

adipose tissue regions.

Each tissue section has good representation of the epidermis and underlying dermis. The
distribution of pilosebaceous units and adipose tissues varies between tissue sections,
which is dependent on the anatomical site that has been biopsied and the plane in which

the individual sample was sectioned.

Annotated sections from each donor and tissue section are shown below (Figure 19,

Appendix M), highlighting the variable tissue morphology across the samples.
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Figure 19: Histological tissue annotation. Images from each donor and skin tissue section is shown.



3.2.6. Computational quality control

The spatial transcriptomic sequencing data was then analysed in order to determine the
quality of the data from each tissue section and determine whether any further filtering was
required prior to downstream comparative analyses between healthy and diseased skin. The
relative number of transcripts per spot was derived from the UMI (Unique Molecular
Identifier) count and was compared across each of the tissue sections processed (Figure
20). Appendix M details the donor information that each tissue section on each slide

corresponds to.

Log-transformed UMI count in tissue
@

Slide number and tissue section

Figure 20: Spatial transcriptomic data quality control. Floating bar chart showing the

log-transformed UMI count for each skin tissue section on each slide.

The quality of the data across the separate experiments was good overall, with a high
average number of transcripts per spot across most slides and tissue sections (Figure 20).
However, the data from slide six showed low UMI counts across all four tissue sections on
the slide from two healthy, one psoriasis lesional and one psoriasis non-lesional sample
(Appendix M), suggesting that a factor unrelated to the skin tissue samples contributed to
the low data quality of this slide. Unfortunately, the technical replicates for these samples
were run on Visium slide 2, for which the H&E imaging data was corrupted, as discussed
in section 3.2.4. Poor quality data was also observed from two different eczema lesional
samples that were processed on two different Visium slides (slide 14 position C1 from
donor AD2634 and slide 15 position B1 from donor AD2638 (Appendix M).



The tissue annotations were then used to quantify whether the average number of
transcripts per spot varied between epidermal, dermal, pilosebaceous unit and adipose

tissue regions between different slides and tissue sections (Figure 21):
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Figure 21: Spatial transcriptomic data quality control. Floating bar charts show the log-
transformed UMI count across epidermal, dermal, pilosebaceous unit and adipose tissue

regions for each skin tissue section on each slide.
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Differences in the log-transformed UMI counts across tissue sections were observed
depending on the skin tissue compartment analysed (Figure 21). The spatial transcriptomic
data from the epidermal regions was overall of higher quality when compared to the dermal
regions. Pilosebaceous and adipose tissue were not observed or annotated in all skin tissue
sections. Data available from pilosebaceous tissue varied in quality between samples but

were mostly of similar quality to the epidermal data, and data from adipose tissue showed
similar log-transformed UMI counts to dermal regions.

Having analysed the spread of log-transformed UMI counts between each sample, the
spatial distribution of UMI accounts across tissue sections was visualised next in order to

further characterise the quality of the data (Figure 22) and take measures to address low
quality regions.

Healthy Psoriasis Eczema

Face (temple) Arm Lesional Non-lesional Lesional Non-lesional

615
6275 I
o
320
4095
52055I
200
1950
19400
740
109925 I
|
415
34250'
0
195
39150'

UMI count

Figure 22: UMI counts across adult healthy, psoriasis and eczema skin tissue sections.
Representative images for each condition are shown, highlighting the variation in UMI

counts across the tissue.

Visualisation of the UMI count across representative tissue sections highlights the variation
between samples and between tissue regions within each sample (Figure 22), which is in
accordance with the data shown in Figure 20 and Figure 21. The epidermal and
pilosebaceous regions overall showed an approximately 10-fold increase in UMI count

compared to the cell sparse dermal and adipose regions (Figure 22). UMI counts across
each tissue section in the study is shown below:
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Figure 23: UMI counts across adult healthy, psoriasis and eczema skin tissue. Images from each donor and tissue section is shown.



In order to leverage sScCRNA-seq data to map cell states onto the spatial transcriptomic data
with a high level of confidence, the individual spatial data regions require a sufficient
number of transcripts for the analysis. Therefore, the UMI count per spot across each tissue
section was first converted from a continuous scale into discrete categories: less than 100,
100 — 499, 500 — 999, 1,000 — 5,000 and above 5,000 (Figure 24). The Visium spots that
contained fewer than 500 UMIs were then merged to form meta-spots by grouping up to
seven spots together in a hexagonal layout with a central spot, with meta-spots containing
between two to seven individual Visium spots. The output of spot merging is shown in

Figure 25.

After merging the low coverage Visium spots into meta-spots, the issue of low UMI count
spatial data predominantly within the cell sparse dermal regions is markedly improved
(Figure 25). Most tissue sections consist of spots and meta-spots greater than 500 UMIs,
with the exception of the four sections from experiment using slide six (two healthy
samples from P748_2 and P736_2, and psoriasis lesional and non-lesional samples from
P735_2), which is consistent with the overall quality control findings discussed above
(Figure 20). Poor guality data was also observed for the eczema lesional sample AD2634 1
that would not be rectified using the spot merging procedure (Figure 20). These five
samples were therefore excluded from further downstream analysis. Any residual spots that
contain fewer than 500 UMIs across the included tissue sections following spot merging

were also removed prior to ongoing analysis.
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Figure 24: UMI counts across adult healthy, psoriasis and eczema skin tissue sections. Data is shown as a categorical variable prior to spot

merging.
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Figure 25: UMI counts across adult healthy, psoriasis and eczema skin tissue sections. Data is shown as a categorical variable following spot
merging.
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3.2.7. Integration of skin suspension reference datasets

After quality control and filtering of the dataset, the spatial transcriptomic data was next
utilised to predict the cell states located within the tissue. A reference sScCRNA-seq dataset
is required that is representative of the cell states expected in the spatial data. The analysis
maps the gene expression signatures of specific cell types in the suspension dataset onto

specific locations in the spatial dataset.

This spatial transcriptomic study follows on from our previous sSCRNA-seq skin cell atlas
study that profiled skin from healthy donors and lesional/non-lesional skin from patients
with psoriasis and eczema (Reynolds et al., 2021), and as such, the inclusion and exclusion
criteria of the patients were the same across both phases of recruitment. However, in the
ScCRNA-seq study, only the most superficial 200um of tissue extending down to the
superficial layer of the dermis was profiled, whereas | obtained and processed full thickness
skin biopsies extending down to the deep dermis and, in some cases, the subcutaneous
adipose tissue layer. Therefore, the sSCRNA-seq dataset does not include cell states found

in deeper skin structures, such as hair follicles and sebaceous glands.

In order to create a reference SCRNA-seq dataset that is representative of the spatial data
that includes deeper skin structures including the hair follicle and its associated cell states,
the scRNA-seq data from the Reynolds et al., 2021 study was integrated with SCRNA-seq
data from an adult hair graft dataset (Takahashi et al., 2020). The data from this adult hair
ScCRNA-seq study was also utilised in the comparative analyses between prenatal and adult
hair follicles in Chapter 4. The following figure shows the output of the integration between
both datasets:



Pericytes

Lymphoid
ycelljls pon Adult interfollicular skin dataset
. . Healthy, eczema and psoriasis

(Reynolds et al., 2021)

Fibroblasts . Adult hair graft dataset

Melanocytes (Takahashi et al., 2020)

- Epithelial
cells

UMAP2

UMAP1

Figure 26: Integration between adult interfollicular and hair follicle sScRNA-seq data.
The UMAP visualisation shows the broad lineages of cell states from adult interfollicular
skin (Reynolds et al., 2021) and adult hair grafts (Takahashi et al., 2020), coloured by

dataset.

The integration between scRNA-seq datasets from adult interfollicular skin (Reynolds et
al., 2021) and adult hair grafts (Takahashi et al., 2020) showed good mixing of cell states
on the combined embedding space (Figure 26). Cell states across both datasets that belong
to the same broad lineages clustered together, demonstrating similar transcriptional profiles
for these cells across interfollicular skin and hair graft skin samples, without significant

technical artefacts between the two studies.

As expected, the hair follicle cell states in the adult hair graft data clustered with the
epithelial cells and keratinocytes in the interfollicular skin data (Figure 26). The hair-
specialised cell annotations were retained in the final integrated object for spatial cell type
deconvolution. However, in order to unify and align the non-follicular cell state annotations
in the hair graft dataset with the interfollicular dataset, a label transfer approach was taken
(Figure 27):
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Figure 27: Label transfer of cell annotations between adult hair and interfollicular skin

datasets. The original non-follicular cell annotations from the adult hair graft dataset

(Takahashi et al., 2020) (left panel) were updated to align with the annotations in the

interfollicular skin dataset (Reynolds et al., 2021) (right panel) using a single cell label

transfer approach. VE = vascular endothelium, ORS = outer root sheath, IFE =

interfollicular epidermis, IRS = inner root sheath, H/H = Henle/Huxley layers, Tc =

cytotoxic T cell, IL = interleukin, Th = helper T cell, Treg = regulatory T cell, Macro =

macrophage, DC = dendritic cell, LC = Langerhans cell.

The annotations for vascular endothelial cells, T cells, macrophages and Langerhans cells

in the adult hair graft dataset (Takahashi et al., 2020) were updated and unified to reflect

the higher resolution of cell annotations within the interfollicular skin dataset (Reynolds et

al., 2021) (Figure 27). The high resolution hair follicle annotations from the adult hair

dataset were retained in the final integrated object.

The final integrated dataset for spatial cell type deconvolution is shown in the following

UMAP embedding, with hair follicles labelled as a broad cell type for this visualisation for

ease of interpretation:
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Figure 28: Final integrated dataset for spatial cell type deconvolution. UMAP
visualisation shows unified cell annotations in the integrated scRNA-seq dataset between
adult interfollicular skin (Reynolds et al., 2021) and adult hair grafts (Takahashi et al.,
2020). KC = keratinocyte, F = fibroblast, LE = lymphatic endothelium, MigDC =
migratory DC, Inf mac = inflammatory macrophage, Mono mac = monocyte derived
macrophage, MoDC = monocyte derived dendritic cell, ILC = innate lymphoid cell, NK

= natural killer cell.

3.2.8. Spatial cell type deconvolution

After generating an integrated SCRNA-seq dataset that reflects the cell type composition of
the spatial transcriptomic data from healthy, psoriasis and eczema skin samples, a spatial
cell type deconvolution analysis called Cell2location (Kleshchevnikov et al., 2022) was
carried out next in order to map cell states in situ. This analysis uses reference cell type
signatures from the scRNA-seq data, which correspond to gene expression profiles of
annotated cell states, and integrates this with the transcriptomic data from individual spatial
locations. This then allows the absolute and relative abundance of each cell type to be

defined within each Visium spot.

The results of the Cell2location deconvolution analysis for representative healthy, psoriasis

and eczema samples are shown below:
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Figure 29: Spatial cell type deconvolution. Cell2location analysis was used to

deconvolute single cell states onto spatial locations, with representative images for

healthy, psoriasis and eczema skin shown.

The Cell2location analysis mapped single cell states from the integrated dataset onto the

Visium spatial data, capturing the diverse cell types within discrete regions of the skin,

including keratinocytes in the epidermis (Figure 29). The analysis was extended to include

all the of tissue sections in the study, as shown in Figure 30. Due to the large number of

reference single cell states mapped to each tissue section, further analyses were carried out

next in order to characterise the changes in cell type composition and location between

healthy and diseased skin.

74



Healthy

Psoriasis lesional

Psoriasis non-lesional

Eczema lesional

Eczema non-lesional

P730_1

P747_2

P731_1

AD2628_1

AD2628_1

P729_1

P729_2

P775_1

P737_1

P737_1

AD2628_2

AD2628_2

P734_1

AD2628_3

AD2634_1

P734_2

P744_1

AD2628_4

P732_1

P732_2

P742_1

P737_2

AD2639_1

P738_1

= B

P738_2

P775_2

AD2639_2

e §

AD2638_1

AD2638_2

AD2639_1

P746_1

P746_2

2

P777_3

P744_2

]

AD2640_1

! 4

AD2639_2

d I NI NTS

Figure 30: Spatial cell type deconvolution. Cell2location analysis for deconvolution of single cell states onto spatial locations for each donor

and skin tissue section is shown.
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3.2.9. Differential location of cell types from skin surface between disease conditions

The tissue annotations were next used in order to define the dermoepidermal junction
(DEJ), which represents the interface between the epidermal and dermal skin layers. The
DEJ was used to help interrogate the spatial transcriptomic data to provide microanatomical
context to previously reported single cell findings (Reynolds et al.,, 2021) and to
characterise the changes in cellular tissue locations across healthy and diseased skin. The
DEJ was defined as the Visium spots that were annotated as epidermis that are in direct

contact with spots annotated as dermis, as visualised below:

Healthy Psoriasis Eczema

Face (temple) Lesional Non-lesional Lesional Non-lesional

?/ g "/“ﬁ :; .n//}

Scale = distance from dermoepidermal junction (spots)

Figure 31: Defining the dermoepidermal junction (DEJ). Representative images for
healthy, psoriasis and eczema skin, showing the DEJ as a dark blue line and the distance

from the DEJ as a gradual scale.

The epidermis represents a very thin layer of the skin in healthy conditions, and therefore,
the DEJ is shown to lie close to the border of the tissue section, similar to that seen in
eczema and non-lesional psoriasis. However, in lesional psoriasis, the epidermis is
markedly thickened, shown by the DEJ lying further from the tissue border than in healthy
skin (Figure 31).

The DEJ and distance from the DEJ across each donor and tissue section in the study is
shown below (Figure 32), noting that some eczema samples processed by CGaP were
sectioned transversely rather than longitudinally (AD2639 1, AD2639 2 and AD2634 1).
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The distance from the DEJ was then used as a measure to determine the distribution of cell
states within the skin from superficial to deep. The relative abundance of each cell within
spots at varying distances from the DEJ was first visualised for healthy skin, psoriasis
lesional skin and psoriasis non-lesional skin separately (Figure 33). Across all tissue
sections in this analysis, the annotated pilosebaceous units and three Visium spots
surrounding these structures were excluded so as to reduce the confounding effect of cell
types that are not spatially variable within the tissue. Cell states were grouped into
epidermal non-immune cells, dermal non-immune cells, lymphoid and mast cells, and

antigen presenting cells (Figure 33).

In order to further characterise the changes in cell type distribution and distance from the
DEJ between each condition, differential analysis was carried out between pairs of
conditions: psoriasis lesional versus healthy skin, psoriasis non-lesional versus healthy skin

and psoriasis lesional versus psoriasis non-lesional skin (Figure 34).
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Figure 33: Cell distance from DEJ in healthy and psoriasis skin. Heatmap to show the relative row-normalised abundance of individual cell
states within Visium spots located at different distances from the DEJ in healthy, psoriasis lesional and psoriasis non-lesional skin.
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Figure 34: Differences in cell distance from the DEJ across healthy and psoriasis skin. Differential analyses were carried out to determine the
changes in cell distance from the DEJ between different conditions. FC = fold change, fdr = false discovery rate.
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The comparisons of the relative abundance of cell states at different distances from the DEJ
between healthy, psoriasis lesional and psoriasis non-lesional skin revealed several
statistically significant differences between these conditions (Figure 34). In comparison to
healthy skin, psoriasis lesional skin exhibited a significant enrichment of disease
keratinocytes, supporting findings from the scRNA-seq data where disease keratinocytes
are mostly represented by psoriasis lesional and eczema lesional datasets. This explains
why the enrichment of disease keratinocytes is shown to span the full depth of the skin
tissue; an element of RNA leakage occurs across the Visium slide and disease keratinocytes
are mostly absent in healthy skin, therefore, comparisons in abundance within deeper skin
tissue levels also show a large fold change difference (Figure 34). The remaining cell states
in the analysis, however, are well-represented between different conditions, allowing
changes in their location and distance from the DEJ to be ascertained.

Differences in the location of fibroblasts were observed between psoriasis lesional and
healthy skin, where fibroblast subtypes 1 and 3 were enriched in the superficial dermis of
psoriasis lesional skin and fibroblast subtype 2 was enriched in the mid-dermis in psoriasis
lesional skin in comparison to healthy skin. Based on analyses of the sScCRNA-seq dataset
used for the spatial cell type deconvolution, fibroblast 2 is known to be the most abundant
fibroblast cell type in diseased skin states compared to healthy skin, including psoriasis and
eczema lesional and non-lesional skin (Reynolds et al., 2021). Fibroblast 2 highly expresses
the chemokine CXCL12, which has a role in monocyte, dendritic cell, lymphocyte and
neutrophil chemotaxis in psoriasis skin (Abdelaal et al., 2020), and also highly expresses
CCL19, blockade of which leads to clinical remission of psoriasis lesions with anti-TNF
(tumour necrosis factor) treatment (Boseé et al., 2013). Fibroblasts 1 and 3, enriched in the
superficial dermis of psoriasis lesional skin compared to healthy skin (Figure 34), are both
known to highly express IL6 (interleukin-6), which interestingly has been shown to
stimulate the proliferation of cultured keratinocytes and contribute to the epidermal
hyperplasia seen in psoriasis plaques (Grossman et al., 1989). IL6 also promotes neutrophil
differentiation and activation (Bartoccioni et al., 2003; Kaplanski et al., 2003), and the
abundance of neutrophils in psoriasis lesions that form intraepidermal collections known
as Munro’s microabscesses are a histopathological hallmark of the disease (Chiang et al.,
2019). However, the reference scRNA-seq dataset did not include neutrophils from adult

skin, as neutrophils and other granulocytes are technically challenging to capture to due to



their lower RNA content and their high RNAase levels (Ratnasiri et al., 2023). The spatial

deconvolution, therefore, did not map neutrophils to the skin tissue samples.

The vascular endothelial cells also showed an altered microanatomical localisation in
psoriasis lesional skin compared to healthy skin (Figure 34), with all three subsets observed
to be enriched within the superficial skin regions in disease. This is in accordance with the
histological findings in psoriasis lesional skin, where dilated and elongated capillaries are
observed in the papillary dermis (Heidenreich, Rocken and Ghoreschi, 2009). Clinically,
pinpoint bleeding spots can appear when psoriasis scales are scraped off, known as
Auspitz’s sign (Nasca et al., 2019), owing to the proximity of the expanded capillary
network to the skin surface at sites where the suprapapillary epithelium is thinned. Dermal
vascular expansion in psoriasis is a relatively under-researched aspect of the disease
(Malecic and Young, 2017), but is known to be mediated by VEGF (vascular endothelial
growth factor) produced by keratinocytes, fibroblasts and immune cells, such as mast cells
(Detmar et al., 1995; Yan et al., 2018; Wernersson and Pejler, 2014), promoting the

recruitment of immune cells to psoriasis skin lesions.

Interestingly, Langerhans cell subtypes 1 and 2 were observed to be enriched in the
epidermal regions of healthy skin when compared to psoriasis lesional skin (Figure 34).
This suggests a process of Langerhans cell migration away from the epidermis in psoriasis,
supported by Figure 33, which shows that Langerhans cell subtypes 1 and 2 are most
abundant within the superficial dermis in psoriasis lesional skin. Langerhans cells are
tissue-resident antigen presenting cells that are normally distributed in the epidermis and
mediate immune responses to inflammation, as well as microorganisms, allergens and
ultraviolet radiation (Yan et al., 2020). There have been conflicting reports regarding the
localisation of Langerhans cells detected with immunostaining or confocal microscopy in
psoriasis skin lesions, with some studies detecting an increase in Langerhans cell density
in psoriasis affected epidermis (Fujita et al., 2011; Eaton et al., 2014), some reporting a
decrease in density (Bos et al., 1983; Glitzner et al., 2014) and some reporting stable
densities compared with unaffected skin (Gommans, van Hezik and van Huystee, 1987;
Czernielewski et al., 1985). There is marked interindividual variation in Langerhans cell
density within the skin across healthy and psoriasis lesional skin samples, therefore, it is

possible that the conflicting results may be a result of underpowered studies.
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Psoriasis lesional skin also exhibited a significant enrichment of dendritic cell (DC) subsets
1 and 2 in the epidermis and superficial dermis compared to healthy skin, and migratory
DCs in the superficial dermis of psoriasis skin (Figure 34). Macrophages also show altered
cell localisation within the tissue samples, with inflammatory macrophages enriched within
psoriasis epidermis compared to healthy skin, and monocyte derived macrophages and
macrophage subsets 1 and 2 enriched within psoriasis lesional dermis compared to healthy
skin (Figure 34). DCs and macrophages are both known to play an important role in the
initiation phase of psoriasis inflammation (Kamata and Tada, 2022). Damaged
keratinocytes are known to release nucleic acids and antimicrobial peptides that lead to the
activation of DCs and macrophages, which in turn then produce tumour necrosis factor
(TNF) alpha and interferon (IFN) alpha (Glitzner et al., 2014; Clark and Kupper, 2006).
Resident dermal DCs then undergo maturation and differentiation, subsequently producing
various cytokines including IL-23 and TNF-a, which promotes the differentiation of naive
T cells into Thl, Th17 and Th22 cells (Lowes et al., 2008; Hu et al., 2021). The underlying
pathophysiology is psoriasis is supported by the findings of immune subset enrichment

within the superficial regions of lesional skin compared to healthy skin.

The lymphoid cells also showed altered microanatomical location between healthy and
psoriasis lesional skin. Innate lymphoid cells in the reference ScRNA-seq dataset included
a subtype annotated as ILC1/3, reflecting the gene expression signature which shares the
characteristics of ILC1s and ILC3s, with plasticity between these lymphoid cell populations
having been previously reported (Bernink et al., 2015). ILC2 cells are also present, which
highly express IL7R and PTGDR2 (Reynolds et al., 2021). The scRNA-seq analysis did not
detect a significant difference in the abundance of ILC1/3 and ILC2 cell states between
healthy and diseased skin (Reynolds et al., 2021), whereas the spatial transcriptomic
analysis revealed that these cell states are both more significantly enriched in the mid-
dermis of healthy skin compared to psoriasis lesional skin (Figure 34). The heatmap
analysis of cell distance from the DEJ shows that ILC1/3 and ILC2 in psoriasis lesional
skin are most highly enriched in the superficial and deep dermis (Figure 33), suggesting
migration of these cells in disease. ILC3s are known to produce IL17 and 1L22 (Villanova
et al., 2014), which drive psoriasis pathogenesis and lead to keratinocyte activation and
proliferation (Bugaut and Aractingi, 2021).
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Lymphoid cells that showed a significant enrichment in the superficial dermis of psoriasis
lesional skin compared to healthy skin included cytotoxic T cells (Tc), T helper cells (Th),
Tc17/Th17 cells, Tc IL13/1L22 cells and Tregs (Figure 34). Tc IL13/IL22 cells are not
expected in psoriasis lesional skin, with analysis of the ScCRNA-seq data showing that Tc
IL13/1L22 cells are present in eczema skin and are not present in healthy and psoriasis skin
(Reynolds et al., 2021). However, the spatial deconvolution analysis predicts cell type
mapping based on transcriptional similarity between the sScRNA-seq and spatial datasets,
with some Tc IL13/IL22 cells being mapped onto healthy and psoriasis skin tissue sections
(Figure 30). The other lymphoid cells have been shown by scRNA-seq to be present in
healthy and psoriasis skin, with an expansion of Tcl17/Thl17 single cells reported in
psoriasis lesional skin (Reynolds et al., 2021). The enrichment of lymphoid cells in the
superficial dermis of psoriasis lesional skin is in keeping with histopathological findings,
where a lymphocytic inflammatory cell infiltrate is observed (Mihu et al., 2021). Tc, Th,
Tregs and Tcl7/Thl7 cells are known to be key components underlying psoriasis
pathogenesis due to their aberrant release of cytokines including 1L23, IL17 and TNF-a
(Liu et al., 2021; Nussbaum, Chen and Ogg, 2021), which are targeted using biologic
therapies (Yiu et al., 2019; Egeberg et al., 2018).

Notably, across the rest of the cell states mapped onto the spatial transcriptomic data, there
were no significant differences observed in the distribution of several cell types when
comparing psoriasis lesional skin and healthy skin, including melanocytes, lymphatic
endothelium, mast cells and plasma cells (Figure 34). These cell types are not recognised
to be important contributors to the pathogenesis of psoriasis, which supports the findings

here.

Psoriasis non-lesional skin samples were also compared with healthy skin samples to
determine the differences in cell distance from the DEJ across all mapped cell states (Figure
33 and Figure 34). Biopsies from non-lesional sites were taken from clinically uninvolved
skin adjacent to psoriasis plaques, and the H&E staining of these samples did not show
marked changes compared to healthy skin (Figure 16 and Figure 17). However, the spatial
transcriptomic analysis did reveal several significant differences between psoriasis non-
lesional skin and healthy, which were less widespread than the comparison between

lesional and healthy skin (Figure 34). Compared to healthy skin, psoriasis non-lesional skin
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showed a significant enrichment of fibroblast subtype 2 in the mid-dermis, vascular
endothelial cell subtypes 2 and 3 in the superficial dermis and macrophage 1 in the mid
dermis. ILC1/3 and ILC2 were also more significantly enriched in the mid-dermis of
healthy skin samples compared to the psoriasis non-lesional samples (Figure 34). These
changes in cell distance from the DEJ demonstrate the early microanatomical changes in
clinically uninvolved skin in patients with psoriasis. Analysis of the SSRNA-seq dataset
from which the spatial data was mapped did also show a significant increase in the
abundance of fibroblast 2 and vascular endothelial cell 2 and 3 in psoriasis non-lesional
compared to healthy skin, however, no significant change in abundance was observed
between macrophage and ILC subsets (Reynolds et al., 2021). This highlights the additional
insights that can be gained from analysing cell states within their tissue microenvironmental
context, as opposed to scRNA-seq data alone where isolated cells in suspension are

analysed.

The distance of cell states from the DEJ was also compared across psoriasis lesional and
psoriasis non-lesional skin sections in order to reveal the cellular microanatomical changes
that occur between clinically uninvolved skin and skin from lesional psoriasis inflamed
plaques. This analysis showed that disease keratinocytes were significantly enriched in
psoriasis lesional skin compared to non-lesional skin, as was observed in the comparison
between psoriasis lesional and healthy skin (Figure 34). Furthermore, in comparison to
psoriasis non-lesional skin, psoriasis lesional skin showed a significant enrichment of
fibroblast 3 in the superficial dermis, vascular endothelial cell 1 and 2 in the superficial
dermis, and inflammatory macrophages and monocyte derived macrophages in the
epidermis and superficial dermis (Figure 34). Langerhans cell subtype 1 also showed a
significant enrichment in the epidermis of psoriasis non-lesional compared to lesional skin,
and subtypes 2 and 4 were more enriched in the superficial dermis of psoriasis non-lesional
skin, suggesting a process of Langerhans cell migration, as discussed above when
examining psoriasis lesional skin findings compared to healthy skin. By comparing
psoriasis non-lesional and lesional skin, the microanatomical changes underlying

pathogenic processes in development of lesional plagques can be further understood.

The eczema skin samples were next examined using the same approach taken for psoriasis
skin samples. The relative abundance of mapped cell states at varying distances from the
DEJ was initially visualised for healthy skin, eczema lesional skin and eczema non-lesional
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skin separately (Figure 35). Differential analysis on the cell distance from the DEJ was then
carried out between pairs of conditions: eczema lesional skin versus healthy skin, eczema

non-lesional versus healthy skin and eczema lesional versus eczema non-lesional skin
(Figure 36).
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Figure 35: Cell distance from DEJ in healthy and eczema skin. Heatmap to show the relative row-normalised abundance of individual cell states
within Visium spots located at different distances from the DEJ in healthy, eczema lesional and eczema non-lesional skin.
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Figure 36: Differences in cell distance from the DEJ across healthy and eczema skin. Differential analyses were carried out to determine the
changes in cell distance from the DEJ between different conditions. FC = fold change, fdr = false discovery rate.
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Widespread changes across most cell states were observed when comparing cell distance
from the DEJ between healthy and eczema lesional skin (Figure 36). The disease
keratinocytes were significantly enriched in the epidermis of eczema lesional skin
compared to healthy skin. However, an element of RNA leakage was apparent, especially
considering that disease keratinocytes are markedly underrepresented in healthy skin,
which leads to an increased log fold change between conditions even when the absolute

numbers of mapped disease keratinocytes within an eczema dermal spot are low.

Fibroblast subtypes 1 and 3 were observed to be enriched within the superficial skin regions
in eczema lesional skin compared to healthy, with no significant differences in cell distance
from the DEJ identified for the fibroblast 2 population (Figure 36). This pattern of
fibroblast 1 and 3 enrichment in eczema was also observed in psoriasis lesional skin
compared to healthy skin (Figure 34). Both subtypes of fibroblasts are known from scRNA-
seq analysis to highly express IL6, which was discussed in the context of psoriasis
pathogenesis above, as well as MMP2 (matrix metallopeptidase 2) (Reynolds et al., 2021).
IL6 is also released as part of the cytokine milieu that drives eczema, with previous reports
focusing on the T helper 2 (Tw2) polarised CD4* T cells that overproduce IL6, IL5, IL4
and IL13 (Toshitani et al., 1993; Werfel et al., 2016). Studies have shown that activated
macrophages and monocyte derived DCs also secrete IL6 in atopic individuals (Lee et al.,
1992; Su et al., 2020). IL6 exerts its effect by activating IL4-producting CD4+ T cells,
inducing the development of Th17 cells from naive T cells and promoting the acute phase
eczema response (Kimura and Kishimoto, 2010; Rincon et al., 1997). IL6 has been targeted
therapeutically using a monoclonal antibody called tocilizumab that blocks the IL6
receptor, which has been shown to improve eczema severity, however also promotes
bacterial superadded infection of the skin (Navarini, French and Hofbauer, 2011); its use

has not be adopted in routine clinical practice (Choong and Tan, 2021).

Fibroblast subsets 1 and 3 enriched in the superficial dermis of eczema lesional skin
compared to healthy skin (Figure 36) also highly express MMP2 (matrix metallopeptidase
2) (Reynolds et al., 2021). MMP2 is known to be produced by fibroblasts in response to
TNF-o. and mediates proteolytic activity in the skin that contributes to the skin barrier
dysfunction observed in eczema (Han et al., 2001; Xu et al., 2014). MMP2 has been shown

to be raised in the serum of patients with eczema and the levels correlate with disease



activity scores in moderate and severe eczema (Basalygo et al., 2021). Transepidermal
water loss, which is associated with skin barrier dysfunction in eczema, has interestingly
been shown to be dramatically reduced with MMP2 inhibition (Li et al., 2010), highlighting
the pathogenic role that MMP2-secreting fibroblasts 1 and 3 enriched in the superficial

dermis has in eczema lesional skin (Figure 36).

The cell distance from the DEJ comparison between eczema lesional skin and healthy skin
also revealed an altered microanatomical localisation of vascular endothelial cells and
pericytes (Figure 36). Vascular endothelial cell subtypes 2 and 3 and pericyte subtype 2
showed widespread enrichment in the superficial and mid-dermis of eczema lesional skin.
The changes in cell localisation of vascular endothelial cell subtype 1 were less widespread,
with an enrichment in the mid-dermis in healthy skin compared to eczema lesional skin
(Figure 36). The findings in eczema skin were markedly different to those observed when
comparing psoriasis lesional and healthy skin, where all three vascular endothelial cell
subsets were enriched in a very localised region close to the skin surface (Figure 34).
Endothelial network expansion throughout the dermis in eczema lesional skin reflects
clinical signs on examination, including erythema, oedema and white dermographism, a
blanching response after firm skin stroking secondary to capillary vasoconstriction
(Steinhoff et al., 2006). Previous SCRNA-seq analyses have shown that vascular endothelial
cell 3 is significantly more abundant in eczema lesional and non-lesional skin compared to
healthy skin, whereas the abundance of subtypes 1 and 2 are not significantly different
(Reynolds et al., 2021), demonstrating that spatial transcriptomics reveals additional
insights into changes in microanatomical localisation that cannot be determined from cell
suspension data. Interestingly, vascular endothelial cells 2 and 3 both highly express
ACKRL1 (Atypical Chemokine Receptor 1), whereas ACKRL1 is not expressed by vascular
endothelial cell 1 (Reynolds et al., 2021). Cell-cell communication analyses have revealed
that endothelial cells expressing ACKR1 interact with macrophage 2 via CXCL8 (C-X-C
Motif Chemokine Ligand 8) to promote lymphocyte recruitment into inflamed skin, and
that this signalling program was also identified in developing first trimester prenatal skin,
suggesting that developmental cell programs can be co-opted in the pathogenesis of
inflammatory skin disease (Reynolds et al., 2021). Therefore, the enrichment of ACKR1-
expressing vascular endothelial cells 2 and 3 throughout the dermis in eczema lesional skin
compared to healthy skin (Figure 36) is likely to drive the disease process by interacting
with macrophages to promote lymphocyte recruitment.
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The spatial location of lymphatic endothelial (LE) cells in eczema lesional skin was also
shown to be perturbed compared to healthy skin: LE subtype 1 showed an enrichment
within the superficial and mid-dermal regions in eczema, whereas LE subtype 2 was not
enriched in eczema compared to healthy skin (Figure 36). LE1 is characterised by high
expression of the chemoattractant CCL21 (C-C Motif Chemokine Ligand 21), which
facilitates DC migration into skin draining lymph nodes (Gupta et al., 2006). LE1 also
highly expresses angiogenic factors CAVIN2 (Caveolae Associated Protein 2) and CCND1
(Cyclin D1) that promote endothelial network expansion and inflammatory cell recruitment
to the skin (Tammela and Alitalo, 2010), therefore supporting the role of LE1 in eczema
pathogenesis and highlighting the significance of LE1 enrichment in the superficial and
mid-dermis of eczema lesional skin (Figure 36).

Similar to that observed in psoriasis lesional skin, the Langerhans cells in eczema lesional
skin also showed altered microanatomical location. In healthy skin, Langerhans cells were
enriched within the epidermis, however in eczema lesional skin, Langerhans cells showed
high enrichment close to the DEJ within the basal epidermis or within the superficial
dermis, with all four Langerhans cell subsets showing a similar pattern of altered
localisation (Figure 35 and Figure 36). In healthy skin conditions where the skin barrier is
intact, Langerhans cells are predominantly quiescent and mediate tolerance to self antigens
(Seneschal et al., 2012). In the context of a dysfunction skin barrier in eczema, however,
the proinflammatory environment causes Langerhans cells to promote a Th2 type immune
response involving polarisation of naive T cells to IL-13 producing CD4+ T cells (Elentner
et al., 2009). Langerhans cells in eczema pathogenesis also have role in antigen capture,
migration to lymph nodes and presentation of antigens to T cells (Dubrac, Schmuth and
Ebner, 2010). Our understanding of Langerhans cell function within eczema lesions is
supported by the spatial genomic observation that Langerhans cells migrate from the
epidermis in healthy skin to co-locate with other inflammatory cells in the superficial

dermis in eczema lesional skin (Figure 35 and Figure 36).

The microanatomical cellular location of other antigen presenting cells was also altered
when comparing eczema lesional with healthy skin. DC1, DC2, monocyte derived
macrophage subtype 3, macrophage 1 and migratory macrophages were all enriched within
the superficial dermis in eczema lesional skin compared to healthy skin, and inflammatory
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macrophages were enriched within the epidermis of eczema lesional skin compared to
healthy skin (Figure 35 and Figure 36). Previous studies aiming to gain insight into the
abundance and tissue distribution of DCs and macrophages in eczema lesional skin have
used immunohistochemistry and light microscopic evaluation from atopy patch test skin
sites modelling acute eczematous inflammation, and found increased macrophage cell
numbers in eczematous skin and the presence of heterogeneous populations of dermal DCs
and macrophages, including monocyte-derived cells expressing markers for both DC and
macrophages (Kiekens et al., 2001). The findings from this spatial transcriptomic study
builds on these previous findings by providing the cellular localisation of cell states derived

from suspension data at single cell resolution.

Across the lymphoid cell subsets, changes in cellular tissue localisation between eczema
lesional and healthy skin was observed within the natural Killer (NK) and T cell subsets.
NK cells, cytotoxic T cells, Tc17/Th17 cells, Tc 1L13/1L22 cells, helper T cells and Tregs
were all shown to be significantly enriched in the superficial dermis of eczema lesional
skin compared to healthy skin (Figure 36). This is in keeping with the histological features
of acutely inflamed eczematous skin, where a superficial dermal lymphocytic inflammatory
cell infiltrate is observed (Bieber, 2010; Eckert, 1991). Previous analysis of the SCRNA-seq
dataset used for spatial cell deconvolution showed that across the different lymphoid cell
states, only Tc IL13/IL22 cells were significantly more abundant in eczema lesional skin
compared to healthy skin (Reynolds et al., 2021), highlighting the additional insights
gained from this spatial transcriptomic approach of mapping cell states that are not
differentially abundant between conditions but that show altered location within the tissue
microenvironment. Notably, Tc17/Th17 cells were not identified in the eczema samples
within the scRNA-seq data (Reynolds et al., 2021), and identifying their presence within
eczema tissue sections may reflect the statistical approach taken in the spatial mapping
algorithm that predicts transcriptionally similar single cell signatures within the Visium
spots (Kleshchevnikov et al., 2022).

The comparisons of cell distance from the DEJ were also carried out between eczema non-
lesional and healthy skin. Across the epidermal non-immune cells, dermal non-immune
cells, antigen presenting cells and lymphoid cells, few cell states showed localised
enrichment in eczema non-lesional versus healthy skin, compared to the changes observed

between eczema lesional and healthy skin (Figure 36), reflecting the minimal clinical
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changes on skin examination. However, there were some cell states that showed
significantly altered microanatomical tissue localisation in eczema non-lesional skin
compared to healthy skin, which were also noted in the above comparisons between eczema
lesional and healthy skin. For example, disease keratinocytes were shown to be enriched in
eczema non-lesional skin, reflecting skin barrier dysfunction and fibroblast 3 cells were
enriched within the superficial dermal region of eczema non-lesional skin, which express
disease promoting cytokines and MMPs, as discussed above. Furthermore, inflammatory
macrophages and helper T cells were enriched within the epidermal region of eczema non-
lesional skin compared to healthy skin (Figure 36), suggesting early recruitment of these
inflammatory cell states in eczema disease pathogenesis prior to clinical signs developing
(Kortekaas Krohn et al., 2022). These microanatomical tissue location findings provide
insight into how specific cell states become perturbed in non-lesional skin in eczema

compared to healthy unaffected skin.

Eczema lesional and non-lesional skin was also compared in order to understand the cell
location differences between clinically unaffected non-lesional skin and acutely inflamed
eczematous lesions. Significant differences were predominantly observed in the vascular
endothelial cell and immune cell populations. Vascular endothelial cell subtypes 2 and 3
were found to be enriched in the superficial and mid-dermal regions of eczema lesional
skin compared to non-lesional skin (Figure 36), which reflects the development of
erythema across involved skin clinically. The expansion in the vascular endothelial network
also facilitates the recruitment of inflammatory cells in the skin, which is reflected in the
enrichment of DC1, DC2, migratory DCs, ILC2s, ILC1/NK cells, NK cells, cytotoxic T
cells, Tc17/Th17 cells, Tc IL13/1L22 cells, helper T cells and Tregs in the superficial
dermis of eczema lesional skin compared to non-lesional skin, and the enrichment of
macrophage 1 cells and monocyte derived macrophages in the epidermis and superficial
dermis of eczema lesional compared to eczema non-lesional skin (Figure 36). Many of
these cellular tissue location changes were also observed when comparing eczema lesional
and healthy skin, reflecting the spatial organisation of cell states in lesional inflamed skin
regardless of whether the spatial transcriptomic data is compared with non-lesional or

healthy skin, and giving further validity to the findings observed in lesional skin.
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3.2.10. Tissue cellular microenvironments between disease conditions

The cell states mapped within the tissue sections were next assessed to determine whether
specific cell types were more likely to be co-located within microanatomical tissue niches
(or microenvironments) using non-negative matrix factorisation analysis, as described in
the Methods. Co-location was indicated by a high proportion of two or more cell types

sharing a microenvironment.

The samples were analysed to assess differences in the cells that occupy specific
microenvironments between pairs of healthy and psoriasis disease conditions initially,
including psoriasis lesional versus healthy skin (Figure 37), psoriasis non-lesional versus
healthy skin (Figure 38) and psoriasis lesional versus psoriasis non-lesional skin (Figure
39).
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Figure 37: Spatial microenvironments in healthy and psoriasis lesional skin. Cell type to
microenvironment assignment is shown by the coloured bars on the x- and y-axes. The
differences in the non-negative matrix factorisation derived consensus matrices between

healthy and psoriasis lesional skin are shown as a dotplot with significance values.

The comparison in spatial microenvironments between healthy and psoriasis lesional skin
revealed several cell types that change their microenvironment between the two conditions.
Monocyte derived macrophages are observed to co-locate with macrophage 1, macrophage
2, mast cells, fibroblast 1 and monocyte derived DC 2 in healthy skin. However, in psoriasis

lesional skin, monocyte derived macrophages change their microenvironment and instead
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co-locate with differentiated keratinocytes, Langerhans cell subsets 2 and 3, and monocyte
derived DC 1 (Figure 37). This can be explained by monocyte derived macrophages
migrating to the epidermis in psoriasis lesional skin, which is supported by the cell distance
from the DEJ analysis shown previously (Figure 34). Unexpectedly, Schwann cell subtype
2 was also identified in the monocyte derived macrophage microenvironment along with
differentiated keratinocytes and Langerhans cells in psoriasis lesional skin, which may be
explained by an element of RNA leakage within the Visium experiment. Schwann cells
make up a small proportion of cell types in the data compared with differentiated
keratinocytes (Reynolds et al., 2021), therefore, the cell type mapping predictions for

keratinocytes are more robust.

Interestingly, Langerhans cell 1 was also observed to change its microenvironment between
conditions. In healthy skin, Langerhans cell 1 co-located with undifferentiated
keratinocytes, proliferating keratinocytes, melanocytes and Langerhans cell subtypes 3 and
4. However, in psoriasis lesional skin, Langerhans cell 1 localised to a microenvironment
comprising of fibroblast 3, several subtypes of antigen presenting cells (including DC1,
DC2, migratory DC, monocyte derived DC 2 and 3), as well as all lymphoid cells subsets
mapped in the dataset (Figure 37). This finding is supported by the cell distance from the
DEJ analysis, where Langerhans cell 1 was observed to be enriched in the epidermis of
healthy skin and in the superficial dermis of psoriasis lesional skin (Figure 34),
demonstrating a process of Langerhans cell 1 migration away from the epidermis in
psoriasis. A previous study using confocal microscopy in psoriasis lesional skin has shown
that Langerhans cells in psoriasis can form cellular aggregates with T cells in the dermis
close to lymphatic vessels (Martini et al., 2017). The aggregation of Langerhans cells in
the dermis has been explained by migrational impairment in psoriasis due to the
keratinocyte secrotome in response to IL17 stimulation (Eaton et al., 2018). However, these
cellular microenvironment analyses between conditions and previously reported findings
on Langerhans cell localisation also raise the question of possible interactions between
Langerhans cells, T cells and other inflammatory cells in psoriasis, which has yet to be

fully explored.
The ILCs are also observed to change their microenvironment between healthy and
psoriasis lesional skin. ILC1/3 and ILC2 co-locate with vascular endothelial cell 1, pericyte

1, Schwann cell 1, inflammatory macrophages and inflammatory differentiated
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keratinocytes in healthy skin, whereas they move to the same microenvironment as
Langerhans cell 1 in lesional psoriasis, comprising of lymphoid cells, antigen presenting
cells and fibroblast 3 (Figure 37). This is also supported by the cell distance from the DEJ
analysis, where ILCs were enriched throughout the dermis in healthy skin but localised to
the superficial and deep dermal skin layers lesional psoriasis (Figure 34). ILC3s are known
to be enriched in the skin and blood of patients with psoriasis and secrete IL17 and 1L22
implicated in disease progression (Villanova et al., 2014), however, migration of both ILC
subsets to co-locate with other inflammatory cells in psoriasis and the potential intercellular

interactions driving pathogenesis require further investigation.
Spatial microenvironments between psoriasis non-lesional and healthy skin were then

compared to ascertain the changes in the cells that form microenvironments between the

two conditions (Figure 38).
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Spatial microenvironments in healthy and psoriasis non-lesional skin. Cell

type to microenvironment assignment is shown by the coloured bars on the x- and y-axes.

The differences in the non-negative matrix factorisation derived consensus matrices

between healthy and psoriasis non-lesional skin are shown as a dotplot with significance

values.

The comparison in spatial microenvironments between healthy and psoriasis non-lesional

skin demonstrated fewer cell microenvironment changes than was observed between

psoriasis lesional and healthy skin, reflecting the clinical manifestations and the cell

distance to DEJ analysis (Figure 34 and Figure 38). Plasma cells in healthy skin form a

homogenous microenvironment, whereas they change their microenvironment in psoriasis
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non-lesional skin to co-locate with lymphoid cells, several subtypes of antigen presenting
cells (DC1, DC2, migratory DC, monocyte derived DC 2 and 2, and Langerhans cell 1) and
fibroblast 3 cells (Figure 38). The DEJ analysis showed that plasma cells were enriched in
the deep dermis in healthy skin, in the deep and superficial dermis in psoriasis non-lesional
skin, and in the superficial dermis and epidermis in psoriasis lesional skin (Figure 33),
however, statistical significance of these cell location differences was only observed in the
comparison between psoriasis non-lesional and healthy skin (Figure 34). Psoriasis is
classically considered to be a T cell mediated inflammatory skin disease, however, there
has been recent literature providing support for the role of B cells in psoriasis pathogenesis.
A recently published scRNA-seq study of peripheral blood mononuclear cells (PBMCs)
from healthy donors and patients with psoriasis revealed increased levels of plasma cells
in psoriasis that express immunoglobulin (1g) A or IgG (Liu et al., 2023), and a previous
report documented an increase in CD19" B cell subsets in skin lesions and the peripheral
blood of patients with psoriasis that correlates with disease severity (Lu et al., 2016). These
reports and the findings from this study suggest a potential role for B cell activation in

psoriasis pathogenesis.

As was observed in the comparison of microenvironments between psoriasis lesional and
healthy skin, Langerhans cell 1 and monocyte derived DC 2 in healthy skin are shown to
change their microenvironment to co-locate with other lymphoid cells in psoriasis non-
lesional skin (Figure 37 and Figure 38). This lends support to the migration of antigen
presenting cells toward lymphoid cells in the superficial dermis early in the pathogenesis

of psoriasis, prior to clinical skin changes being apparent.
Spatial microenvironments between psoriasis lesional and psoriasis non-lesional skin were

also compared in order to determine the microanatomical cellular changes occurring in the

development of an inflamed psoriasis plaque (Figure 39).
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Figure 39: Spatial microenvironments in psoriasis lesional and non-lesional skin. Cell

type to microenvironment assignment is shown by the coloured bars on the x- and y-axes.
The differences in the non-negative matrix factorisation derived consensus matrices
between psoriasis lesional and non-lesional skin are shown as a dotplot with significance

values.

The comparison between psoriasis non-lesional and lesional skin microenvironments
revealed similar changes to those observed between healthy and psoriasis lesional skin.
This includes movement of monocyte derived macrophages in psoriasis non-lesional skin

from a dermal microenvironment consisting of macrophages 1 and 2 to an epidermal
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microenvironment in psoriasis lesional skin consisting of differentiated keratinocytes and
Langerhans cell subtypes 2 and 3 (Figure 39). Furthermore, ILC1/3 and ILC2 were shown
to change their microenvironment to co-locate with lymphoid cells in the superficial dermis
(Figure 33 and Figure 39). This analysis highlights common cellular microenvironmental
changes implicated in the development of psoriasis lesions when compared to both healthy

and psoriasis non-lesional skin.
The spatial cell microenvironments in eczema skin were examined next, and differences

between healthy and eczema lesional skin (Figure 40), healthy and eczema non-lesional

skin (Figure 41) and lesional and non-lesional eczema skin (Figure 42) were examined.
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Figure 40: Spatial microenvironments in healthy and eczema lesional skin. Cell type to
microenvironment assignment is shown by the coloured bars on the x- and y-axes. The
differences in the non-negative matrix factorisation derived consensus matrices between

healthy and eczema lesional skin are shown as a dotplot with significance values.

The spatial microenvironment analyses between eczema lesional and healthy skin revealed
that the most significant changes in cellular localisation involved the movement of several
antigen presenting cell subsets in healthy skin, including ILC1/3, ILC2, Langerhans cell 1,
macrophage 2 and monocyte derived DC 2, into a microenvironment in eczema lesional
skin composed predominantly of lymphoid cells (Figure 40). It is interesting to note that,
despite these significant findings in the spatial microenvironment analysis, ILC1/3, ILC2
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and macrophage 2 cell states did not show a significantly differential enrichment in the cell
distance from the DEJ analysis between eczema lesional skin compared to healthy skin
(Figure 36), demonstrating that each analysis uncovers different types of insights. The cell
distance from the DEJ analysis examines the localisation of cell states broadly across the
tissue sections from superficial to deep, whereas the spatial micromovement analysis
provides information on how individual cells change their colocalisation patterns, even if
they remain within the same broad tissue depth level, as in the case of the ILCs and
macrophage 2 cells.

There have relatively few studies carried out on the contribution of ILCs to human eczema
pathogenesis. Though no significant difference in the abundance of ILCs was observed
between eczema and healthy skin in the ScRNA-seq data used for the spatial deconvolution
analysis (Reynolds et al., 2021), previous studies using flow cytometry have shown an
increase in the numbers of ILC2s in lesional eczema skin biopsies that produce type 2
cytokines including IL5 and IL13 (Salimi et al., 2013; Alkon et al., 2022). The localisation
of ILCs in eczema skin and their relationship to other cell states is also poorly understood.
Immunolabelling techniques have been used to detect ILC subsets within the skin of
eczema lesions (Kim et al., 2014a; Bruggen et al., 2016), with a recent study showing the
highest enrichment of ILCs in the upper dermis of eczema skin compared to healthy skin
(Alkonetal., 2022). However, only by generating transcriptomic data across tissue sections
and mapping diverse cell states within the skin can we identify cellular microenvironments
between conditions, rather than being limited by the cells and markers that are selected for
cell detection with immunolabelling approaches. The findings from the spatial
microenvironment highlights that interactions between ILCs and other lymphoid cells in

eczema lesional skin are significant and requires further study.

Identification of a significant change in cellular microenvironments between healthy and
eczema lesional skin for macrophage 2 cells is of interest in the context of the previous
findings from the scRNA-seq analyses of this reference dataset (Reynolds et al., 2021).
Macrophage 2 cells were observed to be significantly expanded in eczema lesional and
non-lesional skin and psoriasis lesional skin compared to healthy, which was corroborated
in the analysis of a bulk RNA sequencing dataset from a larger patient cohort (Reynolds et
al., 2021). Macrophage 2 cells highly express CXCL8, which encodes IL8 and promotes
lymphocyte recruitment (Nedoszytko et al., 2014), which supports the spatial
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microenvironment analysis showing that macrophage 2 in healthy skin co-locates with
fibroblast 1, monocyte derived macrophages, macrophage 1, monocyte derived DC 2 and
mast cells, whereas macrophage 2 in eczema lesional skin shared a microenvironment with
all of the mapped lymphoid cells in the dataset (Figure 40). Macrophage 2 was shown to
interact with vascular endothelial cell subtype 3 via CXCL8 and ACKR1 respectively to
promote angiogenesis, which also supports the findings in the cell distance from the DEJ
analysis in eczema lesional skin compared to healthy skin discussed above (Figure 36).
Interestingly, this interaction was also observed between equivalent cell states in first
trimester prenatal skin, suggesting that this cell signalling program is leveraged in both
development and disease for lymphocyte recruitment and angiogenesis (Reynolds et al.,
2021).

The spatial microenvironment analysis also showed that plasma cells form their own
microenvironment in healthy skin, whereas they co-locate with lymphoid cells in eczema
lesional skin (Figure 40). In support of this, the DEJ analysis showed plasma cells to be
most enriched in the deep dermis in healthy skin, whereas they were most enriched within
the superficial dermis in eczema lesional skin, at the same depth as other lymphoid cells
(Figure 36). Plasma cells are not known to be a predominant feature of eczematous
inflammation, and infiltration of plasma cells on histological analysis may indicate an
alternative differential diagnosis (Walsh et al., 2019). However, very few plasma cells were
captured from the healthy and eczema skin biopsies (Reynolds et al., 2021) and the cell
distance from the DEJ analysis is normalised and therefore masks absolute cell numbers.
Plasma cells are known to constitutively reside in healthy skin and have an important role
in supporting homeostatic skin barrier integrity by providing adaptive IgM in response to
the cutaneous environment (Wilson et al., 2019). Plasma cells have also been shown to
accumulate in inflamed skin (Wilson et al., 2019), including in the context of eczema
(Cipriani et al., 2014), though very little has been reported on their putative role in
eczematous skin inflammation. The findings from the spatial microenvironment analysis
suggest that plasma cells co-locate with other inflammatory cells in eczema lesional skin
and therefore any potential intercellular interactions present that drive or dampen

eczematous inflammation require further investigation.

Spatial microenvironments between eczema non-lesional skin and healthy skin were

compared next in order to ascertain the differences in cells that form microenvironments
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between clinically unaffected skin in patients with eczema and skin from healthy donors

(Figure 41).
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Figure 41: Spatial microenvironments in healthy and eczema non-lesional skin. Cell type
to microenvironment assignment is shown by the coloured bars on the x- and y-axes. The
differences in the non-negative matrix factorisation derived consensus matrices between

healthy and eczema non-lesional skin are shown as a dotplot with significance values.
The comparison in spatial microenvironments between healthy and eczema non-lesional

skin demonstrated that ILC1/3, ILC2 and plasma cells change their microenvironment from
healthy skin to co-locate with other lymphoid cells, monocyte derived DCs and fibroblast
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subtype 3 (Figure 41). The migration of ILCs to a microenvironment comprising of other
lymphoid cells reflects the observations made between healthy and eczema lesional skin
(Figure 40). Whether ILCs identified in eczema skin samples initiate inflammatory
processes or are present as a consequence of inflammation is contentious (Alkon et al.,
2022). Observing microanatomical changes in ILCs between healthy and clinically
unaffected non-lesional eczema skin samples may suggest that ILCs may be contributing

to a process of subclinical inflammation prior to the development of eczema lesions.
Spatial microenvironments between eczema lesional and eczema non-lesional skin were

also compared in order to determine the microanatomical cellular changes occurring in the

development of inflamed lesions in patients with eczema (Figure 42).

106



Pericyte_2 —
F3 -

F1

Pericyte_1
VE2

LE2
Mono_mac
DC1

DC2

ILC1_3
ILC1_NK

ILC2

MigDC

NK

Plasma

Tc

Tc17_Th17
Tec_IL13_IL22
Th

Treg

moDC_2
moDC_3
Macro_2

LC_1
Melanocyte
Differentiated_KC*
moDC_1
Undifferentiated_KC
Inf_mac

LC_3

LC_4
Proliferating_KC
LE1
Schwann_1
VE1

VE3
Disease_KC -
Differentiated_KC
LC_2
Schwann_2

s

Macro_1
Mast_cell

Eczema lesional
Eczema non-lesional

Eczema lesional vs Eczema non-lesional

[ X J 00 ® 093
0002000000000 00000 :0'49
® [ B 2 _0.05
® @ 0.39
L X 2 ® 00 ® 0583
( Z KX J ® ®
® { R J
® { R
® { B~
® { R~
®
® { X 2
® { B 2
{ X
[ { B
[ { B
[ oo
[ { B
® oo
L J
0000000000000 0 ® @
000 0000000000000
® (
® (
® [ 1]
® ]
. Eczema non-lesional
Eczema lesional
| I N I D N O O O B I
NOD -~ AN O AOYNOY TONNEDNMAN~ O~ OMFTO— =000 NNN~—=
LW @ | FeQFES 11 11507188 1 Ul ww |18
gt Y EERBRSF882 T EaN EQ0 dU BRI EJONH EEE oM Y
= = | O~-=2 s FT aac-9 v 2do § o025 Cx%
ko) ke o 20 =2 @ Jo 008 E£TVol®E £ g a0 £ 3§
5 5 5 = =5 EEZS ZL£EZ- 3 S =
& & g = G2 ssF< E§ £ 8F £ ==
I—u\ EE, & g %) ES_’ )
= [ S 5
2 ES a S
a c o
S

Figure 42: Spatial microenvironments in eczema lesional and non-lesional skin. Cell type

to microenvironment assignment is shown by the coloured bars on the x- and y-axes. The

differences in the non-negative matrix factorisation derived consensus matrices between

eczema lesional and non-lesional skin are shown as a dotplot with significance values.

The comparison in cellular microenvironments between eczema lesional and eczema non-

lesional skin showed that Langerhans cell

1 and macrophage 2 change their

microenvironment to co-locate with lymphoid cell states and some antigen presenting cells

(including DCs and ILCs) in eczema lesional skin, from microenvironments in non-lesional

skin that comprised predominantly of other Langerhans cell and macrophage cell subsets
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(Figure 42). Of the six cell states that changed their microenvironment between healthy and
eczema lesional skin described previously (ILC1/3, ILC2, plasma cells, monocyte derived
DC 2, Langerhans cell 1 and macrophage 2) (Figure 40), it is interesting to note that the
ILCs, plasma cells and monocyte derived DC2 cells migrated to co-locate with lymphoid
cells from healthy to eczema non-lesional skin (Figure 41) and Langerhans cell 1 and
macrophage 2 were observed to change between eczema non-lesional and lesional skin
(Figure 42), indicating an element of chronicity to the initial changes observed between
eczema lesional skin and healthy. The findings across the different comparisons suggest
that ILCs, plasma cells and monocyte derived DC2 cells migrate to co-locate with other
lymphoid cells early in eczema pathogenesis prior to clinical manifestations becoming
apparent, and that Langerhans cell 1 and macrophage 2 migration toward lymphoid cells

occurs later when eczema lesions have developed.

As discussed in the previous section on the cell distance from the DEJ analyses, Langerhans
cells in eczema have been reported to have a role in antigen capture, migration to skin
draining lymph nodes and interacting with T cells for antigen presentation (Dubrac,
Schmuth and Ebner, 2010), therefore explaining why Langerhans cells and lymphoid cells
are observed within the same microenvironment in eczema lesional skin (Figure 42).
Furthermore, macrophage 2 express chemokines that facilitate lymphocyte recruitment to
the inflamed skin tissue (Reynolds et al., 2021). A significant intercellular interaction
between macrophage 2 and vascular endothelial cell 3 was predicted in the SCRNA-seq
analyses of the reference dataset, which was confirmed by immunohistochemical analysis
of eczema skin samples (Reynolds et al., 2021). However, the results of the spatial
deconvolution analysis showed that macrophage 2 are located in the same
microenvironment as lymphoid cells and other antigen presenting cells and that vascular
endothelial cell 3 is identified in a separate microenvironment with other endothelial cells
(Figure 42), which may suggest that the inflammatory cell aggregates are more abundant
and significant across the tissue sections compared with the number of macrophages co-

locating with the vascular endothelium.
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3.3. Discussion

In this Chapter, the generation of a spatial transcriptomic atlas of human healthy adult skin
and diseased skin from patients with psoriasis and eczema is presented. Psoriasis and
eczema samples were collected from inflamed lesional sites and clinically uninvolved non-
lesional sites in order to reveal the cellular microanatomical changes occurring between
these different conditions. This study extends from a previous project conducted with our
research group that has recently been published, using scRNA-seq to profile around
500,000 cells from healthy skin, lesional and non-lesional psoriasis, and lesional and non-
lesional eczema, in order to develop a further understanding of the cellular and molecular
mediators underlying these diseases (Reynolds et al., 2021). However, this published
dataset was generated from single cell suspensions from dissociated tissue, therefore losing
valuable information about spatial expression within a microenvironmental context. This
spatial transcriptomic dataset therefore provides complementary insights to the suspension
dataset, especially because patients were recruited with the same inclusion and exclusion
criteria, allowing robust integration of both datasets for spatial cell deconvolution analyses
to determine the location of refined skin cell states that are expected within the tissue
samples.

The analyses of the spatial transcriptomic data revealed several insights into the
microanatomical changes occurring between healthy, psoriasis and eczema skin, and across
lesional and non-lesional disease samples. Some findings were expected based on our
understanding of the well-documented histological changes observed in each condition (De
Rosa and Mignogna, 2007; Murphy, Kerr and Grant-Kels, 2007; Eckert, 1991). Previous
in situ hybridisation and immunolabelling studies also provide context to the findings from
the spatial transcriptomic data analysis (Alkon et al., 2022; Sankar et al., 2017), however,
these approaches involve the detection of a limited number of molecules or cell types of
interest based on markers they express, whereas using spatial transcriptomic technology
has allowed unbiased transcriptome data generation and mapping of all cell states
simultaneously from a reference suspension dataset. This spatial genomic approach has
therefore allowed more extensive and systematic interpretation of the microanatomical

cellular changes underpinning psoriasis and eczema pathogenesis and has allowed
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quantitative comparisons to be made between healthy and disease states and between

lesional and non-lesional disease samples.

The analysis of the spatial transcriptomic data from psoriasis lesional samples and
comparisons with healthy and non-lesional psoriasis samples revealed microanatomical
changes affecting various different cell lineages. The cell distance outputs from the DEJ
analysis showed some findings that were expected based on our understanding of the
histopathological changes in psoriasis lesional skin, including the expansion of disease
keratinocytes secondary to hyperkeratosis, enrichment of vascular endothelial cells in the
superficial skin regions reflecting vascular expansion in the papillary dermis with thinning
of the suprapapillary epithelium, and enrichment of lymphoid cells in the superficial dermis
reflecting the superficial dermal lymphocytic infiltrates observed histologically
(Heidenreich, Rocken and Ghoreschi, 2009; Mihu et al., 2021). However, spatially
mapping multiple refined cell states that have been characterised in terms of their gene
expression profiles (Reynolds et al., 2021) revealed novel insights into how cell subsets are
organised in situ beyond that which has been achieved using histology, in situ hybridisation
and immunolabelling approaches. For example, an enrichment in fibroblast subtypes 1 and
3 in psoriasis lesional skin was observed compared to healthy and psoriasis non-lesional
skin, and these cell states have been shown to highly express IL6, unlike fibroblast subtype
2, which is enriched in the mid-dermis in psoriasis lesional skin. Previous studies have
shown that IL6 stimulates the proliferation of keratinocytes and the recruitment of
neutrophils that can be identified in the stratum corneum of psoriasis plaques, therefore the
localisation of IL6-expressing fibroblast subtypes 1 and 3 close to the epidermis provides
further insights into their role in psoriasis pathogenesis, particularly as most studies focus
on immune cell mediated pathology (Lowes, Bowcock and Krueger, 2007; Grossman et
al., 1989). Comparative analysis of tissue cellular microenvironments across conditions
also revealed novel insights that have not been possible using previous technologies, owing
to the ability to simultaneously and systematically explore the microanatomical location of
a large number of cell types profiled by scRNA-seq using spatial cell deconvolution. These
analyses revealed that monocyte derived macrophages change their cellular
microenvironment in the dermis of healthy skin to co-locate with Langerhans cell subtypes
2 and 3 in the epidermis of psoriasis lesional skin, and that Langerhans cell subtype 1
migrate from the epidermis to the dermis to co-locate with groups of lymphoid cells.

Previous literature on the localisation of Langerhans cells in psoriasis has been contentious
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(Eaton et al., 2014; Glitzner et al., 2014; Fujita et al., 2011), which may in part be
attributable to underpowering of these studies. A previous confocal microscopic analysis
of psoriasis lesional skin, however, has shown the formation of dermal Langerhans cell
aggregates with T cells close to lymphatic vessels (Martini et al., 2017), which supports the
spatial genomic findings presented here. However, previous studies have not robustly
explored the role of different Langerhans cell subsets in psoriasis and how each
transcriptomically distinct cell state is interacting with other co-locating cell types, which
would further our understanding of the complex cellular crosstalk underpinning this disease

and potentially reveal novel therapeutic targets.

The spatial analyses of psoriasis non-lesional skin samples demonstrated modest cellular
microanatomical changes overall, which is in keeping with the clinical and histological
features of this condition. Interestingly, however, the cell distance from the DEJ analysis
revealed that vascular endothelial cell subtypes 2 and 3 were enriched in the superficial
dermis of psoriasis non-lesional skin compared to healthy skin, and of the three vascular
endothelial subsets, subtypes 2 and 3 highly express ACKR1 compared to subtype 1, which
in turn was not significantly enriched in psoriasis non-lesional skin. Single cell analyses
have shown that ACKR1 on vascular endothelial cells mediate disease-associated signalling
with macrophages to promote angiogenesis and lymphocyte recruitment, and that although
this intercellular interaction is not identified in healthy skin, it is present in prenatal skin
with a potential contributory role during skin morphogenesis (Reynolds et al., 2021). The
enrichment of ACKR1-expressing vascular endothelial cells 2 and 3 in the superficial
dermis of psoriasis non-lesional skin therefore provides new insights into the early changes
that mediate immune cell recruitment in psoriasis, prior to clinical signs becoming

apparent.

The analysis of the spatial transcriptomic data generated from eczema lesional and non-
lesional samples also revealed several insights in the microanatomical organisation of cell
states between conditions. Findings from the cell distance from the DEJ analysis
highlighted changes that were expected based on the histological features of eczema
lesional skin, including an enrichment of lymphoid and some antigen presenting cells in
the superficial dermis compared to healthy and non-lesional eczema skin, reflecting the
dermal inflammatory cell infiltrate observed histologically (Bieber, 2010; Eckert, 1991).
However, this systematic analysis of cell states that have been characterised using single
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cell transcriptomic profiling has provided further insights into the cell subsets that are
enriched across different skin regions, showing that DC1, DC2 and migratory DCs
specifically are enriched in the superficial dermis of eczema lesional skin compared to
healthy and non-lesional skin, in addition to most mapped lymphoid subsets. Furthermore,
ACKR1-expressing vascular endothelial cell subtypes 2 and 3 were found to be enriched
across the superficial and mid-dermis of eczema lesional skin compared to healthy and non-
lesional skin, whereas subtype 1 was not significantly enriched in eczema lesional skin.
This provides spatial context to the scRNA-seq findings showing the role of ACKR1
mediating lymphocyte recruitment and angiogenesis in inflammatory skin disease via

interactions with macrophages (Reynolds et al., 2021).

The tissue cellular microenvironment analyses comparing healthy, eczema non-lesional
and eczema lesional skin revealed the migration of several immune cell states to a
microenvironment in eczema that predominantly contains lymphoid cells, including NK
cells, cytotoxic and helper T cells and Tregs. Several cell states change their
microenvironment to co-locate with lymphoid cells in eczema non-lesional skin, including
ILC1/3, ILC2, monocyte derived DC 2 and plasma cells, and when comparing eczema non-
lesional with lesional skin, Langerhans cell 1 and macrophage 2 change their
microenvironment to co-locate with lymphoid cells in eczema lesional skin. These separate
findings are then reflected in the comparison between eczema lesional and healthy skin,
where all six cell states (ILC1/3, ILC2, monocyte derived DC 2, plasma cells, Langerhans
cell 1 and macrophage 2) move to the lymphoid microenvironment in eczema lesional skin.
Interestingly, scRNA-seq analysis of the reference dataset did not show a differential
abundance in ILCs between healthy and eczema skin (Reynolds et al., 2021), demonstrating
the additional insights into ILC biology during disease using spatial methods. Macrophage
2, however, was shown by scRNA-seq to be more abundant in both eczema lesional and
non-lesional skin compared to healthy skin (Reynolds et al., 2021), though the spatial
analysis only showed a significant change in the cellular microenvironment of macrophage
2 in lesional skin rather than non-lesional eczema skin. CXCL8 on macrophage 2 was
shown by cell-cell interaction analysis to interact with ACKR1 on vascular endothelial cells
to mediate angiogenesis and lymphocyte recruitment in disease (Reynolds et al., 2021), and
though these two cell states were not identified in the same microenvironment, the spatial

genomic analyses provide an overall representation of the most significant
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microenvironments across mapped cell states between conditions, highlighting intercellular

interactions to be explored in future studies on disease pathogenesis.

Prior to generating the spatial transcriptomic data for this project, | carried out various
optimisation experiments in order to help ensure that the imaging and sequencing data
obtained was of high quality. The research group that | was working in had not previously
generated Visium data prior to the commencement of my project, and therefore, 1 was
involved in optimising cryosectioning conditions and adapting the available imaging
software tools to capture data from Visium slides. | also carried out an optimisation
experiment using adult healthy facial skin to determine the ideal skin tissue digestion, as
described in section 3.2.2. The data and guidance from 10x Genomics at the time indicated
that tissue optimisation is required for each tissue type of interest, and that carrying out
further tissue optimisation experiments to account for donor variables was not required.
However, recent experience in our research group has been that the optimal
permeabilisation time for skin can vary depending on the age of tissue donors, the
anatomical site from which skin was sampled or whether the skin was affected by disease,
which reflects the differences in skin structure and cellular organisation with age, site and
disease. By using the same permeabilisation time of 14 minutes across all of the tissue
sections included in this study, some tissue regions may have been either under- or over-
digested, resulting in either insufficient RNA release from the tissue or RNA degradation,
respectively. Despite this, the quality of the data obtained for this project is comparable to
published spatial transcriptomic datasets (Ji et al., 2019; Castillo et al., 2023) and allowed
robust analyses to be carried out after merging Visium spots with low UMI counts that

were predominantly in the cell sparse dermal regions.

The Visium spatial gene expression platform was only launched in 2019 and computational
approaches to analyse spatial transcriptomic data have been under ongoing development,
with Cell2location for spatial cell type deconvolution analysis only being published last
year (Kleshchevnikov et al., 2022). Other cellular deconvolution approaches have also been
developed for spatial transcriptomic data, which were compared in a benchmarking report
published earlier this year, showing that Cell2location was amongst the three best
performing methods (Li et al., 2023a). There has been wide variation in the approaches that

different research groups have taken to analyse Visium spatial transcriptomic data, with a
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common method being to manage the data like single cell data and perform unsupervised
clustering of the Visium spots, annotate the clusters and determine differences in gene
expression and mapped cell states between clustered tissue regions (Castillo et al., 2023;
Long et al., 2023; Ji et al., 2019). However, a major limitation of this method is that the
clustering algorithm is not able to delineate biologically meaningful tissue regions and is
confounded by the effects of RNA leakage during the Visium experiment. In this case,
clusters cross important tissue compartment borders and are often simply annotated
numerically with little biological relevance. To overcome this, | worked with Pasha Mazin,
a computational biologist at the Wellcome Sanger Institute who led the downstream
advanced spatial analysis and to whom | am grateful for his expertise and input, to develop
novel computational methods to analyse the skin spatial transcriptomic data. First, |
annotated each tissue section to demarcate the following regions: epidermis, dermis,
pilosebaceous unit, adipose tissue and regions not containing tissue but that still contained
gene expression data secondary to RNA leakage. The adipose and non-tissue regions were
excluded from downstream analyses and the epidermal and dermal annotations were used
to determine the position of the DEJ, which was then used to determine the location and

tissue depth of mapped cell states and allow quantitative comparisons to be made.

For this study, we developed a novel method to address Visium spots which contained low
UMI counts, which primarily affected the skin dermis due to the relatively low number of
cells present compared to cell dense epidermal and hair follicle regions. Visium spots were
merged to form meta-spots based on specified thresholds detailed in the Methods, therefore
allowing more robust cell type deconvolution analyses to be performed within these
regions. However, a limitation of this approach of merging 50um spots into meta-spots is
that the area of tissue onto which cells are mapped in the deconvolution increases
depending on the number of spots that require merging, therefore lowering the resolution
of cell mapping. Other spatial transcriptomic technologies have recently been under
development to profile tissue sections at higher resolutions, such as Slide-seq (10um)
(Rodriques et al., 2019), Seq-scope (1um) (Cho et al., 2021a), and Visium HD, which can
recover transcript-coupled spatial barcodes at 2um resolution (Vickovic et al., 2019) and is

due to be commercially available by 10x Genomics over the coming year.
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The spatial microenvironment analysis also required a novel computational approach to be
developed. Non-negative matrix factorisation has been previously used to determine
cellular microenvironments across tissue sections (Suo et al., 2022), however, this approach
involves analysing and interpreting individual samples separately in order to assess the cell
states that map to distinct spatial microenvironments. An aim of this project was to compare
spatial cellular microenvironments between health and disease and across lesional and non-
lesional disease states. Therefore, a computational method was developed that compared
spatial microenvironments between two samples by subsampling the data and performing
the non-negative matrix factorisation analysis in multiple iterations in order to account for
biological variability of the data and allow comparisons to be made, details of which are
described in the Methods. In the near future, we plan to compile the methods to analyse
spatial transcriptomic data developed during the course of this project into a computational
package for use by the wider research community and hope to publish and disseminate the
computational approaches taken and the application of these methods to help reveal

biological insights into healthy, psoriasis and eczema skin.

Future work is also required to systematically investigate the interactions between co-
locating cell states within spatial microenvironments in each condition in order to further
our understanding of disease pathogenesis and identify potentially novel therapeutic
targets. Spatial genomic technologies may also facilitate the stratification of patients based
on the distinct cellular and molecular profiles expressed in sampled disease tissue, allowing

a personalised medical treatment approach to be explored with patients in the future.
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Chapter 4: A comprehensive single-cell and spatial atlas of
prenatal skin reveals distinct cellular microenvironments that

support development

4.1. Introduction

The spatial transcriptomic analyses of healthy and diseased skin presented in the previous
Chapter revealed cellular microenvironments that underly different skin conditions. These
findings raised the hypothesis that distinct functional microenvironments may be present
within prenatal skin during development to support skin and appendageal morphogenesis,
which was therefore investigated using single cell and spatial genomics technologies.

Skin morphogenesis is a dynamic process that begins early in gestation and involves
epidermal specification and stratification, development of the dermis and formation of the
skin appendages (Hu et al., 2018). Developmental processes are mediated by intercellular
interactions between distinct prenatal skin cell states, however, this has historically been
difficult to study due to the scarcity of human prenatal skin samples (Haniffa et al., 2021).
Furthermore, prenatal skin tissue comprises of small numbers of different cell types that
are difficult to detect and investigate using conventional experimental techniques. High-
throughput scRNA-seq technology allows unbiased detailed cellular characterisation of
individual cell states, including rare cell populations, using a small about of biological
material (Kolodziejczyk et al., 2015; Papalexi and Satija, 2018). This technology has been
successfully used to study various prenatal tissue organs at a single cell resolution to yield
novel biological insights about prenatal development, including the liver, thymus, bone
marrow and spleen (Suo et al., 2022; Jardine et al., 2021; Popescu et al., 2019; Park et al.,
2020). However, a systematic characterisation of the cellular composition of prenatal skin
across the first and second trimester of gestation has yet to be carried out.

Although there have been informative single cell reports profiling skin and hair follicle

development in murine models (Mok et al., 2019; Gupta et al., 2019), studies on human
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prenatal skin to date have been limited. A recently published scRNA-seq study profiled
human prenatal skin between 8 — 15 PCW, however only CD45" immune cells were
isolated and non-immune cells were not captured (Xu et al., 2021). They characterised 13
different immune cell types, including myeloid and lymphoid precursors, monocytes,
macrophages, DCs, NK cells, ILCs, T cells, B cells and mast cells (Xu et al., 2021). Their
analysis showed that as skin morphology changed during this period of development, so
too did the transcriptomic profile of several immune subsets, including macrophages and
ILCs. This indicated evolving functional roles of immune cells during prenatal skin
development, with genes related to cell proliferation in macrophages more highly expressed
earlier in gestation and genes related to focal adhesion and extracellular matrix (ECM)
formation enriched later in gestation (Xu et al., 2021), suggesting a role for immune cells
supporting skin morphogenesis. A further scRNA-seq study profiled tissue resident
macrophages (TRMs) in embryonic skin less than 9 PCW, identifying diverse subsets
within prenatal skin (Bian et al., 2020). Both of these prenatal skin sScRNA-seq studies,
however, did not include prenatal skin non-immune cells or any spatial contextualisation
of the data, and therefore, the microanatomical organisation of cells in situ could not be

addressed.

In this Chapter, | describe a single-cell RNA sequencing study of human prenatal skin
across the first and second trimester of gestation, where samples were obtained between 7
and 16 PCW. During this time of time in prenatal development, the architecture of human
skin matures, the epidermis stratifies to become a complex multi-layered structure and hair
follicles first develop (Whitting et al., 2008). Prenatal cell states are annotated at broad and
refined levels to provide a comprehensive overview of the cellular composition of prenatal

skin during this developmental period.

The prenatal skin data is also contextualised with sScRNA-seq data from an embryonic stem
cell (ESC) / induced pluripotent stem cell (iPSC)-derived hair-bearing skin organoid model
(Lee et al., 2020) to determine whether the skin organoid recapitulates physiological
differentiation during prenatal development at a molecular level across different cell
lineages. The comparison between prenatal skin and a skin organoid model allows the
potential utility of skin organoids for functional experimentation, including disease

modelling, to be evaluated, which will be discussed in Chapter 5.
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Prenatal single cell data is then contextualised with spatial transcriptomic data of skin
regions within human embryonic limb (Zhang et al., 2022) to reveal the microanatomical
skin cellular niches present in prenatal skin. The cell states interacting within cellular
microanatomical niches, and their functional roles, are then explored to demonstrate how

they may be supporting prenatal skin morphogenesis.

This study is the first to provide a comprehensive single cell characterisation of immune
and non-immune cells in human prenatal skin across the first and second trimester of
gestation. Furthermore, by contextualising the analysis with spatial transcriptomic data, this
study represents the first combined single cell and spatial atlas of prenatal skin during

development.
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4.2. Results

4.2.1. Prenatal skin sample acquisition

Fifteen prenatal skin samples that were aged between 7 and 16 PCW, spanning the first and
second trimester, were obtained from HDBR. Prenatal tissue samples underwent
mechanical disruption and enzymatic digestion to yield single cell suspensions. Droplet-
based scRNA-seq methods were employed via the 10x Genomics platform to generate

single cell transcriptomic sequencing data, as described in section 2.1.2.2.

The following figure illustrates the ages of the prenatal skin samples used in this study,

with representation across almost every week during this period of gestation:
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Figure 43: Sample overview. Schematic of prenatal skin SCRNA-seq, embryonic limb
Visium and skin organoid scRNA-seq data used in this study and the sample ages (in

PCW) or days in culture for the respective datasets. Image created with BioRender.com.

The embryonic limb tissues from which spatial transcriptomic data was generated and
published (Zhang et al., 2022) included samples ranging from 7 to 10 PCW, with every

week during this period represented in the data, as seen in Figure 43 above.

The scRNA-seq data from the ESC/iPSC-derived hair-bearing skin organoid model (Lee et
al., 2020) represented multiple time periods of culture between 13 days (~2 weeks) and 133
days (19 weeks or 4-5 months). The data time points are shown in Figure 43 above using a

separate scale bar to that of the prenatal sScRNA-seq and spatial samples.
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4.2.2. Prenatal skin sample processing

After obtaining and digesting the prenatal skin samples into single cell suspensions, cells
were FACS-isolated prior to single cell RNA sequencing. The sorting strategy involved
removing cellular debris, dead cells and doublets to obtain live, single prenatal skin cells
(Figure 44). The cells were then sorted to isolate CD45 positive and negative fractions

(Figure 44), before proceeding with the SCRNA-seq experiment.
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Figure 44: Sorting strategy. Live, single prenatal skin cells were isolated and sorted by
CD45+ and CD45- fractions. Representative of n=15, data is shown as mean percentage

+/- SD values.

4.2.3. Computational analysis and quality control

The prenatal SCRNA-seq data was aligned with CellRanger software (10x Genomics) to a
reference human genome (see Methods section 2.5.2.1 for details). Counts matrices were
generated that comprised of cells (columns) and genes (rows) for each sample, which were
combined (concatenated) to build a single large matrix, prior to pre-processing the data,

including quality control (QC).
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The total prenatal skin data object comprised of 235,201 cells. The data was then examined
to remove poor quality cells using several pre-processing and QC steps, in order to account
for any technical noise that may obscure biological signals in the data. The data pre-
processing steps were carried out in Scanpy (Wolf, Angerer and Theis, 2018) and included
the detection and removal of potential doublets, due to the possibility of more than one cell
being trapped in a droplet during encapsulation (see Methods section 2.1.2.2.3.1. This was
carried out using the Scrublet (Single-cell removal of doublets) package (Wolock, Lopez
and Klein, 2019).

Low quality cells were then filtered out by removing cells that contained fewer than 100
genes and greater than 45,000 UMIs. Furthermore, the mitochondrial UMI fraction was
assessed for each cell; if this value is too high, it may represent cellular damage secondary
to membrane perforation, cytoplasmic RNA leakage and a large proportion of retained
mitochondrial RNA in the cell (Lun, McCarthy and Marioni, 2016). Therefore, cells with
a maximum mitochondrial UMI fraction equal to 15% were also filtered out.

Possible maternal contamination was identified using the Souporcell pipeline (Heaton et
al., 2020), which is a computational method that clusters cells by genotype using genetic
variants identified within the SCcRNA-seq reads. This resulted in the removal of 49 cells at
this stage of the quality control process.

After pooling the data from all the samples, a further quality control step was carried out,
whereby genes detected in fewer than 3 cells were removed. The data was then normalised
to 10,000 UMI per cell in order to account for the differences in sequencing coverage
between cells. Log transformation was subsequently carried out so that differences gene

expression is analysed on a relative, rather than an absolute, scale (Lun, 2018).

The quality control metrics for each prenatal skin sample are shown below (Figure 45).
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Figure 45: Computational quality control (QC). Violin plots to show the QC metrics
across the prenatal skin SCRNA-seq data, including the frequency distribution of UMI
counts (log-transformed) and percentage of UMI counts in mitochondrial genes per

sample fraction (CD45+/-).

Following pre-processing, quality control and doublet removal, 186,582 cells were taken

forward for downstream analysis.

The discovery of highly variable genes based on normalised dispersion was then carried
out in order to identify the genes that contribute most to cell-to-cell variation within
homogenous cell groupings. Next, dimensionality reduction was carried out using by
Principal Component Analysis (PCA) to transform the sequencing output into graphs that
can be interpreted more easily to gain biological insights into the data. The first 50 principal

components (PCs) were used to compute nearest-neighbour graph.

A batch correction approach was then taken to account for any possible technical variation
in the scRNA-seq data. The batch balanced K-nearest neighbours (BBKNN) (Polanski et
al., 2020) algorithm and the Harmony tool (Korsunsky et al., 2019) was used to generate
batch-corrected nearest-neighbour graphs, with each donor considered a separate batch.
Full details on the computational approaches used for the prenatal SSRNA-seq dataset are
found in Methods section 2.5.2.1.
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4.2.4. Broad prenatal cell annotations

The next step in the analysis was to use the Leiden algorithm to cluster cells and reveal
transcriptionally similar groupings based on the batch-corrected graph. A relatively low

resolution of 0.3 was used to cluster the cells into broad groupings.

Once the Leiden clusters were derived, the gene expression pattern in each cluster was
assessed, allowing the cell clusters to be manually annotated into broad lineages based on
known marker genes. From the 186,582 prenatal skin cells that passed QC, clustering and
gene expression analysis resulted in 25 broad cell groupings, which are shown in the

following Uniform Manifold Approximation and Projection (UMAP) embedding:
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Figure 46: Prenatal broad cell clusters. UMAP visualisation of the prenatal SCRNA-seq
dataset (7-16 PCW, n = 15, k = 186,582) coloured by broad annotations of cell states.
ILC = innate lymphoid cell, Haem = haematopoietic, cDC = classical dendritic cell, pDC

= plasmacytoid dendritic cell.

The prenatal skin single cell dataset across first and second trimester of gestation is
represented by epidermal cells, dermal stromal cells, endothelial cells, immune cells,
neuronal cells, erythroid cells and skeletal muscle cells. These overall cell groupings
comprise of 25 broadly annotated cell states, as shown in Figure 46, and marker genes are

shown in Figure 47.
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Figure 47: Differentially expressed genes (DEGS) of broad cell states. Dotplot showing DEGs in each broad cluster of the prenatal skin SCRNA-

seq dataset. The dot colour represents log-transformed, normalised and variance-scaled mean gene expression for each broad cell annotation

and the dot size represents the percentage of each cell type expressing the marker gene.



The epidermal component of prenatal skin comprises of two main broad groupings of cells:
keratinocytes and melanocytes. The Kkeratinocyte population in prenatal skin is
characterised by high expression of keratin 17 (KRT17) (Figure 47), which is a type |
epithelial keratin that is expressed in the skin and provides mechanical support to
keratinocytes to maintain epidermis integrity via desmosome attachments between cells
(Windoffer et al., 2011; Porter and Lane, 2003). Developmental skin studies using murine
models have identified that expression of Krtl7 first occurs in the single-layered
undifferentiated epithelial cell layer, then in the ensuing days, the Krt17-expressing cells
give rise to the periderm (a transient outer epithelial layer also seen in human development)
and gives rise to placodes (which are precursors to ectoderm-derived appendages, including
hair follicles and glands) (McGowan and Coulombe, 1998). This supports the key role of
KRT17 in developing skin keratinocytes, as supported by the high expression in the prenatal
skin sScCRNA-seq data (Figure 47). The prenatal skin keratinocytes also highly express
PERP (p53 apoptosis effector related to PMP22), which is also known to be important in
stratified epithelial integrity and cell-cell adhesion due to its role in promoting intercellular
desmosome assembly (lhrie et al., 2005).

The melanocytes in first and second trimester prenatal skin highly express classical
melanocyte gene markers, including PMEL (Premelanosome protein), TYRP1 (Tyrosinase
related protein 1) and MLANA (Melan-A). PMEL is enriched in melanosomes, which are
melanin-forming organelles found in melanocytes, and MLANA has a vital role in the
stability, trafficking and processing of the protein encoded by PMEL (Bissig, Rochin and
van Niel, 2016). TYRP1 encodes an enzyme expressed by melanocytes that plays an
important role in the melanin biosynthetic pathway (Sturm, Teasdale and Box, 2001);
defects in this gene are known to cause oculocutaneous albinism, which is a rare inherited
disorder characterised by a reduction or a lack of melanin pigment in the skin, hair and eyes

(Sarangarajan and Boissy, 2001).

The dermal stromal component of the prenatal scRNA-seq dataset comprises
predominantly of fibroblasts, which reflects that seen in the skin dermis after birth. Other
cell types observed within the prenatal stroma include the dermal papilla (a component of
the hair follicle), mural cells (which comprise of pericytes and vascular smooth muscle
cells (SMCs) that associate with the endothelial network), myofibroblasts and adipocytes
(Figure 46). The prenatal stromal compartment that spans these 5 broad cell groupings were



also subclustered and annotated at a finer resolution into 12 refined cell groupings,

including 7 subtypes of fibroblasts; this is discussed later in this chapter in section 4.2.6.2.

Within the endothelial cell compartment, vascular endothelial cells and lymphatic
endothelial cells were observed (Figure 46). The endothelial cell compartment was
similarly subclustered to reveal 8 refined cell clusters that are discussed in detail in section
4.2.6.3. Overall, however, the vascular endothelial cells were annotated by their high
expression of PLVAP (Plamsmalemma vehicle-associated protein) and CD34 (Figure 47).
PLVAP is an endothelial cell-specific membrane protein that has a role in the formation of
the diaphragms that bridge endothelial fenestrae, thereby influencing endothelial cell
permeability (Denzer et al., 2023). CD34 is also a known constitutively expressed marker
of vascular endothelial cells that was used whilst broadly annotating the prenatal skin cell

states to help distinguish vascular from lymphatic endothelium.

The immune compartment of the prenatal skin ScRNA-seq dataset comprised of 12 broad
categories of cell states, including myeloid cells (which were annotated at a higher
resolution, as described later in the chapter in section 4.2.6.4 and lymphoid cells (which
were also annotated further, as described in section 4.2.6.5). The gene expression markers
used to identify broad categories of immune cells included CD3E for T cells, CD79A and
CD79B for B cells and CD207 for Langerhans cells (Figure 47) (Valladeau, Dezutter-
Dambuyant and Saeland, 2003; Koyama et al., 1997).

The three remaining broad categories that were annotated in the prenatal skin SCRNA-seq
data were neuronal cells, skeletal muscle cells and erythroid cells (Figure 46). Neuronal
cells were characterised by high expression of TUBB2B, TAGLN3 and ELAVL4 (Figure
47). TUBB2B (Tubulin Beta 2B Class Ilb) has a functional role in axon guidance within
both central and peripheral nervous system axon tracts (Cederquist et al., 2012), and
TAGLNS3 (Transgelin 3) is a neurone-specific microtubule associated protein (Ratié et al.,
2013). ELAVL4 (ELAV RNA binding protein 4) is also a marker of neuronal cells that has
a role in neurone-specific RNA processing contributing to neural progenitor cell
proliferation and neural development (Bronicki and Jasmin, 2013; Beckel-Mitchener et al.,
2002).
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The skeletal muscle cells are characterised by high expression of SGCA (Sarcoglycan
alpha) and MYF5 (Myogenic factor 5) (Figure 47). SGCA expression is known to be
restricted to skeletal muscle cells and encodes a component of the dystrophin-glycoprotein
complex that is essential for muscle fibre stability (Sciandra et al., 2003). Mutations in the
SCGA gene results in limb-girdle muscular dystrophy, which is characterised by
progressive weakness of the muscles (Gonzalez-Quereda et al., 2018). The MYF5 gene also
represents a skeletal muscle cell marker owing to its expression pattern and role in muscle

cell fate commitment and skeletal muscle cell differentiation (Zammit, 2017).

The prenatal erythroid cells showed high expression of HBA2, ALAS2 and AHSP (Figure
47). HBA2 (Haemoglobin subunit alpha 2) forms part of the haemoglobin molecule in
erythroid cells and AHSP (Alpha haemoglobin stabilising protein) is involved in
haemoglobin assembly (Krishna Kumar et al., 2010). ALAS2 (5’-Aminolevulinate Synthase
2) encodes an erythroid specific mitochondrially located enzyme that catalyses the first step

in the haem biosynthetic pathway (Krishna Kumar et al., 2010).

Having broadly annotated the prenatal skin SCcRNA-seq dataset, the cellular composition of
skin during this developmental period across the first and second trimester was defined,

allowing further downstream analysis for biological insight.

4.2.5. Integration with skin organoid and adult skin datasets

With the broad prenatal skin annotations in place, a comparison of the cellular composition
and transcriptional similarity of prenatal skin with the cells that make up the ESC/iPSC-
derived hair-bearing skin organoid model was made (Lee et al., 2020), thereby assessing
how faithful the model is to in vivo skin. This also allows the potential utility that the skin
model has for functional experimentation to be determined, such as disease modelling and
tissue engineering. The prenatal skin and skin organoid was also integrated with an adult
interfollicular skin dataset (Reynolds et al., 2021) in order to contextualise the findings
between each condition and reveal and additional or missing cell clusters, or identify any
transcriptionally distinct clusters. This can provide more biological insight into how skin
changes between prenatal and adult life, and whether the cell states in the skin organoid

model resemble prenatal or adult skin cells.
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Using the same approach that was taken for the prenatal skin data, the skin organoid
ScCRNA-seq data was pre-processed, filtered, clustered and assigned broad cell annotations.
Full details on these analyses are found in the Methods. To integrate the prenatal, organoid
and adult skin cells, batch correction was carried out, treating each dataset as batches and
treating within-dataset batches as covariates. The combined UMAP embedding was then
coloured by dataset, showing the contribution of cells from prenatal skin, organoid and

adult skin to each broad lineage, as shown in Figure 48 below:
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Figure 48: Integration of prenatal (top), organoid (Lee et al., 2020) (middle) and adult
interfollicular skin (Reynolds et al., 2021) (bottom), shown as a UMAP projections
coloured by broad cell groupings.
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The integration between prenatal skin, organoid and adult skin highlighted the differences
in broad cell populations between each dataset (Figure 48). Within the epidermal
compartment, the prenatal skin data had a smaller representation of cell states compared
with the skin organoid and adult skin. Furthermore, the adult skin cell states represented
distinct portions of the epidermal embedding space, highlighting transcriptional differences
between adult and prenatal/organoid epidermal cells.

The converse is seen in the dermal stromal compartment, where prenatal cell states occupy
distinct areas in the combined integrated embedding space, again signifying
transcriptionally distinct prenatal stromal cell populations that are absent in adult, but that
are mostly represented in the skin organoid (Figure 48). This also demonstrates that within
the stromal compartment, the skin organoid cell states are more comparable to prenatal that

to adult skin.

Interestingly, within the endothelial compartment, the skin organoid model showed an
incomplete representation of cell states compared to that seen in prenatal and adult skin,
and within the immune compartment, the organoid model lacked immune cells altogether
(Figure 48). These differences would be important to bear in mind when considering the
use of this skin organoid model to investigate biological questions that relate to endothelial
and immune cell interactions within the skin. As with other compartments, the prenatal and
adult skin cell states within the immune compartment occupy different regions within the

integrated embedding space, suggesting the present of distinct cell states.

Melanocytes are represented across all three datasets, whereas erythroid cells are only
observed within the prenatal skin single cell data. The neuronal cells are only observed in
prenatal skin and skin organoid, and are lacking in the adult skin data (Figure 48), which is
likely to represent the sampling strategy for adult skin where only the most superficial 200
um of skin was processed for sScRNA-seq (Reynolds et al., 2021). Interestingly, the skin
organoid data showed a large representation of neuronal cells in two discrete areas of the
UMAP embedding space, which may reflect the experimental culture conditions promoting
ectodermal differentiation (Lee et al., 2020).
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To assess the transcriptionally distinct cell states in each dataset within the overall lineage
groupings highlighted above, the broad level of annotation carried out for the prenatal
SscRNA-seq data that is shown in Figure 46 was extended to the organoid and adult skin
datasets. This enabled distinct populations between prenatal, organoid and adult datasets to

be assessed within the same UMAP embedding space:
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Figure 49: Annotated integration of prenatal, organoid (Lee et al., 2020) and adult

interfollicular skin (Reynolds et al., 2021).

This analysis using the broad annotations of cell states within each lineage highlighted the
similarities and differences between prenatal skin, organoid and adult skin (Figure 49). For
example, cell types that were identified in prenatal skin that were absent in the skin
organoid and in adult skin included B cells, megakaryocytes and erythroid cells.
Furthermore, most subpopulations of immune cells were observed in both prenatal and
adult skin, and were absent in the organoid model, as discussed above. The same was
observed for lymphatic endothelial cells, which were observed in prenatal and adult skin,
but not in the skin organoid. The dermal papilla cells were identified in the prenatal and

skin organoid datasets, but were absent in adult skin, likely reflecting the depth of sampling,
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as discussed above. By highlighting the presence and absence of discrete cell clusters in
each dataset, the biological differences between skin before birth and in adulthood can be

appreciated, and the cell populations that are absent in the skin organoid model are noted.

Within broad cell groupings that span different datasets, the transcriptional similarity
between the broad cell states across prenatal skin, skin organoid and adult skin was
assessed. This was done by calculating the average distance between cell states in the
integrated and batch corrected latent space, which was represented as a heatmap, as shown

below in Figure 50.

Overall, this revealed a strong transcriptional correlation of most broad cell states between
in vivo prenatal, skin organoid and adult skin, reflecting their proximity in the integrated
embedding space. However, transcriptional similarity was observed between fibroblasts in
prenatal skin, organoid and adult skin, myofibroblasts in prenatal skin and adipocytes in
prenatal skin and skin organoid; of note, myofibroblasts were not annotated in the organoid
and adult skin datasets and adipocytes were not included in the adult skin dataset because
skin was sampled down to the dermal layer of skin (Reynolds et al., 2021). The
transcriptional similarity between fibroblasts, prenatal myofibroblasts and prenatal /
organoid adipocytes may reflect the early differentiation trajectories of myofibroblasts and
adipocytes from fibroblast-like mesenchymal stem cells (MSCs) (Cristancho and Lazar,
2011), explaining their proximity to the large number of fibroblast in the combined

integrated embedding space.
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Figure 50: Heatmap showing transcriptional similarity (measured by distance in PC
space) between cell states in prenatal skin and skin organoid (Lee et al., 2020) and adult
healthy skin (Reynolds et al., 2021).

In order to determine whether the skin organoid model recapitulates physiological
differentiation during prenatal development at a molecular level, a logistic regression (LR)
framework was used to compare the transcriptional similarity of cells at individual
developmental time points, expressed as PCW in the prenatal data and weeks of culture in
the organoid data. A model was computationally built and trained on the gene expression
matrix of the training dataset, which was the merged prenatal and adult dataset, using all
the genes that had passed quality control. The resulting model was used to make predictions
in the target organoid dataset. The correspondence between the training and target datasets
for each developmental time point was computed as a Jaccard index and visualised as a
heatmap (Figure 51). Full details on the analysis approach are found in the Methods.
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Figure 51: Heatmap showing transcriptional similarity between cell states in prenatal,
organoid (Lee et al., 2020) and adult skin (Reynolds et al., 2021). The similarity is
measured as the Jaccard index between organoid stages (y-axis, weeks of culture) and
per-cell predicted prenatal stages (x-axis, PCW), using a logistic regression model
trained on the prenatal/adult skin dataset.

This LR analysis showed that although the differentiation of skin organoids across culture
duration resembles prenatal skin development, it progresses at an accelerated tempo. After
4 weeks of culture, skin organoid cell states overall align with prenatal skin at 7 PCW, and

after 19 weeks of culture, align with cells in adult skin.

The analysis above included all broad cell types from each dataset, and therefore, molecular
changes over time across separate cell lineages was assessed using the same computational
approach (Figure 52). This showed that the precise timing of differentiation varies
depending on cell lineage, with fibroblasts, endothelial cells and Schwann cells aligning
with 7 PCW prenatal skin at 4 weeks of organoid culture, and keratinocytes and
melanocytes aligning most closely with 7 PCW skin at 2 weeks of culture.
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4.2.6. Refined prenatal cell annotations

The prenatal skin sScCRNA-seq data was annotated to a higher resolution to characterise
refined cell states within each broad lineage. This was carried out by re-processing the data
for each broad lineage, starting from highly variable gene selection to reveal the finer
heterogeneity in the dataset. Batch correction was then carried out, treating each donor as
a separate batch. Leiden clusters at a high resolution were derived and annotated manually
using marker genes identified through literature searches and using differentially expressed
genes (DEGS) that were calculated for each cluster. Full details on these analysis steps are

found in methods section 2.5.2.1.

4.2.6.1. Epithelial cells

The epithelial cells within the prenatal skin single cell dataset were relatively few in number
and failed to represent several portions of the integrated embedding space when compared
to the hair-bearing skin organoid (Lee et al., 2020) and adult skin (Reynolds et al., 2021)
datasets, as discussed in the previous section and shown in Figure 48. When attempting to
use the Leiden clustering algorithm iteratively at high resolutions for the prenatal skin
epithelial lineage, biologically relevant clusters and distinct hair follicle cell states did not
cluster separately, which was likely due to the relatively small cell numbers in this subset.
Therefore, an integrated combined embedding of the prenatal and organoid epithelial cell
states was generated using Harmony batch correction (Korsunsky et al., 2019) in order to
pull apart epithelial cell states in the nearest neighbourhood graph and allow fine-grained
annotation to be carried out. The epithelial cell cluster annotations were based on marker

genes and the refined annotations in the organoid scRNA-seq dataset (Lee et al., 2020).

The following figure shows separate UMAP visualisations for the prenatal and organoid
epithelial cell states, which were based on the same integrated embedding space:
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Figure 53: UMAP visualisations of integrated data from prenatal skin and skin organoid
(Lee et al., 2020), coloured by refined epithelial cell types. IFE = interfollicular

epidermis.

Overall, 11 broad clusters of epithelial cell states were identified and annotated, including
periderm cells, interfollicular epidermal cells (immature basal, immature suprabasal,
DPYSL2" basal, POSTN™ basal and suprabasal IFE) and hair follicle specialised epithelial
cells (placode/matrix, cuticle/cortex, outer root sheath, inner root sheath and companion
layer) (Figure 53). The periderm is a transient outer layer of prenatal skin that is present
from about 4 PCW (King, Balaji and Keswani, 2013). It acts as a permeability barrier and
is shed into the amniotic fluid following the second trimester when epidermal stratification
begins (Lee and Wine, 2019). The cluster containing periderm cells was characterised by
high expression of KRT4, KRT8 and KRT18 (see Appendix N for prenatal skin cell refined
cell annotation DEGs), which are commonly expressed in single layer epithelial tissues
(Kalabusheva et al., 2023). The periderm cells also highly express SCEL (sciellin), which
is a known precursor to the cornified envelope of terminally differentiated keratinocytes
(Kvedar et al., 1992), and MUC16 (Mucin 16, Cell Surface Associated), which has a role
in forming a protective mucous barrier in the prenatal periderm (Rump et al., 2004). The
periderm cells are present in the prenatal skin dataset only until 11 PCW (Figure 54),
though previous studies have reported that the periderm is sloughed into the amniotic fluid

towards the end of the second trimester (Hardman et al., 1999).
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Figure 54: Bar plot showing frequency of epithelial cell states across gestational age in

prenatal skin, with colour of bar representing each cell type.

Alongside the periderm, the immature basal and immature suprabasal cell states
represented predominant other cell states in prenatal skin during the first trimester (Figure
53 and Figure 54). The immature basal cells expressed KRT19, which is typical for simple
epithelium (Kalabusheva et al., 2023) and the immature suprabasal cells express KRT1 and
KRT 10, which are markers of suprabasal epidermis. The suprabasal cells also express
DSC1 (desmocollin 1), which is a desmosomal component expressed by epithelial cells that
mediates cell-cell adhesion (Appendix N) (Nuber et al., 1996).

A discrete cluster of cells present in the prenatal and organoid datasets was annotated as
POSTN™ basal cells (Figure 53) owing to its high expression of POSTN (periostin), which
promotes cellular attachment and adhesion (Gillan et al., 2002). The POSTN™ basal cells
also highly express KRT14 (a marker of basal cells) and COL17Al (Appendix N). This
expression pattern is similar to a cluster of basal stem cells identified in a recent SCRNA-
seq study of human newborn skin, where immunofluorescent imaging using of the neonatal
epidermis was also carried out and showed that these cells are enriched in specific zones
between the rete ridges (Wang et al., 2020b). The DPYSL2" basal cells, which also express
the KRT14 basal cell marker, then makes up the predominant cell type in prenatal skin
beyond 12 PCW (Figure 54). The suprabasal IFE (interfollicular epidermis) cells were
present from 9 PCW onwards (Figure 54) and showed high expression of KRTDAP
(keratinocyte differentiation associated protein) (Appendix N), which is known to be more
highly expressed in suprabasal compared to basal epidermal cells (Kabir et al., 2022).
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The remaining annotated cell clusters from the combined prenatal and organoid embedding
comprised of hair follicle cell states, including the placode/matrix, cuticle/cortex, inner root
sheath, companion later and outer root sheath. As discussed above, the prenatal cells were
annotated using the hair cell annotations from the organoid dataset, which had a greater
representation of hair follicle cell states than the prenatal SSRNA-seq data had (Figure 53).
The prenatal skin cell DEG analysis, however, did highlight several known markers of
these hair follicle cell types, including SHH (Sonic Hedgehog Signalling Molecule) and
WNT10A (Wnt Family Member 10A) for placode/matrix, KRT75 for the companion layer
and KRT6B for the outer root sheath (Appendix N) (Kalabusheva et al., 2023; Reddy et al.,
2001).

4.2.6.2. Dermal stromal cells

The prenatal dermal stromal cells were annotated using known markers derived from
literature search and DEGs calculated between Leiden clusters on a prenatal skin stromal
lineage embedding. The following UMAP visualisation shows the annotated stromal cell
clusters in the prenatal skin dataset, which is presented in a combined integrated embedding
with the organoid stromal cells (Lee et al., 2020), demonstrating transcriptionally similar

refined cell states between prenatal skin and skin organoid.
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Figure 55: UMAP visualisations of integrated data from prenatal skin and skin organoid

(Lee et al., 2020), coloured by refined stromal cell types.

The annotation of the adipocytes, mural cells and muscle cells (myocytes) using known

marker genes was discussed earlier in this chapter in section 4.2.4. The rest of the stromal
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compartment comprises of fibroblasts, which include those related to the prenatal hair
follicle (pre-dermal condensate, dermal condensate, dermal papilla). The hair follicle
associated fibroblasts will be discussed in detail in chapter 4, including their differentiation
trajectory and the genes they express that mediate their functional roles and differentiation
pathway. The non-hair follicle associated fibroblasts include FRZB* early fibroblasts,
HOXC5"* early fibroblasts, WNT2" fibroblasts and PEAR1" fibroblasts, which were
annotated based on genes that are highly expressed between the fibroblast clusters
(Appendix N). The fibroblasts that were given the ‘early’ annotation (FRZB™ early
fibroblasts and HOXC5™ early fibroblasts) were identified in the earlier gestational prenatal
skin samples (as shown in Figure 60). The non-hair follicle associated fibroblast subsets
and the genes mediating their differentiation trajectory are also discussed in detail in
chapter 4.

4.2.6.3. Endothelial cells

The prenatal endothelial cell compartment comprised of vascular and lymphatic
endothelium; the distinction between these broad cell types was discussed in detail in
section 4.2.4. Within the vascular endothelial compartment, arteriolar, venular and

capillary cell states were identified, as shown in the following UMAP visualisation:
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Figure 56: UMAP visualisations of integrated data from prenatal skin and skin organoid
(Lee et al., 2020), coloured by refined endothelial cell types. LE = lymphatic

endothelium.
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By creating a combined integrated embedding between prenatal and organoid endothelial
cells and plotting the cell states separately, the paucity of endothelial cells in the skin
organoid model (Lee et al., 2020) is highlighted (Figure 56) as discussed above in section
4.2.5.

Within the prenatal vascular endothelial cell grouping, the arteriolar cells are characterised
by high expression of GJA5 (Gap Junction Protein Alpha 4), which is involved in arteriolar
morphogenesis (Lu and Wang, 2017) and FCN3 (Ficolin 3), which is an arteriole-specific
marker gene (Voigt et al., 2022) (Appendix N). The prenatal capillary arteriole cells highly
express NETO2 (Neuropilin and Tolloid Like 2), which is involved in vascular patterning
and is implicated in infantile proliferative capillary haemangiomas (Calicchio, Collins and
Kozakewich, 2009). The capillary arteriole cells also express PRND (Prion Like Protein
Doppel) and PRRG3 (Proline Rich And Glia Domain 3), both of which have an important
role in endothelial cell development and sprouting angiogenesis (Chen et al., 2020c; Crouch
et al., 2023). The capillary cells were annotated based on their high expression of CD36
and FABP4, which are known marker genes (Iso et al., 2013; Son et al., 2018).

The venular cells within the prenatal skin dataset included the venules and postcapillary
venules. The venule cells showed high expression of FBLN2 (Fibulin 2), which encodes an
extracellular matrix (ECM) protein. In a recently published scRNA-seq study profiling
adult skin and enriching for endothelial cell states, FBLN2 was shown to be highly
expressed in adult skin venule cells in comparison to capillary cells (Li et al., 2021),
reflecting that seen in the prenatal data. Furthermore, this study on adult skin demonstrated
that SELE (Selectin E), which mediates leucocyte adhesion to the endothelium (Lawrence
and Springer, 1993), was a highly specific marker for postcapillary venules (Li et al., 2021);
SELE was also highly and specifically expressed in postcapillary venule cells in the
prenatal skin dataset (Appendix N). The postcapillary venules also expressed IFI27
(Interferon Alpha Inducible Protein 27), which is a known venous endothelial cell marker
(Crouch et al., 2023) that is also expressed on capillary cells (Schupp et al., 2021),

reflecting this postcapillary segment of the vasculature in prenatal skin.
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4.2.6.4. Myeloid cells

The organoid data is not shown alongside in an integrated embedding, as was carried out
for the epithelial, stromal and endothelial lineages, because the skin organoid lacked

immune cells (Lee et al., 2020); this was discussed above in section 4.2.5.
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Figure 57: UMAP visualisation of data from prenatal skin, coloured by refined myeloid
cell types. DC = dendritic cell, ASDC = AXL*SIGLEC6* DC, LC = Langerhans cell.

The prenatal myeloid cell compartment included dendritic cell (DC), Langerhans cells
(LC), monocytes, macrophages and neutrophils (Figure 57). The DC subsets annotated in
the prenatal skin dataset included DC1, DC2, inflammatory DC and ASDC
(AXL*SIGLECG6" dendritic cell). The DC1 cell state was characterised by high expression
of CLEC9A (C-Type Lectin Domain Containing 9A), which is an endocytic receptor
specialised for the uptake and processing of material from necrotic cells (Zhang et al.,
2012), and is a specific marker gene for the DC1 subset (Villani et al., 2017). The DC1
cells also highly expressed IDO1 (Indoleamine 2,3-Dioxygenase 1) (Appendix N), which
is a tryptophan metabolising enzyme also known to be expressed by DC1 cell states (Chen
et al., 2020b). The DC2 cells were annotated based on their high expression of CLEC10A
(C-Type Lectin Domain Containing 10A), and were also noted to highly express IL1R2
(Interleukin 1 Receptor Type 2), which has been shown by scRNA-seq of peripheral blood
mononuclear cells (PBMCs) to be highly expressed in DC2 subsets (Gao et al., 2021). The
inflammatory DCs were characterised by high LAMP3 (Lysosomal Associated Membrane

Protein 3) expression (Appendix N, which is a marker for mature DCs that is upregulated
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upon activation (Salaun et al., 2004), and CCL22 (C-C Motif Chemokine Ligand 22),
which is a cytokine expressed by DCs upon activation (Vulcano et al., 2001) that mediates
cell interaction with regulatory T cells (Tregs) (Rapp et al., 2019). The ASDC cell cluster
was annotated owing to its high expression of SIGLEC6 (Sialic Acid Binding Ig Like Lectin
6) (Appendix N), which is a defining marker gene for ASDCs. HAMP (Hepcidin
Antimicrobial peptide) was also highly expressed by the prenatal ASDC cells, which has
been shown to be a reproducible gene expression marker based on integration of SCRNA-
seq data from multiple studies (Hao et al., 2023). The prenatal ASDC cell state also highly
expressed LTK (Leucocyte Receptor Tyrosine Kinase), which represents one of the top
most discriminative genes for ASDCs (Villani et al., 2017). The Langerhans cells were
annotated based on their expression of CD207 and CD1A (Appendix N), as discussed above
in the annotation of broad cell groupings in section 4.2.4.

The prenatal monocyte cell states were annotated as monocyte precursors, monocytes and
activated/differentiating monocytes (Figure 57). The monocyte precursors differentially
expressed ZBTB71 (Zing Finger And BTB Domain Containing 7A), which encodes a
transcription factor that represses monocyte differentiation (Redondo Monte et al., 2020),
and SERPINBS (Serpin Family B Member 8), which inhibits monocyte transformation into
macrophages (Kappert et al., 2013). The monocyte cell cluster was characterised by high
expression of VNN2 (Vanin 2), which is known to be expressed on mature monocytes in
comparison to other lymphocytes (Bornhauser et al., 2020) and CLEC4E (C-Type Lectin
Domain Family 4 Member E), which is monocyte cell marker with a role in pathogen
recognition and phagocytosis (Gren et al., 2015) (Appendix N). The activated /
differentiating monocyte cluster was annotated based on high expression of LYZ
(Lysozyme), which has a role in host defence against bacterial microorganisms, CD14,
which mediates innate immune responses and S100A8/9 (S100 Calcium Binding Protein
A8/9), which modulates inflammatory responses by inducing cytokine secretion and
stimulating leucocyte recruitment (Wang et al., 2018), all of which are recognised markers

for this monocyte subset (Kapellos et al., 2019).

The prenatal macrophage subsets annotated within the dataset included iron-recycling
macrophages, MHCII* macrophages, LYVE1" macrophages and TREM2" macrophages.
These subsets were assigned based on the macrophage classification presented in a recently
published integration of prenatal immune cells where sCcRNA-seq data from nine different
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tissues were included across haematopoietic, lymphoid and non-lymphoid peripheral
organs (Suo et al., 2022). The iron-recycling macrophages expressed the high levels of
SLC40A1 (Solute Carrier Family 40 Member 1, also known as Ferroportin-1), which
encodes a cell membrane iron transporter that balances cellular iron levels (Donovan et al.,
2005) and are characterised by high expression of CD5L (CD5 Molecule Like), which is a
macrophage marker that promotes macrophage survival against apoptosis-inducting stimuli
(Miyazaki et al., 1999). The MHCII™ macrophages express the highest levels of HLA-DRA
and HLA-DPA1 amongst the macrophage subsets (Suo et al., 2022) and the LYVE1*
macrophages highly express LYVE1 (Lymphatic Vessel Endothelial Hyaluronan Receptor
1), which has a known role in supporting blood vessel integrity and angiogenesis (Kieu et
al., 2022). The TREM2" macrophages express microglia-associated transcripts, including
P2RY12 (Purinergic Receptor P2Y12) and TMEM144 (Transmembrane Protein 144)
(Appendix N) (van Wageningen et al., 2019).

The prenatal neutrophil cell states clustered into two transcriptionally distinct subsets
(Figure 57). The Neutrophil 1 population was characterised by specific expression of
DEFA4 (Defensin Alpha 4, also known as Neutrophil Defensin 4), which encodes an
antimicrobial peptide found abundantly in the granules of neutrophils (Basingab et al.,
2022), and high expression of AZU1 (Azurocidin), which encodes a neutrophil granule
derived peptide with monocyte chemotactic activity (Almansa et al., 2012). The Neutrophil
2 subpopulation was characterised by specific expression of LTF (Lactotransferrin, also
known as Neutrophil Lactoferin), which is an iron-binding protein uniquely abundant in
neutrophils (Zhao et al., 2018), and high expression of CAMP (Cathelicidin Antimicrobial
Peptide, also known as LL37) which encodes an antimicrobial peptide important in innate

immune defence (Li et al., 2006).

4.2.6.5. Lymphoid cells

The annotated refined cell states within the lymphoid compartment of the prenatal SCRNA-

seq dataset is shown in the UMAP visualisation below (Figure 58).
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Figure 58: UMAP visualisation of data from prenatal skin, coloured by refined lymphoid
cell types. ILC = innate lymphoid cell, LTi = lymphoid tissue inducer cell, NK cell =

natural killer cell, Treg = regulatory T cell.

The prenatal skin CD4 and CD8 T cells were annotated based on their expression of CD4
and CD8A/B, respectively, as well as their shared expression of CD3E and IL7R, as was
discussed above in section 4.2.4. The ILC2 cell state was characterised by high expression
of PTGDR2 (Prostaglandin D2 Receptor 2), which is a known gene expression marker
(Mazzurana et al., 2021), and IL9R (Interleukin 9 Receptor), which is constitutively
expressed by ILC2 cells (Mohapatra et al., 2016) (Appendix N). The prenatal ILC3 cell
cluster highly expressed HPN (Hepsin), which is a serine protease, and SCN1B (Sodium
Voltage Gated Channel Beta Subunit 1); both genes have been recently shown using
SCRNA-seq to be highly co-expressed in a subset of innate lymphoid cells (Elmentaite et
al., 2021).

The unconventional T cells included the innate T type 1 cells and innate T type 3 cells.
Innate T type 1 cells were characterised by high expression of EOMES (Eomesodermin),
which has a role in the regulation of T cell function (Llad-Cid et al., 2021) and TBX21 (T-
Box Transcription Factor 21), which encodes a transcription factor important in T cell
development (Stolarczyk, Lord and Howard, 2014) (Suo et al., 2022). Innate T type 3 cells
demonstrated high expression of RORC (RAR Related Orphan Receptor C), which encodes
a DNA-binding transcription factor that has a role in cellular differentiation (Capone and
Volpe, 2020) and CCR6 (C-C Motif Chemokine Receptor 6), which encodes a membrane
protein involved in immune cell recruitment (Yamazaki et al., 2008) (Suo et al., 2022).
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The lymphoid tissue inducer (LTi) cells differentially expressed IL17A (Interleukin 17A),
which is known to be highly expressed by LTi cells even upon genetic deletion of its
transcriptional regulator STAT3 (Signal Transducer and Activator of Transcription 3)
(Takatori et al., 2009), and has a functional role in host defence and maintenance of tissue
integrity (Qian et al., 2010). The lymphoid progenitor population highly expressed JCHAIN
(Joining Chain OF Multimeric IgA and IgM), which is known to be expressed by multi-
lymphoid progenitors that have the potential to differentiate into multiple different
functional cell states (Karamitros et al., 2018), and MEF2C (Myocyte Enhancer Factor 2C),
which has a crucial role in regulating cell fate in multipotent progenitors (Stehling-Sun et
al., 2009). The natural killer (NK) cells were characterised by high expression of GZMH
(Granzyme H), which is known to be constitutively expressed by NK cells and has a role
in the cytotoxic arm of the innate immune response (Krzewski and Coligan, 2012), and
KLRD1 (Killer Cell Lectin Like Receptor D1), which encodes an immune receptor
involved in self-nonself discrimination and is also known to be specifically expressed by
NK cells (Yang et al., 2019) (Appendix N). The regulatory T cells (Tregs) were
characterised by high expression of FOXP3 (Forkhead Box P3), which is a known specific
marker gene and a transcriptional regulator important for the inhibitory function of Tregs
(Ono et al., 2007), and CTLA4 (Cytotoxic T-lymphocyte Associated Protein 4), which is
expressed on Tregs and negatively regulates Treg homeostasis (Tang et al., 2008)
(Appendix N).

4.2.7. Differential abundance testing across gestation using Milo

After assigning refined cell annotations to prenatal skin cell states from samples obtained
throughout the first and second trimester of gestation, the abundance of each of these cell
populations across gestational time was then assessed. This allows the differential cellular
composition of prenatal skin over time to be evaluated, prior to identifying which cell states

may be co-locating and interacting during specific developmental windows.

The changes in cellular composition across gestation was calculated using a recently
developed computational approach called Milo, which performs differential abundance
testing on cell neighbourhoods within a k-nearest neighbour (KNN) graph (Dann et al.,
2022). This analysis was initially carried using the broad prenatal skin cell annotations,
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allowing temporal changes across overall lineages to be evaluated first. The output of the

analysis is shown below as a beeswarm plot in Figure 59.
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Figure 59: Differential abundance analysis. Beeswarm plot showing log-fold change in
abundance between early and late gestation prenatal skin cells in neighbourhoods from
different broad cell state clusters. Coloured dots indicate a significant difference in

abundance.

The differential abundance analysis showed that the enrichment of some cell populations
depended on gestational age. For instance, neuronal cells were observed early in gestation,
which are likely to be arising from ectodermal differentiation alongside skin epidermal
differentiation; embryonic ectodermal cells that are exposed to Wnt and BMP signalling
become epidermis, and in the absence of these two signals become neural cells (Moody et
al., 2013). Several prenatal skin cell populations were shown to be abundant in later
gestation, including T and B cells (Figure 59), which accompanies prenatal thymus, bone
marrow and spleen formation from around 10 PCW (Vargaet al., 2011; Jardine et al., 2021;
Suo et al., 2022).
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Several prenatal skin cell types were present across both early and late gestational stages,
including ILCs, macrophages and fibroblasts (Figure 59). Since the Milo analysis was
carried out based on neighbourhoods on a KNN graph, the cells abundant across all
gestational stages therefore show distinct gene expression profiles between early and late
gestation. This either suggests functional evolution of cells during development or dual

waves of production.

The differential abundance testing using Milo was next carried out using the refined
prenatal skin cell annotations, highlighting the fine-grained differences in cellular
composition within each broad cell grouping across gestation. The output of this analysis

is shown below in Figure 60.
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Figure 60: Differential abundance analysis. Beeswarm plot showing log-fold change in
abundance between early and late gestation prenatal skin cells in neighbourhoods from
different refined cell state clusters. Coloured dots indicate a significant difference in
abundance.
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Interestingly, within the broad cell groupings above in which cells were enriched across the
gestational sampling period during the first and second trimester, some refined subsets
showed differential abundance in either early or late gestation. For example, within the
fibroblast lineage, the FRZB™ early fibroblasts and HOXC5™ early fibroblasts were enriched
in early gestation, however, the hair follicle associated fibroblasts, such as the dermal
condensate cells and dermal papilla cells were enriched in late gestation. This aligns with
the onset of hair follicle morphogenesis from the second trimester onwards (de Groot et al.,
2021), which will be discussed in more detail in Chapter 4.

Similarly, within the macrophage cell grouping, the TREM2* microglia-like macrophages
are enriched earlier in gestation, and the iron-recycling macrophages are enriched later in
gestation, suggesting distinct roles for each cell type within specific time periods of prenatal
skin morphogenesis. Within the ILC compartment, ILC3s are enriched mostly in early
gestation, with some ILC3s present later in gestation, suggesting transcriptional differences
and possible functional differences between these cells at different times during skin
development, whereas ILC2 are enriched only during late gestation.

Several refined stromal cell states are mostly enriched during late gestation, including
subsets of skeletal muscle cells, mural cells, vascular endothelial cells, lymphatic
endothelial cells and adipocytes, highlighting the development of more complex skin
architecture over gestational time. Across the immune subsets, the majority of cell states
are enriched later in gestation, including within the DC, monocyte and mast cell groupings,
as well as the T and B cell subsets discussed above, suggesting a diversification of the

immune repertoire within the prenatal skin as it develops over gestational time.

4.2.8. Spatial deconvolution reveals prenatal cellular microenvironments

The next line of investigation was to leverage the prenatal skin SCRNA-seq data and its
refined cell annotations to determine the microanatomical organisation of cells within the
developing skin. To do this, a recently published spatial transcriptomic dataset of

embryonic lower limb, which included skin region profiling, was used (Zhang et al., 2022).

To map the transcriptomic signatures of the refined single cell states onto the embryonic

limb spatial transcriptomic data in situ, a computational framework called Cell2location
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was used (Kleshchevnikov et al., 2022). This analysis is implemented as a hierarchical
Bayesian model and uses the prenatal skin SSRNA-seq data to deconvolute mRNA counts
in the spatial data. This then allows the estimation of the absolute and relative abundance
of each refined prenatal skin cell type at each spatial location in the embryonic limb skin

regions.

In order to determine whether specific prenatal skin cell types were more likely to be co-
located within microanatomical tissue niches (or microenvironments), a non-negative
matrix factorisation (NMF) analysis was then carried out, with co-location indicated by a
high proportion of two or more cell types sharing a microenvironment. The output of this
analysis is shown below in Figure 61, which reveals that prenatal skin is made up of several
microenvironments that comprise of diverse groupings of cell types, including epidermal,

dermal, vascular, neuronal and immune cells.
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or two time points were used. Error bars show 95% confidence intervals.

Interestingly, the cellular microenvironments uncovered by this analysis relate to specific
developmental processes in prenatal skin, including interfollicular epidermal
differentiation (where immature epithelial cells, including periderm and immature basal
cells, are identified in the same microenvironment as ILC3 cells), the early stages of hair
follicle formation (where pre-dermal condensate cells are identified in the same tissue
microenvironment as ILC2 cells) and neurovascular genesis (for example, where vascular
and neuronal cells show high correlated colocalisation with different macrophage cell
subtypes (Figure 61 and Figure 62). This highlights the diverse cell states co-locating
during specific time periods across prenatal skin development, and the potential cellular

cross talk between non-immune and immune cells supporting skin morphogenesis.
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4.2.9. Spatial microenvironments that support prenatal skin development

To investigate the cellular microenvironments in more depth and determine the
transcriptional profiles and potential interactions between cells within distinct
microanatomical niches, further analysis was carried out. | have focused this analysis on
the ILC3 microenvironment referred to in section 4.2.8 due to its relevance to inflammatory

skin disease discussed in Chapter 3.

Among the lymphoid cells, ILC3 cells co-localised with HOXC5* early fibroblasts at 7
PCW (within tissue microenvironment 3) and with immature basal interfollicular epidermal
cells at 7 to 10 PCW (within tissue microenvironment 4) (Figure 61 and Figure 62). Their
functional role of ILC3s during these time periods was investigated, particularly because
differential abundance testing using Milo showed that different neighbourhoods of ILC3
cells were enriched between early and late gestation (Figure 60), suggesting transcriptional

heterogeneity across gestational time.

The DEGs between ILC3 cells during specific gestational time periods were therefore
calculated (Figure 63), and a gene set enrichment analysis using the derived DEGs was
carried out using a reference database to determine the functional categorisation of the
upregulated genes (Figure 64).
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Figure 63: ILC3 DEGs across gestation. Matrix plot showing mean expression (colour)
of Milo-generated DEGs by gestational age in the ILC3 population. DEGs are grouped
by function.
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Figure 64: ILC3 functional modules across gestation. Heatmap of z-normalised gene set
(GO Biological process) module scores enriched in ILC3 by gestational age (grouped by
PCW).

As can be seen from Figure 63 and Figure 64 above, ILC3 cells during early gestation
upregulated genes involved in the regulation of ECM organisation (COL1A1, COL1A2,
CST3) and stem cell differentiation (PSMD14, PRKDC, PSMBY). In contrast, late gestation
ILC3 cells supported epidermal differentiation and upregulated genes implicated in
keratinocyte differentiation and apoptosis (ANXAL, JAG1, ZFP36, AQP3).

Having characterised the transcriptional profile and the functional roles of ILC3s in
prenatal skin across gestational time, a cell-cell interaction analysis was carried out in order
to understand how the ILC3 cells are communicating with other cells within the
microanatomical environments defined above (section 4.2.8). The cell-cell communication
analysis was performed using a computational framework called CellPhoneDB (Efremova
et al., 2020), which predicts ligand-receptor interactions between cell states. The output of
this analysis is shown as a heatmap below (Figure 65), which revealed that ILC3 cells and
HOXC5" early fibroblasts were interacting through TGFB1, which is involved in ECM
organisation (Horiguchi, Ota and Rifkin, 2012; Toyoda et al., 2022; Xu et al., 2018), and
TGFBR3.
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Figure 65: Cell-cell interaction analysis between ILC3s and epidermal cells. Heatmap
visualisation of CellphoneDB predicted interactions in the prenatal skin SCRNA-seq data.
Colour scale represents the mean expression values of each ligand-receptor pair for the

corresponding pair of celltypes.

The late gestation ILC3 cells and basal epidermal cells were predicted to interact via AREG-
EGFR, which are involved in keratinocyte proliferation and differentiation (Chen et al.,
2016; Stoll et al., 2016), and TNF/LTA-TNFRSF1A, involved in cell survival and apoptosis
(Sasaki et al., 2019; Piao et al., 2019; Kumari et al., 2014) (Figure 65). ILC3s are known
to contribute to epithelial proliferation and ECM modelling during wound healing in
postnatal mouse and human skin, as well as to psoriasis pathogenesis, which is a skin
disease characterised by excessive keratinocyte turnover (Ward and Umetsu, 2014;
Villanova et al., 2014; Cox, Cruickshank and Saunders, 2021; Li et al., 2016). These
findings, therefore, suggest that similar functions are deployed by ILC3 cells during

prenatal skin development and morphogenesis.
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4.3. Discussion

In this Chapter, the dynamic cellular composition of human prenatal skin during the early
stages of skin morphogenesis and de novo hair follicle formation during the first and second
trimester of gestation is presented. Systematic capture, transcriptomic profiling and
annotation of both immune and non-immune skin cell states was carried out, which has not
previously been done. Only immune cells in human prenatal skin have been studied by
ScCRNA-seq by other research groups previously (Xu et al., 2021; Bian et al., 2020). This
data therefore allows the complex architecture of skin during development to be explored,
including how epithelial cell states differentiate and contribute to the hair follicle, the
supportive and structural role of the dermal stroma, the development of the endothelial
network and the roles that immune cells have during skin morphogenesis in utero. The
epithelial and stromal lineages and their contribution to hair follicle morphogenesis will be
discussed in detail in Chapter 5.

Human prenatal skin was sampled between 7 and 16 PCW, and across this developmental
period, 25 broad cell groupings were characterised. Refined cell annotations were then
carried out, revealing 82 distinct cell states across various lineages. The differential
abundance of the prenatal cell states across the gestational period studied was presented,

revealing how the cellular composition dynamically changes over time.

The refined annotation of the epithelial cell states relied on a prior integration of SCRNA-
seq data between prenatal skin and a hair-bearing skin organoid model (Lee et al., 2020).
This was due to the paucity of epithelial cells captured from the prenatal skin samples,
which meant that there was insufficient data for the discrete hair follicle cell states to cluster
apart without integration from the corresponding cell states in the skin organoid data (Lee
et al., 2020). Future work to increase the sample size of the prenatal skin data, collecting
more samples from later gestational periods, as well as hair-bearing sites such as scalp skin,
would help expand the dataset and allow transcriptomic differences between refined hair
follicle cell states to be assessed more easily. Furthermore, other technologies, such as
single nuclei RNA sequencing (SnRNA-seq), could be employed to process prenatal skin
and hair samples, where the mRNA from the nucleus rather than the cytoplasm is profiled
(Ding et al., 2020). Support for this approach has recently been shown in a study comparing
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scRNA-seq and snRNA-seq data from human adult skin, which showed that ShARNA-seq
profiling yielded an increased representation of epithelial and stromal cell types compared
to sScCRNA-seq (Eraslan et al., 2022).

By integrating the prenatal skin data with SSRNA-seq data from a skin organoid model, the
transcriptomic profiles of cell states between in vivo and in vitro skin and how these change
over time was compared. The organoid model lacked immune cells and had a paucity of
endothelial cells, however, across the remaining lineages, the cell states present were
transcriptionally very similar to both prenatal and adult interfollicular skin cells (Reynolds
et al., 2021). Furthermore, the timing of cell differentiation in the organoid model
proceeded at an accelerated rate, with organoid cells at 4 weeks of culture aligning closest
with prenatal skin at 7 PCW, and after 19 weeks of culture, aligning closest with adult skin

cells.

A limitation of this study is that the skin organoid data represented 5 time points of culture:
13 days (~2 weeks), 29 days (~4 weeks), 48 (~7 weeks), 85 (~12 weeks) and 133 days (19
weeks or 4-5 months) (Lee et al., 2020). Therefore, when integrating the data with the
prenatal skin data and comparing the transcriptomic profile across time to determine
whether physiological in vivo differentiation is recapitulated in vitro, key molecular
changes that may be occurring between data points may have been missed. Future work to
build on this would be develop further skin organoids and increase the sampling for
scRNA-seq profiling. This work would also lay the foundation for functional
experimentation based on the findings from in vivo skin analysis, as well as the ability to
manipulate the culture protocol to expand the cellular repertoire within the organoid model
to better reflect prenatal physiological development, such as addressing the lack of immune
cells and endothelial cells in the model. Skin organoid models can also be used for potential

disease modelling, which will be discussed in further detail in Chapter 4.

This Chapter also presents a spatial component to the prenatal skin cell atlas, which was
carried out using a deconvolution analysis to map the scRNA-seq data to a spatial
transcriptomic dataset of embryonic limb that contains regions of prenatal skin (Zhang et
al., 2022). This spatial characterisation of human prenatal skin using refined cell states is
novel and has not been shown in other studies previously. The analysis revealed distinct

microanatomical cellular niches within developing prenatal skin, which is explored to
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understand how colocalising cells may be functioning and interacting to support skin

development.

The spatial aspect of this prenatal skin cell atlas was, however, limited by the fact that the
published spatial transcriptomic study used in the deconvolution analysis only represented
samples between 7 and 10 PCW (Zhang et al., 2022). Therefore, the spatial organisation of
prenatal cell states later in gestation could not be accurately determined. Furthermore, the
spatial data related to embryonic limb, whereas the prenatal samples for sScRNA-seq were
taken from different anatomical sites, primarily the trunk. Therefore, potential site-specific
transcriptomic changes could confound the data or obscure important differences between
skin development at different anatomical sites. Future work to generate site-matched spatial
transcriptomic data representing the full range of prenatal ScRNA-seq data until 16 PCW
in the second trimester would be informative in extending our understanding of

microanatomical skin cellular organisation beyond 10 PCW.

Overall, this Chapter presented a single cell and spatial atlas of prenatal skin during the
first and second trimester of gestation, highlighting broad and refined cell states and how
they change in abundance over time, and microanatomical cellular niches present during
prenatal skin development. Comparison with a skin organoid model demonstrated the
similarities and differences between in vivo and in vitro skin, which lays the foundational

understanding for future functional experimentation, including disease modelling.
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Chapter 5: Understanding cellular crosstalk in hair follicle
morphogenesis in vivo and the support for disease modelling in

vitro

5.1. Introduction

This Chapter focuses on the human hair follicle and how it develops de novo during prenatal
life within functional microanatomical cell niches. Previous histological reports detailing
the morphological changes that occur during human prenatal skin development have shown
that early hair follicle related structures, such as budding of cells from the epidermal basal
layer into the underlying mesenchyme, can be visualised at around 14 PCW (Ersch and
Stallmach, 1999). The early aggregation of mesenchymal cells beneath the hair bud can
also be visualised at this stage, which then develops to form a mature dermal papilla
structure by 16 PCW (Breathnach and Smith, 1968; Ersch and Stallmach, 1999). Therefore,
this study was designed so that prenatal skin samples that were collected represented the
onset of hair follicle morphogenesis and the early development of hair follicle structures.

Though the studies detailing the morphological characteristics of human hair follicles
during prenatal life have provided insights into the different stages of hair follicle
formation, the cellular and molecular mechanisms underlying this process remain poorly
understood. In particular, individual human precursor cell states and the gene expression
programs that mediate their differentiation into hair follicle structures that can then be
visualised remain unknown. Our understanding of human hair follicle biology has largely
been derived from studies on adult hair as it progresses through cycles of anagen (growth),
catagen (regression) and telogen (resting) (Alonso and Fuchs, 2006; Hawkshaw et al.,
2020). The developmental processes underlying hair follicle formation prenatally have
been studied using animal models (Danilenko, Ring and Pierce, 1996; Guo et al., 2020),
particularly murine models (Mill et al., 2003; Botchkarev and Fessing, 2005). In recent
years, single cell transcriptomics has been employed to study embryonic murine hair
development, which has revealed novel insights into transitional cell states during hair
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follicle formation and the genes regulating these processes (Sennett et al., 2015; Mok et al.,
2019; Saxena, Mok and Rendl, 2019), however, it is unknown as to whether these processes
are conserved between species. Therefore, in this study, prenatal skin samples during the
gestational period in which hair follicles first develop were profiled using sScRNA-seq and
analysed to characterise the cellular states, differentiation trajectories and interactions
within microanatomical niches involved in human hair follicle morphogenesis. The
analyses were then leveraged to gain novel insights into hair follicle related diseases and,
using the integrated skin organoid dataset (Lee et al., 2020) discussed in the previous

Chapter, explore whether these diseases can be modelled in vitro.
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5.2. Results

5.2.1. Prenatal skin morphological changes during hair follicle neogenesis

To characterise the prenatal skin and hair follicle morphological features in the samples
that were collected, and confirm the formation of hair follicles that are known to develop
from around 14 PCW in humans (Ersch and Stallmach, 1999), haematoxylin and eosin

(H&E) staining and multipex RNA in situ hybridisation using RNAScope was carried out.

5.2.1.1. Histological analysis

Representative prenatal skin samples from different developmental stages were prepared
for histological examination using H&E staining, including a sample at 11 PCW prior to
the onset of hair follicle formation, a sample at 14 PCW as hair follicles have begun to
develop and a sample at 16 PCW to assess the morphology of the skin and hair follicles

later in gestation (Figure 66).

11 PCW 14 PCW 16 PCW

Scale bar 200um

Figure 66: Prenatal histology. Representative H&E stained tissue sections showing

different developmental stages of prenatal skin and hair follicle morphogenesis.

The histological images of prenatal skin show the morphological changes underlying skin
and hair follicle development between 11 and 16 PCW (Figure 66). Prenatal skin at 11
PCW comprises of a layer of epidermal cells overlying the dermal stroma without skin
appendages. At 14 PCW, budding of basal cells (hair placodes/germs) are observed, as well

as elongated hair follicles (hair pegs) that are visualised as circular structures in cross
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section of the hair follicles. The representative histological image at 16 PCW shows
longitudinally sectioned, elongated hair follicle structures, as well as a stratified multi-

layered epidermis.

5.2.1.2. Multiplex RNA in situ hybridisation

The developing prenatal hair follicles in later gestation were also visualised with multiplex
RNA in situ hybridisation using RNAScope in order to spatially characterise the cellular
components that make up the prenatal hair follicle and how they are microanatomically

organised in relation to one another.

Differential gene expression analysis was used to help determine which specific probes to
use in order to visualise each cell type. The hair follicle cell types visualised were the outer
root sheath (using a human probe against SLC26A7), the matrix (SHH) and the dermal
papilla (NDP). These cells were selected because the outer root sheath is known to
encapsulate the hair follicle in prenatal skin, helping to visualise where the outer limit of
the hair follicles lie within the prenatal skin samples. Furthermore, the dermal papilla cells
are known to lie directly adjacent to the matrix within the hair bulb to regulate hair shaft
formation (Sennett and Rendl, 2012), and therefore, confirming their cellular
microanatomical proximity within the samples was carried out. Regulatory T cells (Tregs)
are known to preferentially localise around the hair follicle in late second trimester (23
PCW) (Dhariwala et al., 2020) and postnatal skin (Sanchez Rodriguez et al., 2014), with a
role in facilitating hair follicle stem cell differentiation (Ali et al., 2017). Therefore, their

presence earlier in gestation at 15 PCW was investigated using a probe against FOXP3.
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Figure 67: Hair follicle multiplex RNA in situ hybridisation. RNAScope images of
prenatal skin from a representative 15 PCW sample, demonstrating outer root sheath
(SLC26A7; yellow), matrix (SHH; cyan), dermal papilla (NDP; green) and Tregs
(FOXP3; red) cell types. The large-area image is shown on the left (scale bar = 100um)
and the magnified image on the right (scale bar = 50um).

The low magnification RNAScope image of prenatal skin at 15 PCW showed multiple hair
follicles within the sample, demonstrated by the outer root sheath cells that line the hair
follicle structures. Some hair follicles were sectioned at a plane in which the hair bulb
containing the matrix and dermal papilla cells were visualised, confirming their close
proximity at this stage of gestation. Furthermore, FOXP3™ Tregs were identified primarily
within and around hair follicles, as well as the interfollicular epidermis, from as early as 15
PCW (Figure 67).

5.2.2. Prenatal epithelial and stromal cell states related to hair follicle formation

In order to delineate early hair follicle development in human prenatal skin, the epithelial
and stromal cells that contribute to this process were explored in further depth. As described
in the previous Chapter in section 4.2.6, the epithelial and stromal cells were clustered to a
high resolution and given refined annotations; the hair follicle cell states were annotated
following integration of the prenatal skin data with sScRNA-seq data from a hair-bearing

skin organoid model (Lee et al., 2020).

Of the epithelial cell states, those that relate to hair follicle formation, including the

placode/matrix, outer root sheath, companion layer, inner root sheath and cuticle/cortex,
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were identified beyond 12 PCW during the second trimester of gestation (Figure 54). This
is in keeping with the findings from the prenatal tissue histology and multiplex RNA in situ
hybridisation using RNAScope shown above, where hair follicle structures and cell states
become apparent within later gestation prenatal skin samples.

The following schematic provides context to the microanatomical organisation of epithelial
and stromal cell states that were annotated in the prenatal skin dataset involved in hair
follicle formation, which is based on prior knowledge of skin and hair follicle
morphological structure during development (Mesler et al., 2017; Schneider, Schmidt-
Ullrich and Paus, 2009).
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Figure 68: Hair follicle development overview. Schematic to show early (left) and late
(right) stages of hair follicle formation, and the epithelial and stromal cell states
involved. IFE = interfollicular epidermis. Image created with BioRender.com by Chloe
Admane.

The skin comprises of the superficial epidermal layer and the dermis, which lies deep to
the epidermis separated by a basement membrane (Figure 68). Within the prenatal single
cell dataset, DPYSL2" basal cells made up most of the basal cell states. The DPYSL2" basal
cells were first identified between 9-11 PCW, however they were small in number at that
stage of gestation. Between 12-16 PCW, the DPYSL2" basal cells made up the majority of
epithelial cell states in the dataset (Figure 54), hence why they are represented as the
predominant cell type in the basal layer of the epidermis in the schematic above (Figure

68). The POSTN™ basal cells made up smaller proportion of basal cells that were
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predominantly seen from 9 PCW onwards (Figure 54), with their expression pattern closely
resembling a cluster of basal stem cells in human newborn skin sScRNA-seq data (Wang et
al., 2020b), as discussed in section 4.2.6.1. The POSTN* basal cells are therefore
represented within the basal cell layer, interspersed between the DPYSL2™ basal cells.
Suprabasal interfollicular epidermal (IFE) cells represent differentiated basal cells and lie
directly superficial to the basal cell layer (Blanpain and Fuchs, 2009), as shown in Figure
68.

The hair placode represents areas of epithelial thickening at the onset of hair follicle
formation, which extend into the underlying dermis to initially form the hair germ, then
extends further to form the hair peg (Mesler et al., 2017). The matrix cells were annotated
within the same cluster as the placode cells due to the high expression of SHH (Sonic
Hedgehog Signalling Molecule), which is known to be highly expressed in placode and
matrix cells (Michno et al., 2003; Schmidt-Ullrich et al., 2006) (Appendix N). During the
early stages of hair follicle formation, the placode is shown as epidermal thickening in the
schematic above, and during later stages, the matrix cells are shown at the base of the hair
follicle (Figure 68). Matrix cells then persist within the hair follicle, including throughout
postnatal life, and they terminally differentiate into cells that form the concentric layers of
the hair shaft (Mesler et al., 2017). The epithelial cells that surround the hair shaft in a
concentric fashion include the inner root sheath, the companion layer and the outer root
sheath (Figure 68).

Within the dermal compartment of the prenatal skin dataset, HOXC5" fibroblasts were
observed during the early gestational period in which hair follicles are known to begin
forming (Figure 60), which is represented by their presence in the dermis in the schematic
in Figure 68. Hair follicle specialised fibroblasts were also observed in the dataset, which
play a key role in the mesenchymal to epithelial signals known to initiate hair follicle
formation (Rishikaysh et al., 2014; Rendl, Lewis and Fuchs, 2005; Millar, 2002). The
dermal condensate cells are fibroblasts that aggregate together at the onset of hair follicle
morphogenesis. The dermal condensate is a precursor to the mesenchymal component of
the hair follicle, known as the dermal papilla, which regulates hair cycling throughout life
(Morgan, 2014).
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Having contextualised the morphology and cellular components of the developing hair
follicle and the brief roles of the epithelial and dermal cell types involved, analysis of the
hair follicle related cells in the prenatal sScRNA-seq data is presented next, with the aim of
uncovering molecular regulatory mechanisms and cellular interactions involved in hair

follicle neogenesis.

5.2.3. Comparison between prenatal and adult hair follicle cell states

De novo human hair follicle formation is a process that uniquely occurs in prenatal skin
across the gestational period that was sampled in this study. However, the precise
mechanisms underlying hair follicle development have largely been inferred from murine
studies (de Groot et al., 2021) or from adult human studies where established hair follicles
cycle through distinct phases of hair growth (anagen), regression (catagen) and resting
(telogen) (Randall and Botchkareva, 2009; Hsu, Pasolli and Fuchs, 2011).

The hair follicle related cell states present in prenatal skin and their transcriptional profile
was therefore compared to adult hair follicle cell states in the anagen growth phase, to
provide further understanding as to how prenatal hair morphogenesis differs from hair
growth in postnatal life. In a recent sScCRNA-seq study, human scalp micrografts collected
for hair transplantation were sampled, each of which comprised of several hair follicles and
hair bulbs, as well as some surrounding interfollicular tissue, such as the epidermis, dermis
and sebaceous glands (Takahashi et al., 2020). H&E staining was used to confirm that the
hair follicles were in the anagen growth phase, as represented by the presence of the hair
bulb; in the telogen resting hair follicle phase, the hair bulb is not present. The tissue was
then dissociated into single cells for sScRNA-seq (Takahashi et al., 2020). This adult hair
follicle dataset was then integrated with the hair follicle related epithelial cell states in the
combined prenatal / hair-bearing skin organoid (Lee et al., 2020) data, which was visualised
using a UMAP embedding:
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Figure 69: UMAP visualisations showing integrated data from prenatal/skin organoid
(left) and adult hair follicles (Takahashi et al., 2020) (right), coloured cell types.

By plotting cell states from the combined prenatal and organoid data alongside cells states
from the adult hair follicle data and showing annotations of the cell states (Figure 69), this
allows the assessment of transcriptionally similar cell states between prenatal/organoid and
adult to be determined, as well as assess whether cell states are present or absent during
development or adulthood. The UMAP embedding showed that several cell states present
during development were absent in adult hair follicles, including periderm, immature basal,
immature suprabasal and POSTN™ basal cells. Periderm cells are known to be a transient
outer epithelial barrier in prenatal life that is shed into the amniotic fluid during the second
trimester of gestation. Within the prenatal dataset, immature basal and immature suprabasal
cells were only observed in first trimester samples between 7 and 11 PCW and were not
observed beyond 12 PCW, as was discussed in the previous Chapter in section 4.2.6.1 and
shown in Figure 54. This finding is in accordance with the absence of an equivalent cell
state in the adult hair follicle dataset (Figure 69). The POSTN™ basal cells were also not
observed in the adult dataset, despite their presence beyond 12 PCW in the prenatal data
(Figure 54). As discussed in section 4.2.6.1 the expression pattern of POSTN™ basal cells
closely resembles that of basal stem cells in human newborn skin (Wang et al., 2020b).
Interestingly, this integration analysis between prenatal/organoid and adult cell states
therefore indicates that POSTN™ basal cells do not persist into adult life.
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The placode/matrix cells in the prenatal/organoid data pulled apart into two
transcriptionally distinct clusters following integration with the adult data (Figure 69). One
of the two prenatal/organoid clusters transcriptionally aligned with adult hair follicle matrix
cells and was observed in close proximity to the cuticle/cortex cells in the prenatal/organoid
embedding and to the medulla and cortex cells in the adult hair follicle data embedding.
This is in keeping with our understanding of hair follicle biology, where matrix cells persist
within the hair follicle throughout life and terminally differentiate into the cells that form
the concentric layers of the hair shaft, including the central medulla in large and thick hairs,
the cortex and the outer cuticle layer (Mesler et al., 2017). This explains the proximity on
the UMAP embedding, and therefore the transcriptional similarity, between the matrix,
medulla, cortex and cuticle cell states across development and adulthood (Figure 69). The
second cluster of placode/matrix cells on the prenatal/organoid embedding space therefore
represents placode cells, which is in keeping with their proximity on the UMAP graph to
basal cells; epidermal placodes are focal thickenings of the basal cell layer that are observed
in the early stages of hair follicle formation, which are absent in adult established hair
follicles (Figure 69).

Interestingly, several cell states closely aligned transcriptionally between the
prenatal/organoid and adult hair follicle datasets. For example, the prenatal/organoid
suprabasal IFE cells and the adult IFE granular and IFE spinous cells transcriptionally align
with each other. The adult IFE granular and IFE spinous cells are the only suprabasal cells
annotated in the adult dataset. To contextualise these adult suprabasal annotations, a fully
stratified epidermis contains several cell layers that represent the differentiation trajectory
of keratinocytes: the basal, spinous, granular and cornified layers, listed from deep to
superficial (Moreci and Lechler, 2020). The cornified epidermal layer is made up of
thickened, flattened dead cells, hence why they were not captured by scRNA-seq
(Takahashi et al., 2020).

Across the prenatal/organoid and adult datasets, the outer and inner root sheath cells also
aligned closely, with the adult inner root sheath cells being annotated to represent the
several layers present in a developed hair follicle unit. The inner root sheath comprises of
the Henle, Huxley and inner root sheath cuticle layers, listed from outer to inner (Schneider,
Schmidt-Ullrich and Paus, 2009). Furthermore, the hair shaft cells aligned transcriptionally

168



across development and adulthood, with the prenatal/organoid cuticle/cortex cells observed
in the equivalent UMAP embedding space as the adult medulla and cortex cells. Medulla
cells are only present in thicker, larger hair shafts, which is in keeping with the absence of
medulla cells in prenatal skin, where small, thin hair are developing at the onset of hair

follicle neogenesis in utero.

Overall, this integration analysis highlighted development-specific skin and hair follicle
cell states, including interfollicular cells and hair placode cells. This highlights the
importance of using prenatal skin samples to delineate the molecular mechanisms
underlying skin and hair follicle morphogenesis, which cannot be inferred from adult skin
and hair follicle data. For the cell states in which equivalent annotations were across
development and adulthood, the scRNA-seq data was then used to calculate the
transcriptional similarity between cells within the annotated clusters, as shown in the

heatmap below:
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Figure 70: Transcriptional similarity between prenatal/organoid and adult hair follicle
cells. Heatmap showing the average proportion (normalised by Jaccard index) of
predicted adult epidermal and hair cell states (x-axis) (Takahashi et al., 2020) assigned

to integrated prenatal skin and skin organoid epidermal and hair cell states (y-axis).
This comparative analysis between prenatal/organoid and adult basal and hair follicle cell

states showed close transcriptional alignment of most cell states, except for placode/matrix

cells (Figure 70). To investigate this further, a differential gene expression analysis was
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therefore carried out between the combined prenatal/organoid placode/matrix cells and the
adult matrix cells. The top DEGs between the annotated cell states in each dataset are

shown in Figure 71 below.

Differential expression —KRT17
® Up in prenatal/organoid
10734 ®@Up in adult

—FABP5 cxcu:BCAM  —CD24
-63 -— —_—
10 __%TLK“ TR SARAF

KRTS

~ .
1052 TACSTD2 POLR1D—= —SF3B6_kRT19

0% . LGALS1

3 “e. . BNP3°
© o e° ®

> j0e]  MTRNR2L8__ —MT2A :

Q. _KRT85 \ip2 o3, e 3

3 MTIE, L o 2"

o p

=

=)

<

1023 . e o S
10-13 . > ¥
. . ™ g : o
. ’ ° g .'. :o
107+ g e i

00 75 50 25 00 25 50 75 100
Log fold change

Figure 71: DEGs between prenatal/organoid and adult matrix cells (Takahashi et al.,

2020), shown as a volcano plot.

This analysis highlighted several highly expressed genes in adult matrix cells, including
KRT85 (keratin 85), which encodes a protein that forms a structural component of the hair
and nails, reflecting the role of matrix cells in hair shaft formation (Mesler et al., 2017).
Mutations in KRT85 are known to cause hair and nail ectodermal dysplasia, which is a
congenital disorder characterised by hypotrichosis (where little to no hair growth occurs)
and nail dystrophy (which includes abnormalities in the shape, texture and growth of nails)
(Shimomura et al., 2010). The adult matrix cells also highly express LGALS1 (Galectin 1),
which is known to play an important role in cell proliferation and differentiation, which is
also in keeping with matrix cells self-renewing and terminally differentiating into cells that
form the concentric layers of the hair shaft in the anagen growth phase (Chen et al., 2020a).
Furthermore, in murine models, LGALS1 was identified to be a key secreted protein that
is enriched in embryonic skin and is essential and sufficient, alongside apolipoprotein-Al
(APOAL1) and lumican (LUM), to induce new hair follicles by activating Wnt and IGF
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(insulin-like growth factor) signalling in hair follicle related cells (Fan et al., 2018). The
adult matrix keratinocyte cells in anagen phase also differentially expressed FABP5 (Fatty
acid binding protein 5), which encodes an intracellular carrier protein that delivers retinoic
acid to the nuclear receptor PPAR-3 (peroxisome proliferator-activated receptor-delta,
which promotes keratinocyte proliferation and survival (Di-Por et al., 2003; Morgan,
Kannan-Thulasiraman and Noy, 2010). Furthermore, FABP5 has been shown to be a
prominent marker of anagen follicle bulbs, which has a dynamic regulatory role during
adult hair follicle cycling, as evidenced by blockage of Wnt/p-catenin signalling leading to

an upregulation of FABPS5 expression (Collins and Watt, 2008).

When compared with adult matrix cells, prenatal and skin organoid placode/matrix cells
showed differential expression of genes involved in immune recruitment and signalling
(Figure 71). For example, CXCL14 (C-X-C Motif Chemokine Ligand 14) was highly
expressed, which encodes a cytokine that displays chemotactic activity for immune cells,
including monocytes and dendritic cells (Meuter et al., 2007). Depletion of CXCL14 has
also been shown to inhibit the accumulation of regulatory T cells (Tregs), whereas
supplementation had the opposite effect in a murine model, with CXCL14 promoting
interleukin-2 (IL-2)-induced Treg differentiation (Lee et al., 2017). The prenatal and skin
organoid placode/matrix cells also highly expressed CD24 (Cluster of differentiation 24),
which encodes a cell signalling molecule that modulates immune responses and has a
pivotal role in regulating cell differentiation (Kim et al., 2014b; Ayre et al., 2016). CD24
has also been shown to be highly expressed in the rapidly dividing bulge cells of the murine
hair follicle, which has the growth potential expected from stem cells (Magnaldo and
Barrandon, 1996), mirroring the proliferating and differentiation potential of matrix cells
during development. The expression of immune recruiting and signalling genes in the
developmental placode/matrix cell states compared to the equivalent cells in the adult hair
follicle signifies a potential role of immune cells during hair follicle morphogenesis. This
is supported by the results of the multiplex RNA in situ hybridisation experiment presented
in section 5.2.1.2 where FOXP3" Tregs were shown to localise within and around the
developing hair follicle at 15 PCW (Figure 67).

The placode/matrix cells in prenatal skin and skin organoid also differentially expressed
KRT17 (Keratin 17) and KRT19 (Keratin 19) (Figure 71). KRT17 is mainly expressed
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within appendageal structures, including the hair follicle, nail bed and sebaceous glands
(McGowan and Coulombe, 2000). Interestingly, keratin 17 also has a role in hair follicle
cycling, as demonstrated by deficits observed in keratin 17 null mice. Alopecia develops
in the first week postnatally in keratin 17 null mice, correlating with hair shaft fragility and
untimely TNF-a dependent apoptosis in the hair bulb (Tong and Coulombe, 2006), which
is where matrix cells are located. KRT19 is also expressed by placode/matrix cells during
development (Figure 71), which is known to be expressed in highly proliferative postnatal
human hair follicle bulge stem cells (Rittie et al. 2009), mirroring the biological behaviour
across these cell states.

This analysis highlights the transcriptional and biological differences between placode and
matrix cells during development and in adulthood during the anagen hair follicle growth
phase. The findings suggest a role for immune cell recruitment during development and
demonstrates parallels between our current understanding of hair follicle biology in the
literature and the possible roles that highly expressed genes in development and adulthood

may have.

5.2.4. Trajectory inference of epithelial cell types

To further understand the mechanisms underlying hair follicle neogenesis, the
differentiation trajectory between prenatal skin epithelial cell states was investigated next.
Fate-mapping and live imaging experiments using murine embryonic models have shown
that the invaginating placode differentiates into the matrix, which in turn differentiates into
the inner layers of the hair follicle, including the inner root sheath, cuticle and cortex
(Saxena, Mok and Rendl, 2019; Morita et al., 2021; Mesler et al., 2017). Previous murine
studies have reported that the companion layer arises from the hair matrix (Mesler et al.,
2017; Gu and Coulombe, 2007), whereas the outer root sheath has been thought to extend
directly from basal epidermal cells (Hardy, 1992; Sequeira and Nicolas, 2012).

In recent years, single cell transcriptomic data has been leveraged to allow the calculation
of differentiation trajectories between a group of cell states (Tritschler et al., 2019). A
widely-used computational package to carry out trajectory analyses is called Monocle3,
which orders cells on a psuedotemporal scale by detecting gradual transcriptional changes
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along a cellular differentiation pathway (Trapnell et al., 2014). To date, trajectory inference
using scRNA-seq data on human prenatal hair follicle cell states during the gestational
period in which hair follicle neogenesis occurs has not been previously reported; previous
SCRNA-seq studies on human prenatal skin have been restricted to immune cell populations
only (McFaline-Figueroa, Trapnell and Cuperus, 2020), as discussed section 4.1.
Furthermore, although murine models have provided valuable insights into cell fates during
hair follicle morphogenesis, it remains unclear at present how precisely these models
recapitulate the cellular and molecular processes underpinning hair follicle development in

humans.

An inferred trajectory and pseudotime analysis that included the prenatal epithelial hair
follicle cell states was therefore carried out using Monocle3 (McFaline-Figueroa, Trapnell

and Cuperus, 2020), which revealed the following differentiation trajectories:
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Figure 72: Inferred trajectory of hair follicle epithelial cell differentiation. Pseudotime
trajectory analysis using Monocle3 shows epithelial cell states differentiating along outer

root sheath / companion layer and inner root sheath trajectories.

This inferred trajectory analysis predicted the differentiation of POSTN™ basal cells into
DPYSL2" basal cells, prior to bifurcation into two trajectories. Along one trajectory, the
DPYSL2" basal cells differentiate into placode/matrix cells then the cuticle/cortex and inner

root sheath cells, which will be referred to as the inner root sheath trajectory. Along the
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other trajectory, the DPYSL2" basal cells differentiate into the outer root sheath cells
together with the companion layer cells, which will be referred to as the outer root sheath /

companion layer trajectory.

In addition to the analysis output being visualised based on cell states along each trajectory
above (Figure 72), the graph embedding was visualised based on the Monocle3 derived

pseudotime and gestational age (PCW):
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Figure 73: Inferred trajectory of hair follicle epithelial cell differentiation, coloured by

pseudotime (left) and gestational age (PCW) (right).

These UMAP visualisations highlight that prenatal epithelial hair follicle cell states that
were ordered on a pseudotime scale based on their transcriptional changes along a
differentiation trajectory were obtained from prenatal samples of varied gestational ages
between 14 and 16 PCW, and that pseudotime does not directly correlate with gestational
age (Figure 73). This lends further support to power of single cell transcriptomic analysis
to detect subtle molecular changes between individual cell states, allowing differentiation
trajectories to be inferred, and that relying on morphological observations of hair follicle

development over time alone has limitations.

The findings of the pseudotime trajectory are largely in agreement with what has previously
been reported in the literature about skin and hair follicle morphogenesis. POSTN* basal
cells are known to represent a basal cell stem cell population present until at least newborn

life, and which are not present in adult skin (Wang et al., 2020b). Furthermore, some basal
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cell populations in the epidermis are known to differentiate into the placode at sites where
hair follicles eventually develop, whereas other basal populations form either the
interfollicular epidermis or outer root sheath surrounding the hair follicle (Schneider,
Schmidt-Ullrich and Paus, 2009; Sequeira and Nicolas, 2012). However, several previous
studies have suggested that the companion layer arises alongside the inner root sheath from
the hair matrix (Mesler et al., 2017; Gu and Coulombe, 2007), as discussed earlier in this
section above. This pseudotime trajectory analysis on prenatal human skin showed that the
companion layer arises along the same differentiation pathway as the outer root sheath from
DPYSL2" basal cells, independent of the hair matrix (Figure 73). In support of the findings
of this analysis, a recent single cell analysis of murine hair follicles also showed greater
transcriptional similarity of companion layer cells to outer root sheath cells rather than the
inner root sheath cells, which was unexpected based on previous reports in the literature
(Joost et al., 2020).

To understand the molecular mediators underlying each differentiation trajectory, genes
that were highly expressed along the outer root sheath / companion layer trajectory and the
inner root sheath trajectory were derived. Expression of the derived genes across the
pseudotime trajectory embedding is shown in Figure 74 below, and expression across

distinct epithelial cell states within the trajectories is shown in Figure 75 below.
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Figure 74: Inferred trajectory of hair follicle epithelial cell differentiation, coloured by

gene expression (log-transformed).
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Figure 75: Genes differentially expressed along the outer root sheath / companion layer
and inner root sheath trajectories. Dot plot shows expression of variance-scaled, mean

expression (dot colour) and percent of expressing cells (dot size).

Along the outer root sheath / companion layer trajectory, genes that are previously reported
to be involved in outer root sheath differentiation were identified, including BARX2 and
SOX9 (Figure 74 and Figure 75). BARX2 (BARX Homeobox 2) encodes a transcription
factor that has been shown to be expressed in the outer root sheath of adult animal hair
follicles, though not in the inner root sheath, hair shaft or dermal hair follicle cells (Sander
et al., 2000). During development, it is expressed throughout the embryonic ectoderm but
is transiently downregulated at the onset of hair follicle morphogenesis. BARX2 expression
is then observed within epithelial cells of the developing hair follicle except for cells within
the placode and matrix that eventually differentiate into the inner root sheath and hair shaft
(Sander et al., 2000), which is in accordance with the findings of the human prenatal skin
gene expression analysis across the inferred trajectory (Figure 74 and Figure 75). BARX2
has been shown to have an important role in maintaining keratinising epithelial structures
and regulate hair follicle remodelling (Olson et al., 2005; Sander et al., 2000). SOX9 (SRY-
Box Transcription Factor 9) encodes a transcription factor that has been shown to be
essential for outer root sheath differentiation in murine models, though is dispensable for

the initiation of hair follicle morphogenesis (Vidal et al., 2005).

This inferred trajectory analysis across the prenatal human epithelial hair follicle cell states
also revealed new several genes that have not previously been reported to be related to
outer root sheath differentiation, including SPON2 and DAPL1. SPON2 (Spondin 2)

encodes the integrin ligand mindin with diverse roles in various tissues, including the
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positive regulation of cytokine production and recruitment of lymphocytes, which relates
to the possible role of immune cells in hair follicle morphogenesis. DAPL1 (Death
associated protein like 1) has been found to be expressed in epithelial cells directly above
the proliferative compartment, including the epidermis and cornea, and has been speculated
to have an important role in the early stages of epithelial cell differentiation and apoptosis
(Sun et al., 2006; Chen et al., 2021b), which is in keeping with the high expression of
DAPL1 found along the outer root sheath trajectory from basal skin cells (Figure 74 and
Figure 75).

Along the inner root sheath differentiation trajectory, DPYSL2" basal cells that were
predicted to differentiate into the placode/matrix, cuticle/cortex and inner root sheath
showed high expression of known matrix cell markers, including SHH and WNT10B
(Saxena, Mok and Rendl, 2019; Joost et al., 2020), which are regulators of the Wnt/j-
catenin signalling pathway. SPON2 and AGR2 were observed to be downregulated along
the inner root sheath trajectory. In addition to the immune response function of SPON2
discussed above, SPON2 has also been reported to have an important role cellular adhesion
(Feinstein et al., 1999; Jia, Li and He, 2005). Loss of AGR2 (Anterior Gradient 2), a
molecular chaperone involved in the assembly of cysteine-rich receptors enriched in hair
follicles, has been shown to promote cell migration (Martisova et al., 2022; Delom et al.,
2020). Together, these findings suggest that reduced cellular adhesion and increased
cellular migration properties in DPYSL2* basal cells are involved in matrix specification

and dermal invagination.

The analysis above compared broad gene expression differences between the outer root
sheath / companion layer trajectory and the inner root sheath trajectory, and therefore,
further characterisation of the dynamically expressed genes underpinning each trajectory
separately was investigated next. Differentially expressed genes across pseudotime were
calculated and the results are shown as a heatmap of gene expression for the outer root
sheath trajectory / companion layer in Figure 76 and for the inner root sheath trajectory in
Figure 77.
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Figure 76: Heatmap showing differentially expressed genes across pseudotime along the

outer root sheath/companion layer trajectory.

This analysis highlights genes that are dynamically upregulated during the differentiation
of prenatal epithelial cell states from POSTN™ basal cells to DPYSL2" basal cells, then to
outer root sheath cells then companion layer cells across Monocle3-inferred pseudotime.
Interestingly, the temporal expression of GJB6 and DSP that underpin outer root sheath
and companion layer development are also implicated in congenital hair diseases. This will
be discussed and explored in further depth in section 5.2.7, which covers pathological
processes during skin and hair morphogenesis.
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Figure 77: Heatmap showing differentially expressed genes across pseudotime along the

inner root sheath trajectory.

The differentially expressed gene analysis across pseudotime for the inner root sheath
trajectory highlights genes that are dynamically upregulated during the differentiation of
POSTN™ basal cells to DPYSL2* basal cells, then to placode/matrix cells then inner root
sheath cells. This analysis revealed that PVRL4 and DSC3 are expressed during the later
stages of this differentiation pathway, which are genes are also implicated in specific

subtypes of congenital hair diseases. This will be also discussed further in section 5.2.7 on

skin and hair pathology.
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5.2.5. Trajectory inference of fibroblast cell types

Having characterised the differentiation trajectory of epithelial cell states in prenatal skin,
the dermal cell types that are involved in crosstalk with epithelial cells during early hair
follicle development were investigated next. Within the human prenatal skin single cell
dataset, mesenchymal cell states of the developing hair follicle were characterised, and a
population of pre-dermal condensate cells was identified. Pre-dermal condensate cells have
not previously been reported in human studies but are known to be a transitional fibroblast
state involved in murine hair follicle development (Mok et al., 2019; Ma et al., 2022;
Abbasi et al., 2021). Pre-dermal condensate cells in embryonic mouse skin are unclustered
within the dermis, and aggregate to form the dermal condensate after epidermal placode
formation (Mok et al., 2019). The dermal condensate cells form a microanatomical
signalling niche with placode cells to regulate ongoing hair follicle development. The hair
germ then extends down into the dermis with the dermal condensate cells at the leading
edge. After the hair germ becomes an elongated hair peg, dermal condensate cells become
encapsulated within the hair shaft-producing bulb region as dermal papilla cells (Saxena,
Mok and Rendl, 2019; Grisanti et al., 2013). Notably, the pre-dermal condensate and
dermal condensate cells are only present in prenatal skin and not in adult skin in human
and mouse (Mok et al., 2019), with self-renewing dermal cells maintaining the dermal
papilla during adult hair follicle cycling (Rahmani et al., 2014; Wang et al., 2020a).

To infer the origin of the pre-dermal condensate, dermal condensate and dermal papilla
cells in human prenatal skin during hair follicle morphogenesis, inferred trajectory analysis
was performed using Monocle3 across the different fibroblast clusters in the prenatal skin

dataset. The output of this analysis is shown as a graph embedding below:
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Figure 78: Inferred trajectory of hair follicle fibroblast differentiation. Pseudotime
trajectory analysis using Monocle3 shows fibroblast differentiation along the ‘hair

fibroblast’ and ‘dermal fibroblast’ trajectories.

The inferred trajectory analysis predicted that HOXC5™ early fibroblasts, which are absent
after 11 PCW (Figure 60), differentiate along two distinct paths. Along one trajectory, the
HOXCS5" early fibroblasts differentiate into pre-dermal condensate cells, then into dermal
condensate cells then into dermal papilla cells, which will be referred to as the hair
fibroblast trajectory (Figure 78). This finding is in accordance with hair fibroblast
differentiation observed in murine studies, discussed above (Mok et al., 2019; Ma et al.,
2022; Abbasi et al., 2021).

Along the second trajectory, the HOXC5™ early fibroblasts differentiate into WNT2*
fibroblasts then into PEARL™ fibroblasts, which is referred to as the dermal fibroblast
trajectory here (Figure 78). As this study aims to delineate the cellular and molecular
processes underlying prenatal hair follicle morphogenesis, the focus of the interpretation
will be on the hair-specialised fibroblasts. Downstream analyses will also focus on the hair
fibroblast trajectory and the genes underpinning this differentiation pathway later in this

section.

181



In addition to the analysis output being visualised based on cell states along each trajectory
above (Figure 78), the graph embedding was visualised based on the Monocle3 derived

pseudotime and gestational age (PCW):
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Figure 79: Inferred trajectory of fibroblast differentiation, coloured by pseudotime (left)
and gestational age (PCW) (right).

These UMAP visualisations demonstrate the that the prenatal hair follicle fibroblast cell
states that are at the distal end of the inferred trajectory are found in mostly later gestational
age samples, which is in keeping with the sampling period spanning the stages in which
the hair follicle first forms. This gives biological support to this computational approach in

which cell transcriptomes are ordered on a pseudotime scale to predict differentiation paths.
Differentially expressed genes across pseudotime were calculated next to determine the

dynamic transcriptomic changes unpinning the hair fibroblast trajectory. The results are

shown as a heatmap of gene expression in Figure 80.
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Figure 80: Heatmap showing differentially expressed genes across pseudotime along the
hair fibroblast trajectory.

This analysis highlights genes that are dynamically upregulated across the hair fibroblast
trajectory and provides further insights into the processes involved during prenatal hair
specialised fibroblast differentiation into the dermal papilla. Several notable genes were
upregulated by HOXC5* early fibroblasts as they differentiate into pre-dermal condensate
cells, including TGFB1 (Transforming Growth Factor Beta 1), which is involved in the
reduction of cell-matrix adhesion (Boguslawska et al., 2016; Shelton and Rada, 2009),
CLDN11 (Claudin 11), which has a role in the maintenance of cell-cell contact (Wessells
et al., 2009) and CXCL12 (C-X-C Motif Chemokine Ligand 12), which mediates directed
cell migration (Dillenburg-Pilla et al., 2015). Pre-dermal condensate are known from
murine studies to migrate to the epidermis at this stage of their differentiation, and these
dynamically upregulated genes support the process of collective cell migration (Mok et al.,
2019; Li etal., 2019).

As the pre-dermal condensate cells aggregate and differentiate to form the dermal

condensate cells, genes implicated in collagen fibril formation and cell adhesion, including
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LUM (Lumican) and ABI3BP (ABI Family Member 3 Binding Protein) were upregulated
(Krishnan et al., 2012; Hsiao et al., 2020; Delfin, DeAguero and McKown, 2019) (Figure
80). Formation of the dermal condensate was characterised by genes such as RSPO3 (R-
Spondin 3) and SOX2 (SRY-Box Transcription Factor 2) (Figure 80). SOX2 is known to be
expressed from the dermal condensate stage in mouse hair follicles, but its expression is
restricted to the dermal papilla in humans (Weber et al., 2020). RSPO3 and SOX2 are
involved in spatially coordinating the migration and proliferation of the adjacent hair matrix
epithelial cells (Saxena, Mok and Rendl, 2019; Hagner et al., 2020; Takeo, Lee and Ito,
2015).

5.2.6. Mesenchymal-epithelial cellular crosstalk during hair follicle neogenesis

Embryonic hair follicle formation is known to rely on the exchange of tightly regulated
molecular signals between mesenchymal and epithelial cells (Millar, 2002). However, our
understating of these inductive processes have largely been inferred from murine studies
(Mok et al., 2019; Saxena, Mok and Rendl, 2019), and to date, single cell transcriptomic
data of non-immune as well as immune cells in prenatal skin spanning the period of hair
follicle neogenesis has not been previously published. This data was therefore leveraged to
interrogate the mesenchymal-epithelial interactions that are implicated in early human hair
follicle formation. Cell-cell communication analysis using CellphoneDB (Efremova et al.,
2020) was carried out, which predicts ligand-receptor interactions between cell states.
Various mesenchymal and epithelial cell populations are only present during specific time
periods, as was demonstrated in the differential abundance analysis across gestation in
section 4.2.7 and the trajectory analyses in sections 5.2.4 and 5.2.5, which was factored
into the analysis. Cell-cell communication between HOXC5* early fibroblasts and pre-
dermal condensate cells were both tested against immature basal cells present until 11PCW,
and cell-cell communication between dermal condensate cells and dermal papilla cells were
both tested against epithelial cells present from 12 PCW (including DPYSL2" basal cells,
POSTN" basal cells, outer root sheath cells, companion layer cells, inner root sheath cells
and cuticle/cortex cells. The output of the analysis is shown as a heatmap below (Figure
81).
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Figure 81: Mesenchymal-epithelial cell interaction analysis. Heatmap visualisation of
significant (adjusted p-value <0.05) predicted interactions (CellphoneDB) between hair
mesenchymal cell states and early epithelial cells (<11 PCW, immature basal) or late
epithelial cells (=12 PCW, DPYSL2" basal, POSTN™ basal, placode/matrix, outer root
sheath, companion layer, inner root sheath, cuticle/cortex) in prenatal skin. Colour scale
represents the mean expression values of each ligand-receptor pair for the corresponding

pairs of cell types.

This mesenchymal-epithelial cell-cell communication analysis across the gestational
period in which human hair follicles first develop revealed several insights into the
molecular signals underlying this process. For example, the CXCL12 ligand on HOXC5*
early fibroblasts and pre-dermal condensate cells was shown to interact with the ACKR3
(Atypical Chemokine Receptor 3) receptor on immature basal cells until 11 PCW (Figure
81). In order to further characterise the temporal and cellular specificity of signalling via
CXCL12 during hair follicle formation, CXCL12 gene expression was analysed across the
different hair follicle related fibroblast subsets and across gestational age, as shown in the

violin plots below in Figure 82.
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Figure 82: Violin plots showing expression of CXCL12 in hair follicle mesenchymal cells
by cell type (left) and gestational age (right). Gene expression values on the y-axis are

log-transformed, normalised and scaled.

This analysis showed that CXCL12 expression by hair follicle dermal cells was highest in
HOXC5* early fibroblasts and pre-dermal condensate cells, and expression was
downregulated after 12 PCW (Figure 82), suggesting that CXCL12 interacts with the
ACKR3 receptor on epithelial cells. CXCL12 is known to have an important role in directed
cell migration (Dillenburg-Pilla et al., 2015; Belmadani et al., 2009) and was shown to be
dynamically upregulated in the trajectory analysis during pre-dermal condensate
differentiation (Figure 80). Collectively, this suggests that CXCL12 interacts with the
ACKR3 receptor on epithelial cells and mediates the migration of pre-dermal condensate

cells to form the dermal condensate.

Formation of the dermal condensate is known to be accompanied by dermal invagination
of the placode/matrix, and the cell-cell communication analysis revealed that FAM3C
(FAM3 Metabolism Regulating Signalling Molecule C) expressed on dermal condensate
cells was predicted to interact with LAMP1 (Lysosomal Associated Membrane Protein 1)
and with CXDAR (CXADR Ig-Like Cell Adhesion Molecule) expressed on hair follicle
epithelial cells beyond 12 PCW (Figure 81). FAM3C encodes a secreted signalling protein
that is known to promote cell migration and invasion (Kral et al., 2017; Yin et al., 2018),
which is likely to facilitate dermal condensate encapsulation within the developing hair
bulb. Furthermore, EFNB1 (Ephrin B1) on dermal condensate cells were predicted to
interact with EPHB6 (EPH Receptor B6) on hair follicle epithelial cells (Figure 81). EFNB1

encodes a transmembrane signalling protein that has been shown to have an important role
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in epithelial cell migration during development and wound healing (Moore et al., 2004;
Nunan et al., 2015), which reflects the developmental processes at this stage of hair follicle

morphogenesis.

The cell-cell communication analysis revealed that dermal papilla cells expressing RSPO3
were predicted to interact with LGR4/6 (Leucine Rich Repeat Containing G Protein-
Coupled Receptor 4/6) on hair follicle epithelial cells beyond 12 PCW (Figure 81). As
discussed in section 5.2.5, where inferred trajectory analysis of hair specialised fibroblasts
showed an upregulation of RSPO3 at the late stages of differentiation into dermal papilla
cells, RSPO3 is known to contribute to the proliferation of adjacent hair matrix epithelial
cells (Saxena, Mok and Rendl, 2019; Hagner et al., 2020).

The following schematic summarises the results and interpretation of the analyses detailed
in this chapter on the developmental cellular processes underlying hair follicle neogenesis,
with a focus on the mesenchymal-epithelial interactions described in this section (Figure
83).
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Figure 83: Schematic representation of mesenchymal-epithelial signalling and cellular
processes involved during hair formation. Image created with BioRender.com by Chloe

Admane.

During the early stages of prenatal skin development, HOXC5" early fibroblasts
differentiate into pre-dermal condensate cells, which involves an upregulation of genes and
cell-cell interactions that mediate fibroblast cell migration to the epidermis and fate

specification of epidermal cells to proliferate and form placodes. Subsequently, the dermal
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condensate forms, which involves collagen fibril formation, and abuts the invaginating
placode, which is reflected in an upregulation of genes and cellular crosstalk involving
cellular migration and invasion. Beyond 12 PCW, as the hair peg extends down into the
dermis, the dermal papilla forms and becomes encapsulated within the hair bulb, interacting
with epithelial matrix cells to regulate keratinocyte proliferation to form the developing
hair shaft.

5.2.7. Gene mutations implicated in skin and hair diseases and the support for disease

modelling in vitro

Having mapped the formation and differentiation of human prenatal skin hair follicles at a
single cell level, this information was then leveraged to gain insights into genetic hair
disorders. As briefly mentioned in section 5.2.4, genes that were dynamically expressed
during the differentiation of prenatal epithelial cell states along the outer root sheath /
companion layer trajectory included GJB6 (Gap Junction Protein Beta 6) and DSP
(Desmoplakin). GJB6 was upregulated when epithelial cell states along the trajectory had
differentiated into DPYSL2" basal cells, whereas DSP was upregulated at the distal end of
the differentiation pathway when cells had differentiated into companion layer cells
surrounding the hair shaft.

Interestingly, GJB6 and DSP are implicated in different subtypes of congenital diseases
that affect hair development, which reflects important role of these genes during hair
follicle formation prenatally. Mutations in GJB6 leads to a condition called Clouston
syndrome, a rare autosomal dominant genetic skin disease that is also known as hidrotic
ectodermal dysplasia (Liu et al., 2015). Ectodermal dysplasias are a heterogeneous group
of genetic diseases in which the ectodermal layer of the embryo fails to develop normally,
which can affect the skin, hair, nails and sweat glands (Wright et al., 2019). Different
subtypes of ectodermal dysplasia are characterised by specific disease manifestations that
depend on the gene mutations underlying each disease subtype, the cells that they are
expressed in and their expression during earlier or later development, affecting the severity
of the disease (Deshmukh and Prashanth, 2012). Individuals affected by Clouston
syndrome have pale, fine, sparse hair that grows very slowly, and in some cases, hair loss
(alopecia) may occur. The eyelashes and eyebrows are also either absent or short and sparse

(Cammarata-Scalisi et al., 2019). Clouston syndrome is also characterised by nail
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dystrophy (abnormalities in the growth of the nails) and palmoplantar hyperkeratosis
(thickening of the skin of the palms and soles) (Liu et al., 2015). As a type of hidrotic
ectodermal dysplasia, Clouston syndrome does not affect the sweat glands, whereas
hypohidrotic ectodermal dysplasias affect the ability to produce sweat (Reyes-Reali et al.,
2018). The clinical manifestations of Clouston syndrome highlight the important role of

GJB6 in ectodermal development of the skin and its appendages, including the hair follicle.

Desmoplakin is encoded by the DSP gene and is a cytoskeletal component of desmosomes
that mediates cell-cell adhesion in epithelial structures, including the skin and hair follicle
(Brooke, Nitoiu and Kelsell, 2012). Mutations in DSP are known to cause skin fragility-
woolly hair syndrome, which is a rare autosomal recessive condition characterised by
excessive skin blistering secondary to minimal mechanical trauma, and thin woolly hair
that is very kinked and difficult to brush (Al-Owain et al., 2011). Some cases are also
associated with cardiomyopathy, due to the role of desmoplakin in cardiac myocyte
intercellular junctions (Brand&o et al., 2023; Al-Owain et al., 2011). Expression of DSP
along the outer root sheath trajectory of epithelial differentiation of the hair follicle and the
disease manifestations caused by mutations of DSP highlight its role in skin and hair

morphogenesis.

As briefly mentioned in section 5.2.4, genes that were dynamically expressed during the
differentiation of prenatal epithelial cell states along the inner root sheath trajectory
included PVRL4 (Nectin Cell Adhesion Molecule 4) and DSC3 (Desmocollin 3). Both
genes were upregulated at the distal end of the differentiation pathway after matrix cells
had differentiated into inner root sheath cells. PVRL4 is implicated in a congenital disorder
known as ectodermal dysplasia — syndactyly syndrome, which is characterised by sparse,
thin hair affecting the scalp, eyebrows and eyelashes, and alopecia in some cases. Affected
individuals also have palmoplantar keratoderma, hypoplastic small and underdeveloped
nails, conical-shaped teeth and cutaneous syndactyly, where fingers are webbed or fused
together at birth (Raza et al., 2015). Desmocollin 3 is a component of intercellular
desmosome junctions (Petrof, Mellerio and McGrath, 2012), and mutations in DSC3 are
known to cause a congenital condition called hypotrichosis and recurrent skin vesicles
(Ayub et al., 2009). The scalp hair of affected individuals is sparse and fragile, and
eyebrows and eyelashes are absent. Vesicles are small fluid-filled lesions that develop
across most of the body of individuals with this disease. The manifestations of these
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diseases highlight the critical role that these genes have during skin and hair follicle

development.

To gain further insights into the role of these genes implicated in disease during
development, the prenatal single cell data was leveraged to determine the level of gene
expression across the cell states involved in hair follicle development, which is shown in
Figure 84 below. Furthermore, the expression of these genes was determined within cell
states of the hair-bearing skin organoid model single cell dataset (Lee et al., 2020) in order
to determine whether the gene expression is similar across these cell states and the potential

utility of the skin organoids to study disease (Figure 84).
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Figure 84: Genetic hair diseases. Dot plot showing variance-scaled expression of genes
implicated in genetic hair diseases in prenatal skin (P; green) and skin organoid skin
(Lee et al., 2020) (O; blue). Mean expression is represented by dot colour and percentage

of expressing cells is represented by dot size.

This analysis showed that the genes implicated in the genetic skin and hair diseases
discussed above are expressed within hair follicle related epithelial cell states rather than
hair specialised fibroblasts, reflecting their role in epithelial integrity, and which is
supported by their expression along the outer root sheath / companion layer and inner root
sheath trajectories, as shown in section 5.2.4. Furthermore, there are differences in the level
of expression of some genes between the hair follicle epithelial cells, reflecting the

heterogeneous clinical manifestations across these disease conditions. Interestingly, the
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genes implicated in the congenital skin and hair diseases are similarly expressed in
equivalent cell states in the skin organoid model (Figure 84), illustrating the potential value

of skin organoids as a disease modelling tool for studying these disorders.

The inferred trajectory and differentially expressed gene expression analysis of hair
specialised fibroblasts across pseudotime, which was presented in section 5.2.5, revealed a
panel of genes that regulate the differentiation process from HOXC5™ early fibroblasts to
pre-dermal condensate cells, then to dermal condensate cells, then to dermal papilla cells.
Interestingly, several of the genes upregulated during this differentiation pathway are also
known, from genome-wide association studies (GWAS), to be associated with
androgenetic alopecia, which is a genetically predetermined disorder characterised by an
excessive response to androgens that causes patterned hair loss (Lolli et al., 2017).
Androgenetic alopecia is sometimes known as male-pattern baldness, and affects up to 80%
of the male population, causing bitemporal and vertex hair thinning and loss. However,
androgenetic alopecia also affect up to 50% women, causing hair thinning across the frontal
and parietal scalp, with retention of the anterior hair line (Piraccini and Alessandrini, 2014;
Price, 2003). GWAS studies have reported that the following genes that are expressed along
the hair fibroblast trajectory (Figure 80) are associated with androgenetic alopecia: TWIST2
(Twist Family BHLH Transcription Factor 2), MEF2C (Myocyte Enhancer Factor 2C) and
ALPL (Alkaline Phosphatase) (Pirastu et al., 2017; Marcinska et al., 2015). Together, these
genes are known to be involved in androgen receptor sensitivity and Wnt signalling (Kwack
et al., 2019; Jacob et al., 2021; Wyce et al., 2010), which supports their role in the
pathogenesis of androgenetic alopecia in which the hair follicle miniaturises in response to

circulating androgens.

The gene expression of TWIST2, MEF2C and ALPL across the hair follicle related prenatal
and organoid single cell populations was determined to gain further insights into their role
during development and assess whether the skin organoid cells demonstrate similar

expression patterns to in vivo skin cells:
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Figure 85: Androgenetic alopecia. Dot plot showing variance-scaled expression of genes
implicated in androgenetic alopecia in prenatal skin (P; green) and skin organoid skin
(Lee et al., 2020) (O; blue). Mean expression is represented by dot colour and percentage

of expressing cells is represented by dot size.

This analysis shows that the expression of genes associated with androgenetic alopecia is
restricted to hair follicle specialised fibroblasts rather than epithelial cells. Expression of
ALPL is highest in the dermal papilla cells, which reflects its upregulation at the distal end
of the hair fibroblast differentiation pseudotime trajectory (Figure 80), whereas expression
of MEF2C and TWIST2 is higher in pre-dermal condensate cells and dermal condensate
cells, reflecting their upregulation at an earlier stage of the pseudotime trajectory. This
supports the hypothesis that early mesenchymal differentiation relating to hair follicle
formation may be altered in utero and contribute towards developing androgenetic alopecia
in adult life (Pirastu et al., 2017; Marcinska et al., 2015; Heilmann-Heimbach et al., 2016).
As was observed for the genes expressed in epithelial cell states that are implicated in
congenital skin and hair diseases, a similar pattern of expression between prenatal and skin
organoid cell states was seen across the fibroblast populations for genes implicated in
androgenetic alopecia. This provides further support to the utility hair-bearing skin
organoid models to investigate diseases that affect both the epithelial and mesenchymal

compartments of the hair follicle during development.

In order to extend the notion and value of skin organoids as a model for skin diseases, the
expression of genes causing an inherited blistering skin disorder called epidermolysis
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bullosa was assessed. Epidermolysis bullosa presents at birth or during early infancy,
suggesting in utero onset of the disease (Has et al., 2020), and has traditionally been
classified into different subtypes depending on the site of formation of blisters within the
skin layers: epidermolysis bullosa simplex (EBS) causes blistering within the epidermis,
junctional epidermolysis bullosa (JEB) causes blistering at the level of the skin basement
membrane, dystrophic epidermolysis bullosa (DEB) causes blistering below the level of
the basement membrane and Kindler epidermolysis bullosa can cause intraepidermal,
junctional or dermal skin cleavage but is characterised by acral blister formation at the
distal extremities (Fine et al., 2008). Mutational analyses in conjunction with transmission
electron microscopy and immunofluorescence mapping has led to the development of
updated epidermolysis bullosa classification systems in which certain gene mutations can
lead to specific subtypes of the disease (Kotalevskaya and Stepanov, 2023; Has et al.,
2020). The expression of gene mutations implicated in different subtypes of epidermolysis
bullosa was determined across the prenatal and organoid cell populations to further

characterise their role during development in vivo and in vitro:
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Figure 86: Epidermolysis bullosa. Dot plot showing variance-scaled expression of genes
causing Epidermolysis Bullosa in prenatal skin (P; green) and skin organoid skin (Lee et
al., 2020) (O; blue). Mean expression is represented by dot colour and percentage of
expressing cells is represented by dot size.

This analysis showed a higher expression of genes implicated in EBS (KRT5, KRT14,
KLHL24, DST, EXPH5, PLEC and CD151), JEB (COL17A1, ITGA3, ITGAG, ITGB4,
LAMA3, LAMB3 and LAMC2), DEB (COL7Al) and Kindler epidermolysis bullosa
(FERMT1) in epithelial cells compared to mesenchymal cells. Interestingly, across the
epithelial cell subtypes, the highest expression of most genes (especially genes causing JEB
and DEB) was observed in POSTN™ basal cells (Figure 86). This suggests potential stronger

anchorage between POSTN™ basal epidermal cells and the basement membrane and dermis
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compared to other epithelial cell states (Wang et al., 2020b). Moreover, gene therapy
studies for DEB have identified that fibroblasts expressing COL7A1 may be a better target
for retroviral transfer than keratinocytes (Goto et al., 2006; Varki et al., 2007), and within
the dermal compartment, highest prenatal expression of COL7Al was observed in the
dermal condensate cells, which can help guide future gene therapy studies for
epidermolysis bullosa. When comparing the gene expression of epidermolysis bullosa
genes between prenatal skin and the skin organoid, a similar pattern of expression was seen
for most disease subtypes (Figure 86). As discussed in related to the other skin and hair
diseases discussed, this provides further support for the range of conditions that can be

modelled and studied using in vitro methods.

The prenatal and organoid datasets were also leveraged to better understand the
pathogenesis of congenital ichthyoses, a group of heterogeneous monogenic skin diseases
that lead to disordered keratinisation, skin scaling and hair loss. Congenital ichthyosis can
be associated with ophthalmic complications such as ectropion (outward turning of the
eyelid margin and symptoms due inadequate ocular lubrication) and ear complications such
as hearing loss (Mazereeuw-Hautier et al., 2019). In severe cases, such as a subtype known
as Harlequin ichthyosis caused by a mutation in ABCA12, congenital ichthyosis is
associated with premature death in neonatal life (Vahlquist, Ganemo and Virtanen, 2008).
Congenital ichthyoses are classified based on their clinical presentation and distinguishes
between non-syndromic ichthyoses that are confined to the skin (including autosomal
recessive congenital ichthyosis (ARCI), epidermolytic ichthyosis and erythrokeratodermia
variabilis (EKV)) and syndromic ichthyoses that affect the skin and other organ systems
(Mazereeuw-Hautier et al., 2019). The gene expression of mutations implicated in different

subtypes of congenital ichthyoses in prenatal and organoid skin is shown below:
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Figure 87: Congenital ichthyosis. Dot plot showing variance-scaled expression of genes

causing congenital ichthyoses in prenatal skin (P; green) and skin organoid skin (Lee et

al., 2020) (O; blue). Mean expression is represented by dot colour and percentage of

expressing cells is represented by dot size. ARCI = autosomal recessive congenital

ichthyosis, EKV = erythrokeratodermia variabilis.

This analysis showed that genes mutated in the syndromic forms of congenital ichthyosis

that involve other organ systems are expressed highly across both epithelial and

mesenchymal cell states, whereas genes causing non-syndromic forms with manifestations

predominantly confined to the skin are mostly expressed in epithelial cells (Figure 87).
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Furthermore, genes implicated in most congenital ichthyosis subtypes, particularly the
ARCIs, showed high expression in the hair follicle specialised epithelial cells. This
expression patten highlights the important role that the genes implicated in congenital
ichthyoses have in hair follicle development as well as skin morphogenesis, which is
reflected by the clinical manifestation of hair loss in affected individuals. Though there
were some differences in the expression patterns of disease related genes between prenatal
and skin organoid cell states, there is an overall similar pattern of expression across the
epithelial and dermal compartments. Therefore, these findings lay the foundations for
disease modelling using skin organoid systems and show that any future experiments
aiming to use skin organoids to model either congenital ichthyoses or other skin or hair
diseases must consider any cellular differences in disease related gene expression between

in vivo and in vitro skin.
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5.3. Discussion

In this Chapter, the de novo development of human hair follicles during prenatal life is
presented. This study represents the first single cell transcriptomic analysis of human
prenatal hair follicle specialised epithelial and stromal cells captured during the gestational
period in which hair follicles first develop. Human studies of prenatal hair follicle
formation have been limited to morphological descriptions (Schirren et al., 1997; Ersch and
Stallmach, 1999; Silva et al., 2020, 2021), and previous scRNA-seq studies on human
prenatal skin during this early period of gestation have profiled only immune cells, without
any skin epithelial and stromal context to the findings (Xu et al., 2021; Bian et al., 2020).
Our understanding of the cellular and molecular processes involved have been largely been
derived from studies on murine models (Mok et al., 2019; Saxena, Mok and Rendl, 2019),
however, it is unknown as to whether the precise mechanisms underlying skin and hair

follicle development are conserved between species.

The microanatomical structures within the skin during the gestational period in which
samples were collected were assessed using histological analysis and multiplex RNA in
situ hybridisation, confirming that hair follicles form during the second trimester of
gestation after 11 PCW. The epithelial and stromal cell states that contribute to hair follicle
formation were then characterised at a single cell level, allowing the integration and
comparison with a sSCRNA-seq dataset of adult hair follicles in the anagen growth phase of
the hair growth cycle (Takahashi et al., 2020). Interestingly, this revealed prenatal
development specific cell states in human skin and hair follicles, including interfollicular
cells and hair placode cells. Hair placode formation represents one of the initial stages of
hair follicle morphogenesis, and analysis of the transcriptomic profile of human placode
cells, their differentiation and intercellular interactions has provided unique insights into

human hair follicle development that cannot be inferred from adult skin data.

The prenatal skin and hair follicle single cell data was then leveraged to predict
differentiation trajectories of epithelial and dermal fibroblast cell states and calculate the
genes that are dynamically upregulated along these differentiation pathways. Within the
epithelial cell compartment, the analysis revealed two distinct differentiation trajectories
from basal keratinocytes into the placode/matrix, cuticle/cortex and inner root sheath along
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one differentiation pathway and basal keratinocytes into the outer root sheath and
companion layer along another. The companion layer is classically considered to arise
alongside the inner root sheath from the hair matrix (Sequeira and Nicolas, 2012; Saxena,
Mok and Rendl, 2019). However, the findings from the inferred trajectory analysis in
human prenatal epithelial cell states indicate that the companion layer arises along the same
differentiation pathway as the outer root sheath, independent of the hair matrix. This novel
finding has recently been supported by a murine fate-mapping study that showed that the
companion layer develops prior to matrix formation and in the absence of matrix cells
(Mesler et al., 2017). A recent single cell study of postnatal murine hair follicles also
supported the findings in human prenatal skin, which reported that companion layer cells
show a greater transcriptional similarity to outer root sheath cells than inner root sheath
cells (Joost et al., 2020). These studies highlight the power of single cell transcriptomic
data to detect cellular and molecular characteristics of cell states and how they relate to one

another along a differentiation path.

The inferred trajectory analysis of mesenchymal cells revealed a differentiation pathway
that leads to the development of hair specialised fibroblasts, in which HOXC5" early
fibroblasts differentiate into pre-dermal condensate cells, then into dermal condensate cells,
then into dermal papilla cells. HOXC5™ early fibroblasts also differentiate into dermal
fibroblasts that are not associated with the hair follicle. This resembles the differentiation
of hair specialised and dermal fibroblasts in murine skin, which also originate from a
common fibroblast progenitor (Driskell et al., 2013). Previous murine studies have also
identified pre-dermal condensate cells to be a transitional fibroblast cell state involved in
hair follicle formation (Mok et al., 2019; Ma et al., 2022; Abbasi et al., 2021), and this
study represents the first characterisation of pre-dermal condensate cells in human skin.
Furthermore, pre-dermal condensate and dermal condensate cells are uniquely found in
prenatal developing skin and are not present in adult human and murine skin (Mok et al.,
2019), which again highlights the need to sample prenatal skin during this stage of gestation
in order to be able to characterise the cellular mechanisms underlying hair follicle
formation. By leveraging the single cell transcriptomic data to calculate genes that are
dynamically upregulated along the hair fibroblast cell pseudotime trajectory and determine
cellular crosstalk between these mesenchymal cells and epithelial cell states, unique
insights into the molecular mechanisms regulating early hair follicle morphogenesis are
presented.
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It is important to note that prenatal skin samples until 16 PCW of gestation were collected
and processed in this study, and therefore, the dataset did not capture several mature hair
follicle related structures that develop later in gestation. The dermal sheath is a structure of
layered connective tissue that surrounds the outer root sheath layer of the hair follicle
(Martino, Heitman and Rendl, 2021), and a distinct cluster of dermal sheath cells were not
detected in this study. A recently published transcriptomic analysis of human prenatal scalp
skin from samples aged 16 and 17 PCW did however identify dermal sheath cells (Weber
et al., 2020), which is in keeping with the temporal difference in hair follicle development
across different anatomical sites. Furthermore, sebaceous gland and apocrine gland cells,
which eventually form part of the hair follicle unit, called the pilosebaceous unit, were not
captured in this study, as these structures are known to develop after 16 PCW (Akiyama,
Smith and Shimizu, 2000). Eccrine sweat glands also develop from around 20 PCW, and
therefore cell states that make up eccrine glands were also not captured in this study (Ersch
and Stallmach, 1999)

A further consideration to be made in the interpretation of this analysis is how accurately
the hair-bearing skin organoid model (Lee et al., 2020) can model skin and hair diseases.
The analyses presented in this chapter demonstrated that genes implicated in congenital
hair diseases, androgenetic alopecia, epidermolysis bullosa and congenital ichthyosis are
broadly similarly expressed epithelial and dermal cell states within prenatal and organoid
skin, lending support to the recapitulation of cellular and molecular manifestations of the
disease within the organoid model. However, as discussed in Chapter 3, the skin organoid
model lacks immune cells and has a paucity of endothelial cells when compared to in vivo
prenatal skin. The pathogenesis of the diseases discussed in this Chapter are complex,
mediated by the interactions of different cell states, and are known to be involve immune
cell infiltration and activation (Zhou et al., 2022; Akiyama, 2022; Huitema et al., 2021;
Patzelt et al., 2008). Therefore, future studies would be required to assess how disease gene
mutations manifest within a skin organoid model in vitro, and whether various aspects of

disease pathogenesis and treatment can be studied using this system.
Overall, this Chapter presented a morphological and single cell analysis of human prenatal

hair follicle formation spanning the gestational time period in which hair follicles first form.
A comparison with adult hair follicle cell states highlighted developmental specific cell
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states and pseudotime trajectory analyses revealed novel insights into the differentiation of
human hair follicle specialised epithelial cells and fibroblasts during prenatal life. The
cellular crosstalk between mesenchymal and epithelial cells was then explored to delineate
molecular mechanisms underlying the different stages of hair follicle formation. Lastly, the
genes dynamically upregulated during the differentiation of hair follicle cell states that are
known to be implicated in various skin and hair diseases were investigated further by
determining their expression in vivo and in vitro, exploring the potential utility of skin

organoids to model disease.
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Chapter 6: Overall discussion

The development of cutting-edge genomic technologies over the last few years to be able
to profile individual human cells and generate a spatial map of cells within their tissue
microanatomical context has provided exciting opportunities to gain unparalleled insights
into human biology and disease. Indeed, spatially resolved transcriptomics was announced
as “Method of the Year 2020” by Nature Methods in 2021 (Marx, 2021), highlighting the

impact of this technology for the wider research community.

The combined analysis of single cell transcriptomic data, which provides a detailed
characterisation of the molecular properties of individual cells, with spatial transcriptomic
Visium data allows the location of cell states within different tissues to be determined. A
recent scRNA-seq study conducted within our research group characterised the
perturbations occurring in adult psoriasis and eczema lesional and non-lesional skin
compared to healthy skin and inferred intercellular interactions mediating disease
pathogenesis (Reynolds et al., 2021). However, information about the microanatomical
location of individual cell states within skin tissues was lost in the generation of single cell
suspensions for profiling. The study presented in Chapter 3 of this thesis was therefore
carried out with the aim of addressing the biological question of how adult healthy skin cell

states are organised in situ and how this becomes perturbed in inflammatory skin disease.

A comprehensive spatial cell atlas of healthy, psoriasis lesional, psoriasis non-lesional,
eczema lesional and eczema non-lesional skin was generated and novel computational
approaches were developed to analyse the spatial transcriptomic data, allowing
comparisons of cell location and cell microenvironments between conditions to be made.
The results uncovered perturbations in spatial cell organisation within disease states that
involved various different cell lineages, including vascular endothelial cells, antigen
presenting cells, and innate and adaptive lymphoid cells. VVascular endothelial cell subtypes
2 and 3, which were shown in the single-cell analyses to highly express ACKR1 and interact
with macrophages via CXCL8 to mediate angiogenesis and lymphocyte recruitment

(Reynolds et al., 2021), were found in the spatial cell atlas to be enriched within the
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superficial dermis of psoriasis lesional, psoriasis non-lesional and eczema lesional skin
compared to healthy skin. Furthermore, dendritic cells, cytotoxic T cells and T helper cells
were shown in healthy skin to be distributed throughout the dermis, however, these cells
became significantly enriched within the superficial dermis of psoriasis and eczema
lesional skin. Skin cell states were also found to be microanatomically arranged into
discrete functional skin microenvironments in adult healthy skin, which became altered in
psoriasis and eczema lesional and non-lesional skin. For example, a spatial cellular
microenvironment containing adaptive lymphoid cells was identified in healthy skin to
which other immune cells migrated to in disease, including ILCs and Langerhans cell
subtype 1 in psoriasis and eczema lesional skin. Future work is required to systematically
investigate signalling occurring between cells within the same microenvironment to further
our understanding of disease pathogenesis and potentially identify novel therapeutic
targets. Data generated using Visium is not of single cellular resolution and intercellular
interactions are currently inferred from scRNA-seq data, which can predict receptor ligand
signalling occurring between two microanatomically distant cell states. Investigating
cellular signalling within distinct functional microenvironments could be achieved by
spatially profiling tissues at cellular or subcellular resolution. New technologies have
recently been developed with the aim of generating highly resolved spatial transcriptomic
data, including Seg-scope and Stereo-seq, which both use spatial barcoding to generate
unbiased transcriptome profiles at 0.5-0.8um and 0.22um resolution, respectively (Cho et
al., 2021a; Chen et al., 2022). High-definition (HD) spatial transcriptomics has also
recently been developed, which profiles tissues at 2um resolution (Vickovic et al., 2019);
this platform is due to become commercially available as Visium HD over the coming year
and leveraging this technology to investigate healthy and diseased skin tissue will allow us
to further characterise the molecular mediators underpinning different functional skin

microenvironments.

The importance of open access data sharing in biomedical research is becoming
increasingly recognised and valued, helping to facilitate interdisciplinary collaborations
and accelerate translational research (Armeni et al., 2021). In addition to ensuring that all
data from this research study is made publicly available to the wider research community,
| plan to work with research software engineers in our group to launch the spatial
transcriptomic data in an interactive browsable web atlas portal (Li et al., 2023b). This web
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atlas will allow users to visualise H&E-stained skin tissue sections along with
corresponding spatial gene expression in situ and the locations of mapped cell states. Users
will also be able to zoom in to specific tissue regions of interest. The web atlas portal will
broaden the reach and utility of the data by removing the technical burden of handling large
genomic datasets and allowing investigators, clinicians and students to interact with the
data (Horsfall et al., 2023). This approach has potential future implications for clinical
practice by revolutionising dermatopathological microscopic visuospatial examination of
cellular disorganisation from skin biopsies for diagnostic benefit. Spatial transcriptomic
profiling and examination of gene expression patterns in skin tissue from diseased sites
also has the potential to inform the development of prognostic and therapeutic biomarkers

for disease endotype stratification.

By spatially contextualising the single cell analysis of adult skin samples, distinct
functional skin microenvironments underlying healthy and diseased skin states were
identified. Furthermore, the sScCRNA-seq data revealed common functional gene programs
between inflammatory skin disease and prenatal skin between 7 and 10 PCW (Reynolds et
al., 2021). The study in presented in Chapter 4 of this thesis therefore aimed to investigate
whether functional skin cellular microenvironments are also identified in prenatal skin and
to further our understanding of the spatial organisation of individual cell states during skin
morphogenesis in utero. A comprehensive prenatal skin single cell atlas between 7 and 16
PCW was generated, during which skin architecture matures, the epidermis becomes
stratified and skin appendages within the dermis begin to form (Hu et al., 2018). This study
is the first to profile both immune and non-immune cell states in prenatal skin during this
period in development. Microanatomical cellular organisation was then investigated by
using a deconvolution analysis to map the ScRNA-seq data to spatial transcriptomic data of
skin regions within human embryonic limb (Zhang et al., 2022), which revealed distinct
functional skin microenvironments present in prenatal skin. These microenvironments
were found to relate to specific developmental processes, including interfollicular
epidermal differentiation, the early stages of hair follicle formation and neurovascular
genesis. The microenvironment related to interfollicular epidermal differentiation was
shown to contain immature epidermal cells and ILC3 cells. Further intercellular
communication analyses showed that ILC3s in prenatal skin were predicted to interact with
basal epidermal cells via AREG-EGFR to regulate keratinocyte proliferation and
differentiation and TNF-TNFRSF1A, involved in cell survival and apoptosis. ILC3s are
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known to contribute to excessive keratinocyte turnover and to be implicated in psoriasis
pathogenesis. The findings from this study therefore reveals genes programmes deployed
by ILC3 cells during prenatal skin morphogenesis that may also be implicated in psoriasis,
lending further support to the concept that developmental programs are co-opted in disease
(Reynolds et al., 2021).

The skin microanatomical niches comprising of early follicular cell states was investigated
next in order to further our understanding of the cellular crosstalk between mesenchymal
and epithelial cells during human hair follicle formation, which is presented in Chapter 5
of this thesis. The prenatal skin cell atlas extends to 16 PCW, which covers the gestational
period during which hair follicles first develop de novo. This study represents the first
single cell characterisation of human hair follicle neogenesis; our understanding of the
complex processes underlying hair follicle formation have largely been inferred from
murine studies (Ge et al., 2020; Saxena, Mok and Rendl, 2019), and human studies to date
have been limited to the study of cycling adult hair follicles (Hsu, Pasolli and Fuchs, 2011).
The scRNA-seq dataset included placode and pre-dermal condensate cells, which have not
previously been characterised in human skin before, and defined the trajectories through
which they differentiate into mature follicular cells. This study also provides further
insights into the origin of the companion layer, which appears to develop along the same
trajectory as the outer root sheath, and not from the hair matrix, as previously reported
(Morita et al., 2021; Saxena, Mok and Rendl, 2019). A recent murine fate-mapping study
also showed that the companion layer develops prior to matrix formation and in the absence
of matrix cells (Mesler et al., 2017). In addition, a recent single cell analysis of mouse hair
follicles identified greater transcriptional similarity of companion layer cells to outer root
sheath cells rather than inner root sheath cells (Joost et al., 2020), consistent with the
findings in human prenatal skin. The prenatal skin cell atlas was also leveraged to further
our understanding of the pathogenesis of hair diseases. Interestingly, genes implicated in
congenital hair diseases and androgenetic alopecia were found to be expressed along hair
follicle differentiation pseudotimes, suggesting that these disorders result from
dysfunctional hair follicle development. Furthermore, similar patterns of gene expression
implicated in hair diseases and several subtypes of epidermolysis bullosa and congenital
ichthyosis were observed in equivalent prenatal and skin organoid cell states, thereby
supporting the value of skin organoids as a model to study congenital hair and skin diseases.
The prenatal skin dataset has been recently launched on a web atlas portal and includes a
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database of skin and hair diseases that I compiled, allowing users to search for the

expression of disease-associated genes in prenatal skin

(https://developmental.cellatlas.io/fetal-skin;  password: fs2023). Observing genes
implicated in disease expressed in prenatal skin supports an in utero onset for these

disorders.

To conclude, these comprehensive spatially-resolved atlases of human skin in adulthood
across health and disease, and during prenatal skin and hair follicle development, has
provided unprecedented microanatomical detail and insight into functional skin cell
microenvironments underpinning skin development and disease. This has future
applications for enhancing our understanding of skin and hair disease pathogenesis,
predicting the impact of immunotherapies and helping to identify novel diagnostic and
prognostic biomarkers and treatment targets. These atlases can also serve as a valuable
blueprint to guide faithful in vitro skin organoid studies, enabling future skin and hair
engineering studies for therapeutic applications, including disease modelling, hair
regeneration and skin transplant.
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Single-cell genomics has revolutionized biological
science, enabling high-resolution analysis of human
tissues. The ability to demonstrate the role and func-
tion of distinct cell types comprising human tissues
paves the way for a new understanding of cellular
pathways, interactions, and future research directions.
The skin, easily accessible and possessing a diverse
and complex role in defending us both physically and
immunologically from the outside world, lends itself
ideally to single-cell genomics analysis. Here, we
outline the benefits of single-cell RNA sequencing
while also highlighting the challenges in achieving a
meaningful result from its use. Key milestones relating
to the study of skin in this way are introduced,
covering both healthy and diseased states, and we
discuss the potential promise of single-cell RNA
sequencing to result in tangible medical advances,
with a particular focus on precision medicine.

Journal of Investigative Dematology (2021) 141, 255-264; doiz10.1016/
jjid.2020.05.104

INTRODUCTION

In addition to providing a physical barrier between the or-
ganism and the external world, the skin utilizes both the
innate and adaptive immune systems to provide protection
from external insult. The skin is a complex tissue of different
embryological origins and comprising a wide range of cell
types. The potential to fully understand this intriguing system
in both health and disease is a step closer to being realized
with the use of techniques that study tissues at the individual
cell level. Early single-cell transcriptome analysis leveraged
DNA microarray or gPCR analysis (Jensen and Watt, 2006;
Tang et al.,, 2009). Single-cell RNA sequencing (scRNA-
seq), which this article will focus on, has been widely
adopted as a robust method to dissect cellular heterogeneity
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in many biological contexts. The technology has evolved in
the recent years as a highly reliable and sensitive method of
transcriptomic analysis, enabling the profiling of an expo-
nentially increased number of cells, with an unprecedented
degree of accuracy and reproducibility at a single-cell level
(Svensson et al., 2018; Wu et al., 2018). It overcomes the
limitations imposed by other single-cell approaches such as
FACS, which restricts the analysis to a small number of
selected proteins, often biased toward already defined genes
(Stubbington et al., 2017). ScRNA-seq also addresses the
drawbacks of bulk RNA sequencing of whole tissue, which
obscures cellular diversity and rarer small subpopulations of
cells through misinterpretation as technical noise and aver-
aging of cell expression (Stubbington et al., 2017; Suva and
Tirosh, 2019; Wu et al., 2018).

ScRNA-seq has enabled high dimensional analysis of hu-
man tissues, revealing novel cell states and biological path-
ways underpinning human development, tissue homeostasis,
and disease (Miragaia et al., 2019). ScRNA-=seq and other
single-cell omics technologies have created a new paradigm
to study human tissues at scale, investigating the whole one
cell at a time. ScRNA-seq has been leveraged in various
fields, contributing to new discoveries and improved under-
standing, for instance, in areas of embryonic medicine and
developmental biology (Li et al., 2018; Popescu et al., 2019;
Vento-Tormo et al., 2018), tumor ecosystems and oncogenic
processes (Durante et al., 2020; Patel et al., 2014; Puram
et al., 2017; Tirosh et al., 2016), immunology and immuno-
therapy (Jerby-Arnon et al,, 2018; Stubbington et al., 2017;
Szabo et al., 2019), and infectious and autoimmune dis-
eases (Der et al. 2019a; Gawel et al., 2019; Jin et al., 2017;
Jordao et al., 2019; Reid et al., 2018; Steuerman et al., 2018).
The Human Cell Atlas (Regev et al., 2017) exemplifies the
type of ambitious project that has arisen from the potential of
this technique, aiming to identify the molecular properties of
each cell that forms a healthy human. The advantage of
studying discrete cellular units of any living tissue is that the
constituent parts of the whole and its emergent properties
become visible. ScRNA-seq, one of the eariest high-
throughput single-cell techniques deployed for Human Cell
Atlas projects, demonstrated the potential to identify cells
and infer their function on the basis of transcriptome profile.
Challenges, opportunities, and evidence of real progress, as
applied to skin biology and pathophysiology, are highlighted

below, and there is much promise for the future.

ScRNA-SEQ PLATFORMS AND DATA GENERATION
High-throughput scRNA-seq data generation primarily re-
lies on tissue dissociation to obtain cells in suspension.

www.jidonline.org
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Various mechanically and enzymatically (collagenase and/
or trypsin) based protocols have been utilized to yield
single cells from different types of tissue (Vieira Braga and
Miragaia, 2019). This requires careful optimization because
it may affect cellular yield, viability, and transcriptome.
Details of the specific tissue dissociation protocols used for
skin scRNA-seq profiling are detailed in Table 1. Tissue
dissociation enables high-throughput analysis but negates
spatial information of cells within their tissue context. Most
platforms (e.g., 10x Genomics, Drop-seq, Massively Par-
allel RNA Single-Cell Sequencing) rely on sequencing short
transcripts from the 3’ end of the mRNA (Vegh and Haniffa,
2018). In contrast, Smart seq2 enables full transcripts to be
sequenced, providing information on alternatively spliced
mRNA molecules. The different platforms capture variable
mRNA molecules ranging from hundreds to thousands of
transcripts per cell (Stubbington et al., 2017).

In addition, several technologies are currently available for
spatially resolved tissue analysis, which rely on targeted RNA
hybridization (sequential- or multiplexed-FISH or in situ RNA
sequencing) (Gyllborg and Nilsson, 2020; Shah et al., 2017;
Xia et al., 2019). These technologies are able to assess
>100-1,000 parameters simultaneously at single-cell reso-
lution but are dependent on having a highly skilled operator
and not all commercially available. Spatial transcriptomics
(Visium) is another new technology that generates two-
dimensional positional RNA sequencing data from histolog-
ical tissue sections (Stihl et al.,, 2016). This technique can
capture all mRNA within the tissue overlying each spot to be
profiled but not at a single-cell level. Combining spatial
transcriptomics with single-cell suspension will provide
valuable knowledge and information on disease pathogenesis
in situ.

Each scRNA-seq protocol involves isolation of single
cells, library preparation, and sequencing (Figure 1). Sin-
gle cells can be captured by FACS isolation into a PCR
plate or microfluidic system. Cells can also be captured
with barcoded beads and primers into droplets or micro-
well arrays for cDNA synthesis. Combinatorial indexing
(Vitak et al,, 2017) or sequential barcoding (Rosenberg
et al., 2018) can also be used for scRNA-seq. There has
been a rapid acceleration of throughput in single-cell
transcriptomics in the past 10 years (Svensson et al,
2018) accompanied by a reduction in analysis cost,
which will facilitate its deployment in a clinical setting.
Hundreds of thousands of cells can now be routinely
sequenced in a single experiment. Alongside the promise
of new technology come challenges relating to experi-
mental techniques at all stages (Chen et al., 2019).
Although the study of the human skin using scRNA-seq is
in its infancy, as costs of experiments fall and clinical
utility rises, we can expect to see this technique being
used to study both healthy skin and skin disease, leading
to a greater understanding of cellular pathways and po-
tential new treatments. Achieving the detail required to
gain meaningful outputs from scRNA-seq analysis—be it
detecting rare cell types, picking apart differences in a
population, or understanding the trajectory of differenti-
ating cells—requires several complex steps to maximize
information gained while minimizing inaccuracy.

Joumal of Investigative Dermatology (2021), Volume 141

ScRNA-SEQ DATA ANALYSIS AND INTERPRETATION
The small amount of material from each cell analyzed in
scRNA-seq results in data that are noisier than from bulk
sequencing. Amplification of the starting material can lead to
biases by increasing transcripts that are already abundant.
Technical dropouts, the phenomenon by which a gene may
be seen in some but not all cells of the same type, mean zero
values are observed, as only a small part of the transcript has
been captured. Other than true biological variation, the most
common cause for this is usually a technical difficulty, such
as mRNA degradation during cell lysis or resulting from
sampling variation (Qiu, 2020). Adjusting variables such as
the sequencing depth or platform used may go some way to
correcting for this and improving the sparsity of data—a
significant issue in scRNA-seq. The difficulty of analyzing
sparse data can be addressed with caution by either using
statistical approaches that are able to take this into account
and correct for the observed zeros or by attempts to impute
missing values to improve results (Andrews and Hemberg,
2019).

Doublets are generated when two cells are inadvertently
captured together, resulting in mixed transcriptional profiles.
Droplet-encapsulation methods have a higher doublet rate
than FACS isolation into wells (llicic et al., 2016) but enable
higher throughput of cells to be analyzed. Identification and
removal of doublets are important during experimentation
and analysis, and this can be achieved in various ways.
Multiplexing to exploit genetic variation has been used, as
have techniques involving oligonucleotide-tagged antibodies
against cell-surface proteins (Kang et al., 2018; Stoeckius
et al., 2018). Doublets can also be inferred from gene
expression profiles, where the expression profile of the
doublet is a composite of two-cell states without any unique
gene expression profile. Several computation methods have
also been devised to identify doublets in scRNA-seq datasets
(McGinnis et al., 2019; Wolock et al., 2019).

Singlecell data may be combined from multiple experi-
ments with many differing variables. These differences result
in variation or batch effect in the data, which needs to be
corrected so as not to confound and invalidate the results.
The difficulty lies in preserving key biological differences at
the same time as removing those arising from nonbiological
factors. Computational algorithm methods, for example,
Harmony or batch-balanced k nearest neighbors, can be used
to correct for different technologies and nonidentical cell
types and can be used across multiple batches and for large
datasets (Korsunsky et al., 2019; Polariski et al., 2020) with a
statistical assessment of batch correction (e.g., kBET statistic)
(Park et al., 2018).

As the number of cells being analyzed per experiment in-
creases, there is a need for single-cell data interpretation to
keep pace. Gaining useful insights from scRNA-seq experi-
ments requires a rigorous approach and involves several
complex steps to make sense of the results. Normalization of
the data is required to correct for cell-to-cell variation before
analyzing these results with dimensionality reduction tech-
niques. Simplifying visual representation of the data using a
lower dimension space and removal of uninformative genes
enable algorithms and clustering approaches to be applied to
huge data sets. Nonlinear dimensionality reduction, such as
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Table 1. Summary of Recent scRNA-seq Studies on Human Skin

Number
of Time Before Tissue Cell-Type  Transcriptomic
Reference Skin State Samples Digestion issue Dissociation Method Enrichment Platiorm Number of Cells Sequenced
Healthy skin
Finnegan et al., Neonatal foreskin 3 Tissue stored at 4 °C Epidermis mechanically separated from FACS to isolate 10X Genomics 22338
2019 overnight before  dermis, then incubated in trypsin for 15 min. live, single cells
dissociation.
Philippeos et al,,  Adult female abdominal 1 NA 1 h treatment with dispase [I, followed by ~ FACS isolation of SmartSeq2 184
2018 skin epidermal pecling. Dermis was then treated  lin- cells (CD31-
with Miltenyi whole-skin dissociation kit~ CD45-ECad-) and
overnight. lin-CD90+ cells
from dermis.
SoléBoldoetal, Sun-protected site from 2 No longer than 1 h  Miltenyi whole-skin dissociation kit, followed ~ Magnetic 10X Genomics 15,457
2020 male Caucasian skin aged by gentleMACS mechanical dissociation.  isolation of live
25 and 27 years cells
Sun-protected site from 3
male Caucasian skin aged
between 53 and 70 years
Tabib et al., Dorsal mid-forearm skin 6 Unspecified transport 2 h treatment with Miltenyi whole-skin No enrichment 10X Genomics 8522
2018 from males and females of time between biopsy and  dissociation kit, followed by gentleMACS
varying ages dissociation. mechanical dissociation.
Takahashi et al,  Follicle-enriched human 2 Tissue stored at 4 °C 30 min incubation with dispase, followed by FACS high-speed  Drop-Seq 5,270 cells
2020 skin from hair transplant overnight before  dissociation with a P1000 pipette and 10 min  cell sorter
micrografts dissociation. incubation in trypsin.
Vorstandlechner Surplus trunkskin removed 3 Unspecified transport 2.5 h enzymatic digestion using Miltenyi  FACS to isolate 10X Genomics 5,000
et al, 2020 during abdominoplasty time between biopsy and  whole-skin dissociation kit, followed by live, single cells
from healthy female dissociation. gentleMACS mechanical dissociation.
donars aged 30—43 y
Xueetal, 2020 Dorsal mid-forearm skin 10 NA 2 h enzymatic digestion using Miltenyi whole- No enrichment 10X Genomics 27,869
from males and females of skin dissociation kit, followed by gentleMACS
varying ages mechanical dissociation.
Diseased skin
Apostolidis Diffuse cutaneous 4 NA 2 h treatment with Miltenyi FACS into SmartSeq2 9% HSPG2 and APLNR were identified as two of the top
et al, 2018 systemic sclerosis—dorsal whole-skin dissociation kit,  single-cell markers of endothelial cell injury in systemic
mid-forearm skin. followed by gentleMACS  wells in plates sclerosis.
mechanical dissociation.
Age- and sex-matched 4 )
healthy controls
Chenget al., Healthy adult scalp 3 Tisue storedat 4°Cfor1 2 h treatment with dispase, FACS to isolate 10X Genomics 92,889 (2,000  Stereotyped KC subpopulations comprising human
2018 epidermis —2 days before followed by epidermal  live, single 12,000 cells’  epidermis were characterized. Inflammatory skin
dissociation. peeling. Epidermis was then cells sample)  states were identified, including $100 activation in
trypsin-treated for 15 min. the interfollicular epidermis of the normal scalp,
enrichment of a CD1C+CD301A+ myeloid DC
population in psoriatic epidermis, and IL18hi
CCL3hiCD 14+ monocyte-derived macrophages
enriched in the foreskin.
Healthy adult truncal 3
epidermis
Healthy neonatal foreskin 3
epidermis
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Table 1. Continued
Number
of Time Before Tissue Cell-Type  Transcriptomic
Reference Skin State Samples Digestion issue Dissociation Method Enrichment Platiorm Number of Cells Sequenced
Psoriasis - truncal 3
epidermis
Der etal. 2019b  Healthy skin of patients 17 2 h transport time Samples were treated with No Fluidigm €1 800-  ~250 cells/  Type | IFN response signatures in KCs distinguished
with lupus nephritis between biopsy and liberase for 15 min. enrichment well sample patients with lupus nephritis from healthy control
either immediate subjects.
dissociation or
cryopreservation.
Healthy control skin 3 o
Gaydosik etal., Lesional skin of advanced- 5 NA 2 h treatment with Miltenyi  All skin cells 10X Genomics 30,663 Large intratumor gene expression heterogeneity of T-
2019 stage cutaneous T-cell whole-skin dissociation kit, lymphocytes was found. A 17-gene expression
lymphoma (stage 2b—4a) followed by gentleMACS signature was identified in highly proliferating
mechanical dissociation. lymphocytes in CTCL samples, with three genes
(PCNA, ATP5C1, NUSAP) validated by
immunohistochemistry. Tumor-infiltrating CD8-+
lymphocytes exhibited heterogeneity of effector and
exhaustion programs across samples.
Healthy control skin 4 14,719
He etal, 2020 Lesional (4) and 5 Biopsies were Samples were sent for external No 10X Genomics 10,169 from  AD lesions were characterized by expanded type 2
nonlesional (5) skin from cryopreserved before  processing, and no details  enrichment lesional AD and - and/or type 22 T cells and inflammatory DCs and by
extremities in moderate dissociation and were given. 6,653 lom 2 unique inflammatory fibroblast that may interact
—severe AD sequencing. nonlesional AD  with immune cells to regulate lymphoid cell
organization and type 2 inflammation.
Healthy-matched controls 7 22,220
Hughes etal,  Healthy skin and various 9 NA No details provided for the No Segowell 20308  Acne: 2 clusters of endothelial cells marked by the
2019° inflammatory conditions: dissociation protocol used  enrichment; expression of SLC9A3R2. Alopecia: a subcluster of T
acne, alopecia, GA, (Biorxiv submission). MACS for cells characterized by expression of PDE4D. Both
leprosy, and psoriasis certain cell GA and leprosy were characterized by the presence
types/samples of immature CD8+ CTL and mature CTL effectors
containing CD&+ T-CTL, v, and NK cells. Psoriasis:
a subcluster of DCs (IRF4+ cDC2) that display the
elevated expression of CCL17, CCL22, and IL128.
Kim et al,, 2020 DRESS 1 NA 3 h treatment with Miltenyi  FACS to isolate 10X Genomics 4676 The Jak-STAT signaling pathway was identified as a
whole-skin dissociation kit live, single possible target for treatment. In addition, they
during gentleMACS cells showed that central memory CD4+ T cells were
mechanical dissociation. enriched with DNA from human herpesvirus 6b.
Flank skin from healthy 5 13,524
controls
Tirosh et al., Melanoma with lymphoid 10 NA Samples were treated with FACS to isolate  SmartSeq2 4,645 AXL-expressing cells (drug-resistant program) were
2016 tissue metastases. collagenase P+ DNase | for  live, single identified in all melanoma samples and enriched in
10 min cells those resistant to RAF/MEK inhibiti

Melanoma with distant 8
metastases.
Primary acral melanoma 1

Heterogeneity in the tumor microenvironment,
including fibroblasts and T-cell composition, vary
between melanomas,

Abbreviations: AD, atopic dermatitis; CTCL, cutaneous T-cell lymphoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; DRESS, drug reaction with eosinophilia and systemic symptoms; GA, granuloma
annulare; KC, keratinocyte; MACS, magnetic-activated cell sorting; N/A, not applicable; scRNA-seq, single-cell RNA sequencing.
"Hughes TK, Wadsworth MH, Gierahn TM, Do T, Weiss D, Andrade PR, et al. Highly efficient, massively-parallel single-cell RNA-Seq reveals cellular states and molecular features of human skin pathology.

BioRxiv 2019.

248

ABojojewsaq] ut sOIWoOUIN) [[3)-3|8uIg

I 13 stognq v



A Dubois et al.
Single-Cell Genomics in Dermatology

@Skin sample acquisition @ Punch biopsy @ Tissue sample
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Biopsy analysis using scRNA-seq of cells in suspension
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Tissue dissociation Single cell capture Cell lysis and reverse transcription

Exponential
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‘Smat-aaq; 95-well lale

Library preparation and
sequencing

. F
.

Data interpretation using
bicinformatics

Figure 1. General workflow of scRNA-seq experiments from patient to data. Following sample acquisition of normal or lesional skin with a biopsy procedure,
the tissue is processed to generate a single-cell suspension. Various techniques are available to enrich cells of interest, including fluorescence-activated and
magnetic cell sorting. Single cells are captured into wells or using microfluidic- and droplet-based platforms. Single cells are barcoded and lysed to extract RNA
molecules. The reverse transcription and preamplification steps create amplified and tagged cDNA that is sequenced by next-generation sequencing.
Bioinformatic tools are available to deconvolute single-cell transcriptome and analyze and visualize the data. This figure was created with BioRender.com.
scRNA-seq, singlecell RNA sequencing; t-SNE, t-distributed stochastic neighbor embedding.

t-distributed stochastic neighbor embedding (van der Maaten
and Hinton, 2008) or uniform manifold approximation and
projection (Becht et al., 2019), enables high dimensional data
structure to be visualized in two dimensions. Distinguishing
between bona fide cell states and results caused by artifact
remains an issue throughout data interpretation, and careful
consideration of these factors is important in ensuring high-
quality outputs from the skin samples studied. Establishing
cellular heterogeneity within scRNA-seq data is commonly
performed using unsupervised clustering methods. There are
several algorithms for unsupervised clustering (Andrews and
Hemberg, 2018). When using a clustering method, the
number of partitions or resolution needs to be specified.
Clustering consistency can be assessed by using different
algorithms on the same data (Andrews and Hemberg, 2018;
Kiselev et al., 2017). Once cells have been sorted into clus-
ters, genes unique to and highly expressed by the clusters
(marker genes) are derived. These genes inform the annota-
tion of the cell states with the clusters. Biological validation
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of cell-annotated cell states is necessary and critical to assess
the accuracy of annotation and provide insights into the
biological relevance of identified cell states.

UNDERSTANDING SKIN BIOLOGY IN HEALTH AND
DISEASE
Understanding the complex interplay between skin-barrier
proteins, immune cells, and inflammatory mediators has
been difficult to resolve. ScRNA-seq has expanded our un-
derstanding of healthy and diseased skin by allowing high-
resolution mapping of different cell types and states, anal-
ysis of the impact of differing conditions on gene expression,
and elucidation of cellular developmental trajectories and
spatial organization to decipher cellular interactions (Griffiths
et al., 2018; Mok et al., 2018; Szabo et al., 2019). Table 1
shows a summary of recent scRNA-seq studies on human
skin.

Studies on murine keratinocyte (KC) differentiation have
demonstrated multiple distinct cell states in the follicular and
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interfollicular epidermis of healthy telogen and anagen
epidermis (Joost et al., 2018; Joost et al,, 2016). These
include previously undescribed cell states in the hair follicle
simultaneously expressing outer and inner bulge gene sig-
natures and a specific cell population lining sebaceous
gland openings, which potentially play a critical role in
protecting the hair follicle bulge against microorganisms
(Joost et al., 2016). Previously undetectable transient cell
states were also identified through the reconstruction of the
genetic programs involved during hair follicle differentia-
tion, with stem cells sharing a conserved basal gene
expression program but spatially distinct transcriptome
profile (Joost et al., 2016). More recently, Joost et al. (2020)
revealed two distinct cell populations in the outer root
sheath with different affinity for interaction with the sur-
rounding stroma. They showed that a common pool of
germinative layer cells differentiates into three separate
lineages to form the inner root sheath, cortex and/or cuticle,
and medulla (Joost et al., 2020).

Human epidermis from healthy scalp and trunk, neonatal
foreskin, and psoriatic plaque analysis identified several KC
states (Cheng et al., 2018). Apart from basal, spinous, and
granular KCs, four additional states termed Wntl, mitotic,
follicle, and channel clusters were defined. These cell states
were characterized by genes relating to antagonizing Wnt
signaling, DNA synthesis and cell division, hair follicle and
sebaceous glands, and cell—cell communication and ion
channels, respectively. Inferred trajectory analysis revealed
nonlinear and distinct differentiation pathways for KC cell
states (Cheng et al., 2018), which were also observed in hair
follicle KCs (Takahashi et al., 2020). Interestingly, inflam-
matory genes were found to be upregulated in clinically
normal scalp epidermis, and psoriatic samples were not only
enriched in cells from the mitotic cluster but also the channel
cluster (Cheng et al., 2018).

Progress in understanding the contributions of the hair
follicle cellular subunits and wound healing has also been
made using scRNA-seq and lineage tracing. Two separate
sources of stem cells responding to injury have been identi-
fied: one population in the basal interfollicular epithelium,
which is already primed to interact with the wound stroma,
and a second population in the hair follicle, which activates
an interfollicular epithelium-like signature within 24 hours of
wounding, even before migration to the wound area to
enable interaction with the wound environment (Joost et al.,
2018; Takahashi et al., 2020).

Deconvoluting the role of fibroblasts, which has lagged
behind other cutaneous cellular components, is also being
advanced by scRNA-seq. Two major fibroblast populations
have been identified in human papillary and reticular
dermis: SFRP2-expressing fibroblasts, which are small,
elongated, and located within collagen bundles, in contrast
to FMO1l-expressing fibroblasts, which are larger and
distributed in the interstitium and perivascular areas, in
addition to minor subclusters (Tabib et al., 2018). When
combined with gene ontology analysis, fibroblast hetero-
geneity by expression of SFRP2, FMO1, and COLT1A1 was
associated with regulating signaling pathways, matrix
deposition, as well as possibly serving as pluripotent
mesenchymal cells (Philippeos et al., 2018; Tabib et al,,
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2018). Similar functional and spatial heterogeneity has
been demonstrated in murine fibroblast populations (Joost
et al., 2020; Salzer et al., 2018) and more comprehen-
sively defined in a recent larger study of human skin (Solé-
Boldo et al., 2020). Analysis of full-thickness murine ana-
gen and telogen skin has further shown that dermal fibro-
blasts exhibit distinct transcriptional states correlating to
hair cycle stage (Joost et al., 2020). A potential role of Wnt
signaling in determining fibroblast identity has also been
uncovered, with papillary cell markers being lost in culture
in the absence of Wnt signaling. This may imply a key
function of Wnt signaling between basal KCs and papillary
dermal fibroblasts (Philippeos et al., 2018). Novel insights
into skin aging highlight age-related loss of fibroblast
cellular identity with alteration in functional and spatial
gene expression signatures, which may be altered by dietary
and metabolic interventions (Salzer et al., 2018; Solé-Boldo
etal. 2020).

A scRNA-=seq study of 19 patients with melanoma (Tirosh
et al., 2016) challenged the findings of previous bulk RNA
analysis, which classified melanomas as either MITF-high or
AXL-high tumors depending on their transcriptional states.
They showed that all tumors contained malignant cells of
both transcriptional states in varying degrees. An AXL-high
genetic profile associates with intrinsic resistance to RAF/
MEK inhibitors used for the treatment of melanoma (Tirosh
et al., 2016). This program was found to be upregulated in
tumor samples resistant to RAF/MEK inhibition, suggesting
selective enrichment of AXL-high cells in tumors resistant to
RAF/MEK inhibitors following treatment (Tirosh et al., 2016).
In addition, an AXL-high transcriptional state was found to be
positively correlated with cancer-associated fibroblasts,
further shedding light on the interplay of cells within the tu-
mor environment and its role in determining tumor compo-
sition and phenotype (Suva and Tirosh, 2019; Tirosh et al.,
2016).

ScRNA-seq was further combined with bulk RNA-
sequenced melanoma profiles from the Cancer Genome
Atlas (Jerby-Arnon et al., 2018; NIH, 2019), enabling the
detection of a cellular program in a subgroup of melanoma
cells that confers the ability for immune evasion and
resistance to immune-checkpoint inhibitors. This program
had prognostic and predictive value when tested in an
independent cohort of patients with melanoma. They
demonstrated that CDK4/6 inhibition represses the resis-
tance program, increasing melanoma cell response to
immune-checkpoint blockade, representing additional
possible therapeutic targets in a patient-specific subgroup
(Jerby-Arnon et al., 2018). The stratification of sub-
populations of patients and even the potential n-of-1
scRNA-seq studies of exceptional responders (Suva and
Tirosh, 2019), leading to personalized cancer treatments
including immunotherapy, has been highlighted (Valdes-
Mora et al., 2018). A scRNA-seq study of advanced-stage
cutaneous T-cell lymphoma discovered a three-gene
expression signature (PCNA, ATP5C1, and NUSAPI1) pre-
sent in highly proliferating malignant lymphocytes, which
could represent a novel biomarker to facilitate cutaneous
T-cell lymphoma diagnosis (Apostolidis et al., 2018;
Gaydosik et al., 2019).
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Atopic dermatitis skin profiling revealed disease-related
COLeA5- and  COL18Al-expressing  fibroblasts  and
expanded LAMP3-expressing dendritic cell, dendritic cell 2,
resident memory T cells, and IL-13— and/or IL-22—expressing
T cells (He et al., 2020a). Genes previously not linked to the
development of systemic sclerosis, such as the APLNR and
HSPG2 involved in vascular endothelial activation and
dysfunction and fibrotic processes, have been shown to be
significantly upregulated in systemic sclerosis skin by sScRNA-
seq (Apostolidis et al., 2018). This provides new insight into
the pathways of endothelial cell injury and pathogenesis of
this hitherto poorly understood condition and potentially
highlight the biomarkers of vascular injury for earlier identi-
fication of patients and accurate prognostication.

The field of skin stem-cell biology has also harnessed the
power of scRNA-seq. New stem-cell populations and states
in murine interfollicular epithelium and infundibulum
have been characterized and distinguished using scRNA-
seq in combination with differential expression of a6 and
B1 integrins (He et al., 2020b). Embryonic single-layered
epithelium eliminates unfit cells through apoptosis and/or
engulfment in contrast to asymmetric division and/or dif-
ferentiation by mature epidermal cells (Ellis et al., 2019).
Age and the microenvironment have been shown to impact
hair regeneration following wounding, as well as rejuve-
nation of aged stem cells by neonatal dermal cells (Ge
etal., 2020).

The wealth of data amassed from scRNA-seq studies on
healthy and diseased human skin continues to grow rapidly.
There is a pressing need for the research and clinical com-
munities to reconcile the findings on skin cellular heteroge-
neity from the various studies to derive a consensus for cell-
type nomenclature. Batch effect resulting from technical
differences—as mentioned earlier in this review—is in part a
contributing factor to the observed variation, but thought
must also be given to other differences such as age,
anatomical site, and ethnicity when drawing comparisons
and  explaining  discrepancies  between  results
(Vorstandlechner et al., 2020). In addition, a detailed cross-
species comparison with mouse skin, a widely used animal
model for skin biology and disease studies, should also be
attempted.

SINGLE-CELL MULTIOMICS AND PERSONALIZED
THERAPY

This unprecedented ability to unravel diseases and observe
them at the single-cell level, gaining an exceptionally
detailed understanding of the relevant biology and disrup-
tions of developmental and regulatory pathways, presents
new potential applications and opportunities in this era of
postgenomic science. Increasingly, medical interventions are
being redefined toward an approach that is tailored to the
medical, genetic, and personal data of each individual,
hence the term precision medicine (Collins and Varmus,
2015; Mirnezami et al., 2012). This aims for a more predic-
tive, preventive, and personalized approach as well as being
participatory with the hope for active participation by pa-
tients (NIHRtv 2018); the term P4 Medicine represents the
acme of these new perspectives (Fiala et al., 2019; Hood and
Friend, 2011).
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The impact of precision medicine has been highlighted
in oncology, with the development of cancer therapies that
target particular molecular abnormalities (Abrams et al.,
2014; Garraway et al., 2013). Tumorigenesis, mainte-
nance, and progression arise from aberrant molecular
pathways secondary to mutated or altered oncogenes and
tumor suppressor genes, and recent years have seen the
development and use of these genomics-derived treatments,
for example, in breast cancer (trastuzumab [herceptin]),
gastrointestinal stromal tumors (imatinib), and lung cancer
(erlotinib) (Dienstmann et al., 2013). Furthermore, these
technologies are also being used in biomarker identifica-
tion and prognostication and further parsing of the mo-
lecular  mechanisms  underlying disease  phenotype
(Chirshev et al., 2019).

In dermatology, systemic immunosuppressants are often
required for severe inflammatory and autoimmune derma-
toses. However, existing treatments rely on nonspecific
immunosuppression by systemic or biologic treatments, are
neither curative nor personalized, and in most cases, do
not prevent disease progression or concomitant comorbid-
ities. Although multiple biologic treatments that target
specific pathogenic molecules and pathways have been
developed and licensed for psoriasis in recent years, there
is currently a lack of biomarkers to distinguish psoriasis
molecular mechanism heterogeneity (endotype) and predict
patient response. Consequently, guidance to help clinicians
and patients to choose between different treatments is not
available, resulting in trial-and-error prescribing (Iskandar
et al, 2017), with significant-associated physical, social,
and economic costs (Al Sawah et al., 2017). Collaborative
research groups have highlighted the need in dermatology
to better understand the variations in underlying disease
mechanisms, presentation, and treatment response between
subpopulations (Griffiths et al., 2015; Reynolds et al.,
2016) to develop clinical tests to predict treatment
response in individual patients and therefore provide
optimal care.

The use of scRNA-seq data to guide precision treatment has
recently been described in a case of drug reaction with
eosinophilia and systemic symptoms (Kim et al., 2020).
Blood and skin scRNA-seq profile from a patient with drug
reaction with eosinophilia and systemic symptoms, refractory
to conventional treatments with high-dose prednisolone,
etanercept, intravenous immunoglobulin, cyclosporin, and
mycophenolate mofetil, revealed the upregulation of the
Jak—signal transducer and activator of transcription signaling
pathway in skin-infiltrating lymphocytes. Tofacitinib, a JAK1
and JAK3 inhibitor treatment, resulted in resolution of skin
inflammation. This case highlights the power of singlecell
analyses in precision medicine to reveal molecular mecha-
nisms for therapeutics selection and predict patient response.
This proof of concept will shape the future of health care
(Shalek and Benson, 2017).

CONCLUSION

In recent years, scRNA-seq has allowed us to gain new
insights into the individual cells of human tissues and
organs in both health and disease. As we continue to add
to our everincreasing level of understanding, a key
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challenge will be the integration of this information with
the aid of other techniques to understand how individual
cells interact with one another, creating the behaviors of
tissues and systems that we are able to observe. For
example, spatial transcriptomics can be used to map the
location context of scRNA-seq data, providing valuable
knowledge and information on disease pathogenesis in
situ. Techniques such as Cellular Indexing of Tran-
scriptomes and Epitopes by sequencing can aid simulta-
neous corresponding protein detection and sophisticated
computational methods, such as CytoTRACE, allow pre-
dictive modeling of cell states using scRNA-seq data.
Coupling human skin organoid models with CRISPR-based
perturbation systems will additionally facilitate mecha-
nistic studies. As these technologies become more widely
utilized in research and clinical practice, they can be
used to manage subpopulations of patients afflicted with a
particular disease. The promise of precision medicine,
treating each individual patient in an individual way, will
become a step closer to becoming a reality.
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INTRODUCTION: Human skin provides vital pro-
tection from water loss and from external
insult through structural adaptations and
interplay with the innate and adaptive im-
mune systems. The skin develops and func-
tions in an aquatic environment in utero but
rapidly adapts to a contrasting set of physical
and pathogenic challenges after birth. The
changes that take place across this complex
multicellular system during development and
upon perturbation by immune-mediated in-
flammatory diseases are poorly understood. A
detailed study will facilitate the development
of therapeutic interventions for inflammatory
skin disease.

RATIONALE: We generated a comprehensive
atlas of human skin in early prenatal life,

Single-cell RNA sequencing

Human skin cell atlas

in adulthood, and during inflammatory skin
disease by profiling the transcriptomes of
more than 500,000 single cells. We analyzed
human embryonic skin between 7 and 10
post-conception weeks, healthy adult skin
surplus from mammoplasty surgery, and skin
biopsies from patients affected by atopic
dermatitis (AD) and psoriasis, two common
inflammatory skin diseases. Additionally, we
performed single-cell T cell receptor analysis
to assess T cell clonality in disease. Validation
experiments were conducted at the protein
level and used mass cytometry, flow cytome-
try, and immunostaining in situ of skin
biopsies from healthy skin and patients with
AD and psoriasis, including a cohort of AD
patients before and during treatment with
oral methotrexate.

Validation experiments

. -, Dermal
o4 APCs o “nor-immune
- , Immunostaining in sity
% | - e
dermal K’y
Enpe‘n-immme#' ;.;_3' i
Adult healthy skin Inflammatory skin disease
a“ AL 3
Keratinocyts R HR —Teel
o '1 Lg\;_r‘&* # Melanocyte - ket
oy T NKcel S — e
o VE3 o~ fz—Schwann cell o b ackri
’LJ TG Mvenariticcon | PN
~ & T eells VE3

The human skin cell atlas. We used single-cell RNA sequencing to build human skin cell atlases across
development, homeostasis, and disease; the analyses were supported by various validation modalities. By
delineating cell states in embryonic skin, healthy adult skin, and inflammatory skin diseases (atopic dermatitis
and psoriasis), we identified a reemergence of developmental programs in disease mediated by interactions
between Mac2 and VE3. APCs, antigen-presenting cells; CyTOF, cytometry by time-of-flight; LC, Langerhans
cell; NK, natural killer cell; VE, vascular endothelial cell; Mac, macrophage; ILC, innate lymphoid cell.
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RESULTS: Thirty-four cell states were iden-
tified in healthy human skin across the
collective dataset, with dynamic changes
in the nature and abundance of single-cell
gene expression profiles identified across
embryonic and adult life and upon per-
turbation during inflammatory skin dis-
ease. This resource can be accessed via an
interactive browsable web portal, https://
developmentcellatlas.ncl.ac.uk/datasets/
hea_skin_portal. Analyses revealed that the
immune system of first-trimester embryonic
skin consists mainly of innate lymphocytes
and macrophages. In adult skin, we defined
two inferred trajectories for keratinocyte dif-
ferentiation and the presence of endothelial
cells that formed dilated postecapillary ven-
ules. We revealed a migratory dendritic cell
(DC) signature in healthy adult skin that is
conserved in murine DCs. The migratory DC
signature was also evident in the develop-
ing human thymus and additional disease
states. We identified clonally expanded disease-
associated cytotoxic T cells (Tc IL13/TL22 cells)
in lesional AD and Te17/T helper 17 (Ty17)
cells in lesional psoriasis. We demonstrated
the reemergence of prenatal cellular programs
mediated by Mac2 macrophages via the che-
mokine CXCLS interacting with the venular
capillary marker ACKR1 on VE3 vascular en-
dothelial cells in diseased skin. This interae-
tion is implicated in lymphocyte recruitment
and angiogenesis. We identified and validated
in situ the expansion of Mac2 and VE3 in
lesional AD and lesional psoriasis skin, their
close apposition in AD and psoriasis tissue,
and their reduction in AD skin during meth-
otrexate treatment, which aligned with an im-
provement in the clinical severity of disease in
this patient cohort.

CONCLUSION: Our single-cell atlas of hu-
man skin from prenatal life, healthy adults,
and AD and psoriasis patients highlights
the dynamic nature of cutaneous homeosta-
sis and immunity. Our study provides
insights into perturbed and co-opted de-
velopmental cellular programs in inflam-
matory skin disease. These results may
provide potential future translational tar-
gets to improve the diagnosis and molec-
ular classification of these diseases and to
guide treatment strategies.
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The skin confers biophysical and i ical protection through a complex cellular network

early in embry develop We profiled the transcriptomes of more than 500,000
single cells from developing human fetal skin, healthy adult skin, and adult skin with atopic dermatitis
and We I d these datasets to cell states across development, homeostasis,
and disease. Our analy5|s revealed an ennchrnent uf |nnate immune cells in skin during the first
trimester and clonal expansion of disease- lymphocytes in atopic dermatitis and psoriasis. We
uncovered and validated in situ a reemergence of prenatal vascular endothelial cell and macrophage
cellular programs in atopic dermatitis and psoriasis lesional skin. These data illustrate the dynamism of

cutaneous immunity and provide opportunities for targeting pathological developmental programs in

inflammatory skin diseases.

uman skin undergoes major adapta-
tions as it transitions from a relatively
pathogen-free aquatic environment in
utero to provide mechanical and immu-
nological protection in a nonsterile ter-
restrial environment. This function requires
coordination by specialized cell types that are
established during embryonic development.
The cellular landscape of prenatal and adult
skin, however, remains incompletely defined.
In cancer, developmental cell programs such
as angiogenesis, proliferation, and invasion
reemerge and lead to interaction between
malignant cells and the surrounding stroma
(I-4). The current consensus view on inflam-
matory skin disease pathogenesis is that the
interplay between leukocytes and nonleuko-
cytes is involved in disease initiation and pro-
gression (5). However, it is unknown whether
cell states and gene programs observed in
prenatal skin contribute to the pathogenesis
of adult-onset inflammatory skin disorders. A

detailed understanding of this process may
provide a new perspective on inflammatory
disease pathogenesis and potentially could
identify novel therapeutic targets.

Single-cell genomics, such as RNA sequenc-
ing, provides an opportunity to dissect the
complex cellular organization of human skin
during development and in health and dis-
ease at a systems level. Studies of healthy skin
to date have primarily focused on adult skin,
restricted to specific cell lineages and limited
cell numbers (6-10). Large-scale single-cell
profiling of human skin should provide a
transformative resource to understand aber-
rations in gene expression resulting from
disease.

Deconstructing human skin

In this study, we used single-cell RNA se-
quencing (scRNA-seq) combined with strate-
gic fluorescence-activated cell sorting (FACS)
for comprehensive and deep profiling of healthy

and inflamed adult skin. To maximize cell yield
and viability from tissue dissociation from
previous findings (11-13), we used 200-pm-
thick healthy skin samples resulting from
mammoplasty, which were separated into
epidermis and dermis before dissociation
(Fig. 1A and fig. S1IA). We adapted our pre-
vious FACS gating strategy (12, 14) to isolate
various cell fractions (keratinocytes, fibroblasts,
and endothelial cells) and immune cells (mye-
loid and lymphoid cells) o upsample rare cell
types for deep cell sampling. We ensured com-
prehensive capture, minimizing cell loss by
placing these FACS gates contiguously (fig.
SIB). FACS-isolated cells were characterized
with the 10x Genomics platform. We also per-
formed indexed plate-based Smart-seq2 profil-
ing of all epidermal and dermal cells within
the CD45"HLA-DR" myeloid gate (fig. S1B). To
compare cell states in healthy skin with in-
flammatory disease-induced perturbation, we
performed scRNA-seq (10x Genomics) on all
CD45 and CD45™ cells from lesional and non-
lesional skin from patients with atopic derma-
titis (AD) and psoriasis (Fig. 1A and fig. S1C).
In total, 528,253 sequenced skin cells (n =
19) passed quality control and doublet exclu-
sion (Fig. 1A). We detected on average ~3000
genes with the 10x Genomics platform and
~6000 genes per cell with Smart-seq2 (15)
(fig. S2A). We excluded cells with <200 genes,
>20% mitochondrial gene expression, and
those identified as doublets (15). To account
for biases due to batch effects, we performed
data integration of healthy skin samples using
BBENN implementation within Scanpy (16, 17),
which showed good sample mixing by UMAP
visualization (Fig. 1B and figs. S1, D and E, and
S2B). We performed graph-based Leiden dus-
tering and derived differentially expressed
genes to annotate the cell clusters, from which
34 cell states were identified (Fig. 1, B and C,
and table S1). We were able to identify these
cell states by deconvolution analysis using
AutoGeneS (18) of adult healthy bulk RNA-
seq (fig. S2C). The 34 cell states were discern-
ible even after removal of stress response genes
associated with tissue dissociation (19) (fig.
S2D). We note the impact of different tissue
dissociation protocols on gene expression, as
previously reported (20). We found that the
same cell states could be identified in a small
dataset using the Miltenyi dissociation pro-
tocol (7) and through the statistical power and
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Reticular Dermis’

Fig. 1. Deconstructing human skin. (A) Numbers of cells profiled by scRNA-
seq and mass cytometry for each condition and schematic of sampling locations.
AD, atopic dermatitis. (B) UMAP visualization showing all cell states found in the
healthy adult scRNA-seq dataset (7 = b). KC, keratinocyte; Fb, fibroblast;

VE, vascular endothelium; LE, lymphatic endothelium; ILC, innate lymphoid cell;
NK, natural killer cell; Tc, cytotoxic T cell; Ty, T helper cell; T, regulatory

T cell; Mac, macrophage; Inf., inflammatory; DC, dendritic cell; LC, Langerhans
cell; Mono mac, menocyte-derived macrophage; Mig., migratory; MoDC,
monocyte-derived dendritic cell. (C) Dot plot showing the expression of
discriminatory markers for each cell state in (B). CD8A, CD163, CDI4, and CCR7
were chosen for CyTOF protein validation. (D) Top: UMAP visualization of healthy
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adult cell states overlaid on developing cell states (n = 7). Bottom: UMAP
visualization of developing cell states overlaid on healthy adult cell states. Cells
underlaid are shown in gray. (E) Median prediction score of developing skin cell
states using healthy adult skin as reference derived from the TransferAnchors
function in Seurat. Triangles denote developing skin cells; circles dencte adult
skin cells. (F) Bar charts showing the proportions of comesponding cell states
found in adult and developing skin. We used generalized linear modeling on a
quasi-binomial distribution to compare proportions between developing and
adult skin, and found statistically significant changes in vascular endothelium,
Schwann cells, and melanocytes (P = 3.1 x 107); keratinocytes (P = 3.1 x 107%);
LCs and DCs (P = 14 x 10™%); and fibroblasts (P = 4.0 x 107%). **P < 0.00L
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resolution provided by our large dataset to dis-
cem rare cell states (fig. S2, E and F). However,
our analysis of interfollicular mammoplasty
skin sampled to the top layer of the reticular
dermis may not have adequately profiled all
skin hair follicle and appendageal cells.

‘We selected genes encoding surface proteins
(CD&A4, CD163, CDI4, and CCR7) and additional
antigens (where antibodies were commercially
available) to derive a cytometry by time-of-
flight (CyTOF) panel for protein level valida-
tion and frequency assessment of the major
cell states on four additional donors (fig. S3,
A to E). Gene expression on the relevant cell
states was consistent with CyTOF analysis
(fig. S3F).

To evaluate the establishment of specific
cell states during development and their tem-
poral evolution in adult skin, we compared our
adult skin scRNA-seq data with our embryonic/
fetal [7 to 10 postconception weeks (PCW); n=
7] scRNA-seq data (Fig. 1D) (21). We used the
TransferAnchors function in Seurat to integrate
adult and fetal skin cell states (Fig. 1E) (22) and
calculated the proportional representation of
the equivalent cell states in healthy developing
and adult skin (Fig. 1F). Our collective dataset
of human fetal, adult, and diseased skin cells
provides a foundational resource and can
be explored using an interactive web portal,
https://developmenteellatlas.ncl.ac.uk/
datasets/hca_skin_portal.

Transition from innate to adaptive
lymphocytes during skin development
Skin T cells consist of three subtypes: cyto-
toxic (Tc) cells expressing CD8A/B, helper (Ty)
cells expressing CD4 and CD40LG, and regu-
latory (Ti.) cells expressing FOXP3, TIGIT, and
CTLA% (Fig 2, A and B) (23, 24). We identified
four clusters of innate lymphocytes in adult
healthy skin that were CD161(KLRBI)"CD3
(CD3D/CD3G) , consisting of ILCY/3, ILC2,
ILCl/natural killer (NK), and NK (KLRDI",
GNLY',PRFI", GZMB", and FCGR3A") cells
(Fig. 2, A and B). ILC1/NK cells have over-
lapping features of ILC1 and NK cells, as
described (25, 26). Plasticity within ILC1 and
ILC3 is also recognized, as reflected in our
annotation of ILCY/3 (27). ILC2 (IL7R, PTGDR2,
and GATA3) has the most distinct signature in
our data and in existing literature (Fig. 2B) (26).
In contrast to adult skin, the fetal skin
lymphoid compartment is predominantly
populated by ILCs (Fig. 1, D and F) between
7 and 10 PCW, prior to the development of
the thymus, bone marrow, and spleen, where
T and B lymphocytes differentiate. Fetal NK
cells correlate with adult NK cells but express
higher levels of GZMM and GZMK (Figs. 1E
and 2B), which suggests that they may be
functionally competent (21). Fetal skin ILCs
(IL7R*, RORC', and KIT") resemble adult skin
1LC3 (Fig. 2B) (28).

Reynolds et al., Science 371, eaba6500 (2021)

To evaluate the impact of epidermal versus
dermal microenvironment on T cells, we com-
pared the differentially expressed genes of
T cells in the two compartments (Fig. 2C).
Epidermal T cells up-regulated the expres-
sion of genes associated with skin tissue
residency (RGSI and PPPIRI5A) (29), effec-
tor memory (CD44 and ID2) (29, 30), T cell
activation (TNFRSFI8) (31), and inhibition of
T cell response (CD96, TSC22D3, and DUSP4)
(32-34), in keeping with previous suggestions
that resident memory T cells are poised to
mount an effective immune response but
express inhibitory molecules to prevent dis-
advantageous responses to nonpathogenic
antigens (35). In contrast, dermal T cells ex-
press interferon-stimulated genes (JFITM]I,
IFI6, and LY6E) (36) and transcriptionally
correlate closer to blood T cells than epidermal
T cells do (fig. 54, A and B). Dermal Ty show
high mRNA and protein expression of the cir-
culating central memory T cell marker CD62L
(SELL) (Fig. 2C and fig. S3A).

Disease-associated and clonal T cells
In atopic dermatitis (AD), cytotoxic T cells ex-
pressing IL13, IL22, and IFNG (Tc 1L13/IL22)
are found in both lesional and nonlesional
skin but are significantly enriched in lesional
skin (P = 0.04, likelihood ratio test). Similarly,
in psoriasis, T cells expressing ILI7A, ILI7F,
IFNG, 1122, and 26 (Tcl7/Ty,17) are found in
both lesional and nonlesional skin but are sig-
nificantly enriched in lesional skin (P < 0.001,
likelihood ratio test) (Fig. 2D and fig. S4C).
Tcl7/Ty17 cells are dominant in the epidermis
of lesional psoriasis skin, as validated by flow
evtometry (Fig. 2D and fig. S4D). These cells
express genes characteristic of activated and
pathogenic Tyl7 cells (KLRBI, RBPJ, and
CXCLI13) (37-39) (fig. S4E). TcIL13/I122 cells
are dominant in the dermis of AD lesional
skin (Fig. 2D) and express amphiregulin (AREG,
a member of the epidermal growth factor
family) (40), skin tissue residency genes (RGSI,
NR4A1, NR4A2) (29), and effector and acti-
vated T cell genes (ID2, PRDMI, MAP3KS,
DUSP2) (30, 41-44) (fig. S4E). To further
extend our observation to a larger patient
cohort, we used the AutoGenesS tool (I18) to
deconvolute cellular heterogeneity in pub-
lished AD and psoriasis bulk RNA-seq data
(45). In accordance with our findings, we
observed the presence of a Te TL13/IL22
signature inlesional AD skin and a Tel7/Ty17
signature in lesional psoriasis skin (Fig. 2E).
For both AD and psoriasis, there was a sig-
nificantly higher proportion of T cell clones
shared between nonlesional and lesional skin
within donors versus between donors (P <
0.01, two-sample ¢ test) (fig. S4F). In AD and
psoriasis lesional skin, disease-associated Tc
IL13/22 and Tcl7/Ty17 cells exhibited signif-
icantly higher clonality [P < 0.05 using quasi-
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binomial statistics to model proportions,
followed by analysis of variance (ANOVA)]
and the lowest diversity compared to Ty, Treg,
and Tc cell subsets (Fig. 2F and fig. S4G).
Lesional clonal T cells had higher expression
of co-stimulation genes (CD63, TNFRSFIS, and
JAML) and T cell receptor signaling (EVL,
LAT, LCK, and JAKY) than did nonclonal T cells
(Fig. 2G).

Mononuclear phagocytes in adult and
developing skin

‘We observed 14 states of mononuclear phago-
cytes (MPs) in human skin (Fig. 3, A and B,
and fig. S5A) that we annotated by aligning
skin and blood MPs using the TransferAnchors
function in Seurat (fig. S5B) and expression of
MP marker genes (46) (fig. S5C). This work re-
vedled the limitations of currently used surface
markers and FACS gates to adequately resolve
skin MP heterogeneity (fig. S5A).

Two macrophage cell states expressing CD68
are present in healthy skin. Macl shows higher
expression of complement transeripts (CIQB
and CIQC) and scavenger receptors (CD163 and
MARCO), whereas Mac2 is characterized by the
expression of F1347 and transcription factors
associated with alternative activation and sup-
pression of immune responses (NR4A1, NR4A2,
and KLF4)(Fig. 3B and fig. S5C) and, notably,
is more closely aligned with fetal macrophages
(Fig. 1E).

‘We observed dendritic cells 1 and 2 (DC1,
DC2) and Langerhans cells (LCs) in embryonic
skin as early as 7 PCW, prior to bone marrow
hematopoiesis, but macrophages were the
dominant MP in first-trimester skin (Fig.1,D
to F, and fig. S5D). Interestingly, embryonic/
fetal LCs are enriched for macrophage-related
genes such as CIQC, FOGR24, and CTSB (Fig.
3B) and correlate poorly with adult LCs (Fig.
1E). This lends support to a differential origin
of prenatal LCs from yolk sac and fetal liver
progenitors, as previously reported in mice
(47), in contrast to the bone marrow-derived
hematopoietic stem cell origin of some adult
human LCs (48).

Migratory dendritic cell signature is
conserved across species and augmented in
disease states

In the steady state, skin dendritic cells (DCs)
undergo a continual process of homeostatic
maturation that is required for the induction
of tolerance to innocuous environmental anti-
gens (49). This is accompanied by their migra-
tion to skin draining lymph nodes through
Tymphatic vessels, a process dependent on CCR7
(23). Partition-based approximate graph abstrac-
tion (PAGA) analysis revealed three branches
of differentiation: LCs, myeloid DCs (DC1 and
DC2), and monocyte-derived DCs (moDCs)
(Fig. 3C). The clusters at the convergence of
these branches [moDC3, LC4, and migratory
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Fig. 2. Skin innate A
lymphoid cells, T lym-
phocytes, and T cell
receptor analysis.

(A) UMAP visualization

of lymphoid cells in

healthy adult skin (n =

5). ILC, innate lymphoid

cell; NK, natural killer

cell; Tc, cytotoxic T cell;

Tw, T helper cell, Trep, c
regulatory T cell.

(B) Dot plot showing
expression of marker
genes of cell states
found in adult skin
(circles) shown in (A)
and their developmen-
tal counterparts (frian-
gles), separated by the
dashed line. (C) Dot
plot showing the differ-
entially expressed
genes in T cell subsets
between epidermis and
dermis in healthy

adult skin (n = 5). Epi,
epidemis. (D) Bar
charts showing the
proportions of lymphoid
cell states in healthy
and diseased skin. Tc
1L13/1L22, cytotoxic

T cells expressing IL13
and IL22; Tel7/Tyl7,

T cells expressing ILI7A
and ILI7F. Lesional
dermal AD skin Tc
1113/1L22 was com-
pared to nonlesicnal
dermal AD skin
(medeled counts as
negative binomial and
analyzed by ANOVA,
*P = 0.04); psoriasis
epidermal lesional skin
Tcl7/Tyl7 was com-
pared to psoriasis non- Eopry «@;z B e 44:16, §
lesional epidermis
(***P < 0.001). Signifi-
cance of other cell
states was not tested.
HA, healthy adult; AD, atopic dermatitis; P, psoriasis; L, lesienal; NL, quasibinomial distribution, lesional AD dermis Tc IL13/IL22 cells have a
nonlesicnal. (E) Proportion of cells with Tc IL13/1L22 and Tcl7/Tul7 higher propertion of clonotypes with 22 cells relative to Ty (P = 3.3 10'2),
signatures present in bulk RNA-seq data from GSE121212. Modeling the and lesional psoriasis Tcl7/Ty17 cells have a higher proportion of

data on a quasibinomial distribution, lesional AD is enriched for Tc IL13/ clonotypes with 22 cells than do Tyeg (P = 1.6 10’2); other comparisons
1122 (P = 3.4 x 102) and Treg (P=32x 1072) relative to nonlesional skin.  were not significant. P values were calculated using a likelihood ratio test.
Lesional psoriasis is enriched for Tel7/Tyl7 (P = 1.6 = 10’5), Teg (P=46x  Bars across the top show significance between cell types. (G) Dot plot

Healthy Adult

&

TolLianez
Te 17T AT

Poscentsgo of Lymphoid Colls (%)

Percantage of Lymphoid Cells (%)

=

Proportion of clonotypes

THERSF18

10’7), and Tc (P = 2.5 x 107*) relative to nonlesional. P values were showing the expression of genes that were significantly differentially
calculated using a likelihood ratio test. (F) Bar charts showing clonotype expressed between nonclonal and clonal T cells in AD (top) and psoriasis
size in each T cell subset in lesional AD (left) and psoriasis (right). The (bottom). Hatched and selid colored circles indicate nenclonal and clonal T

color of the bar relates to the size of the clonotype. Medeling the datacena  cells, respectively. *P < 0.05, ***P < 0.001.
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Fig. 3. Dermal and A
epidermal mono-
nuclear phagocytes.
(A) UMAP visualiza-
tion of different anti-
gen-presenting cell
(APC) states found in
healthy adult skin

(n = 5). See Fig. 1B
for abbreviations.

(B) Dot plot showing
the expression of
differentially expressed
genes characterizing
adult healthy skin cell
states (circles) shown
in (A) and their
developmental coun-
terparts (triangles),
separated by the
dashed line. (C) Top:
Abstracted graph
(PAGA) showing
connectivity between
aduft healthy skin DC
clusters. The size

of the nodes is pro-
portional to cluster
size; edge thickness is
proportional to the
strength of the con-
nection between H
nodes. Bottom: enrich-
ment of gene signa-
tures for murine
splenic Xcrl'DC (DC1)
and dermal CD11c"
(DC2) in each node.
Av, average. (D) Dot
plot of enrichment of
gene signature of APC
cell types in aduit
human disease and in
the developing thy-
mus. SF, synovial fluid.
(E) Bar charts showing
the proportions of
Macl and Mac2 in
adult healthy, AD, and
psoriasis skin. HA,
healthy adult; AD,
atopic dermatitis;

P, psoriasis; L, lesional; NL, nonlesional. Mac2 cells are significantly expanded in both
lesional AD and psoriasis skin, and Macl cells are significantly reduced in both lesional
AD and psoriasis skin [Macl, P = 5.4 x 10 (AD lesional), 3.3 x 10~ (psoriasis
lesional); Mac2, P = 6.3 x 107 (AD nonlesional), 6.0 x 107 (AD lesional), 14 x 10®
(psoriasis lesional)]. P values were calculated using a likelihood ratio test.

(F) Proportion of cells with Mac2 signature present in bulk RNA-seq data from
GSE121212. We used generalized linear modeling on a quasibinomial distribution to
compare proportions of predicted Mac2 cells between healthy and lesional skin

and showed statistically significant expansion of Mac2 in lesional AD (P = 1.7 x 10'7),
P values were calculated using a likelihood ratio test. (G) Prediction score for
alignment using CCA (Seurat) between developing gut, kidney, liver, skin, and thymus
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healthy adutt (n =7), AD (n = 12), and psoriasis (n = 6) skin (P between healthy adult
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plot displaying the number of positive F13A cells in 4 x 10° um? of AD skin (n = 5)
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16 days and 12 weeks post-treatment = 2.0 x 10°3). *P < 0.05, **P < 001 ***P < 0.00L
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DC (Mig. DC)] express transcripts associated
with DC maturation (CD&3, CCR7, LAMP3,
CD40, and CD86), immunocregulation (CD274,
IDO01, CD200, PDCDILG2, and SOCST) (Fig. 3B
and table S1) (50), and migration (FSCN1,
PLGRKT, TRAF1, BCL2A1, CFLAR, and REL)
(Fig. 3C) as in migratory murine dermal DC2
and splenic DC1(49, 51, 52). Acquisition of
this common gene signature is associated
with loss of genes conferring subset identity
in mice (53), which we also observe here for
moDC3, LC4, and Mig. DC (Fig. 3B).

Surprisingly, the migratory DC signature is
also present across disease states including
tonsillitis, ascites (53, 54), lung cancer (50),
and rheumatoid arthritis (Fig. 3D). We pre-
viously reported the expression of migratory
genes in fetal thymic medullary DCs (55),
which suggests that developmental gene
programs are used in adult tissue homeosta-
sis and augmented in disease.

Fetal macrophage program in AD and psoriasis
‘We observed an increase in Mac2 in AD and
psoriasis skin (Fig. 3E and fig. S5E), which
was corroborated in a larger patient bulk
RNA-seq dataset (Fig. 3F). Adult healthy skin
Mac2 aligned with fetal skin, gut, kidney,
liver, and thymus macrophages (Fig. 3G). This
led us to hypothesize a cellular program shared
between fetal macrophages in AD skin and
Mac2 cells in psoriasis skin, which are signif-
icantly differentially expressed relative to other
skin cells. We derived 91 significantly conserved
genes (Seurat FindConservedMarkers using
negative binomial test, P < 0.05) between
analogous macrophage clusters in develop-
ing skin and lesional AD and psoriasis skin
(table S5). This revealed genes related to
stress (DNAJB1, HSPAIB, HSPAIA, JUN, and
FOSB), chemotactic (CCL4L2, CCL4, CCL3LI,
and CCL3), and angiopoietin (EGRI and PT(GS2)
signaling. Gene Ontology analysis revealed sig-
nificantly enriched gene set clusters (hyper-
geometric test g value < 0.05) relating to the
regulation of angiogenesis, leukocyte chemo-
taxis, and transforming growth factor-fi (TGF-
PB) signaling (Fig. 3H and table S6). The role of
macrophages in tissue homeostasis and regen-
eration is gaining recognition (56). Our findings
add insight into how macrophage programs
that support angiogenesis and leukocyte seed-
ing in tissues during fetal development ree-
merge during AD and psoriasis pathogenesis.
To confirm the role of Mac2 in disease
pathogenesis in vivo, we analyzed the abun-
dance of Mac2 in healthy, AD, and psoriasis
lesional skin, as well as during AD resolution
resulting from systemic treatment with meth-
otrexate (Fig. 3, I and J). We leveraged the
marker F13A for Mac2 from our scRNA-seq
data (Fig. 3B) and enumerated F13A-expressing
Mac2 cells by immunohistochemistry. This re-
vealed a significant increase in Mac2 in AD and

Reynolds et al., Science 371, eabaf500 (2021)

psoriasis lesional skin relative to healthy skin,
as well as a decline in Mac2 12 weeks after
commencement of methotrexate treatment,
in parallel with a reduction in patients’ clinical
Eczema Area and Severity Index (EASI) score
(Fig 3J and fig. S5F).

In both AD and psoriasis, LC1 has the
highest enrichment of cell cycle genes (fig.
55, G and H). To validate our findings, we
examined LC proliferation in healthy, AD,
and psoriasis epidermis. We found that Ki67"
Langerin® cells increased in AD and psoriasis
lesional skin (fig. S5I), consistent with previ-
ous findings (57, 58). Using FACS index data,
we determined that LC1 is enriched within
the Langerin*CD1a“CD11¢° gate distinet from
Langerin‘CD1a"™ LCs (fig. S5A). In contrast,
epidermal HLA-DR "CDla ang CDI1c'CDIc' cells
are predominantly moDCs and correspond
with non-LC-like epidermal cells potent at
stimulating T cell proliferation, proinflamma-
tory cytokine production, and transmission of
HIV to CD4* T cells (59).

Keratinocyte differentiation in healthy and
diseased skin
‘We characterized four groups of keratinocytes:
undifferentiated, proliferating, differentiated,
and inflammatory differentiated cells (differ-
entiated KC*) (Fig. 4A). Undifferentiated ke-
(KRT5 and KRTI4) and are abundant in the
CD49f™ FACS gate (Fig. 1C). Proliferating
keratinocytes (CDKT" and PCNA") have lower
expression of suprabasal cell transcripts (e.g.,
KRTI, KRTI0) that characterize differentiated
keratinocytes (Fig. 4B). Inflammatory differ-
entiated keratinocytes coexpress lower levels
of undifferentiated (TP63 and ITGA6) and
differentiated (KRTI and KRTIO) transcripts
but additionally express TCAMI, TNF, and
CCL20 (Fig. 4B). The gene expression pat-
terns of these keratinocyte subgroups are in
agreement with their spatial arrangement in
the epidermis (Fig. 4C) (Human Protein Atlas,
www.proteinatlas.org) and with a human epi-
dermal scRNA-seq dataset (60) (fig. S6A). First-
trimester human epidermis, comprising “basal”
undifferentiated keratinocyte progenitors over-
laid by the periderm, expresses keratin genes
and proteins of simple epithelium (keratins 8,
18, and 19) (Fig. 4B and fig. S6B) (61).
Force-directed graph (FDG) and PAGA
analyses revealed dual inferred differentiation
trajectories from the stem cell gene (TP63,
PPP3CA, and CAV1/2)-enriched basal ker-
atinocytes into terminally differentiated ker-
atinocytes expressing CNFN, FLG, and IVL
(Fig. 4D, fig. S6C, and table S1) (61, 62). One
arm expresses high levels of lamellar body
(LB)-related transcripts such as ABCAI2, CKAPS,
and CLIPI that characterize late epidermal dif-
ferentiation, and the other arm expresses lower
levels of LB-related transcripts (63) (Fig. 4E). IRFI
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and SOXO, transcription factors that are dif-
ferentially expressed in the two pathways
(fig. 56D), mark distinct cells by immuno-
fluorescence analysis of healthy skin (Fig.
4F and fig. S6E). The statistically signifi-
cant differentially expressed genes identi-
fied with Monocle (64) across keratinocyte
differentiation (fig. S6C) recapitulate pre-
vious reports in human and mouse (65).

Notably, keratinocytes expressing LB-related
transcripts coexpress genes associated with
autosomal recessive congenital ichthyosis,
such as ABCAI2, NIPAL4, SLC27A4, and TGM1
(Fig. 4E). However, analysis of fetal keratino-
cytes showed little to no expression of these
congenital ichthyosis-related genes, which
suggests that disease onset at the molecular
level begins only after 10 PCW (Fig. 4E). This
is in keeping with the absence of a granular
layer in first-trimester fetal epidermis, where
LOR, FLG, IVL, and genes required for lamel-
lar body production are expressed (65, 66).
Inflammatory differentiated keratinocytes ex-
press higher levels of genes associated with in-
flammatory ichthyoses and severe atopy, such
as NIPAL4 and SPINK5 (Fig. 4E, duster 8) (67).

Both AD and psoriasis lesional skin were
enriched for differentiated keratinocytes (Fig.
4G), as supported by deconvolution of bulk
RNA-seq data from an extended patient co-
hort (Fig. 4H). Differentially expressed gene
analysis revealed lower expression of stem cell
and basal keratinocyte genes (CAV1/2, KRTI4,
and DUSPIO) but higher expression of com-
mitment genes (FOS, JUNB, CDKNIA, MAFB)
in undifferentiated lesional psoriasis and AD
keratinocytes (fig. S6F). These observations
agree with previous reports (68, 69) and sug-
gestrapid transition and differentiation of
keratinocytes in AD and psoriasis lesional
skin. Lesional differentiated keratinocytes
additionally expressed inflammatory tran-
scripts including alarmins (SI00A7, SI00A8,
S100A9), serpins (SERPINB4, SERPINBI3),
and interferon response genes (IF127, IFITMT)
(fig. S6F). The proportion of inflammatory dif-
ferentiated keratinocytes, resembling previously
described CCL20-expressing keratinocytes in
murine inflammatory skin disease induced
by subeutaneous interleukin-17 (IL-17) and
tumor necrosis factor (TNF-a) injection (70),
are expanded in psoriasis skin (Fig. 4G).

Stromal cell heterogeneity
‘We next interrogated the heterogeneity within
fibroblasts, vascular and lymphatic endothelial
cells, and Schwann cells (Fig. 5, A and B).
Fibroblasts dominated the nonimmune cell
population in developing skin; the proportional
representation of melanocytes, Schwann cells,
and lymphatic and vascular endothelial cells
was increased in adult skin (Fig. 1F).

Three fibroblast subsets expressing extra-
cellular matrix (ECM)-related genes such as

6of 11

£Z0Z 91 AUN[ UO F10°IUIIS MMM //:5dNY WOLY PAPROUMOC]



RESEARCH | RESEARCH ARTICLE

1.0
A Healthy Adult | e—— e eeell.,
Diterentiated KC* @~ . L =5 e 5
Differentiated KC @ B see 0'4 g.
) Unditferentiated KC Prolferating KC @ ® - 1 ere e ]
© probteratng K UndifferentiatedKC®- + @ » - @ ® + @ B -
@ oiterentiated KC 0100% 0,0
SR s gegScYSTpSXE2ES L opese
@ oiforentiated KC* “::;: g§§§55§§§§5§§§§§§E§§5§
S oo B 58 3
E Al s T 1.0
o 50
Q i. i
igs i -3
5 5
‘EJ%. scece0e0 . s00 00 . - - 0'48
7
ie 5 S p 02
eow SIISSEILECOTLBEBENEREE ¢
< - B L | < 0
w4t PEREREERIIEILEREER gt
T 2@ = @ S5
nond8 LB
G Single Cell H 5 Bulk
i
Fig. 4. Keratinocyte cell states in health, AD, and psoriasis.
(A) Force-directed graph (FDG) visualization of the different
keratinocyte cell states found in healthy adult skin (n = 5). KC,
keratinocyte. The asterisk indicates the cell state with inflamma- £ £ ™
tory markers. (B) Dot plot showing the expression of differentially { Differentiated KC*
expressed genes characterizing keratinocyte states in healthy % g DiSorsrsiad 1
adult skin (circles) shown in (A) and developmental keratinocytes g § ::::::::.::i -
(triangle), separated by the dashed line. (C) FDG feature plots H s 3 .
showing gene expression of healthy adult skin keratinocyte g.
states shown in (A), together with images of these markers in g g
situ, from the Human Protein Atlas. Scale bars, 100 um. (D) Top: &
FDG in (A) annotated by Leiden clustering of eight groups: 2 5
undifferentiated KC (clusters 1 and 5), proliferating (cluster 2),
differentiated KC (clusters 3, 4, 6, and 7), and differentiated KC*
(cluster 8). Bottom: PAGA showing the relative connectivity
between the keratinocyte clusters. Arrows indicate the two M

differentiation pathways of basal keratinocytes to suprabasal. LB,

lamellar body. (E) Dot plot of genes related to lamellar body production

and ichthyosis (green box) expressed by healthy adult keratinocyte states
(circles) shown in (D), as well as fetal keratinocytes (friangle). Un.,
undifferentiated; Diff., differentiated. (F) Immunofiuorescence staining of
healthy adult skin for CDKI (red), IRF1 (green), SOX9 (yellow), and DAPI (blue).
Red and yellow arrows indicate CDK1" and SOX9" cells, respectively, in
suprabasal layers. Image is representative of n = 3 donors. Scale bar, 100 um.
(G) Bar charts showing the proportions of the keratinocyte cell states in
healthy and diseased skin. Undifferentiated KCs, P = 6.1 x 107 (AD lesional),
3.0 x 10°° (psoriasis lesional); differentiated KCs, P = 6.5 x 107 (AD lesional),
6.5 x 1077 (psoriasis nonlesional), 8.8 x 10" (psoriasis lesional); differentiated

Reynolds et al., Science 371, eaba6500 (2021) 22 January 2021

KCs* P = 2.3 x 1072 (psoriasis nonlesional), 1.5 x 10~ (psoriasis lesional);
proliferating KCs, P = 6.5 x 10 (AD nonlesional), 8.1 x 10" (psoriasis
lesional). Populations are compared to those in healthy adults. P values were
calculated using a likelihood ratio test. (H) Percentage of cells with undifferentiated,
differentiated, and proliferating keratinocyte signatures present in bulk
RNA-seq data from GSE121212. Generalized linear modeling on a quasibinomial
distribution was used to compare proportions of predicted keratinocyte
subsets between healthy, nonlesional, and lesional skin and showed statistically
significant expansion of differentiated keratinocytes in nonlesional AD
(P=11x10"), lesional AD (P = 9.6 x 10™%), nonlesional psoriasis (P = 21 x 10°),
and lesional psoriasis (P = 2.0 x 107%). *P < 0.05, **P < 0.01, **P < 0.00L
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Fig. 5. Stromal A B
and endothelial
cells. (A) UMAP
visualization of the
nonimmune, non-
keratinocyte cell
states found in
healthy adult skin
(n =5). Fb, fibro-
blast; LE, lymphatic
endothelium; VE,
vascular endothe-
lium. (B) Dot plot
showing the expres-
sion of differentially
expressed genes
characterizing adult
healthy skin cell
states (circles)
shown in (A) and
their developmental
counterparts (frian-
gles), separated by
the dashed line.
(C) 3D reconstruc-
tion of Z-stacked
images of whole-
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charts showing the
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lesional), 1.3 = 102 (psoriasis nonlesional), 6.2 = 107 (psoriasis lesional)]. P values
were calculated using a likelihood ratio test. (E) Propertion of cells with VE3
signature present in bulk RNA-seq data from GSE121212. The proportion of VE3
increased in both lesional AD (P = 9.1x 10™*) and psoriasis (P =8.2 x 107%). Pvalues
were calculated using a likelihood ratio test. (F) Prediction score for alignment using
CCA (Seurat) between developing gut, kidney, liver, skin, and thymus VE with

VEL, VE2, and VE3 in healthy adult skin. (G) Network visualization of pathways
conserved between developing skin VE and VE3 in AD and psoriasis. Network nodes
are coored by enrichment score (g < 0.05) and represent individual enriched gene
sets edges represent genes shared between nodes (intersect 210%). (H) Jitter
plot displaying the number of positive ACKR1 cells in 1.5 x 10° um? of healthy adult
(n =6), AD (n = 12}, and psoriasis (n = 6) skin (ANOVA P value between healthy
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adult and AD, 3.0 x 10°%; between healthy adult and psoriasis, 2.4 x 10°5).

(1 Jitter plot displaying the number of positive ACKR cells in 15 x 10° um? of AD
skin (n = 5) before treatment with methotrexate and 9 to 16 days and 12 weeks
post-treatment (ANOVA P value between pretreatment and 12 weeks post-
treatment, 5.0 x 107%). (J) Interactions between macrophage and vascular
endothelium subsets predicted by CellPhoneDB. Color and size indicate logz mean
expression, averaged across the two clusters. Dev, developing skin. (K) Immuno-
histochemical staining of AD (left) and psoriasis (right) skin for F13A (purple), ACKR1
(yellow), and CD31 (teal), showing the close proximity of Mac2 and VE3. Pink arrows
point to F13A-positive macrophages; green arrows point to CD3L/ACKR1-positive
vascular endothelial cells. Scale bars, 20 pm. Representative images fromn = 4 for AD
and n = 6 for psoriasis are shown. *P < 0.05, **P < 0.0, ***P < 0.00L
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MMP2, COLIAI, COL1A2, and NT5E (encodes
CD73) are present in healthy human skin,
dominated by Fbl fibroblasts with minor
populations of Fb2 and Fb3 fibroblasts (Fig.
5, A and B). Dermal fibroblast heterogeneity
encompassing structural and immunomodu-
latory subtypes has been previously reported
at the single-cell level (6, 8). Interestingly,
fibroblasts in fetal skin express more genes
relating to Fb2 adult fibroblasts, including
COL1AI, COL142, and COLGAI, which suggests
that they are functionally specialized toward
ECM remodeling and maintenance (Fig. 5B).
Furthermore, in AD and psoriasis lesional and
nonlesional skin, Fb2 fibroblasts are signifi-
cantly enriched relative to healthy skin and
have up-regulated expression of the chemo-
kines CXCLI2 and CCLI9, in keeping with
recent reports (71) (fig. S7, A and B).

Cnapiali FT

p d vascular
leukocyte trafficking
Endothelial cells in the healthy adult dermis
constitute the vascular endothelium (PECAMI,
EMCN) and lymphatic endothelium (L¥VEI,
PDPN) (Fig. 5,Aand B, and table S1). There are
two subclusters of lymphatic endothelial cells
defined by the differential expression of CCL21
and PDPN, which are higher in LE1 and LE2,
respectively (Fig. 5, A and B), the latter re-
sembling PDPN" collecting lymphatic vessels
in human dermis (74). Notably, LE1 cells ex-
press higher levels of the chemoattractant
CCL21, which mediates DC migration into skin
draining lymph nodes, as well as angiogenesis
factors CAVINZ and CCQVDI, further supporting
their function as initial afferent lymphatics (72)
(Fig. 5B and table S1).

Three distinct states of PECAMT (CD31)-
expressing vascular endothelial cells (VEI, VE2,
VE3) are present in adult dermis. VE3, which
forms ~2% of endothelial cells, is characterized
by y-synudein (SNCG) and high expression of
the venular capillary marker ACKRI (73, 74)
(Fig. 5B). In addition, VE3 cells coexpress in-
flammatory cytokines, chemokines, and leuko-
cyte adhesion molecules induding IL6, IL33,
SELE, and ICAM1 (Fig. 5B), similar to lymph
node high endothelial venules that mediate
leukocyte entry (75, 76). We performed whole-
mount immunostaining of healthy dermis and
identified SNCG"PECAM1*(VE3) distended
vascular structures in the superficial dermis
(Fig. 5C), which suggests that these cells may
be postcapillary venular cells regulating leu-
kocyte adhesion and migration.

Co-optation of developmental gene programs
in AD and psoriasis

We observed significant expansion of VE3 in
AD and psoriasis lesional skin (Fig. 5D and
fig. S7B) that was also evident in the broader
patient cohort bulk RNA-seq data (Fig. 5E).
Fetal skin VE cells aligned transcriptionally
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with adult skin VE3 and also expressed genes
involved in leukocyte adhesion and traffick-
ing (Figs. 1E and 5B). The expansion of VE3 in
inflamed skin and transcriptome alignment
of fetal gut, kidney, liver, skin, and thymus VE
and of adult skin VE3 (Fig 5F) led us to hypoth-
esize that developmental VE gene programs
are involved in AD and psoriasis pathogenesis,
similar to our earlier observation with Mac2.
‘We derived 112 genes that were conserved
(Seurat FindConservedMarkers, negative
binomial test, P < 0.05) between fetal skin
VE and AD and psoriasis VE3. This identified
gene sets related to stress (DNAJBI, HSPAG,
HSPBI, HSPHI, HSP90AAT), IL-6 (SOCS3),
and angiopoietin (EGRI) signaling, similar
to Mac2 (tables S5 and S6). Gene Ontology
analysis identified significantly enriched gene
set clusters (hypergeometric test, g value < 0.05),
similar to Mac2 (Figs. 3Hand 5G), relating to
leukocyte adhesion, T cell activation, and IL-8
response as conserved gene modules in devel-
oping skin VE and VE3 in AD and psoriasis,
respectively (Fig. 5G and table 56).

To validate the pathogenic role of VE3 in
inflammatory skin disease in vivo, we used
ACKRI1 as a marker for VE3 (based on the
scRNA-seq data of healthy, AD, and psoriasis
skin) (Fig. 5B and fig. S7C) and compared the
abundance of VE3 in healthy, AD, and pso-
riasis skin before and after treatment with
oral methotrexate. This showed a significantly
higher (P < 0.05, ANOVA) frequency of VE3 in
AD and psoriasis skin and a reduction in VE3
in the skin of AD patients after treatment, in
line with clinical response and reduction in
EASI score, similar to Mac2 (Fig. 5, H and I).
Flow cytometry analysis also confirmed the
expansion of VE3 in lesional psoriasis skin (fig.
§7,D and E).

Mac2 and VE3 are the only skin cell states
significantly enriched for these leukocyte mi-
gration gene programs; hence, we investigated
whether they were interacting with each other
or other immune cells to coordinate this func-
tion. To assess cell-cell interactions in healthy,
AD, and psoriasis skin, we interrogated the
CellPhoneDB receptor-ligand database, which
predicted a significant enrichment for ACKRT
on VE3 to interact with CXCL8 (IL-8) on Mac2
(Fig. 57 and fig. S7F). We confirmed this cell-
cell interaction in situ, demonstrating the close
apposition of VE3 and perivascular Mac2 in
AD and psoriasis skin (Fig. 5K). CellPhoneDB
analysis also predicted enhanced interaction
between both VE3 and Mac2 with lymphocytes
in AD and psoriasis skin relative to healthy skin,
supporting a role for these cells in lymphocyte
recruitment into inflamed skin (fig. S7G).

Discussion
The importance of developmental programs in

carcinogenesis and metastasis of both child-
hood and adult-onset tumors is well established
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(1,2, 77). The impact of developmental programs
in adult-onset neurodegenerative disorders is
also emerging (78). Our findings support a
broader use of prenatal cellular programs, not
only in inflammatory skin disease but also
potentially in other immune-mediated inflam-
matory disorders. Lymphocyte seeding into
the developing skin is reliant on the structural
network provided by the vasculature and, as
our data suggest, also through endothelial cell
interactions with macrophages (2I), which are
the most abundant skin-resident immune cells
during embryonic development. We postulate
that this interplay is co-opted to recruit im-
mune cells in inflammatory skin disease. The
molecular regulation of conserved gene mod-
ules during development may be distinct from
that observed in disease. Dissecting the precise
interplay of known angiogenic triggers, such as
hypoxia, Wnt, STAT3, and p-catenin signaling,
will pave the way toward a mechanistic under-
standing of VE3 expansion. Establishing the
intrinsic and tissue-extrinsic factors that drive
the Mac2 state acquisition in disease may in-
novate anti-inflammatory strategies. In addition
to prenatal endothelial cell and macrophage
gene programs, the skin fibroblast (F2) cell
program is also augmented in AD and pso-
riasis, as well as activation of the fetal thymic
medullary DC state in inflammation of several
adult tissues and cancer (50, 53-55).

Our human skin atlas provides a road map
for targeting pathological programs in inflam-
matory skin diseases and is a foundational
resource for the dynamic cutaneous cellular
topology that evolves during fetal develop-
ment, adulthood, and inflammation.
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Single-cell multi-omics analysis of the immune
response in COVID-19

Emily Stephenson'“3, Gary Reynolds'*?, Rachel A. Botting'*?, Fernando J. Calero-Nieto (243,
Michael D. Morgan 3443, Zewen Kelvin Tuong 5443, Karsten Bach®*%3, Waradon Sungnak
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Analysis of human blood immune cells provides i into the coordinated r to viral infections such as severe acute
respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcrip-
tome, surface proteome and T and B lymphocyte antigen recep!or analyses of over 780,000 peripheral blood mononuclear
cells from a cross-: sectlonal cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassi-

cal tes transcripts (CDIG'CTQA/B/C*) that sequester platelets and were predicted to replen-
ish the alveolar macrophage pool in COVID-19 Early, itted CD34+ | ietic stem/pr itor cells were primed
toward L yocyte-committed pr itors and increased platelet activation.

Y
Clonally expanded CDS»+ T cells and an |ncreased ratio of CD8+ effector T cells to effector memory T cells characterized severe
dlsease, while circulating folll:ular helper Tcells accompanled mild disease. We observed a relative loss of IgAZ in symptomatlc
despite an overall of p bl and p cells. Qur study highlights the coordi

that contributes to COVID-19 pathogene5|s and reveals discrete cellular components that can be targeted for therapy

infections and 2.6 million deaths (as of 17 March 2021)'".
Symptoms vary in severity and include acute respiratory dis-
tress syndrome, thrombosis and organ failure’. COVID-19 is caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
a single-stranded RNA betacoronavirus that enters host cells
through receptors such as angiotensin-converting enzyme 2 (ACE2)
and neuropilin (NRP1), which are expressed widely, including in
nasal epithelium**.
Several studies have highlighted a complex network of peripheral
blood immune responses in COVID-19 infection™. A reduction in

| he COVID-19 global pandemic has caused >120 million

T cells with disease severity and reduced interferon (IFN)-y produc-
tion by lymphocytes have been reported’. However, an expansion
of highly cytotoxic effector T cell subsets in moderate to severe dis-
ease'™"" and higher expression of exhaustion markers programmed
cell death protein 1 and Tim-3 on CD8" T cells have been described
in patients receiving intensive care therapy®. In severe cases, clas-
sical monocytes have been shown to display a type 1 IFN inflam-
matory signature’; however, low levels of IFNa coupled with a
reduction in plasmacytoid dendritic cells (DCs) have been reported
in patients with critical disease'>. Emergency and dysregulated
myelopoiesis, and expanded activated megakaryocytes have also

A full list of author affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper.
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been reported". Proliferating plasmablasts and extrafollicular
B cell activation are present in critically ill patients, but despite high
levels of SARS-CoV-2-specific antibodies and antibody-secreting
cells, many of these patients do not recover*”. To better under-
stand the coordinated systemic immune response in individuals
with asymptomatic and symptomatic COVID-19, we performed
combined single-cell transcriptome, cell-surface protein and lym-
phocyte antigen receptor repertoire analysis of peripheral blood of
a cross-sectional patient cohort and integrated results across three
UK medical centers.

Results

Altered cellular profiles across COVID-19 severities. We gene-
rated single-cell combined transcriptome and surface proteome
data from peripheral blood mononuclear cells (PBMCs) from indi-
viduals with asymptomatic, mild, moderate, severe and critical'®
COVID-19 across three UK centers in Newcastle, Cambridge
and London (Fig. 1a, Extended Data Fig. 1a and Supplementary
Table 1). Controls included healthy volunteers, individuals with
non-COVID-19 severe respiratory illness and healthy volunteers
administered with intravenous lipopolysaccharide (IV-LPS) as
a surrogate for an acute systemic inflammatory response (Fig. la
and Supplementary Table 2). We sequenced 1,141,860 cells from
143 samples. Following computational doublet removal, 781,123
cells passed quality control (QC; minimum of 200 genes and <10%
mitochondrial reads per cell; Extended Data Fig. 1b). Data were
integrated using Harmony'” with good mixing of cells by the kKBET
statistic calculated for each cluster across samples (rejection rate
improved from 0.62 to 0.36 following integration, P<2.1x 10-% by
Wilcoxon paired signed-rank test; Extended Data Fig. 1c,d).

Following Leiden clustering, cells were manually annotated
based on the RNA expression of known marker genes supported
by surface protein expression of markers employed in flow cyto-
metry to discriminate subpopulations (Extended Data Fig. 1e). We
defined 18 cell subsets (Fig. 1b), with an additional 27 cell states
identified following subclustering (Figs. 1b, 2a, 3a.b and 4a,b and
Supplementary Table 3). Our annotation was further validated
using Azimuth, whereby more than 50% of cells were mapped
and matched to a unique cluster in 32/33 of the clusters defined in
the Azimuth PBMC dataset (Methods; proliferating CD8+ T cells
mapped across two clusters). Clusters unique to our data included
proliferating monocytes, innate lymphoid cell subpopulations and
isotype-specific plasma cells (Extended Data Fig. 1f).

We observed a relative expansion of proliferating lymphocytes,
proliferating monocytes, platelets and mobilized hematopoietic
stem and progenitor cells (HSPCs) with worsening disease.
Plasmablasts and B cells were expanded in severe and critical dis-
ease (Fig. Ic and Extended Data Fig. 2a). These changes matched
trends in clinical blood cell counts (Extended Data Fig. 2b and
Supplementary Table 4). To assess the broader impacts of patient
characteristics and clinical metadata on the altered proportion of
cell types/states, we used a Poisson linear mixed model (Methods),
which predicted the COVID-19 swab result (Bonferroni-corrected
logistic regression (BF-corrected LR), P=1.1x 10~*; Methods), dis-
ease severity at blood sampling (BF-corrected LR, P=8.9%x 10~%)
and center (contributed by increased red blood cells (RBCs) and
reduced monocytes in the Cambridge patient cohort; (BF-corrected
LR, P=20x10"%) as the main contributing factors among
seven different clinical/technical factors (Extended Data Fig. 2c).
PBMC composition varied depending on symptom duration, with
increased relative frequency of plasmacytoid dendritic cells (pDCs),
natural killer (NK) cells, CD14* and CD16* monocytes (false
discovery rate (FDR), 10%) and decreased relative frequencies of
B cells, regulatory T (T,) cells, RBCs, platelets and CD4* T cells,
with a longer symptomatic interval before hospital admission
(Extended Data Fig. 2d). These changes may be due to a subset
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of individuals in the critically ill category who reported a longer
time since symptom onset, consistent with a protracted course of
infection in critical disease (Extended Data Fig. 2e,f). However,
concordant changes in immune cell composition were observed
when excluding patients with either the longest symptom durations
(>24d) or critical disease (Extended Data Fig. 2g), indicating that
disease severity changes were not driven by symptom duration.
Cell abundance results were also in agreement when performing a
leave-one-out analysis (Extended Data Fig. 2h).

We observed expression of type I/III interferon response
genes in monocytes, DCs and HSPCs across the spectrum of
COVID-19 severity, but not in individuals challenged with IV-LPS,
in keeping with the importance of type I and III interferons in
innate immune responses to viral infection (Fig. 1d). Type I/IIL
interferon response-related genes were recently implicated in
genome-wide association studies (GWAS) for COVID-19 sus-
ceptibility'®*. IFNAR2 was both upregulated in individuals with
COVID-19 compared to healthy controls in most circulating cell
types and highly expressed by plasmablasts, monocytes and DCs
(Extended Data Fig. 2i).

Multiplexed analysis of 45 proteins in serum showed two
contrasting profiles between mild/moderate and severe/critical
patients. CCL4, CXCLI10, interleukin (IL)-7 and IL-lot were asso-
ciated with severe and critical disease, suggesting an augmented
drive for monocyte and NK lymphocyte recruitment, as well as
support for T cell activity/pathology (Extended Data Fig. 2j and
Supplementary Table 5).

We used Cydar” to characterize the immune landscape changes
with disease severity based on surface protein expression by
dividing cells into phenotypic hyperspheres. We quantified the
number of cells from each severity group within the hyperspheres,
identifying 608 hyperspheres that differed significantly in abundance
with increasing severity (spatial FDR < 0.05; Fig. 1e). Differentially
abundant hyperspheres were present in all major immune compart-
ments. Notably, we found an increase in B cells (CD19+/CD20"),
plasma cells (CD38+) and HSPCs (CD34), as well as remodeling
of the myeloid compartment" (Fig. 1e).

Mononuclear phagocytes and HSPC changes. Transcriptome
and surface proteome analysis of blood mononuclear phagocytes
(MPs) identified known DC subsets (pDC, ASDC (AXL*SIGLECs*
DC), DC1, DC2 and DC3) and several monocyte states (Fig. 2a,b).
Three CD14* monocyte states were present (proliferating, classical
CD14* and activated CD83*) in addition to two CD16" mono-
cyte states (nonclassical CD16* and C1QA/B/C+CD16%; Fig. 2a,b).
Proliferating monocytes and DCs expressing MKI67 and TOP2A
were increased with disease severity (Fig. 2a,b). In contrast, the
frequencies of DC2 and DC3 were reduced. Proliferating mono-
cytes, previously reported by flow cytometry analysis of blood
from patients with COVID-19%, transcriptionally resembled
CD14* monocytes and was the only population to change signifi-
cantly with symptom duration. (Fig. 2a,b and Extended Data
Fig. 3a). Proliferating DCs resembled the DC2 subset (Fig. 2a,b).
Rare C1QA/B/C-expressing CD16* monocytes were the only source
of C1 complement components (Fig. 2b and Extended Data Fig. 3b).

We previously demonstrated egress of blood DCs and mono-
cytes to the alveolar space with rapid acquisition of a lung molecular
profile following human inhalational LPS challenge®'. To investi-
gate the relationship between circulating and lung alveolar MPs in
COVID-19, we compared the transcriptome profile of blood DCs
and monocytes with their bronchoalveolar lavage (BAL) counter-
parts using recently published data (GSE145926)* (Extended Data
Fig. 3d). Partition-based graph abstraction (PAGA) suggested tran-
scriptional similarity between circulating CD14* monocytes and
BAL macrophages in health, aligning with recent data demonstrating
that BAL macrophages can arise from circulating CD14* monocytes
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Fig. 1| Single-cell multi-omics analysis of PBMCs from individuals with COVID-19 and controls. a, Overview of the participants included and the
samples and data collected. Figure was created using BioRender.com. b, UMAP visualization of all 781,123 cells after QC. Leiden clusters based on 5" gene
expression shown and colored by cell type. Lymph, lymphocyte; mono, menocyte; prolif, proliferating. ¢, Bar plot of the proportion of cell types shown in
b, separated by condition and COVID-19 severity status. Hypothesis testing was performed using quasi-likelihood F-test comparing healthy controls to
individuals with COVID-19 for linear trends across disease severity groups (healthy > asymptomatic > mild > moderate > severe > critical). Differentially
abundant cell types were determined using a 10% FDR and are marked with an asterisk. d, Enrichment of interferon response of each cell state separated
by severity. IFN response was calculated using a published gene list (GO:0034340) e, UMAP computed using batch-corrected mean staining intensities
of 188 antibodies for 4,241 hyperspheres. Each hypersphere represents an area in the 188-dimensional space and is colored by significant (spatial

FDR < 0.05) severity-associated changes in abundance of cells within that space.
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(Fig. 2¢)*. In COVID-19, there was greater transcriptional similar-
ity between BAL macrophages and circulating C1QA/B/C*CD16*
monocytes (Fig. 2c), suggesting a differential origin of alveolar
macrophages in healthy donors and individuals with COVID-19.
Both BAL macrophages and C1QA/B/C*CD16* monocytes express
FCGR3A and CIQA/B/C and type 1 interferon response genes
(Fig. 2a). Myeloid hyperinflammation causing lung and peripheral
tissue damage via secretion of inflammatory cytokines such as IL-6
and tumor necrosis factor (TNF) in COVID-19 has been reported
and in our analysis were primarily expressed by tissue rather
than blood MPs (Fig. 2c). Genes differentially expressed by blood
monocytes identified S100A8, previously reported in COVID-19
as contributing to the cytokine storm in severe infection®’. BAL
macrophages expressed leukocyte-recruiting chemokines including
CCL2, CCL4, CCL7 and CCLS (Fig. 2d).

Tissue DCs respond to local inflammation and pathogen
challenge by migrating to the draining lymph node to activate
naive T cells. BAL macrophages contain a population of mature,
migratory DCs that express CCR7 and LAMP3 but downregu-
late DC-specific markers, such as CDIC and CLEC9A (Extended
Data Fig. 3c). These migratory DCs express IL10 in health, but
TNFand the common IL-12 and IL-23 subunit IL12B in COVID-19,
suggesting altered capacity for T cell polarization (Fig. 2e). In
peripheral blood, C1QA/B/C*CD16* monocytes expressed the
highest amount of type 1 IFN response genes compared to all
myeloid cells (Fig. 2f and Supplementary Tables 6 and 7). We
detected minimal TNF-mediated or IL-6-mediated JAK-STAT
signaling activation in circulating monocytes and DCs, but this
was upregulated by COVID-19 BAL MPs (Fig. 2f, Supplementary
Tables 6 and 7).

Coagulation abnormalities and monocyte-platelet aggregates
have been previously reported in COVID-19 (refs. %), leading
us to investigate predicted receptor-ligand interactions between
monocytes and platelets using the CellPhoneDB repository.
The expression levels of SIRPA:CD47, FPRI:ANXA1, FPR2:APP
between monocytes:platelets were highest in the CIQA/B/C*CD16*
monocytes (Fig. 2g). Using protein data, we identified ICAM1
interactions on platelets with CD11a/b/c/CD18 primarily on
CIQA/B/C*CD16* monocytes and CD16* monocytes (Extended
Data Fig. 3d), accompanied by increased expression of surface pro-
teins indicative of platelet activation (Fig. 2h).

Our large dataset of 781,123 PBMCs allowed us to interrogate
3,297 CD34* HSPCs. Leiden clustering and uniform manifold and
projection (UMAP) visualization showed a cloud-like representa-
tion, consistent with a stem/progenitor cell landscape previously
described for bone marrow HSPCs* (Fig. 2i and Extended Data
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Fig. 3e). Absence of CD38 mRNA and protein expression marks
the most immature cells within the CD34* compartment, while
expression of markers such as GATA 1, MPO and PF4 characterizes
distinct erythroid, myeloid and megakaryocytic progenitor popula-
tions, respectively (Fig. 2i). Accordingly, we were able to annotate
six transcriptional clusters as CD34+CD38- HSPCs, CD34*CD38*
early progenitor HSPCs and CD34+CD38* erythroid, megakaryo-
cytic and myeloid progenitors, as well as a small population dis-
tinguished by the expression of cell cycle (S phase) genes (Fig. 2i).
Megakaryocyte progenitors were absent in healthy and asympto-
matic individuals but made up ~5% of CD34" cells in all symp-
tomatic individuals (Fig. 2j). As peripheral blood is not a site for
hematopoiesis”, this finding likely reflects COVID-19-mediated
perturbation of normal homeostatic functioning of the bone
marrow HSPC compartment.

In light of our earlier observations of platelet activation and
enhanced C1QA/B/C*CD16* monocyte—platelet interactions
(Fig. 2g:h), the appearance of CD34* megakaryocyte progenitors
was of particular interest, as it suggested a rebalancing of the stem/
progenitor cell compartment. To further explore this hypothesis,
we generated differential gene expression signatures between the
megakaryocyte, myeloid and erythroid progenitor clusters to inter-
rogate potential early activation or priming in the most immature
HSPC clusters (Extended Data Fig. 3f). We observed enrichment of
the megakaryocyte progenitor signature in the CD38* HSPC popu-
lations in moderate COVID-19 compared to the healthy condition
(Fig. 2kcand Supplementary Table 8), but no enrichment of erythroid
or myeloid signatures in either CD38~ or CD38* HSPCs (Extended
Data Fig. 3g and Supplementary Table 8). OQur earlier observation
of increased platelet activation within the context of normal platelet
counts (Fig. 2h and Extended Data Fig. 2b) is thus consistent with
a model whereby a rebalancing of the HSPC compartment toward
megakaryopoiesis may be compensating for peripheral platelet
consumption in COVID-19.

T lymphocytes and T cell receptor changes. Fine-resolution
clustering of mRNA profiles revealed 11 initial clusters of CD4*
T cells, CD8* T cells and innate-like T cells including y& T cells,
NK T cells and mucosal-associated invariant T (MAIT) cells (Fig. 3a
and Extended Data Fig. 4). Annotations were refined further
using RNA expression of effector cytokines and surface protein
expression (Fig. 3a—c).

Cellular composition of the T cell compartment varied between
healthy and infected groups (Fig. 3d). Based on their relative pro-
portions and differential abundance testing (FDR 10%), we found
activated CD4+ T cells expressing IL22, circulating follicular helper

Fig.2 | E: ion of | monocytes and

yocyte-primed prog cells and increased platelet activation

with COVID-19 disease severity. a, Dut plots of gene (left) and surface protein (right) expression for myeloid populations. b, Bar plot of the proportion
of myeloid populations from the Newcastle and London sites. Hypothesis testing was performed using a quasi-likelihood F-test comparing healthy
controls to individuals with COVID-19. Differentially abundant cell types were determined using a 10% FDR and are marked with an asterisk. ¢, PAGA

graph representing connectivity between clusters defined in a for healthy (top left) and COVID-19 (bottom left) monocytes and BAL macrophages (mac).
Expression of [L6 (top right) and TNF (bottom right) in each cluster along the predicted path for COVID-19 monocytes. d, Expression of differentially
expressed cytokines between CD83+CD14+ monocytes and BAL macrophages shown by cells ordered by pseudotime calculated for cells from ¢. e, Dot
plot of gene expression of DC-derived T cell polarizing cytokines in peripheral blood DC2 cells and mature BAL DCs. f, Heat map displaying gene-set
enrichment scores for type 1/3 IFN response, TNF response and JAK-STAT signatures in the myeloid populations. Asterisks indicate significance compared
to healthy controls. Absolute values and other comparisons are provided in Supplementary Table 7. g, Heat map of predicted ligand-receptor interactions
between platelets and monocyte subsets, using RNA data. h, Dot plot of significant differentially expressed genes between samples from healthy donors
and individuals with COVID-19 filtered for platelet activation markers. i, UMAP representation of HSPCs (top) and dot plot of gene expression markers
used to annotate clusters (bottom). MK, megakaryocyte; prog, progenitor. j, Bar chart depicting the proportion of progenitors. k, Box plots displaying the
enrichment of a megakaryocyte progenitor signature in CD34+CD38+ HSPCs (right) and CD34+CD38- (left), averaged per donor scores. Comparisons
were made by an analysis of variance (ANOVA) with pairwise comparisons using Tukey's test. Asterisks above bars indicate significance and are colored
by the severity for which they were compared to. Absolute values are provided in Supplementary Table 8. Boxes denote the interquartile range (IQR), and
the median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as individual points (P values: CD38-negative cells in
healthy versus LPS group (90 min), 0.3 x10-3; CD38-positive cells in healthy versus moderate group, 0.7 x 10-3).
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T (Tgy) cells, type 1 helper T (Ty1) cells, CD8* effector memory
T (Tgy) cells and MAIT cells relatively enriched in individuals with
asymptomatic and mild infection, with NKT, proliferating CD8*
and CD4*, and CD8* terminal effector T (Ty) cells enriched in
individuals with more severe infection (Fig. 3¢ and Extended Data
Fig. 5a,b). Treating disease severity as an ordinal variable (Methods),
multiple cell populations displayed nonlinear differences across dis-
ease severity (proliferating CD4* and CD8* T cells, CD8* Ty, CD4*

Tyl, CD4* T,17, CD4* central memory T (Tg,) and IL-22*CD4*
T cells), illustrating the complex compositional changes to peri-
pheral T cells that occur with COVID-19 (Fig. 3e and Extended Data
Fig. 5b). IL-22-expressing CD4+ T cells seen in asymptomatic and
mild disease could be associated with tissue-protective responses
that may restrict immunopathology (Fig. 3e) as previously shown
for IL-22 in influenza A virus infection® and lower viral load in
COVID-19 patients’ lungs™. Proliferating CD4* and CD8* T cells
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coexpressed exhaustion marker genes LAG3 and TOX (Extended
Data Fig. 5¢), in keeping with previous studies of patients with
severe COVID-19 (ref. °). In contrast to disease severity, CD4* Ty1,
CD4* T,;2, CD4*IL-22+ and CD4* Ty cells were enriched among
individuals with longer symptom duration, while effector popula-
tions with a cytotoxic phenotype (CD8* Ty, CD8* Ty, MAIT and
NK T cells) were enriched in individuals with shorter symptom
duration (Extended Data Fig. 5d).

Differential gene expression analysis across disease severity
(FDR 1%) and gene-set enrichment analysis (GSEA) identified
pathways associated with inflammation and T cell activation across
multiple subsets, including IL-2-STATS5 signaling, mTORC1 signal-
ing, inflammatory response, IFNy response, and IL-6-JAK-STAT3
signaling (Extended Data Fig. 5e). The increased activation and
cytotoxic phenotype in T cells from individuals with COVID-19
was functionally validated by flow cytometry analysis of PBMCs
stimulated ex vivo with SARS-CoV-2 peptide showing upregulation
of CD137 and CD107a (Extended Data Fig. 5f).

T cell receptor (TCR) clonality analysis showed that effector
CD8* T cells were the most clonally expanded (odds ratio (OR) (95%
confidence interval (CI)) 1.81 (1.58-2.10)), P=2.49x10~") and
their relative proportion increased with disease severity (Fig. 3fg
and Extended Data Fig. 5g.h and Supplementary Tables 6 and 7).
Conversely, the relative proportion of clonally expanded effec-
tor memory CD8* Ty, cells decreased in individuals with more
severe disease (OR (95% CI) 0.87 (0.72-1.04), P=0.26; Fig. 3f,g and
Supplementary Tables 9 and 10). These clonal alterations were pri-
marily driven by severity rather than differences in symptom dura-
tion for more severely ill patients, as CD8* Ty, clones expanded
in individuals who had longer symptom duration, in line with a
more developed infection trajectory in these individuals (per day,
OR (95% CI) 1.02 (1.01-1.03), P=2.66 x 10~'). The ratio of effec-
tor CD8* T cells to CD8* Ty, cells (TE:EM ratio) correlated with
disease severity (linear model f§ 2.97, P=2.92x 10~'%; Fig. 3g and
Supplementary Tables 9 and 10), suggesting that CD8* T cell dif-
ferentiation outcome may contribute to both antiviral protection
and immunopathology, as previously reported in animal models™,
although bystander T cell activation cannot be excluded.

B lymphocytes and B cell receptor changes. Re-clustering of
B cells and plasma cells identified nine clusters that were annotated
according to canonical marker expression (Fig. 4a,b), and previously
published transcriptional signatures (Extended Data Fig. 6a). This
included immature, naive, switched and non-switched memory
B cells, and a cluster of cells that enriched for markers previously
described in exhausted memory B cells** (Fig. 4a,b and Extended
Data Fig. 6a). We also found a large population of plasmablasts
with negative expression of CD19 and CD20, with high expres-
sion of the proliferation marker MKI67, consistent with previous

reports on severe SARS-CoV-2 infection'***, as well as IgM*, IgG*
and IgA* plasma cells (Fig. 4a,b). In individuals with symptomatic
COVID-19, there was a significant expansion of plasmablasts and
plasma cells (Fig. 4c and Extended Data Fig. 6b). The magnitude
of this expansion increased from mild to moderate disease but was
attenuated in severe to critical disease. This observation persisted
even after accounting for days from symptom onset (Extended Data
Fig. 6b). IgA* cells were decreased in individuals with symptom-
atic COVID-19 due to a significant decrease of the I[gA2 subclass
(Fig. 4d and Extended Data Fig. 6b,c), suggestive of the maintenance
of an effective mucosal humoral response in asymptomatic individu-
als. In parallel, we observed the greatest expansion of circulating fol-
licular helper T (cTy,) cells in asymptomatic individuals and a strong
positive correlation between ¢Ty, cells and plasma cells in indi-
viduals with asymptomatic/mild disease that was lost with increas-
ing disease severity (Figs. 3¢ and 4e and Extended Data Fig. 5a,b).
Together, this suggests the presence of coordinated T cell and B cell
responses in asymptomatic and mild disease, generating effective
antiviral humoral immunity that becomes uncoupled in severe and
critical disease. This is consistent with previous findings relating
to the requirement of Ty cells for optimal antibody responses and
high-quality neutralizing antibodies in viral infection*.

GSEA analysis identified interferon alpha response and inter-
feron gamma response pathway genes enriched in all B cell subsets in
individuals with COVID-19, and this was more marked in those
with asymptomatic or mild disease, and attenuated in severe and
critical disease (Fig. 4f and Extended Data Fig. 6d). The magnitude
of type 1 interferon transcriptional response in B cells mirrored
serum IFNa levels, which were highest in individuals with mild dis-
ease (Extended Data Fig. 2j), suggesting that the low expression of
IFN response genes in B cells in severe or critical disease does not
reflect an inability of B cells to respond to IFNa, but rather attenua-
tion of IFNa. This may be because the initial antiviral response has
waned in patients with severe or critical disease or because these
individuals fail to sustain adequate IFNa production by myeloid
cells and pDCs following symptom onset as previously reported’.
Longitudinal sampling would be required to distinguish these two
possibilities.

In asymptomatic individuals, TNF signaling via nuclear factor
kappa B (NF-kB) pathway genes was enriched in immature, naive
and switched memory B cells, but decreased in immature B cells
and plasma cells in critical and severe disease (Fig. 4f and Extended
Data Fig. 6d). Assessment of the leading-edge genes in this path-
way demonstrated their markedly higher expression in all B cell
and plasmablast/cell subsets in asymptomatic individuals with
COVID-19 compared with those with symptomatic disease
(Fig. 4g and Extended Data Fig. 6e). TNF was barely detectable
in COVID-19 serum samples and highest in individuals with
moderate disease (Extended Data Fig. 2j), suggesting that another

Fig. 3| G | and clonal

of T lymphocytes illustrate the expansion of effector subsets. a, UMAP visualization of 309,617 T cells based

on gene expression shown and colored by cell type. Insets show the two-dimensional kernel density estimates of select T cell types in UMAP space. b, Dot
plots of gene (top) and surface protein (bottom) expression for populations shown in a. ¢, Dot plots of gene expression of cytokine genes for populations
shown in a. d, Box plots of cell type proportions that are differentially abundant between healthy donors and individuals with COVID-19. Boxes denote

the IQR, and the median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR and outliers are shown as individual points (n=24 healthy,
n=_86 COVID-19 biclogically independent samples). e, Box plots of the proportion of cell types shown in a. Only cell types showing trends of changes

by severity status are shown. Boxes denote IQR with median shown as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as
individual points (n=9 asymptomatic, n=23 mild, n=30 moderate, n=13 severe, n=10 critical biologically independent samples). f, Bar plots show

the frequency of clonal T cells. Expanded clones denote clonotypes observed more than once. Asterisks indicate significance after multiple-testing

correction (logistic regression using two-sided t-test with Benjamini-Hochberg FDR correction; CD4+

T.,, adjusted P=019, CD4+ T, adjusted P=0.472,

CD4+IL-22+ adjusted P=0.01, CD4+ prolif. adjusted P= 0.993, CD4+ T,;1 adjusted P=0.993, CD4* Ty, adjusted P=0.109, T adjusted P=0.993, CD8*
prolif. adjusted P=0.016, CD8* T;; adjusted P=2.49x 10", CD8* Ty, adjusted P=0.259). g, Box plots of the proportion of clonally expanded CD8* Ty,
cells (left), effector CD8* T cells (middle) and the ratio of effector CD8* T cells to CD8* T, cells (right). Boxes denote the IQR, and the median is shown
as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as individual points. Legend is as in e.
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cytokine, for example IL-6, or stimulus may be responsible for
NF-kB activation in asymptomatic individuals with COVID-19.
Hypoxia pathway genes were enriched in immature and naive
B cells only in asymptomatic individuals (Fig. 4f and Extended
Data Fig. 6d). Since these individuals are unlikely to be hypoxic
(given their lack of symptoms), we postulated that this signature

may reflect another hypoxia inducible factor-activating stimulus,
which includes B cell receptor (BCR) cross-linking™. We assessed
the expression of genes associated with BCR activation, such as
CD794 and CD79B, and downstream kinases such as BTK in B cell
subsets. Overall, BCR activation-associated genes were most highly
expressed in B cells in healthy controls, followed by asymptomatic
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individuals with COVID-19, with lower expression observed
in all symptomatic COVID-19 groups (Fig. 4g and Extended
Data Fig. 6e). BCR activation threshold is also modulated by
immune tyrosine inhibitory motif-containing receptors that recruit
phosphatases, increasing the activation threshold of B cells*. BCR
inhibitory gene expression was limited, but CD22 was detectable
across B cell subsets in asymptomatic COVID-19, while FCGR2B,
CD72 and PTPN6 expression was evident in B cells in severe
COVID-19 (Fig. 4g and Extended Data Fig. 6e). Together, this
analysis suggests that B cells in asymptomatic individuals with
COVID-19 and those with mild disease have a more pronounced
response to interferons, increased NF-kB activation and a higher
expression of genes associated with BCR activation signaling,
suggesting a potential for greater BCR activation. Longitudinal
analysis of patient samples will be required to establish if this is
due to avid responses early in disease that prevent progression to
a more severe phenotype or the immune response in early disease.

Followingactivation, B cells differentiate into antibody-producing
plasma cells, accompanied by a progressive increase in oxidative
metabolism™**. We observed differences in metabolic gene path-
way expression in plasmablasts and plasma cells between disease
severity categories, with enrichment of oxidative phosphorylation
pathway genes in all disease groups, and a relative increase in gly-
colysis pathway genes in asymptomatic patient plasmablasts when
compared to symptomatic disease groups (Fig. 4f and Extended
Data Fig. 6e).

We next assessed BCR clonality using ‘dandelion;, a single-cell
BCR-sequencing analysis package (Methods), and found sub-
stantially more clonal expansion in symptomatic individuals with
COVID-19 (Fig. 4h and Extended Data Fig. 7). Expanded clono-
types were found across all major cell types with larger clonotypes
present primarily in plasmablast/plasma cell clusters (Extended
Data Fig. 8a,b). Within the expanded clonotypes, there was some
evidence of class switching within symptomatic COVID-19 groups
but not in the asymptomatic/healthy individuals (Extended Data
Fig. 8c). Unlike other large-scale single-cell RNA-sequencing
(scRNA-seq) studies with BCR profiling'**, there was no obvious
bias of immunoglobulin heavy-chain variable (IGHV) gene usage
in general (Extended Data Fig. 9a). Disaggregating the IGHV gene
usage data to individual gender groups showed that only IGHV1-46
was significantly increased in women with critical COVID-19
relative to healthy controls (Extended Data Fig. 9a). Some related
BCRs were present in different individuals, with more incidence
of Vand] gene usage and related amino acid sequences of heavy-chain
and light-chain CDR3s observed in individuals with severe or criti-
cal disease, and in individuals from one center (Newcastle; Fig. 4i),
which could arise due to local variants of the virus driving expansion

of specific B cell clones. We note that none of these related BCRs
were found to be expanded in the individuals, which was expected as
only a relatively small number of B cells per individual were sampled.
It would have been unlikely to find exactly matching heavy-chain
and light-chain sequences across different individuals (even when
allowing for somatic hypermutation variation), given the expected
low coverage that arises from a small number of single cells (rela-
tive to bulk BCR sequencing). Finally, we observed disproportionate
distribution in clonotype size, whether considering expanded or all
clonotypes, and increased BCR mutations between men and women
with COVID-19, with greater levels of both in women compared
with men (Fig. 4j and Extended Data Fig. 9b). These differences
in clonal expansion of B cells are consistent with a role in previous
reports of worse outcomes in COVID-19 in men**.

We summarize the immunological cellular and molecular pro-
files observed in our study distinguishing features between asymp-
tomatic/mild disease from severe/critical disease (Fig. 5). Future
longitudinal studies may enable us to distinguish if the distinct
responses in asymptomatic and milder disease prevent progression
to severe phenotypes.

Discussion

Our cross-sectional multi-omics PBMC survey revealed several
new insights into COVID-19 pathogenesis. Firstly, peripheral blood
monocytes and DCs exhibit an interferon response to infection.
We identified CDI1QA/B/C*CD16* monocytes, coexpressing
receptors and ligands for interactions with platelets, that are pre-
dicted to replenish alveolar macrophages in COVID-19. Secondly,
altered hematopoiesis is evident in the peripheral circulation with
megakaryocyte-primed gene expression in the earliest CD34*CD38*
HSPCs, and expanded megakaryocyte progenitors in the response
to COVID-19. We reveal a balance in protective versus immuno-
pathogenic adaptive immune responses in COVID-19 patients.
Previous studies have reported expanded proliferative CD4* and
CD8* T cells with disease severity™, but a reduction in yd T cells**,
consistent with our study. In addition, we observed enrichment
of Tyl cells in asymptomatic donors, consistent with previously
reported IFNy and IL-2 antigen-specific T cells in asymptom-
atic individuals®”. We report expansion of CD8* effector T cells,
which likely include antigen-specific short-lived effector cells that
could lead to uncontrolled inflammation and immunopathology,
expanding on previous reports*-,

The expansion of plasmablasts and plasma cells is less evident in
critical and severe disease than in moderate and mild disease, in
contrast to previous studies that reported the diminished plas-
mablast expansion in convalescent stages and not within active
disease'”. This response is paralleled by the Ty, profile in individuals

Fig. 4 | Single-cell analysis of B lymphocytes and BCR repertoire reveal plasmablast expansion and clonality differences between genders. a, UMAP
visualization of 74,019 cells in the B cell lineage identified from gene expression data. b, Dot plots of gene (top) and surface protein (bottom) expression
for populations shown in a. ¢, Bar plot of the mean proportion of cell types shown in a. d, Preportion of total IgA and IgA2 in plasmablast and plasma cells
based on BCR data. Kruskal-Wallis test with Benjamini-Hochberg correction. e, Coordinated changes between Ty, and B cells assessed by differential
correlation analysis (empirical P< 0.1). Shown is the Pearson correlation (£ bootstrap s.e.m.) between Ty, proportions and plasmablast or plasma cell
(combined); only significant trends are shown. f, GSEA of MSigDB hallmark signatures in naive B cells, switched memory B cells and plasmablasts for
asymptomatic/symptomatic COVID-19 versus healthy groups. Size of circles indicate (absolute) normalized enrichment score (NES). GSEA (permutation)

nominal P<0.05 and FDR < 0.25 denoted by non-gray colored dots. EMT,

1; UV, ultraviolet. g, Dot plots of genes related

mesenchymal

to TNF signaling and BCR signaling in naive B cells, switched memory B cells and plasmablasts. Size of circles indicates the percentage of cells expressing
the gene, and color gradient corresponds to increasing mean expression value. h, Scatterplot of clonotype size by node closeness centrality gini indices
with marginal histograms indicating the distribution. Each dot represents an individual. i, BCR overlap incidence plot. Nodes correspond to individual
donors colored by (inner ring) severity and (outer ring) site from which samples were collected. Edges indicate if at least one cell from each individual
displayed an identical combination of heavy and light-chain V and J gene usage with CDR3 similarity allowance (>85%). j, Clonotype size (left) and node
closeness centrality gini indices (right) separated by gender. Mann-Whitney U test with Benjamini-Hochberg correction between the gender groups
within each severity status. Color of adjusted P values indicates the gender group with the higher mean value. The box portion of the box plots extends
from the 25th to 75th percentiles, whiskers extend from the smallest to largest values, and the middle line corresponds to the median. NS, not significant.
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with COVID-19 and is consistent with postmortem observations Our data revealed a significant decrease in IgA2 in symptomatic
showing a lack of germinal centers in lymph nodes and spleen COVID-19 compared to asymptomatic donors, suggesting that
in individuals with fatal COVID-19 and a decrease in Ty cells*. maintenance of a robust mucosal humoral immune response
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Fig. 5 | Integrated framework of the peripheral immune response in COVID-19. Schematic illustration of study highlights. Created with BioRender.com.

may influence the fate of individuals infected with SARS-CoV-2.
‘We observed a diminished IFN« response in the B cell compartments
of individuals with critical and severe disease, further emphasiz-
ing a crucial role of these responses in outcomes, as previously
reported in patients with COVID-19 who had type I IFN antibodies.
Our data also suggest differential BCR clonality and mutation
frequencies between gender groups, which may contribute to the
differing clinical outcomes observed between men and women
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with COVID-19*. Our study provides a valuable resource, exploit-
able for translational studies, and a template for future integrative
meta-analysis of single-cell multi-omics datasets from individuals
with COVID-19 worldwide.
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The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human
Cell Atlas, aims to create acomprehensive reference map of cells during development.
Thiswill be critical to understanding normal organogenesis, the effect of mutations,
environmental factors and infectious agents on human development, congenital and
childhood disorders, and the cellular basis of ageing, cancer and regenerative
medicine. Here we outline the HDCA initiative and the challenges of mapping and
modelling human development using state-of-the-art technologies to create a
reference atlas across gestation. Similar to the Human Genome Project, the HDCA will
integrate the output froma growing community of scientists who are mapping human
developmentinto aunified atlas. We describe the early milestones that have been
achieved and the use of human stem-cell-derived cultures, organoids and animal
models toinformthe HDCA, especially for prenatal tissues that are hard to acquire.
Finally, we provide a roadmap towards a complete atlas of human development.

Most modern developmental biology research has historically focused
on model organisms. Owing to practical challenges, human devel-
opment—from a fertilized ovum to a fully formed fetus at birth—has
remained a poorly understood ‘black box’. Theimplications ofahuman
developmental cell atlas for understanding human development are
far-reaching, as many congenital disorders and childhood cancers
may originate during susceptible windows of development'>. The
clinicalrelevance of the atlas extends into adulthood for ageing, cancer
and applications in regenerative medicine and stem cell therapies*®.
Furthermore, embryonic and fetal stem cells*® and developmental
trajectories provide an essential reference and guide for engineering
human stem-cell-derived models®**, organoids* and cellular therapies.

Human development begins with a fertilized oocyte that divides
and differentiates through preimplantation, embryonic and fetal
stages (Fig. 1). Early studies began with morphometric and qualita-
tive assessments of human embryos, leading to development of the
Carnegie staging system® (Fig. 1). Advances inimaging, cytometry and
genomics technologies have provided further insights into the complex
spatiotemporal changes during organogenesis'. Recent progress in
single-cell profiling technologies has revolutionized our ability to study
human development at an unprecedented resolution”. Leveraging
these advances to build acomprehensive atlas of human development
(from the fertilized oocyte to birth) at cellular resolution is an ambi-
tiousendeavour that issimilarinscale to the Human Genome Project,
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Fig.1/Humanembryo development and modelsystems. a, Timeline of
human development from fertilization to birth.CT, cytotrophoblast; ESC,
embryonicstemcell; EPL, epiblast; PrE, primitive endoderm; pcw,
post-conceptionweeks; SCT, syncytiotrophoblast; TE, trophectoderm; TSC,
trophoblaststem cell; XEN, extraembryonic endoderm; YSE, yolk sac
endoderm. b, Models derived from human stem cells, and associated studies.

which required multidisciplinary scientific expertise from disparate
fields working together collaboratively. Such acommunity has arisen
from the grassroots assembly of global researchers who are working
as part of the Human Cell Atlas (HCA)™ initiative. As with the Human
Genome Project, the HCA will be a foundational scientific resource,
composed of diverse datatypes and available freely through browsable
and searchable web portals that visualize cells across anatomical space
and developmental time.

The HDCAis astrategic focus of HCA", and is pursued by scientists
fromindividuallaboratories as well as large national and international
research consortia (Supplementary Table 1); the HDCA is open to all
whoadhere to its mission and open science values®. The HDCA aims for
equity, inclusivity and diversity both in terms of scientific participation

279

In vitro model systemsto study early embryonic development. A-P, anterior—
posterior. ¢, Experimental model systems to study development, including
Drosophil l Daniorerio, laevis, Gallt {lus, Mus
musculus, cell culture and organoids, and theiramenability to facilitating
various aspects of scientific study.

and the representation of human tissue samples. We encourage any
interested researcher tobecome amember, participate, register their
study and contribute their data and publications to the HDCA and
HCA™.

Building a developmental cell atlas

‘The successful construction of a HDCA poses substantial scientific
challenges in terms of experimental measurement technologies, com-
putational analysis and visualization algorithms (Fig. 2). In particular,
the dynamic nature of gestation creates challenges for designing a
sampling strategy, especially to capture transient morphological
changesin thefirst eight weeks. Amajor endeavour for the HDCA will
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be todevelop the conceptual and computational framework to capture
development with respect tocellularand morphological changes. The
HDCA, through coordination with the HCA Organoid Network?, will
incorporate data fromin vitro culture model and organoid systems*
to cautiously infer development between seven days and four weeks
after conception (a period in which samples are difficult to obtain)
(Fig. 1b,c).

The successful delivery of the HDCA will leverage the Human
Genome Project-initiated restructuring of how large science projects
are funded, conducted, coordinated and shared (based on the Fort
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oo,

differentiation and replication, and changes in cellular composition and gene
expression. Permutations and variabilities outline the spatial determinants of
cell differentiation, ladhesive feedback and heterocellul

signalling by ligands. Time series trajectories reveal fate-biased migrating
progenitors, lineage specifications and cell migration. ¢, Utility and
applications of the HDCA: cellular and molecular biological insightsinto the
coordination of organ development across the whole embryo (left) are applied
toadvanceregenerative medicine, tissue engineering and therapeutic
strategies (right).

Lauderdale Principles®) that forms the basis for the HCA, its com-
mittees (for example, computation and ethics) and ‘Biological Net-
works™. This organizational framework has enabled researchers to
form large-scale coordinated collaborations across technologies and
biological disciplines: developmental biology, embryology, genet-
ics and model systems, computational biology, clinical specialities
(including in vitro fertilization), clinical genetics and pathology, as
well as coordination with funders. Partnerships with allied biologi-
cal networks, including organoid and paediatric atlas projects, will
facilitate clinical applications.
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Ethics, resources and data sharing

Accessing human developmental samples is constrained by general
andgeographically specific ethical and legal challenges. Theseinclude
issues relating to donation, access to and research use of legally defined
developing human tissue material, regulatory approvals processes
and cultural sensitivities. Research on human embryos and fetuses is
supported within European and national regulations, such as the UK
National Research Ethics Service (NRES) and the French Agence de
Biomédecine. In the UK, studies on preimplantation human embryos
(upto14 daysafter conception) are governed by the Human Fertilisation
and Embryology Authority and a research ethics committee (such as
NRES). However, in the USA, research on donated human embryonic
and fetal materials has increasingly been restricted over the pasttwo
decades, despite the existence of similar regulatory oversight.

Nonetheless, resources to supportresearchin human development
(such as the UK’s Human Developmental Biology Resource (HDBR)*)
provide material to researchers. Recipients of HBDR tissue who are
notbased inthe UK require their own project-specific ethics approval,
before receiptof material. The HDBR provides embryonicand fetal sam-
ples from 4 to 20 weeks after conception with karyotype information
and, increasingly, with anonymized maternal DNA and clinical history.
Material from fetuses with prenatally diagnosed disorders is also avail-
able. The French Human Developmental Cell Atlas (HuDeCA) (https://
hudeca.genouest.org) has recently been established, and aspires to
constitute acomprehensive European resource of human embryonic
or early fetal samples.

The international sharing of genomic sequencing and clinical data
derived from prenatal or paediatric tissue samples is subject to data
protection regulation that considers live versus deceased status, con-
sentregarding research data use and confidentiality. Data from living
donorsareshared under appropriate access controls. The HCA Ethics

Iss

 Sequence each
cellin situ

Genes assigned to cells

error-robust FISH; MIBI, multiplexed ion beamimaging; seqFISH, sequential
FISH; smFISH, single-molecule FISH; STARmap, spatially resolved transcript
annotation readout mapping. ¢, Integration of datasets from different
technologies (for example, spatial transcriptomics, scRNA-seqand targeted
155) to profile organs or whole embryos.

Working Group is developing tools, guidance notes*, consent-form
templates and samplinginformation for embryonic, fetaland paediatric
tissue material, and international data-sharing guidance for the HDCA.

Mapping development across space and time
Development is intricately orchestrated in three spatial dimensions
and gestation time. Human embryogenesis cannot be easily assessed at
highresolution in vivo®. Time-lapse studies are limited toin vitro pre-
implantationembryos. The application of high-throughput genomics
technologies to dissociated cells and tissue sections in situis beginning
to provide data of unprecedented resolution (Fig. 3, Table 1).

Cellular and molecular heterogeneity

Single-cell molecular profiles based on RNA, chromatin accessibil-
ity, methylation or select protein signatures have enabled a more
nuanced definition of cell types and states. The data underpinning such
definitions are increasingly derived from single-cell RNA sequencing
(scRNA-seq), barcoded antibodies and accessible chromatin sequenc-
ing of dissociated cells®®%. Resolving cell types and trajectories at high
granularity isaided by full-length scRNA-seq, but is primarily performed
by profiling large numbers of cells. Cell-type definition is currently
guided by existing knowledge from model organismsand adultcellular
profiles, which may not faithfully reflect prenatal cell types, transient
cell types that are present only during development and transitional
states of differentiation.

‘Toovercome these challenges, many time points need to be profiled
and defined cell states need to be mapped back into their 3D space
over time and functionally characterized. High levels of multiplexing
can attain this level of granularity at an affordable cost for acomplete
human developmental cell atlas***. Molecular profiles, morphology,
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Table 1| Publications registered with the HDCA

QOrgan Stage Main highlights Publications
Brain First and second trimester  Specific brain regions studied, including prefrontal cortex and neocortex; tracing of Refs. 596083
developmental trajectories of cells; characterization of mechanisms that underlie
neuron generation and circuit formation
Gut First and second trimester,  Profile of transcriptomes of cycling epithelial precursor cells; evaluation of the effect ~ Refs, 535054124
organoids of mesenchymal cells on LGRS stem cells; comparison of transcriptomes of ex vivo
tissues and in vitro fetal organoids, and of transcriptome profiles from paediatric
Crohn's disease epithelium with matched healthy controls
Heart First and second trimester  Identification of unique gene profiles that correspond to distinct anatomical regionsin ~ Refs, 76062119
each developmental stage; integration of scRNA-seq and spatial data; generation of a
web resource of the human developing heart
Liver and fetal First and second trimester  Identification of the repertoire of human blood and immune cells, and of differentiation Refs. **%°
haematopoiesis trajectories from haematopoietic stem cells and multipotent progenitors; evaluation of
the effect of tissue microenvironment on blood and immune-cell development
Kidney First trimester Identification of both known and unknown transcription factors associated with Refs, 54605185
nephron development; characterization of myeloid and lymphoid populations present
during fetal development
Placenta First trimester Characterization of cellular organization of the decidua and placenta; identification Ref.%®
of perivascular and stromal cellular subsets; development of a repository of ligand-
receptor complexes, and of a statistical tool to predict the cell-type specificity of cell-
cell communication via receptor-ligand interactions
Thymus First and second-trimester,  Identification of more than 50 cell states, novel subpopulations of thymic fibroblasts ~ Ref.™
paediatric and epithelial cells, and a cellular network of the thymic niche for T cell development
Skin First trimester Identification of physiological erythropoiesis; enrichment of innate immune cells; Refs. 54"
co-option of developmental programs identified in adult inflammatory skin diseases
Multi-organ First and second trimester  Integrated analyses of transcriptomes and chromatin accessibility from several fetal Refs, Bassme
organs, including brain, heart, lung, gut, kidney, adrenal glands, stomach, pancreas,
spleen, gonads, muscle, eye and skin
Th 48 hers from 13 t urrently with the HDCA. D datasets are contributed to public repositories, including the HCA Data Coordination Portal.
Further nHCA is available at https:// ions.

functional assessment and other features can reflect the multifaceted
state of acell. For example, the transcriptome reflects the presentand
potential future of a cell; protein expression captures theimmediate past
and present state of a cell; chromatin profiles reveal its invariant type
and potential for future differentiation; and ontogeny reveals its history.

The field of developmental biology has traditionally drawn on
ontogenic relationships to define cell types, but this is challenging in
humans for whominformation is captured as snapshots across gesta-
tion. CRISPR scarring is applicable only in stem cells, organoid systems
andshort-term explants™*, The tracking of somatic mutationsis the
only available technology to definitively determine ontogeny, butis
limited by its current lack of scalability***, Recent methods that rely
on the simultaneous measurement of mitochondrial DNA and RNA,
transcriptome and open chromatin may overcome this challenge-".
We anticipate the field moving towards a consensus cell ontology that
integrates multimodal single-cell profiling data as well as legacy knowl-
edge of embryonic cell-type definitions augmented by information
from diverse animal models.

Mappingcellsin2D and 3D

Spatial genomics methods to measure RNA intissue sections typically
offer atrade-off: high-resolution (single-cell and subcellular) methods
thattypically measure hundreds of transcripts or whole transcriptome
profiles at a multicellular level®*. This trade-off can be mitigated by
integration with single-cell profiles from dissociated cells, expanding
the genomic coverage by predicting the spatial expression of unmeas-
ured genes or enhancing resolution by deconvolution of multicellular
measurements. Tissue clearing methods to render organs transpar-
ent*?, combined with whole-mount proteinimmunostaining and RNA
single-molecule fluorescence insitu hybridization (FISH)*'#2, can now
provide 3D molecular profiling at cellular or subcellular resolution

200 | Nature | Vol597 | 9 September 2021

using light-sheet microscopy**. Increasing multiplex capacity and use
of artificial intelligence and machine learning algorithms to overcome
data analytical challenges have successfully been deployed to image
whole-organismal vasculature following tissue clearing*+.

Biophysical methods and liveimaging

Mounting evidence from Drosephila and other models shows that
mechanical forces have a key role in development processes and tis-
sue morphogenesis*, Surface tension and pressure can be measured
insingle cells of preimplantation mouse embryos*. Adapting these
technologies to human preimplantation embryos and stem-cell-based
embryo models® can build a spatiotemporal mechanical atlas.

Positional landmarksindevelopment

Astandard coordinate system for locations in the human body (a com-
mon coordinate framework (CCF)) is crucial for the HCA and HDCA™.
Two types of systems are useful: absolute (similar to postcode or zip
code addresses) and relative (similar toalandmark-based addresssys-
tem). CCF anatomical ‘postcodes’ enable theintegration of multimodal
datasets of different spatial and longitudinal resolution. The Allen
Mouse Brain Reference Atlas version 3 provides a CCF of 3D anatomical
featuresand local features groupedina hierarchy tofacilitate multilevel
analysis of the mouse brain. Efforts are currently underway to establish
CCFs for adult human organs within the Human Biomolecular Atlas
Program of the National Institutions of Health (NIH). The HDCA will
need todevelop a CCF thatincorporates space and time, as well ascell
movement and patterns during organogenesis on the basis of existing
macro-level 3D coordinates for human embryos (such as the HDBRatlas
(http://hdbratlas.org/) and the Transparent Human Embryo (https://
transparent-human-embryo.comy/)).
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Computation and data visualization

Among thekey algorithmic challenges tointegrating datainto adevel-
opmental atlas are (1) mapping cells withmore intermediate states com-
pared to adult counterparts; (2) inferring time orderings and lineage
relations, including branching lineages and multiple paths converging
onthesame outcome;(3) inferring spatial movement ofcells; (4) build-
ing a temporal series of CCFs, each asa probabilistic model for atime
window as well as a model for their morphing along space and time*;
(5) mapping across modalities and time points (for example, chromatin
states in one time window to RNA and protein levels of another); and
(6) regulatory and molecular networkinference within and across cells.
Theories and insights from multiple fields will be required to model
the mechanisms thatunderpin tissue formation and growth. Itis likely
thatadditional emergent properties of cells and their ecosystems will
bediscovered usinginterdisciplinary approaches. These will need new
vocabularies, ontologies and modelling approaches tobeunderstood.
The HDCA community must also apply FAIR (findability, accessibility,
interoperability and reusability) principles to help to ensure reproduc-
ibility and data accessibility®.

Computational integration of multi-omics data for visualizations
similar to that of Google Maps, such as the Open Microscopy Envi-
ronment (https://www.openmicroscopy.org/), will enable zooming
to the single-cell level from a large-volume tissue view. Additional
complexity will combine visualizations from imaging and sequencing
data. A sophisticated abstraction of raw data and integration across
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single-cell atlas with temporal and spatialinformation canbe used asa
reference tounderstand disease states.

modalities, anchored by a developmental CCF, willbe essential. Links
to clinical relevance and applications will enhance the utility of the
atlas.

Emerging cell atlases of human development

The advantages of whole tissue or organ profiling compared to
lineage-centric analysis include comprehensive cellular analysis and
the discovery of emergent biological properties. For example, the
developing liver functions as a haematopoietic organ during early
gestationuntil the middle of the second trimester, before it functionally
transitions into a metabolic organ similar to the adult liver®. To meet
the high demand for erythropoiesis during development, the human
skinand adrenal glands can also supporterythrocyte maturation dur-
ing the first trimesters,

In contrast to our terrestrial postnatal life, the human embryo and
fetus existin anaquatic environment: our lung, gutand skin are exposed
to amniotic fluid. In contrast to the postnatal lung, the developing lung
does not perform oxygen transfer or receive the same volume of blood
through the pulmonary veins. Theeffect of these physiological factors
onindividual tissuesand therole of the placenta and maternal decidua
insupporting human embryogenesis and fetal life are emerging®-~.

Currentorganatlases of brain, gut, heart, liver, kidney, placenta, thy-
musand skin (Table 1) underscore the importance of studying human
samples and have revealed unique aspects of human development
thatare not conserved with animal model systems™ . These include
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timelines of development during gestation, cell-type markers and
the expression pattern of transcription factors between mouse and
human organs®®.

The specification of functional tissue niches occurs during both
prenatal and postnatallife. Studies of the fetal gut have highlighted the
importance of interactions between the epithelial and mesenchymal
compartments in allowing the formation of villi, and have identified
fetal gut transcription factors that are aberrantly activated in indi-
viduals with paediatric Crohn’s disease®*, Comparison between the
developing and adultkidney have demonstrated the establishment of
adedicated spatial zonation pattern that protects against uropatho-
genic bacterial challenges postnatally®'¢:. Single-cell transcriptomics
of germ cells during development have provided important insights
into the main pathways that control their differentiation®*”, with ongo-
ing studies focused on exploring the regulatory mechanisms of sex
determination (https://hugodeca-project.eu).

Early developmental studies of the brain have focused on human
and primate cortical development® ™. The developing human and
rodent midbrain, which contains the clinically relevant dopaminergic
cellgroups thatarelostinindividuals with Parkinson’s disease, has also
extensively been studied®*™7, as have the developing mouse spinal
cord and cerebellum™, the hypothalamic arcuate nucleus and the
diencephalon™.

Atlases of distributed systems (such as the immune system) have
beeninitiated, detailing haematopoietic organs such as the yolk sac™”
and liver*, lymphoid tissues such as thymus (in which T cells differ-
entiate)™ and non-lymphoid tissues such as skin and kidney, in which
immune cells reside. These studies have revealed an intrinsic change
in the differentiation potential of haematopoietic stem progenitor
cells with gestational time, together with the importance of the local
tissue microenvironment for blood and immune-cell development.

Model organisms and culture systems

Our understanding of human development has largely been inferred
fromstudies on animal model systems that are not always conserved
across species™ (Fig. 1). Two recent studies contrast the kinetics of
development between human and mouse, highlighting the need for
cautionininterpreting heterospecific graft studies and findings from
nonprimate preclinical models®™*'. However, the feasibility of pertur-
bation and in-depth mechanistic studies using animal models and
culture systems provide avaluable scaffold and complement the HDCA,
particularly for theimmediate weeks after implantation during which
human samples are inaccessible.

Single-cell molecular profiling has transformed many aspects of
developmental biology researchacross all major model organisms® 8¢,
providing mechanistic insightsinto fundamental biological processes
(including the early specification of germ layers and diversification of
early cardiovascular cells)®¥. Comparative biology has the potential to
make major contributions to cell ontology. The availability of parallel
human and model species data will support expanded cross-species
analyses. Computational analysis can align cells and inferred lineages
across species to extrapolate findings from nonprimate models and
help to optimize animal models of normal and pathological human
development. From a computational perspective, itwillbeimportant to
develop tools for better annotation of 3’ and 5’ untranslated regions of
animal model data, as mostscRNA-seq technologies capture only these
regions. The development of computational tools that can robustly map
developmental trajectories across species and that can account for dif-
ferent developmental kinetics between cell types within and between
species will be required. Comparative studies of human and mouse
preimplantation and gastrulation embryos have revealed conserved
anddivergent transcriptional programs. For example, Klf2expressionin
mouse embryo-fated epiblast progenitor cellsisnotobserved in humans;
by contrast, KLF17is enriched in human, but not mouse, epiblast™.
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The self-organization of human embryonic tissue can be captured
from the earliest moments in vitro®®®, and extended to gastrula-
tion, anterior—posterior embryonic patterning and the early phases
of somitogenesis™. The recent human gastrulation embryo dataset
will beinformative as a benchmark to further refine in vitro directed
differentiation of human cells, including gastruloid models™. Other
processes during organogenesis can also be monitored, including the
clock control of somite segmentation®®', boundary formations dur-
ing hepato-biliary-pancreatic organ budding® and patterning of the
neural tube. Protocols are now established to mimic the development
of diverse human tissues that exhibit morphologiesand physiological
functionalities of developing human tissues. These organoid systems
include hair-bearing skin®; the small intestine with a crypt-villus axis®;
region-specific*® and multiregion® brain tissue that models neurogen-
esis, neural migration and synapse formation; multilayered neural
retinawith photoreceptionresponses”; and arterio-venous specifica-
tion during blood vessel development®,

A comprehensive reference atlas of the cell types and states that
are present during human development will be critical to benchmark
stem-cell-derived organoids. Such roadmap comparisons will highlight
similarities®® and deficiencies*, and define strategies for improving
organoids for disease modelling. In the future, high-fidelity human
stem-cell-derived human organoids and single-cellmulti-omic modali-
tieswill be powerful tools to understand the mechanisms that control
human organogenesis.

Clinical relevance and applications

The interaction of genotype and environment that leads to pheno-
type underlies developmental disorders. A range of childhood and
adultdisorders have their originsin prenatal life (Fig. 4). Theseinclude
structural birth defects'®, neurodevelopmental disorders (including
schizophrenia)', childhood cancers*®, inborn errors ofimmunity'®,
infertility and differences of sex development'®, as well as many paedi-
atric disorders'™. Thousands of rare genetic diseases can each present
aspectrumof perturbed developmental sequelae at birth, and some-
times differ widely in medical presentation even when classified as the
same disease or condition'™. As examples, Down syndrome (trisomy
21)'* and 22q11.2 deletion syndrome'” separately present substan-
tial risks for schizophrenia, Alzheimer’s disease and hypothyroidism
startinginadolescence'®. Identifying the aetiology of developmental
disordersand the effects of maternal genotype, paternal age and other
external risk factors (suchas diet, alcohol, toxins, endocrine disruptors
and pathogens) has been hampered by our limited understanding of
normal development in humans.

Development atlases are also revealing the pathogenesis of child-
hood cancers (Fig. 4). Paediatric and adult brain tumours in their early
stages often presentimpaired developmental programs within tumour
cells'®!%, Comparing the expression profile of tumour cells with the
HDCA canidentify the cancer cell of originand its oncogenic pathways.
Forexample, asingle-cellatlas of the developing mouse cerebellum has
been used to investigate subtypes of human medulloblastoma (apae-
diatric brain tumour)*™, and cell states during nephrogenesis revealed
the developmental cellular origin of Wilms’ tumour®. High-resolution
mapping of developing immune cells will inform the molecular basis
andextent of disease phenotypesof childhood leukaemias and primary
immunodeficiencies.

Manyadultcancersalsorecapitulate adysregulated version of human
developmental programs'2. The acquisition of early developmental
molecular programsis characteristic of malignant pathology, andisa
previously unrecognized hallmark of immunological disease and the
cancer immune environment™", HDCA data have also facilitated our
understanding of the differential susceptibility of adult and prenatal
cells to SARS-CoV-2 through examination of viral entry receptor and
protease expression inawide range of organs'™.
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Cell and tissue engineering for clinical therapies and regenerative
medicine are areas with considerable potential for the direct utility of
theHDCA. Cell therapies derived from human pluripotent stemcellsare
now entering early clinical trials for the treatment of Parkinson’s dis-
ease™™®, using protocols that were refined on the basis of developmental
studies of midbrain dopaminergic neurons™. Similar approaches are
beingfollowed to develop arange of other stemcell products for human
trials'”. Haematopoietic stem cell transplantation is an established
and widely used treatment for many haematological, and increasingly
non-haematological, disorders. Leveraging the potency factors of fetal
haematopoietic stemcells could have a substantial benefit for patients
who receive transplants of haematopoietic stem cells.

Towards awhole embryo atlas

The initial HCA white paper emphasized 12 distinct organ systems
within the human body and highlighted the importance of a develop-
mental cell atlas. Integrated multi-organ analyses will provide insights
into the tissue microenvironment that shapes resident epithelial,
stroma and immune cells and the cellular heterogeneity of innervat-
ing blood vessels, lymphatics and peripheral nerves. Eventually, this
may illuminate system-level lineage developmentand cell fate deci-
sions across an entire organism. 1he datasets from profiling based on
human developmental organs have been critical ininterpreting recent
multi-organ developmental atlases® ",

I'here are several large-scale organ-based studies being under-
taken by HDCA researchers. These include the NIH ‘Brain Research
through Advancing Innovative Neurotechnologies’ (BRAIN) initiative
(including the BRAIN Initiative Cell Census Network (BICCN) consor-
tium) focusing onthe developing human cortex; the Swedish Human
Cell Atlas consortium performing large-scale scRNA-seq, assay for
transposase-accessible chromatin using sequencing (ATAC-seq) and
spatial-omic analyses of the developing human brain, heart"*and lung
during the first trimester; the French HuDeCA consortium mapping
eight first-trimester human organs using 3D imaging and scRNA-seq;
the European Union (EU) Horizon 2020-funded developing brain
(Braintime) and gonad (HUGODECA) projects; the NIH Developmen-
tal Genotype-Tissue Expression (dGTEX)"™ project; and UK consortia
funded by the Wellcome Trust and Medical Research Council. The logi-
calnextstepwillbetocoordinate these efforts and extend the current
approach to contextualize the development of different cell lineages
across all organs.

However, multi-organ approaches do not permit the analysis of dis-
tributed tissue networks asacontinuum fromasingle donorsample.
Whole-embryoanalysis hasbeen limited to very early preimplantation
samples®™ 2122 and one gastrulation-stage embryo'. Multi-omics
suspensionand spatial-genomics profiling ofanatomically dissected
units from whole human embryos at six to seven weeks after concep-
tion are being undertaken by the HDCA researchers based in the UK.
We anticipate a first whole human embryo profiling within the next
two years. On the basis of existing HDCA data and the rapid changes
during early development, we propose aminimum of three replicates
for each biologically relevant gestation period (for example, each
week from six weeks after conception). All such data produced and
shared by the global research community (formally registered with
the HCA or not) contributes tothe HDCA. Defining auniversal organ-
izing framework for these data will enable them to be unified into a
completeatlas that will be a transformative resource for theresearch
and clinical communities.
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Haematopoiesis in the bone marrow (BM) maintains blood and immune cell
production throughout postnatal life. Haematopoiesis first emerges in human BM at
11-12 weeks after conception*?, yet almost nothing is known about how fetal BM (FBM)
evolves to meet the highly specialized needs of the fetus and newborn. Here we detail
the development of FBM, including stroma, using multi-omic assessment of mRNA
and multiplexed protein epitope expression. We find that the full blood and immune
cellrepertoireis established in FBM in a short time window of 6-7 weeks early in the
second trimester. FBM promotes rapid and extensive diversification of myeloid cells,
withgranulocytes, eosinophils and dendritic cell subsets emerging for the first time.

The substantial expansion of Blymphocytes in FBM contrasts with fetal liver at the
same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord
blood exhibit transcriptional and functional differences that contribute to
tissue-specificidentity and cellular diversification. Endothelial cell types form distinct
vascular structures that we show are regionally compartmentalized within FBM.
Finally, we reveal selective disruption of Blymphocyte, erythroid and myeloid
development owing toa cell-intrinsic differentiation bias as well as extrinsic
regulation throughan altered microenvironment in Down syndrome (trisomy 21).

Human BM is established as the site of lifelong blood and immune cell
production from 11-12 post conception weeks (PCW)'2. By this time,
fetal liver has initiated an immune repertoire, with further differen-
tiation supported by the spleen and thymus®*. The priorities of fetal
haematopoiesis are to generate erythrocytes for oxygen transport,
platelets for haemostasis, macrophages for tissue remodelling and
an immune system that is poised to respond to insult without risking
tissue damage. Longer-term haematopoiesis depends onafinite pool
of haematopoietic stemcells (HSCs) thatare supported by their niche.
Perturbations of haematopoiesis in utero can have far-reaching implica-
tions, including KMT2A fusions or Down-syndrome-associated muta-
tions in GATAI thatlead toan increased risk of childhood leukaemia®®.
Toourknowledge, no systematic examination of FBM development or
humanbone marrow stroma atany time point has so far been achieved.

In this study, we use single-cell multi-omics to investigate the com-
position of disomic and trisomy-21 human FBM as haematopoiesis
emerges and develops during the early second trimester. We perform
multi-omics profiling of fetal liver and cord blood cells to compare tis-
sue-specific differentiationlandscapes. We validate: (1) newly emerging
cell states in FBM by fluorescence-activated cell sorting (FACS)-based
prospective isolation for single-cell RNA sequencing (scRNA-seq) and
morphology assessment; (2) the regional distribution of subsets of
FBM endothelial cells by multipleximmunofluorescence imaging; and
(3) the differentiation potential of HSCs using single-cell clonogenic
differentiation assays. Drawing on existing scRNA-seq data from yolk
sac, fetal liver, cord blood and adult BM (ABM), we show in humans
how a complex multilineage blood and immune system is assembled
in FBM within a matter of weeks.

Alist of affiliations appears at the end of the paper.
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Fig.1|Asingle-cellatlas ofhuman FBM. a, Uniform manifold approximation
and projection (UMAP) of FBM scRNA-seqdata (n=9,k=103,228,12-19 PCW)
by broad categories (Supplementary Table 7). Baso, basophil; eo, eosinophil;
MK, karyocyte. b, Gene expression dot plot of cell-state-defining genes
for broad categories in FBM scRNA-seqdata. Dot colour indicates.
log-transformed, normalized and scaled gene expression value. Dot size
indicates the percentage of cellsin each category expressingagivengene.

¢, Frequency of broad cell categories in FBM scRNA-seq data. n = 9 biologically
independent samples are grouped into four developmental stages to facilitate
statistical comparison over gestational stage. P values from a quasibinomial
regression model (subject to one-sided ANOVA; with correction for sort gates;
computed at 95% confidence intervals and adjusted for multiple testing using
Bonferroni correction) are shown in parentheses; *P<0.05,**P<0.01,
****P<(0.0001 (Supplementary Tables 18,19).d, Beeswarm plot of the
log-transformed fold change in ab betweencellsinequi broad
categories in FBM scRNA-seq datasets from fetuses with Down syndrome (DS)

Asingle-cell atlas of human FBM

Wegenerated mRNA, T cell receptor and B cell receptor (TCRand BCR,
respectively) and CITE-seq data from single FBM cells (enriched for
CD45" or CD45" cells) and CITE-seq data from CD34"-selected cells
after mechanical disruption of fetal femur (n = 9;12-19 PCW). We gen-
erated single-cell MRNA profiles of FBM cells from fetuses with Down
syndrome (n =4) and CITE-seq data from CD34" fetal liver and cord
blood cells. Reference scRNA-seq datasets (yolk sac and fetal liver*;
cord blood and ABM (https://data.humancellatlas.org/)) were used to
investigate haematopoietic development (Extended Data Fig. 1, Sup-
plementary Tables1-5. Our dataare available for exploration (https:/
fbm.cellatlas.io/).

From 115,993 FBM scRNA-seq cells, 103,228 passed quality control,
revealing 64 transcriptionally distinct cell states that were manually
grouped into 10 compartments (Fig. 1a, b, Extended DataFig. 1, Supple-
mentary Tables1, 6-10). We constructed acontinuous decision tree for
supervised learning of cell-state-discriminative protein combinations in
FBM CITE-seqdata (Extended DataFig. 2, Supplementary Tables11-14).
Between12 and 19 PCW, the ratio of blood and immune cells to stromal
cellsexpanded from 5:1 to 18:1. B cell lymphopoiesis expanded, but
the total proportions of myeloid cells remained consistent (Fig. 1c).
Compared with age-matched disomic BM (12-13 PCW), megakaryocyte
and B lineages were diminished in Down syndrome (specifically pre
pro-B and immature B cells, consistent with fetal liver data in Down
syndrome’), whereas erythroid cells were significantly more abundant
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(n=4,k=16,743) and age-matched fetuses without Downsyndrome (n=2,
k=9,717) from biologically independent samples (Supplementary Tables 7, 20).
Coloured dots indicate a significant difference in abundance (P value adjusted
for multiple testing with a false discovery rate of greater than 10%) estimated
with atwo-sided quasi-likelihood test (null hypothesis: no difference inabun-
dance between the two conditions). NS, not significant. e, Heat map visualizing
the number of differentially exp dg (DEGs) bet qui cell
statesin FBM scRNA-seq datasets from fetuses with Downsyndrome (DS)
versus fetuses without Down syndrome. Data are scRNA-seq per chromosome,
including correction for number of genes per chromosome (two-sided
Wilcoxon rank-sum statistical test with Benjamini-Hochberg procedure for
multiple testing correction; Supplementary Table 21). f, Cytospin images of FBM
eosinophils, basophils, mast cells and neutrophils (n=2biologically independ-
entsamples; both17 PCW, performed as two independent experiments) sorted
accordingtothe gating strategy in Extended Data Fig. 1and stained with Giemsa.
edassh bythedotted lines. Scale bars, 10 pm.

Images

(mid-lateerythroid cells) and more enriched in cell-cycle genes (Fig.1d,
Extended Data Fig. 7). FBM from fetuses with Down syndrome exhib-
ited genome-wide transcriptional differencesinaddition toincreased
expression of chromosome-21 genes (Fig. 1e). Megakaryocyte-eryth-
roid-mast cell progenitor (MEMP), megakaryocyte and B-lineage cells
from fetuses with Down syndrome overexpressed chromosome 21
transcription factors that have documented roles in haematopoiesis,
including U2AFI (MEMP), U2AFI and ETS2 (megakaryocyte) and ETS2
(Blineage) (Extended Data Fig. 7).

Granulocytes firstemergein FBM

Neutrophils, eosinophils and basophils were not detected in age-
matched fetal liver*. We validated their presence in FBM by morphol-
ogy and prospective FACSisolation for scRNA-seq (Smart-seq2) (Fig. If,
Extended Data Fig.1, Supplementary Table 15). Compared with yolk
sac and fetal liver, FBM myeloid cells were significantly expanded in
FBM (Fig.2a). Detailed clustering revealed 18 monocyte, dendritic cell
(DC), neutrophiland macrophage states from committed precursors to
terminally differentiated cells (Extended DataFig. 3). In force-directed
graph (FDG) embedding, monocyte and neutrophil signatures diverged
atthe granulocyte and monocyte progenitor (GMP) stage, consistent
with mouse data® (Extended DataFig. 3). FEM GMPs expressed higher
levels of CEBPA (neutrophil specification), relative to SPiI (monocyte
specification)’, than did fetal liver GMPs (Extended DataFig. 3). Across
neutrophil differentiation (inferred by Monacle 3), genes associated
with leukaemia-risk congenital neutropenias (SBDS, HAX1 and G6PC3)
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Fig.2|Myeloid diversification, B-lineage expansion and tissue-specific
properties of HSC/MPPs. a, Left, frequency of monocytes (M), neutrophils (N)
and DCsinyolk sac (YS) (n = 3), fetal liver (n=14), FBM (n=9) and ABM (n=4)
scRNA-seq datasets (nrefers to biologicallyind dent line,
median; *P<0.05,****P< 0.0001 from one-way ANOVA with Tukey’s multiple
comparison). Right, mean proportions of cell states within monocyte,
neutrophil and DC lineages for above datasets (****P<0.0001 from
quasibinomial regression modelsubject to one-sided ANOVA with 95%
confidence intervals and Bonferroni correction; Supplementary Tables 19,
22).MOP, ep b, FDG of B-lineage cell states (k=28,583)in
FBM scRNA-seqdata. Grey ellipses highlight cycling cells. Dashed arrows
denote (i) cycling pre-B cell and (ii) B cell differentiation branches. ¢, Frequency
of B-lineage cellsinyolk sac, fetal liver, FBM and ABM scRNA-seqdatasets

were expressed in early progenitors, whereas those without recog-
nized leukaemia risk (AP3B1 and CXCR4) were expressed in terminal
differentiation stages (Extended Data Fig. 3).

DCsubsets diversify in FBM

Plasmacytoid (pDC), transitional DC (tDC) and DC3 emerged during
FBM haematopoiesis; however, non-classical CD16* monocytes and
monocyte-DCs were not detected (Fig. 2a). Signatures of DC1 and
pDC—but not DC2 and DC3"—were conserved between fetal and
adult peripheral blood subsets. FDG embedding revealed that the tDC
transcriptional state was intermediate between DC2 and pDC, as inadult
blood"™. iRegulon analysis showed that the transcription factors that
drive FBMpDC and tDC differentiation are shared (Extended DataFig. 3).

Mature natural killerand T cellsin FBM

We identified natural killer (NK) cells, natural killer T (NKT)-like cells
andinnate lymphoid cell (ILC) precursorsin FBM (Extended Data Fig. 3).
FBM NK cells were enriched for NK cytotoxicity genes, relative to yolk
sacand fetal liver (Extended Data Fig. 3).In contrast to ABM, FBM con-
tained few T lymphocytes (naive only; Fig. 1a. Supplementary Table 5).
As thymic lymphopoiesis is established before FBM is colonized®,
these were single-positive CD4, CD8 and Tregulatory cellsexpressing
productive TRA and TRB (Extended Data Fig. 4).

Expanded B cell lymphopoiesisin FBM
We observed two bursts of proliferative activity during B cell devel-
opment (in pre pro-B and pre-B progenitors; Fig. 2b). Heavy chain
rearrangement was productive from the pre-B progenitor stage and
heavy and light chain from the immature B cell stage. The emerging B
cell repertoire was diverse, withasmall number of shared clonotypes
detected (Extended Data Fig. 4). The frequency of B-lineage cells was
10-fold higher in FBM thaninfetal liver,and markedly skewed towards
the earlier cell states, compared to ABM (Fig. 2c).

Differentiation trajectories predicted by Monocle 3 branched at the
pre-B progenitor stage into ‘cycling’ and ‘B cell differentiation’ paths.

(replicates, measures of centre and statistical testsasper a;

#*P<0.001,****P < 0.0001; Supplementary Tables 19, 23).d, FDG visualization
of CD34"* fetal liver (left), FBM (centre) and cord blood (right) cellsona CITE-seq
gene expressionlandscape (Extended DataFig. 5b). Colour indicatesrelative
cell abundance per tissue by kernel density estimation (KDE). e, Colonies
produced by HSC/MPPs (grown on methylcellulose; 17-21 PCW) from fetuses
withDown syndrome (n=2, k=246, k*=64) and age-matched fetuses without
Downsyndrome (n=3,k=365,k* =73) (nrefers tobiologicallyindependent
samples, kindicates plated cells and k* indicates wells producing colonies). The
bargraph shows proportions by colony type, with colony numbers provided

in parentheses. Statistical differences between fetuses with Downsyndrome
andthe expected distribution based on fetuses without Down syndrome were
tested by chi-squared test with****P <107, two-sided.

Apoptosis genes were most enriched in the non-cycling pro-Band pre-B
cell stages, in keeping with the programmed death of cells that fail to
undergo successful heavy chain recombination and integration into
the pre-B receptor (Extended DataFig. 4).

Small deletions and translocations in a limited set of genes causing
B-cell acute lymphoblastic leukaemia (B-ALL)", which commonly pre-
sentsininfancyandchildhood, were highly expressed inearly B-lineage
progenitors in FBM, but expression was less marked in equivalent ABM
stages (Extended Data Fig. 4).

Tissue-specific properties of HSC/MPPs

CD34"-selected CITE-seq data from fetal liver, FBM and cord blood
allowed us to examine the unique features of FBM progenitors
(Extended Data Fig. 5, Supplementary Tables 1,16, 17). Erythroid pre-
cursors dominated fetal liver, whereaslymphoid precursors were most
prevalent in FBM. Cord blood was enriched in HSCs and multipotent
progenitors (hereafter, HSC/MPPs), common lymphoid progenitors
and the earliest erythroid precursors (Fig. 2d). Cell-cycle gene enrich-
mentwas lower in cord blood thanin fetal tissue HSC/MPPs (consistent
with previous work'?), whereas FBM and fetal liver HSC/MPPs showed
similar enrichment of cycling genes (Extended Data Fig. 5). Differen-
tially expressed proteins in HSC/MPPs revealed tissue-specific pat-
terns of adhesion molecules (CD49a and CD146 in fetal liver; integrin
B7inBM), growth factor receptors (EGFR in fetal liver) and molecules
associated with HSC activation and recirculation (CD69 and CD31in
cord blood) (Extended DataFig. 5).

We used direction of transition (DoT) analysis to investigate tissue-
specific HSC/MPP differentiation bias. Fetal liver was biased towards
erythroid fate and away from lympho-myeloid fate, whereas FBM
was biased towards neutrophil and B-lineage fate (Extended Data
Fig. 6). We assessed differentiation potential in vitro via single-cell
clonal cultures of paired fetal liver and FBM HSC/MPPs. Myeloid colo-
nies arose frequently from both sources of HSC/MPPs, but myeloid-
restricted colonies were typical of FBM, supporting the myeloid bias of
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FBM HSC/MPPs from DoT analysis and myeloid cell diversity in FBM
(Fig. 2a, Extended Data Fig. 6).

Erythroid bias of HSC/MPPs in Down syndrome

FBM HSC/MPPs from fetuses with Down syndrome produced signifi-
cantly more erythroid colonies and fewer myeloid colonies on methyl-
cellulose compared to HSC/MPPs from age-matched fetuses without
Downsyndrome (Fig. 2e, Extended Data Fig. 7). Across erythroid dif-
ferentiation pseudotime in Down syndrome (Monocle 3), anincrease
inthe expression of cell-cycle genes (CCND3and MKI67) and elevated,
sustained expression of the glycolysis gene PKLR (Extended Data
Fig. 7) suggested that rapid proliferation and metabolic adaptations
compound the erythroid dominance.

Transcription factors withwell-defined rolesin early haematopoietic
programming (SPiI and FLII)™" were expressed at lower levels in HSC/
MPPs and MEMPs from fetuses with Down syndrome than in those from
fetuses without Down syndrome, and PySCENIC inferred downregulation
of corresponding regulons. Megakaryocytes from fetuses with Down
syndrome expressed lower levels of FLi1,adriver of megakaryocyte differ-
entiation®, inkeepingwith recent datashowing FL/I promoter silencingin
Downsyndrome'®, Regulons forchromosome-21-encoded GABPA, which
isimplicatedinthe differentiation and maintenance of HSC/MPPs”, were
overrepresented in Down syndrome (Extended Data Fig. 7).

Most myeloid lineagesin Down syndrome overexpressed TNF (con-
sistent with the higher levels of circulating TNF in Down syndrome’®)
and TNF signalling pathway genes were overrepresented in myeloid,
erythroid, NK and stromal cells from fetuses with Down syndrome
(Extended Data Fig. 7). CellPhoneDB analysis predicted statistically
significantreceptor-ligandinteractionsinvolving proteins of the TNF
family between FBMHSC/MPPs from fetuses with Down syndrome and
mature myeloid cells (Extended DataFig. 7).

Stromal cell heterogeneity in FBM

We identified 19 stromal cell states in FBM, which closely correlate with
postnatal mouse BM stroma® (Extended Data Fig. 8). Two dominant
endothelial cell clusters expressed KDR (VEGFR2) but with differential
expressionof CD34. One cluster expressed the characteristic sinusoidal
endothelial cell genes CTSL, STAB2 and SELENOP (also known as SEPPI)
andthe other expressed highlevels of ViMand CD34, associated with non-
sinusoidal endothelial cellsinmice®. The non-sinusoidal ‘tipendothelial
cells’expressed canonical markers for cells at the tips of growing vascular
structures—PDGFB, UNC5Band DLL4(ref. ™) (Fig. 3a, Extended DataFig.8).

Regional partitioning of endothelial cell subsets

Using multiplex immunofluorescence microscopy, we identified
CD34"VEGFR2" branching vesselsadjacent to the epiphyseal cartilage
(metaphysis). VEGFR2"CD34" cells formed convoluted structures in
more-distal regions (diaphysis). Thicker-walled CD34" vessels, co-
localizing with CXCL12' cells, were present in both metaphysis and
diaphysis (Fig. 3b, Extended Data Fig. 9). This regional compart-
mentalization was reminiscent of the L-type (sinusoids) and H-type
(metaphyseal arterioles) vessels that have been described in mouse
BM, with distinct roles in supporting haematopoiesis®*. Mouse
sinusoidal and arteriolar endothelial cell genes were enriched in
our FBM sinusoid and tip endothelial cells, respectively (Extended
Data Fig. 8). The frequency of CD34'CD117* HSC/MPPs and pro-
genitors relative to cellular density was similar in metaphyseal and
diaphyseal areas (P=0.431, Wald test) (Extended Data Fig. 9).

Endothelial cells in tissues and in Down syndrome

FBM sinusoidal endothelial cells had significantly higher expression
of SELE, VCAMI and ICAM2 and concordant higher surface protein
expressionthan analogous fetal liver sinusoidal endothelial cells. FBM
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Fig.3|Stromalcell heterogeneity in FBM. a, Left, dot plot of the top 10
genes (by Pvalue) differentially expressed between tip endothelial cells (ECs)
(k=362) and sinusoidal endothelial cells (k = 550) in FBM scRNA-seq data
(n=9) (Methods and interpretation as in Fig. 1b; two-sided Wilcoxon rank-
sum test with Benjamini-Hochberg correction; ****P< 0.0001,
Supplementary Table 24). Right, dot plot of equivalent protein expression
(where antibody present in CITE-seq panel) on tip and sinusoidal endothelial
cellsinthe FBM (total) CITE-seq dataset (n =3). Dot colour indicates DSB-
normalized protein expression. Dot size indicates the percentage of cells in
each category expressing agiven protein. b, Top, longitudinal section of fetal
femur with multipleximmunofluorescence staining, showing CD34 (red) and
VEGFR2 (green) channels to demonstrate regional differencesin BM
vasculature between metaphysis (M) and diaphysis (D). Scale bar, 2mm.
White boxes mark regions of interest (ROIs) shown below. Bottom, ROls with
allch Is andsingle ch Isto rate patterns of co-expression in
CD34"VEGFR"” metaphyseal vessels, VEGFR2"CD34" diaphyseal sinusoids
and CD34"CXCL12-associated arterioles. Scale bars, 50 pm. Representative
images from n = 4 biologically independent FBM samples (14-15 PCW), with
staining performedintwo independent experiments. ¢, Violin plots of gene
expression in HSC/MPPsand pooled endothelial cells from FBM scRNA-seq
datasets from fetuses with Down syndrome (n=4; k=105 HSC/MPPs; k=111
endothelial cells) and fetuses without Down syndrome (n=9; k= 92 HSC/
MPPs; k =938 endothelial cells). Genes shown have a significant receptor-
ligand interaction in FBM without Down syndrome predicted by CellPhoneDB
analysis (detailed in Extended Data Fig. 10a, b). Significance in expression
difference between fetuses with Down syndrome and fetuses without Down
syndrome calculated by two-sided Wilcoxon rank-sum test with Benjamini-
Hochberg correction; *P < 0.05,**P < 0.01,"**P < 0.001,****P < 0.0001
(Supplementary Table 25).
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sinusoidal endothelial cells expressed more THBSI, which may facili-
tate HSC/MPP retention® and matrix metalloproteinases, which are
associated with mature cell egress™, FBM sinusoidal endothelial cells
alsoexpressed more CCLI4, which isimplicated in myeloid progenitor
proliferation® (Extended Data Fig. 8).

CellphoneDB predicted statistically significant haematopoiesis-
supportive interactions between FBM HSC/MPPs and stromal cellsinclud-
ing FLT3-FLT3L and KIT-KITLG (confirmed at the protein level). Cell-
PhoneDBanalysisalso predicted that HSC/MPPssignal to the tip (capillary
metaphyseal) and proliferatingendothelial cellsand to the osteochondral
precursorsthroughANGPT2, DLK1, EFNAland FGF7 (Extended DataFig. 10).

Theexpressionof NOTCH ligands NOV(CCN3) and DLKI—predicted
by CellPhoneDB to mediate endothelial celland HSC/MPP interactions
(Extended DataFig.10)—wassignificantly higher in endothelium from
fetuses with Down syndrome thanin endothelium from fetuses without
Down syndrome, and the expression of NOTCHI wasincreased in HSC/
MPPs in Down syndrome (Fig. 3c). NOTCH signalling has a critical role
in the emergence of HSC/MPPs as well as fetal HSC maintenance and
response to pro-inflammatory signals, including TNF?. Probing for
inflammatory programsin stroma from fetuses with Downsyndrome,
we found activation of multipleinflammatory pathways, including TNF
pathways, in macrophages and osteoclasts from fetuses with Down
syndrome versus those without Downsyndrome (Extended DataFig. 7).
Type linterferon, interferon-y (IFNy) and other inflammatory cytokine
(interleukin(IL)-1,1L-6, IL-7and IL-12) response pathways were overex-
pressed inendothelial cells and osteochondral cells in Down syndrome
(Extended DataFig. 8). Our collective findings reveal an altered stromal
environment in Down syndrome.

Discussion

Survival of the fetus depends on the successful initiation of haemat-
opoiesis in several organs across gestation. We reveal the complete
establishment of haematopoiesisin the FBM within the first few weeks
of the second trimester and identify the BM as a key site of neutrophil
emergence, myeloid diversification and B lymphoid selection. We
identify a unique intrinsic molecular profile of FBM HSC/MPPs, and
an intrinsic bias of BM stem and progenitor cells in Down syndrome
that is underpinned by genome-wide transcriptional changes. A bet-
ter understanding of human developmental haematopoiesis has the
potential to inform regenerative and transplantation therapies; for
example, through co-opting developmental programs to acceler-
ate the reconstitution of haematopoietic stem cell transplants, and
manipulating the lineage bias of differentiating progenitors to address
specific deficiencies or for cellular therapy. For such endeavourstobe
successful, an initial phase of discovery science is critical. Itis in this
context that our study provides acomprehensive analysis of human
FBM haematopoiesis to address a major previous knowledge gap.
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Appendix F. Co-Principal Investigator of multi-centre research study funded by the

Chan Zuckerberg Initiative for $1.7 million: Single-cell multi-omic and spatial cell

atlas of pediatric skin.

Chan
Zuckerberg
Initiative &

E BACK TO PROJECT LIST

PROJECT

ABOUT US WHAT WE DO HOW WE WORK NEWS & STORIES CAREERS Q Read Our Blog

Single-Cell Multi-omic and Spatial Cell Atlas
of Pediatric Skin

AWARD Pediatric Networks

PROJECT SUMMARY

INVESTIGATORS

Project Summary

Healthy human skin is contingent on physiological processes established during early life. However, the
current limited knowledge of pediatric skin biology restricts understanding of disease pathogenesis and the
innovation of therapeutic strategies.

This project aims to use high-throughput single-cell and spatial methods to comprehensively define key
milestones in human skin maturation, including adaptation to a non-aquatic environment in neonatal life, pre-
and post-adrenarche, and puberty, when recognized changes occur in health and disease. Additionally, the
proposed study aims to contextualize pediatric skin data with adult healthy skin and inflammatory skin disease
datasets previously generated by members of this research team.

A comprehensive reference of skin biology across human lifespan will empower the wider scientific community
to gain insights into processes and time points involved in maturation, aging and disease pathogenesis. By
learning more about how skin develops over time, this team hopes to provide insights relevant to pediatric
inflammatory and infectious skin conditions, genetic skin diseases, and skin disorders specific to historically
marginalized communities. Overall, this study will establish an important, accessible repository of pediatric
skin samples, which will be shared freely to enhance skin research and clinical translation.
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Appendix G. Dermatology Biobank REC approval letter

NHS

Health Research Authority

North East — Newcastle & North Tyneside 1 Research Ethics Committee
NHSBT Newcastle Blood Donor Centre

Holland Drive

Newcastle upon Tyne

NE2 4NQ

Telephone: 0207 1048084
14 February 2019

Professor Penny Lovat
The Medical School
Newcastle University
Framlington Place
Newcastle upon Tyne
NE2 4HH

Dear Professor Lovat

Title of the Research Tissue Bank: Dermatology Biobank Renewal March 2019

REC reference: 19/NE/0004
Designated Individual: Dr Christopher Morris
IRAS project ID: 256840

Thank you for your letter dated 18 January 2019, responding to the Committee's request for
further information on the above research tissue bank and submitting revised
documentation.

The further information has been considered on behalf of the Committee by the Chair.

We plan to publish your research summary wording for the Research Tissue Bank on the
HRA website, together with your contact details. Publication will be no earlier than three
months from the date of this favourable opinion letter. The expectation is that this information
will be published for all Research Tissue Banks that receive an ethical opinion but should
you wish to provide a substitute contact point, wish to make a request to defer, or require
further information, please contact hra.studyregistration@nhs.net outlining the reasons for
your request.Under very limited circumstances (e.g. for student research which has received
an unfavourable opinion), it may be possible to grant an exemption to the publication of the
Research Tissue Bank.

Confirmation of ethical opinion

On behalf of the Committee, | am pleased to confirm a Favourable ethical opinion of the
above research tissue bank on the basis described in the application form and supporting
documentation as revised.

The Committee has also confirmed that the favourable ethical opinion applies to all research
projects conducted in the UK using tissue or data supplied by the tissue bank, provided that
the release of tissue or data complies with the attached conditions. It will not be necessary
for these researchers to make project-based applications for ethical approval. They will be
deemed to have ethical approval from this committee. You should provide the researcher
with a copy of this letter as confirmation of this. The Committee should be notified of all
projects receiving tissue and data from this tissue bank by means of an annual report.

This application was for the renewal of a Research Tissue Bank application. The previous
REC Reference number for this application was 08/H0906/95+5.

A Research Ethics Committee established by the Health Research Authority
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Duration of ethical opinion

The favourable opinion has been renewed for five years from the end of the previous five
year period provided that you comply with the standard conditions of ethical approval for
Research Tissue Banks set out in the attached document. You are advised to study the
conditions carefully. The opinion may be renewed for a further period of up to five years on
receipt of a fresh application. It is suggested that the fresh application is made 3-6 months
hefore the 5 years expires, to ensure continuous approval for the research tissue bank.

Research Tissue Bank Renewals

The previous five year period was scheduled to run from 05/03/2014 to 05/03/2019. This
Research Tissue Bank may be renewed for further periods of five years at a time by

following the process described in the above paragraph.
Approved documents

The documents reviewed and approved at the meeting were:

surplus tissue]

Document Version Date

Covering letter on headed paper [Cover Letter from PI_Prof Lovat] |1 27 November 2018
Human Tissue Authority licence [HTA Licence] 01 July 2016
Other [Cv Prof Lovat ] 01 November 2018
Other [DBB Form 02 Specimen Request] 1 08 November 2018
Other [DBB RA 01 Freezer] 5 01 November 2018
Other [DBB RA 2 Transport ] 5 01 November 2018
Other [DBB RA 03 Cryostat] 4 01 November 2018
Other [DBB RA 04 Microtome] 4 01 November 2018
Other [DBB RA 06 Derm Premises] 2 01 November 2018
Other [DBB Form 01 Withdrawal of consent] 2 06 December 2018
Other [DBB Form 03 User Agreement ] 2 06 December 2018
Other [DBB RA 05 HTA premises] 2 06 December 2018
Other [DBB SOP 01 Management] 4 06 December 2018
Other [DBB SOP 02 Consent] 5 06 December 2018
Other [DBB SOP 03 Disposal] 4 06 December 2018
Other [DBB SOP 04 Induction] 5 06 December 2018
Other [DBB SOP 05 freezer failure] 5 06 December 2018
Other [DBB SOP 06 Tissue Processing | 5 06 December 2018
Other [DBB SOP 07 Tissue transfer in ] 4 06 December 2018
Other [Annual progress report march 2018] 16.03.18 06 December 2018
Other [Response letter re 19/NE/0004] 1 28 January 2019
Participant consent form [Patient Consent 01 Surplus tissue] 10 28 January 2019
Participant consent form [Patient Consent 02 New Tissue] 10 28 January 2019
Participant consent form [Patient Consent 04 Adults normally 10 28 January 2019
discarded tissue]

Participant consent form [patient consent 05 previously donated 5 28 January 2019
tissue]

Participant consent form [Patient Consent 6 Guardians for child 10 28 January 2019

Participant consent form [Patient consent form 7 Guardians new
child tissue]

28 January 2019

Participant consent form [Patient consent form 8 Minors for surplus
tissue]

28 January 2019

Participant consent form [Patient Consent form 9 Minors for new
tissue]

28 January 2019

A Research Ethics Committee established by the Health Research Authority
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Participant information sheet (PI1S) [Patient information sheet 2i] 10 28 January 2019

Participant information sheet (PIS) [Patient information sheet 1i] 10 28 January 2019
Participant information sheet (PIS) [Patient Info 4 Adult normally 10 28 January 2019
discarded]

Participant information sheet (PIS) [patient Info 5i previously 5 28 January 2019
donated tissue ]

Participant information sheet (PIS) [Patient Info 06 Guardians for 10 28 January 2019
child surplus tissue]

Participant information sheet (PIS) [Patient information sheet 71 1 28 January 2019
Guardian for new child tissue]

Participant information sheet (PIS) [Patient information sheet 8i- 1 28 January 2019
minor surplus tissue]

Participant information sheet (PIS) [Patient information sheet 9i 1 28 January 2019

minor new tissue]

Protocol for management of the tissue bank [Dermatology Biobank |9 28 January 2019
Protocol Version 9]

REC Application Form [RTB_Form_03122018] 03 December 2018
Relative consent form [Patient Consent 3 Relative] 10 28 January 2019
Relative information sheet [Patient Info 3 Relative ] 10 28 January 2019
Summary of research programme(s) [Summary of Derm Biobank 2 28 January 2019

Research projects ]

Licence from the Human Tissue Authority
Thank you for providing a copy of the above licence.
Research governance

Under the UK Policy Framework for Health and Social Care Research there is no
requirement for NHS research permission for the establishment of research tissue banks in
the NHS. Applications to NHS R&D offices through IRAS are not required as all NHS
organisations are expected to have included management review in the process of
establishing the research tissue bank.

Research permission is also not required by collaborators at tissue collection centres (TCCs)
who provide tissue or data under the terms of a supply agreement between the organisation
and the research tissue bank. TCCs are not research sites for the purposes of the RGF.

Research tissue bank managers are advised to provide R&D offices at all TCCs with a copy
of the REC application for information, together with a copy of the favourable opinion letter
when available. All TCCs should be listed in Part C of the REC application.

NHS researchers undertaking specific research projects using tissue or data supplied by a
research tissue bank must apply for permission to R&D offices at all organisations where the
research is conducted, whether or not the research tissue bank has ethical approval.

Site-specific assessment (SSA) is not a requirement for ethical review of research tissue
banks.

Registration of Research Tissue Banks

It is a condition of the ethical approval that all Research Tissue Banks are registered on the
UK Clinical Research Collaboration (UKCRC) Tissue Directory. The Research Tissue Bank
should be registered no later than 6 weeks after the date of this favourable ethical opinion
letter or 6 weeks after the Research Tissue Bank holds tissue with the intention to provide
for research purposes. Please use the following link to register the Research Tissue Bank on
the UKCRC Directory: https://directory.biobankinguk.org/Register/Biobank Registration is
defined as having added details of the types of tissue samples held in the tissue bank.

A Research Ethics Committee established by the Health Research Authority
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There is no requirement to separately notify the REC but you should do so at the earliest
opportunity e.g. when submitting an amendment or annual progress report form. We will
monitor the registration details as part of the annual progress reporting process.

Statement of compliance

The Committee is constituted in accordance with the Governance Arrangements for
Research Ethics Committees and complies fully with the Standard Operating Procedures for
Research Ethics Committees in the UK.

After ethical review

Reporting requirements

The attached standard conditions give detailed guidance on reporting requirements for
research tissue banks with a favourable opinion, including:

* Notifying substantial amendments
e Submitting Annual Progress reports.

The HRA website also provides guidance on these topics, which is updated in the light of
changes in reporting requirements or procedures.

User Feedback

The Health Research Authority is continually striving to provide a high quality service to all
applicants and sponsors. You are invited to give your view of the service you have received
and the application procedure. If you wish to make your views known please use the
feedback form available on the HRA website: http://www.hra.nhs.uk/about-the-
hra/governance/quality-assurance/

HRA Training

We are pleased to welcome researchers and R&D staff at our training days — see details at
https://www.hra.nhs.uk/planning-and-improving-research/learning/

19/NE/0004 Please quote this number on all correspondence

Yours sincerely
PP

() Mol

Mr Paddy Stevenson
Chair

E-mail: nrescommittee.northeast-newcastleandnorthtyneside 1@nhs.net

Enclosures: Standard approval conditions SL-AC3
Copy to: Dr Christopher Morris — Designated Individuals, Newcastle
University

A Research Ethics Committee established by the Health Research Authority
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Appendix H. Patient information leaflet for donating normally discarded surplus skin

for research

The Newecastle upon Tyne Hospitals NHS|

NHS Foundation Trust

Royal Victoria Infirmary
Queen Victoria Road
Newcastle upon Tyne

NE1 4LP

Dermatology Biobank
William Leech Building, M2.121
Translational and Clinical Research Institute,
Newcastle University. Tel: 0191 233 6161
Fax: 0191 201 0155
www.newcastle-hospitals.nhs.uk

Consent for the collection, storage and use of adult
normally discarded surplus human tissues for research
Patient information sheet

Introduction

We understand that you previously had or will be having a surgical procedure in which specimens of tissue
removed during surgery are generally discarded. We would like to invite you to contribute this tissue to
the Dermatology Biobank, and allow us to store and use this surplus tissue in future medical research.

What will happen if I agree?
With your agreement, the tissue that was removed taken during the procedure will be stored in the
Dermatological Sciences Laboratory in a tissue bank and potentially used in future medical research.

With your approval, information from your medical records will be taken, made anonymous and kept safe
on a computer in Dermatological Sciences, Newcastle University. A medical doctor or a member of the
regulatory authorities or the NHS Trust, where it is relevant to you taking part in this study and who may
be a member of the research team will look at your medical records to get the relevant information. Any
information needed for research purposes will be made anonymous before it is given to the researcher
and the samples will be assigned an anonymous code. The researchers will not be able to find out your
name or any personal details from the information that they receive. The Dermatological Sciences
Laboratory will be responsible for the safekeeping of any samples donated and for protecting the
confidentiality of your personal information, in line with the general data protection regulatory guidance
outlined by the Health Research Authority.

You will have the opportunity to discuss with a doctor issues relating to the use of your samples for
research purposes. He or she will answer any questions you may have. If you decide that you want the
samples to be stored in the tissue bank and used for research purposes, you will be asked to sign a
consent form confirming your decision and stating that you have read and understood this sheet. When
you sign the form you will give the ownership of the tissue to Dermatological Sciences, Newcastle
University. They will then store it for an indefinite period of time and will be able to decide how it should
be used for research. They will also have the right to dispose of unused stored material in an appropriate
and ethical manner following normal procedures. If at any time you change your mind and do not wish
stored tissue to be used for research, any such tissue (unless already used up prior to your request) will
be destroyed by incineration, data will be deleted if easily accessible; your medical treatment or legal
rights will not be affected.

Medical research and why this programme is important

If you agree, the tissue that we collect will be used as part of research projects set up or approved by the
Dermatological Sciences laboratory at Newcastle University and the Newcastle Hospitals NHS Trust.
These research projects may help us learn more about the causes of skin/melanocyte derived diseases
and how they can be treated and prevented. Some of these research programmes could lead to the
development of new products or processes, for example a new treatment for eczema, these may be
developed commercially for the improvement of patient care, in which case there would be no financial
benefit to you. Some of this research may involve an assessment of genetic material (DNA and/or RNA)
to help us understand the genetic basis of health and skin/melanocyte derived disease.

Information sheet for patients 4i Version 12 -22/03/2021 1
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The research will not involve human embryos, although some of our research involves the administration
of samples into rodent (mice) or fish. This is only done when it is essential to further our understanding
of the way in which a disease develops or responds to treatment. These experiments are performed
according to the strict guidelines set up by the Government involving the minimum of distress to the
rodent/fish used. In addition some of our research involves collaboration with commercial partners. If
you do not wish to allow your sample to be used in this way, then you can still donate your sample
without the need to consent to research involving the use of animals or in collaboration with commercial
partners.

The tissue bank acts as a custodian of the samples it holds and releases them only to individuals or
organizations that have an acceptable scientific background and work to high ethical standards. Any
research must be properly approved. Some of the sample or material extracted from it may be used by
researchers outside of Newcastle University or the UK and may include transfer of samples to research
centres abroad and or to other approved tissue banks.

What are the possible risks of taking part?
There are no extra risks involved in participating in this study.

Are there any possible benefits?

In the future, the results of these research projects might identify patients more likely to develop skin
disease or respond or have side effects to a particular treatment. The research will not affect your
previous, current or future treatment, therefore you will not benefit personally from taking part in the
research. A cost recovery system is operated to pay for the continued biobank running costs covering
tissue processing, storage and release to authorized studies and users only.

Do I have to take part?

No. Your participation is this study is entirely voluntary. The research projects have been desighed
taking into account published National and European guidance on the use of human tissue in research. All
medical research will be approved by an independent research ethics committee to ensure that the
purpose of the study is adequate and that your welfare and confidentiality are protected.

If you do not want your tissue to be stored in the Tissue bank please tell us and do NOT sign the consent
form. If you do not sign this form, the tissue will still be sent to the pathology laboratory to undergo
those tests that are necessary for your care but it will not be used for research purposes. All unused
tissue from your procedure will be disposed of using normal hospital methods. We will respect your
decision and it will not in any way affect the treatment that you receive. Equally if you have already
consented to the storage of your tissue in the Dermatology biobank, you are free to change your mind at
any time, without giving any reason. This would not affect the standard of care you receive.

The Dermatology biobank has been approved by NRES Committee Newcastle and North Tyneside 1 who
ensure that all the work carried out meets the expected national ethical standards

If you have any concerns or other questions about taking part, please contact one of the study principle
investigators, Professor Penny Lovat (tel: 0191 208 7170) or Professor Nick Reynolds (tel:0191 208 8936)
or contact Dr Tom Ewen, The Dermatology Biobank Manager (Tel: 0191 208 5644). You can also seek
advice on the study from the Health Research Authority (HRA, www.hra.nhs.uk; telephone 0207 108
8118). Similarly, the Patient Advice and Liaison Service (PALS, Freephone 0800 032 0202; Text; 01670
511098; email: northoftynepals@nhct.nhs.uk) can provide confidential advice on the study if you wish to
have any further details.
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Appendix I. Consent form for donating normally discarded surplus skin for research

The Newcastle upon Tyne Hospitals NHS

NHS Foundation Trust

Royal Victoria Infirmary
Queen Victoria Road
Newecastle upon Tyne

NE1 4LP
Dtjrl.natology Bl()l.)al.lk Tel: 0191 233 6161
William Leech Building, M2.121 Fax: 0191 201 0155
Translational and Clinical Research Institute, www.newcastle-hospitals.nhs.uk

Newcastle University.

Consent Form for the collection, storage and use of Adult Normally
Discarded surplus human tissues for research

Patient Name: ....................o.oi i NHS Number: ...........................

Dateof Birth: ................cooeiell.

T agree that the tissue referred to below may be used for research, including genetic (DNA
and/or RNA) studies. I also agree that this tissue becomes the property of Newcastle
University to be used at its discretion (including dispersement to approved tissue banks) in
properly approved research programs, which may lead to the development of new patient
treatments for the benefit of patient care.

Please initial the boxes if you are agree with the corresponding points:

1. T have read and understood the attached information sheet 4i (version 12,
dated 22nd March 2021) on this project and have been given a copy to keep.
I have been able to ask questions and I understand why the research is being
done and any risks involved.

2. T consent to the use of tissue, taken as a part of my diagnostic investigation
or treatment, for research purposes. I understand that I am free to withdraw
my approval for use of the samples at any time without my medical treatment
or legal rights being affected.

3. T agree that the samples and the information gathered from them can be
stored by Dermatological Sciences in a Tissue Bank and used for future
research. I understand that relevant sections of my medical notes and /or
data collected during the study may be looked at by individuals from
regulatory authorities or the NHS Trust, where it is relevant to my taking part
in this study. I give permission for these individuals to have access fo my
records.

4. T give permission for someone in the research team to look at my medical
records. I understand that this information will be kept confidential,
including from any laboratory staff analyzing the samples. I understand that
this information, in an anonymous form may be passed to persons outside the

Patient consent form 4 1
Version 11.0 —22/03/2021

White copy-original Yellow copy-patient Pink copy-medical notes
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university in connection with research and may be published in any research
findings.

T understand that I will not benefit financially if this research leads to the
development of a new treatment or medical test.

h

6. I understand that I will not be told the results of any tests carried out on the
samples. Summary research study results can be fed back by the research
team if requested; such feedback will not change the medical care I receive.

7. 1 give my permission for my sample to be used in experiments using
rodents (mice) and fish.

8. I give my permission for my samples and anonymized clinical information
to be sent to centres outside the UK for research purposes.

9. 1 give permission from my sample to be used by commercial partners (e.g.
pharmaceutical companies) for research purposes.

10. I know how to contact the research team if I need to.

I have explained the request for tissue for research purposes and answered such questions
as the patient has asked.

Health professional........................... Signature..................... Date....................

A copy of this consent form must be filed in the patient clinical notes and a copy given to the
patient. The original consent form must be sent to Prof Penny Lovat / Prof N Reyvnolds at
Dermatological Sciences (Newcastle University) where it will be filed.

To be completed by Clinical staff:

Associated Study NAIME: ... ... ... ..l i i et e e et e e
Principal INVESTIGUTOT: ... ... oo cee et et e e et e et ot e oet tae e e eaeee eeate st sene e e tenes een 2en ne aee
Sample Study Code: ... ... ...
SaAMPle DeSCrIPIION. ... ... cc. s o tt cee e et ee et e e et e en 2an e e eaeae seee senne 2enne sene e s e e s

SAMPLE ST .. oo ot e e e e e e e e et et e et e e e e e e e e e e e e e
To be completed by Biobank staff-

Biobank Number: ... ... ... .. e e e e e e e e e e

Date Of DAIa TNPUT ... ... ..o coe et e et et een et ee aet et eae ve ee e ean e 2en et et e ane e ee e e een e e

Patient consent form 4 2
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Appendix J. Patient information leaflet for donating skin for research

The Newcastle upon Tyne Hospitals NHS

NHS Foundation Trust

Royal Victoria Infirmary
Dermatology Biobank Queen Victoria Road
William Leech Building, M2.121 Newecastle upon Tyne
Translational and Clinical Research Institute, NE1 4LP

Newcastle University. Tel: 0191 233 6161

Fax: 0191 201 0155
www.newcastle-hospitals.nhs.uk

Consent for the collection, storage and
use of human tissues for research
Patient information sheet

Introduction

We would like to invite you to participate in medical research, by allowing us to take a biopsy (sample of
tissue) and/or blood test. The sample will be stored in the Dermatology Biobank and used in future
research studies, which may help patients with skin or melanocyte derived disease.

What will happen if I take part?

We would like you to consider having a blood test or small tissue biopsy taken purely for medical
research. With your consent these could be used for research to help us learn more about the causes of
diseases and how they can be treated and prevented.

In some cases, your doctor may already be planning a routine biopsy or blood test; in this case we would
like you to consider allowing extra tissue to be removed from the operation site during your routine
procedure or extra blood to be taken, purely for research. Such extra samples will only be taken if you
give your consent and if their removal is unlikely to cause you any harmful effects now or in the future.

If you give approval, we will collect your biopsy sample from the operating theatre. The tissue taken will
be processed and/or stored in the Dermatological Sciences Laboratory in a tissue bank and potentially
used in future medical research.

If your samples are stored, with your approval, information about your health will be taken from your
medical records, made anonymous and kept safe on a computer in Dermatological Sciences, Newcastle
University. This will help us understand what your illness was like and relate what we find in the
laboratory to what happens to patients. A medical doctor or a member of the regulatory authorities or the
NHS Trust, where it is relevant to you taking part in this study and who may be a member of the research
team will look at your medical records to get the relevant information about your health. Any information
about your health and diagnosis needed for research purposes will be made anonymous before it is given
to the researchers and your samples will be assigned an anonymous code. The researchers will not be
able to find out your name or any personal details about you from the information that they receive. The
Dermatological Sciences Laboratory will be responsible for the safekeeping of any samples you donate and
for protecting the confidentiality of your personal information, in line with the general data protection
regulatory guidance outlined by the Health Research Authority.

You will have the opportunity to discuss with a doctor issues relating to the biopsy procedure and the use
of your samples for research purposes. He or she will answer any questions you may have. If you decide
that you want to donate samples for medical research and storage in the tissue bank, you will be asked to
sign a consent form confirming your decision and stating that you have read and understood this sheet.
When you sign the form you will give the ownership of the tissue to Dermatological sciences, Newcastle
University. They will then store it for an indefinite period of time and will be able to decide how it should
be used for research. They will also have the right to dispose of unused stored material in an appropriate
and ethical manner following normal procedures. If at any time you change your mind and do not wish
stored tissue to be used for research, any such tissue (unless already used prior to your request) will be
destroyed by incineration, data will be deleted if easily accessible; your medical treatment or legal rights
will not be affected.
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Medical research and why this programme is important

If you agree, the tissue that we collect will be used as part of research projects set up or approved by the
Dermatological Sciences laboratory at Newcastle University and the Newcastle Hospitals NHS Trust.
These research projects may help us learn more about the causes of skin/melanocyte derived diseases
and how they can be treated and prevented. Some of these research programmes could lead to the
development of new products or processes, for example a new treatment for eczema, these may be
developed commercially for the improvement of patient care, in which case there would be no financial
benefit to you. Some of this research may involve an assessment of genetic material (DNA and/or RNA)
to help us understand the genetic basis of health and skin/melanocyte derived disease.

The research will not involve human embryos, although some of our research involves the administration
of samples into rodent (mice) or fish. This is only done when it is essential to further our understanding
of the way in which a disease develops or responds to treatment. These experiments are performed
according to the strict guidelines set up by the Government involving the minimum of distress to the
rodent/fish used. In addition some of our research involves collaboration with commercial partners. If
you do not wish to allow your sample to be used in this way, then you can still donate your sample
without the need to consent to research involving the use of animals or in collaboration with commercial
partners. The tissue bank acts as a custodian of the samples it holds and releases them only to individuals
or organizations that have an acceptable scientific background and work to high ethical standards. Any
research must be properly approved. Some of the sample or material extracted from it may be used by
researchers outside of Newcastle University or the UK and may include transfer of samples to research
centres abroad and or to other approved tissue banks

What are the possible risks of taking part?
There are no extra risks involved in participating in this study.

Are there any possible benefits?

In the future, the results of these research projects might identify patients more likely to develop skin
disease or respond or have side effects to a particular treatment. The research will not affect your
previous, current or future treatment, therefore you will not benefit personally from taking part in the
research. A cost recovery system is operated to pay for the continued biobank running costs covering
tissue processing, storage and release to authorized studies and users only.

Do I have to take part?

No. Your participation is this study is entirely voluntary. The research projects have been designed
taking into account published National and European guidance on the use of human tissue in research. All
medical research will be approved by an independent research ethics committee to ensure that the
purpose of the study is adequate and that your welfare and confidentiality are protected.

If you do not want your tissue to be stored in the Tissue bank please tell us and do NOT sign the consent
form. If you do not sign this form, the tissue will still be sent to the pathology laboratory to undergo
those tests that are necessary for your care but it will not be used for research purposes. All unused
tissue from your procedure will be disposed of using normal hospital methods. We will respect your
decision and it will not in any way affect the treatment that you receive. Equally if you have already
consented to the storage of your tissue in the Dermatology biobank, you are free to change your mind at
any time, without giving any reason. This would not affect the standard of care you receive.

The Dermatology biobank has been approved by NRES Committee Newcastle and North Tyneside 1 who
ensure that all the work carried out meets the expected national ethical standards.

If you have any concerns or other questions about taking part, please contact one of the study principle
investigators, Professor Penny Lovat (tel: 0191 208 7170) or Professor Nick Reynolds (tel:0191 208 8936)
or contact Dr Tom Ewen, The Dermatology Biobank Manager (Tel: 0191 208 5644). You can also seek
advice on the study from the Health Research Authority (HRA, www.hra.nhs.uk; telephone 0207 108
8118). Similarly, the Patient Advice and Liaison Service (PALS, Freephone 0800 032 0202; Text; 01670
511098; email: northoftynepals@nhct.nhs.uk) can provide confidential advice on the study if you wish to
have any further details.
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Appendix K. Consent form for donating skin for research

The Newcastle upon Tyne Hospitals NHS

NHS Foundation Trust

Royal Victoria Infirmary
Queen Victoria Road
Newecastle upon Tyne

Dermatology Biobank NE1 4LP
Wllham_Leech Bluldn;gq M2.121 . .
Translational and Clinical Research Institute, Fax 0191 201 0155
Newcastle University www.newcastle-hospitals.nhs.uk

Patient Consent Form for the collection, storage and use of human
tissues for research

Patient Name: ........cccooviiiiiiieeieeennnss NHSNumber : .....oovviiiiiiieeenss
Dateof Birth: ............................

I agree that the tissue referred to below may be used for research, including genetic (DNA
and/or RNA) studies. I also agree that this tissue becomes the property of Newcastle
University to be used at its discretion (including dispersement to approved tissue banks) in
properly approved research programs, which may lead to the development of new patient
treatments for the benefit of patient care.

Please initial the boxes if you are agree with the corresponding points:

1. Thave read and understood the attached patient information sheet 2i (version
12, dated 22nd March 2021) on this project and have been given a copy to
keep. Ihave been able to ask questions and I understand why the research is
being done and any risks involved.

2. T give consent for blood and/or tissue samples to be taken for medical
research purposes, as specified below®. I understand that I am free to
withdraw my approval for use of the samples at any time without my medical
freatment or legal rights being affected.

3. T agree that the samples I have given and the information gathered about me
can be stored by Dermatological sciences in a Tissue Bank and used for
future research. I understand that relevant sections of my medical notes and
Jor data collected during the study may be looked at by individuals from
regulatory authorities or the NHS Trust, where it is relevant to my taking part
in this study. T give permission for these individuals to have access to my
records.

4. 1 give permission for someone in the research team to look at my medical
records to get information about my medical condition and health. I
understand that this information will be kept confidential. including from any
laboratory staff analyzing the samples. I understand that this information, in
an anonymous form may be passed to persons outside the university in
connection with research and may be published in any research findings.

Patient consent form 2 1
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5. T understand that T will not benefit financially if this research leads to the
development of a new treatment or medical test.

6. I understand that I will not be told the results of any tests carried out on my
samples. However summary research study results can be fed back via my
GP if requested, such feedback will not change my medical care.

7. 1 give my permission for my sample to be used in experiments using rodents
(mice) and fish.

8. I give my permission for my samples and anonymized clinical information to
be sent to centres outside the UK for research purposes.

9. I give permission from my sample to be used by commercial partners (e.g.
pharmaceutical companies) for research purposes.

10. I know how to contact the research team if I need to.

Patient’s name........................... Signature.............ocoovviiiiiiannn. Date..........ennee

I have explained the request for tissue for research purposes and answered such questions
as the patient has asked.

Health professional.............................. Signature....................... Date..................

A copy of this consent form must be filed in the patient clinical notes and a copy given to the
patient. The original consent form must be sent to Prof Penny Lovat / Prof N Reynolds at
Dermatological Sciences (Newcastle University) where it will be filed.

To be completed by Clinical staff-

Associated Study Name: ... ... ... ...
Principal INVESTIGATOT. ... ... cc.cce e e ee e e et et et e e ees e e et 2ee e eae e ses ee e amnne 2e 2en an e
Sample Study Code: ... ...
SaAmple DESCHIPIION. ... oecee iie it ottt e es ee e et e ee et e 2ee et aees 2anne eeeemante een e sreae en en maene

SAMPLE STLE: ... oo oo oo e e e et e e e e e e e e et e s e e e e e aan
To be completed by Biobank staff:

BioDaNk NUIIDEE: ... ..o s s oo e e e e e e e e e eee oot eeeee ee et et et as s s e e e s aee aan

Date Of Data THPUL ... ... cc.ccees et e ae et et et et eee e ee aat e e eee eee 22 et 2as wn e e ee e een an e e

Patient consent form 2 2
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Appendix L. HDBR REC approval letter

NHS!

Health Research Authority

North East — Newcastle & North Tyneside 1 Research Ethics Committee

NHSBT Newcastle Blood Donor Centre
Holland Drive

Newcastle upon Tyne

NE2 4NQ

10 December 2018 Telephone: 0207 1048084

Professor Stephen C Robson
Institute of Cellular Medicine
3rd Floor, Leazes Wing
Medical Schooal

Newcastle University
Newcastle upon Tyne

NE2 4HH

Dear Professor Robson

Title of the Research Tissue Bank: The Human Developmental Biology Resource

REC reference: 18/NE/0290
Designated Individual: Dr Chris Morris
IRAS project ID: 250012

Thank you for your letter of 8 November 2018, responding to the Committee’s request for
further information on the above research tissue bank and submitting revised
documentation.

The further information has been considered on behalf of the Committee by the Vice Chair.

We plan to publish your research summary wording for the Research Tissue Bank on the
HRA website, together with your contact details. Publication will be no earlier than three
months from the date of this favourable opinion letter. The expectation is that this
information will be published for all Research Tissue Banks that receive an ethical opinion
but should you wish to provide a substitute contact point, wish to make a request to defer, or
require further information, please contact hra.studyregistration@nhs.net outlining the
reasons for your request.Under very limited circumstances (e.g. for student research which
has received an unfavourable opinion), it may be possible to grant an exemption to the
publication of the Research Tissue Bank.

Confirmation of ethical opinion

On behalf of the Committee, | am pleased to confirm a Favourable ethical opinion of the
above research tissue bank on the basis described in the application form and supporting
documentation as revised.

Recommendation: The Committee recommend that it could be highlighted in the information
documents that possible use of the donated tissue with animal sourced material may occur
and if a participant has any moral objections to that then they should not consider donation
(so that consent can be full and competent).

The Committee has also confirmed that the favourable ethical opinion applies to all research
projects conducted in the UK using tissue or data supplied by the tissue bank, provided that
the release of tissue or data complies with the attached conditions. It will not be necessary

A Research Ethics Committee established by the Health Research Authority
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for these researchers to make project-based applications for ethical approval. They will be
deemed to have ethical approval from this committee. You should provide the researcher
with a copy of this letter as confirmation of this. The Committee should be notified of all
projects receiving tissue and data from this tissue bank by means of an annual report.

This application was for the renewal of a Research Tissue Bank application. The previous
REC Reference number for this application was 08/H0906/21+5.

Duration of ethical opinion

The favourable opinion has been renewed for five years from the end of the previous five
year period provided that you comply with the standard conditions of ethical approval for
Research Tissue Banks set out in the attached document. You are advised to study the
conditions carefully. The opinion may be renewed for a further period of up to five years on
receipt of a fresh application. It is suggested that the fresh application is made 3-6 months
before the 5 years expires, to ensure continuous approval for the research tissue bank.

Research Tissue Bank Renewals

The previous five year period ran from 04/09/2013 to 03/09/2018. This Research Tissue
Bank may be renewed for further periods of five years at a time by following the process
described in the above paragraph.

Approved documents

The documents reviewed and approved at the meeting were:

Document Version Date

Covering letter on headed paper 16 September 2018
Human Tissue Authority licence 06 July 2016

Other [HDBR Tissue Access Policy] 1 03 August 2018
Other [Protocol for collection of consented material] 3 20 July 2016

Other [HDBR Sample Sign out Form ] 2 01 February 2018
Other [HDBR Anonymous Participant Data Questionnaire] 1 03 August 2018

Other [Latest HDBR Annual Report 2016/17] N/A 26 July 2017

Other [Chief Investigator CV]

Other [Response letter REC] N/A 08 November 2018
Other [UCH HTA License] N/A 01 January 2013
Other [Revised Plain English Research Summary ] 1 08 November 2018
Participant consent form 5 27 July 2018
Participant information sheet (PIS) 6.1 08 November 2018
Protocol for management of the tissue bank [Protocol for 3 20 July 2016
Recruitment to HDBR]

REC Application Form [RTB_Form_17082018] 17 August 2018

—_

Summary of research programme(s) [HDBR Terms of Reference] 03 August 2018

Licence from the Human Tissue Authority
Thank you for providing a copy of the above licence.
Research governance

Under the UK Policy Framework for Health and Social Care Research there is no
requirement for NHS research permission for the establishment of research tissue banks in
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the NHS. Applications to NHS R&D offices through IRAS are not required as all NHS
organisations are expected to have included management review in the process of
establishing the research tissue bank.

Research permission is also not required by collaborators at tissue collection centres (TCCs)
who provide tissue or data under the terms of a supply agreement between the organisation
and the research tissue bank. TCCs are not research sites for the purposes of the RGF.

Research tissue bank managers are advised to provide R&D offices at all TCCs with a copy
of the REC application for information, together with a copy of the favourable opinion letter
when available. All TCCs should be listed in Part C of the REC application.

NHS researchers undertaking specific research projects using tissue or data supplied by a
research tissue bank must apply for permission to R&D offices at all organisations where the
research is conducted, whether or not the research tissue bank has ethical approval.

Site-specific assessment (SSA) is not a requirement for ethical review of research tissue
banks.

Registration of Research Tissue Banks

It is a condition of the ethical approval that all Research Tissue Banks are registered on the
UK Clinical Research Collaboration (UKCRC) Tissue Directory. The Research Tissue Bank
should be registered no later than 6 weeks after the date of this favourable ethical opinion
letter or 6 weeks after the Research Tissue Bank holds tissue with the intention to provide
for research purposes. Please use the following link to register the Research Tissue Bank on
the UKCRC Directory: https://directory.biobankinguk.org/Register/Biobank Registration is
defined as having added details of the types of tissue samples held in the tissue bank.

There is no requirement to separately notify the REC but you should do so at the earliest
opportunity e.g. when submitting an amendment or annual progress report form. We will
monitor the registration details as part of the annual progress reporting process.

Statement of compliance

The Committee is constituted in accordance with the Governance Arrangements for
Research Ethics Committees and complies fully with the Standard Operating Procedures for
Research Ethics Committees in the UK.

After ethical review

Reporting requirements

The attached standard conditions give detailed guidance on reporting requirements for
research tissue banks with a favourable opinion, including:

s Notifying substantial amendments
e Submitting Annual Progress reports.

The HRA website also provides guidance on these topics, which is updated in the light of
changes in reporting requirements or procedures.

User Feedback

The Health Research Authority is continually striving to provide a high quality service to all
applicants and sponsors. You are invited to give your view of the service you have received
and the application procedure. If you wish to make your views known please use the
feedback form available on the HRA website: http://www.hra.nhs.uk/about-the-
hra/governance/quality-assurance/

A Research Ethics Committee established by the Health Research Authority
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HRA Training

We are pleased to welcome researchers and R&D staff at our training days — see details at
https://www.hra.nhs.uk/planning-and-improving-research/learning/

| 18/NE/0290 Please quote this number on all correspondence |

Yours sincerely
PP

br Mike Bone
Vice Chair

E-mail: nrescommittee.northeast-newcastleandnorthtyneside1@nhs.net
Enclosures: RTB Standard approval conditions SL-AC3

Copy to: Dr Chris Morris — Designated Individual, Newcastle University
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CONDITIONS OF ETHICAL APPROVAL

Research Ethics Committee: | North East - Newcastle & North Tyneside 1 Research
Ethics Committee

Research Tissue Bank: The Human Developmental Biology Resource

REC reference number: 18/NE/0290

Name of applicant: Prof Stephen C Robson

Date of approval: 10 December 2018

IRAS project ID: 250012

Ethical approval is given to the Research Tissue Bank (“the Bank™) by the Research Ethics

Committee (“the Committee”) subject to the following conditions.

1.1

3.2

Further communications with the Committee

Further communications with the Committee are the personal responsibility of the
applicant.

Duration of approval

Approval is given for a period of 5 years, which may be renewed on consideration of
a new application by the Committee, taking account of developments in legislation,
policy and guidance in the interim. New applications should include relevant
changes of policy or practice made by the Bank since the original approval together
with any proposed new developments.

Licensing

A copy of the Licence from the Human Tissue Authority (HTA) should be provided
when available (if not already submitted).

The Committee should be notified if the Authority renews the licence, varies the

licensing conditions or revokes the Licence, or of any change of Designated
Individual. If the Licence is revoked, ethical approval would be terminated.
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4.1

4.2

4.3

44

5.1

Generic ethical approval for projects receiving tissue

Samples of human tissue or other biological material may be supplied and used in
research projects to be conducted in accordance with the following conditions.

4.1.1 The research project should be within the fields of medical or biomedical
research described in the approved application form.

4.1.2 The Bank should be satisfied that the research has been subject to scientific
critique, is appropriately designed in relation to its objectives and (with the
exception of student research below doctoral level) is likely to add something
useful to existing knowledge.

4.1.3 Where tissue samples have been donated with informed consent for use in
future research (“broad consent”), the Bank should be satisfied that the use
of the samples complies with the terms of the donor consent.

4.1.4 All samples and any associated clinical information must be non-identifiable
to the researcher at the point of release (i.e. anonymised or linked
anonymised).

4.1.5 Samples will not be released to any project requiring further data or tissue
from donors or involving any other research procedures. Any contact with
donors must be confined to ethically approved arrangements for the
feedback of clinically significant information.

4.1.6 A supply agreement must be in place with the researcher to ensure storage,
use and disposal of the samples in accordance with the HTA Codes of
Practice, the terms of the ethical approval and any other conditions required
by the Bank.

A research project in the UK using tissue provided by a Bank in accordance with
these conditions will be considered to have ethical approval from the Committee
under the terms of this approval. In England, Wales and Northern Ireland this
means that the researcher will not require a licence from the Human Tissue
Authority for storage of the tissue for use in relation to this project.

The Bank may require any researcher to seek specific ethical approval for their
project. Such applications should normally be made to the Committee and booked
via the Central Booking System

A Notice of Substantial Amendment should be submitted to seek the Committee’s
agreement to change the conditions of generic approval.

. Records

The Bank should maintain a record of all research projects to which tissue has been
supplied. The record should contain at least the full title of the project, a summary
of its purpose, the name of the Chief Investigator, the sponsor, the location of the
research, the date on which the project was approved by the Bank, details of the
tissue released and any relevant reference numbers.
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52 The Committee may request access to these records at any time.

6. Annual reports

6.1 An annual report should be provided to the Committee listing all projects for which
tissue has been released in the previous year. The list should give the full title of each
project, the name of the Chief Investigator, the sponsor, the location of the research and
the date of approval by the Bank. The report is due on the anniversary of the date on
which ethical approval for the Bank was given.

6.2 The Committee may request additional reports on the management of the Bank at any
time.
7. Substantial amendments

7.1 Substantial amendments should be notified to the Committee and ethical approval
sought before implementing the amendment. A substantial amendment generally
means any significant change to the arrangements for the management of the Bank

as described in the application to the Committee and supporting documentation.

7.2 A Notice of Substantial Amendment should be generated by accessing the original
application form on the Integrated Research Application System (IRAS).

7.3 The following changes should always be notified as substantial amendments:
7.3.1 Any significant change to the policy for use of the tissue in research,
including changes to the types of research to be undertaken or supported by

the Bank.

7.3.2 Any significant change to the types of biological material to be collected and
stored, or the circumstances of collection.

7.3.3 Any significant change to informed consent arrangements, including
new/modified information sheets and consent forms.

7.3.4 A change to the conditions of generic approval

7.3.5 Any other significant change to the governance of the RTB.

8. Serious Adverse Events

8.1 The Committee should be notified as soon as possible of any serious adverse event or
reaction, any serious breach of security or confidentiality, or any other incident that
could undermine public confidence in the ethical management of the tissue. The
criteria for notifying the Committee will be the same as those for notifying the Human
Tissue Authority in the case of research tissue banks in England, Wales and Northern
Ireland.

9. Other information to be notified

9.1 The Committee should be notified of any change in the contact details for the applicant
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or where the applicant hands over responsibility for communication with the Committee
to another person at the establishment.

10. Closure of the Bank

10.1 Any plans to close the Bank should be notified to the Committee as early as
possible and at least two months before closure. The Committee should be
informed what arrangements are to be made for disposal of the tissue or transfer
to another research tissue bank.

10.2 Where tissue is transferred to another research tissue bank, the ethical approval
for the Bank is not transferable. Where the second bank is ethically approved, it
should notify the responsible Research Ethics Committee. The terms of its own
ethical approval would apply to any tissue it receives.

11. Breaches of approval conditions

11.1 The Committee should be notified as soon as possible of any breach of these
approval conditions.

11.2 Where serious breaches occur, the Committee may review its ethical approval and
may, exceptionally, suspend or terminate the approval.
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Appendix M. Metadata table for adult healthy, psoriasis and eczema skin samples

Donor

P730
P729
P748
P736
P734
P734
P732
P738
P746
P747
P728
P730
P729
P748
P736
P734
P734
P732
P738
P746
P747
P775
P777
P777
P742
P775
P777
P777
P742
P731
P735
P737
P743
P744
P735
P737
P743
P744
P731

Replicate

P730_1
P729 1
P748 1
P736_1
P734 1
P734 2
P732 1
P738 1
P746 1
P747 1
P728 1
P730_2
P729 2
P748 2
P736 2
P734 3
P734 4
P732_2
P738 2
P746 2
P747 2
P775 1
P777_1
P777 2
P742_1
P775 2
P777_3
P777_4
P742 2
P731 1
P735 1
P737 1
P743 1
P744_1
P735 2
P737 2
P743 2
P744 2
P731_1

Condition
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy

Psoriasis lesional
Psoriasis lesional
Psoriasis lesional
Psoriasis lesional
Psoriasis lesional
Psoriasis lesional
Psoriasis lesional
Psoriasis lesional

Psoriasis lesional

Psoriasis non-lesional

Anatomical site
Face - temple
Face - temple

Forearm
Thigh
Face - temple
Forearm
Scalp
Arm
Face - cheek
Forearm
Sternum
Face - temple
Face - temple
Forearm
Thigh
Face - temple
Forearm
Scalp
Arm
Face - cheek
Forearm
Abdomen - right
Back - right lower
Back - right lower
Back - upper
abdomen - right
Back - right lower
Back - right lower
Back - upper
Lower back
Lower back
Lower back
Lower back
Lower back
Lower back
Lower back
Lower back
Lower back

Lower back
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47
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71
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31
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71
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Capture
area
Al
Bl
Al
B1
Al
B1
Al
B1
Al
B1
B1
C1
Al
Al
B1
Al
B1
Al
B1
Al
B1
Al
B1
C1
D1
Al
Bl
C1
D1
D1
C1
C1
C1
C1
C1
C1
C1
C1
C1



P735

P737

P743

P744

P731

P735

p737

P743

P744

AD262

AD262

AD262

AD262

AD263

AD263

AD263

AD263

AD264

AD264

AD262

AD262

AD263

AD263

AD263

AD263

AD263
9

P735 1
P737_1
P743 1
P744 1
P731 2
P735 2
P737 2
P743 2
P744 2

AD2628_

1
AD2628_
2
AD2628_
3
AD2628_
4
AD2634
1
AD2638_
1
AD2639_
1
AD2639_
2
AD2640_
1
AD2640_
2
AD2628_
1
AD2628_
2
AD2634
1
AD2638_
1
AD2638_
2
AD2639_
1
AD2639_
2

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Psoriasis non-lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema lesional

Eczema non-lesional

Eczema non-lesional

Eczema non-lesional

Eczema non-lesional

Eczema non-lesional

Eczema non-lesional

Eczema non-lesional

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back

Lower back
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Appendix N. Prenatal skin refined cell annotation differentially expressed genes

genes cluster logfoldchanges pvals pvals_adj
0 KRT4 Periderm 12.443899 1.49E-96 1.28E-93
1 IGFL2 Periderm 12.620115 1.82E-85 6.26E-83
2 UPK?2 Periderm 9.870495 3.25E-66 5.08E-64
3 GABRP Periderm 11.289986 1.58E-69 3.88E-67
4 SPRR3 Periderm 11.941079 1.68E-52 2.22E-50
5 SCEL Periderm 12.125658 4.41E-83 1.26E-80
6 KRT18 Periderm 8.956959 2.27E-92 1.30E-89
7 C2orf54 Periderm 10.988039 4.69E-47 5.77E-45
8 KRT8 Periderm 9.938104 2.42E-100 4.16E-97
9 ELF3 Periderm 10.551799 1.89E-69 4.07E-67
10 IL36RN Periderm 12.581477 2.34E-33 1.91E-31
11 NDRG?2 Periderm 5.243946 9.40E-92 4.04E-89
12 AGR3 Periderm 11.771323 3.93E-37 3.38E-35
13 GPRC5A Periderm 5.3127484 2.58E-38 2.46E-36
14 MUC16 Periderm 11.721866 4.41E-29 3.04E-27
15 VTCN1 Periderm 12.200967 2.93E-23 1.74E-21
16 AC006262.5 Periderm 12.567321 5.74E-42 6.58E-40
17 SPRR2F Periderm 9.748786 2.51E-26 1.66E-24
18 Clorfl16 Periderm 10.403912 9.71E-30 7.26E-28
19 PCP4 Periderm 6.081897 1.57E-53 2.25E-51
20 PWWP2B Periderm 5.1951632 9.73E-40 1.05E-37
21 RP11-379F4.4 Periderm 7.454037 9.77E-10 2.62E-08
22 ATP6V1B1 Periderm 8.085769 5.35E-14 2.19E-12
23 PRR15L Periderm 11.967394 1.71E-24 1.09E-22
24 MARVELD3 Periderm 7.257426 2.81E-29 2.02E-27
25 KCNG1 Periderm 6.2050447 8.31E-21 4.61E-19
26 KB-1562D12.1 Periderm 9.430672 8.55E-24 5.25E-22
27 NEURL1 Periderm 3.6093817 5.05E-15 2.29E-13
28 LRP2 Periderm 9.685073 5.00E-08 1.15E-06
29 UPK1B Periderm 8.877734 5.60E-17 2.83E-15
30 RP11-123B3.2 Periderm 11.892307 2.18E-08 5.21E-07
31 MUC1 Periderm 7.3156195 7.39E-15 3.10E-13
32 FAM3D Periderm 10.118874 1.45E-32 1.13E-30
33 MTCL1 Periderm 6.0221815 6.22E-10 1.75E-08
34 wwcCl1l Periderm 6.5948277 1.27E-11 4.22E-10
35 INSL4 Periderm
36 MUC22 Periderm
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

DIRAS3
TIP3
TMEM61
EVPL
NAALADL?2
TMPRSS2

RP11-195B3.1

CXCL17
GPR87

RP11-416N2.4

PDE10A
AC006262.10
SLC15A2
AMOT
PRSS16
TMEM125
HIC2
KLHL36
PGLYRP4
F3
PARDGB
CNGA1
OCLN
CLDNS9
ERP27
MUC20
TMCO4
PXDNL
CAPS
GABRA3
SH3TC2
KLK1
FBP1
CLDN3
CHRD
PLEKHG4B
CCDC64B
NEBL
TEPP
CCDC183

Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm
Periderm

Periderm
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4.8949327
8.383868

8.764293
2.637306
9.108264

10.823533
8.694902
5.8686714
4.343164

4.646712
2.667089
9.163827
8.57647
3.1245623
2.7032712
9.852481
3.5077903
5.8848243
6.927306
5.0452266
8.625488
6.292387

4.0873404

4.312723

5.157
5.1314883
9.47084
2.3548176
3.9266944
7.2642055
4.075698

5.6231155

6.15E-15
1.05E-08

1.04E-37
2.65E-12
2.04E-06

9.78E-07
5.44E-11
2.08E-05
9.68E-07

3.77E-08
1.58E-12
7.84E-06
1.14E-07
1.57E-11
1.38E-11
9.94E-07
9.89E-16
9.64E-13
3.15E-05
8.67E-11
8.18E-10
1.84E-05

6.93E-07

1.29E-05

2.90E-08
3.84E-15
1.66E-15
3.61E-06
6.46E-09
5.33E-09
4.36E-13

2.19E-05

2.71E-13
2.59E-07

9.38E-36
8.95E-11
3.81E-05

1.93E-05
1.61E-09
0.000347749
1.93E-05

8.76E-07
5.56E-11
0.000141942
2.55E-06
5.01E-10
4.47E-10
1.93E-05
4.86E-14
3.53E-11
0.000511336
2.49E-09
2.27E-08
0.000312651

1.44E-05

0.000226359

6.84E-07
1.79E-13
7.94E-14
6.68E-05
1.61E-07
1.37E-07
1.63E-11

0.000361949



77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

MUC4
SLC16A5
TOM1L2
AMFR
BEAN1
TMPRSS11E
RHOBTB2
TGFA
SLC28A3
SLC2A1-AS1
MGAT3
TMEM241
RARRES1
TMEM191C
ARHGAPS
SERHL2
RP11-532F12.5
SYT17
GNG4
MIR210HG
DEGS2
CAB39L
BRINP1
CFAP57
RASSF6
ACOT11
LNX1

IRX3
LYPD3
RP11-77403.3
LPIN3
KIFC2
ZNF814
ZNF358
SGSM2
CHP2
RBBP8NL
NRARP
MTMR1
LINC00923

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Periderm

Immature basal
Immature basal
Immature basal
Immature basal
Immature basal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal

Immature suprabasal
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3.6512783
2.3643749
2.2979639

9.622306

5.034206
7.750571
5.4908686
4.0366616
3.067219

6.0338964

6.182914
4.48285
6.377764
4.007667
6.357942
3.5027406
6.635342
7.6186414
6.663823
4.475705
4.928556
4.711161
7.0004835
5.936124
5.7418313
5.71668
4.4141974
3.329505
4.20413
6.649369
10.327675
5.636678
4.54498
8.325464

1.73E-06
1.10E-08
4.36E-06

1.47E-05

9.63E-07
2.52E-07
4.10E-07
1.60E-05
9.09E-07

1.94E-05

3.73E-11
1.79E-07
6.88E-21
2.03E-12
9.69E-06
5.67E-09
2.28E-10
0.0104581
0.033815768
0.000616448
0.000425396
3.36E-07
3.58E-11
0.084203614
0.030897838
0.087136062
0.041419872
0.059813109
0.045147158
0.028285793
0.074094786
0.083982018
0.097716213
0.373305607

3.31E-05
2.66E-07
7.98E-05

0.000254653

1.93E-05
5.41E-06
8.70E-06
0.000275331
1.86E-05

0.000326818

1.13E-09

3.95E-06

3.95E-19

7.00E-11

0.000173697
1.43E-07

9.82E-08

0.829170083
0.999924195
0.070685998
0.052262996
0.000288741
6.15E-08

0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

RP11-115D19.1
SERPINB13
ZNF438
ZBTB6
ADNP2
CGN
ASTN2
PDESB
SZT2
ZNF99
ACPP
ZNF641
ITPRIPL2
RP11-420A23.1
TBX6
GRM5-AS1
FAM200A
PIK3R2
AC004231.2
DSC1
KRT14
COL17A1
EDNZ2
WNT3
GRIK1-AS1
LMO1
SYT8
PTCHD4
UPK3B
TP53AIP1
LAMB4
TNS4
WNT16
TECRL
COL8A1
MROH2A
RHBDL1
TMEM139
WFDC5
PLA2R1

Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
Immature suprabasal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
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10.664323
10.663053
3.2829442
3.7250485
3.0906699
8.266206
4.198622
4.5116925
3.3461306
5.8130994
6.1885667
3.4868536
2.8393686
6.6249676
5.1206675
5.9689817
3.2815297
5.1405063
7.993656
10.049288
11.183341
9.709164
9.364129
9.010021
10.134525
9.680367
8.297426
9.317444
9.202848
8.749475
8.0767765
8.588221
4.439509
10.723921
48791714
11.671583
5.985862
6.6961017
11.038086
3.6746929

0.007358647
0.180206103
0.132506415
0.245374327
0.148880976
0.182300637
0.105730939
0.036736692
0.270281873
0.385578928
0.082103315
0.242041721
0.168816961
0.377354025
0.199402899
0.383006928
0.054635334
0.394660386
0.373282441
0.025608199
3.15E-29
1.84E-30
4.32E-21
4.36E-21
5.74E-12
9.51E-10
4.71E-06
8.78E-08
4.52E-06
4.63E-06
0.00037607
1.34E-06
4.51E-05
0.000354083
3.24E-05
0.201834199
0.000448517
0.043500104
0.01071556
0.006024484

0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
0.999684354
2.71E-26

3.17E-27

1.50E-18

1.50E-18

1.41E-09

1.82E-07

0.000505853
1.37E-05

0.000505853
0.000505853
0.030801902
0.000191416
0.004308334
0.030451113
0.003277673
0.999754189
0.035065858
0.999754189
0.458498611
0.320800451



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

CA9

GRIK1
FAM46B
PRAP1

TP73
MIR4500HG
ZNF8
CDCP1
GRIK4
KCNJ5
DNER
AC005082.12
IGFL1
LRRC7
OTX1
FAM132A
ETV4
KRT6A
KRTDAP
AADACL?2
KLK11
SERPINB3
CDKN2B
THEMS5
CHRNAZ2
ANXAS8L1
CTD-2015H6.3
ZBTB7C
PLLP

PLD1
PCDH11X
LIPG
RP11-128M1.1
KRT6B
RBM34
RP5-1050E16.2
HR
PPP1R14C
TNK1
SYNPR

POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
POSTN+ basal
DPYSL2+ basal
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Suprabasal IFE
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath

Outer root sheath
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7.2121696
5.4666433
6.6794286
7.5753326
7.2550178
5.9954157
3.1086001
5.0653515
5.1752124
4.532326
4.028272
3.438786
10.517024
4.258289
7.583703
3.5102599
5.3727827
12.290916
12.497265
8.6131735
10.416666
13.008033
7.549345
7.9017344
11.577281
7.126025
5.2263117
5.759904
5.349284
2.7524517
6.08219
6.0826683
5.327609
11.488702
2.8846939
6.7352524
7.998205
3.4016469
6.4242544
9.5519

0.005517571
0.006154892
0.002461464
0.075540686
0.002398072
0.078493045
0.045393646
0.000588842
0.026215678
0.028850015
0.00949098
0.006498591
0.021636225
0.008227279
0.022354562
0.01070407
2.14E-55
1.92E-09
3.79E-13
0.004595011
0.004481022
0.11398298
0.00056493
0.001653608
0.206144012
0.060253742
0.006258772
0.030315752
0.014413663
0.019934135
0.002172579
0.088121629
0.18113532
0.166128606
0.006548868
0.085910324
0.001911427
0.027792462
0.086883953
0.083675665

0.316340711
0.320800451
0.146115367
0.999754189
0.146115367
0.999754189
0.999754189
0.044035137
0.980238387
0.999754189
0.429591732
0.321410575
0.86544902
0.382457272
0.873860144
0.458498611
2.83E-53
1.65E-06
6.51E-10
0.376353314
0.376353314
0.999553592
0.097167992
0.179134259
0.999553592
0.999553592
0.468047302
0.999553592
0.892394058
0.999553592
0.24912234
0.999592492
0.999592492
0.999592492
0.592844884
0.999592492
0.243515186
0.999592492
0.999592492
0.999592492



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

FUT10
PHF8
TRAPPC11
ZNF555
ZBTB21
POLI
HYDIN
ZNF615
Clorf106
ALOX15
ZNF136
ADGRA3
EXOC3
ZNF350
SLC25A14
BARX2
WBSCR27
SRSF12
UNC5B-AS1
SPDEF
LINC00675
MUC6
RPS6KA6
EPHX3
KRT75
KCNK7
CEL
SMIM22
MYO5B
FAM3B
ACADSB
EPPK1
CDC42BPG
KLK14
SLC6A11
TRPV6
ADGRF4
ZNF737
NECAB1
MYH14

Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Outer root sheath
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer

Companion layer
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2.224069
2.3247817
1.6749569
2.6516619
1.7005777
1.6966475
4.133974
2.018049
5.0507164
5.1357455
1.7155558
1.9966899
1.1549442
2.2712567
1.9602681
7.8520107
2.6591516
2.9448364
6.474258
10.131556
10.609614
10.586391
5.3733444
6.0954604
12.526175
7.532109
7.486692
9.558874
6.7364063
6.909851
3.0539782
7.906335
6.500451
8.675966
6.2745047
9.236455
8.993343
3.2393143
5.4233904
6.8065734

0.049034588
0.096810996
0.086777917
0.127825505
0.079022215
0.089042428
0.098393587
0.162399791
0.018449199
0.17754717

0.076420837
0.062004105
0.129817663
0.050641782
0.060367153
0.000567569
0.13253469

0.070814889
0.086953788
0.096148805
0.045738922
0.019752074
0.053055593
0.000320614
0.095742235
0.020388607
0.320756183
0.046018365
0.047956269
0.003038832
0.021468782
0.097347221
0.099954406
0.318397991
0.101538538
0.183227447
0.096324698
0.018444352
0.104350042
0.000981836

0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.999592492
0.122027367
0.999592492
0.999592492
0.999592492
0.999576503
0.999576503
0.999576503
0.999576503
0.063043198
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.435565949
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.168875779



237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

NIPAL1
FBXO02
ZBTB24
PCAT6
CCL27
KRT79
TGM1
PDIK1L
DOCK3
DIRAS1
ADPRM
RP5-115904.1
SHH
RHCG
CKMT2
PRKCG
TRPM3
LINGO1
WNT10A
LINC00882
BNC1
FOXI3
HCRTR1
NOTUM
CILP2
SHROOM3
TLE2
CPAG
PRDMS
NFE2L3
WNK2
PDZD2
ATP6V1C2
ANKRD6
RDH16
AP001258.4
GNAL
MDGA1
LOR
SAMD12

Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Companion layer
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix

Placode/matrix
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6.60174
4.46534
2.712391
2.7576149
5.9903126
9.715588
6.1280746
2.7691107
8.302869
3.8444266
2.211226
3.6606522
11.996095
6.8416953
7.1574445
6.9191985
5.9557695
3.7592468
6.868418
4.74487
5.231955
8.573352
8.691096
5.202044
5.978341
3.1104133
3.1378155
8.046429
2.1778307
5.1005373
3.9156203
2.7804046
4.863823
3.3939214
7.9472194
3.710443
2.873853
4.229711
8.999555
5.6578794

0.008456378
0.204558138
0.022871325
0.011919745
0.049347134
0.317824506
0.188511343
0.085645498
0.184192086
0.063501298
0.039341956
0.207734224
1.36E-106
5.62E-25
4.66E-27
3.46E-35
1.82E-34
2.43E-31
1.03E-49
2.98E-19
3.70E-16
1.94E-12
6.24E-07
9.16E-20
8.67E-07
1.41E-20
1.30E-14
1.93E-18
2.43E-09
1.68E-16
3.62E-28
2.15E-14
4.67E-07
3.83E-14
2.03E-12
4.62E-11
1.66E-07
3.94E-09
7.60E-25
1.18E-09

0.969664661
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
0.999576503
2.34E-103
5.37E-23
4.72E-25
6.61E-33
2.84E-32
3.48E-29
2.53E-47
2.23E-17
1.99E-14
8.34E-11
1.49E-05
7.16E-18
2.01E-05
1.16E-18
6.40E-13
1.28E-16
7.21E-08
9.31E-15
3.89E-26
1.03E-12
1.13E-05
1.78E-12
8.51E-11
1.63E-09
4.31E-06
1.15E-07
6.88E-23
3.63E-08



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

STON1
KCTD18
RP11-245D16.4
ADAMTSL2
SAMD11
HUNK

FIX1

HOXC13
AMER1
PHYHIPL
ADAMTS17
CPNE7
SLC25A48
RNF183

EPC2

CEP162
RP11-316M20.1
RP11-47909.4
AC034243.1
LMTK3

DLG3
SLC38A9
TMEFF1
SCUBE2
LINC01152
COX18
AC092835.2
FANK1
UGT3A2
ZNF790

C1RL
FAM160B2
UNKL

NFXL1
MARVELD2
PAQR5
RP11-140K17.3
LINC00680
RP11-60A24.3
ZFYVE9

Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Placode/matrix
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Inner root sheath
Cuticle/cortex
Cuticle/cortex
Cuticle/cortex

Cuticle/cortex
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2.1746337
1.8118894
4.204214
4.8862953
4577732
2.201372
3.4379036
9.153885
3.230423
4.4254794
4.275629
6.6334286
4.224962
9.309183
2.5421717
2.5697315
9.843094
4.1808457
5.4975243
6.5462985
3.7232125
2.354401
3.6865878
3.6065676
5.5490274
2.8252962
4.6106596
5.043655
3.8754513
2.972501
2.5497782
2.1263735
2.574853
2.680377
6.9348974
6.1728387
3.1126003
2.6354089
8.879263
2.8976824

5.25E-09
3.54E-08
1.81E-09
6.44E-11
2.91E-12
2.12E-12
1.73E-12
1.66E-18
2.14E-05
6.10E-15
7.25E-19
2.42E-07
6.67E-11
0.221631816
0.117191652
0.111926529
0.414823324
0.248184348
0.233192338
0.107649735
0.136833509
0.111678429
0.262097407
0.027496531
0.23059172
0.081323295
0.241276066
0.114495323
0.024565359
0.153403839
0.097766856
0.121401387
0.089040285
0.03905792
0.043133019
0.044643482
0.022114763
0.028228662
0.258045808
0.059001926

1.51E-07

9.53E-07

5.47E-08

2.22E-09

1.16E-10

8.67E-11

7.63E-11

1.14E-16

0.000466288
3.18E-13

5.19E-17

6.22E-06

2.23E-09

0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999654225
0.999626517
0.999626517
0.999626517
0.999626517



317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

352
353
354
355

BBS9
MINCR
ZNF549
ZXDC
BRMS1L
USP30
PPIP5K1
SLCO4A1-AS1
GJB1
QPCT
MCI1R
MCOLNS3
TYR

DCT
SLC6AL7
GPR143
CAPN3
RETSAT
SLC24A5
PAMR1
NSG1
RP4-529N6.1
C3orf79
TPCN2
ZNF749
TYRP1
ROPN1
FMN1
CYP2U1
DSTYK
GAPDHS
RP11-1055B8.3
CAl14
SLC6A15
ALX1
LL22NCO03-
N95F10.1
FAM69C
CDKL2
FBXO032

Cuticle/cortex
Cuticle/cortex
Cuticle/cortex
Cuticle/cortex
Cuticle/cortex
Cuticle/cortex
Cuticle/cortex
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte

Melanocyte

Melanocyte
Melanocyte
Melanocyte

Melanocyte
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2.2514913
2.6920602
3.421411
4.0210266
1.9544355
2.534201
3.7618806
12.043873
8.420761
6.342037
6.9257717
7.0108123
11.225169
12.985922
9.886178
8.205478
9.17275
4.206188
10.53669
4.7290874
6.696851
10.6294
10.855184
3.6413534
4.046079
12.573613
9.09343
5.48432
3.9732797
3.9088356
8.656339
7.7923813
7.60927
7.392114
7.0734634

7.7590322
4.274584
5.692367
4573367

0.079608983
0.027741207
0.173789606
0.01412308
0.098134183
0.1272897
0.161917748
6.30E-218
9.25E-125

0

3.58E-130
7.92E-151
1.83E-236

0

3.29E-89
9.13E-294

0

3.74E-89
3.02E-279
8.51E-59

0

2.47E-28
2.19E-241
1.33E-65
6.86E-40

0

5.90E-12
9.57E-168
3.09E-30
1.35E-109
6.80E-15
8.58E-27
2.63E-180
6.43E-121
4.75E-79

5.30E-23
3.66E-15
5.77E-19
1.28E-68

0.999626517
0.999626517
0.999626517
0.999626517
0.999626517
0.999626517
0.999626517
7.23E-216
7.58E-123

0

3.08E-128
7.17E-149
2.25E-234

0

2.26E-87
1.43E-291

0

2.47E-87
4.33E-277
4.31E-57

0

8.16E-27
2.89E-239
7.17E-64
2.88E-38

0

1.25E-10
9.14E-166
1.09E-28
9.65E-108
1.65E-13
2.73E-25
2.83E-178
5.02E-119
2.92E-77

1.57E-21
9.13E-14
1.63E-17
7.37E-67



356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

NRCAM
BAIAP2L2
NPM2
DIP2C
RAB3B
GALNTL6
LINCO00518
IDI12-AS1
PRKCE
PMEL
MCHR1
RP11-61512.2
ROPN1B
LNP1
MLANA
KCNJ13
SLC45A2
S100A1
CHST9
BIRC7
LINC00462
MLIP
TMEM215
GAPLINC
CHCHD6
STK32A
RTTN
ABCB5
FTCDNL1
HSF4
PNMAGA
ST20
MITF
LGI3
FAMS53B
GPR19
NAT14
CABLES1
CCDC140
NLGN1

Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanocyte
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast
Melanoblast

Melanoblast
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3.8509011
6.164767
5.922723
2.3255606
4.430366
5.3713536
9.779316
7.4161425
2.4247432
11.773891
8.783223
6.7648845
8.127593
5.286263
11.136707
8.891594
8.953339
4.8861017
5.797201
5.7565775
7.9914756
5.509444
4.537467
3.9049802
4.995898
6.0629835
4.089126
7.3827934
45229774
3.9716268
2.5432134
2.4535794
5.7852964
7.8440614
2.3123689
5.091654
1.9476153
3.5531795
6.6146183
2.9820738

5.94E-18
2.74E-11
3.06E-25
6.85E-32
1.45E-17
8.94E-50
2.59E-42
7.13E-32
4.16E-19
0
2.85E-35
2.16E-48
2.13E-20
6.53E-45
2.58E-125
1.07E-15
7.23E-29
1.54E-25
7.52E-22
4.04E-42
6.68E-22
9.15E-07
1.64E-07
3.72E-15
1.06E-106
1.91E-14
3.03E-16
2.39E-22
6.95E-05
1.06E-06
0.000651757
9.74E-08
9.88E-116
0.00028728
2.68E-07
1.10E-05
1.53E-07
2.38E-24
2.40E-13
2.47E-12

1.62E-16
5.60E-10
9.40E-24
2.56E-30
3.89E-16
4.39E-48
1.14E-40
2.61E-30
1.19E-17

0

2.34E-33
2.32E-46
1.22E-18
6.61E-43
4.43E-122
5.42E-14
5.65E-27
1.10E-23
4.46E-20
3.86E-40
4.10E-20
2.62E-05
5.24E-06
1.83E-13
2.60E-104
8.89E-13
1.58E-14
1.52E-20
0.001616113
2.94E-05
0.014190146
3.22E-06
3.40E-113
0.006417171
8.39E-06
0.000281639
4.95E-06
1.64E-22
1.03E-11
1.02E-10



396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

GYG2

LPL
ADAMTS19
PQLC2L
FGF10
PRICKLE2
PTPRT
HRASLS5
RP11-392017.1
CITED1
AADAC
SLC6A13
SLC1A3
LRRC17
SLC6A1
C160rf89
EPHA7
SLC7Al11
ARHGAP20
CYP1B1
STRAG6
COL13A1
RIMS1
RANBP3L
LAMAL
LINC01139
KLC4
SNED1
KCNK?2
CXCL6
NKX6-1
DACH2
SERPIND1
SLC22A6
ZIC1
LUZP2
INSRR
DKKL1
PCBP3
SLC6A20

Melanoblast
Adipocytes

Adipocytes
Adipocytes
Adipocytes
Adipocytes

Adipocytes

Adipocytes

Adipocytes

Adipocytes
Adipocytes

FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
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3.287917
6.723894
3.7155523
4.879482
3.5135021
2.534813
4.435348
4.639753
4.5866704
4.280206
5.719056
11.471655
5.0368733
3.9496737
8.533931
8.62283
5.623212
7.03022
4.0266857
6.9909396
5.976237
4.313859
7.925822
7.5557947
7.069982
4.642066
3.2901027
6.5423117
4.1698875
6.2396874
8.488359
5.817186
8.21448
10.124752
4.7879214
4.2390356
8.655241
3.509274
4.1587195
7.9687667

1.17E-06
0
1.64E-259
1.70E-155
1.01E-146
1.11E-108
2.88E-116
5.00E-47
3.19E-72
3.74E-52
3.07E-172
0

O O O O O O O O O O O o o o o o o o

2.06E-176
0

3.71E-167
8.49E-167
0

1.52E-286
1.04E-129
0

1.92E-216
1.77E-104

3.20E-05
0
1.41E-256
4.18E-153
2.17E-144
1.47E-106
4.96E-114
3.74E-45
3.23E-70
3.07E-50
1.05E-169
0

O O O O O O O O O O o o o o o o o o

6.69E-175
0

1.18E-165
2.65E-165
0

5.95E-285
2.79E-128
0

6.89E-215
4.23E-103



436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

EPHA3
SLC6A12
RDH10

RP11-834C11.4

ISM1
HAND1
MYO3B
DPY19L1
ADGRV1
HOXC5

RP4-799D16.1

HOXB3
IRX5
C1QTNF7
NBL1
IRX1
MICU3
ITGAS
PAX1
CACNA1G
ATRNL1
LINCO01305
VIPR2
HOXC4
WNT2
COPz2
SFRP4
ACKR4
CILP
ADAMTS?2
P3H3
CPB1
HTRA3
SCARA5
WBSCR17
P116
ABCA10
GRP
CORIN
ADCY1

FRZB+ early fibroblast
FRZB+ early fibroblast
FRZB+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
HOXC5+ early fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
WNT2+ fibroblast
PEAR1+ fibroblast
PEAR1+ fibroblast
Pre-dermal condensate
Pre-dermal condensate

Pre-dermal condensate
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4.594174
6.88468
3.2194858
4.27087
4.777561
6.4379816
4.6762342
3.1691134
4.518062
5.2288475
6.9945016
3.709301
3.5723877
2.7214336
2.4382265
2.8611274
1.8797499
3.0125685
2.867488
2.090393
2.7333574
3.181901
2.5469134
2.8359675
6.2262545
2.6785483
4.343009
3.7746124
4.918565
2.363721
2.1270008
4.868908
2.8553362
3.6503012
4.00864
3.6043487
3.7314963
4.5573907
3.4277306
2.9057283

0
7.11E-165
0

O O O O O O o o o o o o o

2.74E-279
0
3.37E-178
2.53E-288
9.80E-292
2.80E-279
0
5.82E-194
0

92E-127

O O OO0 O O O O O o o o o o o

2.84E-306

0
2.14E-163
0

O O O O O O o o o o o o o

1.85E-277
0
1.57E-176
1.89E-286
7.66E-290
1.85E-277
0
3.13E-192
0

.96E-124

O O 01 O O O O O O o o o o o

3.05E-304



476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

CUBN
SULT1B1
IRF9

PRR16
SLC26A7
ASIP

CpPz
TMEM171
CFHR1
RP11-60A8.1
NGEF
RP11-286B14.1
CRYM
RSPO3
PAPPA2
SPON1

NPS

NDP

HHIP
KCNN2
ALPL
RP11-138M12.1
PPEF1

ARL9
KIF26B
CDKL5
ALX4
RP11-680F8.1
F2RL2
KCNK4
LRRTM2
DAND5
ANO2

CNFN
RP11-735G4.1
DIO30S
TMEFF2
ADAMTSL3
SCN7A
ADH1B

Pre-dermal condensate

Pre-dermal condensate

Pre-dermal condensate

Pre-dermal condensate

Dermal condensate
Dermal condensate
Dermal condensate
Dermal condensate
Dermal condensate
Dermal condensate
Dermal condensate

Dermal condensate

Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Dermal papilla
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
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3.7782712
3.8507204
2.2922766
1.9292406
8.380465
3.5913036
4.510842
5.836547
5.9561896
5.9056497
4.79619
5.5204086
9.047038
6.894936
5.994298
5.224045
13.207621
7.836783
6.5602727
6.4301476
7.303497
8.801816
6.832318
6.3415017
4.0568275
3.4521499
5.8673506
5.537302
3.7136223
8.2718
5.674571
7.097033
5.445151
4.435768
7.597431
3.262175
4.452043
3.9598486
6.244546
4.634799

0
0
0
3.06E-293
0
0
0
0
1.66E-236
0
4.93E-117
1.33E-122
0

O O O O o o o

0
1.14E-143
2.32E-206
2.50E-222
0
3.52E-260
0
2.04E-262
1.57E-204
4.27E-99
1.31E-137
1.59E-68
1.24E-89
5.07E-260
8.28E-57
2.20E-107
0

0

0
4.27E-254

0
0
0
2.92E-291
0
0
0
0
3.17E-234
0
7.70E-115
2.29E-120
0

O O O O o o o

0
8.14E-142
1.90E-204
2.27E-220
0
4.04E-258
0
2.51E-260
1.23E-202
2.53E-97
8.64E-136
7.58E-67
6.48E-88
5.45E-258
3.56E-55
1.40E-105
0

0

0
9.19E-252



516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546
547
548
549
550
551
552
553
554

NEGR1
KCNMB2
ALDH1A3
SRPX2
AGTR2
GSC
TLL2
ANOS1
KERA
CNTNAP4
C1QTNF3
NPY
MYF5
PAX7
MYF6
CALCR
TACR3
NTN4
FGF16
MYOG
RP1-302G2.5
SIRT2
FITM1
RGR
SCRIB
TMEMS8C
RP11-161M6.2
EDC4
MYOD1
KRT31
XXbac-
B33L19.12
ENPP6
CHRND
SOX8
FNDC5
RBM24
SBK2
CTD-2545M3.8
DOK?7

Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myofibroblasts
Myoblasts

Myoblasts

Myoblasts

Myoblasts

Myoblasts

Myoblasts

Myoblasts

Myoblasts

Myoblasts

Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes

Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
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3.9789371
4.543457
3.728417
2.4888177
4.848382
4.1433434
5.986955
3.303324
3.17145
3.0778816
6.8257957
9.455095
11.14899
9.631301
6.9552846
9.397291
7.027777
5.8203154
4.8831596
12.226757
9.028112
4.090881
8.571268
10.103986
5.8726025
11.963775
5.1528244
4.777489
7.8869486
10.306025

8.670017
6.1066394
8.537736
6.029268
4598112
6.3629017
8.27031
7.108774
7.393765

1.55E-251
2.10E-134
3.60E-160
1.11E-150
6.49E-103
4.91E-58
2.17E-58
7.72E-156
5.86E-78
1.57E-39
0

0

0

0

0
3.36E-177
3.32E-67
2.33E-234
3.84E-60
0
3.41E-266
2.32E-293
0
5.57E-153
5.60E-270
2.66E-246
2.49E-174
3.23E-100
1.74E-160
4.08E-78

2.74E-139
1.75E-75
2.28E-147
4.90E-103
2.87E-120
1.75E-127
7.90E-39
2.79E-92
1.01E-50

2.97E-249
2.13E-132
4.76E-158
1.19E-148
5.31E-101
3.01E-56
1.38E-56
8.86E-154
4.20E-76
7.97E-38
0

0

0

0

0
3.85E-175
2.28E-65
3.64E-232
2.36E-58
0
1.17E-263
1.33E-290
0
8.71E-151
2.41E-267
7.63E-244
4.76E-172
2.78E-98
3.00E-158
2.92E-76

3.37E-137
1.20E-73
3.02E-145
4.43E-101
3.09E-118
2.00E-125
3.58E-37
2.18E-90
5.77E-49



555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

LINCO00930
DMPK
KRT39
VGLL2
GNB3
KRT40
OTOF
NBPF20
NEU4
MTERF2
CELA2B
KCNF1
MAMSTR
CASP9
MAPGD1
RP11-766F14.2
LMF1-AS1
SLC25A34
NEB
P2RX6
HS6ST2
CHRNG
ADGRAL1
STC2
GSTT2B
KRTAP3-2
TRIM72
FAM212B
PC

NXPE3
BVES
SIX4
MYO16
ESYT3
ZNF556
RYR1
MYLPF
TNNC2
CKM
ACTA1

Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Early myocytes
Myocytes

Myocytes

Myocytes

Myocytes
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9.611089
4.2337627
13.71028
7.868106
5.396553
11.096172
6.9320703
3.6130028
5.172804
2.3285437
10.504261
6.5414286
2.8159733
3.1952784
6.212143
7.603944
3.8460162
4.6889696
7.339848
5.714809
4.222504
8.237532
7.6381874
4.229174
3.0382395
13.210102
5.295547
3.3613362
3.6201394
3.2692468
4.3415523
4.875696
3.6424968
5.372191
5.3085337
3.6500237
10.337247
10.247019
9.762779
10.303062

5.57E-37
3.62E-111
9.73E-22
8.53E-65
5.05E-25
7.13E-46
1.05E-41
4.72E-27
9.56E-40
4.16E-33
1.88E-11
5.06E-10
8.65E-43
4.12E-27
1.36E-22
4.00E-13
1.92E-12
1.40E-13
1.38E-182
3.79E-15
7.46E-32
5.07E-06
6.79E-13
1.25E-25
4.78E-21
3.37E-06
2.30E-15
5.87E-28
1.02E-14
4.26E-31
1.17E-22
8.55E-18
5.01E-12
6.04E-15
8.69E-12
1.45E-34
1.12E-33
2.21E-32
9.66E-29
1.46E-33

2.46E-35
3.46E-109
2.74E-20
5.43E-63
1.64E-23
3.96E-44
5.31E-40
1.66E-25
4.57E-38
1.70E-31
3.85E-10
1.01E-08
4.51E-41
1.48E-25
3.96E-21
9.17E-12
4.19E-11
3.29E-12
2.96E-180
9.44E-14
2.98E-30
8.22E-05
1.52E-11
4.13E-24
1.33E-19
5.58E-05
5.83E-14
2.15E-26
2.46E-13
1.59E-29
3.47E-21
2.23E-16
1.06E-10
1.49E-13
1.80E-10
6.10E-33
1.25E-30
1.27E-29
2.77TE-26
1.25E-30



595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

MYL1
TNNT3
TNNI1
TNNI2
MYOZ2
SLN
COX6A2
TNNC1
MYL5
DES
IL17B
ENO3
SMPX
APOBEC2
CAV3
MYHS3
MYBPH
MYBPC1
CSRP3
NMRK2
HSPB3
PGAM2
TCAP
LDB3
CACNG1
HFE2

MB
ACTN2
SRPK3
MYL3
LINC01497
MYL2
MYOZ1
SMYD1
CASQ1
LINC01405
CALML6
CA3
LINC00202-1
TRDN

Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
Myocytes
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9.823687
7.613084
9.1856
8.414598
9.65351
9.191896
9.34774
7.843628
5.5391927
8.186448
7.8706913
7.181029
10.168578
9.63795
7.903769
8.904871
9.754949
9.588177
9.329485
9.19525
7.515379
8.326417
7.9586225
7.1706595
9.960569
9.853982
9.297532
7.9357734
7.4986157
4.1950364
7.098419
8.704901
5.49881
9.354034
8.3550415
8.823363
7.648813
7.916143
8.624578
7.9553204

2.82E-25
4.65E-27
4.87E-23
5.83E-31
3.11E-18
3.05E-17
2.68E-17
4.97E-16
1.90E-11
1.15E-29
1.69E-11
1.36E-20
6.30E-11
6.35E-09
3.80E-10
3.53E-10
1.50E-09
4.34E-06
3.87E-07
1.33E-06
8.06E-09
4.57E-06
4.37E-05
1.59E-05
4.23E-06
3.86E-05
0.000286613
2.70E-16
0.00012015
0.010325275
0.00012506
0.016333274
0.002640458
0.000704642
0.053649373
0.029952216
0.000117019
1.42E-07
0.00785141
0.00800607

6.07E-23
1.14E-24
9.30E-21
2.51E-28
4.86E-16
4.03E-15
3.85E-15
5.70E-14
1.82E-09
3.97E-27
1.71E-09
2.34E-18
5.70E-09
4.37E-07
3.11E-08
3.04E-08
1.10E-07
0.000233368
2.30E-05
7.63E-05
5.33E-07
0.000238247
0.00201221
0.00080578
0.000233368
0.001844866
0.011203961
3.32E-14
0.004920439
0.236792985
0.005002414
0.364847165
0.081746788
0.0257869
0.997122433
0.620696531
0.00490911
8.72E-06
0.199571599
0.199571599



635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

RP11-299L.17.3
PRR32
ANKRD1
KLHL40
SH3BGR
MIR133A1HG
MRLN
TMEM38A
ARHGAP36
SYNPO2L
LANCL1-AS1
LMOD2
CACNB1
MYHS8

MURC
RP11-446H18.5
MAP3K7CL
ATP1B4
DGCR6
LMOD3
EEF1A2
ITGB1BP2
RP11-358H18.3
Clorf105
PLCL1

CNN1

ACAN
ENOX1
TGFB3
COL25A1
ITGAl1l
PLPPR4
IGFN1

RGS5
OR51E1

PLN
KCNAB1
AMPH
TBX2-AS1
TBX2

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Myocytes

Pericytes

LMCD1+ mural cell
LMCD1+ mural cell
LMCD1+ mural cell
LMCD1+ mural cell
LMCD1+ mural cell
LMCD1+ mural cell
LMCD1+ mural cell
LMCD1+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell

PLN+ mural cell
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6.4883766
9.105126
8.025108
8.547795
4.2235107
9.003932
8.851955
6.4719167
9.076952
7.090438
9.63207
10.283176
4.169814
10.141639
5.185056
8.435473
5.2848477
9.546837
3.690488
5.483297

6.5966024
8.644925
7.7013535
4.0661883
4.9479027
5.4348793
2.9853654
3.0880616
4.353694
3.7546089
4.806455
4.1578183
7.386362
10.267225
8.930392
4.6367655
3.9967682
4.989215
5.0922956

0.004246177
0.007798427
0.053914178
0.003738992
0.007856532
0.015556291
1.54E-09
0.004280824
0.147174472
0.016617669
0.05281355
0.146118944
0.007076918
0.052733875
0.110019102
0.090587663
0.000556284
0.146517747
0.002365283
0.034315338

0.093543977
0.146695743
0.008004035
9.79E-297
1.75E-117
9.86E-110
1.01E-56
6.01E-68
9.24E-110
2.75E-63
2.92E-29
1.58E-43

0

7.67E-265
3.03E-181
1.51E-226
4.78E-182
6.40E-175
2.47E-180

0.118758346
0.199571599
0.997122433
0.107184428
0.199571599
0.352063429
1.10E-07
0.118758346
0.999417922
0.366440916
0.997122433
0.999417922
0.192966927
0.997122433
0.999417922
0.999417922
0.02080019
0.999417922
0.076760135
0.694380952

0.999417922
0.999417922
0.199571599
2.40E-294
4.31E-115
1.88E-107
1.08E-54
8.61E-66
1.88E-107
3.37E-61
2.09E-27
1.43E-41

0

2.64E-262
5.21E-179
4.32E-224
9.14E-180
9.18E-173
3.86E-178



675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

MOCS1
CASQ2
KCNMB1
NRIP2
CNNM2
OR51E2
MED14
CTNNA3
MYH11
PLCE1l
SLC51A
HOXB-AS1
MAMDC?2
LINC00672
MYOCD
GPR20
RP11-86516.2
EFNB3
SOST
LMX1A
WNT1
PCSK1N
WSCD2
MSX1
NEFL
RFX4

WT1
KCNK1
CLEC18B
GDPD2
LINC00472
SLIT1
RSPO1
GDF7
CFAP126
FAM181A
GRIN2A
HOXA5
Cborf49
RP11-159K7.2

PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
PLN+ mural cell
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine

Neuroendocrine
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4.3858204
8.864628
4.386083
5.6888866
3.2661245
10.123513
2.1427264
5.280877
6.6174655
2.8613224
5.2945313
3.141791
4.4212265
4.381844
5.9570785
4.0559826
5.019987
5.264022
8.605207
7.922091
11.24843
9.210689
6.435518
5.5403724
7.8948894
9.11778
9.731387
6.21101
10.647538
9.31269
6.2755327
7.2524104
4.2338777
9.365177
11.444835
9.051712
9.289579
5.467428
5.4957385
8.505207

6.61E-114
2.87E-196
1.78E-86
4.51E-39
1.20E-55
1.53E-26
1.03E-56
3.46E-93
0
6.87E-81
2.46E-34
2.46E-93
8.60E-67
7.72E-131
3.22E-18
1.52E-19
1.05E-46
2.10E-91
1.14E-84
1.99E-67
7.75E-57
1.81E-136
9.71E-46
7.90E-59
7.14E-54
2.21E-69
8.58E-27
7.93E-31
2.35E-30
8.35E-31
9.09E-55
5.20E-38
1.43E-35
7.16E-17
8.33E-16
3.23E-19
2.11E-11
2.26E-27
5.27E-14
6.61E-10

6.69E-112
6.18E-194
1.45E-84
2.28E-37
7.35E-54
5.48E-25
6.57E-55
2.97E-91
0
5.13E-79
1.15E-32
2.23E-91
5.92E-65
9.48E-129
8.78E-17
4.28E-18
5.48E-45
1.80E-88
6.56E-82
5.71E-65
1.67E-54
3.12E-133
1.28E-43
1.94E-56
1.12E-51
7.62E-67
5.47E-25
7.18E-29
1.93E-28
7.18E-29
1.74E-52
6.39E-36
1.45E-33
3.16E-15
3.58E-14
1.55E-17
5.94E-10
1.49E-25
1.78E-12
1.56E-08



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

CRB2
MIR9-3HG
LRRTM1
ERBB4
NELL1
DNALI1
C6orf118
RIPPLY3
MASP1
NUAK2
NEFM
PAX6
GABRA5
FOXJ1
SERTM1
C220rf15
Clorfl194
RP11-649A16.1
MORN5
WT1-AS
CCDC74B
GRM8
CLEC18A
ENKUR
RASL10B
LRRN2
MSI1
LINCO00907
PTPRO
DPP10
LRRIQ1
ILDR2
MPP5
ASTN1
RP11-96L.14.8
RP11-387A1.5
PPIL6
CCDC74A
ALDH1A2
RNF182

Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine

Neuroendocrine
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9.615373
5.447925
4.6563854
7.7896857
6.435572
4.1016564
6.610608
6.1914277
3.6381764
5.292714
6.613922
7.0116744
6.27784
5.3264637
6.261303
5.1287203
9.609568
5.3416624

9.003304
4.244421

6.5426526
6.897196
5.103434
5.32202
5.6047354

4.3805947
5.508889
3.8533332
6.061857
2.5852349

4.3034196
2.8900182
3.9790092
6.303894

4.71E-15
2.44E-12
2.35E-12
1.37E-14
2.81E-10
3.38E-30
6.40E-08
1.29E-07
4.74E-20
6.12E-30
2.81E-36
3.43E-09
3.94E-07
5.72E-24
3.78E-07
6.49E-10
1.46E-07
2.54E-13

2.35E-09
5.32E-15

5.91E-07
8.71E-10
1.06E-06
9.18E-11
6.54E-20

3.55E-14
1.01E-08
1.01E-11
8.05E-11
1.14E-12

3.09E-09
1.68E-07
2.23E-11
1.11E-14

1.84E-13
7.23E-11
7.09E-11
4.91E-13
7.00E-09
2.64E-28
1.27E-06
2.52E-06
2.40E-18
4.58E-28
3.02E-34
7.47E-08
6.84E-06
3.39E-22
6.63E-06
1.55E-08
2.81E-06
8.24E-12

5.24E-08
2.03E-13

1.01E-05
2.00E-08
1.73E-05
2.43E-09
3.21E-18

1.22E-12
2.12E-07
2.90E-10
2.16E-09
3.50E-11

6.81E-08
3.17E-06
6.18E-10
4.13E-13



755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

KIRREL2
BAIAP3
LRP1B
ccDC181
IQCG
MAPK15
MIMT1
FSIP1
ZCCHC18
SDK2
CTNNA2
HOXA-AS2
LINC00461
MPPED2
RND2
TNFRSF11B
POU3F4
GRIAL
RP11-384F7.2
TOX3
VSTM2L
STMN2
PPP1R17
TAGLNS3
NEUROD1
DCX
RTN1
ELAVL4
ISL1
ELAVL3
MLLT11
NHLH1
SRRM4
NEUROD2
NEUROD6
RAB3A
RPRM
INA
GNG3
NHLH2

Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuroendocrine
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors

Neuron progenitors
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5.8744826

5.2490816
3.4908235

6.6524887
4.999209

3.7518017
6.7735653
4.5592866
7.363261
2.6852906
4.61416
5.21648

6.242899
4.8088017
4.400357
9.8962755
10.951153
9.825979
11.698586
7.573279
6.254555
8.331352
10.032765
9.805101
4.21388
9.957776
10.295021
10.960141
10.311495
3.9812376
5.554044
9.781502
8.3380165
10.683877

2.51E-07

1.46E-13
2.67E-08

6.13E-08
6.22E-07

4.41E-13
1.36E-10
1.32E-10
1.51E-25
6.08E-13
2.36E-15
5.68E-17

5.68E-10
2.41E-07
6.88E-07
1.47E-258
4.84E-266
0
1.90E-303
0
1.53E-165
0
2.09E-151
1.13E-219
0
2.88E-177
1.77E-195
2.85E-108
9.59E-49
9.57E-134
1.65E-100
3.29E-94
1.39E-118
2.03E-94

4.54E-06

4.83E-12
5.46E-07

1.23E-06
1.05E-05

1.41E-11
3.48E-09
3.44E-09
9.30E-24
1.90E-11
9.43E-14
2.57E-15

1.38E-08
4.46E-06
1.15E-05
3.61E-256
1.39E-263
0
6.53E-301
0
1.75E-163
0
2.25E-149
2.16E-217
0
3.53E-175
2.76E-193
1.96E-106
2.46E-47
9.14E-132
1.02E-98
1.77E-92
1.09E-116
1.13E-92



795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

HPCA
GAP43
KIF5C
ATP1A3
TLX3
PRPH
FAM57B
BTBD17
ELAVL2
OLFM1
RBFOX1
ATCAY
THSD7B
STMN4
SUSD2
KIF1A
GDAP1L1
CHRNA3
SSTR2
CELF3
NEUROD4
GNAO1
ACTL6B
MIAT
NPPA
CHGB
KLHL35
HMP19
PLPPR1
CELF4
INSM1
EYA2
KLHDCS8A
CNTN2
TLX2
CAMKV
DRGX
AC091878.1
SEZ6
CDH7

Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors

Neuron progenitors
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6.1146073
5.1330805
6.988046
8.894436
11.835845
8.969972
8.650248
8.684577
6.5343847
4.6768365
6.5003405
8.268711
7.0579286
10.323136
7.666305
6.7267756
8.420856
8.740883
6.03716
8.554238
10.513488
5.7434726
10.778753
4.150545
9.193224
6.7316737
5.2939863
10.406486
5.2406235
5.1802197
8.9330635
6.5867963
6.678169
6.6861086
10.772753
8.262839
8.667975
6.925561
6.6636066
4.3886714

3.62E-121
4.59E-222
9.46E-98
4.16E-117
1.59E-65
2.14E-53
1.07E-92
3.71E-103
9.39E-92
3.53E-107
6.01E-131
1.68E-63
1.06E-71
9.12E-97
4.42E-69
6.84E-109
6.03E-85
2.51E-57
6.87E-179
3.96E-64
4.15E-58
3.33E-56
8.87E-51
5.11E-76
1.01E-68
2.32E-51
6.29E-34
7.05E-40
1.53E-60
1.26E-61
8.66E-44
5.77E-80
3.06E-51
4.00E-57
2.65E-24
4.36E-22
5.64E-28
4.07E-39
1.03E-26
9.17E-55

3.11E-119
9.86E-220
5.61E-96
3.11E-115
6.23E-64
6.14E-52
5.58E-91
2.36E-101
4.75E-90
2.33E-105
5.44E-129
6.14E-62
4.55E-70
5.23E-95
1.81E-67
4.90E-107
2.96E-83
8.00E-56
9.09E-177
1.51E-62
1.35E-56
1.02E-54
2.42E-49
2.31E-74
4.05E-67
6.55E-50
1.35E-32
1.71E-38
5.27E-59
4.44E-60
2.19E-42
2.68E-78
8.48E-50
1.25E-55
5.00E-23
7.65E-21
1.13E-26
9.58E-38
2.01E-25
2.77E-53



835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

CELF5
SNAP25
TTC9B
MYTI1L
CHST8
DLL3
REM2
DLG4
P2RX3
SYP

TBR1
SMIM18
CEND1
POU4F1
MAST1
NEUROG1
SYT4
PAK7
ATP6V1G2
LINC01551
CLVS1
SCRT2
RAB26
LRRC53
KCNJ6
PHF21B
FOXG1
NCAN
GDAP1
SPTBN4
CTD-2314G24.2
XKR7
Sep-03
HP09025
SLC17A7
AC004158.3
RCOR2
CACNALA
KIF5A
NTN5

Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors

Neuron progenitors
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7.323848
4.01512
8.983475

8.465033
4.2283463
6.8017955
3.1966858
6.4458
5.32047

7.202552
6.426981
6.557081
8.934353
7.466494
5.133634
4.184562
7.7901535
7.8398128

7.7090387

5.8920546
8.83988
8.072658
3.805459

6.081374

4.55248

7.240624

4.85E-23
8.89E-54
2.50E-27

1.28E-53
5.43E-50
6.85E-39
3.27E-60
3.53E-24
2.04E-120

5.62E-24
3.55E-59
8.57E-35
1.75E-73
1.78E-26
6.01E-22
3.21E-28
1.01E-41
5.75E-49

1.34E-22

3.65E-21
4.73E-33
4.30E-20
5.92E-36

1.42E-36

5.11E-36

1.13E-63

8.79E-22
2.64E-52
4.94E-26

3.73E-52
1.46E-48
1.59E-37
1.10E-58
6.61E-23
1.67E-118

1.04E-22
1.18E-57
1.87E-33
7.71E-72
3.44E-25
1.04E-20
6.65E-27
2.48E-40
1.50E-47

2.41E-21

6.22E-20
1.00E-31
7.12E-19
1.32E-34

3.26E-35

1.16E-34

4.22E-62



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

CHRNB4
RPS6KL1
FRMPD1
DUSP26
FAIM2
IGDCC3
JAKMIP2
B3GAT1
NFASC
LINCO00599
FEZF2
DPYSL5
HCN1
NOL4
CDK5R1
KLC2
PLCD4
SLC17A6
MAP6
PTCHD2
NPTX1
MAPKSIP1
SDK1
DCC
FMN2
PEXS5SL
ASNS
LHX9
CCNJL
ASPHD1
SVOP
APC2
RP11-247C2.2
LRRC49
SBK1
KCNH6
SRRM3
TIAM2
SYT5
BRSK2

Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors

Neuron progenitors
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5.9722013

1.45E-20

2.42E-19



915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

937

938

939

940

941

942

943

944

945

946
947

SERP2
KCNB2
CADPS
JPH4
TMEM35
SH3GL2
RNF165
TMEM169
PRDM8
NEUROG?2
DNAJB5
ISLR2
CECR2
TMEMb59L
RIMS3
PNMA2
DPF1
Clorf6l
PRDM12
TRHDE
DRAXIN

ABCC2

GJC3

COL9A1

FAMG64A

TKTL1

PRSS56

ADGRG2

SCRG1

KCNC2

LINC00237

NKX2-2
ITIHG6

Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
Neuron progenitors
SPP1+

progenitors
SPP1+

progenitors
SPP1+

progenitors
SPP1+

proliferating

proliferating

proliferating

proliferating
progenitors
SPP1+
progenitors
SPP1+
progenitors
SPP1+

proliferating

proliferating

proliferating
progenitors

PID1+ schwann cellls
PID1+ schwann cellls
PID1+ schwann cellls
PID1+ schwann cellls

PID1+ schwann cellls

340

neuron

neuron

neuron

neuron

neuron

neuron

neuron

8.882806

6.6883497

4.488566

3.198473

5.1046824

6.5629387

3.495936

7.5873876

11.535546

10.498134

11.715125
10.319773

4.70E-74

2.98E-34

2.34E-60

2.11E-41

1.13E-69

1.80E-15

8.92E-10

2.22E-70

1.52E-11

2.89E-06

7.17E-07
1.07E-05

1.35E-71

2.84E-32

4.03E-58

2.59E-39

2.42E-67

1.03E-13

3.34E-08

3.83E-67

3.27E-09

0.00022569

6.86E-05
0.000765676



948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

RP11-472N13.3
POU3F1
ADAMTSL1
ATP10B
GINS3
COL20A1
RBMS3-AS3
TIMP4
AZGP1
GFRA1
DGKB
RIMS2
RP11-420N3.2
PKHD1
FP325317.1
ILIRAPL2
COL28A1
ART3
SEMA3B
GFRA3
XKR4

DHH
SORCS1
AATK
NTRK3
LGI1

CHL1

MAG
AC108142.1
TMPRSS5
CLDN19
ADGRB3
FSTLS
SLC5A7
CLSTN2
HSPA12A
IFIT2

DLX1
PPP1R1C
GRB14

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls

PID1+ schwann cellls
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Schwann/Schwann precursors
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells
Myelinating Schwann cells

Myelinating Schwann cells

341

5.7586203
7.6949167
3.0983114
8.667722
3.643901
7.387785
5.3298297
3.6599178
7.008661
5.650927
7.194529
5.5077634
5.5005407
8.124764
8.129267
5.762308
7.2824597
6.7515616
6.12836
8.634487
7.475747
8.713778
5.972452
5.301558
4.11876
4.116931
7.0613003
6.4723854
5.2271028
6.1796904
6.8370275
3.7499418
4.08517
7.402215
5.342893
3.814108
3.2289913
7.3504086
6.670739
5.9382644

2.93E-15
5.49E-11
2.56E-09
1.83E-08
1.40E-06
6.62E-67
1.96E-10
2.99E-05
9.37E-07
0

0
1.98E-120
1.90E-131
6.27E-35
2.24E-125
4.88E-51
9.14E-127
1.45E-136
0

0
5.14E-246
3.95E-129
1.08E-64
6.95E-93
7.90E-97
3.55E-26
1.07E-86
3.46E-31
1.11E-17
3.30E-47
2.19E-41
6.54E-29
1.24E-85
1.03E-15
8.75E-31
3.48E-69
3.01E-51
2.89E-30
5.95E-65
3.43E-27

8.40E-13
9.44E-09
3.39E-07
2.25E-06
0.000114867
5.70E-64
3.06E-08
0.002053819
8.48E-05
0

0
1.55E-118
1.82E-129
2.84E-33
1.91E-123
2.89E-49
8.27E-125
1.66E-134
0

0
1.77E-243
8.50E-127
8.42E-63
9.19E-91
1.23E-94
1.39E-24
1.31E-84
1.80E-29
3.88E-16
2.10E-45
1.22E-39
2.96E-27
1.42E-83
3.46E-14
4.42E-29
3.33E-67
1.99E-49
1.42E-28
4.88E-63
1.44E-25



988 CCDC184 Myelinating Schwann cells 3.8278823 2.89E-95 4.14E-93
989 RP11-357H14.17  Myelinating Schwann cells 7.6721263 1.88E-27 8.07E-26
990 LINCO01314 Myelinating Schwann cells 5.977144 4.35E-23 1.66E-21
991 RP11-598F7.3 ASDC 5.909327 9.66E-13 2.77E-10
992 BDKRB2 ASDC 4.9578834 0.00010716  0.007679784
993 HAMP ASDC 7.6330476 5.87E-06 0.000531378
994  SLC41A2 ASDC 4.5264044 2.48E-06 0.000237231
995 LTK ASDC 6.413557 0.000593445  0.036454459
996 MIR4432HG ASDC 8.5879345 0.017851334 0.61408589
997 CDH23 ASDC 3.4348419 0.00091285  0.050648441
998  SLC4A3 ASDC 3.1412525 0.008479265 0.331462162
999 PPM1J ASDC 5.3641706 1.36E-09 2.12E-07
1000 GRAMD4 ASDC 2.4471948 3.77E-05 0.002946537
1001 SIGLEC6 ASDC 6.735953 2.11E-08 2.79E-06
1002 RRM2B ASDC 1.9697793 0.000384505 0.026453917
1003 CLEC9A DC1 10.867453 0 0

1004 BATF3 DC1 6.3713055 4.63E-249 2.65E-246
1005 CLNK DC1 7.3586397 6.13E-151 2.64E-148
1006 XCR1 DC1 10.534615 3.97E-43 3.25E-41
1007 1DO1 DC1 10.726732 3.73E-266 3.20E-263
1008 TAP2 DC1 3.7403233 2.59E-61 3.71E-59
1009 AIM2 DC1 7.4784 4.26E-19 1.74E-17
1010 PPY DC1 10.644698 5.59E-14 1.85E-12
1011 HLA-DOB DC1 6.9728537 2.10E-89 5.16E-87
1012 CCSER1 DC1 5.499637 1.50E-70 2.87E-68
1013 BTLA DC1 5.3950496 6.75E-68 1.16E-65
1014 PLEKHMS3 DC1 3.8767958 9.34E-22 4.59E-20
1015 AC096772.6 DC1 3.5906603 3.66E-18 1.43E-16
1016 SLC46A3 DC1 3.942808 1.47E-37 1.10E-35
1017 SLAMF8 DC1 6.2692766 1.83E-56 2.10E-54
1018 VMO1 DC1 4.1771455 5.35E-35 3.54E-33
1019 RP11-798K3.3 DC1 6.5036855 2.19E-78 4.71E-76
1020 FAM135A DC1 2.2485926 3.52E-36 2.42E-34
1021 BCL6 DC1 2.4347525 1.39E-39 1.09E-37
1022 SERPINF2 DC1 5.361456 2.01E-46 1.73E-44
1023 TRERF1 DC1 1.4485062 7.47E-16 2.73E-14
1024 PPM1M DC1 2.101836 1.73E-34 1.06E-32
1025 CHN2 DC1 2.6486096 7.96E-29 4.03E-27
1026 LAMP3 Inflammatory DC 11.607614 6.35E-30 1.09E-26
1027 CCL22 Inflammatory DC 10.685211 3.61E-20 2.07E-17



1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

TVP23A
NCCRP1
EBI3
AOC1
GPR157
IL15
SLCO5A1
CCL19
CLLU10S
HMSD
ARHGAP22
CD1B
TFPI2
LRRK1
MIR155HG
CCL17
LINCO01539
LY75
MAP3K14
CD80
CLECA4G
CD274
BCL2L14
PDCD1LG2
MREG
CTA-384D8.35
ACO079767.4
ANKRDS55
CXCL9
UBD
CXCL10
TRAF3
SBNO2
SMPD3
LINC00996
PTCRA
DERL3
IRF7
LILRA4
GZMB

Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
Inflammatory DC
pDC

pDC

pDC

pDC

pDC

pDC

pDC
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5.6982365
10.666358
7.10456
12.640075
6.9619
6.609557
8.449662
9.81733
10.318002
6.216898
6.6907406
8.984627
3.7633893
3.6972272
4.5580177
10.602584
9.955095
5.3513217
3.963899
7.2537994
5.4524055
5.8098893
7.7762547
6.586241
5.263753
6.817494
6.829719
5.2382183
8.706409
8.746961
5.7767887
291121
2.9369836
9.6409645
6.1632514
11.286246
6.431002
5.9626455
9.374616
7.4458804

8.22E-20
1.24E-18
1.09E-16
1.21E-07
7.87E-13
3.51E-12
4.14E-10
1.45E-08
0.000868851
7.28E-08
5.17E-07
0.000208761
2.19E-06
2.14E-10
4.38E-10
0.000424759
0.018783534
7.74E-07
1.14E-06
0.003498178
0.022612622
9.96E-06
0.006395111
0.003618567
0.000138009
0.011513318
0.001924776
0.000144905
0.050394192
0.050379594
0.012485797
5.89E-05
0.000774795
8.62E-199
1.54E-153
3.12E-233
3.39E-146

0

1.13E-171
7.58E-299

3.53E-17
3.55E-16
2.67E-14
1.30E-05
1.69E-10
6.72E-10
5.79E-08
1.79E-06
0.036449343
8.34E-06
4.94E-05
0.010880852
0.000164131
3.35E-08
5.79E-08
0.020294054
0.598290355
6.65E-05
8.92E-05
0.130801427
0.694530519
0.000658895
0.229158141
0.132424149
0.007657291
0.396058125
0.075241242
0.007788659
0.9998238
0.9998238
0.421089609
0.003378208
0.033316203
3.71E-196
3.79E-151
1.79E-230
7.30E-144

0

3.88E-169
6.52E-296



1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

CLEC4C
MYBL2
ZFAT
AC104024.1
SLC15A4
RP11-73G16.2
CPLX1
PACSIN1
NLRP7
AC011893.3
KCTD5
PHEX
PARP10
RP11-117D22.2
TLR9

IGLJ2

DRD4

NEKS
TTC39A
LRRC26
ADGRG5
RP11-542M13.3
RP4-647C14.2
Ccux2
CD207
FCGBP
CD1A
RP11-597D13.8
TCHH
LACC1
GNGT2
ZBTB7A
SERPINBS
AQP9

VNN2
CCL20
CLEC4E
MIR3945HG
SPATA13
DNAAF1

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

pDC

LC

LC

LC

LC

LC

LC

LC
Monocyte precursor
Monocyte precursor
Monocyte
Monocyte
Monocyte
Monocyte
Monocyte
Monocyte

Monocyte

11.117163
5.417145
5.932146
9.199553
4.2948003
12.639896
6.145637
8.045663
12.307331
8.591529
2.558793
6.497609
3.5493464
7.2918324
9.185045
9.781215
7.188687
4.0248413
7.1404943
9.47263
5.2463036
6.1595583
4.1436267
6.751465
12.509914
5.697465
8.475122
7.78333
5.4297323
3.986921
4.235744
2.2907977
3.80276
7.6475916
6.6335034
6.282831
6.755689
5.341787
4.106592
5.761776
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6.59E-163
2.17E-85
2.08E-72
6.43E-36
1.27E-77
1.16E-25
3.52E-38
2.68E-37
5.77E-10
1.99E-32
5.16E-30
4.92E-23
9.43E-33
1.27E-17
5.49E-09
4.55E-14
1.97E-11
2.83E-15
1.03E-22
3.74E-11
1.26E-22
451E-11
1.33E-08
3.62E-11
2.01E-98
1.18E-36
9.10E-15
3.58E-48
2.42E-16
1.18E-22
3.60E-20
1.06E-64
6.63E-131
0

0

0

0
6.86E-156
4.56E-141
1.00E-214

1.89E-160
3.73E-83
2.98E-70
5.82E-34
1.98E-75
8.00E-24
3.56E-36
2.56E-35
2.16E-08
1.56E-30
3.70E-28
3.02E-21
7.73E-31
6.60E-16
2.01E-07
2.06E-12
8.45E-10
1.35E-13
6.08E-21
1.50E-09
7.25E-21
1.76E-09
4.41E-07
1.48E-09
3.46E-95
5.06E-34
1.04E-12
2.06E-45
3.20E-14
2.89E-20
6.89E-18
9.62E-63
1.14E-128
0

0

0

0
7.37E-154
4.13E-139
1.73E-212



1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

IRG1

LIPN
PROK2
VNN1
STEAP4
FCGR3B
PLA2G7
TREM2
CD5L
SDSL
FAM20C
SIGLECY
CMKLR1
SLC37A2
FPR3
RAB42
RP11-733018.1
SIGLECY
CD180
OTOA
DAB2
SIGLEC1
CD209
CCL13

Cc2

TIMD4
MMP19
C3
RP11-480C22.1
P2RY12
BHLHE41
FCGR1B
SYT6
TMEM144
CSF1
RP11-552D4.1
SUCNR1
ADORA3
SALL1
TMEM52B

Monocyte

Monocyte

Monocyte

Monocyte

Monocyte

Monocyte

Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
Iron-recycling macrophage
LYVE1++ macrophage
LYVE1++ macrophage
LYVE1++ macrophage
LYVE1++ macrophage
LYVE1++ macrophage
LYVE1++ macrophage
MHCII+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage
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7.9202423
6.453432
6.052801
5.168205
4.03008
6.5437603
5.645552
6.7460093
6.638904
3.884111
2.3892982
3.7093816
2.9508636
3.461943
5.630993
2.3628151
3.840296
3.5424316
3.2497935
3.6025887
4.900291
7.2378864
7.3622336
7.3843455
6.718223
6.868403
2.68129
7.606228
10.787864
7.69721
5.0434036
5.096401
5.8961825
45871735
3.260051
6.888534
7.2800646
5.6324315
6.2987275
5.885583

2.49E-52
8.05E-72
1.06E-150
3.42E-66
4.65E-140
1.70E-71
3.40E-101
1.62E-90
3.65E-09
3.61E-19
6.11E-10
4.10E-18
8.93E-21
5.27E-23
2.76E-11
3.02E-06
1.17E-09
2.80E-17
2.99E-13
2.22E-08
0

0
0
0
0
0

1.33E-89
0

0
5.84E-280
1.44E-241
1.96E-132
1.72E-66
1.43E-88
3.05E-81
1.67E-42
1.08E-44
1.35E-76
2.00E-29
5.92E-45

1.16E-50
4.62E-70
1.01E-148
1.84E-64
4.00E-138
9.41E-70
5.85E-98
1.39E-87
1.74E-07
5.18E-17
3.50E-08
5.04E-16
1.92E-18
1.29E-20
1.69E-09
0.000110436
6.27E-08
3.01E-15
2.45E-11
9.77E-07
0

0
0
0
0
0

2.08E-87
0

0
2.51E-277
4.94E-239
5.61E-130
1.74E-64
2.73E-86
4.77E-79
1.11E-40
7.44E-43
1.93E-74
1.11E-27
4.24E-43



1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

LINCO01094
SIGLECS
TMIGD3
DEFA4
AZU1
MPO
PRTN3
ELANE
DEFA3
DEFA1
DEFA1B
RNASE3
SLPI
CEACAMG6
CCDC88B
BPI

FUT4
FAMO95C
SLC2A5
MROH6
SERPINB10
CEBPE
PGLYRP1
LTF

CAMP
S100A8
CHI3L1
CD177
FOLR3
CRISP3
CHIT1
CYP4F3
MMP8
CEACAMS
ARG1
OLFM4
ORM1
ADGRG3
PTH2
IL17A

TREM2+ macrophage
TREM2+ macrophage
TREM2+ macrophage

Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophill
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2
Neutrophil2

Lymphoid progenitor

LTi
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5.107903
8.166105
4.224584
15.352081
13.182836
13.04753
13.1273
13.577745
15.000713
13.618472
13.718551
9.024401
9.452569
11.394709
5.4294314
6.829222
4.922105
10.942098
6.589313
4.611239
8.231854
7.3098197
12.064688
13.938079
12.107831
12.017343
10.040782
11.046282
7.795285
10.444011
10.592263
8.599696
11.904649
11.812595
8.535819
7.0941815
7.038842
6.863625
7.8540654
7.965111

5.44E-45
1.64E-21
3.01E-67
5.14E-58
2.07E-55
5.93E-58
1.29E-44
4.21E-35
1.93E-42
4.16E-18
2.07E-17
1.33E-16
1.21E-16
3.12E-11
6.08E-18
7.16E-26
6.28E-06
0.026947004
0.001123743
0.006589861
4.28E-09
2.08E-06
1.99E-101
3.04E-64
5.45E-37
6.84E-115
8.92E-23
7.96E-14
1.86E-36
1.35E-15
2.13E-13
0.000151414
0.018232459
2.78E-14
6.68E-30
0.003325713
3.76E-13
6.63E-14
0.000314529
2.80E-15

4.07E-43
7.84E-20
3.45E-65
5.10E-55
1.19E-52
5.10E-55
5.54E-42
1.03E-32
6.65E-40
7.15E-16
2.97E-15
1.63E-14
1.61E-14
2.98E-09
9.51E-16
1.37E-23
0.00036676
0.891323991
0.053689934
0.26987048
3.68E-07
0.000127869
1.71E-98
1.74E-61
2.34E-34
1.18E-111
1.53E-20
8.56E-12
6.41E-34
1.78E-13
2.03E-11
0.006024956
0.435553194
3.41E-12
1.92E-27
0.102146902
3.23E-11
7.60E-12
0.049180845
3.22E-13



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

PTGDR2
IL9R
FXYD7
AC002331.1
FSTL4

HPN
LINCO00299
SCN1B
PDZK1
KRT81

EYS

KRT86
BCAS1
GGT1
SLC4A10
CXCR5
TTC39C-AS1
COL4A4
TRGC2
SERPINA11
IPCEF1
GZMK
TRDV2
IFNG-AS1
TRGVS
RP5-1028K7.2
GPR25
GZMH
GNLY
CMC1
KLRD1
KLRF1
GZMA
NKG7
IFNG
S1PR5
CD160
SH2D1B
NCR1
KIR2DL4

ILC2

ILC2

ILC2

ILC2

ILC2

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

ILC3

Innate T typel
Innate T typel
Innate T typel
Innate T typel
Innate T typel
Innate T type3
NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell
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7.7617545
9.473588
5.107498
10.232541
6.7699747
9.377386
8.656792
5.936243
8.350523
6.835972
7.2167997
6.8656554
5.6912847
5.0731654
5.62661
6.6515126
7.714494
6.657636
5.285743
6.9396663
3.7694588
7.381604
8.99884
7.262675
7.414204
5.5532603
6.990213
9.5908165
8.464121
5.4888654
8.986831
8.509406
7.65959
9.4140625
8.666936
7.4763265
8.911394
7.7320223
7.719786
9.341735

8.84E-72
1.34E-30
2.94E-20
7.79E-05
5.15E-07
2.20E-211
1.22E-274
4.72E-165
1.02E-59
8.66E-72
1.27E-48
4.17E-197
9.03E-101
2.21E-60
1.65E-62
2.94E-147
1.18E-86
3.61E-34
2.55E-41
4.39E-14
1.95E-69
0
2.96E-76
4.49E-17
1.89E-08
3.76E-12
5.87E-20
0

O O O O o o o o

5.88E-221
0
7.21E-176
3.24E-96

7.60E-69
3.84E-28
4.60E-18
0.003722972
4.02E-05
1.89E-208
2.10E-271
2.03E-162
8.38E-58
9.92E-70
9.93E-47
2.39E-194
1.94E-98
1.90E-58
1.49E-60
1.01E-144
1.69E-84
2.22E-32
1.76E-39
1.51E-12
1.97E-67
0
1.02E-73
3.22E-15
7.95E-07
2.31E-10
1.68E-17
0

O O O O o o o o

4.22E-219
0
4.13E-174
1.50E-94



1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

KIR2DL1
IL18RAP
FASLG
KIR2DL3
KIR3DL1
EOMES
ERVH48-1
CD8B
RP11-291B21.2
PASK

CHI3L2

REG4

CTLA4

FOXP3

TIGIT

IL2RA
RP11-1399P15.1
FAS

GNG8

LAG3

LAIR2
RP5-887A10.1
CCDC191
TCL1B
RP11-1070N10.3
BEST3
CFAP73
UMODL1
TNFRSF13B
SCN3A

ENAM
KB-208E9.1
SLC8A1-AS1
BAHCC1
DNTT
VPREB1
LINC01013
RP11-301G19.1
LCNG6
LINCO00426

NK cell

NK cell

NK cell

NK cell

NK cell

NK cell

CDAT cell
CD8 T cell
CD8 T cell
CD8 T cell
CD8 T cell
CD8 T cell
Treg

Treg

Treg

Treg

Treg

Treg

Treg

Treg

Treg

Pre B cell
Pre B cell
Pre B cell
Pre B cell
Pre B cell
Pre B cell
Pre pro B cell
Pre pro B cell
Pre pro B cell
Pre pro B cell
Pre pro B cell
Pre pro B cell
Pre pro B cell
Pro B cell
Pro B cell
Pro B cell
Pro B cell
Pro B cell
Pro B cell
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9.835931
6.590556
7.8470745
9.3781805
9.371177
7.1674957
6.9512396
8.864881
9.813023
5.891054
6.0316787
7.077896
9.004111
10.286537
6.401906
8.10019
10.016526
3.4699621
5.203077
4.3252454
5.816273
8.54369
5.1948724
7.967291
7.1888685
8.90387
8.327322
8.577388
7.68184
6.6270137
8.52941
8.157725
7.2047434
3.3291929
11.113144
10.90359
9.621903
10.246528
10.869826
8.232993

1.50E-82
0
1.57E-263
4.23E-101
9.27E-55
1.74E-104
2.03E-76
0

0

0

0
5.44E-15
4.48E-241
5.73E-139
4.66E-136
4.56E-165
1.69E-20
1.03E-41
9.56E-28
1.55E-11
7.26E-65
1.05E-130
7.58E-38
6.87E-21
1.34E-29
3.26E-25
4.46E-08
7.71E-11
6.11E-12
3.52E-15
9.57E-08
9.83E-08
2.09E-29
1.11E-10
6.80E-126
1.35E-223
9.22E-69
1.04E-24
3.94E-25
2.96E-37

6.29E-81
0
1.28E-261
2.08E-99
2.85E-53
8.80E-103
1.58E-74
0

0

0

0
2.34E-13
7.71E-238
1.97E-136
1.33E-133
1.96E-162
1.12E-18
1.11E-39
7.83E-26
7.62E-10
1.14E-62
1.80E-127
1.19E-35
6.95E-19
1.77E-27
3.50E-23
2.79E-06
9.47E-09
9.56E-10
8.65E-13
8.45E-06
8.45E-06
1.20E-26
1.19E-08
5.85E-123
2.32E-220
3.96E-66
1.38E-22
6.16E-23
8.49E-35



1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

ALDH5A1
MS4A1

SP140

PARP15
FCRL5

FCRL1
RP11-231C14.7
TNFRSF13C
FCER2
CLEC17A
PNOC
RP11-325F22.2
FCRL2
RP11-164H13.1
SPINK2
AP001171.1
TRH

CHST13
RP11-299J3.8
CLDN15
UBR5-AS1
HTR1F

PRSS2
CLDN10
NR6A1
CCDC171
NOG

MT1F

MT1H

MT1G
SLC39A8
MT1X

HBE1

MT1E
RP5-1198020.4
PRRT1
NHLRC4
PKLR
RP11-470P21.2
RP11-797H7.5

Pro B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

B cell

HSC

HSC

HSC

HSC

HSC

HSC

HSC

HSC

HSC

HSC

HSC

HSC

HSC

Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Erythroid (embryonic)
Early erythroid (embryonic)
Early erythroid (embryonic)
Early erythroid (embryonic)
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4.3928223
11.6786995
5.5451937
4.980935
9.973266
9.380558
6.350166
5.1954107
4.917365
7.708571
6.883121
4.1634445
7.728107
8.0755625
9.894599
7.840521
4.5291324
4.7016225
2.6472287
3.158422
4.237116
5.179932
10.396776
5.6408687
3.3803432
2.5108223
3.6243124
8.121728
11.559282
10.936268
5.912409
5.346427
16.178913
6.987057
6.1726727
4.237276
5.2261615
9.458901
9.47033
8.402389

2.45E-21

0

5.92E-242
1.41E-151
2.64E-43
3.68E-129
2.84E-142
2.28E-115
1.93E-44
8.97E-31
3.14E-38
4.58E-99
1.38E-16
1.03E-53
3.66E-61
1.39E-15
2.42E-16
9.57E-06
1.15E-05
5.13E-05
1.44E-06
0.000779238
0.000598626
7.99E-09
2.71E-05
0.000121924
0.000314256
0

0
0
0
0
0

0
4.49E-64
1.51E-31
5.72E-22
6.37E-164
1.33E-65
1.14E-127

2.81E-19

0

5.09E-239
2.43E-149
1.68E-41
4.52E-127
4.45E-140
2.61E-113
1.33E-42
4.98E-29
1.93E-36
4.92E-97
5.06E-15
8.09E-52
6.30E-58
7.96E-13
2.08E-13
0.00137181
0.001408012
0.005118427
0.000226451
0.044676307
0.036772761
1.72E-06
0.002912343
0.009419165
0.021620834
0

0
0
0
0
0

0
3.09E-62
7.02E-30
2.24E-20
9.13E-162
1.15E-63
1.40E-125



1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

CTSE
TF
ST6GALNAC1
SLC25A21
NT5DC4
SLC30A10
SPESP1
ABCB10
GATA5
TMCC2
EIF5

XPO7
PIM1

CAT

PNP
TSPO2
EPBA2
IBA57
YPEL4
RSAD2
ACSL6
TRIM10
ARTA4
TRIM58
CRB1
NCEH1
TBCEL
DYRK3
FECH
TMEMB86B
BSG
SLC14A1
DCAF12
HBB
SNCA
AC104389.1
FKBPS
STRADB
GABARAPL2
BNIP3L

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid (embryonic)

Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Early erythroid
Erythroid (fetal)
Erythroid (fetal)
Erythroid (fetal)
Erythroid (fetal)
Erythroid (fetal)
Erythroid (fetal)
Erythroid (fetal)
Erythroid (fetal)
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9.165415
7.1948094
7.144578
5.099903
8.471015
6.806208
2.8637652
3.306749
8.15584
9.477422
3.7753313
5.960391
6.6465144
4.750076
6.1306863
9.995054
8.890583
5.255339
7.803597
6.6686196
7.246163
8.783466
8.840714
8.751879
8.464662
5.167127
4.9835224
5.36092
7.295683
6.083541
4.6415215
7.312956
7.873213
15.293702
8.998622
8.684248
4.7481437
7.74948
4.68941
5.7522936

6.83E-207
7.03E-101
1.43E-66
1.58E-25
9.06E-31
1.70E-36
1.18E-07
8.67E-16
7.70E-39
1.15E-162
1.51E-187
4.31E-125
6.13E-233
5.70E-212
1.27E-170
3.85E-85
7.90E-232
2.09E-38
7.94E-76
1.51E-22
6.89E-32
3.52E-17
9.84E-19
3.38E-219
4.17E-10
4.74E-17
8.88E-24
1.05E-23
7.88E-255
8.93E-25
4.82E-244
7.32E-51
0

o O O O o o o

2.94E-204
8.07E-99
1.30E-64
7.53E-24
5.03E-29
1.01E-34
4.30E-06
3.73E-14
4.91E-37
1.24E-160
1.86E-185
3.90E-123
2.64E-230
8.91E-210
1.46E-168
3.16E-83
2.72E-229
1.33E-36
6.21E-74
6.84E-21
4.23E-30
1.41E-15
4.13E-17
7.27E-217
1.41E-08
1.85E-15
4.24E-22
4.90E-22
6.77E-252
4.39E-23
2.76E-241
5.25E-49
0

o O O o o o o



1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

MKRN1
PHOSPHO1
IFIT1B
FAM178B
PVT1
PNMT

SRM
BOLA3-AS1
SLC27A2
DNAHS8
NMNAT3
GAL
ATAD3A
RP11-9802.1
COX10
ECE2
MRPS17
POLR1B
SYCP1
AC002467.7
AMHR?2
SLX1B
RHEBL1
DDX55
GDPD1
PDSS1
PDCD2L
ZNF639
CCDC169
LARP1B
TRIM6
MRPL30
CTC-338M12.5
CEP152
RFT1
MIF-AS1
CRISP2
PFAS
FBXO4
WDR4

Erythroid (fetal)

Erythroid (fetal)

Erythroid (fetal)

MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
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4.9372716
9.79329
9.76659
10.714776
5.369701
7.3194475
1.7778957
2.753205
6.692016

4.7326393
3.7502172
2.2368069

1.896247
2.28153
2.2767947
2.6531916

3.1220767
7.116643
4.501797
3.5236213
1.5716976
4.0913405
2.7495384
2.4488325
1.537416

1.4943618
4.421252
1.4041439

2.4728336
1.3580681
2.578641

8.573316

1.9020844
1.4330695
2.4221396

0

0

6.86E-76
2.84E-57
3.65E-39
1.13E-28
3.17E-13
2.50E-12
8.32E-14

6.92E-21
5.38E-10
7.69E-10

1.95E-08
2.21E-10
1.97E-09
8.83E-07

1.91E-06
9.48E-16
0.00034669
1.58E-05
1.27E-06
6.25E-09
5.26E-07
1.40E-05
1.27E-06

8.67E-06
0.002589711
1.90E-06

3.83E-08
3.32E-06
5.56E-05
0.001864448
0.000445601
2.68E-06
2.47E-05

0

0

3.93E-74
4.89E-54
3.14E-36
4.87E-26
3.90E-11
2.87E-10
1.19E-11

1.98E-18
4.02E-08
5.51E-08

1.05E-06
1.90E-08
1.25E-07
3.53E-05

6.86E-05
1.81E-13
0.007184415
0.000468744
4.85E-05
3.71E-07
2.20E-05
0.000428904
4.85E-05

0.00027623
0.044543037
6.86E-05

1.99E-06

0.000111878
0.001447907
0.033404697
0.009124207
9.23E-05

0.000688367



1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

MAK16
ANKLE1
POLE2
MARS2
SLX1A
PRSS21
NAT10
MTO1
ZNF768
C9orf40
ERI1

HPDL
NUP62CL
TCEB3-AS1
DPH2

COoQs3
MRM1
UBL7-AS1
TRMT61A
FBX045
LINCO01150
CcDCes1
C5orf63
ZNFT77
PXN-AS1
RNASEH1-AS1
CH507-9B2.3
GATB

HBD
SPINK4
GDF11
AF196970.3
KCNK5
MIR3142HG
ENTPD1-AS1
XRCC2
Cl1orf98
STAC

WRN
NBPF26

MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Early erythroid
MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak

MEMP - Megak
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1.8213499
4.089981

2.7860508
2.7696476

4.7664194
1.8008904
1.2472458
1.6405009
2.1371675
1.2633963
4.220856

4.365681

1.7717191
1.899382
3.8944674
1.5534049
1.3692249
2.1655803
4.12021
1.5977621
2.126044
2.2524436
1.7004887
1.5958788
2.4502168
1.7379624
10.209379
8.463351
2.9126244

5.022985
5.389055
2.343953
3.154367
2.5399966

1.5084637
1.5822277

1.22E-07
0.000218855
1.48E-07
0.001423902

1.49E-11
1.63E-06
9.91E-05
0.001464589
0.000972896
0.000254645
4.23E-08
4.39E-05

5.67E-05
4.96E-06
1.41E-07
0.000590869
0.00024252
9.51E-05
0.000769968
4.89E-05
8.98E-05
0.00227303
0.000113519
1.42E-05
1.23E-05
2.69E-07
2.38E-126
1.07E-37
2.48E-22

6.78E-15
2.76E-16
2.09E-17
2.55E-11
3.12E-14

8.42E-12
1.90E-07

6.01E-06
0.004888718
6.86E-06
0.02638301

1.50E-09
6.08E-05
0.00243421
0.026516764
0.018802026
0.005544176
2.14E-06
0.001180372

0.00145681
0.00016396
6.73E-06
0.011920682
0.005347868
0.002369755
0.015049378
0.001293567
0.002270895
0.039893995
0.002654604
0.000428962
0.000384256
1.22E-05
4.10E-123
1.23E-35
1.77E-20

3.15E-13
1.40E-14
1.12E-15
8.77E-10
1.34E-12

3.02E-10
4.41E-06



1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

AP4S1
CENPP
RAD54L
RP13-726E6.2
PPBP
PF4

GP9
GP1BA
TREML1
NRGN
HPSE
ILK
ZYX
TUBB1
CMTM5
LAT
CLEC1B
TLN1
Cé6orf25
RSU1
RGS18
FERMT3
TMEMA40
GP6
CCND3
TUBA4A
SPX
TNNI3
ITGB3
MAX
ITGA2B
PF4V1
ACRBP
DCLRE1A
ALOX12
DGKI
RP11-401P9.5
CD226
EHD3
F2RL3

MEMP - Megak
MEMP - Megak
MEMP - Megak
MEMP - Megak
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
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2.1252282
2.058586
2.5556035
5.5604773
14.0542345
13.659931
11.914752
10.909913
12.255163
8.332227
7.7135077
4.0199623
4.1373763
9.721976
8.706047
6.8278775
12.213498
4.3663344
10.560176
3.9481626
7.5390325
6.314248
11.601661
10.829315
5.292612
6.3070703
8.248187
9.727106
8.15733
4.3807864
9.823692
9.078819
6.6324167
6.42619
10.561812
7.7921863
7.4524584
6.1728597
5.6193547
8.6088705

7.56E-10
3.95E-11
5.26E-08
1.18E-12
8.02E-111
1.96E-113
3.79E-112
6.45E-89
2.42E-83
8.88E-104
5.25E-80
8.26E-95
1.66E-87
2.07E-87
1.21E-102
2.73E-93
2.23E-98
2.56E-88
2.37E-104
6.36E-86
3.13E-93
4.42E-102
7.39E-78
4.17E-56
4.24E-93
1.55E-84
5.22E-64
1.81E-42
4.85E-62
1.13E-86
1.38E-94
1.85E-50
9.02E-36
1.49E-43
4.87E-81
2.14E-29
3.03E-23
9.61E-50
8.94E-37
6.08E-44

2.28E-08
1.33E-09
1.34E-06
4.63E-11
4.60E-108
3.38E-110
3.26E-109
7.92E-87
1.90E-81
3.05E-101
3.76E-78
1.58E-92
1.68E-85
1.97E-85
3.48E-100
4.27E-91
4.80E-96
2.94E-86
1.02E-101
5.47E-84
4.48E-91
1.09E-99
5.08E-76
2.56E-54
5.61E-91
1.27E-82
3.45E-62
8.64E-41
3.09E-60
1.03E-84
2.38E-92
1.06E-48
3.69E-34
7.32E-42
3.64E-79
7.52E-28
8.83E-22
5.33E-48
3.94E-35
3.07E-42



1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

SAMD14
TUBAS
GNAZ
RP11-672A2.6
AP001189.4
ABCC3
RP11-879F14.2
GP5

SYTL4

GSAP
LINC00989
BZRAP1-AS1
LY6G6F
DNAAF3
ZGLP1

EGF
AC113404.1
ELOVL7
DGKG
SLC35D3
TMSB4Y
SRC

HRAT92
RP11-81H14.2
ADCY6
GAS2L1
SIAE

MOB3C
RP11-672A2.4
AP003068.23
MFAP3L
WDR44
CFAP161
RP11-930011.1
HIST1H3H
BEND?2
CASS4
DENND2C
EFHC2
RP11-367G6.3

Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
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5.1431355
9.075804
6.66615
7.9475436
8.980323
8.341001
6.5317526
7.540501
5.6507773
4.841238
6.9827576
5.427374
13.321681
7.7141356
5.3502946
10.148702
5.517482
7.4058414
6.5961337
10.823749
6.8437366
4.193851
7.6443768
7.08472
3.6248124
2.8266847
4.65651
3.5272555

6.2995667
6.3379583
2.999032
9.435371

4.241618

4.819186

4.380255
5.8687973

1.12E-48
1.13E-41
2.51E-32
2.39E-23
1.37E-19
2.25E-23
2.13E-28
5.24E-17
3.55E-30
1.08E-35
1.83E-32
4.47E-36
3.37E-16
2.62E-23
2.42E-22
3.02E-15
4.30E-32
2.66E-31
3.17E-24
6.52E-14
2.49E-20
5.49E-36
3.50E-14
4.38E-15
2.72E-29
2.66E-20
3.34E-23
1.02E-22

3.62E-18
1.13E-27
2.15E-19
3.35E-09

1.10E-17

1.51E-22

8.64E-17
7.82E-23

6.04E-47
5.26E-40
9.57E-31
7.20E-22
3.47E-18
6.92E-22
7.18E-27
1.20E-15
1.27E-28
4.31E-34
7.15E-31
1.92E-34
7.42E-15
7.77E-22
6.50E-21
6.34E-14
1.61E-30
9.75E-30
9.92E-23
1.32E-12
6.60E-19
2.30E-34
7.17E-13
9.07E-14
9.35E-28
6.93E-19
9.57E-22
2.83E-21

8.52E-17
3.73E-26
5.36E-18
5.99E-08

2.55E-16

4.11E-21

1.96E-15
2.21E-21



1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

CFAP45
PTGES3L
HGD
KCNQ4
EXOC3L4
SCFD2
ZNF185
AC114752.3
SENCR
CLCN4
ABHD11-AS1
GYS2
ABHD11
PRUNE
LINC00504
XXbac-
BPG32J3.19
LIPH
C150rf53
GLOD5
XYLT2
HEXIM2
LEFTY1
METTL22
SPDYC
NCKIPSD
ITPKA
USP20
MLH3
HTR2A
PLCH1
RYR2
RP3-329E20.2
MYEOV
AC015969.3
RSPH14
PDZK1IP1
AC137932.6
RP11-672A2.5
CMTM2

Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte

Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte

355

7.0398107
7.27459
9.895655
6.5543876

2.6138632
4.2587337

3.6601527

3.7783146

7.2642064

2.6711166
2.095831

8.808073

3.2646177
2.309031

2.242397

6.25E-11
1.68E-07
1.18E-19
4.17E-08

5.33E-16
5.07E-11

9.23E-19

9.76E-16

1.60E-07

5.22E-16
5.36E-11

3.41E-08

8.68E-19
8.27E-10

6.10E-09

1.18E-09
2.84E-06
3.02E-18
7.17E-07

1.14E-14
9.80E-10

2.21E-17

2.07E-14

2.73E-06

1.14E-14
1.02E-09

5.92E-07

2.10E-17
1.51E-08

1.08E-07



1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

TRAPPC3L
SLC25A15
MYOM1
NT5M
FAM63A
POTEE
HRASLS
INHBA-AS1
CA13
RP11-1398P2.1
LINC01003
POTEF
TUBAL3
PROSER?2
INPP5B

TEC

SEC14L5
PCYOX1L
ACCS

TTC7B
MED12L
TNFSF4
CTB-5506.8
RP11-888D10.3
CXCL5

MPL

BORCS6
PTPRN

LRP12
CATSPER1
LINCO1137
ZBTB11-AS1
GCLM
FAM73B
CDHR1
TMEM104
CTD-3214H19.6
RP11-446N19.1
CTNS
RP11-556E13.1

Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte

356



1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626

LSMEM1
ZNF778
LINC01001
PEX3
ZNF175
AXIN1
CHADL
PANX1
FUT8-AS1
RP11-395G23.3
INAFM2
APOBEC3F
Z2G16B
CLC
ATP10D
HCAR3
SAMSN1
CCNA1
CR1

CCR3

IL4
CYP11Al
RP11-462G2.1
EPX

IL13
TNFRSF9
NRIP3
CDK15
CCDCT71L
AC004381.6
SLC38A11
CMA1
PLA2G2A
NDST?2
RP11-557H15.4
TPSG1
MAOB
MIR202HG
LAX1
GDF10

Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Megakaryocyte
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Eo/baso/mast cell progenitor
Mast cell (earliest)

Mast cell (earliest)

Mast cell (earliest)

Mast cell (earliest)

Mast cell (earliest)

Mast cell (earliest)

Mast cell (earliest)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Mast cell (medium)

Early LE
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15.153702
5.8443913
7.7753925
6.274184
8.274321
5.2911367
8.970312
10.1209
5.68971
9.963682
11.190589
8.715403
6.016863
3.632653
6.821331
3.717658
3.9229467
6.305733
8.483405
6.2974267
4.9148073
7.610438
8.768275
6.7470636
8.673044
5.2844996
6.542229

1.57E-85
5.66E-34
4.68E-40
4.04E-66
2.72E-08
3.93E-09
0.00205832
1.18E-07
0.002091675
0.003267888
4.09E-26
1.01E-27
2.08E-14
1.51E-08
9.18E-11
1.68E-06
1.89E-09
3.46E-26
5.23E-61
4.76E-34
3.16E-34
4.21E-52
1.21E-10
6.17E-70
6.75E-22
6.81E-50
7.17E-26

2.71E-82
2.43E-31
2.69E-37
3.47E-63
3.12E-06
5.63E-07
0.116054226
1.19E-05
0.116054226
0.160593372
1.55E-23
5.76E-25
3.98E-12
1.44E-06
1.05E-08
0.000137597
1.91E-07
3.13E-24
1.29E-58
5.85E-32
4.19E-32
8.04E-50
4.75E-09
1.77E-67
5.05E-20
1.17E-47
1.76E-23



1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

Sva2C
TCTN3
RADIL
SBSPON
SCG3

RP11-520P18.5

PROX1
FOXC2
BHMT
ABCA4
SLC41A1
NPY1R
MSMP
TFF2
BHMT2
AC073254.1
PCLO
Cllorf87
PRR34-AS1
GCOM1
APTR
PM20D1
CCDC141
GPER1
NRG3
NTN1
ROPN1L
IQCD

NTS
AC008063.2
ZNF678
RAI2
HSD3B7
IGHMBP2
TBC1D19
STRADA
HIVEP2
GHDC
TNFAIP8L3
VSIG10

Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
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9.155369
3.9209301
6.7712703
5.71437
9.136127
27.391434
7.9311676
5.7907405
9.992049
7.5122
3.888286
5.802308
8.499233

5.143732
5.994912
5.810251
3.574652
4.5602393
7.334697
2.0448604

6.4960504
3.731354

5.2925673
2.6402144

11.377788

2.2653077
3.4486785
2.6987479
2.2722073
1.9092246
2.5398538
2.411641
2.44813
5.8033967
2.3709795

6.47E-23
2.07E-30
1.33E-33
9.96E-34
7.13E-23
0.002637093
1.47E-42
1.70E-15
3.05E-13
1.58E-10
1.95E-13
1.30E-08
7.39E-09

1.67E-09
0.001463308
4.82E-08
0.006878502
5.59E-06
0.010413981
5.42E-06

7.75E-10

0.002766649
0.011915844
0.000220639

4.67E-44

0.000459251
0.000394288
3.12E-05

0.000137708
0.002072777
0.001067626
0.002300586
0.000282315
1.23E-06

0.007672244

1.36E-20
5.95E-28
4.58E-31
4.28E-31
1.36E-20
0.058151285
8.40E-40
2.25E-13
3.28E-11
1.51E-08
2.23E-11
8.63E-07
5.30E-07

1.25E-07
0.03647667
3.07E-06
0.13444345
0.000267288
0.184660282
0.000266148

6.67E-08

0.060235902
0.202923283
0.007744886

4.44E-41

0.013858109
0.012110279
0.0012764
0.005039532
0.047714673
0.028692443
0.052065888
0.009338123
7.05E-05
0.143437598



1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

RP11-251M1.1
GRM3
LINC00636
ABLIM2
ABCC10
DYRK1B
LRP11
PCDHB11
ALKBH6
MYZAP
CELSR1
RARA-AS1
ZBTB46
SYNM
CARDG6
SPATAGL
ZSCAN2
RP11-483L5.1
KIF17
ATXNI1L
SGIP1
SLC24A1
NALCN
NIPAL2
STAB2

IL7
SCNN1B
GPR182
ELMOD1
RP11-322E11.5
NNMT
C6orf141
LINCO01558
GPR1
SLC30A3
BCL2L10
NFIA-AS2
PRRSL
ZP2

PLINS

Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
Early LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
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5.545965
4.034133
7.8363314

2.1624742
2.288066

1.7681053
6.0645404
6.7981157
2.5594876
3.6847315
5.4308367
3.936775
5.145594
2.3208382
4.733398
4.095448
1.1860789
5.2865343
3.7753928
4.414167
3.1272771
13.551779
10.211235
10.906203
12.402483
5.9476013
9.294467
4.9140167
8.659012
8.937398
5.543996
8.017138
7.969268
6.412098
4.2250304
10.043701
6.8770056

0.000343428
0.007624948
2.55E-06

0.000519305
0.001004987

0.008506633
9.17E-10
6.84E-10
0.005345322
0.000614892
2.76E-05
0.001191008
0.006239649
0.002336141
0.001754212
4.57E-05
0.013136666
2.85E-05
0.001500703
0.00096746
0.000125579
0.00E+00
1.50E-102
3.25E-53
8.97E-49
1.56E-36
5.45E-66
8.73E-76
2.25E-61
1.03E-82
6.21E-14
1.41E-34
2.94E-16
1.10E-37
1.33E-29
5.13E-32
4.43E-35

0.010938822
0.143437598
0.000132866

0.015400076
0.027880292

0.157326983
7.51E-08
6.19E-08
0.112121399
0.017925666
0.001188448
0.031515898
0.124792971
0.052183924
0.042231632
0.001829375
0.219369561
0.001195481
0.03687442
0.027279207
0.004799923
3.20E-306
5.17E-100
3.73E-51
9.64E-47
1.12E-34
9.38E-64
2.14E-73
3.51E-59
2.94E-80
1.48E-12
8.95E-33
8.02E-15
9.04E-36
6.56E-28
2.85E-30
2.93E-33



1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745

PAHA3
LRCH2
PIEZO2
WASF3
TGFBRAP1
HOXD10
OMG
KCNIP1
GALNT15
UBAP1L
KLKB1
TNFRSF11A
GIMAP5
SLC35E4
TFF3

RP11-
54418 B.4
RSPH4A
STOX2
SLC26A4
CRTAC1
PGM5-AS1-1
TAC3
ACKR2
ZDHHC14
DTX4
SLC38A5
MYLK2
Clorf64
SLC38A3
SPINKS8
XIRP2
PPARD
QRFPR
FLVCR2
UCP1
FOXF2
HAPLN1
FOXL2NB
PAQR6

LE

Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells

Early endothelial cells

360

3.8428628
2.7015288
2.3454216
3.227173
3.3973646
8.2465725
8.22318
4.2105174
5.4460673
5.2864733

4.3629365
4.27506

3.1290302
12.020079

5.356959
5.4239545
2.6335454
5.748854
5.7417526
4.825012
4.799044
6.8842916
3.360037
3.1244316
8.195626
8.688176
10.499416
5.967941
12.4607315
7.7817507
3.6972904
9.036257
6.684845
10.017733
5.8664684
4.900504
7.787049
5.286531

3.27E-17
2.19E-16
7.26E-37
2.87E-21
2.70E-28
5.19E-33
1.10E-17
9.16E-21
6.93E-21
8.89E-18

2.68E-53
2.54E-30
2.40E-11
0

6.92E-16
4.10E-11
8.12E-23
2.02E-08
3.12E-08
2.42E-22
1.90E-13
1.50E-28
2.43E-22
7.56E-22
6.79E-87
1.24E-25
2.08E-26
3.09E-51
3.95E-27
9.27E-19
2.01E-33
1.06E-23
2.94E-29
3.28E-13
1.21E-14
3.93E-19
0.000281723
4.50E-23

9.38E-16
6.07E-15
5.43E-35
1.03E-19
1.22E-26
2.97E-31
3.27E-16
3.15E-19
2.43E-19
2.68E-16

3.29E-51
1.32E-28
5.09E-10
0

1.80E-14
8.60E-10
3.33E-21
3.81E-07
5.83E-07
9.30E-21
4.35E-12
7.19E-27
9.30E-21
2.83E-20
1.17E-83
2.14E-23
4.47E-24
2.65E-48
9.70E-25
1.06E-16
8.65E-31
1.66E-21
1.01E-26
2.35E-11
1.10E-12
4.83E-17
0.006730058
6.44E-21



1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

CA5A

ERVMER34-1

ADORA2A
ZBTB2
SLC25A44
PORCN
MATN3
FAM110D
ZNF366
KIAA1161
ACO017002.2
NKAIN1
ABHD17C
ABCB1
PITPNA
B3GALT1
EXOC2
KCNC4
MYRIP
GLYCTK
RGS17
SDCBP2
EPHX4
FOXL2
TOR1B
PLEKHF1
DCLK2
CHST2
KLF11
SHROOM1
PANK4
IGLON5
DCBLD1
CHST1
NETO2
PRND
PRRG3
CA4
CREG2
RP1-16A9.1

Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Early endothelial cells
Capillary arterioles

Capillary arterioles

Capillary arterioles

Capillary arterioles

Capillary arterioles

Capillary arterioles

Capillary arterioles

361

6.153009
4.629756
5.1478434
2.1418488
2.5618742
2.7856355
4.43668
6.982435
6.700243
6.278667
4.1159353
4.484429
4917722
4.854517
2.4306269

2.654748

5.4301667
7.1237864
2.7338207
3.5403097
2.4190266
6.473838

1.5198246
3.2237906
3.4322536
1.952452

2.0785902
4.1083655
1.8891857
3.0523956
3.9589157
7.9215446
4.702522

10.694583
3.7570074
4.5944743
8.239782

8.586419

5.53E-05
0.002024148
4.81E-10
4.69E-07
6.07E-08
3.27E-07
8.75E-16
1.83E-06
3.44E-09
1.48E-11
6.22E-05
2.64E-07
7.97E-07
6.22E-13
1.33E-08

4.27E-11
3.38E-05
1.63E-13
1.71E-07
9.97E-10
0.001098632
1.95E-06

1.02E-05
9.90E-08
4.14E-08
7.51E-08
1.91E-06
1.00E-10
6.39E-05
2.19E-05
2.19E-08
8.85E-36
1.85E-24
1.64E-86
3.39E-17
7.19E-06
3.49E-08
9.42E-30

0.001442349
0.041446846
2.36E-08
1.61E-05
2.37E-06
1.15E-05
8.85E-14
6.04E-05
1.60E-07
9.11E-10
0.001596934
9.45E-06
2.69E-05
4.12E-11
5.87E-07

2.45E-09
0.000922957
1.27E-11
6.26E-06
4.77E-08
0.023620577
6.22E-05

0.000296396
3.70E-06
1.73E-06
2.87E-06
6.21E-05
5.37E-09
0.001616378
0.00060774
9.42E-07
5.07E-33
5.29E-22
2.83E-83
6.48E-15
0.000353346
2.59E-06
4.05E-27



1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825

LY86-AS1
WSCD1
CHRM3
LOXHD1
TCFL5
LTBP2
AC022182.3
SCN11A

RP11-768F21.1

PITPNM2
EFCAB14
NOX4
NOS2
LIMD1
ANKRDA40
KIAA0040
CASC8
TMEM233
CDC34
MAPK11
MXRA7
GJAS
VEGFC
PIK3C2B
WWC2
CCDC178
FCN3
DAB2IP
PRSS51
SMAD7
IMPG2
GPR4
AVPR2
SELE
GIPC2
AOC2
TACR1
C2CD4B
FAM184A
IF127

Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Capillary arterioles
Arterioles

Arterioles

Arterioles

Arterioles

Arterioles

Arterioles

Arterioles

Arterioles

Arterioles

Arterioles

Arterioles
Capillaries
Postcapillary venules
Postcapillary venules
Postcapillary venules
Postcapillary venules
Postcapillary venules
Postcapillary venules

Postcapillary venules

362

6.063576
5.8307996
7.0676107
7.433704
3.7150857
4.0878954
6.5193534
6.8877263
6.354223
3.8143613
4.9066772
4.7321305
7.9240837
2.1982605
1.5691677
3.4445748
6.158759
5.348594
1.8988698
5.048877
2.237872
8.603976
5.005253
3.8401318
2.771025
6.107472
8.614598
3.4196978
11.36725
4.0553007
6.657661
6.594894
8.079218
10.867261
6.4238772
7.056947
6.827874
7.886147
3.9586868
6.4433875

2.18E-08
1.43E-11
1.17E-13
0.001061189
0.000601413
1.49E-09
0.000211789
1.77E-08
0.000676233
1.44E-05
1.98E-77
6.79E-12
0.00061096
1.27E-08
0.000297726
1.09E-10
0.004923552
5.04E-11
4.99E-06
2.64E-09
2.75E-06
3.29E-34
4.41E-21
1.45E-13
3.45E-07
2.75E-09
0.000136962
9.66E-09
0.000602892
1.19E-11
0.004187179
4.08E-10
6.00E-15
1.20E-202
1.70E-43
7.25E-15
1.88E-07
2.01E-38
4.59E-18
3.70E-148

1.70E-06
1.64E-09
1.68E-11
0.033800821
0.02060492
1.43E-07
0.008884823
1.45E-06
0.022367722
0.000686571
1.70E-74
8.34E-10
0.02060492
1.09E-06
0.011909025
1.10E-08
0.122732015
5.42E-09
0.000252653
2.39E-07
0.00014771
1.42E-31
9.48E-19
2.49E-11
2.37E-05
2.36E-07
0.00654374
7.91E-07
0.026589083
1.28E-09
0.156564073
3.69E-08
7.37E-13
2.07E-199
4.19E-41
5.94E-13
6.74E-06
3.46E-36
4.16E-16
3.18E-145



1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

FBLN2
PDIAS
RAMP3
AKR1C1
HTR2B
LYPD2
CLRN3
AKR1C3
FRMPD4
MEDAG
GDF3
GATAG6-AS1
SMAD9
BMPER
RAPGEF4
ATOHS
HSPB8
LIN7A
MEOX2-AS1
DDAH1
ACER2
SMURF2

Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules
Venules

Venules
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5.2530994
5.0467205
7.6692367
7.080758
9.234
12.155155
10.728618
7.1477304
8.023091
4.288007
9.54783
6.475415
4.057689
5.167112
6.2292843
2.689458
5.6114726
2.5459445
5.3551297
2.8765793
5.804265
1.70339

4.99E-32
4.16E-29
1.46E-26
9.13E-21
2.24E-05
2.01E-09
2.08E-06
2.82E-09
0.00619109
2.82E-05
0.000477202
0.013592414
1.20E-05
1.50E-07
8.13E-05
0.003234403
0.000647081
0.002776077
0.00736926
0.006229115
0.049162003
0.004679461

8.58E-29
3.58E-26
8.38E-24
3.93E-18
0.002409836
4.33E-07
0.000289784
5.39E-07
0.306116508
0.00285423
0.034199451
0.615235589
0.001472572
2.34E-05
0.007446846
0.17945722
0.042806898
0.159161739
0.342570994
0.306116508
0.999435306
0.243899177



