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Abstract 
 

Next-generation sequencing (NGS) approaches are revolutionizing the study of biodiversity 

and ecosystem functioning by providing scalable, economic and efficient methods, with a 

range of immediate applications for national insect biomonitoring schemes. However, such 

approaches are still in their infancy and are yet to be applied to established schemes in the 

UK. With insect biodiversity being under threat and the recent evidence on global insect 

declines, there is a clear need for reliable and fast methods for describing insect communities 

that overcome the pitfalls of traditional monitoring. This thesis tests and validates the 

application of DNA metabarcoding to identify insect communities in bulk samples of insects 

collected as part of two major biomonitoring schemes in the UK. First, I give an overview of 

insect monitoring, and the molecular approaches used for insect monitoring particularly in an 

agricultural context, highlighting limitations and potential future directions. Second, I assess 

the efficacy of DNA-metabarcoding to identify aphid archival samples of a 16-year time series 

from the Rothamsted Insect Survey (RIS). I show how DNA-metabarcoding can reliably 

identify samples that are as old as 18 years with high congruence (~80%), but without 

destroying their morphological integrity. I apply these methods to the corresponding bycatch 

(i.e non-target taxa captured) samples from the same trap and reveal over 800 insect taxa 

caught over the same period, many of which can be regarded as ecosystem service providers, 

pests and/or newly discovered species in the UK. I highlight the potential of bycatch samples 

to construct time-series for hundreds of insect taxa, enabling previously intractable questions 

to be addressed. I then apply these methods to analyse bycatch samples from the Fera’s 

Yellow Water Pan Trap Network and show the utility of DNA metabarcoding for describing 

and comparing biodiversity without relying on conventional taxonomy. Finally, I show how 

and why combining molecular approaches and long-term schemes can help to understand 

and mitigate insect declines. I discuss the potential biases and limitations of these methods, 

whilst identifying direct applications for existing and future insect biomonitoring schemes. 
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Chapter 1: General introduction 

 

1.1 Insects and insect monitoring in the UK 

 

Insects represent one of the most diverse groups of animals on Earth with estimates ranging 

from 1.5-5.5 million species, but many taxa remain poorly studied, which is concerning given 

their importance for many ecological processes such as pollination, pest regulation, 

decomposition, and cultural services. In the United States the estimated value of such services 

from ‘wild’ insects alone reaches $57 billion (Zhang et al., 2007; Ekström and Ekbom, 2011; 

Fijen et al., 2018). At the same time, they represent one of the most ‘endangered’ taxa with 

their number plummeting likely due to increased anthropogenic disturbances such as habitat 

change (Hanski et al., 2007) and climate change (Lister and Garcia, 2018). Moreover, fewer 

than 1% of the 1.4 million described invertebrate species have been assessed by the IUCN, 

but of those that have ~40% are considered threatened (Dirzo et al., 2014). Indeed, insects 

are embedded in complex networks of ecological interactions (Pocock, Evans and Memmott, 

2012) of which we know even less. Case studies highlighting substantial insect declines 

around the world have raised alarm, with a recent meta-analysis showing an average decline 

of terrestrial insect abundance of ~9% per decade (though an apparent increase in freshwater 

insect abundances (van Klink et al., 2020). Yet it is clear that the state of insect diversity 

remains unknown for many parts of the world, as the geographical distribution of the studies, 

but also datasets available for insect populations (e.g. Global Biodiversity Information Facility 

- GBIF) are highly skewed in their distribution (Rocha-Ortega, Rodriguez and Córdoba-Aguilar, 

2021). 

Understanding how insect diversity and populations change throughout time requires long-

term data. Such long-term data typically originate from long-term monitoring schemes 

themselves (Thomas, 2005). Insect monitoring can serve a variety of purposes as the aim of a 

monitoring scheme might be from pest monitoring and surveillance (including invasive 

species) to biodiversity assessment that is driven by national and international policies and 

frameworks; for example the recently established pollinator monitoring scheme in the UK 

(POMS- https://ukpoms.org.uk/). The original purposes of insect biomonitoring schemes are 

https://ukpoms.org.uk/
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varied and often target particular groups (e.g. agricultural pests) and at certain stages of their 

life-cycle (e.g. migration) or group of taxa characterised as biodiversity indicators or 

surrogates. Identification is typically done via traditional morphological means by trained 

taxonomists.  In the UK insect monitoring has a long history and has been characterised as 

the most comprehensive and represents some of the longest-established efforts to monitor 

insect populations when compared to other countries. Many of the current schemes date 

back to the start of the 1960s (Bratton, 1991). There are numerous schemes at a national level 

focused on invertebrate monitoring (Morecroft et al., 2009) many of which are also driven by 

volunteers. Briefly, some of the most important monitoring schemes in the UK which use 

passive sampling are: The National Moth Recording Scheme, launched in 2007 yet with similar 

schemes running from 1967-1982 (Butterfly Conservation), The Rothamsted Insect Survey 

which compromise of two networks: fifteen 12.2-meter high suction traps and a light-trap 

network recording univoltine moths, both started around 1964, with 15 traps already working 

by the early 70s. Another example is the UK Environmental Change Network (ECN) where 

measurements are aimed at moths, ground beetles and spiders by using light traps and pitfall 

traps respectively (Morecroft et al., 2009). Some of the best datasets of insect time-series 

come from the Rothamsted Insect Survey (RIS) and Butterfly Monitoring Scheme (UKMBS), 

that have been crucial for understanding long-term insect population trends (Conrad et al., 

2006; Bell et al., 2015), as well as correlatively identifying the major threats to insect 

biodiversity (Wagner et al., 2021).  However, as the focus of the schemes is applied (for 

example for pest monitoring) the breadth of taxa for which such time series are available is 

rather small. For example, in RIS only moths and aphids are identified to the lowest possible 

taxonomic level as they are the main focus taxa of the scheme. Yet, for many such schemes 

and particularly the ones that use passive sampling techniques, considerable non-target 

insect ‘bycatch’ is routinely collected and stored (see Hribar, 2020) but excluded from 

analyses due to lack of resources and/or expertise or discarded outright. Therefore, a lot of 

potential insect bycatch data remain unexamined or even thrown away, which is a loss of 

much-needed potential data given the lack of understanding on insect declines (Spears and 

Ramirez, 2015) 

There can be many barriers in the development of more comprehensive insect monitoring 

schemes, particularly ones that could include bycatch diversity. Most of which can be 
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narrowed down to taxonomical, logistical and financial reasons (Montgomery et al., 2021), 

2021). Taxonomical impediments derive partially from the diversity of insects, with only 1 

million species described to date and with most still undiscovered given that estimated 

numbers range from 5 to 30 million (Stork, 2017). Indeed, the sheer diversity along with the 

numerous niches they occupy makes them difficult to monitor, something known as the 

‘Linnean’ and ‘Hutchinsonian’ shortfalls (Cardoso et al., 2011). Insects pests in agriculture, 

despite being less diverse, can also be difficult to identify. In the case of aphids for example, 

one of the most important pests in the temperate world, taxonomic identification is 

impossible for some species without knowledge about the host (Bell et al., 2015). Pest 

predators and beneficial insects are hard to distinguish as many of them are small and 

inconspicuous and usually require rigorous taxonomic knowledge. Particularly difficult are 

hymenopteran parasitoids, with their cryptic diversity and their obscure life histories  (Smith 

et al., 2008). Such diverse groups with high intra-specific complexes and subspecies make 

such taxonomic hindrances impossible to overcome without the use of molecular techniques 

(Blackman and Eastop, 2000). Finally, practical impediments such as the breadth of taxonomic 

expertise needed, the financial cost of doing it, the space requirements for archiving samples 

and the logistics of identifying and processing thousands of insect specimens can make it 

impractical for schemes to do this for all the samples, especially, when the aim of the scheme 

is to monitor a particular group of insects. However, recent advances in Next Generation 

Sequencing (NGS) can overcome many of such obstacles by providing scalable and cost-

efficient methods that do not require taxonomic knowledge, enabling the processing of 

thousands of samples and species and thus revolutionizing the ways in which biodiversity can 

be monitored (van Klink et al., 2022).  

This thesis focuses on how NGS can significantly advance insect monitoring schemes by 

scaling up the diversity of insects being monitored with the inclusion of bycatch, as well as           

creating time series of general insect biodiversity data by examining archival samples. It also 

considers how merging NGS and the large spatial scales of insect samples as part of 

monitoring schemes can help to identify patterns of insect diversity throughout the UK. This 

introduction will present how DNA based approaches have been used to date in the context 

of insect monitoring, present technical considerations of DNA-metabarcoding that are 
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relevant to insect monitoring, and finally highlight uses of such tools to date as well as      

potential future directions. 

 

 

1.2 From DNA barcoding to metabarcoding: DNA based tools for monitoring 

 

The use of genetic approaches to identify species has a long history, yet most of it can be 

traced back as ‘DNA barcoding’ to the landmark study by  Hebert et al., (2003) on using DNA 

barcodes for species identification and delimitation. DNA barcodes are ‘short, standardized 

genetic markers used for the taxonomic identification of isolated specimens’. With the advent 

of barcoding approaches, new insights on species diversity were unveiled such as the cryptic 

diversity of insect species (Hebert et al., 2004). Despite overcoming many taxonomic 

challenges using DNA barcoding methods, a large challenge was scaling up the number of 

individuals and species one could process. Coupled with significant costs of Sanger 

Sequencing platforms, the routine use of barcoding approaches was not possible. It was the 

advent of Next-Generation Sequencing approaches, the sudden drop in sequencing costs led 

by market competition and the diminishing of specialist knowledge required to identify      

species en masse that made this possible. The term DNA metabarcoding was first coined in 

2012 (Taberlet et al., 2012) however the first study can be dated back to 1990 (Giovannoni et 

al., 1990). Metabarcoding refers to ‘simultaneous DNA-based identification of many taxa 

found in an environmental sample’; the environmental sample can derive from water, soil, 

sediments, faeces or bulk samples from traps (Taberlet et al., 2018). It has gained popularity 

as a tool to monitor biological communities ranging from bacteria to megafaunas (Cristescu, 

2014). Metabarcoding of terrestrial arthropods was pioneered by Yu et al., (2012) where they 

showed that it is possible to DNA metabarcode complete samples from malaise traps, in this 

instance with more than 300 species and recovering enough taxonomic information to give α 

and β-diversity estimates. Although the species recovered from metabarcoding had lower 

resolution than the ones from sanger sequencing (16 and 35 species respectively) the study 

established the possibilities that arise from such approaches for arthropod biodiversity 

screening. Thus, metabarcoding can be used to reliably identify pest complexes (e.g. aphids) 
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which are otherwise impossible to identify without the use of DNA identification. In a larger 

study, Liu et al., (2013) compared the applicability of using metabarcoding to address policy 

and management questions while also comparing efforts and costs for the taxonomic 

identification of species based on standard approaches and metabarcoding. Cost 

effectiveness was much higher for metabarcoding, although associated costs for standard 

approaches were not presented. Recent efforts suggest that it is now possible to increase the 

comprehensiveness of arthropod assessments and for policy and decision-making not to be 

strictly limited on ‘surrogates’ of biodiversity such as biodiversity indicators like beetles, ants 

and bees (Barsoum et al., 2019). 

 

1.2.1 DNA-metabarcoding and technical considerations  

 

The effectiveness of metabarcoding can be broken down to three main steps: 1) study design 

and sampling, 2) sample processing in the lab and 3) bioinformatics analysis. Here I briefly 

give some considerations of the metabarcoding workflow with a particular focus on insects. 

For specific technical details and general considerations see (Liu et al., 2020) and (Deiner et 

al., 2017) respectively. In the study design and sampling the study goal needs to be 

established as well as the target taxa. The type of sample in pest monitoring schemes can be 

either individual samples, bulk samples, or trap media. It is important for these to be defined 

a priori, and a suitable preservation method to be chosen that would minimize contamination 

and DNA degradation as the longer the samples stay in the field the higher the degradation 

rates (Krehenwinkel et al., 2018). Processing in the laboratory also needs careful development 

as it can have a direct impact on the downstream steps of the molecular workflow. Care is 

needed for DNA extraction methods depending on the purpose of the study as the DNA yield 

and the subsequent community comparisons can be affected by the method of choice 

(Majaneva et al., 2018). Extraction methods can be destructive or non-destructive (Carew, 

Coleman and Hoffmann, 2018), something of particular importance for museums and pest 

monitoring schemes which archive their samples and wish to retain them for further use (e.g. 

RIS samples). Non-destructive methods are also appropriate to enrich reference databases 

such as BOLD (Ratnasingham and Hebert, 2007). The preservative or trap media has also been 

used as an alternative to non-destructive tissue extraction, the idea being that taxa within a 
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trap media can leach DNA into the trap media (Shokralla, Singer and Hajibabaei, 2010). As this 

method requires less processing time it is particularly interesting for monitoring schemes 

where fast identification times are needed (Zizka et al., 2018; Kirse et al., 2023). However, 

results to date show that recovered communities from preservatives like Ethanol differ 

significantly from the ones recovered from tissue based DNA extraction and they can be more 

prone to contamination (Chimeno et al., 2022). An alternative is non-destructive tissue based 

extraction where samples are digested in a media for a short period of time (Martoni et al., 

2022; Kirse et al., 2023). This again can have biases towards certain taxa as smaller and softer 

organisms tend to leach out their DNA faster when compared with taxa that have high 

sclerotization, but this approach is much less prone to contamination and gives similar results 

to tissue homogenization based DNA extraction (Kirse et al., 2023). All DNA-metabarcoding 

studies rely on enriching or amplifying a mixture of DNA-templates from the DNA extracts. 

This is done to create multiple copies of the targeted DNA templates. It is typically done by 

the polymerase chain reaction (PCR) where through cycles of raising and lowering the 

temperature in a machine multiple copies of target template can be created chemically using 

reagents such as polymerase enzymes, primers and nucleotides. Primers are short fragments 

of DNA typically between 18-25 base pairs long that attach to a DNA molecule where the 

polymerase enzyme starts “copying” the DNA strand creating a new one. This process is 

repeated many times, which results in an exponential increase of the target template (Liu et 

al., 2020). Another approach is hybridisation enrichment, here fragmented DNA is hybridised 

to baits that are complementary to regions of interests (Mariac et al., 2018). Both of these 

approaches require a target region within genes to be amplified which is achieved by the 

primers. In DNA-barcoding and metabarcoding of insects, the most common targeted genes 

are mitochondrial such as: Cytochrome c oxydase I (COI) and Cytochrome c oxydase II (COII) 

due to their high inter and intra species divergence, or ribosomal such as 16s rRNA. Primers 

have been developed to be able to amplify DNA from as many taxa as possible by increasing 

the degeneracy of the primer (Elbrecht, Hebert and Steinke, 2018). 

The primer and loci of choice can generate biases on the amplification and sequencing step 

which can be irreversible. Some primers and loci will amplify certain taxa while others can 

have very low PCR success rate e.g. for hymenoptera by using COI primers (Yu et al., 2012). 

Variation in amplification efficiency will lead to some taxa being observed disproportionately. 
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For primers the specificity vs. coverage also needs to be considered, degenerate primers will 

give a more comprehensive coverage of the total community, while primers developed for 

certain taxa will increase higher level taxonomic resolution (i.e. to the species level) (Bálint et 

al., 2018). From the two most dominant loci (Cytochrome oxydase 1 (COI) and 16s rRNA (16s)) 

there are many advantages and disadvantages with debates on what is more suitable for 

metabarcoding insects (Clarke et al., 2014). 16s is considered better if the aim is wide taxa 

coverage. There are also taxa that are known to have problems amplification with COI  like 

hymenopteran beneficials such as parasitoids and wild bee pollinators (Piper et al., 2021). Yet,  

there are certain characteristics of COI that make it the dominant marker to date. One is 

higher intraspecific variation thus, if species-level identification is needed then COI should be 

the marker of choice. Additionally, COI has more complete reference databases (Deagle et al., 

2019). As no perfect primer or marker exists (certain primers amplify specific taxa better than 

others) it is important to consider marker’s choice at the initial steps of the study. Equally 

important is to  optimize and test different primers in silico with software such as PrimerMiner 

(Elbrecht and Leese, 2017) or EcoPrimer (Riaz et al., 2011). For example, if a particular group 

of taxa is the target of the study (like aphids). Primers can be evaluated by checking in silico 

if DNA sequences from the target group can be amplified by that primer. Additionally, the 

number of DNA sequences (corresponding to species) for the loci of choice is an important 

factor determining successful primer evaluation . It is also important to include positive and 

negative controls and try to minimize contaminations as much as possible e.g. by having pre-

PCR and post-PCR laboratory spaces. By using a mineral oil vapour barrier in the PCR 

mastermix, sequencing negative and positive controls can increase quality control of the 

study (Kitson et al., 2019). The sequencing platform to be used should be defined in the study 

design, comparisons of sequencing experiments between Illumina MiSeq, Ion Torrent PGM 

and Ion Torrent S5, yielded similar results but currently Illumina MiSeq can give higher quality 

reads (Braukmann et al., 2019). Additionally high output platforms like the Illumina NovaSeq 

can uncover many more taxa as the sequencing depth achieved can be many times higher 

than the most common platform used to date: the Illumina MiSeq (Singer et al., 2019). There 

are also emerging sequencing technologies like the Oxford Nanopore Sequencers offering real 

time sequencing of long-reads (Krehewinkel et al., 2019). Taxonomic identification of DNA 

sequences consists of comparing known or unknown sequences from the experiment against 

a reference database containing annotated taxonomic information for sequences (Hleap et 
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al., 2021). Reference databases can contain thousands of taxonomically annotated sequences 

for organisms coming from sequencing experiments and in some cases such sequences can 

correspond to single voucher specimens (such as the BOLD database) (Ratnasingham and 

Hebert, 2007). Species or sequences that are closely related are characterized as Molecular 

Operational Taxonomic Units (MOTUs), these are identified by using cluster algorithms and a 

predefined percentage sequence similarity threshold (Ryberg, 2015). A further build-up on 

MOTUs is the Barcode Index Numbers system defined as: ‘a species-level taxonomic registry 

based on the analysis of patterns of nucleotide variation in the barcode region of the COI gene’ 

(Ratnasingham and Hebert, 2013). Finally, there are also other methods where clustering is 

not applied and Amplicon Sequence Variants or Exact Sequence Variants are inferred from 

the dataset, which can capture diversity at the haplotypic level (Callahan et al., 2016). There 

are four main categories for taxonomic assignment methods: 1) methods based on sequence 

similarity (like Blast (Camacho et al., 2009); 2) methods based on sequence composition (like 

RDP classifiers which is a classification algorithm based on a Naive Bayesian model (Wang et 

al., 2007)); 3) phylogenetic methods (based on evolutionary placement algorithms (Czech et 

al., 2022)) and 4) probabilistic methods (Hleap et al., 2021). Many comparisons for the 

methods have been made to date (Hleap et al., 2021) and on many occasions sequence 

similarity and composition methods fare better than other approaches and have been the 

most commonly used in DNA-metabarcoding studies. Finally, one of the major issues with 

metabarcoding is gaining quantitative and accurate information about the species 

abundances in the samples (Lamb et al., 2019), something that is of particular importance for 

monitoring programs. To date, NGS methods that estimate species abundance are based on 

the assumption that sequenced reads correlate with the initial input of DNA, thus if biomass 

of each species in the bulk mixture were known in advance then an estimate of the number 

of each specimen per taxonomic unit could be inferred (Gueuning et al., 2019). However, 

differential species detection rates from biases in PCR amplification (e.g. primer biases), 

starting material (e.g. some species will have more mitochondrial DNA than others, or the 

DNA itself can be more degenerate) and sequencing errors, all obscure the accuracy of such 

estimates (Deagle et al., 2019). It is suggested that mitogenomics and by using PCR-free 

methods, reliable estimation of abundance in bulk samples is possible (Gomez-Rodriguez et 

al., 2015; Bista et al., 2018), but such methods are still more costly than metabarcoding for 

routine use, can have low coverage of target sequences and high false positives leading to 
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different community compositions when compared with morphological datasets (Gueuning 

et al., 2019). For now, metabarcoding can be a very robust tool for presence/absence data 

with bulk samples which can depict similar ecological patterns to traditional datasets. 

However, there are ways of making such datasets quantitative by the use of correction factors 

(Thomas et al., 2016) or by spiking in known amounts of DNA (Deagle et al., 2019; Ji et al., 

2020). The short barcodes from Illumina reads can also be a limiting factor to the accuracy of 

the taxonomic assignment, particularly at low taxonomic levels and for complex communities 

such as insects. With the ongoing improvement of third-generation long read sequencing 

platforms such as PacBio SMRT-seq and Oxford Nanopore (MinION) this will lead to long-read 

scalable DNA-metabarcoding which can help to identify otherwise difficult taxonomic 

complexes (Srivathsan et al., 2021) and develop tools for monitoring in the field. 

1.3 Monitoring insects with DNA-metabarcoding 

 

Insect monitoring is still largely conducted using conventional morphological           

identification, and the adoption of DNA-metabarcoding has yet to be implemented within 

national insect monitoring schemes. In comparison, for example in the case of freshwater 

systems, environmental DNA (eDNA) approaches have been approved for use in monitoring 

(for example: the Great Lakes eDNA Monitoring Program) (Jerde et al., 2013). Yet the 

complexity of terrestrial systems and the difficulty of implementing changes required for 

DNA-based monitoring within already established schemes complicate the adoption of such 

methods. Despite DNA-metabarcoding being used and accepted widely as a tool for scalable 

biodiversity identification, its usability within insect monitoring has been mainly discussed in 

review articles (van Klink et al., 2022). Below I provide evidence to date where DNA-

metabarcoding has been applied for invertebrate biodiversity assessment or monitoring 

within agricultural or natural systems, highlighting its potential as a tool for monitoring but 

also for ecological research more generally.  

1.3.1 Pollinators 

 

Pollination has a major effect on global food systems and is directly related to food production. 

Pollination can account up to 8% of the global food production and it has an estimate worth 

that ranges from 235$ to 577$ billion globally each year (Potts et al., 2016). Additionally, non-
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bee pollinators can also have a big impact on local food production but the value of many 

non-bee pollinator species is not well documented (Panziera et al., 2022).  Monitoring 

pollinators is an urgent task given the recent reports on pollinator losses and declines both 

globally and within Britain (Powney et al., 2019). To date, most studies on pollinators focused 

on metabarcoding the pollen or deciphering mutualistic interactions within agro-ecosystems 

and not the insects per se (see Pornon et al., 2016; Jones et al., 2022). DNA-metabarcoding 

can be a good tool to understand species-interactions between insects and plants, which are 

time-consuming to do so by traditional morphology, and it can lead to the uncovering of 

interactions between taxa that have been previously unknown even for very common plants 

(Evans and Kitson, 2020; Lowe et al., 2022). Gueuning et al. (2019) assess three different 

methods of Next-Generation Sequencing from a monitoring program of wild bees. The 

methods were: metabarcoding, metagenomics and NGS barcoding where individual 

information is retained. Metabarcoding did yield similar ecological patterns when based on 

presence/absence data, more importantly in this context it was presented as the most 

scalable tool particularly at high sample sizes, which supports that samples from monitoring 

schemes can be reliably identified with metabarcoding. Yet, metabarcoding is not limited to 

species identification. DNA-metabarcoding can also be used to identify the effect of 

anthropogenic disturbances such as habitat fragmentation on pollinator diversity and 

interactions (Tommasi et al., 2022). Additionally, biological events such as pollinator 

migrations can also be monitored with metabarcoding, giving insights into phenomena such 

as transcontinental migrations from Africa to Europe, which might be more regular than 

previously thought (Suchan et al., 2019). 

1.3.2 Parasitoids 

 

Another group of beneficial species particularly important for pest control are parasitoids. 

Parasitoids have a direct influence in decision-making (for example on timings of pesticide 

spraying) and constitute an integral part of Integrated Pest Management aimed to minimise 

the use of pesticides by maximising      effective pest control (Zhang and Swinton, 2009). To 

date there is an ‘ecological’ need for developing tools that monitor pest predator populations 

and establishing population thresholds under which pesticide applications can be avoided, 

especially when current thresholds in the UK have been criticised as ‘outdated’ (Leather and 
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Atanasova, 2017). The use of DNA barcoding for the identification of parasitoids has long been 

appreciated (Hrček and Godfray, 2015), however as with all such methods the amount of 

samples that can be processed is minimal. DNA metabarcoding helps in reliably scaling up the 

number of individuals processed (Sigut et al., 2017). It is also possible to estimate parasitism 

rates of crop pests by linking sequence reads to abundances in the bulk DNA mixture, 

although it is very likely that these over-estimate parasitism rates (Sow et al., 2019). 

Furthermore, metabarcoding has the potential to uncover cryptic parasitoid species and 

multi-parasitism, which is difficult to achieve with rearing or even standard DNA barcoding 

(Sow et al., 2019). Despite all such recent efforts focused on beneficials, the application of 

metabarcoding with a focus on pest monitoring en masse has being scarce (Batovska et al., 

2018) (see also below). But, as with new and developing methods there is continuous effort 

to validate and create tools for pest monitoring (Miller, Polaszek and Evans, 2021). 

1.3.3 Rapid diagnostics of invading species 

 

Invasive insect species and quarantine pests are monitored routinely throughout Europe,      

mainly using specific trapping techniques (e.g pheromone traps). Then, they are identified by 

appropriate personnel, including occasionally by using DNA barcoding as they can be 

indistinguishable by morphological characteristics from closely related species  (Augustin et 

al., 2012). Invasive species can have dramatic impact on the environment and native fauna 

and flora, however their effects can remain elusive before real damage has already occurred. 

The time lag between invasion, establishment and identification makes it particularly difficult 

to predict their effects (Simberloff et al., 2013). Thus, rapid detection and control is very 

important to avoid the associated ecological and economic costs (Simberloff et al., 2013). In 

freshwater ecosystems eDNA approaches have been used for the surveillance of aquatic 

invasions (e.g.  Jerde and Mahon, 2015) yet until recently the potential of eDNA surveillance 

for terrestrial invaders have only been discussed. Valentin et al., (2018) are the first to present 

the use of eDNA for the rapid diagnostics of the non-native pest Halymorpha halys within an 

agricultural ecosystem. The crops/fruits eaten by this insect are collected all together and 

rinsed the sampled rinsed water is thenused  as the source for the eDNA extraction. Based on 

a qPCR approachminimal amounts of trace DNA could be picked up for the target organism. 

Hardulak et al., (2020)  show how DNA-metabarcoding can be used to monitor both pests and 
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invasive species within a national park in Germany by identifying invasive species of pests for 

the first time in their sampling region. DNA-based approaches can be more sensitive when it 

comes to very small populations such as the starting colony of an invasive species and can 

lead to rapid diagnostics of pests or migratory events which help asses expansion risks 

(Comtet et al., 2015). Finally, surveillance programs for invasive pests that are vectors of 

human diseases such as mosquitos require accurate and rapid diagnostics of both vector and 

virus. Metabarcoding can also be used in such cases as a sensitive tool to evaluate the 

potential risks from virus outbreaks (Batovska et al., 2018). 

1.3.4 Bycatch diversity 

 

Bycatch refers to non-target taxa trapped or collected unintentionally along with the target 

taxa. It is not a well-established concept within entomology and this might derive from a non-

universal use of the term ‘bycatch’ and the alternative versions that exists e.g. ‘non-target 

organisms’ (Spears and Ramirez, 2015). There are important scientific and ethical reasons for 

bycatch to be highlighted in the context of monitoring. Within insect monitoring schemes, 

there is a lot of bycatch although direct comparisons are scarce.  Spears and Ramirez (2015) 

assessed the number of bycatch species within the Cooperative Agricultural Pest Survey (U.S.) 

aimed at surveying three invasive moth pests. They found for one sampling period at least 82 

non-target species such as pollinators, moths, and natural enemies. The RIS bycatch has also 

been used by Pérez-Rodríguez, Shortall and Bell, (2015) by linking the Rothamsted metadata 

on the grain aphid Sitobion avenae to catches of its parasitoids from the suction traps.  What 

usually refers to by-catch could be potential target organisms within monitored ecosystems 

such as natural enemies and pollinators, but they are rarely analysed as it is prohibitively 

expensive or not the focus of the study or monitoring scheme. Metabarcoding could 

potentially complement and lead to synchronous screening of pest and beneficial insects 

altogether within pest monitoring schemes (Kitson et al., 2019; Sow et al., 2019). Another 

issue are the ethical considerations of bycatch. Malaise traps have a lot of bycatch and could 

potentially have an unknown effect on species that are trapped (e.g. rare species) yet the 

sampling effect per se is not usually considered (Fischer and Larson, 2019). As a start, rapid 

species inventories could be established for monitoring schemes via bulk sample 

metabarcoding (Yu et al., 2012), and with a bycatch species list, a more targeted and 
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comprehensive examination of the effects on particular taxa (rare species) could be assessed. 

RIS represents a rare example where all its bycatch is archived (Harrington, 2013) so it could 

be possible to look for biodiversity trends by creating time-series of the entire bycatch and at 

the same time look for anthropogenic effects such as pesticide applications. Such DNA based 

time-series are considered to have enormous potential for agro-ecological research and will 

help understand our footprint on such systems (Bálint et al., 2018). Currently I have identified 

only two examples of monitoring scheme that use all of their trapped sampled taxa: The 

Global Malaise Network (http://biodiversitygenomics.net/projects/gmp/) represents a 

unique monitoring program aimed at identifying all arthropod diversity trapped within 

Mailaise traps and the creation of species lists and barcode references globally. It represents 

an example of how species not known to science can be incorporated into monitoring 

programs via BINs and OTUs (Morinière et al., 2016). Second the DINA (Diversity of Insects in 

Nature protected areas where DNA-metabarcoding has been used to monitor insect 

communities in nature reserves in Germany (Lehmann et al., 2021). There are specific 

guidelines for the consideration of bycatch and some authors are suggesting database 

creation and storing the samples so other researchers can make use of such samples 

(Buchholz et al., 2011). As the application of DNA-metabarcoding and adoption of NGS for 

routine monitoring continues to grow. These tools will become vital for scaling up insect 

monitoring. However, as previously discussed, the validity of DNA-metabarcoding within 

already established monitoring schemes has been lacking and needs to be assessed.  

1.4 Creating species-interaction networks using DNA-metabarcoding 

 

I have so far discussed and presented how DNA-metabarcoding has been applied as a tool for 

scalable biodiversity assessment. Yet, DNA-metabarcoding can also uncover other layers of 

ecological information: ecological networks and their species interactions (Kitson et al., 2019). 

Coupling long-term archival samples from monitoring schemes recovered by DNA-

metabarcoding with advances in network science can help move towards a more mechanistic 

understanding of insect declines and the cascading effects on biodiversity and ecosystem 

function. Ecological networks describe the interactions between species, the underlying 

structure of communities and the function and stability of ecosystems (Montoya, Pimm and 

Solé, 2006). They are particularly well suited to the study of species loss and how this can 

http://biodiversitygenomics.net/projects/gmp/
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cause extinction cascades across ecosystems (Pocock, Evans and Memmott, 2012; Kehoe, 

Frago and Sanders, 2021). Whilst new network construction methods are gaining traction 

(Evans et al., 2016; Staniczenko et al., 2017) there is a dearth of understanding of the complex 

ways in which insects interact (Miller, Polaszek and Evans, 2021), and long-term species-

interaction datasets are scant, which currently limits our ability to use networks predictively 

(Raimundo, Guimarães and Evans, 2018). Insect monitoring schemes, especially those with 

preserved sample archives, hold considerable potential for the construction of highly-

resolved, long-term ecological networks, which can then be uniquely used to examine the 

impacts of environmental change on network structure, complexity and robustness (a 

measure of the tolerance to species extinctions) across scales, the impacts on ecosystem 

functioning (especially pollination, pest regulation) and new restoration methods.       

 

1.5 Summary,  thesis aims and structure  

 

NGS approaches are revolutionising the ways insect communities can be monitored. They 

offer scalable and cost-efficient approaches to identify ecological communities and their 

patterns. To date, insect monitoring schemes mainly focus on certain target taxa, yet they 

capture a diverse range of insect taxa which remain unknown: the bycatch. Applications of 

NGS approaches on samples from insect monitoring schemes are scarce and it is unclear to 

managers of schemes what the added value is. Here the overarching hypothesis is that DNA 

metabarcoding can accurately describe insect diversity, both from temporally stored archive 

samples and from spatially distributed nationwide schemes. The thesis focuses on the ‘added 

value’ that DNA-metabarcoding can offer to on-going UK insect monitoring schemes: the 

Rothamsted Insect Survey (RIS) and the Fera Yellow Water Pan Trap network (YWP), both of 

which focus on monitoring aphids but have considerable bycatch. I do this by first assessing 

the validity of DNA-metabarcoding to recover already identified archival samples of insects 

(both target taxa and bycatch) from a pest monitoring scheme. I then focus on the      

scalability of the diversity of insects being monitored with the inclusion of bycatch. Finally, I 

consider how merging NGS and the large spatial scales of pest monitoring can help to      

identify patterns of bycatch insect diversity throughout the UK. 
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Evidence of the use of DNA-metabarcoding for identifying archival samples is scarce, 

particularly in the context of insect monitoring. Therefore, there is a need for validation of 

such tools. In Chapter 2, I assess the validity of DNA-metabarcoding to uncover already 

identified archived samples from RIS. I focus on recovering a 16-year time-series of aphid 

samples that has been identified by RIS and compare the datasets coming from 

metabarcoding and morphology to assess the congruence between the two. As the 

morphological integrity of archival samples is important for the future usability and 

accessibility of such samples, I evaluate non-destructive and destructive methods of DNA-

extraction. I identify and discuss potential influences of different factors for the congruence 

of morphology and metabarcoding. Overall, the aim of the chapter is to validate DNA-

metabarcoding as a potential tool for accessing archival samples which would open up 

thousands of archival samples of insects within RIS, allowing researchers to retrospectively 

create time-series of insects and understand how their populations change with time. 

After validating DNA-metabarcoding as a tool for recovering target (aphid) archival 

communities, in Chapter 3 I focus on the bycatch diversity within RIS. The scheme has been 

archiving all their samples, bycatch or not, for decades. Identifying bycatch via morphological 

means can be very difficult. The breadth of taxa recovered and the sheer number of insect 

specimens within the samples adds complexity to its identification as sorting of specimens 

can be very time consuming and the taxonomic expertise needed to identify complex samples 

at low taxonomic levels such as genera or species might not be available. DNA-metabarcoding 

has the potential to overcome such challenges. I use DNA-metabarcoding to uncover the 

bycatch diversity within RIS by using a 16-year time series of bycatch samples. I evaluate a 

non-destructive method and provide for the first time a taxa list for bycatch taxa in RIS at a 

species level and identify potential taxa of interest in agriculture, such as pollinators, pests 

and predators, highlighting the importance of bycatch species for increasing the breadth of 

taxa being monitored. I show the value of bycatch taxa as ecological data as it is possible to 

use them to create time series for hundreds of insect taxa for which their insect populations 

remain unknown. Finally, I show how bycatch taxa not only include organisms of agricultural 

interest, but also show how it can include diversity previously unrecorded in the geographical 

regions sampled, highlighting its use for an early warning system for potential invasive species. 
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In Chapter 4 the focus remains on bycatch diversity. After validating DNA-metabarcoding as 

a tool and highlighting bycatch diversity and its potential uses, I further build up on this by 

showing how DNA-metabarcoding can be used at large spatial scales to uncover diversity 

patterns nationwide. I use the Fera Yellow Water Pan trap network (YWP), a network of yellow 

pan traps across the UK that is used to monitor aphids within farms. Here, bycatch is typically 

discarded, but I show how it is possible to retain a digital archive of it by using DNA-

metabarcoding. I show how DNA-metabarcoding can uncover bycatch diversity from sampling 

sites across the UK with more than 83 locations. A further major limitation for NGS based 

studies is the sampling effort per sample, typically measured in sequencing depth. In this 

chapter I also assess the differences between sequencing platforms with very different data 

generating capabilities. This way Iindirectly assessthe influence of different sequencing 

depths for the recovery of insect communities at large spatial scales. As money can be an 

important factor when choosing the sequencing platform, particularly in the context of insect 

monitoring appropriate sequencing depths need to be achieved for the recovered community 

to be a close reflection of the actual communities. Finally, I show how DNA-metabarcoding 

can be used to analyse patterns of diversity both spatially and temporally nationwide within 

the UK and highlight the wide diversity of bycatch found despite sampling in an agricultural 

monoculture.  

Lastly, in Chapter 5 I summarise the work and discuss further implications of this thesis and 

future directions for the use of DNA-metabarcoding within insect monitoring schemes. I 

discuss how merging the sampling from large spatial and temporal scales that takes place in 

monitoring schemes can be coupled with NGS approaches and other approaches based on 

network ecology to understand not only how insect communities change over time but also 

changes in their interactions which can hopefully give us a more comprehensive 

understanding of insect declines. 
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Chapter 2: Assessing the efficacy of DNA-metabarcoding to identify archived 

insect bulk samples: a case study using the Rothamsted Insect Survey 
 

2.1 Abstract: 
 

Insect populations are declining in many parts of the world yet, there is a lot of uncertainty 

regarding the state of insect biodiversity and population sizes remain unknown. Lack of long-

term monitoring data is a major impediment to understanding how insects respond to 

environmental changes. Next-Generation Sequencing (NGS) approaches, such as 

metabarcoding,  have the potential to revolutionize insect biomonitoring schemes by i) rapid 

identification of bulk samples; ii) scaling-up monitoring in both time and space to detect rare 

or invasive species iii) uncovering species which are difficult to identify via taxonomy and/or 

are of economic interest (e.g. pest and invasive species) or  conservation concern iv) provide 

important additional data on species-interactions (e.g. parasitism/natural pest control) that 

can help us better understand ecosystem provision within agriculture. However, it is unclear 

to what extent NGS can be applied to long-term stored insect samples. This is important as it 

could provide valuable information regarding past changes to biodiversity and/or potentially 

be used for forecasting. Here I assess the efficacy of DNA-metabarcoding to process and 

identify archived samples from the longest passive monitoring scheme in the UK: The 

Rothamsted Insect Survey (RIS). I focus on aphids as the target taxa of RIS suction-traps and 

analyse a time-series of 16 years going back to 2003 using metabarcoding in a non-destructive 

way. I show that a non-destructive DNA extraction can be a good alternative to destructive 

DNA extraction, ensuring the integrity of archival samples. I then compare the historical 

taxonomically identified dataset with the metabarcoding data I generate and show that DNA-

metabarcoding can identify most of the samples with varying success (mean of over 80%). I 

show year was not an important factor in determining congruence between the two datasets. 

Finally, I highlight the wider potential that NGS approaches have for insect monitoring 

schemes that store samples. 
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2.2 Introduction 

 

Recent studies have highlighted that insect populations are declining in many parts of the 

world (Dirzo et al., 2014; van Klink et al., 2020). However, the global status of insects is more 

nuanced but what is clear is the lack of data on diversity and population trends in many parts 

of the world (Cardoso et al., 2011), although Outhwaite et al., (2022) showed in the largest 

worldwide study of its kind using species abundance, presence/absence and richness for a 

wide range of taxa across the globe that a 50% reduction in  the abundance and 27% in the 

number of species has occurred (Outhwaite, McCann and Newbold, 2022). A lack of data 

largely stems from the difficulties associated with monitoring insects coupled with a declining 

taxonomic experts (Drew, 2011). Lately, DNA-based biodiversity monitoring have shown 

promise as a way to scale-up biodiversity monitoring (Ji et al., 2013; Bush et al., 2017) coining 

the name “Next-Generation Biomonitoring” (Baird and Hajibabaei, 2012). Given the rapid 

effects of human influence on the environment, there is a clear need for faster, more efficient 

and comprehensive techniques for biodiversity monitoring (Makiola et al., 2020). Despite the 

recent success of such approaches there is still no large-scale adoption for terrestrial systems, 

as validation is needed to assess how accurate these methods are for routine monitoring. 

Next-Generation Sequencing (NGS) based biomonitoring approaches like metabarcoding, 

mitogenomics, metagenomics can help address the difficulties associated with surveillance in 

the context of insect declines (Piper et al., 2019). 

NGS approaches have been extensively used for insect identifications (Yu et al., 2012; Zhou 

et al., 2013; Sigut et al., 2017). NGS based DNA barcoding is an approach where  DNA-

barcoding is coupled with NGS: a PCR (Polymerase Chain Reaction) step is used to amplify a 

region of interest for a single target taxon and thousands of insect specimens can be loaded 

on an NGS platform (Srivathsan et al., 2021). This approach is well established and has 

increased dramatically the number of available barcodes in sequence databases (Shokralla et 

al., 2014). DNA-metabarcoding refers to a similar approach where DNA barcodes are used to 

identify the whole community of a sample, like multiple taxa from bulk-insect samples (such 

as a Malaise, pan or suction-trap). DNA metabarcoding is still a developing field yet it is 

routinely used for bulk species identification on large-scale studies as it scales better when 

compared with NGS barcoding or metagenomics (Gueuning et al., 2019). The most used 
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region of interest for insect identification is Cytochrome Oxydase I or COI for both NGS 

barcoding and metabarcoding. Although, other markers are also gaining popularity (Marquina, 

Andersson and Ronquist, 2019). Metabarcoding has been shown to be more comprehensive 

for species identification than traditional taxonomic approaches, but more importantly it 

scales much more efficiently both in terms of costs and time (Ji et al., 2013). Lab costs are 

continuing to decline and sample sorting is typically not required, although  it can have 

advantages (Majaneva et al., 2018).  The scalability of the approach makes it an ideal tool for 

rapid-biodiversity assessment but also a tool for rapid diagnostics of pests or non-native 

species of economic importance (Kitson et al., 2019; Piper et al., 2019). 

DNA metabarcoding of insect samples is not without its problems. It is affected by 

contamination and biases induced by PCR that can cause: a) mis-identifications; b) 

amplification of non-target taxa; and c) primer-template mismatches that minimize the 

potential for metabarcoding results to be quantitative (i.e. infer abundance information from 

reads) (Krehenwinkel et al., 2017). An approach that avoids the PCR bias is ‘metagenomics’ 

where the PCR amplification step is skipped, and multi-taxa identification is based on whole-

genome sequencing.  In a landmark study, Ji et al., (2020) constructed a metagenomic pipeline 

to process historical samples from an insect monitoring scheme in the artic that retains 

abundance information.  Whilst metagenomic approaches are state-of-the-art, they require 

high-quality DNA, which is difficult to obtain from highly degraded archive samples. Moreover, 

the sequencing depth needed for such approaches can make the use of metagenomics for 

many and complex samples prohibitively expensive (Gueuning et al., 2019). Nonetheless, the 

study highlights the overall potential of using NGS approaches on insect archival samples, 

with considerable applications for understanding insect responses to environmental change 

(Petsopoulos et al., 2021).  

Currently, one of the biggest impediments for using metabarcoding for biomonitoring is the 

destructiveness in the DNA extraction protocols in order to yield high quality DNA. Advances 

in non-destructive sample processing, however, show that such approaches can be 

comparable to homogenized tissue methods (Carew, Coleman and Hoffmann, 2018). 

Methods can vary considerably from quick tissue digestions to extraction of the preservative 

within the sample, but most of them depend on tissue digestion for a minimal amount of time, 

where lysis of tissue can happen between minutes or hours (Zizka et al., 2018; Batovska et al., 
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2021). Depending on the chemical or the time of the digestion morphological damage can 

occur, particularly to soft bodied insects. However, a range of other biases still exist: for 

example it was shown that with a non-destructive DNA extraction method, morphological 

characteristics such as sclerotization and molecular traits like primer-template mismatch can 

all affect the taxonomic composition of the samples (Martoni et al., 2022). Despite all the 

biases that exist, the benefits of such approaches can overcome the drawbacks where 

preservation and accessibility (future or not) of specimens is considered important i.e. when 

the aim is establishment of a species inventory like in many cases of long-term monitoring 

schemes.  

Here, I develop and evaluate the application of DNA-metabarcoding to a historic insect 

monitoring scheme in the UK: The Rothamsted Insect Survey (hereafter as RIS (Harrington, 

2013)). RIS has been monitoring aphids and moths since the 1960s by using networks of 

suction and light traps respectively. A key aim of the network is to provide farmers with 

information on the timing and size of aphid migrations to prevent heavy prophylactic use of 

insecticides. I focus on the aphid fraction over a 16-year time-series from 2003-2018: aphids 

are taxonomically identified to species level and subsequently archived.  My aims are: i) to 

establish a non-destructive metabarcoding approach to process historical stored samples; ii) 

assess congruence between the taxonomically identified dataset and the metabarcoding one; 

iii) identify potential limiting factors (age of sample, sequencing depth, biases associated with 

non-destructive protocols) when processing such samples, iv) determine the added value that 

such approaches offer to insect monitoring schemes by unlocking previously untapped 

resources of insect specimens. 

 

2.3 Materials and Methods 

 

2.3.1 The Rothamsted Insect Survey suction-trap samples: 

 

The suction-trap network currently comprises 16 traps (12 in England, 4 in Scotland, see 

Figure 2. 1), each 12.2 m tall that continuously measure the aerial density of flying aphids and 

provide daily records during the main aphid flying season (April–November) and weekly 

records at other times (https://insectsurvey.com/). The network has been operational from 
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1964 till present.  Just over 400 of the 600 aphid species on the British list aphid have been 

recorded to date. Samples, both of aphids and ‘bycatch’, are stored and are available for 

further research. A unique aspect of RIS is that all the samples have been archived. However, 

mainly the aphid fraction has been identified to species level as they compromise the main 

target taxa. Aphids from 1968-2002 have been cleared for identification purposes in a 

formalin solution that removed internal tissues, therefore these samples cannot be 

determined by DNA analysis. From 2003 onwards samples have been well preserved in 100% 

ethanol:glycerol solution at a ratio of 95:5 which slows DNA degradation more efficiently than 

other solutions (Kagzi et al., 2022). For this reason, I focused on a subsample of a 16-year 

time-series (2003-2018) from a single suction-trap (Newcastle suction-trap) where aphids 

have been preserved at room temperature.  

 

Figure 2. 1 The Rothamsted Insect Survey (RIS) suction trap network with 16 suction traps 
across the U.K. 

2.3.2 Sample collection 

 

I collected two monthly samples from the archive between May-October 2003-2018 imposing 

use-case criteria for the number of aphids within those samples. Specifically, sampled dates 
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must have a total number of aphids within ± one standard deviation from the overall aphid 

mean count of the corresponding month. This was mainly done as a rule of a thumb for logistic 

reasons (i.e., fitting all samples in a single sequencing run) but also to avoid samples with 

extreme number of aphids within tubes (>300). Note that the majority of samples within the 

Newcastle trap were below 100 individuals in every sample, but exceptions did exist (See 

section A.1; Table A. 1). This way, I standardized consumable volumes and sizes for the whole 

experiment. The resulting timeseries includes more than 66% genera (67 genera, 122 species) 

found in the complete daily time series of the Newcastle suction-trap, which included over 

2500 samples (105 genera) between 2003-2018. This is a good representative sample (in 

terms of species coverage) from the series. The samples totalled 183, aiming for 12 samples 

per year (split in two datasets, see below). 

2.3.3 Non-destructive extraction 

 

As RIS wishes to retain insect samples for future researchers, I aimed to extract the DNA non-

destructively by using a short-digestion time lysis step. The damage that can be done to the 

tissue is dependent on the time that the tissue is digested and the lysis buffer used (Carew et 

al., 2018 Piper et al., 2022). I used a bead based protocol[protocol #6.3] (Oberacker et al., 

2019) with slight modifications on the amount of lysis volume used to adjust it for different 

sample sizes (in terms of numbers of aphids) (see Table A. 1; Appendix A). To establish the 

minimum amount of time required for the lysis digestion before damage to the tissue became 

visible, I conducted a preliminary experiment: 5 extra samples were chosen for testing on 3 

different lysis digestion times: 1h, 2h, 6h (see Table A. 2 Appendix A), with amplification 

success assessed on a gel. Morphological damage was assessed on a microscope in 

accordance with taxonomists at the RIS. From those samples, the 1h digestion did not amplify, 

but samples with 2h showed almost no morphological damage and amplification success was 

high. Finally, samples for 6h showed slight tissue digestion damage and high amplification 

rates (see Figure A. 1; Appendix A). For the remaining 183 samples of the time series, I split 

them randomly in two datasets by using the “sample” function in R (v. 4.0.1, R Core Team 

2021): 91 samples were extracted with a 2h treatment and 92 with the 6h treatment. This 

was done to assess any influence of digestion time on overall results. Note that samples in 

each treatment compromised 6 dates per year, one for every month of the sampled period 
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(12 per year in total for both datasets, except for missing dates due to trap inoperation). The 

initial digestions were carried out in 1.5 mL tubes, after which 62 μL of lysate was transferred 

to 96 well plates (irrespective of initial lysis volume). This was done to standardize volumes 

and use the same volumes and steps as the protocol. Finally for each plate, I included a DNA 

extraction positive and a DNA extraction negative. The DNA extraction positive was tissue 

from an ichneumonid pollinator wasp belonging to the genus Acrolyta. The DNA extraction 

negative included all reagents used for the DNA extraction and molecular grade water. All 

DNA extractions where quantified on a Qubit 4 (Thermo Fisher Scientific) with the 1x High 

Sensitivity assay.  

2.3.4 PCR amplification and library preparation 

 

I followed the nested-tagging method by Kitson et al., (2019) that uses a combinatorial 

indexing approach to multiplex samples. I targeted a 313 bp fragment of the cytochrome C 

oxidase subunit I barcode regions with the primers mLCOintF and jgHCO2198. The reason I 

decided the COI loci is because for aphids but also all other terrestrial arthropods there are 

very well covered and curated reference databases (Coeur d’acier et al., 2014) the same is 

not true for most other markers regions. This specific primer pair has been one of the most 

successful and widely used degenerate primers to characterize metazoan communities (Leray 

et al., 2013). It has also been used widely for arthropod community discovery (Geller et al., 

2013; Porter and Hajibabaei, 2020). The size of the amplicon (313 bp) makes it also suitable 

for degraded samples such in our case. Although other primers do exist for the COI region 

(e.g. BF1R2 see Elbrecht and Leese, 2017) these have not been widely used for terrestrial 

insects and in the largest primer evaluation study so far the primer pair of choice comes 

amongst the top primers for insect identification particularly for Hemiptera (Piper et al., 2023). 

For all of the above reasons, I believe that our choice of primer is justified, and we proceeded 

with these primers for all of the remaining chapters except otherwise stated. Note that these 

are modified from Leray et al., (2013) and they include the standard Illumina molecular 

identification tags, bridge sequences and heterogeneity spacers (see Kitson et al., (2019) for 

details). PCR’s were carried out over 40 cycles (95oC for 45 seconds (s), 51 oC for 15 s and 72 

oC for 45 s in 20μL reactions using a high fidelity Taq mastermix (MyFi Mix Bioline), 2 μL of 

template DNA and each primer (final concentration at 0.5 μM). Our reasoning for more PCR 
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cycles here is that DNA from these archival samples is expected to be limited, with minimal 

amounts of DNA left, studies have shown that cycles above the routinely used ones (20-30 

cycles) are often preferred for old specimens (Vierna et al., 2017). To further prevent cross 

contamination the wells were sealed using mineral oil, before all the other reagents and 

template DNA were added. Two PCR controls were used per plate, a PCR positive which was 

already extracted DNA from a moth belonging to the genus Operophtera and a PCR negative 

which included all PCR reagents but had no template DNA. 

PCR success was checked using 5 μL of PCR products on 1.5% agarose gels. PCR negatives and 

DNA extraction negatives did not show any bands. I then conducted a bead-based 

normalisation by using 0.6:1 ratio of Solid Phase Reversible Immobilizations beads (SPRI) (9 

μL) and 15 μL of PCR template for each sample. After clean-ups and prior to library 

preparation I pooled the samples in groups of 16, from which 4 μL from each sample was 

taken to create each pre-library. This process generated 12 libraries, 6 for every plate. This 

was done to further increase sequencing diversity during the initial cycles of the sequencing 

run this was suggested by the sequencing centre (Genomics Core Facility at Newcastle 

University) and results from a previous trial that included only one library and 40 samples for 

validation purposes (to see whether sequencing was successful before committing to a full 

MiSeq run) failed to produce any passing reads. To create each of these libraries I used a 

second PCR (PCR2) with 12 cycles (95oC for 45 s, 51 oC for 15 s and 72 oC) and a final extension 

step of 5 min at 72 oC in 20 μL reactions using 5 μL of each pooled library, the same Taq (MyFi 

Mix Bioline) and each of the respective Illumina N5 and N7 adapters (at a concentration of 1 

μM). For each library a PCR2 negative was also included. All libraries and PCR2 negatives were 

checked on gel. No bands were visible for any of the negatives. All of the controls pre and 

post PCR were sequenced along with the samples. I then performed a PCR2 clean-up to 

remove fragments smaller than the target amplicon by using 0.6:1 ratio of SPRI beads to 

template (9μL and 15μL respectively). After cleaning the libraries, they were checked on an 

Agilent TapeStation and were pooled equimolarly at approximately 7.6 ng/μL. The pooled 

final library was then sequenced on an Illumina MiSeq using a V3 (2x300) kit and 500 cycles 

(2x250) at the Genomics Core Facility at Newcastle University. 

2.3.5 Bioinformatic analysis 
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Sample demultiplexing within individual libraries was done on the software MetaBEAT 

(https://github.com/HullUni-bioinformatics/metaBEAT). Only reads with the used 

combination of tags were kept. All other analyses were conducted in R (v. 4.0.1, R Core Team 

2021) except if stated otherwise. The demultiplexed data were processed using package 

DADA2 (Callahan et al., 2016), removing primers using cutadapt v1.18 (Martin, 2011). DADA2 

filtered and trimmed sequences based upon read quality removing any reads with ambiguous 

“N” bases with the “filterandtrim” function.  I then merged pair-end reads, removed chimeras 

with the “removeBimeraDenovo” function and finally inferred Amplicon Sequence Variants 

within DADA2. All of the functions were used with the default arguments. Taxonomy was 

assigned using two methods in order to assess their performance: first I used a trained RDP 

classifier with the Insect package (Wilkinson et al., 2018) with a database and the classifier 

included within the package. Secondly, I used “blastn” function on the command line 

(Camacho et al., 2009) with a curated database for all Metazoa downloaded from the MIDORI 

database 2 (Leray, Knowlton and Machida, 2022) to assign taxonomy and kept only the top 

hit for each ASV. More specifically, I kept only hits that had more than 99% query cover and 

100% percent identity. For ASVs that assignment was not possible at the species level, only 

genus level information was kept. The remaining analysis was based on the packages phyloseq 

(Mcmurdie & Holmes, 2012) and vegan (Oskanen et al., 2020) see below. 

2.3.6 Statistical analyses 

 

To assess congruence between the morphological dataset (hereafter described as MOTA) and 

the metabarcoding (hereafter described as META) one, I used base set functions in R 

(“intersect”, “setdiff”) to identify percentages of common and different taxa for two 

taxonomic levels: genus and species. Both of these functions use character strings, therefore 

I first standardized taxonomic annotations between the two datasets in R using the tidyverse 

package (Wickham et al., 2019). Additionally, I’ve identified false positives and false negatives 

based on which taxa were found on META but not on MOTA. Taxa that were only identified 

at the family level on MOTA were dropped. An ANOVA was performed between the number 

of sequencing reads for each sample from the two treatments after the reads have been log 

transformed using the “log” function in R, to investigate if there was statistically significant 

difference in the output between the treatments. To see whether sequencing reads were 
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correlated with the abundance captured in the morphological dataset for the main taxa 

captured I performed a linear regression between these two in R after log-transforming the 

counts and reads. A further ANOVA was performed to examine whether the two treatments 

had an effect on congruence (measured as percentage of common species after transforming 

with the “log” function in R). I also applied sequencing thresholds for each sample to filter 

potential sample-to-sample contamination that might have resulted from RIS sample 

handling. The RIS handles samples daily by separating the aphid fraction from the bycatch, as 

multiple people work with the same samples, cross-sample contamination by using the same 

sorting equipment is possible. We therefore wanted to minimize this uncertainty of cross-

contamination by using sample thresholds which are known to control for this (Drake et al., 

2022). The thresholds were 1% and 0.5% of sample counts for each genus or species meaning 

that taxa with reads less than 1 or 0.5% of the sample were discarded. The same thresholds 

were used at the species level. To identify the level of false positives or false negatives within 

the pre-filtered dataset and filtered ones I’ve counted species mismatches between MOTA 

and META. Additional taxa within each sample that were identified by META but not MOTA 

were treated as false positives, whereas false negatives were taxa not found by META. Finally, 

to understand which of the factors influenced congruence I used a binomial generalized linear 

model (GLM) with congruence as a response variable and year, sequencing depth (log 

transformed reads) and sample evenness as predictor variables using the “glm” function in R 

accounting for possible interactions between the year and sequencing depth (model formula: 

Congruence ~ year+ sequence depth + sample evenness + year:sequencing depth, family = 

“binomial”). 

2.4. Results 

 

2.4.1 PCR success and sequencing results 

 

Overall, PCR success was 94% meaning that 173/183 samples produced a visible band on a 

gel. The run produced 23,000,000 reads (including PhiX), after demultiplexing 16 million reads 

were retained. After filtering, denoising, merging and chimera removal a total of 9,073,750 

were retained. Reads per sample ranged from 484 to 256,137, there was very high variability 

between samples with a median 32,970 (1st quartile: 16,443, 3rd quartile: 71,883) whilst the 
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mean was 48,523 (± 44,978). Unsurprisingly, the samples with the lowest number of reads 

were the ones where amplification was not evident on an agarose gel (10 samples with reads 

less than <3700). Additionally, no reads from the DNA extraction or PCR negative passed any 

initial filters and DNA extraction, and PCR positives were not found in any of the other samples, 

suggesting minimal sample to sample contamination. There were no significant differences in 

the number of total reads for both treatments of digestions (ANOVA; F1,182=0.77, p=0.37).   

2.42 Morphology vs metabarcoding 

 

Out of the 8,670,304 reads assigned to Hemiptera, 8,008,230 (92%) were assigned to genus 

level whilst 2,775,306 (36.1%) were assigned to species level when using the RDP classifier. 

However, of the 8,421,887 (97.1%) reads assigned to Hemiptera with Blast: 8,288,369 (95.5%) 

were assigned to species level and only 133,518 (0.01%) reads where assigned only to genus 

level or higher (family, order or class). I therefore present Blast results for all analyses except 

if mentioned otherwise. META consisted of 61 unique genera and 120 unique species. In 

comparison, MOTA compromised of 69 unique genera and 99 unique species (71% 

congruence for genera and 80% for species, see Figure 2. 3A). Out of the 15 genera not 

identified by META only two genera had more than 3 individuals across the time series: 

Rhopalosiphonius and Mindarus with 6 and 4 individuals. All the rest of the non-identified 

genera had less than 3 individuals across the time series with half of them having <2 

individuals. The two dominant genera in the metabarcoding dataset were Drepanosiphum 

and Rhopalosiphum with 59.62% and 14.35% of total reads assigned to them respectively. A 

similar pattern was seen in the morphological dataset. However, Drepanosiphum (13.5% of 

total counts) were most abundant in the metabarcoding dataset whilst Rhopalosiphum (43% 

of total counts) were most abundant in the morphological dataset (see Figure A. 2; Table A. 

3; Table A. 4). Overall, there was significant positive correlation between the number of 

individuals in MOTA with the reads from META (R2 = 0.56, p-value= 1.079e-09, see Table 2. 1 

Figure 2. 2) 

 

 

Coefficients Estimate Standard error t-value Pr (>t) 
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Intercept -1.96 0.71 -2.76 0.008 ** 

Counts 

metabarcoding 

0.57 0.07 7.70 1.08e-09 *** 

Table 2. 1 Results for the linear regression between morphological counts and counts from 
metabarcoding (both after log-transformed). Two asterisks (**) show significance at the 
0.001 level while three asterisks (***) show significance at the 0.0001 level. 

 

 

 

Figure 2. 2 Plotted best fit for the linear regression between counts from the morphological 
dataset and counts from the metabarcoding one (R2 = 0.57). 
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Figure 2. 3 A) Venn diagram for the two datasets (META and MOTA) at the genus level. B) 
Congruence across the two taxonomic assignment methods: BLAST (light grey) and RDP (light 
yellow) 

 

There were no significant differences between the two treatments in the percentages of 

congruence (ANOVA; F1,182 = 0.161, p= 0.68). The percentage of congruence between both 

datasets showed high variability with a mean of 71.37 % (±20.39%) for genera for RDP and 

80.75 % (±19.21) for BLAST. Between years the average percent of congruence varied from 

69.80 % for year 2013 to 87.90% for year 2014 (see Figure 2. 3B for percentages throughout 

the years; Table 2. 3). For species level analyses the mean was found much lower with a mean 

of 49% for all the years (see Figure 2. 5 A;). The average number of taxa found as false positive 
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in META was 4 whilst false negatives had an average of 1.21. By using the sequencing 

thresholds of 0.1 and 0.5, the average number of false positives fell between 1.07-1.25 and 

the number of false negatives increased to 3.55 and 4.60 depending on the threshold. At the 

species level the false positives had a mean of 4.6 whilst false negatives had a mean of 2.34, 

the mean of false negatives dropped to 0.80 and false positives increased to 5.5 after applying 

the criteria. Unsurprisingly, congruence also fell to 50 and 40 % (see Figure 2. 4B and 2. 4C) 

for genera whilst for species it fell to 23% (see Figure 2. 5B). Year was not found to significantly 

affect congruence, neither did sequencing depth or any of the predictor variables was found 

significant in explaining congruence (see Table 2. 2) 

 

Coefficients Estimates Standard error z-value Pr(>z) 

Intercept 207.164 886.016 0.239 0.811 

Year -0.103 0.430 -0.241 0.809 

Eveness 2.280 1.595 1.429 0.153 

Sequence 

depth 

-24.378 84.364 -0.289 0.773 

Year:Sequence 

depth 

0.011 0.041 0.292 0.770 

Table 2. 2 Results from the binomial generalized linear model for factors explaining 
congruence as similarity 
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Figure 2. 4 Congruence across time: A) No sample filtering % threshold applied, B) 0.5 % 
Sample threshold applied, C) 1 % Sample threshold applied 
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Figure 2. 5 Congruence across time for species level analysis: A) No sample % threshold 
applied, B) 1 % threshold applied 

2.4.3 Non-aphid taxa in sequences 

 

BLAST assigned 8,670,304 (92.1% of total reads) reads to Hemiptera (aphids and adelgids, 

which compromised the target taxa), 158,431 (1.74%) reads were assigned to other 

Arthropoda taxa, 1,304 (0.014%) reads were assigned to Chordata and 242,699 reads (2.64%) 
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were either assigned as root (i.e no identification was made) or were assigned to lower than 

Phylum. Total reads information entering and exiting the DADA2 pipeline can be found in the 

Appendix A; Table A. 1. Reads that were assigned taxa other than the target taxa included 

common possible contaminants of RIS (Human and bird DNA) and other arthropod taxa 

commonly found within the samples before aphids are separated from the rest of the catch 

(see Figure 2. 6). The most abundant non-aphid orders were Diptera (54 samples), Diplostraca 

(9) and Hymenoptera (63). In the case of Hymenoptera over 50% of our samples had reads of 

aphid parasitoids. Certain samples were inspected for presence of non-aphid taxa such as 

Diplostraca (Daphnia magna) due to the high number of reads and because I believe it was 

unlikely to occur within RIS suction-traps. These taxa were not found and therefore I am 

uncertain if this is pre or post PCR contaminant. From the nine samples that had Daphnia 

manga reads one sample had 97.2% (24334) of those reads. However, certain samples did 

have other arthropods which included mainly Diptera, Thysanoptera and Psocoptera (See 

Figure 2. 6 for reads assigned to non-target taxa).  As I was mainly interested in the target 

(identified) taxa and the congruence between morphology all analyses included only reads 

assigned to aphids (excluding the genus Adelges) except if otherwise mentioned. 
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Figure 2. 6 Order level information on the read abundance for non-target taxa across the 
whole dataset 
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Year Mean (s.d) 

congruence 

RDP 

Mean (s.d) 

congruence 

BLAST 

Number of 

unique genera 

morphology 

Number of 

unique genera 

metabarcoding 

2003 72.3 (± 22.2) 80.1 (± 21.5) 31 24 

2004 61.8 (± 19.1) 70.8 (± 20.6) 32 22 

2005 58.1 (± 22.9) 71.4 (± 24.5) 34 21 

2006 74.4 (± 21.2) 87.6 (± 13.1) 22 18 

2007 66.7 (± 14.2) 76.7 (± 13.2) 34 26 

2008 62.5 (± 18.2) 77.0 (± 24.4) 28 24 

2009 82.4 (± 12.2) 87.2 (± 12.4) 19 19 

2010 77.6 (± 23.2) 83.1 (± 21.3) 23 16 

2011 73.4 (± 15.1) 88.3 (± 12.1) 32 27 

2012 67.5 (± 15.4) 80.4 (± 16) 30 19 

2013 59.5 (± 25.8) 69.8 (± 25.9) 28 19 

2014 83.3 (± 18.5) 87.9 (± 18.7) 20 16 

2015 78.2 (± 16.2) 86.4 (± 14) 33 21 

2016 73.3 (± 17.5) 83.0 (± 11.1) 29 25 

2017 82.7 (± 17.7) 84.7 (± 17.4) 25 22 

2018 69.3 (± 29.8) 77.6 (± 28.5) 31 28 

Table 2. 3 Congruence measured as percentage for each year along with the number of 
unique genera identified by morphology and metabarcoding 
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2.5 Discussion 

 

In this study I have demonstrated that DNA-metabarcoding can successfully identify insect 

species from long-term monitoring archive samples, and that this can be achieved non-

destructively. I identified aphids (and other species) that have been archived for more than 

18 years (albeit with varying DNA recovery success between years) despite the non-optimal 

conditions of the RIS collection (see below). Taxonomic identification fared slightly better 

than DNA-metabarcoding when assessed by congruence, which highlights the need to 

combine the two approaches (Keck et al., 2022) . However, I show that it is possible to recover 

over 70% of genera within our time-series with DNA-metabarcoding that requires little 

taxonomic knowledge.  Our study further highlights the added value of non-destructive DNA-

based approaches for archival samples of insect collections, the importance of such 

collections but also their limitations. 

 

2.5.1 Looking back in time: taxonomy vs metabarcoding 

 

The congruence between taxonomy and metabarcoding varied by year. However, there is no 

clear linear relationship between them (see Figure 2. 3). This is important for collection-based 

research and particularly for RIS which has been archiving their samples since the 1970s. I 

here successfully analysed samples from one trap across a 16-year period. RIS compromises 

of 16 traps across the UK and daily catches of aerial insects are all collected and archived from 

all traps, most of the insects trapped remain unidentified as it would require a monumental 

effort to do this using taxonomy alone. In an era where long-term data are lacking making 

those samples accessible via DNA-metabarcoding can open new avenues for insect decline 

research (Petsopoulos et al., 2021) and fill gaps on insect species populations that are still 

unknown in the UK. The taxonomical dataset compromised 15 genera unidentified by 

metabarcoding. This could be for a number of reasons, such as PCR-bias and primer-template 

mismatches (Alberdi et al., 2018). The latter is known to be a problem for aphids in particular 

(Batovska et al., 2021), yet whether different primers could fair better was beyond the scope 

of this study. Unidentified genera in the metabarcoding dataset mostly compromised of rare 

taxa (in abundance of 1-3 individuals) which can be difficult to identify when the samples are 
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dominated by other species. Despite these few genera, read counts overall were well 

correlated with morphological counts as seen by the linear regression (Fig. 2.2). As monitoring 

schemes need quantitative information on abundance to inform farmers on pest risk level, 

which indicates the quantitative nature of DNA-metabarcoding despite it being biased by 

multiple factors (Martoni et al., 2022).  Additionally, Drepanosiphum was the most dominant 

taxon in META whilst Rhopalosiphum was in MOTA. As Drepanosiphim is much larger than 

Rhopalosiphum this might have altered the relationship of read counts/morphological counts 

between the two here as larger insects can be overrepresented in the resultant community 

(Elbrecht et al., 2017). Surprisingly, evenness of the sample, sequencing depth or year were 

not found to significantly affect congruence which means that other factors are more 

influential. Our approach could not identify factors that affected congruence. Another option 

would be to try and partition bias influence throughout the protocol steps (Martoni et al., 

2022) could potentially help identify which factor was most influential however our study was 

not designed for that. Congruence was higher on average when using Blast for the taxonomic 

assignment compared to the RDP classifier, which further validates the need for more careful 

application of “newer” methods for taxonomic assignment (Hleap et al., 2021). Overall, 

however, our study demonstrates that metabarcoding archived bulked samples shows 

considerable potential for unlocking insect time-series data. 

 

 

2.5.2 A non-destructive approach for collections 

 

 To obtain high-quality DNA, destructive methods are usually applied, which is one of the 

reasons why collection samples are typically not processed (Raxworthy and Smith, 2021). This 

is especially true for old specimens where the DNA has been degraded after many years of 

collections even under optimal preservation conditions. RIS samples are stored in 100% 

ethanol:glycerol solution at a ratio of 95:5 at room temperature, which while cost-effective, 

is not ideal for DNA-preservation. However, I show that a non-destructive DNA extraction 

approach can accurately be used for sample identification irrespective of sample age as there 

was no difference between the destructive and non-destructive approach presented here. 

This is in line with other research suggesting non-destructive methods as an alternative for 
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DNA-metabarcoding (Martoni et al., 2022). The approach used here relies on “quick” 

digestion of samples without external morphological damage. The quantity of the DNA 

extracted typically is influenced by the time of digestion and sclerotization of the species 

themselves (Carew, Coleman and Hoffmann, 2018). Aphids are soft-bodied insects and I found 

that a 2-h digestion was sufficient for species recovery. This also helps on bringing down DNA-

extraction time which is important for DNA-based monitoring where the time from collection 

to identification is vital as for example in the case of invasive species (Piper et al., 2019). But 

most importantly it ensures the future usability of such samples, like creating voucher 

specimens. There are approaches that are even faster (see Batovska et al., 2021) during the 

DNA extraction step than the one presented here but it is uncertain how such approaches 

would fair with degraded samples further research would be needed to validate this.  

 

2.5.3 Contamination issues 

 

The way samples are handled by RIS, which pre-dates advances in molecular ecology, means 

that some sample-to-sample contamination is inevitable. Metabarcoding is usually very prone 

to this type of contamination because of the PCR amplification step. Reads where assigned to 

other arthropod taxa and other common contaminants (like human DNA), but no reads were 

found in our negative controls therefore I believe this contamination comes pre DNA-

extraction and can be attributed to sample handling in RIS. Some taxa found in our study 

besides aphids include commonly trapped insects in RIS and in rare cases, after re-

examination of the samples under a microscope, certain insects like chiromonids and thrips 

were found in the aphid samples. Of particular interest were braconid parasitoids, 5 species 

of which all are aphid parasitoids had reads in more than 50% of the samples. This could either 

be contamination from the “by-catch” fraction of the samples before the aphids get separated 

into different tubes or represent real parasitism of flying aphids which is known to occur 

(Walton, Loxdale and Allen-Williams, 2011). If parasitized aphids are present within the tubes 

then there is a unique opportunity for constructing long-term host-parasitoid interaction 

networks (Petsopoulos et al., 2021). However, this would require a different approach to the 

one presented here, with single aphid individuals processed through high-throughput DNA 

barcoding to validate whether it is parasitism or simple contamination. Perhaps, the most 
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limiting factor in this study is sample-to-sample contamination from aphid species themselves. 

The DNA metabarcoding dataset did in some cases reveal more aphid species than the 

morphology or identified completely different species. For example, in 30 samples DNA-

metabarcoding had more unique genera than the morphological dataset. Example of genera 

not found in the morphological dataset include: Pachypappa, Pineus, Hyalopteroides, 

Ericaphis. In our case, where the samples have been already identified I could be informed in 

our decision as to which species are truly there or not. However, by applying sequence 

thresholds (here applied as a percentage of reads within a sample) this source of 

contamination can be minimized (Drake et al., 2022). This process did drop the taxa identified 

only by metabarcoding (false positives) but also caused a significant drop in overall 

congruence between the datasets as rare taxa truly present would be dropped (false 

negatives, see Figure 2. 3). Further research could focus on validating whether this is actual 

contamination or represents true incongruence between taxonomy and metabarcoding by 

processing individual aphids within samples. Although, there are other approaches that can 

minimize even more contamination for example, increasing technical replicates like PCR 

replicates (Yang et al., 2021), because contamination in RIS has been introduced during 

sample processing it would be better to avoid the PCR step altogether. Ji et al., (2020) present 

such a mitogenomics approach for another insect monitoring scheme that also “suffers” from 

the same type of contamination where they successfully revisit archival samples. However, 

the cost of mitogenomics can still be comperatively hight when compared with DNA-

metabarcoding and the cost doesn’t scale well with increasing sample size (Guening et al., 

2019). RIS represents an archive of tens of thousands of daily bulk insect samples therefore 

an unprecedented potential to construct time-series for thousands of insect species. 

Thankfully, with the drop of sequencing costs these approaches could ultimately become the 

alternative. 

 

2.6 Conclusions 

 

Our study is the first attempt to assess the efficacy of DNA-metabarcoding for determining 

species identity of long-term stored aerial suction-trapped insects. I showed high congruence 

across years and managed to do so in a non-destructive way, meaning that metabarcoding 
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shows great potential for better understanding long-term insect trends using RIS. The biggest 

limitation of this approach are contamination issues that are likely due to the way insect 

samples are handled and processed in RIS, which is important to know as suggestions can be 

made on how to ensure future samples are contamination free by applying best practices. 

The archival collection of RIS includes thousands of un-identified insect bulk samples 

(bycatch) that could next be processed using metabarcoding. The temporal (50+ years of daily 

samples) and spatial (16 locations across the UK) characteristics of it make RIS a treasure vault 

for insect research. Perhaps, RIS is unique in that sense, but other insect monitoring schemes 

exist in other countries, our study highlighted how samples from such schemes can be 

accessed via DNA-metabarcoding in a non-destructive way. 
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Chapter 3: Unlocking the potential of insect ‘bycatch’ using metabarcoding for 

biodiversity research 

 
3.1 Abstract: 

Insect biomonitoring schemes can have a lot of “unwanted” insect taxa trapped within their 

networks. These taxa, referred to as bycatch, can be seen as important biodiversity 

information. However, bycatch taxa rarely get identified or stored, which results in 

information loss that is unfortunate given the lack of data on general insect populations and 

particularly long-term data. There are many reasons why bycatch is not analysed, many of 

which have to do with financial constraints, or the lack of experienced personnel to identify 

diverse assemblages of insect taxa. Future biomonitoring tools, some of which are based on 

Next-Generation Sequencing, can scale up the way biodiversity is monitored by providing an 

efficient way to identify taxa in bulk, but is not dependent on taxonomic expertise. However, 

bycatch diversity still remains largely unknown, and it is unclear whether DNA-metabarcoding 

can describe bycatch diversity as this has not been tested, particularly from long-term stored 

insect samples. Here I focus on the bycatch fraction of a long-term monitoring scheme in the 

UK: The Rothamsted Insect Survey (RIS) suction trap network which monitors aphids but has 

also been storing bycatch taxa since the 1970s. I use DNA-metabarcoding to identify bycatch 

diversity from a 16-year time series from 2003 to 2018. I identified more than 800 arthropod 

species throughout the time series with the majority being Diptera. I showcase the potential 

of building time series from multiple taxa assemblages with DNA-metabarcoding highlighting 

bycatch as a valuable source for insect time series data. I found more than 25 aphid 

parasitoids and over 70 pollinators demonstrating the importance of bycatch to identify 

beneficial insects or potential pests. Finally, I highlight the potential of bycatch to scale-up the 

scope and breadth of biodiversity being monitored using DNA-metabarcoding in traditional 

biomonitoring surveys. 
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3.2 Introduction: 

 

The term ‘bycatch’ which refers to non-target taxa captured within a sample, is mostly 

associated with the fishing industry, as non-target taxa that are captured can be of high 

conservation value and significant research and investment has gone into mitigating this 

(Komoroske and Lewison, 2015). Likewise, insect bycatch consists of non-target taxa trapped 

along with target organisms. Most of which is often discarded by researchers although there 

are notable exceptions (Petsopoulos et al., 2021). Research efforts have focused on the effect 

of physical, visual and even chemical characteristics of the trapping methods for non-target 

taxa and how to minimize non-target taxa capture (Spears et al., 2016; McCravy, 2018). For 

example, by changing the colour of water pan traps to attract less taxa or by narrowing the 

size of pitfall traps and even changing the chemical composition of pheromones used for 

trapping. However, bycatch can provide valuable biodiversity information such as species 

discovery, detection of pests or invasive species and it can also be used to provide more 

holistic ecological data for local insect populations (Hribar, 2020). In the context of insect 

declines bycatch can help increase the breadth of taxa assessed for long-term population 

changes, as currently the focus has been on a few set target taxa or charismatic groups 

(Rocha-Ortega, Rodriguez and Córdoba-Aguilar, 2021) where data are readily available. 

Bycatch also consists of a sample not only of taxa per se but of many known and unknown 

species interactions which could be uncovered with the aid of next-generation sequencing, 

ultimately leading to information beyond taxonomy that can be used to understand how 

ecological networks of species change through time (Petsopoulos et al., 2021). Yet, despite 

its potential use, there are limited examples to date where bycatch species are identified or 

used for analyses and this is particularly true for mass trapping programs where bycatch 

species can often outnumber the target taxa (Skvarla and Holland, 2011; Hribar, 2020). One 

of the reasons why bycatch is often overlooked is because the lack of taxonomic personnel 

and knowledge to identify organisms beyond the target species and the financial support that 

this would need, another is space. As with many monitoring schemes, a diverse array of 

thousands of insects and other arthropods are trapped, often subsampling techniques are 

required to ease processing effort leading to additional information loss (Spears and Ramirez, 

2015). However, novel approaches for identifying taxa based on short DNA fragments and 

Next-Generation Sequencing techniques can overcome these pitfalls (see DNA-
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metabarcoding below).  Furthermore, monitoring schemes typically have specific target taxa, 

for example to rapidly provide farmers with information on the best time to apply pesticides, 

or to assess current population levels (Harrington, 2013). Hribar (2020) presents examples of 

how using bycatch from a mosquito surveillance program in the USA can provide valuable 

information for biodiversity research by providing distribution information and new records 

of species. There are other examples of schemes that are used for monitoring a specific taxon 

but the breadth of other taxa getting trapped is high (Skvarla and Holland, 2011). There 

remain, however, limited examples of monitoring schemes where bycatch is archived and, 

despite calls, no monitoring scheme databases with bycatch information currently exist 

(Buchholz et al., 2011). 

One example where the bycatch has been archived for all the years that monitoring has taken 

place is the Rothamsted Insect Survey (RIS) suction trap network. RIS mainly target aphids 

which are identified to the species level. Although bycatch is not routinely identified, it is 

retained and stored in ethanol in room temperature (research on certain groups has been 

conducted in separate studies over the years) (Bell et al., 2015; Pérez-Rodríguez, Shortall and 

Bell, 2015) and kept as a resource for researchers wishing to study the archive. Insect bycatch 

data such as this provides an exceptional but as yet untapped resource for better 

understanding and monitoring insect population trends, especially in the context of recently 

reported global declines (Petsopoulos et al., 2021). 

Next generation sequencing has been used extensively for identifying complex multi-taxa 

insect samples (Yu et al., 2012) and can overcome some of the current limitations of 

processing bycatch data. DNA-metabarcoding is based on amplifying a region of genes usually 

Cytochrome Oxydase I (COI) with universal primers and then the amplicons are sequenced on 

NGS platforms like the Illumina MiSeq, HiSeq or NovaSeq series (Yang et al., 2021). It is 

considered a cost-effective and scalable tool to identify biodiversity as it doesn’t require 

taxonomic expertise (Ji et al., 2013). Therefore, DNA-metabarcoding can be seen as an ideal 

tool to identify bycatch taxa within monitoring schemes in a cost-effective way, but to my 

knowledge this technology has not been validated and tested on archival samples (but see 

Krehewinkel et al., 2023). 

The overall aim of this chapter is to test and validate DNA-metabarcoding to identify bycatch 

taxa from a time series of RIS archive samples over a 16-year period. My objectives are: i) to 
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examine the feasibility of creating a species inventory of archived bycatch taxa from a single 

suction trap between 2003 and 2018; ii) identify insects that provide ecosystem 

services/disservices in agriculture; and iii) discuss the potential of spatio-temporal bycatch 

samples, derived from DNA metabarcoding, as a novel source of invertebrate biodiversity 

time-series data. 

3.3 Materials and methods 

 

3.3.1 The Rothamsted Insect Survey suction trap samples: 

 

The suction-trap network currently comprises 16 traps (12 in England, 4 in Scotland) (see 

Chapter 2, Figure 2. 1), each 12.2 metres tall that were primarily established to continuously 

measure the aerial density of flying aphids. The network provides daily records during the 

main aphid flying season (April–November) and weekly records at other times. The network 

has been operational from 1964 till present. Samples, both of aphids and bycatch, are 

separated and stored and are available as a resource for further research. A unique aspect of 

RIS is that all the samples have been archived at room temperature. The aphids are stored in 

100% ethanol:glycerol solution at a ratio of 95:5 from 2003 onwards, all the previous years 

samples are stored in a formalin solution that removed internal tissues.  The bycatch fraction 

has also been archived in a 100% ethanol:glycerol  throughout the years with the same ratio, 

however it is uncertain whether the solution has been refreshed at any point. For example, 

in some samples I handled the solution had completely evaporated.  Here I focused on 

bycatch, I subsampled a 16-year time-series (2003-2018) from a single suction trap based at 

Cockle Park Farm, Newcastle University, Newcastle Upon Tyne, UK. The primary reason for 

choosing this trap is practical as the amount of arthropods from a single trap can reach many 

thousands. Another reason is that previously I focused on the aphid fraction of this particular 

trap where I processed and compared already identified samples with DNA-metabarcoding 

(see Chapter 2). Therefore as I wanted to uncover biodiversity of bycatch taxa for the same 

dates, but also assess whether it is possible to find species that might be interacting with 

aphid pests (like aphid parasitoids or predators found in the bycatch), I focused on the same 

dates when it was possible (note samples from certain dates were not available: see Appendix 

B; section B.1; Table B. 1).  
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3.3.2 Sample collection and DNA extraction 

 

I collected two monthly samples from the archive between May-October 2003-2018 (Total = 

184), an additional sample was included for the bycatch (see Table B. 1). Briefly, the sampling 

was previously based on selecting samples chosen randomly from within +/- one standard 

deviation from the mean of the counts of aphids for that month. This was done to avoid 

excessive number of aphids and to standardise lab work throughout the experiment. For a 

more detailed explanation of the sampling see section 2.3 in Chapter 2 (Appendix section A.1). 

In the case where samples for the corresponding dates were unavailable, I picked the next 

day available in the time series for that month. For example, if a certain date was missing 

(because it was used for different projects), I sampled the next following date (If 26/06/2015 

was unavailable, I would pick either the 25/06/2015 or 27/06/2015) see the Table B.1 for 

details on sampling and for the dates that have been changed. I extracted the DNA using a 

non-destructive method following the same procedures as Chapter 2 section 2.2 except 

otherwise stated. Briefly, I used a bead based protocol[protocol #6.3] (Oberacker et al., 2019) 

with slight modifications on the amount of lysis volume used to adjust it for different sample 

sizes (See Table B. 2). 100 μl to 5 mL of Lysis solution were used. Whilst proteinase K ranged 

from 3ul to 30 μl per sample. Digestions were carried either in 1.5 mL tubes, 5 mL or 50 mL 

tubes if sample volume was too big for 3 hours. After that, 62 μL of lysate was transferred to 

96 well plates (irrespective of initial lysis volume). This was done to standardise volumes and 

use the same volumes and steps as the protocol. Finally for each plate, I included a DNA 

extraction positive and a DNA extraction negative. The DNA extraction positive was a single 

individual from the species Asellus aquaticus which was selected for its low chance of being 

found in suction traps. The DNA extraction negative included all DNA-extraction reagents 

without and DNA which was substituted by molecular grade water. 

3.3.3 PCR amplification and library preparation 

 

I followed the nested-tagging method by Kitson et al. (2019) that uses a combinatorial 

indexing approach to multiplex samples. I targeted a 313 bp fragment of the cytochrome C 

oxidase subunit I barcode regions with the primers mLCOintF and jgHCO2198 (see section 

2.3.4 in previous chapter for our reasoning on the primer choice). Note that these are 

modified from (Leray et al., 2013) and they include the standard Illumina molecular 
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identification tags, bridge sequences and heterogeneity spacers (see Kitson et al., 2019 for 

details). PCR’s were carried out over 40 cycles (95oC for 45 seconds (s), 51 oC for 15 s and 72 

oC for 45 s in 20μL reactions using a high fidelity Taq mastermix (MyFi Mix Bioline), 2 μL of 

template DNA and each primer (final concentration at 0.5 μM). To further prevent cross 

contamination the wells were sealed using mineral oil, before all the other reagents and 

template DNA were added. PCR controls included a PCR positive and a PCR negative for each 

plate. For the PCR positive control, I selected the crayfish species Homarus gammarus while 

the PCR negative control included all reagents except any DNA template that was substituted 

by molecular grade water. 

PCR success was checked by using 5 μL of PCR products on 1.5% agarose gels. PCR negatives 

and DNA extraction negatives did not show any bands. I then conducted a bead-based 

normalization by using 0.6:1 ratio of Solid Phase Reversible Immobilizations beads (SPRI) (9 

μL) and 15 μL of PCR template for each sample. After clean-ups and prior to library 

preparation I pooled the samples in groups of 8 (plus 4 controls), 4 μL from each sample to 

create each pre-library. Totalling 23 libraries, 11 for the first plate and 12 for the second. This 

was done to further increase sequencing diversity during the initial cycles of the sequencing 

run. To create each of these libraries I used a second PCR (PCR2) with 12 cycles (95oC for 45 

s, 51 oC for 15 s and 72 oC) and a final extension step of 5 min at 72 oC in 20 μL reactions using 

5 μL of each pooled library, the same Taq (MyFi Mix Bioline) and each of the respective 

Illumina N5 and N7 adapters (at a concentration of 1 μM). For each library a PCR2 negative 

was also included. All libraries and PCR2 negatives were checked on gel. No bands were visible 

for any of the negatives. I then did a PCR2 clean-up to remove fragments smaller than the 

target by using 0.6:1 ratio of SPRI to template (9μL and 15μL respectively). After cleaning the 

libraries, they were checked on an Agilent TapeStation and were pooled equimolarly at 

approximately 15 ng/μL. The pooled final library was then sequenced on an Illumina NovaSeq 

using a SP+XP (2x250) kit at the Genomics Core Facility at Newcastle University. 

3.3.4 Bioinformatic analysis and processing 

 

Sample demultiplexing within individual libraries was conducted using the cutadapt v1.18 

software (Martin, 2011). All other analyses were conducted in R (v. 4.0.1, R Core Team 2020) 

except if stated otherwise. To check the quality of the reads for each sample we used FastQC 
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(Andrews, 2010) on individual samples which were then compared with MultiQC (Ewels et al., 

2016). The demultiplexed data were processed using package DADA2 (Callahan et al., 2016), 

removing primers using cutadapt v1.18 (Martin, 2011). DADA2 filtered and trimmed 

sequences based upon read quality removing any reads with ambiguous “N” bases with the 

“filterAndTrim” function. I then merged pair-end reads with the “mergePairs” function, 

removed chimeras with the “removeBimeraDenovo” function and finally inferred Amplicon 

Sequence Variants (ASV’s) within DADA2 with the “dada” function. Taxonomy was assigned 

with Blastn (Camacho et al., 2009) on the command line against a curated database for all 

Metazoa which was download from the MIDORI 2 database (Leray, Knowlton and Machida, 

2022). More specifically, results from the taxonomic assignment were filtered based on the 

percentage of identical matches and query cover which we set at 99% for both. Furthermore, 

to curate the taxonomic community found, we further removed any ambiguous assignments 

where a species level identification was not possible. 

3.3.5 Statistical analysis 

 

I compared whether different quality filtering criteria influenced the number of ASV’s and 

assigned taxonomy. This was done after checking the quality profiles of the reads due to the 

low overall quality for some samples within the run (see Figure 3. 1). To do so I used the 

“filterAndTrim” function in DADA2 with three different options (see section B. 3; Appendix B). 

This resulted in three different datasets with different sequencing depths and different 

number of ASVs. I then compared whether there were significant differences in the number 

of ASV’s and taxa discovery between the datasets, within the level of genera by performing 

an ANOVA with the function “aov” in R after checking of normality of the data. As the initial 

results showed no differences between the three datasets all the rest of the analyses were 

done using the most stringent filtering criteria from DADA2 (see section 3.3.1) 

Due to the nature of the dataset and the high probability of contamination from the way 

samples are handled in RIS, I also performed further filtering of the dataset by using sample 

percentage read thresholds (i.e., filtering all taxa per sample that had reads lower than a 

percentage of the total number of reads for the sample). I applied two thresholds:  0.5% and 

1% and calculated taxa loss among these for two levels: genera and species. I also calculated 

the ratio of bycatch species to target species. To assess whether sampling effort was 
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representative of the bycatch within Newcastle trap I performed species accumulation curves 

using the iNEXT package (Hsieh, Ma and Chao, 2016) with the function “iNEXT”. Species 

accumulation curves were calculated based on presence absence data. I also calculated two 

common diversity metrics: species richness and species turnover with the codyn package in R 

(Hallett et al., 2016) to see how these change through time for both pre-filtered and filtered 

taxonomy after rarefying at the lowest sequencing depth (12918 reads; excluding samples 

were PCR amplification was not evident). Finally, to test if year and sequencing depth had an 

effect on species discovery, I fitted a Poisson Generalized Linear Model (GLM) using the “glm” 

function in base R (v. 4.0.1, R Core Team, 2022) with species richness as a response variable 

and year and sequencing depth as the predictor variables by reads were log transformed for 

the model.  

3.3.6 Finding invertebrate taxa of agricultural interest 

 

To assess whether certain taxa could be of agricultural interest: whether they are a pest or a 

beneficial insect, I matched the assigned taxonomy of the species found in my  study to four 

databases: one of the largest pest-beneficials insect databases downloaded from Karp et al., 

(2018), the EPPO-Q-bank Global Arthropod database (https://gd.eppo.int/), the database of 

Pollinator interactions (Balfour et al., 2022) 

(https://www.sussex.ac.uk/lifesci/ebe/dopi/about), the database of Insects and their 

foodplants (Padovani et al., 2020) and DoPI: The Database of Pollinator Interactions (Balfour 

et al., 2022). Matched taxa received a tag of four possible categories: pest, predator, 

parasitoid and pollinator. The search in the databases was conducted using custom functions 

in R after standardizing the binomial names. For the pollinator database and the EPPO 

database we used the “intersect” function in R to identify shared taxa. Finally, to see whether 

any genera found in our datasets were recorded for the first time in the UK we matched taxa 

in our dataset with the UK species inventory database (Raper, 2014) (available at: 

https://data.nhm.ac.uk/dataset/uk-species-inventory-simplified-copy). I also cross-validated 

the results by checking the regions of the taxa found through GBIF 

(https://www.gbif.org/species/) this was done for all possible synonyms (which are already 

embedded within GBIF). 

https://gd.eppo.int/
https://www.sussex.ac.uk/lifesci/ebe/dopi/about
https://data.nhm.ac.uk/dataset/uk-species-inventory-simplified-copy
https://www.gbif.org/species/
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3.4 Results 

3.4.1 Sequencing results 

 

Figure 3. 1 Output from MultiQC, green lines represent the median of Phred quality scores 
per base for each sample. Forward reads (top), Reverse reads (bottom) 

 

PCR success was high with 99% (182/184) samples producing a visible band on a gel. The run 

produced 320,628,559 reads (excluding PhiX), and after demultiplexing 302,333,205 were 

retained. After filtering, denoising, merging and chimera removal a total of 196,493,188 reads 

(23460 ASVs) were found for the first filtering criteria used in DADA2, 179,452,994 (22110 

ASVs) for the second and 149,140,646 (21400 ASV’s) for the third. There were no significant 

differences in either the number of ASV’s or number of taxa assigned for the three datasets 

despite the difference in total number of reads (F1,366=0.85, p=0.35; see Table B. 3) as the taxa 
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found in all datasets corresponded to the same genera. Therefore, I proceeded with the 

dataset that had stringent (and most conservative) filtering criteria that resulted in 

149,140,646 reads. Reads per sample excluding the controls and the two samples that did not 

show a band ranged from 12,918 to 2,161,538 (see Table B. 3 in the Appendix B for reads per 

sample throughout the DADA2 pipeline). The median was at 810,547 reads (1st quartile: 

487,977, 3rd quartile: 1,053,536 whilst the mean was 810,547 (+- 449,377). Additionally, only 

two extraction negatives had reads passing the initial filters with 1 and 10 reads respectively. 

Surprisingly, for certain positives (including DNA extraction and PCR positives) in libraries no 

reads passed the filtering criteria and overall, of the ones that did there was a low number of 

reads passing (mean of 1000 reads). No reads from the positive controls were found in any of 

the samples suggesting that there was minimal to no sample-to-sample contamination 

throughout the lab work.  

3.4.2 Assigned taxonomy 

 

From the 149,140,646 reads: 98,353,488 reads could be assigned to species and there were 

47,711,113 reads that could not be assigned to any level of taxonomic hierarchy and 

3,076,045 were assignment could be done at the superkindom level. From the 98,353,488 

reads that have been identified at least a genus/species level 97,989,753 (~99.6%) were 

assigned to Arthropoda which was the main target group of this study. Non-Arthropod taxa 

belonged to belonged to the following phyla: Annelida, Ascomycota, Mollusca, Basidiomycota, 

Chordata and Nematoda. Most of the reads within Arthropoda were assigned to the class 

Insecta (95,891,644 reads ~97% of total reads), some were assigned to Arachnida (0.01%) and 

very few to Collembola (0.001%). There were 12 insect orders assigned with the most 

abundant order being Diptera and with more than 84% reads assigned to it. This was followed 

by Psocoptera (3%), Hemiptera (1.5%) and Coleoptera (1.3%). For Arachnida, the most 

abundant order was Araneae followed by Trombidiformes.  

3.4.3 Sample sequencing thresholds and taxa loss 

 

I found 447 genera and 856 species for Insects whilst for Arachnids I found 13 genera and 15 

species before applying any filtering criteria based on sample thresholds. After applying 

sample sequence thresholds, the number of species fell to 445 and 373 for the second and 
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third respectively. For genera level the numbers were 248 and 209 respectively (Table 3. 1). 

The taxonomic composition per year also changed after applying the filtering criteria with 8 

of the taxonomic orders in the dataset completely disappearing (see Figure 3. 2B). However, 

Diptera dominated the dataset in every year of the time series irrespective of the filtering 

criteria applied. 

Filtering threshold Number of genera Number of species 

No filter 447 856 

0.5% threshold 248 445 

1% threshold 209 375 

Table 3. 1 Number of unique genera and species found within the dataset before and after 
the application of sample filtering thresholds. 
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Figure 3. 2 A) Percentage of order present in every year before applying any filtering criteria. 
B) Percentage of order present in every year after applying filtering at the 1% threshold. 
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Figure 3. 3 A) Diversity as Hill-species richness of genera detected during the experiment 
after filtering. B) Associated sample coverage across the sampling units. Solid lines represent 
observed diversity and dashed lines extrapolated diversity. 

3.4.4 Effect of year and sequencing depth on richness 

 

Richness varied across and within years, with a similar pattern across the months for every 

year (see Figure B. 1). There is an increase in richness from May to June or July followed by a 

decrease then a second peak in September for some years, except for three years 

2009,2017,2015. For all the major orders richness shows an increasing trend (see Figure 3. 4 

A,C) when looking at the non-filtered dataset. However, with the application of sample 
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threshold filters, the trend changes for some orders as there very few species now presented 

at each order level, with the exception of Diptera (see Figure B. 2). Diptera richness showed 

an increasing trend with time that was captured for either filtered or unfiltered datasets. 

Turnover was high for most orders (see Figure 3. 4B). Estimated richness was calculated at 

550 (+- 30) genera for the filtered dataset (Figure 3. 3A). Year had a significant positive effect 

on richness, but sequence depth did not, the interaction between sequencing depth and year 

was also not significant (p= 2e-16, see Table 3. 2). 

Coefficients Estimates Standard error Z value Pr(>z) 

Intercept -5.512e+02 2.009e+02 -2.743 0.00670 

Sequencing 

depth 

2.886e-04 3.126e-04 0.906 0.35 

Year 2.794e-01 9.996e-02 2.795 0.00575** 

Sequencing 

depth: Year 

-1.445e-07 1.554e-07 -0.930 0.35 

Table 3. 2 Coefficients and significance of effects on species Richness. Residual deviance 
calculated 256 on 180 degrees of freedom, AIC= 1003, Number of Fisher Scoring iterations: 
4 
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Figure 3. 4 Diversity as species richness over the years for the major orders that were 
presented throughout all the years after filtering. A) Richness for major orders identified 
throughout the time series. B) Richness of Diptera over time C) Species turnover over time 
for the major orders identified. 
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3.4.5 Bycatch species of agricultural interest 

 

The mean of the ratio of bycatch species to target taxa was 8:1 (min 0.5, max 35) for genus 

level and 10:1 (min 0.5, max 54) for species level. In total 96 pests and beneficials (predators 

and parasitoids) species could be matched with a specific category. For comparisons with the 

EPPO global database 228 species of our dataset were found to be within it. However, the 

latter database did not include any tags therefore it was not possible to find specific 

categories for the taxa. A large issue was that the majority of taxa found for pest, predators 

and parasitoids did not have a tag (taxa were not found in the databases with a specific tag 

for each category) even though some are fairly known taxa. For example, in the pre-filtered 

dataset there were both aphid parasitoids and predators but only 5 parasitoids received a tag. 

I identified 29 species of Braconid wasps belonging to 17 unique genera of which all are known 

to parasitize aphids. Predators totalled 21 unique genera (1 Neuroptera, 19 Coleoptera, 9 

Araneae). For other common taxa found the majority could not be classified for specific 

categories. However, most of the pollinators belong to Diptera, Hymenoptera and 

Lepidoptera. In total 74 genera of pollinators found with the majority belonging to the Diptera 

order (40 genera) followed by Hymenoptera (14), Lepidoptera (8), Coleoptera (7), Hemiptera 

(3) and Thysanoptera (2). Many identified taxa could also be identified as common pests like 

thrips, aphids, shield bugs, leafhoppers and planthoppers (see Figure 3. 5; Table B. 4 for the 

list of taxa where a category was found). Finally, I’ve found 13 taxa on the filtered dataset for 

which no record could match the UK species inventory list. To validate these results, we 

crossed check for synonyms of the species and used Blastn on the corresponding ASVs to see 

whether these could be misidentifications within the databases. One synonym was found for 

Brassicogethes aeneus, which is the common pollen beetle widely distributed in the UK. 

Additionally, I’ve found the species Calopteryx maculata a common damselfly of North 

America, however this could be attributed to a reference database error. As my reference 

database included mainly Metazoa, a miss annotation of Calopteryx malculata was found, as 

all the ASV’s for this particular taxon could be identified as bacteria from the Blastn search. A 

total of 42 species were not found within the species inventory list of the UK for the pre-

filtered dataset, after filtering 13 taxa only remained as mismatches. From these 13 taxa, one 

was found to be native in North America and Australia the barklouse Ectopsocus californicus, 

the rest were found to be native in mainland Europe but did not have a single record for the 
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UK in GBIF. Most belonged to the Diptera order (11) and one only belonged to Hymenopteran 

parasitoids: Protapanteles fulvipes (See Table B. 5 for all species). 

 

 

Figure 3. 5 Number of species in each category (Parasitoid, Pest, Pollinator and Predator) as 
identified from the databases. Colours correspond to the different orders. 
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3.5 Discussion 

 

In this study I demonstrate that it is possible to identify bycatch taxa, a fraction of biodiversity 

that often remains untouched in insect monitoring schemes, by using DNA-metabarcoding. I 

successfully identified archival samples from the historical Rothamsted Insect Survey suction 

traps over a period of 16 years, doing so non-destructively. My study highlights the potential 

to identify and construct time-series for hundreds of insect taxa, many of which have not been 

studied in the context of insect declines. I further showed that bycatch species can include 

many agriculturally important pests and beneficial taxa that are not the target of the insect 

monitoring schemes, which shows promise for scaling up the breadth of taxa being monitored. 

Overall, this study validates the use of DNA-metabarcoding for scaling up biodiversity 

monitoring and particularly insect monitoring by combining it with an already established 

monitoring scheme in the UK that focuses mainly on aphids.  

3.5.1 Objective 1) Illuminating archived bycatch diversity within RIS 

 

By using DNA-metabarcoding I recovered 856 insect species belonging to 414 genera in the 

full dataset. This was the first attempt to my knowledge to identify complete bycatch samples 

of RIS suction traps by using DNA metabarcoding. The estimated species richness was around 

550 genera, close to the number of genera found in this study. This however, is probably an 

underestimate of real bycatch diversity. As the complete time series for the Newcastle trap 

has over 2500 samples for the period of 2003-2018 there are probably many more species to 

be recovered. Bycatch unsurprisingly, consisted of a wide diversity of taxa (more than 10 

insect orders) which is why it also makes it is difficult to identify via traditional taxonomic 

means due to the breadth of taxonomic expertise required. Additionally the complexity 

increases even more as passive monitoring techniques can capture thousands of individuals 

which makes sorting those samples very time consuming. Molecular techniques can 

overcome such limitations as taxonomic expertise is not required (Wang et al., 2018). The 

complete dataset comprised 12 insect orders belonging to 126 different families. Most insects 

belonged to the Diptera order with more than 90% of recovered taxa. This was expected as 

Diptera are some of the most common catches within suction traps (Blandenier, 1998). 

Besides insects, we have also found 43 species of spiders, many of which were expected as 

“ballooning” spiders (e.g. Erigone atra) are commonly found catches in suction traps 
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(Blandenier, 1998) and pseudoscorpions which were probably “hitchhiking” on other taxa. 

However, the number of species recovered drastically changed based on the filtering criteria 

applied on this study. Insect monitoring schemes and particularly RIS process their samples in 

a way that is prone to sample-to-sample contamination. For example, in RIS, it is uncertain 

whether sorting trays are cleaned after each sample identification. Here I focus only on 

Arthropoda and particularly insects, however reads were assigned to other common 

contaminants as well such as cattle or birds or non-eukaryotic taxa. In my study bird DNA was 

expected as feathers were found within the samples but also because birds can rest at the 

suction traps, other contaminants like cattle could be found from carrion flies (Rodgers et al., 

2017). Non-Arthropod reads however were less than 0.0001% of the total reads. As our study 

focuses on insects and arthropods, we could filter all non-Arthropoda taxa and our control 

samples didn’t show any cross contamination. However, contamination from arthropods 

from other samples is possible at RIS.  I previously showed that this type of contamination can 

be controlled to an extent by using sample read thresholds decreasing false positive rates but 

increasing false negatives (see Chapter 2.3.2). Sample read thresholds can be applied in many 

ways (see Drake et al., 2022) here I applied sample-based thresholds which resulted in a drop 

of overall taxa from 800 to 400 (see Table 3. 1). Because taxonomic information is not 

available for the bycatch the extent of which false positives/negatives were minimised is 

uncertain. For aphids, I’ve found that a 1% threshold would drop the average false positive 

rate from an average of 4 to 0.1 (see Chapter 2.3.2). Similarly, other studies have found that 

thresholds between 0.5 -1% offer a good true/positive rate (Drake et al., 2022). However, it’s 

very likely that true positives disappear as commonly found insects within RIS traps like 

ladybirds could not be found after the application of filtering techniques. Future research 

efforts should focus on validating this by combining DNA-metabarcoding with morphological 

identifications or avoiding contamination issues that are amplified by PCR by using 

metagenomic approaches (Ji et al., 2020). As many monitoring schemes were not designed 

for DNA based applications like DNA-metabarcoding this is an important caveat for such 

samples. Therefore, taxonomic information can add value to the reliability of DNA-

metabarcoding and other molecular techniques like metagenomics. Here, I processed the 

samples in a non-destructive way therefore it would be possible for future research efforts to 

revisit these samples and assess the reliability of DNA-metabarcoding. Overall, I show that 

bycatch taxa can be identified via DNA-metabarcoding and in the case of RIS the bycatch 
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diversity is high with an average 10 bycatch species for every target taxon (here aphids) within 

a sample meaning that bycatch species dominate samples at RIS.  

3.5.2 Objective 2) Highlighting beneficial insects and potential pests 

 

Unsurprisingly, and in line with previous work, bycatch species include many taxa that can 

have an economic importance for agriculture (Hribar, 2020). A major limitation is that there 

exists, no large database with information on specific functional groups for each taxon. The 

dataset used here first from Karp et al., (2018), was the largest of its kind yet many insects 

known to provide ecosystem services or disservices such as pest control and pests were not 

present. Here, I focused on aphids where I found more than 29 species of parasitoids (with 

the most abundant genera being Aphidius and Praon) and 15 species of predators belonging 

to 4 orders Coleoptera, Neuroptera, Hemiptera and Diptera. However, I also found many 

pollinators including bees, wasps and syrphid flies. Some include cosmopolitan species like 

the drone fly Eristalis tenax or hymenoptera including Bombus bombus. I also identified 

agricultural pests beyond the target taxa most of which belonged to the Hemiptera and 

Diptera orders. Additionally, I found insects that have not been recorded in the UK before, 

such as  Ectopsocus californicus a species of bark lice that is typically found in North America 

and Australia and more than another 9 arthropods (common to Europe, or America). In my 

case, these should be validated with an expert taxonomist retrospectively, as DNA-

metabarcoding can have many biases and taxonomic expertise is required to validate 

potential non-native invasive taxa. But this shows how bycatch catches can be used for 

expanding knowledge of the geographic distribution of insects (Hribar, 2020). Although it      

would be very expensive to process all the daily samples from RIS, metabarcoding is scalable 

and cheap when compared to other methods such as taxonomy or metagenomics  (Bista et 

al., 2018). Therefore, such taxa could be incorporated in future monitoring efforts based on 

metabarcoding. This can also lead to the early detection of newly invading insects pests (Piper 

et al., 2019) or even description of newly found species (Spears and Ramirez, 2015). The 

breadth of biodiversity information that is lost by not analysing or even throwing away 

bycatch species is disheartening particularly because there is a lot of uncertainty regarding 

the state of insect diversity in the world (van Klink et al., 2020). 
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3.5.3 Objective 3) Bycatch as a novel source for biodiversity time series 

 

Long-term data are important to understand biodiversity changes throughout the years, yet 

insect data for many groups and regions are scarce. Previously, efforts have been made to 

process bycatch species taxonomically to help understand changes in phenology or 

abundance within RIS but most have used subsamples of specific groups like Diptera 

(Grabener et al., 2020) or subsampled dates. Here by using a 16-year time series of unknown 

bycatch species. I show that it is possible to create time series for hundreds of insect taxa with 

DNA-metabarcoding. Additionally, I show that it is possible to estimate common diversity 

metrics like richness or turnover to understand biodiversity changes for multiple species 

assemblages (see Figure 3. 4). Species accumulation curves show that the sample size covers 

a significant amount of the estimated species richness (Figure 3. 3.B). However, as the focus 

was on a subsample of the dates within each month, these should not be seen as real patterns 

of biodiversity but simply showcase the potential of understanding biodiversity patterns for 

groups of insects largely unstudied (like Hymenoptera and Hemiptera). Additionally, the 

presence of beneficial insects like aphid parasitoids throughout the years could make it 

possible to construct time series of species interactions for aphids and parasitoids by using 

co-occurrence networks. RIS could be seen as a unique opportunity to not only construct multi 

species time series but capture changes of species interactions through decades (Petsopoulos 

et al., 2021). However, metabarcoding has its drawbacks too as it does not yet give 

quantitative information (Ji et al., 2020). But long-term presence-absence data can still be 

relevant, for example to study migration patterns and phenological shifts (Grabener et al., 

2020). Year and sequencing depth had a positive effect on species richness with species 

richness increasing over the years for most orders. For aphids at RIS I haven’t found significant 

effect on year for species richness which might be an artefact of real differences of richness 

for the dates sampled and bias from sequencing depth as it can drastically alter the resultant 

community (Shirazi, Meyer and Shapiro, 2021). Further validation with more samples would 

enable us to understand how diversity patterns change throughout the years. Finally, RIS has 

a network of suction traps throughout the UK with archival bycatch samples for each location. 

This means that it could be possible to construct time series that are spatially and temporally 

replicated throughout the UK for hundreds of insect taxa, providing insect data to better 

understand how insect populations have been changing since the 60s. 
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3.6 Conclusions 

 

My study highlights the potential of bycatch catches within insect monitoring schemes as a 

unique source of insect data. This is the first attempt to identify archival bycatch samples from 

RIS with DNA-metabarcoding, we do so by analysing samples spanning a 16-year period from 

2003 to 2018. I show that a high diversity of insect taxa is being “missed” from monitoring 

schemes as bycatch remains untouched or not processed due to taxonomic, financial, or 

logistic impediments. But this can be done by DNA-metabarcoding opening a treasure vault 

of insect data, particularly for taxa that might be important for agriculture like beneficials and 

pests. However, contamination is still one of the major limitations when it comes to 

processing samples from insect monitoring schemes. Therefore, coupling molecular data with 

morphological can increase the reliability of such methods. Overall, bycatch can be seen as 

invaluable biodiversity information for insect research even more for insect decline research 

and DNA-metabarcoding a promising tool for accessing such biodiversity information.      
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Chapter 4: Metabarcoding bycatch insect species from a nationwide monitoring 

scheme: The Fera Yellow Water Pan Trap Network (YWP) 
 

Declaration: Samples in this chapter come from the monitoring scheme of the Fera Yellow 

Water Pan Trap Network. The sampling was mainly managed by Fera. Therefore, I would like 

to acknowledge all the staff responsible for collecting such samples and the farmers providing 

such samples. However, sample choice, sample processing and data analysis were all done by 

me. 

4.1 Abstract 

 

Bycatch is ubiquitous among insect monitoring schemes. Yet, despite its wider biodiversity 

research purposes, bycatch is usually not identified or analysed and, in some cases, even 

thrown away. As insect monitoring schemes serve a very specific purpose, for example 

monitoring specific pests or forecasting potential viral risk transmission, bycatch is usually not 

identified. Other reasons include the logistics, financial and the taxonomic expertise required 

to identify such samples. Next Generation Sequencing approaches can overcome many of the 

obstacles for simultaneously processing thousands of insect specimens that arise from 

nationwide biomonitoring schemes. In this study, I focus on bycatch diversity among the Fera 

Yellow Water Pan Trap Network (YWP) that focuses on monitoring aphids (and the viruses 

they carry) in potato fields at a farm level. To examine spatial and temporal variation in insect 

diversity, I use DNA-metabarcoding to identify bycatch taxa among the nationwide 

monitoring scheme with more than 80 locations across the UK. I found high bycatch diversity 

with more than 900 taxa. Furthermore, I compared the effect of different sequencing efforts 

on the recovery of bycatch diversity by comparing two Illumina platforms with a 20-fold 

difference in sequencing depth. I found high similarity with over 90% of the total taxa shared 

between the platforms. Finally, I show complex patterns of biodiversity with high temporal 

and spatial turnover (mean of 0.90 Jaccard index of dissimilarity) among the field samples 

despite these being a monoculture. The turnover itself is driven mainly by specific taxa that 

were the most abundant in the datasets. This study shows the potential of DNA-

metabarcoding for analysing and identifying bycatch diversity and its patterns at the 

nationwide level. 
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4.2 Introduction 

 

Recent studies have shown that insects are declining in many parts of the world. Yet, for many 

regions there is still a lot of uncertainty regarding the state of insect populations (van Klink et 

al., 2020). A major reason for this is that there is a lack of data, particularly long-term data for 

many regions. Typically, sources for understanding insect declines come from long-term 

monitoring schemes; examples in the UK include the Butterfly Monitoring Scheme and the 

Rothamsted Insect Survey (RIS) (Conrad, Fox and Woiwod, 2007; Bell, Blumgart and Shortall, 

2020). But there are many other insect biomonitoring schemes that usually serve a very 

particular purpose (i.e. pest monitoring) that can be used as more general sources of insect 

data, and this can also be done retrospectively by looking at archival specimens from 

monitoring schemes (Zizka et al., 2022). Such invertebrate monitoring schemes usually 

capture thousands of insect species and individuals yet, as the focus can be pest monitoring 

or forecasting, only a fraction of those caught go on to be identified. The remaining sample, 

usually called “bycatch”, often remains untouched or even thrown away, with very few 

exceptions where bycatch is archived and stored. In the UK, one exception is RIS, which has 

been storing all of their daily catches since the 1960s (Harrington, 2013). These can be viewed 

as unique biobanks of insect data that can be used to understand insect declines for numerous 

insect taxa (Petsopoulos et al., 2021). Bycatch from monitoring schemes comprises of 

important biodiversity information that has been used to identify and describe new species, 

detection of newly discovered pests and invasive species (Spears and Ramirez, 2015; Hribar, 

2020). Despite its potential use as a novel source for insect data, to date such samples have 

largely been untouched as it can be very difficult to identify all species due to the wide 

taxonomic expertise needed. Financial, logistic and storage limitations also apply as it is 

typically expensive to process thousands of specimens via taxonomic means and the space 

and personnel needed to do so further limits the accessibility of bycatch.  

New emerging developments in Next Generation Sequencing (NGS) approaches for 

biodiversity assessment can alleviate existing problems in insect biomonitoring by offering 

alternative cost-effective methods that are not reliant on taxonomic expertise for mass 

identification of insect taxa (Zhou et al., 2013). NGS approaches are revolutionising the way 
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we can assess biodiversity. By coupling short-fragments of DNA with NGS, it is possible to 

process thousands of specimens (Ji et al., 2013). Three main approaches have been used so 

far: DNA barcoding (Shokralla et al., 2014), DNA-metabarcoding and metagenomics (Derocles 

et al., 2018). DNA barcoding relies on amplifying short fragments of DNA from one specimen 

with thousands of samples being able to fit within one sequencing experiment (Srivathsan et 

al., 2021). Its use varies from simply identifying species to relatedness analysis between 

difficult to delimit species via traditional means and phylogenetic analyses (Hebert et al., 

2003). DNA-metabarcoding similarly makes use of short fragments but the sample unit can 

compromise thousands of specimens, for example a sample from an entomological pan trap. 

In particular, it can be used for the rapid assessment of thousands of specimens and samples 

(Piper et al., 2019). Yet, DNA-metabarcoding has its limitations, the PCR amplification step 

induces biases that can make the data non-quantitative i.e. abundance information is very 

difficult to obtain from DNA-metabarcoding experiments, something that can hinder its use 

for routine monitoring where abundance information is regarded important (Martoni et al., 

2022). But there are methods to overcome such obstacles, for example by using correction 

factors (Krehenwinkel et al., 2017) or spiking with known amounts of DNA (Ji et al., 2020). 

Lastly, metagenomics is a PCR-free approach where abundance information can be retained. 

Here, the extracted DNA from a sample of multiple taxa is sequenced directly, avoiding any 

PCR biases. Yet, there can be still biases from other factors such as unknown copies of 

mitochondrial DNA (mtDNA) for the organisms within the sample, but most importantly the 

cost of metagenomics can be prohibitively expensive for routine monitoring purposes or for 

very degraded samples like archival collections (but see (Ji et al., 2020)). All such approaches 

offer great promise for biodiversity assessment particularly in the context of insect declines, 

where fast and scalable methods are needed (Zizka et al., 2022). Due to its scalability, ease of 

use and cost-efficiency, DNA-metabarcoding can been seen as one of the most promising 

tools for making bycatch samples accessible for further research. Yet, evidence of its use 

within the context of insect monitoring of bycatch species is lacking. 

Here, I evaluate the potential of DNA-metabarcoding for analysing insect biodiversity from 

bycatch as part of a nationwide monitoring scheme in the UK: The Fera Yellow Water Pan Trap 

Network (YWP). First, I evaluate the potential of DNA-metabarcoding to identify bycatch 

species within YWP and examine the biodiversity information generated. I then compare the 
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effect of sequencing depth by analysing datasets obtained from two different sequencing 

technologies: the Illumina MiSeq and NovaSeq with output varying 20-fold. Finally, I show the 

utility of the approach by comparing UK biodiversity patterns across the different sampled 

regions throughout the sampling year.       

4.3 Materials and Methods 

 

4.3.1 The Fera Yellow Water Pan Trap Network (YWP) 

 

YWP consists of a network of pan traps within potato fields that are used to monitor aphids 

and inform farmers about aphid populations density and assess viral transmission risk 

(https://aphmon.fera.co.uk/). Fera sends pan traps which farmers put within their potato 

fields and keep for a week without emptying. After a week has passed the farmers send the 

samples inside the tubes provided back to Fera for identification. All aphids are identified to 

the lowest possible taxonomic level, in some cases ladybirds are also identified. However, the 

bycatch is usually thrown away. Sorting of the samples might happen in the same trays but 

each of these trays is bleached after processing each sample, this might lead to some 

contamination during the sample sorting phase. Every year a different number of traps has 

been set up and monitored as the scheme depends on voluntary uptake by farmers. There 

can be up to 100 sample localities and sampling takes place in May and can continue up to 

October. It stops when farmers stop sending samples. Therefore, each field can have a 

different number of samples throughout the period. The scheme launched in 2003 and 

continued up to 2020 from which point it was discontinued. 

4.3.2 Sample collection and DNA extraction 

 

In 2019, Fera collected and stored 376 samples in 99% ethanol from 93 unique potato fields. 

From these I subsampled 192 samples based on which localities had repeated samples 

throughout the period of June 2019 to August 2019 (83 unique fields). Some samples had 

been sampled for all the months, but some were not. Therefore all sites where monthly 

samples were taken were used. I aimed for samples that were at least present two months or 

more (see Appendix C; Table C. 1 for more details and Figure 4. 1 for a graphical distribution 

of the locations of the fields sampled).  
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Figure 4. 1 Distribution of 83 unique fields included in this study. Each field is represented by 
a black dot. 

 

I extracted the DNA using a non-destructive method following the same methods as described 

in Chapter 2.3.1, except where otherwise stated. Briefly, I used a bead-based protocol 

[protocol #6.3] (Oberacker et al., 2019) with slight modifications on the amount of lysis 

volume used to adjust it for different sample sizes (see Table C. 2). Digestions were carried 

either in 50 mL tubes or 100 mL tubes if sample volume was large for 3 hours. After that, 62 

μL of lysate was transferred to 96 well plates (irrespective of initial lysis volume). This was 

done to standardise volumes and use the same volumes and steps as the protocol. Finally for 

each plate, I included a DNA extraction positive and a DNA extraction negative. The DNA 

extraction positive was tissue from Salmon (Salmo salar), the DNA extraction negative 

included all reagents used for the DNA extraction without any tissue, and simply added 

molecular grade water.  

4.3.3 PCR amplification  
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I followed the nested-tagging method by Kitson et al., (2019) that uses a combinatorial 

indexing approach to multiplex samples. I targeted a 313 bp fragment of the cytochrome C 

oxidase subunit I barcode regions with the primers mLCOintF and jgHCO2198 (see section 

2.3.4 for the reasoning behind the primer choice). Note that these are modified from Leray et 

al., (2013) and they include the standard Illumina molecular identification tags, bridge 

sequences and heterogeneity spacers (see Kitson et al., (2019) for details). For every PCR, a 

PCR positive and PCR negative was included, the PCR positive was DNA from a fish species 

(Astatotilapia calliptera) for the MiSeq dataset, but for the NovaSeq a crayfish species was 

selected (Hommarus gammarus) while the negatives included all PCR reagents without any 

template DNA. Four PCR for four samples were repeated and were included for both datasets. 

PCRs were carried out over 40 cycles (95oC for 45 seconds (s), 51 oC for 15 s and 72 oC for 45 

s in 20μL reactions using a high fidelity Taq mastermix (MyFi Mix Bioline), 2 μL of template 

DNA and each primer (final concentration at 0.5 μM). To further prevent cross contamination 

the wells were sealed using mineral oil before all the other reagents and template DNA were 

added. PCR success was checked by using 5 μL of PCR products on 1.5% agarose gels. PCR 

negatives and DNA extraction negatives did not show any bands. I then conducted a bead-

based normalization by using 0.6:1 ratio of Solid Phase Reversible Immobilizations beads 

(SPRI) (9 μL) and 15 μL of PCR template for each sample.  

4.3.4 Library preparation and sequencing 

 

After clean-ups and prior to library preparation different pooling strategies were used for the 

two different sequencing technologies (MiSeq and NovaSeq). For the MiSeq I pooled the 

samples in groups of 16 (plus 4 controls), 4 μL from each sample to create each pre-library. 

Totalling 12 libraries, 6 for every plate. For the NovaSeq I pooled the samples in groups of 8 

(plus 4 controls), 4 μL from each sample to create each pre-library which totalled 24 libraries, 

12 for every plate. This was done to increase sequencing diversity through the early 

sequencing cycles because the different sequencers required different sequencing diversity 

inputs, as suggested by the sequencing centre. All of the following procedures to create each 

of the library used the same amounts as followed: To create each of these libraries I used a 

second PCR (PCR2) with 12 cycles (95 oC for 45 s, 51 oC for 15 s and 72 oC) and a final extension 

step of 5 min at 72 oC in 20 μL reactions using 5 μL of each pooled library, the same Taq (MyFi 
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Mix Bioline) and each of the respective Illumina N5 and N7 adapters (at a concentration of 1 

μM) 12 adapters were used for the MiSeq run and 24 for the NovaSeq. For each library a PCR2 

negative was also included. All libraries + PCR2 negatives were checked on gel. No bands were 

visible for any of the negatives. I then did a PCR2 clean-up to remove fragments smaller than 

the target by using 0.6:1 ratio of SPRI to template (9μL and 15μL respectively). After cleaning 

the libraries, they were checked on an Agilent TapeStation and were pooled equimolarly at 

approximately 15 ng/μL. The pooled final libraries were then sequenced both on an Illumina 

MiSeq using the 2x250 kit and a NovaSeq using a SP+XP (2x250) kit at the Genomics Core 

Facility at Newcastle University. 

4.3.5 Bioinformatic analysis 

 

Sample demultiplexing within individual libraries was conducted using the software cutadapt 

v1.18 software (Martin, 2011). All other analyses were conducted in R (v. 4.0.1, R Core Team, 

2021) except if stated otherwise. The demultiplexed data were processed using package 

DADA2 (Callahan et al., 2016), removing primers using cutadapt v1.18. Due to the large 

amount of data from the NovaSeq dataset (120GB), the dataset was processed on a High-

Performance Computing cluster at Newcastle University (Rocket). DADA2 filtered and 

trimmed sequences based upon read quality removing any reads with ambiguous “N” bases 

with the “filterAndTrim” function. I then used the learn “learnErrors” function to estimate 

error rates for the datasets and then inferred amplicon sequence variants (ASV’s) with the 

dada function. Finally, I then merged pair-end reads with the “mergePairs” and removed 

chimeras with the “removeBimeraDenovo” functions. Default function parameters were used 

for most functions, except if stated otherwise. Taxonomy was assigned with Blastn (Camacho 

et al., 2009) for both datasets with a curated database downloaded from MIDORI2 reference 

(Leray, Knowlton and Machida, 2022). Our main target were insects and other arthropods, 

we thus filtered the datasets to include only classes of Arthropoda (see section 4.6 for further 

details on the other taxa). As we were uncertain if samples were contaminated throughout 

the handling at Fera, additional filtering criteria were applied at the sample level. Here, I 

applied a one percent sample threshold for both datasets to minimize false negatives. More 

specifically, if a taxon within a sample had less reads than 1% of the total amount of reads for 

that sample, then it was removed. The one percent was chosen based on previous work (see 
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Chapter 2 section 2.3 for further details and it is considered stringent as typical thresholds are 

between 0.2 to 0.6 (Drake et al., 2022). Finally, to see whether sequencing depth was 

correlated between the two datasets I performed a linear model between the two.  

4.3.6 Statistical analyses 

 

To compare the datasets from MiSeq and NovaSeq for both pre-filtered and filtered taxonomy 

I first compared total taxonomic composition between the datasets with the “settdiff” and 

“intersect” functions in R (v. 4.0.1, R Core Team 2021). For sample-to-sample differences I 

computed the Jaccard similarity index in R implemented with a custom function. Jaccard’s 

similarity index can be defined as:  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑′𝑠 𝑖𝑛𝑑𝑒𝑥 =
𝑎

𝑏 + 𝑐 − 𝑎
 

Where a= The number of shared species between each sample, b= the number of species in 

the sample from dataset b (here MiSeq), c= the number of species in the sample from dataset 

c (here NovaSeq). Finally, we compared whether the number of ASVs differed between 

datasets with the “aov” function in R (v. 4.0.1, R Core Team 2021). To visualize the taxa found 

across the samples we produced heatmaps using the Metacoder package in R (Foster, 

Sharpton and Grünwald, 2017).To identify potential pests and beneficials within bycatch I 

used the same four databases as in chapter 3 (section 3.3). First to find additional pests 

relevant to potato fields I used the database of plant to insect interactions (Padovani et al., 

2020)  and matched my taxa with taxa that are interacting with potato plants (Solanum 

tuberosum). Second, I use the pollinator and beneficial database from chapter 3 to find 

additional beneficial insects that were either pollinators, predators or parasitoids. Species 

richness was calculated by using the diversity function in Vegan (Oksanen et al., 2022) . 

Richness for Diptera was very high for this reason Diptera were plotted separately (see Figure 

4. 3). To account for differences in sequencing depth I subsampled using the “rrarefy” function 

in Vegan (Oksanen et al., 2022) at 1500 reads for MiSeq and 10000 reads in the NovaSeq 

dataset for all diversity comparison analyses. These values where chosen to minimize sample 

drop and were based on the minimum read depths (for samples were an amplification band 

was visible) for each dataset. To analyse patterns of species richness between the fields and 

months I first performed a multivariate GLM with mvabund (Wang et al., 2012) assuming a 

negative binomial distribution, to see whether there where significantly different 
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communities between the fields and months sampled. Assumptions were checked by visually 

plotting the residuals of the model (see Figure C. 1). To see whether richness differences could 

be explained by environmental variables we fitted a Generalized Linear Model (GLM) with the 

“glm” function in R with a Poisson family distribution, with richness as the response variable 

and latitude and landscape diversity as the predictor variables. To calculate landscape 

diversity at the field level, I downloaded the UKCEH land cover map for 2019 (Morton et al., 

2020). Landscape diversity for each field was calculated within a 3km circular buffer zone 

based on the categories that were either natural, grasslands or farmland (excluding categories 

such as: urban or saltwater) with the package landscapemetrics (Hesselbarth et al., 2019).  

Beta diversity was calculated with “avgdist” function in Vegan (Oksanen et al., 2022), with 

subsampling based on the minimum read depth of samples which was 1500 for the MiSeq 

and 10000 for the NovaSeq. To assess whether compositional dissimilarity (here as beta 

diversity) was correlated with physical distance of the samples themselves we checked the 

correlation between them using a mantel test. Beta diversity was calculated with “avgdist” 

function with presence-absence data. Physical distance between sampling points (i.e different 

fields) was computed with the “geo_dist” function in the geodist package (Padgham, 2021). 

Finally, to examine temporal changes between samples I partitioned the diversity into loss 

and gain components (Tatsumi, Iritani and Cadotte, 2022) to assess total changes in beta 

diversity and how beta diversity was influenced by specific taxa. Gain components referred 

to species added between the months and locations (referred as Colonization) and loss 

components where species that disappeared for the months and samples (referred as 

Extinction). The species comparison was made at the month level between: June-July and 

July-August. This analysis was done only on a subsample of locations, where samples for all 

the months were present. The subsample compromised of 28 fields. All the analyses were 

performed for both the MiSeq and NovaSeq datasets. However, within the main text figures 

and results for the models for diversity patterns, these include only the NovaSeq dataset -due 

to higher sequencing depth for each sample overall which led to less samples being dropped 

when subsampling. If an analysis or figure includes the MiSeq dataset this is made explicit in 

the legends. Furthermore, the models were additionally run only on the subset of locations 

(27) for which all months were present. This was done to see whether differences in sampling 

completeness affected the overall results of the models (see Appendix C; Table C. 4; C. 5) 
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4.4 Results 

 

4.4.1 Sequencing results 

 

PCR success was high with more than 184 out of 188 samples producing a visible band on a 

gel for the MiSeq and 185 out of 188 samples for the NovaSeq. The MiSeq run produced 

11,962,584 reads (excluding PhiX), after demultiplexing, filtering, denoising, merging and 

chimera removal a total of 8,824,533 reads were retained (without accounting 399,993 reads 

dropped as they were assigned to non-arthropod taxa). The NovaSeq run produced a total of 

300,000,000 reads of which after following the same steps as the MiSeq dataset a total of 

91,083,100 reads were retained (without accounting reads that were dropped as non-

arthropod taxa). Reads per sample excluding controls ranged from 127 to 122,777 for the 

MiSeq with a median 35,972(1st quartile: 16,545, 3rd quartile: 48645). For the NovaSeq dataset 

reads ranged from 953 to 1,416,083 with a median 515,423 (1st quartile: 292,249, 3rd 

quartile:647,891) whilst the mean was 487,150 (± 283,980). No reads from the positive 

controls were found in any of the samples for both datasets. In the MiSeq dataset 2 extraction 

negatives had 30 and 25 reads respectively. However, for the NovaSeq dataset 3 negatives (2 

extraction and 1 PCR negative) had between 7-10 reads. Similar to a previous chapter (see 

Chapter 3.3), certain positive controls did not have any passing reads, suggesting a probable 

issue with the tag system used or very low concentrations of the samples, as the positive 

controls chosen were single individuals whereas the bulk samples comprised of hundreds of 

individuals. Samples with low read output n= 4 (<1,500) or no reads for MiSeq corresponded 

to samples where there was no visible band on a gel. However, for the NovaSeq 10 samples 

with low read output (<10,000 reads) did not correspond to failed PCR’s. From those only 3 

samples did. Despite this, sequencing depth between the samples was significantly correlated 

(R2= 0.40, p= 2e-16). 

4.4.2 Assigned taxonomy: MiSeq and NovaSeq similarities 
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For both datasets around 71% (6 million for MiSeq) and 75% (91 million for NovaSeq) reads 

could be assigned at the genus and species level in the Arthropoda phylum. Total ASVs found 

were 4,379 and 6,060 respectively corresponding to 553 and 546 unique taxa at the genus 

level. In both datasets the class Insecta dominated the reads with 98% and 99% respectively, 

around 0.3% belonged to Arachnida and few reads (<0.01%) to Collembola. There were a total 

of 12 insect orders found with the most abundant being Diptera with over 60% reads and 104 

taxa, followed by Hemiptera, Coleoptera and Hymenoptera for both the MiSeq dataset and 

the NovaSeq. However, the remaining orders did vary in total reads for each of the datasets 

(see Figure 4. 2A). Within the three months sampled, Diptera were always the most abundant 

taxa for both datasets and the following major orders reflected the total read distribution of 

species among the orders (see Figure 4. 2B). The most abundant genera found for both 

datasets were Delia, Scaptomyza, Brassicognethes, Bombus and Eupeodes (see Figure 4. 3). 

There were significant differences when the number of ASV’s were compared between the 

two sequencing methods (Fvalue=42.41, p=2.3e-10). However, compositional similarity 

between the datasets was high with more than 490 (81%) taxa shared at the genus level, for 

species level the similarity was 69% (764 species shared). Within samples the similarity was 

high with a mean Jaccard index of 0.80 (s.d ±0.10) (see Figure C. 3). Samples with low similarity 

typically had lower number of total reads when compared with the mean for each dataset. 

Surprisingly, after applying filtering criteria the MiSeq dataset had more taxa remaining. After 

using a one percent threshold both datasets lost taxa, Miseq totalled 244 taxa whilst NovaSeq 

retained 218, despite the 100 more taxa discovered. The similarity between the taxonomies 

remained high after applying the filtering (see Table 4. 1). Agricultural taxa of interest 

included 7 parasitoids, 15 pests, 136 pollinators and 36 predators. Most pollinators belonged 

to the order Diptera (89) and Hymenoptera (26). Predators were mostly found within the 

orders of Coleoptera (20), and Araneae (10). Finally, most pests belonged to Hemiptera (13) 

and parasitoids to Hymenoptera (7) (see Figure C. 3 for all the taxa that a category could be 

found see Table C. 4). 
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 Total 

number of 

taxa at 

species 

level 

(before 

filtering) 

Total 

number of 

taxa at 

genus 

level 

(before 

filtering) 

Shared taxa 

between 

MiSeq and 

NovaSeq 

(before 

filtering) 

Total 

number of 

taxa at 

genus 

level (after 

filtering) 

Shared 

taxa 

between 

MiSeq 

and 

NovaSeq 

(after 

filtering) 

Median: 

Jaccard’s 

similarity 

index 

MiSeq 874 553 764/499 

(species/gener

a) 

244 209 0.80 

NovaSeq 988 546 218 

Table 4. 1 Number of taxa found between the two platforms at the species and genus level 
for both pre-filtered and filtered datasets along with summary statistics for Jaccard’s 
similarity index 
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Figure 4. 2 A) Taxonomic composition of the two sequencing platforms according to the 
relative percentage of each species in the complete dataset. B) Relative percentage of taxa 
within the major orders for the three months sampled in the MiSeq dataset. C) Relative 
percentage of taxa within the major orders for three months sampled in the NovaSeq 
dataset (percentages have been rounded, therefore in B and C some of the bars look slightly 
above or below 100%)  



96 
 

 

Figure 4. 3 Heat trees showing the total diversity captured within the filtered dataset. Each 
node represents a taxonomic level, lowest node presented here corresponds to the genus 
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level. Coloured edges and nodes correspond to the relative percentage of reads for each 
taxon and the number of reads. (Top) Only Diptera are plotted with the highest diversity, 
(bottom) all the rest major Arthropod orders are plotted together 

4.4.3 Diversity patterns 

 

Species richness within samples ranged between 1 and 21 for the MiSeq dataset and 1 to 19 

for the NovaSeq dataset (filtered datasets). Beta diversity was found to be high between most 

of the samples with a median of 0.90. The GLM fitted with mvabund revealed significant 

differences between the communities for fields sampled but not for months (see Table 4. 2). 

 

Coefficient Res.df  Df.Diff  Dev Pr(>dev) 

Intercept 1329    

Field 1328 1 205.3 0.001* 

Month 1327 1 264.4 0.199 

     

Table 4. 2 Coefficients and results for the multivariate GLM, only Field was found significant 
with (Likelihood ratio test: 205) 

Richness was found to be negatively affected by increasing latitude, but the relationship was 

weak (see Table 4. 3; Figure C. 2; Appendix C). Compositional dissimilarity was not correlated 

with physical distance (mantel R statistic= 0.046, significance= 0,031 at the 90% upper 

quantile; see Figure 4. 4;AB) for either of the datasets. Partitioning the diversity into gain and 

loss components (colonization and extinction) between the three months sampled showed 

low total changes in the components between June/July but high between July/August (see 

Table 4. 4). Colonization and extinction from many taxa had a significant effect on beta 

diversity (see Figures 4. 5;4. 6), highlighting that species turnover is the major driver of beta 

diversity. The taxa-level comparison showed that the genera that had the highest influence 

in beta diversity were: Brassicogethes, Scaptomyza, Oscinella and Delia for both timepoint 

comparisons with Episyrphus having a significant influence for the July-August comparison 

but not June-July (see Figure 4. 6). These taxa were also the most abundant ones in the 

dataset.  
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Coefficients Estimate Standard error Z value Pr(>z) 

Intercept 4.50 0.67 6.71 <1.8e-11 

Latitude -0.03 0.01247 -2.407 0.0151 

Landscape 

diversity 

-0.054 0.08 -0.647 0.5174 

Table 4. 3 Coefficients and estimates for the GLM for the different effect of factors for 
species richness. AIC: 676.46, residual deviance 291 on 81 degrees of freedom 

 

 

Figure 4. 4 Jaccard’s dissimilarity between all sample comparisons against physical distance 
of sampling points for the MiSeq (Left) and NovaSeq (right) datasets. 
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Extinction and Gain 

components 

Comparison for June-July 

(Temporal change in beta 

diversity) 

Comparison for July-August 

(Temporal change in beta 

diversity) 

Extinction component effect 

(Loss of species) 

0.084 0.29 

Colonization component 

effect (Gain of species) 

0.06 0.50 

Table 4. 4 Temporal component (gain and extinction) effects on beta diversity based on 
extinction (loss) and colonisation (gain) of species. 
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Figure 4. 5 Taxa level impact on beta diversity for genera that increased or decreased by a-+ 
0.10 change the overall beta diversity, comparison between June-July. The density plot 
shows distribution of values for all taxa for the main components (colonaziation and 
extinction). 
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Figure 4. 6 Taxa level impact on beta diversity for genera that increased or decreased by a -+ 
0.10 change the overall beta diversity, comparison between July August. The density plot 
shows distribution of values for all taxa for the main components (colonaziation and 
extinction). 
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4.5 Discussion 

 

In this study, I have demonstrated that DNA-metabarcoding can successfully identify bycatch 

diversity in active nationwide insect monitoring schemes, with more than 800 species 

identified, as well as describing community-level spatio-temporal differences, highlighting the 

value of bycatch diversity as a source for insect data. Furthermore, by comparing two 

different sequencing platforms (MiSeq and NovaSeq), I show overall very high similarity 

between the two with more than 90% of taxa shared but also within-sample similarity despite 

the 20-fold difference in sequencing output. Finally, I show that bycatch diversity patterns are 

complex with a mean beta-diversity of 0.90 despite study sites being agricultural 

monocultures (potato fields) which was found to be mainly driven by taxa turnover. This study 

further validates the added value of DNA-metabarcoding for insect monitoring schemes by 

making bycatch accessible at a nationwide scale. 

 

4.5.1 Bycatch diversity within potato fields 

 

Overall, bycatch diversity within the YWP network was high with more than 800 taxa for the 

pre-filtered datasets and around 500 for the filtered at the species level (see Table 4. 1). 

Bycatch is typically not analysed within monitoring schemes as it can be regarded as 

prohibitively expensive, requires more effort and taxonomic expertise. But Next-Generation 

approaches can offer a tool for biodiversity monitoring with no taxonomic expertise (Yu et al., 

2012). It can be seen as valuable taxonomic information as it (a) can inform early pest 

detection, (b) be used for broadening knowledge regarding distributions of taxa and (c) even 

identify new species (Hribar, 2020). I showed that DNA-metabarcoding can identify such 

samples with more than 12 insect orders within the fields sampled. Among the taxa identified, 

many could be characterized as beneficial insects such as pollinators: Bombus, Apis and 

Syrphus but also aphid parasitoids and predators which included: Aphidius, Praon and 

Coccinella.  Additionally, 6 additional taxa were also found to be potato plant pests, such as: 

Delia platura, Dilophus febrilis, Closterotomus norwegicus, Eupteryx atropunctata, 

Campylomma verbasci and Noctua pronuba. YWP focuses on informing farmers about aphid 

populations and risk of viral transmission, therefore this could be additional information 
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provided to farmers that could aid management choices. DNA-metabarcoding does not 

provide quantitative information, and this is a limiting factor for its use in monitoring, 

however there are ways for extracting such information (Bista et al., 2018; Deagle et al., 2019). 

Diptera was the most abundant taxa both in relative reads and total number of species which 

was expected given that Diptera can be some of the most abundant flying insects (de Souza 

Amorim et al., 2022). Within Diptera there can be many species that provide ecosystem 

services for farms like predators, or pollinators. In my data, at least 4 very common taxa can 

be highlighted that can provide such services, the genera: Episyrphus, Eupeodes, Syrphus and 

Sphaerophoria. Yet overall, we identified more than 170 species that can provide such 

services. The ratio of target species to bycatch species was found on average 1:10, which 

means that bycatch species dominate the catches in the YWP network. Here, I showed that 

despite the sampling that took place within an agricultural monoculture (potato fields) 

diversity was high (556 genera) and, overall, very different in its taxonomic composition from 

field to field as shown by the high beta-diversity. As bycatch is typically thrown away within 

this monitoring scheme and perhaps many more, the loss of insect data needs addressing and 

DNA-metabarcoding can be seen as a tool that can address this problem, even if the lack of 

space within a monitoring scheme is an issue. Then DNA-metabarcoding can provide an 

alternative digital archive of the communities captured (Petsopoulos et al., 2021).  

 

4.5.2 Sequencing technologies differences 

 

Next-generation sequencing approaches can vary greatly in their output number of reads and 

sequencing depth can be a limiting factor when trying to identify complex multi-taxa samples 

(Alberdi et al., 2018). Here we compared two Illumina sequencing platforms the MiSeq and 

NovaSeq with a 20-fold difference in total output and 16-fold difference within the sample 

read averages between the two datasets. Despite the differences in output, I found high 

compositional similarity (see Table 4. 1) overall, at both species and genus level. However, 

the NovaSeq dataset did include more than 100 additional species than the MiSeq which was 

reflected to the total difference in numbers of ASVs between the datasets (4379 for MiSeq 

and >6000 for NovaSeq). At the genus level the difference was minimal with NovaSeq 

capturing only 7 more additional genera. NovaSeq datasets have been previously shown to 
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capture more ASV’s even when compared at similar sequencing outputs as the MiSeq (Singer 

et al., 2019). In this study, we observed a similar pattern however, when ASVs were collapsed 

into genus level there were no differences in the taxonomic composition. Similarity remained 

high (90%) after filtering thresholds were applied but the overall taxa within the datasets fall 

to 227 and 245 for NovaSeq and MiSeq respectively. Surprisingly, NovaSeq lost more taxa 

than the MiSeq which might reflect a limitation on the filtering criteria applied here. As 

NovaSeq had many more reads for each sample rare taxa which had less reads got filtered 

out due to the high threshold in each sample. Each sample within the NovaSeq had more rare 

taxa (114 more species) than the MiSeq the high sequence depth which would equal higher 

read thresholds resulted in many more taxa being dropped in the NovaSeq dataset because 

of the higher number of rare taxa per sample. Whilst such taxa remained in the MiSeq dataset 

as the limit for dropping out taxa was lower overall. Our stringent criteria most likely removed 

false positives, but as previously shown (see Chapter 2) it is uncertain as to which extent this 

was done but also to which extent false positives were also dropped as is the case when 

applying such filtering methods (Drake et al., 2022). As morphological information is not 

available for these samples it’s uncertain to which degree false positives and negatives are 

removed. Our approach for extracting the DNA of these samples was not destructive, 

therefore this could be checked by revisiting the samples themselves. Finally, the high 

similarity between the two datasets showcases that despite the high number of samples (188) 

the MiSeq dataset managed to capture the bycatch diversity with low read outputs which 

means that costs can be kept low which is a major factor for deciding sampling efforts in 

monitoring schemes. 

 

4.5.3 Bycatch diversity patterns within YWP nationwide monitoring scheme 

 

Insect biodiversity patterns can be very complex, particularly over large spatial scales 

(Grabener et al., 2020; Outhwaite, McCann and Newbold, 2022). Yet, diversity is not a 

homogenous and static measure, changes over space and time lead to turnover of that 

diversity and alterations to structural properties of the diversity like nestedness, ultimately 

driving broader ecological differences. Despite sampling within an agricultural monoculture, 

we find overall high diversity and very different communities across the fields sampled and 
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the months (see Figures 4. 4;AB). Although, we found species richness decreasing with 

latitude in our dataset, which is observable in other groups of taxa as well (Hillebrand, 2004). 

The relationship was weak and there was no apparent spatial grouping between the 

communities found, despite certain fields being in very close proximity with each other (see 

Figure 4. 4). This is most likely due to factors influencing communities at a local level, even 

different management practices within the fields, as arthropods can be very sensitive to 

environmental variations (Nunes et al., 2020). Unfortunately, management information was 

not available for the fields sampled but further studies could incorporate other environmental 

factors such as temperature, rain or wind to further understand if these could explain 

differences in species richness across the dataset. Throughout the dataset, a similar temporal 

pattern with Diptera dominating can be seen for most of the months sampled with July having 

the overall highest bycatch diversity with more than 180 taxa throughout the network. I found 

that beta diversity changes are driven mainly by species turnover. Species turnover can be a 

major component of beta diversity in arthropods (Nunes et al., 2020) influenced by a number 

of factors such as environmental dissimilarity and geographic distance (Buckley et al., 2008). 

Turnover was found to be mainly driven by the disappearance and appearance of certain taxa 

(Figures 4. 5;4. 6). These taxa were also the most abundant taxa in the dataset, this could 

imply that when these taxa are present and dominate the reads, rare taxa are not picked up 

leading to higher beta diversity measures. There are several reasons why this might be, 

including uneven sample abundances or PCR biases (Martoni et al., 2022). However, as I did 

not identify such samples morphologically or did not estimate any abundance proxies, such 

as  biomass, my study was not able to attribute such differences to such biases. For example, 

in Chapter 2, when the dominant taxa were present in a sample congruence was found lower. 

Sampling completeness could be one of the reasons for such high beta diversity estimates, as 

many of the fields sampled did not have samples throughout the time period. However, an 

analysis with all the samples that had replicated samples throughout the months still showed 

high beta diversity (see Table C. 3) and similar diversity patterns (i.e. decreasing richness with 

increasing latitude). Further explorations of beta diversity which would include many more 

environmental factors such as: temperature and rainfall could help better illuminate what is 

driving the high species turnover in this study. As geographical distance was not correlated 

with beta diversity and even very closely located sites showed high beta diversity, we expect 

local factors to be the main driver of these differences. NMDS plots of the community across 
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environmental gradients (temperature or rainfall) could be used to highlight any groupings 

associated with those gradients.  Insects represent one of the most biodiverse groups of taxa 

on Earth, yet there is still a lot of uncertainty regarding insect population particularly in the 

context of insect declines. Bycatch that results from unwanted catches in monitoring schemes 

typically doesn’t get analysed as it is very expensive and the labour costs in both time and 

money further complicate its use. I have shown here that with DNA-metabarcoding we can 

analyse patterns of bycatch biodiversity within a nationwide scale even at very low sequence 

outputs.. While relying on relatively affordable sequencing technology of the MiSeq we found 

minimal differences between the sequencing platforms in the resultant communities,. As 

sequencing technologies are getting cheaper and cheaper (Preston, VanZeeland and Peiffer, 

2021) this shows great promise for DNA-based monitoring of insect communities.  

4.6 Limitations of this study and conclusions 

 

In this study I have showed that DNA-metabarcoding can be a valuable tool for characterising 

the diversity of bycatch taxa. Focusing on a nationwide monitoring scheme at Fera (YWP), we  

additionally showed how DNA-metabarcoding can help us explain global patterns across the 

scheme whilst using two different sequencing platforms. The biggest impediment in this study 

is the lack of morphological data to assess the accuracy of DNA-metabarcoding against 

morphological identifications. My DNA-extraction approach was not destructive therefore 

these samples could be revisited for this purpose. However, at the scale of this study this 

includes a serious workload as thousands of insect’s specimens were trapped with overall 

high species complexity (12 orders, 545 genera). Additionally, insect monitoring needs fast 

and scalable methods. Morphological identification can act as an impediment to the efficiency 

of overall monitoring efforts as it is generally more time-consuming. A better approach would 

be to address the issue at the source, by controlling cross-sample contamination that might 

be introduced during sample handling. We used sequencing threshold filtering approaches to 

account for this which led to 230 taxa being dropped from the dataset. Yet, it would be 

beneficial for such schemes to establish multiple layers of controls. For example, field 

negative controls are needed to address contamination from nearby sources. As these traps 

are left for weeks in agricultural fields many organisms can contaminate the water in the pan 

traps (i.e. farm animals drinking water). Establishing field controls would also help minimize 
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contamination from flying insect DNA giving a more accurate representation of the 

community being sampled. In this study, we focused on arthropods as the main aim was insect 

bycatch diversity. However, non-arthropod taxa were recovered, some included common 

contaminants (like human DNA, or cow DNA which was not unexpected as this study takes 

place within agricultural fields). Others included birds, or gastropods some of which I’ve found 

tissue within the samples. This means that contaminants were present at the stage of sample 

collection some of which can be biologically explained (non-arthropod taxa in fields) but 

others point to contamination at the sample handling level (human DNA).  
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Chapter 5: Discussion 

Declaration: An abridged version of the discussion has already been published: The 

published piece can be found at: 

https://resjournals.onlinelibrary.wiley.com/doi/full/10.1111/een.13035 

5.1 Thesis objectives and summary of main findings 

 

Global biodiversity is currently under threat and rigorous and scalable monitoring is needed 

to understand and mitigate the impacts. Insects are one of the most diverse terrestrial groups 

of biodiversity that are facing numerous threats, but despite the claims of global insect 

declines (van Klink et al., 2020), the picture is blurred with a lot of uncertainty for insect 

populations (Wagner et al., 2021). One of the main reasons for this uncertainty is the lack of 

long-term data for insect populations for many regions of the world. There has also been a 

taxonomic bias towards more charismatic groups for biodiversity assessment (Rocha-Ortega, 

Rodriguez and Córdoba-Aguilar, 2021), resulting in less than 1% of insect taxa assessed for 

IUCN status. Insects are of course one of the most diverse groups with millions of species 

discovered and described so far  (Stork, 2017) which further complicates our ability to assess 

the state of insect populations broadly. Therefore, there is a clear need for more 

comprehensive monitoring efforts, which could be facilitated by advances in molecular 

ecology. A great source for long-term data has been a small number of insect monitoring 

schemes, even though these have been developed with different aims (such as pest 

surveillance). A good example of this is the Rothamsted Insect Survey (RIS) suction trap 

network, which has been monitoring aphids daily in the UK since the 1960s, providing long-

term data for decades and helping to understand ecological patterns but also highlighting 

potential threats to insect populations (Bell, Blumgart and Shortall, 2020; Grabener et al., 

2020). As in the case of RIS the focus of insect monitoring schemes tends to be for particular 

taxa depending on the aim of the scheme whether if it is for surveillance or biodiversity 

assessment. Yet, they capture hundreds of other taxa as well, which is typically called the 

bycatch. Bycatch usually remains untouched (or is discarded) as it is not the principal aim of 

such monitoring schemes and there are multiple barriers to retain it, especially the taxonomic 

expertise needed, financial and logistical reasons (Hribar, 2020). However, new tools can help 

us overcome such challenges. Next Generation Sequencing (NGS) approaches can provide us 

with the necessary tools that can  scale up insect biodiversity monitoring (especially bulk 
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samples caught in a range of entomological traps) and effectively revolutionising the way we 

can monitor insects (van Klink et al., 2022).  

The overall aim of this thesis is to test and evaluate the added value that NGS approaches, 

and more specifically DNA-metabarcoding, can offer to insect monitoring schemes. Although 

the use of DNA-metabarcoding has been largely used for a range of other biodiversity 

assessments, its use with application to insect monitoring schemes that serve as bio-

surveillance, has been scarce. In this thesis I aimed to develop and evaluate the reliability and 

use of DNA-metabarcoding for insect monitoring schemes by focusing on three major aims 

that correspond to individual chapters. 

Aim 1 (Chapter 2): Develop and evaluate a DNA-metabarcoding approach to uncover archival 

(target aphid) samples from insect monitoring schemes. 

Aim 2 (Chapter 3): Determine bycatch diversity from insect monitoring schemes, highlight its 

value for scaling up monitoring efforts and present archival bycatch samples as a source for 

constructing multi taxa time series  

Aim 3 (Chapter 4): Use DNA-metabarcoding as a tool to uncover bycatch diversity within a 

nationwide insect monitoring scheme, showcasing its use for insect monitoring at large spatial 

scales. 

5.2 Summary of findings 

 

In Chapter 2, I assessed the reliability of DNA-metabarcoding for retrieving insect sample DNA       

from archives. Molecular methods have previously been used successfully to identify a variety 

of old specimens including insects (Gilbert et al., 2009). Despite the limitations that archival 

samples have, especially DNA degradation, methods have been developed for extracting DNA 

from insect specimens up to hundreds of years old (Gilbert et al., 2007). Insect monitoring 

schemes, particularly ones with archival samples, do not necessarily preserve their samples 

in ideal conditions for DNA-research. RIS for example, although archiving all of their samples 

in a suitable solution for long-term preservation of DNA, the samples are archived in room 

temperature which is not ideal for extracting high quality DNA (Gray, Pratte and Kellogg, 2013). 

I focused on a subsample of RIS aphid samples that included more than 66% of all genera 

identified within RIS for the suction trap at Newcastle and spanned 16 years from 2003-2018 
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with the oldest samples being 18 years old at the point of the DNA-extraction. I found high 

congruence for the taxonomic composition of the DNA-metabarcoding dataset compared 

with taxonomically identified data (80% at the genus level, 51% at the species level), but with 

a lot of variation between the samples. Sample age did not affect congruence at either 

taxonomic level and the relationship was not linear, this means that it is possible to use this 

method to go back in time irrespective of sample age. This is good news for researchers 

wishing to use archival samples at RIS as it means that thousands of insect samples could 

potentially be identified for the first time with the use of DNA-metabarcoding. Doing this 

using taxonomy would be prohibitively expensive and laborious. Indeed, previous efforts to 

do so within RIS typically focused on high taxonomic levels such as family or insect biomass 

(Grabener et al., 2020). Although I was not able to model a high amount of congruence 

variability to a specific factor, such as sample evenness or sample age, taxonomic assignment 

did have an impact on congruence with BLAST having a mean congruence of 80% and RDP of 

69%, which supports growing evidence that newer approaches are not always the best and 

there is a need for comparison/validation between taxonomic assignment methods (Hleap et 

al., 2021). Sequencing depth did not influence congruence in this study despite the well 

documented importance of achieving sufficient depth in DNA-metabarcoding studies (Shirazi, 

Meyer and Shapiro, 2021). There can be other factors influencing congruence such as primer 

bias and choice of loci (van der Loos and Nijland, 2021), which were not considered in this 

study as the main aim was to see if sample age had an influence. A limitation with my 

approach was that DNA-metabarcoding had on average 3.6 false positives; I show that this 

could be controlled by using the taxonomic information or by using sample sequence 

thresholds. However, congruence fell drastically to 50% when using sequence threshold 

filtering and false negatives increased from 1 to 4 on average which means a lot of real 

information was dropped from the dataset. The scale of false positives and false negatives 

should be further assessed, for example by picking up samples and using single specimen 

DNA-barcoding to highlight any potential misidentifications by the taxonomists or by avoiding 

the PCR step altogether and processing the samples with DNA-metagenomics. It is important 

to note however, that the source of such contamination within RIS that might lead to false 

positives or false negatives is more likely to be from the way samples are handled in RIS prior 

to archiving. Therefore, addressing the issue at the source by following processing procedures 

that minimize sample to sample contamination which comes from potentially using the same 
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sorting trays could solve the problem of contamination. Furthermore I showed that a non-

destructive DNA extraction yielded similar results with no effect on congruence. This is 

important for insect monitoring schemes that can be hesitant to provide samples for DNA 

analysis if destructive methods are used. This ensured that the samples processed can be 

accessible in the future or even revisited to create specimen-based reference databases.  

Chapter 3 focused on bycatch diversity within RIS (using the accompanying samples caught 

with the aphids in Chapter 2). Bycatch within RIS does not typically get analysed and therefore 

can be seen as an untouched but valuable resource for long-term insect data as it has been 

preserved for decades. Here, DNA-metabarcoding can be seen as a potential key to unlocking 

this resource. After validating DNA-metabarcoding and understanding the limitations of it for 

RIS (which were the need of taxonomic information for filtering out false positives or the use 

of filtering methods with the drawback of losing information), I used DNA-metabarcoding to 

recover the bycatch diversity from a time series of 16 years providing for the first time a 

species list for bycatch within the RIS ‘Newcastle’ trap. Unsurprisingly, bycatch diversity was 

high with more than 800 insect taxa identified to a species level. Within the bycatch, many 

taxa could be identified as insect beneficials (e.g. pollinators) and even additional pests, 

highlighting the value that bycatch has to offer for insect monitoring more broadly. For 

example, around 50 taxa of aphid parasitoids and predators were identified. As RIS currently 

focuses on informing farmers regarding aphid migration for the prophylactic use of 

insecticides, information regarding beneficial presence could be used as well, although  with 

caution as presence of the predators does not necessarily equal higher biological control. 

Additionally, I identified more than 9 species which have no record within the UK, some of 

which were found only in North America. Validation for these would be necessary by expert 

taxonomists, but this shows how bycatch can be used, for example, for early detection of new 

invasive species or to expand knowledge on current geographic species ranges. Similarly, to 

Chapter 2, I controlled for false positives by using sample sequence thresholds with stringent 

filtering criteria of 1%, resulting in more than half the taxa identified being dropped. As I do 

not have morphological information it is difficult to assess exactly how false positives or 

negatives are affected by this, something that should be confirmed in future studies. However, 

identifying morphologically diverse communities such as bycatch with more than 14 

arthropod orders here is a monumental task. Especially given the high number of insect 
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numbers within samples, that can add up to thousands of individuals. As I purposely selected 

one trap from RIS and a subset of the samples going back to 2003, the number of species 

recovered here is probably an underestimate of real bycatch diversity. Nevertheless I have 

shown how it is possible to create time series for hundreds of insect taxa, and calculate 

diversity metrics such as richness and species turnover. Richness increased over time for the 

majority of orders, yet as I only subsampled the whole time series from one trap it is uncertain 

whether this is a real pattern or an artefact of the sampling, despite choosing sampling days 

at random. Finally, sequencing depth did not show an increasing positive effect on richness, 

which was unexpected. Although in this study sequencing depth was high as I used the 

Illumina NovaSeq platform, and the suggested species accumulation curves show a coverage 

of more than 95% for my sampling, I believe that bycatch samples can be highly complex and 

may harbour increased richness requiring even deeper sequencing. Interestingly, sample age 

had a slight impact on species richness as suggested by the model fitted, suggesting that 

degradation of DNA might be an important consideration for the bycatch samples in RIS. 

Finally, in chapter 4 I apply DNA-metabarcoding to a live, nationwide scheme where archiving 

samples is not possible. I use DNA-metabarcoding to identify and analyse patterns of bycatch 

diversity within the nationwide pest monitoring scheme at Fera: the Fera Yellow Water Pan 

Trap Network (YWP), highlighting the potential of the tool at a large spatial scale. Here, 

throughout the UK (with some geographical biases as the sampling at Fera is based on farmers 

interest and uptake) I identified more than 500 insect taxa, despite samples taken in 

agricultural monocultures (i.e potato fields). Additionally, more than 100 taxa were identified 

as beneficials, such as pollinators, predators, and parasitoids. A further 7 potato pests were 

also identified, which might be important for the farmers using YWP. As part of this work I 

also assessed potential differences in biodiversity descriptors between sequence platforms of 

varying output: the Illumina MiSeq and NovaSeq with a 20-fold output difference. Surprisingly, 

both datasets were highly similar in their taxonomic composition sharing more than 90% of 

taxa captured and similar biodiversity patterns. This is important for monitoring schemes as 

the cost can be prohibitively expensive when it comes to large datasets such as the one 

presented in this chapter (i.e. with more than 188 bulk arthropod samples and 83 locations 

across the UK), as it would mean that for the bycatch within YWP a single MiSeq run could 

suffice to provide a list of species. YWP methodology currently discards all samples that are 
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captured as there is limited space for archiving. DNA-metabarcoding can provide a digital 

record of bycatch diversity for many monitoring schemes missing the capabilities of archiving 

samples, and there are suitable databases for such information to be stored (such as GBIF see 

(Andersson et al., 2022). Overall, I found complex patterns of biodiversity with high species 

turnover across the sites and months sampled, with a median beta diversity of 0.90 based on 

the Jaccard index of dissimilarity. The most dominant insect order from these pan traps 

(indeed, as in the case of samples from the RIS suction traps) were Diptera, as they can be 

some of the most abundant flying insects. Two of the main components of beta diversity are 

nestedness and turnover both driven by environmental variation and geographical distances. 

Species turnover was the main driver of beta diversity here and I found no correlation 

between geographical distance and dissimilarity, despite many samples collected being very 

close to each other. Highlighting the importance of local in field factors despite the locations 

being agricultural monocultures. Partitioning the dataset into gain and loss components 

revealed that beta diversity is mainly driven by taxa themselves. Meaning that the most 

dominant (in terms of relative read percentage and frequency) taxa also drove the differences 

in beta diversity, meaning that appearance or disappearance of such taxa led to the high 

differences observed. Finally, by using metadata in the dataset, and by computing indices of 

landscape complexity,  I found that richness decreased by increasing latitude but no effect of 

landscape complexity was found. This suggests that other factors particular at the local farm 

level, such as climate or even management practices can be at play. A further build-up on this 

dataset could include many more factors such as in field pest-management strategies and 

local environmental variables such as rainfall, temperature and wind. Which could help 

explain why species turnover is so high among these monocultures. 

5.3 Filling up insect data gaps by merging NGS and archival samples 

 

This thesis adds to growing evidence that NGS approaches such as DNA-metabarcoding can 

help researchers to overcome many of the obstacles inherent in traditional monitoring 

schemes that are dependent on morphological identification by skilled taxonomists (van Klink 

et al., 2022). I have shown how DNA-metabarcoding can add value to two nationwide 

monitoring schemes in the UK. However, this is not limited to these two schemes; it could be 

applied to any insect monitoring scheme that uses passive sampling techniques or not 



118 
 

irrespective of their capabilities to archive samples. Although it is difficult to identify such 

schemes, databases of long-term insect data such as Insect Change (van Klink et al., 2021). 

EntoGEM (Grames et al., 2022) (found in: https://entogem.github.io/) can act as a first source 

for finding them by looking at studies that make use of long-term data. Other sources for 

identifying schemes with collections or insect archival samples can be found on the 

Entomological Collection Network (https://ecnweb.net/). Despite numerous databases it can 

still be difficult to identify such schemes. For example, the Rothamsted Insect Survey is not 

included in some of the above databases. Development of databases where insect monitoring 

schemes along with the information of their samples can be found is a crucial step for 

streamlining applications of NGS at larger scales. There are currently few published studies 

that make use of DNA-metabarcoding or NGS tools on long-term datasets from insect 

monitoring schemes (Ji et al., 2020; Basset et al., 2022). Perhaps the best example of NGS 

applications for global insect monitoring is the BIOSCAN program 

(https://ibol.org/programs/bioscan/), monumental task for capturing and describing 

arthropod diversity, patterns and their interactions at the global scale by using malaise traps 

with more than 2000 sampling locations to date. RIS is a unique monitoring scheme in the 

sense that they have been archiving all of their bycatch samples since the 1960s. With a 

network of 16 suction traps across agricultural fields and daily archived samples it offers a 

unique opportunity to construct time series at a nationwide level for hundreds or even 

thousands of insect taxa. I have shown that this is possible for samples dating back to 2003 

(~18 years old). Indeed, given that DNA degradation does not appear to be an issue it could 

be possible, given sufficient funding, to metabarcode all RIS samples unlocking some of the 

longest multi-taxa time series in the world. The effort of doing this via traditional means like 

morphological identification would be monumental, but NGS can offer the appropriate tools 

for such efforts (van Klink et al., 2022). However, a major disadvantage for DNA-

metabarcoding for insect monitoring schemes is the lack of quantitative data (Lamb et al., 

2019). Insect monitoring schemes and long-term datasets to understand insect declines 

require abundance information on the species captured. Yet, DNA-metabarcoding and other 

approaches such as mitogenomics can bias the quantitative nature of such data. 

Metabarcoding requires amplification of the template DNA via PCR, primer-template 

mismatches, unsuitable primer choice or loci can all alter the relationship of input 

DNA/biomass of species and the reads assigned to them (Deagle et al., 2019). Mitogenomics, 
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although avoiding the PCR step biases, can still come from the different number of 

mitochondrial copies available in each taxa (Ji et al., 2021), something that is unknown for 

many organisms. Despite all such biases and limitations current efforts are changing this and 

it is now possible to retrieve quantitative information from both DNA-metabarcoding and 

mitogenomics (Shelton et al., 2022). Obtaining quantitative information will very likely 

increase the adoption of such methods and insect monitoring schemes like RIS offer ideal 

datasets to validate the quantitative nature of NGS approaches. 

5.4 Scaling up insect monitoring with information on bycatch 

 

Insect monitoring schemes with archival samples such as RIS are scarce, most monitoring 

schemes perhaps do not have the capability to archive their samples, such as the Fera Yellow 

Water Pan Trap Network. I have shown that even when that is the case, DNA-metabarcoding 

can still add value to such schemes by analysing the bycatch. Bycatch, although ubiquitous in 

monitoring schemes, is not well documented for insects (Hribar et al., 2021). A literature 

search for the terms “by-catch OR bycatch” and insects shows that less than 40 published 

articles can be found in Web of Science. Although this can partially be attributed to non-

standardized use of the term ‘bycatch’ in studies, results show that when it comes to insect 

bycatch it is much less known (Spears and Ramirez, 2015). Many studies focus on finding ways 

of minimising bycatch (Spears et al., 2016; Sétamou et al., 2019) yet very few on what actually 

bycatch diversity consists of. Of those that do, many have highlighted the importance of 

bycatch for entomological and ecological research (Hribar, 2020). As shown in both chapters 

3 and 4, bycatch diversity within monitoring schemes can be very high and complex. It can 

include beneficial species within agricultural systems such as predators, parasitoids and 

pollinators. All such ‘beneficials’ can provide ecosystem services that have impact at the farm 

level by pest suppression or even yield increase by pollination (Stein et al., 2017). Therefore, 

it could be possible for pest monitoring schemes that provide farmers information regarding 

pest populations to give data on pest predators, parasitoids and pollinators too, so farmers 

can have a more informed decision regarding their management practices. Admittedly, this 

would require a better link between the presence of beneficials and actual provision of 

services as the degree that, for example, pest suppression can be linked to abundance of 

beneficial insects is limited. However, newer approaches that are based on species 
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interactions uncovered by NGS can help us better understand such interactions (see below 

section 5.5.6) and link it to ecosystem functioning (Windsor et al., 2022). I also found 

numerous additional pests within the bycatch for both schemes and potential insects that 

have previously never been recorded in the UK, one of which is native only to North America 

and Australia. Therefore, bycatch could be used as an early warning system for invasive 

species aided by the rapid species identification offered by DNA-metabarcoding, but it can 

also be used to increase our understanding about geographical distribution of species. Finally, 

there is also an ethical reason for the inclusion of bycatch taxa. Particularly in the context of 

insect declines, numerous insects and arthropods species are captured within pest monitoring 

schemes most of which are bycatch, many of which are never analysed or worse still thrown 

away (Fischer and Larson, 2019). As I have shown, the mean ratio of bycatch species to target 

pests was around 10 to 1 for RIS and YWP. The degree to which such passive sampling 

methods influence local populations of bycatch is uncertain and requires further investigation. 

Additionally, it is saddening that so much information is potentially lost as pest monitoring 

schemes that do not have the resources to collect or analyse bycatch throw these away, 

especially when there is a clear lack of insect data for many parts of the world  (Wagner et al., 

2021). Finally, it is clear that bycatch within monitoring schemes is rarely documented. There 

is an urgent need for databases where information on schemes that have bycatch is available 

to researchers so that collaboration and research efforts on bycatch are promoted. Thankfully, 

guidelines for doing so have been published (Montgomery et al., 2021) and there are many 

biodiversity databases that could already incorporate such datasets such as GBIF 

(https://www.gbif.org/dna).  

5.5 Beyond simply identifying species: future approaches 

 

NGS approaches are of course a big part of the tools that can help researchers to scale up 

insect monitoring, but not the only ones. Advances in computer vision, acoustic monitoring 

and radar technologies all offer up immense potential for scaling up insect monitoring and 

biomonitoring in general (Van Klink et al., 2022). The combination of such tools could 

potentially lead to the much anticipated automated monitoring systems (Bohan et al., 2017; 

Derocles et al., 2018). Of course, it must be noted that such technologies will still never 

replace the need for taxonomists and specialist taxonomic knowledge, but should be taken 
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as complementary. For example, bycatch species could be initially screened by DNA-

metabarcoding and then picked up by expert taxonomists that are interested in particular 

taxonomic groups for further morphological analyses. The non-destructive method for DNA-

extraction, developed  in my thesis, would also make it possible for experts to create well-

presented voucher specimens which can populate reference databases such as BOLD 

(Ratnasingham and Hebert, 2007) as currently complete and well curated reference 

databases for insects are an issue in DNA based studies (Magoga et al., 2022). This could be a 

win-win situation for both molecular ecologists and taxonomists. Furthermore, I have shown 

that without the taxonomic information, DNA-metabarcoding, although reliable, there is loss 

of information by using filtering criteria. There can also be uncertainty regarding the degree 

that false positives or negatives can impact the recovered community which furthers highlight 

the need for morphological data. Such issues need to be addressed by combining 

metabarcoding and taxonomical identifications, as done in the second chapter of this thesis. 

Additionally, pest surveillance requires a rapid turnover from sampling to identification. This 

is usually done within a day in RIS, whilst metabarcoding can take a couple of hours to days 

depending on the methods used for DNA extraction, amplification and sequencing, which is 

still a bottleneck for rapid DNA-based identification. Emerging technologies such as portable 

sequence devices, like the Oxford Nanopore sequencer, can help alleviate such issues by 

providing real-time and in-field sequencing of samples (Kipp et al., 2021). A unique aspect of 

NGS when compared to other tools for insect monitoring is the eco-evolutionary nature of 

the data. As multiple organisms are sequenced both ecological and phylogenetic signals can 

be captured with such datasets which enable us to answer questions beyond just simply 

identifying species (Tedersoo et al., 2021). Additionally, long-read sequencing technologies 

can overcome many of the challenges of short-read based technologies which DNA-

metabarcoding is currently based on. Giving us a way to increase the signal from such datasets 

but also provide more accurate species identifications (Porter and Hajibabaei, 2020). Yet, 

perhaps one of the most important layers of information that can be uncovered via NGS 

approaches is that of species interactions, as species interactions can not only provide a 

mechanistic framework to understand insect declines (Petsopoulos et al., 2021) but also 

quantify ecosystem functioning such as pest regulation and pollination, which would be 

important information for management practices. Recent advances in molecular ecology, 

machine learning, big data and network theory (e.g. Bohan et al., 2013; Makiola et al., 2020)) 
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provide new opportunities for unlocking a more holistic understanding of the mechanisms 

driving insect declines. 

 

5.5.6 Constructing ecological networks using insect survey data 

 

Before describing how insect surveys can be used to construct networks, I distinguish 

between two forms of insect survey datasets (see Figure 5. 1A, for graphical representation): 

‘physical’ where biological samples are retained, taxonomically identified or not, and ‘digital’ 

where time series of insect samples are identified to some taxonomic level and stored 

electronically. The forms can affect the way ecological networks can be constructed. There 

are three main, non-exclusive methods for constructing networks (Delmas et al., 2019): i) 

literature searches where trophic and/or other interactions are described; ii) observation 

based on empirical study; and iii) predicting species interactions from community data (Figure 

5. 1B). The rapid growth and interest in network ecology in recent years has resulted in the 

proliferation of datasets around the world (e.g. Mangal https://mangal.io; Poisot et al., 

(2016)), often with a focus on bipartite interactions. Empirically derived networks are the 

result of painstaking observations of species-interactions in the field, but are increasingly 

being augmented using DNA-metabarcoding, especially to determine difficult-to-observe 

interactions (Kitson et al., 2019). Alongside these developments, network inference 

approaches are being applied to insect community data (e.g. to species lists generated using 

environmental DNA) whereby species-interactions are predicted based on co-occurrence 

(presence-absence) conditional probabilities (but see Blanchet et al., (2020) for a critique).  

Recent work by Vanbergen et al., (2018) provided a novel way of showing how multiple 

sources of biological recording data, that included citizen science records, were used to build 

nationwide plant-pollinator networks, and found positive relationships between agricultural 

land cover and both pollinator generality (one of many network metrics) and robustness 

under several extinction scenarios. Building on this, combining network construction methods 

using long-term target and non-target insect biomonitoring scheme data represents a 

significant opportunity to understand the extinction dynamics of more holistic insect 

interaction networks. 

https://mangal.io/
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5.5.7 Network applications for insect biomonitoring schemes  

 

Using the RIS 12.2m suction-trap network as an exemplar, I show how biomonitoring schemes 

can be used to generate different types of network data, and, here I use the bycatch from the 

suction traps as a representative sample of the aerial community. First, it is possible to use 

collected insect samples to look for direct interactions between species. For example, 

molecular methods can be used to screen ladybird gut contents for aphids (predator-prey 

interactions), and/or aphids (and non-target species) for symbionts and parasitoids (Figure 5. 

2B; ii), with interaction data retained in bioinformatic pipelines that can then be used to 

construct networks (see Kitson et al., 2019). Network data can then be used to examine long-

term changes in species-interactions, in this case regarding questions of disease transmission 

and pest regulation. Second, the bycatch can be identified by metabarcoding the bulk sample, 

representing a more holistic community of interacting species when trapping allows 

(acknowledging in this instance the focus on aerial insects using a particular trapping method). 

Testing a range of co-occurrence algorithms on insect community data derived from 

metabarcoding is necessary (Figure 5. 2B; iii), but for RIS validation is easier as the interactions 

between agricultural insects are generally well documented. Third, networks can be 

constructed in space and time by scaling up the molecular processing of catches using 

automation, resulting in daily, weekly and monthly insect networks at each suction trap across 

the country (acknowledging the need for validation (Piper et al., 2019) and appropriate 

methods for obtaining insect abundance data (Ji et al., 2020). Importantly, there is an 

opportunity to construct historic networks by metabarcoding stored insect sample archives, 

potentially non-destructively and assuming DNA degradation is not a hindrance. Long-term 

changes in network structure, complexity, interaction turnover and robustness can then be 

examined in relation to environmental change, allowing new insights into the drivers of insect 

declines and the consequences for ecosystem functioning. 
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Figure 5. 1 A) Insect biomonitoring schemes can have collections of insect data series which 
can be physical (archived samples) or digital (in databases). B) Constructing networks: 
Constructing networks from such samples can be achieved from: i) literature searches 
databases etc.; ii) observation, based on targeted interactions via metabarcoding e.g. host-
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parasitoids; iii) From inference, where species associations are inferred based on co-
occurrence. C) Using different sources can result in time series of species interactions at 
different time scales (e.g. daily, weekly, yearly). 

  

5.5.8 Understanding insect declines: an ecological network approach 

 

General reviews on the analysis, applications and limitations of networks already exist 

(Delmas et al., 2019). In the context of insect declines, however, I suggest the following 

directions for further research (see Figure 5. 2). First, the construction of insect networks 

using ‘physical’ and ‘digital’ long-term datasets can be applied to multiple types of insect 

monitoring schemes around the world (and well beyond those highlighted here). Some 

additional examples include The Global Malaise Trap Program 

(http://biodiversitygenomics.net/projects/gmp/) and global volunteer insect monitoring 

initiatives (see Bried et al., 2020). This can provide new opportunities to examine whether 

network structure, complexity and interaction turnover has changed over time and across 

large spatial scales, whilst identifying the key drivers. Bohan et al., (2017) show how next-

generation sequencing data combined with machine-learning could be combined in future 

global biomonitoring schemes, through autonomous samplers deployed over large 

geographical areas. This could construct highly replicated networks of ecological interactions, 

allowing potential changes in ecosystem function to be observed for the first time. Second, 

examining the robustness of networks to species extinctions shows promise (see Kehoe, Frago 

and Sanders, 2021) regarding extinction cascades as a driver of insect decline). For mitigation 

purposes it not only has the potential to identify ‘fragile’ insect groups, but also species which 

are disproportionately important for the integrity of the network which could be targeted for 

conservation management. For example, Pocock, Evans and Memmott, (2012) identified 

insect pollinator networks as most vulnerable to species loss on farmland compared to the 

other animal groups studied. At the farm scale, their analysis identified common agricultural 

plants such as clovers (Trifolium spp.), thistles (Cirsium spp.) and buttercups (Ranunculus spp.) 

that theoretically could be managed to increase robustness and improve overall 

agroecosystem resilience. Similarly, Evans et al. (2013) showed how habitat robustness 

analyses could be used to identify key agricultural habitats for targeted management to 

increase resilience, in this case hedgerows and waste ground, which together comprised <5% 
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of the total farm area. Scaling up further, Redhead et al., (2018) showed how network 

robustness analyses can also be used to identify key species traits that enable persistence in 

highly perturbed landscapes. Thus, robustness measures could be used in ecosystem 

restoration to boost the resilience of insect communities, although this is yet to be tested 

empirically. Third, the use of DNA-metabarcoding (and in the future metagenomics (Cordier 

et al., 2020) to construct phylogenetically-structured networks is a research priority 

(Raimundo, Guimarães and Evans, 2018). Currently, the use of adaptive network models for 

predicting ecological restoration outcomes shows considerable promise but are severely 

hampered by the lack of long-term species-interaction data. We contend that this could 

quickly be overcome by making use of long-term biomonitoring insect archive samples, such 

as RIS. Finally, recent advances have started to pull together different network types into 

multilayer networks (Pilosof et al., 2017). This presents a new way of examining the 

implications of insect declines on a large array of other taxa that interact with them (e.g. birds 

and bats), providing new ways to examine how the loss of some insect groups leads to further 

insect extinctions. 
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Figure 5. 2 Networks for biomonitoring schemes: Having constructed such networks we 
highlight four possible uses: i) Understanding past changes in structure by analyzing network 
metrics through time; ii) Modelling robustness under extinction scenarios; iii) Construct 
phylogenetically structured networks to examine eco-evolutionary dynamics; iv) Linking 
interaction datasets with multilayer networks e.g. insect interaction with birds or bats 

 

 

5.6 Conclusions 

 

Insect monitoring schemes have some of the best long-term datasets to date that could 

potentially help us understand how insect populations have been changing across decades. 

Highlighting some of the major factors that might be affecting them such as climate change 

and other human driven disturbances. Yet, there is still a lot of uncertainty regarding the state 

of insect diversity in many parts of the world. In this thesis, I have shown how DNA-
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metabarcoding can add value to two monitoring schemes in the UK that focus on pest 

monitoring and surveillance. I first assessed the reliability of DNA-metabarcoding for 

identifying archival insect samples that come from RIS, highlighting the advantages and 

limitations of such an approach but most importantly the potential of using archival samples 

for constructing time series with the aid of DNA-metabarcoding. I then applied this approach 

to the bycatch collection of RIS. I have shown that DNA-metabarcoding can be one approach 

to unlock such collections, scaling up the potential to construct time series for hundreds of 

taxa for an unknown fraction of biodiversity within insect monitoring schemes: the bycatch. 

Additionally, I’ve highlighted the applied importance of bycatch diversity within a 

biomonitoring context as bycatch includes potential beneficial taxa that provide many 

ecosystem services such as pest regulation and pollination, but it can also include many 

additional pests. Finally, I show how by merging DNA-metabarcoding at large spatial and 

temporal scales that the Fera Yellow Water Pan Trap Network can be used to understand 

diversity patterns at a nationwide level, something that was possible because of the scalability 

of Next Generation Sequencing approaches. As growing evidence on the applicability and 

reliability of NGS approaches continues to grow, adoption of these newly emerging 

approaches and concepts within insect monitoring schemes that rely on traditional 

morphological identification will increase, leading to scalable and cost-efficient ways to 

monitor insect communities and understand how their patterns have changed through time. 
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Appendix A: Supplementary information for Chapter 2 
 

A.1 DNA extraction details: 

 

As RIS wishes to retain insect samples for future researchers, I aimed to extract the DNA 

non-destructively by using a short-digestion time lysis step. I used a bead based 

protocol[protocol #6.3] (Oberacker et al., 2019) with slight modifications on the amount of 

lysis volume used to adjust it for different sample sizes (in terms of numbers of aphids). See 

Table 2 column 4 for the amount of lysis and proteinase K used for each sample. In general 

62ul to 620 ul of Lysis solution were used. Whilst proteinase K ranged from 3ul to 30ul per 

sample. A hyperlink is attached to the protocol used in this thesis. With the exception of the 

lysis step where different volumes were used, all the following steps were followed as in 6.3 

tissue protocol: https://bomb.bio/protocols/ 
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Unique.id Aphid_number input filtered denoisedF denoisedR merged nonchim Lysis solution (ul) Proteinase K 

00110R 22 139716 87373 87282 87253 84841 82678 240 12 

00114R 35 116056 75421 75290 75329 74937 74471 300 15 

00116R 41 43203 25956 25885 25825 25046 23941 360 18 

00119R 64 90301 52236 51860 52063 49402 45938 600 30 

0011R 11 116801 76572 76503 76432 74607 73749 120 6 

00121R 56 141794 96914 96802 96820 96162 95375 600 30 

00124R 40 108399 73586 73499 73460 73172 72914 600 30 

00125R 16 37605 19196 19155 19112 18683 18344 240 12 

0015R 74 92838 57113 56952 56981 54272 52649 600 30 

0018R 19 70018 41642 41592 41592 40367 39701 240 12 

00211R 11 115886 69730 69643 69626 68259 65930 240 12 

00213R 13 5843 3238 3156 3161 2903 2898 240 12 

00214R 29 25692 12355 12270 12280 12011 11975 300 15 

00219R 30 18188 9714 9687 9685 9470 9398 300 15 

0021R 17 253025 161543 161397 161428 159969 159116 240 12 

00220R 14 45790 30382 30319 30293 29968 29538 240 12 

00222R 35 34427 16014 15947 15975 15633 15510 300 15 

00225R 19 6176 3310 3268 3302 3204 3204 240 12 

0022R 22 216275 140912 140718 140706 138671 138585 240 12 

0025R 72 160470 93034 92739 92672 87026 77170 600 30 

0028R 18 104568 42210 42045 42151 40106 38829 240 12 

0029R 64 105951 33814 33710 33688 32998 32962 600 30 

00311R 15 3785 2246 2180 2226 2040 2040 240 12 

00312R 48 102655 25607 25391 25504 23716 23253 600 30 

00315R 50 90495 35647 35503 35538 33935 30828 600 30 

00317R 83 21879 8268 8230 8216 8216 8216 600 30 

00318R 78 90190 35423 33001 30160 30160 30160 600 30 

00319R 96 50988 28874 28775 28735 28029 27696 600 30 
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0031R 19 52757 22390 22230 22307 21482 20581 240 12 

00323R 11 60714 36753 36647 36685 35663 34369 240 12 

00326R 18 80578 52069 51888 52028 50317 49834 240 12 

0034R 28 84754 27331 27288 27293 27038 26998 300 15 

0036R 24 20473 12621 12575 12564 12325 12203 300 15 

0038R 28 19761 13551 13321 10133 10133 10133 300 15 

00411R 20 91644 60403 60237 60227 59085 58796 300 15 

00413R 32 77763 49106 49053 49069 48376 48138 300 15 

00415R 23 205911 133016 132762 132896 130413 128239 300 15 

00417R 74 88526 52775 52669 52694 52287 51485 600 30 

00419R 74 12576 8026 7961 7997 7631 7399 600 30 

0041R 6 324041 195256 195001 195029 190425 171704 60 3 

00421R 82 178914 12348 12305 12306 12028 11866 600 30 

0043R 13 29615 18407 18361 18314 18018 17971 120 6 

0048R 56 114773 74933 74837 74858 73238 71956 600 30 

0049R 52 25622 16476 16414 16428 15953 15883 600 30 

00511R 14 139555 83446 83122 83202 77113 76469 240 12 

00512R 14 72387 47985 47940 47951 44965 44760 240 12 

00515R 41 166046 112963 112900 112888 106337 105907 600 30 

00518R 81 187747 117866 117544 117612 107905 103763 600 30 

00519R 92 93408 50305 50164 50202 48445 47147 600 30 

00521R 64 109771 72516 72367 72387 69602 64921 600 30 

00523R 102 59508 31754 31631 31678 30149 29790 600 30 

00525R 7 8294 4154 4115 4124 3927 3786 60 3 

0053R 14 24406 7879 7837 7847 7701 7471 120 6 

0054R 62 82228 36464 36345 36381 34111 33516 600 30 

0056R 41 202174 131757 131633 131637 122053 120528 600 30 

0058R 70 72290 31783 31732 31709 30732 30633 600 30 

00610R 65 248445 133528 132885 133215 126395 121308 600 30 

00614R 27 43946 16504 16451 16432 16177 16158 300 15 

00616R 18 6708 3425 3402 3404 3353 3353 240 12 
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00617R 16 36982 23583 23446 23521 22911 22581 240 12 

00621R 50 16597 10503 10468 10464 10325 10325 600 30 

00622R 108 157830 100048 99849 99778 92669 85781 600 30 

00623R 86 78841 46988 46904 46888 45920 45062 600 30 

00626R 8 14963 10331 10245 10290 10044 9967 60 3 

0063R 15 47206 29066 28991 29020 28574 28520 120 6 

0065R 24 140362 70104 70013 70018 67722 64413 240 12 

0066R 36 36976 23263 23215 23230 22653 22364 300 15 

0069R 36 83647 40670 40530 40512 38572 36673 300 15 

00710R 12 156571 104960 104775 104839 104223 103955 120 6 

00711R 38 133994 87189 87108 87082 85588 85048 300 15 

00714R 64 53762 21451 21415 21413 21031 20893 600 30 

00716R 96 402313 264844 264616 264695 260301 254130 600 30 

00717R 70 230080 155914 155802 155716 152857 143295 600 30 

00718R 58 30027 20068 20019 19940 18896 18314 600 30 

00719R 50 32273 22150 22137 22142 22107 22076 600 30 

0072R 8 33248 16998 16969 16961 16635 16273 60 3 

0073R 39 299710 205527 205344 205310 204077 200689 300 15 

0074R 20 61704 24559 24484 24497 24161 24131 240 12 

0075R 18 11164 7375 7315 7343 7106 7055 240 12 

0078R 32 17424 8397 8374 8367 8235 8235 300 15 

00810R 16 45583 28695 28659 28634 28212 27904 240 12 

00812R 54 33506 20624 20567 20568 20159 19957 600 30 

00815R 16 65398 22640 22589 22598 22337 22337 240 12 

00817R 14 11181 4899 4871 4878 4576 4576 120 6 

0081R 26 47765 32300 32212 32112 30175 26833 300 15 

00820R 24 29798 14487 14447 14464 14183 13948 300 15 

00822R 28 33288 19963 19907 19897 19452 19311 300 15 

00825R 10 46046 28577 28304 28514 27437 26741 120 6 

0082R 39 95190 57993 57945 57950 57788 57475 600 30 

0085R 90 124932 82523 82131 82478 81639 80863 600 30 
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0086R 27 60589 41476 41325 41334 39982 38422 300 15 

0089R 24 2540 1199 1180 1180 1140 1099 300 15 

00910R 76 169521 106785 106513 106226 92634 75875 600 30 

00912R 64 124226 72777 72455 72400 60175 49552 600 30 

00914R 14 45534 26755 26677 26707 26100 25894 120 6 

00916R 26 95135 59556 59489 59502 58821 58246 300 15 

00919R 22 37504 20412 20340 20375 20006 19822 300 15 

00921R 72 31670 16028 15966 15978 15614 15335 600 30 

00923R 78 89219 25486 25453 25451 24945 24830 600 30 

00924R 100 67101 40631 40491 40528 38232 36463 600 30 

0093R 6 28483 9986 9942 9944 9648 9578 60 3 

0095R 86 262304 175772 175601 175592 171889 169697 600 30 

0097R 24 156860 104200 104049 104103 100951 95696 300 15 

0099R 92 116112 68758 68569 68579 64388 61857 600 30 

01011R 37 87168 2759 2759 2755 2695 2695 300 15 

01014R 20 32522 17586 11130 11111 10873 10839 240 12 

01018R 48 25549 14999 14752 14736 14681 14681 600 30 

01019R 20 92496 11145 11120 11093 11093 11093 240 12 

0101R 79 455753 278349 276121 275531 271536 270743 600 30 

01020R 34 84846 24416 24647 24647 24647 24647 300 15 

01022R 59 23702 1866 1659 1659 1659 1659 600 30 

0102R 49 96600 52925 47828 47828 47828 47828 600 30 

0105R 61 232761 139218 139218 139218 139218 139218 600 30 

0106R 39 177196 90401 90401 90401 90401 90401 300 15 

0107R 44 47051 15281 15281 15281 15281 15281 600 30 

0109R 8 113238 56978 54388 54388 54388 54388 60 3 

01110R 12 48575 33104 32329 32329 32329 32329 120 6 

01112R 56 98101 10617 10617 10617 10617 10617 600 30 

01117R 12 82338 47732 46768 46768 46768 46768 120 6 

01118R 20 116008 79714 78937 78937 78937 78937 240 12 

01119R 7 201367 132011 130175 130175 130175 130175 60 3 
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01123R 10 8500 5375 5133 5133 5133 5133 120 6 

0112R 16 135107 564 587 587 587 587 120 6 

0114R 30 37078 18939 17516 17516 17516 17516 300 15 

0118R 54 65362 7802 7802 7802 7802 7802 600 30 

0119R 44 31183 1787 1459 1459 1459 1459 420 21 

01211R 48 44776 22595 26861 26861 26861 26861 420 21 

01215R 19 120860 65677 65677 65677 65677 65677 240 12 

01216R 8 140017 90037 86043 86043 86043 86043 60 3 

01218R 11 154370 88165 88425 88425 88425 88425 120 6 

01220R 42 86602 49149 47554 47554 47554 47554 420 21 

0122R 53 145448 92365 92365 92365 92365 92365 600 30 

0123R 48 213624 143163 138039 138113 137038 136219 600 30 

0126R 52 149345 99374 83342 83326 79365 74227 600 30 

0127R 56 206389 138270 137741 137741 137741 137741 600 30 

0129R 21 125948 83610 74489 74489 74489 74489 240 12 

01312R 11 113044 75104 72111 72111 72111 72111 120 6 

01317R 64 51991 34904 30653 30653 30653 30653 600 30 

01318R 40 27933 17265 20759 20781 19930 19599 420 21 

0131R 108 133484 84978 78484 78484 78484 78484 600 30 

01322R 13 32803 20877 20411 20411 20411 20411 120 6 

01323R 45 21803 12788 12522 12522 12522 12522 420 21 

0132R 38 97684 57123 45615 45626 42860 42072 420 21 

0135R 42 77653 52087 52174 52209 50914 49832 420 21 

0136R 55 80263 45920 44775 44775 44775 44775 600 30 

0138R 77 85973 52274 52622 52724 51841 50648 600 30 

0139R 18 121120 78669 79599 79559 78321 77321 240 12 

01410R 10 76028 52767 50706 50706 50706 50706 120 6 

01415R 15 113403 79731 77358 77358 77358 77358 240 12 

01416R 4 18006 12388 12087 12087 12087 12087 60 3 

01418R 42 85158 57749 49467 49467 49467 49467 600 30 

01419R 41 33568 22171 21549 21549 21549 21549 600 30 
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01421R 44 34046 21846 22020 22020 22020 22020 600 30 

01423R 37 46993 32739 31082 31082 31082 31082 420 21 

0142R 9 54874 33376 33322 33322 33322 33322 120 6 

0143R 13 104028 69512 67378 67378 67378 67378 120 6 

0145R 38 30777 18811 17787 17787 17787 17787 420 21 

0146R 22 144157 100092 85250 85264 82882 76606 300 15 

0149R 22 118682 74340 74340 74340 74340 74340 300 15 

01511R 18 125706 85415 51052 51127 50039 47366 240 12 

01512R 9 153539 104716 100589 100589 100589 100589 120 6 

01514R 6 73128 51181 47418 47418 47418 47418 60 3 

01516R 13 85917 55335 53226 53226 53226 53226 120 6 

01518R 51 40487 27481 24011 23998 23683 22797 600 30 

01520R 63 181486 125960 101057 101057 101057 101057 600 30 

01522R 83 35318 24088 22869 22869 22869 22869 600 30 

01523R 59 70048 48981 45161 45161 45161 45161 600 30 

0152R 8 50950 32171 32171 32171 32171 32171 60 3 

0153R 53 115929 78003 72457 72457 72457 72457 600 30 

0155R 22 55731 37444 37003 37003 37003 37003 300 15 

0158R 7 11957 6086 5823 5823 5823 5823 60 3 

01610R 46 65060 44225 35301 35279 32656 30209 600 30 

01611R 21 48413 32423 30800 30800 30800 30800 300 15 

01612R 6 54240 35428 31119 31119 31119 31119 60 3 

01614R 45 86165 56219 49084 49084 49084 49084 600 30 

01615R 56 34784 11954 11842 11842 11842 11842 600 30 

0161R 12 116647 79238 77454 77454 77454 77454 120 6 

0162R 79 104505 72124 60445 60445 60445 60445 600 30 

0164R 7 96230 66689 64772 64772 64772 64772 60 3 

0165R 39 44825 31061 28074 28074 28074 28074 420 21 

0169R 13 55951 38191 33297 33297 33297 33297 120 6 

00EE8R 45 23059 13094 13049 13031 12724 12724 600 30 

0EE127R 142 243129 160570 75290 75329 74937 74471 600 30 
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00ExPos_1 1 10773 5736 5731 5726 5726 5726 60 3 

00ExPos_2 1 24090 13996 13979 13967 13947 13947 60 3 

00PCRNeg_1 0 6 0 0 0 0 0 62 3 

00PCRNeg_2 0 9 0 0 0 0 0 62 3 

00PCRpos_1 1 11334 5020 2692 2677 2269 2269 na na 

00PCRpos_2 1 7934 3797 3788 3652 3652 3652 na na 
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Table A. 1 Unique codes for each sample, number of aphids within individual samples, reads 
per sample for each filtering step in the DADA2 pipeline, Lysis solution amount and 
proteinase K used for the samples 

 

SAMPLE 1 HOUR 2 HOURS 6 HOURS 

00EEER1 No Yes Yes 

00EEER2 No Yes Yes 

00EEER3 No No Yes 

00EEER4 No Yes Yes 

00EEER5 No Yes Yes 

Table A. 2 Samples for assessing PCR amplification success and tissue damage during 
extraction
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Figure A. 1 Photographs of four samples during the DNA-extraction, Samples before extraction first row, 1h after the lysis second row, 2h after 
the digestion third row, 6 h after the digestion. 
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Figure A. 2 Sequence reads (A) and counts (B) for the major species identified by metabarcoding and morphology respectively. 
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GENUS READS PERCENTAGE 

CAVARIELLA 59950 0.007 

CINARA 140059 0.016 

DREPANOSIPHUM 4722348 0.553 

ELATOBIUM 220302 0.026 

EUCERAPHIS 1021972 0.12 

MACROSIPHUM 55590 0.007 

MICROLOPHIUM 177019 0.021 

RHOPALOSIPHUM 1158691 0.136 

SITOBION 199147 0.023 

TUBERCULATUS 200492 0.023 

Table A. 3 Reads and total relative percentage for taxa with >0.02 (Metabarcoding dataset) 

 

GENUS TOTAL PERCENTAGE 

APHIS 211 0.031 

BRACHYCAUDUS 191 0.028 

CAVARIELLA 164 0.024 

DREPANOSIPHUM 1015 0.147 

ELATOBIUM 543 0.079 

EUCERAPHIS 150 0.022 

METOPOLOPHIUM 148 0.021 

RHOPALOSIPHUM 3004 0.434 

SITOBION 165 0.024 

TUBERCULATUS 169 0.024 

Table A. 4 Counts and total relative percentage for taxa with >0.02 (Morphological dataset) 
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Appendix B: Supplementary information for Chapter 3 

B.1 Collection of samples: 

 

Collected dates can be found on Table B.1. Certain samples were either used for a different 

project or were not found within the archive. Such dates were substituted by the dates 

found in Different_Date column in Table B.1.  

Collection date Collected Different_date 

06/05/2003 yes  
22/05/2003 yes  
02/06/2003 yes  
19/06/2003 yes  
02/07/2003 yes  
05/08/2003 yes  
16/08/2003 yes  
10/09/2003 yes  
24/09/2003 yes  
17/10/2003 yes  
26/10/2003 yes  
10/05/2004 yes  
18/05/2004 yes  
06/06/2004 yes  
29/06/2004 yes  
06/07/2004 no 09/07/2004 

17/07/2004 yes  
03/08/2004 no? 02/08/2004 

10/08/2004 yes  
12/09/2004 no 13/09/2004 

20/09/2004 no 21/09/2004 

03/10/2004 yes  
27/10/2004 yes  
12/05/2005 yes  
31/05/2005 yes  
11/06/2005 yes  
30/06/2005 yes  
22/07/2005 yes  
26/07/2005 yes  
18/08/2005 yes  
29/08/2005 yes  
08/09/2005 yes  
10/09/2005 yes  
08/10/2005 yes  
31/10/2005 yes  
12/05/2006 yes  
29/05/2006 yes  
16/07/2006 yes 29/06/2006 
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26/07/2006 yes  
08/08/2006 yes  
26/08/2006 yes  
06/09/2006 yes  
20/09/2006 yes  
17/10/2006 yes  
29/10/2006 yes  
18/05/2007 yes  
27/05/2007 yes  
06/06/2007 yes  
23/06/2007 yes  
14/07/2007 yes  
19/07/2007 yes  
12/08/2007 yes  
28/08/2007 yes  
05/09/2007 yes  
25/09/2007 yes  
21/10/2007 yes  
30/10/2007 yes  
19/05/2008 yes  
29/05/2008 yes  
09/06/2008 yes  
30/06/2008 yes  
03/07/2008 yes  
29/07/2008 yes  
15/08/2008 yes  
21/08/2008 yes  
17/09/2008 yes  
24/09/2008 yes  
06/10/2008 yes  
22/10/2008 yes  
16/05/2009 yes  
26/05/2009 yes  
16/06/2009 yes  
18/06/2009 yes  
20/07/2009 yes  
31/07/2009 yes  
11/08/2009 yes  
27/08/2009 yes  
15/09/2009 yes  
19/09/2009 yes  
19/10/2009 yes  
22/10/2009 yes  
15/05/2010 no 16/05/2010 

27/05/2010 no 26/05/2010 

16/06/2010 no 17/06/2010 

23/06/2010 yes  
12/07/2010 yes  
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16/07/2010 yes  
01/08/2010 yes  
23/08/2010 no 24/08/2010 

09/09/2010 yes  
25/09/2010 yes  
08/10/2010 yes  
31/10/2010 yes  
15/05/2011 yes  
28/05/2011 yes  
16/06/2011 yes  
26/06/2011 yes  
14/07/2011 yes  
24/07/2011 yes  
12/08/2011 yes  
23/08/2011 yes  
16/09/2011 yes  
25/09/2011 yes  
14/10/2011 yes  
16/10/2011 yes  
24/05/2012 yes  
28/05/2012 yes  
18/06/2012 yes  
24/06/2012 no 25/06/2012 

04/07/2012 yes  
18/07/2012 no 20/07/2012 

03/08/2012 no 04/08/2012 

24/08/2012 no? 05/08/2012 

20/09/2012 no 26/09/2012 

24/09/2012 no 25/09/2012 

03/10/2012 yes  
16/10/2012 yes  
06/06/2013 yes  
19/06/2013 yes  
22/07/2013 yes  
28/07/2013 yes  
01/08/2013 yes  
14/08/2013 yes  
18/09/2013 yes  
29/09/2013 yes  
03/10/2013 yes  
29/10/2013 yes  
17/05/2014 yes  
23/05/2014 no 22/05/2014 

16/06/2014 no 15/06/2014 

18/06/2014 yes  
07/07/2014 yes  
22/07/2014 yes  
19/08/2014 yes  



151 
 

20/08/2014 yes  
06/10/2014 yes  
31/10/2014 yes  
22/05/2015 yes  
31/05/2015 yes  
24/06/2015 yes  
26/06/2015 no? 25/06/2015 

11/07/2015 yes  
18/07/2015 yes  
07/08/2015 yes  
23/08/2015 no 24/08/2015 

16/09/2015 yes  
18/09/2015 yes  
26/10/2015 yes  
29/10/2015 yes  
23/05/2016 yes  
28/05/2016 yes  
15/06/2016 yes  
17/06/2016 yes  
09/07/2016 yes  
18/07/2016 yes  
19/08/2016 yes  
31/08/2016 yes  
12/09/2016 yes  
20/09/2016 yes  
04/10/2016 yes  
14/10/2016 yes  
15/05/2017 yes  
24/05/2017 yes  
04/06/2017 yes  
25/06/2017 yes  
21/07/2017 yes  
24/07/2017 yes  
09/08/2017 yes  
24/08/2017 yes  
09/09/2017 yes  
20/09/2017 yes  
12/10/2017 yes  
20/10/2017 yes  
16/05/2018 yes  
30/05/2018 yes  
13/06/2018 yes  
22/06/2018 yes  
28/07/2018 yes  
30/07/2018 yes  
13/08/2018 yes  
26/08/2018 yes  
08/09/2018 yes  
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15/09/2018 yes  
Table B. 1 Dates collected for bycatch samples that correspond to the dates in Chapter 2. 
Additional dates for samples not found in the archive are included 

 

 

 

B.2 DNA Extraction. 

I used a bead-based protocol [protocol #6.3] (Oberacker et al., 2019) with slight 

modifications on the amount of lysis volume used to adjust it for different sample sizes. In 

the protocol 62 ul of TNES solution is used with 3 ul of Proteinase K. Here to fully cover the 

tissues within the samples we had to increase the amount of TNES used, ranging from 0.6ml 

to 20 ml of TNES solution. Proteinase K was used at a targeted concentration of 100ug/mL 

for each sample except the controls (see Table B3 bellow). 

 

B.3 Quality filtering in DADA2 

As initial quality assessment with FastQC pointed to some libraries having lower quality 

(assessed by Phred scores). We used three filtering criteria within the DADA2 pipeline which 

resulted in 3 datasets. The following functions were used to create each dataset by changing 

the maxEE parameter to relax quality filtering: 

Dataset_1 <- filterAndTrim(cutFs, filtFs, cutRs, filtRs, maxN = 0, maxEE = c(5, 5), 

                     truncQ = 2, minLen = 200, rm.phix = TRUE, compress = TRUE, multithread = 

TRUE) 

 

Dataset_2 <- filterAndTrim(cutFs, filtFs, cutRs, filtRs, maxN = 0, maxEE = c(3, 3), 

                     truncQ = 2, minLen = 200, rm.phix = TRUE, compress = TRUE, multithread = 

TRUE) 

Dataset_3 <- filterAndTrim(cutFs, filtFs, cutRs, filtRs, maxN = 0, maxEE = c(2, 2), 

                     truncQ = 2, minLen = 200, rm.phix = TRUE, compress = TRUE, multithread = 

TRUE) 

 

 

Coefficient Df Sum of Squares Mean Sq  F-value (Pr>F) 

DADA2_Group 2 25962 12846 1.006 (0.36) 

Residuals 549 70081333 12765  

Table B. 2 Anova for the three datasets on the number of ASV’s
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Sample input filtered denoisedF denoisedR merged nonchim Lysis solution(ml) Proteinase K 

00B001 1677676 733402 730421 730747 636622 609116 3 15 

00B002 1248858 790079 786634 788104 685518 620945 3 15 

00B003 1198534 774246 770088 771085 640445 624044 4 20 

00B004 1131308 685628 683982 683476 593133 588511 3 15 

00B005 861537 510039 508932 508472 443524 403495 3 15 

00B006 1272279 856599 852698 854063 768377 599435 3 15 

00B007 1287422 770669 764539 767790 692511 648231 4 20 

00B008 1169921 768466 767552 766973 662877 591456 1 5 

00B009 1502820 1043524 1037191 1038909 990586 835023 3 15 

00B010 1519338 1033818 1030364 1031840 1012943 925700 3 15 

00B011 1673998 1278760 1273532 1276471 1226440 1133758 4 20 

00B012 1588375 1119691 1116423 1116111 1078291 895738 4 20 

00B013 1328309 987721 983636 985281 949693 822128 3 15 

00B014 914879 607274 603547 604490 581749 546258 3 15 

00B015 1205201 723245 717439 719536 674598 622871 3 15 

00B016 1299085 901644 897849 899235 861916 791622 3 15 

00B017 2235205 778186 766924 775029 410778 353258 3 15 

00B018 1837876 693242 686226 690470 358805 293950 3 15 

00B019 1736334 706132 692155 702509 365423 296977 4 20 

00B020 1997683 763812 753938 757862 380023 291579 3 15 

00B021 2642281 971480 967854 957527 544900 447778 3 15 

00B022 1911542 810812 808551 809384 534359 483007 3 15 

00B023 1197940 368840 365839 366725 311073 239519 3 15 

00B024 1560592 685876 680683 683979 560698 411699 3 15 

00B025 3231207 2213678 2205831 2209017 2134808 1764026 4 20 

00B026 3169867 2198670 2187338 2190482 2111146 1841125 3 15 



154 
 

00B027 3348317 2541964 2529685 2534843 2387989 2161538 20 100 

00B028 3623297 2530898 2521296 2523486 2426690 2093856 4 20 

00B029 3076449 2067973 2062466 2063068 1977982 1700477 3 15 

00B030 2773608 1963919 1955556 1954057 1852355 1502334 4 20 

00B031 3094850 2004110 1986750 1993966 1894386 1599178 4 20 

00B032 3135651 2336724 2329741 2331685 2238405 1937942 4 20 

00B033 3387890 2026775 2020770 2021091 1943835 1590341 4 20 

00B034 2514313 1781181 1774737 1775763 1703709 1361609 4 20 

00B035 2372812 1709993 1696738 1699436 1613004 1346741 20 100 

00B036 2911575 1968914 1962611 1963240 1898900 1577689 20 100 

00B037 2548463 1850950 1841920 1844947 1772982 1533184 4 20 

00B038 2510330 1756208 1746671 1748880 1667652 1405916 4 20 

00B039 2944665 1725068 1719499 1721748 1624850 1452545 4 20 

00B040 2899079 2151801 2143952 2147029 2053739 1766232 3 15 

00B041 2954924 1477633 1469855 1472099 1358986 1222377 4 20 

00B042 1491105 963942 955495 959509 805092 679503 4 20 

00B043 1690530 1217191 1197517 1205507 1062344 784719 20 100 

00B044 2344566 1626133 1621186 1621131 1556775 1323375 4 20 

00B045 1686526 1060958 1056428 1057588 1005404 948434 4 20 

00B046 1066469 700936 697089 697389 659273 597250 4 20 

00B047 2359285 1410837 1407784 1406364 1359346 1276759 4 20 

00B048 1667937 930521 928052 928361 884888 805674 1 5 

00B049 4085916 1775961 1767525 1768061 1675049 1379117 4 20 

00B050 2267523 1676658 1671857 1673149 1615695 1272150 4 20 

00B051 978243 658328 656519 656744 607290 586657 3 15 

00B052 2655721 1866977 1864106 1862573 1773834 1634825 4 20 

00B053 1960998 1282021 1277413 1277978 1203979 1076304 4 20 

00B054 2839170 2102400 2097319 2095806 2019682 1716355 4 20 

00B055 2733102 1912622 1907511 1908997 1846871 1626641 4 20 

00B056 2488723 1816650 1809918 1812084 1738154 1554073 4 20 

00B057 2823663 1693107 1688191 1688479 1620414 1414591 3 15 
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00B058 1602401 800209 798249 798291 766749 745836 3 15 
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00B059 2276097 1664512 1659209 1659142 1593879 1256615 4 20 

00B060 2594782 1760756 1757522 1756202 1706325 1346465 4 20 

00B061 2730209 1581771 1577036 1579137 1507039 1348247 3 15 

00B062 2062832 1463025 1457327 1458646 1393072 1112663 4 20 

00B063 2602116 1740708 1736599 1736462 1683012 1398638 4 20 

00B064 2136020 1498875 1491213 1490879 1398784 1095908 10 50 

00B065 1745935 1043928 1042133 1040709 1015736 889739 3 15 

00B066 1394336 1003898 999238 1001158 956416 863339 4 20 

00B067 1590868 1248443 1243307 1246704 1201456 1074522 4 20 

00B068 1513448 1002671 999474 1000193 963688 878504 4 20 

00B069 1534171 1131791 1128878 1129714 1086392 997286 4 20 

00B070 1524886 1164222 1159526 1161356 1110151 1014587 3 15 

00B071 1446661 894079 890696 889176 858848 822347 4 20 

00B072 1358715 1037886 1033943 1035000 1007624 855090 4 20 

00B073 1643942 964581 961198 962475 918980 847550 4 20 

00B074 1276959 877587 874766 875249 816306 675770 4 20 

00B075 1281739 946716 944010 945105 914662 811015 4 20 

00B076 959951 656338 654608 654572 637350 633017 4 20 

00B077 1680559 1237860 1234277 1228755 1192069 990087 4 20 

00B078 1682910 1199248 1195694 1196360 1160379 1012032 4 20 

00B079 1172168 802880 800571 799380 758811 668694 4 20 

00B080 1304158 861625 858288 859498 777460 654563 4 20 

00B081 2298209 1311533 1309787 1308157 1261625 1157747 3 15 

00B082 1439643 1064894 1060863 1060510 1019900 828115 4 20 

00B083 1366245 1004525 1000843 1001159 962742 843061 5 25 

00B084 1105480 785400 781201 781963 746492 643741 5 25 

00B085 899957 690850 686902 688550 660279 558557 5 25 

00B086 1648956 1285889 1282339 1282993 1244586 1112266 4 20 

00B087 1528449 968359 964300 966055 915693 856135 4 20 

00B088 1372173 965682 959395 960828 898718 823223 4 20 

00B089 571593 358583 358231 357949 329538 328162 1 5 
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00B090 349239 228539 228080 228198 224902 224664 1 5 

00B091 424610 302218 299780 300557 290136 276312 4 20 

00B092 307784 184975 183896 184322 180425 179357 4 20 

00B093 2025375 1512127 1505949 1506266 1431461 1232234 4 20 

00B094 1020898 751005 742691 745635 704005 612280 5 25 

00B095 1449257 935636 929814 931465 865730 733918 5 25 

00B096 867925 605185 599992 601812 557417 517645 4 20 

00B097 1587731 800281 790550 796295 505847 470950 4 20 

00B098 1582696 776135 772739 772686 456956 413181 3 15 

00B099 1497168 857167 847490 853791 594362 476616 4 20 

00B100 1552300 854027 848137 850995 631257 522173 4 20 

00B101 1052197 446938 444957 445305 253941 250554 1 5 

00B102 1388674 683326 679958 682131 435883 424637 1 5 

00B103 1397457 261148 260336 260667 170330 164678 2 10 

00B104 1473579 765164 761493 764133 496314 422886 4 20 

00B105 2141096 1124247 1121350 1121848 1077907 1046540 4 20 

00B106 1302974 870649 865946 867359 835773 778744 4 20 

00B107 1442924 1056019 1053187 1053147 1024979 963722 4 20 

00B108 1240888 795202 792321 792281 754427 700403 10 50 

00B109 1502425 968590 963284 965096 922701 775311 4 20 

00B110 1351049 961210 958889 958696 923983 900817 4 20 

00B111 1561313 972556 966482 968024 932076 851550 4 20 

00B112 1456492 1000391 994701 996963 951860 920047 4 20 

00B113 2710119 1609959 1605478 1604716 1439114 1305882 4 20 

00B114 1786936 1141936 1140844 1140654 1062431 989543 4 20 

00B115 1428293 935396 931108 931802 835826 782000 4 20 

00B116 1929314 1256081 1253800 1250782 1136863 1101963 5 25 

00B117 1944772 1202866 1192448 1198134 1056083 916039 5 25 

00B118 1611159 1047891 1043781 1045580 944734 888189 5 25 

00B119 1729237 913060 907826 909008 861506 824952 4 20 

00B120 1749618 1095557 1092455 1093250 1038710 973198 4 20 
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00B121 2099592 1188447 1185735 1186531 1155070 1128979 4 20 

00B122 1408276 967437 961667 962935 913310 816161 4 20 

00B123 1893508 1457565 1453223 1454888 1411800 1191829 4 20 

00B124 1580102 1110607 1104618 1105292 1062326 939525 10 50 

00B125 1318258 942092 937039 937152 896681 814991 4 20 

00B126 1856241 1386331 1382096 1382891 1345468 1186380 4 20 

00B127 2205255 1575499 1571344 1571093 1531837 1432191 4 20 

00B128 2065201 1250716 1247918 1248382 1199664 1153705 4 20 

00B129 1490563 1068520 1064820 1066267 1027021 907947 4 20 

00B130 1259576 844488 841326 840865 812172 734034 4 20 

00B131 1476544 1116719 1114197 1113925 1081120 956637 4 20 

00B132 1521797 1013915 1010061 1011820 956757 937641 4 20 

00B133 1542799 1113953 1111084 1113083 1033462 985863 3 15 

00B134 1234189 816825 815404 815180 795160 781935 4 20 

00B135 1224169 743205 740864 741218 713028 646235 4 20 

00B136 1448041 905898 903688 903897 874038 835184 4 20 

00B137 3040519 1674624 1667173 1667360 1562152 1365417 4 20 

00B138 18406 1928 1729 1753 1627 1627 1 5 

00B139 1488809 1110923 1107999 1109023 1059663 996578 4 20 

00B140 1590959 1036161 1032156 1033453 977869 926897 5 25 

00B141 1360912 938151 934752 936400 892045 837601 4 20 

00B142 1788544 1305262 1297889 1300194 1223161 1014589 5 25 

00B143 1496269 981233 972404 975900 906039 776983 5 25 

00B144 1768025 1180807 1174675 1175872 1093260 974499 5 25 

00B145 929041 118215 117924 118122 24303 22253 0.1 0.5 

00B146 1410202 221248 219566 220709 97087 90784 4 20 

00B147 1570976 257737 255609 256663 183890 156325 4 20 

00B148 52170 2707 2377 2570 2336 2336 4 20 

00B149 487087 28946 28552 28862 25442 22811 3 15 

00B150 1315178 282964 282140 282265 200504 178126 1 5 

00B151 1185736 222517 220548 219859 166455 131373 3 15 
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00B152 1297558 249920 246830 248997 172637 137689 4 20 

00B153 1539394 938913 934787 935969 565726 522791 4 20 

00B154 884747 451600 445947 449224 337712 292631 4 20 

00B155 46844 14845 14490 14692 13360 12918 1 5 

00B156 1538830 673856 662884 669542 599058 548878 10 50 

00B157 1302200 804419 800232 801316 666538 572558 4 20 

00B158 1136414 641182 636499 630218 545854 489633 4 20 

00B159 1013461 561608 560325 560632 472975 403893 4 20 

00B160 605946 170194 169187 169688 148869 144445 4 20 

00B161 2523560 761328 751033 756426 520953 464560 4 20 

00B162 1480325 499694 493857 497325 281978 251331 3 15 

00B163 1352345 625601 622445 623783 411177 395626 4 20 

00B164 1503550 336241 329914 334392 132788 115914 4 20 

00B165 1862627 645671 634495 642796 406889 378518 4 20 

00B166 1379698 559525 554850 557281 353854 328010 4 20 

00B167 1745749 448912 445215 447216 309425 287176 4 20 

00B168 503457 109912 109738 109751 55040 54201 0.1 0.5 

00B169 1560577 527744 526685 526191 512757 509984 3 15 

00B170 837074 551640 547467 548874 519758 459014 20 100 

00B171 984931 683401 679733 680265 648089 590118 20 100 

00B172 609787 403319 402437 402126 393614 392849 4 20 

00B173 972251 673139 670505 670973 642872 614275 3 15 

00B174 43695 21388 21245 21249 21091 21083 3 15 

00B175 790026 503172 500320 500585 484066 468398 4 20 

00B176 959012 614297 612316 612729 567957 500548 3 15 

00B177 1802128 1060042 1054459 1057150 842497 807380 3 15 

00B178 681326 487849 486946 486711 472402 471705 3 15 

00B179 1340952 984741 978428 980698 897990 839342 4 20 

00B180 1159070 844367 837242 839263 790803 702266 10 50 

00B181 1358210 984444 980689 981246 940692 814759 3 15 

00B182 1094392 838192 835594 834747 796669 749716 4 20 
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00B183 1482120 1082872 1079013 1080103 1019029 904493 4 20 

00B184 977780 640846 637010 639175 595712 552367 4 20 

extr_neg10 76 0 1 1 0 0 0.06 3 

extr_neg11 31 0 2 2 0 0 0.06 3 

extr_neg12 23 0 2 3 0 0 0.06 3 

extr_neg13 13 0 1 1 1 1 0.06 3 

extr_neg14 281 1 3 3 0 0 0.06 3 

extr_neg15 251 0 1 1 0 0 0.06 3 

extr_neg16 679 8 15 10 10 10 0.06 3 

extr_neg17 78 5 4 4 0 0 0.06 3 

extr_neg18 137 0 1 1 0 0 0.06 3 

extr_neg19 22 0 1 1 0 0 0.06 3 

extr_neg2 195 6 0 0 0 0 0.06 3 

extr_neg20 129 3 0 0 0 0 0.06 3 

extr_neg21 40 2 0 0 0 0 0.06 3 

extr_neg22 15 0 0 0 0 0 0.06 3 

extr_neg23 50 0 0 0 0 0 0.06 3 

extr_neg3 25 0 0 0 0 0 0.06 3 

extr_neg4 123 16 0 0 0 0 0.06 3 

extr_neg5 65 4 0 0 0 0 0.06 3 

extr_neg6 16 0 0 0 0 0 0.06 3 

extr_neg7 56 0 0 0 0 0 0.06 3 

extr_neg8 87 1 0 0 0 0 0.06 3 

extr_neg9 9 1 0 0 0 0 0.06 3 

extr_pos10 70534 5832 6 6 0 0 0.06 3 

extr_pos11 52006 4755 340 336 336 336 0.06 3 

extr_pos12 28562 2315 1296 1272 1271 1271 0.06 3 

extr_pos13 5333 173 209 212 208 208 0.06 3 

extr_pos14 2073 271 2416 2474 2409 2409 0.06 3 

extr_pos15 76831 3018 7505 7554 5916 5916 0.06 3 

extr_pos16 107088 8218 529 541 528 528 0.06 3 



161 
 

extr_pos17 27974 3400 596 598 596 596 0.06 3 

extr_pos18 33250 2289 890 893 702 702 0.06 3 

extr_pos19 36197 85 795 802 794 794 0.06 3 

extr_pos2 18669 1784 1 1 0 0 0.06 3 

extr_pos20 20851 999 1 1 0 0 0.06 3 

extr_pos21 1517 6 404 401 232 232 0.06 3 

extr_pos22 3844 345 108 110 107 107 0.06 3 

extr_pos23 21923 1306 783 803 749 749 0.06 3 

extr_pos3 41380 220 26 42 0 0 0.06 3 

extr_pos4 35392 2496 62 71 0 0 0.06 3 

extr_pos5 77796 7568 1717 1732 1587 1587 0.06 3 

extr_pos6 6915 543 1994 1997 1636 1636 0.06 3 

extr_pos7 6965 610 1353 1357 1148 1148 0.06 3 

extr_pos8 15032 904 602 631 331 331 0.06 3 

extr_pos9 7779 815 25 2 0 0 0.06 3 

pcr_neg1 22 0 0 0 0 0 0.06 3 

pcr_neg10 3623 0 0 0 0 0 0.06 3 

pcr_neg11 111 0 0 0 0 0 0.06 3 

pcr_neg12 185 0 0 0 0 0 0.06 3 

pcr_neg13 4 0 0 0 0 0 0.06 3 

pcr_neg14 102 0 0 0 0 0 0.06 3 

pcr_neg15 1598 0 0 0 0 0 0.06 3 

pcr_neg16 3349 0 0 0 0 0 0.06 3 

pcr_neg17 87 0 0 0 0 0 0.06 3 

pcr_neg18 275 0 0 0 0 0 0.06 3 

pcr_neg19 56 1 0 0 0 0 0.06 3 

pcr_neg2 20 0 0 0 0 0 0.06 3 

pcr_neg20 154 1 0 0 0 0 0.06 3 

pcr_neg21 35 0 0 0 0 0 0.06 3 

pcr_neg22 70 0 0 0 0 0 0.06 3 

pcr_neg23 764 0 0 0 0 0 0.06 3 
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pcr_neg3 21 0 0 0 0 0 0.06 3 

pcr_neg4 315 0 0 0 0 0 0.06 3 

pcr_neg5 86 0 0 0 0 0 0.06 3 

pcr_neg6 29 0 0 0 0 0 0.06 3 

pcr_neg7 40 0 0 0 0 0 0.06 3 

pcr_neg8 234 0 0 0 0 0 0.06 3 

pcr_neg9 12 0 0 0 0 0 0.06 3 

pcr_pos10 8442 411 0 0 0 0 0.06 3 

pcr_pos11 2041 114 0 0 0 0 0.06 3 

pcr_pos12 10743 807 0 0 0 0 0.06 3 

pcr_pos13 3681 46 0 0 0 0 0.06 3 

pcr_pos14 808 75 0 0 0 0 0.06 3 

pcr_pos15 71416 1750 1200 988 555 381 0.06 3 

pcr_pos16 40636 2042 2000 1843 1672 1672 0.06 3 

pcr_pos17 15065 1389 0 0 0 0 0.06 3 

pcr_pos18 18123 636 0 0 0 0 0.06 3 

pcr_pos19 22323 41 0 0 0 0 0.06 3 

pcr_pos2 2878 200 0 0 0 0 0.06 3 

pcr_pos20 3907 67 0 0 0 0 0.06 3 

pcr_pos21 1074 4 0 0 0 0 0.06 3 

pcr_pos22 3255 240 0 0 0 0 0.06 3 

pcr_pos23 5013 155 0 0 0 0 0.06 3 

pcr_pos4 27413 1427 0 0 0 0 0.06 3 

pcr_pos5 9274 597 0 0 0 0 0.06 3 

pcr_pos6 1958 93 0 0 0 0 0.06 3 

pcr_pos7 13585 790 0 0 0 0 0.06 3 

pcr_pos8 13365 493 0 0 0 0 0.06 3 

pcr_pos9 1887 171 0 0 0 0 0.06 3 

Table B. 3 Sample information with reads entering and exiting the DADA2 pipeline. Lysis solution volume used and corresponding Proteinase K 
amount 
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Figure B. 1 Species richness throughout the years of the time series for each month 
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Figure B. 2 Richness for the major orders after using sample filtering thresholds at 1% 
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Figure B. 3 Richness over time before and after applying filtering with a 1% threshold the entire dataset. 
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Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8 Column9 

species Category genus family order class phylum kingdom 
superkingdo
m 

erigone atra Predator Erigone Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

tenuiphantes tenuis Predator Tenuiphantes Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

tachyporus hypnorum Predator Tachyporus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

aphidius rhopalosiphi Parasitoid Aphidius Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

chrysoperla carnea Predator Chrysoperla Chrysopidae Neuroptera Insecta Arthropoda Metazoa Eukaryota 

oedothorax apicatus Predator Oedothorax Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

anotylus rugosus Predator Anotylus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

rhopalosiphum padi Pest Rhopalosiphum Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

porrhomma pygmaeum Predator Porrhomma Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

aphidius avenae Parasitoid Aphidius Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

tachyporus obtusus Predator Tachyporus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

trechus quadristriatus Predator Trechus Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

aphidius ervi Parasitoid Aphidius Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

aloconota gregaria Predator Aloconota Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

praon volucre Parasitoid Praon Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

erigone dentipalpis Predator Erigone Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

atheta celata Predator Atheta Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

anotylus tetracarinatus Predator Anotylus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

centromerita bicolor Predator Centromerita Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

tachyporus chrysomelinus Predator Tachyporus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

microlinyphia pusilla Predator Microlinyphia Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

bembidion aeneum Predator Bembidion Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

amischa analis Predator Amischa Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 
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porrhomma 
microphthalmum Predator Porrhomma Linyphiidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

aphis fabae Pest Aphis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

chromaphis juglandicola Pest Chromaphis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

diaeretiella rapae Parasitoid Diaeretiella Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

macrosiphum euphorbiae Pest Macrosiphum Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

amischa nigrofusca Predator Amischa Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

bembidion guttula Predator Bembidion Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

amara similata Predator Amara Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

rhyzobius litura Predator Rhyzobius Coccinellidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

anotylus sculpturatus Predator Anotylus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

pterostichus strenuus Predator Pterostichus Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

aphis gossypii Pest Aphis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

thrips tabaci Pest Thrips Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

philonthus cognatus Predator Philonthus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

nebria brevicollis Predator Nebria Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

larinioides cornutus Predator Larinioides Araneidae Araneae Arachnida Arthropoda Metazoa Eukaryota 

sitobion avenae Pest Sitobion Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

anchomenus dorsalis Predator Anchomenus Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

myzus cerasi Pest Myzus Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

acyrthosiphon pisum Pest Acyrthosiphon Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

dilophus febrilis Pest Dilophus Bibionidae Diptera Insecta Arthropoda Metazoa Eukaryota 

sitodiplosis mosellana Pest Sitodiplosis Cecidomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

trioza urticae Grass Trioza Triozidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

trypeta zoe Urtica Trypeta Tephritidae Diptera Insecta Arthropoda Metazoa Eukaryota 

hydrellia maura Grass Hydrellia Ephydridae Diptera Insecta Arthropoda Metazoa Eukaryota 

thrips flavus 
Polyphagu
s Thrips Thripidae 

Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

agrotis exclamationis Pest Agrotis Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 
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geomyza tripunctata Pest Geomyza Opomyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

agrochola litura Pest Agrochola Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

amphipyra tragopoginis Pest Amphipyra Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

scaptomyza flava Garden Scaptomyza Drosophilidae Diptera Insecta Arthropoda Metazoa Eukaryota 

trioza remota Pest Trioza Triozidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

chlorops pumilionis Pest Chlorops Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

amphipyra pyramidea Pest Amphipyra Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

apamea lithoxylaea Grass Apamea Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

thrips major Pest Thrips Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

scaptomyza graminum Garden Scaptomyza Drosophilidae Diptera Insecta Arthropoda Metazoa Eukaryota 

delia platura Pest Delia Anthomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

mayetiola destructor Pest Mayetiola Cecidomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

frankliniella tenuicornis Pest Frankliniella Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

hydrellia griseola Pest Hydrellia Ephydridae Diptera Insecta Arthropoda Metazoa Eukaryota 

cerodontha denticornis Pest Cerodontha Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

chromatomyia milii Grass Chromatomyia Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

contarinia tritici Pest Contarinia Cecidomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

bibio marci Pest Bibio Bibionidae Diptera Insecta Arthropoda Metazoa Eukaryota 

autographa gamma Pest Autographa Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

blastobasis adustella Pest Blastobasis Blastobasidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

noctua pronuba Pest Noctua Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

macrosteles sexnotatus Garden Macrosteles Cicadellidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

eupteryx atropunctata Pest Eupteryx Cicadellidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

chromatomyia horticola Pest Chromatomyia Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

muellerianella extrusa Grass Muellerianella Delphacidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

conomelus anceps Garden Conomelus Delphacidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

oxythrips ajugae Pest Oxythrips Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

pinalitus cervinus Pest Pinalitus Miridae Hemiptera Insecta Arthropoda Metazoa Eukaryota 



169 
 

neuroterus 
quercusbaccarum Pest Neuroterus Cynipidae 

Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

phyllonorycter 
maestingella Pest Phyllonorycter Gracillariidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

oscinella maura Garden Oscinella Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

hyalopterus pruni Pest Hyalopterus Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

apamea monoglypha Garden Apamea Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

phlogophora meticulosa Pest Phlogophora Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

athalia cordata Garden Athalia 
Tenthredinida
e 

Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

euceraphis betulae Pest Euceraphis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

macrosteles ossiannilssoni Grass Macrosteles Cicadellidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

alnetoidia alneti Pest Alnetoidia Cicadellidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

pandemis heparana Garden Pandemis Tortricidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

frankliniella intonsa Garden Frankliniella Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

dicraeus vagans Garden Dicraeus Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

thrips minutissimus Pest Thrips Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

elatobium abietinum Pest Elatobium Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

yponomeuta evonymella Pest Yponomeuta 
Yponomeutida
e Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

phyllotreta undulata Pest Phyllotreta Chrysomelidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

macustus grisescens Garden Macustus Cicadellidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

pinalitus viscicola Garden Pinalitus Miridae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

trioza galii Garden Trioza Triozidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

thrips angusticeps Pest Thrips Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

pterocallis alni Pest Pterocallis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

agrotis ipsilon Pest Agrotis Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

phyllaphis fagi Pest Phyllaphis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

euceraphis punctipennis Pest Euceraphis Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 
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liriomyza flaveola Pest Liriomyza Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

coleophora caespititiella Garden Coleophora Coleophoridae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

contarinia fagi Pest Contarinia Cecidomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

xestia xanthographa Pest Xestia Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

cacopsylla pruni Pest Cacopsylla Psyllidae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

philaenus spumarius Grass Philaenus 
Aphrophorida
e Hemiptera Insecta Arthropoda Metazoa Eukaryota 

blepharidopterus 
angulatus Pest 

Blepharidopteru
s Miridae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

phytomyza rufipes Pest Phytomyza Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

sitona lineatus Pest Sitona Curculionidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

periphyllus testudinaceus Pest Periphyllus Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 
phyllonorycter 
messaniella Pest Phyllonorycter Gracillariidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

eulachnus agilis Pest Eulachnus Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

eucallipterus tiliae Pest Eucallipterus Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

dilophus febrilis Pollinator Dilophus Bibionidae Diptera Insecta Arthropoda Metazoa Eukaryota 

scaptomyza pallida Pollinator Scaptomyza Drosophilidae Diptera Insecta Arthropoda Metazoa Eukaryota 

psychoda phalaenoides Pollinator Psychoda Psychodidae Diptera Insecta Arthropoda Metazoa Eukaryota 

eudasyphora cyanella Pollinator Eudasyphora Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

platypalpus agilis Pollinator Platypalpus Hybotidae Diptera Insecta Arthropoda Metazoa Eukaryota 

lotophila atra Pollinator Lotophila 
Sphaerocerida
e Diptera Insecta Arthropoda Metazoa Eukaryota 

copromyza equina Pollinator Copromyza 
Sphaerocerida
e Diptera Insecta Arthropoda Metazoa Eukaryota 

psychoda grisescens Pollinator Psychoda Psychodidae Diptera Insecta Arthropoda Metazoa Eukaryota 
nephrotoma 
appendiculata Pollinator Nephrotoma Tipulidae Diptera Insecta Arthropoda Metazoa Eukaryota 

bibio nigriventris Pollinator Bibio Bibionidae Diptera Insecta Arthropoda Metazoa Eukaryota 

scathophaga stercoraria Pollinator Scathophaga 
Scathophagida
e Diptera Insecta Arthropoda Metazoa Eukaryota 

hydrellia maura Pollinator Hydrellia Ephydridae Diptera Insecta Arthropoda Metazoa Eukaryota 
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tachyporus hypnorum Pollinator Tachyporus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

agrotis exclamationis Pollinator Agrotis Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

bicellaria vana Pollinator Bicellaria Hybotidae Diptera Insecta Arthropoda Metazoa Eukaryota 

bellardia vulgaris Pollinator Bellardia Calliphoridae Diptera Insecta Arthropoda Metazoa Eukaryota 

bellardia vulgaris Pollinator Bellardia 
Orobanchacea
e Lamiales 

Magnoliopsid
a 

Streptophyt
a 

Viridiplanta
e Eukaryota 

geomyza tripunctata Pollinator Geomyza Opomyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

lonchoptera lutea Pollinator Lonchoptera 
Lonchopterida
e Diptera Insecta Arthropoda Metazoa Eukaryota 

amphipyra tragopoginis Pollinator Amphipyra Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

botanophila fugax Pollinator Botanophila Anthomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

scaptomyza flava Pollinator Scaptomyza Drosophilidae Diptera Insecta Arthropoda Metazoa Eukaryota 

chlorops pumilionis Pollinator Chlorops Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

oscinella nigerrima Pollinator Oscinella Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

rhamphomyia sulcata Pollinator Rhamphomyia Empididae Diptera Insecta Arthropoda Metazoa Eukaryota 

sepsis cynipsea Pollinator Sepsis Sepsidae Diptera Insecta Arthropoda Metazoa Eukaryota 

vespula vulgaris Pollinator Vespula Vespidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

thrips major Pollinator Thrips Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

scaptomyza graminum Pollinator Scaptomyza Drosophilidae Diptera Insecta Arthropoda Metazoa Eukaryota 

anthocoris nemorum Pollinator Anthocoris Anthocoridae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

coproica ferruginata Pollinator Coproica 
Sphaerocerida
e Diptera Insecta Arthropoda Metazoa Eukaryota 

delia platura Pollinator Delia Anthomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

tachyporus obtusus Pollinator Tachyporus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

chlorops hypostigma Pollinator Chlorops Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

hydrellia griseola Pollinator Hydrellia Ephydridae Diptera Insecta Arthropoda Metazoa Eukaryota 

syrphophilus tricinctorius Pollinator Syrphophilus 
Ichneumonida
e 

Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

cerodontha denticornis Pollinator Cerodontha Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

fannia rondanii Pollinator Fannia Fanniidae Diptera Insecta Arthropoda Metazoa Eukaryota 
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azelia cilipes Pollinator Azelia Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

delia florilega Pollinator Delia Anthomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

aphidius ervi Pollinator Aphidius Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

chromatomyia milii Pollinator Chromatomyia Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

platypalpus longicornis Pollinator Platypalpus Hybotidae Diptera Insecta Arthropoda Metazoa Eukaryota 

praon volucre Pollinator Praon Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

bibio marci Pollinator Bibio Bibionidae Diptera Insecta Arthropoda Metazoa Eukaryota 

autographa gamma Pollinator Autographa Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

noctua pronuba Pollinator Noctua Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

helina depuncta Pollinator Helina Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

ceutorhynchus obstrictus Pollinator Ceutorhynchus Curculionidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

muscina prolapsa Pollinator Muscina Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

thaumatomyia notata Pollinator Thaumatomyia Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

tachyporus chrysomelinus Pollinator Tachyporus Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

sepsis punctum Pollinator Sepsis Sepsidae Diptera Insecta Arthropoda Metazoa Eukaryota 

hyalopterus pruni Pollinator Hyalopterus Aphididae Hemiptera Insecta Arthropoda Metazoa Eukaryota 

apamea monoglypha Pollinator Apamea Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

eristalis tenax Pollinator Eristalis Syrphidae Diptera Insecta Arthropoda Metazoa Eukaryota 

phlogophora meticulosa Pollinator Phlogophora Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

sepsis flavimana Pollinator Sepsis Sepsidae Diptera Insecta Arthropoda Metazoa Eukaryota 

tetanocera elata Pollinator Tetanocera Sciomyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

azelia nebulosa Pollinator Azelia Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

dacnusa maculipes Pollinator Dacnusa Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

anthomyia pluvialis Pollinator Anthomyia Anthomyiidae Diptera Insecta Arthropoda Metazoa Eukaryota 

vespula germanica Pollinator Vespula Vespidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

mesopolobus incultus Pollinator Mesopolobus Pteromalidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 
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frankliniella intonsa Pollinator Frankliniella Thripidae 
Thysanopter
a Insecta Arthropoda Metazoa Eukaryota 

philorinum sordidum Pollinator Philorinum Staphylinidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

dicraeus vagans Pollinator Dicraeus Chloropidae Diptera Insecta Arthropoda Metazoa Eukaryota 

diglyphus isaea Pollinator Diglyphus Eulophidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

empis nigripes Pollinator Empis Empididae Diptera Insecta Arthropoda Metazoa Eukaryota 

aphidius matricariae Pollinator Aphidius Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

diaeretiella rapae Pollinator Diaeretiella Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

empis nuntia Pollinator Empis Empididae Diptera Insecta Arthropoda Metazoa Eukaryota 

scaeva pyrastri Pollinator Scaeva Syrphidae Diptera Insecta Arthropoda Metazoa Eukaryota 

amara similata Pollinator Amara Carabidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

cantharis flavilabris Pollinator Cantharis Cantharidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

epuraea melanocephala Pollinator Epuraea Nitidulidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

praon dorsale Pollinator Praon Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

agrotis ipsilon Pollinator Agrotis Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

bombus lucorum Pollinator Bombus Apidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

chrysocharis pubicornis Pollinator Chrysocharis Eulophidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

sympycnus pulicarius Pollinator Sympycnus 
Dolichopodida
e Diptera Insecta Arthropoda Metazoa Eukaryota 

colastes braconius Pollinator Colastes Braconidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

liriomyza flaveola Pollinator Liriomyza Agromyzidae Diptera Insecta Arthropoda Metazoa Eukaryota 

xestia xanthographa Pollinator Xestia Noctuidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

philaenus spumarius Pollinator Philaenus 
Aphrophorida
e Hemiptera Insecta Arthropoda Metazoa Eukaryota 

themira annulipes Pollinator Themira Sepsidae Diptera Insecta Arthropoda Metazoa Eukaryota 
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plutella xylostella Pollinator Plutella Plutellidae Lepidoptera Insecta Arthropoda Metazoa Eukaryota 

sepsis violacea Pollinator Sepsis Sepsidae Diptera Insecta Arthropoda Metazoa Eukaryota 

muscina levida Pollinator Muscina Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

lasius niger Pollinator Lasius Formicidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

sitona lineatus Pollinator Sitona Curculionidae Coleoptera Insecta Arthropoda Metazoa Eukaryota 

meliscaeva auricollis Pollinator Meliscaeva Syrphidae Diptera Insecta Arthropoda Metazoa Eukaryota 

dendrocerus carpenteri Pollinator Dendrocerus Megaspilidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

apis mellifera Pollinator Apis Apidae 
Hymenopter
a Insecta Arthropoda Metazoa Eukaryota 

neomyia cornicina Pollinator Neomyia Muscidae Diptera Insecta Arthropoda Metazoa Eukaryota 

Table B. 4 Table with species and their corresponding taxonomy and categories found in the databases 
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Species Found in UK 

Psychoda satchelli No 

Calopteryx maculata 
Database 
error 

Alnetoidia alneti Yes 

Ectopsocus californicus No 

Metriocnemus atriclava  
Diamesa hyperborea No 

Smittia stercoraria No 

Cricotopus relucens No 

Sylvicola stackelbergi No 

Brassicogethes aeneus 

Yes (Synonym 
Meligethes 
aeneus) 

Tipula mediterranea No 

Protapanteles fulvipes No 

Chironomus melanescens No 

Table B. 5 Species that were not found in the UK species inventory list 
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 Unique_code date Field_ID month.x Region easting northing 

1 000ABF 29/07/2019 3357 7 Scotland (Scottish Borders) 383735 656881 

2 0010ABF 04/08/2019 3400 8 Staffordshire 384580 335810 

3 0010AF 16/06/2019 3354 6 Scotland (Scottish Borders) 361412 630255 

4 0011ABF 04/08/2019 3459 8 Staffordshire 384250 336060 

5 0011AF 17/06/2019 3377 6 
East Scotland 
(Aberdeenshire) 396648 839818 

6 0012ABF 05/08/2019 3361 8 North Yorkshire 500755 475735 

7 0012AF 17/06/2019 3376 6 East Scotland (Angus) 357902 751084 

8 0013ABF 05/08/2019 3360 8 East Riding of Yorkshire 512325 468225 

9 0013AF 17/06/2019 3324 6 East Riding of Yorkshire 491868 446904 

10 0014ABF 05/08/2019 3362 8 North Yorkshire 492645 483625 

11 0014AF 17/06/2019 3364 6 
East Scotland 
(Aberdeenshire) 375775 777417 

12 0015ABF 06/08/2019 3411 8 Highland  274557 865148 

13 0015AF 17/06/2019 3363 6 
East Scotland 
(Aberdeenshire) 385705 777094 

14 0016ABF 06/08/2019 3412 8 Highland  276861 865305 

15 0016AF 17/06/2019 3365 6 
East Scotland 
(Aberdeenshire) 376458 780926 

16 0017ABF 06/08/2019 3414 8 Highland  270245 865049 

17 0018ABF 06/08/2019 3363 8 
East Scotland 
(Aberdeenshire) 385705 777094 

18 0019ABF 05/08/2019 3365 8 
East Scotland 
(Aberdeenshire) 376458 780926 

19 0019AF 17/06/2019 3437 6 East Riding of Yorkshire 487243 457500 

20 001ABF 23/07/2019 3426 7 Suffolk 596749 273827 

21 001AF 15/06/2019 3430 6 East Scotland (Grampian) 381129 852508 

22 0020ABF 05/08/2019 3364 8 
East Scotland 
(Aberdeenshire) 375775 777417 
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23 0020AF 17/06/2019 3353 6 
East Scotland 
(Aberdeenshire) 370697 833533 

24 0021ABF 06/08/2019 3346 8 Cornwall 170095 40955 

25 0022ABF 05/08/2019 3372 8 East Scotland (Moray) 319119 861258 

26 0022AF 22/06/2019 3402 6 Staffordshire 384010 330900 

27 0023ABF 05/08/2019 3449 8 Somerset 303796 134493 

28 0023AF 25/06/2019 3405 6 East Riding of Yorkshire 481720 454480 

29 0024ABF 05/08/2019 3405 8 East Riding of Yorkshire 481720 454480 

30 0024AF 21/06/2019 3378 6 Highland  263655 851851 

31 0025ABF 05/08/2019 3406 8 East Riding of Yorkshire 492170 455320 

32 0026ABF 02/08/2019 3378 8 Highland  263655 851851 

33 0026AF 24/06/2019 3360 6 East Riding of Yorkshire 512325 468225 

34 0027ABF 02/08/2019 3379 8 Highland  267943 866183 

35 0027AF 24/06/2019 3335 6 East Scotland (Moray) 335952 860944 

36 0028AF 24/06/2019 3392 6 Gloucestershire 391862 194593 

37 0029ABF 05/08/2019 3421 8 
East Scotland (Perth and 
Kinross) 315731 711439 

38 0029AF 15/07/2019 3449 7 Somerset 303796 134493 

39 002ABF 30/07/2019 3424 7 East Scotland (Angus) 346600 747800 

40 002AF 17/06/2019 3373 6 East Scotland (Grampian) 307684 862149 

41 0030ABF 06/08/2019 3416 8 Highland  320883 865502 

42 0030AF 24/06/2019 3393 6 Gloucestershire 388103 196359 

43 0031ABF 04/08/2019 3354 8 Scotland (Scottish Borders) 361412 630255 

44 0031AF 25/06/2019 3323 6 
East Scotland 
(Aberdeenshire) 379000 767500 

45 0032AF 23/06/2019 3372 6 East Scotland (Moray) 319119 861258 

46 0033ABF 06/08/2019 3394 8 Gloucestershire 381905 192262 

47 0033AF 21/06/2019 3382 6 East Riding of Yorkshire 511130 468906 

48 0034ABF 06/08/2019 3424 8 East Scotland (Angus) 346600 747800 

49 0034AF 25/06/2019 3426 6 Suffolk 596749 273827 

50 0035ABF 06/08/2019 3377 8 
East Scotland 
(Aberdeenshire) 396648 839818 
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51 0035AF 24/06/2019 3441 6 
East Scotland 
(Aberdeenshire) 375800 855200 

52 0036ABF 05/08/2019 3380 8 
East Scotland (Perth and 
Kinross) 289702 716266 

53 0036AF 24/06/2019 3387 6 Somerset 314498 122795 

54 0037ABF 06/08/2019 3430 8 East Scotland (Grampian) 381129 852508 

55 0037AF 22/06/2019 3425 6 North Yorkshire 495650 468870 

56 0038ABF 06/08/2019 3323 8 
East Scotland 
(Aberdeenshire) 379000 767500 

57 0038AF 24/06/2019 3337 6 
East Scotland 
(Aberdeenshire) 359650 865777 

58 0039ABF 07/08/2019 3423 8 East Scotland (Fife) 340500 704500 

59 0039AF 28/06/2019 3326 6 West Sussex 482700 119400 

60 003ABF 31/07/2019 3339 7 Norfolk 593352 333256 

61 003AF 17/06/2019 3415 6 East Riding of Yorkshire 484035 456155 

62 0040ABF 07/08/2019 3422 8 East Scotland (Fife) 353500 702300 

63 0040AF 27/06/2019 3477 6 East Riding of Yorkshire 492073 453688 

64 0041ABF 08/08/2019 3347 8 Highland  287251 879453 

65 0041AF 27/06/2019 3442 6 
East Scotland 
(Aberdeenshire) 377137 854287 

66 0042ABF 06/08/2019 3431 8 East Scotland (Angus) 369950 763550 

67 0042AF 29/06/2019 3459 6 Staffordshire 384250 336060 

68 0043ABF 06/08/2019 3374 8 Highland  293212 854187 

69 0043AF 29/06/2019 3401 6 Staffordshire 381560 326810 

70 0044ABF 28/07/2019 3354 7 Scotland (Scottish Borders) 361412 630255 

71 0044AF 29/06/2019 3400 6 Staffordshire 384580 335810 

72 0045ABF 11/08/2019 3369 8 East Scotland (Angus) 357884 758135 

73 0045AF 29/07/2019 3324 7 East Riding of Yorkshire 491868 446904 

74 0046ABF 12/08/2019 3415 8 East Riding of Yorkshire 484035 456155 

75 0046AF 28/06/2019 3379 6 Highland  267943 866183 

76 0047ABF 12/08/2019 3376 8 East Scotland (Angus) 357902 751084 

77 0047AF 28/06/2019 3352 6 North Yorkshire 497055 468755 
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78 0048ABF 12/08/2019 3417 8 Highland  281317 854420 

79 0048AF 26/06/2019 3325 6 West Sussex 489300 101700 

80 0049ABF 09/08/2019 3442 8 
East Scotland 
(Aberdeenshire) 377137 854287 

81 0049AF 28/06/2019 3349 6 East Riding of Yorkshire 500637 439795 

82 004ABF 03/08/2019 3450 8 Highland  264052 854289 

83 004AF 17/06/2019 3362 6 North Yorkshire 492645 483625 

84 0050ABF 19/08/2019 3337 8 
East Scotland 
(Aberdeenshire) 359650 865777 

85 0050AF 28/06/2019 3350 6 North Yorkshire 491211 470723 

86 0051ABF 19/08/2019 3335 8 East Scotland (Moray) 335952 860944 

87 0051AF 29/06/2019 3429 6 Suffolk 612159 240335 

88 0052ABF 19/08/2019 3373 8 East Scotland (Grampian) 307684 862149 

89 0052AF 28/06/2019 3428 6 Suffolk 628271 243636 

90 0053ABF 21/08/2019 3339 8 Norfolk 593352 333256 

91 0053AF 28/06/2019 3427 6 Suffolk 630237 254970 

92 0054ABF 21/08/2019 3351 8 Norfolk 603631 320925 

93 0054AF 30/06/2019 3451 6 Highland  265184 864986 

94 0055ABF 20/08/2019 3397 8 East Scotland (Angus) 343222 756893 

95 0055AF 30/06/2019 3450 6 Highland  264052 854289 

96 0056ABF 19/08/2019 3385 8 
East Scotland (Perth and 
Kinross) 319895 737755 

97 0056AF 01/07/2019 3394 7 Gloucestershire 381905 192262 

98 0057ABF 22/08/2019 3410 8 East Scotland (Angus) 343750 743100 

99 0057AF 01/07/2019 3364 7 
East Scotland 
(Aberdeenshire) 375775 777417 

100 0058ABF 30/07/2019 3412 7 Highland  276861 865305 

101 0058AF 01/07/2019 3363 7 
East Scotland 
(Aberdeenshire) 385705 777094 

102 0059ABF 21/08/2019 3413 8 Highland  270835 859499 

103 005ABF 03/08/2019 3451 8 Highland  265184 864986 

104 005AF 17/06/2019 3389 6 West Scotland 203842 560905 
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105 0060ABF 01/09/2019 3376 9 East Scotland (Angus) 357902 751084 

106 0060AF 01/07/2019 3374 7 Highland  293212 854187 

107 0061ABF 02/09/2019 3373 9 East Scotland (Grampian) 307684 862149 

108 0061AF 01/07/2019 3372 7 East Scotland (Moray) 319119 861258 

109 0062AF 01/07/2019 3335 7 East Scotland (Moray) 335952 860944 

110 0063AF 01/07/2019 3437 7 East Riding of Yorkshire 487243 457500 

111 0064ABF 14/07/2019 3425 7 North Yorkshire 495650 468870 

112 0064AF 30/06/2019 3404 6 Highland  265017 855669 

113 0065ABF 16/07/2019 3414 7 Highland  270245 865049 

114 0065AF 29/06/2019 3403 6 Highland  261573 852632 

115 0066ABF 16/07/2019 3411 7 Highland  274557 865148 

116 0066AF 01/07/2019 3415 7 East Riding of Yorkshire 484035 456155 

117 0067ABF 16/07/2019 3359 7 East Riding of Yorkshire 511165 464085 

118 0067AF 30/06/2019 3368 6 East Scotland (Angus) 359834 759248 

119 0068ABF 16/07/2019 3346 7 Cornwall 170095 40955 

120 0068AF 30/06/2019 3369 6 East Scotland (Angus) 357884 758135 

121 0069ABF 16/07/2019 3323 7 
East Scotland 
(Aberdeenshire) 379000 767500 

122 0069AF 01/07/2019 3441 7 
East Scotland 
(Aberdeenshire) 375800 855200 

123 006ABF 30/07/2019 3350 7 North Yorkshire 491211 470723 

124 006AF 17/06/2019 3390 6 West Scotland 210553 546951 

125 0070ABF 17/07/2019 3338 7 Norfolk 604731 320165 

126 0070AF 01/07/2019 3380 7 
East Scotland (Perth and 
Kinross) 289702 716266 

127 0071ABF 19/07/2019 3379 7 Highland  267943 866183 

128 0071AF 06/07/2019 3400 7 Staffordshire 384580 335810 

129 0072ABF 19/07/2019 3429 7 Suffolk 612159 240335 

130 0072AF 05/07/2019 3378 7 Highland  263655 851851 

131 0073ABF 19/07/2019 3352 7 North Yorkshire 497055 468755 

132 0073AF 10/07/2019 3347 7 Highland  287251 879453 

133 0074ABF 18/07/2019 3427 7 Suffolk 630237 254970 
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134 0074AF 10/07/2019 3382 7 East Riding of Yorkshire 511130 468906 

135 0075ABF 27/07/2019 3450 7 Highland  264052 854289 

136 0075AF 03/07/2019 3422 7 East Scotland (Fife) 353500 702300 

137 0076ABF 22/07/2019 3410 7 East Scotland (Angus) 343750 743100 

138 0077ABF 22/07/2019 3353 7 
East Scotland 
(Aberdeenshire) 370697 833533 

139 0077AF 03/07/2019 3423 7 East Scotland (Fife) 340500 704500 

140 0078AF 08/07/2019 3430 7 East Scotland (Grampian) 381129 852508 

141 0079ABF 22/07/2019 3368 7 East Scotland (Angus) 359834 759248 

142 0079AF 10/07/2019 3351 7 Norfolk 603631 320925 

143 007ABF 01/08/2019 3441 8 
East Scotland 
(Aberdeenshire) 375800 855200 

144 007AF 18/06/2019 3406 6 East Riding of Yorkshire 492170 455320 

145 0080ABF 19/07/2019 3428 7 Suffolk 628271 243636 

146 0080AF 11/07/2019 3387 7 Somerset 314498 122795 

147 0081ABF 22/07/2019 3376 7 East Scotland (Angus) 357902 751084 

148 0081AF 14/07/2019 3442 7 
East Scotland 
(Aberdeenshire) 377137 854287 

149 0082ABF 21/07/2019 3375 7 
East Scotland 
(Aberdeenshire) 360142 859995 

150 0082AF 12/07/2019 3326 7 West Sussex 482700 119400 

151 0083ABF 22/07/2019 3361 7 North Yorkshire 500755 475735 

152 0083AF 15/07/2019 3365 7 
East Scotland 
(Aberdeenshire) 376458 780926 

153 0084ABF 22/07/2019 3385 7 
East Scotland (Perth and 
Kinross) 319895 737755 

154 0084AF 15/07/2019 3420 7 Norfolk 620040 321470 

155 0085ABF 22/07/2019 3370 7 East Scotland (Angus) 360406 766405 

156 0085AF 15/07/2019 3418 7 Norfolk 617650 319080 

157 0086ABF 22/07/2019 3377 7 
East Scotland 
(Aberdeenshire) 396648 839818 

158 0086AF 15/07/2019 3337 7 
East Scotland 
(Aberdeenshire) 359650 865777 
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159 0087ABF 22/07/2019 3431 7 East Scotland (Angus) 369950 763550 

160 0087AF 14/07/2019 3389 7 West Scotland 203842 560905 

161 0088ABF 29/07/2019 3360 7 East Riding of Yorkshire 512325 468225 

162 0088AF 15/07/2019 3393 7 Gloucestershire 388103 196359 

163 0089ABF 30/07/2019 3413 7 Highland  270835 859499 

164 0089AF 15/07/2019 3392 7 Gloucestershire 391862 194593 

165 008ABF 01/08/2019 3428 8 Suffolk 628271 243636 

166 008AF 17/06/2019 3336 6 East Scotland (Grampian) 350179 865448 

167 0090ABF 22/07/2019 3416 7 Highland  320883 865502 

168 0090AF 13/07/2019 3459 7 Staffordshire 384250 336060 

169 0091ABF 22/07/2019 3373 7 East Scotland (Grampian) 307684 862149 

170 0091AF 13/07/2019 3402 7 Staffordshire 384010 330900 

171 0092ABF 29/07/2019 3421 7 
East Scotland (Perth and 
Kinross) 315731 711439 

172 0092AF 13/07/2019 3401 7 Staffordshire 381560 326810 

173 0093ABF 27/07/2019 3404 7 Highland  265017 855669 

174 0093AF 14/07/2019 3403 7 Highland  261573 852632 

175 0094ABF 29/07/2019 3397 7 East Scotland (Angus) 343222 756893 

176 0094AF 09/07/2019 3325 7 West Sussex 489300 101700 

177 0095ABF 28/07/2019 3390 7 West Scotland 210553 546951 

178 0095AF 15/07/2019 3362 7 North Yorkshire 492645 483625 

179 0096AF 14/07/2019 3477 7 East Riding of Yorkshire 492073 453688 

180 009ABF 04/08/2019 3401 8 Staffordshire 381560 326810 

181 009AF 17/06/2019 3361 6 North Yorkshire 500755 475735 

182 0017AF 16/06/2019 3386 6 North Yorkshire 457295 487465 

183 0018AF 17/06/2019 3357 6 Scotland (Scottish Borders) 383735 656881 

184 0021AF 17/06/2019 3394 6 Gloucestershire 381905 192262 

185 0025AF 12/06/2019 3422 6 na 353500 702300 

186 0028ABF 29/07/2019 3336 7 Scotland 350179 865448 

187 0032ABF 12/06/2019 3422  Scotland 353500 702300 

188 0059AF 27/07/2019 3369 7 Scotland 357884 758135 
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189 0062ABF 17/07/2019 3405 7 na 481720 454480 

190 0063ABF 16/07/2019 3406 7 na 492170 455320 

191 0076AF 31/07/2019 3422 7 na 350179 865448 

192 0078ABF 24/07/2019 3349 7 na 500637 439795 

Table C. 1 Metadata on the collected samples from Fera, sample name, date of collection, month and locality information. 
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Unique_code input filtered No 
chimera 

Lysis 
solution 
(mL) 

Proteinase 
k(uL) 

         000ABF 48920 30027 27587 10 50 

0010ABF 53664 25283 24775 5 25 

0010AF 68097 60230 58038 15 75 

0011ABF 48807 23564 23153 15 75 

0011AF 54469 48051 41898 20 100 

0012ABF 46812 23919 22787 10 50 

0012AF 34760 29080 28630 10 50 

0013ABF 24892 14932 14735 10 50 

0013AF 81619 71212 65537 15 75 

0014ABF 54473 32857 31733 15 75 

0014AF 77774 68743 61120 5 25 

0015ABF 40221 17475 16534 15 75 

0015AF 84894 72300 69350 5 25 

0016ABF 67706 59387 52971 10 50 

0016AF 85483 74931 66441 10 50 

0017ABF 66916 60166 57043 10 50 

0018ABF 76527 68132 59999 10 50 

0018AF 95 26 18 10 50 

0019ABF 27580 24360 24045 10 50 

0019AF 57372 48694 46828 10 50 

001ABF 48284 25332 24761 10 50 

001AF 78909 70162 67112 10 50 

0020ABF 32321 27725 27360 15 75 

0020AF 60769 50980 44678 15 75 

0021ABF 71686 62894 58762 25 125 

0021AF 203 2 0 10 50 

0022ABF 77539 68403 65184 20 100 

0022AF 59942 50844 49110 15 75 
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0023ABF 71182 62773 60771 10 50 

0023AF 53034 45802 42489 10 50 

0024ABF 77234 68845 50100 5 25 

0024AF 58538 52137 48190 5 25 

0025ABF 61216 50432 45512 30 150 

0025AF 59796 51084 44855 15 75 

0026ABF 71728 63504 48784 10 50 

0026AF 52241 45844 40813 5 25 

0027ABF 65413 57788 46453 10 50 

0027AF 61195 52689 46565 15 75 

0028AF 49636 41350 39204 10 50 

0029ABF 63242 49535 44083 5 25 

0029AF 55198 43005 39191 10 50 

002ABF 49066 27927 27245 10 50 

002AF 83687 73798 71095 10 50 

0030ABF 76684 64729 51258 15 75 

0030AF 56491 46156 43821 20 100 

0031ABF 65779 54134 47894 5 25 

0031AF 55333 46068 35945 10 50 

0032ABF 3 1 1 25 125 

0032AF 56738 47323 43610 15 75 

0033ABF 66883 56979 56017 15 75 

0033AF 85404 66900 64296 10 50 

0034ABF 77676 66443 65157 10 50 

0034AF 28621 24947 24491 5 25 

0035ABF 19827 17049 16959 5 25 

0035AF 88829 76775 74169 10 50 

0036ABF 55131 43121 42785 10 50 

0036AF 97652 84818 77159 15 75 

0037ABF 81853 52189 49615 10 50 

0037AF 265 204 127 5 25 
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0038ABF 69293 54543 53363 10 50 

0038AF 91692 80418 76154 10 50 

0039ABF 71867 59817 57730 15 75 

0039AF 46195 37524 36502 25 125 

003ABF 59244 36748 35670 5 25 

003AF 87429 77929 58143 5 25 

0040ABF 69377 57912 54113 10 50 

0040AF 95964 82286 72630 5 25 

0041ABF 76033 61378 59796 10 50 

0041AF 81416 70881 67233 20 100 

0042ABF 21203 16780 16612 20 100 

0042AF 75192 63558 60833 5 25 

0043ABF 70668 60255 59253 15 75 

0043AF 61543 53687 52882 5 25 

0044ABF 14848 12078 11791 5 25 

0044AF 4181 3617 3279 5 25 

0045ABF 75176 60124 59310 15 75 

0045AF 31650 27681 27323 15 75 

0046ABF 82807 68904 67441 10 50 

0046AF 46847 40971 40358 10 50 

0047ABF 81224 63543 62208 10 50 

0047AF 85879 72769 70616 10 50 

0048ABF 95203 72439 70859 5 25 

0048AF 68119 54561 53369 5 25 

0049ABF 70739 58684 49979 5 25 

0049AF 64684 49613 44519 15 75 

004ABF 38120 16103 15755 5 25 

004AF 70696 61683 51895 10 50 

0050ABF 66576 54795 54667 10 50 

0050AF 64849 56685 47863 25 125 

0051ABF 108511 89218 78484 15 75 
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0051AF 53297 43004 37820 25 125 

0052ABF 51799 40433 37787 5 25 

0052AF 50768 38920 37987 20 100 

0053ABF 88309 72077 62987 10 50 

0053AF 64592 46592 44328 15 75 

0054ABF 108873 88703 57890 5 25 

0054AF 61122 50235 44508 5 25 

0055ABF 104105 80427 69682 5 25 

0055AF 59516 48380 35775 5 25 

0056ABF 70085 48110 47953 20 100 

0056AF 59521 48153 40185 5 25 

0057ABF 68557 54127 51522 15 75 

0057AF 62097 46086 43885 5 25 

0058ABF 3890 3089 2922 5 25 

0058AF 67069 57497 55863 20 100 

0059ABF 103230 83103 81583 15 75 

005ABF 45972 23858 22050 5 25 

005AF 77811 67747 63527 5 25 

0060ABF 92401 69576 64783 5 25 

0060AF 53921 43318 40595 100 500 

0061ABF 50893 38071 36410 5 25 

0061AF 59790 49985 45311 10 50 

0062ABF 249 1 0 5 25 

0062AF 47718 38824 37546 10 50 

0063ABF 18319 32 0 5 25 

0063AF 51162 40526 39768 5 25 

0064ABF 77064 64751 62130 20 100 

0064AF 51009 43524 41894 5 25 

0065ABF 71026 60980 60347 10 50 

0065AF 59157 51801 50507 5 25 

0066ABF 65841 55828 54526 5 25 
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0066AF 66721 57858 50145 40 200 

0067ABF 90600 78781 77657 5 25 

0067AF 41765 35153 34710 5 25 

0068ABF 86226 73571 64512 10 50 

0068AF 58673 49674 48043 5 25 

0069ABF 75196 66487 65958 10 50 

0069AF 51037 43520 41563 20 100 

006ABF 34297 14035 13601 10 50 

006AF 86192 75106 67553 50 250 

0070ABF 78254 69158 65474 30 150 

0070AF 48528 41169 40238 5 25 

0071ABF 79316 66755 64760 10 50 

0071AF 61290 50717 49141 20 100 

0072ABF 76219 63155 59857 20 100 

0072AF 63675 55166 54878 20 100 

0073ABF 83509 68597 59921 5 25 

0073AF 72924 63538 48776 10 50 

0074ABF 5618 4610 4472 10 50 

0074AF 21466 17170 16775 10 50 

0075ABF 79201 63460 61600 5 25 

0075AF 28919 25499 20346 15 75 

0076ABF 79719 69453 60706 5 25 

0076AF 58657 47556 47082 5 25 

0077ABF 73992 63055 55031 10 50 

0077AF 56059 48757 35153 5 25 

0078AF 45269 39826 32129 5 25 

0079ABF 71904 60024 57469 20 100 

0079AF 26390 21016 20066 20 100 

007ABF 36046 13402 12889 15 75 

007AF 66548 57529 54719 15 75 

0080ABF 51942 42386 39596 10 50 
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0080AF 52249 42758 35584 10 50 

0081ABF 94578 83184 73286 10 50 

0081AF 52667 45570 44085 15 75 

0082ABF 91527 78470 78155 10 50 

0082AF 70790 60443 58803 10 50 

0083ABF 79642 70189 69024 5 25 

0083AF 49804 42960 40126 10 50 

0084ABF 71817 59732 57645 20 100 

0084AF 59490 52141 50848 10 50 

0085ABF 80061 69648 66162 15 75 

0085AF 52608 46818 45741 10 50 

0086ABF 7170 5207 5203 10 50 

0086AF 67127 57016 53724 10 50 

0087ABF 90394 78548 72702 10 50 

0087AF 66936 58313 55714 5 25 

0088ABF 14809 12585 12567 15 75 

0088AF 60545 53007 47519 5 25 

0089ABF 79560 68238 66591 10 50 

0089AF 61285 53577 46121 5 25 

008ABF 49564 24473 24273 10 50 

008AF 88888 76565 74332 5 25 

0090ABF 11109 8845 8664 5 25 

0090AF 24617 21730 20628 10 50 

0091ABF 67116 56231 55677 5 25 

0091AF 10135 8689 8156 5 25 

0092ABF 68111 25414 24559 5 25 

0092AF 62165 53805 48859 5 25 

0093ABF 79970 66979 63253 5 25 

0093AF 54231 48068 42370 5 25 

0094ABF 80141 66762 65113 15 75 

0094AF 69947 60426 59470 5 25 
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0095ABF 82396 70434 69672 5 25 

0095AF 66875 56704 53671 10 50 

0096AF 56626 48562 46898 10 50 

009ABF 40552 15163 14262 5 25 

009AF 88347 79354 74040 15 75 

00ExNeg_1 1091 3 0 62 2 

00ExNeg_11 53 36 36 62 2 

00ExNeg_3 11 3 0 62 2 

00ExNeg_5 1878 2 0 62 2 

00ExNeg_8 41 31 31 62 2 

00ExNeg_9 28 8 0 62 2 

00ExPos_1 48169 23037 22942 62 2 

00ExPos_10 57962 18622 18260 62 2 

00ExPos_11 3917 1620 1559 62 2 

00ExPos_12 37928 15837 15736 62 2 

00ExPos_2 52170 17691 17455 62 2 

00ExPos_3 31687 13827 13735 62 2 

00ExPos_4 37435 12986 12875 62 2 

00ExPos_5 77414 35465 35158 62 2 

00ExPos_6 69849 30018 29794 62 2 

00ExPos_7 9703 808 795 62 2 

00ExPos_8 4239 1790 1765 62 2 

00ExPos_9 57298 22229 22052 62 2 

00PCRpos_1 3649 757 756 62 2 

00PCRpos_10 700 95 93 62 2 

00PCRpos_11 4428 861 858 62 2 

00PCRpos_12 1295 193 192 62 2 

00PCRpos_2 1127 157 155 62 2 

00PCRpos_3 676 125 122 62 2 

00PCRpos_4 29732 2231 2220 62 2 

00PCRpos_5 504 63 0 62 2 
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00PCRpos_6 45219 7898 7850 62 2 

00PCRpos_7 127 1 0 62 2 

00PCRpos_8 502 98 97 62 2 

00PCRpos_9 872 136 136 62 2 

Table C. 2 Sample information with reads entering and exiting the DADA2 pipeline, Lysis solution (ml) volume for each sample and Proteinase K 
(ul) 
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Figure C. 1 Residual plot for the GLM in mvabund for the two factors: Field and months. 
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Coefficients Estimate Standard 

error 

t-value Pr(>t)  

Interecept 152.17 34.97 4.351 0.0001  

Latitude -2.44 0.64 -3.799 0.0007  

Landscape_diversity 5.25 3.98 1.31 0.19  

      

Table C. 3 Coefficients and estimates for the different effect of factors for species richness 
for the GLM. AIC: 204.62, residual deviance 1233 on 27 degrees of freedom 

 

 

Figure C. 2 Plotted GLM blue line represent best fitted line, shaded areas are standard 
errors. 
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Figure C. 3 Beta diversity against physical distance for every sample pair (Includes only 
samples where all months have been sampled) 

 

species Category family order class 

bombus 
lucorum/terrestris 

Pollinator Apidae Hymenoptera Insecta 

bombus terrestris Pollinator Apidae Hymenoptera Insecta 

oscinella nigerrima Pollinator Chloropidae Diptera Insecta 

ceutorhynchus obstrictus Pollinator Curculionidae Coleoptera Insecta 

oedemera nobilis Pollinator Oedemeridae Coleoptera Insecta 

rhagonycha fulva Pollinator Cantharidae Coleoptera Insecta 

delia florilega Pollinator Anthomyiidae Diptera Insecta 

adia cinerella Pollinator Anthomyiidae Diptera Insecta 

athalia rosae Pollinator Tenthredinidae Hymenoptera Insecta 

empis livida Pollinator Empididae Diptera Insecta 

eriothrix rufomaculata Pollinator Tachinidae Diptera Insecta 

eupeodes corollae Pollinator Syrphidae Diptera Insecta 

eupeodes luniger Pollinator Syrphidae Diptera Insecta 

orthops campestris Pollinator Miridae Hemiptera Insecta 

saltella sphondylii Pollinator Sepsidae Diptera Insecta 

syrphus ribesii Pollinator Syrphidae Diptera Insecta 
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bellardia vulgaris Pollinator Calliphoridae Diptera Insecta 

calliphora vicina Pollinator Calliphoridae Diptera Insecta 

delia platura Pollinator Anthomyiidae Diptera Insecta 

pegoplata aestiva Pollinator Anthomyiidae Diptera Insecta 

phaonia incana Pollinator Muscidae Diptera Insecta 

scathophaga stercoraria Pollinator Scathophagidae Diptera Insecta 

autographa gamma Pollinator Noctuidae Lepidoptera Insecta 

sarcophaga subvicina Pollinator Sarcophagidae Diptera Insecta 

lygus rugulipennis Pollinator Miridae Hemiptera Insecta 

melinda viridicyanea Pollinator Calliphoridae Diptera Insecta 

scaptomyza flava Pollinator Drosophilidae Diptera Insecta 

thrips major Pollinator Thripidae Thysanoptera Insecta 

botanophila fugax Pollinator Anthomyiidae Diptera Insecta 

eudasyphora cyanella Pollinator Muscidae Diptera Insecta 

lucilia caesar Pollinator Calliphoridae Diptera Insecta 

cheilosia albitarsis Pollinator Syrphidae Diptera Insecta 

bombus hortorum Pollinator Apidae Hymenoptera Insecta 

scaptomyza pallida Pollinator Drosophilidae Diptera Insecta 

coccinella 
septempunctata 

Pollinator Coccinellidae Coleoptera Insecta 

plutella xylostella Pollinator Plutellidae Lepidoptera Insecta 

diplazon laetatorius Pollinator Ichneumonidae Hymenoptera Insecta 

glyphipterix simpliciella Pollinator Glyphipterigidae Lepidoptera Insecta 

lonchoptera lutea Pollinator Lonchopteridae Diptera Insecta 

pegoplata infirma Pollinator Anthomyiidae Diptera Insecta 

melanogaster aerosa Pollinator Syrphidae Diptera Insecta 

sarcophaga crassimargo Pollinator Sarcophagidae Diptera Insecta 

andrena haemorrhoa Pollinator Andrenidae Hymenoptera Insecta 

bombus lapidarius Pollinator Apidae Hymenoptera Insecta 

fannia fuscula Pollinator Fanniidae Diptera Insecta 

empis caudatula Pollinator Empididae Diptera Insecta 

chloromyia formosa Pollinator Stratiomyidae Diptera Insecta 

meigenia mutabilis Pollinator Tachinidae Diptera Insecta 

hydrellia griseola Pollinator Ephydridae Diptera Insecta 

delia coarctata Pollinator Anthomyiidae Diptera Insecta 

sepsis punctum Pollinator Sepsidae Diptera Insecta 

vespula vulgaris Pollinator Vespidae Hymenoptera Insecta 

andrena cineraria Pollinator Andrenidae Hymenoptera Insecta 

andrena dorsata Pollinator Andrenidae Hymenoptera Insecta 

muscina levida Pollinator Muscidae Diptera Insecta 

eristalis tenax Pollinator Syrphidae Diptera Insecta 

hydrophoria lancifer Pollinator Anthomyiidae Diptera Insecta 

bombus lucorum Pollinator Apidae Hymenoptera Insecta 

dolichopus plumipes Pollinator Dolichopodidae Diptera Insecta 

dolichopus simplex Pollinator Dolichopodidae Diptera Insecta 

hydrotaea dentipes Pollinator Muscidae Diptera Insecta 

drymeia hamata Pollinator Muscidae Diptera Insecta 

muscina prolapsa Pollinator Muscidae Diptera Insecta 
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rhagio tringarius Pollinator Rhagionidae Diptera Insecta 

coenosia tigrina Pollinator Muscidae Diptera Insecta 

scaptomyza graminum Pollinator Drosophilidae Diptera Insecta 

xylota segnis Pollinator Syrphidae Diptera Insecta 

bellardia viarum Pollinator Calliphoridae Diptera Insecta 

brachicoma devia Pollinator Sarcophagidae Diptera Insecta 

dilophus febrilis Pollinator Bibionidae Diptera Insecta 

eudasyphora cyanicolor Pollinator Muscidae Diptera Insecta 

andrena nitida Pollinator Andrenidae Hymenoptera Insecta 

dicraeus vagans Pollinator Chloropidae Diptera Insecta 

tachyporus hypnorum Pollinator Staphylinidae Coleoptera Insecta 

mesembrina meridiana Pollinator Muscidae Diptera Insecta 

neomyia cornicina Pollinator Muscidae Diptera Insecta 

sarcophaga nigriventris Pollinator Sarcophagidae Diptera Insecta 

scaeva pyrastri Pollinator Syrphidae Diptera Insecta 

geomyza tripunctata Pollinator Opomyzidae Diptera Insecta 

sarcophaga variegata Pollinator Sarcophagidae Diptera Insecta 

lucilia silvarum Pollinator Calliphoridae Diptera Insecta 

cephus pygmeus Pollinator Cephidae Hymenoptera Insecta 

oscinella frit Pollinator Chloropidae Diptera Insecta 

apis mellifera Pollinator Apidae Hymenoptera Insecta 

dolichopus popularis Pollinator Dolichopodidae Diptera Insecta 

endasys plagiator Pollinator Ichneumonidae Hymenoptera Insecta 

andrena nigroaenea Pollinator Andrenidae Hymenoptera Insecta 

chlorops pumilionis Pollinator Chloropidae Diptera Insecta 

bibio pomonae Pollinator Bibionidae Diptera Insecta 

fannia armata Pollinator Fanniidae Diptera Insecta 

bicellaria vana Pollinator Hybotidae Diptera Insecta 

tenthredo arcuata Pollinator Tenthredinidae Hymenoptera Insecta 

closterotomus 
norwegicus 

Pollinator Miridae Hemiptera Insecta 

philaenus spumarius Pollinator Aphrophoridae Hemiptera Insecta 

pseudovadonia livida Pollinator Cerambycidae Coleoptera Insecta 

halictus rubicundus Pollinator Halictidae Hymenoptera Insecta 

helina reversio Pollinator Muscidae Diptera Insecta 

lucilia sericata Pollinator Calliphoridae Diptera Insecta 

platycheirus manicatus Pollinator Syrphidae Diptera Insecta 

cantharis flavilabris Pollinator Cantharidae Coleoptera Insecta 

syrphus torvus Pollinator Syrphidae Diptera Insecta 

plagiognathus 
arbustorum 

Pollinator Miridae Hemiptera Insecta 

exorista rustica Pollinator Tachinidae Diptera Insecta 

sarcophaga vagans Pollinator Sarcophagidae Diptera Insecta 

helina evecta Pollinator Muscidae Diptera Insecta 

neoascia podagrica Pollinator Syrphidae Diptera Insecta 

sepsis cynipsea Pollinator Sepsidae Diptera Insecta 

sepsis flavimana Pollinator Sepsidae Diptera Insecta 

athalia bicolor Pollinator Tenthredinidae Hymenoptera Insecta 
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lucilia illustris Pollinator Calliphoridae Diptera Insecta 

copidosoma floridanum Pollinator Encyrtidae Hymenoptera Insecta 

ravinia pernix Pollinator Sarcophagidae Diptera Insecta 

tachyporus obtusus Pollinator Staphylinidae Coleoptera Insecta 

tachyporus 
chrysomelinus 

Pollinator Staphylinidae Coleoptera Insecta 

aphidius matricariae Pollinator Braconidae Hymenoptera Insecta 

bombus pascuorum Pollinator Apidae Hymenoptera Insecta 

chlorops hypostigma Pollinator Chloropidae Diptera Insecta 

schizohelea leucopeza Pollinator Ceratopogonidae Diptera Insecta 

hylemya variata Pollinator Anthomyiidae Diptera Insecta 

sphaerophoria scripta Pollinator Syrphidae Diptera Insecta 

melanomya nana Pollinator Calliphoridae Diptera Insecta 

anthocoris nemorum Pollinator Anthocoridae Hemiptera Insecta 

vespula rufa Pollinator Vespidae Hymenoptera Insecta 

bombus pratorum Pollinator Apidae Hymenoptera Insecta 

dolerus aeneus Pollinator Tenthredinidae Hymenoptera Insecta 

diplonevra funebris Pollinator Phoridae Diptera Insecta 

apamea monoglypha Pollinator Noctuidae Lepidoptera Insecta 

morellia simplex Pollinator Muscidae Diptera Insecta 

paregle audacula Pollinator Anthomyiidae Diptera Insecta 

abrostola tripartita Pollinator Noctuidae Lepidoptera Insecta 

lasioglossum 
malachurum 

Pollinator Halictidae Hymenoptera Insecta 

anthomyia liturata Pollinator Anthomyiidae Diptera Insecta 

anthomyia confusanea Pollinator Anthomyiidae Diptera Insecta 

phaonia tuguriorum Pollinator Muscidae Diptera Insecta 

nephrotoma cornicina Pollinator Tipulidae Diptera Insecta 

syritta pipiens Pollinator Syrphidae Diptera Insecta 

eupeodes corollae Predator Syrphidae Diptera Insecta 

coccinella 
septempunctata 

Predator Coccinellidae Coleoptera Insecta 

sphaerophoria scripta Predator Syrphidae Diptera Insecta 

pardosa amentata Predator Lycosidae Araneae Arachnida 

rhagonycha fulva Predator Cantharidae Coleoptera Insecta 

syrphus torvus Predator Syrphidae Diptera Insecta 

aphidius avenae Parasitoid Braconidae Hymenoptera Insecta 

tachyporus obtusus Predator Staphylinidae Coleoptera Insecta 

aphis fabae Pest Aphididae Hemiptera Insecta 

philonthus laminatus Predator Staphylinidae Coleoptera Insecta 

aloconota gregaria Predator Staphylinidae Coleoptera Insecta 

philonthus cognatus Predator Staphylinidae Coleoptera Insecta 

acyrthosiphon pisum Pest Aphididae Hemiptera Insecta 

metopolophium 
dirhodum 

Pest Aphididae Hemiptera Insecta 

rhopalosiphum padi Pest Aphididae Hemiptera Insecta 

erigone atra Predator Linyphiidae Araneae Arachnida 

thrips tabaci Pest Thripidae Thysanoptera Insecta 
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tachyporus 
chrysomelinus 

Predator Staphylinidae Coleoptera Insecta 

tenuiphantes tenuis Predator Linyphiidae Araneae Arachnida 

aphidius rhopalosiphi Parasitoid Braconidae Hymenoptera Insecta 

macrosiphum 
euphorbiae 

Pest Aphididae Hemiptera Insecta 

chrysoperla carnea Predator Chrysopidae Neuroptera Insecta 

sitobion avenae Pest Aphididae Hemiptera Insecta 

tachyporus hypnorum Predator Staphylinidae Coleoptera Insecta 

gyrohypnus angustatus Predator Staphylinidae Coleoptera Insecta 

erigone dentipalpis Predator Linyphiidae Araneae Arachnida 

atheta celata Predator Staphylinidae Coleoptera Insecta 

trechus quadristriatus Predator Carabidae Coleoptera Insecta 

aphidius ervi Parasitoid Braconidae Hymenoptera Insecta 

brevicoryne brassicae Pest Aphididae Hemiptera Insecta 

anotylus rugosus Predator Staphylinidae Coleoptera Insecta 

anotylus tetracarinatus Predator Staphylinidae Coleoptera Insecta 

harmonia axyridis Predator Coccinellidae Coleoptera Insecta 

diaeretiella rapae Parasitoid Braconidae Hymenoptera Insecta 

aleochara bipustulata Predator Staphylinidae Coleoptera Insecta 

episyrphus balteatus Predator Syrphidae Diptera Insecta 

dolycoris baccarum Predator Pentatomidae Hemiptera Insecta 

myzus cerasi Pest Aphididae Hemiptera Insecta 

trialeurodes 
vaporariorum 

Pest Aleyrodidae Hemiptera Insecta 

porrhomma pygmaeum Predator Linyphiidae Araneae Arachnida 

liriomyza huidobrensis Pest Agromyzidae Diptera Insecta 

capitophorus elaeagni Pest Aphididae Hemiptera Insecta 

pemphredon lugubris Parasitoid Crabronidae Hymenoptera Insecta 

aleochara bilineata Predator Staphylinidae Coleoptera Insecta 

passaloecus corniger Parasitoid Crabronidae Hymenoptera Insecta 

bembidion lunulatum Predator Carabidae Coleoptera Insecta 

amischa analis Predator Staphylinidae Coleoptera Insecta 

hyadaphis foeniculi Pest Aphididae Hemiptera Insecta 

myzus persicae Pest Aphididae Hemiptera Insecta 

araeoncus humilis Predator Linyphiidae Araneae Arachnida 

praon volucre Parasitoid Braconidae Hymenoptera Insecta 

hippodamia variegata Predator Coccinellidae Coleoptera Insecta 

microlinyphia pusilla Predator Linyphiidae Araneae Arachnida 

pachygnatha degeeri Predator Tetragnathidae Araneae Arachnida 

tetragnatha extensa Predator Tetragnathidae Araneae Arachnida 

dinaraea angustula Predator Staphylinidae Coleoptera Insecta 

pardosa lugubris Predator Lycosidae Araneae Arachnida 

nasonovia ribisnigri Pest Aphididae Hemiptera Insecta 

Table C. 4 Table of species of agricultural interest for which a category was found
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