
Dynamic Scaling of Distributed Dataflows

Under Uncertainty

Stuart Jamieson

School of Computing

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

May 2024

I would like to dedicate this thesis to my loving parents, I will be forever grateful. . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done

in collaboration with others, except as specified in the text and Acknowledgements. This

dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Stuart Jamieson

May 2024

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my primary supervisor, Dr

Matthew Forshaw, for his unwavering support, guidance, and encouragement throughout

my PhD journey. His expertise, insights, and patience have been invaluable in shaping my

research and helping me navigate the challenges of this endeavour. I am truly fortunate to

have had the opportunity to work under his supervision and learn from his vast knowledge

and experience.

I would also like to extend my sincere thanks to my co-supervisors, Nigel Thomas and

Stephen McGough, for their valuable input and support. Their expertise and feedback have

greatly contributed to the development of my research, and I am grateful for their guidance

and assistance.

A special thank you goes to Jennifer Wood, the Programme Manager, for her tireless

efforts in keeping everything running smoothly and providing essential support throughout

my PhD. Her dedication and assistance have been crucial in ensuring the success of my

research and the timely completion of my thesis.

Finally, I am forever grateful to my family and friends for their unwavering love, under-

standing, and support throughout this challenging journey. Their belief in me has been a

constant source of strength and motivation, and I could not have achieved this milestone

without their endless encouragement and support.

Abstract

Performant Distributed Stream Processing Systems (DSPSs) are essential to processing large

volumes of high-velocity data in a reliable and timely fashion. The global event stream

processing industry is becoming ever more important to the world economy, projected

to grow from its current $930 million valuation, to $2.4 billion by 2030. These systems

commonly experience highly variable, bursty and unpredictable workloads, presenting a

challenge when provisioning compute to meet the needs of these workloads. Rightsizing

systems for peak demand leads to often-unacceptable financial cost, motivating the need for

adaptive approaches to meet the needs of changing workloads. The choice of parallelism of

workload operators are commonly governed by autoscalers, but their behaviour is often case

specific and highly sensitive to the choice of tunable parameters and thresholds. Current

approaches to evaluating DSPS and contemporary autoscaler performance provides limited

visibility into the robustness of performance metrics, nor worst-case performance of systems

under specific operating conditions. These issues present a challenge to practitioners

wishing to understand the performance implications of their decisions.

In this thesis, we make the following contributions:

• Empirically study undesirable behaviours experienced by a state-of-the-art autoscal-

ing controller and contribute a categorisation of failures exhibited by autoscaling

mechanisms.

• Demonstrate the potential of moving average models to augment existing autoscalers

to help mitigate these behaviours, successfully mitigating over 90% of undesirable

extreme parallelism shifts and significantly reducing scaling-behaviour volatility.

• Challenge current approaches to quantifying and measuring streaming system ro-

bustness, and propose the use of non-parametric goodness-of-fit tests to quantify

streaming system robustness.

• Investigate the potential of our suggested robustness quantifier and Response Surface

Methodology (RSM) to capture the complex relationship between incoming workload

characteristics and system latency, providing valuable insights into the behaviour of

DSPSs under diverse operating conditions.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statement . 4

1.3 Research Questions and Objectives . 5

1.3.1 Weighting and Windowing . 5

1.3.2 Robustness . 6

1.3.3 Response Surface Methodology . 7

1.4 Thesis Overview . 8

1.5 Related Publications . 10

1.5.1 DEBS 2020 . 10

1.5.2 EPEW 2022 . 10

1.5.3 DEBS 2023 . 11

2 Literature Review 13

2.1 Stream Processing . 14

2.1.1 Background . 15

2.1.2 Key Concepts and Terminology . 16

2.1.3 Stream Processing Architectures . 18

2.1.4 Stream Processing Systems . 20

2.1.5 Challenges and Research Directions . 25

2.2 Autoscalers . 27

2.2.1 Background . 28

2.2.2 Autoscaler Architectures and Algorithms 32

2.2.3 Applications of Autoscalers in Distributed Stream Processing Systems . 42

2.2.4 Challenges and Research Directions . 45

xii Table of contents

2.3 Workload Generation and Modelling . 48

2.3.1 Background . 49

2.3.2 Workload modelling methodologies . 50

2.3.3 Workload modelling in Stream Processing Systems 52

2.3.4 Challenges and Research Directions . 55

2.4 Benchmarking and Evaluation . 56

2.4.1 Background . 57

2.4.2 Benchmarking and evaluation methodologies 59

2.4.3 Benchmarking and evaluation tools . 62

2.4.4 Challenges and Research Directions . 63

3 Methodology 65

3.1 Introduction . 65

3.2 Research Systems and Requirements . 66

3.2.1 DS2 Autoscaler . 66

3.2.2 Apache Flink . 68

3.2.3 Dynamic Workloads . 68

3.2.4 Characteristics of Streaming System Workloads 69

3.3 Threats to Validity . 75

4 On Improving Streaming System Autoscaler Behaviour 79

4.1 Introduction . 79

4.2 Categories of Autoscaler Failure . 82

4.3 Background . 83

4.4 Preliminaries and Model . 84

4.4.1 Summary of Workloads . 85

4.4.2 Summary of Moving Average Models . 87

4.4.3 Experimental Environment . 92

4.4.4 Summary of Comparison Metrics . 93

4.4.5 Model Ranking and Selection . 93

4.5 Findings and Results . 96

4.5.1 Extreme Parallelism Shift . 96

4.5.2 Volatility . 101

4.5.3 Summary of Findings . 106

4.6 Replication Package . 107

4.7 Conclusion . 107

Table of contents xiii

5 Measuring Streaming System Robustness Using Non-parametric Goodness-of-Fit

Tests 109

5.1 Introduction . 109

5.2 Summary of Test Statistics . 111

5.2.1 Kolmogorov-Smirnov . 111

5.2.2 Cramér-von Mises . 113

5.2.3 Anderson-Darling . 113

5.2.4 Epps-Singleton . 114

5.3 Methodology . 115

5.3.1 System . 115

5.3.2 Summary of Workloads . 115

5.4 Results and Discussion . 117

5.4.1 Source Operator Variability . 117

5.4.2 Frequency Variability . 123

5.4.3 Amplitude Variability . 124

5.4.4 Sentence Size Variability . 126

5.4.5 Combined Insight . 126

5.5 Conclusion . 128

6 Reasoning Over Streaming System Performance Using Response Surface Methodol-

ogy 131

6.1 Introduction . 131

6.2 Background and Motivation . 132

6.2.1 RSM . 133

6.2.2 Applications of RSM in Computer Science 134

6.3 Methodology . 135

6.3.1 Response Variable . 136

6.3.2 Workloads and Factors . 138

6.3.3 Experimental Design . 138

6.3.4 Experimental Runs . 144

6.3.5 Response Surface Model . 146

6.4 Results and Discussion . 150

6.4.1 Performance Metrics . 150

6.4.2 Model Stability Metrics . 159

6.5 Conclusion . 168

xiv Table of contents

7 Conclusions 171

7.1 Thesis Summary . 171

7.2 Future Research Directions . 173

7.2.1 Generalisability . 173

7.2.2 Windowing and Weighting . 174

7.2.3 Robustness: Measurement and Quantification 174

7.2.4 Tooling Support for Benchmarking Practitioners 175

Glossary 177

Acronyms 181

References 183

List of figures

2.1 A diagram illustrating the components and data flow of the Lambda Architec-

ture [187], which consists of a batch layer, speed layer, and serving layer, to

handle both batch and real-time processing of data. 19

2.2 A diagram depicting the Kappa Architecture [187], which uses a single stream

processing engine to handle both real-time and batch processing, simplifying

the architecture compared to the Lambda Architecture. 19

2.3 Monitor, Analyse, Plan, Execute (MAPE) Loop 29

2.4 Autoscaler Taxonomy (Adapted from [153]: Additions marked in green) 41

3.1 DS2 Configuration Variables Interaction Timeline 68

3.2 Frequency Modulated Sine Wave . 71

3.3 Phase Modulated Sine Wave . 72

4.1 Illustrative examples of Autoscaler failure categories. Blue lines represent the

instantaneous parallelism suggestions from our exemplar autoscaler, DS2,

configured with an activation period of 1. Red lines shows the parallelism

suggestions for the auto-scaler with a specific value of tunable parameter

activation period, which exhibits undesirable behaviour. Full details of the

workloads to recreate these experiments are available in the replication pack-

age (§ 4.6). 81

4.2 Logical diagram showing the integration of MA models into a typical autoscaler

deployment. Dashed lines represent data arriving from, or decisions flowing

to, components outwith our system. 84

4.3 Examples of four workload generation functions: Poisson process, sine wave

process, envelope-guided process, and monotonic step function, illustrating

different patterns and characteristics of workload arrivals over time. 86

4.4 Interplay between moving average models on categories of autoscaler failure

(§ 4.2) . 92

xvi List of figures

4.5 Distribution of Extreme Parallelism Shifts for raw workload traces (left) and for

each MA model (right). 98

4.6 Distribution of smallest window periods to mitigate extreme parallelism shifts. 99

4.7 Performance of moving average models with respect to accuracy (top left) and

smoothness (top right) and the accuracy-smoothness trade-off (bottom left). 102

4.8 Impact of activation/window period, with respect to the average parallelism

(top left), average change size (top right), the number of parallelism changes

(bottom left) and cumulative relative change size (bottom right). 104

4.9 Distribution of metrics volatility for all models, with respect to the volatility of

average parallelism (top left), average change size (top right), the number of

parallelism changes (bottom left) and cumulative relative change size (bottom

right). 105

5.1 Three-Step Word Count Topology . 115

5.2 ECDFs of percentile latency values with variable source operators 117

5.3 Robustness of System to Variability in Number of Source Operators 119

5.4 A pair plot comparing the relationship and correlation between various test

statistics (TS) across different latency percentiles when the number of source

operators is varied, revealing patterns and dependencies among the test statis-

tics. 120

5.5 ECDFs of percentile latency values with variable frequency 121

5.6 Robustness of System to Variability in Frequency 122

5.7 ECDFs of percentile latency values with variable amplitude 124

5.8 Robustness of System to Variability in Amplitude 125

5.9 Robustness of System to Variability in Sentence Size 127

6.1 Geometric view of design points. 139

6.2 Distribution of Adj. RSquared Values per Statistic (by Experiment Design) . . 155

6.3 Distribution of Adj. RSquared Values per Statistic (by Percentile Latency) . . . 156

6.4 A comparison of model performance and stability in terms of performance

metrics, illustrating the relationship between the average value of a model’s

performance metric and the standard deviation of those values across different

experimental settings and test statistics. 160

6.5 Mean Model Coefficient Values per Statistic . 161

6.6 Distribution of Coefficient Values per Statistic (by Percentile Latency) 163

List of tables

2.1 Overview of Stream Processing Systems . 21

2.2 Overview of Overview of Auto-scaling Approaches for DSPSs 31

2.3 Overview of auto-scaler approaches in state-of-the-art literature (Extension of

Table 1 found in [108]) . 43

4.1 Moving Average Model Ranking Table . 94

4.2 Smoothness & Accuracy: η90 Window Period . 100

4.3 Volatility of autoscaler metrics for each MA model. 103

5.1 OFAT workload design . 116

5.2 Test stat correlation across latency %tiles w. variable source operators 118

5.3 Test stat correlation across latency %tiles w. variable sentence size 128

6.1 Design points for 2k Factorial Design. 140

6.2 Design matrix for 2k Factorial Design. 141

6.3 Design points for Central Composite Design. 142

6.4 Design matrix for Central Composite Design. 143

6.5 Design points for Box-Behnken Design. 144

6.6 Design matrix for Box-Behnken Design. 145

6.7 Performance Metric Means and Standard Deviations 152

6.8 Performance Metric Means and Standard Deviations (2k Factorial Design (2k F))153

6.9 Performance Metric Means and Standard Deviations (Central Composite De-

sign (CCD)) . 153

6.10 Performance Metric Means and Standard Deviations (Box-Behnken Design

(BBD)) . 153

6.11 Performance Metric Means and Standard Deviations (50th Percentile Latency) 154

6.12 Performance Metric Means and Standard Deviations (95th Percentile Latency) 154

6.13 Performance Metric Means and Standard Deviations (99th Percentile Latency) 154

6.14 Performance Metric Means and Standard Deviations (Max Latency) 155

xviii List of tables

6.15 Model Coefficient Mean Values and Standard Deviations 162

6.16 Model Coefficient Values’ Standard Deviations (by Experiment Design) 164

6.17 Model Coefficient Values’ Standard Deviations (by Latency Percentile) 166

Chapter 1

Introduction

1.1 Introduction

We are in the era of “Big Data”. We are witnessing a dramatic shift toward a data-driven

economy, where the ability to efficiently analyse huge amounts of data, in a timely manner,

is a key driver of commercial success. Many systems and applications in use today involve a

large volume of continuous data streams along with large-scale, diverse, and high-resolution

datasets that offer the potential for data-intensive decision-making. Autonomous vehicles,

physical sensors, social-network activities (e.g. Facebook and Twitter), and stock-exchange

markets are typical examples of such systems.

Distributed Stream Processing Systems (DSPSs) are used to process such streaming

applications by distributing the workload among multiple nodes in a cluster. Because of the

advantages offered by cloud infrastructure, DSPSs are frequently deployed in cloud-native

environments. However, these “Big Data” applications can present significant challenges in

terms of both latency and throughput for existing DSPSs.

Performance variability within DSPSs can arise from rapid changes in offered load,

workload skew and performance interference observed when running atop public cloud

infrastructures. Unpredictable circumstances, such as a higher than expected system load or

variability, can cause parallel and distributed streaming systems to experience performance

degradation [75, 106, 101, 102]. It is possible for a system to perform to acceptable levels

under normal operating circumstances and yet exhibit catastrophic failure when subjected

to slight disturbances [32]. Even a minor degradation in application performance can have

a high penalty on system operators. Recorded instances of the effects of such performance

degradation include:

2 Introduction

• On March 12th 2015, Apple suffered a DNS issue in which the iTunes Store and App

Store were taken offline. It took Apple 12 hours to get their systems restarted, costing

the company about $25 million in lost sales [65].

• In 2017 part of Amazon Web Services stopped working, costing companies in the S&P

500 index $150 million [171].

• In 2021 a seven-hour global outage at Facebook cost the company up to $100million

in direct revenue, with another $47 billion wiped off its stock market value in the

company’s second-worst day on record [149].

• In 2024 a two-hour outage at Meta (previously Facebook) that affected Facebook,

Instagram and Messenger cost the company approximately $100 million in revenue

due to the platforms being down worldwide [126].

Besides revenue loss and damaged reputation, enterprises spend many work-hours diag-

nosing and restoring services. The average cost of IT downtime is $5,600 per minute [178],

with each server downtime event taking 117 minutes on average to resolve [18].

Service providers of large software system strive to offer assurances to their user base

regarding Quality of Service (QoS) metrics. Fulfilling these assurances, in turn allows a

certain level of user experience to be maintained. Service Level Agreements (SLAs) are

usually entered into as a formal recognition of QoS assurances. Failure to comply with the

SLA can often lead to a diminished user-base for a company’s service and subsequent loss

of revenues.

It is very common for commercial websites and online software applications to expe-

rience highly variable, bursty and unpredictable incoming workloads. These workloads

typically display numerous characteristics including strong time-of-day and time zone cor-

relation, flash crowd behaviour [170], cyclicality and general periodicity [85]. Such incoming

workloads can make it difficult to plan a system’s capacity requirements and ensure an SLA

is fulfilled, while also keeping costs low. If capacity is set to manage expected peak load,

performance will be maintained, but costs will rise accordingly as resources lay idle for

significant periods of time. If capacity is set with to manage average expected load, costs

will be curtailed, but performance will degrade when faced with above average loads.

To ensure high throughput and low latency with the massive amount of data, SPSs need

to parallelise processing. This parallelism comes with two major challenges; first, how to

parallelise the processing in SP operators, and second, how to continuously adapt the level

of parallelisation when the conditions of the SP operators (e.g. the workload or available

resources, change at runtime).

1.1 Introduction 3

Performant DSPSs are essential to allow such huge volumes of high-velocity data to

be processed in a reliable and timely fashion. Recent years have seen the emergence of

myriad streaming systems, e.g. Apache Storm [181], Spark [162] and Flink [29], among others.

With these systems have come efforts to develop DSPSs with the ability to scale system

resources in an on-demand manner. One approach to this has been to implement the use of

an autoscaler.

Streaming data differs from traditional organisational data not only in its size but also in

its origin and characteristics. It is generated by distinct sources such as industrial sensors,

clickstreams, servers, and user app activity, while conventional data stems from systems

of record like Enterprise Resource Planning (ERP), Customer Relationship Management

(CRM), finance, and Human Resources (HR) systems. As a result, managing streaming data

demands a specific set of tools rather than simply increasing the size of the database storage.

The dissimilarities between these two types of data create unique challenges when handling

streaming data within the traditional relational database models.

Traditional datasets are characterised by fixed time and space parameters, such as the

current inventory level or the number of new employees hired in a specific period. In

contrast, streaming data is continuously generated and delivered as a constant flow of

small files that capture event-based interactions on a second-by-second basis, such as

servers reporting their current operational status or a log of user activity on a mobile app.

Attempting to query this data in batch Extract, Transform, Load (ETL) processes necessitates

the establishment of arbitrary start and end points, resulting in difficulties related to data

freshness, absent records, and synchronisation.

Because event-based data is generated at a high velocity and has a widely varied nature, it

often lacks suitability for storage in traditional relational databases that power most systems

and applications built on tabular data. Aside from the structural suitability consideration, the

relative size of streaming data sets, and the fact they are unbounded can make it impractically

expensive to store in the way non-streaming data tends to be.

Furthermore, conventional data sources are amenable to established methods of analysis

and reporting, while streaming data’s potential can be more easily realised via exploratory

techniques, predictive modelling, and machine learning. These approaches necessitate

flexible access to data, which is often hindered by any requirement to conform to existing

traditional data warehousing storage paradigms.

Due to the inherent limitations of processing unbounded, high-velocity, streaming data

using a traditional database storage and batch-processing architecture, streaming data

specific architecture and DSPSs have become increasingly important for real-time data

processing and analysis. DSPSs are designed to process data in real-time as it is generated,

4 Introduction

allowing the system to handle data with a much higher velocity and volume than processing

systems with a batch-oriented nature. Additionally, traditional data solutions typically

involve a fixed schema for data, while stream processing systems are designed to handle

data with a flexible schema. This allows stream processing systems to work with data that is

constantly changing, such as data from social media or Internet of Things (IoT) sensors.

Another important benefit of DSPSs is their ability to provide real-time analytics and

insights. Traditional data solutions are typically optimised for complex analytical queries,

where the need for accuracy or complexity of the query outweighs the need for results in

real-time. Stream processing systems can quickly detect trends or anomalies in data as they

occur [133], rather than having to wait for the data to be processed in batches.

Finally, stream processing systems are typically designed to be highly scalable and fault-

tolerant, whereas traditional data solutions may struggle with scalability and fault-tolerance

when dealing with large amounts of data. This scalability element allows system resources

to be scaled up or down as needed.

1.2 Problem Statement

Auto-scaling is a critical feature for DSPSs to ensure efficient resource utilisation and cost

savings. Auto-scaling a system is a process that automatically scales the number of resources

and aims to maintain an acceptable trade-off between achieving the required QoS and the

cost of providing the resources needed to do so [131]. However, commonly, such autoscalers

are governed by tunable parameters/thresholds; from the perspective of the user, choosing

those values, determining when and how to resize the application, and defining a proper

auto-scaling process often proves extremely difficult.

Autoscaler system behaviour can be highly sensitive to the choice of such input values,

resulting in high levels of volatility, and therefore uncertainty regarding the outcome of

any particular choice of such values. This presents a challenge to practitioners wishing to

understand the performance implications of their decisions. Uncertainty in a business or

general operating environment can be considered as undesirable.

Performance measurement of DSPSs and autoscaler behaviours often fails to capture

sensitivity to changes in operating environment [111]. Such sensitivity is important to

account for as a DSPS can display different ranking outcomes, versus another, when consid-

ering different measures of the same performance metric. For example, one may display

lower overall latency but display higher variation (i.e. higher sensitivity) in the average, mini-

mum and maximum across a set of latency measurements recorded in the face of differing

workloads [111].

1.3 Research Questions and Objectives 5

Furthermore, we often find performance metrics that fail to factor in the worst-case

performance experienced throughout the test or describe the underlying distribution of

collected values (e.g. not showing maximum latency along with system latency percentile

metrics, not providing the significant moments’ values of a reported metric’s underlying

distribution) [78, 130].

In this thesis, we will challenge commonly held beliefs around the operation of DSPS

autoscalers and look to break a number of strong assumptions that often accompany state of

the art autoscalers (e.g. linearity of performance under scaling, stability of workload arrival

rate during scaling implementation). We empirically study undesirable behaviours expe-

rienced by a state-of-the-art controller, explore the feasibility of applying moving average

models and demonstrate the potential to augment existing autoscalers to help mitigate

these behaviours. Additionally, we raise the question of how DSPS robustness is to be quan-

tified and measured. We evaluate several robustness metrics based on non-parametric

goodness-of-fit tests, aiming to identify emerging best practice. Finally, draw on RSM to

help systematically study and model the performance degradation of streaming systems

under various workloads, and quantify the effects of different workload model parameters

on system latency. RSM is a collection of mathematical and statistical techniques employed

for the modelling and analysis of complex processes. We focus on both model performance

and model stability and compare and contrast the results for each of our generated models.

1.3 Research Questions and Objectives

In order to investigate the above-mentioned research problems, we identify the following

research questions and objectives:

1.3.1 Weighting and Windowing

In Chapter 4 we address the following research questions and objectives. This work culmi-

nates in a publication as detailed in Section 1.5.3.

1. RQ1a: How do we design our experimental approach and create the framework to

successfully provide the quantitative and qualitative feedback necessary to begin

modelling of the observed autoscaler behaviors.

How to identify and model potential deficiencies in distributed stream processing

system autoscalers.

6 Introduction

2. RQ2a: What are the effects of differing workloads on a state-of-the-art autoscaler

operation and output. How to broadly categorise autoscaler deficiencies, grouping

together or differentiating between broad behavioural patterns and characteristics.

3. RQ3a: What constitutes an “improvement” in autoscaler behaviour and how that can

be quantified and measured?

4. RQ4a: Whether selections of moving average models can be applied in a manner that

successfully alleviates the observed autoscaler deficiencies.

5. RQ5a: DS2 is an automatic scaling controller for distributed streaming dataflows. It

operates on a performance model that assumes operator instances repeatedly perform

three activities in sequence: deserialisation, processing, and serialisation. When an

operator instance is scheduled for execution, it pulls records from its input, deserialises

them, applies its processing logic, and serialises the results, which are then pushed to

the output. This model fits all types of operators in most modern streaming dataflow

systems, including Heron [118], Flink [29], and Timely [28]. The DS2 activation period

is defined as the number of consecutive policy decisions considered by the autoscaler

before issuing a re-configuration. This research question investigates whether it is

preferential to substitute the choice of the DS2 activation period input value with,

instead, the choice of input parameter values relevant to the application of a range

of windowing and weighting methods (i.e. can we show that it is “easier” to select a

“good” set of windowing and weighting method input values and “easier” to get the

activation period input value “wrong”?).

1. RO1a: Investigate how DS2 reacts to various workload generation functions across

a range of input parameter values. Compare and contrast the differing outcomes,

identifying and describing any over-arching manifestations.

2. RO2a: Categorise observations and group/segregate workloads and input parameter

value ranges according to similarity or dissimilarity of outcomes.

3. RO3a: Study the effects on DS2 observed behaviour of applying various combina-

tions of weighting methods and windowing approaches. Identify combinations and

categories of effects identified that successfully lessen negative behaviour.

1.3.2 Robustness

In Chapter 5 we address the following research questions and objectives. This work culmi-

nates in a publication at detailed in Section 1.5.2.

1.3 Research Questions and Objectives 7

1. RQ1b: How can we model and quantify the robustness of a DSPS in the face of changes

in the characteristics of an incoming workload?

2. RQ2b: Can we identify emerging best practice which could then inform future perfor-

mance analysis research considering robustness quantification in distributed systems?

1. RO1b: Study the sensitivity of streaming system performance to shocks or perturba-

tions in incoming workload characteristics, across a range of representative workload

generation and arrival rate functions.

2. RO2b: Using the KS-Statistic as a base, and a One-Factor-At-a-Time (OFAT) experi-

ment design approach [55], quantify the level of system performance degradation

(as applied to the Empirical Cumulative Distribution Functions (ECDFs) of recorded

system latency measurements).

3. RO3b: Evaluate several robustness metrics based on non-parametric goodness-of-fit

tests.

1.3.3 Response Surface Methodology

RSM is a statistical technique used for optimising processes, where a response of interest is

influenced by several variables. The objective of RSM is to model the response as a function

of input variables and find the optimal conditions for the desired outcome. This method

involves designing experiments, estimating the response surface from experimental results,

and using the model to optimise the response. RSM is widely applied in fields such as

engineering, chemistry, and manufacturing for efficient process optimisation.

In Chapter 6 we address the following research questions and objectives.

1. RQ1c: How can we apply RSM approaches to systematically study the performance

degradation of streaming systems under various workloads with the key aim of quanti-

fying the effects on system latency of the various different system workload parame-

ters?

2. RQ2c: Rather than just quantifying the effects on system latency (as in RQ1c), can

we build upon that to understand and model the performance degradation of our

distributed stream processing system under varying RSM experiment designs, work-

load characteristics and generative functions, latency percentiles measurements, and

goodness-of-fit tests?

8 Introduction

3. RQ3c: How can we quantify both model performance and model stability to provide

recommendations and actionable insights to practitioners on which combination of

methods to use?

1. RO1c: Using the Kolmogorov-Smirnov (KS), Weighted Kolmogorov-Smirnov (WKS),

Anderson-Darling (AD), Cramér-von Mises (CVM), Epps-Singleton (ES), Kullback-

Leibler Divergence (KLD) and Wasserstein Distance (WD), and 2k F, CCD and BBD

experiment design approaches, quantify the level of system performance degradation

(as applied to the Empirical Cumulative Distribution Functions (ECDFs) of recorded

system latency measurements).

2. RO2c: Capture the relationships between the factors and the response variable using

a linear regression model, testing first-order models with interaction terms.

3. RO3c: Measure the model performance using predictions made by each fitted model.

Apply a bootstrapping method using to run iterations for each goodness-of-fit test,

latency percentile, workload model and experiment design combination and record

all values and metrics of interest.

4. RO4c: Compare and contrast the models based on performance and stability of the

fitted model.

1.4 Thesis Overview

This Section provides a brief overview of each chapter within the thesis.

Chapter 1 Provides an introduction to the thesis and describes the background and mo-

tivations behind the work carried out, highlighting the general problem statement

and main contributions of the research. Finally, we describe the related peer-reviewed

publications produced throughout the course of the PhD.

Chapter 2 Presents a comprehensive literature review covering stream processing, stream-

ing system autoscalers, workload generation and modelling, and streaming system

benchmarking and evaluation.

Chapter 3 Outlines the overall research methodology applied throughout the course of the

PhD. It first describes the over-arching methodological paradigm followed, and follows

with details of the research systems employed along with any relevant requirements,

namely the DS2 autoscaler, Apache Flink streaming system and the chosen dynamic

1.4 Thesis Overview 9

workload generation models. It also presents as discussion of the limitations of this

work and threats to validity.

Chapter 4 Systematically explores the impact of parameter tuning for a state-of-the-art

autoscaler, identifying impacts in terms of Stability, Accuracy, Short settling time,

and no Overshoot (SASO) properties [2, 108], as well as behavioural phenomena

outside the scope of SASO. We empirically study undesirable behaviours experienced

and contribute a categorisation of autoscaler mechanisms. The feasibility of using

moving average models to augment existing autoscalers to mitigate a selection of those

undesirable behaviour categories is also tested. Applicable methods are established

to allow the systematic evaluation of these models. We demonstrate the potential

of such an approach to produce more robust autoscaler decisions and significantly

reduce a number of undesirable behavioural phenomena selected for analysis. The

work presented in Chapter 4 was published at DEBS 2023 [98].

Chapter 5 Investigates the question of how to measure and quantify a DSPS’s level of robust-

ness in the face of disturbances in the operating environment. We present, compare

and contrast a range of non-parametric goodness-of-fit tests which can act as quanti-

fiers of a system’s level of robustness. We show that different tests produce differing

relative measures of system robustness, affected not only by the test statistics’ inherent

characteristics, but also by the particular performance metric (i.e. latency percentile)

under scrutiny. The work presented in Chapter 5 was published at EPEW 2022 [97].

Chapter 6 Builds upon and develops out the foundations laid down in Chapter 5. We apply

a selection of non-parametric goodness-of-fit tests (first presented in Chapter 5, with

two new additions) and draw on RSM to help systematically study the performance

degradation of streaming systems under various workloads. We quantify the effects

of different workload model parameters on system latency. We focus on both model

performance and model stability, and compare and contrast the results for each of our

generated models, under varying RSM experiment designs, workload characteristics

and generative functions, latency percentiles measurements, and goodness-of-fit

tests.

Chapter 7 Summarises the conclusions of the work presented in this thesis and motivates

future directions for work in the area.

10 Introduction

1.5 Related Publications

Throughout the course of my PhD I have published in the following venues:

1.5.1 DEBS 2020

A Doctoral Symposium paper was released at the ACM International Conference on Dis-

tributed and Event-based Systems (DEBS). Over the past decade DEBS has become the

premier venue for cutting-edge research in the field of event processing and distributed

computing, and the integration of distributed and event-based systems in relevant domains

such as Big Data, AI/ML, IoT, and Blockchain.

Stuart Jamieson. 2020. Dynamic scaling of distributed data-flows under uncertainty. In

Proceedings of the 14th ACM International Conference on Distributed and Event-based

Systems (DEBS ’20). Association for Computing Machinery, New York, NY, USA, 230–233.

DOI: 10.1145/3401025.3406444. URL: https://doi.org/10.1145/3401025.3406444.

Abstract

Existing approaches to dynamic scaling of streaming applications often fail to in-

corporate uncertainty arising from performance variability of shared computing

infrastructures, and rapid changes in offered load. We explore the definition and

incorporation of risk and uncertainty, and advocate for risk-adjusted measures

of performance and their application in improving the robustness of autonomic

scaling of streaming systems.

1.5.2 EPEW 2022

A full paper was released at the European Performance Engineering Workshop (EPEW).

EPEW 2022 aims to bring together researchers interested in understanding and improving

the performance of systems where the flow of information is random by means of proper

modelling and solution methods working on real-world or realistic applications of the meth-

ods applied in stochastic modelling, and on theoretical aspects arising as solutions to needs

emerging from the study of real-world or realistic cases, across a broad spectrum of research

fields.

Jamieson, S., Forshaw, M. (2023). Measuring Streaming System Robustness Using Non-

parametric Goodness-of-Fit Tests. In: Gilly, K., Thomas, N. (eds) Computer Performance

https://doi.org/10.1145/3401025.3406444

1.5 Related Publications 11

Engineering. EPEW 2022. Lecture Notes in Computer Science, vol 13659. Springer, Cham.

DOI: 10.1007/978-3-031-25049-1_1. URL: https://doi.org/10.1007/978-3-031-25049-1_1.

Abstract

Due to unpredictable disturbances in the operating environment, stream pro-

cessing systems may experience performance degradation and even catas-

trophic failure. Streaming systems must be robust in the face of such uncertainty

in order to be deemed fit for purpose. Measuring and quantifying a system’s level

of robustness is a non-trivial task. We present, compare and contrast a range

of non-parametric goodness-of-fit tests which can act as quantifiers of a sys-

tem’s level of robustness. We show that different tests produce differing relative

measures of system robustness, affected by not only the test statistics inherent

characteristics, but also by the particular latency percentile under scrutiny

1.5.3 DEBS 2023

A full paper was released at the ACM International Conference on Distributed and Event-

based Systems (DEBS). Over the past decade DEBS has become the premier venue for

cutting-edge research in the field of event processing and distributed computing, and the

integration of distributed and event-based systems in relevant domains such as Big Data,

AI/ML, IoT, and Blockchain.

Stuart Jamieson and Matthew Forshaw (2023). On Improving Streaming System Autoscaler

Behaviour using Windowing and Weighting Methods. In: Proceedings of the 17th ACM

International Conference on Distributed and Event-Based Systems (DEBS). Association for

Computing Machinery, 2023. New York, NY, USA. DOI: 10.1145/3583678.3596886. URL:

https://doi.org/10.1145/3583678.3596886.

Abstract

Distributed stream processing systems experience highly variable workloads.

This presents a challenge when provisioning compute to meet the needs of these

workloads. Rightsizing systems for peak demand leads to often-unacceptable

financial cost, motivating the need for adaptive approaches to meet the needs

of changing workloads.

The choice of parallelism of workload operators are commonly governed by

autoscalers, but their behaviour is often case specific and highly sensitive to

the choice of tunable parameters and thresholds. This presents a challenge

https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1145/3583678.3596886

12 Introduction

to practitioners wishing to understand the performance implications of their

decisions.

We systematically explore the impact of parameter tuning for a state-of-the-

art autoscaler; identifying impacts in terms of SASO properties as well as be-

havioural phenomena such as extreme parallelism shifts and robustness.

Autoscalers commonly make decisions on instantaneous system performance,

without incorporating historical information. This seeks to mitigate challenges

of being overly influenced by historical values, to be able to respond in response

to the evolving system state.

We demonstrate the potential to augment existing state-of-the-art autoscaling

controllers with windowing and weighting methods to make more robust deci-

sions, successfully mitigating over 90% of undesirable extreme parallelism shifts

and significantly reducing scaling behaviour volatility.

Chapter 2

Literature Review

This chapter covers a number of topics relevant to this thesis, namely:

1. Stream processing: In Section 2.1 we provide a definition of stream processing and

outline its importance and relevance. We discuss key concepts and terminology,

common stream processing architectures, and highlight domain specific challenges

and research directions.

2. Autoscalers: In Section 2.2 we provide a definition of steaming system autoscalers

and outline their importance and relevance. We discuss the fundamental aims, goals

and objectives of an autoscaler and include the inherent trade-offs and major chal-

lenges faced as a result. Common architectures and algorithms are presented, along

with discussion of their applications, benefits and limitations, and domain specific

challenges and research directions.

3. Workload generation and modelling: Section 2.3 we provide a definition of workload

modelling and outlines its importance and relevance in relation to stream processing.

We draw the distinction between fixed and streaming workloads, discussing com-

mon workload modelling methodologies and applications of workload modelling

in Stream Processing Systems (SPSs) and discuss domain specific challenges and

research directions.

4. Benchmarking and evaluation: In Section 2.4 we provide a definition of benchmark-

ing and evaluation and outlines its importance and relevance in relation to stream

processing, and include a historical development of benchmarking and evaluating

stream processing systems. Benchmarking and evaluation methodologies and tools

within the stream processing domain presented including discussion of domain spe-

cific challenges and research directions.

14 Literature Review

2.1 Stream Processing

Stream processing, also known as event processing, real-time analytics, or streaming an-

alytics, is a computing paradigm that focuses on the continuous processing and analysis

of unbounded data streams in real-time or near real-time [109]. These data streams con-

sist of sequences of data elements generated at a high rate, typically from sources such as

sensors, social media platforms, web applications, financial transactions, or Internet of

Things (IoT) devices [4]. The primary goal of stream processing applications is to extract

valuable insights and patterns from the incoming data as it is generated, without the need

to store it in a database or other storage system first. By continuously aggregating, filtering,

and analysing the data items, stream processing enables fast insight and rapid response to

observed situations, making it a key component of various systems and applications.

The importance and relevance of stream processing in computer science stem from

several factors [93, 159]:

1. Real-time decision-making: Stream processing allows organisations to make in-

formed decisions in real-time by providing timely insights into data. This is especially

critical in industries like finance, healthcare, and transportation, where immediate

response to events or changes in data can have significant consequences.

2. Scalability: SPSs can handle large volumes of data generated at high rates, making it

a suitable solution for modern big data applications. These systems are designed to

scale horizontally, distributing the processing load across multiple nodes to manage

the increasing volume of data.

3. Fault-tolerance: SPSs often implement fault-tolerance mechanisms to ensure data

consistency and reliability, even in the case of node failures. This feature is crucial for

applications that require high availability and accurate data processing.

4. Flexibility: Stream processing allows for the implementation of various data pro-

cessing techniques, such as filtering, aggregation, and transformation, depending on

the application requirements. This flexibility enables businesses to adapt their data

processing pipelines to the changing needs of their organisations.

5. Integration with other technologies: SPSs can be integrated with other big data

technologies, such as machine learning, data warehousing, or data analytics tools, to

provide more comprehensive and valuable insights.

2.1 Stream Processing 15

2.1.1 Background

The historical development of stream processing has been shaped by a series of pivotal

milestones and influential contributions. This progression can be broadly categorised into

several distinct phases. Collectively, they provide a comprehensive overview of the evolution

of stream processing.

1. Early beginnings (1960s-1990s): The conceptual underpinnings of stream processing

can be traced back to the emergence of event-driven programming, a paradigm that

emphasised processing data as events occurred, as opposed to the traditional batch

processing approach [115]. Concurrently, computer scientists delved into data flow

programming, which aimed to create systems capable of handling continuous data

streams, thereby laying the groundwork for future advancements in stream processing.

2. Data Stream Management Systems (DSMSs) (Late 1990s-2000s): As the necessity for

real-time processing of data streams became increasingly apparent, the concept of

DSMSs Data Stream Management Systems (DSMS) emerged to address the inherent

challenges associated with this task [64]. Two pioneering projects in this area were the

Telegraph project at the University of California, Berkeley, and the STREAM project at

Stanford University. These groundbreaking initiatives introduced continuous queries

and sliding window operators, which greatly enhanced the efficiency of processing

streaming data.

3. Publish/Subscribe Systems (Late 1990s-2000s): To facilitate asynchronous and real-

time communication between distributed systems, publish/subscribe systems, com-

monly referred to as pub/sub systems, were developed [52]. These systems enabled

efficient data dissemination between producers (publishers) and consumers (sub-

scribers) and played a critical role in advancing real-time data processing capabilities.

4. Apache projects and open-source stream processing (2010s): The stream processing

landscape experienced a significant transformation with the advent of open-source

projects such as Apache Kafka [160], Apache Storm [181], Apache Spark [198], Apache

Flink [29], and Apache Samza [138]. These projects provided scalable, fault-tolerant,

and high-performance SPSs that were rapidly adopted by numerous organisations to

build sophisticated real-time data processing pipelines.

5. Cloud-based stream processing (2010s): The proliferation of cloud computing prompted

major cloud service providers, including Amazon Web Services [191], Google Cloud

16 Literature Review

Platform, and Microsoft Azure, to offer managed stream processing services (e.g. Ama-

zon Kinesis, Google Cloud Dataflow, and Azure Stream Analytics). These services

empowered organisations to deploy and scale SPSs without having to manage the

underlying infrastructure, thereby streamlining the adoption of this technology.

6. Integration with machine learning (2010s): As machine learning gained promi-

nence, stream processing began to integrate with machine learning frameworks and

libraries [72]. This integration facilitated the development of real-time machine learn-

ing models and applications in areas such as fraud detection, recommendation sys-

tems, and predictive analytics.

Throughout its evolution, stream processing has continually adapted to meet the growing

demand for real-time data processing and analysis. Today, it plays an indispensable role

in various industries and applications, enabling organisations to derive actionable insights

from large volumes of data generated at high velocity.

2.1.2 Key Concepts and Terminology

Stream processing is a multifaceted domain that encompasses a range of key concepts and

terminology, including the following:

1. Stream Processing Engine: The specific core component within an SPS that deals with

the real-time processing of data streams. It consists of the computational algorithms

and methods that operate on the incoming data streams. This includes tasks like

filtering, aggregating, transforming, and analysing the streaming data.

2. Event Processing: Event processing, also known as Complex Event Processing (CEP),

refers to the identification and analysis of meaningful events, patterns, or relationships

within data streams. Complex Event Processing (CEP) systems can detect and respond

to specific conditions, triggers, or patterns in real-time, facilitating rapid decision-

making and action.

3. Streaming Analytics: Streaming analytics is a subfield of stream processing that

focuses on the real-time analysis and processing of data streams in order to extract

actionable insights. This term is often used interchangeably with real-time analytics.

4. Data Stream: A data stream is a continuous, unbounded sequence of data elements

generated at a high rate from sources such as sensors, social media platforms, web

applications, financial transactions, or IoT devices. Data streams are characterised by

their dynamic nature and potential for rapid change.

2.1 Stream Processing 17

5. Source: In stream processing systems, a source is the component responsible for

ingesting data streams from external data producers. Sources can be connected to

various data providers, such as message brokers, databases, or APIs, and can handle

data serialisation and deserialisation, as well as schema management.

6. Sink: A sink is the component in a SPS that outputs the results of data processing to

external systems, such as databases, message queues, or storage systems. Sinks are

responsible for handling data serialisation and deserialisation, as well as managing

connections and data consistency with the target system.

7. Operator: Operators are the processing elements in a SPS that perform transforma-

tions, computations, or aggregations on the data streams. Operators can be stateless,

meaning they do not maintain any internal state between processing events, or state-

ful, meaning they maintain internal state to perform computations across multiple

events.

8. Parallelism: Parallelism in SPSs refers to the concurrent execution of multiple in-

stances of processing operators, enabling the system to process data streams more

efficiently and achieve higher throughput. Parallelism can be achieved at the level of

individual operators or across entire processing pipelines.

9. Resource Allocation: Resource allocation is the process of assigning computational

resources, such as CPU, memory, and network capacity, to the various components of

a stream processing system. Effective resource allocation is crucial for maintaining

system performance, scalability, and cost-efficiency and can be guided by workload

models and autoscaling algorithms.

10. Autoscaling: Autoscaling is the dynamic adjustment of resource allocations and

processing parallelism in response to changes in workload patterns or system per-

formance. Autoscalers use workload models, system monitoring data, and scaling

policies to make resource allocation decisions, helping to ensure that SPSs maintain

performance and resource utilisation targets.

11. Data Stream Management System (DSMS): A DSMS is a specialised system designed

to handle the unique challenges associated with processing data streams. It typi-

cally includes features such as continuous queries, sliding window operators, and

mechanisms for handling out-of-order data.

12. Continuous Query: A continuous query is an ongoing query that processes data

streams in real-time, as opposed to traditional queries which operate on static data

18 Literature Review

sets. Continuous queries enable the continuous extraction of insights from streaming

data, allowing for real-time or near-real-time decision-making.

13. Windowing: Windowing is a technique used in stream processing to divide data

streams into finite, manageable subsets called windows. Windows can be defined

based on time intervals, the number of events, or custom criteria, and are used to

perform aggregate computations or pattern detection on the data stream.

14. Publish/Subscribe Systems (Pub/Sub): Pub/Sub systems are messaging frameworks

that enable asynchronous, real-time communication between distributed systems.

In this paradigm, data producers (publishers) disseminate data to data consumers

(subscribers) who have expressed interest in specific data types or topics. Pub/Sub

systems streamline data dissemination in real-time processing environments.

2.1.3 Stream Processing Architectures

Streaming system architecture refers to the design and organisation of the various software

components and technologies that make up a distributed stream processing system, built

specifically to ingest large volumes of streaming data from multiple sources with increased

efficiency and reliability of data ingestion, processing and display. There are several archi-

tectural patterns that can be used to build a streaming system, each with its own set of

trade-offs and considerations.

Lambda Architecture

The Lambda Architecture [116] (Figure 2.1) is designed to handle both real-time and batch

processing in a single system. This architecture consists of three main components: a

real-time layer, a batch layer, and a serving layer.

The real-time layer is responsible for processing the incoming data streams in real-time

and providing near-instantaneous results. This is typically done using a stream processing

engine such as Apache Storm, Apache Flink, or Apache Kafka Streams. The real-time layer is

designed to handle high-speed data streams and provide low-latency results.

The batch layer is responsible for processing the data in larger batches, typically on a

schedule, such as hourly or daily. This is typically done using a batch processing framework

such as Apache Hadoop or Apache Spark. The batch layer is designed to handle large

amounts of data and provide more accurate results.

The serving layer is responsible for providing a unified view of the results from the real-

time and batch layers. This is typically done using a data storage and query technology such

2.1 Stream Processing 19

Fig. 2.1 A diagram illustrating the components and data flow of the Lambda Architec-
ture [187], which consists of a batch layer, speed layer, and serving layer, to handle both
batch and real-time processing of data.

as Apache Cassandra or Elasticsearch. The serving layer provides a single point of access for

querying the results of both the real-time and batch layers.

Kappa Architecture

Fig. 2.2 A diagram depicting the Kappa Architecture [187], which uses a single stream pro-
cessing engine to handle both real-time and batch processing, simplifying the architecture
compared to the Lambda Architecture.

The Kappa Architecture [143] (Fig. 2.2) is designed to handle only real-time processing.

This architecture consists of a single layer that processes the incoming data streams in

real-time and also serves as the query and storage layer. This is typically done using a

20 Literature Review

stream processing framework such as Apache Kafka Streams, Apache Flink or Apache Pulsar,

which also provide built-in storage and query functionality. The Kappa architecture is

simpler than the Lambda architecture and does not require separate layers for real-time

and batch processing, but it also does not provide the same level of accuracy as the Lambda

architecture.

Pipe-and-Filter Architecture

The Pipe-and-Filter Architecture [142] consists of a series of independent filters that process

the data streams in a pipeline fashion. Each filter is responsible for performing a specific

task such as filtering, mapping, or reducing the data. This architecture is typically used when

the system needs to be highly flexible and easily adaptable to changing requirements.

Micro-Batch Architecture

The Micro-Batch Architecture is a hybrid approach between real-time and batch processing.

This architecture processes the data streams in small batches, typically on a schedule of

seconds or milliseconds, rather than continuously. This allows for more complex processing

and a better trade-off between latency and accuracy.

2.1.4 Stream Processing Systems

The stream processing model is a Directed Acyclic Graph (DAG) of stream processing nodes,

connected through streams of events. The main objective of a Distributed Stream Processing

Engine (DSPE) is to provide the infrastructure and APIs necessary to create and execute

the stream processing graph with a continuous stream of messages. The runtime engine

converts the User Graph to the Execution Graph.

Kafka Streams Spark Streaming Apache Storm Apache Samza Apache Flink

Current Version 3.3.2 3.3.1 2.4.0 1.8.0 1.16.0
Category ESP ESP ESP/CEP ESP ESP/CEP
Event Size Single Micro-batch Single Single Single
Delivery Guarantees At-least once Exactly once, at

least once
At-least once At-least once Exactly once

State Management Local and dis-
tributed snapshots

Checkpoints Record aknowl-
edgements

Local and dis-
tributed snapshots

Distributed snap-
shots

Fault Tolerance Yes Yes Yes Yes Yes
Out-of-Order Process-
ing

Yes No Yes Yes Yes

Event Prioritisation Programmable Programmable Programmable Yes Programmable
Windowing Time-based Time-based Time-based,

count-based
Time-based Time-based,

count-based
Back-Pressure N/A Yes Yes Yes Yes
Primary Abstraction Kafka Streams Dstream Tuple Message DataStream
Data Flow Processing topol-

ogy
Application Topology Job Streaming

dataflow
Latency Very low Medium Very low Low Low
Resource Management Any process man-

ager
YARN, Mesos YARN, Mesos YARN YARN

Auto-Scaling Yes Yes No No No
In-Flight Modifications Yes No Yes No No
API Declerative Declarative Compositional Compositional Declarative
Core Language Java Scala Clojure Scala Java
API Languages Java Scala, java, Python Scala, Java, Clojure,

Python, Ruby
Java Java, Scala, Python

Table 2.1 Overview of Stream Processing Systems

22 Literature Review

There are two main types of processing engines:

1. Open-Source Composition-Based Engines: Composition-based stream processing

engines depend on the initial establishment of the Directed Acyclic Graph (DAG)

prior to data processing. This approach simplifies the code, but it requires developers

to meticulously design their framework to prevent processing inefficiencies. These

engines represent the first generation of stream processors and can be challenging to

manage.

2. Managed Declarative Engines: Managed declarative engines enable the chaining

of stream processing functions. As a result, the engine determines the DAG while

receiving data and can optimise the DAG during execution. This Stream Processing

Engine (SPE) category is more manageable and offers various managed service options.

However, the initial setup of the pipeline can be a costly endeavour, with expenses

covering all aspects from source to storage and analysis.

Five of the most popular SPSs (in no particular order), are Apache Samza, Apache Storm,

Apache Spark, Apache Flink and Kafka Streams. Table 2.1 gives an overview of these four

systems, along with Kafka Streams, another popular SPS.

Apache Samza

Overview: Apache Samza is a distributed stream processing framework designed for stateful

processing of data streams, originally developed at LinkedIn and designed to work with

Apache Kafka for message passing. It uses a compositional engine and is based on the

concept of Publish/Subscribe Task. It listens to the data stream, processing messages as they

arrive and passes on the outputs to another stream. The stream can be broken down into

multiple partitions with a copy of the task spawned for each individual partition.

Strengths: Samza has native support for stateful processing, which is useful for applica-

tions that require maintaining state across processing steps. It also provides fault tolerance

and durability, ensuring that state is not lost during processing. Additionally, Samza in-

tegrates well with Apache Kafka, which makes it suitable for organisations already using

Kafka.

Weaknesses: Compared to the other frameworks, Samza has a smaller community and

fewer built-in features. Furthermore, its primary focus on Kafka may not be suitable for

organisations using other messaging systems.

Use cases: Apache Samza is well-suited for applications that require stateful processing,

such as event-driven applications and real-time analytics, particularly when integrated with

Apache Kafka.

2.1 Stream Processing 23

Apache Storm

Overview: Apache Storm is a distributed real-time computation system designed for pro-

cessing large volumes of data at high speeds. Storm was one of the first open-source stream

processing frameworks and has been widely adopted in the industry. It uses a compositional

engine and is based on the concept of Spouts and Bolts. Spouts are sources of information

which are pushed to the Bolts, which carry out the data processing. Bolts can be chained

together, and the Spout/Bolt topology becomes the DAG.

Strengths: Storm is known for its low-latency processing capabilities, which enables

real-time analytics and processing. It is also highly scalable and fault-tolerant, allowing it

to handle large volumes of data and recover from failures gracefully. Additionally, Storm

supports a wide range of data sources and processing languages, offering flexibility in

implementation.

Weaknesses: Storm lacks native support for stateful processing and windowing, which

can make it challenging to implement certain types of applications. Moreover, Storm’s

programming model can be more complex than those of other frameworks, which might

lead to a steeper learning curve.

Use cases: Apache Storm is ideal for applications that require low-latency processing

and real-time analytics, such as fraud detection, recommendation engines, and network

monitoring.

Apache Spark

Overview: Apache Spark is a general-purpose distributed data processing engine that sup-

ports batch processing, interactive queries, machine learning, and graph processing in

addition to stream processing through its Spark Streaming module. It uses a declarative

engine and is based on the concept of Resilient Distributed Datasets (RDDs), (i.e., immutable

tables of data). The RDDs are split up into pieces and sent to workers to be executed, similar

to the map-reduce concept with each worker processing its own pieces and combining the

output to create a complete final output. The code defines the processing functions to be

applied to the data, and Spark infers the DAG from the functions.

Strengths: Spark provides a unified Application Programming Interface (API) for both

batch and stream processing, making it easy to transition between the two. It also offers built-

in libraries for machine learning and graph processing, enabling more advanced analytics.

Spark’s in-memory processing capabilities allow for faster data processing compared to

other frameworks.

24 Literature Review

Weaknesses: Spark Streaming processes data using micro-batches, which may result

in higher latency compared to other frameworks like Storm or Flink that process data on a

per-record basis. Additionally, while Spark supports stateful processing, its support is not as

robust as in Samza or Flink.

Use cases: Apache Spark is well-suited for applications that require both batch and

stream processing, or those that require advanced analytics, such as machine learning and

graph processing. Examples include Extract, Transform, Load (ETL) pipelines, recommen-

dation systems, and predictive analytics.

Apache Flink

Overview: Apache Flink is a distributed stream processing framework that supports both

stream and batch processing. Flink is designed for low-latency, high-throughput, and

stateful processing of data streams. It uses a declarative engine and is based on the concept

of Streams and Transformations. Data enters the system via a Source and exits via a Sink,

with the Streams and Transformations making up a flow of data through the system. The

DAG is implied by the ordering of the Transformations, which can be re-ordered by the

engine if it is detected that one Transformation does not depend on the outcome from a

previous Transformation.

Strengths (continued): Flink’s support for event-time processing and advanced window-

ing functions allows for more accurate handling of out-of-order data and complex event

patterns. It also provides low-latency processing and strong support for stateful processing,

which makes it suitable for various use cases. Like Spark, Flink offers a unified Application

Programming Interface (API) for batch and stream processing, making it easy to switch

between the two modes.

Weaknesses: Flink’s focus on advanced features and a flexible programming model may

lead to a steeper learning curve for newcomers.

Use cases: Apache Flink is suitable for a wide range of applications, including real-time

analytics, event-driven applications, and complex event processing. Examples include fraud

detection, anomaly detection, and real-time dashboarding.

Kafka Streams

Overview: Kafka Streams is a lightweight stream processing library that is part of Apache

Kafka. It is designed to work natively with Kafka for building real-time data processing

applications. Kafka Streams is not a standalone distributed processing framework like the

others mentioned, but rather a library that can be integrated into applications to process

2.1 Stream Processing 25

Kafka data streams. It uses a declarative engine and offers advanced windowing and stateful

processing capabilities.

Strengths: Kafka Streams is tightly integrated with Kafka, which allows for seamless

handling of Kafka data streams and offers strong support for stateful processing. Kafka

Streams is lightweight and has a lower operational overhead compared to other distributed

processing frameworks, making it easier to deploy and manage. It also offers event-time

processing and advanced windowing functions, similar to Apache Flink.

Weaknesses: Kafka Streams is limited to processing data from Kafka and lacks built-in

connectors for other data sources. Additionally, since it is a library rather than a full-fledged

distributed processing system, it may not be suitable for applications with very large-scale

processing requirements or those requiring complex topologies.

Use cases: Kafka Streams is well-suited for applications that require real-time processing

of Kafka data streams, particularly when stateful processing is needed. Examples include

real-time analytics, event-driven applications, and data enrichment pipelines.

Apache Flink was chosen as the stream processing system for the experiments in this

thesis due to several key factors:

• Stateful processing: Flink’s native support for stateful processing and event-time pro-

cessing aligns well with the requirements of the experiments, which involve analysing

system behavior and performance under various workload conditions.

• Low-latency and consistency: Flink’s ability to provide low-latency processing and

strong consistency guarantees is crucial for accurate and reliable performance mea-

surements.

• Flexible windowing and state management: Flink’s advanced windowing and state

management capabilities allow for more sophisticated analysis and modeling of sys-

tem behavior.

• Unified API: Flink’s unified API for batch and stream processing simplifies the devel-

opment and deployment of experimental workloads.

• Active community and rich ecosystem: Flink has a large and active community, as

well as a rich ecosystem of connectors and libraries, which can facilitate the integration

of experimental workloads with various data sources and sinks.

2.1.5 Challenges and Research Directions

Despite the numerous advantages that stream processing provides, it is not without its

challenges and limitations. As the demand for real-time processing and analysis of large-

26 Literature Review

scale data streams grows, researchers and practitioners face several hurdles in optimising

and expanding the capabilities of stream processing frameworks. Some key challenges and

limitations include:

1. Scalability [140]: As data streams continue to grow in volume and velocity, SPSs must

efficiently scale to handle the increased load. Ensuring horizontal scalability, wherein

additional resources can be added to distribute the processing load, is crucial for

maintaining high performance and low latency. However, achieving linear scalability

in distributed systems is a challenging task due to factors such as network latency,

data partitioning, and workload distribution.

2. Fault Tolerance and Reliability [189]: SPSs must provide fault tolerance and reliability

guarantees to handle failures in distributed environments. This involves maintaining

state consistency, ensuring at-least-once or exactly-once processing semantics, and

implementing robust recovery mechanisms. Achieving these guarantees while main-

taining low latency and high throughput is a complex challenge that requires careful

design and implementation of the underlying system components.

3. Handling Out-of-Order Data [188]: Data streams often exhibit out-of-order arrivals

due to network delays, clock skew, or other factors. This poses challenges for stream

processing systems, particularly when processing time-sensitive data or performing

event-time-based analytics. Developing mechanisms for handling out-of-order data

while maintaining low latency and preserving processing semantics is an ongoing

research area.

4. Resource Management [38]: Efficient resource management is critical for optimising

the performance of stream processing systems. This includes allocating resources

such as Central Processing Unit (CPU), memory, and network bandwidth based on the

workload characteristics and dynamically adjusting resource allocation in response

to changing workloads. Designing effective resource management strategies that

balance performance, cost, and energy efficiency is a challenging task, particularly in

large-scale, multi-tenant environments.

5. Complex Event Processing and Pattern Detection [196]: Many real-world stream pro-

cessing applications require the detection of complex patterns and event sequences

within data streams. Developing expressive and efficient techniques for specifying

and identifying complex patterns is an ongoing research challenge. Additionally, im-

plementing these techniques in a scalable and fault-tolerant manner requires careful

consideration of system design and resource management.

2.2 Autoscalers 27

6. Integration with Existing Systems: SPSs often need to interact with existing data

storage, processing, and analytics infrastructure. This requires seamless integration

with various data sources, sinks, and processing tools, which can be a challenge due

to differences in data formats, APIs, and processing semantics. Addressing these

integration challenges is essential for ensuring the smooth operation and adoption of

SPSs in complex data processing environments.

2.2 Autoscalers

The variability in structure and arrival rate of current day streaming data poses a serious

challenge to software systems and applications designed to ingest and process such data.

With the advent of the cloud computing paradigm [135], it is now possible for businesses and

streaming system operators to scale provided resources up and down to manage variability

in the incoming workload rate and type. There exist ongoing efforts to design processes and

solutions which are able to manage the scaling up and down of streaming system resource

provision in an autonomous fashion.

A system that automatically adjusts the resources needed by an application is called an

autoscaling system or autoscaler. The aim of an autoscaler is to:

1. Dynamically adjust the amount of resources made available to an application or

system, depending on the input workload.

2. Find the optimal trade-off between meeting the SLA of the application and minimising

the cost of resource provision.

If carried out successfully, autoscaling offers numerous benefits including improving

customer experience and maintaining a cost-efficient infrastructure. By enabling quick

and automated adjustments to changes in demand, auto-scaling helps organisations keep

up with increases in system load and to deliver a positive customer experience, the most

important yardstick by which organisations measure application performance. Autoscaling

can also help organisations minimise their expenses, even when there is a sudden and

unforeseen growth in demand that puts a significant strain on their systems. Rather than

having to invest in additional infrastructure to cope with such increased peak workloads,

which may remain unused for prolonged periods when facing sub-peak rate incoming

workloads, companies can now pay only for the resources they currently need and expand

their capability to handle sudden surges in demand.

Every business that operates some form of commercial website or online software ap-

plication, which can experience unpredictable incoming workloads and the performance

28 Literature Review

of which needs to be maintained within certain levels, could benefit from a successfully

implemented auto-scaling system. For example, Netflix [20] and Facebook [3], two massive

global services, both employ autoscaling systems to manage the load on their services.

2.2.1 Background

Performance optimisation for real-time streaming applications is a non-trivial process.

The goal of the optimisation process is to find an optimal trade-off between two states

of an application: underutilisation (i.e., under-provisioning) and overloading (i.e., over-

provisioning). In this sense, “optimal” means the most desirable or favourable outcome,

considering the constraints and priorities of the system. It should also aim to find this

optimal level without experiencing oscillation. These three concepts are defined as follows:

• Over-provisioning: the system or application is provided with more resources than

are needed. This results in resources operating below their capacity, or indeed sitting

idle. In many real-world instances, some controlled level of over-provisioning of

resources is effected to cope with minute workload fluctuations and is considered

desirable [131].

• Under-provisioning: the system or application is not being provided with enough

resources needed to operate at a level to comply with the SLA in place.

• Oscillation: oscillations manifest when scaling decisions are enacted in rapid succes-

sion, acquiring resources and then releasing them, or vice versa, resulting in frequent

occurrences of over-provisioning and under-provisioning. This behaviour causes

resource wastage and can lead to SLAA breaches.

There are numerous major challenges that arise when attempting to solve this trade-off.

Each challenge can be mapped to one of the four components within the overall autoscaler

design process. The auto-scaling process is often abstracted as a Monitor, Analyse, Plan,

Execute (MAPE) control loop (Figure 2.3), with the four components stated [114].

• Monitoring: During the Monitoring phase, the system must observe certain perfor-

mance metrics to assess whether scaling operations are necessary and how they should

be carried out. This phase poses significant challenges, such as:

– Performance indicators: Selecting appropriate performance indicators, which is

crucial for the autoscaler’s effectiveness.

2.2 Autoscalers 29

Fig. 2.3 MAPE Loop

– Monitoring interval: The sensitivity of the autoscaler is determined by the moni-

toring interval. Shorter intervals provide greater sensitivity but result in higher

monitoring costs and can cause oscillations, while longer intervals can slow

down the system’s response time.

• Analysis: The system determines whether a scaling action is necessary based on the

information received during monitoring. The major challenges are:

– Scaling timing: Determining when to scale, whether to proactively take scaling

action based on predicted workload changes or to react to changes in workload.

– Workload prediction:Accurately predicting future workload if proactive scaling is

the chosen approach.

– Adaptivity: Ensuring adaptivity of the autoscaler’s model and settings when faced

with significant changes in workload or streaming system application.

– Mitigating oscillations caused by frequent, contradictory actions in a short time,

which result in resource wastage and more SLA violations.

• Planning: During the Planning phase, the system must estimate the number of re-

sources to be provisioned or de-provisioned in the scaling action and optimise re-

source composition to minimise financial costs. The major challenges are:

– Resource estimation: Quickly estimating the necessary resource level to handle

the current or incoming workload without the ability to observe the results of

executing the scaling plan.

– Resource combination: Selecting the combination of factors that optimises the

total resource cost for the provisioned resources. This presents a significant opti-

30 Literature Review

misation challenge as the optimisation space is extensive, and efficient solutions

must be found within a short period of time.

• Execution: Responsible for actually executing the scaling plan. The major challenges

are:

– Engineering flexibility: Ensuring engineering flexibility, as executing the plan

involves calling cloud providers’ APIs. Supporting APIs from different providers

is challenging from an engineering perspective.

Approach Logic Advantages Limitations

Static and
threshold-based
policies

Based on chosen performance
metrics and pre-defined thresholds

Simplicity and ease of application

Depends on threshold quality,
requires tuning and susceptible
to system oscillations under
bursty workloads

Reinforcement
learning

Trial-and-error approach without
using any a priori knowledge
or model of the system

No prior knowledge of system
and target scenario required

Long learning phases and
convergence times in
real-world applications

Queuing theory
Based on estimates of different
performance metrics by modelling
the system as a queue of requests

Computational efficiency
Too rigid and need to be
recomputed following changes
in the application or workload

Control theory
Based on measurements that
are influenced both by external
stimuli as well as its own actions

Closed-loop operation
Accuracy may decrease for
new workload patterns

Time series
analysis

Application of a range of methods
to detect patterns and predict future
values on a sequence of data points

Main enabler of proactive
auto-scaling techniques

Sensitive to technique and
parameter selection

Table 2.2 Overview of Overview of Auto-scaling Approaches for DSPSs

32 Literature Review

2.2.2 Autoscaler Architectures and Algorithms

Autoscaling involves dynamically adjusting the resources of a system in response to changes

in the workload, to ensure that the system can handle the current and anticipated demands.

Dynamic scaling systems commonly rely on two components [33, 63, 78, 194]: firstly, a

centralised subsystem that collects current information about network traffic and available

resources to make informed decisions that optimise a specific performance metric, and

secondly, a scaling policy that determines when to initiate a scale-out, scale-in, or reconfig-

uration. There are several autoscaler architectures that can be used to achieve this, each

with its own benefits and challenges. Figure 2.4 provides a visual taxonomy of the autoscaler

landscape, while Table 2.3 provides an overview of auto-scaler approaches in state-of-the-art

literature (Extension of Table 1 found in [108] - number of autoscalers included increased

from 13 to 22, and a more comprehensive legend provided). This extension allows for a more

thorough comparison of various autoscaling approaches in DSPSs. Further details of each

category are provided below.

Type

In deciding when to scale a system there are two main groups into which an autoscaler can

be classified:

1. Reactive Autoscaling: Reactive autoscaling is a widely-used approach that adjusts re-

sources based on the observed performance of the system and scale only when judged

necessary according to the current environment. It monitors key performance metrics,

such as Central Processing Unit (CPU) utilisation, memory usage, and throughput,

and triggers scaling actions (e.g., adding or removing processing nodes) when these

metrics breach predefined thresholds. Reactive systems are often preferred when the

workloads change gradually.

Advantages:

• Simple to implement and understand.

• Effective in handling gradual changes in workload.

Limitations:

• Can lead to oscillations or over-provisioning, as scaling actions are based on past

performance and do not account for future trends.

• Delayed response due to the time required to observe performance metrics and

provision new resources.

2.2 Autoscalers 33

2. Proactive Autoscaling: Proactive autoscaling aims to anticipate future changes in

workload by analysing historical data and forecasting resource requirements. Such

proactive systems are preferred when faced with rapid changes in workload in order to

avoid frequent SLA violations. Proactive systems rely upon predictive techniques, with

three main underlying considerations to each: (1) the workload prediction data source

(e.g. past workload history, external domain specific data etc.), (2) the prediction

horizon and (3) the prediction algorithm. [153] provide a survey of proactive scaling

and predictive algorithm employed by state-of-the-art autoscalers.

It leverages machine learning techniques, such as time series forecasting and re-

gression models, to predict future workload patterns and proactively scale resources

accordingly.

Advantages:

• Better resource utilisation by accounting for future trends and avoiding over-

provisioning.

• Can help minimise the impact of workload fluctuations on system performance.

Limitations:

• May not be effective in handling sudden, unexpected changes in workload.

• The accuracy of the autoscaling decisions is highly dependent on the quality and

representativeness of the historical data.

Adaptivity

The adaptivity of an autoscaling system refers to the level of ability it has to adapt to changes

in the operating environment (e.g. workload characteristics), or even changes in the appli-

cation itself. Streaming systems by nature operate in a dynamic environment which can

change frequently and abruptly, making adaptability an important quality for autoscaling

systems.

Non-adaptive systems such as Amazon Autoscaling Service [10] are governed by a pre-

defined model and scaling decisions are made solely based upon the current stat and current

input. They also do not allow automatic adjustment of autoscaler settings or parameter

values during run-time. This can often mean users must spend substantial time and effort

to find suitable settings in prior offline testing.

Self-adaptive systems have fixed core control models, but have the ability to autonomously

tune their parameter settings according to real-time feedback and observation regarding

34 Literature Review

the quality of current scaling actions. Self-adaptivity is often found in control theory based

autoscalers, analytical models and machine learning approaches.

Self-adaptive switching systems are those made up of multiple, connected, non-adaptive

or self-adaptive controllers with the ability to dynamically switch between them based on

their observed, real-time performance. Controllers are substituted in and out in this manner,

however there is only ever one controller active and able to make scaling decisions at any

point in time.

Scaling Indicators

Autoscalers make scaling decisions based on specific performance metrics that provide

insight into the current load and capacity of a system. These can be split into low-level

metrics and high-level metrics, dependent on the level of infrastructure at which they are

produced and monitored. Low level metrics are those at the physical/hypervisor level (e.g.

CPU utilisation, memory usage), while high-level metrics are those at the application level

(e.g. throughput, latency). For some autoscaler systems, both high and low-level metrics are

monitored in a hybrid approach.

Resource Estimation Techniques

1. Threshold-Based Rules: Rule-based autoscaling is a reactive approach that involves

defining a set of rules or policies that dictate scaling actions based on specific con-

ditions [131]. These rules can be user-defined or generated by the system and can

incorporate a combination of performance metrics, workload characteristics, and cost

constraints. Scaling actions are triggered when the specified conditions are met.

Advantages:

• Offers more fine-grained control over scaling decisions.

• Allows for the incorporation of domain knowledge and cost constraints.

Limitations:

• Can be complex to manage, particularly when dealing with large numbers of

rules or conflicting policies.

• May not be as adaptive as other approaches, as rules must be manually updated

to account for changes in system behaviour or workload patterns.

2.2 Autoscalers 35

2. Fuzzy Inference Rules: In the context of stream processing system autoscaling, fuzzy

inference rules can be highly advantageous, introducing more granularity and adapt-

ability into the decision-making process than threshold-based rules based on tradi-

tional binary logic [131]. Fuzzy inference rules are based on a mathematical method-

ology that enables systems to deal with uncertainty and imprecision by allowing the

use of continuous variables that exist in a state between the absolute “true” or “false”

values seen in binary logic systems; i.e. the concept of partial truth is accommodated

for.

The relationships between input and output variables are defined, not in terms of

precise mathematical values, but rather in terms of linguistic variables and member-

ship functions. For example, a fuzzy inference rule regarding CPU utilisation might

be articulated using imprecise terms such as, low, high and very high which have no

definitive true value, but rather reflect the ambiguities of an issue.

By dealing with linguistic terms and accommodating degrees of truth, fuzzy inference

rules allow for a more robust, flexible, and context-sensitive scaling strategy that

can better handle the inherent uncertainty and variability in workloads and system

performance.

3. Application Profiling: Application profiling involves the evaluation and measurement

of an application under various configurations and workloads, systematically charac-

terising the system’s key behaviours such as memory usage, CPU utilisation or network

bandwidth requirements. It plays a pivotal role in predictive autoscaling approaches.

By understanding the application’s performance characteristics and their relationship

with the differing characteristics of incoming workloads, an autoscaler can make more

informed scaling decisions and respond more accurately and effectively to workload

variations.

Implementing application profiling in autoscaling, however, is not without challenges.

It requires careful design and execution of performance tests, comprehensive monitor-

ing, and sophisticated analysis techniques to accurately model application behaviour.

Changes in application characteristics or workloads may also necessitate updates to

the underlying application profile.

Singh et al. [165], Gandhi et al. [60], and Qu et al. [152] employed this approach.

4. Analytical Modelling and Queuing Theory: Analytical modelling provides a mathe-

matical foundation to understand and predict system behaviour under varying work-

load conditions and resource configurations. It involves creating a mathematical

36 Literature Review

representation of the system that captures key elements such as resources, workloads,

and performance metrics. This model can be used to predict system behaviour, evalu-

ate different configuration options, and optimise resource provisioning strategies.

Queuing theory forms a cornerstone of analytical modelling and is particularly perti-

nent to SPSs, being used to model scenarios where work items arrive at a system and

wait in a queue for processing by one or more servers. Key parameters in queuing

models include the arrival rate of work items, the service rate of servers, the number

of servers, and the queue discipline (i.e. the order in which work items are processed).

These parameters allow the calculation of certain performance metrics which can

prove crucial in assessing system performance and informing autoscaling decisions

(e.g. average queue length, average queue processing times).

It should be noted, however, that the accuracy of analytical modelling and queuing the-

ory relies heavily on the precision of model parameters and assumptions. Inaccurate,

oversimplified or miss-specified models can result in suboptimal or even detrimental

autoscaling decisions. Various approaches can be found in relevant literature; Gandhi

et al. [58], Gandhi et al. [57] and Gergin et al. [67] choose to abstract the whole applica-

tion/tier/service as a single queue with one server. [5], Jiang et al. [103], [9] and Han

et al. [82] instead use a model with a single queue, incorporating multiple, individual

servers. Ghanbari et al. [68], Kaur and Chana [113] and Spinner et al. [169] model each

server as a separate queue.

5. Control Theory: Control theory [2] [81] is based on the concept of manipulating the

inputs to a system, to obtain the desired effect on the output of the system, adjusting

system resources based on the difference between the actual system performance and

a desired reference. This difference is referred to as the “error” and the objective of

the controller is to minimise this error over time. For instance, if the system’s current

throughput is lower than the desired throughput, the controller would take action to

increase system resources, thus improving throughput.

One advantage of control theory is its ability to continuously adjust its resources

based on feedback control and the observed error values within the system, thus

allowing the system to maintain a desired level of performance even under variable

and unpredictable circumstances. The application of control theory in autoscaling

faces similar challenges to those faced by analytical models. Systems dynamics may

be complex and non-linear, while inaccurate or oversimplified system models can

lead to poor controller performance or instability.

Advantages:

2.2 Autoscalers 37

• Adaptive and responsive to changing system conditions.

• Provides fine-grained control over performance objectives.

Limitations:

• May require tuning of control parameters (e.g., PID gains) for optimal perfor-

mance, which can be complex and time-consuming.

• Sensitive to noise in performance metrics, which can lead to instability or oscilla-

tions in resource allocation.

6. Machine Learning: Machine learning techniques applied to autoscaling can be

broadly categorised into two groups: reinforcement learning (RL) and regression [153].

Reinforcement learning is a subset of machine learning in which an agent learns to

interact with its environment by executing actions and observing their effects. The

agent is rewarded for actions that are beneficial and penalised for actions that result

in a negative outcome. Iteratively, the agent learns to act in a way that maximises its

cumulative reward over time.

The most commonly applied RL algorithm in SPSs autoscaling is the Q-learning algo-

rithm [131]. In this context, the autoscaler acts as the agent with its scaling decisions

being the actions. The SPS represents the environment, the system performance

metrics provide measurement of the outcome, while the reward system is based on the

overall autoscaling system objectives. While able to handle highly complex systems

and problem spaces if applied successfully, designing appropriate reward functions

is a non-trivial task and agents can require substantial amounts of time and data to

learn effective policies.

Advantages:

• Capable of learning complex, nonlinear relationships between system states and

resource requirements.

• Can adapt to changing workloads and system conditions without manual inter-

vention.

Limitations:

• Requires a significant amount of training data and computational resources to

learn effective policies.

• May take longer to converge to an optimal policy compared to other techniques,

especially during the initial learning phase.

38 Literature Review

• The quality of the learned policy is dependent on the quality of the reward

function, which can be challenging to design.

Numerous other machine learning techniques have been employed in autoscaling,

including regression models [83], random forests and decision trees [6], and “black-

box” style neural networks [161]

7. Time-Series analysis: In the context of autoscaling, time-series analysis involves

the use of historical data to predict future system behaviour [131]. The data points

in a time series are typically collected at regular time intervals and are sequentially

correlated. Metrics that autoscalers typically monitor, such as CPU usage, memory

usage, network I/O, and job queue lengths, are all time-series data. By analysing these

historical data sequences, the autoscaler can identify patterns, trends, and seasonal

effects that may inform future system behaviour, thus enabling proactive scaling.

There are numerous techniques for time-series analysis that could be employed, such

as moving averages and smoothing techniques, or more sophisticated approaches

such as autoregressive integrated moving average (ARIMA), Seasonal ARIMA (SARIMA)

models, Dynamic Time Warping techniques, or various Machine Learning techniques.

By leveraging temporal correlations and patterns in system metrics, time-series anal-

ysis can help the autoscaler make more informed, proactive, and effective scaling

decisions.

Advantages:

• Better resource utilisation by accounting for future trends and avoiding over-

provisioning.

• Can help minimise the impact of workload fluctuations on system performance.

Limitations:

• May not be effective in handling sudden, unexpected changes in workload.

• The accuracy of the autoscaling decisions is highly dependent on the quality and

representativeness of the historical data.

8. Hybrid Models: Hybrid models refer to approaches that combine multiple resource

estimation techniques in an attempt to improve the accuracy and robustness of an

autoscalers decisions. For instance, a hybrid model may combine analytical mod-

elling with machine learning, or time-series analysis with fuzzy inference rules. Such

hybrid combination models can be designed in various different ways, namely: (1)

2.2 Autoscalers 39

sequentially, where the output of one method is used as the input for the next, (2)

simultaneously, where different methods are used in parallel and their outputs are

combined in some way, or (3) hierarchically, where different methods are used at

different levels of the decision-making process.

While hybrid models offer increased flexibility and can handle a wider range of scenar-

ios and uncertainties, they can also be more complex and computationally expensive

to implement than using a single method.

Advantages:

• More adaptive and resilient to a wider range of workload patterns and system

conditions.

• Can provide better overall performance by combining the strengths of different

autoscaling techniques.

Limitations:

• Can be more complex to implement and manage compared to single-technique

approaches.

• Requires careful tuning and configuration to ensure that the different autoscaling

components work effectively together.

Oscillation Mitigation

Oscillations occur when scaling operations are too frequent or the autoscaler has been

poorly configured. Two main categories of solutions are commonly employed and have

been widely adapted across industry [10]; (1) implementing a cooling-time and (2) the use

of dynamic parameters. Implementing a cooling-time involves waiting a fixed minimum

amount of time between scaling decisions, while the use of dynamic parameters involves

dynamically tuning the triggering thresholds depending on, for example, being in peak-time

versus non-peak time [128, 127]. Other dynamic mechanisms can be seen across previous

autoscaler literature including a stability factor [144, 123] and a hysteresis parameter [21].

Scaling Methods

When enacting a scaling decision, depending on the specific system environment, it can be

performed either horizontally or vertically, or indeed a combination of both. Vertical scaling

involves the provisioning up or down of resources available to existing virtual machines

(VMs) (e.g. CPU, memory). Horizontal scaling involves adding or removing more nodes or

40 Literature Review

VMs to the system. In SPSs, both approachers can be useful, but horizontal scaling often

provides more flexibility and resilience, especially for very large data streams.

Service Level Agreement

In the context of DSPSs, and SLA is a contract between a service provider and user that

defines the level of service expected, explicitly stating the metrics by which service is to be

measured (along with the remedies and penalties should the agreed-upon level of service

not be achieved). The measurement metrics usually fall into one of the following categories:

1. Response Time: the time it takes a system to react to some request from a user or

another system (e.g./ latency of web service or the execution time of a compute task).

2. Throughput: the number of tasks or requests a system can process in a given.

3. Performance: refers to a variety of metrics that quantify the speed and efficiency of a

system, including response time and throughput, but also metrics such as error rates

and system down-time.

4. Cost: the financial expenses associated with using the cloud resources to run the

streaming application.

These goals often trade-off against each other, for instance increasing resources can

improve performance but also increase costs. It is important to balance these goals based

on the specific requirements and priorities of an application.

Fig. 2.4 Autoscaler Taxonomy (Adapted from [153]: Additions marked in green)

42 Literature Review

2.2.3 Applications of Autoscalers in Distributed Stream Processing Sys-

tems

1. Real-Time Analytics: In real-time analytics, SPSs must handle a continuous flow of

data from various sources, such as social media, web applications, or server logs.

These systems are required to process and analyse data in real-time, providing valu-

able insights for decision-making. Autoscalers can be utilised to dynamically adjust

resources in response to fluctuating data rates and ensure that the processing systems

maintain low latency and high throughput, even during peak loads. For example, an

autoscaler can be employed to automatically scale a real-time dashboard application

that displays user engagement metrics for a web platform.

2. Internet of Things (IoT): IoT systems involve a large number of interconnected devices

that generate massive volumes of data. Stream processing is critical in IoT applications,

as it enables real-time processing and analysis of sensor data for applications like

smart home automation, industrial monitoring, or healthcare. Autoscalers can help

ensure that IoT data processing systems are capable of handling the variable data rates

produced by the sensors and maintain the desired level of performance. For instance,

an autoscaler can be used in a smart city application that processes and analyses data

from traffic sensors to optimise traffic flow and reduce congestion.

3. Finance: In the finance domain, SPSs are essential for processing high-frequency data

streams, such as stock prices, trading volumes, and news feeds. These systems are

responsible for executing real-time analytics, like algorithmic trading or fraud detec-

tion, that demand low-latency processing and high throughput. Autoscalers can be

used to dynamically allocate resources for these financial systems, ensuring that they

can handle sudden surges in data rates, such as during market openings or periods

of high volatility. For example, an autoscaler can be employed in a trading platform

that automatically scales its resources to maintain low-latency order execution during

periods of increased market activity.

4. Log and Event Processing: In modern DSPSs, monitoring and analysing log data are

crucial for detecting anomalies, diagnosing issues, and ensuring system reliability. SPS

are often used to process and aggregate log data from various components in real-time.

Autoscalers can be utilised to adjust resources dynamically for log processing systems,

ensuring that they can cope with variable log data rates and maintain the desired

level of performance. For example, an autoscaler can be deployed in a log processing

2.2 Autoscalers 43

Table 2.3 Overview of auto-scaler approaches in state-of-the-art literature (Extension of
Table 1 found in [108] - number of autoscalers included increased from 13 to 22, and a more
comprehensive legend provided).

Metrics: CPU: CPU; Mem: Memory; BW: Bandwidth; RT: Response Time; TP: Throughput;
NS: Network Slack; QS: Queue Size; OR: Observed Rates; Con: Congestion; PT: Pending
Tasks; L: Latency; ST; Service Time; IAT: Inter-Arrival Time; BP: Back-pressure; TPR: True
Processing Rates; OPR; True Observed Rates; Technique: RB: Rule-Based; RL: Reinforcement
Learning; TSA: Time-series Analysis; QT; Queuing Theory; CT: Control Theory; TB: Threshold
Based; H: Heuristics; DFM; Data-flow Model; Scaling Action: S: Speculative; P: Predictive;
SO: Single-Operator; MO; Multi-Operator; LS: Load Shedding; Objective RT: Response Time;
RU: Resource Utilisation; C: Cost; WPA; Workload Prediction Accuracy; TP: Throughput;
L: Latency; Adjustment: St: Static; D: Dynamic

Autoscaler Metrics Technique Scaling Action Objective Adjustment

DM [177] CPU Mem BW RT TP RB S MO RT RU D
ACCRS [163] CPU Mem BW RB P MO RT RU St
FQL4KE [99] Mem RT TP RL P MO RT C D
ECNN [94] CPU RT TSA P MO WPA St
FSL/FQL [11] RT TP RL S MO RT D
TIRAMOLA [182] CPU Mem BW RT TP RL P MO C L TP St
DC2 [59] CPU RT TP QT P MO RT D
EcoWare [16] CPU Mem BW RT TP CT S MO RT D
Borealis [34] CPU NS QS RB LS MO L TP D
Stream Cloud [78] CPU OR TB S SO TP D
Seep [33] CPU TB S SO L TP D
IBM Streams [63] Con OR TB S SO TP D
FUGU+ [87] CPU PT TB S MO L D
Nephele [130] L ST IAT QT P MO L D
DRS [56] ST iat QT P SO L D
Stela [195] OR TB S MO TP D
Spark Streaming [147] PT TB S MO TP D
Google Dataflow [4] CPU BP H S SO L TP D
Dhalion [54] QS POR BP RB S SO TP D
Pravega [151] OR RB S MO TP D
AuTraScale [199] TPR RL P MO L TP D
DS2 [108] TPR TOR DFM P MO TP D

44 Literature Review

system that monitors and analyses logs from a microservices-based application to

detect anomalies or performance issues in real-time.

Benefits:

1. Resource Utilisation Optimisation: Autoscalers can automatically adjust the number

of allocated resources, such as processing instances, according to the fluctuating

workloads in the system. This dynamic resource management allows for efficient use

of available resources, reducing resource wastage, and minimising operational costs.

2. Improved Performance and Reliability: By scaling resources in response to workload

variations, autoscalers help maintain the desired level of performance, such as low

latency and high throughput. This ensures that the SPS can cope with sudden surges

in data rates and continue to provide real-time analytics, even during peak loads.

3. Reduced Manual Intervention: Autoscalers can automatically monitor system metrics

and make scaling decisions, reducing the need for manual intervention. This not only

saves time and effort for system administrators but also minimises the risk of human

errors in resource allocation decisions.

4. Increased Flexibility: Autoscalers can be configured with various scaling policies

and algorithms to suit the specific requirements of a stream processing system. This

provides flexibility in choosing the appropriate scaling strategy for different use cases

and application domains.

Limitations:

1. Scaling Latency: Scaling actions, such as launching new processing instances, might

introduce some latency due to the startup time of the new instances or the time re-

quired to rebalance the workload. This can cause temporary performance degradation

until the new resources are fully operational and integrated into the system.

2. Algorithm Complexity: Designing effective autoscaler algorithms can be complex,

as they need to consider factors such as workload patterns, system metrics, and

scaling costs. Finding the right balance between aggressive and conservative scaling

strategies can be challenging, and suboptimal algorithms may lead to under- or over-

provisioning of resources.

3. Configuration Challenges: Configuring autoscalers can be difficult, as it often re-

quires fine-tuning various parameters, such as scaling thresholds, cooldown periods,

2.2 Autoscalers 45

and scaling policies. An incorrect configuration might result in suboptimal scaling

decisions or unnecessary oscillations between scaling actions, which can negatively

impact system performance and resource utilisation.

4. Dependency on Infrastructure: The effectiveness of an autoscaler largely depends on

the underlying infrastructure and its capabilities. For example, autoscalers in cloud-

based environments may have more flexibility in resource provisioning compared

to on-premises setups with limited resources. Additionally, autoscalers might be

constrained by infrastructure-specific limitations, such as rate limits on API calls for

launching or terminating instances.

2.2.4 Challenges and Research Directions

Current Challenges and Limitations of Autoscalers

1. Accurate Prediction and Modelling of Workload: One of the key challenges faced by

autoscalers is the accurate prediction and modelling of workload patterns. Stream

processing workloads can be highly variable, with sudden spikes or dips in data

rates. Developing effective prediction models that can capture these variations and

guide scaling decisions is a challenging task. Inaccurate predictions may lead to

over- or under-provisioning of resources, resulting in increased costs or performance

degradation.

2. Effective Scaling Policies: Designing effective scaling policies for autoscalers is a com-

plex problem, as they need to balance responsiveness to workload changes with the

potential costs and performance impact of scaling actions. Reactive scaling policies

might be too slow to respond to sudden workload surges, while proactive policies

could over-allocate resources in anticipation of workload increases that might not

materialize. Finding the right balance between these approaches is challenging and

depends on the specific characteristics of the SPS and its workload patterns.

3. Coordination and Consistency: Autoscalers need to coordinate scaling actions across

distributed processing instances, ensuring that the entire system maintains consistent

performance and resource utilisation. This can be challenging in large-scale deploy-

ments, where communication overhead and potential delays in propagating scaling

decisions can impact the effectiveness of the autoscaler. Furthermore, maintaining

consistency in stateful processing systems, where intermediate state information

must be shared or migrated between instances, adds additional complexity to the

coordination process.

46 Literature Review

4. Impact of Scaling Actions on System Performance: Scaling actions, such as launching

new instances or redistributing workloads, can have a temporary impact on system per-

formance due to startup times, rebalancing overhead, or data movement. Autoscalers

need to account for these performance impacts when making scaling decisions and

minimise their negative effects on the overall system performance.

5. Integration with Other System Components: Autoscalers need to interact with vari-

ous components of the stream processing system, such as data sources, processing

engines, and storage systems. Seamless integration with these components and their

respective APIs is essential for efficient autoscaling. However, differences in API de-

sign, data formats, or communication protocols can pose challenges to the integration

process and impact the effectiveness of the autoscaler.

6. Adapting to Changes in System and Workload Characteristics: SPSs and their work-

loads can evolve over time, with changes in data patterns, processing requirements,

or infrastructure capabilities. Autoscalers need to be adaptive and robust to such

changes, updating their prediction models, scaling policies, and resource manage-

ment strategies accordingly. This requires ongoing monitoring and analysis of system

performance and workload patterns to ensure optimal autoscaling decisions. For

the sake of clarity, Point 1 above (Accurate Prediction and Modelling of Workload),

focuses on the specific challenge of accurate short-term workload prediction and mod-

elling, while here we take a broader view of adapting to long-term changes in system

and workload characteristics. The former highlights the consequences of inaccurate

predictions, such as resource misallocation and performance issues, while we now

emphasise the need for ongoing monitoring, analysis, and adaptation of autoscaling

components.

Ongoing Research in Autoscalers

1. Scalability: As DSPSs continue to grow in size and complexity, there is a need for

autoscalers that can effectively manage resources and maintain performance at scale.

Research in this area is focused on designing and implementing autoscaling algo-

rithms that can efficiently manage large-scale deployments and adapt to changes

in system size, resource availability, and workload patterns. This includes exploring

novel approaches to workload prediction, resource allocation, and load balancing, as

well as investigating the use of machine learning techniques to optimise autoscaling

decisions.

2.2 Autoscalers 47

2. Fault Tolerance [100]: Ensuring fault tolerance in autoscalers is essential for maintain-

ing the reliability and robustness of distributed stream processing systems. Ongoing

research is focused on designing autoscalers that can detect and recover from fail-

ures, such as processing node crashes, network partitions, or software bugs. This

includes developing mechanisms for monitoring the health of processing nodes and

detecting failures, as well as designing recovery strategies that can quickly restore

system performance and resource utilisation. Researchers are also investigating the

use of replication, checkpointing, and other fault-tolerance techniques to ensure the

durability of intermediate processing state during scaling actions.

3. Real-time Analytics [36]: As the demand for real-time analytics and decision-making

increases, there is a need for autoscalers that can effectively support these use cases in

distributed stream processing systems. Research in this area is focused on developing

autoscalers that can maintain low-latency processing while adapting to changes in

workload patterns and resource availability. This includes exploring techniques for

minimising the impact of scaling actions on system performance, such as incremental

scaling, data partitioning, and load balancing. Researchers are also investigating the

use of application-specific knowledge, such as query plans or data access patterns,

to optimise autoscaling decisions and improve the efficiency of real-time analytics

workloads.

4. Machine Learning and AI-driven Autoscaling [176]: To improve the accuracy of work-

load prediction and resource allocation, researchers are exploring the use of machine

learning and artificial intelligence techniques in autoscalers. These approaches can

help learn the patterns of the streaming workloads and adapt the autoscaling decisions

accordingly. Reinforcement learning, for example, is being investigated as a method

for training autoscalers to make optimal decisions based on system state and workload

patterns.

5. Heterogeneous Resource Management [154]: As DSPSs increasingly involve diverse

processing nodes and resource requirements, research is focused on developing au-

toscalers that can effectively manage these heterogeneous resources. This includes

designing algorithms for allocating and scheduling resources based on the specific

needs of different processing tasks, as well as investigating techniques for dynami-

cally adjusting resource allocations in response to changes in workload patterns or

processing requirements.

48 Literature Review

6. Autoscaler Evaluation and Benchmarking [172]: To assess the effectiveness of dif-

ferent autoscaling algorithms and strategies, researchers are working on develop-

ing evaluation frameworks and benchmarking tools for autoscalers in distributed

stream processing systems. These tools can help compare the performance, resource

utilisation, and cost-efficiency of different autoscalers, as well as identify areas for

improvement and guide future research in this area.

2.3 Workload Generation and Modelling

Computer system workload modelling is a process that attempts to create a simple and

general model, capable of generating synthetic workloads. These workloads should, in turn,

be suitable for running simulations representative of those workloads a computer system

may experience in a real-world setting. Creating workloads that are similar to those observed

in practice forms the necessary foundation to carry out any type of meaningful performance

evaluation efforts.

Performance evaluation is a vital step in the development and deployment of computer

systems. It allows researchers and engineers to measure the effectiveness and efficiency

of different designs and configurations, and to make informed decisions about how to

improve performance. When building new systems, performance evaluation methods are

implemented in order to compare different design options. This can include comparing

different algorithms, architectures, and hardware configurations. For example, a researcher

may compare the performance of a system that uses a distributed architecture to one that

uses a centralised architecture, in order to determine which design is better suited for a

particular application.

Similar evaluation approaches are also used to adjust the settings of existing systems.

This can include tuning parameters such as CPU frequency, cache size, and memory con-

figuration in order to optimise performance. This is especially important in large-scale

systems where small changes in configuration can result in significant performance gains.

For production use, performance evaluation can be used to determine the necessary capac-

ity required for the system to handle the expected workload. This can include estimating the

number of servers or other resources that will be needed to meet the expected demand, as

well as determining how the system will handle unexpected spikes in traffic.

The ability to carry out meaningful performance evaluation plays a critical role in the

development and deployment of computer systems in general, stream processing systems

being no exception. It generates the necessary insight and provides information upon which

2.3 Workload Generation and Modelling 49

informed decisions can be made, thus allowing for the creation of efficient and effective

systems that can meet the desired objectives, and minimise resource wastage.

There are three main factors that affect the performance of a stream processing system:

(1) the design of the system, (2) the implementation of the system, and (3) the workload to

which the system is exposed.

The design of the system refers to the architecture and overall structure of the system,

the implementation of the system refers to the way the system is built and configured, and

the workload refers to the tasks and requests that the system is expected to handle. All three

of these factors must be taken into consideration when evaluating the performance of a

computer system.

When evaluating complete systems, they may perform well for one workload, but not for

another. There are many instances in which specific workload features have a significant

impact on performance. However, it’s important to note that not all workload features have

the same effect. Sometimes, it is a single workload feature that has the greatest impact on

performance. The challenge is that it is not always clear in advance which feature is the

most critical, and even if it appears obvious, there is a chance of being mistaken. This makes

the ability to test streaming systems using realistic workloads all the more important, hence

the motivation to generate high-quality workload models that reliably capture all known

workload features, including those that may be predicted to lack overall significance.

2.3.1 Background

Workload modelling plays a critical role in the design, deployment, and management of

stream processing systems. In the context of stream processing, workload characterisation is

the process of identifying and quantifying the key features of a stream processing workload,

such as data arrival rates, data volume, processing complexity, and resource requirements.

Workload characterisation provides a basis for developing workload models, which can be

used to analyse and predict system behaviour, guide resource allocation decisions, and

evaluate the performance and scalability of stream processing systems.

One of the main challenges in workload modelling for stream processing is dealing

with the dynamic and potentially unpredictable nature of data streams. Data streams are

continuous and unbounded sequences of data elements generated by sources such as

sensors, log files, or social media feeds. There is a distinction to be made between fixed

workloads and streaming workloads, of which we will focus purely on the latter:

• Fixed workloads are ones where the amount of data and the number of tasks to be

processed are known in advance. The system is designed to handle a specific set of

50 Literature Review

tasks and the workload remains constant. An example of a fixed workload would be a

batch processing system that processes a fixed number of records in a database.

• Streaming workloads are ones where the data is generated and processed in real-

time, and the number of tasks and amount of data to be processed is not known in

advance. The system is designed to handle a variable set of tasks and the workload is

not constant. An example of a streaming workload would be a system that processes

tweets or stock trading data in real-time.

2.3.2 Workload modelling methodologies

There are two prevalent approaches for using a recorded workload to perform analysis and

allow a system design to be evaluated:

1. Using the traced workload as-is to run a simulation.

2. Constructing a model based on the trace and using the model for either analysis or

simulation.

There are several advantages to using workload models over workload traces when

evaluating the performance of a stream processing system. These include:

• Repeatability: Workload models can be used to repeat the same simulation multiple

times, under statistically similar, but not identical conditions, which allows for more

consistent and accurate performance measurements. For instance, different random

number generator seeds can be used to generate multiple workloads. This would allow

the computation of confidence intervals, whereas using a workload trace or log, only a

single data point is available.

• Flexibility: Workload models allow for more flexibility in simulating different scenarios

and workloads. This is particularly useful for evaluating the performance of a system

under different conditions, such as varying data rates or different types of data.

• Control & Isolation: Direct measurement of the system’s sensitivity to different pa-

rameters can be achieved by changing the values of model parameters individually, in

order to understand the impact of each one, while maintaining the other parameters

constant. Workload traces, as a general rule, can not be adapted for use in this manner.

• Simplicity & Generalisation: Workload models can simplify the process of evaluating

the performance of a SPS by abstracting away the complexities of real-world workloads.

2.3 Workload Generation and Modelling 51

This also lends itself well to providing a generalisation and avoiding overfitting to a

specific dataset.

Workload models can be broadly classified into two categories: descriptive and genera-

tive models.

Descriptive Models

Descriptive models are used to describe the characteristics and patterns of the workload

as it is observed. These models capture the static properties of the workload, such as

the distribution of requests, the frequency of requests, and the response time of requests.

Descriptive models are useful for identifying patterns in the workload and for understanding

how the workload behaves under different conditions. They do not attempt to understand

the underlying processes that generate the workload, but simply provide a snapshot of the

workload at a specific point in time.

Descriptive modelling typically involves creating a statistical summary of an observed

workload. This summary includes all attributes of the workload, such as computation,

memory usage, I/O behaviour, and communication. The goal of this summarisation is

to capture the main characteristics of the workload. The longer the observation period,

the more comprehensive the summary. For example, an entire year’s workload can be

summarised by analysing the records of all the jobs that ran on a given system during that

year, and fitting distributions to the observed values of the different parameters.

A synthetic workload can then be generated according to the model by sampling from

the distributions that constitute the model. Additionally, the model can be used directly

to parameterise a mathematical analysis. This means that the model can be used as input

for a mathematical analysis, to evaluate and predict the performance of the system under

different workload conditions.

Generative Models

Generative models, on the other hand, focus on reproducing the actual processes that lead

to the generation of the workload. This means that generative models attempt to emulate

the underlying mechanisms that result in the workload, rather than simply describing it.

These models are built based on the understanding of the system, workload, and the user

behaviour. They are useful for simulating the workload and predicting how the workload

will behave under different conditions. They can also be used to test the performance of a

system under different workloads and to identify potential bottlenecks in the system.

52 Literature Review

One of the key advantages of using a generative approach for workload modelling is that

it allows for manipulation of the workload. With a descriptive model, it is difficult to change

the workload conditions as part of an evaluation. However, with a generative model, it is

possible to modify the process that generates the workload in order to achieve the desired

conditions, and the resulting workload will reflect these changes. For example, by modelling

different types of file editing sessions, different file-size distributions can be generated that

match the specific session being modelled. This ability to manipulate the workload through

the generative approach makes it a powerful tool for evaluating and understanding the

behaviour of a system under different workload conditions.

Descriptive versus Generative Models

In summary, the main differences between Descriptive and Generative workload modelling

approaches are:

1. Purpose: Descriptive models summarise observed characteristics, while generative

models reproduce workload generation processes.

2. Approach: Descriptive models provide a statistical summary, while generative models

emulate underlying mechanisms.

3. Workload Understanding: Descriptive models do not consider workload generation

processes, while generative models are built based on system and user behaviour

understanding.

4. Manipulation: Descriptive models do not allow for workload manipulation, while

generative models enable modification of the generation process.

5. Applications: Descriptive models are used for generating synthetic workloads and

parametrising analyses, while generative models are used for simulating, predicting,

and testing system performance.

2.3.3 Workload modelling in Stream Processing Systems

Overview of how workload modelling is applied to stream processing systems

The application of workload modelling to SPSs requires understanding and representing

the characteristics of the workload that a system must be expected to handle, including the

arrival patterns of the data streams, the nature and complexity of the processing required,

2.3 Workload Generation and Modelling 53

the interactions between different components of the system, and the system’s requirements

in terms of performance, availability, and reliability.

Workload modelling plays an essential role in designing, deploying, and managing SPSs.

By capturing the characteristics of data streams, processing complexity, and resource require-

ments, workload models provide valuable insights into system behaviour and performance

and can enable informed decisions that improve performance, efficiency, and reliability,

while also providing a foundation for automation and intelligent adaptation to changing

conditions.

Benefits:

1. Resource optimisation: Workload modelling helps to optimise resource allocation by

guiding decisions about CPU, memory, and network capacity assignments. By under-

standing the processing requirements and resource demands, system designers can

allocate resources more effectively, leading to better performance and cost-efficiency.

2. Performance prediction and evaluation: Workload models enable the prediction and

evaluation of system performance under different conditions, such as varying data

arrival rates, processing complexity, and resource constraints. This allows for proactive

performance tuning and helps to identify potential bottlenecks and scalability issues.

3. Autoscaling support: Workload modelling is an essential component of autoscaling

algorithms, which dynamically adjust resource allocations and processing parallelism

in response to changes in workload patterns or system performance. By providing

accurate workload models, autoscalers can make better resource allocation decisions

and maintain performance and resource utilisation targets.

4. Improved system design: Workload modelling provides insights into the processing

complexity and resource requirements of stream processing tasks, which can inform

system design decisions. This can lead to the development of more efficient and

scalable stream processing systems.

Limitations:

1. Dynamic and unpredictable data streams: Workload modelling techniques, when

applied in a synthetic environment, often struggle to accurately mimic the intricate

and unpredictable nature of real-world data streams. These real-world workloads

exhibit highly dynamic and complex behaviour, with significant variations in data

arrival rates, volume, and distribution over time. Capturing and representing these

complex dynamics in synthetic workload models poses a significant challenge. Syn-

thetic workload models often rely on simplified assumptions and abstractions, which

54 Literature Review

may not adequately represent the full spectrum of behaviors observed in real-world

scenarios. This limitation can lead to inaccuracies in the generated workloads, re-

sulting in a mismatch between the modelled behaviour and the actual characteristics

of the real-world data streams. Consequently, the insights and decisions derived

from synthetic workload models, particularly those related to resource allocation and

system optimisation, may not accurately reflect the performance and resource require-

ments of the system when subjected to real-world workloads. This discrepancy can

result in suboptimal resource provisioning, inefficient utilisation of system resources,

and potential performance degradation when the system is deployed in a production

environment.

2. modelling complex processing tasks: SPSs often involve complex processing tasks,

such as windowing, aggregation, and pattern detection. Accurately modelling the

computational requirements and resource demands of these tasks can be challenging,

particularly when considering the interactions between multiple tasks and operators

within a processing pipeline.

3. Scalability of workload models: As SPSs grow in scale and complexity, the corre-

sponding workload models may also become more complex and resource-intensive.

Developing scalable workload models that can effectively represent large-scale sys-

tems while maintaining reasonable computational overhead is an ongoing challenge.

4. Adapting to evolving workloads: Workloads in SPSs can evolve over time, as new

data sources are added, processing requirements change, or system configurations

are updated. Workload models must be adaptable to these changes to maintain their

accuracy and relevance, which may require continuous monitoring, model updates,

and adaptive modelling techniques.

5. Integration with autoscaling algorithms: Workload models are a critical component

of autoscaling algorithms, which dynamically adjust resource allocations and process-

ing parallelism in response to changes in workload patterns or system performance.

Ensuring that workload models provide accurate and timely input to autoscaling algo-

rithms, while avoiding excessive overhead, is a challenge that needs to be addressed.

6. Model validation and evaluation: Validating the accuracy and effectiveness of work-

load models can be difficult, as it often requires comparing model predictions with

actual system performance under a range of conditions. Developing appropriate

validation and evaluation methodologies for workload models in SPSs is an important

area of ongoing research.

2.3 Workload Generation and Modelling 55

2.3.4 Challenges and Research Directions

Ongoing research in this area aims to address the challenges and limitations of current

workload modelling techniques, while exploring new methods and tools for more accurate

and efficient modelling. Some key ongoing research directions in workload modelling for

SPSs are:

1. Machine learning-based modelling approaches [134]: Machine learning techniques,

such as neural networks, clustering, and regression models, are being investigated for

their potential to improve workload modelling accuracy and adaptability in stream

processing systems. These methods can potentially capture complex relationships

between input data characteristics, processing requirements, and resource usage more

effectively than traditional model-based approaches.

2. Online workload modelling and adaptation [43]: As data stream characteristics and

processing requirements evolve over time, workload models must adapt to maintain

their accuracy and relevance. Research in online workload modelling focuses on

developing methods for continuously updating and refining models based on ob-

served system behaviour and performance, ensuring that models remain responsive

to changing workloads and system configurations.

3. modelling uncertainty and variability [17]: Workload models should account for

the inherent uncertainty and variability in data stream characteristics, processing

requirements, and system performance. Probabilistic modelling techniques, such as

Bayesian networks and Markov models, are being explored for their ability to represent

and reason about uncertainty in workload models, enabling more robust and reliable

resource allocation decisions.

4. Scalable modelling techniques [69]: As SPSs grow in scale and complexity, the cor-

responding workload models must also scale to accommodate larger numbers of

processing tasks, operators, and resources. Research in scalable modelling techniques

aims to develop methods for efficient and accurate workload representation, even in

large-scale and highly parallel systems.

5. Model validation and evaluation [105]: Assessing the accuracy and effectiveness of

workload models is critical for ensuring their reliability and utility in practice. Ongoing

research in model validation and evaluation seeks to develop robust methodologies

for comparing model predictions with observed system behaviour, identifying sources

of modelling error, and refining models to improve their accuracy and reliability.

56 Literature Review

6. Integration with autoscaling and resource management algorithms: Workload mod-

els play a key role in informing autoscaling and resource management decisions in

stream processing systems. Research in this area focuses on developing techniques for

more effective integration of workload models with resource management algorithms,

enabling more dynamic and responsive resource allocation and system performance

optimisation.

2.4 Benchmarking and Evaluation

Benchmarking refers to the process of measuring and comparing the performance of a

system, application, or component against a set of predefined metrics, standards, or refer-

ence implementations. Benchmarking and evaluating stream processing systems involve

assessing the performance, scalability, fault tolerance, and other essential characteristics

of these systems under various workloads, configurations, and operating conditions. This

process aims to compare different stream processing solutions, identify their strengths and

weaknesses, guiding the selection of the most suitable system for a given use case, and

informing the development of future improvements and optimisations.

SPSs are designed to handle continuous, high-volume, and time-sensitive data streams,

such as those generated by IoT devices, social media platforms, or financial transactions.

Therefore, the benchmarking and evaluation of these systems must take into consideration

the unique requirements and challenges posed by real-time data processing.

Benchmarking and evaluating SPSs is of paramount importance for various reasons,

including:

1. Informed decision-making: With a plethora of SPSs available, it can be challenging

for organisations to choose the most appropriate one for their specific needs. By

conducting comprehensive benchmarks and evaluations, organisations can gain in-

sights into each system’s performance, scalability, fault tolerance, and other relevant

characteristics. This information allows them to make more informed decisions when

selecting the best-suited SPS for their particular use cases and requirements.

2. Continuous improvement: Benchmarking and evaluating SPSs enable developers

and researchers to identify areas where improvements can be made. By measuring

performance and other key characteristics, they can detect bottlenecks, inefficiencies,

and limitations in the system, paving the way for further optimisations and enhance-

ments. Continuous evaluation and iteration ensure that SPSs evolve and adapt to the

ever-changing requirements of real-time data processing.

2.4 Benchmarking and Evaluation 57

3. Identification of best practices: Through the benchmarking and evaluation process,

researchers and practitioners can identify best practices for designing, implementing,

and deploying stream processing systems. By comparing various systems and their

performance under different conditions, they can discern the most effective strategies,

techniques, and approaches for building robust, high-performing, and scalable stream

processing solutions.

4. System optimisation: Benchmarking and evaluating SPSs help organisations optimise

their existing systems for better performance, resource utilisation, and cost efficiency.

By comparing their current system with alternative solutions or configurations, they

can determine the most effective ways to enhance their system’s capabilities, reduce

resource consumption, and minimise costs. This optimisation process may involve

adjusting the system’s settings, modifying its architecture, or even switching to a

different stream processing solution altogether.

5. Facilitating research and development: The process of benchmarking and evaluat-

ing SPSs plays a vital role in driving research and development in this domain. By

identifying current challenges, limitations, and research gaps, the evaluation process

can inspire new research directions and innovative solutions. It also fosters a healthy

competition among developers and researchers, motivating them to advance the state

of the art in stream processing technology.

6. Industry standardisation: Benchmarking and evaluating SPSs contribute to the stan-

dardisation of performance metrics, methodologies, and best practices in the industry.

Standardised benchmarks enable fair and meaningful comparisons among different

systems, promoting transparency and collaboration among developers, researchers,

and users. These standards also facilitate the adoption of SPSs in various application

domains, as organisations can rely on well-established benchmarks and evaluation

results to make informed decisions and ensure the success of their real-time data

processing initiatives.

2.4.1 Background

The historical development of benchmarking and evaluating stream processing systems can

be traced back to the early days of stream processing research and development. Over the

years, various benchmarking methodologies and tools have emerged to address the specific

requirements and challenges associated with stream processing systems.

58 Literature Review

1. Early stream processing systems: The first wave of stream processing systems, such as

TelegraphCQ [35], Aurora [34], and STREAM [174], emerged in the early 2000s. These

systems aimed to address the increasing need for real-time data processing and analy-

sis. However, at this stage, there was limited focus on benchmarking and evaluation,

as the emphasis was on developing the foundational concepts and architectures for

stream processing.

2. Introduction of benchmarking methodologies: As SPSs evolved and gained traction,

researchers began to recognise the need for standardised benchmarks to compare

and evaluate these systems. In the mid-2000s, the Linear Road Benchmark [179] was

proposed as one of the first attempts to provide a comprehensive benchmark for

evaluating stream processing systems. Linear Road Benchmark simulated a traffic

management scenario with varying data rates and complexity to test the performance,

scalability, and fault tolerance of stream processing systems.

3. Adoption of data processing benchmarks: In the late 2000s and early 2010s, re-

searchers started to adapt existing data processing benchmarks, such as TPC-H and

TPC-DS [150], for the evaluation of stream processing systems. While these bench-

marks were originally designed for traditional data processing systems, they were

extended to accommodate the unique characteristics of stream processing, including

continuous queries, windowed operations, and real-time analytics.

4. Development of domain-specific benchmarks: As SPSs found applications in various

domains, such as social media analytics, IoT, and finance, domain-specific bench-

marks emerged to address the unique requirements and challenges of these appli-

cations [150, 80]. For example, the Yahoo! Streaming Benchmark was developed to

evaluate the performance of SPSs in the context of real-time advertisement analytics,

while the DEBS Grand Challenge series focused on various application scenarios, such

as smart grid management and social network analysis.

5. Emergence of micro-benchmarking and custom benchmarks: In the mid-2010s,

researchers began to explore micro-benchmarking techniques to evaluate the perfor-

mance of individual components and features of stream processing systems [41, 74].

These micro-benchmarks enabled fine-grained performance analysis and optimisa-

tion. Moreover, custom benchmarks were developed by organisations to address their

specific requirements and use cases, allowing them to evaluate and optimise SPSs for

their unique needs.

2.4 Benchmarking and Evaluation 59

6. Recent developments: In recent years, there has been a growing interest in the de-

velopment of comprehensive and extensible benchmarking frameworks for stream

processing systems. Tools such as the Data Accelerator for Streaming (DAS) and the

Benchmarking-as-a-Service (BaaS) framework have emerged, offering a more flexible

and modular approach to benchmarking and evaluation [41, 120, 23]. These frame-

works allow users to design and execute custom benchmarks, tailoring the evaluation

process to their specific requirements and use cases.

2.4.2 Benchmarking and evaluation methodologies

Overview of different methodologies for benchmarking and evaluating stream processing

systems

A variety of methodologies and tools have been developed to facilitate the benchmarking

process. The categories listed below are not mutually exclusive and there is in part, of course,

overlap between them.

1. Synthetic Benchmarks: Synthetic benchmarks involve the creation of artificial datasets

and workloads to test the performance and capabilities of stream processing systems.

These combine closely with, and relate closely to, synthetic workloads. These bench-

marks use simulated data generators and predefined query sets to assess system

performance under different conditions, such as varying data rates, query complexity,

and system configurations.

2. Adapted Data Processing Benchmarks: These benchmarks modify existing data

processing benchmarks like TPC-H and TPC-DS to evaluate stream processing systems.

They extend traditional benchmarks to accommodate the unique characteristics of

stream processing, including continuous queries, windowed operations, and real-time

analytics.

3. Domain-specific Benchmarks: Domain-specific benchmarks are designed to evaluate

SPSs in specific application domains, such as social media analytics, IoT, finance, or

healthcare. They use real-world datasets and scenarios to test the system’s ability to

process and analyse data streams effectively within the target domain.

Comparison of Different Methodologies

Benchmarking methodologies for SPSs can be compared based on factors such as accuracy,

scalability, and real-time performance. In this section, we provide a comparison of the

60 Literature Review

different methodologies discussed earlier, highlighting their strengths and weaknesses in

these aspects.

Synthetic Benchmarks:

• Accuracy: Synthetic benchmarks can provide a controlled environment for evaluating

system performance, but their accuracy is limited by the degree to which the generated

data and workloads represent real-world scenarios. The artificial nature of synthetic

benchmarks may not fully capture the complexity and variability of real-world data

streams and processing tasks.

• Scalability: These benchmarks can be easily scaled to test system performance un-

der varying data rates and processing loads, providing valuable insights into system

capacity and resilience.

• Real-time Performance: Synthetic benchmarks can measure real-time performance

effectively, as they can simulate high-velocity data streams and evaluate the system’s

ability to handle real-time data processing requirements.

Adapted Data Processing Benchmarks:

• Accuracy: These benchmarks provide a more accurate representation of real-world

data processing workloads compared to synthetic benchmarks. However, they may not

fully capture the unique characteristics and challenges of stream processing, limiting

their accuracy in evaluating stream processing systems.

• Scalability: Adapted benchmarks can be scaled to test system performance across dif-

ferent data rates and processing loads, although their scalability might be constrained

by the original benchmark’s design.

• Real-time Performance: While these benchmarks can evaluate real-time performance

to some extent, they might not accurately assess stream processing systems’ capabili-

ties, as they are not specifically designed for stream processing use cases.

Domain-specific Benchmarks:

• Accuracy: Domain-specific benchmarks offer the highest accuracy in evaluating

stream processing systems, as they use real-world datasets and scenarios specific to

the target domain. However, their applicability may be limited to the domain they

were designed for.

2.4 Benchmarking and Evaluation 61

• Scalability: These benchmarks can be scaled to accommodate different data rates

and processing loads within the domain, providing valuable insights into system

performance and capacity.

• Real-time Performance: As these benchmarks are tailored to specific application

domains, they can accurately evaluate the real-time performance of SPSs in the context

of the target domain.

Micro-benchmarks:

• Accuracy: Micro-benchmarks provide a fine-grained evaluation of individual system

components, allowing for accurate identification and analysis of bottlenecks or ineffi-

ciencies. However, they might not capture the overall performance and interactions

between different components in a complete system.

• Scalability: These benchmarks can be scaled to evaluate the performance of individual

components under varying conditions. However, their scalability is limited to the

component being tested.

• Real-time Performance: Micro-benchmarks can assess the real-time performance of

individual components, but they may not provide a complete picture of the system’s

real-time capabilities.

Custom Benchmarks:

• Accuracy: Custom benchmarks can provide highly accurate evaluations of stream

processing systems, as they are designed based on the organisation’s specific require-

ments and use cases. However, their accuracy and applicability might be limited to

the organisation and scenarios they were designed for, making them less useful for

comparing different systems or generalising their results.

• Scalability: These benchmarks can be scaled to test system performance under vary-

ing data rates and processing loads specific to the organisation’s requirements. This

ensures that the scalability assessment is relevant to the organisation’s real-world

needs.

• Real-time Performance: Custom benchmarks can accurately evaluate the real-time

performance of stream processing systems, as they are tailored to the organisation’s

specific real-time data processing requirements. However, their focus on the organi-

sation’s unique needs might limit their usefulness in comparing different systems or

assessing their performance in other contexts.

62 Literature Review

2.4.3 Benchmarking and evaluation tools

Tools for Benchmarking Stream Processing Systems

Data Generators: Data generators, such as Databricks Labs Data Generator [1] and Stream-

Gen [77], are tools used to create synthetic data streams for benchmarking purposes. These

tools allow users to generate datasets with specific characteristics, such as data distribution,

volume, and velocity, to evaluate the performance of SPSs under various conditions.

Benchmark Suites: Benchmark suites, such as the Linear Road Benchmark [12], Yahoo!

Streaming Benchmark [37], and DEBS Grand Challenge series [79], provide standardised

query sets and performance metrics for evaluating stream processing systems. They enable

comparisons across different systems and configurations, helping organisations identify the

best solution for their needs.

Benchmarking Frameworks: Benchmarking frameworks, like the Data Accelerator for

Streaming (DAS) [122] and Benchmarking-as-a-Service (BaaS) [121] framework, provide

a modular and flexible approach to benchmarking and evaluation. These frameworks

allow users to design and execute custom benchmarks, tailoring the evaluation process to

their specific requirements and use cases. They often offer various tools and features for

generating datasets, defining workloads, and analysing performance metrics.

Benefits and limitations of using benchmarking and evaluation

Benefits

1. Performance Optimisation: Benchmarking and evaluation allow for the identification

of performance bottlenecks, leading to targeted improvements in the SPSs for each

specific domain.

2. Comparability: By comparing different SPSs in various domains, organisations can

make informed decisions about the most suitable system for their use case, consider-

ing factors such as processing speed, fault tolerance, and scalability.

3. Cost Efficiency: Benchmarking can help organisations understand the cost-performance

trade-offs of different stream processing systems, enabling them to choose solutions

that deliver the best value for their investment.

4. Tailored Solutions: Evaluating SPSs in different domains can lead to the development

of more specialised solutions that address the unique requirements and challenges of

each domain, resulting in more effective and efficient systems.

2.4 Benchmarking and Evaluation 63

5. System Evolution: Benchmarking and evaluation can provide valuable feedback to

system developers, driving continuous improvement and innovation in the field of

stream processing.

Limitations

1. Benchmark Suitability: Not all benchmarks or evaluation methods are equally suit-

able for every domain. Some benchmarks may not accurately reflect the specific

characteristics or requirements of certain domains, leading to suboptimal compar-

isons or misleading results.

2. Implementation Complexity: Designing and implementing benchmarking exper-

iments for SPSs can be complex, especially in domains with unique requirements,

large-scale data processing needs, or complex data structures.

3. Data Sensitivity: Some domains, such as healthcare or finance, involve sensitive

data that may be subject to strict privacy and security regulations. This can create

challenges for benchmarking and evaluation, as it may not be possible to use real-

world data or share results publicly.

4. Benchmark Overemphasis: Focusing too much on benchmark performance can lead

to an overemphasis on optimising for specific metrics, potentially neglecting other

important aspects of stream processing systems, such as ease of use, flexibility, or

integration capabilities.

5. Evolving Workloads: In many domains, workloads and data streams can evolve rapidly,

making it difficult to develop benchmarks that remain relevant over time. Regularly

updating benchmarks to reflect these changes can be resource-intensive and time-

consuming.

2.4.4 Challenges and Research Directions

Benchmarking and evaluating SPSs is an active area of research, with a focus on developing

more accurate, reliable, and comprehensive methodologies to assess the performance,

scalability, and fault tolerance of these systems. Several key topics of ongoing research and

trends in this field include:

1. Domain-specific benchmarks [22]: Researchers are developing new benchmarks

specifically tailored to different application domains, such as IoT, finance, social me-

dia, and healthcare. These domain-specific benchmarks aim to provide more accurate

64 Literature Review

and relevant performance assessments by incorporating the unique characteristics,

data structures, and processing requirements of each domain.

2. Multidimensional evaluation [175]: There is a growing interest in adopting multi-

dimensional evaluation techniques that consider various aspects of SPSs beyond

performance, such as resource consumption, ease of use, and flexibility. This holis-

tic approach to evaluation enables more comprehensive comparisons and better-

informed decision-making when choosing a SPS for a particular use case.

3. Adaptive and self-tuning benchmarks [88]: As stream processing workloads evolve

over time, static benchmarks may become less relevant or informative. Researchers

are exploring adaptive and self-tuning benchmarking methodologies that can au-

tomatically adjust to changes in data streams and workload characteristics. This

approach aims to provide more accurate and up-to-date performance assessments

while reducing the manual effort required to maintain and update benchmarks.

4. Real-time and continuous benchmarking [22]: Traditional benchmarking approaches

often involve running a set of predefined experiments and comparing the results.

However, this approach may not be suitable for stream processing systems, which

are designed to operate in real-time and continuously adapt to changing conditions.

Researchers are investigating real-time and continuous benchmarking techniques

that can evaluate the performance of SPSs as they operate, providing more timely and

actionable feedback.

5. Cross-platform comparisons: With the increasing number of available stream pro-

cessing platforms, there is a need for robust benchmarking methodologies that can

facilitate cross-platform comparisons. Researchers are working on developing bench-

marks and evaluation techniques that can be applied across different stream process-

ing systems, taking into account variations in programming models, data processing

semantics, and system architectures.

6. Integration of machine learning and artificial intelligence [61]: Machine learning

and artificial intelligence techniques have the potential to significantly enhance the

process of benchmarking and evaluating stream processing systems. Researchers

are exploring the use of machine learning algorithms to automate the generation

of synthetic workloads, predict system performance under various conditions, and

optimise the configuration of SPSs for specific workloads or use cases.

Chapter 3

Methodology

3.1 Introduction

Our methodological approach and paradigm follows the over-arching principles and prac-

tices outlined in the Design Science Research Methodology (DSRM) approach [146]. The

Design Science (DS) process includes six steps:

1. Problem Identification and Motivation: One must know both what specific problem is

being tackled and why it is worth spending the effort to find a solution.

2. Definition of the Objectives for a Solution: Clearly define the desired outcomes and

determine what makes a solution better than existing ones.

3. Design and Development: Create a “research artefact” that embeds a research contri-

bution in its design.

4. Demonstration: Demonstrate that the artefact can be used to solve instances of the

problem through experimentation, simulation, or another appropriate activity.

5. Evaluation: Test the effectiveness of the artefact in offering a solution to the problem.

6. Communication: Draw conclusions, communicate the problem and its importance,

and present the solution’s utility, novelty, and scientific rigour.

Following a sound methodology provides a structured approach to designing and con-

ducting research efforts, helping to ensure a systematic and rigorous process. In the com-

puter science domain, where technological progress and general rate of change can be rapid,

this forms a vital foundational framework for developing new and innovative solutions to

complex problems. Moreover, a good research methodology guarantees replicability and

66 Methodology

verifiability of results, allowing for the building upon existing research and for validating the

findings of a study. It has enabled me to communicate my findings effectively to the broader

research community, an important aspect for advancing knowledge and for facilitating the

use of research findings to inform practical applications. An example of this can be seen in

the research paper published at DEBS 2023; a replication package containing 40,000 work-

loads traces collected as part of the work, all code and workloads necessary to reproduce our

findings was created and made available for download via an open-source, public GitHub

repository.

3.2 Research Systems and Requirements

Our overarching research questions all concern themselves with (1) DSPSs and aspects

related to their performance and behaviour when (2) combined with an auto-scaling system,

and (3) faced with dynamic, unpredictable incoming workloads.

3.2.1 DS2 Autoscaler

We look to utilise DS2 [108] as the base experimental autoscaler on which to carry out the

required experiments. DS2 is an automatic scaling controller for distributed streaming

dataflows. It operates on a performance model that assumes operator instances repeatedly

perform three activities in sequence: deserialisation, processing, and serialisation. When

an operator instance is scheduled for execution, it pulls records from its input, deserialises

them, applies its processing logic, and serialises the results, which are then pushed to the

output. This model fits all types of operators in most modern streaming dataflow systems,

including Heron [118], Flink [29], and Timely [28].

DS2 obtains rate measurements of each operator by lightweight instrumentation, which

is already present in many streaming systems. It measures the useful time of an operator’s

timeline and determines the true rate of each operator. Based on these measurements, DS2

infers the required increase in parallelism for each operator to keep up with the output rate.

It identifies the optimal level of parallelism for each operator in the dataflow on the fly, while

the computation executes, based on real-time performance traces and maintains a changing

provisioning plan, i.e., the number of resources allocated to each operator. The optimal

parallelism for each operator is estimated assuming perfect scaling, i.e., the true processing

and output rates change linearly with the number of instances. When the “perfect scaling”

assumption holds, DS2 estimations correspond to bounds and the model enjoys certain

properties. For example, a scale-up decision will not result in over-provisioning and the

3.2 Research Systems and Requirements 67

estimated optimal number of instances for an under-provisioned operator is always less

than or equal to the minimum required to keep up with the target rate.

DS2 converges to configurations that exhibit no back-pressure (and thus keep up with

the source rates) while minimising resource usage. For a given dataflow, fixed input rate, and

initial configuration, DS2 identifies the optimal parallelism regardless of whether the job is

initially under or over-provisioned. It identifies the lowest parallelism that can keep up with

the source rate whereby further increasing the parallelism would not significantly improve

latency and would waste resources, while lower parallelism would limit the observed source

rate.

One of the key features of DS2 is its execution model independence. The system can

be applied to streaming systems regardless of their execution model, making it a versatile

solution for a wide range of applications. A streaming system’s “execution model” refers

to the underlying architecture, processing semantics, and runtime behaviour that define

how data is processed and how computation is performed within the system. The DS2

autoscaler has been implemented atop different stream processing engines: Apache Flink,

Timely Dataflow, and Apache Heron, and it has shown to be capable of accurate scaling

decisions with fast convergence, while incurring negligible instrumentation overheads.

DS2 Configuration Inputs

The DS2 scaler offers several configuration options that can be helpful to avoid potential

under/over-shooting and operator parallelism value oscillation. These are:

• Policy Interval Rate (PIR) - Defines the frequency with which metrics are gathered and

the policy invoked.

• Activation Time (AT) - Number of consecutive policy decisions considered by the

scaling manager before issuing a scaling command.

• Warm-Up Time (WUT) - Number of consecutive policy intervals (epochs) to ignore at

system start-up time and after a re-configuration.

Figure 3.1 shows a timeline of interaction between the PIR, AT and WUT. Upon system

start-up the auto-scaler undergoes a “warm-up time” during which a period of no scaling

recommendations or activities are carried out (A - B). Upon completion of the warm-up

period, the system then begins to analyse the incoming system metrics, requiring the com-

pletion of a certain minimum number of epochs before making a scaling recommendation

is considered (B - C). Following that minimum number of epochs, DS2 then ingests metrics

from each new epoch, and is able to recommend and enact a scaling activity as soon as it

68 Methodology

Fig. 3.1 DS2 Configuration Variables Interaction Timeline

deems necessary (C - D). Once a scaling activity has been enacted, DS2 then enters a new

warm-up time (D - E) (an exact repetition of that seen at A - B), which aims to allow the

system to reach steady state before subsequent scaling decisions are considered. The logic

then repeats as described above.

A comprehensive example of DS2 in action is provided by Kalavri et al. [108].

3.2.2 Apache Flink

Although there exist both a number of conceptual foundations underpinning all stream

processing systems and multiple shared high-level characteristics, we have to select a single

DSPSs to act as a test-bed system for our experiments. Apache Flink, as introduced in

Section 2.1.4, has been chosen to act as this test-bed system.

Aside from Flink’s adaptability to our needs, the DS2 autoscaler chosen to act as our base

experimental autoscaler has conveniently been integrated with Flink as described in [108];

a MetricsManager module which is responsible for gathering, aggregating, and reporting

policy metrics for DS2’s use was implemented in Flink.

3.2.3 Dynamic Workloads

Performance evaluation involves the analysis of system designs and implementations, with

the aim of drawing comparisons that allow for educated decisions as to which design or im-

plementation to employ in a particular circumstance. It is, however, often not solely system

design and implementation which dictate how a system will perform, but rather may be

influenced by the incoming workload. It is known that different workload characteristics can

significantly affect streaming system performance. When used in the experimental evalua-

tion process, workloads differing in their characteristics may lead to discrepant conclusions

in both sequential and parallel systems [129].

3.2 Research Systems and Requirements 69

3.2.4 Characteristics of Streaming System Workloads

A study of Facebook’s in-memory key-value caching layer found workloads to be bursty,

and follow a daily cycle with traffic spikes [15]. Prior studies show that disk, file system,

network, and web traffic all exhibit some common temporal properties such as burstiness,

self similarity, long range dependence, and daily cyclicality [148]. Pitchumani et al. [148]

concluded temporal patterns can be classified into three kinds of arrival processes:

1. Poisson Process: A Poisson process is a simple and widely used stochastic process

for modelling arrival times. Requests can be modelled as a Poisson process if the

request inter-arrival times are truly independent and exponentially distributed. It is

often observed, however, that streaming systems face arrival streams that are highly

variable (mean < variance; over-dispersion), while in specific cases systems have

to deal with almost deterministic arrivals (variance < mean; under-dispersion) [86].

These situations would violate the assumptions that the request inter-arrival times are

truly independent and exponentially distributed.

2. Self Similar Process: Self similarity means the series looks similar to itself at different

time scales and has invariance with respect to scaling across all time frames. If invari-

ance is taken to mean “exact identity” then it is called deterministic self-similarity; if

invariance is taken to mean “identical statistical properties”, then it is called statistical

self-similarity. Self similar workloads typically include bursts of increased activity,

and similar looking bursts appear at many different time scales, ranging from a few

milliseconds to minutes and hours [125]. Self similarity has been observed in WWW

traffic [40], Ethernet local area network (LAN) traffic [125], file-system traffic [76]

and also in disk-level I/O traffic [73], [157]. A self-similar traffic model leads to more

realistic evaluations of required buffer space and other parameters [51].

3. Envelope-guided processes: [76] showed that high-level file system events exhibit self

similar behaviour, but only for short-term time scales of approximately under a day.

Envelope-guided processes reflect the fact that at longer time frames, many workloads

exhibit clear daily cyclicality and general periodicity. For example, [158] observed that

Internet backbone traffic exhibits both daily and weekly periodic patterns, as well as

a longer-term trend. In addition, there are shorter timescale stochastic fluctuations

superimposed on these patterns. They modelled this traffic by separating it into a

regular, predictable component and a random component.

70 Methodology

Workload Arrival Models

To demonstrate generality across diverse workload types and time-frames we incorporate

two of the three above-mentioned arrival rate processes within the workload generation

models, along with a stylised sine wave function and a monotonic step function:

Poisson Process

P (t) =
{

1−e−λt , if t > 0

0 ,otherwise
(3.1)

where: t = inter-event time

λ= rate

Envelope-Guided Process

For Envelope-guided process based data, a selection of sine wave functions will determine

the arrival rate per time interval (unmodulated and amplitude, frequency, and phase modu-

lated). The actual inter arrivals will be generated from a secondary distribution, such as the

Poisson distribution [148]. Details of the sine wave functions are presented in Section 3.2.4.

Sine Wave Function

The sine wave function is presented in Equation 3.2a, along with the amplitude modulated

sine wave function in Equation 3.2b. Figures 3.2 and 3.3 show visual examples of both

frequency and phase modulated waves respectively, while they are also represented in

Equations 3.2c and 3.2d. Using a sine wave function to model streaming system workloads

is particularly useful for predicting system load under cyclic user behaviour patterns. The

sine wave function can capture the cyclical patterns of demand or usage that occur over

time, such as daily or weekly peaks in user activity or data flow rates.

• Amplitude (A) can represent the maximum deviation of the workload from its average

value, capturing the intensity of peak usage periods.

• Angular Frequency (ω) can reflect the cyclical nature of the workload, such as 24-hour

cycles for daily patterns or longer cycles for weekly patterns.

• Phase shift (ϕ) can adjust the model to align with when the peaks actually occur during

the cycle (e.g., peak usage during evening hours).

3.2 Research Systems and Requirements 71

Fig. 3.2 Frequency Modulated Sine Wave

72 Methodology

Fig. 3.3 Phase Modulated Sine Wave

3.2 Research Systems and Requirements 73

• Vertical Shift can be applied to represent the baseline level of the workload, ensuring

the model accounts for the average load on the system outside of peak times.

Y (t) = A sin(ωt +ϕ) (3.2a)

AM(t) = Ac sin(ωc t)m cos(ωmmt +ϕ) (3.2b)

F M(t) = Ac cos(ωc t +m sinωm t) (3.2c)

P M(t) = Ac sin(ωc t +cos(ωc t +mωm t)+ϕc) (3.2d)

where: t = time

A = amplitude

ω = angular frequency

ϕ = phase shift

Ac = carrier amplitude

m = modulation index

ωc = carrier angular frequency

ωm = messenger angular frequency

ϕc = carrier phase shift

Monotonic step function

The arrival rate increases by a set amount every time step for real numbers n >= 0, αi ,

intervals Ai and indicator function χA of A.

χA =
1 , if t ∈ A

0 , if t ∉ A
(3.3) F (t) =

n∑
i=0

αiχAi (t) (3.4)

where: n >= 0

αi = real numbers

Ai = intervals

χA = indicator function of A

Implementations for each of these arrival processes have been made available within

the DEBS 2023 published research paper replication package which can be found here.

This includes implementations of each SourceFunction class, an implementation of a

WordCount workload leveraging each source function. These source functions are directly

compatible with the WordCount implementation provided as part of DS2

https://github.com/MattForshaw/DEBS23_Rebuttal/blob/088295a827fd182e214afb3cdbf6c1171301a11c/README.md#workloads-generators

74 Methodology

Wordcount Topology

The system topology used in the experiments consists of a three-step Word Count topology

with three unique operators: Source Operator, Splitter Operator, and Count Operator. A

characterisation of each operator is as follows:

1. Source Operator:

• Input: The Source Operator does not have any input from other operators in the

topology. It generates the input data stream for the entire pipeline.

• Functionality: The Source Operator is responsible for generating sentences of a

specific length by randomly selecting words from a provided set of English words.

It emits these sentences as the input data stream for the subsequent operators in

the topology.

• Output: The Source Operator outputs a stream of sentences, where each sentence

is composed of randomly selected words from the provided set. The length of

the sentences is determined by a configurable parameter.

• Parallelism: The number of Source Operators in the topology can be varied to

simulate different workload characteristics and to test the system’s ability to

handle varying input rates.

2. Splitter Operator:

• Input: The Splitter Operator receives the stream of sentences generated by the

Source Operator.

• Functionality: The Splitter Operator is responsible for splitting each received

sentence into individual words. It takes each sentence from the input stream and

tokenises it into separate words.

• Output: The Splitter Operator outputs a stream of individual words, which are

then sent to the Count Operator for further processing.

• Parallelism: The Splitter Operator can be parallelised to distribute the work-

load of splitting sentences into words across multiple instances, enabling faster

processing of the input data stream.

3. Count Operator:

• Input: The Count Operator receives the stream of individual words from the

Splitter Operator.

3.3 Threats to Validity 75

• Functionality: The Count Operator is responsible for counting the occurrences

of each unique word in the input stream. It maintains a running count for each

word encountered and updates the count whenever a word is received.

• Output: The Count Operator outputs the final word counts, representing the

frequency of each unique word in the processed data stream. The output can

be in the form of a key-value pair, where the key is the word and the value is the

corresponding count.

• Parallelism: The Count Operator can be parallelised to distribute the counting

workload across multiple instances. This is particularly useful when dealing with

large vocabularies or high-volume data streams.

The interaction between the operators in the topology follows a linear flow:

1. The Source Operator generates sentences and emits them as a stream.

2. The Splitter Operator receives the sentences from the Source Operator, splits them

into individual words, and emits the words as a stream.

3. The Count Operator receives the individual words from the Splitter Operator, main-

tains a running count for each unique word, and outputs the final word counts.

3.3 Threats to Validity

Here, we introduce the limitations of this work, and highlight threats to validity arising from

these [47, 193].

L1 Single streaming platform The ∼40,000 workload traces used within Chapter 4 are all

obtained from Apache Flink [29].

L2 Single autoscaler The experimental results in this thesis consider a single state-of-the-

art autoscaler, DS2 [108].

L3 Single workload The experimental results used a single Wordcount workload, leveraging

four arrival processes.

L4 Reconfiguration Cost Our experimental results cannot fully capture the interplay be-

tween reconfiguration cost (e.g. reconfiguration time) and autoscaler behaviour.

76 Methodology

We now consider the implication of these limitations in terms of construct, internal

and external validity.

Construct Validity We measured key metrics in relation to the autoscaler; average level

of parallelism, the average size of a change in parallelism, the cumulative size and total

number of these changes. Our experiments do not currently cater for reconfiguration

costs which exceed the length of a single autoscaler evaluation period (Limitation L4).

Further experimentation to demonstrate the performance of models within operational

environments are required to measure the impact on lack of reactivity, insensitivity and

synchronisation, and to quantify the impacts of oscillation (§ 4.2).

Internal Validity The experimental work we have presented makes use of DS2 [108] as

the exemplar autoscaler, and also adopts its notions of true and observed processing rates.

These provide the benefit of being able to see not only the number of records processed by

operators within the topology, but the amount of useful vs idle time the operators spend.

Consequently, this enables an autoscaler to understand the relationship across the topology,

and make rescaling decisions at multiple stages of the topology simultaneously. However, it

has been shown that equivalent metrics can be obtained readily from many contemporary

streaming systems [108] so this does not limit the impact of this work.

External Validity Our data considers workload traces collected using a single streaming

system, Flink (Limitation L1). Furthermore, we elected to generate our results using a Word-

count workload (Limitation L3) which, in conjunction with representative arrival processes

(§ 4.4.1), was the most parsimonious model to demonstrate the autoscaler behaviours. While

we used traces from a single platform, the traces contain information disclosed by all major

streaming systems, ensuring our approach can be applied across a breath of streaming

systems.

We outline our lightweight assumptions for the capability of a target autoscaler, and the

metrics required from a system to make our approach practicable (§ 4.4).

We have applied our approaches to a single state-of-the-art autoscaler, DS2 (Limitation

L2). We have reason to believe the DS2 approach naturally provides more resilient handling

of autoscaler behaviours than more conventional approaches, due to the use of the DS2

model of true and observed rates (c.f. Internal Validity). Our findings show strong results for

DS2, and we have reason to believe we may see even greater results for situations a) where

systems use “noisy” metrics such as CPU utilisation, and b) systems which adopt rule-based,

threshold or heuristic based approaches.

Addressing the weaknesses outlined above, and adding generality to your results could

involve several steps:

3.3 Threats to Validity 77

1. Expand the Platform and Autoscaler Scope: The research relies on a single streaming

platform (Apache Flink) and a single autoscaler (DS2). Expanding the scope to include

additional platforms and autoscalers would test the generality of your findings and

possibly uncover new insights applicable across different systems.

2. Incorporating a Variety of Workloads with Varied Characteristics: This involves ex-

perimenting with different types of workloads beyond the Wordcount example used

in your study. It encompasses introducing workloads with different computational

requirements, data arrival rates, and patterns (e.g., bursty, cyclic, and unpredictable

workloads). The objective is to ensure the autoscaling strategy is robust and effective

across a diverse set of operational environments and workload demands.

3. Reconfiguration Cost: The current experimental results do not fully capture the in-

terplay between reconfiguration cost (e.g. time), and autoscaler behaviour. Inves-

tigating the impact of reconfiguration costs in greater depth could provide insights

into optimising autoscaler performance while minimising resource consumption and

operational delays.

4. Further Experimentation: Further experimentation within operational environments

is suggested to measure the impact on lack of reactivity, insensitivity, and synchro-

nisation, and to quantify the impacts of oscillation. This could involve real-world

deployments or more sophisticated simulation environments that better capture the

dynamics of streaming systems under varying conditions.

5. Cross-platform and Cross-autoscaler Generalisability: To enhance the generality, one

can conduct cross-platform and cross-autoscaler studies. This involves validating

autoscaling approaches against various streaming systems and autoscalers to assess

their effectiveness and adaptability across different environments.

Chapter 4

On Improving Streaming System

Autoscaler Behaviour

Related Publications

The work presented in this chapter appeared in the following publication: Stuart Jamieson

and Matthew Forshaw (2023). On Improving Streaming System Autoscaler Behaviour us-

ing Windowing and Weighting Methods. In: Proceedings of the 17th ACM International

Conference on Distributed and Event-Based Systems (DEBS). Association for Comput-

ing Machinery, 2023. New York, NY, USA. DOI: 10.1145/3583678.3596886. URL: https:

//doi.org/10.1145/3583678.3596886.

4.1 Introduction

Performant distributed stream processing systems (DSPSs) are essential to process large

volumes of high-velocity data in a reliable and timely fashion. These systems commonly

experience highly variable, bursty and unpredictable workloads [167]. These workloads

typically display strong time-of-day and time zone correlation, flash crowd behaviour [170],

cyclicality and periodicity [85]. Such incoming workloads can make it difficult to plan a

system’s capacity requirements and ensure an SLA is fulfilled, while also keeping costs low.

If capacity is set to manage expected peak load, performance will be maintained but costs

will rise accordingly as resources lay idle for significant periods of time. If capacity is set to

manage average expected load, costs will be curtailed, but performance will degrade when

faced with above average loads.

https://doi.org/10.1145/3583678.3596886
https://doi.org/10.1145/3583678.3596886

80 On Improving Streaming System Autoscaler Behaviour

Recent years have seen the emergence of myriad streaming systems, e.g. Storm [181],

Spark [162] and Flink [29]. With these systems have come efforts to develop DSPSs with the

ability to scale system resources in an on-demand manner through the use of an autoscaler.

The aim of an autoscaler is to dynamically adapt the resources assigned to a system, de-

pending on the input workload, to maintain an acceptable trade-off between the required

performance and the associated costs of providing the resources. Autoscaler are prone to

suffer from undesired behaviours [185]. Examples of these are under- or over-provisioning,

oscillation and chasing behaviour [132].

Autoscalers can manage and deploy system resources dynamically, and in an automated

fashion. Commonly, such autoscalers are governed by tunable parameters/thresholds with

the non-trivial task of choosing those values being left up to the user. Autoscaler system

behaviour can be highly sensitive to the choice of such input values, resulting in high levels

of volatility, and therefore uncertainty regarding the outcome of any particular choice of

such values. While overall uncertainty of outcome is considered undesirable in a business

operating environment, certain case specific behaviours at the autoscaler level itself can

clearly be determined to be undesirable also, from a system operator’s perspective.

In this chapter we empirically study undesirable behaviours experienced by a state-of-

the-art controller (Section 4.2) and contribute a categorisation of autoscaler mechanisms

(Section 4.3). We explore, for realistic workloads (Section 4.4.1) the feasibility of applying

moving average models (Section 4.4.2). We establish methods (Section 4.4.4) to systemati-

cally evaluate these models, and demonstrate the potential to augment existing autoscalers

to mitigate at least 90% of undesirable extreme parallelism shifts observed and significantly

reducing scaling behaviour volatility (Section 4.5). We make available a replication package

containing 40,000 workload traces collected as part of this work, all code and workloads to

reproduce our findings (Section 4.6). Finally we conclude and offer suggestions of areas for

future research (Section 4.7).

4.1 Introduction 81

2

4

6

8

10

0 100 200 300
Epoch

Pa
ra

lle
lis

m

Activation Period 1 45

(a) Lack of Reactivity

5

10

15

20

25

30

0 100 200 300
Epoch

Pa
ra

lle
lis

m

Activation Period 1 45

(b) Insensitivity

0

10

20

30

0 100 200 300
Epoch

Pa
ra

lle
lis

m

Activation Period 1 8

(c) Extreme Parallelism Shift

Fig. 4.1 Illustrative examples of Autoscaler failure categories. Blue lines represent the in-
stantaneous parallelism suggestions from our exemplar autoscaler, DS2, configured with an
activation period of 1. Red lines shows the parallelism suggestions for the auto-scaler with a
specific value of tunable parameter activation period, which exhibits undesirable behaviour.
Full details of the workloads to recreate these experiments are available in the replication
package (§ 4.6).

82 On Improving Streaming System Autoscaler Behaviour

4.2 Categories of Autoscaler Failure

Autoscalers seek to provide the SASO properties; stability, accuracy, short settling time, and

not overshooting [2, 108]. Autoscalers which lack stability, make sub-optimal decisions, or

do not settle quickly, are considered undesirable. We empirically evaluate the behaviour of

the state-of-the-art controller, DS2 [108], for a variety of representative workloads. We focus

primarily on the impact of activation period, the number of consecutive policy decisions

considered by the autoscaler before issuing a re-configuration.

Our findings identify additional failure categories beyond those identified by SASO. Their

grounding in experimental results, based on a state-of-the-art controller for representative

workloads, demonstrates the importance of these factors.

Under or Over- provisioning: results in resources operating below their capacity and

incurring excess cost, or SLA violation due to insufficient resources. In many real-world

instances, some controlled level of over-provisioning of resources is effected to cope with

minute workload fluctuations and is considered desirable.

Oscillation: manifest when scaling decisions are enacted in quick succession, leading

to rapid changes in configuration. Oscillations are detrimental to system performance due

to the performance impact of reconfiguration, which can harm latency and throughput for

periods of seconds to minutes. In extreme circumstances, these oscillations may represent

transitions between under- and over-provisioning, leading to instability and SLA violation.

The acquisition and subsequent release of resources represents resource wastage, and in

cloud deployments can be financially costly.

Volatility: Highly volatile autoscaler behaviour across a relatively small range of chosen

input parameter values, in terms of both average parallelism levels and average parallelism

change size, and in terms of average and cumulative magnitude of scaling decisions enacted

throughout an individual workload.

Lack of Reactivity (Figure 4.1a): Reactivity being the speed at which scaling actions

are taken to correct previously inaccurate decisions, i.e., the speed at which an inaccurate

decision is overwritten and a new attempt at an accurate decision is made. Measured as a

combination of time passed and magnitude of deviation between the current state and the

optimal/correct state.

Insensitivity (Figure 4.1b): the speed at which new information regarding the system

environment (e.g. resource failure, or changes in offered load) is assimilated and acted upon.

Synchronisation: Due to the use of a particular input parameter value (e.g. for activa-

tion period), the autoscaler can be “out-of-sync” with the dynamic workload. That is, the

autoscaler will cause the operators to be at high or increasing levels of parallelism while the

incoming workload rate is low/decreasing, and vice-versa.

4.3 Background 83

Extreme parallelism shifts (Figure 4.1c): incur substantial overhead costs, require

substantial scale out and impact system performance while they are being enacted. Extreme

shifts are characterised as 1) rapid, 2) large and 3) quickly retraces its movement. DS2

allows the selection of certain input parameters that should guard against this behaviour

(i.e. activation period and warm-up time). Setting a larger value for activation period or

warm-up time helps guard against enacting a scaling decision based upon a large, one-off

suggested change in parallelism, which is then quickly followed by a suggestion to revert

back to (close to) the previously seen level. However, if the extreme scaling suggestion

coincides with the end of an activation period or warm-up time window, the scaling decision

will be enacted. It will then remain at the extreme level of parallelism until the next time

period the scaler is free to enact a further scaling decision (i.e., once the next activation

period and warm-up time thresholds have been met). Typically, the higher the activation

period, the fewer times such behaviour will occur, but the higher will be the impact of each

occurrence as the extreme level of parallelism is maintained for a longer period.

Lack of Behavioural Robustness: Finally, we saw a lack of robustness regarding how

scaling behaviours manifest across a range of input parameter values. We see instances

of large deviations in style of behaviour (e.g. insensitivity switching to lack of reactivity

switching to operating in an out-of-sync manner) across the same workload when the

activation period is varied across a relatively small range. This refers to the type of failure

behaviour, rather than the Volatility of the autoscaler’s behaviour.

4.3 Background

Building upon the concepts introduced in the literature review (Chapter 2), recent works

have further explored the challenges and implications of autoscaler parameterisation and

performance evaluation in streaming systems. For a comprehensive background we refer

the reader to [31] and [186]. Wang et al [190] extend the discussion on the trade-offs between

auto-scaling systems and manual expert tuning, providing insights into the behaviour of

production autoscalers in cloud environments.

The use of non-parametric goodness-of-fit models to quantify streaming system robust-

ness has been investigated by [97, 96]. These studies delve into the categorisation of scaling

decision volatility and its impact on system performance, introducing new methods for

assessing the robustness of streaming systems.

Straesser et al [173] contribute to the benchmarking and evaluation methodologies dis-

cussed in Section 2.4.2, offering practical guidelines for communicating autoscaler perfor-

mance under diverse workload patterns. Their work aims to assist practitioners in evaluating

84 On Improving Streaming System Autoscaler Behaviour

and comparing autoscaler performance, building upon the foundational concepts presented

in the literature review.

4.4 Preliminaries and Model

➌ Suggested
Parallelism

AutoScaler

➏ Reconfigure Deployment
Enactor

➍ Augmented
Suggested
Parallelism

MA Model
➊ Graph

➋ Metrics

➎ Updated Graph

Fig. 4.2 Logical diagram showing the integration of MA models into a typical autoscaler
deployment. Dashed lines represent data arriving from, or decisions flowing to, components
outwith our system.

Here we outline the conceptual model of our chosen autoscaler (DS2) and moving

average logic. Figure 4.2 shows the high-level architecture of the integration with the moving

average models.

Streaming System Model: We model an exemplar streaming workflow as a directed

acyclic graph G = (V ,E) where:

• V is a set of vertices representing operators within the topology (including data sources,

and sinks), each with property p representing the current parallelism level for that

operator.

• E is a set of edges representing the connection between logical operators.

The graph is dynamic, evolving over time in response to failures, or changes enacted

through autoscaling or manual intervention.

Autoscaler Model: We model our autoscaler as a black-box, accepting as its parameters

the graph G = (V ,E), and a stream of metrics from the streaming operators in V , or from the

compute resources (e.g. CPU/memory usage). The operator emits tuples e = (t ,oi d , p) where

4.4 Preliminaries and Model 85

at time t , o ∈V denotes the operator within the system, and p the suggested parallelism level.

The autoscaler stores as its state tl ast , the time step at which the last rescaling suggestion was

emitted. Our model permits autoscalers which produce zero or more tuples per time step,

allowing us to model autoscalers capable of scaling single [54] or multiple [108] operators

per time period.

Autoscalers commonly introduce guards (often as tunable threshold parameters) to

mitigate several of the behaviours we explore in this chapter. For example, they may enforce

a minimum time period v between successive reconfigurations (t − tl ast ≤ v).

Enactor: We model an enactor taking a stream of tuples (t ,oi d , p) from the autoscaler,

and is responsible for enacting these changes. Multiple tuples received at t are combined to

provide a new G ′. We give flexibility with a non-zero reconfiguration duration, after which

an updated graph G ′ = (V ′,E ′) updates the autoscaler state.

Generalisability: Our approach is agnostic to autoscaler approach. We expect it to

work particularly well in situations where systems; a) use “noisy” metrics such as CPU

utilisation, and/or b) rule-based, threshold or heuristic approaches. Our approach re-

duces the number of rescaling decisions and their latency and throughput impacts, through

a) reduced oscillations, b) mitigating costly-to-enact extreme parallelism shifts. Our ap-

proach is complementary to efforts to reduce reconfiguration complexity [92], manage state

efficiently [107] and state-aware enactment of rescaling decisions [42].

Implementation: Our proposed approach is agnostic to workload and operator type.

It relies only on the light assumptions outlined here, and requires only information which

is commonly available at runtime in major stream processing engines. Throughout the

remainder of the paper we experiment with DS2 as a robust, best-in-class autoscaler, mak-

ing it a challenging system to evaluate against. We anticipate greater benefits for other

autoscalers (Section 3.3).

We apply moving average models to the suggested parallelism values provided by the

autoscaler. This is most appropriate for DS2, allowing us to leverage its recursive approach

to consider parallelism values for all operators simultaneously. It would also be possible to

apply the moving average models to the stream of metric tuples ahead of the autoscaler.

4.4.1 Summary of Workloads

We use the most parsimonious workload capable of replicating autoscaler failure behaviours,

a three-step Word Count topology, coupled with realistic arrival processes. Source Operators

emit sentences of a specified length, the Splitter Operators split them into individual words,

and the Count Operators count the number of times each word occurs. Unlike benchmarks

86 On Improving Streaming System Autoscaler Behaviour

Poisson Process Sine Wave Process

Envelope−guided Process Monotonic Step Function

0 100 200 300 0 100 200 300

0

10000

20000

30000

40000

0

10000

20000

30000

40000

Time (seconds)

A
rr

iv
al

 R
at

e
(r

ec
or

ds
 /

se
c)

Fig. 4.3 Examples of four workload generation functions: Poisson process, sine wave process,
envelope-guided process, and monotonic step function, illustrating different patterns and
characteristics of workload arrivals over time.

4.4 Preliminaries and Model 87

which commonly use uniform arrival rates, we use four classes of arrival process to evaluate

models’ ability to overcome challenges of workload variability.

Poisson processes (Equation 3.1): Our arrival rate at t was modelled with a Poisson

distribution with different λ values.

Sine wave (Equation 3.2): Functions determine arrivals; unmodulated Y (t) and ampli-

tude AM(t), frequency F M(t), and phase modulated P M(t).

Envelope-guided process: In our case the regular, predictable component is modelled by

a selection of sine wave functions which determine the workload arrival rate per time interval

(Equation 3.2). Interarrivals were generated from the Poisson distribution, modelling the

stochastic component (Equation 3.1). Burstiness is determined by a secondary distribution.

Monotonic Step Function (Equations 3.3 and ??): the arrival rate increases by a set

amount every time step.

4.4.2 Summary of Moving Average Models

Moving Average (MA) models offer us a principled approach to react to changing system state,

while incorporating valuable historical information across a window period of configurable

length. Desirable properties for MA models are a) smoothness, b) insensitivity to noise, c)

they do not lag behind the original time series. In our work, we evaluate a number of MA

models, as outlined below, for window length k and n observed values.

Simple MA (SMA) [155] weights equally in window period k.

SM Ak = 1

k

n∑
i=n−k+1

xi (4.1)

Linearly Weighted MA (WMA) [155] applies linearly decreasing weights, with the greatest

weight given to recent values, wi weight assigned to value at time i .

W M Ak =
n∑

i=n−k
(xi ×wi)

/ k∑
i=1

wi (4.2)

where: xi = value of underlying time series at time i

k = window size

n = total number of observed values

wi = weight assigned to value at time i

Exponentially Weighted MA(EMA) [95] applies a non-uniform weighting, so that recent

value is weighted more heavily. Weights use a smoothing factor based upon the exponential

88 On Improving Streaming System Autoscaler Behaviour

function α.

E M Ak = xk + (1−α)xk−1 + (1−α)2xk−2 +·· ·+ (1−α)k x0

1+ (1−α)+ (1−α)2 +·· ·+ (1−α)k
(4.3)

where: x = value of underlying time series

k = window size

α= smoothing factor

Double Exponential MA (DEMA) [155] and Triple Exponential MA(TEMA) [166] are

composite MAs atop E M A with window size k. To improve smoothness DEMA runs an MA

on itself, but this operation increases lag, so to counter this problem it uses the so called

“twicing” technique [184]. T E M A applied E M A three times.

DE M Ak = (2×E M Ak)− (E M A(E M Ak)) (4.4)

T E M Ak = (3×E M Ak)− (3×E M A(E M Ak))

+ (E M A(E M A(E M Ak)))
(4.5)

where: k = window size

E M A = Exponentially Weighted MA

T3 Moving Average (T3MA) [180] is calculated by taking the weighted sums of a simple,

a double, and a triple EMA. This smoothing technique allows the model to produce curves

more gradual in nature than “ordinary” moving averages and with smaller lag, making

it smoother and more responsive. However, it bears the disadvantage of a tendency to

overshoot the underlying values as it attempts to realign itself to current values.

GDk,v = E M Ak × (1+ v)−E M A(E M Ak)× v

T 3k =GD(GD(GDk))
(4.6)

where: k = window size

GD = Generalised DEMA

v = volume factor

Sine Weighted Moving Average(SINWMA) [155] is a weighted average, based on moti-

vation that values of a particular time series fluctuate following some unknown wave. As a

4.4 Preliminaries and Model 89

model, the Sine wave is used to adjust value weights.

SI NW M Ak =

(
5∑

i=1
sin

(iπ
6

)
xk−i+1

)
(

5∑
i=1

sin
(iπ

6

)) (4.7)

where: xi = value of underlying time series at time i

k = window size

Arnaud Legoux Moving Average (ALMA) [13] removes small time series value fluctu-

ations and enhances the trend by applying a moving average twice, one from left to right

and one from right to left. It is inspired by the use of Gaussian Filters in image processing,

it uses a Gaussian distribution shifted with an offset so that it’s not evenly centred on the

window but biased towards the more recent time periods. The offset is adjustable to enable

the trade-off between smoothness and responsiveness. The second parameter is the sigma

(σ) parameter which changes the shape of the filter making it wider (with a larger σ) or more

focused (with a smaller σ).

ALM Ak = 1

NORM

k∑
i=1

xi e− (i−O)2

σ2 (4.8)

where: xi = value of underlying time series at time i

k = window size

O = offset

σ = filter range

Kaufman’s Adaptive Moving Average (KAMA)[112] was developed by Perry Kaufman,

Kaufman’s Adaptive Moving Average is a moving average designed to account for underlying

noise or volatility in a time series. KAMA will closely follow observed values when the swings

are relatively small and the noise is low. KAMA will adjust when the swings in value widen

and follow the observed values from a greater distance. This trend-following indicator can

be used to identify the overall trend, time turning points and filter movements in time series

data.

The Efficiency Ratio (ER) is used as a mechanism to sense speed of change and choppi-

ness of the observed data values. The ratio divides the underlying time series net movement

by the total movement (the sum of each of the individual moves taken as a positive num-

90 On Improving Streaming System Autoscaler Behaviour

ber). It can also be considered a ratio of the time series direction to its volatility. The ER is

sometimes named generalised fractal efficiency.

A scaled smoothing constant is then calculated by mapping the ER onto a range of

trend speeds. If the trend speed is converted to a smoothing constant approximation using

sc = 2/(N+1), then the slowest speeds have the smallest values and the formula for the scaling

constant becomes:

ssc = ER × (sc f ast − scsl ow)+ scsl ow (4.9)

Finally, the scaled speed value is squared to retrieve the smoothing constant as follows

c = sc × sc = sc2. The smoothing constant is calculated every time period and used in the

EMA formula; this becomes the KAMA:

K AM Ak = K AM Ai−1 + c × (xi −K AM Ai−1) (4.10)

Midpoint (MIDPOINT)[104] the calculated average of values, is assigned to the midpoint

of the time period window.

M I DPOI N Tk = (max(x1, x2, . . . , xi))+ (min(x1, x2, . . . , xi))×
2

(4.11)

Wilder’s Moving Average (RMA) [192] is similar to the EMA with the difference that the

RMA uses a smoothing factor of α= 1/n instead of α= 2/(n+1) as is the case for the EMA. This

alternative smoothing factor results in the RMA responding more slowly to changes in the

observed values when in comparison.

RM Ak,i =

SM Ak,i if RM Ak,i−1 = 0

RM Ak,i−1 +
1

k
(xi −RM Ak,i−1) otherwise

(4.12)

where: n = total number of observed values

xi = value of underlying time series at time i

k = window size

SM A = Simple Moving Average

4.4 Preliminaries and Model 91

Symmetric Weighted Moving Average (SWMA)[104] sets the weights applied to individ-

ual values, based on a symmetric triangle.

SW M Ak =
t∑

j=−t
a j ×SW M Ak+ j

a j = a− j

t∑
j=−t

a j = 1
(4.13)

where: xi = value of underlying time series at time i

k = window size

ci = coefficient of statistic at time i

Triangular Moving Average (TRIMA)[104] is a variation on the Simple Moving Average.

Rather than giving equal weight to all days in the period, the shape of the weights are

triangular and the TRIMA gives progressively more weight to days in the middle of the

period. It is equivalent to a double smoothed simple moving average.

T RI M Ak = (SM A1 +SM A2 + ...+SM An)

n
(4.14)

where: k = window size

SM A = Simple Moving Average

Zero Lag MA (ZLMA) [45] adds a momentum factor to reduce lag in the average so that it

can track current prices more closely. It achieves this by positively weighting recent prices in

the window period while adding negative weights on old prices.

β= 0, for n > 1 else 2

Z LM Ak =α(xk−1 +β× (xk −Z LM Ak−1(xk−1))

+ (1−α)×Z LM Ak−1(xk−1)

(4.15)

where: xi = value of underlying time series at time i

k = window size

We wish to establish an intuition as to the properties of each MA model and how we

anticipate they will relate to the categories of autoscaler failure outlined in (Section 4.2).

Figure 4.4 highlights that our models occupy a continuum between smoothness and respon-

siveness. We anticipate methods such as Simple, Linearly Weighted, and Wilder’s Moving

Average will exhibit smooth behaviour, and will address oscilation, volatility and behavioural

92 On Improving Streaming System Autoscaler Behaviour

S M A W M A R M A E M A D E M A T E M A Z L M A

S m o ot h n e s s R e s p o n si v e n e s s

O s cill ati o n

V ol atilit y

B e h a vi o ur al R o b u st n e s s

L a c k of R e a cti vit y

I n s e n siti vit y

Fig. 4.4 Interplay between moving average models on categories of autoscaler failure (§ 4.2)

robustness. Meanwhile, moving average models designed to respond to recent values, such

as Zero Lag (ZLMA) and Triple-Exponential Moving Average (TEMA) we expect to overcome

non-reactivity and insensitivity.

4.4.3 Experimental Environment

The evaluation used Apache Flink 1.4.1 [29] and ran on an X570 AORUS ULTRA with 12-core

AMD Ryzen 9 3900X and 64GB RAM.

Each of our workload traces (39,000 with extreme parallelism shifts and 400 chosen

for volatility analysis), were run through DS2 in offline mode to provide our “ground truth”

values. To generate our “ground truth” values, we use DS2 with an activation period of

one. Setting the activation period to one means that DS2 is configured to make parallelism

adjustments at the highest possible frequency, i.e., at every time step or epoch. By using an

activation period of one, we aim to achieve “instantaneous optimal levels of parallelism” for

the given workload (DS2act1). This means that DS2 is expected to adapt the parallelism of

the system in real-time, based on the immediate workload requirements, without any delay

or aggregation of metrics over multiple time steps. The use of DS2 with an activation period

of one serves as a baseline or reference point for evaluating the system’s behaviour and

performance under ideal conditions, where the autoscaler can instantly adapt to workload

changes. We perform further experiments across a) a range of activation periods, b) applying

a range of moving average models, for varying window periods.

4.4 Preliminaries and Model 93

4.4.4 Summary of Comparison Metrics

We evaluate the efficacy of each moving average model with respect to three metrics; accu-

racy, bias and smoothness.

Accuracy [156]: the absolute difference between “ground-truth” values and values with

a smoothing model applied. We take the instantaneous estimates of optimal operator

parallelism from DS2 with an activation period of one (DS2act1). Accuracy for an MA with

window size n at time t is calculated as shown in Equation 4.16. The average accuracy for

the entire dataset is given by Equation 4.17.

at = |X t −man
t | (4.16) aman = 1

k

k∑
t=1

|X t −mat
t | (4.17)

for accuracy at and value X t at time t , mat is the moving averaged series at time t , for

window size n. Smaller values are better.

Bias: the tendency to observe a positive or negative difference between the value of

the underlying “ground-truth” and the value of the MA, across an entire data set, in similar

fashion to Equation 4.17, without converting to absolute values. This represents the bias of

a model towards under vs over-provisioning of resources.

Smoothness [156]: the tendency of the model to propose contradictory scaling decisions

(Equation 4.18). Characteristically similar to the second derivative of the time series. A

smaller smoothness value signifies the model has a lower tendency to oscillate, and less

likely to follow a scaling action with one in the opposite direction.

smoman = 1

k

k∑
t=3

|man
t −2man

t−1 +man
t−2| (4.18)

4.4.5 Model Ranking and Selection

Table 4.1 Moving Average Model Ranking Table

Wins Avg Rank Rank

Name Symbol P5 P10 P20 P50 Total P5 P10 P20 P50 Avg. Rank Wins Avg Rank Combined Rank

Triple Exponential MA[166] TEMA 17 17 21 22 77 4.4 5.3 4.6 3.5 4.5 1 1 1
Linearly Weighted MA[155] WMA 11 11 7 2 31 3.5 3.6 4.9 6.0 4.6 3 2 2
DS2[108] DS2 14 16 17 10 57 6.7 7.7 7.8 8.0 7.6 2 8 3
Exponentially Weighted MA[95] EMA 6 7 4 4 21 3.8 4.2 5.1 5.2 4.6 5 3 4
Double Exponential MA[155] DEMA 8 5 4 7 24 5.1 6.1 6.1 4.5 5.5 4 4 5
Zero Lag MA[45] ZLMA 7 6 2 4 19 5.3 5.9 6.5 5.4 5.8 6 6 6
Wilder’s MA[192] RMA 2 2 5 8 17 5.7 5.8 5.7 5.5 5.6 7 5 7
Arnaud Legoux MA[13] ALMA 0 0 0 2 2 8.4 7.8 6.6 5.8 7.3 12 7 8
Simple MA[155] SMA 0 0 2 2 4 8.0 7.2 7.4 8.2 7.7 11 9 9
Tilson MA[180] T3MA 1 2 1 1 5 7.4 7.8 8.5 7.5 7.8 8 10 10
Kaufman’s Adaptive MA[112] KAMA 1 1 1 2 5 9.2 9.9 9.2 8.5 9.2 8 12 11
Midpoint[104] MIDPOINT 0 0 3 2 5 9.2 9.0 9.3 9.5 9.2 8 13 12
Sine Weighted MA[155] SINWMA 0 0 0 1 1 8.9 8.8 9.2 9.3 9.0 13 11 13
Symmetric Weighted MA[104] SWMA 0 0 0 0 0 10.7 10.5 10.9 9.7 10.5 14 14 14
Triangular MA[104] TRIMA 0 0 0 0 0 11.5 11.5 11.9 10.6 11.4 14 15 15

4.4 Preliminaries and Model 95

To evaluate each moving average model, we use the estimated optimal parallelism values

suggested by the autoscaler, across a range of activation periods. The logic is that one

should compare moving average models with similar smoothness values, setting that as a

base characteristic. We aim to identify moving average models with both a small accuracy

value and a small smoothness value, as that would correspond to a model that is both

stable and remains close to “optimal”. We now compare models of similar smoothness and

identify those which perform better, as measured by accuracy. Firstly, for each workload,

and activation period, we select all models with the same or better smoothness. Using the

EMA model as the example, with n ∈ (5,10,20,50) and smoothness S:

g = argmin
g

SE M A
g ≤ SDS2

n (4.19)

We then calculated the accuracy scores for all selected models, identified the window

period parameters for each model that produced the smallest accuracy score, and ranked

the models according to their best accuracy score. Two approaches were then used to create

a set of interim results, which are presented in Table 4.1:

1. Winner selection based on voting. The winning model, at each window period, for

each workload was that with the smallest accuracy score. The most often winning

model across all window periods and workloads was selected.

2. Winner selection based on aggregated rankings. For each workload, for each window

period, the models were ranked by accuracy and assigned an integer value based on

that rank. Rank values for each model were then averaged across all workloads and all

window periods, and the model with the smallest average rank value was selected.

The final “Combined Rank” was calculated by normalising “Total Wins” and “Average Rank”

to the range 0 to 1 with the largest “Total Wins” value, and the smallest “Average Rank” value,

assigned the normalised value of 1. For each model, these two scores were averaged and

ordered to assign a “Combined Rank”.

The justification for this approach is based on the following considerations:

1. Equal Importance: By assigning equal weight to both “Total Wins” and “Average Rank”,

the combined metric attributes both components equal importance in assessing the

overall performance of the moving average models. This implies that the ability of a

model to consistently outperform others (as measured by “Total Wins”) and its average

ranking across all scenarios (as measured by “Average Rank”) are considered equally

valuable in determining its overall effectiveness.

96 On Improving Streaming System Autoscaler Behaviour

2. Balancing strengths and weaknesses: Each component of the combined metric cap-

tures a different aspect of the models’ performance. “Total Wins” focuses on the fre-

quency of a model being the best performer, while “Average Rank” takes into account

the models’ relative position across all scenarios. By combining these two components

with equal weight, the metric balances the strengths and weaknesses of each model,

preventing a model that excels in one aspect but significantly underperforms in the

other from being overly favoured or penalised.

3. Robustness and generalisability: Giving equal weight to both components helps to

identify models that exhibit robust and consistent performance across various sce-

narios. A model that achieves a high “Total Wins” score but has a poor “Average Rank”

may be overly specialised or sensitive to specific conditions. Conversely, a model with

a good “Average Rank” but low “Total Wins” may be a strong performer overall but

rarely outperforms others. By considering both components equally, the combined

metric favours models that strike a balance between being the best performer in some

cases and maintaining a consistently high ranking across all scenarios.

The top six performing MA models (as shown in in Table 4.1) were selected for consider-

ation and application when attempting to alleviate any of the autoscaler failures selected

for analysis. Due to being a foundational element in the construction of a number of the

selected models, the SMA model was also included, making seven short-listed models in

total (those presented in Section 4.4.2).

4.5 Findings and Results

The remainder of our analysis centres around two key areas. First we present MA models’

effectiveness in ameliorating the impacts of extreme parallelism shifts (Section 4.5.1). We

then systematically explore the volatility of the methods under consideration (Section 4.5.2).

4.5.1 Extreme Parallelism Shift

We aim to identify extreme parallelism shifts which display the characteristics described in

Section 4.2. These shifts are particularly costly to enact, due to their substantial resource

requirements and the performance impact during the extended time they take to enact.

We then investigate the effectiveness of applying a range of MA models in order to

mitigate such shifts. Efforts are made to also quantify the sensitivity of each MA model with

regard to its effect on the extreme shift behaviour, while varying the window period value

4.5 Findings and Results 97

input. Some MA models may display changes in levels of effectiveness and sensitivity that

are directly proportional to the magnitude of a shift (i.e., they may work better at mitigating

the effects of relatively large extreme shifts, than they do small ones), while others may be

inversely proportional.

Analysis was carried out on 39,000 workload traces (split evenly among the four workload

functions presented in Section 4.4.1), containing extreme parallelism shifts that exceeded

eight standard deviations in size above the average parallelism change of that individual

workload. To identify and locate instances of what we would consider extreme parallelism

shifts, we wish to isolate moves which are 1) rapid, 2) large and 3) retraces its movement in a

similar fashion.

• Rapid will be captured by measuring changes across a pre-defined, short rolling

window, within a set period of time.

• Large will be captured by selecting changes larger than a pre-defined number of

standard deviations above the mean.

• Retracement identifies if the parallelism level returns within a threshold distance of an

initial starting value.

Once occurrences of extreme shifts are located, one-by-one we apply our selection of

MA models to the output of DS21, iteratively across a range of window period values. At

each iteration, we measure the effect of the MA model on the magnitude and duration of the

extreme shift. We also record the window period value that results in the move reaching a

size below the threshold needed to be considered large. We also verify that the duration of

the move (i.e., the time between initial move and retracement) is not significantly altered.

Figure 4.5 (left) shows the distribution of extreme parallel shift sizes for the test workloads

(in terms of standard deviations above the mean for each workload in question). The results

of applying the 90th percentile window period value are shown in Figure 4.5 (right) (note the

independent y-axis scales). An extreme parallelism shift is considered one that 1) is larger

than eight standard deviations in magnitude above the mean for a particular workload, and

2) retraced to its starting range within four time steps/epochs.

By setting the threshold at eight standard deviations, we are focusing on exceptionally

rare and extreme events that are highly unlikely to occur under normal circumstances,

allowing for a more targeted analysis of the system’s response to these exceptional events.

Such a high threshold ensures that the identified parallelism shifts are truly anomalous and

not just random fluctuations or minor deviations from the average behaviour.

98 On Improving Streaming System Autoscaler Behaviour

0

10

20

30

40

Raw

S
pi

ke
 S

iz
e

(S
td

)

0

2

4

6

SMA EMA DEMA RMA TEMA WMA ZLMA
Model

S
pi

ke
 S

iz
e

(S
td

)

Fig. 4.5 Distribution of Extreme Parallelism Shifts for raw workload traces (left) and for each
MA model (right).

The retracement window of four time steps/epochs is chosen to identify parallelism shifts

that are quickly determined to be “incorrect” or unjustified by the autoscaler. In these cases,

the autoscaler initially proposes an extreme change in parallelism but soon realises that this

decision is not based on any legitimate or defensible reason. As a result, it quickly retraces

the parallelism level back to its original range within a short period. By focusing on extreme

parallelism shifts that are quickly retracted, this definition helps to identify instances where

the autoscaler’s behaviour may be erratic or unreliable, leading to unnecessary resource

allocation changes and potentially impacting the system’s performance and stability.

It’s important to note that the specific values of eight standard deviations and four

time steps/epochs are not absolute and may vary depending on the characteristics of the

workload, the system architecture, and the goals of the analysis. The choice of eight stan-

dard deviations as the threshold magnitude and four time steps/epochs as the retracement

window is based on the assumption that shifts of that size are truly extreme, and that a

well-functioning autoscaler should be able to recognise and correct its unjustified decisions

within a relatively short period. However, both values may be adjusted based on the char-

acteristics of the autoscaler, the workload, and the system under study. Researchers may

fine-tune these values to better capture the autoscaler’s responsiveness and the timescales

at which unjustified parallelism shifts are typically retracted, as well as to suit their specific

requirements and the observed behaviour of the system under study.

4.5 Findings and Results 99

We can see that the data consisted of parallelism shifts ranging between eight and 40

standard deviations, with the vast majority ranging between ten and 20 standard deviations.

Fig. 4.6 Distribution of smallest window periods to mitigate extreme parallelism shifts.

Figure 4.6 displays the distribution of the minimum window period size required by

each moving average model to successfully mitigate the impact of extreme parallelism shifts,

considering all tested workload traces. The mitigation point is defined as the moment when

the magnitude of the parallelism shift is reduced to within three standard deviations above

the mean parallelism change for that specific workload.

In other words, for each moving average model and workload combination, we determine

the smallest window period value that effectively brings the extreme parallelism shift under

control. A shift is considered “under control” or “mitigated” when its size falls below a

threshold of three standard deviations above the average parallelism change observed in

that particular workload.

By presenting the distribution of these minimum window period values, Figure 4.6

provides insights into the relative effectiveness of each moving average model in handling

extreme parallelism shifts across various workload scenarios. Models with smaller minimum

window period values can be seen as more efficient in mitigating extreme shifts, as they

require shorter window sizes to bring the shifts under control.

Figure 4.7 shows; 1) the average values for smoothness and accuracy at each window

value, when applied across the complete set of workload traces and 2) the inherent trade-off

between smoothness and accuracy. Table 4.2 shows, for each model, the average values for

smoothness, accuracy and bias, when applied using the specific window period identified

100 On Improving Streaming System Autoscaler Behaviour

Table 4.2 Smoothness & Accuracy: η90 Window Period

MA Model η90 Window
Period

Smoothness Accuracy Bias

RMA[192] 6 0.48 2.61 0.05
SMA[155] 9 0.42 2.71 -0.01
EMA[95] 12 0.46 2.76 0.00
WMA[155] 14 0.40 2.71 -0.02
DEMA[155] 25 0.43 3.03 -0.10
ZLMA[45] 29 0.44 3.26 -0.19
TEMA[166] 38 0.43 3.27 -0.21

as the 90th percentile value from the distributions shown in Figure 4.6. Figure 4.5 shows the

distribution of extreme parallel shift sizes across the workloads, after a particular model has

been applied using the 90th percentile window period.

Figures 4.5 and 4.6 allow us to analyse the general effectiveness of an MA model in

mitigating extreme one-off parallelism shifts. Furthermore it helps reveal any potential

underlying relationships that exist between that general level of effectiveness and both the

window size values and the magnitude of the extreme shifts.

With increasing window period values, so to does the MA models’ effectiveness in miti-

gating the effects of extreme parallelism shifts. Increasing a model’s window period increases

the smoothing effect it has, as it assigns less weight to - and becomes less influenced by -

each suggested parallelism value. This is supported by Figure 4.6 which shows that once we

reach a window period value of 38, all moving average models tested successfully mitigated

the impact of at least 90% of the extreme parallelism shifts found in the test dataset (we

refer to this as the 90th percentile window period value). The models reduced the size of

these shifts, bringing them down to a level that falls within three standard deviations from

the average parallelism change. In simpler terms, the moving average models were able to

handle and control the vast majority (90% or more) of the extreme parallelism shifts present

in the test data, by employing a window period value of 38 or lower. By applying these

models, the magnitude of the shifts was decreased to a range that is considered reasonably

close to the typical or average parallelism change observed in the dataset. This range is

defined as within three standard deviations from the mean. The ability of all models to

mitigate at least 90% of the extreme shifts demonstrates their effectiveness in managing

and smoothing out the impact of these significant and sudden changes in parallelism. By

reducing the magnitude of the shifts to a level closer to the average, the models help to

4.5 Findings and Results 101

stabilize the system’s behaviour and minimize the potential disruptions caused by extreme

parallelism changes.

Table 4.2 displays the 90th percentile window period value required to achieve this 90%

extreme parallelism shift mitigation for each of the MA models tested. We observe that this

threshold window period value varies significantly across the range of MA models (ranging

from six to 38).

The results of applying the 90th percentile window period value are shown in Figure 4.5

(note the independent y-axis scales). All models are able to reduce the magnitudes of the

extreme shifts to below two standard deviations, save for the EMA and RMA models which

result in magnitudes between 2 to 2.5 standard deviations.

Figure 4.7 shows a clear trade-off between smoothness and accuracy, both at the window

period level and the model itself. The rankings for accuracy are the inverse of those for

smoothness. The model that displays the best accuracy, displays the worst smoothness

(TEMA) and vice versa (RMA). WMA holds the average rank for both smoothness and

accuracy. However, there appear to be some models that offer a better trade-off between

their accuracy and smoothness for a particular window value.

The WMA model offers the most beneficial accuracy/smoothness trade-off at the level

where 90% of shifts were mitigated. The WMA model displays the best level of smoothness

out of the models tested, while displaying the joint second best level of accuracy. WMA

displayed no significant level of bias. Furthermore, the far right plot in Figure 4.7 shows

that the convex accuracy-smoothness “trade-off frontier” for the WMA model dominates all

other models tested, confirming the WMA to be the model of choice.

We note that the accuracy-smoothness “trade-off frontier” for the TEMA, ZLMA and

DEMA models appear to the right of, and thus are dominated by, the other models tested.

It is these same three models which appear in Table 4.2 with the three highest η90 values

(i.e., the smallest window value which successfully mitigates at least 90% of the undesirable

extreme parallelism shifts observed). They are also the only three models which display any

noticeable bias, with values of -0.10, -0.19 and -0.21, between 2-4x the magnitude of that

shown by the RMA model (0.05) as the next closest value. The above results indicate the

TEMA, ZLMA and DEMA models to be a poor choice, relative to the other models tested.

4.5.2 Volatility

We now explore volatility with respect to the following metrics: a) the average level of

parallelism, b) the average size of a change in parallelism, c) the cumulative size of changes

in parallelism, relative to the average level of parallelism observed to that point in time, d)

the total number of changes in the level of parallelism.

102 On Improving Streaming System Autoscaler Behaviour

Fig. 4.7 Performance of moving average models with respect to accuracy (top left) and
smoothness (top right) and the accuracy-smoothness trade-off (bottom left).

4.5 Findings and Results 103

Table 4.3 Volatility of autoscaler metrics for each MA model.

Mean (%) Median (%)

MA Model No. of Chng Cum Rel Size Chng Avg Para Avg Chng Size No. of Chng Cum Rel Size Chng Avg Para Avg Chng Size

DEMA [155] 6.36 6.6 0.23 1.77 4.62 5.15 0.19 1.69
DS2 [108] 9.5 75.2 14.28 57.21 8.76 41.07 10.2 42.2
EMA [95] 8.26 8.17 0.12 1.31 5.34 5.56 0.11 1.23
RMA [192] 9.86 9.14 2.67 1.61 5.87 5.68 1.41 1.57
TEMA [166] 7.86 8.61 0.66 1.74 6.56 7.14 0.39 1.84
WMA [155] 8.21 8.02 0.13 1.5 5.87 5.84 0.1 1.55
ZLMA [45] 9.34 9.51 0.39 4.13 8.02 7.19 0.35 3.96

Stratified random sampling was carried out with each strata representing a specific

workload generation function. This provided an even mix of 400 traces across all four

workload generation functions, creating a sample that best reflects the population being

studied (Section 4.4.1). The above metrics of interest were recorded and their volatilities

calculated.

Figure 4.8 shows the values recorded for each of the metrics of interest, as we vary

activation / window periods. For brevity we show the results for a single workload, whose

behaviour is representative of that across all experiments. Therefore, Figure 4.8’s sub-figures

represent a particular metric’s values, for a particular model, for a specific workload trace,

when applied using a range of differing activation/window period values, (e.g. Figure 4.8

(top left) shows the observed average parallelism values for each model, for a specific

workload trace, when applied using differing activation/window period values, across a

range of 2 to 100). Our MA models exhibit preferable behaviour with respect to average

parallelism, average parallelism change size, and cumulative parallelism change size. DS2

shows fluctuating values of average parallelism as its activation period increases, highlighting

a challenge in correctly parametrising this value in the presence of fluctuating workloads. In

contrast, DS2 shows improved behaviour for the number of parallelism changes enacted.

Figure 4.9 shows the distribution of each metric of interest for each MA model, across

all 400 workload traces. DS2 is more dispersed than any of the MA models. For the number

of parallelism changes, we see a central tendency higher than the MA models. For the

other three metrics, there appears to be no central tendency, signifying a close to random

relationship across differing workloads.

Table 4.3 shows the mean and median volatility for each model and metric, across all

workloads tested. Each metric’s volatility distribution exhibits positive skew, with median

values smaller than means. The values for DS2’s metrics’ volatility, as implied by Figure 4.9,

are confirmed to be significantly higher than those for any of the MA models tested (save

for the number of parallelism changes metric volatility). This signifies that all models are

successful in reducing the volatility, and therefore uncertainty, regarding the behaviour of

104 On Improving Streaming System Autoscaler Behaviour

20

24

28

32

0 25 50 75 100
Activation / Window Period

A
ve

ra
ge

 P
ar

al
le

lis
m

0

10

20

0 25 50 75 100
Activation / Window Period

A
ve

ra
ge

 C
ha

ng
e

S
iz

e

0

10

20

30

0 25 50 75 100
Activation / Window Period

C
um

ul
at

iv
e

R
el

at
iv

e
C

ha
ng

e
S

iz
e

0

50

100

150

200

0 25 50 75 100
Activation / Window Period

N
um

be
r

of
 C

ha
ng

es

Moving Average Model
DEMA

DS2

EMA

RMA

TEMA

WMA

Fig. 4.8 Impact of activation/window period, with respect to the average parallelism (top
left), average change size (top right), the number of parallelism changes (bottom left) and
cumulative relative change size (bottom right).

4.5 Findings and Results 105

0

1

2

3

4

5

0 1 2 3
Average Parallelism Volatility (%)

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80
Average Change Size Volatility (%)

D
en

si
ty

0.00

0.05

0.10

0.15

0 10 20 30 40 50
Number of Changes Volatility (%)

D
en

si
ty

0.00

0.04

0.08

0.12

0 50 100 150
Cumulative Relative Size Changes Volatility (%)

D
en

si
ty

MA Model
DEMA

DS2

EMA

RMA

TEMA

WMA

ZLMA

Fig. 4.9 Distribution of metrics volatility for all models, with respect to the volatility of
average parallelism (top left), average change size (top right), the number of parallelism
changes (bottom left) and cumulative relative change size (bottom right).

106 On Improving Streaming System Autoscaler Behaviour

DS2 across differing workloads, with possible fundamental differences in their underlying

characteristics and generative process.

The EMA and WMA models are most successful in reducing the volatility of 1) the average

parallelism level and 2) the average change size. The DEMA models appears most successful

with regards to 1) the numbers of parallelism changes enacted and 2) the cumulative rel-

ative size of those changes across a workload trace. It is noted that the RMA model, while

performing similarly to other models across most metrics, its value for the volatility of the

average parallelism value, while significantly lower than that for DS2, remains significantly

higher than the other MA models.

4.5.3 Summary of Findings

We have examined several moving average models, as applied to the parallelism values

proposed by a state-of-the-art autoscaler. Relating our findings back to the categories of

failure in Section 4.2:

Extreme Parallelism Shifts: We have demonstrated the potential for moving average mod-

els to mitigate over 90% of extreme parallelism shifts (Section 4.5.1)

Volatility: We show that moving average models can reduce volatility of suggested paral-

lelism values (Section 4.5.2). In particular, we confirm our expectations (Section 4.4.2)

that smoother models are most successful in mitigating volatility.

Under- and over-provisioning: Our Bias measure (Table 4.2) shows our approaches realise

these benefits without causing under-/over-provisioning. The parallelism suggestions

from the models are consistent with the instantaneous parallelism suggestions from

our state-of-the-art autoscaler.

Further work is required to explore the remaining failure behaviours of autoscalers within

a production environment. In particular, re-sharding and the transfer of snapshot state

can lead to reconfigurations which cannot be completed within the decision interval of

the autoscaler. Further experimentation will allow us to understand the interplay between

model performance and reconfiguration time. These implications are explained further in

Section 3.3.

4.6 Replication Package 107

4.6 Replication Package

We are committed to ensure the broader community benefit from our work. We provide a

replication package 1 comprising; a) 40,000 workload traces collected through our experi-

mentation, b) computational notebooks supporting the analysis of the measurements, c)

executable scripts and a practitioners’ annex to support the replication of these findings

across other workloads and target systems.

4.7 Conclusion

We have demonstrated the strong potential for using moving average models to enhance the

robustness and accuracy of autoscaler decision-making in the face of workload variability.

Through empirical evaluation, we demonstrate additional classes of undesirable autoscaler

behaviour, beyond those captured by commonly-used SASO properties. We show applying

MA models to autoscaler output can:

1. Successfully mitigate instances of undesirable, extreme parallelism shifts, with differ-

ent models displaying differing characteristics and levels of effectiveness.

2. Reduce the number of rescaling decisions and their latency and throughput impacts,

through a) reduced oscillations, b) mitigating costly-to-enact extreme parallelism

shifts.

3. Significantly reduce autoscaler uncertainty and volatility when faced with dynamic

and variable incoming workloads.

Our work highlights several interesting avenues of future research. Firstly, we see the

potential for an ensemble approach to provide the distinct benefits of several MA mod-

els. Secondly, we see potential to incorporate these measures to inform other operating

parameters for autoscalers. For example, to increase contingency multipliers for scaling

decisions in periods of uncertainty, or introduce MA models dynamically when dynamic

and variable incoming workloads are detected. Finally, we may incorporate estimates on

rescaling duration (e.g. accounting for state size) as a mechanism to optimise the choice of

window size.

1https://www.github.com/MattForshaw/DEBS23_WindowingAndWeighting/

Chapter 5

Measuring Streaming System Robustness

Using Non-parametric Goodness-of-Fit

Tests

Related Publications

The work presented in this chapter appeared in the following publication:

Jamieson, S., Forshaw, M. (2023). Measuring Streaming System Robustness Using Non-

parametric Goodness-of-Fit Tests. In: Gilly, K., Thomas, N. (eds) Computer Performance

Engineering. EPEW 2022. Lecture Notes in Computer Science, vol 13659. Springer, Cham.

DOI: 10.1007/978-3-031-25049-1_1. URL: https://doi.org/10.1007/978-3-031-25049-1_1.

5.1 Introduction

Due to the high penalties for system performance degradation, streaming system operators

may seek to accept lower average performance in return for an increase in robustness to a

wide variety of operating conditions [48]. This raises the question of how robustness is to be

quantified and measured. We evaluate several robustness metrics based on non-parametric

goodness-of-fit tests. Our aim is to identify emerging best practice which could then inform

future performance analysis research considering robustness quantification in distributed

systems.

A robust system is one that can maintain performance under a wide variety of operating

conditions, or in the face of various uncertainties in the operating environment. Robustness

https://doi.org/10.1007/978-3-031-25049-1_1

110 Measuring Streaming System Robustness

is the persistence of certain specified features, despite the presence of perturbations in the

system’s environment [48].

Our work is most closely related to [48], which presents a robustness metric based upon

the Kolmogorov-Smirnov (KS) statistic, formalised and presented in Section 5.2.1, (although

we go on to include analysis of multiple, additional metrics). The suitability of KS arises from

the fact that it can be used in any analytical model for which the Cumulative Distribution

Functions (CDFs) of the disturbance and performance can be estimated. It can also be

applied to the ECDFs of actual system data. Given a set of performance observations, if

the system is robust, the ECDF of the performance metric under “normal” conditions F (x),

should be very similar to the ECDF of the performance metric with perturbations applied

F∗(x). The closer the functions agree, the more robust the system.

To analyse the persistence of relevant specified features, e.g., system latency, data must

be collected across a range of environments, i.e., situations whereby certain disturbances

are applied and those without. The results can then be compared and conclusions drawn as

to the magnitude of effect each disturbance has on the chosen performance metric. When

measuring data from complex systems, one often has no a priori knowledge regarding the

underlying distribution function from which the data originate. To avoid making assump-

tions as to the underlying distribution, non-parametric tests, as opposed to parametric tests,

are most appropriate when comparing two data samples for goodness of fit.

Parametric tests, such as the t-test or Analysis of Variance (ANOVA), make specific

assumptions about the underlying distribution of the data. These tests typically assume that

the data follows a normal distribution, and that the variance of the groups being compared is

equal. When these assumptions are not met, the results of parametric tests can be unreliable

or misleading.

Non-parametric tests, such as the KS test or the CVM test, do not make strict assumptions

about the distribution of the data. These tests are based on the ranks or relative positions

of the observations rather than their actual values. As a result, non-parametric tests are

more robust and flexible when the data does not follow a specific distribution or when the

assumptions of parametric tests are violated.

Although appropriate for use in our case, the KS statistic also displays certain charac-

teristics which suggest it may not be the optimal approach in certain circumstances. For

example, while the KS statistic is robust to outliers, it is known that the values of the KS

statistic itself are not equally sensitive to movements along its own probability distribution.

The KS statistic is most sensitive to situations where ECDFs differ in a global fashion near

the centre of the distribution, but is relatively insensitive to differences at the extremes [8].

This is due to values converging to zero and one, at the extremes of the ECDFs.

5.2 Summary of Test Statistics 111

This poses two problems; firstly, real-world computing systems are known to experience

“heavy-tailed” distributions of metric values when experiencing performance disturbances

or degradation [84]. Secondly, observations near the right tail of the ECDF, by definition, rep-

resent more extreme values of the underlying metric than those observed nearer the median.

More extreme values result in more extreme impacts upon the system. The insensitivity of

the KS statistic in the tail regions goes against this logic by implicitly giving less weight to

these extreme observations than they deserve.

There exist numerous other non-parametric goodness-of-fit tests from the same family of

tests as the KS test, each created to better cope with different sample sizes or circumstances.

We propose incorporating a number of these statistical tests, along with the KS statistic on

the basis that the resulting values either include additional information not provided by the

KS statistic alone, or overcome a particular weakness or assumption within the other tests.

Our analysis shows that different tests will produce differing results to provide a more

complete picture of the (1) level and (2) characteristics of a streaming system’s robustness.

A streaming system’s robustness can be characterised by its reaction to various levels of

disturbance, rather than to a single level. We relate a robust system to one that shows a

size and rate of degradation that is in line with the size and rate of change of the applied

disturbances. If this is the case then the test statistic value will follow a predictable, near-

linear path in the face of changes in the size of disturbance. Vice versa we relate a sensitive,

non-robust system to one that shows large, possibly non-linear changes in the chosen test

statistic in relation to the applied disturbance.

5.2 Summary of Test Statistics

Within this section, we formalise notation for each test statistic under evaluation.

5.2.1 Kolmogorov-Smirnov

The KS test [168] belongs to the supremum class of Empirical Distribution Function (EDF)

statistics and is based on the cumulative probability distribution of data. This class of

statistics is based on the largest vertical difference between the two distributions being

compared. The one-sample KS test is used to compare a sample distribution with a reference

probability distribution to decide if the sample comes from a population with that specific

distribution.

112 Measuring Streaming System Robustness

The one-sample KS test δ quantifies the distance between the sample distribution and

reference distribution, using Equation 5.1.

δ= sup
−∞<x<∞

∣∣F (x)−F∗(x)
∣∣ (5.1)

where: δ = KS statistic

F (x) = Reference ECDF (performance metric under “normal” conditions)

F∗(x) = Sample ECDF (performance metric with perturbations applied)

The two-sample KS test is used to compare two sample distributions to decide whether

they were drawn from the same (but unknown) population. calculates the distance between

the ECDFs of the two samples, at each unit of the scale, (e.g. at each time point for latency

distributions), where the value of interest is the maximum vertical distance identified.

The value of interest is the maximum vertical distance between the two CDFs because it

quantifies the largest discrepancy between the observed and expected distribution values

over the entire range of data. This maximum distance is a critical measure because it

captures the most significant deviation between the two distributions being compared,

regardless of where that deviation occurs.

For the two-sample KS test, the null hypothesis is that both sample distributions come

from the same underlying distribution. If the KS statistic δnn′ , shown in Equation 5.2, is

larger than the critical value, the null hypothesis is rejected.

δnn′ =
√

nn ′

n +n ′ sup
x

|Fn(x)−Fn′ (x)| (5.2)

where: δnn′ = Two-sample KS statistic

Fn(x) = ECDF of data size n

Fn′(x) = ECDF of data size n′

Due to the insensitivity of the KS statistic to differences in the tails of a distribution, a

weighting function ψ is applied to adjust it, creating the WKS δw , in order to assign higher

weights to larger values in the right tail of the ECDF [48]. This is shown in Equation 5.3.

δw = δnn′ψ(x) (5.3)

where: δw = Weighted KS statistic

ψ(x) = Weighting function

5.2 Summary of Test Statistics 113

The weighting function applied needs to account for the underestimation of the KS

statistic in the right tail, but not overly so. Previous experimentation carried out by [48]

suggests choosing the function shown in Equation 5.4 to apply in the computation of δw .

This function is based on the fact that the quantity F (x)(1−F (x)) is at a maximum where

F (x) = 0.5, and the weight is only applied when δ occurs to the right of the median, otherwise

ψ(x) = 1.

ψ(x) =− ln(F (x)(1−F (x))) (5.4)

5.2.2 Cramér-von Mises

The Cramér-von Mises (CVM) statistic [136] belongs to the quadratic class of EDF statistics.

This class of statistics is based on the squared difference between the two distributions

being compared. Specifically, the CVM defined as the integrated squared difference between

the EDFs of the two samples being compared. If the value of T , calculated as shown in

Equation 5.5, is larger than the tabulated values, the hypothesis that the two samples come

from the same distribution can be rejected.

T =
[

N M

(N +M)

]∫ ∞

−∞
[FN (x)−GM (x)]2 d HN+M (x) (5.5)

where: T = Cramér-von Mises statistic

FN (x) = ECDF for the first sample

GM (x) = ECDF for the second sample

HN+M (x) = ECDF for the two samples together

N = first sample size

M = second sample size

While the KS statistic can be insensitive to distributions with similar means that display

multiple cross-overs in their ECDFs, the CVM statistic retains its sensitivity in this situation as

it measures the sum of squared differences, not just the differences themselves. However, the

CVM statistic is insensitive to differences in the tails of the distributions, in similar fashion

to the KS statistic.

5.2.3 Anderson-Darling

The Anderson-Darling (AD) test [8] belongs to the quadratic class of EDF statistics and was

developed originally for detecting sample distributions’ departure from normality. The

two-sample AD test states the null hypothesis that the two samples come from the same

114 Measuring Streaming System Robustness

continuous distribution and is rejected if the AD statistic is larger than the corresponding

critical value. The two-way AD statistic is calculated as per Equation 5.6.

AD = 1

mn

n+m∑
i=1

(Ni Z(n+m−ni))
2 1

i Z(n+m−1)
(5.6)

where: AD = Anderson-Darling statistic

Zn+m = ECDF for the two samples together

n = first sample size

m = second sample size

Analysis carried out by [49] compared the AD test with the KS test and found the AD test

more powerful when comparing two distributions that vary in shift only, in scale only, in

symmetry only, or that have the same mean and standard deviation but differ in the tail

ends only.

5.2.4 Epps-Singleton

The Epps-Singleton (ES) test [50] compares the empirical characteristic functions (ECFs)

of two samples, rather than the observed distributions. The p-value of the ES test gives

the probability of falsely rejecting the null hypothesis that both samples have been drawn

from the same population. The ECF is defined as the Fourier transform of the distribution

function, as shown in Equation 5.7. The ECF is known to completely characterise any

distribution and can be used to derive its moments, so contains more information than just

a single measure such as the mean or variance.

φnk (t) =
∫ ∞

−∞
e i t xdFnk (x) = n−1

k

nk∑
m=1

e i t Xkm (5.7)

where: φ = ECF

t = a real number

i =p−1

n = sample size

Xkm = m-th observation in sample k

[50] compared the ES test with the AD, CVM and KS tests resulting in the following

conclusions [71]; (a) Apply the ES test if using discrete data, (b) the KS test usually has a

lower power than the ES test if using continuous data, and (c) sometimes the AD and CVM

tests can have a higher power than the ES test.

5.3 Methodology 115

5.3 Methodology

This experiment aims to measure changes in streaming system performance, in the face

of disturbances, i.e., changes in the characteristics of the incoming workloads. A range of

workloads were generated and run using Flink [30]. Latency metrics were selected as our

proxy with which to represent performance, or any degradation thereof. Having recorded

the latency observations across the different workload simulation runs, the results were

analysed and transformed to allow an indication of how robust the system was to the

changing workloads.

5.3.1 System

The evaluation was carried out using Apache Flink 1.4.1 [30]. Experiments ran on an X570

AORUS ULTRA with AMD Ryzen 9 3900× 12-Core Processor and 64GB RAM, running Mi-

crosoft Windows 10 Pro. Data collection was integrated with SLF4J in a Docker container.

The workloads were run through a three-step Word Count topology with three unique

operators (as shown in Fig. 5.1). In our topology, the Source Operators emit sentences of

a particular word-length by randomly selecting from a provided set of English words. The

sentences are sent to the second stage of the topology, where the Splitter Operators split

them into individual words. These words are, in turn, sent forward to the third stage of the

topology, the Count Operators. At this stage, a count is kept of the number of times each

word was encountered.

Fig. 5.1 Three-Step Word Count Topology

5.3.2 Summary of Workloads

We design our workloads by specifying the workload generation function and the input

variables which are to be varied to simulate the necessary disturbances. We create a range of

simulations by varying the inputs to the chosen workload function, using a one-factor-at-a-

time (OFAT) experiment design approach [55].

116 Measuring Streaming System Robustness

The workload generation function is a sinusoidal wave (Equation 3.2a) where a is ampli-

tude, ω is angular frequency, φ is phase shift and δ is vertical shift.

Y (t) = A sin(ωt +ϕ) (3.2a revisited)

where: t = time

A = amplitude

ω= angular frequency

ϕ= phase shift

Input Chosen to Vary

Input Variable Source Operators Amplitude Sentence Size Angular Frequency
Source Operators {5,6...15} 10 10 10
Splitter Operators 10 10 10 10
Count Operators 10 10 10 10

Amplitude 10,000 {1000k|k ∈ {5,6...15}} 10,000 10,000
Angular Frequency 0.006978 0.006978 0.006978 { 1

120k 2π|k ∈ {5,6...15}}
Sentence Size 100 100 {10k|k ∈ {5,6...15}} 100
Vertical Shift 20,000 20,000 20,000 20,000

Table 5.1 OFAT workload design

The input variables to be varied are: (1) The number of source operators generating the

incoming workload, (2) the amplitude of the sine wave workload generation function vs its

vertical distance, (3) The angular frequency of the sine wave workload generation function,

and (4) The sentence size on the Nexmark Word Count [183] workload logic. The workload

variations, driven by the OFAT approach, are shown in Table 5.1. 11, equally spaced levels

were chosen for each input value to be varied, resulting in 44 simulation runs carried out in

total.

Our choice of a sine wave to form the basis of our workload generation function is due to

its simplicity and the ease with which its parameters can be varied. The sine wave function

is also well understood, and the effects of changing its parameters are well documented.

These characteristics make it an excellent choice for simulating disturbances in a controlled

manner.

5.4 Results and Discussion 117

5.4 Results and Discussion

5.4.1 Source Operator Variability

Figure 5.2 shows the ECDFs of the max (5.2a), 99th (5.2b), 95th (5.2c) and 50th (5.2d) per-

centile latencies for each Flink simulation, for which the number of workload source op-

erators were varied. There are noticeable deviations in the left tail for the three highest

percentile latencies while, although all latency percentile ECDFs have extreme right tails,

significant deviations between the ECDFs within those extreme right tails only occur for the

max and 99th percentile latencies.

(a) Max Latency (b) 99th Percentile Latency

(c) 95th Percentile Latency (d) 50th Percentile Latency

Fig. 5.2 ECDFs of percentile latency values with variable source operators

Furthermore, as the latency percentiles increase, the extreme right tail values account

for larger proportions of the observed values, i.e. the maximum values for each percentile

are not significantly different, but we see a significantly different number of observations at

or near those maximum values. For example, using a 250ms latency value as the threshold,

we observe proportions of total observations above that value of; circa 1% for 50th percentile

latencies, circa 3-4% for 95th percentile latencies, circa 10-12% for 99th percentile latencies,

and circa 15% for max percentile latencies.

Figure 5.2 also shows that the higher percentile latencies (max and 99th) display signif-

icantly more instances of ECDF cross-overs, than do the ECDFs for the lower percentile

118 Measuring Streaming System Robustness

Statistic
Max p99 p95 p50

WKS KS AD ES CVM WKS KS AD ES CVM WKS KS AD ES CVM WKS KS AD ES CVM

WKS 1.0 0.9 0.88 0.35 0.9 1.0 0.91 0.92 0.46 0.94 1.0 1.0 0.95 0.91 0.95 1.0 1.0 0.94 0.82 0.95
KS 1.0 0.94 0.49 0.91 1.0 0.95 0.52 0.92 1.0 0.95 0.91 0.95 1.0 0.94 0.82 0.95
AD 1.0 0.55 0.98 1.0 0.59 0.95 1.0 0.98 1.0 1.0 0.85 1.0
ES 1.0 0.53 1.0 0.58 1.0 0.98 1.0 0.84
CVM 1.0 1.0 1.0 1.0

Table 5.2 Test stat correlation across latency %tiles w. variable source operators

latencies (95th and 50th). As the latency percentile in question increases, it becomes more

important to capture any differences in the right tail of the distribution as those differences

become larger, along with retaining sensitivity to any instances of ECDF cross-over.

Table 5.2 shows that the 50th and 95th percentile latency results display higher overall

levels of inter-statistic correlation than those observed for the max and 99th percentile laten-

cies. This is in keeping with expectations; the more sensitive a statistic is to non-locational,

non-global differences in the distributions, (e.g., the more sensitive it is to differences at the

extremes or to multiple ECDF cross-overs), the more it should begin to differ, in this case,

from other statistics which are less sensitive to these characteristics.

The WKS statistic values, shown in Figure 5.3b, suggest that the system is less robust to

changes in the number of source operators, in regard to higher latency percentiles, than

do the KS statistic values shown in Figure 5.3a. The WKS statistic values however suggest

the system is as equally robust to changes in the number of source operators, in regard to

the lower percentile latencies as do the KS statistic values. This appears to show the WKS

statistic working as intended to afford more attention to values occurring in the right tails. A

system experiencing high values of high percentile latency observations represents a system

already under potential stress, or near the bounds of its “stable operating environment” and

could be considered more likely to lack robustness.

The CVM and AD statistics (Figures 5.3c and 5.3d), represent the system as being signif-

icantly more robust in the max and 99th percentile latencies than for the 95th percentile

latency. The WKS statistic (Figure 5.3b) shows a markedly smaller difference in robustness

between the 95th and the higher percentile latencies. This is expected behaviour as the

CVM statistic is known to be insensitive to deviations at the tails, which is the case here for

the higher percentile latencies. This would result in a CVM statistic value which deems the

robustness level for the various percentile latencies to be more similar to that shown by the

KS statistic (Figure 5.3a), as it does not differentiate as markedly between ECDFs with and

without larger deviations in the tails, as does the WKS statistic.

The behaviour of the AD statistic is less expected. The AD statistic is said to retain

sensitivity to deviations in distributions, even when those deviations occur in the extreme

5.4 Results and Discussion 119

(a) KS Statistic (b) WKS Statistic

(c) CVM Statistic (d) AD Statistic

(e) ES Statistic

Fig. 5.3 Robustness of System to Variability in Number of Source Operators

120 Measuring Streaming System Robustness

Fig. 5.4 A pair plot comparing the relationship and correlation between various test statistics
(TS) across different latency percentiles when the number of source operators is varied,
revealing patterns and dependencies among the test statistics.

5.4 Results and Discussion 121

(a) Max Latency (b) 99th Percentile Latency

(c) 95th Percentile Latency (d) 50th Percentile Latency

Fig. 5.5 ECDFs of percentile latency values with variable frequency

tails. For this reason, one might expect the AD statistic to show a difference in system

robustness levels that is more similar to that shown by the WKS statistic, i.e. it would capture

the lack of robustness implied by any deviations occurring at the extremes of the ECDFs,

and deem the system to be less robust in terms of the max and 99th percentile latencies,

therefore shifting their statistic values higher and closer to those of the 95th percentile

latency. Considering this, whereby the AD statistic is more similar to the KS than the WKS

statistic, we may deem the AD statistic to be potentially under-estimating the sensitivity

of the system’s high percentile latency distributions to changes in the number of source

operators, (i.e. over-estimating the levels of robustness).

The ES statistic suggests an even smaller difference between the system robustness

across different percentile latencies, with Figure 5.3e displaying a number of observed

instances whereby the max and 99th percentile latency distributions are less robust than the

95th percentile latency distributions to certain disturbances in the number of system source

operators. This is in contrast to the KS, WKS, CVM and AD statistics which represent the 95th

percentile latency distributions to be less robust than the higher percentile latencies across

the entire range of disturbances to the number of source operators within the system. The

ES statistic also appears to suggest a substantially lower level of system robustness overall

for the higher percentile latencies, when compared to the CVM and AD statistics. Figure 5.3e

122 Measuring Streaming System Robustness

displays a non-linear, somewhat erratic relationship for the max, 99th and 50th percentile

latencies.

(a) WKS Statistic (b) KS Statistic

(c) CVM Statistic (d) AD Statistic

(e) ES Statistic

Fig. 5.6 Robustness of System to Variability in Frequency

Figure 5.3 shows that the various test statistics agree more when considering the robust-

ness of the system for lower percentile latencies compared to higher percentile latencies.

This suggests that the statistics may capture differences in the distributions of higher per-

centile latencies and extreme values differently than when capturing the effects of less

extreme values and differences in lower latency percentile distributions.

Most of the test statistics, except for the ES statistic, indicate that the system is more

sensitive to initial, smaller disturbances (especially for higher latencies) and becomes less

sensitive to larger disturbances. For example, the max and 99th percentile latency test

5.4 Results and Discussion 123

statistic values reach their maximum level of deviation after disturbance sizes of 75-100%

and then level out.

The lack of robustness in higher percentiles to initial disturbances (i.e. disturbances in

the lower half of the tested value range) could be because these latency percentiles already

represent extreme values observed when the system is under strain. If a system is already

strained and operating at the extremes of its “normal” stable range, even a small disturbance

can cause a significant reaction and degradation. The system may then become less sensitive

to larger disturbances because the performance can only deteriorate so much before the

system fails.

Among the test statistics, the 95th percentile latency appears to be the least robust metric.

This might be because the values in the 95th percentile are located relatively deep in the right

tail of the distribution, where the underlying characteristics begin to change. For example,

Extreme Value Theory (EVT) may govern this region rather than the Central Limit Theorem

(CLT), but further investigation is needed to confirm this.

Figure 5.4 shows that the ES statistic generally has a positive, linear relationship with the

other statistics when considering the 50th and 95th percentile latencies. However, Table 5.2

indicates that for the max and 99th percentile latencies, the ES statistic values have much

lower correlation with the other statistics’ values. This may suggest that the ES statistic is

more sensitive to differences between extreme right-tail values, as it continues to vary for

higher percentile latencies even when the other statistics begin to remain almost static.

5.4.2 Frequency Variability

Similarly to when the number of source operators is varied, when the angular frequency

input to the Sinewave workload generation function is varied, the resulting ECDFs, shown

in Figure 5.5, display significant deviations in the right tails, when considering the higher

percentile latencies (max and 99th). In contrast, however, there appear to be no significant

deviations located in the left tail for any of the percentile latencies.

The WKS statistic values, shown in Figure 5.6a, suggest that the system is less robust to

changes in angular frequency across all latency percentiles than do the KS statistic values.

Rather than the WKS statistic weighting function affecting the higher percentile latencies’

values more noticeably than those of the lower percentile latencies, we see more of a linear,

upward shift for all values, as shown in Figure 5.6a versus Figure 5.6b. This linear shift

maintains the nature of the relationship between the WKS statistic values and the KS statistic

values across the range of angular frequency disturbances tested. This relationship be-

tween the test statistic values for the differing latency percentiles across various levels of

disturbance in angular frequency appears to hold true across the remaining test statistics

124 Measuring Streaming System Robustness

(a) Max Latency (b) 99th Percentile Latency

(c) 95th Percentile Latency (d) 50th Percentile Latency

Fig. 5.7 ECDFs of percentile latency values with variable amplitude

(Figures 5.6c 5.6d 5.6e). All statistics suggest that the system is least robust to small changes

in the angular frequency when considering the max and 99th percentile latencies. As the size

of the disturbance increases, the levels of robustness converge across the different percentile

latency values.

5.4.3 Amplitude Variability

We found the correlation between the WKS statistic and other (non-KS) statistics to be

significantly lower for the higher percentile latencies when the amplitude of the sine wave

workload generation function is varied, compared to when the number of source operators

is varied. This appears to manifest due to a larger proportion of the KS statistic values being

located to the right of the median of the ECDFs, shown in Figure 5.7, when the amplitude

is varied, therefore being subject to the weighting function. In this instance, in general,

the distributions differ most to the right of the median, albeit not to an extreme level. The

weighting function applied to the KS statistic, described in Equation 5.4, is non-linear so

reduces the levels of correlation once applied.

Figure 5.8 shows that when the amplitude is varied, the CVM, AD and ES, shown in

Figures 5.8c, 5.8d and 5.8e respectively, exhibit large increases in the test statistic value for

the higher percentile latencies (max and 99th) as the disturbance size reaches the maximum

5.4 Results and Discussion 125

(a) WKS Statistic (b) KS Statistic

(c) CVM Statistic (d) AD Statistic

(e) ES Statistic

Fig. 5.8 Robustness of System to Variability in Amplitude

126 Measuring Streaming System Robustness

test range. This may signify a disturbance which causes the system to operate near the limit

of its stable operating environment.

5.4.4 Sentence Size Variability

When the sentence size is varied, we observe the resulting ECDFs of the percentile latencies

as displaying long right tails, with significant deviations within. Similarly to when the

frequency input value is varied, the ECDFs show minimal deviations in the left tail. In this

instance, it is noticeable that there also appear significant deviations between the ECDFs not

only within the right tails, but within the main bodies of the distributions, albeit occurring

to the right of the median. This large number of occurrences of maximum deviations to

the right of the median has the same effect on the correlations between the WKS and other

(non-KS) statistics, as seen for the higher percentile latencies when varying amplitude, as

shown in Table 5.3.

Figure 5.9 appears to suggest a far lower level of system robustness across all the test

statistics, and across all percentile latencies, when the workload sentence size is varied, as

when compared to the case whereby the number of workload source operators is varied. All

statistics display a non-linear relationship between the size of the change in test statistic

value and the size of disturbance.

5.4.5 Combined Insight

From these experiments, we have seen how a single metric such as the KS statistic, whether

weighted or not, may struggle to properly convey as much insight regarding a streaming

system’s level of robustness as could be conveyed through the application of multiple

goodness-of-fit test statistics. When concerned with less extreme values and lower percentile

latencies, the selection of test statistics presented here show strong overall similarities in their

behaviour and in their interpretation of the system robustness. However, as the values under

scrutiny become more extreme, whether from being contained within a higher percentile

latency distribution, or by being located further towards the right tail of that distribution,

the test statistics presented begin to diverge in their levels and their relative behaviours.

This should be viewed positively; the different stats tend to differ more when faced

with more extreme values within the distribution, which can have greater importance. For

example, while the Anderson Darling statistic seemed to show a lack of sensitivity to a

situation with multiple ECDF cross overs occurring within the far right tail of a distribution,

the ES statistic showed clear indications of a suggested lack of robustness when faced with

the same set of inputs.

5.4 Results and Discussion 127

(a) WKS Statistic (b) KS Statistic

(c) CVM Statistic (d) AD Statistic

(e) ES Statistic

Fig. 5.9 Robustness of System to Variability in Sentence Size

128 Measuring Streaming System Robustness

Statistic
Max p99 p95 p50

WKS KS AD ES CVM WKS KS AD ES CVM WKS KS AD ES CVM WKS KS AD ES CVM

WKS 1.0 0.78 0.43 0.76 0.44 1.0 0.87 0.65 0.9 0.63 1.0 0.89 0.81 0.9 0.76 1.0 0.95 0.93 0.86 0.91
KS 1.0 0.81 0.79 0.8 1.0 0.84 0.84 0.82 1.0 0.93 0.8 0.92 1.0 0.93 0.88 0.92
AD 1.0 0.74 0.99 1.0 0.74 0.99 1.0 0.83 0.99 1.0 0.97 0.99
ES 1.0 0.7 1.0 0.73 1.0 0.76 1.0 0.97
CVM 1.0 1.0 1.0 1.0

Table 5.3 Test stat correlation across latency %tiles w. variable sentence size

5.5 Conclusion

In conclusion, this chapter has explored the application of non-parametric goodness-of-fit

tests to quantify the robustness of streaming systems in the face of workload perturbations.

By employing a diverse set of test statistics, including KS, WKS, CVM, AD, and ES, we have

demonstrated that each statistic provides unique insights into the system’s behaviour and

robustness. The analysis has revealed several key findings that have significant implications

for practitioners seeking to design, optimise, and operate reliable and resilient streaming

systems.

1. Different test statistics capture different aspects of robustness:

• Each non-parametric goodness-of-fit test statistic provides a unique perspec-

tive on the robustness of a streaming system when faced with disturbances in

incoming workload characteristics.

• The test statistics exhibit varying levels of sensitivity to differences in the distri-

butions of latency percentiles, particularly in the extreme right tails.

• Practitioners should be aware of these differences and choose the most appropri-

ate test statistics based on their specific requirements and the characteristics of

their streaming system.

2. Inter-statistic correlation decreases for higher percentile latencies:

• As the latency percentile under scrutiny increases (e.g. from 50th to 99th per-

centile), the level of correlation between the test statistics decreases.

• This suggests that the test statistics capture the effects of extreme latency values

differently, providing complementary insights into the system’s robustness.

• Practitioners should consider using multiple test statistics, especially when

analysing higher percentile latencies, to obtain a more comprehensive under-

standing of the system’s behaviour.

5.5 Conclusion 129

3. Extreme tail behaviour significantly impacts robustness measures:

• The occurrence of observed latency values within the extreme right tails of the

distributions greatly influences the divergence between test statistics’ results and

their interpretation.

• Test statistics that are more sensitive to extreme tail behaviour, such as the ES

statistic, may provide additional insights into the system’s robustness that other

statistics might not capture.

• Practitioners should pay close attention to the extreme tail behaviour of latency

distributions and use test statistics that are sensitive to these regions when

evaluating the robustness of their systems.

4. Robustness to initial disturbances varies across latency percentiles:

• The system’s robustness to initial, smaller disturbances may differ across latency

percentiles, with higher percentiles often exhibiting greater sensitivity.

• This suggests that the system’s “normal” stable operating region may be more eas-

ily perturbed when considering higher latency percentiles, leading to significant

performance degradation.

• Practitioners should carefully monitor the robustness of their systems across

different latency percentiles and take proactive measures to ensure stability,

particularly for higher percentiles.

5. Combining multiple test statistics is crucial for a comprehensive robustness assess-

ment:

• Relying on a single test statistic may provide an incomplete or biased view of a

streaming system’s robustness.

• Practitioners should employ a diverse set of non-parametric goodness-of-fit tests

to capture different aspects of the system’s behaviour and obtain a more holistic

understanding of its robustness.

• By combining insights from multiple test statistics, practitioners can make more

informed decisions about system design, optimisation, and operation, ultimately

leading to more reliable and resilient streaming services.

Chapter 6

Reasoning Over Streaming System

Performance Using Response Surface

Methodology

6.1 Introduction

Chapter 6 significantly expands the scope and depth of the analysis presented in Chapter 5.

It introduces new test statistics, applies the powerful Response Surface Methodology (RSM)

methodology, quantifies the effects of workload parameters, compares model performance

and stability, and provides actionable insights for practitioners. This progression from the

foundational concepts in Chapter 5 to the advanced modelling and analysis techniques

in Chapter 6 demonstrates a logical and comprehensive approach to studying streaming

system robustness and performance optimisation.

In the context of streaming systems, understanding and optimising system performance

is crucial, as these systems are responsible for processing and analysing massive data streams

in real time. As the volume, variety, and velocity of data continue to grow, streaming systems

must be designed and tuned to handle the increasing workload while maintaining accept-

able performance levels. However, the performance of streaming systems is influenced by

a multitude of factors, such as workload characteristics. The manner in which streaming

systems’ performance degrades in the face of changes in incoming workload characteristics

depends not only on the magnitude of those changes, but also on non-linear interaction ef-

fects among them. This complexity makes it challenging for system designers and engineers

to predict and optimise system behaviour through traditional analytical approaches alone.

132 Reasoning Over Streaming System Performance

In this chapter, we demonstrate that these relationships can be measured and modelled

using RSM.

RSM is a collection of mathematical and statistical techniques employed for the mod-

elling and analysis of complex processes in which a response of interest is influenced by

several variables, and the objective is to optimise this response. This approach has gained

significant traction in various fields, including engineering, manufacturing, and science,

due to its ability to optimise processes and uncover hidden relationships between multiple

factors and response variables [145, 46]. RSM has been applied in several areas within Com-

puter Science; for example, in OS scheduler tuning [7], formulating security cost models [53]

and optimisation of server benchmarks [164]. Closest to our work is that of Gencer et al. [66]

who apply an RSM solver to a simulation of MapReduce workloads. First- and second-

order models are used to map the interplay between configuration parameters and system

performance.

RSM is particularly useful in situations where the underlying process is not well under-

stood, or the analytical models are too complex to solve directly. By conducting a series of

carefully designed experiments, researchers can develop empirical models that describe

the behaviour of a system and identify the optimal operating conditions that maximise or

minimise a specific response.

This, however, is not the only aim or use for adopting an RSM approach. Modelling the

system’s behaviour such that it may be expressed as a function of the input variables, in turn,

allows exploration of the process space to help better understand the impact of different

factors on the response, including their interactions. The effects of individual factors and

their interactions can be explicitly quantified, enabling the model to generate predictions

of responses, aiding decision-making and process optimisation. RSM also often involves

sequential experimentation, leading to more efficient use of resource and cost savings. By

leveraging RSM’s ability to model complex relationships between input factors and response

variables, we aim to gain insights that will inform the development of more efficient and

robust streaming systems.

6.2 Background and Motivation

To address the challenge of modelling the impact of differing workload characteristics, we

will employ RSM as a framework. The motivation for conducting this RSM experiment is

two-fold.

First, we aim to systematically study the performance degradation of streaming systems

under various workloads and quantifying the effects of different parameters on system

6.2 Background and Motivation 133

latency. By fitting a response surface model to the experimental data, we can capture the

complex relationship between the input factors and system latency, providing valuable in-

sights into the behaviour of streaming systems under diverse operating conditions. The level

of performance degradation will be measured using a selection of non-parametric goodness-

of-fit tests, based on various distance measures and test-statistics, applying them to the

ECDFs of recorded system latency values, across a range of selected percentile thresholds.

We focus on both model performance and model stability; performance measured using

a range of relevant score metrics, and stability, measured using bootstrapped confidence

intervals of a range of model values (e.g. factor coefficients, model score metrics, etc.).

Second, RSM offers an efficient and effective means to explore the input factor space.

The experimental designs employed in RSM, such as 2k F, CCD, and BBD, allow researchers

to estimate the main effects and interactions between factors with relative efficiency re-

garding the required number of experimental runs. This efficiency is particularly relevant

in the context of streaming systems, where conducting large-scale experiments can be

time-consuming and resource-intensive.

6.2.1 RSM

Objectives of RSM in Computer Science

• Modelling System Performance: Establish quantitative relationships between system

input variables and outputs or performance metrics.

• Optimisation: Identify the settings of system parameters that optimise a certain

performance measure.

• Sensitivity Analysis: Understand the influence of each input variable on the output,

facilitating better control and tuning of the system.

Key Components of RSM

1. Design of Experiments (DoE): Systematic method to plan experiments so that the

data obtained can be analysed to yield valid and objective conclusions. Common

designs include 2k Fs, CCDs, and BBDs.

2. Response Surface Models: Mathematical models that approximate the relationships

between input variables and the targeted responses. Typically, polynomial models are

used (linear, quadratic, or cubic depending on system complexity).

134 Reasoning Over Streaming System Performance

3. Optimisation Techniques: Techniques such as gradient ascent/descent, Newton-

Raphson methods, or even genetic algorithms used to find optimal settings of input

variables.

4. Validation: Statistical methods to validate the model predictions against new data,

ensuring the model’s reliability and robustness.

Steps in Applying RSM

1. Problem Definition: Identify the key inputs and output metrics of the system. Formu-

late the problem in terms of these variables.

2. Experimental Design: Choose an appropriate design strategy that balances the com-

prehensiveness of the study with resource constraints.

3. Data Collection: Conduct the experiments as per the design, collecting data on input

variables and system performance.

4. Model Estimation: Use regression analysis to estimate the coefficients of the polyno-

mial model.

5. Model Analysis: Analyse the model to assess the significance of variables, interaction

effects, and the overall fit of the model.

6. Optimisation and Validation: Use the model to predict optimal settings of the in-

put variables and validate these findings through additional experiments or cross-

validation techniques.

6.2.2 Applications of RSM in Computer Science

• Performance Tuning: Optimise the performance of algorithms or systems by tuning

hyperparameters or system configurations.

• Cloud Computing: Optimise resource allocation strategies in cloud environments to

balance performance with cost.

• Software Engineering: Improve software quality and performance by systematically

varying development and runtime parameters.

• Networking: Optimise network configurations and protocols to improve throughput

and latency.

6.3 Methodology 135

6.3 Methodology

The methodology for our experiment consists of a number of steps that provide a structured

approach, tailored to our specific RSM experiment design and objectives. The main steps to

be carried out are as follows:

1. Objective Definition: Our objectives are to understand and model the performance

degradation of our distributed stream processing system under varying RSM experi-

ment designs, workload characteristics and generative functions, latency percentiles

measurements, and goodness-of-fit tests. Subsequently, analyse and measure both

the performance and stability of the generated models.

(a) Investigate the relationships between input factors and the response variables.

(b) Estimate the main effects and interactions between factors.

(c) Measure the model performance metrics and relevant model coefficients, met-

rics, statistics and bootstrapped confidence intervals.

(d) Compare and contrast the results and outputs.

2. Response Variable: Determine the response variable used to measure the performance

of the streaming system. We choose as our response variables a number of non-

parametric goodness-of-fit test statistics, introduced in Section 5.2, along with two

additions, the Kullback-Leibler Divergence (KLD) and Wasserstein Distance (WD)

(presented in Section 6.3.1).

3. Workloads and Factors: Define the workload model and select the characteristics and

input variables that may affect the system’s performance and the chosen response

variable. For our workloads we have chosen the (1) sine wave and (2) envelope-guided

process workloads (presented in Section 3.2.4). For our factors we have chosen (1)

The number of source operators generating the incoming workload, (2) the amplitude

of the sine wave workload generation function vs its vertical distance, and (3) the

sentence size on the Nexmark Word Count workload logic.

4. Experimental design: Select an appropriate experimental design for the experiment,

given our research objectives, factors, levels, response variable, and any experimental

constraints; one that can efficiently and effectively explore the relationships between

the factors and our response variable. Our experiment will involve the use of the 2k F,

CCD and BBD (presented in Section 6.3.3).

136 Reasoning Over Streaming System Performance

5. Experimental Runs: Carry out the experiments, adjusting the factor level values ac-

cording to each chosen design and design matrix. Measure and record the system

latency for each experimental run, grouped by percentile thresholds (50th, 95th, 99th

and max) (presented in Section 6.3.4).

6. Response Surface Model: Our experiment will look to capture the relationships be-

tween the factors and the response variable using a linear regression model testing

first-order models with interaction terms (presented in Section 6.3.5). We opt specifi-

cally for this model due to its simplicity and interpretability, which is vital when the

goal is to derive actionable insights.

7. Model Performance and Stability: Measure the model performance using predictions

made by the fitted model. We will apply a bootstrapping method using sampling with

replacement to run 2000 iterations for each goodness-of-fit test, latency percentile,

workload model and experiment design combination. Each iteration will involve

generating a sample of input data, fitting a linear regression model to that data, and

recording all values and metrics of interest (e.g. model coefficients, performance

metrics)

8. Model Analysis and Ranking: Rank the models based on accuracy and predictive

power and stability of the fitted model.

6.3.1 Response Variable

Within this section, we formalise notation for each test statistic under evaluation as our

response variable. The KS (Equation 5.2), WKS (Equation 5.3), CVM (Equation 5.5), AD

(Equation 5.6), and ES (Equation 5.7) statistics are previously introduced in Section 5.2.1.

In this chapter we use two additional tests which were made known to the author after

Chapter 5 was concluded. The two additional test statistics to be analysed that have not

been previously introduced are as follows:

1. KLD: The KLD [119] is a measure of how different two probability distributions are

from each other. It is also known as relative entropy, or information divergence. The

KLD is a non-negative value that measures the amount of information lost when

approximating one distribution with another.

The KLD is calculated as the sum of the element-wise product of the logarithm of the

ratio of the probability distributions and the first distribution. In the mathematical

6.3 Methodology 137

form, it is defined as in Equation 6.1.

DK L(P ||Q) =∑
i

P (i) log
P (i)

Q(i)
(6.1)

where: P = first probability distribution

Q = second probability distribution

P (i) represents the probability of an event i occurring in distribution P , and Q(i)

represents the probability of the same event occurring in distribution Q. The KLD is

calculated by multiplying the difference in probability of each event by the logarithm

of that difference, and then summing over all events. The KLD is not symmetric, which

means that DK L(P ||Q) is not equal to DK L(Q||P). Therefore, it should be noted that it

matters which distribution you’re taking the expectation with respect to.

It is mostly used as a loss function in machine learning, and in feature selection and

extraction to compare the similarity between two probability distributions [139]. It

is also used in information theory, where it is a measure of how much information

is lost when approximating a true underlying probability distribution with a simpler

one [62].

We introduce the KLD due to its lack of symmetry (i.e. DK L(P ||Q) ̸= DK L(Q||P) in

general) and triangle inequality (i.e. DK L(R||P) ≤ DK L(Q||P)+DK L(R||Q) does not

hold in general). Due to these two characteristics, the KLD is often used in places

where directionality is meaningful [70], as it is in this circumstance.

2. WD: The WD [110] (also known as the Kantorovich-Rubinstein metric or Earth Mover’s

Distance) is a distance function defined between two probability distributions over a

given metric space. Given two probability distributions P and Q defined over a metric

space M with metric d , the p-th order WD is defined as:

Wp (P,Q) =
(

inf
γ∈Γ(P,Q)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

(6.2)

where: Γ(P,Q) = Set of all joint distributions γ(x, y) on M ×M with marginals P and Q

In simpler terms, γ represents a way to “transport” the mass distributed according to

P so that it becomes distributed according to Q. The WD measures the “cost” of the

138 Reasoning Over Streaming System Performance

optimal way to do this, where the cost is defined in terms of the underlying metric d .

The infimum (inf) ranges over all possible such transport plans.

We introduce the WD as unlike the KLD it considers both the likelihoods and the

distances between various outcome events. These properties make the WD well-

suited to domains where an underlying similarity in outcome is more important than

exactly matching likelihoods [19].

6.3.2 Workloads and Factors

To demonstrate generality across diverse workload types and time-frames we incorporate

two of the three arrival rate processes mentioned in Section 3.2.3 within the workload

generation models; a stylised sine wave function and an envelope guided process. We use a

three-step Word Count topology, coupled with realistic arrival processes. Source Operators

emit sentences of a specified length, the Splitter Operators split them into individual words,

and the Count Operators count the number of times each word occurs. We use two classes

of arrival process for our evaluation:

1. Sine wave workload as presented in Section 3.2.4.

2. Envelope-guided process as presented in Section 3.2.4.

The input variables to be varied are: (1) The number of source operators generating the

incoming workload, (2) the amplitude of the sine wave workload generation function vs its

vertical distance, and (3) the sentence size on the Nexmark Word Count workload logic.

6.3.3 Experimental Design

Choosing an appropriate design for the experiment is crucial to ensure its reliability and

efficiency [89]. We determine the levels at which each factor will be tested; the choice of

factors and levels will affect the design’s complexity and the number of experimental runs

required [27, 26].

The 2k Factorial Design (2k F)

One major goal of the experiment was to determine which factors (input parameters) have

the greatest effect on the response (system performance), and the nature of that effect.

We sought to accomplish this with the least amount of simulating necessary by carrying

out factor screening. Avoiding unnecessary simulations results in reduced experimental

6.3 Methodology 139

time, reduced computational cost, reduced cost to run the experiments, and allows greater

coverage of the design space in areas of particular interest. Factor screening allows the

examination of several factors simultaneously and can make analysis easier by reducing

dimensionality. It is usually performed by following a factorial design approach [197]. These

design approaches are able to overcome some key deficiencies as compared to the One-

Factor-At-a-Time (OFAT) [124].

With the OFAT, if we wish to measure the effect a particular factor has on the response, all

other factors are fixed at some set of values while only the value of the factor being measured

is varied. Simulation runs would be made at both chosen values for the factor in question,

recording how the response reacts to the change. This process would need to be repeated,

one factor at a time, for all the factors needing to be examined. As the number of factors

rises, this approach quickly becomes intractable. In addition to being inefficient, OFAT

methods are unable to measure any interaction effects between the factors.

Fig. 6.1 Geometric view of design points.

The 2k factorial design is a special case of the general factorial design, where there are k

factors and each factor has only two levels. Each replicate has 2×·· ·×2 = 2k observations.

In the context of factorial designs, a “replicate” refers to the repetition of the entire set of

140 Reasoning Over Streaming System Performance

experimental runs. This repetition is done to obtain a measure of the variability in the

response, which helps in assessing the experimental error. Experiments based upon 2k

factorial design make very efficient use of experimental simulations, require relatively few

simulations per experimental condition to produce statistical power and also allow the

measurement of interaction effects between factors [39]. Furthermore, they provide more

information at a similar or lower cost, can find optimal conditions more quickly and allow

the effects of a factor to be estimated at several levels, generating conclusions that are valid

across a larger range of conditions [137, 141].

2k factorial design requires that we choose just two levels for each input variable; high

and low. These are called design points (e.g. Table 6.1, also represented geometrically in

Figure 6.1). It then calls for simulation runs at each of the 2k possible factor-level combina-

tions, which can be compactly represented in tabular form, also known as the design matrix

(e.g. Table 6.2). In our example, we have a 23 factorial design, with the three factors being

the number of source operators, the sine wave amplitude and workload sentence size.

For our factor values, we chose levels that reflected realistic values and also values

that resulted in a relative variability in outcome that could be seen as “useful” from an

experimental research perspective. If the factor levels were inappropriately disparate in

magnitude, the generalisability and value of insight gained, would be compromised. If the

factor levels were too similar in magnitudes, any underlying relationship under scrutiny

may have been swamped by random noise, or sampling error.

Design Point Source Operators Amplitude Sentence Size

Low 6 5000 100

Base 11 7500 175

High 16 10000 250

Table 6.1 Design points for 2k Factorial Design.

The Central Composite Design (CCD)

CCD [25] is a commonly used experimental design in response surface methodology and is

the most popular class of second-order designs [137]. It is useful for estimating first-order,

second-order, and interaction effects in fitting a quadratic surface.

A CCD consists of three main components:

1. Factorial points: These are the points from a 2k F design, where k is the number of

factors. The factorial points allow for the estimation of linear and interaction effects.

6.3 Methodology 141

Run Source Operators Amplitude Sentence Size

1 −1 −1 −1

2 −1 −1 1

3 −1 1 −1

4 −1 1 1

5 1 −1 −1

6 1 −1 1

7 1 1 −1

8 1 1 1

Table 6.2 Design matrix for 2k Factorial Design.

2. Axial points (also called star points): These points are added to the factorial design to

allow for the estimation of quadratic effects. The axial points are located at a distance

α from the center of the design space.

3. Center points: These points are located at the center of the design space and are used

to estimate the pure error and to provide a measure of the curvature in the response

surface.

The factorial points in a CCD are considered an embedded factorial design because

they are a subset of the larger CCD. The embedded factorial design is usually a 2k F or a

fractional 2k F design, depending on the number of factors and the desired resolution of

the experiment. A fractional factorial design is a reduced version of the full factorial design,

meaning only a fraction of the runs are used, increasing efficiency but with a trade-off in

information.

This design is particularly effective for sequential experimentation. A 2k factorial or

fractional factorial design is initially used, followed by the addition of centre and axial points

to estimate curvature and create a quadratic model, if so required. To use the CCD, we start

with a 2k factorial design, where k represents the number of factors. For CCD, the locations

of the axial points are typically placed at an alpha distance away from the centre point. The

value of alpha for coded variables is determined by the number of factors to make the design

rotatable or near-rotatable and calculated as
p

k. If a design is rotatable, the variance of the

predicted response variable is a function of the distance from the design centre only, and is

not dependent at all on the direction. The importance of rotatability arises from the desire

to achieve equal precision in prediction at all points equidistant from the design centre. If a

design is rotatable, you can predict responses with equal accuracy at all locations that are

142 Reasoning Over Streaming System Performance

the same distance away from the centre of the design. The design points for the CCD are

shown in Table 6.3, while the design matrix is shown in Table 6.4.

Design Point Source Operators Amplitude Sentence Size

Low 6 5000 100

Base 11 7500 175

High 16 10000 250

Low Axial 2 7500 175

High Axial 20 7500 175

Low Axial 11 3175 175

High Axial 11 11825 175

Low Axial 11 7500 45

High Axial 11 7500 305

Center 11 7500 175

Table 6.3 Design points for Central Composite Design.

The CCD holds a number of advantages: (1) efficiently building on a 2k factorial design

base allowing for a sequential experimentation approach, (2) being robust to missing data

and (3) being rotatable.

CCDs work best when the region of interest is spherical, i.e., when the range of each factor

is approximately the same. If the design space is not spherical, it may be disadvantageous to

implement a CCD; a Box-Behnken Design (BBD) may be a better choice. A CCD also requires

more experimental runs compared to a factorial or fractional factorial design, especially for

higher dimensions with many factors.

The Box-Behnken Design (BBD)

BBD [24] allows the coefficients of a quadratic model to be estimated with a reduced number

of experimental trials compared to other methods. As a design, it does not contain an

embedded factorial nor fractional factorial design and does not require axial points. Rather,

it consists of midpoints of edges of the factorial space and centre points.

The design requires that each factor has three levels, generally coded as −1 (for the low

level), 0 (for the middle level), and +1 (for the high level). The BBD selects points at the

midpoints of each edge of the multidimensional factor space and the centre of the space.

For each pair of factors, there are three experimental trials: both at their low levels, both at

their high levels, or one at its low level and the other at its high level. The remaining factor is

6.3 Methodology 143

Run Source Operators Amplitude Sentence Size

1 −1 −1 −1

2 −1 −1 1

3 −1 1 −1

4 −1 1 1

5 1 −1 −1

6 1 −1 1

7 1 1 −1

8 1 1 1

9 −1.732 0 0

10 1.732 0 0

11 0 −1.732 0

12 0 1.732 0

13 0 0 −1.732

14 0 0 1.732

15 0 0 0

16 0 0 0

Table 6.4 Design matrix for Central Composite Design.

144 Reasoning Over Streaming System Performance

kept at its middle level. This results in three-factor combinations in blocks of size k(k −1),

where k is the number of factors.

Center points are then added to the design matrix, whereby all factors are set to their

middle level. These centre points are used in the estimation of the pure error and help

identify any curvature in the response surface. The design points for the BBD are shown in

Table 6.5, while the design matrix is shown in Table 6.6.

Design Point Source Operators Amplitude Sentence Size

Midpoint 6 7500 175

Midpoint 16 7500 175

Midpoint 11 5000 175

Midpoint 11 10000 175

Midpoint 11 7500 100

Midpoint 11 7500 250

Center 11 7500 175

Center 11 7500 175

Center 11 7500 175

Table 6.5 Design points for Box-Behnken Design.

The advantages of implementing a BBD approach are: (1) fewer experimental runs

are required when compared to a three-level, full-factorial design, while allowing for the

complete and independent estimation of the first- and second-order coefficients. (2) BBD

are nearly rotatable allowing equal accuracy of response prediction at all locations, and (3)

their design points are nearly orthogonal, minimising multicollinearity and any negative

impact on the accuracy of model parameter estimates.

6.3.4 Experimental Runs

For each experiment design, each workload in the design matrix was simulated and pro-

cessed through the Flink system (with accompanying replication runs carried out as neces-

sary), and the values of specific system performance metrics were recorded.

Latency values (in milliseconds) were collected which represent the distribution of la-

tency values recorded over each 10-second period, from the source operators to an operator

sub-task. Latency tracking marks were emitted from the sensors at 100 milliseconds intervals.

The level of granularity used was at the operator level, tracking latency while differentiating

between sources but not between sub-tasks. The 50th, 95th, and 99th percentiles, and max

latencies were calculated and recorded. These values are captured to represent a range of

6.3 Methodology 145

Run Source Operators Amplitude Sentence Size

1 0 -1 0

2 0 1 0

3 -1 0 0

4 1 0 0

5 0 0 -1

6 0 0 1

7 -1 -1 0

8 1 -1 0

9 -1 1 0

10 1 1 0

11 0 -1 -1

12 0 1 -1

13 0 -1 1

14 0 1 1

15 0 0 0

16 0 0 0

17 0 0 0

Table 6.6 Design matrix for Box-Behnken Design.

146 Reasoning Over Streaming System Performance

conceptual latency values, from the median latency to the worst-case latency. They rep-

resent the values recorded over the 10-second period. The 50th percentile latency is the

latency value at which 50% of the latency values recorded over the 10-second period are

less than or equal to, and 50% are greater than or equal to. The 95th percentile latency is

the latency value at which 95% of the latency values recorded over the 10-second period are

less than or equal to, and 5% are greater than or equal to. The 99th percentile latency is the

latency value at which 99% of the latency values recorded over the 10-second period are

less than or equal to, and 1% are greater than or equal to. The max latency is the maximum

latency recorded over the 10-second period. The ECDFs of recorded latency values were then

used to calculate the relevant statistics (as presented in Section 6.3.1), as when compared

against the baseline workload latency ECDF.

6.3.5 Response Surface Model

Our model specification involves the building of a first-order model with the inclusion of

two-way and three-way interaction terms. The model took the form:

Y β0 +β1Sr c +β2 Amp +β3Sent

+β12Sr c Amp +β13Sr cSent +β23 AmpSent +β123Sr c AmpSent
(6.3)

where: Sr c = Number of Source Operators

Amp = Sine wave amplitude

Sent = Sentence Size (words)

For each combination of experiment design, workload generation function, latency

percentile and response variable test statistic, the above model was fit to the relevant results

data, using a number of approaches. At each iteration through the above combinations,

the relevant test statistic results values where run though a 2000 iteration process, carried

out using Bootstrapping Random Sampling with Replacement. Each iteration’s randomly

sampled data was of equal size to the original experiment’s design matrix output data. The

model was then fit to the sampled data and the relevant values of interest recorded. Various

approaches were applied in the model fitting process. Each bootstrapped sample was first

used to fit and score the model. Each model was then also subjected to an ANOVA test to

investigate the statistical significance of the model as a whole, and that of the individual

coefficients. During each of these two fitting and scoring procedures, the following values

were measured and recorded:

6.3 Methodology 147

Model Metrics

Standardised Model Coefficient Values The fitted model coefficients were first standard-

ised by dividing by their relevant standard errors (i.e. their t-stat value) then recorded

along with their coefficient p−values. This was carried out for all three independent

input variables (i.e. experiment design factors), including all two-way and three-way

interaction terms.

ANOVA Statistics The overall model F−stats were collected along with the individual coeffi-

cient F−stats.

Performance Metrics

Root Mean Squared Error of the Model (RMSE) The RMSE of the model is the explained

sum of squares divided by the model’s degrees of freedom. It is a measure of the

discrepancy between the data and an estimation model. A small RMSE indicates a

good fit between the model and the data. The RMSE is calculated as follows:

RMSE =
√∑n

i=1(yi − ŷi)2

n −p
(6.4)

where: yi = is the actual value for the ith observation.

ŷi = is the predicted value for the ith observation.

n = the number of observations.

p = the number of parameter estimates, including the constant.

R-Squared The R-squared value is a statistical measure of how close the data are to the

fitted regression line; it is the percentage of the response variable variation that is

explained by a linear model.

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(6.5)

where: yi = is the actual value for the i th observation.

ŷi = is the predicted value for the i th observation.

ȳ = is the mean of the actual values.

n = the number of observations.

148 Reasoning Over Streaming System Performance

Adjusted R-Squared The adjusted R-squared is a modified version of R-squared that has

been adjusted for the number of predictors in the model. The adjusted R-squared

increases only if the new term improves the model more than would be expected by

chance. It decreases when a predictor improves the model by less than expected by

chance.

R2
adjusted = 1− (1−R2)(n −1)

n −p −1
(6.6)

where: R2 = is the coefficient of determination.

n = is the number of observations.

p = is the number of predictors.

Explained Variance Score (EVS) The explained variance score is a measure of how well the

model accounts for the variation within the data. It is calculated as follows:

EVS = 1− Var(y − ŷ)

Var(y)
(6.7)

where: y = is the actual value.

ŷ = is the predicted value.

Var = represents the variance.

Mean Error (ME) The mean error is the average of the residuals, i.e. the difference between

the observed and predicted values. It is calculated as follows:

ME = 1

n

n∑
i=1

(yi − ŷi) (6.8)

where: yi = is the actual value for the ith observation.

ŷi = is the predicted value for the ith observation.

n = is the number of observations.

Mean Absolute Error (MAE) The mean absolute error is the average of the absolute resid-

uals, i.e. the absolute difference between the observed and predicted values. It is

calculated as follows:

6.3 Methodology 149

MAE = 1

n

n∑
i=1

|yi − ŷi | (6.9)

where: yi = is the actual value for the ith observation.

ŷi = is the predicted value for the ith observation.

n = is the number of observations.

Mean Squared Error (MSE) The mean squared error is the average of the squared residuals,

i.e. the squared difference between the observed and predicted values. It is calculated

as follows:

MSE = 1

n

n∑
i=1

(yi − ŷi)2 (6.10)

where: yi = is the actual value for the ith observation.

ŷi = is the predicted value for the ith observation.

n = is the number of observations.

Median Abslute Error (MedAE) The median absolute error is the median of the absolute

residuals, i.e. the absolute difference between the observed and predicted values. It is

calculated as follows:

MedAE = median(|y1 − ŷ1|, |y2 − ŷ2|, . . . , |yn − ŷn |) (6.11)

where: yi = is the actual value for the ith observation.

ŷi = is the predicted value for the ith observation.

n = is the number of observations.

Mean Absolute Percentage Error (MAPE) The mean absolute percentage error is the av-

erage of the absolute percentage residuals, i.e. the absolute difference between the

observed and predicted values, divided by the observed value. It is calculated as

follows:

MAPE = 100%

n

n∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣ (6.12)

150 Reasoning Over Streaming System Performance

where: yi = is the actual value for the ith observation.

ŷi = is the predicted value for the ith observation.

n = is the number of observations.

6.4 Results and Discussion

We present analysis and discussion of the experiment results, broken down by observations

regarding the recorded model performance metrics (Section 6.4.1), and by the recorded

model statistics, coefficients and metrics (Section 6.4.2) for each response variable test

statistic.

6.4.1 Performance Metrics

Table 6.7 displays the mean values and standard deviations for each performance metric

and test statistic. Tables 6.8 to 6.10 display the mean values and standard deviations for

each of the same performance metrics and test statistics, grouped by experiment design

(2k F, CCD and BBD respectively). Tables 6.11 to 6.14 display the values, grouped by latency

percentile (50th, 95th, 99th percentile, and max latency respectively).

The Best-Performing: ES Statistic

We can see from Table 6.7 that the ES statistic has the best average value for seven out of the

nine recorded performance metrics (i.e. EVS, ME, MAE, MSE, MedAE, RSquared and Adj.

RSquared) overall, across the full range of experimental runs. The ES statistic also displays

the lowest overall standard deviation for the same collection of metrics, versus the other test

statistics under consideration.

When grouped by experiment design, we see the ES statistic maintaining its strong

average performance metric values across all three experiment designs. The results for the

CCD approach (Table 6.9), identify the ES statistic’s mean values outperform versus the

other test statistics across five of the nine metrics. The 2k F and BBD approaches report

outperformance by the ES statistic across seven of the nine metrics. The standard deviations

recorded for the ES statistic’s performance metrics show clear outperformance when using

the BBD approach, displaying the lowest values across eight of the nine metrics. However,

the ES statistic is outperformed in this regard by the KS and KLD statistics when using

the 2k F and CCD approaches respectively. These early findings suggest the ES statistic as

an appropriate choice to underpin RSM methodologies. However, to fully understand its

6.4 Results and Discussion 151

suitability it is necessary to explore how its performance differs across the range of percentile

latencies.

The ES statistic’s distribution of Adjusted RSquared values, grouped by latency percentile,

appears to display the most favourable characteristics of all the test statistics. For the

lower percentile latencies (i.e. 50th and 95th), all test statistics analysed appear to display

closely similar distributions. However, for the the higher percentiles (i.e. 99th and max), the

ES statistic’s ECDFs (shown in Figure 6.3) appear significantly more convex to the origin,

representing a tighter distribution of values. This can be interpreted as less uncertainty

regarding the expected value of the Adjusted RSquared metric value for a model based on

the ES statistic, versus the other statistics tested.

The distribution of Adjusted RSquared values for the ES statistic also center around

the highest mean value of all the test statistics for the the higher percentiles (shown in

Figures 6.3a and 6.3b). The fact the ES statistic displays these divergent characteristics most

prominently for the higher percentile latencies is of note as these more extreme latency

values are generally of much higher interest and significance to system operators. This

would imply that, if modelling performance degradation of a streaming system, when one is

most concerned with the more extreme latency percentile values found in the right-tail of a

distribution, employing the ES statistic as one’s response variable, offers the most performant

model, and carries with it the highest confidence and least uncertainty regarding the model’s

recorded metrics.

Figure 6.2 shows that when using the ES statistic as the response variable, the BBD ap-

proach appears to offer the best results and similar characteristics to those mentioned above,

namely a tighter distribution and higher mean value of the recorded Adjusted RSquared

metric (versus the 2k F and CCD approach). This further implies that a ES statistic response

variable and BBD experiment design offers the optimal combination to performantly model

higher percentile latency values and therefore potentially mission-critical levels of streaming

system performance degradation.

Based on the results presented, the ES statistic appears to be the best-performing test

statistic for several reasons:

• Performance metrics: The ES statistic has the best average value for seven out of the

nine recorded performance metrics (EVS, ME, MAE, MSE, MedAE, R2 and Adjusted

R2) overall, across the full range of experimental runs. This indicates that models

using the ES statistic as the response variable generally fit the data better and make

more accurate predictions compared to models using other test statistics.

• Consistency across experiment designs: The ES statistic maintains its strong perfor-

mance across all three experiment designs (2k F, CCD, and BBD). This suggests that

152 Reasoning Over Streaming System Performance

the ES statistic’s effectiveness is not dependent on a particular experimental setup,

making it a robust choice for modelling streaming system performance degradation.

• Performance across latency percentiles: The ES statistic’s distribution of Adjusted R2

values, grouped by latency percentile, displays favorable characteristics, particularly

for higher percentile latencies (99th and max). For these critical latency values, the

ES statistic’s ECDFs are more convex to the origin, indicating a tighter distribution of

values and less uncertainty regarding the expected value of the Adjusted R2 metric.

The ES statistic can be considered more “informative” in this context because:

• It captures more relevant information about the differences between the distributions

being compared. The ES statistic compares the empirical characteristic functions

(ECFs) of two samples, which completely characterise any distribution and can be

used to derive its moments. This means the ES statistic incorporates more information

about the distributions than just a single measure like the mean or variance.

• It is sensitive to differences in the tails of the distributions, which is crucial when

dealing with high percentile latency values that represent extreme and potentially

critical performance degradation scenarios.

Models using the ES statistic as the response variable consistently outperform models

using other test statistics in terms of performance metrics and stability, suggesting that

the ES statistic is more effective at capturing the complex relationships between workload

characteristics and system performance.

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.66 0.66 0.79 0.75 0.74 0.61 0.71 0.24 0.24 0.19 0.2 0.19 0.28 0.21
ME 1.28 1.29 0.91 1.08 1.11 1.38 1.14 0.72 0.73 0.6 0.66 0.64 0.84 0.63
MAE 0.31 0.31 0.24 0.27 0.27 0.32 0.29 0.18 0.18 0.16 0.16 0.16 0.18 0.17
MSE 0.32 0.32 0.19 0.24 0.24 0.36 0.27 0.22 0.22 0.18 0.19 0.18 0.26 0.19
MedAE 0.16 0.15 0.13 0.13 0.14 0.16 0.15 0.19 0.18 0.16 0.16 0.17 0.18 0.18
MAPE 0.49 0.6 0.28 0.16 0.11 0.16 0.16 0.47 0.61 0.28 0.12 0.08 0.13 0.11
RSquared 0.66 0.66 0.79 0.75 0.74 0.61 0.71 0.24 0.24 0.19 0.2 0.19 0.28 0.21
Adj RSquared 0.38 0.38 0.63 0.54 0.53 0.3 0.48 0.43 0.44 0.35 0.36 0.35 0.5 0.38
RMSE Model 1.19 1.19 1.32 1.28 1.27 1.13 1.25 0.23 0.23 0.2 0.2 0.18 0.3 0.2

Table 6.7 Performance Metric Means and Standard Deviations

6.4 Results and Discussion 153

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.72 0.72 0.81 0.77 0.79 0.7 0.77 0.25 0.25 0.22 0.23 0.2 0.27 0.22
ME 0.94 0.94 0.72 0.82 0.8 0.98 0.85 0.7 0.71 0.64 0.68 0.63 0.71 0.65
MAE 0.22 0.22 0.17 0.2 0.19 0.23 0.2 0.18 0.18 0.16 0.17 0.16 0.18 0.17
MSE 0.25 0.25 0.17 0.2 0.19 0.27 0.21 0.22 0.23 0.2 0.21 0.18 0.24 0.2
MedAE 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.15 0.14 0.13 0.14 0.13 0.13 0.14
MAPE 0.22 0.27 0.12 0.1 0.07 0.11 0.1 0.22 0.3 0.15 0.1 0.06 0.12 0.09
RSquared 0.72 0.72 0.81 0.77 0.79 0.7 0.77 0.25 0.25 0.22 0.23 0.2 0.27 0.22
Adj RSquared 0.45 0.44 0.64 0.56 0.58 0.41 0.54 0.49 0.5 0.41 0.44 0.38 0.53 0.43
RMSE Model 1.19 1.18 1.27 1.23 1.26 1.16 1.23 0.22 0.23 0.21 0.22 0.19 0.25 0.21

Table 6.8 Performance Metric Means and Standard Deviations (2k F)

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.59 0.6 0.76 0.75 0.69 0.57 0.69 0.22 0.22 0.17 0.16 0.18 0.26 0.19
ME 1.52 1.51 1.07 1.17 1.3 1.62 1.29 0.64 0.64 0.51 0.52 0.54 0.78 0.5
MAE 0.37 0.37 0.29 0.28 0.32 0.37 0.33 0.16 0.16 0.15 0.13 0.15 0.15 0.15
MSE 0.38 0.38 0.23 0.23 0.29 0.41 0.29 0.21 0.21 0.16 0.15 0.17 0.24 0.17
MedAE 0.21 0.21 0.18 0.15 0.19 0.19 0.18 0.19 0.19 0.17 0.14 0.18 0.17 0.18
MAPE 0.76 0.92 0.42 0.19 0.14 0.19 0.19 0.62 0.8 0.34 0.11 0.08 0.13 0.11
RSquared 0.59 0.6 0.76 0.75 0.69 0.57 0.69 0.22 0.22 0.17 0.16 0.18 0.26 0.19
Adj RSquared 0.28 0.29 0.57 0.56 0.46 0.23 0.45 0.39 0.39 0.31 0.28 0.32 0.46 0.33
RMSE Model 1.15 1.15 1.32 1.31 1.25 1.11 1.25 0.23 0.23 0.18 0.16 0.18 0.29 0.18

Table 6.9 Performance Metric Means and Standard Deviations (CCD)

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.66 0.65 0.81 0.71 0.73 0.58 0.68 0.22 0.23 0.18 0.2 0.19 0.29 0.21
ME 1.37 1.4 0.93 1.25 1.22 1.56 1.29 0.7 0.72 0.59 0.67 0.63 0.85 0.62
MAE 0.34 0.33 0.26 0.32 0.3 0.37 0.34 0.16 0.16 0.13 0.14 0.15 0.16 0.15
MSE 0.32 0.32 0.18 0.27 0.25 0.39 0.3 0.21 0.22 0.17 0.19 0.18 0.27 0.2
MedAE 0.21 0.2 0.18 0.21 0.19 0.24 0.23 0.17 0.16 0.13 0.15 0.15 0.17 0.16
MAPE 0.48 0.59 0.32 0.19 0.12 0.19 0.18 0.3 0.4 0.24 0.11 0.07 0.13 0.1
RSquared 0.66 0.65 0.81 0.71 0.73 0.58 0.68 0.22 0.23 0.18 0.2 0.19 0.29 0.21
Adj RSquared 0.42 0.4 0.68 0.5 0.54 0.27 0.46 0.39 0.4 0.31 0.35 0.32 0.5 0.36
RMSE Model 1.24 1.23 1.38 1.29 1.31 1.13 1.26 0.23 0.24 0.18 0.2 0.18 0.34 0.22

Table 6.10 Performance Metric Means and Standard Deviations (BBD)

154 Reasoning Over Streaming System Performance

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.7 0.72 0.75 0.83 0.76 0.7 0.78 0.22 0.22 0.19 0.14 0.2 0.22 0.17
ME 1.09 1.07 1.01 0.81 0.98 1.1 0.91 0.57 0.56 0.6 0.5 0.54 0.55 0.49
MAE 0.3 0.29 0.27 0.23 0.27 0.3 0.26 0.18 0.18 0.17 0.15 0.17 0.17 0.17
MSE 0.27 0.26 0.23 0.16 0.23 0.28 0.2 0.21 0.2 0.18 0.13 0.18 0.2 0.16
MedAE 0.16 0.16 0.15 0.14 0.15 0.15 0.16 0.2 0.2 0.18 0.16 0.19 0.19 0.19
MAPE 0.25 0.25 0.24 0.16 0.08 0.11 0.09 0.17 0.18 0.17 0.12 0.06 0.06 0.06
RSquared 0.7 0.72 0.75 0.83 0.76 0.7 0.78 0.22 0.22 0.19 0.14 0.2 0.22 0.17
Adj RSquared 0.46 0.48 0.54 0.7 0.56 0.45 0.61 0.42 0.4 0.35 0.25 0.35 0.42 0.3
RMSE Model 1.24 1.25 1.28 1.36 1.29 1.23 1.32 0.23 0.22 0.19 0.14 0.19 0.23 0.17

Table 6.11 Performance Metric Means and Standard Deviations (50th Percentile Latency)

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.7 0.7 0.67 0.73 0.76 0.79 0.76 0.22 0.23 0.22 0.2 0.19 0.16 0.17
ME 1.21 1.21 1.28 1.13 1.07 0.95 1.07 0.77 0.77 0.68 0.64 0.7 0.52 0.6
MAE 0.28 0.28 0.31 0.28 0.25 0.26 0.26 0.17 0.17 0.16 0.16 0.16 0.16 0.14
MSE 0.28 0.28 0.3 0.25 0.22 0.2 0.22 0.21 0.21 0.20 0.19 0.17 0.15 0.16
MedAE 0.15 0.15 0.15 0.14 0.13 0.15 0.13 0.17 0.17 0.17 0.16 0.16 0.17 0.15
MAPE 0.39 0.46 0.38 0.24 0.10 0.1 0.14 0.34 0.43 0.28 0.14 0.07 0.07 0.09
RSquared 0.7 0.7 0.67 0.73 0.76 0.79 0.76 0.22 0.23 0.22 0.2 0.19 0.16 0.17
Adj RSquared 0.45 0.46 0.41 0.51 0.57 0.62 0.58 0.4 0.41 0.4 0.35 0.34 0.28 0.3
RMSE Model 1.23 1.23 1.21 1.26 1.3 1.32 1.3 0.21 0.22 0.22 0.19 0.18 0.15 0.16

Table 6.12 Performance Metric Means and Standard Deviations (95th Percentile Latency)

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.62 0.61 0.85 0.71 0.72 0.49 0.67 0.24 0.24 0.13 0.22 0.19 0.29 0.22
ME 1.41 1.42 0.77 1.2 1.19 1.72 1.26 0.74 0.76 0.44 0.72 0.64 0.91 0.64
MAE 0.33 0.33 0.21 0.28 0.28 0.37 0.31 0.17 0.17 0.13 0.16 0.15 0.18 0.17
MSE 0.36 0.36 0.14 0.27 0.26 0.47 0.3 0.22 0.23 0.12 0.20 0.18 0.27 0.20
MedAE 0.15 0.15 0.12 0.14 0.13 0.16 0.15 0.18 0.18 0.15 0.16 0.16 0.18 0.18
MAPE 0.63 0.8 0.27 0.13 0.12 0.22 0.19 0.52 0.69 0.32 0.08 0.08 0.15 0.12
RSquared 0.62 0.61 0.85 0.71 0.72 0.49 0.67 0.24 0.24 0.13 0.22 0.19 0.29 0.22
Adj RSquared 0.31 0.30 0.73 0.47 0.49 0.08 0.41 0.43 0.45 0.24 0.41 0.34 0.52 0.39
RMSE Model 1.15 1.14 1.38 1.24 1.26 1.0 1.21 0.23 0.24 0.15 0.22 0.18 0.3 0.20

Table 6.13 Performance Metric Means and Standard Deviations (99th Percentile Latency)

6.4 Results and Discussion 155

Mean Standard Deviation

Metric AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS

EVS 0.61 0.6 0.9 0.72 0.71 0.48 0.63 0.25 0.25 0.11 0.21 0.20 0.29 0.24
ME 1.4 1.44 0.56 1.19 1.20 1.76 1.32 0.75 0.75 0.38 0.68 0.63 0.94 0.67
MAE 0.33 0.34 0.17 0.28 0.29 0.37 0.33 0.18 0.18 0.13 0.15 0.16 0.18 0.18
MSE 0.36 0.37 0.09 0.26 0.27 0.48 0.34 0.23 0.23 0.1 0.19 0.18 0.27 0.22
MedAE 0.16 0.16 0.11 0.13 0.14 0.16 0.16 0.19 0.18 0.13 0.15 0.17 0.18 0.19
MAPE 0.68 0.87 0.24 0.11 0.13 0.23 0.20 0.59 0.72 0.32 0.07 0.09 0.15 0.13
RSquared 0.61 0.6 0.9 0.72 0.71 0.48 0.63 0.25 0.25 0.11 0.21 0.20 0.29 0.24
Adj RSquared 0.30 0.27 0.83 0.48 0.48 0.06 0.33 0.45 0.45 0.19 0.38 0.35 0.52 0.43
RMSE Model 1.14 1.13 1.42 1.25 1.25 0.98 1.16 0.24 0.24 0.14 0.20 0.18 0.31 0.23

Table 6.14 Performance Metric Means and Standard Deviations (Max Latency)

(a) 2k F (b) CCD

(c) BBD

Fig. 6.2 Distribution of Adj. RSquared Values per Statistic (by Experiment Design)

156 Reasoning Over Streaming System Performance

(a) Max Latency (b) 99th Percentile Latency

(c) 95th Percentile Latency (d) 50th Percentile Latency

Fig. 6.3 Distribution of Adj. RSquared Values per Statistic (by Percentile Latency)

6.4 Results and Discussion 157

The Worst-Performing: WD Statistic

We can see that the WD statistic has the worst average, overall value for seven out of the

nine recorded performance metrics (i.e. EVS, ME, MAE, MSE, MedAE, RSquared and Adj.

RSquared). The WD stat also displays the highest overall standard deviation for seven out of

the nine recorded performance metrics, versus the other test statistics under consideration

(i.e. EVS, ME, MAE, MSE, RSquared and Adj. RSquared, RMSE Model).

When grouped by experiment design, we see the WD statistic maintaining its inferior

position with regards to average performance metric values across all three experiment

designs. The results for the 2k F (Table 6.9), and CCD approaches identify the WD statistic’s

mean values as underperforming the other test statistics across six of the nine metrics.

The BBD approach reports underperformance by the WD statistic across seven of the nine

metrics. The standard deviations recorded for the WD statistic’s performance metrics

show clear underperformance when using all three of the experiment design approaches,

recording the highest standard deviations in values across six, seven and eight of the nine

metrics, for the CCD, 2k F and BBD approaches respectively.

The WD statistic’s distribution of Adjusted RSquared values, grouped by latency per-

centile, appears to display the least favourable characteristics of all the test statistics (Fig-

ure 6.3). For the lower percentile latencies (i.e. 50th and 95th), all test statistics analysed

appear to display closely similar distributions. albeit the WD statistic does record the best

average performance metric values for the 95th percentile latency models, with the corre-

sponding lowest levels of standard deviation. However, for the the higher percentiles (i.e.

99th and max), the WD statistic’s ECDFs (shown in Figures 6.3a and 6.3b) appear signifi-

cantly more concave to the origin, representing a more heavily dispersed distribution of

values. This can be interpreted as an increased uncertainty regarding the expected value of

the Adjusted RSquared metric for a model, measuring the more extreme percentile latency

values, and based on the WD statistic, versus the other the statistics tested.

The distribution of Adjusted RSquared values for the WD statistic also center around the

lowest mean value of all the test statistics for the the higher percentiles (shown in Figure 6.3a

and Figure 6.3b). The fact the WD statistic displays these divergent characteristics most

prominently for the higher percentile latencies is, again, of note. This implies that the

confidence a system operator can attach to the recorded values of the WD statistic based

model, deteriorates, just at the time it is needed most (i.e. when modelling extreme latency

percentiles values and potentially significant streaming system degradation)

Figure 6.2 shows that when using the WD statistic as the response variable, the BBD

approach appears to offer the worst results and similar characteristics to those mentioned

above, namely a more heavily dispersed distribution and lower mean value of the recorded

158 Reasoning Over Streaming System Performance

Adjusted RSquared metric (versus the 2k F and CCD approach). The 2k F approach appears

to offer the best results, should one use the WD statistic as the response variable. This would

suggest system operators and practitioners might prefer to avoid building a model using a

combination of the BBD approach and the WD statistic as the response variable. Especially

so when attempting to model latency values or percentiles located further into the right-tail

of that distribution.

Based on the results, the WD statistic appears to be the worst-performing test statistic

for several reasons:

• Performance metrics: The WD statistic has the worst average value for seven out of the

nine recorded performance metrics (EVS, ME, MAE, MSE, MedAE, R2, and Adjusted

R2) overall, across the full range of experimental runs. It also displays the highest

standard deviation for seven out of the nine performance metrics. This indicates that

models using the WD statistic as the response variable generally have a poorer fit to

the data and make less accurate predictions compared to models using other test

statistics.

• Consistency across experiment designs: The WD statistic maintains its inferior per-

formance across all three experiment designs (2k F, CCD, and BBD). This suggests

that the WD statistic’s ineffectiveness is not limited to a particular experimental setup,

making it a consistently poor choice for modelling streaming system performance

degradation.

• Performance across latency percentiles: The WD statistic’s distribution of Adjusted

R2 values, grouped by latency percentile, displays the least favourable characteris-

tics, particularly for higher percentile latencies (99th and max). For these critical

latency values, the WD statistic’s ECDFs are more concave to the origin, indicating a

more heavily dispersed distribution of values and increased uncertainty regarding the

expected value of the Adjusted R2 metric.

The WD statistic can be considered the least “informative” in this context because:

• It fails to capture relevant information about the differences between the distributions

being compared as effectively as other test statistics. Although the WD statistic consid-

ers both the likelihoods and the distances between various outcome events, it may not

be as sensitive to the specific characteristics of the distributions that are most relevant

to modelling streaming system performance degradation.

6.4 Results and Discussion 159

• It is less sensitive to differences in the tails of the distributions, which is crucial when

dealing with high percentile latency values that represent extreme and potentially

critical performance degradation scenarios.

Models using the WD statistic as the response variable consistently underperform models

using other test statistics in terms of performance metrics and stability, suggesting that the

WD statistic is less effective at capturing the complex relationships between workload

characteristics and system performance.

Noteworthy Findings

Overall the KS statistic displays performances metric standard deviation values that out-

perform other test statistics across seven of the nine metrics, and all nine metrics when

calculated across all experimental runs overall, and when calculated using the 2k F ap-

proach respectively (shown in Tables 6.7 and 6.8). The KS statistics’s corresponding average

performance metric values across the same groupings, however, do not represent similar

outperformance versus other test statistics.

The KLD displays the lowest performance metric value standard deviations for the CCD

approach, but no corresponding outperformance is seen regarding the mean performance

metric values. It shows outperformance in both standard deviation and mean performance

metric values when used to model the 50th percentile latency values. In general terms, this

percentile latency is of least interest or significance to streaming system operators (versus

the higher percentile latencies), as it does not represent an extreme value in relative terms,

or a corresponding threat to maintaining system performance levels and SLAs.

It is of interest that Figure 6.4 indicates there to be an inverse relationship between a

model’s performance metrics and their standard deviations. We can see that as the average

value of a model’s performance metric rises, so does the standard deviation of those values

fall. This is important as it implies system operators may be successful in identifying a

combination of experiment design and response factor test statistic that optimises for both

levels of model performance, as well as stability and robustness of those performance levels.

6.4.2 Model Stability Metrics

Figure 6.5 displays the mean values of the fitted linear regression models for each of the

test statistics, recorded across all experiment runs and bootstrapped iterations. Table 6.15

displays both the mean values and the standard deviations for the same outputs as Ta-

ble 6.15. Tables 6.16 and 6.17 display the standard deviations of the linear regression models’

160 Reasoning Over Streaming System Performance

(a) Across Experiments Overall (b) By Experiment Design

(c) By Latency Percentile

Fig. 6.4 A comparison of model performance and stability in terms of performance metrics,
illustrating the relationship between the average value of a model’s performance metric
and the standard deviation of those values across different experimental settings and test
statistics.

6.4 Results and Discussion 161

coefficient values, for each of the test statistics, grouped by experiment design and latency

percentile respectively. Figure 6.6 displays the distributions of model coefficient values,

grouped by latency percentile.

Fig. 6.5 Mean Model Coefficient Values per Statistic

The Most Stable: KLD Statistic

We can see from Figure 6.5 and Table 6.15 that, overall, across all experimental runs, all

included test statistics appear to broadly agree regarding the direction and magnitude of the

fitted regression models’ coefficient values, for the majority of factors and interaction terms.

The main exception to this, is the Source Operators and Amplitude factors’ interaction term,

when measured using the KLD statistic, which records of value of -0.11, while all other test

statistics record values of similar magnitude to the KLD statistic, but with a positive, rather

than negative sign.

When considering results across all experimental runs, we can see from Table 6.15 that

the KLD statistic displays lower levels of standard deviation across all model factor and

162 Reasoning Over Streaming System Performance

interaction term coefficient values. This represents outperformance with respect to the

stability of those values, and therefore an increased level of confidence one is able to assign

to the characteristics of such a fitted model.

When the results of the experimental runs are grouped by experiment design Table 6.16

shows that the KLD statistic displays the lowest standard deviation of model factor coefficient

values across five of the seven factors when using a 2k F approach, and all seven factors when

using a CCD approach. This can be interpreted as the KLD statistic outperforming other

statistics when selected as the response variable, generating less uncertainty as to whether

the fitted model coefficient values accurately reflect the true underlying system interactions

and relationships. When using a BBD approach the KLD statistic is outperformed in the

above regard by the ES statistic, which displays the lowest standard deviation for all relevant

factors (the three-way interaction terms is not captured by the BBD approach, leaving six

relevant factor coefficients).

Mean Standard Deviation

Factor AD CVM ES KLD KS WD WKS AD CVM ES KLD KS WD WKS
SrcOps -0.25 -0.25 -0.52 -0.54 -0.39 -0.36 -0.43 0.64 0.64 0.5 0.49 0.58 0.64 0.55
Amplitude 0.35 0.34 0.35 0.35 0.32 0.26 0.27 0.63 0.63 0.55 0.53 0.58 0.63 0.57
SentSize 0.12 0.1 0.05 0.03 0 0 0.02 0.68 0.68 0.59 0.54 0.66 0.71 0.64
SrcOps:Amplitude 0.15 0.15 0.07 -0.11 0.12 0.15 0.13 0.88 0.87 0.8 0.70 0.81 0.79 0.75
SrcOps:Sent Size -0.13 -0.12 -0.21 -0.16 -0.18 -0.14 -0.09 0.84 0.82 0.75 0.74 0.83 0.84 0.77
Amplitude:SentSize 0.22 0.22 0.25 0.22 0.27 0.21 0.17 0.83 0.83 0.76 0.68 0.8 0.83 0.78
SrcOps:Amplitude:SentSize 0.31 0.3 0.21 0.13 0.29 0.21 0.27 0.69 0.69 0.65 0.52 0.67 0.62 0.61

Table 6.15 Model Coefficient Mean Values and Standard Deviations

When the results of the experimental runs are grouped by latency percentile, Table 6.17

shows the KLD statistic, continuing to dominate and generally outperform other test statis-

tics with regard to the standard deviations of the recorded model factor coefficient values.

Across the various percentile latency thresholds, the KLD statistic records the lowest stan-

dard deviations across five of the seven factors for the 50th percentile across six for the

95th percentile, across four for the 99th percentile, and across six of the seven for the max

latency. This implies high levels of model robustness across the full range of system latency

environments, when the KLD statistic is used as the experiment response variable.

Based on the results, the KLD statistic appears to be the most stable test statistic for

several reasons:

• Coefficient value standard deviations: Across all experimental runs, the KLD statistic

displays lower levels of standard deviation for all model factor and interaction term

coefficient values compared to other test statistics. This suggests that models using the

6.4 Results and Discussion 163

(a) Source Operators

(b) Amplitude

(c) Sentence Size

(d) Source Operators:Amplitude

(e) Source Operators:Sentence Size

(f) Amplitude:Sentence Size

(g) Source Operators:Amplitude:Sentence Size

Fig. 6.6 Distribution of Coefficient Values per Statistic (by Percentile Latency)

164 Reasoning Over Streaming System Performance

Exp. Design Stat SrcOps Amplitude SentSize SrcOps:Amplitude SrcOps:SentSize Amplitude:SentSize SrcOps:Amplitude:SentSize

2kF

AD 0.62 0.63 0.64 0.64 0.62 0.6 0.64
CVM 0.63 0.63 0.64 0.64 0.64 0.61 0.63
ES 0.46 0.48 0.51 0.51 0.46 0.47 0.54
KLD 0.49 0.47 0.44 0.45 0.47 0.45 0.48
KS 0.57 0.58 0.57 0.56 0.57 0.55 0.59
WD 0.65 0.63 0.64 0.62 0.62 0.62 0.62
WKS 0.50 0.54 0.50 0.52 0.51 0.52 0.53

CCD

AD 0.52 0.53 0.56 0.91 0.96 1.01 0.94
CVM 0.51 0.53 0.55 0.89 0.95 1.00 0.94
ES 0.47 0.52 0.5 0.92 0.91 1.00 0.95
KLD 0.41 0.43 0.43 0.71 0.74 0.78 0.75
KS 0.51 0.47 0.52 0.88 0.93 0.98 0.92
WD 0.47 0.45 0.56 0.81 0.87 0.89 0.83
WKS 0.45 0.47 0.52 0.82 0.83 0.93 0.85

BBD

AD 0.61 0.64 0.71 0.73 0.79 0.82 0.00
CVM 0.62 0.64 0.72 0.73 0.75 0.81 0.00
ES 0.46 0.49 0.61 0.58 0.64 0.71 0.00
KLD 0.55 0.57 0.67 0.69 0.81 0.75 0.00
KS 0.57 0.61 0.72 0.68 0.71 0.8 0.00
WD 0.73 0.76 0.8 0.84 0.89 0.94 0.00
WKS 0.61 0.63 0.77 0.68 0.76 0.82 0.00

Table 6.16 Model Coefficient Values’ Standard Deviations (by Experiment Design)

KLD statistic as the response variable produce more consistent and reliable estimates

of the relationships between the input factors and the system performance.

• Consistency across experiment designs: When the results are grouped by experiment

design, the KLD statistic displays the lowest standard deviation of model factor coeffi-

cient values for most factors in the 2k F and CCD. Although it is outperformed by the

ES statistic in the BBD, the KLD statistic still maintains a high level of stability across

all designs.

• Consistency across latency percentiles: When the results are grouped by latency

percentile, the KLD statistic continues to outperform other test statistics in terms of the

standard deviations of the model factor coefficient values. This indicates that the KLD

statistic provides a stable and reliable measure of system performance degradation

across the full range of latency percentiles.

The stability of the KLD statistic implies several important things:

• Increased confidence in model interpretation: The lower variability in the coefficient

values suggests that the relationships between the input factors and the system per-

formance, as captured by the KLD statistic, are more consistent and reliable. This

increases the confidence in the interpretation of the model results and the conclusions

drawn from them.

6.4 Results and Discussion 165

• Robustness to uncertainties: The stability of the KLD statistic indicates that models

using it as the response variable are less sensitive to uncertainties or variability in the

experimental data. This robustness is crucial when dealing with complex systems

like streaming architectures, where many factors can introduce variability in the

performance measurements.

• Reproducibility and generalizability: The consistency of the KLD statistic across dif-

ferent experimental designs and latency percentiles suggests that the insights gained

from models using this statistic are more likely to be reproducible and generalisable

to other streaming system scenarios. This is important for developing best practices

and guidelines for system design and optimisation.

In summary, the KLD statistic’s stability, as evidenced by the lower variability in model

coefficient values across different experimental conditions, implies increased confidence in

model interpretation, robustness to uncertainties, and better reproducibility and generalis-

ability of the insights gained from the RSM analysis.

The Least Stable: WD Statistic

When considering results across all experimental runs table Table 6.15 identifies three test

statistics that display relatively higher standard deviations of model coefficient values, across

four or more of the seven factors in question. The CVM statistic records the highest standard

deviations across four, the WD statistic across five, and the AD statistic across six of the

seven coefficient values. When grouped by experiment design, the same three statistics

remain the poorest performers. When combined with the 2k F approach each of the three

statistics in question record the highest standard deviations across four of the seven factor

coefficient values. The AD statistic is the clear underperformed when the CCD approach

is implemented, while the BBD approach results in the WD statistic underperforming.

Regarding the experiment output, when grouped by latency percentile, the most noticeable

observation concerns the degradation in the stability of the coefficient values when using

the WD statistic as the response variable, as we move up through the latency percentiles.

This is concerning as it implies that the confidence a system operator can attach to the

recorded values of the WD statistic based model, deteriorates, just at the time it is needed

most (i.e. when modelling extreme latency percentiles values and potentially significant

streaming system degradation)

Based on the results presented in Section 6.4.2, the WD statistic appears to be the least

stable test statistic for several reasons:

166 Reasoning Over Streaming System Performance

Latency Perc. Stat SrcOps Amplitude SentSize SrcOps:Amplitude SrcOps:SentSize Amplitude:SentSize SrcOps:Amplitude:SentSize

50

AD 0.56 0.63 0.62 0.84 0.73 0.81 0.69
CVM 0.57 0.64 0.60 0.80 0.69 0.81 0.68
ES 0.47 0.56 0.54 0.74 0.62 0.77 0.58
KLD 0.46 0.59 0.53 0.74 0.62 0.69 0.55
KS 0.55 0.58 0.61 0.74 0.71 0.77 0.67
WD 0.48 0.57 0.54 0.71 0.65 0.71 0.62
WKS 0.48 0.58 0.60 0.73 0.68 0.76 0.65

95

AD 0.57 0.57 0.61 0.9 0.85 0.81 0.69
CVM 0.57 0.57 0.63 0.9 0.83 0.82 0.72
ES 0.52 0.55 0.60 0.84 0.78 0.77 0.60
KLD 0.42 0.47 0.48 0.64 0.69 0.64 0.46
KS 0.52 0.51 0.62 0.82 0.89 0.83 0.67
WD 0.54 0.55 0.64 0.75 0.83 0.79 0.58
WKS 0.49 0.45 0.54 0.66 0.77 0.77 0.57

99

AD 0.69 0.64 0.69 0.9 0.86 0.84 0.7
CVM 0.71 0.65 0.69 0.89 0.87 0.83 0.68
ES 0.5 0.54 0.55 0.81 0.78 0.73 0.68
KLD 0.56 0.53 0.57 0.72 0.79 0.68 0.54
KS 0.62 0.59 0.65 0.84 0.83 0.78 0.66
WD 0.71 0.67 0.75 0.83 0.91 0.86 0.63
WKS 0.57 0.60 0.65 0.77 0.77 0.78 0.60

Max

AD 0.71 0.66 0.70 0.9 0.88 0.83 0.69
CVM 0.71 0.64 0.69 0.89 0.85 0.83 0.67
ES 0.5 0.51 0.55 0.78 0.77 0.74 0.69
KLD 0.5 0.5 0.53 0.67 0.8 0.67 0.51
KS 0.64 0.61 0.68 0.84 0.84 0.82 0.64
WD 0.74 0.7 0.76 0.84 0.93 0.91 0.65
WKS 0.63 0.62 0.68 0.81 0.81 0.78 0.59

Table 6.17 Model Coefficient Values’ Standard Deviations (by Latency Percentile)

6.4 Results and Discussion 167

• Coefficient value standard deviations: Across all experimental runs, the WD statistic,

along with the AD and CVM statistics, displays relatively higher standard deviations

of model coefficient values for most factors compared to other test statistics. This

suggests that models using the WD statistic as the response variable produce less

consistent and reliable estimates of the relationships between the input factors and

the system performance.

• Inconsistency across experiment designs: When the results are grouped by experiment

design, the WD statistic is among the poorest performers in terms of the standard

deviations of model coefficient values. It underperforms in the 2k F and CCD and is

the clear underperformer in the BBD.

• Degradation of stability for higher latency percentiles: When the results are grouped

by latency percentile, the stability of the coefficient values for the WD statistic-based

models deteriorates as the latency percentile increases. This is particularly concerning

because the higher percentile latencies (e.g., 99th and max) are often the most critical

for assessing system performance and identifying potential issues.

The lack of stability in the WD statistic implies several important things:

• Reduced confidence in model interpretation: The higher variability in the coefficient

values suggests that the relationships between the input factors and the system perfor-

mance, as captured by the WD statistic, are less consistent and reliable. This reduces

the confidence in the interpretation of the model results and the conclusions drawn

from them.

• Sensitivity to uncertainties: The lack of stability in the WD statistic indicates that mod-

els using it as the response variable are more sensitive to uncertainties or variability in

the experimental data. This sensitivity can lead to less robust and less reliable insights,

especially when dealing with complex streaming systems where many factors can

introduce variability in the performance measurements.

• Limited reproducibility and generalizability: The inconsistency of the WD statistic

across different experimental designs and latency percentiles suggests that the insights

gained from models using this statistic may be less reproducible and generalisable

to other streaming system scenarios. This can limit the usefulness of the Response

Surface Methodology analysis for developing best practices and guidelines for system

design and optimisation.

168 Reasoning Over Streaming System Performance

• Potential misinterpretation of system performance: The degradation of stability for

higher latency percentiles is particularly concerning because it implies that the WD

statistic may not provide a reliable measure of system performance when it matters

most, i.e., when the system is experiencing critical performance issues.

In summary, the WD statistic’s lack of stability, as evidenced by the higher variability

in model coefficient values across different experimental conditions, implies reduced con-

fidence in model interpretation, sensitivity to uncertainties, limited reproducibility and

generalisability, and potential misinterpretation of system performance.

6.5 Conclusion

In this chapter, we applied RSM to systematically study the performance degradation of

streaming systems under various workloads and quantify the effects of different workload

model parameters on system latency. We focused on both model performance and model

stability, comparing and contrasting the results for each generated model under varying

RSM experiment designs, workload characteristics, generative functions, latency percentile

measurements, and goodness-of-fit tests.

The key findings and best practices derived from this chapter are as follows:

1. Choice of goodness-of-fit test and experiment design matters:

• The selection of the goodness-of-fit test used as the response variable and the

RSM experiment design approach significantly impacts the performance and

stability of the generated models.

• The ES statistic generally outperformed other test statistics across most exper-

imental combinations, particularly when modelling higher percentile latency

thresholds.

• The BBD approach often provided the best results when used in conjunction

with the ES statistic.

2. Consider the latency percentile of interest:

• The impact of the chosen goodness-of-fit test and experiment design is magnified

when considering the specific latency percentile threshold of interest.

• Higher percentile latencies (e.g. 99th percentile and max latency) are more sen-

sitive to the choice of test statistic and experiment design compared to lower

percentiles.

6.5 Conclusion 169

• Practitioners should carefully select the most appropriate combination of test

statistic and experiment design based on the latency percentile they are most

concerned with optimising.

3. Avoid suboptimal combinations:

• Certain combinations of test statistics and experiment designs consistently un-

derperformed, such as the WD statistic across most experimental combinations.

• Practitioners should be aware of these suboptimal combinations and avoid them

when modelling streaming system performance degradation.

4. Validate and iterate:

• While the findings provide valuable insights, practitioners should validate the

best practices and recommendations within their specific streaming system

environments.

• Iterative experimentation and fine-tuning may be necessary to identify the most

suitable combination of test statistic, experiment design, and workload charac-

teristics for a given system.

In terms of tuning an autoscaler like DS2 in practice, the following recommendations

can be made:

1. Start with the ES statistic and BBD approach:

• When modelling streaming system performance degradation to inform autoscaler

tuning, consider using the ES statistic as the response variable and the BBD ex-

periment design as a starting point.

2. Focus on the relevant latency percentile:

• Identify the latency percentile that is most critical for your specific use case and

SLAs, and prioritise optimising the autoscaler for that percentile.

3. Iteratively refine the model:

• Use the insights gained from the initial RSM experiments to refine the autoscaler

configuration and workload characteristics.

• Conduct additional experiments to validate the improvements and further opti-

mise the autoscaler settings.

170 Reasoning Over Streaming System Performance

4. Monitor and adapt:

• Continuously monitor the streaming system’s performance and robustness under

the tuned autoscaler settings.

• Be prepared to adapt the autoscaler configuration as workload characteristics,

system requirements, or business objectives change over time.

By applying the best practices and recommendations derived from this chapter, practi-

tioners can more effectively model and optimise the performance and robustness of their

streaming systems, ultimately leading to better-tuned autoscalers and more resilient systems

in the face of varying workload conditions.

Chapter 7

Conclusions

This chapter presents a summary of the thesis and the research work contained within,

investigating the performance, robustness and behaviours of DSPS autoscalers. We identify

and discuss the contributions and limitations of these works, provide a recap of works un-

dertaken, and outline suggested, open research problems in the field, laying the foundations

for a number of ongoing research efforts.

7.1 Thesis Summary

In this thesis we have explored the performance, robustness and behavioural phenomena

experienced by state-of-the-art DSPSs and autoscalers. We adopt a number of approaches

to empirically study, quantify and analyse these characteristics and behaviours. In Chapter 2

we present a comprehensive literature review, covering stream processing, streaming system

autoscalers, workload generation and modelling, and streaming system benchmarking and

evaluation. Chapter 3 outlines the overall research methodology applied throughout the

course of the PhD and provides details of our assumptions and information regarding any

pre-existing systems used as our default choice for experiments.

In Chapter 4, we turn our attention towards the impact of parameter tuning for a state-

of-the-art autoscaler, empirically studying its impacts, both in terms of Stability, Accuracy,

Short settling time, and no Overshoot (SASO) properties as well as behavioural phenomena

outside the scope of SASO, also contributing a categorisation of autoscaler mechanisms.

We demonstrate the potential for the application of moving average models to produce

more robust autoscaler behaviour and to significantly ameliorate a number of undesir-

able behavioural phenomena (e.g. extreme parallelism shifts and lack of overall autoscaler

behavioural robustness). We also establish applicable methods to allow the systematic

172 Reasoning Over Streaming System Performance

evaluation of these models. We show applying Moving Average (MA) models to autoscaler

output can:

1. Successfully mitigate instances of undesirable, extreme parallelism shifts, with differ-

ent models displaying differing characteristics and levels of effectiveness. We have

demonstrated the potential for MA models to mitigate over 90% of extreme parallelism

shifts.

2. Reduce the number of rescaling decisions and their latency and throughput impacts,

through:

(a) reduced oscillations (our Bias measure shows our approaches realise these bene-

fits without causing under-/over-provisioning),

(b) mitigating costly-to-enact extreme parallelism shifts.

3. Significantly reduce autoscaler uncertainty and volatility when faced with dynamic

and variable incoming workloads and, in particular, we confirm our expectations that

smoother models are most successful in mitigating volatility.

The work presented in Chapter 4 was published at DEBS 2023 [98].

Chapter 5 examined the question of how to measure and quantify the robustness of

DSPSs in the face of perturbations in the operating environment. We present a range of

non-parametric goodness-of-fit tests which can act as quantifiers of such system robustness.

Through their application to the measurement and quantification of streaming system

robustness, analysis and comparison, we show that different tests produce differing relative

measures of system robustness and display differing relationships, interactions and levels

of correlation between each other. These differing measures are affected not only by the

test statistics’ inherent characteristics, but also by the particular performance metric (i.e.

latency percentile) under scrutiny. In general, the higher the occurrence of observed latency

values within the extreme tails of the distributions, or the higher the latency percentile under

scrutiny, the larger the divergence between test statistics’ results interpretation and the

lower the levels of inter-statistic correlation. This chapter suggests that when seeking to

quantify the robustness of distributed systems, practitioners should look to build multiple

non-parametric goodness-of-fit measures into their analysis, rather than rely on a single

metric. The work presented in Chapter 5 was published at EPEW2022 [97].

Chapter 6 builds upon and develops out the foundations laid down in Chapter 5. We

apply a selection of non-parametric goodness-of-fit tests (first presented in Chapter 5, with

two new additions) and draw on RSM to help systematically study the performance degra-

dation of streaming systems under various workloads. We quantify the effects of different

7.2 Future Research Directions 173

workload model parameters on system latency. We focus on both model performance and

model stability, and compare and contrast the results for each of our generated models,

under varying RSM experiment designs, workload characteristics and generative functions,

latency percentiles measurements, and goodness-of-fit tests.

We have demonstrated that the choice of which test statistic to use as the response

variable, along with which RSM experiment design approach, has a significant impact on

outputs, including the performance and stability of the generated model. This impact is

further magnified when the particularly percentile latency threshold of interest is taken into

account.

There are combinations of approaches which clearly perform well, compared to other

possible combinations (i.e. of experiment design and response variable test statistic). For

example, the ES statistic tends to dominate other statistic choices across most experimental

combinations, especially when concerned with modelling the higher percentile latency

thresholds. However, the WD appears to be a suboptimal choice across most combinations

and across the experimental runs overall.

7.2 Future Research Directions

Here we motivate a number of areas of future research, arising from lessons learnt through-

out the PhD.

7.2.1 Generalisability

An area of key interest is the generalisability of our developed approaches to other operating

environments. We identify three major threats to the level of generalisability, as follows:

1. Single streaming platform: The experimental results in this thesis consider a single

streaming platform, Apache Flink.

2. Single autoscaler: The experimental results in this thesis consider a single state-of-the-

art autoscaler, DS2.

3. Single workload: The experimental results used a single Wordcount workload, leverag-

ing four arrival processes.

Future research should involve the expansion of the experimental environment to in-

clude multiple, varied additions to the above three listed selections.

174 Reasoning Over Streaming System Performance

7.2.2 Windowing and Weighting

Our work in Chapter 4 highlights several interesting avenues of future research. Firstly, we

see the potential for an ensemble approach to provide the distinct benefits of several MA

models. Secondly, we see potential to incorporate these measures to inform other operating

parameters for autoscalers. For example, to increase contingency multipliers for scaling

decisions in periods of uncertainty, or introduce MA models dynamically when dynamic

and variable incoming workloads are detected. Finally, we may incorporate estimates on

rescaling duration (e.g. accounting for state size) as a mechanism to optimise the choice of

window size.

7.2.3 Robustness: Measurement and Quantification

Our work in Chapters 5 and 6 suggests that when seeking to quantify the robustness of

distributed systems, or model system performance degradation, practitioners should look

to build multiple non-parametric goodness-of-fit and distance measures into their analy-

sis, rather than rely on a single metric. We have shown that different goodness-of-fit tests

produce differing relative measures of implied system robustness in the face of various

disturbances to the incoming workload characteristics and workload function input vari-

ables. The selected test statistics display differing relationships, interactions and levels of

correlation between each other. Our results imply these are affected by not only the test

statistics’ inherent characteristics, sensitivities and calculation methods, but also by the

particular percentile of observed latency values under scrutiny.

[70] show that even after a metric is chosen, it can still be useful to familiarise oneself

with other metrics, especially if one also considers the relationships among them and that

analysis of a problem using several different metrics can provide complementary insights.

For these reasons we propose future research avenues include the research and analysis of

further, as yet untested goodness-of-fit tests and distance metrics, approaches and concepts.

As a starting point, we propose the following:

• Discrepancy metric [70]

• Hellinger distance [70]

• Levy metric [70]

• Prokhorov metric [70]

• Separation distance [70]

7.2 Future Research Directions 175

• Total variation distance [70]

• χ2 distance [70]

7.2.4 Tooling Support for Benchmarking Practitioners

This thesis has highlighted several implications for performance engineering and bench-

marking practitioners. We have made several recommendations which have the potential

to improve the rigour with which we benchmark systems. Throughout this work we have

demonstrated a strong commitment to open practices, for example through the Artifact

Evaluation process with our DEBS submission, and by making available data alongside

this thesis. We see further opportunities to embed our methods within standard tooling

and benchmarking (e.g. the Nexmark benchmarks). We recognise previous efforts in the

literature which explore existing statistical practices in systems research [91, 90, 44] and see

potential to extend these to capture the current state of practice in robustness measures.

We also recognise the need for training of practitioners to have the confidence in applying

these methods, noting prior efforts including [117], and ensuring that these principles flow

through into artifact evaluation guidance for the systems community (e.g. [14]).

Glossary

Train-Test Split A technique in machine learning where the dataset is divided into a training

set for model learning and a test set for model evaluation. This method helps prevent

over-fitting and ensures the model’s ability to generalize to unseen data.

K-Fold Cross Validation A resampling procedure in machine learning used to evaluate a

model’s performance on a limited data sample. The method divides the dataset into

k subsets, or folds, then iteratively trains the model on k −1 folds while using the

remaining fold as the test set.

Stream Processing Engine The specific core component within a stream processing system

that deals with the real-time processing of data streams. It consists of the compu-

tational algorithms and methods that operate on the incoming data streams. This

includes tasks like filtering, aggregating, transforming, and analyzing the streaming

data.

Event Processing Also known as Complex Event Processing (CEP), refers to the identification

and analysis of meaningful events, patterns, or relationships within data streams.

CEP systems can detect and respond to specific conditions, triggers, or patterns in

real-time, facilitating rapid decision-making and action.

Streaming Analytics A subfield of stream processing that focuses on the real-time analysis

and processing of data streams in order to extract actionable insights. This term is

often used interchangeably with real-time analytics.

Data Stream A continuous, unbounded sequence of data elements generated at a high rate

from sources such as sensors, social media platforms, web applications, financial

transactions, or IoT devices. Data streams are characterized by their dynamic nature

and potential for rapid change.

Source The component responsible for ingesting data streams from external data producers.

Sources can be connected to various data providers, such as message brokers,

databases, or APIs, and can handle data serialisation and deserialisation, as well as

schema management.

178 Reasoning Over Streaming System Performance

Bootstrapping Random Sampling with Replacement A resampling technique used to

estimate statistics on a population by sampling a dataset with replacement.

Sink The component in a SPSs that outputs the results of data processing to external systems,

such as databases, message queues, or storage systems. Sinks are responsible for

handling data serialisation and deserialisation, as well as managing connections

and data consistency with the target system.

Operator the processing elements in a SPS that perform transformations, computations, or

aggregations on the data streams. Operators can be stateless, meaning they do not

maintain any internal state between processing events, or stateful, meaning they

maintain internal state to perform computations across multiple events.

Parallelism Refers to the concurrent execution of multiple instances of processing operators,

enabling the system to process data streams more efficiently and achieve higher

throughput. Parallelism can be achieved at the level of individual operators or across

entire processing pipelines.

Resource Allocation the process of assigning computational resources, such as CPU, mem-

ory, and network capacity, to the various components of a stream processing system.

Effective resource allocation is crucial for maintaining system performance, scala-

bility, and cost-efficiency and can be guided by workload models and autoscaling

algorithms.

Autoscaling the dynamic adjustment of resource allocations and processing parallelism in

response to changes in workload patterns or system performance. Autoscalers use

workload models, system monitoring data, and scaling policies to make resource al-

location decisions, helping to ensure that SPSs maintain performance and resource

utilization targets.

DSMS a specialized system designed to handle the unique challenges associated with pro-

cessing data streams. It typically includes features such as continuous queries,

sliding window operators, and mechanisms for handling out-of-order data.

Continuous Query an ongoing query that processes data streams in real-time, as opposed

to traditional queries which operate on static data sets. Continuous queries enable

the continuous extraction of insights from streaming data, allowing for real-time or

near-real-time decision-making.

Windowing a technique used in stream processing to divide data streams into finite, man-

ageable subsets called windows. Windows can be defined based on time intervals,

the number of events, or custom criteria, and are used to perform aggregate compu-

tations or pattern detection on the Data Stream.

Glossary 179

Publish/Subscribe Systems (Pub/Sub) messaging frameworks that enable asynchronous,

real-time communication between distributed systems. In this paradigm, data

producers (publishers) disseminate data to data consumers (subscribers) who have

expressed interest in specific data types or topics. Pub/Sub systems streamline data

dissemination in real-time processing environments.

Acronyms

2k F 2k Factorial Design.

API Application Programming Interface.

BBD Box-Behnken Design.

CCD Central Composite Design.

CES Complex Event System.

DSPE Distributed Stream Processing Engine.

DSPS Distributed Stream Processing System.

RDD Resilient Distributed Dataset.

SLA Service Level Agreement.

SPE Stream Processing Engine.

SPS Stream Processing System.

VM Virtual Machine.

AD Anderson-Darling.

ANOVA Analysis of Variance.

AT Activation Time.

BaaS Benchmarking as a Service.

CDF Cumulative Distribution Function.

CEP Complex Event Processing.

CLT Central Limit Theorem.

CPU Central Processing Unit.

CVM Cramér-von Mises.

DAG Directed Acyclic Graph.

DAS Data Accelerator for Streaming.

DSMS Data Stream Management System.

DSRM Design Science Research Methodology.

ECDF Empirical Cumulative Distribution Function.

ECF Empirical Characteristic Function.

EDF Empirical Distribution Function.

182 Reasoning Over Streaming System Performance

ES Epps-Singleton.

ETL Extract, Transform, Load.

EVT Extreme Value Theory.

I/O Input/Output.

IoT Internet of Things.

KLD Kullback-Leibler Divergence.

KS Kolmogorov-Smirnov.

LAN Local Area Network.

MA Moving Average.

MAPE Monitor, Analyse, Plan, Execute.

OFAT One-Factor-At-a-Time.

PIR Policy Interval Rate.

QoS Quality of Service.

RL Reinforcement Learning.

RO Research Objective.

RQ Research Question.

RSM Response Surface Methodology.

SASO Stability, Accuracy, Short settling time, and no Overshoot.

WD Wasserstein Distance.

WKS Weighted Kolmogorov-Smirnov.

WUT Warm-Up Time.

WWW World Wide Web.

RMSE Root Mean Squared Error of the Model.

References

[1] URL: https://databrickslabs.github.io/dbldatagen/public_docs/index.html.

[2] Tarek Abdelzaher, Yixin Diao, Joseph L Hellerstein, Chenyang Lu, and Xiaoyun Zhu.
“Introduction to control theory and its application to computing systems”. In: Perfor-
mance Modeling and Engineering. Springer, 2008, pp. 185–215.

[3] Kiryong Ha Agape and Daniel Boeve Anca. Throughput autoscaling: Dynamic sizing
for Facebook.com. Engineering at Meta. Sept. 14, 2020. URL: https://engineering.
fb. com / 2020 / 09 / 14 / networking - traffic / throughput - autoscaling/ (visited on
02/26/2023).

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt,
and Sam Whittle. “The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data processing”. en. In:
Proceedings of the VLDB Endowment 8.12 (Aug. 2015), pp. 1792–1803. ISSN: 2150-8097.
DOI: 10.14778/2824032.2824076. URL: https://dl.acm.org/doi/10.14778/2824032.
2824076 (visited on 10/25/2021).

[5] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. “An adaptive hybrid elasticity
controller for cloud infrastructures”. In: Apr. 2012, pp. 204–212. DOI: 10.1109/NOMS.
2012.6211900.

[6] Lamees Alqassem, Thanos Stouraitis, Ernesto Damiani, and Ibrahim (Abe) Elfadel.
“Proactive Random-Forest Autoscaler for Microservice Resource Allocation”. In: IEEE
Access PP (Jan. 2023), pp. 1–1. DOI: 10.1109/ACCESS.2023.3234021.

[7] George Anderson, Tshilidzi Marwala, and Fulufhelo Vincent Nelwamondo. “A re-
sponse surface methodology approach to operating system scheduler tuning”. In:
2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE. 2010,
pp. 2684–2689.

[8] T. W. Anderson and D. A. Darling. “Asymptotic Theory of Certain "Goodness of Fit"
Criteria Based on Stochastic Processes”. en. In: The Annals of Mathematical Statistics
23.2 (June 1952), pp. 193–212. ISSN: 0003-4851. DOI: 10.1214/aoms/1177729437.
(Visited on 03/26/2022).

[9] Leonardo Aniello, Silvia Bonomi, Federico Lombardi, and Alessandro Zelli. “An
Architecture for Automatic Scaling of Replicated Services”. In: Aug. 2014, pp. 122–137.
ISBN: 978-3-319-09580-6. DOI: 10.1007/978-3-319-09581-3_9.

[10] App Scaling - AWS Application Auto Scaling - AWS. 2023. URL: https://aws.amazon.
com/autoscaling/ (visited on 07/01/2023).

https://databrickslabs.github.io/dbldatagen/public_docs/index.html
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://doi.org/10.14778/2824032.2824076
https://dl.acm.org/doi/10.14778/2824032.2824076
https://dl.acm.org/doi/10.14778/2824032.2824076
https://doi.org/10.1109/NOMS.2012.6211900
https://doi.org/10.1109/NOMS.2012.6211900
https://doi.org/10.1109/ACCESS.2023.3234021
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1007/978-3-319-09581-3_9
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/

184 Reasoning Over Streaming System Performance

[11] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. “A Comparison
of Reinforcement Learning Techniques for Fuzzy Cloud Auto-Scaling”. en. In: 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). Madrid, Spain: IEEE, May 2017, pp. 64–73. ISBN: 978-1-5090-6611-7. DOI:
10.1109/CCGRID.2017.15. URL: http://ieeexplore.ieee.org/document/7973689/
(visited on 10/24/2021).

[12] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. “Linear Road: A Stream
Data Management Benchmark”. In: Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases - Volume 30. VLDB ’04. Toronto, Canada: VLDB
Endowment, 2004, pp. 480–491. ISBN: 0120884690.

[13] Arnaud Legoux and Dimitrios Kouzis Loukas. ALMA-Arnaud-Legoux-Moving-Average.
2009.

[14] Artifact Review and Badging - Current. URL: https://www.acm.org/publications/
policies/artifact-review-and-badging-current.

[15] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. “Work-
load analysis of a large-scale key-value store”. en. In: (), p. 12.

[16] Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. “A discrete-
time feedback controller for containerized cloud applications”. en. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Seattle WA USA: ACM, Nov. 2016, pp. 217–228. ISBN: 978-1-4503-4218-6.
DOI: 10.1145/2950290.2950328. URL: https://dl.acm.org/doi/10.1145/2950290.
2950328 (visited on 10/24/2021).

[17] Ermanno Battista, S. Martino, S. Meglio, F. Scippacercola, and L. L. L. Starace. “E2E-
Loader: A Framework to Support Performance Testing of Web Applications”. In:
2023 IEEE Conference on Software Testing, Verification and Validation (ICST) (2023),
pp. 351–361. DOI: 10.1109/ICST57152.2023.00040.

[18] Scott Bekker and Editor in Chief. Veeam Puts Hourly Downtime Cost at $85K. Red-
mond Channel Partner. URL: https://rcpmag.com/blogs/scott-bekker/2021/03/
veeam-hourly-downtime-cost.aspx (visited on 02/27/2023).

[19] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Perspective on
Reinforcement Learning”. In: Proceedings of the 34th International Conference on
Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017,
pp. 449–458.

[20] Netflix Technology Blog. Scryer: Netflix’s Predictive Auto Scaling Engine — Part 2.
Medium. Apr. 18, 2017. URL: https://netflixtechblog.com/scryer-netflixs-predictive-
auto-scaling-engine-part-2-bb9c4f9b9385 (visited on 02/26/2023).

[21] Peter Bodík, Rean Griffith, Charles Sutton, Armando Fox, Michael I. Jordan, and
David A. Patterson. “Statistical Machine Learning Makes Automatic Control Practical
for Internet Datacenters”. In: USENIX Workshop on Hot Topics in Cloud Computing.
2009.

[22] Maycon Viana Bordin, Dalvan Griebler, G. Mencagli, C. Geyer, and L. G. Fernandes.
“DSPBench: A Suite of Benchmark Applications for Distributed Data Stream Process-
ing Systems”. In: IEEE Access 8 (2020), pp. 222900–222917. DOI: 10.1109/ACCESS.
2020.3043948.

https://doi.org/10.1109/CCGRID.2017.15
http://ieeexplore.ieee.org/document/7973689/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/2950290.2950328
https://dl.acm.org/doi/10.1145/2950290.2950328
https://dl.acm.org/doi/10.1145/2950290.2950328
https://doi.org/10.1109/ICST57152.2023.00040
https://rcpmag.com/blogs/scott-bekker/2021/03/veeam-hourly-downtime-cost.aspx
https://rcpmag.com/blogs/scott-bekker/2021/03/veeam-hourly-downtime-cost.aspx
https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-engine-part-2-bb9c4f9b9385
https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-engine-part-2-bb9c4f9b9385
https://doi.org/10.1109/ACCESS.2020.3043948
https://doi.org/10.1109/ACCESS.2020.3043948

References 185

[23] Maycon Viana Bordin, Dalvan Griebler, Gabriele Mencagli, Claudio Geyer, and Luiz
Gustavo Fernandes. “DSPBench: A Suite of Benchmark Applications for Distributed
Data Stream Processing Systems”. In: IEEE Access 8 (2020), pp. 222900–222917.

[24] G. Box and Donald Behnken. “Some New Three Level Designs for the Study of Quanti-
tative Variables”. In: Technometrics 2 (Nov. 1960), pp. 455–475. DOI: 10.1080/00401706.
1960.10489912.

[25] G. Box and J.S. Hunter. “MultiFactor Experimental Designs for Exploring Response
Surfaces”. In: The Annals of Mathematical Statistics 28 (Mar. 1957). DOI: 10.1214/
aoms/1177707047.

[26] G. Box, Stuart Hunter, and William Hunter. Statistics for experimenters. Design, inno-
vation, and discovery. 2nd ed. Vol. 2. Jan. 2005.

[27] George E P Box and Norman R Draper. Empirical model-building and response
surface. USA: John Wiley & Sons, Inc., 1986. ISBN: 0471810339.

[28] Matthew Brookes, Vasiliki Kalavri, and John Liagouris. “FASTER State Management
for Timely Dataflow”. In: Proceedings of Real-Time Business Intelligence and Analytics.
BIRTE 2019. Los Angeles, CA, USA: Association for Computing Machinery, 2019. ISBN:
9781450376600. DOI: 10.1145/3350489.3350493. URL: https://doi.org/10.1145/
3350489.3350493.

[29] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. “Apache Flink™: Stream and Batch Processing in a Single Engine”.
In: (2015), p. 12.

[30] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. “Apache Flink™: Stream and Batch Processing in a Single Engine”.
In: IEEE Data Engineering Bulletin 38 (Jan. 2015).

[31] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo.
“Runtime adaptation of data stream processing systems: The state of the art”. In:
ACM Computing Surveys 54.11s (2022), pp. 1–36.

[32] J. M. Carlson and John Doyle. “Highly Optimized Tolerance: Robustness and Design
in Complex Systems”. en. In: Physical Review Letters 84.11 (Mar. 2000), pp. 2529–
2532. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.84.2529. (Visited on
03/26/2022).

[33] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Piet-
zuch. “Integrating scale out and fault tolerance in stream processing using operator
state management”. In: Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD/PODS’13: International Conference on
Management of Data. New York New York USA: ACM, June 22, 2013, pp. 725–736.
ISBN: 978-1-4503-2037-5. DOI: 10.1145/2463676.2465282. URL: https://dl.acm.org/
doi/10.1145/2463676.2465282 (visited on 02/26/2023).

https://doi.org/10.1080/00401706.1960.10489912
https://doi.org/10.1080/00401706.1960.10489912
https://doi.org/10.1214/aoms/1177707047
https://doi.org/10.1214/aoms/1177707047
https://doi.org/10.1145/3350489.3350493
https://doi.org/10.1145/3350489.3350493
https://doi.org/10.1145/3350489.3350493
https://doi.org/10.1103/PhysRevLett.84.2529
https://doi.org/10.1145/2463676.2465282
https://dl.acm.org/doi/10.1145/2463676.2465282
https://dl.acm.org/doi/10.1145/2463676.2465282

186 Reasoning Over Streaming System Performance

[34] Uğur Çetintemel, Daniel Abadi, Yanif Ahmad, Hari Balakrishnan, Magdalena Bal-
azinska, Mitch Cherniack, Jeong-Hyon Hwang, Samuel Madden, Anurag Maskey,
Alexander Rasin, Esther Ryvkina, Mike Stonebraker, Nesime Tatbul, Ying Xing, and
Stan Zdonik. “The Aurora and Borealis Stream Processing Engines”. en. In: Data
Stream Management. Ed. by Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
Series Title: Data-Centric Systems and Applications. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 337–359. ISBN: 978-3-540-28607-3 978-3-540-28608-0.
DOI: 10.1007/978-3-540-28608-0_17. URL: http://link.springer.com/10.1007/978-3-
540-28608-0_17 (visited on 10/24/2021).

[35] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael Franklin, Joseph
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman,
Frederick Reiss, and Mehul Shah. “Telegraphcq: Continuous dataflow processing for
an uncertain world”. In: Jan. 2003.

[36] Yingchao Cheng, Zhifeng Hao, and Ruichu Cai. “Auto-scaling for Real-time Stream
Analytics on HPC Cloud”. In: Service Oriented Computing and Applications 13 (June
2019). DOI: 10.1007/s11761-019-00262-0.

[37] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark
Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng, and
Paul Poulosky. “Benchmarking Streaming Computation Engines: Storm, Flink and
Spark Streaming”. In: 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 2016, pp. 1789–1792. DOI: 10.1109/IPDPSW.2016.
138.

[38] Joaquin Chung, Mainak Adhikari, Satish Narayana Srirama, Eun-Sung Jung, and Ra-
jkumar Kettimuthu. “Resource Management for Processing Wide Area Data Streams
on Supercomputers”. In: 2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN). 2020, pp. 1–6. DOI: 10.1109/ICCCN49398.2020.
9209669.

[39] Linda M. Collins, John J. Dziak, Kari C. Kugler, and Jessica B. Trail. “Factorial Experi-
ments”. en. In: American Journal of Preventive Medicine 47.4 (Oct. 2014), pp. 498–504.
ISSN: 07493797. DOI: 10.1016/j.amepre.2014.06.021. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0749379714003250 (visited on 10/24/2021).

[40] M.E. Crovella and A. Bestavros. “Self-similarity in World Wide Web traffic: evidence
and possible causes”. In: IEEE/ACM Transactions on Networking 5.6 (Dec. 1997),
pp. 835–846. ISSN: 10636692. DOI: 10.1109/90.650143. URL: http://ieeexplore.ieee.
org/document/650143/ (visited on 04/13/2022).

[41] Miyuru Dayarathna and Srinath Perera. “Recent advancements in event processing”.
In: ACM Computing Surveys (CSUR) 51.2 (2018), pp. 1–36.

[42] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. “Rhino:
Efficient management of very large distributed state for stream processing engines”.
In: Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2020, pp. 2471–2486.

[43] Dhananjay Dhananjay, Chinya Ravishankar, and Mitch Cherniack. “Real-time, load-
adaptive processing of continuous queries over data streams”. In: July 2008, pp. 277–
288. DOI: 10.1145/1385989.1386024.

https://doi.org/10.1007/978-3-540-28608-0_17
http://link.springer.com/10.1007/978-3-540-28608-0_17
http://link.springer.com/10.1007/978-3-540-28608-0_17
https://doi.org/10.1007/s11761-019-00262-0
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/ICCCN49398.2020.9209669
https://doi.org/10.1109/ICCCN49398.2020.9209669
https://doi.org/10.1016/j.amepre.2014.06.021
https://linkinghub.elsevier.com/retrieve/pii/S0749379714003250
https://linkinghub.elsevier.com/retrieve/pii/S0749379714003250
https://doi.org/10.1109/90.650143
http://ieeexplore.ieee.org/document/650143/
http://ieeexplore.ieee.org/document/650143/
https://doi.org/10.1145/1385989.1386024

References 187

[44] Dmitry Duplyakin, Nikhil Ramesh, Carina Imburgia, Hamza Fathallah Al Sheikh,
Semil Jain, Prikshit Tekta, Aleksander Maricq, Gary Wong, and Robert Ricci. “Avoiding
the Ordering Trap in Systems Performance Measurement”. In: 2023 USENIX Annual
Technical Conference (USENIX ATC 23). 2023, pp. 373–386.

[45] John F. Ehlers. Rocket Science for Traders: Digital Signal Processing Applications. USA:
John Wiley & Sons, Inc., 2001. ISBN: 0471405671.

[46] A. S. C. Ehrenberg. In: Journal of the Royal Statistical Society. Series C (Applied Statis-
tics) 28.1 (1979), pp. 79–83. ISSN: 00359254, 14679876. URL: http://www.jstor.org/
stable/2346818 (visited on 08/12/2023).

[47] Simon Eismann, Diego Elias Costa, Lizhi Liao, Cor-Paul Bezemer, Weiyi Shang, André
van Hoorn, and Samuel Kounev. “A case study on the stability of performance tests
for serverless applications”. In: Journal of Systems and Software 189 (2022), p. 111294.

[48] D. England, J. Weissman, and J. Sadagopan. “A new metric for robustness with
application to job scheduling”. en. In: HPDC-14. Proceedings. 14th IEEE Interna-
tional Symposium on High Performance Distributed Computing, 2005. IEEE, 2005,
pp. 135–143. ISBN: 978-0-7803-9037-9. DOI: 10.1109/HPDC.2005.1520948. (Visited
on 03/26/2022).

[49] Sonja Engmann and Denis Cousineau. “Comparing distributions: the two-sample
Anderson–Darling test as an alternative to the Kolmogorov–Smirnov test”. In: Journal
of Applied Quantitative Methods 6 (Sept. 2011), pp. 1–17.

[50] TW Epps and Kenneth J Singleton. “An omnibus test for the two-sample problem
using the empirical characteristic function”. In: Journal of Statistical Computation
and Simulation 26.3-4 (1986), pp. 177–203.

[51] A. Erramilli, O. Narayan, and W. Willinger. “Experimental queueing analysis with
long-range dependent packet traffic”. In: IEEE/ACM Transactions on Networking
4.2 (Apr. 1996), pp. 209–223. ISSN: 10636692. DOI: 10.1109/90.491008. URL: http:
//ieeexplore.ieee.org/document/491008/ (visited on 04/14/2022).

[52] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
“The Many Faces of Publish/Subscribe”. In: ACM Comput. Surv. 35.2 (June 2003),
pp. 114–131. ISSN: 0360-0300. DOI: 10.1145/857076.857078. URL: https://doi.org/10.
1145/857076.857078.

[53] Vivian Fang, Lloyd Brown, William Lin, Wenting Zheng, Aurojit Panda, and Raluca
Ada Popa. “CostCO: An automatic cost modeling framework for secure multi-party
computation”. In: 2022 IEEE 7th European Symposium on Security and Privacy (Eu-
roS&P). IEEE. 2022, pp. 140–153.

[54] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ramasamy.
“Dhalion: self-regulating stream processing in heron”. en. In: Proceedings of the
VLDB Endowment 10.12 (Aug. 2017), pp. 1825–1836. ISSN: 2150-8097. DOI: 10.14778/
3137765.3137786. URL: https://dl.acm.org/doi/10.14778/3137765.3137786 (visited
on 10/24/2021).

[55] Daniel D. Frey, Fredrik Engelhardt, and Edward M. Greitzer. “A role for "one-factor-
at-a-time" experimentation in parameter design”. en. In: Research in Engineering
Design 14.2 (May 2003), pp. 65–74. ISSN: 0934-9839. DOI: 10.1007/s00163-002-0026-9.
(Visited on 04/02/2022).

http://www.jstor.org/stable/2346818
http://www.jstor.org/stable/2346818
https://doi.org/10.1109/HPDC.2005.1520948
https://doi.org/10.1109/90.491008
http://ieeexplore.ieee.org/document/491008/
http://ieeexplore.ieee.org/document/491008/
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.14778/3137765.3137786
https://dl.acm.org/doi/10.14778/3137765.3137786
https://doi.org/10.1007/s00163-002-0026-9

188 Reasoning Over Streaming System Performance

[56] Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett, Yin Yang, and
Zhenjie Zhang. “DRS: Auto-Scaling for Real-Time Stream Analytics”. en. In: IEEE/ACM
Transactions on Networking 25.6 (Dec. 2017), pp. 3338–3352. ISSN: 1063-6692, 1558-
2566. DOI: 10.1109/TNET.2017.2741969. URL: http://ieeexplore.ieee.org/document/
8024162/ (visited on 10/24/2021).

[57] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. “Modeling
the Impact of Workload on Cloud Resource Scaling”. In: Proceedings - Symposium on
Computer Architecture and High Performance Computing (Dec. 2014), pp. 310–317.
DOI: 10.1109/SBAC-PAD.2014.16.

[58] Anshul Gandhi, Parijat Dube, Alexei A. Karve, Andrzej Kochut, and Li Zhang. “Adap-
tive, Model-driven Autoscaling for Cloud Applications”. In: International Conference
on Automation and Computing. 2014.

[59] Anshul Gandhi, Parijat Dube, Alexei A. Karve, Andrzej Kochut, and Li Zhang. “Adap-
tive, Model-driven Autoscaling for Cloud Applications”. In: 11th International Con-
ference on Autonomic Computing, ICAC ’14, Philadelphia, PA, USA, June 18-20, 2014.
Ed. by Xiaoyun Zhu, Giuliano Casale, and Xiaohui Gu. USENIX Association, 2014,
pp. 57–64. URL: https://www.usenix.org/conference/icac14/technical-sessions/
presentation/gandhi.

[60] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch.
“AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers”. In:
ACM Trans. Comput. Syst. 30.4 (Nov. 2012). ISSN: 0734-2071. DOI: 10.1145/2382553.
2382556. URL: https://doi.org/10.1145/2382553.2382556.

[61] Sandra Garcia-Rodriguez, Mohammad Alshaer, and C. Gouy-Pailler. “STREAMER: A
Powerful Framework for Continuous Learning in Data Streams”. In: Proceedings of
the 29th ACM International Conference on Information & Knowledge Management
(2020). DOI: 10.1145/3340531.3417427.

[62] Robert A. Gatenby and B. Roy Frieden. “Information Theory in Living Systems, Meth-
ods, Applications, and Challenges”. In: Bulletin of Mathematical Biology 69.2 (Feb. 1,
2007), pp. 635–657. ISSN: 1522-9602. DOI: 10.1007/s11538-006-9141-5. URL: https:
//doi.org/10.1007/s11538-006-9141-5.

[63] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. “Elastic Scaling for
Data Stream Processing”. In: Parallel and Distributed Systems, IEEE Transactions on
25 (June 2014), pp. 1447–1463. DOI: 10.1109/TPDS.2013.295.

[64] Sandra Geisler. “Data Stream Management Systems”. In: Data Exchange, Information,
and Streams. 2013.

[65] Jeff Gemet. App Store Downtime Cost Apple $25M in Sales. The Mac Observer. 2015.
URL: https://www.macobserver.com/tmo/article/app-store-downtime-cost-apple-
25m-in-sales.html.

[66] Adem Efe Gencer, David Bindel, Emin Gün Sirer, and Robbert van Renesse. “Config-
uring distributed computations using response surfaces”. In: Proceedings of the 16th
Annual Middleware Conference. 2015, pp. 235–246.

[67] Ian Gergin, Bradley Simmons, and Marin Litoiu. “A Decentralized Autonomic Ar-
chitecture for Performance Control in the Cloud”. In: Mar. 2014, pp. 574–579. DOI:
10.1109/IC2E.2014.75.

https://doi.org/10.1109/TNET.2017.2741969
http://ieeexplore.ieee.org/document/8024162/
http://ieeexplore.ieee.org/document/8024162/
https://doi.org/10.1109/SBAC-PAD.2014.16
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://doi.org/10.1145/2382553.2382556
https://doi.org/10.1145/2382553.2382556
https://doi.org/10.1145/2382553.2382556
https://doi.org/10.1145/3340531.3417427
https://doi.org/10.1007/s11538-006-9141-5
https://doi.org/10.1007/s11538-006-9141-5
https://doi.org/10.1007/s11538-006-9141-5
https://doi.org/10.1109/TPDS.2013.295
https://www.macobserver.com/tmo/article/app-store-downtime-cost-apple-25m-in-sales.html
https://www.macobserver.com/tmo/article/app-store-downtime-cost-apple-25m-in-sales.html
https://doi.org/10.1109/IC2E.2014.75

References 189

[68] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, Cornel Barna, and Gabriel Is-
zlai. “Optimal Autoscaling in a IaaS Cloud”. In: Proceedings of the 9th International
Conference on Autonomic Computing. ICAC ’12. San Jose, California, USA: Asso-
ciation for Computing Machinery, 2012, pp. 173–178. ISBN: 9781450315203. DOI:
10.1145/2371536.2371567. URL: https://doi.org/10.1145/2371536.2371567.

[69] Mostafa Ghobaei-Arani and Ali Shahidinejad. “An efficient resource provisioning ap-
proach for analyzing cloud workloads: a metaheuristic-based clustering approach”.
In: The Journal of Supercomputing 77 (Jan. 2021). DOI: 10.1007/s11227-020-03296-w.

[70] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics.
2002. arXiv: math/0209021 [math.PR].

[71] Sebastian J. Goerg and Johannes Kaiser. “Nonparametric Testing of Distributions—
the Epps–Singleton Two-Sample Test using the Empirical Characteristic Function”.
en. In: The Stata Journal: Promoting communications on statistics and Stata 9.3 (Sept.
2009), pp. 454–465. ISSN: 1536-867X, 1536-8734. DOI: 10.1177/1536867X0900900307.
(Visited on 03/18/2022).

[72] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and Joao Gama.
“Machine learning for streaming data: state of the art, challenges, and opportunities”.
In: ACM SIGKDD Explorations Newsletter 21 (Nov. 2019), pp. 6–22. DOI: 10.1145/
3373464.3373470.

[73] M.E. Gomez and V. Santonja. “Self-similarity in I/O workload: analysis and mod-
elling”. In: Workload Characterization: Methodology and Case Studies. Based on the
First Workshop on Workload Characterization. Workload Characterization: Method-
ology and Case Studies. Based on the First Workshop on Workload Characterization.
Dallas, TX, USA: IEEE Comput. Soc, 1999, pp. 97–104. ISBN: 978-0-7695-0450-6. DOI:
10.1109/WWC.1998.809365. URL: http://ieeexplore.ieee.org/document/809365/
(visited on 04/13/2022).

[74] Martin Grambow, Fabian Lehmann, and David Bermbach. “Benchmarking the per-
formance of microservice applications”. In: Proceedings of the 19th International
Conference on Web Engineering. Springer. 2019, pp. 283–298.

[75] S.D. Gribble. “Robustness in complex systems”. en. In: Proceedings Eighth Workshop
on Hot Topics in Operating Systems. IEEE Comput. Soc, 2001, pp. 21–26. ISBN: 978-0-
7695-1040-8. DOI: 10.1109/HOTOS.2001.990056. (Visited on 03/26/2022).

[76] Steven D. Gribble, Gurmeet Singh Manku, Drew Roselli, Eric A. Brewer, Timothy
J. Gibson, and Ethan L. Miller. “Self-Similarity in File Systems”. In: SIGMETRICS
Perform. Eval. Rev. 26.1 (June 1998), pp. 141–150. ISSN: 0163-5999. DOI: 10.1145/
277858.277894. URL: https://doi.org/10.1145/277858.277894.

[77] Michele Guerriero, Damian Andrew Tamburri, and Elisabetta Di Nitto. “StreamGen:
Model-Driven Development of Distributed Streaming Applications”. In: ACM Trans.
Softw. Eng. Methodol. 30.1 (Jan. 2021). ISSN: 1049-331X. DOI: 10.1145/3408895. URL:
https://doi.org/10.1145/3408895.

[78] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez. “StreamCloud: An Elastic and Scalable Data Streaming
System”. en. In: IEEE Transactions on Parallel and Distributed Systems 23.12 (Dec.
2012), pp. 2351–2365. ISSN: 1045-9219. DOI: 10 . 1109 / TPDS . 2012 . 24. URL: http :
//ieeexplore.ieee.org/document/6127868/ (visited on 10/24/2021).

https://doi.org/10.1145/2371536.2371567
https://doi.org/10.1145/2371536.2371567
https://doi.org/10.1007/s11227-020-03296-w
https://arxiv.org/abs/math/0209021
https://doi.org/10.1177/1536867X0900900307
https://doi.org/10.1145/3373464.3373470
https://doi.org/10.1145/3373464.3373470
https://doi.org/10.1109/WWC.1998.809365
http://ieeexplore.ieee.org/document/809365/
https://doi.org/10.1109/HOTOS.2001.990056
https://doi.org/10.1145/277858.277894
https://doi.org/10.1145/277858.277894
https://doi.org/10.1145/277858.277894
https://doi.org/10.1145/3408895
https://doi.org/10.1145/3408895
https://doi.org/10.1109/TPDS.2012.24
http://ieeexplore.ieee.org/document/6127868/
http://ieeexplore.ieee.org/document/6127868/

190 Reasoning Over Streaming System Performance

[79] Vincenzo Gulisano, Daniel Jorde, Ruben Mayer, Hannaneh Najdataei, and Dimitris
Palyvos-Giannas. “The DEBS 2020 Grand Challenge”. In: Proceedings of the 14th
ACM International Conference on Distributed and Event-Based Systems. DEBS ’20.
Montreal, Quebec, Canada: Association for Computing Machinery, 2020, pp. 183–186.
ISBN: 9781450380287. DOI: 10.1145/3401025.3402684. URL: https://doi.org/10.1145/
3401025.3402684.

[80] Vincenzo Gulisano, Daniel Jorde, Ruben Mayer, Hannaneh Najdataei, and Dimitris
Palyvos-Giannas. “The DEBS 2020 grand challenge”. In: Proceedings of the 14th ACM
International Conference on Distributed and Event-Based Systems. 2020, pp. 183–186.

[81] Ted Hahn and Mark Hahn. “Control Theory for SRE”. In: Dublin: USENIX Association,
Oct. 2019.

[82] Rui Han, Moustafa Ghanem, Li Guo, Yike Guo, and Michelle Osmond. “Enabling cost-
aware and adaptive elasticity of multi-tier cloud applications”. In: Future Generation
Computer Systems 32 (Mar. 2014), pp. 82–98. DOI: 10.1016/j.future.2012.05.018.

[83] Rui Han, Li Guo, Moustafa M. Ghanem, and Yike Guo. “Lightweight Resource Scal-
ing for Cloud Applications”. In: 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012). 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid). Ottawa, Canada: IEEE,
May 2012, pp. 644–651. ISBN: 978-1-4673-1395-7 978-0-7695-4691-9. DOI: 10.1109/
CCGrid.2012.52. URL: http://ieeexplore.ieee.org/document/6217477/ (visited on
07/03/2023).

[84] Mor Harchol-Baiter and Allen B Downeyt. “Exploiting Process Lifetime Distributions
for Dynamic Load Balancing”. en. In: (), p. 12.

[85] Mor Harchol-Balter and Allen Downey. “Exploiting Process Lifetime Distributions for
Dynamic Load Balancing.” In: ACM Trans. Comput. Syst. 15 (Aug. 1997), pp. 253–285.
DOI: 10.1145/224056.225838.

[86] M. Heemskerk, M. Mandjes, and B. Mathijsen. “Staffing for many-server systems fac-
ing non-standard arrival processes”. In: arXiv:2006.00515 [cs, math] (May 31, 2020).
arXiv: 2006.00515. URL: http://arxiv.org/abs/2006.00515 (visited on 04/13/2022).

[87] Thomas Heinze, Yuanzhen Ji, Lars Roediger, Valerio Pappalardo, Andreas Meister,
Zbigniew Jerzak, and Christof Fetzer. “FUGU: Elastic Data Stream Processing with
Latency Constraints”. In: IEEE Data Eng. Bull. 38.4 (2015), pp. 73–81. URL: http :
//sites.computer.org/debull/A15dec/p73.pdf.

[88] Herodotos Herodotou, Lambros Odysseos, Yuxing Chen, and Jiaheng Lu. “Automatic
Performance Tuning for Distributed Data Stream Processing Systems”. In: 2022 IEEE
38th International Conference on Data Engineering (ICDE). 2022, pp. 3194–3197. DOI:
10.1109/ICDE53745.2022.00296.

[89] Klaus Hinkelmann and Oscar Kempthorne. Design and Analysis of Experiments,
Volume 1: Introduction to Experimental Design. 2nd ed. New York: John Wiley & Sons,
2008.

[90] Torsten Hoefler. “Benchmarking data science: 12 ways to lie with statistics and
performance on parallel computers”. In: Computer 55.8 (2022), pp. 49–56.

https://doi.org/10.1145/3401025.3402684
https://doi.org/10.1145/3401025.3402684
https://doi.org/10.1145/3401025.3402684
https://doi.org/10.1016/j.future.2012.05.018
https://doi.org/10.1109/CCGrid.2012.52
https://doi.org/10.1109/CCGrid.2012.52
http://ieeexplore.ieee.org/document/6217477/
https://doi.org/10.1145/224056.225838
https://arxiv.org/abs/2006.00515
http://arxiv.org/abs/2006.00515
http://sites.computer.org/debull/A15dec/p73.pdf
http://sites.computer.org/debull/A15dec/p73.pdf
https://doi.org/10.1109/ICDE53745.2022.00296

References 191

[91] Torsten Hoefler and Roberto Belli. “Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance results”. In: Pro-
ceedings of the international conference for high performance computing, networking,
storage and analysis. 2015, pp. 1–12.

[92] Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John Liagouris,
and Timothy Roscoe. “Megaphone: Latency-conscious state migration for distributed
streaming dataflows”. In: Proceedings of the VLDB Endowment 12.9 (2019), pp. 1002–
1015.

[93] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana Zulkernine,
and Shahzad Khan. “A Survey of Distributed Data Stream Processing Frameworks”.
In: IEEE Access 7 (Oct. 2019), pp. 1–1. DOI: 10.1109/ACCESS.2019.2946884.

[94] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. “Empirical prediction models
for adaptive resource provisioning in the cloud”. en. In: Future Generation Computer
Systems 28.1 (Jan. 2012), pp. 155–162. ISSN: 0167739X. DOI: 10.1016/j.future.2011.05.
027. URL: https://linkinghub.elsevier.com/retrieve/pii/S0167739X11001129 (visited
on 10/24/2021).

[95] J P Morgan. “RiskMetrics Technical Document - Fourth Edition 1996, December”. In:
(1996), p. 296. URL: https://www.msci.com/documents/10199/5915b101-4206-4ba0-
aee2-3449d5c7e95a.

[96] Stuart Jamieson. “Dynamic Scaling of Distributed Data-Flows under Uncertainty”. In:
Proceedings of the 14th ACM International Conference on Distributed and Event-Based
Systems. DEBS ’20. Montreal, Quebec, Canada, 2020, pp. 230–233. ISBN: 9781450380287.
DOI: 10.1145/3401025.3406444. URL: https://doi.org/10.1145/3401025.3406444.

[97] Stuart Jamieson and Matthew Forshaw. “Measuring Streaming System Robustness
Using Non-parametric Goodness-of-Fit Tests”. In: Computer Performance Engineer-
ing: 18th European Workshop, EPEW 2022, Santa Pola, Spain, September 21–23, 2022,
Proceedings. Springer. 2023, pp. 3–18.

[98] Stuart Jamieson and Matthew Forshaw. “On Improving Streaming System Autoscaler
Behaviour using Windowing and Weighting Methods”. In: Proceedings of the 17th
ACM International Conference on Distributed and Event-Based Systems (DEBS). New
York, NY, USA: Association for Computing Machinery, 2023. DOI: TBC. URL: TBC.

[99] Pooyan Jamshidi, Amir M. Sharifloo, Claus Pahl, Andreas Metzger, and Giovani
Estrada. “Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evo-
lution”. en. In: 2015 International Conference on Cloud and Autonomic Comput-
ing. Boston, MA, USA: IEEE, Sept. 2015, pp. 208–211. ISBN: 978-1-4673-9566-3. DOI:
10.1109/ICCAC.2015.35. URL: http://ieeexplore.ieee.org/document/7312157/
(visited on 10/24/2021).

[100] Hung-Chin Jang and Shih-Yu Luo. “Enhancing Node Fault Tolerance through High-
Availability Clusters in Kubernetes”. In: 2023 IEEE 3rd International Conference on
Electronic Communications, Internet of Things and Big Data (ICEIB). 2023, pp. 30–35.
DOI: 10.1109/ICEIB57887.2023.10170110.

[101] Erica Jen. “Stable or robust? What’s the difference?” In: Complex. 8 (2003), pp. 12–18.

https://doi.org/10.1109/ACCESS.2019.2946884
https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.1016/j.future.2011.05.027
https://linkinghub.elsevier.com/retrieve/pii/S0167739X11001129
https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
https://doi.org/10.1145/3401025.3406444
https://doi.org/10.1145/3401025.3406444
https://doi.org/TBC
TBC
https://doi.org/10.1109/ICCAC.2015.35
http://ieeexplore.ieee.org/document/7312157/
https://doi.org/10.1109/ICEIB57887.2023.10170110

192 Reasoning Over Streaming System Performance

[102] Mikkel T. Jensen. “Improving robustness and flexibility of tardiness and total flow-
time job shops using robustness measures”. en. In: Applied Soft Computing 1.1 (June
2001), pp. 35–52. ISSN: 15684946. DOI: 10.1016/S1568-4946(01)00005-9. (Visited on
03/26/2022).

[103] Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. “Optimal Cloud Resource
Auto-Scaling for Web Applications”. In: Proceedings of the 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing. CCGRID ’13. Delft,
Netherlands: IEEE Press, 2013, pp. 58–65. ISBN: 9780768549965. DOI: 10.1109/CCGrid.
2013.73. URL: https://doi.org/10.1109/CCGrid.2013.73.

[104] Kevin Johnson. Pandas TA - A Technical Analysis Library in Python 3. original-date:
2019-02-19T16:41:09Z. 2022. URL: https://github.com/twopirllc/pandas-ta/blob/
084dbe1c4b76082f383fa3029270ea9ac35e4dc7 / pandas _ ta / overlap/ (visited on
10/28/2022).

[105] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow, Jianfeng
Wang, and Adam Barker. “How Does It Function? Characterizing Long-term Trends
in Production Serverless Workloads”. In: Proceedings of the 2023 ACM Symposium
on Cloud Computing. SoCC ’23. New York, NY, USA: Association for Computing
Machinery, 2023, pp. 443–458. ISBN: 9798400703874. DOI: 10.1145/3620678.3624783.
URL: https://doi.org/10.1145/3620678.3624783.

[106] V. Jorge Leon, S. David Wu, and Robert H. Storer. “ROBUSTNESS MEASURES AND
ROBUST SCHEDULING FOR JOB SHOPS”. en. In: IIE Transactions 26.5 (Sept. 1994),
pp. 32–43. ISSN: 0740-817X, 1545-8830. DOI: 10.1080/07408179408966626. (Visited on
03/26/2022).

[107] Vasiliki Kalavri and John Liagouris. “In support of workload-aware streaming state
management”. In: Proceedings of the 12th USENIX Conference on Hot Topics in Storage
and File Systems. 2020, pp. 19–19.

[108] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew
Forshaw, and Timothy Roscoe. “Three steps is all you need: fast, accurate, automatic
scaling decisions for distributed streaming dataflows”. In: Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation. OSDI’18.
Carlsbad, CA, USA: USENIX Association, 2018, pp. 783–798. ISBN: 9781931971478.

[109] Supun Kamburugamuve, Geoffrey Fox, Judy Qiu, and David Leake. “Survey of Dis-
tributed Stream Processing for Large Stream Sources”. In: (Dec. 2014). DOI: 10.13140/
RG.2.1.2938.7927.

[110] Leonid Kantorovich and Gennady S. Rubinstein. “On a space of totally additive
functions”. In: Vestnik Leningrad. Univ 13 (1958), pp. 52–59.

[111] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiska-
nen, and Volker Markl. “Benchmarking Distributed Stream Data Processing Systems”.
en. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE) (Apr.
2018). arXiv: 1802.08496, pp. 1507–1518. DOI: 10.1109/ICDE.2018.00169. URL: http:
//arxiv.org/abs/1802.08496 (visited on 10/24/2021).

[112] P.J. Kaufman. Trading Systems and Methods. Wiley finance series. John Wiley & Sons,
Incorporated, 2013. ISBN: 978-1-119-20256-1. URL: https://books.google.com.gi/
books?id=j%5C_YnswEACAAJ.

https://doi.org/10.1016/S1568-4946(01)00005-9
https://doi.org/10.1109/CCGrid.2013.73
https://doi.org/10.1109/CCGrid.2013.73
https://doi.org/10.1109/CCGrid.2013.73
https://github.com/twopirllc/pandas-ta/blob/084dbe1c4b76082f383fa3029270ea9ac35e4dc7/pandas_ta/overlap/
https://github.com/twopirllc/pandas-ta/blob/084dbe1c4b76082f383fa3029270ea9ac35e4dc7/pandas_ta/overlap/
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1080/07408179408966626
https://doi.org/10.13140/RG.2.1.2938.7927
https://doi.org/10.13140/RG.2.1.2938.7927
https://doi.org/10.1109/ICDE.2018.00169
http://arxiv.org/abs/1802.08496
http://arxiv.org/abs/1802.08496
https://books.google.com.gi/books?id=j%5C_YnswEACAAJ
https://books.google.com.gi/books?id=j%5C_YnswEACAAJ

References 193

[113] Pankaj Kaur and Inderveer Chana. “A resource elasticity framework for QoS-aware
execution of cloud applications”. In: Future Generation Computer Systems 37 (July
2014). DOI: 10.1016/j.future.2014.02.018.

[114] J.O. Kephart and D.M. Chess. “The vision of autonomic computing”. en. In: Computer
36.1 (Jan. 2003), pp. 41–50. ISSN: 0018-9162. DOI: 10.1109/MC.2003.1160055. URL:
http://ieeexplore.ieee.org/document/1160055/ (visited on 10/25/2021).

[115] Sabrine Khriji, Yahia Benbelgacem, Rym Chéour, Dhouha El Houssaini, and Olfa
Kanoun. “Design and implementation of a cloud-based event-driven architecture
for real-time data processing in wireless sensor networks”. In: The Journal of Su-
percomputing 78.3 (Feb. 2022), pp. 3374–3401. ISSN: 0920-8542, 1573-0484. DOI:
10.1007/s11227-021-03955-6. URL: https://link.springer.com/10.1007/s11227-021-
03955-6 (visited on 06/20/2023).

[116] Mariam Kiran, Peter Murphy, Inder Monga, Jon Dugan, and Sartaj Singh Baveja.
“Lambda architecture for cost-effective batch and speed big data processing”. In:
2015 IEEE International Conference on Big Data (Big Data). 2015 IEEE International
Conference on Big Data (Big Data). Santa Clara, CA, USA: IEEE, Oct. 2015, pp. 2785–
2792. ISBN: 978-1-4799-9926-2. DOI: 10 . 1109 / BigData . 2015 . 7364082. URL: http :
//ieeexplore.ieee.org/document/7364082/ (visited on 04/15/2023).

[117] SAMUEL. KOUNEV. SYSTEMS BENCHMARKING: For Scientists and Engineers. SPRINGER,
2021.

[118] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. “Twitter
Heron: Stream Processing at Scale”. In: Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’15. Melbourne, Victoria, Aus-
tralia: Association for Computing Machinery, 2015, pp. 239–250. ISBN: 9781450327589.
DOI: 10.1145/2723372.2742788. URL: https://doi.org/10.1145/2723372.2742788.

[119] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. en. In: The Annals of
Mathematical Statistics 22.1 (Mar. 1951), pp. 79–86. ISSN: 0003-4851. DOI: 10.1214/
aoms/1177729694. (Visited on 05/08/2022).

[120] Mayuresh Kunjir and Shivnath Babu. “Black or White? How to Develop an AutoTuner
for Memory-based Analytics”. In: Proceedings of the 2020 International Conference
on Management of Data. 2020, pp. 1667–1683.

[121] Mayuresh Kunjir and Shivnath Babu. “Black or White? How to Develop an AutoTuner
for Memory-based Analytics”. In: Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020. Ed. by David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo. ACM, 2020, pp. 1667–1683. DOI:
10.1145/3318464.3380591. URL: https://doi.org/10.1145/3318464.3380591.

[122] Reese Kuper, Ipoom Jeong, Yifan Yuan, Jiayu Hu, Ren Wang, Narayan Ranganathan,
and Nam Sung Kim. A Quantitative Analysis and Guideline of Data Streaming Accel-
erator in Intel 4th Gen Xeon Scalable Processors. 2023. arXiv: 2305.02480 [cs.AR].

[123] Palden Lama and Xiaobo Zhou. “Efficient server provisioning with end-to-end delay
guarantee on multi-tier clusters”. In: Aug. 2009, pp. 1–9. DOI: 10.1109/IWQoS.2009.
5201420.

https://doi.org/10.1016/j.future.2014.02.018
https://doi.org/10.1109/MC.2003.1160055
http://ieeexplore.ieee.org/document/1160055/
https://doi.org/10.1007/s11227-021-03955-6
https://link.springer.com/10.1007/s11227-021-03955-6
https://link.springer.com/10.1007/s11227-021-03955-6
https://doi.org/10.1109/BigData.2015.7364082
http://ieeexplore.ieee.org/document/7364082/
http://ieeexplore.ieee.org/document/7364082/
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1145/3318464.3380591
https://doi.org/10.1145/3318464.3380591
https://arxiv.org/abs/2305.02480
https://doi.org/10.1109/IWQoS.2009.5201420
https://doi.org/10.1109/IWQoS.2009.5201420

194 Reasoning Over Streaming System Performance

[124] Averill M. Law. “A tutorial on design of experiments for simulation modeling”. en.
In: Proceedings of the Winter Simulation Conference 2014. Savanah, GA, USA: IEEE,
Dec. 2014, pp. 66–80. ISBN: 978-1-4799-7486-3 978-1-4799-7484-9. DOI: 10.1109/
WSC.2014.7019878. URL: http://ieeexplore.ieee.org/document/7019878/ (visited on
10/24/2021).

[125] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. “On the self-similar nature of
Ethernet traffic (extended version)”. In: IEEE/ACM Transactions on Networking 2.1
(Feb. 1994), pp. 1–15. ISSN: 10636692. DOI: 10.1109/90.282603. URL: http://ieeexplore.
ieee.org/document/282603/ (visited on 04/13/2022).

[126] Stacy Liberatore. Zuckerberg’s million dollar outage: Finance expert reveals Meta lost
roughly $100 MILLION during two-hour glitch that took down Facebook, Instagram
and Messenger. Mail Online. 2024. URL: https://www.dailymail.co.uk/sciencetech/
article-13161047/meta-lost-millions-facebook-instagram-outage.html.

[127] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. “Automated Control for Elastic
Storage”. In: Proceedings of the 7th International Conference on Autonomic Com-
puting. ICAC ’10. Washington, DC, USA: Association for Computing Machinery,
2010, pp. 1–10. ISBN: 9781450300742. DOI: 10.1145/1809049.1809051. URL: https:
//doi.org/10.1145/1809049.1809051.

[128] Harold C. Lim, Shivnath Babu, Jeffrey S. Chase, and Sujay S. Parekh. “Automated
Control in Cloud Computing: Challenges and Opportunities”. In: Proceedings of the
1st Workshop on Automated Control for Datacenters and Clouds. ACDC ’09. Barcelona,
Spain: Association for Computing Machinery, 2009, pp. 13–18. ISBN: 9781605585857.
DOI: 10.1145/1555271.1555275. URL: https://doi.org/10.1145/1555271.1555275.

[129] Virginia Lo, Jens Mache, and Kurt Windisch. “A comparative study of real work-
load traces and synthetic workload models for parallel job scheduling”. en. In: Job
Scheduling Strategies for Parallel Processing. Ed. by Gerhard Goos, Juris Hartmanis,
Jan van Leeuwen, Dror G. Feitelson, and Larry Rudolph. Vol. 1459. Series Title: Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 25–46. ISBN: 978-3-540-64825-3 978-3-540-68536-4. DOI: 10.1007/BFb0053979.
URL: http://link.springer.com/10.1007/BFb0053979 (visited on 10/24/2021).

[130] Björn Lohrmann, Daniel Warneke, and Odej Kao. “Nephele streaming: stream pro-
cessing under QoS constraints at scale”. en. In: Cluster Computing 17.1 (Mar. 2014),
pp. 61–78. ISSN: 1386-7857, 1573-7543. DOI: 10 . 1007 / s10586 - 013 - 0281 - 8. URL:
http://link.springer.com/10.1007/s10586-013-0281-8 (visited on 10/24/2021).

[131] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. “A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments”. en. In: Journal
of Grid Computing 12.4 (Dec. 2014), pp. 559–592. ISSN: 1570-7873, 1572-9184. DOI:
10.1007/s10723-014-9314-7. URL: http://link.springer.com/10.1007/s10723-014-
9314-7 (visited on 10/24/2021).

[132] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. “A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments”. In: Journal of
Grid Computing 12.4 (2014), pp. 559–592. ISSN: 1570-7873, 1572-9184. DOI: 10.1007/
s10723-014-9314-7. URL: http://link.springer.com/10.1007/s10723-014-9314-7
(visited on 04/13/2022).

https://doi.org/10.1109/WSC.2014.7019878
https://doi.org/10.1109/WSC.2014.7019878
http://ieeexplore.ieee.org/document/7019878/
https://doi.org/10.1109/90.282603
http://ieeexplore.ieee.org/document/282603/
http://ieeexplore.ieee.org/document/282603/
https://www.dailymail.co.uk/sciencetech/article-13161047/meta-lost-millions-facebook-instagram-outage.html
https://www.dailymail.co.uk/sciencetech/article-13161047/meta-lost-millions-facebook-instagram-outage.html
https://doi.org/10.1145/1809049.1809051
https://doi.org/10.1145/1809049.1809051
https://doi.org/10.1145/1809049.1809051
https://doi.org/10.1145/1555271.1555275
https://doi.org/10.1145/1555271.1555275
https://doi.org/10.1007/BFb0053979
http://link.springer.com/10.1007/BFb0053979
https://doi.org/10.1007/s10586-013-0281-8
http://link.springer.com/10.1007/s10586-013-0281-8
https://doi.org/10.1007/s10723-014-9314-7
http://link.springer.com/10.1007/s10723-014-9314-7
http://link.springer.com/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
http://link.springer.com/10.1007/s10723-014-9314-7

References 195

[133] Google Cloud Solutions Manager. Anomaly detection using streaming analytics & AI.
Apr. 2, 2024. URL: https://cloud.google.com/blog/products/data-analytics/anomaly-
detection-using-streaming-analytics-and-ai (visited on 04/29/2024).

[134] Alfeu Martinho, Henrique Hippert, and Leonardo Goliatt. “Short-term streamflow
modeling using data-intelligence evolutionary machine learning models”. In: Scien-
tific Reports 13 (Aug. 2023). DOI: 10.1038/s41598-023-41113-5.

[135] Peter Mell and Timothy Grance. “The NIST Definition of Cloud Computing”. en. In:
(), p. 7.

[136] Richard von Mises. Wahrscheinlichkeit Statistik und Wahrheit. de. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1928. ISBN: 978-3-662-35402-5 978-3-662-36230-3. DOI:
10.1007/978-3-662-36230-3. (Visited on 03/26/2022).

[137] Douglas C. Montgomery. Design and analysis of experiments. en. Eighth edition.
Hoboken, NJ: John Wiley & Sons, Inc, 2013. ISBN: 978-1-118-14692-7.

[138] Janakiram MSV. All the Apache Streaming Projects: An Exploratory Guide. 2016. URL:
https://thenewstack.io/apache-streaming-projects-exploratory-guide/ (visited on
06/20/2023).

[139] Feiping Nie, Hu Zhanxuan, and Xuelong Li. “An investigation for loss functions
widely used in machine learning”. In: Communications in Information and Systems
18 (Jan. 2018), pp. 37–52. DOI: 10.4310/CIS.2018.v18.n1.a2.

[140] Matthew Nokleby, Haroon Raja, and Waheed U. Bajwa. “Scaling-Up Distributed
Processing of Data Streams for Machine Learning”. In: Proceedings of the IEEE 108.11
(2020), pp. 1984–2012. DOI: 10.1109/JPROC.2020.3021381.

[141] Gary W. Oehlert. A first course in design and analysis of experiments. en. New York:
W.H. Freeman, 2000. ISBN: 978-0-7167-3510-6.

[142] Jorge L Ortega-Arjona and Departamento de Matem. “The Parallel Pipes and Filters
Pattern”. In: ().

[143] Soumaya Ounacer, Mohamed Amine, Soufiane Ardchir, Abderrahmane Daif, and
Mohamed Azouazi. “A New Architecture for Real Time Data Stream Processing”. In:
International Journal of Advanced Computer Science and Applications 8.11 (2017).
ISSN: 21565570, 2158107X. DOI: 10.14569/IJACSA.2017.081106. URL: http://thesai.
org/Publications/ViewPaper?Volume=8%5C&Issue=11%5C&Code=ijacsa%5C&
SerialNo=6 (visited on 04/15/2023).

[144] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, and Arif Merchant. “Automated Control of Multiple Virtual-
ized Resources”. In: Proceedings of the 4th ACM European Conference on Computer
Systems. EuroSys ’09. Nuremberg, Germany: Association for Computing Machin-
ery, 2009, pp. 13–26. ISBN: 9781605584829. DOI: 10.1145/1519065.1519068. URL:
https://doi.org/10.1145/1519065.1519068.

[145] Kayaroganam Palanikumar. “Introductory Chapter: Response Surface Methodology
in Engineering Science”. In: Response Surface Methodology in Engineering Science.
Ed. by Palanikumar Kayaroganam. Rijeka: IntechOpen, 2021. Chap. 1. DOI: 10.5772/
intechopen.100484. URL: https://doi.org/10.5772/intechopen.100484.

https://cloud.google.com/blog/products/data-analytics/anomaly-detection-using-streaming-analytics-and-ai
https://cloud.google.com/blog/products/data-analytics/anomaly-detection-using-streaming-analytics-and-ai
https://doi.org/10.1038/s41598-023-41113-5
https://doi.org/10.1007/978-3-662-36230-3
https://thenewstack.io/apache-streaming-projects-exploratory-guide/
https://doi.org/10.4310/CIS.2018.v18.n1.a2
https://doi.org/10.1109/JPROC.2020.3021381
https://doi.org/10.14569/IJACSA.2017.081106
http://thesai.org/Publications/ViewPaper?Volume=8%5C&Issue=11%5C&Code=ijacsa%5C&SerialNo=6
http://thesai.org/Publications/ViewPaper?Volume=8%5C&Issue=11%5C&Code=ijacsa%5C&SerialNo=6
http://thesai.org/Publications/ViewPaper?Volume=8%5C&Issue=11%5C&Code=ijacsa%5C&SerialNo=6
https://doi.org/10.1145/1519065.1519068
https://doi.org/10.1145/1519065.1519068
https://doi.org/10.5772/intechopen.100484
https://doi.org/10.5772/intechopen.100484
https://doi.org/10.5772/intechopen.100484

196 Reasoning Over Streaming System Performance

[146] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. “A
Design Science Research Methodology for Information Systems Research”. en. In:
Journal of Management Information Systems 24.3 (Dec. 2007), pp. 45–77. ISSN: 0742-
1222, 1557-928X. DOI: 10.2753/MIS0742-1222240302. URL: https://www.tandfonline.
com/doi/full/10.2753/MIS0742-1222240302 (visited on 12/10/2021).

[147] Max Petrov, Nikolay Butakov, Denis Nasonov, and Mikhail Melnik. “Adaptive per-
formance model for dynamic scaling Apache Spark Streaming”. en. In: Procedia
Computer Science 136 (2018), pp. 109–117. ISSN: 18770509. DOI: 10.1016/j.procs.
2018.08.243. URL: https://linkinghub.elsevier.com/retrieve/pii/S1877050918315485
(visited on 10/24/2021).

[148] Rekha Pitchumani, Shayna Frank, and Ethan L. Miller. “Realistic request arrival
generation in storage benchmarks”. en. In: 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST). Santa Clara, CA, USA: IEEE, May 2015, pp. 1–10.
ISBN: 978-1-4673-7619-8. DOI: 10.1109/MSST.2015.7208286. URL: http://ieeexplore.
ieee.org/document/7208286/ (visited on 10/24/2021).

[149] Chris Pleasance. Facebook outage: Company lost ’$100million’ during seven-hour
blackout. Mail Online. 2021. URL: https : / / www. dailymail . co. uk / news / article -
10060287/Facebook-outage-Zuckerberg-apologises-site-come-online.html.

[150] Meikel Poess, Bryan Smith, Lubor Kollar, and Per-Ake Larson. “TPC-DS: Taking
decision support benchmarking to the next level”. In: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. 2002, pp. 582–587.

[151] Pravega. When speeding makes sense â€” Fast, consistent, durable and scalable stream-
ing data with Pravega. English. Oct. 2020. URL: https://cncf.pravega.io/blog/2020/
10 / 01 / when - speeding - makes - sense - fast - consistent - durable - and - scalable -
streaming-data-with-pravega/ (visited on 12/26/2021).

[152] Chenhao Qu, Rodrigo Calheiros, and Rajkumar Buyya. “A Reliable and Cost-Efficient
Auto-Scaling System for Web Applications Using Heterogeneous Spot Instances”.
In: Journal of Network and Computer Applications 65 (Mar. 2016), pp. 167–180. DOI:
10.1016/j.jnca.2016.03.001.

[153] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. “Auto-Scaling Web Ap-
plications in Clouds: A Taxonomy and Survey”. In: ACM Computing Surveys 51.4
(July 31, 2019), pp. 1–33. ISSN: 0360-0300, 1557-7341. DOI: 10.1145/3148149. URL:
https://dl.acm.org/doi/10.1145/3148149 (visited on 07/01/2023).

[154] E.G. Radhika and G. Sudha Sadasivam. “A review on prediction based autoscaling
techniques for heterogeneous applications in cloud environment”. In: Materials
Today: Proceedings 45 (2021). International Conference on Advances in Materials
Research - 2019, pp. 2793–2800. ISSN: 2214-7853. DOI: https://doi.org/10.1016/
j.matpr.2020.11.789. URL: https://www.sciencedirect.com/science/article/pii/
S2214785320394657.

[155] Aistis Raudys, Vaidotas Lenčiauskas, and Edmundas Malčius. “Moving Averages
for Financial Data Smoothing”. In: Communications in Computer and Information
Science. Communications in Computer and Information Science, 2013, pp. 34–45.
DOI: 10.1007/978-3-642-41947-8_4.

https://doi.org/10.2753/MIS0742-1222240302
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
https://doi.org/10.1016/j.procs.2018.08.243
https://doi.org/10.1016/j.procs.2018.08.243
https://linkinghub.elsevier.com/retrieve/pii/S1877050918315485
https://doi.org/10.1109/MSST.2015.7208286
http://ieeexplore.ieee.org/document/7208286/
http://ieeexplore.ieee.org/document/7208286/
https://www.dailymail.co.uk/news/article-10060287/Facebook-outage-Zuckerberg-apologises-site-come-online.html
https://www.dailymail.co.uk/news/article-10060287/Facebook-outage-Zuckerberg-apologises-site-come-online.html
https://cncf.pravega.io/blog/2020/10/01/when-speeding-makes-sense-fast-consistent-durable-and-scalable-streaming-data-with-pravega/
https://cncf.pravega.io/blog/2020/10/01/when-speeding-makes-sense-fast-consistent-durable-and-scalable-streaming-data-with-pravega/
https://cncf.pravega.io/blog/2020/10/01/when-speeding-makes-sense-fast-consistent-durable-and-scalable-streaming-data-with-pravega/
https://doi.org/10.1016/j.jnca.2016.03.001
https://doi.org/10.1145/3148149
https://dl.acm.org/doi/10.1145/3148149
https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.789
https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.789
https://www.sciencedirect.com/science/article/pii/S2214785320394657
https://www.sciencedirect.com/science/article/pii/S2214785320394657
https://doi.org/10.1007/978-3-642-41947-8_4

References 197

[156] Aistis Raudys, Vaidotas Lenčiauskas, and Edmundas Malčius. “Moving Averages for
Financial Data Smoothing”. In: Information and Software Technologies. Ed. by Tomas
Skersys, Rimantas Butleris, and Rita Butkiene. Vol. 403. Series Title: Communications
in Computer and Information Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 34–45. ISBN: 978-3-642-41946-1 978-3-642-41947-8. DOI: 10.1007/978-
3-642-41947-8_4. URL: http://link.springer.com/10.1007/978-3-642-41947-8_4
(visited on 08/17/2022).

[157] E. Riedel, A. Riska, E. Riedel, and A. Riska. “Long-Range Dependence at the Disk
Drive Level”. In: Third International Conference on the Quantitative Evaluation of
Systems - (QEST’06). 2006, pp. 41–50. DOI: 10.1109/QEST.2006.27.

[158] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rumsewicz, Jen-
nifer Yates, and Yin Zhang. “Experience in Measuring Backbone Traffic Variability:
Models, Metrics, Measurements and Meaning”. In: Proceedings of the 2nd ACM SIG-
COMM Workshop on Internet Measurment. IMW ’02. Marseille, France: Association
for Computing Machinery, 2002, pp. 91–92. ISBN: 158113603X. DOI: 10.1145/637201.
637213. URL: https://doi.org/10.1145/637201.637213.

[159] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. “Reinforcement
Learning Based Policies for Elastic Stream Processing on Heterogeneous Resources”.
In: June 2019, pp. 31–42. DOI: 10.1145/3328905.3329506.

[160] Matthias J. Sax. “Apache Kafka”. In: Encyclopedia of Big Data Technologies. Ed. by
Sherif Sakr and Albert Zomaya. Cham: Springer International Publishing, 2018, pp. 1–
8. ISBN: 978-3-319-63962-8. DOI: 10.1007/978-3-319-63962-8_196-1. URL: https:
//doi.org/10.1007/978-3-319-63962-8_196-1.

[161] Deepika Saxena and Ashutosh Kumar Singh. “A proactive autoscaling and energy-
efficient VM allocation framework using online multi-resource neural network for
cloud data center”. In: Neurocomputing 426 (2021), pp. 248–264. ISSN: 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2020.08.076. URL: https://www.sciencedirect.
com/science/article/pii/S0925231220315873.

[162] Eman Shaikh, Iman Mohiuddin, Yasmeen Alufaisan, and Irum Nahvi. “Apache Spark:
A Big Data Processing Engine”. In: 2019 2nd IEEE Middle East and North Africa
COMMunications Conference (MENACOMM). 2019 2nd IEEE Middle East and North
Africa COMMunications Conference (MENACOMM). Manama, Bahrain: IEEE, 2019,
pp. 1–6. ISBN: 978-1-72813-687-5. DOI: 10.1109/MENACOMM46666.2019.8988541.
URL: https://ieeexplore.ieee.org/document/8988541/ (visited on 12/01/2022).

[163] Ziad A. Al-Sharif, Yaser Jararweh, Ahmad Al-Dahoud, and Luay M. Alawneh. “ACCRS:
autonomic based cloud computing resource scaling”. en. In: Cluster Computing 20.3
(Sept. 2017), pp. 2479–2488. ISSN: 1386-7857, 1573-7543. DOI: 10.1007/s10586-016-
0682-6. URL: http://link.springer.com/10.1007/s10586-016-0682-6 (visited on
10/24/2021).

[164] Piyush Shivam, Varun Marupadi, Jeff Chase, Thileepan Subramaniam, and Shivnath
Babu. “Cutting corners: Workbench automation for server benchmarking”. In: 2008
USENIX Annual Technical Conference (USENIX ATC 08). 2008.

https://doi.org/10.1007/978-3-642-41947-8_4
https://doi.org/10.1007/978-3-642-41947-8_4
http://link.springer.com/10.1007/978-3-642-41947-8_4
https://doi.org/10.1109/QEST.2006.27
https://doi.org/10.1145/637201.637213
https://doi.org/10.1145/637201.637213
https://doi.org/10.1145/637201.637213
https://doi.org/10.1145/3328905.3329506
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/https://doi.org/10.1016/j.neucom.2020.08.076
https://www.sciencedirect.com/science/article/pii/S0925231220315873
https://www.sciencedirect.com/science/article/pii/S0925231220315873
https://doi.org/10.1109/MENACOMM46666.2019.8988541
https://ieeexplore.ieee.org/document/8988541/
https://doi.org/10.1007/s10586-016-0682-6
https://doi.org/10.1007/s10586-016-0682-6
http://link.springer.com/10.1007/s10586-016-0682-6

198 Reasoning Over Streaming System Performance

[165] Rahul Singh, Upendra Sharma, Emmanuel Cecchet, and Prashant Shenoy. “Auto-
nomic Mix-Aware Provisioning for Non-Stationary Data Center Workloads”. In: Pro-
ceedings of the 7th International Conference on Autonomic Computing. ICAC ’10.
Washington, DC, USA: Association for Computing Machinery, 2010, pp. 21–30. ISBN:
9781450300742. DOI: 10.1145/1809049.1809053. URL: https://doi.org/10.1145/
1809049.1809053.

[166] Tomas Skersys, Rimantas Butleris, and Rita Butkiene, eds. Information and Software
Technologies: 19th International Conference, ICIST 2013, Kaunas, Lithuania, October
2013. Proceedings. Vol. 403. Communications in Computer and Information Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. ISBN: 978-3-642-41946-1 978-3-
642-41947-8. DOI: 10.1007/978-3-642-41947-8. URL: http://link.springer.com/10.
1007/978-3-642-41947-8 (visited on 08/17/2022).

[167] Vladimir Sladojević, Sebastian Frischbier, Alexander Echler, Mario Paic, and Alessan-
dro Margara. “Deriving a Realistic Workload Model to Simulate High-Volume Finan-
cial Data Feeds for Performance Benchmarking”. In: Proceedings of the 16th ACM
International Conference on Distributed and Event-Based Systems. DEBS ’22. Copen-
hagen, Denmark, 2022, pp. 126–131. ISBN: 9781450393089. DOI: 10.1145/3524860.
3539653. URL: https://doi.org/10.1145/3524860.3539653.

[168] Nikolai V Smirnov. “On the Estimation of the Discrepancy Between Empirical Curves
of Distribution for Two Independent Samples”. In: Bull. Math. Uni. Moscou 2.2 (1939),
pp. 3–14.

[169] Simon Spinner, Samuel Kounev, Xiaoyun Zhu, Lei Lu, Mustafa Uysal, Anne Holler,
and Rean Griffith. “Runtime Vertical Scaling of Virtualized Applications via Online
Model Estimation”. In: vol. 2014. Sept. 2014. DOI: 10.1109/SASO.2014.29.

[170] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. “An analysis of live stream-
ing workloads on the internet”. en. In: Proceedings of the 4th ACM SIGCOMM con-
ference on Internet measurement - IMC ’04. Taormina, Sicily, Italy: ACM Press, 2004,
p. 41. ISBN: 978-1-58113-821-4. DOI: 10.1145/1028788.1028795. URL: http://portal.
acm.org/citation.cfm?doid=1028788.1028795 (visited on 10/24/2021).

[171] Laura Stevens. Amazon Finds the Cause of Its AWS Outage: A Typo. 2017. URL: https:
//www.wsj.com/articles/amazon-finds-the-cause-of- its-aws-outage-a-typo-
1488490506.

[172] Martin Straesser, Simon Eismann, Jóakim von Kistowski, André Bauer, and Samuel
Kounev. “Autoscaler Evaluation and Configuration: A Practitioner’s Guideline”. In:
Proceedings of the 2023 ACM/SPEC International Conference on Performance Engi-
neering. ICPE ’23. Coimbra, Portugal: Association for Computing Machinery, 2023,
pp. 31–41. ISBN: 9798400700682. DOI: 10.1145/3578244.3583721. URL: https://doi.
org/10.1145/3578244.3583721.

[173] Martin Straesser, Simon Eismann, Jóakim von Kistowski, André Bauer, and Samuel
Kounev. “Autoscaler Evaluation and Configuration: A Practitioner’s Guideline (Author
Preprint)”. In: (2023).

[174] STREAM: The Stanford Stream Data Manager. Stanford University. URL: http : / /
infolab.stanford.edu/stream/ (visited on 11/08/2023).

https://doi.org/10.1145/1809049.1809053
https://doi.org/10.1145/1809049.1809053
https://doi.org/10.1145/1809049.1809053
https://doi.org/10.1007/978-3-642-41947-8
http://link.springer.com/10.1007/978-3-642-41947-8
http://link.springer.com/10.1007/978-3-642-41947-8
https://doi.org/10.1145/3524860.3539653
https://doi.org/10.1145/3524860.3539653
https://doi.org/10.1145/3524860.3539653
https://doi.org/10.1109/SASO.2014.29
https://doi.org/10.1145/1028788.1028795
http://portal.acm.org/citation.cfm?doid=1028788.1028795
http://portal.acm.org/citation.cfm?doid=1028788.1028795
https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506
https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506
https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506
https://doi.org/10.1145/3578244.3583721
https://doi.org/10.1145/3578244.3583721
https://doi.org/10.1145/3578244.3583721
http://infolab.stanford.edu/stream/
http://infolab.stanford.edu/stream/

References 199

[175] Guoxin Su, Li Liu, Minjie Zhang, and David S. Rosenblum. “Quantitative Verifica-
tion for Monitoring Event-Streaming Systems”. In: IEEE Transactions on Software
Engineering 48 (2022), pp. 538–550. DOI: 10.1109/tse.2020.2996033.

[176] Tejas Subramanya and Roberto Riggio. “Machine Learning-Driven Scaling and Place-
ment of Virtual Network Functions at the Network Edges”. In: 2019 IEEE Conference
on Network Softwarization (NetSoft). 2019, pp. 414–422. DOI: 10.1109/NETSOFT.2019.
8806631.

[177] Salman Taherizadeh and Vlado Stankovski. “Dynamic Multi-level Auto-scaling Rules
for Containerized Applications”. en. In: The Computer Journal 62.2 (Feb. 2019). Ed. by
Jin-Hee Cho, pp. 174–197. ISSN: 0010-4620, 1460-2067. DOI: 10.1093/comjnl/bxy043.
URL: https://academic.oup.com/comjnl/article/62/2/174/4993728 (visited on
10/24/2021).

[178] The Cost of Downtime. Andrew Lerner. July 16, 2014. URL: https://blogs.gartner.com/
andrew-lerner/2014/07/16/the-cost-of-downtime/ (visited on 02/27/2023).

[179] Richard Tibbetts. “Linear Road : benchmarking stream-based data management
systems”. In: (June 2005).

[180] Tim Tillson. “Smoothing Techniques For More Accurate Signals”. In: Technical Analy-
sis of STOCKS & COMMODITIES 16.1 (1998), pp. 33–37.

[181] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj
Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. “Storm@twitter”. In: Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data. SIGMOD-
/PODS’14: International Conference on Management of Data. Snowbird Utah USA:
ACM, 2014, pp. 147–156. ISBN: 978-1-4503-2376-5. DOI: 10.1145/2588555.2595641.
URL: https://dl.acm.org/doi/10.1145/2588555.2595641 (visited on 12/01/2022).

[182] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris. “Auto-
mated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA”. en. In:
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Comput-
ing. Delft: IEEE, May 2013, pp. 34–41. ISBN: 978-0-7695-4996-5 978-1-4673-6465-2.
DOI: 10.1109/CCGrid.2013.45. URL: http://ieeexplore.ieee.org/document/6546056/
(visited on 10/24/2021).

[183] Peter A. Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. “NEXMark – A
Benchmark for Queries over Data Streams DRAFT”. In: 2002.

[184] J.W. Tukey. “Exploratory Data Analysis”. In: Reading 26 (Jan. 1977).

[185] Vinay Kumar Vennu and Sai Ram Yepuru. “A performance study for autoscaling big
data analytics containerized applications”. In: (2022), p. 50.

[186] Adriano Vogel, Dalvan Griebler, Marco Danelutto, and Luiz Gustavo Fernandes. “Self-
adaptation on parallel stream processing: A systematic review”. In: Concurrency and
Computation: Practice and Experience 34.6 (2022), e6759.

[187] Kai Waehner. Kai Waehner. URL: https://www.kai-waehner.de/blog/author/kai-
waehner/ (visited on 04/26/2024).

https://doi.org/10.1109/tse.2020.2996033
https://doi.org/10.1109/NETSOFT.2019.8806631
https://doi.org/10.1109/NETSOFT.2019.8806631
https://doi.org/10.1093/comjnl/bxy043
https://academic.oup.com/comjnl/article/62/2/174/4993728
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://doi.org/10.1145/2588555.2595641
https://dl.acm.org/doi/10.1145/2588555.2595641
https://doi.org/10.1109/CCGrid.2013.45
http://ieeexplore.ieee.org/document/6546056/
https://www.kai-waehner.de/blog/author/kai-waehner/
https://www.kai-waehner.de/blog/author/kai-waehner/

200 Reasoning Over Streaming System Performance

[188] Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen, Matthias
J. Sax, John Roesler, Sophie Blee-Goldman, Bruno Cadonna, Apurva Mehta, Varun
Madan, and Jun Rao. “Consistency and Completeness: Rethinking Distributed Stream
Processing in Apache Kafka”. In: Proceedings of the 2021 International Conference on
Management of Data. SIGMOD ’21. Virtual Event, China: Association for Comput-
ing Machinery, 2021, pp. 2602–2613. ISBN: 9781450383431. DOI: 10.1145/3448016.
3457556. URL: https://doi.org/10.1145/3448016.3457556.

[189] Xiaotong Wang. “A comprehensive study on fault tolerance in stream processing
systems”. In: Frontiers of Computer Science 16 (Sept. 2020). DOI: 10.1007/s11704-020-
0248-x.

[190] Yuanli Wang, Baiqing Lyu, and Vasiliki Kalavri. “The non-expert tax: quantifying the
cost of auto-scaling in cloud-based data stream analytics”. In: Proceedings of The
International Workshop on Big Data in Emergent Distributed Environments. 2022,
pp. 1–7.

[191] Aws Whitepaper. “Amazon Web Services: Overview of Security Processes”. In: 2008.

[192] J.W. Wilder. New Concepts in Technical Trading Systems. Trend Research, 1978. ISBN:
978-0-89459-027-6. URL: https://books.google.co.uk/books?id=WesJAQAAMAAJ.

[193] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in software engineering. Springer Science & Business
Media, 2012.

[194] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. “T-storm: Traffic-aware online
scheduling in storm”. English (US). In: Proceedings - International Conference on Dis-
tributed Computing Systems. Proceedings - International Conference on Distributed
Computing Systems. Publisher Copyright: © 2014 IEEE.; 2014 IEEE 34th International
Conference on Distributed Computing Systems, ICDCS 2014 ; Conference date: 30-
06-2014 Through 03-07-2014. Institute of Electrical and Electronics Engineers Inc.,
Aug. 2014, pp. 535–544. DOI: 10.1109/ICDCS.2014.61.

[195] Le Xu, Boyang Peng, and Indranil Gupta. “Stela: Enabling Stream Processing Systems
to Scale-in and Scale-out On-demand”. en. In: 2016 IEEE International Conference on
Cloud Engineering (IC2E). Berlin, Germany: IEEE, Apr. 2016, pp. 22–31. ISBN: 978-1-
5090-1961-8. DOI: 10.1109/IC2E.2016.38. URL: http://ieeexplore.ieee.org/document/
7484160/ (visited on 10/24/2021).

[196] Piyush Yadav and Edward Curry. Poster: Challenges in Complex Event Processing for
Multimedia Data Streams. Sept. 2018. DOI: 10.13140/RG.2.2.28894.15685.

[197] F. Yates. “Sir Ronald Fisher and the Design of Experiments”. In: Biometrics 20.2 (1964),
pp. 307–321. ISSN: 0006341X, 15410420. URL: http://www.jstor.org/stable/2528399
(visited on 07/23/2023).

[198] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin,
Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. “Apache Spark: A Unified
Engine for Big Data Processing”. In: Commun. ACM 59.11 (Oct. 2016), pp. 56–65. ISSN:
0001-0782. DOI: 10.1145/2934664. URL: https://doi.org/10.1145/2934664.

https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1007/s11704-020-0248-x
https://doi.org/10.1007/s11704-020-0248-x
https://books.google.co.uk/books?id=WesJAQAAMAAJ
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1109/IC2E.2016.38
http://ieeexplore.ieee.org/document/7484160/
http://ieeexplore.ieee.org/document/7484160/
https://doi.org/10.13140/RG.2.2.28894.15685
http://www.jstor.org/stable/2528399
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664

References 201

[199] Liang Zhang, Wenli Zheng, Chao Li, Yao Shen, and Minyi Guo. “AuTraScale: An
Automated and Transfer Learning Solution for Streaming System Auto-Scaling”. In:
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
Portland, OR, USA: IEEE, 2021, pp. 912–921. ISBN: 978-1-66544-066-0. DOI: 10.1109/
IPDPS49936.2021.00100. URL: https://ieeexplore.ieee.org/document/9460552/
(visited on 05/22/2022).

https://doi.org/10.1109/IPDPS49936.2021.00100
https://doi.org/10.1109/IPDPS49936.2021.00100
https://ieeexplore.ieee.org/document/9460552/

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Introduction
	1.2 Problem Statement
	1.3 Research Questions and Objectives
	1.3.1 Weighting and Windowing
	1.3.2 Robustness
	1.3.3 Response Surface Methodology

	1.4 Thesis Overview
	1.5 Related Publications
	1.5.1 DEBS 2020
	1.5.2 EPEW 2022
	1.5.3 DEBS 2023

	2 Literature Review
	2.1 Stream Processing
	2.1.1 Background
	2.1.2 Key Concepts and Terminology
	2.1.3 Stream Processing Architectures
	2.1.4 Stream Processing Systems
	2.1.5 Challenges and Research Directions

	2.2 Autoscalers
	2.2.1 Background
	2.2.2 Autoscaler Architectures and Algorithms
	2.2.3 Applications of Autoscalers in Distributed Stream Processing Systems
	2.2.4 Challenges and Research Directions

	2.3 Workload Generation and Modelling
	2.3.1 Background
	2.3.2 Workload modelling methodologies
	2.3.3 Workload modelling in Stream Processing Systems
	2.3.4 Challenges and Research Directions

	2.4 Benchmarking and Evaluation
	2.4.1 Background
	2.4.2 Benchmarking and evaluation methodologies
	2.4.3 Benchmarking and evaluation tools
	2.4.4 Challenges and Research Directions

	3 Methodology
	3.1 Introduction
	3.2 Research Systems and Requirements
	3.2.1 DS2 Autoscaler
	3.2.2 Apache Flink
	3.2.3 Dynamic Workloads
	3.2.4 Characteristics of Streaming System Workloads

	3.3 Threats to Validity

	4 On Improving Streaming System Autoscaler Behaviour
	4.1 Introduction
	4.2 Categories of Autoscaler Failure
	4.3 Background
	4.4 Preliminaries and Model
	4.4.1 Summary of Workloads
	4.4.2 Summary of Moving Average Models
	4.4.3 Experimental Environment
	4.4.4 Summary of Comparison Metrics
	4.4.5 Model Ranking and Selection

	4.5 Findings and Results
	4.5.1 Extreme Parallelism Shift
	4.5.2 Volatility
	4.5.3 Summary of Findings

	4.6 Replication Package
	4.7 Conclusion

	5 Measuring Streaming System Robustness Using Non-parametric Goodness-of-Fit Tests
	5.1 Introduction
	5.2 Summary of Test Statistics
	5.2.1 Kolmogorov-Smirnov
	5.2.2 Cramér-von Mises
	5.2.3 Anderson-Darling
	5.2.4 Epps-Singleton

	5.3 Methodology
	5.3.1 System
	5.3.2 Summary of Workloads

	5.4 Results and Discussion
	5.4.1 Source Operator Variability
	5.4.2 Frequency Variability
	5.4.3 Amplitude Variability
	5.4.4 Sentence Size Variability
	5.4.5 Combined Insight

	5.5 Conclusion

	6 Reasoning Over Streaming System Performance Using Response Surface Methodology
	6.1 Introduction
	6.2 Background and Motivation
	6.2.1 Respond Surface Methodology
	6.2.2 Applications of RSM in Computer Science

	6.3 Methodology
	6.3.1 Response Variable
	6.3.2 Workloads and Factors
	6.3.3 Experimental Design
	6.3.4 Experimental Runs
	6.3.5 Response Surface Model

	6.4 Results and Discussion
	6.4.1 Performance Metrics
	6.4.2 Model Stability Metrics

	6.5 Conclusion

	7 Conclusions
	7.1 Thesis Summary
	7.2 Future Research Directions
	7.2.1 Generalisability
	7.2.2 Windowing and Weighting
	7.2.3 Robustness: Measurement and Quantification
	7.2.4 Tooling Support for Benchmarking Practitioners

	Glossary
	Acronyms
	References

