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Abstract

Background: Optimally allocating deceased donor lungs to candidates requiring a life

saving lung transplant while balancing efficiency and equity is a difficult challenge, which

is compounded by the limited availability of donor lungs in the UK, with less than 15%

of offered lungs being utilised for transplantation. This thesis argues that the sequential,

centre-based approach used by the existing UK lung allocation policy does not make

optimal use of scarce donor lungs and leads to inequitable access to transplantation.

This research identifies the need for a transparent, auditable, and equitable system that

maximises the additional years of life recipients gain from transplant (‘net benefit’) by

considering both clinical urgency and post-transplant outcomes. This research uses the

concepts of the Lung Allocation Score (LAS) as a springboard to bridge the gap between

the current sequential, centre-based UK lung allocation policy and a score-based national

allocation policy.

Methods: Lung transplant datasets were provided by NHS Blood and Transplant

that included data on adult (aged 16+), first-time, lung-only lung transplant candidates

(n = 4280) and recipients (n = 2131) listed or transplanted between 2002 and 2021.

Custom Cox proportional hazards models were developed to simulate waiting list and

post-transplant survival durations, and a novel lung allocation policy simulation engine

was developed that used discrete event simulation to predict the impact of a number of

potential national lung allocation policies. Five initial allocation policies were simulated,

focusing on different priority-ratios between waiting list survival (WL) and post-transplant

survival (PTX). Five additional policies were simulated that maximise the use of single-lung

transplants (SLT) for recipients with interstitial lung disease (ILD). Additional scenarios

were simulated to assess the impact of increased utilisation for each of the standard and

SLT policies. The key performance metrics recorded for each policy were: annual waiting

list deaths, mean net benefit per recipient, and post-transplant survival rates at 1 and 5

years. The analytic hierarchy process (AHP) was used to collect and evaluate stakeholder

preferences (i.e., candidates, recipients, their family members (n = 100), and clinicians

(n = 62)) to identify which simulated allocation policies aligned most closely with the

goals and values of the lung transplant community.

Results: The Cox models used for this work demonstrated reasonably strong predictive

power for waiting list survival (C-statistic: training dataset = 0.73, validation dataset

= 0.66), and moderate predictive power for post-transplant survival (C-statistic: training

dataset = 0.60, validation dataset = 0.55). This demonstrates a significant improvement

over the existing UK lung allocation policy, which had a C-statistic for waiting list survival

of 0.51 (training dataset) and 0.56 (validation dataset), and for post-transplant survival:

0.54 (training dataset) and 0.52 (validation dataset).



The five initial simulated policies revealed that a national score-based system would

significantly decrease waiting list mortality relative to the existing policy (90 annual

waiting list deaths) regardless of choice of priority-ratio: the WL policy (i.e., prioritising

clinical urgency) resulted in 46 annual waiting list deaths (48.9% decrease), and the PTX

policy (i.e., prioritising post-transplant outcomes) resulted in 77 deaths (14.4% decrease).

The PTX policy yielded the highest net benefit (6.9 years, compared to 5.0 years with

the existing policy), and post-transplant survival rates: 83.5% at 1 year and 59.5% at

5 years, compared to the existing policy with 80.2% and 53.3% respectively. The SLT

policies further decreased waiting list mortality: when combined with the 1:2 WL:PTX

priority-ratio, the SLT-1:2 policy reduced annual waiting list deaths to 31, a 65.6% decrease

compared to the existing policy.

Simulations showed a non-proportional relationship between increased utilisation rates

and reduction in waiting list mortality: for the standard policies, a 5% increase in utilisation

resulted in a 10.9% reduction in mortality, a 10% increase resulted in a 21.7% reduction,

and a 25% increase resulted in a 45.7% reduction. This non-proportionality was also

observed for the SLT policies.

Survey responses highlighted a preference for policies that prioritise post-transplant

survival, with the PTX policy aligning most closely with 52% of candidates, recipients

and their family members, and 48.4% of clinicians (50.6% overall).

Conclusion: This thesis demonstrates a comprehensive approach to evaluating and

identifying improvements to the UK lung allocation policy, through a novel combination

of methods from the fields of survival analysis, operations research, and computer science.

Simulations demonstrated that a national score-based allocation policy could significantly

decrease waiting list mortality, increase post-transplant survival, and ensure donor lungs

are efficiently allocated to recipients that will benefit most from transplant. The results

of this thesis calls into question the historical trend of decreasing use of SLT, and argues

for a reversal of this trend by utilising SLT for candidates with ILD.

Importantly, the methods developed and described in this thesis extend beyond lung

transplantation, offering a framework that can be applied to other donor organs and

other healthcare allocation challenges more generally. Furthermore, the proposed lung

allocation scoring system would be the first in the world to integrate candidate and donor

characteristics to ensure optimal matching between donor and recipient.

Overall, this thesis contributes to the field of transplant data science by demonstrating

the novel application of methods to balance benefit, urgency, and community values,

and highlights the importance of data-driven, transparent, community-aligned research

in allocation policy development. Future work should aim to refine predictive models,

expand the target population, and explore the practical implications of implementing

these recommendations, ensuring a careful, monitored transition to any new allocation

system to mitigate unforeseen consequences.
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Structure of Thesis

This thesis covers concepts from computer science, statistics, operations research and

medicine. As a result of this, some sections focus on a specific theme. This thesis is

designed to be read in the order it is presented, however if a section or subsection has a

particular theme they are labelled as follows: the � icon indicates a clinical focus, the

§ icon indicates a computing/mathematical focus and the | icon indicates a statistical

focus.
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Chapter 1. Introduction

1.1 Motivation and Context: The UK Lung Allocation

Policy

In the United Kingdom (UK) there are between 250 and 350 people with life-threatening

lung disease on the lung transplant active waiting list at any one time. Of all donor lungs

that are offered for transplant, less than 15% are utilised for transplant.1 As a result, the

number of donor lungs utilised for transplant is relatively small compared to the number

of candidates, with approximately 100 to 230 lung transplants being performed each year.2

This scarcity of donors means transplant candidates on the waiting must be prioritised

appropriately when donor lungs become available. The criteria that are used to prioritise

candidates to receive a specific donor organ are defined in the lung allocation policy. The

criteria include both patient characteristics (clinical urgency, blood group etc.) and also

the suitability of matching between donor and recipient, such as height mismatch and

blood group compatibility.

Designing a lung allocation policy that is transparent and equitable to transplant

candidates that also makes optimal use of limited donor lungs is difficult. This difficulty

arises from the multiple, often conflicting goals that an allocation policy might be designed

to achieve. For example, prioritising the most seriously ill candidates will reduce the

number of candidates dying on the waiting list, but this could also lead to lower survival

rates post-transplant. Likewise, prioritising candidates with the highest chances of survival

post-transplant may result in less seriously ill candidates being transplanted, improving

post-transplant survival rates but increasing waiting list mortality.

In this chapter the current adult lung allocation policy in the UK will be described,

key issues with the current policy will be identified and potential improvements will be

proposed.

1.1.1 POL230/14 - Donor Lung Distribution and Allocation

In the United Kingdom, donor lungs for transplant are allocated according to the ‘Donor

Lung Distribution and Allocation (POL230/15) Policy’.3 This policy was created by the

Cardiothoracic Advisory Group (CTAG), a group within National Health Service - Blood

and Transplant (NHS-BT) that focuses on heart and lung transplantation.

Lung transplant candidates can belong to one of three categories: adult (aged 16 or

older, and height above 155cm), small adult (aged 16 or older, and height 155cm or less)

or paediatric (aged under 16). There are also three different levels of urgency schemes

that a candidate can be assigned to: the non-urgent lung allocation scheme (NULAS),

the urgent lung allocation scheme (ULAS) and the super-urgent lung allocation scheme

(SULAS).

The allocation policy prioritises candidates by taking into account their category, ur-

gency, compatibility with the donor, waiting time and location. This is accomplished by
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Chapter 1. Introduction

using multiple tiers, where each tier selects a subset of candidates on the waiting list.

Offers are first extended to candidates in the higher tiers on a named basis for ULAS and

SULAS listed candidates. If the offer is not accepted for the named candidate or there are

no candidates in that tier then the offer is extended to transplant centres (i.e., not using

named allocation) in the lower priority tiers.

There is also an adult lung transplant centre rotation which directs donor offers to

transplant centres rather than individual candidates. When a centre accepts an offer

outside of its zone on the non-urgent scheme, that centre is moved to the bottom of

the rotation, allowing other centres which haven’t recently accepted offers to have an

opportunity to receive donor offers.

The allocation policy tiers are as follows (note: these tier labels have been added to

aid referencing specific tiers within this thesis):

Tier 1: All Adult, Paediatric and Small Adult patients on the super-urgent scheme,

ordered by waiting time

Tier 2: All Paediatric and Small Adult patients on the urgent scheme

Tier 2.a: Patients with blood group identical to donor, ordered by waiting time

Tier 2.b: Patients with blood group compatible with donor, ordered by waiting time

Tier 3: All Adult patients on the urgent scheme

Tier 3.a: Patients with blood group identical to donor, ordered by waiting time

Tier 3.b: Patients with blood group compatible with donor, ordered by waiting time

Tier 4: All Adult, Small Adult and Paediatric patients on the non-urgent scheme

requiring a lung-liver transplant

Tier 5: All Adult patients on the non-urgent scheme

Tier 5.a: All patients at the same centre as the donor (free centre choice)

Tier 5.b: All patients at Great Ormond Street Hospital (free centre choice)

Tier 5.c: All patients at remaining centres (prioritised according to the adult lung centre

rota)

Tier 6: Patients in Republic of Ireland

Tier 7: Patients at Organ Exchange Organisation in EU countries

Tier 8: Group 2 patients

7
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Candidates are split into ‘Group 1’ and ‘Group 2’. The definitions for these groups are

outlined in the 2005 NHS Blood and Transplant Directions document.4 In brief, Group 1

includes:

� Residents of the UK

� Members of the Armed Forces, Crown servants and employees of the British council

employed abroad (including family members under the age of 19)

� People who are entitled under the relevant regulations to medical treatment in the

UK

� People entitled to medical treatment by means of a reciprocal health agreement

Group 2 includes all individuals not meeting the criteria for Group 1.

1.1.2 Key Issues

The policy is designed so that specific candidates on the super-urgent and urgent waiting

lists are prioritised (i.e. “named allocation”) in tiers 1 to 3, with the remaining tiers using

centre-based allocation, where allocation is decided not by the policy, but by a “free centre

choice”. This brings us to the issues identified with the current allocation policy.

The named allocation system in tiers 1 to 3 prioritises urgent and super-urgent candi-

dates using waiting time and blood group compatibility with the donor. It is important

that the donor and recipient blood groups are compatible, otherwise an immune response

would be triggered leading to hyperacute rejection of the transplanted lungs,5 an ABO

compatibility table is shown in table 1.1. Prioritising blood group identical candidates over

blood group compatible candidates does not result in any difference in post-transplant out-

comes.6,7 In terms of post-transplant outcomes these rules do not appear justified. How-

ever these rules may be in place to allow equal access to transplant across blood groups.

Group ‘O’ candidates can only be matched with group ‘O’ donors, making them the least

likely group to access transplant. On the other hand, group ‘O’ donors can be matched

with any blood group. Without these rules being in place, group ‘O’ candidates would

have to contend with all other blood groups for access to transplant, further decreasing

access.

There are also a number of issues with using waiting time for allocation that will be

explained in more detail in chapter 2.4, the key issue is that this mechanism of allocation

selects for candidates that can afford to wait longer on the waiting list. Within the higher

urgency tiers, waiting time does not adequately take each candidate’s individual clinical

status into account. Using a mechanism for candidates with high clinical urgency that

is better for candidates with low urgency implies this it not the most suitable method of

allocation for urgent and super-urgent candidates.
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Table 1.1: Blood group compatibility table: Leftmost column specifies donor blood group, topmost
row specifies recipient blood type. The compatibility is determined by the intersection of the donor
row and recipient column: ‘Identical’ indicates the donor and recipient have the same blood type.
‘Compatible’ indicates different blood types between the donor and recipient but the recipient does
not have antibodies that will bind to the donor blood cells. ‘Not Compatible’ indicates different
blood types between the donor and recipient, and the recipient has antibodies that will bind to
the donor blood cells.

Donor
Recipient

A B AB O

A Identical Not Compatible Compatible Not Compatible
B Not Compatible Identical Compatible Not Compatible
AB Not Compatible Not Compatible Identical Not Compatible
O Compatible Compatible Compatible Identical

Tiers 4 to 8 make use of a “free centre choice” where the donor lungs are allocated

to a centre and the recipient is selected based on the judgement of the transplant team

receiving the donor offer. The time of day, who is on call at the time of offer, other

activity already happening and experience levels could all impact the allocation decision.

This process is highly subjective, not consistent and not transparent to candidates on the

waiting list.

Candidates listed at a centre in the same allocation zone as the donor have priority

over candidates located at other centres, resulting in access to transplant differing by

geographic region. This decision may be an attempt to minimise the cold ischaemia time

(CIT) of the donor lungs, defined as the time from cross-clamping the aorta in the donor

to reperfusion in the recipient. However, one article observed no significant difference in

post-transplant outcomes in the United States (US) lung transplant population with CIT

under 8 hours.8 With the UK being geographically much smaller than the US, prolonged

ischaemia times significantly higher than 8 hours are infrequent. Donation after brainstem

death (DBD) donors accounted for approximately 63% of transplants in the UK in 2022-

2023 and had a median CIT of 6.8 hours (inter-quartile range: 5.5 to 8.8 hours).2 The

remaining 37% of donation after circulatory death (DCD) donors had a median CIT of

8.3 hours (inter-quartile range: 7.2 to 10.1 hours).2 The overall median CIT was 7.2

hours (inter-quartile range: 6.2 to 9.2 hours).2 As a result of these considerations, this

mechanism may not be necessary for allocation in the UK.

The adult lung centre rota may appear to ensure some degree of fairness, but this is

a matter of perspective: is it fair that a candidate does not receive a transplant because

another candidate that is unrelated to them was transplanted at some point in the past,

and happened to be listed at the same centre? Another issue is that the rota mechanism

is very likely to lead to sub-optimal allocation, which will be explained in detail in the

following mathematical interlude.
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Centre-Based Allocation Leads to Sub-Optimal Allocation |

The allocation centre rotation mechanism being sub-optimal can be explained using

the following thought experiment. When donor lungs are allocated to a candidate

based on their transplant centre, either because the centre is in the same zone as the

donor centre, or the centre is at the top of the rota, what is the probability that there

was a more suitable candidate who would have benefited more at a different centre?

The exact value of this probability isn’t important, however, if the probability of

sub-optimal allocation P (S) is greater than zero, then the following holds:

1. The probability of optimal allocation is: P (O) = 1− P (S)

2. P (S) > 0, therefore: P (O) < 1

3. Over n iterations of this mechanism, the probability of making an optimal

decision all n times is P (O)n

4. As n approaches ∞, P (O)n approaches 0

Using this chain of logic, as this mechanism of allocation is repeated over time,

the probability of making optimal allocation decisions approaches zero.

The final issue is that the tier-based policy can result in situations where without

intervention, clinically similar candidates would have very different access to transplant.

This is a result of using hard boundaries within allocation policy decisions.

For example, it is possible for two clinically similar adult Interstitial lung disease (ILD)

candidates to be on the waiting list with slightly different measured partial pressure of

O2 in arterial blood (PaO2) values (PO2 is the partial pressure of oxygen measured in

the blood, with the units being in kilo-pascals, or kPa - lower values indicate lower blood

oxygen levels). If one candidate has a measured PaO2 of 7.8 kilo-pascals (kPa) and the

other 8.2 kPa, they will be listed at very different priority levels. The listing criteria

for urgent ILD candidates in POL231/59 are: “Persisting hypoxia (PO2 <8 kPa) despite

continuous O2 at 10 L/min”

If the policy was followed as it is written, then one candidate would be listed as urgent

and the other as non-urgent. In the most extreme case, one candidate could be in allocation

tier 3.a. and the other at a centre on the bottom of the adult lung centre rota in tier 5.c.

This problem of hard boundaries is not unique to the UK lung allocation policy, but

is also seen in other lung allocation policies worldwide, more examples of hard boundaries

and the issues they cause are explained in section 2.3.1.

In practice, if a candidate almost meets the criteria for being listed as urgent, then their

case could go to an adjudication panel. However, the requirement for manual intervention

in the allocation process indicates the potential for improving the allocation policy.
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1.2 Hypothesis, Goals and Contribution

1.2.1 Potential Improvements

In order to define a hypothesis and set goals for this work, it is first necessary to identify

areas for potential improvements to the current UK allocation policy.

The named allocation system for urgent and super-urgent patients could be extended

to include all patients at a national level. A national named allocation system would

remove the impact of geographical restrictions to accessing transplant and would be more

transparent and equitable to candidates on the waiting list.

The current UK lung allocation policy makes no use of predictive survival models

for prioritising patients. If a national named system were implemented then candidates

could be prioritised by their estimated survival on the waiting list, estimated survival after

transplant or some ratio of the two. Since the same survival models would be used for all

candidates nationally, the allocation decisions would be transparent, repeatable and more

easily auditable.

Another potential benefit of using predictive models is that they can be used to develop

an allocation score. The allocation score would rank candidates on a continuous scale,

therefore removing the necessity for specifying hard numeric boundaries or allocation

tiers. Ideally, a small change in candidate characteristics would result in a minor change

in allocation priority, avoiding scenarios where clinically similar candidates would have

significantly different access to transplant.

1.2.2 Hypothesis

Hypothesis: Improvements to the current UK lung allocation policy can be made by

use of survival analysis and simulation techniques. If the current UK lung allocation

policy can be simulated and performance metrics measured, then improvements can be

identified by using statistical techniques to compare the current and potential alternative

policies. In addition to this, if the current allocation policy is sub-optimal with respect to

the performance metrics of interest, then there should exist at least one alternative policy

that performs better according to the metrics of interest.

Null hypothesis: There is no statistically significant difference in performance metrics

between the current UK lung allocation policy and any alternative simulated policy.
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1.2.3 Goals

1. Design and implement a simulation engine to predict the impact of different lung

allocation policies according to specific performance metrics

2. Quantify the relative weight (i.e., percentage priority, with all priorities summing

to 100%) of goals and values that the lung transplant community (i.e., patients,

clinicians and other stakeholders) believe should be part of an ideal allocation policy

3. Using the results generated from goal (2), identify which potential policy most closely

aligns with the goals and values of the lung transplant community

4. Using goal (1) and the results from goal (3), compare the current and proposed

policies using performance metrics of interest

5. Ensure policies are equitable: all candidates should be prioritised based solely on

the same clinical criteria, it should not be possible to unfairly influence candidate

rankings, and rankings should not be skewed to benefit or disadvantage specific

groups of candidates

6. Ensure policies are auditable: it should be possible to justify allocation decisions

and understand the exact reasoning that was undertaken at the time of allocation

7. Ensure policies are transparent to candidates: it should be clear to candidates how

their position on the allocation rankings was determined
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1.2.4 Contribution to Clinical Transplantation

If the goals of this work are successfully achieved, the following contributions to lung

allocation in the UK will be made:

1. Development of predictive models for waiting list and post-transplant survival for

the UK lung transplant population (chapter 4.3.1)

2. Development of a novel simulation engine to assess the impact of lung allocation

design decisions on different groups of lung transplant candidates (chapter 4.2.7)

3. Identification and quantification of the goals and values of the UK transplant com-

munity (chapter 5.2)

4. Development of a framework that combines contributions (1), (2) and (3) to identify

the lung allocation policy that most closely aligns with the goals and values of the

UK transplant community (chapter 5.2)

While the contributions listed above are specific to UK lung transplantation, this work

can generalise to other clinical decision making problems. Some more general contributions

are:

1. A general-purpose simulation engine that can simulate the allocation of any limited

resource (assuming sufficient data is available)

2. A general-purpose framework for comparing allocation policies and selecting the

most desirable policy

In addition to the above, as a result of the pandemic, a rapidly deployable prioritisation

system was developed for emergency use when limited or no data is available. If this

system is successfully validated then another contribution would be a novel general-purpose

emergency prioritisation system.

In the final chapter of this thesis, the hypothesis, goals and contributions will be

revisited in the context of the results that were generated in chapters 3 - 5. The degree of

success and contribution for each goal will be explored in more detail in section 6.2.
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Chapter 2

Background

This section outlines the necessary background before tackling the main goals of this thesis.

First, a general overview of lung transplantation will be given, along with a summary of

the main indications for lung transplantation. Next, historical and current lung allocation

policies are reviewed in order to examine the successes and failures of different policies.

Finally, the gap in the literature will be identified and the goals of this thesis will be

reviewed in the context of this research gap.
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2.1 An Overview of Lung Transplantation

The number of lung transplants taking place each year has consistently increased since

the early 90’s. Worldwide, there were 33,891 adult lung transplants performed between

January 2010 and June 2018, giving an average of just under 4000 per year.10 This is

over a three-fold increase in worldwide lung transplantation compared to the 1300 annual

transplants that were performed between 1992 and 2000. The majority of lung transplants

worldwide take place in North America (54.9%), followed by Europe (36.6%), with the

rest of the world accounting for the remaining 8.5% of adult lung transplants.

2.1.1 Indications for Lung Transplant

Lung transplantation is used for patients with end-stage lung diseases who have failed

to respond to maximal medical treatments (i.e., patients where lung function is severely

compromised and the lungs are unable to adequately oxygenate their blood and their prog-

nosis is limited). There are four major categories of lung disease, the Organ Procurement

and Transplantation Network (OPTN) in the US uses four diagnosis groups labelled A,

B, C and D, and these groups will be used throughout this thesis. The four diagnosis

groups are: obstructive lung disease (group A), pulmonary vascular disease (group B),

cystic fibrosis (group C) and interstitial lung disease (group D).

Group A - Obstructive Lung Disease

Chronic obstructive pulmonary disease (COPD) refers to a group of lung diseases including

emphysema and chronic bronchitis. The main cause of COPD is smoking, however it is

also possible for COPD to develop in adults who have never smoked. Long-term exposure

to harmful fumes or dust can also lead to COPD.11 Emphysema is a condition where the

air sacs in the lungs are damaged and chronic bronchitis is the long-term inflammation

of the airways. The main symptoms of COPD are breathlessness, a persistent cough,

frequent chest infections and persistent wheezing.

Group B - Pulmonary Vascular Disease

Pulmonary arterial hypertension (PAH) is a condition where there is high blood pressure

in the smaller branches of the pulmonary arteries. This is caused by the pulmonary artery

walls thickening and becoming stiff, making them unable to expand to allow sufficient

blood flow.12 This puts strain on the right side of the heart which can lead to heart

failure. PAH may not present with any symptoms until the condition has advanced. Some

of the main symptoms are shortness of breath, tiredness, dizziness, chest pain, palpitations

and swelling in the legs, ankles, feet or abdomen. Within the context of transplantation,

PAH often refers to idiopathic pulmonary arterial hypertension, where the underlying
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cause is unknown,13 although other causes of pulmonary vascular disease are included in

this diagnosis group.

Group C - Cystic Fibrosis

Cystic Fibrosis (CF) is a genetic condition that causes the mucus produced by the body

to be thick and sticky, causing problems with the respiratory and digestive systems along

with other complications.14 Within the lungs, this can lead to an increased number of

infections and also interferes with gas exchange into the bloodstream. The symptoms

of cystic fibrosis are: recurring chest infections, wheezing, coughing, shortness of breath,

damaged airways (bronchiectasis), difficulty gaining weight, jaundice and digestive issues.

New treatments for CF have transformed the severity of the disease for many people with

this condition, and it is now a much less common indication for lung transplantation than

it was historically.15,16

Group D - Interstitial Lung Disease

The main diagnosis in group D is Idiopathic Pulmonary Fibrosis (IPF), which is part of

a group of diseases referred to as interstitial lung disease (ILD). This category of diseases

also includes sarcoidosis, hypersensitivity pneumonitis, connective tissue disease related

ILD as well as a number of rarer diseases.9 IPF causes the alveoli in the lungs to become

scarred, causing the walls of the alveoli to become rigid, making it more difficult for oxygen

to enter the bloodstream.17 The main symptoms are shortness of breath, persistent cough,

tiredness, loss of appetite and clubbed fingers.

2.1.2 Proportion of Waiting List Candidates and Lung Transplant

Recipients by Diagnosis Group

Patients within different diagnosis groups experience differing rates of waiting list and

post-transplant mortality. Changes to allocation policies result in different transplant rates

between diagnosis groups, which in turn directly impacts the probability of a candidate

dying on the waiting list and their chances of receiving a transplant. These probabilities

indirectly affect the percentage of each diagnosis group on the waiting list. The next

section will look at worldwide listing and transplant rates by diagnosis group, then look

at rates in the US and UK.
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Worldwide

The distribution of candidates within each diagnosis groups receiving a lung transplant

has changed worldwide over time. The International Society for Heart and Lung Trans-

plantation (ISHLT) gives an overview of transplant rates stratified by diagnosis group10

summarised in table 2.1 (note the table also includes patients with alpha-1 antitrypsin

deficiency, which results in a predisposition to develop COPD18). The two main global

trends are:

1. The percentage of group A (COPD) recipients decreased over time from 37.3% in

the period 1992-2000 to 26.5% in 2010-2018

2. the percentage group D (ILD) recipients increased from 15.0% in 1992-2000 to 29.0%

in 2010-2018

Table 2.1: Worldwide change in transplant rates by diagnosis, 1992 - 2018. COPD = Chronic
Obstructive Pulmonary Disease, PAH = Pulmonary Arterial Hypertension, CF = Cystic Fibrosis,
ILD = Interstitial Lung Disease, A1ATD = Alpha-1 Antitrypsin Deficiency (results in a predispo-
sition to developing COPD). Source: ISHLT Adult Lung Transplantation Focus Theme10

Diagnosis Jan 1992 - Jan 2001 - Jan 2010 -
Group Dec 2000 Dec 2009 Jun 2018

A - COPD 4,162 (37.3%) 7,102 (33.1%) 8,917 (26.5%)
B - PAH 578 (5.2%) 563 (2.6%) 945 (2.8%)
C - CF 1,717 (15.4%) 3,470 (16.2%) 4,771 (14.2%)
D - ILD 1,677 (15.0%) 4,899 (22.8%) 9,755 (29.0%)
A1ATD 1,169 (10.5%) 1,131 (5.3%) 1,054 (3.1%)

Retransplant 394 (3.5%) 921 (4.3%) 1,364 (4.1%)
Other 1,471 (13.2%) 3,392 (15.8%) 6,822 (20.3%)

Total Transplants 11,796 21,806 33,891

United States

The US 2021 annual report released by the OPTN19 also reveals the same trends in

diagnoses receiving a transplant as the global trends, these are displayed in figure 2.1.

From 2010 to 2021 the number of group A (COPD) transplant recipients has remained

stable at approximately 500 per year, whereas the number of group D (ILD) recipients

increased from approximately 1000 per year to almost 1700 per year. As a proportion,

group A (COPD) has decreased and group D (ILD) has increased dramatically.

The report also shows the percentage of each diagnosis group on the waiting list.19 In

the US in 2010, group A (COPD) candidates accounted for just under 40% of the waiting

list and group D (ILD) candidates just over 40%. The percentage of group A (COPD)

candidates decreased to approximately 20% in 2021, and the percentage group D (ILD)

candidates increased to slightly below 70%. These trends are displayed in figure 2.2.
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Another more recent trend is the decrease in the percentage of group C (CF) candidates

being listed and receiving a transplant in the years 2020 - 2021, the report states this was

due to the approval of new CF treatments20 which was discussed briefly on page 16.

Figure 2.1: US transplants by year and stratified by diagnosis group. Note the large increase in the
number of group D (interstitial lung disease) recipients and the recent decrease in group C (cystic
fibrosis) recipients. Group A - chronic obstructive pulmonary disease, group B - pulmonary vascular
disease, group C - cystic fibrosis, group D - interstitial lung disease. Source: OPTN/Scientific
Registry of Transplant Recipients (SRTR)20

Figure 2.2: US annual percentage of candidates by diagnosis group on the waiting list, from 2010 to
2021. Note the large increase in the number of group D (interstitial lung disease) recipients and the
recent decrease in group C (cystic fibrosis) recipients. Group A - chronic obstructive pulmonary
disease, group B - pulmonary vascular disease, group C - cystic fibrosis, group D - interstitial lung
disease. Source: OPTN/SRTR20
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United Kingdom

In the UK, NHS-BT publish annual organ-specific reports, the most recent pre-COVID

report21 shows the distribution of transplant rates by diagnosis group covering the period

1 April 2019 to 31 March 2020 (summarised in table 2.2). In that period a higher percent-

age of group A (COPD) patients received a transplant (36%) than group D (ILD) patients

(26%), which is opposite of the distributions seen in the US and worldwide.

The published organ-specific reports only date back to 2013-2014,22 and transplants by

diagnosis have only been reported since 2016-2017,23 so a comparison of long-term trends

was not possible. However, one common trend between the UK and US is the decrease in

group C (CF) recipients in 2020.

In the 2019-20 report,21 CF candidates accounted for 20% of the waiting list, decreasing

to 9% in 2020-21,24 5% in 2021-22,25 and slightly increasing to 10% in 2022-23.26

This reduction in listing of candidates with CF is reflected in the reduced percentages

of CF recipients: 24% in 2019-20,21 14% in 2020-21,24 8% in 2021-2022,25 and 6% in

2022-2023.26

Summary

While the diseases in the four categories have various causes and symptoms, one thing

they all have in common is that as the disease progresses lung transplantation is the only

viable treatment option. The availability of donor lungs suitable for transplantation is

relatively small compared to the number of patients on the waiting list. Therefore it is

important to make optimal use of this precious and scarce resource. The next two sections

look at policies that have been implemented globally as well as the history and evolution

of lung allocation policies.

Table 2.2: UK transplant rates by diagnosis, 2019 - 2020 and 2022 - 2023. COPD = Chronic
Obstructive Pulmonary Disease, PAH = Pulmonary Arterial Hypertension/Pulmonary Vascular
Disease, CF = Cystic Fibrosis, ILD = Interstitial Lung Disease. Source: NHS-BT Annual Report
on Cardiothoracic Organ Transplantation 2019-202021

Diagnosis Transplants in Transplants in
Group 2019-20 (%) 2022-23 (%)

A - COPD 56 (36%) 51 (25%)
B - PAH 6 (4%) 9 (5%)
C - CF 38 (24%) 19 (10%)
D - ILD 40 (26%) 101 (50%)
Other 16 (10%) 19 (10%)
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2.2 Possible Frameworks §

There are many frameworks that can be used for looking at the problem of allocating

donor lungs. The framing of the problem will inform the methods that are used, the types

of results generated and the conclusions that are reached. As such, it is important to

carefully consider the framework that will be used throughout this thesis. In this section

three frameworks will be explored, and the justification for the chosen framework is given.

The first framing approaches allocation by looking at the potential benefit each patient

gains from transplant along with the probability of a successful transplant. Each patient

is then assigned a probability of being allocated the donor organs accordingly.

The next approach is the multi-armed bandit problem (MABP), where every possible

donor-recipient combination is mapped to a range of probabilities of various outcomes.

The goal is to maximise benefit to recipients in the presence of uncertainty of outcomes.

The final framework will look at lung allocation as a multi-criteria decision making

(MCDM) problem. There are ‘multiple criteria’ that an allocation policy must consider,

for example: waiting list mortality, post-transplant outcomes and equity of access to trans-

plant. Designing an allocation policy to maximise one of these criteria often necessitates

compromising on the other criteria. MCDM techniques can be used for optimal decision

making in the presence of (sometimes conflicting) multiple criteria.

2.2.1 Social Welfare Functions

Donor lung allocation can be seen as attempting to maximise certain social welfare func-

tions.27 A social welfare function quantifies the benefit to a population resulting from

a distribution of goods. In this case the ‘goods’ are the distribution of the probability

of being transplanted given an allocation policy, and the ‘benefit’ is an abstract quan-

tity that in practice could relate to minimising waiting list mortality, maximising survival

post-transplant, or increasing the additional days of life gained from transplant.

This concept is described by Steven M. Goldman using three social welfare functions:28

1. Utilitarianism - the lungs would be allocated to the candidate with the highest

potential benefit from transplant (i.e., the candidate has both a high probability of

a successful transplant and a high amount of potential benefit.)

2. Rawlsian Ethics - the probabilities of any one candidate being selected would be

distributed to maximise the expected utility for the least well off individual. (i.e., the

candidate with the lowest quantity of potential benefit receives a higher probability

of being allocated)

3. Nash Social Welfare Function - every candidate has an equal probability of being

selected for transplant, regardless of their individual characteristics.
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These social welfare functions each have a unique ethical philosophy guiding the ap-

proach to distributing donor lungs. There are four principles that should guide the un-

derlying philosophy of any allocation policy:29

1. Principle of equity - in the context of organ allocation this refers specifically to eq-

uity of access to transplantation and can be considered analogous to the concept of

equality of opportunity, and opposite to the concept of equality of outcome. This

principle dictates that there should be no unfair bias in how candidates are prioritised

for transplant, and that certain characteristics (such as ethnicity, wealth, religious

or political affiliations) should not be considered in the allocation process.

2. Principle of justice - individuals receive that which is owed to them. In the context

of transplantation, this could be giving priority to individuals that have previously

donated an organ, or who have registered as organ donors. The inverse of this

principle also applies: individuals do not receive that which is not owed to them,

or in other words, no unjustified advantages should be given to one individual over

another

3. Principle of beneficence - this is a multi-faceted principle:30

(a) Do not actively harm others

(b) Do not passively allow harm to happen to others, and actively prevent harm

(c) Remove harm that has occurred to others

(d) Any intervention or treatment should provide positive benefits

4. Principle of utility - any intervention or treatment should result in an equal or greater

amount of net good compared to any other alternative action

It is important that any policy being evaluated or proposed for implementation should

adhere to these principles. The degree to which each type of policy or allocation system

adheres to each of the four principles will vary, but nonetheless these principles should be

the standard all policies are held to.
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There are pros and cons both practically and ethically for each of these social wel-

fare functions. These functions are described mathematically by Goldman28 and are

summarised in the following mathematical interlude using the same notation given by

Goldman.

Mathematical Interlude - Social Welfare Functions § |

Mathematically, Goldman defines the problem of organ allocation as a set of I

candidates M = {1, ..., I}, where each candidate i receives some amount of benefit

from receiving a transplant. The benefit for candidate i is defined by the utility

function U i, and the probability of a successful transplant is defined as pi. The

allocation policy is represented by a set of probabilities π, where πi represents the

probability of candidate i being allocated the donor organ, with the condition that

every probability is zero or greater, and the sum of all probabilities equals one. A

more formal re-statement of these conditions is:

(∀i ∈M.(πi ≥ 0)) ∧
I∑

i=1

πi = 1

Applying Goldman’s definitions to the context of this thesis, ‘benefit’ could refer

to additional life gained from transplant, increased probability of survival to a certain

point in time, improvement in quality of life and so on. The probability of a successful

transplant pi depends on the individual candidate’s attributes and the characteristics

of the donor lungs.

A utilitarian policy would allocate lungs to the candidate that has the highest

potential benefit from transplant, or mathematically the candidate for which piU
i

is the largest in the set of candidates M . This will tend to select candidates with

both good chances of a successful transplant and a high expected benefit from trans-

plant. The candidate that meets these criteria has a probability of being selected for

transplant πi = 1 and for all other candidates πi = 0. This type of policy maximises

the utility from donor lungs but also has the largest inequality in the distribution of

probabilities for candidates being selected.

A Rawlsian policy assigns a probability πi to each candidate so that the well-

being of the least well off individual is maximised. Mathematically, πi is distributed

between candidates {1, ..., I} so that expected benefit (πipiU
i) is equal across the pop-

ulation. This assumes that every candidate has a non-zero probability of a successful

transplant and a non-zero benefit. The result of this is that candidates with high

expected benefit are assigned low probabilities of receiving an organ and candidates

with low expected benefit are assigned high probabilities of receiving an organ.
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The probability assigned to every candidate i when using the Rawlsian policy can be

calculated as follows:

invsum =
1∑I

i=1 piU
i

πi =

1
piU i

invsum

A policy of this type does not maximise utility but does minimise the inequality

of expected benefit by ensuring πipiU
i is equal for all candidates. On the other hand,

the probability of being selected for transplant (πi) is still distributed unevenly.

A policy based on the Nash social welfare function simply assigns a probability

of πi = 1/I to each candidate. This minimises the inequality of the probability for

each candidate being selected for transplant, but results in unequal expected benefit.

A policy of this type also does not maximise the utility from the donor organs.

In summary, the utilitarian policy aims to maximise the total utility (i.e. benefit)

across the population by allocating to candidates with a high probability of expe-

riencing a large transplant benefit. The Rawlsian policy aims to equalise outcomes

by assigning low probabilities of allocation to candidates with high expected benefit

and vice versa. The Nash policy gives all candidates an equal probability of being

transplanted, regardless of potential benefit or the probability of a good outcome.

In practice, a utilitarian policy is the only justifiable type of policy because it does

not depend on random processes, making it the only approach that is transparent and

auditable (i.e. repeatable). Donor lungs are a scarce resource and should be allocated

to maximise the benefit to the recipient while also avoiding futile transplants with a low

probability of success, which would lead to sub-optimal use of the donor lungs. Further-

more, the Rawlsian and Nash policies require a candidate to be selected at random. The

goal for any policies proposed from this work is that they should be fair (i.e., equitable),

auditable and transparent to candidates (see page 12). A random process that cannot be

predicted or repeated would not meet the standard to achieve these goals.

As a result of these considerations, approaching the problem of organ allocation from

the point of view of social welfare functions is not appropriate for evaluating and developing

an allocation policy. However, what can be gained from this framing is the importance of

clearly defining what is meant by ‘benefit’ and the ability to accurately predict outcomes

and benefit given a candidate-donor pairing.
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2.2.2 The Multi-Armed Bandit Problem MABP

In the previous section (2.2.1), it was assumed that each candidate had a fixed, known

probability of a successful transplant and a fixed, known quantity of transplant benefit.

When an individual is transplanted with lungs from a donor the probability of a success-

ful transplant can be influenced by a number of factors relating to both the recipient,

the donor, and the reaction of the recipient’s immune system to the donor lungs. This

probability of a successful transplant and the amount of benefit gained can be thought of

as being drawn randomly from a probability distribution.

The multi-armed bandit problem (MABP) is a classic problem in decision theory,31

operations research32 and reinforcement learning,33 a branch of probability theory and

machine learning. The problem can be understood by the following analogy:

Imagine you have been offered several hundred free attempts at a row of slot machines

at a casino. You want to maximise your potential payout, however each slot machine pays

out with a different probability distribution. How many free attempts should be allocated

to each slot machine in order to maximise your payout?

At the beginning of the scenario you have no knowledge of the probability distributions

for the slot machines, however as the number of attempts increases more information is

revealed about the payout probabilities. The next question arises: should you continue to

pull the lever for the slot machine that has the best payout so far, or experiment with other

machines that may have a better probability of paying out? This is the exploration versus

exploitation problem - if you spend too much time exploring different slot machines you

don’t maximise your payout, conversely staying at the same slot machine (‘exploitation’)

will prevent the discovery of a potentially better paying machine.

The MABP approach can be applied in the context of lung transplantation: the com-

bination of recipient and donor characteristics constitute a single ‘arm’ of the multi-armed

bandit. The waiting list and post-transplant survival durations of these combinations of

characteristics can be thought of as being drawn from a probability distribution. The

exploration versus exploitation problem also applies in the context of organ allocation:

should organs be allocated to patients with characteristics that are known to have good

outcomes? Or should they occasionally be allocated to patients with rare combinations of

characteristics to discover more information on survival probabilities for these rare cases?

As the algorithms for optimising the payout from the MABP are probabilistic rather

than deterministic, this framing of lung allocation does not appear to be appropriate for

a fair, auditable and transparent allocation system, for the same reasons as outlined on

page 23. However the concept of mapping patient and donor characteristics to probability

distributions will be revisited later in this thesis, as this will be necessary to simulate the

potential outcomes after lung transplant.

The details of the probabilistic nature of the commonly used MABP optimisation

algorithms are given in the following mathematical interlude.
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MABP Optimisation Algorithm Examples §

Two commonly used algorithms are the epsilon greedy34 and epsilon first35 algo-

rithms. For both of these algorithms a value for epsilon (ϵ) needs to be specified, this

determines the percentage of exploration in the strategy. For example, with ϵ = 0.1,

10% of the strategy will be spent on exploration, with the remaining 90% exploiting

the lever with the highest payout.

The epsilon first algorithm has a distinct exploration phase followed by an ex-

ploitation phase. If N lever pulls are going to be taken in total, then ϵN lever pulls

will be performed at random. The lever with the highest payout is identified and

pulled repeatedly for the remaining (1− ϵ)N pulls.

The epsilon greedy strategy randomly switches between exploration and exploita-

tion with a probability ϵ for exploration and 1 − ϵ for exploitation. In the case of

exploration, one of the levers is pulled at random. In the case of exploitation the

lever with the best payout so far is pulled.

2.2.3 Multi-Criteria Decision Making MCDM

Allocation can be seen as making an optimal decision between two or more competing

choices. What is meant by ‘optimal’ can be subjective and depends on the goals of the

decision maker(s). Multi-criteria decision making (MCDM) is the discipline that studies

decision making in situations where there are multiple conflicting criteria. This is the

framing that will be used for this research and throughout this thesis.

The first concept of MCDM that will be explored is the ‘Pareto set’. The relevance

of the Pareto set can be explained via an analogy of choosing a house to purchase. For

simplicity only two criteria will be used in this example: house price and house size, with

the competing goals being to minimise the amount of money spent, and maximise the size

of the purchased house. The prices and sizes of the houses used in this example are shown

in table 2.3.

To find the Pareto set, simply select any house and remove all other houses from the

list that are both more expensive and smaller. This makes logical sense, as there is no

point paying more money for a smaller house. This process is repeated for each house

until there is a set of houses remaining that have not been removed.
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Table 2.3: Example house prices and sizes to choose from for a hypothetical multi-criteria decision
making (MCDM) problem to illustrate the concept of the Pareto set. In this example, there are
two conflicting goals (‘criteria’): (1) purchase the largest house, and (2) spent as little money as
possible. House 1 is the cheapest (but smallest) and house 7 is the largest (but most expensive).
This set of houses can be reduced to the Pareto set by removing any house where there is a larger
option that is also cheaper. Houses 4 and 5 can be removed, since house 3 is both larger and
cheaper. Italics indicate the options that do not belong to the Pareto set.

Option House Price (Thousands) House Size (Sq Ft)

1 85 1000
2 115 1300
3 150 1700
4 170 1400
5 200 1500
6 375 2100
7 500 3000

Figure 2.3: Left: Scatter plot of house price vs house size. The house points in red are said to
be ‘Pareto inefficient’ due to them being more expensive and smaller than the house shown with
a blue point. Right: The Pareto set / Pareto front of houses that have prices that are Pareto
efficient with respect to their size and other houses on the market.

In this example, house 4 costs 170 thousand with a size of 1400 sq ft, and house 5 costs

200 thousand with a size of 1500 sq ft. Both of these options can be removed as they do

not belong to the Pareto set (indicated by italics in table 2.3) and red in the left side of

figure 2.3, since house 3 is cheaper (150 thousand) and also larger (1700 sq ft) than houses

4 and 5 (shown in blue in the left of figure 2.3). In the MCDM vernacular, houses 4 and

5 are said to be ‘dominated’ by house 3.

The remaining houses are referred to as being ‘in the Pareto set’, ‘on the Pareto front’,

or being ‘Pareto optimal’. The houses remaining in the Pareto set have the following

property: when comparing any two houses, one will have a lower price and the other will

have a larger size, but not both. The houses that have been inefficiently priced in relation
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to their size and other available houses have been removed.

House 1 in table 2.3 represents the cheapest option and house 7 represents the largest

option. Houses 2, 3 and 6 represent a trade-off between cost and house size. The house

that represents the subjective “best” option depends on the decision maker’s opinion of

which house represents the optimal trade-off between price and size.

If for example, 100% of the decision was determined by the size of the house, then price

is no longer a consideration and house 7 would be chosen as it is the largest. However,

if 60% of the decision is determined by price and 40% by size, then the decision becomes

more nuanced.

Weighted Criteria

The percentage of preference for each of the criteria, such as the 60% / 40% assigned to

price and size in the previous example are referred to as criteria weights. How can the

percentage values for these weights be determined?

Within the discipline of MCDM, a process can be used for determining the weights

of multiple criteria for a specific decision maker or group of decision makers called the

analytic hierarchy process (AHP).36 The AHP will be explored later in chapter 5, along

with the principles of Pareto optimality and weighted criteria.

These same principles can be applied to a waiting list for transplant candidates. Cri-

teria like clinical urgency, anticipated cold ischaemic time, blood group compatibility,

predicted survival benefit and sensitisation status can be used. The “best” decision de-

pends on the candidate with the optimal balance between all of these criteria. Depending

on which criteria are deemed to be more important, it may be decided to select a recipient

that is more distant from the donor because they have higher clinical urgency, or someone

that is ABO compatible instead of identical because they have a higher predicted survival

benefit.

These principles can be applied again at the policy level. Rather than focusing on how

to prioritise patients on the waiting list, the focus can be shifted to what an allocation

policy should achieve. Several policies could be compared using criteria such as number

of waiting list deaths, survival duration after transplant and average waiting time for a

transplant. Depending on the relative importance of the criteria, one of the policies will

be identified as most ideal.

Justification

Framing lung allocation as a MCDM problem appears to be the most appropriate option

for this research. The process of reducing a waiting list to a Pareto set is deterministic and

can be repeated, thus making this technique auditable and repeatable (goal 6). Candidates

on the waiting list could be assigned a number of points for each of the (clinically relevant)

criteria used for allocation. This would allow any candidate to see exactly why they were
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ranked at a certain position on the waiting list for a given lung offer, resulting in a system

that is transparent (goal 7). The use of MCDM methods also avoids the shortcomings

of the MABP, and the Rawlsian and Nash social welfare policies, which required random

processes that were not transparent (see section 2.2.1 on page 20).

At the policy level, stakeholders in relation to lung transplantation (i.e., medical pro-

fessionals, lung transplant candidates and recipients) could be involved in the process of

determining the weights of allocation policy goals. The justification for selecting one spe-

cific policy out of a set of possible policies can be given using the weights of allocation

policy goals and the fact that those goals were determined by both medical professionals

and individuals who have accessed, or require access to lung transplant.

Whether it’s a candidate that is being selected for transplant, or a policy that is being

selected for implementation, if the selection is from the Pareto set then you are guaranteed

that the choice will meet the minimum conditions for being considered optimal: the choice

is not sub-optimal (i.e., there are no options that are comparatively better on all criteria

of interest) but not guaranteed to be the most optimal. The most optimal choice would

be determined by the weights of the criteria relevant to the decision being made.
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2.3 Global Lung Allocation Policies �

The allocation of donor lungs to potential recipients must be carefully considered in order

to ensure the best possible outcomes for patients, as motivated in section 1.1. There

are multiple criteria that need to be considered when deciding who the optimal recipient

should be. The specific criteria and relative importance of these criteria are a matter of

policy. This section will give an overview of how lung allocation policies differ worldwide.

Lung allocation policy documents were sourced from the relevant organisations in each

country. Each policy document was reviewed in order to identify the main features of how

the allocation policies function in that country. Each feature of the policy was classified

as ‘common’ between multiple policies or ‘unique’.

Features that are common between policies were identified and are described in sec-

tion 2.3.1. Features that differed between policies are discussed in section 2.3.2. The

organisations and documents for each country/region are shown in table 2.4.

While this section is structured into common and unique features, to aid in navigating

this section, the country/region(s) being discussed are shown in bold at the beginning of

each relevant paragraph. The UK/NHS-BT policy is abbreviated UK, the Eurotransplant

policy is abbreviated ET, the US/OPTN policy is abbreviated US, the Scandiatransplant

policy is abbreviated SC, and the The Thoracic Society of Australia and New Zealand

(TSANZ) policy is abbreviated AU.

2.3.1 Common Features

This section compares the general features that are common between most or all of the

reviewed allocation policies. Although the general features are shared between policies,

each policy has its own variation of the feature. The features discussed in this section are:

medical urgency, paediatric status, ABO matching, waiting time, geographic boundaries

and sequential allocation.

Common Feature #1 - Allocation Philosophy

Each policy has a set of guiding principles for the allocation of organs, referred to here

as the ‘allocation philosophy’. The allocation philosophy of a policy can be determined

by looking at which social welfare function it maximises. The two main social welfare

functions observed were utilitarian and Rawlsian (For more information on social welfare

functions, see section 2.2.)

The utilitarian approach allocates the donor lungs to the individual who would benefit

most from receiving a transplant. Overall, the utilitarian approach seeks to maximise the

benefit of the group as a whole, regardless of how that benefit is distributed.

The Rawlsian approach on the other hand would allocate the donor lungs to the

individual who is perceived to be ‘worst off’. Note that the definition of ‘worst off’ is
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Table 2.4: Lung transplant policies, the organisation responsible for lung allocation, and the
corresponding countries/regions of implementation that were reviewed.

Abbr. Organisation Countries Document Title
Served

UK NHS-BT England POL 230/1137

Scotland
Wales
Northern Ireland

ET Eurotransplant Austria ET Thoracic Allocation
Belgium System (EThAS)38

Croatia
Germany
Hungary
Luxembourg
The Netherlands
Slovenia

US OPTN The United States OPTN Policies39

of America

SC Scandiatransplant Denmark Guidelines for Organ
Finland Exchange in the
Iceland Scandiatransplant
Norway Area40

Sweden
Estonia

AU The Thoracic Australia Clinical Guidelines for
Society of New Zealand Organ Transplantation
Australia and from Deceased
New Zealand Donors41

(TSANZ)

subjective and can take many criteria into account - it should not be interpreted as meaning

the individual with the worst prognosis. Overall, the Rawlsian approach aims to maximise

the benefit of the least-benefited individual.

US The lung allocation score (LAS) defines benefit as the net difference between the

candidate’s expected survival on the waiting list (in days) and expected survival after

transplant, with twice as much weight being assigned to waiting list survival as post trans-

plant survival.42 A purely utilitarian approach would allocate the lungs to the individual

with the highest LAS, however the Eurotransplant and OPTN policies take additional

criteria into account.
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ET The Eurotransplant policy tracks the total number of organs offered and accepted

from each country. If a country receives more organs than it offers to other countries, it is

said to have a positive balance of exchange, conversely, countries that have received fewer

organs than they have offered have a negative balance of exchange. The Eurotransplant

policy prioritises candidates in countries with a negative total balance of exchange (see

section 2.3.2 for more on this). The LAS is used in two countries within the Eurotransplant

region: Germany and the Netherlands.

US The OPTN policy initially prioritises candidates who are within 250 nautical miles

of the donor. This is a pragmatic approach to the allocation of donor lungs in a country

the size of the US where prolonged CIT are more likely, however, the OPTN final rule43

does state allocation policies “shall not be based on the candidate’s place of residence

or place of listing, except to the extent required [...]”. Additional sub-criteria are also

used in both policies, however the overall philosophy of the policies can be categorised as

utilitarian.

UK, SC In the UK and Scandinavia, allocation is primarily determined by medical

urgency, as urgency (or ‘priority’) is one of the first criteria considered in the allocation

policy. Prioritising medical urgency reduces waiting list mortality and is an attempt

to reduce the probability that a candidate experiences the worst possible outcome (i.e.,

dying without a transplant). This leans more in the direction of the Rawlsian philosophy,

however there are still elements of a utilitarian approach in these countries. Candidates

are not listed for transplant if they would not benefit from it,9 therefore benefit is a factor.

Nevertheless, avoiding waiting list mortality is more heavily weighted in these countries

than in the rest of the Eurotransplant region and in the US.

AU The TSANZ policy prioritises compatibility (in terms of size, ABO and human

leukocyte antigen (HLA) matching) between the donor and recipient. This can also be

classed as a utilitarian approach if ‘benefit’ is thought of in terms of: (1) - the benefit

that a recipient would receive from transplant and (2) - the probability of the candidate

receiving that benefit. While the Eurotransplant and OPTN policies seek to maximise

(1), the TSANZ policy maximises the probability that the patient does not experience

post-transplant complications, hence receives the benefit of transplant (2).

Common Feature #2 - Medical Urgency

UK In the UK medical urgency is defined as three tiers: super-urgent, urgent and non-

urgent. There are clearly defined criteria for listing within a specific tier.9 For example, the

super-urgent lung allocation scheme is for patients supported via extracorporeal membrane

oxygenation (ECMO) or interventional lung assist (iLA) as a bridge to transplant. The
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prioritisation follows a logical order: super-urgent candidates take priority over urgent

candidates, who take priority over non-urgent candidates.

ET The Eurotransplant policy defines urgency as a combination of High Urgency (HU),

Transplantable (T), Not Transplantable (NT) and the region to which it applies: interna-

tional, national, regional or local. There is one exception: there is no HU international

status due to the use of LAS.

US The OPTN policy has two priority tiers for paediatric candidates. Priority 1 is

for candidates less than 12 years old who have evidence of either respiratory failure or

pulmonary hypertension. Priority 2 is assigned to candidates who are not priority 1.

There is no specific indication of medical urgency for adult candidates due to the use of

LAS.

SC The Scandiatransplant scheme has four priority tiers: Priority 0, 1, 2 and 3. Priority

0 is similar to the UK’s Super-urgent classification and is for patients on extra-corporeal

support. Priority 1 is for patients with rapidly progressing organ failure and a poor prog-

nosis. Priority 2 is for all other transplantable candidates and priority 3 is for candidates

who are currently not transplantable. There are limitations to the number of candidates

who can be listed as priority 0/1; each centre is limited to three candidates per year.

AU TSANZ define clinical urgency using the level of support required as well as the

rapidity of deterioration of the candidate. The level of support includes: ECMO, invasive

mechanical ventilation, non-invasive ventilation, requiring high/low flow O2, prolonged/re-

current hospitalisation and use of other support devices. The rapidity of deterioration is

determined by significant changes in measurements of lung function such as partial pres-

sure of oxygen and carbon dioxide (PaO2 and partial pressure of CO2 in arterial blood

(PaCO2)) or 6-minute walk test distance, development of certain conditions or an escala-

tion in level of support.

Common Feature #3 - Paediatric Status

UK In the UK, a donor under the age of 16 at the time of death is classified as a

paediatric donor, likewise a candidate under the age of 16 at the time of listing can be

classed as a paediatric candidate. Paediatric candidates keep their paediatric status even if

they reach their 16th birthday while on the waiting list. There are two lung transplantation

centres in the UK which perform paediatric transplants: Newcastle (Freeman Hospital) and

London (Great Ormond Street Hospital). The combination of age and centre of listing

determine the paediatric status, for example, a 15 year old listed at a non-paediatric centre

will be listed as requiring adult-sized organs. However, a 15 year old listed at one of the

paediatric centres would be listed as a paediatric candidate. It is not possible to be listed
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simultaneously as both an adult and a paediatric candidate. The category a candidate is

listed as determines their chances of accessing transplant, as paediatric donor lungs are

first offered to paediatric candidates in each of the urgency tiers before being offered to

other patient categories.

ET, US Both the Eurotransplant scheme and OPTN define a paediatric candidate

as aged under 12 years old. For candidates aged 12 years or older the LAS is used for

allocation. Paediatric candidates registered on the Eurotransplant scheme automatically

receive a LAS of 100. The OPTN policy allows exceptions to be made (an ‘approved

adolescent classification exception’), where a candidate aged less than 12 years old will

receive offers based on their calculated LAS.

The allocation of paediatric donor lungs differs between the Eurotransplant and OPTN

policies, as shown in tables 2.5 and 2.6.

Table 2.5: Eurotransplant prioritisation of candidates based on paediatric donor age.

Rank Donor aged < 12 years Donor aged 12− 17 years

1 Candidates aged < 12 years Candidates aged 12− 17 years
2 Candidates aged 12− 17 years Candidates aged < 12 years
3 Candidates aged 18+ years Candidates aged 18+ years

Table 2.6: OPTN prioritisation of candidates based on donor paediatric status. *While LAS is
used for candidates aged 12 or over, for candidates aged less than 12 waiting time is used to sort
candidates.

Rank Donor aged < 18 years Donor aged 18+ years

1 Candidates aged < 12 years* ABO compatible/identical candidates aged 12+ years
2 Candidates aged < 1 year* Candidates aged < 12 years*
3 - Candidates aged < 1 year*

SC The Scandiatransplant policy does not explicitly mention age or paediatric status.

This was the only policy where this was the case.

AU The TSANZ policy mentions the nationally funded Alfred Hospital which is the

sole paediatric lung transplant centre in Australia. The centre recommends an age range

between 6 and 16 years old for referral. There is no specific allocation algorithm outlined

for paediatric donors or recipients.

Common Feature #4 - ABO Blood Group Matching

All countries have ABO matching rules, however the rules for matching the lung donor to

candidates based on ABO compatibility differ. The relative importance of ABO compat-

ibility is also different depending on the policy in place in each country.
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UK, US In the UK and US, there is a strict approach of blood group identical candidates

always being prioritised above blood group compatible candidates. This is not supported

by the literature in terms of being predictive of outcomes post-transplant,44 and in fact

may be causing increased waiting list mortality.45

ET Eurotransplant defines two different rule groups for donor-recipient ABO match-

ing: ABO modified and ABO compatible. The ABO compatible rules are the standard

compatibility rules for blood type matching. The ABO modified rules are similar to ABO

identical matching rules but there are two exceptions: a blood type ‘A’ donor can be

allocated to a blood type ‘AB’ recipient and a blood type ‘O’ donor can be allocated to a

blood type ‘B’ recipient. The ABO modified rules are used for allocation before the ABO

compatible rules.

SC The Scandiatransplant policy states that ABO compatibility is required for organ

exchange, however the donor-recipient match is the responsibility of the transplant centre.

There is no explicit algorithm giving priority to either compatible or identical candidates.

AU The TSANZ policy is unique in that ABO compatibility is the first allocation factor,

making it the top priority for allocation. It is prioritised above clinical urgency and logistic

concerns such as the proximity of the donor to the recipient.

Common Feature #5 - Waiting Time

UK In the UK waiting time is used for allocation in the case of a paediatric or an adult

donor. Waiting time is the final criterion that candidates listed on the super-urgent and

urgent schemes are prioritised by.

ET The Eurotransplant policy uses waiting time as the fourth criterion on which pa-

tients are ordered by. Age group, ABO compatibility and LAS are used to prioritise

candidates before waiting time. In some cases, time listed as HU is used instead of total

waiting time. Candidates do no accumulate waiting time while being listed as NT.

US The OPTN policy uses waiting time differently depending on the age of the candi-

date. Candidates at least 12 years old are first prioritised by LAS and then prioritised by

total active waiting time. For candidates less than 12 years old, paediatric priority waiting

time is first used to prioritise candidates, followed by total waiting time.

SC, AU There is no mention of waiting time in the Scandiatransplant policy and the

TSANZ policy only uses waiting time as a tie-breaker when all other factors are equal,

making it the lowest priority of the allocation criteria.
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Common Feature #6 - Geographic Boundaries

Each policy has a concept of geographic boundaries, however the exact rules on organ

exchange across boundaries varies; as well as how boundaries are defined.

UK In the UK each transplantation centre has a defined geographic region. For non-

urgent candidates the offer is first made to individuals at the same centre before being

offered to candidates in other centres (based on rotas).

ET The Eurotransplant policy has different rules depending on the age of the donor,

the country the donor is located and the LAS category (high/low) that candidates are

categorised as. Geographic boundaries follow the national boundaries of each country.

However, in some cases candidates from one country are listed alongside candidates in

another country. LAS is used for international allocation, but the balance of organs

shared between countries is considered

US In the US, boundaries are concentric circles with the radius measured in nautical

miles (NM). This is a recent change that came about from a lawsuit, and will be discussed

in more detail in section 2.4 on page 47. For adult donors the range starts at 250NM and

increases to 500NM, 1000NM, 1500NM, 2500NM and then the entire nation. Paediatric

lungs are first offered to paediatric candidates within a 1000NM radius, and then to various

subsets of candidates on the waiting list starting again at 250NM from the donor.

SC The Scandiatransplant policy first offers lungs to local high priority (priority 0/1)

candidates, then to high priority candidates in the same country, then to high priority

candidates in other centres. If the offer is still not accepted at this point, the offer is

then made to priority 2 candidates locally or nationally and then to priority 2 candidates

located at other centres.

AU The TSANZ policy follows state boundaries and the offer is first made to the

recognised lung transplant unit in the same state as the donor. If the home state does

not accept the offer, then the offer is made to units outside the home state according to

a rotation (see section 2.3.2 for more on rotation or rota-lists.) Units outside of the home

state have 30 minutes to respond to the offer.

Common Feature #7 - Sequential / Tier-based Allocation

Although each policy takes a different approach to allocation, the sequential nature that

the policies are applied is common between all policies. Within each policy a sequence of

criteria are specified and an offer is made to all candidates matching these criteria. If the

offer is not accepted or no candidates match the criteria, then the next group of criteria in
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the sequence are applied and the process is repeated until the offer is accepted or rejected

by all candidates.

UK, US For example, in the UK the offer is first made to all super-urgent candidates,

then to blood group identical candidates on the urgent scheme, then to blood group

compatible candidates on the urgent scheme and so on. In the US even though the LAS

is used the policy is still sequential. The first group of candidates are those at least 12

years old, ABO identical to the donor, and within 250NM of the donor, they are then

prioritised by LAS. The next group is the same as before but for candidates who are ABO

compatible with the donor. This approach is repeated for different priority and age groups

with increasing range from the donor.

To use a sequential approach, hard boundaries need to be specified. Two examples of

hard boundaries in the OPTN policy are the 250 nautical mile radius and the paediatric

age threshold of 12 years old. This leads to the problem of edge cases that can be illustrated

with two nearly identical candidates. Candidate 1 is 12 years old, is registered within 250

nautical miles of the donor and has an identical blood type to the donor. Candidate 2

is 11 years and 364 days old, registered 251 nautical miles from the donor and has an

identical blood type. The only difference is 1 day in age and 1 nautical mile, however the

order of the offering is very different. Candidate 1 is in the first group to receive an offer,

whereas candidate 2 is in the ninth group.

Another consequence of using a sequential approach is that allocation is heavily weighted

towards the criteria in the first few steps of the allocation policy.

UK, SC In the UK the main priority is candidates on the super-urgent and urgent lists

leading to medical urgency being the primary factor in allocation. The Scandiatransplant

policy is similar, it first allocates to priority 0/1 candidates, also placing emphasis on

medical urgency.

ET The Eurotransplant policy primarily emphasises international high LAS candidates

in countries which have a negative total balance with the donor country. Since interna-

tional high LAS candidates in countries with a zero or positive balance are not considered,

the main factor in the Eurotransplant policy is balance of organ exchange.

US In the OPTN policy, any candidate not within 250NM of the donor is not considered

at first. Next, priority is given to candidates who are blood type identical to the donor,

they are then prioritised by LAS (highest to lowest). The main factor in this policy is the

proximity of the candidate to the donor.

AU The TSANZ policy first allocates based on ABO compatibility, size compatibility

and then cross-matching. The first three factors are all related to how compatible the
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recipient is with the donor, making donor-recipient compatibility the main goal.

2.3.2 Unique Features

In this section the unique features of policies are outlined, they are: candidate size, country

balance, rota lists and cross-matching.

Unique Feature #1 - Candidate Size

UK, ET, AU The UK, Eurotransplant and TSANZ policies take the size of the can-

didate into account for allocation.

UK The UK has the only policy that gives a definition for a small adult. A small adult

is defined as a candidate with a height at or below 155cm. The small adult category is

only used for super-urgent and urgent candidates. All candidates on the super-urgent and

urgent schemes can specify gender-specific minimum and maximum donor height criteria,

they will be screened if the donor parameters are not within the specified bounds.

ET The Eurotransplant policy uses total lung capacity (TLC) to assess compatibility

between the donor and recipient. The TLC is calculated using a formula that includes

the height and sex of the donor. The policy has a unique feature where if a donor is not

accepted by a certain point in the offering sequence, then the acceptable threshold for

minimum and maximum TLC expands to 10% lower and 20% higher in Germany, or 10%

lower and 10% higher in countries other than Germany and the Netherlands.

AU The TSANZ policy determines size compatibility by using chest x-ray measurements

and TLC. Size compatibility is the second criterion in the allocation algorithm, behind

ABO compatibility.

Unique Feature #2 - Country Balance

ET The Eurotransplant policy has a unique feature that attempts to equalise the dis-

tribution of lungs between countries. This is accomplished by calculating the country

balance of two countries ‘X’ and ‘Y’ using the following formula, where Tx,y refers to the

number of transplants performed in country x using lungs from country y:

Country Balance = Tx,y − Ty,x

The balance is calculated taking all lung transplants into account from 1st September

2004.

If country X has a negative balance relative to country Y then country X has donated

more lungs to country Y than it has received from country Y. The allocation policy
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prioritises candidates in countries with a negative total balance to the donor country over

countries with a zero or positive total balance.

While on the surface this may appear to accomplish some type of fairness, it in fact is

almost guaranteed to lead to sub-optimal allocation. The proof follows the same logic as

described on page 10:

If there are N countries but a country does not prioritise those with a positive balance

then there areN−N+ possible allocations. The probability that the most optimal recipient

was not excluded from consideration is N−N+

N . If this process is repeated j times then

the probability that the most optimal recipient was not excluded becomes (N−N+

N )j . This

value approaches zero as j increases.

In practice there may be multiple candidates which would all be considered close to an

optimal choice, therefore the above formulae are not an exact model, however the principle

is the same: if populations of candidates are excluded based on non-medical criteria then

the probability increases of sub-optimal allocation occurring.

The unfairness of this type of allocation can be seen by looking at an individual level.

A candidates who could receive a life-saving transplant can be overlooked because someone

else completely unrelated to them - who just happened to live in the same country - already

received imported donor lungs.

The final problem with this approach is that it enforces a vision of what the distribution

of donor lungs should be rather than what would benefit the population as a whole. If

one country has an excess of donor organs and another country has a greater need and

allocation is based solely on medical criteria, then interfering with the supply and demand

can only do harm by preventing organs being exported to countries with a greater than

average need. This decision may be influenced by political considerations rather than

utilitarian ones, however, political influences on organ allocation are beyond the scope of

this thesis.

Unique Feature #3 - Centre Rotation-lists

UK, SC Both the UK and Scandinavia make use of ‘rota-lists’ which, like country

balance, attempt to equalise the distribution of donor lungs between areas. Rota-lists

create the same problems as country balance, just on a centre-level instead of a national

level.

UK In the UK three separate rota-list are maintained: the Adult Lung Centre Rota,

the Paediatric Lung Centre Rota and the Small Adult Rota. Each rota-list contains a

ranked list of lung transplant centres. When a centre accepts an offer for an Adult/Small

Adult/Paediatric recipient, that centre is moved to the last position on the relevant rota.

SC In the Scandiatransplant area, rota-lists are separated by the type of transplant

(heart, lung or heart-lung) and divided into six regions: Copenhagen/Aarhus, Gothenburg,
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Helsinki, Lund/Stockholm, Tartu and Oslo. Each region has a rank on each of the three

rota-lists, and the accepting centre is moved to the last position on the rota-list.

UK In the UK, rota-lists are only used for non-urgent candidates whereas in Scandinavia

rota-lists are only used for the exchange of organs across national boundaries, where there

are no high priority local or national candidates accepting the offer.

AU The TSANZ policy also allocates according to a rotation that is kept by the donor

coordination team in each state. The exact mechanism and rules on how the rotation

operates is not outlined in the policy document.

Unique Feature #4 - Cross-matching

AU The TSANZ policy is the only policy which has ‘absence of a T-cell cross match’

and ‘anti-HLA antibody profiles’ as a factor in allocation. This is to reduce the probability

of the recipient experiencing a hyperacute immune response to the donor lungs.5

UK The NHS-BT lung selection policy 231/49 mentions that HLA typing and antibody

screening is performed as one of the immunology blood tests, however it is not mentioned

explicitly in the allocation policy.

US The OPTN policy allows allocation exceptions to be made for highly sensitised

candidates. If there are candidates ranked above the highly sensitised candidate at a

different transplant centre, then a request can be made for the other candidates to turn

down the offer.

Unique Feature #5 - Single Lung Transplantation

UK, AU The logistics for offering a single lung are only outlined in the NHS-BT and

TSANZ policies. The NHS-BT policy states that if a centre is only accepting a single lung

then it must specify which side (left or right) is being accepted. This allows the other

centres to know exactly which side is being offered.

AU In the TSANZ policy, the type of transplantation is categorised under ‘Logistics’

in the fourth tier of the allocation algorithm. The final decision on the type of transplant

(lobar, single, bilateral or heart/lung) is made by the accepting lung transplant unit.

2.3.3 Summary

In summary, each country has its own approach to prioritising candidates for the allocation

of donor lungs. There are many features in common between policies, and all of the policies

reviewed use a tier-based/sequential approach to allocation. All policies had different
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priority levels according to medical urgency and paediatric status, generally prioritising

paediatric candidates and candidates with higher clinical urgency. Geographic boundaries,

ABO matching, and to a lesser extent, waiting time were all featured in the allocation

policies reviewed, however the relative priority of these criteria differed between countries.

In general, the allocation systems can be categorised into one or more of the following:

Centre-based allocation Donor organs are allocated to transplant centres in the same

geographic region as the donor hospital according to pre-defined geographic boundaries.

These systems can minimise CIT in line with the principle of beneficence, preventing harm

to the donor lungs and thus the recipient. However, geographic boundaries can and do lead

to inequitable access to transplantation based on location (as discussed in section 1.1.2 and

will be discussed in greater detail in section 1.1.2), violating the principle of equity, and

by extension, the principle of justice. In section 1.1.2 on page 10 it was mathematically

proven that centre-based allocation also violates the principle of utility.

National Urgency Candidates are prioritised at a national level according to their

degree of clinical urgency. This is also in line with the principle of beneficence, by actively

preventing harm (i.e., death on the waiting list) and removing harm that has occurred

(i.e., the lung disease requiring listing). It may be considered to not be in line with the

principle of equity, due to the fact that access to transplantation varies by clinical urgency,

however, the principal of equity refers to unfair bias, and biasing allocation towards those

with greatest need can be considered a fair bias.

Score-based Allocation Candidates are prioritised according to an allocation score.

This strongly emphasises the principle of utility (at least in the case of the LAS) as

this prioritises candidates according to expected benefit (i.e., additional lifespan gained

from transplant). This approach also aligns with the principle of beneficence in that

clinical urgency is also considered in the score. There are limitations to this approach

however: if allocation scores use survival models as part of their calculation (as the LAS

does), the scores are subject to the assumptions that guided the preparation of data and

generation of the models, and survival models aren’t always accurate. While they may

make correct predictions the majority of the time, there will be some percentage of cases

where they prioritise the wrong candidate (see ‘Accuracy of Survival Times’ in section 4.4.4

on page 161 for more on this). This fact weakens the alignment with the principles of

beneficence and justice as there will always be cases where allocating according to the

score isn’t as optimal as what should have been done in reality.

The next section will review historical lung allocation policies, how they have changed

over time, and how those changes have impacted different groups of patients.
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2.4 History and Impact of Lung Allocation Policies �

This section focuses on policy-level decisions for allocating donor lungs to potential trans-

plant recipients. The key historical changes in allocation policy are outlined along with

the impacts and consequences of these policy changes on different candidate and recipient

demographics. Proposals for alternative allocation algorithms are also evaluated for their

potential to improve lung allocation.

While much of the existing literature focuses on the consequences of changes to policy

on candidates and recipients with certain diagnoses, this section summarises many of

the consequences of policy-level decisions in one place. These high-level decisions have

significant impact on patient’s lives, and influence factors such as waiting list mortality,

post-transplant survival and quality of life. This section aims to provide a summary for

policy makers to understand the impact of policy-level decisions, outline the pros and cons

of historical policy decisions, and highlight where current policies can be improved.

Methods

Three databases were queried: Scopus,46 Web of Science47 and PubMed48 using the fol-

lowing search term:

"lung allocation" AND ("policy" OR "algorithm")

The titles, abstracts and keywords were queried and the results were limited to journal

papers in the English language. All articles from Jan 2000 until March 2021 were combined

from the three databases to give 71 articles. The following exclusion criteria were used:

1. Articles not focused specifically on lung (2 excluded)

2. Articles relating to healthcare costs (3 excluded)

3. Articles unrelated to the policy-level decisions of selecting a transplant recipient for

donor lungs (6 excluded)

4. Articles that were paywalled and which we did not have institutional access (12

excluded)

5. Other review articles (4 excluded)

6. Focuses exclusively on paediatric lung transplantation (5 excluded)

This led to 32 of the 71 articles being excluded, leaving 39 articles for the review.

Within each article the affected population(s) were noted along with the positive and

negative consequences of the allocation policy.
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Results

Allocation Based on Waiting Time

In the US, lung allocation was originally based on waiting time and resulted in candidates

who could survive waiting a longer duration for a transplant being favoured.8 This is

evidenced by a median waiting time of just over 3 years, and candidates aged 11 to 64

having reduced waiting list mortality despite older candidates having lower waiting times.

Allocation was primarily to candidates with COPD (group A) despite the higher waiting

list mortality of other lung diseases.49–52

Impact by Diagnosis Candidates with group A (COPD) diagnoses had the greatest

chance of receiving a transplant due to their condition being stable and predictable. In

the US in 2003, 40% of transplants were for recipients with COPD despite many COPD

recipients not experiencing a survival benefit (i.e., additional days of life gained) from

undergoing transplantation.8 Therefore, prioritising based on waiting time selects for

candidates who would experience the lowest benefit from transplant.49 There is also

mixed evidence for the survival benefit gained from lung transplantation for recipients

with COPD (compare50 and8). For a large number of recipients, this method of allocation

did not result in survival benefit.53

Recipients with group B (PAH) diagnoses accounted for only 4% of transplant recip-

ients in 2003 and group C (CF) recipients accounted for 16%.8 Recipients with group D

(ILD) diagnoses were at a major disadvantage under a waiting time based system due to

the rapid progression of their lung disease.8 In the US in March 1995, candidates with

IPF (ILD - group D) were listed with an additional 90 days of waiting time, however it

was common practice to list candidates early before they required transplantation so they

could accumulate time on the waiting list.49 The consequence of this practice was infla-

tion in waiting times: 64% of candidates waited more than a year for transplant and 44%

had waited more than 2 years for a transplant with a median waiting time of just over 3

years.8 In 2003, group D recipients still only accounted for 22% of transplants in the US.

Candidates in groups C and D had excessive waiting list deaths compared to candidates

in group A (COPD).49,54

Impact by Sex Men and women experienced different waiting times and mortality

rates. There were 10 to 20 percent more women on the waiting list in the US between

1995 and 2005, possibly leading to longer waiting times for women.8 Men were more likely

to have more severe lung diseases, leading to a higher annual death rate for men (141

deaths per 1000 patient years for men vs 121 for women).
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Impact in Europe In the Eurotransplant region, similar observations were made to

those seen in the US in a study following transplant candidates and recipients from 1990

- 1996.51 Despite having the lowest waiting list mortality rate (15% two years after list-

ing), COPD candidates (group A) had the highest transplant rate, with 62% of COPD

candidates being transplanted two years after listing. Pulmonary fibrosis (ILD - group D)

candidates had a comparable transplant rate to COPD candidates (59%) however they

had just over twice the rate of waiting list mortality (31%).

The next highest transplant rate was for cystic fibrosis (group C) candidates (55% at

two years), with a waiting list mortality of 34%. Candidates with PAH (group B) had

the lowest transplant rates (49%) but also comparable waiting list mortality (27%). A

summary of these figures are shown in table 2.7.

Two years post-transplant, cystic fibrosis recipients had the highest survival rate (72%),

followed by COPD and pulmonary fibrosis recipients (56%) with the lowest survival rate

occurring in recipients with PAH (group B - just under 50%). The post-transplant out-

comes are summarised in figure 2.4.

Waiting list outcome, 2 years after listing

Table 2.7: Outcome on waiting list for candidates listed from 1st Jan 1990 to 1st Jan 1999 (n =
744) in the Eurotransplant region. Source: De Meester et al.51 COPD = Chronic Obstructive
Pulmonary Disease, PAH = Pulmonary Arterial Hypertension/Pulmonary Vascular Disease, CF
= Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Group % Transplanted % Death % Removal % Waiting

A - COPD 62 15 7 16
B - PAH 49 27 4 20
C - CF 55 34 1 10
D - ILD 59 31 2 8

Figure 2.4: Post-transplant survival curve, stratified by diagnosis group. CF = Cystic Fibrosis,
PF = Pulmonary Fibrosis, E = Emphysema, PH = Pulmonary Hypertension, CHD = Coronary
Heart Disease, O = Other. Source: De Meester et al.51
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Allocation Based on Free-Centre Choice

In the UK, lung allocation was primarily centre-based (and still is for non-urgent candi-

dates - see page 6), with lungs being allocated according to a free centre choice.

A study in 2009 looked at the survival benefit gained by adult lung transplant recip-

ients in the UK, stratified by disease.50 At the time of the study, lungs were allocated

by geographical proximity, with the centre allocating according to ABO and size compat-

ibility. If the local centre did not accept the lungs then the offer would go out to other

centres according to a rota (see page 38 for an explanation of allocation rota-lists). The

national urgent and super-urgent schemes were not implemented at this time, however

urgency may have been taken into account when lungs were allocated locally.

There are mixed results when looking at transplant benefit for COPD (group A) recipi-

ents. Previous studies conducted in the US show that for the majority of COPD recipients

there was no survival benefit from transplant,8 however the 2009 UK study50 used a dif-

ferent methodology for calculating benefit and showed that COPD recipients had a clear

survival benefit. It was shown that 83% of COPD recipients survived to the point where

post-transplant risk of death was less than the risk of death on the waiting list, and that

the survival benefit experienced was significant. Pulmonary fibrosis (ILD - group D), and

cystic fibrosis (group C) recipients also experienced a clear survival benefit, with cystic

fibrosis recipients most rapidly gaining survival benefit after transplant.

Introduction of the Lung Allocation Score

The LAS was introduced in the US in 2005 to replace the waiting time system.53 The

LAS is calculated for each suitable candidate on the waiting list, where higher scores

indicate greater potential benefit from transplant. Survival models were developed to

predict the duration of survival on the waiting list and post-transplant. The difference

between these two predicted survival durations is the number of additional days of life

gained from transplant (‘net benefit’). Waiting list survival was given twice the weight of

post-transplant survival, giving additional priority to candidates with high clinical urgency.

The calculation is as follows, according to United Network for Organ Sharing (UNOS):42

Definitions:

PTX = Predicted days of life post-transplant over the next year

WL = Predicted days of life on the waiting list over the next year

Calculation:

Raw Score = PTX - (2×WL)

LAS = 100× Raw Score + 730

1095
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Introduction of LAS in US Introducing the lung allocation score still resulted in

reasonable access to transplant across all diagnosis and age groups53,55 however the dis-

tribution of recipients did change. The LAS was successful in reducing the size of the

waiting list and the number of offers required to allocate the donor lungs. Within the first

few weeks of implementation the active waiting list decreased from 1700 to less than 1500

candidates and the median number of offers to place the lungs dropped from 12 to 5. This

helped address the the high turndown rates under the waiting time based system.

Shifting the emphasis away from waiting time led to waiting times decreasing and

more medically urgent candidates being listed who previously would not have been able

to accumulate enough waiting time to be transplanted.56 Waiting time decreased from

680.9 ± 528.3 days to 445.6 ± 516.9 days (a 35% decrease, p < .001).57 There was

concern that increased listing of candidates with higher clinical urgency would result in

an increase in waiting list mortality, however there was no observed increase in waiting

list mortality,54–57 likely due to these candidates receiving higher priority under the LAS

system.56

Impact by Diagnosis With the introduction of the lung allocation score, rankings for

candidates in different diagnosis groups changed significantly. Candidates with COPD

(group A) ranked lower and candidates with IPF (ILD - group D) higher.54,57,58 This

reflects the fact that candidates with IPF or CF (group C) benefited most from lung

transplantation and candidates with COPD benefited the least.59

Candidates with PAH (group B) saw an increased transplantation rate60 but also an

increase in waiting list mortality.60,61 There were few predictors of outcome for PAH can-

didates53 and LAS scores may not have been accurate for these candidates.62 Candidates

with PAH were less likely to be transplanted than candidates with IPF and CF, and they

were also more likely to die on the waiting list than candidates with COPD and CF.61

A small single-centre study (n=45) observed that the introduction of the LAS resulted

in significantly lower rankings for group A (COPD) candidates and significantly higher

rankings for group D (ILD) candidates, while groups B and C were minimally affected.58

A larger study (n = 13,040) calculated the transplant benefit to recipients by diagnosis

group, using a variation of an accelerated failure time model instead of the Cox Propor-

tional Hazards (PH) model59 (an introduction to survival analysis and explanation of the

Cox PH model are given in appendix A). Group A recipients had the lowest survival bene-

fit, with only the most seriously ill recipients experiencing a survival benefit. Overall there

was no expected survival benefit at 2 years for group A. The greatest potential benefit was

with group C (CF) and group D (ILD) recipients. Group C recipients had 54.5% greater

survival benefit than group A recipients, and also over 99% of group C recipients expe-

rienced a survival benefit. For group D recipients, IPF was the most common indication

for transplant. A full summary of benefit by diagnosis group is given in table 2.8. The

implementation of LAS also increased the number of recipients aged over 65.54,59
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Table 2.8: Table showing percentage of patients experiencing a survival benefit from transplant
1, 2 and 3 years after transplant. Original source: Vock et al.59 COPD = Chronic Obstructive
Pulmonary Disease, PAH = Pulmonary Arterial Hypertension/Pulmonary Vascular Disease, CF
= Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Group 1 Year 2 Years 3 Years

A - COPD 22.1% 39.2% 56.3%
B - PAH 52.9% 64.6% 73.0%
C - CF 95.3% 98.9% 99.7%
D - ILD 90.0% 94.8% 97.7%

Amulticentre study assessed the impact of LAS on short-term outcomes post-transplant.57

This study saw results similar to Vock et al.59 and Lingaraju et al.:58 there was a decrease

in COPD (group A) recipients and an increase in IPF (ILD - group D) recipients. While

the Lingaraju study58 observed no real change in group B (PAH) and C (CF) recipients,

this multicentre study observed a decrease in PAH and CF recipients.57 One potential

weakness of this study is that the size of the waiting list was estimated using data points

from only four time intervals, potentially leading to inaccurate estimates of waiting list

mortality. This is due to the fact that the size of the waiting list was assumed to be

constant throughout the study (equal to the average of the four time intervals). In reality,

waiting list sizes fluctuate with time, so the actual percentage of candidates dying on the

waiting list at any point in time will differ from this study’s calculated percentage.

The diagnosis-specific impacts of the LAS were analysed by Chen et al.61 This study

also observed a decrease in priority for group A (COPD) candidates and an increase in

priority for group D (ILD) candidates. However, while waiting list mortality decreased for

candidates in diagnosis groups A, C and D, there was no decrease in waiting list mortality

for group B (PAH) candidates, and in fact increased significantly. The probability of PAH

candidates receiving a transplant also decreased relative to the other diagnoses, with the

percentage of PAH candidates being listed decreasing from 6.8% to 3.7%. There was no

real impact on post-transplant survival post-LAS, however post-transplant mortality was

higher for group B relative to groups A and C pre-LAS.

The impact of LAS on candidates with PAH was investigated by Schaffer et al.60 This

study also observed an increase in waiting list mortality for candidates with PAH despite

increased transplant rates.

The number of candidates receiving a transplant with ILD (group D) overtook COPD

(group A) with the introduction of the LAS. After five years, waiting list mortality de-

creased from 500 to 300 per year and the number of lung transplants performed annually

doubled.54
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Introduction of LAS in Europe Historically, lung allocation in Europe was based

on the transplant surgeon’s judgement of each individual case.63 However, expectations

arose that scarce donor lungs should be allocated in a predictable and justifiable fashion.

National allocation according to urgency and waiting time was in place until 2007. The

Eurotransplant Lung Allocation Score (ET-LAS) was later developed which took into

account additional criteria which aren’t in the US version of LAS, such as the use of

ECMO.

Implementing LAS in Germany in December 2011 resulted in a 26% reduction in

waiting list mortality and also improved survival rates one year post-transplant.64 As in

the US, there was also increased transplant rates amongst IPF (ILD - group D) candidates.

Implementation of the LAS diverted allocation away from more stable COPD (group A)

candidates towards candidates with IPF, PAH (group B) and CF (group C).64,65

Removal of Donation Service Area (DSA) Boundaries

Prior to the US system of allocating in concentric 250nm circles from the donor centre,

allocation was based on geographic zones referred to as a donation service area (DSA). One

analysis showed that it was possible to increase the chance of receiving a transplant by just

over a factor of 2 by strategically listing in a different DSA.66 Another problem with using

DSA boundaries was that candidates with lower clinical urgency would be transplanted

while candidates in adjacent DSAs with higher urgency would die while waiting for a

transplant.67

In November 2017, allocation was changed so that DSA boundaries were no longer used.

Instead lungs were offered to candidates within 250nm of the donor centre, then 500nm and

so on. This change was triggered by a lawsuit that was filed by a transplant candidate

against OPTN, citing that donation service areas being the first unit of allocation was

in direct contravention to National Organ Transplant Act (NOTA),68 the OPTN final

rule43 and sound medical judgement.69 As with any change in allocation policy, there is

always the risk of unintended consequences. One study looked at some of the possible

unintended consequences and found that removal of DSA boundaries may have resulted in

COPD (group A) candidates having a lower likelihood of receiving a transplant, and also

a decline in lung utilisation rates.70 There was also a slight increase in the donor discard

rate, however there was no change in waiting list mortality or recipient characteristics.

A simulation study was also conducted using the Thoracic Simulated Allocation Model

(TSAM).71 The simulation was able to predict general population-level trends: that there

would be no difference in waiting list mortality or transplant rates as a result of removing

DSA boundaries. However, the simulation made incorrect predictions for specific diagnosis

groups: decreased transplant rates for group A (COPD) and increased transplant rates for

group D (ILD) candidates did not occur in reality. The simulation did agree with observed

results in that group D candidates had the highest transplant rates. While the simulation

model incorrectly predicted diagnosis-specific population level trends, a decrease in group
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A recipients and increase in group D recipients was observed by Drolen et al.72

Drolen at al. compared the impact of this policy change at high and low competition

centres.72 It was observed that there were fewer group A (COPD) recipients post-DSA

and that median waiting times for these candidates decreased from 99 days to 70 days.

The number of group D (ILD) recipients increased and was near statistical significance,

but did not reach the threshold for significance (p = 0.07). Group B (PAH) candidates

also had waiting times decrease from 56 days to 28 days. For group C (CF) candidates,

median waiting times increased from 58 to 65.5 days, though this was not statistically

significant (p = 0.09). There was no change in waiting times for group D candidates.

Overall, all candidates had a 9 day decrease in median waiting time (p = 0.001). These

results are summarised in tables 2.9 and 2.10.

Table 2.9: Number of recipients by diagnosis group, pre- and post-DSA. Original source: Drolen
et al.72 COPD = Chronic Obstructive Pulmonary Disease, PAH = Pulmonary Arterial Hyperten-
sion/Pulmonary Vascular Disease, CF = Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Group DSA era (n = 2336) Post-DSA era (n = 2435) P value

A - COPD 723 (31.0%) 679 (27.9%) .02
B - PAH 112 (4.8%) 135 (5.5%) .24
C - CF 253 (10.8%) 256 (10.5%) .72
D - ILD 1248 (53.4%) 1365 (56.1%) .07

Table 2.10: Median waiting list time (days) by diagnosis group, pre- and post-DSA. Original source:
Drolen et al.72 COPD = Chronic Obstructive Pulmonary Disease, PAH = Pulmonary Arterial
Hypertension/Pulmonary Vascular Disease, CF = Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Group DSA era (n = 2336) Post-DSA era (n = 2435) P value

A - COPD 99 70 .006
B - PAH 56 28 .0008
C - CF 58 65.5 .09
D - ILD 35 36 .36

A different simulation study by Mooney et al.67 had some results that complemented

the observed results published by Drolen et al.72 and Lehr et al.71 Mooney’s study

also predicted fewer group A (COPD) recipients and a greater number of group D (ILD)

recipients post-DSA. The number of group B (PAH) and group C (CF) recipients was also

predicted to increase slightly. While Drolen et al. focused on recipient characteristics,

Mooney et al. simulated the impact on waiting list mortality. All diagnosis groups had

a lower predicted waiting list mortality as a result of removing DSA boundaries, with

group D candidates benefiting the most from the change in policy. However this was also

a simulation study and these were not observed effects in the population.

One small study (n = 101) did see an increase in waiting list size,73 however population

density varies massively across the United States, therefore this result is not representative

of all transplant centres in the US.
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Alternative Allocation Algorithms

Extended Criteria Donors One study evaluated at the effect of utilising extended

criteria donors (ECD) at Hannover Medical School - a transplant centre located in the

Eurotransplant region. ECDs are defined as donor lungs being rejected by three centres

due to characteristics of the donor lungs.65 Due to COPD candidates (group A) having

the most stable and predictable condition, they were the target demographic for this

algorithm. Group A candidates accounted for 12.6% of recipients with regular allocation,

but that increased to 55.6% using this alternative allocation algorithm. Older recipients

(age 53.7 ± 11.7 years) also tended to be the recipients of extended criteria donors. There

were fewer PAH (Group B) and ILD (group D) recipients with the ECD algorithm as

these candidates were not the target demographic. CF (group C) candidates were not

significantly affected. Despite using ECD lungs, post-transplant survival was not affected

at 90-days or 27 months post-transplant.

Impact of Cold Ischaemia Time The US and UK lung allocation policies allocate

based on geography which has the effect of minimising CIT. It was found that CIT beyond

six hours does not affect short or long term survival and CIT beyond eight hours had no

effect on 1 or 5 year graft survival rates. One unexpected result was that CIT beyond

eight hours resulted in greater 5 year survival, however this may be due to lungs with high

CIT being reserved for candidates with certain diagnoses.8

Informative Censoring One important factor that needs to be accounted for when

making survival predictions is informative censoring. Lungs tend to be allocated to candi-

dates with a higher risk of death on the waiting list, and as a result there is a correlation

between the risk of death and probability of censoring due to transplant. This correla-

tion between risk of death and risk of censoring is known as ‘informative censoring’ (or

‘dependent censoring’).74 If informative censoring is not taken into account, this results

in survival predictions underestimating the risk of waiting list mortality. In the litera-

ture two different methods for correcting for informative censoring were mentioned. The

most common approach was Inverse Probability of Censoring Weighting (IPCW)75 but

multiple imputation was also used.75,76 One study showed that using IPCW correction

for calculating transplant benefit results in higher predicted benefit for higher urgency

candidates.77 One example given was a 55 year old patient with IPF (ILD - group D):

not accounting for informative censoring resulted in overestimating waiting list survival

by 220 days. This shows the importance of correcting for informative censoring as that

candidate would have been prioritised significantly higher as a result of the correction.

Boundary-less Allocation The use of geographic boundaries, regardless of whether

they are DSA-based or concentric rings, can lead to situations where candidates that

are lower urgency are prioritised ahead of candidates that are higher urgency simply
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because of an arbitrary boundary.67 A framework for allocating organs without geographic

boundaries was outlined by Snyder et al.78 Allocation would be based on scores that take

into account both geographic feasibility and medical priority. This approach would allow

candidates with higher clinical urgency to access organs that are located at more distant

transplant centres. This concept is taken further by Stewart et al.79 where a composite

allocation score (CAS) was developed and compared to the existing LAS. The CAS was

calculated by considering age group, LAS, proximity to donor centre, and type of ABO

match. The main benefit explained by Stewart et al. was that a points-based system

allows multiple candidate attributes to be taken into account simultaneously, preventing

a single attribute (such as age or geographic location) to override all other attributes to

determine a candidate’s priority.

Use of Single-Lung Transplant One study proposed a change in allocation to in-

crease the number of single lung transplants for COPD (group A) candidates.80 There

was a difference in risk of death post-transplant depending on whether a left lung or right

lung was transplanted. In COPD recipients, the non-transplanted lung can experience

hyperinflation, which has more of an effect in left-lung transplants than right-lung trans-

plants. This results in left-lung transplants being higher risk for COPD patients, however,

the difference in post-transplant survival between a left-lung transplant and a right or

bilateral lung transplant (BLT) decreases with recipient age. The authors propose that

the size of the donor pool can effectively be increased by allocating single lungs to COPD

candidates, especially for candidates aged over 65.

From approximately 1996 until 2000, single lung transplants were more common than

double lung transplants. A single centre retrospective analysis (n=339) in the US showed a

clear improvement in post transplant survival with BLT compared to single lung transplant

(SLT) (hazard ratio = 0.583, p = 0.02), especially for recipients with COPD (group

A).52 A larger national cohort study (n=1997) in the UK from July 1995 to December

2007 observed the same: survival with SLT was significantly worse for COPD recipients

compared to BLT. However, for ILD (group D) patients, there was no difference in survival

between SLT and BLT.50

Additional Diagnosis-Specific Variables There were also additional variables iden-

tified that could increase access to transplant for group C (CF) candidates.81 An updated

model was determined to have minimal impact on the rankings of group B (PAH) and D

(ILD) candidates. However for 36.8% of group C candidates that died on the waiting list,

the updated model would have resulted in an LAS increase of ≥ 5 points which would have

increased their access to transplantation without adversely affecting access to transplant

for candidates in other diagnosis groups.
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Summary

Designing a lung allocation policy requires balancing the competing priorities of access

to transplant, waiting list mortality, post-transplant survival and transplant benefit. De-

pending on the design of the policy, different sub-groups of candidates will either benefit

or be disadvantaged. Younger candidates with less serious diagnoses tend to benefit from

waiting time based systems, as they can afford to wait for transplant.

The lung allocation score achieved its objectives of giving wider access to transplant

across all diagnosis and age groups, while allocating to more clinically urgent candidates

that would benefit most from transplant. There are some limitations however: the lung

allocation score is only as good as the accuracy of the survival predictions, therefore

it is important to ensure all relevant clinical variables are taken into account. It is also

important to account for informative censoring as this can drastically overestimate waiting

list survival, resulting in lower scores and more limited access to transplant. Finally,

geography still has an impact on access to transplant, potentially limiting the benefits of

the LAS.

The general direction of lung allocation appears to be towards boundary-less national

allocation systems. The composite allocation scoring system being implemented in the

US will address the issues of geographic disparity in access to transplant. Whether or not

this is successful and becomes the next major step in lung allocation waits to be seen.
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2.5 Research and Literature Gap

In this section the research and literature gap will be identified and how this research will

address this gap will be described.

2.5.1 Lung Allocation and Analytic Hierarchy Process (AHP)

Literature Gap

The use of the analytic hierarchy process (AHP) was a decision that was arrived at in-

dependently of the work being completed in the US with the development of the CAS.

Upon discovering the OPTN were also planning to utilise the AHP, this was interpreted

as positive confirmation of the choice to apply the AHP to lung allocation.

Google scholar, Scopus,46 Web of Science47 and PubMed48 were searched using the

search phrase (using syntax appropriate for each website):

"lung allocation" AND (AHP OR "analytic hierarchy process")

Each website returned between 2 and 10 results. After screening papers not relating

to lung transplantation and/or the AHP, the same three papers were returned.

One of the papers was the US CAS presented by Stewart et al.79 that was discussed

in the previous section. The main focus of this paper was comparing the rankings using

the proposed composite scores to the existing LAS system. The paper mentions how the

OPTN are planning on using the AHP to inform the development of a points based system,

but the AHP is not being used directly to design or select a lung allocation policy. The

second paper was a review article by the same lead author82 that focuses on many of the

same points as the CAS paper. The final paper was an ‘Expert Insight’ article (an article

that focuses on the opinion or perspective of one or more authors, rather than presenting

new data) in the the ‘Transplantation’ journal by Martha Pavlakis83 which also discusses

continuous distribution of lungs and mentions the same points about the AHP being used

to inform policy design.

2.5.2 Lung Allocation and Simulation Literature Gap

Another focus of this research will be the use of simulation methods to simulate lung

allocation policies. The following search phrase was used on the same four websites:

"lung allocation" AND "simulation"

The results were manually reviewed and 23 relevant publications were found.

One key article was identified for general organ allocation simulation,84 organ allocation

in general was also looked at in one student’s thesis.85

The most common use of simulation methods was to compare lung allocation poli-

cies, both proposed policies and implemented policies.58,86–94 Several studies looked at
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the impact of geographical allocation rules applied to lung allocation.95–99 Two articles

simulated the impact of the continuous allocation framework for lung allocation in the

US.100,101

Simulation was also used to predict lung procurement costs,102 evaluate different data

mining techniques for lung transplant,103 and evaluate the impact of the distribution of

organs to different lung transplant centres.104,105

2.5.3 Contribution to Lung Allocation Literature �

While other papers have been identified that use the AHP for organ allocation (see ap-

pendix G.2), there was little literature relating to lung allocation and the AHP, and what

was available was all US-based. The limited literature only focused on methods that indi-

rectly inform policy decisions; there did not appear to be anything specific in the published

literature about using the AHP to directly design a lung allocation policy, or to use the

AHP for selecting a policy from a range of options.

This research will fill that gap by focusing specifically on the application of the AHP to

lung allocation for transplantation, and describe a framework/process that can be applied

to other allocation problems (i.e., not just lung allocation, or organ allocation). This work

will be the first application of the AHP to the UK lung allocation system. The AHP will

be used for selecting a policy and/or designing a policy directly, rather than indirectly

informing decisions.

While there was more literature relating to lung allocation and simulation, there was

nothing UK-specific and the focus of the simulations was often quite narrow. The goal is

to create a general simulation engine that can be used to evaluate a wide range of policies

and generate custom metrics specific to the UK population.

Only one paper looked at combining simulation and MCDM methods.94 This looked at

the optimisation of policies and applied techniques to a range of problems, lung allocation

being one of them. As with many of the other publications this was also US-focused and

used SRTR’s TSAM. A custom simulation engine will be developed for this research that

will allow more flexibility in the types of policies that are simulated compared to using

TSAM. The methods and implementation of the simulation engine are also a potential

contribution to the literature.

The key contributions of this research to the gap in the literature are:

1. Proposing a national allocation system tailored to the UK population that removes

hard boundaries in allocation (see page 10)

2. The required methods for developing a custom lung allocation policy simulation

engine

3. Any results generated from simulating national UK lung allocation policies

4. The use of the AHP for selecting and/or designing an allocation policy
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5. The novel combination of MCDM and simulation methods for evaluating trade-offs

in allocation policy design

6. A re-useable framework/process that can be applied to other allocation problems

(i.e., other organs, or scenarios requiring the allocation of scarce resources)

Now that the research gaps with respect to lung transplantation have been identified,

the contributions will be developed and described in chapters 4 and 5. However, before

getting to lung transplantation, the next chapter explains the methods that were developed

as a result of the SARS-CoV-2 pandemic. These methods will lay the foundation for the

more sophisticated methods that will be used in future chapters.
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The Clinical Prioritisation

Assistance Tool (CPAT)
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3.1 Background and Context - The SARS-CoV-2

Pandemic

The SARS-CoV-2 pandemic struck the United Kingdom during the first four months of

the work being done for this thesis. There was concern that the increasing number of

very sick patients admitted to hospital as a result of COVID-19 would result in demand

exceeding supply of critical care resources such as beds and ventilators.

There was little to no literature or data available at the beginning of the COVID-19

pandemic, which led to difficulties in determining the prognosis and predicting the likely

outcomes for COVID-19 patients. This in turn made it challenging to triage COVID-

19 patients, identify those that are most likely to benefit from treatment, and optimally

allocate limited Intensive Therapy Unit (ITU) resources.

When high-demand scenarios such as this occur, the situation can become overwhelm-

ing for clinicians to make optimal treatment decisions, leading to sub-optimal care, sub-

optimal use of limited ITU resources, loss of life and stress on the individual. There were

reports of critical care clinicians experiencing symptoms of post-traumatic stress disorder

(PTSD) during the COVID-19 pandemic.106

From these considerations it was decided to design a system that had the ability to rank

all patients currently admitted to a healthcare setting by risk of mortality. The ranking

would not suggest who receives treatment (or which type of treatment) but would aid the

clinician in their decision making based on the mortality risk of each patient compared to

others within the same healthcare setting.

Development of the Clinical Prioritisation Assistance Tool (CPAT)

In response, a multi-disciplinary team of statisticians, epidemiologists, clinicians, engineers

and computer scientists were assembled across Newcastle University and Newcastle upon

Tyne Hospitals (NuTH) to address the potential problem of demand for critical care

resources exceeding supply.

We enlisted a number of clinicians in order to determine the requirements of a system

that could assist with triage decisions during a pandemic. It was determined that software

that could be used to deploy expertise at scale which is robust, reliable and auditable would

help with prioritisation decisions and help relieve some of the workload from clinicians. A

system was developed where an ‘electronic policy’ could be specified using a combination of

clinical expertise and knowledge synthesised from existing literature and data (if available).

This centralised policy could then be used nationally if necessary to generate a ranked list

of patients in each healthcare setting. Because the policy is informed by relevant experts

and the latest available knowledge, this would allow more consistent clinical decisions to

be made regardless of patient location or the level of experience of the clinician making

triage decisions. A four-month project was undertaken to develop this system, named the
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Clinical Prioritisation Assistance Tool (CPAT).

Some other scoring systems were proposed and implemented in response to the pan-

demic, such as the 4C score,107 however the 4C score took several months to develop

and deploy (initial paper published 9 September 2020) compared the time frame in which

CPAT was developed and deployed (1 May 2020).108 The 4C score assigned patients to

one of four priority tiers, however, this would result in multiple patients being in the same

priority tier and thus still potentially placing a significant cognitive burden on clinicians.

This chapter demonstrates the novel use of ‘pairwise comparisons’109 applied to the

healthcare setting - a method where pairs of criteria are compared, and for each pair it

must be determined which is more important. Unknown to myself at the time, the novel

approach that was developed for CPAT was a simplified version of the widely utilised

AHP36 mentioned in the previous chapter. The simplified methods for CPAT compared

to using the AHP were better suited to the rapid decision making that was necessary

during the early stages of the pandemic. More specifically, I proposed the use of ‘Kahn’s

Algorithm’110 for determining the importance of criteria from a pairwise comparison ma-

trix, and Professor Cliff B. Jones suggested a modification to the standard algorithm

during the development phase of CPAT.111

Designing a Domain-Specific Language (DSL) for Use With CPAT

For CPAT to automatically prioritise (or rank) a list of patients, the allocation policy must

be able to run on a computer, more specifically: a server - a specialised type of computer

that makes digital services available to multiple users over a network.

General-purpose programming languages can be used for automating processes. Some

examples of commonly used programming languages are Java,112 Python113 and C++.114

With these languages being general-purpose they are very complex and it would be un-

reasonable to expect a clinician to learn a specific programming language to encode their

clinical expertise.

In contrast to general-purpose programming languages there are also DSLs. As these

languages are designed for a specific purpose, they can be easier to learn than general-

purpose programming languages. Some examples of popular DSLs are: Structured Query

Language (SQL) for database queries,115 HyperText Markup Language (HTML) and Cas-

cading Style Sheets (CSS) for web design,116,117 ladder logic for industrial process control

and automation,118 and LATEX for generating documents (including this thesis).119

Why Use a DSL?

One main distinction between general-purpose programming languages and DSLs is that

general-purpose languages focus on how to accomplish a task, whereas DSLs focus on what

needs to be accomplished. For example, using HTML the following can be used to make

text appear bold:
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<b>This text is important!</b>

The user has simply stated what they want: the text to appear bold, they didn’t have

to specify how to draw every pixel on the screen. The goal with CPAT was to create a

simple DSL that would allow clinicians to specify which criteria should be used for ranking

COVID-19 patients, and CPAT would take care of exactly how they should be ranked by

running the DSL on the server.

Handling Incorrect Data

One complication that had to be handled was missing or incorrect patient data as a result

of inconsistent data entry; we wanted to avoid patients being unfairly ranked higher or

lower due to data input errors. For this reason, the DSL included features to raise ‘errors’

and ‘warnings’ to the clinician.

Errors were raised when data fields required by the CPAT policy were missing for

a patient. An error results in a patient being removed from the ranked list of patients

altogether, with a corresponding message being displayed detailing the data fields that are

required to correct the patient data that was input.

Warnings were raised when required data fields were populated but contained a value

that was potentially incorrect. One example of this was the use of the Clinical Frailty Scale

(CFS)120 for patients aged under 65: the scale was only validated with patients aged 65

or older. The patient could still be included in the ranked list of patients, but a warning

would be displayed next to their name indicating the potential mistake. For a detailed

explanation of how errors and warnings were encoded see appendix B.1.4.

Application to Lung Allocation

My work on the CPAT project required a pivot away from the focus on lung allocation.

However, in doing so the understanding of the methods required for lung allocation were

accelerated and the general-purpose nature of the techniques being used for lung allocation

were discovered: the original focus of this research was how to allocate a scarce resource

(i.e., donor lungs) by rank-ordering a group of individuals waiting for lung transplantation

in order of priority (i.e., patients on the active transplant waiting list). From this more

abstract view of the problem, the application to the context of the pandemic becomes:

how best to prioritise patients affected by COVID-19 for access to limited ITU resources

such as ITU beds, ventilators and oxygen?

This chapter lays the foundation for the more advanced application of methods that

will be described in chapters 4 and 5. It must be emphasised that CPAT was never

deployed live and was never used for clinical decision making as the pandemic

came under control and thankfully CPAT was never required in a real-world healthcare

setting.
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3.2 Methods

The core functionality of CPAT is split into three major components: the first component

assists in synthesising existing knowledge into a ranked set of criteria, the second com-

ponent encodes the ranked criteria into a policy, and the third component ranks patients

according to the policy and displays the output. A detailed description of the methods

behind these components are given in appendix B.

This section deals with the ranking of patients: in the context of this chapter ‘ranking’

refers to ordering a list of patients from highest priority (or risk) to lowest priority (or risk).

In a clinical context this is sometimes referred to as ‘named allocation’. To determine a

patient’s ranking one or more criteria need to be used. Criteria are observable/measurable

attributes of a patient such as height, age and presence/absence of certain diagnoses.

Synthesising Existing Knowledge

Data from 424 patients admitted to hospital in the north east of England and testing pos-

itive for COVID-19 were collected as a test group for evaluating the rankings. In the case

of the COVID-19 pandemic, some patient characteristics were more predictive of mortal-

ity than others. In order to synthesise the relative importance of several criteria, a novel

method of utilising pairwise comparisons36,109 was created and used (see appendix B.1.1

for a detailed explanation of the novel application of pairwise comparisons in this work).

A pairwise comparison matrix was constructed using Microsoft Excel121 and several

meetings with clinicians were held until agreement was reached on the entries in the matrix.

This comparison matrix was then input to the CPAT administration portal (see figure 3.1)

and was found to be free of loops, indicating there were no logical contradictions in the

comparison matrix (see appendix B.1.2).

Clinicians and epidemiologists combined clinical experience with the (limited) litera-

ture at the time of the pandemic to identify criteria that may be predictive of patient

mortality. The criteria were then ranked from highest to lowest priority using a variation

Kahn’s algorithm described in appendix B.1.3.

Encoding the Allocation Policy in a DSL

Now that the criteria were (1) identified and (2) ranked by priority, they could now be

encoded in CPAT using a custom DSL. A screenshot of a policy being input using the

administration portal is shown in figure 3.2. A detailed description of the CPAT DSL is

given in appendix B.1.4. Due to the way in which the DSL was designed, it was possible

to calculate a CPAT score for patients according to the policy that was specified. Full

details on the score calculation process are given in appendix B.1.5 on page 225.
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Figure 3.1: A screenshot of the CPAT pairwise comparison tool with some example input. The
arrow in each cell points to the criterion that is more important. If a comparison is not possible,
an “X” can be input. If there are cycles/loops present in the input, a warning will be displayed to
the user so that they can correct their input and ensure logical consistency.

Figure 3.2: The policy, warning conditions, and error conditions were input to the online CPAT
administrators portal using the CPAT domain-specific language.
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Ranking Patients Using the Allocation Policy

Software was designed and developed which would run on a server, using Python113 and

the Django Representational State Transfer (REST) Framework.122 Patient data that was

stored via the electronic patient record (EPR) system123 was converted to a format that

was accessible by the server software. The CPAT policy written in the custom DSL was

input into the CPAT administration portal, this would allow any list of patients input to

the server to be ranked by risk of mortality according to the policy (see appendix B.1.5).

When a client connected to the server using a web browser, they were presented with

a prioritised list of patients that were prioritised by risk according to the electronic policy

that had been input (figure 3.3), along with any error or warning messages that were

generated (figure 3.4). The patients were grouped by priority level, where each priority

level contained patients with the same priority score.

Evaluating the Predictive Strength of CPAT

Data for these analyses were provided by NuTH which included daily outcome data on

423 patients for 28 days after each patient’s first visit to hospital. Outcomes were one

of: death, invasive ventilation, non-invasive ventilation, hospitalised (requiring oxygen),

hospitalised (requiring medical care), hospitalised (not requiring oxygen/medical care), not

hospitalised (requiring home oxygen), and not hospitalised (not requiring home oxygen).

To evaluate the predictive strength of CPAT, a univariate Cox model124 was constructed

with the CPAT score being the only variable, and death as the outcome being predicted.

The concordance index of this model was calculated to evaluate the ability of CPAT to

predict patient mortality. A concordance index of 0.5 indicates no predictive strength

(i.e., 50% of predictions are correct and 50% are incorrect, the same as flipping a coin). A

concordance index of 1.0 indicates 100% correct predictions, which are extremely unlikely

(if not, impossible) in practice.

The impact of each line of the DSL in the policy was evaluated by running the policy

from line 1 to line {1, ..., N} where N is the number of lines in the policy. The concordance

index was then calculated up to each line in the policy.

In addition, the ranked list was split into deciles using the CPAT score and the mor-

tality rate was calculated for each decile.

Because CPAT uses a score to rank each patient and 4C also uses a scoring mechanism,

there is a potential for multiple patients to share the same priority level/score. Histograms

were generated for CPAT and 4C to visualise the distribution of the number of patients

at each level/score, and the mean, standard deviation, minimum and maximum number

of patients sharing the same priority level was calculated.
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Figure 3.3: A screenshot of an example ranked patient list, with ‘Group 1’ having the highest risk
of mortality, and subsequent groups having lower risk of mortality. Patients at the same priority
level will belong to the same group. (Note: potentially identifying information has been redacted.)
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Figure 3.4: A screenshot of some errors and warnings displayed to the end-user to warn of incorrect
or potentially incorrect data. (Note: potentially identifying information has been redacted.)
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3.3 Results

Ranked Criteria �

The result of the pairwise comparisons resulted in the following ranking of criteria:

1. Clinical frailty scale between 7 - 9

2. Age over 80

3. Clinical frailty scale between 5 - 6

4. At least 3 of: cardiovascular disease, hypertension, diabetes, chronic respiratory dis-

ease, kidney disease, cancer, immunosuppression, liver disease, neurological disease,

alcohol dependency, other relevant comorbidity

5. Age between 70 - 79

6. At least 2 of: cardiovascular disease, hypertension, chronic respiratory disease, dia-

betes

7. Cancer and kidney disease, or, either cancer or kidney disease and one of: cardio-

vascular disease, hypertension, chronic respiratory disease, diabetes

8. Cardiovascular disease

9. At least 1 of: hypertension, diabetes, chronic respiratory disease

10. Cancer or kidney disease

11. At least 2 of: cardiovascular disease, hypertension, diabetes, chronic respiratory dis-

ease, kidney disease, cancer, immunosuppression, liver disease, neurological disease,

alcohol dependency, other relevant comorbidity

12. Obesity

13. Age between 60 - 69

14. Current smoker

15. Male sex
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The above criteria were encoded in the CPAT DSL as follows:

Line CPAT DSL

1 CFS(7,8,9);

2 age([80,150]);

3 CFS(5,6);

4 3 in set(cardiovascular disease,hypertension,diabetes,

chronic respiratory disease,kidney,cancer,immuno,liver,neuro,

alcohol,other diagnosis);

5 age([70,79]);

6 2 in set(cardiovascular disease,hypertension,

chronic respiratory disease,diabetes);

7 (cancer AND kidney) OR ((cancer OR kidney) AND

1 in set(cardiovascular disease,hypertension,

chronic respiratory disease,diabetes));

8 cardiovascular disease;

9 1 in set(hypertension,diabetes,chronic respiratory disease);

10 cancer OR kidney;

11 2 in set(cardiovascular disease,hypertension,diabetes,

chronic respiratory disease,kidney,cancer,immuno,liver,neuro,

alcohol,other diagnosis);

12 severe obesity;

13 age([60,69]);

14 current smoker;

15 sex(Male);

Error conditions for missing data, or inconsistent data entry were input as follows:

Line CPAT DSL

1 Patient aged under 18: age([0,17]);

2 CVD not populated: cardiovascular disease IS NULL;

3 HT not populated: hypertension IS NULL;

4 Diabetes status not populated: diabetes IS NULL;

5 CRD not populated: chronic respiratory disease IS NULL;

6 Kidney disease not populated: kidney IS NULL;

7 Malignancy not populated: cancer IS NULL;

8 Immunosuppression not populated: immuno IS NULL;

9 Liver disease not populated: liver IS NULL;

10 Alcohol dependency not populated: alcohol IS NULL;

11 Other diagnosis not populated but other diagnosis text

specified: other diagnosis IS NULL AND other diagnosis text IS

NOT NULL;

12 Smoking status not populated: current smoker IS NULL;
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The warnings for potentially incorrect data input were encoded as:

Line CPAT DSL

1 Dementia not populated: dementia text IS NULL;

2 Physical Limitations not populated for patient aged < 65:

physical limitations text IS NULL AND age([0,64]);

3 CFS populated for patient aged < 65: clinical frailty text IS

NOT NULL AND age([0,64]);

4 Physical Limitations populated for patient aged 65+:

physical limitations text IS NOT NULL AND age([65,150]);

Patient Rankings �

The ranked list is shown in figure 3.5 on page 67 in two halves, with the top half showing

the patients at highest risk of mortality. Red indicates that the criterion applies to that

patient, green indicates that it does not apply. Outcome data for days 0 through 7, then

at 14, 21 and 28 are displayed below each patient.

The patients with the highest risk of mortality were those aged 80+ with a CFS of

7 or higher, followed by patients with a CFS of 7+, then patients aged 80+ and so on.

The goal of this particular CPAT policy was to rank patients by risk of mortality with the

highest risk patients being at the left hand side of the visualisation on the next page (i.e.,

top of the ranked list) and lowest risk patients at the right hand side (i.e., bottom of the

ranked list).

Looking at the outcome data in the bottom rows, there is a general trend of more

deaths for the higher ranked patients (indicated by black squares) and fewer deaths for

the lowest ranked patients (indicated by more green and fewer black squares). Note that

the highest ranked are older with more co-morbidities and the lowest ranked patients are

younger with fewer co-morbidities. A more rigorous analysis of the CPAT policy is given

in the next subsection.
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Figure 3.5: Patient characteristics, rankings, and outcome from hospital admission for COVID-19.
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3.3.1 Comparison of CPAT and 4C Ranking Distributions �|

In the methods section, the potential for multiple patients to share the same priority

level/score was mentioned. The methods used for CPAT result in N criteria having 2N

possible priority levels. As there were 15 criteria identified for ranking patients, the number

of possible priority levels was 215 = 32, 768. The 4C score on the other hand has a score

that ranges from 0 to 21 points, resulting in 22 possible priority levels. The number of

patients in each priority level/sharing the same score are compared in figure 3.6, and the

mean, standard deviation and range of patients sharing the same priority level are shown

in table 3.1.

Table 3.1: A comparison of the granularity of patient rankings using CPAT compared to the 4C
score. Higher granularity results in fewer patients sharing a priority level and vice versa. CPAT
resulted in fewer patients sharing the same priority level and also had a narrower range of patients
sharing the same level compared to 4C.

System
Number of

Distinct Levels
Mean Patients Per

Level (SD)
Range of Patients
Sharing Level

CPAT 197 2.2 (2.57) 1 to 24
4C 22 19.2 (13.8) 1 to 40

Concordance Index |

The overall concordance index was calculated to be 0.73 for the given policy. By compar-

ison, applying the 4C scoring rules to this dataset resulted in a concordance index of 0.76,

with the published concordance being in the range of 0.76 to 0.79.107

As each line was added to the CPAT policy, the concordance was calculated and the

results are shown in table 3.2.

Table 3.2: CPAT concordance index as each line was added to the policy. A concordance index of
0.5 indicates no predictive ability and 1.0 indicates 100% correct predictions.

Line Number Concordance Index

1 0.59
2 0.69
3 0.72
4 0.72

5 - 14 0.73
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(a)

(b)

Figure 3.6: (a) Comparison of the number of patients per priority level using the Clinical Pri-
oritisation Assistance Tool (CPAT) compared to (b) the 4C score. The CPAT policy resulted in
an almost-uniform distribution of patients sharing the same priority level, with a large spike on
the right hand side for patients with the lowest risk/scores. The 4C score results in a normally-
distributed number of patients sharing the same score, with the largest numbers of patients sharing
scores between 8 (intermediate mortality risk) and 14 (high mortality risk).
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Mortality by Decile �|

The mortality percentage for each decile is shown in table 3.3. There was a general decrease

in mortality from the highest risk deciles (deciles 1 to 4) to the lowest risk deciles (deciles

6 to 10).

Table 3.3: Mortality percentage by decile using the CPAT policy to rank (n=423) patients. Mor-
tality risk tended to decrease from decile 1 (highest priority/risk) to decile 10 (lowest priority/risk).

Decile Alive Dead Percent Mortality n

1 22 20 47.6% 42
2 26 16 38.1% 42
3 23 19 45.2% 42
4 27 15 35.7% 42
5 30 12 28.6% 42
6 31 11 26.2% 42
7 37 6 14.0% 43
8 41 2 4.7% 43
9 41 2 4.7% 43
10 43 0 0% 43
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3.4 Discussion

Benefits

There are several potential benefits to the approach that CPAT uses for ranking patients

by their mortality risk:

Data Independence and Integrity, Rapid Deployment and Adaptability

The first benefit is that CPAT is data independent and so allows existing clinical knowledge

and experience to be encoded in the policy. The policy for COVID-19 was developed

using the limited literature from China and Italy available very early in the pandemic,

with no initial access to data (the data for testing became available after CPAT had been

developed). This data independence allows policies to be put into place rapidly, in the

space of hours, days or weeks rather than requiring months for data to be collected.

Once data becomes available and new knowledge is discovered and published the policy

can be updated, making CPAT adaptable to changes in understanding. As soon as the

policy is changed the rankings are instantly updated, minimising the delay between

expert understanding changing and implementation of the updated policy.

It is also possible to encode in the policy basic data integrity checks and raise a warning

or an error. The example of using the CFS on patients aged < 65 is just one example

of this feature. If a data field is missing that is critical to the ranking, for example age,

then a patient can not be ranked and an error message can be displayed until the field is

populated (see appendix B.1.4 for greater detail on the encoding of warnings and errors

in the CPAT DSL).

Auditable

CPAT regularly saves audit logs containing a timestamp, a copy of the policy which was

in place at that time and a copy of the ranked patient list. This has the potential to ease

the burden on clinicians having to justify their decisions, as the audit log will show how

their patient ranked relative to all other patients requiring access to limited critical care

resources at the time the decision was made.

Expertise at Scale

Another benefit is that multiple experts spanning multiple domains can assist in designing

the policy. Once the policy is designed it is input to a central server, and therefore can be

implemented in multiple locations instantaneously, allowing the expertise to be deployed

at scale. This also allows consistency in decision making as the patient rankings are the

same regardless of whether a junior clinician or an expert with many years of experience

is deciding on the best course of action for a patient.
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Meaningful Rankings

In the results presented, it was shown that there were 215 = 32, 768 possible priority

levels that resulted in 423 patients being prioritised into 197 distinct priority levels. The

benefit of this large number of priority levels is that there were few patients sharing the

same priority level with CPAT, with an average number of 2.2 patients per priority level.

When there are only a few patients that need to be considered within each priority level,

less mental effort is required to determine the appropriate course of action and allocation

of limited ITU resources. In figure 3.6b CPAT resulted in an approximately uniform

distribution of patients at each priority level, with the greatest numbers of patients being

in the lowest priority levels - patients that are low risk and likely will not require treatment.

By comparison, in figure 3.6b the 4C score resulted in a normal distribution of patients

sharing the same score, with an average of 19.2 patients per level. The peak of the normal

distribution was centred around patients with a score of 8 to 14, corresponding to ‘inter-

mediate’ and ‘high’ risk levels, with 30+ patients per level. This means that the priority

levels with the largest numbers of patients (and therefore, require more intervention and

cognitive effort from clinicians) corresponds to the patients that require the most attention

and careful consideration.

Given an identical list of patients, the CPAT rankings result in dramatically fewer,

more manageable numbers of patients for a clinician to consider at one time compared to

4C.

Statistical Discrimination Ability

The major benefit demonstrated in this paper was that the discrimination ability of CPAT

was almost as strong as the well-developed and validated 4C score,107 while still retaining

all the benefits of being data-independent, providing meaningful patient rankings, and

rapidly deployable in real time as patients are admitted to the healthcare setting.

Limitations

The challenge of scaling One benefit of CPAT is that is has the potential to be

rapidly deployed at scale, however, one limitation of this work is that it was not adopted

for widespread use, as a result we did not have to contend with the additional complexities

that arise from large-scale deployment of software. The architecture of CPAT centres

around a single top-down enforced policy, which also introduces a single point of failure

- if the server hosting the policy becomes unavailable, this would impact every hospital

attempting to use CPAT. There are also additional performance and scaling issues that

arise from potentially having hundreds of hospitals making frequent requests to a single

centralised server, as this large demand places a heavy computational load on the server.

These issues can be alleviated by having multiple host servers for redundancy and to

spread the computational load evenly, and utilising some sort of caching server such as
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Redis.125 However, this introduces greater complexity to the design of the system, as it

will be necessary to ensure the policy is identical across all host servers: when the policy

is updated, this change must be reflected across all host servers.

Data quality The meaningfulness and quality of the patient rankings generated by

CPAT are strongly dependent on the quality of the data input by the end user (i.e.,

clinician). An incorrectly input variable (for example, age) can result in patients being

ranked significantly higher or lower than they should be, giving an unfair advantage or

disadvantage. The exact definitions and units for variables must also be clearly defined and

used across all healthcare settings. For example, the CPAT policy made use of the CFS

which has been updated over time: before 2007 it was a 7-point scale before becoming a 9-

point scale as used here.126 If different versions were used between healthcare settings then

this would result in inconsistency in the data and patient rankings, having the unintended

effect of inequitable access to healthcare resources.

Follow-up duration The follow-up data used in these analyses for evaluating CPAT

only extended to 28 days after hospitalisation. This may have resulted in the C-statistic

(concordance index) for CPAT being ‘inflated’, however the 4C score did perform similarly

on the same dataset (C-statistic of 0.76 compared to 0.73 with CPAT).

Sequential rankings The main limitation of this approach is illustrated in figure 3.7:

each line in the policy takes absolute priority over all lines below it. However, as shown

in the figure, the patient with a 7+ on the CFS and no co-morbidities is ranked higher

than the patient aged over 80 with several co-morbidities. It may not necessarily be the

case that a single factor (in this case CFS of 7+) indicates a higher risk of mortality than

several lower priority factors. In fact, it was the lower priority patient that died, despite

having a lower CPAT ranking.

This sequential approach of ranking patients makes the rankings unstable: a small

change in patient characteristics (such as CFS increasing from 6 to 7) can result in a

large change in ranking. A stable ranking system would result in small changes in patient

characteristics being reflected by small changes in ranking. This is a concrete example of

the issues discussed with sequential allocation in sections 2.3.1 and 1.2.1.

In order to allow for more nuanced rankings, it will be necessary to assign weights

to each risk factor, thus allowing for the presence of several smaller risk factors to com-

pensate for the absence of larger risk factors. This would then allow the basic techniques

developed for CPAT - synthesising clinical knowledge, encoding knowledge in a policy and

ranking patients according to a policy - to be expanded and applied to the problem of

lung allocation. This will be the primary focus in the next chapter.
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Figure 3.7: Sequential allocation leading to one patient being prioritised solely because of their
score on the clinical frailty scale, despite the lower priority patient being aged over 80 with several
co-morbidities.
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3.5 Summary

The ability of CPAT to rank patients with little or no available data is the single largest

benefit it provides. As a result of being data-independent it can be very rapidly deployed

at scale. However it must be applied to appropriate scenarios. The types of scenarios

CPAT is designed to handle are situations where making a decision or taking some action

- even if sub-optimal - is more preferable than waiting to make what might be considered

an optimal decision. The COVID-19 pandemic was one of these situations: patients were

continuously being admitted to hospital and time was critical. Assessing patients and

deciding on the appropriate course of action rapidly was more important than individual

clinicians using their limited time and resources to attempt to assess patients in the most

optimal order.

As discussed earlier, clinicians attempting to make these optimal decisions on-the-fly

poses a large cognitive burden that is further compounded by the stress of constantly mak-

ing life-or-death decisions. The intended use of CPAT (which luckily was never needed in

practice), was to automatically rank all patients entering the hospital by risk of mortality.

Clinicians then effectively have a “birds-eye view” of all patients in the system ordered

by risk. There may be some patients at the top of the list that are so critically ill that

despite best efforts would be unlikely to survive. Nearer the bottom of the list would be

patients that are healthy enough that they could be sent home and recover with minimal

risk. This would have allowed clinicians to focus their efforts on patients in the middle

of the list: patients that are critical but have good chances of survival with appropriate

management. This will allow triage on a large scale in real time.

There were plans for CPAT to be developed further by allowing a ‘meta-policy’ to be

defined, comprising multiple sub-policies. Each sub-policy would filter out a subset of the

patients depending on the data that was available. For example, one sub-policy could be

applied using only the data that is immediately available as patients enter the hospital

(such as age, diagnosed comorbidities, smoking status etc.) such as the policy outlined

in this chapter. The next sub policy could filter out the patients that are too ill or don’t

require treatment, and then prioritise them by clinical test results. This process could

be repeated for each stage that a patient goes through from admission, to test results to

discharge. However, before these ideas could be developed further the demand on hospitals

started to decrease, and efforts re-focused on lung allocation.

While CPAT was originally designed for prioritising patients for treatment during the

COVID-19 pandemic, the methods are generalisable to any situation where rapid decision

making, prioritisation and/or allocation are necessary.

The next chapter will expand on the concepts covered in this chapter, overcoming the

limitations described in section 3.4 and describe methods that can be used when data

is available to make better informed and more nuanced prioritisation decisions for the

allocation of donor lungs to potential recipients.

75



Chapter 4

Lung Allocation

76



Chapter 4. Lung Allocation

4.1 Context: The Challenges of Designing Lung Allocation

Policies

Designing a lung allocation policy requires deciding on the goals that the policy needs to

achieve. These goals are influenced by the subjective values that policymakers, healthcare

professionals, clinicians, and other stakeholders hold. Some goals conflict, requiring a

trade-off or compromise to be made. One example of this is reducing waiting list deaths

by prioritising candidates with higher clinical urgency. This results in reduced waiting list

deaths, but potentially results in shorter survival durations post-transplant and unequal

access to transplant due to the differing risk of mortality by diagnosis.

Historically allocation was based on waiting time; however this favoured candidates

with less clinically urgent conditions, such as COPD as they could afford to wait a pro-

longed period on the waiting list (see section 2.4 for a detailed history of lung allocation).

Although there are a number of possible allocation goals, the main two goals repeatedly

mentioned in the literature are increasing waiting list survival (i.e., reducing the number

of annual waiting list deaths) and post-transplant survival (i.e., recipients living for a

long period of time after receiving a transplant). The issue of fairness is also discussed

in the literature which can have several interpretations, some of which were discussed in

section 2.2.1. Some other possible interpretations of fairness could be:

1. Ensuring all candidates have equal access to transplant (i.e., equity of access)

2. Prioritising candidates with the greatest clinical need for transplant (i.e., prioritising

the most urgent candidates)

3. Prioritising candidates that will gain the most additional days of life from transplant

(i.e., ‘net benefit’)

4. Using only clinically relevant criteria for prioritising candidates and not ‘protected

characteristics’127 (or equivalent laws in the country the allocation system is imple-

mented)

5. Aiming to have the same percentage of candidates transplanted across all diagnosis

groups

6. Aiming to have the same number of candidates transplanted across all diagnosis

groups

7. Aiming to have the percentage/number of transplanted candidates be proportional

to the risk of mortality associated with each diagnosis group

This is by no means an exhaustive list but it illustrates how there is no single definition

of fairness, and multiple definitions can conflict with each other (for example items 5 - 7
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on the list). There is also no single objective way of measuring the fairness of a system;

it is possible to calculate transplant rates and outcomes stratified by diagnosis, age, sex

etc., however the interpretation of the calculations and how they relate to fairness is still

subjective. For these reasons ‘fairness’ will not be used as a metric in this work.

At the time of writing, in the US and on the Eurotransplant scheme the LAS is

used (though this will likely be replaced by the CAS.100 This is a predictive model that

prioritises candidates based on net benefit. Allocation using the LAS can prioritise waiting

list survival, post-transplant survival, or a weighted combination of both. The US LAS

uses a 2:1 weighting-ratio of waiting list survival to post-transplant survival to prioritise

candidates.

The UK currently uses a multi-tiered urgency-based lung allocation policy. Named

allocation is implemented for candidates on the super-urgent and urgent schemes. For

non-urgent candidates, allocation is based on a free centre choice, where clinicians located

at the receiving centre allocate the lungs to the patient they believe has the greatest

need.37

As discussed in sections 1.1.2, 2.3.1 and 3.4, a multi-tiered (i.e. sequential) policy

creates the possibility of two clinically similar candidates receiving vastly different priority

rankings due to measurements of lung function falling on different sides of a hard numeric

boundary. This leads to the candidates being placed in different tiers and having different

access to transplant and therefore doesn’t ensure equity of access (‘fairness’).

The named allocation system for UK super-urgent and urgent candidates uses waiting

time and ABO matching and is not based on predictive survival models. The free centre

choice is very subjective and depends on who makes the allocation decision at the time

of offer, and access to transplant varies depending on the availability of donors within a

geographical zone.

To address these potential areas of improvement a new policy can be designed, however

a change in allocation policy runs the risk of unintended consequences.

Discrete event simulation (DES) is a technique that can be used to model real-world

processes.128 The goal of this section is to use DES to simulate policies that prioritise

candidates using different relative priorities of waiting list and post-transplant survival,

allowing the differential impact on candidates and recipients to be evaluated and stratified

by diagnosis group, age group and blood group.

More advanced allocation features were also evaluated: risk-adjusted benefit, condi-

tional survival and increased use of SLT for ILD candidates. Additional scenarios were

also simulated to evaluate the impact increased donation/utilisation has on the number

of waiting list deaths.

Performance metrics were recorded for each policy and scenario, allowing the strengths

and weaknesses of different lung allocation policies to be compared and evaluated.
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4.2 Methods

4.2.1 Statistical Methods |

Datasets

Datasets containing waiting list, post-transplant and donor data were provided by NHS-

BT1. The waiting list population contained data on 4280 candidates listed between 2002

and 2021 and was split 80/20 into a training (n = 3424) and validation (n = 856) cohort.

The post-transplant population consisted of 2131 transplant recipients from 2002 – 2021

and was also split 80 / 20 into a training (n = 1705) and validation (n = 426) cohort.

Both datasets contained survival durations and censoring indicators. The population

was limited to all adult, first-time, lung-only candidates or recipients (i.e., no multi-organ

recipients such as heart-lung or lung-liver). The process of cleaning the data is summarised

in figure 4.1. For both waiting list and post-transplant survival, patients with a recorded

forced expiratory volume over one second (FEV1) or forced vital capacity (FVC) greater

than 8 litres were removed from the dataset, as well as any rows in the dataset that

contained missing data.

The 80 / 20 split was randomised using the sample() function in R129 using a con-

stant seed value of 538 that was generated using the online service random.org.130 This

resulted in a random, but repeatable, selection of candidates and recipients for the train-

ing and validation cohorts. This reduces the chances of there being any selection bias in

any characteristics when assigning individuals to the respective training and validation

cohorts, it also makes it possible to test any predictive models trained on the training

data against the validation data to prevent over-fitting. There is an implicit assumption

that a random split will result in a validation dataset that is representative of the training

set. To test this assumption, the Welch Two Sample T-test was used to compare numeric

variables between the training and validation datasets, and the Chi-squared test was used

to compare categorical variables to ensure all p-values were > 0.05.

Building Cox Models for Waiting List and Post-Transplant Survival

There are a number of methods for building an appropriate Cox model for simulation.131,132

For this research the methods described by Collett et al.133 were used.

Two Cox proportional hazards models were built using the training datasets (see fig-

ure 4.1) for the purpose of simulating waiting list survival and post-transplant survival. A

custom R script was created to automate the iterative process of adding statistically sig-

nificant variables and removing non-significant variables until the model could no longer

be improved.133 The algorithm is described in greater detail in appendix D.1, and for the

1The OPTN also provided US cardiothoracic data that was used during the initial development phase
of the simulation engine. However, the dataset was not used for generating the results presented in this
thesis.
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Waiting List Dataset Post-transplant Dataset

Raw data (n=4618)

Non-missing (n=4295) Missing (n=323)

Good FEV1 (n=4288) Anomalous FEV1 (n=7)

Good FVC (n=4280) Anomalous FVC (n=8)

Training (n=3424) Validation (n=856)

Waiting List
Cox Model

Waiting List
Cox Model

Concordance
(Training)

Waiting List
Cox Model

Concordance
(Validation)

Raw data (n=2856)

First Lung Transplant (n=2835) Re-transplants (n=21)

ABO Compatible or
Identical (n=2834)

Intentional ABO
Incompatible (n=1)

Non-missing (n=2133) Missing (n=701)

Good FEV1 (n=2131) Anomalous FEV1 (n=2)

Training (n=1705) Validation (n=426)

Post-transplant
Cox Model

Post-transplant
Cox Model

Concordance
(Training)

Post-transplant
Cox Model

Concordance
(Validation)

Figure 4.1: Stages of data cleaning for waiting list and post-transplant datasets. Dashed boxes
indicate data points that were excluded from analysis. Both Cox models only used the train-
ing dataset as input, and the validation concordance indices were calculated using the validation
datasets.

NHS-BT lung transplant dataset a p-value threshold of 0.15 was used.

Both waiting list and post-transplant survival durations were capped at 20 years (cal-

culated as 365×20 = 7300 days). This is significantly longer than what the LAS uses (one

year) and CAS (five years), however, the purpose of these models is for simulation and

not a prognostic tool. The simulations cover a 20 year period to evaluate the long-term

effects of each simulated allocation policy, so any variance in simulated metrics/outcomes

is eliminated as they converge towards a mean value. A prognostic tool does not have

this flexibility, as it must make accurate predications on a case-by-case basis. By using

survival models that are capped at a lower time frame for increases the model’s predictive

strength/discrimination ability, and is better suited for prognostic use.

The discrimination ability of the survival models was calculated using the concordance
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index134 (also referred to as ‘AUC’ and ‘C-statistic’) of the waiting list and post-transplant

Cox proportional hazards models. The concordance was calculated using the training

datasets and validation datasets (see figure 4.1).

Evaluating Predictive Ability of the NHS-BT UK Lung Allocation Policy

The concordance index of the NHS-BT lung allocation policy was calculated for waiting

list and post-transplant survival. This was achieved by calculating a ‘score’ for each

candidate/recipient in the transplant datasets that produce equivalent rankings to the

NHS-BT policy.

Table 4.1 shows the scoring system used to predict waiting list survival, and table 4.2

shows the scoring system for post-transplant survival. Note that ABO compatibility is

not included in the waiting list scoring system, as this requires comparison to a donor,

and is more relevant in the context of post-transplant survival.

The super-urgent and urgent schemes were implemented in the UK in May 2017.135

To account for this, only candidates listed between 2018 and 2021 were included for these

analyses (waiting list n=789, post-transplant n=367). Each candidate was assigned to

the same training cohort (waiting list n=619, post-transplant n=302) or validation cohort

(waiting list n=170, post-transplant n=65) that was used for the creation of the Cox

models for simulation. For each candidate/recipient in the waiting list and post-transplant

datasets, the score was calculated according to the relevant table, then a Cox proportional

hazards (PH) model was created with the score as the only variable. The concordance

index of the Cox models was then calculated for the training and validation cohorts (from

years 2018 - 2021) to evaluate the predictive ability of the NHS-BT policy for waiting list

and post-transplant survival.

Table 4.1: Scoring system used to approximate rankings from NHS-BT policy to evaluate concor-
dance index for waiting list survival.

Attribute Score

Super-urgent 4
Urgent, Small Adult 2
Urgent, Adult 1
Non-urgent 0

Generating Realistic Survival Times

Generating realistic survival times was accomplished using the methods outlined by Bender

et al.136 The Cox-Weibull distribution was used for generating post-transplant survival

times and the Cox-Gompertz distribution was used for generating waiting list survival

times. A detailed explanation of these methods is given in appendix D.2.

To implement these methods it was necessary to calculate the distribution parameters

of the Cox-Weibull and Cox-Gompertz distributions. The FlexSurv package137 was used
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Table 4.2: Scoring system used to approximate rankings from NHS-BT policy to evaluate concor-
dance index for post-transplant survival.

Attribute Score

Super-urgent 16
Urgent, Small Adult, ABO Identical 8
Urgent, Small Adult, ABO Compatible 4
Urgent, Adult, ABO Identical 2
Urgent, Adult, ABO Compatible 1
Non-urgent 0

in R to fit a Weibull distribution to the waiting list survival dataset and also the post-

transplant survival dataset. This package outputs the shape and scale parameters, allowing

the survival time formula given by Bender et al.136 to be used, the calculated values of

these parameters are in results section 4.3.3.

Post-transplant survival times were generated using a combination of recipient char-

acteristics, donor characteristics, and type of transplant (i.e., left-lung, right-lung or lung

pair) - see appendix D.2.1 for more detail.

The UK dataset was checked for informative censoring (i.e., a correlation between

risk of death on the waiting list and probability of receiving a transplant, see page 49

in section 2.4) using methods described by Collett et al.133 and was found to not have

informative censoring present. More detail on the informative censoring methods is given

in appendix D.2.2.

Simulating Queueing Processes

The two main processes to simulate are lung transplant candidates being added to the

waiting list, and donors becoming available for allocation. Both of these processes can be

thought of as queueing processes; there are varying intervals of time and varying numbers

of ‘arrivals’ over time.

To simulate both of these processes, there are two questions that must be answered:

1. How long to wait between events?

2. When an event does occur, how many events should occur?

This was achieved by generating two tables for each queueing process: one containing

the frequencies of time between events, and another containing the number of events that

occur on the same day mapped to their corresponding frequency (a detailed step-by-step

explanation of how this was achieved is given in appendix D.3).
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4.2.2 Simulating the Current NHS-BT Policy

There were several challenges when simulating the current iteration of the NHS-BT lung

allocation policy. The first challenge was that the current policy allows a ‘free centre choice’

for non-urgent candidates, which is a subjective choice made at the time of allocation. For

a detailed simulation, a step-by-step algorithm needs to be implemented for allocation.

However, with the data that was available, it was not possible to simulate these subjective

allocation decisions in an algorithmic fashion.

The next challenge was that the dataset dates back to 2002, and the allocation policy

has changed over time, with the most recent large change occurring in 2017 with the

introduction of the ‘urgent’ allocation scheme. Prior to this time, all candidates in the

dataset are labelled as ‘non-urgent’, even if they would be classed as ‘urgent’ by the current

allocation policy.

A comparison of survival rates pre- and post-2017 showed that the differences in sur-

vival were not statistically significant with the introduction of the urgency scheme. In

order to simulate the current NHS-BT policy, the following simplified allocation policy

was used:

1. All candidates located in same local zonal centre as the donor

2. All other candidates located at other centres, according to the adult lung centre rota

At the beginning of each simulation run, the five transplant centres (labelled A - E)

were placed on the rota in a random order. Next, using roulette selection, a random centre

was assigned to each donor that became available for allocation, with the probability of

each centre being proportional to the transplant volume of each anonymised centre in the

dataset.

Each simulation run was initialised with 300 candidates on the waiting list. In order to

evaluate how accurately the current NHS-BT lung allocation policy can be simulated, the

annual growth rate for the number of donors and listings was set to zero. This decision was

made as a result of the roulette wheel selection parameters being calculated from 2002-

2019, so the growth in numbers over that period was already “baked-in” to the roulette

wheel selection process.

In order to compare the NHS-BT policy against future potential policies it was re-

simulated using an annual compound growth rate of 3%. This resulted in two NHS-BT

policies being simulated: a ‘historic’ one to evaluate the accuracy of the simulations, and

a ‘future’ one to evaluate the future performance compared to alternative policies.
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4.2.3 The Initial ‘Standard’ Five Simulated Policies

Five initial policies were simulated over a duration of 20 years, with the number of listings

and donor offers increasing by 3% each year. These policies will be referred to as the

“standard”, “initial”, or “bilateral” policies throughout this thesis, to distinguish these

policies from the SLT policies that will be described next.

� Waiting list priority (WL)

� 2:1 Waiting list to post-transplant priority (2:1)

� 1:1 Waiting list to post-transplant priority (1:1)

� 1:2 Waiting list to post-transplant priority (1:2)

� Post-transplant priority (PTX)

Each policy determines the relative priority-ratios of waiting list survival to post-

transplant survival. A 1:0 ratio would give full priority to waiting list survival (correspond-

ing to ‘Waiting list priority (WL)’ above), whereas a 0:1 ratio would give full priority to

post-transplant survival (corresponding to ‘Post-transplant priority (PTX)’ above).

Each candidate was assigned randomly generated survival durations for waiting list

(WL) and post-transplant (PTX) survival, however to prioritise the waiting list the ex-

pected value (EV) of these durations was used. The EV was calculated as the area under

the survival curve, integrated up to 20 years.

To increase computation speed, linear predictors (see page 211 in appendix A) were

rounded to 3 decimal places and mapped to pre-computed EV’s in two separate lookup

tables corresponding to waiting list and post-transplant survival (see page 257 in Ap-

pendix D.5.14).

The combination of each candidate’s WL and PTX survival durations with the priority

ratios of the policy determined each candidate’s overall rank. Using the same formula given

by UNOS42 the priority score was calculated as:

Priority Score = (PTX Ratio× PTX)− (WL Ratio×WL)

Once every candidate had a priority score assigned, the waiting list was then prioritised

from highest to lowest priority score.

Finally, screening criteria were applied to the prioritised list. In the case of the UK

lung simulations, ABO matching rules were applied so that the donor-recipient match had

to be at least compatible. Height matching rules were also in place, with a maximum

height difference between the donor and recipient of 15cm being in place.

To assess the impact of an increased donor pool on the number of waiting list deaths,

the WL policy was also simulated with a 5%, 10%, 25% and 50% increase in the number

of donors.
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Each policy/scenario was simulated 40 times in order to allow the metrics to converge

towards a mean value, for a simulated duration of 20 years. For each simulation run,

the waiting list was initialised with 300 randomly generated candidates from the NHS-BT

dataset. The simulation engine was designed to run multiple independent simulations in

parallel, and for this work, eight simulations were run in parallel on an Intel® Core i7

processor (7th generation). It took approximately two to eight minutes to complete all 40

simulation runs spanning 20 years depending on the complexity of the policy.

4.2.4 The SLT (Single-lung Transplant) Policies

The work by Benvenuto et al.80 inspired an alternative allocation algorithm was evaluated

which maximises the use of SLT for ILD (group D) recipients. The algorithm works as

follows:

1. Predict net benefit for highest ranked candidate with ILD if transplanted with (left

/ right) lung only

2. Predict net benefit for next-highest ranked candidate with ILD if transplanted with

remaining lung

3. Predict net benefit for highest ranked candidate (any diagnosis) if receiving lung

pair

4. If no suitable candidate is identified in step 1 or 2, then allocate the pair

5. Calculate the total net benefit for candidates in steps 1 and 2, if this is greater than

the net benefit calculated for the candidate in step 3, then allocate two single lungs,

otherwise allocate the pair

This algorithm does not dictate how candidates should be ranked and must be com-

bined with another ranking algorithm. The SLT algorithm was initially combined with

the WL policy (‘SLT-WL policy’) to investigate the impact of the organ offer order, age

threshold for SLT, and increased utilisation. The SLT algorithm was also combined with

the other policies to investigate the general impact of increasing the use of SLT.

The order of offering impacts which candidate(s) receive which lung(s), the following

orderings were simulated:

1. Pair, left lung, right lung

2. Pair, right lung, left lung

The SLT-WL policy was also combined with no age threshold, a minimum age of 55

years and a minimum age of 60 years for receiving SLT.

An important point to consider for these SLT policies is that they simulated “ideal”

conditions:
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� Left/right lung preferences for ILD candidates were not simulated, it was assumed

that all ILD recipients could receive a left or right lung (or pair)

� All donors were assumed to donate a lung pair, resulting in 10.5% more lungs being

available for transplant compared to the standard policies (19% of donors in the

dataset donated a single lung: 19 ÷ 2 = 10.5)

4.2.5 Risk-adjusted Benefit and Conditional Survival

Two additional sets of policies were simulated: risk adjusted benefit (RAB) and conditional

survival (CON). The RAB policies aimed to prioritise candidates who had both a high

expected net benefit and also a high probability of surviving long enough to realise that

benefit (for the theoretical background to this, see page 20 in section 2.2.1). A similar

approach to that used by Titman et al.50 was used. For each candidate on the waiting list,

the number of days post-transplant that their post-transplant risk of mortality decreased

below their risk of mortality remaining on the waiting list was calculated (the ‘equity

point’ as described by Titman et al.).

Next, the probability of each candidate surviving to the equity point was calculated.

The risk-adjusted net benefit was then calculated by multiplying each candidate’s net

benefit by their probability of surviving to the equity point. This resulted in two net

benefit values: the standard net benefit and the risk-adjusted net benefit. Finally, a ‘risk-

weight’ must be decided that gives a percentage weight to the risk-adjusted net benefit

value, where 0% uses the standard net benefit value, and 100% uses the risk-adjusted

benefit value. RAB policies were simulated using the 1:1 WL:PTX policy, in order to

compare the impact of RAB on net benefit. The risk weights simulated were 0%, 25%,

50%, 75% and 100%. These policies were named RAB-0, RAB-25, RAB-50 and so on.

The mathematics behind this approach is given in appendix D.4.

The CON policies used an alternative risk-adjustment method, based on the condi-

tional survival formula given by Hieke et al.138 For each candidate, the probability of

surviving another t days, given a candidate has already survived s days on the waiting

list, was calculated. Each candidate’s expected waiting list survival duration was then

multiplied by the previously calculated survival probability. This resulted in candidates

with lower expected waiting list survival and lower probability of surviving another t days

receiving a higher net benefit score. The details of the calculations used in the simulations

are given in appendix D.4. The WL and 1:1 WL:PTX policies were used for simulating the

CON policies to evaluate the impact on waiting list deaths and net benefit. The simulated

policies predicted conditional survival and surviving an additional 1, 7, 30, 365 and 1095

days. When combined with the WL policy, these policies were named CON-WL-1, CON-

WL-7, CON-WL-30 and so on. When combined with the 1:1 policy, they were named

CON-1:1-1, CON-1:1-7, and so on.
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4.2.6 Policy Performance Metrics and Important Assumptions

Seven performance metrics were used to evaluate each simulated policy:

1. Number of annual deaths on the waiting list

2. Days from listing until transplant

3. Net benefit

4. Relative benefit

5. Survival rate 1 year post-transplant

6. Survival rate 5 years post-transplant

7. Annual number of transplants

For each performance metric the mean and standard deviation were calculated for

comparison to other policies.

Using the appropriate probability distributions and methods described in section 4.2.1

and by Bender et al.,136 every simulated candidate was assigned a randomly generated

waiting list survival duration (WL), and at the point of transplant, a random post-

transplant survival duration (PTX). If the time in the simulation surpassed a candidate’s

waiting list survival duration, that candidate was removed from the waiting list and the

number of waiting list deaths was incremented. To calculate the annual waiting list mor-

tality rate, the number of waiting list deaths for the entire simulation run was divided by

the number of years that were simulated.

To calculate the mean number of days from listing until transplant, the following

durations per candidate and recipient were summed and divided by the total number of

simulated candidates and recipients:

1. Days from listing until death on the waiting list

2. Days from listing until transplant

3. Days from listing until end of simulation run

Assumption #1: Item 3 above is included in the calculation of mean wait-

ing time because there will always be some number of patients still awaiting

transplant at the time the simulation ends. Although this may skew the mean

waiting time slightly this is an acceptable trade-off as (1) it makes use of all simulated

individuals, and (2) all simulated policies will use the same calculation, allowing waiting

times to be compared between policies.
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‘Net benefit’ is the expected survival duration on the waiting list subtracted from the

expected survival duration post-transplant (in days). This is the expected additional days

of life gained from receiving a transplant.

There may be scenarios where net benefit is similar for two candidates, but for a

candidate with a lower expected waiting list survival, net benefit represents a greater

proportion of life gained. To evaluate this, ‘relative benefit’ was introduced as a metric.

An example is given in table 4.3.

Table 4.3: To demonstrate the purpose of calculating relative benefit, this table shows three
candidates with identical predicted net benefit, but different relative benefit values. For candidate
‘A’, an additional 2 years of life represents a three-fold increase in lifespan, whereas for candidate
‘B‘, an additional 2 years of life represents only a 1.5-fold increase in lifespan.

Candidate
Waiting List
Survival

Post-transplant
Survival

Net Benefit
Relative
Benefit

A 1 Year 3 Years 2 Years 3
B 4 Years 6 Years 2 Years 1.5
C 2 Years 4 Years 2 Years 2

When calculating net/relative benefit it was important to consider how waiting list and

post-transplant survival durations were generated. One side-effect of using the survival

time generating methods described by Bender et al.136 was that the survival duration

could approach infinity. To work around this, all generated survival times were capped

at 20 years, calculated as 20 × 365 = 7300 days. Any survival data generated from the

simulations with a duration over 7300 days had the duration set back to 7300 days and

the censoring indicator set to 0 to indicate a death had not been observed. The duration

of 20 years was selected as this approximated the longest survival duration observed in

the NHS-BT post-transplant dataset and it also minimised the number of capped survival

times than if a shorter capping duration were chosen.

This lead to the question of how to calculate net benefit and relative benefit when there

was potential for one or both of the survival durations to have been capped/censored?

Table 4.4 shows the possible combinations when calculating net/relative benefit metrics.

Table 4.4: There are four possible combinations of censoring/capping for waiting list and post-
transplant survival durations generated by the simulation engine. Each of these combinations must
be considered when calculating performance metrics for simulated policies.

Combination # Waiting List Survival Post-transplant Survival

1 Not Capped Not Capped
2 Capped Not Capped
3 Not Capped Capped
4 Capped Capped
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Assumption #2: If the waiting list survival duration is capped (combina-

tions 2 and 4), exclude that data point from the net/relative benefit calcula-

tions.

Assumption #3: If the post-transplant survival duration is capped, it is

still acceptable to calculate net benefit, the result is a lower-bound estimate

of net benefit.

Net benefit was calculated as PTX−WL where PTX was the post-transplant survival

duration in days and WL was the waiting list survival duration in days. Assumption #2

prevents over-estimation of net benefit in cases where WL is capped. Since the true value

of WL is greater than the capped value, as the possible values for WL increase, the

possible values for net benefit decrease. If only the capped value of WL is used then the

upper-bound of net benefit would be calculated, resulting in over-estimation of net benefit.

In the case of assumption #3, using a capped PTX duration to calculate net benefit

results in calculating the lower-bound of possible net benefit values. This is acceptable

as it does not over-estimate net benefit: it is better to under-estimate net benefit than

over-estimate it.

The same assumptions apply to relative benefit. Once combinations #2 and #4 are

removed, relative benefit is calculated as: PTX
WL

The 1- and 5-year post-transplant survival rate is the total number of recipients sur-

viving to at least 1/5 year(s) after transplant, divided by the total number of recipients

that were transplanted. There were two options for the population used for calculating

post-transplant survival rates. The first option was to use all simulated recipients, regard-

less of capping/censoring, and the second option was to use the same subset of recipients

used for calculating net/relative benefit.

Assumption #4: Only recipients with uncapped/uncensored waiting list

survival durations were used for calculating post-transplant survival rates.

The net/relative benefit metrics are measures of post-transplant outcomes, so it makes

sense to use the same subset of patients for evaluating post-transplant survival rates.

Assumption #5: Transplant volume is not a measure of post-transplant

outcomes, capping/censoring does not apply here, therefore use the count

of all transplanted recipients in the calculation. The annual transplant volume

is simply the total number of transplants performed in a simulation run divided by the

number of years simulated, in the case of this work that was 20 years. Censoring/capping

of survival durations was not considered for this metric, and all transplants within the

simulation were used in this calculation.

It was important to note that the average net benefit per transplanted recipient did not

give a full indication of how a policy was performing. To fully evaluate how a policy was

benefitting the population of lung transplant candidates and recipients, it was necessary

to record the total net benefit that would have been gained, if each candidate that died

on the waiting list were transplanted.
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The potential net benefit that was lost was used to evaluate the opportunity cost of

not transplanting lower priority candidates according to the simulated policy. This was

then compared to the total net benefit gained, with the difference between realised and

unrealised net benefit indicating how the entire population benefitted. Assumption #2

also applies in this case as it relates to the calculation of net benefit, therefore the subset

of recipients with uncapped/uncensored waiting list survival durations were used for these

calculations.

Simulated post-transplant survival depended on the characteristics of the donor, for

simulated candidates dying on the waiting list the characteristics of the donor had to be

assumed. Assumption #6: When calculating the net benefit that was lost, a

lung pair from a Cytomegalovirus (CMV) negative, non-diabetic, 170cm tall,

DBD donor was assumed.

One final consideration is that the candidate with the highest priority score is trans-

planted, even if that score corresponds to a negative net benefit. This also occurs in reality

with the LAS, which can be demonstrated by using the equations given in the UNOS guide

to calculating the LAS:42

Raw Score = PTX− (2×WL)

LAS = 100× Raw Score + 730

1095

For a net benefit of zero, WL = PTX, and because the raw score gives twice the

weight to WL, there are a range of possible LAS values that meet these conditions. The

maximum LAS for zero net benefit is 66.67, corresponding to WL = PTX = 0, and the

minimum LAS for zero net benefit is 33.33, corresponding to WL = PTX = 365.

This means for LAS scores ≤ 33.33, net benefit will always be zero or negative. For

scores between 33.33 and 66.67, there is a probability of net benefit being zero or negative:

this probability is highest with scores near 33.33, lowest with scores near 66.67, and 50%

with a LAS of 50. Above 66.67 net benefit will always be positive (though it could be as

low as one day of net benefit). This leads to the final assumption:

Assumption #7: Lungs will be allocated to the highest scoring candidate,

even if that score corresponds to a negative (or zero) net benefit. The allocation

score is calculated using the expected value (i.e., the average value over multiple samples),

so even if the expected net benefit is zero or negative, due to the simulation engine using

randomised processes, there is still a chance for a recipient to experience net benefit. This

is also a practical consideration: where should the threshold for net benefit be set for

allocation? This would require experimenting with different thresholds for each simulated

policy, increasing the number of required simulations. There is also the problem of a

candidate having a predicted net benefit one day less than the threshold. This would

re-introduce hard boundaries to the allocation policy. For these reasons, a threshold for

net benefit will not be used.
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Assumption #8: The SLT policies assume ideal conditions for donors and

recipients. As discussed in section 4.2.4 on page 85, all donors are assumed to donate

two lungs, and all SLT recipients are assumed to be able to receive a right or left lung.

4.2.7 Discrete Event Simulation §

Overview

The simulation engine developed for simulating UK lung allocation policies will be de-

scribed at a high level in this section (see figure 4.2). A detailed explanation using flow

charts and pseudocode is given in appendix D.5.

The components of the simulation engine were organised as follows:

1. Entry point - The start of the simulation engine. This component is responsible for

creating the simulation threads that will run in parallel and aggregating the results

over multiple simulation runs

2. Thread - Each simulation runs in its own thread, each thread initialises a unique

simulation scenario

3. Listing Process - This is the process of candidates being added to the waiting list

(a) Roulette selection is used to determine the time delay between listings and also

the number of listings that will occur

(b) A waiting list survival duration will be randomly generated for each candidate

(c) A waiting list death event will be scheduled - this will be cancelled if the can-

didate is transplanted

4. Offering Process - This is the process of donors becoming available for allocation to

candidates on the transplant waiting list

(a) Candidates on the waiting list are prioritised according to the allocation policy.

For each candidate:

i. Calculate the linear predictor (LP) for WL and PTX survival using the

corresponding survival models

ii. Map the LP to the expected (i.e., mean) survival duration using the

corresponding WL or PTX lookup table (see page 84)

iii. Multiply the expected survival durations by the corresponding priority ra-

tios

iv. Calculate allocation score (see page 84)

(b) Candidates are screened using height matching and ABO compatibility rules

(c) Post-transplant metrics are calculated for the allocated candidate: post-transplant

survival duration, net benefit, relative benefit and total waiting time
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The Thoracic Simulated Allocation Model (TSAM)

The application of DES to lung allocation will be approached in a similar way to the

TSAM used by SRTR. Chapter 2 of the TSAM manual139 outlines assumptions, processes

and events, and text has been used verbatim in table 4.5 that list the TSAM approach

and any modifications that will be used in the custom simulation engine.

Table 4.5: Comparison of the Thoracic Simulated Allocation Model (TSAM) by the Scientific
Registry of Transplant Recipients (SRTR), and the custom simulation engine developed for this
research. TSAM entries are taken verbatim from the TSAM manual.139

Feature 1

TSAM Arrivals of candidates are input to the model with a data file

Custom
Engine

Newly listed patients will be simulated using the probability distribution
derived from the lung transplant dataset

Feature 2

TSAM The initial wait list is input to the model with a data file

Custom
Engine

The initial waiting list will be populated with randomly selected patients
from the dataset

Feature 3

TSAM An entire history of wait-list status changes (to the end of the Allocation
Run, death, or removal from the wait-list) must be input to the model
for each patient

Custom
Engine

Death and removal from the waiting list will both be counted as a waiting
list death. Rather than having a fixed sequence of status changes, the
time until death/removal on the waiting list will be randomised.

Feature 4

TSAM Once a candidate receives an organ, that patient’s input stream of status
changes no longer applies. If the patient relists, the model assigns a
status change history to the patient by randomly selecting a set of status
changes from a pool of user-defined histories

Custom
Engine

If a patient is allocated lungs their waiting list death event is cancelled.
Relisting will not be simulated.

Feature 5

TSAM The values of several other parameters are specified in the program or
tables and remain constant during a run. These include parameters of
the graft failure time distribution and geographic relationships among
institutions

Custom
Engine

Other values necessary for the simulation will be sampled randomly from
appropriate distributions. National allocation is assumed, allocation
zones only for current NHS-BT policy.
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Feature 6

TSAM Organ acceptance: The user defines a calculation used to compute the
organ acceptance probability.

Custom
Engine

Organ acceptance probabilities will not be simulated.

Feature 7

TSAM Post-graft survival: The user defines a calculation which is then used to
determine the patient’s death date after a transplant.

Custom
Engine

Post-transplant survival will be simulated using the same method used
for simulating waiting list survival.

Feature 8

TSAM Organ arrivals (input-driven)

Custom
Engine

Organ arrivals will be randomised using a probability distribution de-
rived from the dataset

Feature 9

TSAM Status changes for wait list candidates who have not yet received grafts
(input-driven)

Custom
Engine

There will only be two possible status changes: death on the waiting list
(simulated using randomly generated survival duration) and receiving a
transplant (determined by the allocation policy being simulated)

Feature 10

TSAM Patient arrivals (input-driven)

Custom
Engine

Patient arrivals will be randomised using a probability distribution de-
rived from the dataset

Feature 11

TSAM Status changes for relisted graft recipients (sampled from a pool of pos-
sible outcomes)

Custom
Engine

Relisting will not be simulated

Feature 12

TSAM Relisting events of recipients whose grafts fail (sampled by the model)

Custom
Engine

Not simulated

Feature 13

TSAM Deaths of graft recipients not on the wait list (sampled by the model)

Custom
Engine

Post-transplant survival will be determined by a randomly generated
post-transplant survival duration

93



Chapter 4. Lung Allocation

Flowcharts and Pseudocode

A detailed explanation of every step and calculation in the simulation engine is given

using a combination of flowcharts and pseudocode in appendix D.5. These explanations

describe the low-level detail of exactly how each step in the simulation is performed,

without requiring knowledge of a specific programming language. A high-level overview is

shown in figure 4.2. For this work, Python 3113 was used along with the SimPy framework

for discrete event simulation.140

Two separate processes ran in parallel: the candidate listing process and the donor

availability process. The candidate listing process waits a random interval of time before

adding one or more candidates to the waiting list, with the randomised interval and number

of candidates being sampled from a distribution calculated from UK lung transplant data

(see appendix D.3 for an explanation of how this was achieved). Donors also became

available for transplant at a frequency and interval that was calculated from UK lung

transplant data, when a donor became available the allocation policy was executed.

The allocation policy was coded in Python, allowing a very large degree of flexibility

and possible policies to be simulated. The allocation policy screens out candidates that are

not ABO compatible with the donor or not within 15cm of the donor’s height, then ranks

all remaining candidates from highest to lowest allocation score (calculated according to

the policy), allocating the donor lungs to the highest ranked candidate.

All candidates added to the waiting list were assigned a randomly generated waiting

list survival time using the methods described by Bender et al.,136 and according to their

individual characteristics sampled from the UK lung transplant dataset, the Cox model

built for simulating waiting list survival (see page 4.2.1 for a high-level description of this

process or appendix D.1 for a detailed explanation), and the parameters that describe the

shape of the survival curve for candidates on the active UK lung transplant waiting list.

Once a candidate’s waiting list survival time elapsed, if they had not yet been transplanted

they would be counted as a waiting list death.

When a candidate was transplanted according to the allocation policy, their post-

transplant survival duration was calculated, along with net benefit, relative benefit, and

total waiting time to transplant.
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Figure 4.2: High-level overview of major components of the simulation engine. The candidate
listing and donor availability processes ran separately in parallel. The candidate listing process
would add candidates to the waiting list, using time intervals between candidates being listed
that were informed by UK lung transplant data. The donor availability process worked in the
same way, and would cause the allocation policy being simulated to select the highest priority
candidate from the waiting list. Post-transplant survival, net benefit, relative benefit, and waiting
time metrics were then recorded. Candidates not transplanted before their simulated waiting list
survival duration elapsed were counted as waiting list deaths.
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4.2.8 Simulation Engine Evaluation Methods

There were a number of assumptions and complex interactions that needed to be evaluated

in order to ensure the correctness of the simulation engine implementation and the validity

of any results generated.

Evaluating Survival Durations

The most important feature of the simulation engine is its ability to generate realistic

survival durations. The following sequence of steps were followed to evaluate the accuracy

of the survival durations generated by the simulation engine:

1. Split the dataset 80/20 into a training and validation dataset

2. Initialise empty list diffs

3. For each subset size from 100, 200, ..., max subset size:

(a) Initialise temporary empty list tmp diffs

(b) Repeat num runs times:

i. Select subset size individuals from the dataset

ii. Using the covariates of each individual in the subset, generate a realistic

randomised survival duration

iii. Identify the maximum observed survival duration in the dataset and store

in max obs

iv. Calculate the restricted mean (using max obs) for the simulated (sim rmean)

and observed (obs rmean) survival curves

v. Add sim rmean - obs rmean to tmp diffs

(c) Calculate the mean of tmp diffs and add to diffs

4. Output table with columns: subset size and diffs

This process was repeated for both the training and validation cohorts from the wait-

ing list and post-transplant datasets. For each evaluation run, num runs was set to 1000

and max subset size was set to the largest multiple of 100 that was less than or equal

to the number of rows in the dataset being evaluated. For the waiting list dataset,

max subset size was set to 3100 for the training dataset and 700 for the validation

dataset. For the post-transplant dataset, max subset size was 1600 for the training

dataset and 400 for the validation dataset.
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Evaluating Simulations of the Current NHS-BT Policy

To evaluate the accuracy of the simulated NHS-BT lung allocation policy, six key measures

were used to compare the simulation results to observed results:

1. Waiting list survival restricted mean

2. Post-transplant survival restricted mean

3. 1-year post-transplant survival rate

4. 5-year post-transplant survival rate

5. Number of transplants per year

6. Mean waiting time

The Welch Two Sample T-Test was used with the R function t.test, to compare

the simulated to the observed measures. The goal was to ensure that the distribution of

measures were not statistically significantly different.

The simulated results and true observations were also compared visually. The propor-

tion of candidates that were transplanted, died on the waiting list, or still waiting at 6

months, 1, 2 and 3 years after listing were recorded. These proportions were plotted and

compared against the annual NHS-BT organ activity reports where these same figures are

published.

The 1 and 5 year post-transplant survival rates and number of transplants were also

reported, these figures were compared to the 2016-2017 and 2017-2018 annual reports on

cardiothoracic transplantation published by NHS-BT.23,141

97



Chapter 4. Lung Allocation

4.3 Results

In this section the resulting waiting list and post-transplant survival models will be pre-

sented in section 4.3.1, along with the simulation engine validation results using those

models (section 4.3.4), where results are compared to those observed in lung transplant

datasets provided by NHS-BT and also in published annual organ activity reports.23,141

A number of allocation policies and variations on those policies are presented along

with their recorded metrics of using the given survival models within the simulation engine.

Initially the impact on candidates and recipients as priorities move between prioritising

waiting list survival and post-transplant survival is presented in section 4.3.5. Next, the

policies are adjusted to increase the number of SLTs for ILD recipients in section 4.3.5,

followed by different approaches of adjusting priorities based on conditional survival, op-

portunity cost and risk of mortality in sections 4.3.5 - 4.3.5.

The metrics of the simulated policies will be presented at a population level and are

also stratified by diagnosis group, age group and blood group in section 4.3.5.
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4.3.1 Waiting List and Post Transplant Survival Models �|

Training and Validation Datasets

In section 4.2.1 it was assumed that selecting a random subset of patients would result in

a validation dataset that is representative of the training dataset. Numeric variables were

compared between the training and validation datasets using the Welch Two Sample T-

Test, and categorical variables were compared using the Chi-squared test. All p-values were

> 0.05 for both the waiting list and post-transplant datasets. The results are summarised

in table 4.6.

Table 4.6: Statistical comparison of training and validation datasets using the Welch Two Sample
T-Test for numeric variables and the Chi-squared test for categorical variables. A ‘-’ in the table
indicates this variable was not included in the corresponding waiting list/post-transplant model.

Variable Type Waiting List p-value Post-transplant p-value

BMI Numeric 0.68 0.66
Age Numeric 0.59 0.56
FEV1 Numeric 0.11 -
FVC Numeric 0.88 -
Creatinine Numeric 0.99 0.98
Height Delta Numeric - 0.42
Donor Age Numeric - 0.69
Donor BMI Numeric - 0.86
ABO Categorical 0.90 0.11
Diagnosis Group Categorical 0.09 0.69
Sex Categorical 0.72 -
CMV Categorical 0.09 -
Diabetes Categorical 0.31 -
Smoker Categorical 0.26 -
Home Oxygen Categorical 0.65 0.88
Donor Type Categorical - 0.49
Previous Malignancy Categorical - 0.99
Organ Transplanted Categorical - 0.86
Donor CMV Categorical - 0.68
Donor Diabetes Categorical - 0.94

Waiting List Survival Model

The automated process described in section 4.2.1 identified the categorical, linear and non-

linear terms to be included in the waiting list survival model. Out of the variables available

in the waiting list dataset (see Appendix F), 12 were selected for inclusion in the model

(any variables with a high proportion of missing entries or that resulted in the model not

converging were excluded). The forest plot in figure 4.3 contains the categorical variables in

the model, showing (from left to right): the variable name, the possible categorical values

for that variable, the number of individuals in that category (N), the hazard ratio and
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confidence intervals (visualised), the hazard ratio and confidence interval values (or a label

specifying the value is the reference value) and p-value showing statistical significance.

The residual plots in figures 4.4, 4.5, and 4.6 contain the non-linear terms, fit with

restricted cubic splines (RCS). For a detailed explanation of interpreting these models

and plots, see the introduction to survival analysis given in appendix A. The non-linear

variables were BMI, age, FEV1, FVC and creatinine level at time of listing. The residual

plots in figures 4.4, 4.5, and 4.6 show how risk changes with respect to the values of the

variables. A value of 0 indicates no change in risk, a positive value indicates a higher risk

of mortality and a negative value indicates a lower risk of mortality.

The categorical variables were: ABO (not statistically significant, but included to

assess impact by blood group), diagnosis group (group A - COPD - being the reference

group), sex, CMV status, diabetes status, smoking history and requirement for home

oxygen.

All diagnosis groups were at a statistically significant higher risk of mortality on the

waiting list compared to COPD (group A), with ILD (group D) having the highest risk

with a hazard ratio of 3.37. For the variable ‘sex’, males were the reference group with

females having a lower hazard ratio of 0.62. History of CMV infection resulted in a

slightly elevated risk of mortality with a hazard ratio of 1.14 that was close to statistical

significant (p = 0.075). Insulin-dependent diabetes carried a higher risk compared to non-

insulin dependent diabetes or no diabetes, with a hazard ratio of 1.47 (p = 0.002). Having

a smoking history resulted in a hazard ratio of 1.56, however the confidence intervals were

wide resulting in a p-value of 0.119. Requiring home oxygen was statistically significant

(p < 0.001) and had a hazard ratio of 1.74.

On the training dataset (n=3424) the C-statistic was calculated as 0.73, and on the

validation dataset (n=856) the the C-statistic was 0.66. Calibration plots are also shown

for 1-year and 5-year survival in figure 4.7.
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Figure 4.3: Categorical variables: abo = blood group, group = diagnosis group: A = Chronic
Obstructive Pulmonary Disease, B = Pulmonary Arterial Hypertension/Pulmonary Vascular Dis-
ease, C = Cystic Fibrosis, D = Interstitial Lung Disease., sex = biological sex, cmv = cy-
tomegalovirus status, reg diabetes = diabetes status at registration, smoker = smoking status,
reg home oxygen = requirement of oxygen at home at time of registration
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(a)

(b)

Figure 4.4: Residual plots of the non-linear terms in the waiting list survival model fit with
restricted cubic splines. Positive values on the y-axis indicate a higher risk of mortality, negative
values indicate a lower risk of mortality. (a) Risk of mortality generally decreased with increasing
body mass index (BMI), and increased as BMI decreased below (approximately) 23 kg/m2. (b)
Risk of mortality was lowest with a candidate age near 40 years and highest with a candidate age
near 60 years. The decrease after 60 years of age was likely due to the relatively low numbers of
candidates aged over 60.
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(a)

(b)

Figure 4.5: Residual plots of the non-linear terms in the waiting list survival model fit with re-
stricted cubic splines. Positive values on the y-axis indicate a higher risk of mortality, negative
values indicate a lower risk of mortality. (a) Mortality risk was lowest with an FEV1 of approx-
imately 0.8 litres, with risk increasing with FEV1 values both lower and greater than this value.
(b) Risk of mortality was increased with FVC measurements less than 2 litres and increased for
FVC values greater than 2 litres.
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Figure 4.6: Residual plots of the non-linear terms in the waiting list survival model fit with
restricted cubic splines. Positive values on the y-axis indicate a higher risk of mortality, negative
values indicate a lower risk of mortality. Risk of mortality was lessened with measured creatinine
less than approximately 70µmol/litre and heightened above this value.
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(a)

(b)

Figure 4.7: (a) Calibration at 1 year: mean absolute error = 0.002, and (b) 5 years: mean absolute
error = 0.062. The green line shows the ‘ideal’ calibration plot (i.e., perfect predictions), the black
line shows how the model actually performed, and the blue line shows how the model performed
correcting for over-fitting (or ‘optimism’). Mean absolute error is a measure of the average dis-
tance between the blue line (corrected) and green line (ideal), with lower values approaching zero
indicating better calibration.
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Post-transplant Survival Model

Out of the variables available in the post-transplant dataset (see Appendix F), 14 were

selected for inclusion in the model (any variables with a high proportion of missing entries

or that resulted in the model not converging were excluded). The categorical and linear

variables are shown in figure 4.8 and the non-linear variables are contained in figure 4.9.

The training dataset for post-transplant survival (n = 1705) had a C-statistic of 0.60, and

the validation dataset (n = 426) resulted in a C-statistic of 0.55. Calibration plots at 1

and 5 years post-transplant are shown in figure 4.10.

Figure 4.8: Categorical and linear variables in the post-transplant Cox model: abo = blood group,
group = diagnosis group: A = Chronic Obstructive Pulmonary Disease, B = Pulmonary Arterial
Hypertension/Pulmonary Vascular Disease, C = Cystic Fibrosis, D = Interstitial Lung Disease.,
dtype = donor type (donation after brainstem death - DBD, or donation after circulatory death -
DCD), reg prev malignancy = history of previous malignancy prior to listing, reg creatinine
= creatinine level at time of registration, reg home oxygen requirement for home oxygen at time
of registration, organ = donated organ type (right lung, left lung, or lung pair), dcmv = donor
cytomegalovirus status, ddiab = donor diabetes status, dage = donor age, rbmi = recipient BMI
at time of transplant, height delta = donor - recipient height difference (cm)
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(a)

(b)

Figure 4.9: Residual plots of the non-linear terms in the post-transplant survival model fit with
restricted cubic splines. Positive values on the y-axis indicate a higher risk of mortality, negative
values indicate a lower risk of mortality. (a) Recipients aged approximately 40 years had the lowest
risk of mortality, with risk increasing with both decreasing and increasing age from this point. (b)
Risk of mortality was increased with BMI less than 20 or greater than 30.
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(a)

(b)

Figure 4.10: (a) Calibration at 1 year: mean absolute error = 0.016, and (b) 5 years: mean
absolute error = 0.026. The green line shows the ‘ideal’ calibration plot (i.e., perfect predictions),
the black line shows how the model actually performed, and the blue line shows how the model
performed correcting for over-fitting (or ‘optimism’). Mean absolute error is a measure of the
average distance between the blue line (corrected) and green line (ideal), with values approaching
zero indicating better calibration.
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4.3.2 NHS-BT UK Lung Allocation Policy Concordance Index

The results of calculating the concordance index (C-statistic/AUC) for the current NHS-

BT policy and survival models in this thesis are shown in table 4.7. The dataset was

limited to candidates and recipients listed or transplanted in the years 2018 - 2021. The

current NHS-BT policy had weak predictive power for both waiting list survival (training

cohort = 0.51, validation cohort = 0.56), and post-transplant survival (training cohort =

0.54, validation cohort = 0.52). By comparison, the Cox models in this thesis had much

stronger predictive power for waiting list survival (training cohort = 0.71, validation cohort

= 0.69), and slightly stronger predictive power for post-transplant survival (training cohort

= 0.62, validation cohort = 0.61).

Table 4.7: Comparison of the concordance index (also called C-statistic or AUC) between the sur-
vival models generated in this thesis (‘Thesis’ column) and the NHS-BT UK adult lung allocation
policy. Datasets were limited to candidates listed or transplanted in the year 2018 or later.

Waiting List Survival Post-transplant Survival
Cohort Population (n) NHS-BT Thesis Population (n) NHS-BT Thesis

Training 619 0.51 0.71 302 0.54 0.62
Validation 170 0.56 0.69 65 0.52 0.61

4.3.3 Simulation Parameters |

The FlexSurv package in R137 calculated the parameters for the waiting list survival Cox-

Gompertz distribution (scale parameter: λ, shape parameter: α) and post-transplant

survival Cox-Weibull distribution (scale parameter: λ, shape parameter: ν), the parame-

ters are shown in table 4.8 and comparisons of modelled and observed survival curves are

shown in figure 4.11.

The frequencies of time gaps between candidate listing events along with the frequen-

cies of the number of newly listed candidates are shown in table 4.9, along with the same

data for the frequencies and intervals of donor offering events.

Table 4.8: Distribution parameters for waiting list and post-transplant survival. Waiting list sur-
vival was modelled using a Cox-Gompertz distribution: λ = scale parameter, α = shape parameter.
Post-transplant survival was modelled using a Cox-Weibull distribution: λ = scale parameter, ν
= shape parameter.

Population λ ν α

Waiting List 0.0007868 - -0.0005976
Post-transplant 0.004216 0.6661 -
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(a)

(b)

Figure 4.11: (a) Gompertz distribution used for simulating waiting list survival durations (red)
compared to observed waiting list survival curve (black). (b): Weibull distribution used for simu-
lating post-transplant survival (red) compared to observed post-transplant survival curve (black).
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Table 4.9: Top: Number of days between new candidate listing events and their frequencies.
When a new listing event occurs, the number of new listings and their frequencies are shown in the
rightmost columns. Bottom: Number of days between donor offering events and their frequencies.
When a new offering event occurs, the number of donors being offered and their frequencies are
shown in the rightmost columns.

Time between Frequency Number of Frequency
listings (days) new listings

1 1008 1 1318
2 357 2 628
3 366 3 276
4 243 4 93
5 157 5 47
6 121 6 21
7 73 7 9
8 28 8 5
9 17 9 3
10 11 10 2
11 10 12 1
12 3
13 1
14 1
15 3
16 1
17 1
18 1

Time between Frequency Number of Frequency
offers (days) offers

1 754 1 1741
2 510 2 393
3 334 3 56
4 156 4 4
5 150
6 97
7 56
8 43
9 27
10 20
11 7
12 12
13 15
14 6
15 3
16 2
17 6
18 1
20 2
26 1
27 1
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4.3.4 Simulation Evaluation Results |

In the hypothesis in section 1.2.2 it is stated: ‘If the current UK lung allocation policy

can be simulated and performance metrics measured, then improvements can be identified

...’ (emphasis added). The purpose of these results is to demonstrate the ability of the

survival models and simulation engine to: (1) - generate realistic survival times and (2) -

simulate the current UK lung allocation policy.

(1) was evaluated by using the methods in section 4.2.1 to generate survival durations

and plot survival curves to compare with those plot from the dataset. (2) was evaluated by

comparing the metrics calculated by the simulation engine and comparing those metrics

to those observed in the dataset, and where possible, results published in the NHS-BT

annual reports.23,141

The evaluation results for the simulated survival durations on the waiting list and

post-transplant are shown in this section. The simulated survival durations are compared

with the observed survival durations and the differences are tabulated. A negative dif-

ference indicates the simulated results under-estimate the survival duration, and positive

differences indicate the simulated results over-estimated the survival duration. The tables

in this section are condensed, for full results tables see appendix E.

Evaluating Generated Survival Durations

Waiting List Survival - Training Dataset The waiting list survival durations tended

to be slightly under-estimated by the simulation technique. With a randomly selected sub-

set of 100 individuals the mean difference was -129 days (an error of approximately 7.2%),

however as the random sample size increased the mean difference was closer to -50 days

on the training dataset (an error of about 2.8%). For the training dataset comparisons,

survival curves are shown in figure 4.12 and appendix E.2. A summary of results are

shown in table 4.10.

Waiting List Survival - Validation Dataset When comparing the simulated results

to the validation dataset, the difference ranged from 1 to 8 days for a subset size ≥ 200.

This represents an error of < 0.1% to 0.3%. The smallest subset size (100) resulted in

under-estimating survival by 29 days, an error of 2.3%. For the validation cohort, survival

curves are shown in figure 4.12 and appendix E.2. A summary of results are shown in

table 4.10.

Post-Transplant Survival - Training Dataset For post-transplant survival dura-

tions, the simulated survival durations were on average 103 - 118 days longer than the

observed survival durations (an error of 3.6% to 4.1%) when evaluating using the training

dataset. Survival curves for the training dataset are shown in figure 4.13 and appendix E.3,

and a summary of results are shown in table 4.10.
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Post-Transplant Survival - Validation Dataset For the validation dataset, sim-

ulated survival durations were 6 - 35 days longer than observed durations (an error of

0.2% to 1.2%). For the validation dataset, survival curves are shown in figure 4.13 and

appendix E.3 and results are shown in table 4.10.

Table 4.10: To validate the accuracy of the simulated waiting list and post-transplant survival
times, random subsets of patients were selected and simulated survival durations were generated
for each patient. This process was repeated 1000 times for each subset size, and the observed
survival times (area under survival curve) were compared to the simulated survival times. This
process was completed using the NHS-BT waiting list dataset (training - (a), validation - (b)) and
post-transplant dataset (training - (c), validation - (d)), using both the training and validation
cohorts. A negative mean difference indicates the simulation under-estimates survival and vice
versa. Survival durations are reported as: mean (standard deviation).

(a) Waiting List Survival - Training Dataset

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 1724 (145.2) 1853 (368.7) -129
500 1713 (66.7) 1793 (182.6) -80
1000 1714 (47.2) 1779 (142) -65
2000 1718 (31.6) 1767 (110.5) -49
3400 1715 (25.2) 1764 (83.9) -49

(b) Waiting List Survival - Validation Dataset

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 1246 (97.1) 1275 (192.6) -29
200 1249 (68.5) 1244 (131.6) 5
300 1247 (56.9) 1245 (113.3) 2
400 1252 (49.1) 1243 (93.8) 8
500 1252 (42.4) 1251 (83.1) 1
600 1253 (39.4) 1247 (75.2) 6
700 1250 (35.6) 1249 (71.7) 1
800 1250 (33.6) 1245 (67.4) 5

(c) Post-transplant Survival - Training Dataset

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 2917 (255.3) 2814 (295.8) 103
500 2923 (117.6) 2811 (129) 112
1000 2923 (82.9) 2805 (89.4) 118
1700 2924 (61) 2810 (72.6) 114

(d) Post-transplant Survival - Validation Dataset

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 2930 (263.9) 2924 (305.5) 6
200 2935 (186.1) 2902 (206.7) 33
300 2940 (151.9) 2905 (181.7) 35
400 2935 (129) 2902 (149.9) 33
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(a)

(b)

Figure 4.12: Comparison of observed versus simulated waiting list survival curves, using (a) a
random subset of 3400 lung transplant candidates for the training dataset and (b) a random
subset of 800 from the validation dataset to plot the survival curves.
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(a)

(b)

Figure 4.13: A comparison of survival curves for simulated and observed post-transplant survival
durations, for (a) a random selection of recipients from the training dataset (n=1700) and (b)
validation dataset (n=400).
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Evaluating Simulation Engine Metrics vs Observed Transplant Metrics � |

The previous section compared simulated survival durations to observed survival durations

using only the survival time generation logic in isolation. The simulation engine simulates

multiple processes that interact: new candidates being added to the waiting list, donors

being offered for transplant and the NHS-BT lung allocation policy.

This section compares the metrics generated from simulating the NHS-BT policy using

the simulation engine, to metrics observed in data or published in the annual NHS-BT

organ activity reports.

Figure 4.14 shows the Kaplan-Meier (KM) curves comparing simulated to observed

survival durations for waiting list and post-transplant survival, using the training and

validation datasets. Table 4.11 shows a comparison of simulated and observed data using

the restricted means (area under the curve (AUC)) for waiting list and post-transplant

survival. A comparison of 90-day, 1- and 5-year post-transplant survival rates are shown

in table 4.12 and a comparison of waiting times and number of annual transplants are

shown in table 4.13.

Comparison of Simulated and Published Annual Report Metrics

Table 12.2 in the 2016-2017 and 2017-2018 NHS-BT annual reports23,141 list the mean

(95% CI) 1-year post-transplant survival rates as 79.8% (76.7 - 82.6%) and 80.0% (76.8 -

82.8%) respectively. The 95% confidence intervals also overlap with the simulated results

(80.2%), giving additional confidence in the simulated results.

For 5-year post-transplant survival the simulated survival rate was 53.5% (53.2% -

53.8%). This is slightly lower than the 5-year survival rates observed in the dataset

and what was published in the 2016-2017 annual report.23 The simulated 5-year post-

transplant survival rate did overlap with the rates observed in 2017-18,141 which reported

a rate of 56.9% with 95% confidence intervals spanning from 52.9% to 60.7%.

Table 11.1 in the 2016-2017 and 2017-2018 annual reports23,141 lists the number of

annual transplants as 167 and 207 respectively. These are more difficult to compare to

simulated results as there are no confidence intervals and these are reports for a single

year, and transplant rates vary by year, making simulating the exact transplant rate year

to year difficult. The simulated number of annual transplants (148.8) were very close to

those observed in the dataset (149.4) and did not significantly differ (p = 0.94).

Simulated outcomes from listing are shown in figure 4.16 and observed outcomes are

shown in figure 4.17.
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Simulation Engine Survival Durations Compared to Observed Survival

Table 4.11: A comparison of observed and simulated population survival using survival durations
generated from the simulation engine.

Population Simulated Duration Observed Duration Difference

Waiting List - Training 1718 (6.2) 1769 (78.3) -51
Waiting List - Validation 1285 (3.4) 1248 (63.1) 37
Post-Transplant - Training 2989 (7.4) 2810 (71.4) 179
Post-Transplant - Validation 2994 (7.5) 2903 (146.4) 91

Simulation Engine Post-transplant Survival Compared to Observed Rates

Table 4.12: Post-transplant survival rates generated from the simulation engine compared to those
observed in the training and validation datasets.

Post-TX Simulated Observed - Observed - Observed -
Duration (95% CI) Dataset 2016-17 2017-18

90-Day(%) 91.7 (91.6 - 91.9) 89.8 (88.5 - 91.1) 90.0 (87.6 - 92.0) 89.4 (86.9 - 91.4)
1-Yr (%) 80.2 (80.0 - 80.5) 80.3 (78.6 - 82.0) 79.8 (76.7 - 82.6) 80.0 (76.8 - 82.8)
5-Yr (%) 53.5 (53.2 - 53.8) 56.4 (54.2 - 58.8) 58.3 (54.2 - 62.2) 56.9 (52.9 - 60.7)

Comparison of Simulated and Observed Transplant Volumes and Waiting
Times

Table 4.13: Comparison of simulated and observed transplant volumes and waiting times. Annual
transplants were simulated accurately but waiting times were over-estimated by about 60 days.

Metric Simulated Observed p-value

Number of Annual Transplants 148.8 (±2.4) 149.4 (±30.1) 0.94
Mean Waiting Time (Days) 443.1 (±30.8) 379.9 (±434.1) <0.0001
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(a)

(b)

Figure 4.14: Waiting list survival curves showing population survival from the full simulation engine
compared to the training and validation datasets. (a) Waiting list survival - training dataset, (b)
Waiting list survival - validation dataset.
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(a)

(b)

Figure 4.15: Post-transplant survival curves showing population survival from the simulation engine
compared to the training and validation datasets. (a) Post-transplant survival - training dataset,
(b) Post-transplant survival - validation dataset.
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(a)

(b)

Figure 4.16: (a) Simulated proportions of outcomes from listing. (b) Published outcomes from the
NHS-BT 2016-17 annual report.23 Red bars (topmost bars) show the percentage of candidates
that have died, green bars (middle bars) show the percentage still waiting, and blue bars (bot-
tommost bars) show the percentage transplanted at 6 months, 1, 2, and 3 years after listing.
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Figure 4.17: Published outcomes from listing from the NHS-BT 2017-18 annual report.141Red
bars (topmost bars) show the percentage of candidates that have died, green bars (middle
bars) show the percentage still waiting, and blue bars (bottommost bars) show the percentage
transplanted at 6 months, 1, 2, and 3 years after listing.
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4.3.5 Simulation Results �

Impact of Prioritising Waiting List Survival vs Post-transplant Survival

At a population level, prioritising waiting list survival tended to result in fewer waiting

list deaths, at the expense of lower net benefit, lower post-transplant survival and in-

creased waiting times. On the other hand, prioritising post-transplant survival resulted in

increased post-transplant survival rates, increased net benefit and lower waiting times, at

the expense of increased waiting list mortality. The results for the current NHS-BT policy

and standard WL:PTX policies are shown in table 4.14.

Table 4.15 shows there are statistically significant differences in the number of waiting

list deaths between policies, and figure 4.18 contains a violin plot showing the distribution

of waiting list deaths for each simulated policy. A violin plot is similar to a ‘Box and

Whisker’ plot, but shows the shape of the entire distribution of values rather than only

showing quartiles. This plot also shows the general trend of increasing waiting list deaths

as priority shifts towards maximising post-transplant survival.

Table 4.14: Comparison of the five different priority ratios of waiting list (WL) survival and post-
transplant (PTX) survival to the current NHS-BT policy. Metrics are reported as: mean (SD).

Policy
Annual
Waiting

List Deaths

Net
Benefit
(Days)

Relative
Benefit

1/5-Yr PTX
Survival (%)

Annual
Transplants

Waiting
Time
(Days)

NHS-BT 90 (7.4) 1833 6.8 80.2 / 53.3 203 (5.6) 416 (35.2)

WL 46 (4.2) 2238 15.1 80.0 / 53.0 204 (4.1) 544 (33.4)
2:1 WL:PTX 46 (3.8) 2300 15.5 80.5 / 53.9 204 (4.9) 540 (35.1)
1:1 WL:PTX 47 (4) 2376 15.7 81.0 / 55.0 204 (4.3) 538 (30.4)
1:2 WL:PTX 51 (5) 2459 15.7 81.8 / 56.4 204 (4.8) 508 (32.6)

PTX 77 (5.2) 2522 14.1 83.5 / 59.5 204 (4.4) 343 (21.8)

Table 4.15: Significance levels of number of annual waiting list deaths between policies. Key: NS
(not significant), · (p < 0.10), * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001)

WL 2:1 1:1 1:2 PTX

NHS-BT **** **** **** **** ****
WL NS NS **** ****
2:1 NS **** ****
1:1 **** ****
1:2 ****
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Figure 4.18: Violin plot of the number of annual waiting list deaths as the priority-ratio changes
from waiting list survival (WL) to post-transplant survival (PTX) (e.g., the 2:1 WL:PTX policy
gives twice as much priority to waiting list survival compared to post-transplant survival.) The
width of the plot indicates the relative frequency of the corresponding value on the y-axis from 40
simulations spanning 20 years.

Impact of Increased Utilisation

The impact of increased lung utilisation on waiting list deaths was investigated, using

the WL policy to prioritise candidates in each scenario. There was a non-proportional

reduction in waiting list deaths compared to the increase in utilisation. The percentage

reduction in waiting list deaths was on average 15.5% greater than the corresponding

percentage increase in utilisation.

Table 4.16: Percentage reduction in annual waiting list mortality with respect to the simulated
percentage increase in lung utilisation. The allocation policy that prioritises waiting list survival
was used as a reference to evaluate the decrease in waiting list deaths as utilisation increased. Note
the non-proportional reduction in waiting list mortality with respect to the percentage increase in
utilisation.

Utilisation % Increase Annual Waiting List Deaths % Reduction

WL (Reference) 46 -
WL +5% 41 10.9%
WL +10% 36 21.7%
WL +25% 25 45.7%
WL +50% 12 73.9%
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Impact of Increased Single-Lung Transplant for Candidates with ILD

Ordering of Offers Offering the left lung first and right lung first were both simulated

using the SLT algorithm combined with the WL policy. When allocating the lung pair

all candidates were considered, so only the left/right offering order was simulated. There

was no statistical difference in the number of waiting list deaths between the two offering

orders (2-tailed t-test, p ≥ 0.41).

Table 4.17: The order of offering left lung or right lung first for the single-lung transplant policy
had no impact on the annual number of waiting list deaths.

Offer Order Annual Waiting List Deaths

Left, Right 33
Right, Left 32

Impact of SLT Age Threshold The lowest number of waiting list deaths were achieved

with no age threshold for ILD recipients to undergo SLT, and the number of waiting list

deaths increased as the age threshold increased. Not setting an age threshold resulted in

33 waiting list deaths per year. Setting the age threshold to 55 years or greater increased

the number of waiting list deaths to 39 (p < 0.0001), and a threshold of 60 years resulted

in 44 waiting list deaths per year (p < 0.0001 compared to no age threshold, p < 0.0001

compared to an age threshold of 55 years).

Table 4.18: Waiting list deaths were minimised with no age threshold for a candidate with ILD to
undergo single-lung transplant.

Age Threshold Annual Waiting List Deaths

None 33
55+ 39
60+ 44

Combining Single-Lung Transplant with Waiting List / Post-transplant

Survival Policies

The SLT algorithm was combined with each allocation policy, and each of the five per-

formance metrics were calculated for comparison. All SLT policies significantly decreased

waiting list deaths, with the SLT-1:2 policy resulting in the fewest annual waiting list

deaths (31). Compared to the standard 1:2 policy, the reduction in waiting list deaths

came at the expense of lower net benefit (2165 days vs 2459 days), lower relative benefit

(14.4 vs 15.7), and lower survival rates at 1 and 5 years post-transplant (79.3% vs 81.8%

and 52.1% vs 56.4% respectively).

Table 4.19 gives an overview of the performance of the SLT policies, table 4.20 shows

the impact on transplant volume, table 4.21 shows which pairs of SLT policies performed

significantly differently and figure 4.19 shows a plot of waiting list deaths by SLT policy.
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Overall, there was less difference between the SLT policies than with the standard five

policies. In terms of waiting list deaths, the SLT-1:2 policy had statistically significantly

fewer waiting list deaths compared to the other SLT policies as shown in table 4.21.

Maximising the number of single lung transplants resulted in a similar reduction in waiting

list deaths as increasing the size of the donor pool by 10%.

Table 4.19: Combining increased single-lung transplant (SLT) for candidates with interstitial lung
disease with each of the priority ratios resulted in a large reduction in annual waiting list deaths.

Policy Waiting List Net Benefit Relative 1/5-yr Post-Tx Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 90 (7.4) 1833 6.80 80.20 / 53.30 416 (35.2)

SLT-WL 33 (3.6) 2100 14.30 78.80 / 51.20 435 (31.8)
SLT-2:1 32 (3.8) 2155 14.60 79.30 / 52.00 425 (37.1)
SLT-1:1 33 (3.1) 2197 14.60 79.60 / 52.60 423 (29.4)
SLT-1:2 31 (2.8) 2165 14.40 79.30 / 52.10 373 (26.2)
SLT-PTX 34 (3.1) 2073 13.60 78.90 / 51.30 264 (24.2)

Table 4.20: Transplant volume varies depending on the SLT policy in place, with the largest
transplant volume occurring with the SLT-PTX policy.

Policy Transplants Per Year Number BLT (%) Number SLT (%)

SLT-WL 230 (4.1) 176.7 (76.5%) 54.3 (23.5%)
SLT-2:1 231 (4.1) 177.1 (76.4%) 54.7 (23.6%)
SLT-1:2 241 (3.7) 166.1 (68.9%) 75.1 (31.1%)
SLT-PTX 257 (4.3) 152.2 (59.7%) 102.6 (40.3%)

Table 4.21: Significance levels of number of annual waiting list deaths between policies, using the
Welch two-sample t-test. Key: NS (not significant), · (p < 0.10), * (p < 0.05), ** (p < 0.01), ***
(p < 0.001), **** (p < 0.0001)

SLT-2:1 SLT-1:1 SLT-1:2 SLT-PTX

SLT-WL NS NS ** NS
SLT-2:1 NS * *
SLT-1:1 *** NS
SLT-1:2 ****
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Figure 4.19: Violin plot of the number of annual waiting list deaths as the priority-ratio changes
from waiting list survival (WL) to post-transplant survival (PTX) for the policies that preferentially
allocate single lungs to candidates with interstitial lung disease (e.g., the SLT-1:2 policy gives twice
as much priority to waiting list survival compared to post-transplant survival.) The width of the
plot indicates the relative frequency of the corresponding value on the y-axis from 40 simulations
spanning 20 years.

Impact of Increased SLT Combined With Increased Utilisation Compared to

the standard WL policy, the SLT-WL policy resulted in a 28.3% decrease in annual waiting

list deaths. The non-proportional decrease in waiting list deaths was greater than with

the WL policy. On average, the percentage reduction in waiting list deaths was 17.6%

greater than the percentage increase in utilisation.

Using the SLT-WL policy, a 5% increase in utilisation resulted in a 12.1% reduction

in waiting list deaths and a 25% increase resulted in a 48.5% reduction. The full results

are shown in table 4.22.

Population Benefit and Opportunity Cost

The standard WL - PTX policies resulted in lower total net life gain compared to the SLT

policies. For the standard policies, the 1:2 WL:PTX policy resulted in the highest net life

gain of 827 additional years of life gained annually.
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Table 4.22: Comparison of the number of annual waiting list deaths between the current NHS-BT
policy, the policy that prioritises waiting list survival (WL), and the policy that increases the use
of single-lung transplant for ILD candidates that also prioritises waiting list survival (SLT-WL).
The SLT-WL policy was also simulated with increased lung utilisation. Note the non-proportional
decrease in waiting list deaths in comparison to the percentage increase in utilisation.

Policy Utilisation Waiting List % Reduction % Reduction % Reduction
Increase Deaths (NHS-BT) (WL) (SLT-WL)

NHS-BT 0% 90 - - -
WL 0% 46 48.9% - -

SLT-WL 0% 33 63.3% 28.3% -
SLT-WL 5% 29 67.8% 37.0% 12.1%
SLT-WL 10% 25 72.2% 45.7% 24.2%
SLT-WL 25% 17 81.1% 63.0% 48.5%
SLT-WL 50% 8 91.1% 82.6% 75.8%

The SLT policies resulted in higher overall net life gain compared to the standard

policies, despite the less optimal post-transplant outcomes. The highest performing SLT

policy was the SLT-1:2 policy with 946 years of additional life gained annually. In terms of

minimising net benefit loss and maximising net benefit gain, the SLT policies performed

significantly better than the standard policies. As a comparison, the worst performing

SLT policy (SLT-WL) resulted in higher net life gain than the best performing standard

policy (840 years vs 827 years respectively).

A full summary of results are visualised as a bar graph in figure 4.20.
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(a)

(b)

Figure 4.20: A plot showing population-level gain in life-years (i.e., total additional years of life
gained from transplant) for transplanted candidates (leftmost/green), potential life-years that were
lost due to candidates dying on the waiting list (middle/red) and the net difference in life-years
gained (rightmost/blue). (a) Results for the policies with a range of priority-ratios ranging from
prioritising only waiting list survival (WL) to post-transplant survival (PTX) (b) Results for
the policies that preferentially allocate single lungs to candidates with interstitial lung disease,
combined with the corresponding priority-ratios of waiting list survival (WL) and post-transplant
survival (PTX).
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Impact of Risk-Adjusted Benefit

Implementing risk-adjusted benefit did not result in a significant difference on any of the

metrics. Prioritising patients by probability of reaching the equity point did not have

any measurable benefit. Table 4.23 shows how varying the risk-weight didn’t significantly

change any of the metrics. Additionally, the Welch Two Sample T-Test showed no signif-

icant difference between any pair of RAB policies when comparing metrics. Figure 4.21

visualises the population-level survival gain and loss between RAB policies and the stan-

dard 1:1 policy.

Table 4.23: Adjusting net benefit by the risk of mortality post-transplant (risk adjusted benefit
(RAB)) performance metrics at different risk-weightings compared to the standard 1:1 policy.
RAB-0% is identical to the 1:1 policy as 0% weight is given to the risk-adjusted net benefit value.
RAB-100% ignores the standard net benefit (difference between waiting list and post-transplant
survival durations) and uses only the risk adjusted net benefit. RAB policies between these two
take a weighted sum of standard and risk adjusted net benefit.

Policy (Risk
Weight %)

Waiting
List Deaths

Net
Benefit
(Days)

Relative
Benefit

1/5-Yr PTX
Survival (%)

Waiting
Time
(Days)

1:1 47 (4) 2376 15.7 81.0 / 55.0 538 (30.4)
RAB-0% 46 (4.5) 2365 15.7 81.0 / 54.9 527 (36.4)
RAB-25% 46 (3.1) 2357 15.6 80.9 / 54.5 534 (23.5)
RAB-50% 46 (3.4) 2375 15.8 81.0 / 54.7 532 (30.4)
RAB-75% 46 (4.2) 2371 15.8 81.2 / 55.0 535 (34.5)
RAB-100% 46 (4) 2371 15.7 80.7 / 54.9 536 (32.4)

Figure 4.21: Risk-adjusted benefit (RAB) adjusts allocation scores using the risk of a recipient not
surviving long enough realise that benefit. Despite adjusting for risk, there was no overall change
in life-years gained (i.e., total additional life experienced from all transplant recipients.)
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Impact of Conditional Survival

The WL and 1:1 policies were combined with the conditional survival formula in order to

assess the impact of allocating based on the risk of mortality on the waiting list over the

next day, 7 days, 30 days, 1 year and 5 years.

When combined with the WL policy, comparing waiting list deaths between the CON-

WL-365, CON-WL-1 and CON-WL-7 policies resulted in p-values near statistical signif-

icance (p < 0.10), but did not result in p-values < 0.05 (see table 4.26). There was no

statistical significance between waiting list deaths when comparing any of the CON-1:1

policies.

Tables 4.24 and 4.25 show no significant differences in performance metrics when using

conditional survival.

Table 4.24: Adjusting allocation scores using conditional survival for an additional 1, 7, 30, 365
or 1095 days on the waiting list did not result in significant differences in performance metrics
compared to the standard WL policy.

Policy
Waiting

List Deaths

Net
Benefit
(Days)

Relative
Benefit

1/5-Yr PTX
Survival (%)

Waiting
Time
(Days)

WL 46 (4.2) 2238 15.1 80.0 / 53.0 544 (33.4)

CON-WL-1 46 (4) 2237 15.2 79.9 / 53.0 546 (31.7)
CON-WL-7 46 (3.8) 2241 15.2 80.0 / 53.1 551 (31.5)
CON-WL-30 46 (3.9) 2207 15.0 79.9 / 52.7 545 (29.9)
CON-WL-365 44 (3.7) 2252 15.3 80.3 / 53.1 540 (33.5)
CON-WL-1095 45 (3.1) 2237 15.2 79.9 / 52.9 541 (27.3)

Table 4.25: Adjusting allocation scores using conditional survival for an additional 1, 7, 30, 365
or 1095 days on the waiting list did not result in significant differences in performance metrics
compared to the standard 1:1 policy.

Policy
Waiting

List Deaths

Net
Benefit
(Days)

Relative
Benefit

1-Yr / 5-Yr
PTX Survival

(%)

Waiting
Time
(Days)

1:1 47 (4) 2368 15.70 80.9 / 54.9 536 (32.3)

CON-1:1-1 46 (4) 2352 15.6 80.6 / 54.5 533 (34.7)
CON-1:1-7 46 (4.6) 2367 15.5 80.9 / 54.7 531 (25.7)
CON-1:1-30 46 (3.8) 2370 15.6 81.0 / 54.8 537 (31.7)
CON-1:1-365 47 (4.5) 2361 15.7 80.9 / 54.6 534 (36.9)
CON-1:1-1095 46 (3.9) 2384 15.9 81.1 / 55.2 534 (27.8)
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Table 4.26: Significance levels of number of annual waiting list deaths between policies using the
Welch two-sample t-test. Allocation scores have been adjusted using conditional survival. Key:
NS (not significant), · (p < 0.10), * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001)

CON-WL-1 CON-7 CON-30 CON-365 CON-1095

WL NS NS NS NS NS
CON-WL-1 NS NS · NS
CON-WL-7 NS · NS
CON-WL-30 NS NS
CON-WL-365 NS

Impact by Diagnosis Group

Table 4.27: Impact by policy on candidates and recipients with group A (chronic obstructive
pulmonary disease) diagnoses.

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 17 (1.6) 1227 4.6 78.1 / 49.3 526 (52.2)

WL 24 (2) 1642 8.8 78.3 / 50.1 1652 (73)
2:1 WL:PTX 27 (1.8) 1674 8.9 78.6 / 50.1 1746 (76.7)
1:1 WL:PTX 29 (2) 1829 9.5 79.3 / 52.1 1820 (63.3)
1:2 WL:PTX 29 (2.3) 1933 9.8 80.9 / 54.3 1815 (90)

PTX 21 (1.7) 1901 8.9 81.5 / 55.3 981 (68.7)

SLT-WL 20 (2) 1595 8.6 78.2 / 49.6 1450 (83.1)
SLT-2:1 21 (2.3) 1636 8.8 78.6 / 50.1 1531 (103.2)
SLT-1:1 24 (2.2) 1750 8.8 78.9 / 51.4 1615 (90.8)
SLT-1:2 23 (2) 1784 8.7 79.4 / 52.1 1533 (88)
SLT-PTX 23 (2) 1731 7.5 80.5 / 53.0 1077 (105.1)

Impact on Group A - COPD Candidates and recipients with group A diagnoses

(COPD) tended to benefit as priority shifted away from waiting list survival and empha-

sised post-transplant survival, though the number of waiting list deaths follows an inverted

‘U’ shape.

As priority shifted towards post-transplant survival the number of waiting list deaths

initially increased from 24 (WL) to 29 (1:1), then decreased to 21 with the PTX policy.

Net benefit increased from 1642 days (WL) to 1933 days (1:2) and then decreased

again to 1901 days with the PTX policy. Relative benefit increased from 8.8 (WL) to 9.5

(1:1) and then decreased again to 8.9 with the PTX policy.

1 year post-transplant survival increased from 78.3% (WL) to 81.5% (PTX) and 5 year

post-transplant survival increased from 50.1% to 55.3%. Mean waiting time decreased from

1652 days to 981 days.

Implementation of the SLT algorithm for group D (ILD) candidates also resulted in

fewer waiting list deaths for group A (COPD) candidates, but also resulted in a slight

decrease in post-transplant survival rates, net benefit and waiting time.
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(a)

(b)

Figure 4.22: (a) Using the standard policies, for group A (COPD) candidates, prioritising post-
transplant survival resulted in the fewest waiting list deaths. The WL policy also resulted in a low
number of waiting list deaths, with mortality increasing as post-transplant priority increases (up
to the 1:2 policy). (b) For group A (COPD) candidates, the SLT policies resulted in a reduction in
waiting list deaths compared to the standard policies (with the exception of the SLT-PTX policy
compared to the PTX policy). Waiting list mortality increased slightly as priority shifted from the
SLT-WL policy to the SLT-PTX policy.
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Table 4.28: Impact by policy on candidates and recipients with group B (pulmonary arterial
hypertension / pulmonary vascular disease) diagnoses.

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 2 (0.4) 1793 5.8 80.5 / 55.3 473 (59.1)

WL 2 (0.3) 2135 12.5 81.3 / 54.1 1120 (162.1)
2:1 WL:PTX 2 (0.5) 2185 13.0 81.3 / 54.8 1092 (119.3)
1:1 WL:PTX 2 (0.3) 2300 13.7 81.8 / 57.4 1080 (139.5)
1:2 WL:PTX 2 (0.3) 2357 12.7 82.5 / 55.7 920 (172)

PTX 1 (0.3) 2371 12.9 83.0 / 59.6 305 (63.5)

SLT-WL 1 (0.4) 2072 13.4 78.9 / 52.6 901 (131.6)
SLT-2:1 1 (0.3) 2234 13.3 81.5 / 55.0 883 (154.8)
SLT-1:1 1 (0.2) 2202 12.5 81.7 / 55.9 789 (133.8)
SLT-1:2 1 (0.2) 2296 12.2 81.9 / 56.5 592 (117.6)
SLT-PTX 2 (0.4) 2238 10.9 82.6 / 58.3 396 (74.6)

Impact on Group B - Pulmonary Vascular Disease/PAH Candidates with group

B diagnoses (PAH) tended to benefit as priority shifted to maximising post-transplant

survival. It is worth noting that there were relatively fewer group B candidates than in

the other three diagnosis groups.

The number of waiting list deaths was low for all policies, ranging from 1 to 2. As

priority shifted from the WL policy to the PTX policy, net benefit increased from 2135

days to 2371 days. One year post-transplant survival rates increased from 81.3% to 83.0%

and give year post-transplant survival rates increased from 54.1% to 59.6%.

Introduction of the SLT algorithm for ILD candidates had a marginal impact on the

number of waiting list deaths and both net benefit and post-transplant survival rates

decreased slightly.
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(a)

(b)

Figure 4.23: (a) For candidates with pulmonary vascular disease/PAH, increasing post-transplant
priority generally resulted in decreasing waiting list deaths, though the difference was relatively
small compared to other diagnosis groups. (b) For candidates with pulmonary vascular disease/-
PAH, the SLT policies resulted in a slight decrease in annual waiting list deaths, though the
difference was not very substantial.
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Table 4.29: Impact by policy on candidates and recipients with group C (cystic fibrosis) diagnoses.

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 21 (2.1) 2601 7.8 85.8 / 64.5 436 (39)

WL 12 (1.5) 2825 15.3 84.8 / 62.6 683 (57.2)
2:1 WL:PTX 8 (1.1) 2884 16.0 85.6 / 63.6 486 (55.7)
1:1 WL:PTX 5 (0.8) 2908 16.1 85.9 / 64.3 322 (38.4)
1:2 WL:PTX 2 (0.5) 2951 16.7 86.0 / 64.9 118 (22.4)

PTX 2 (0.4) 2955 16.3 86.1 / 65.0 32 (4.1)

SLT-WL 8 (1.2) 2860 15.6 85.0 / 63.3 494 (46.8)
SLT-2:1 5 (0.9) 2901 16.1 85.6 / 64.1 317 (49.1)
SLT-1:1 3 (0.6) 2913 16.2 85.7 / 64.5 199 (36.4)
SLT-1:2 2 (0.3) 2897 16.4 85.5 / 64.0 69 (13.5)
SLT-PTX 4 (0.7) 2922 15.4 86.3 / 65.3 63 (11.5)

Impact on Group C Diagnoses - Cystic Fibrosis For group C candidates the WL

policy resulted in the highest number of waiting list deaths (12). The other policies (2:1,

1:1, 1:2 and PTX) resulted in a lower number of waiting list deaths, ranging from 8 with

the 2:1 policy to 2 with the PTX policy. All policies had similar net benefit, relative benefit

and post-transplant survival rates. The PTX policy resulted in the shortest waiting times.

Implementing the SLT policies for ILD candidates resulted in the number of waiting

list deaths decreasing from 12 with the WL policy to 8 with the SLT-WL policy. The

number of waiting list deaths decreased slightly for the other policies, except for SLT-

PTX which resulted in the number of waiting list deaths increasing from 2 to 4. There

was also a slight decrease in net benefit, ranging from a few days to approximately 50

days. Overall group C candidates and recipients were not adversely impacted with the

introduction of the SLT policies.
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(a)

(b)

Figure 4.24: (a) For group C (CF) candidates, the PTX policy resulted in the fewest waiting
list deaths, changing the priority ratio towards waiting list survival resulted in increasing waiting
list deaths, with the largest number of waiting list deaths resulting from prioritising waiting list
survival (WL). (b) For group C(CF) candidates, the SLT policies also resulted in a reduced number
of waiting list deaths with the lowest number occurring with the SLT-1:2 policy.
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Table 4.30: Impact by policy on candidates and recipients with group D (interstitial lung disease)
diagnoses.

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 45 (3.6) 1743 7.7 77.9 / 48.6 317 (23.2)

WL 5 (0.9) 2119 16.6 78.2 / 49.4 98 (13.4)
2:1 WL:PTX 6 (0.9) 2145 16.7 78.3 / 49.7 115 (16.8)
1:1 WL:PTX 8 (1.3) 2193 16.8 78.6 / 50.4 147 (24.3)
1:2 WL:PTX 15 (2.3) 2244 16.2 79.2 / 51.2 204 (27.1)

PTX 50 (3.3) 2397 14.7 81.5 / 55.3 432 (27.2)

SLT-WL 2 (0.4) 1874 15.4 75.8 / 45.7 45 (10.4)
SLT-2:1 2 (0.5) 1902 15.4 76.1 / 46.0 56 (13.5)
SLT-1:1 3 (0.5) 1898 15.2 76.1 / 46.0 71 (12.6)
SLT-1:2 3 (0.5) 1813 14.7 75.5 / 44.7 51 (9.4)
SLT-PTX 1 (0.3) 1680 14.3 74.2 / 42.8 14 (1.3)

Impact on Group D Diagnoses - Interstitial Lung Disease Candidates with group

D (ILD) diagnoses had the lowest waiting list mortality and waiting times with the WL

policy (5 per year and 98 days respectively), however they also had the lowest net benefit

(2119 days) and post-transplant survival (78.2% at one year and 49.4% at 5 years).

There was a large increase in waiting list deaths as post-transplant survival was pri-

oritised, increasing from 5 per year (WL) to 50 per year with the PTX policy.

Net benefit was maximised with the PTX policy (2397 days) and also post-transplant

survival (81.5% at one year and 55.3% at five years).

Introducing the SLT policies resulted in significantly lower waiting list deaths for group

D candidates, which were the target group for the SLT policies. The SLT-PTX policy

almost eliminated waiting list deaths in group D, with an average of 1 waiting list death

per year (SD: 0.3) and an average waiting time of 14 days.

Unlike with the standard policies, increasing post-transplant priority did not result in

increasing waiting list deaths. As post-transplant priority increased, net benefit decreased

from 1874 days (SLT-WL) to 1680 days (SLT-PTX). Post-transplant survival ranged from

74.2% to 76.1% at one year and 42.8% to 46.0% at five years.

The reduction in waiting list deaths for group D candidates also resulted in a decrease

in net benefit and post-transplant survival rates. The PTX policy resulted in a net benefit

of 2397 days and survival rate of 81.5% one year post-transplant. In comparison, the

SLT-PTX policy resulted in a net benefit of 1680 days (a 717 day decrease) and a post-

transplant survival rate of 74.2% (a 7.3% decrease).
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(a)

(b)

Figure 4.25: (a) For group D (ILD) candidates, the WL policy minimised the number of waiting
list deaths. Increasing post-transplant survival priority resulted in increasing waiting list deaths.
(b) For group D (ILD) candidates, the SLT policies significantly decreased waiting list deaths,
with the lowest numbers occurring with the WL and PTX policies.
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Results Stratified by Age Group

Table 4.31: Impact by policy on candidates and recipients aged 16 to 30

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 17 (1.8) 2298 7.4 83.7 / 59.8 424 (35.6)

WL 7 (0.8) 2552 15.4 82.5 / 58.2 553 (47.8)
2:1 WL:PTX 6 (0.8) 2593 15.7 83.3 / 59.0 433 (52.2)
1:1 WL:PTX 5 (0.7) 2628 15.8 84.0 / 59.8 346 (40.3)
1:2 WL:PTX 3 (0.6) 2674 16.0 84.1 / 60.7 201 (28.6)

PTX 4 (0.6) 2665 15.0 84.2 / 60.9 88 (12.4)

SLT-WL 5 (0.7) 2537 15.5 82.4 / 58.2 396 (49.9)
SLT-2:1 3 (0.7) 2580 15.7 83.1 / 59.0 297 (47.4)
SLT-1:1 3 (0.5) 2606 15.9 83.5 / 59.5 214 (36.9)
SLT-1:2 2 (0.4) 2598 15.7 83.2 / 59.3 126 (23.8)
SLT-PTX 5 (0.8) 2606 14.3 84.2 / 60.7 123 (17)

Ages 16 to 30 Candidates and recipients in this age group tended to benefit with

increased post-transplant priority. The number of waiting list deaths in this age group

decreased from 7 with the WL policy to 3/4 with the 1:2 / PTX policies respectively.

Net benefit was similar between all policies, ranging from 2552 days with the WL

policy to 2674 days with the 1:2 policy (range: 122 days). Relative benefit was similar

between policies, ranging from 15.0 to 16.0.

Post-transplant survival increased from 82.2% at one year and 58.2% at five years with

the WL policy to 84.2% and 60.9% respectively.

Candidates and recipients in the 16 to 30 age group were not adversely affected by

the SLT policies. There was a slight decrease in waiting list deaths (except in the case of

the SLT-PTX policy). There was also a slight decrease in net benefit (approximately 30

days on average) and post-transplant survival (approximately 0.3% at one year and 0.4%

at five years).
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Table 4.32: Impact by policy on candidates and recipients aged 31 to 40

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 8 (0.9) 2683 7.9 86.7 / 66.4 470 (49)

WL 6 (0.9) 3025 15.30 86.3 / 65.1 1007 (78.7)
2:1 WL:PTX 4 (0.6) 3095 17.2 86.9 / 67.0 810 (87.8)
1:1 WL:PTX 3 (0.6) 3104 16.6 86.5 / 67.1 610 (69.7)
1:2 WL:PTX 1 (0.4) 3161 17.5 87.7 / 68.1 351 (57.8)

PTX 0 (0.1) 3107 17.4 87.5 / 67.4 32 (8.8)

SLT-WL 4 (0.7) 3042 16.9 86.0 / 65.8 794 (79.9)
SLT-2:1 3 (0.5) 3059 16.0 86.6 / 66.3 587 (76.4)
SLT-1:1 2 (0.3) 3030 16.3 86.4 / 66.6 448 (59)
SLT-1:2 1 (0.3) 2976 16.4 86.1 / 65.8 258 (36.1)
SLT-PTX 0 (0.1) 2924 15.8 86.1 / 65.3 52 (18.8)

Ages 31 to 40 Candidates and recipients aged 31 – 40 tended to benefit with increasing

post-transplant priority. As PTX priority increased there were fewer waiting list deaths in

this age group (decreasing from 6 per year to 0 per year) and drastically reduced waiting

times (1007 days down to 32 days). Net benefit in this age group was much higher than

the 16 - 30 age group, with net benefit ranging from 3025 (WL) to 3161 days (1:2).

Post-transplant survival rates increased from the WL policy to the 1:2 policy, with a

slight decrease in survival rates with the PTX policy. One and five year survival rates

increased from 86.3% and 65.1% with the WL policy to 87.7% and 68.1% with the 1:2

policy.

This age group was not majorly affected by the implementation of the SLT policy.

There was a slight reduction in waiting list deaths with the SLT-WL and SLT-2:1 policies.

There was a slight decrease on the order of 100 days in net benefit, and approximately a

1% reduction in post-transplant survival at 1 year and 2% reduction at 5 years.
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Table 4.33: Impact by policy on candidates and recipients aged 41 to 50

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 13 (1.2) 2057 6.8 83.0 / 57.8 457 (43.5)

WL 9 (1) 2565 15.1 83.1 / 59.4 1141 (70.4)
2:1 WL:PTX 9 (1) 2571 15.5 83.1 / 59.0 1104 (75.3)
1:1 WL:PTX 8 (1) 2643 15.6 83.7 / 60.2 1073 (52.6)
1:2 WL:PTX 7 (0.7) 2664 15.8 83.9 / 60.1 959 (69.8)

PTX 5 (0.6) 2625 14.4 84.2 / 61.5 267 (39.5)

SLT-WL 7 (0.7) 2455 14.9 82.4 / 58.0 988 (74.6)
SLT-2:1 6 (0.9) 2470 15.3 82.6 / 58.1 952 (83.9)
SLT-1:1 6 (0.8) 2438 14.3 82.3 / 57.4 912 (69)
SLT-1:2 5 (0.6) 2382 14.6 82.2 / 56.7 724 (72.6)
SLT-PTX 3 (0.5) 2247 13.3 81.2 / 55.5 283 (43.7)

Ages 41 to 50 The 41 to 50 age group had the highest net benefit with the 1:2 policy

(2664 days), and had fewer waiting list deaths as post-transplant priority increased. The

WL policy resulted in 9 annual waiting list deaths per year for this age group on average,

whereas the PTX policy resulted in 5. Post-transplant survival was maximised with the

PTX policy (84.% at one year and 61.5% at five years).

Waiting times also decreased sharply with increasing post-transplant survival, decreas-

ing from 1141 days on average for the WL policy down to 267 days with the PTX policy.

Implementation of the SLT policies resulted in a slight decrease in waiting list deaths

for this group, and also a decrease in net benefit of approximately 200 - 300 days. One

year post-transplant survival rates decreased by about 3% and five year rates decreased

by 1% to 6%. Overall this group did not benefit from implementation of the SLT policies.
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Table 4.34: Impact by policy on candidates and recipients aged 51 to 60

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 38 (3.1) 1506 6.5 77.4 / 48.3 411 (37.8)

WL 17 (1.6) 2014 15.5 77.9 / 48.9 796 (54.3)
2:1 WL:PTX 19 (1.7) 2053 15.6 78.4 / 49.3 861 (46.7)
1:1 WL:PTX 22 (1.8) 2113 16.2 78.3 / 50.0 929 (43.6)
1:2 WL:PTX 27 (2.6) 2175 15.6 79.1 / 51.2 971 (59.4)

PTX 46 (3.4) 2147 12.10 81.2 / 54.4 757 (48.7)

SLT-WL 12 (1.6) 1768 13.7 75.8 / 45.7 665 (51.7)
SLT-2:1 14 (1.9) 1807 13.9 76.2 / 46.1 715 (57.4)
SLT-1:1 16 (1.5) 1859 14.3 76.4 / 46.5 780 (51.4)
SLT-1:2 17 (1.6) 1811 13.8 76.0 / 45.8 763 (51.3)
SLT-PTX 20 (1.7) 1707 13.3 75.4 / 44.7 620 (56.3)

Ages 51 to 60 While younger age groups tended to benefit from increased post-transplant

priority, this age group benefited from increased waiting list priority. The number of an-

nual waiting list deaths were 17 with the WL policy, increasing to 46 with the PTX policy.

The WL and PTX policies also resulted in the lowest waiting times (796 and 757 days

respectively).

Net benefit was highest with the 1:2 policy, with an average of 2175 days of life gained.

The PTX policy resulted in the highest post-transplant survival rates (81.2% at one

year and 54.4% at five years) and the WL policy resulted in the lowest (77.9% and 48.9%).

Implementing the SLT policies resulted in a noticeable reduction in waiting list deaths:

17 down to 12 for the SLT-WL policy and 46 down to 20 with the SLT-PTX policy. Net

benefit also decreased by 250 - 450 days with the SLT policies. Post-transplant survival at

one year decreased from 81.2% with the PTX policy to 75.4% with the SLT-PTX policy.

Waiting times also decreased by 100 to 200 days on average.
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Table 4.35: Impact by policy on candidates and recipients aged 61+

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 15 (1.5) 1378 6.2 76.2 / 45.7 401 (34.9)

WL 6 (0.7) 1815 13.90 76.8 / 46.6 710 (45.1)
2:1 WL:PTX 7 (0.7) 1855 14.1 76.3 / 46.60 809 (59.8)
1:1 WL:PTX 9 (0.9) 1930 13.8 77.4 / 47.80 875 (64.7)
1:2 WL:PTX 12 (1.4) 1982 13.4 77.4 / 48.20 946 (56)

PTX 23 (1.5) 1940 10.4 79.6 / 52.2 928 (62.4)

SLT-WL 4 (0.6) 1647 12.9 75.1 / 44.0 605 (48.1)
SLT-2:1 5 (0.6) 1687 13.3 74.9 / 44.2 686 (60)
SLT-1:1 6 (0.8) 1731 13.1 75.5 / 45.2 732 (49.8)
SLT-1:2 6 (0.6) 1672 12.8 74.8 / 43.6 739 (57.7)
SLT-PTX 6 (0.8) 1484 12.0 73.1 / 40.9 594 (64.3)

Ages 61+ For candidates and recipients aged 61+ the WL policy resulted in the fewest

annual waiting list deaths (6), but this policy also resulted in the lowest net benefit (1815

days) and survival one year post-transplant (76.8%). It also resulted in the shortest waiting

times: 710 days compared to 928 days with the PTX policy.

Net benefit was maximised with the 1:2 policy (1982 days) and post-transplant survival

was maximised with the PTX policy (79.6% at one year and 52.2% at five years).

Implementing the SLT policies resulted in fewer waiting list deaths for every policy,

with the largest decrease resulting from the SLT-PTX policy (6 down from 23 with the

PTX policy). Net benefit decreased by 150 - 450 days depending on the policy, and post

transplant survival rates also decreased by 1.5% to 6.5%, with the SLT-PTX policy having

the largest decrease in post-transplant survival (73.1% down from 79.6% with the PTX

policy). Waiting times were also reduced to 605 days with the SLT-WL policy (compared

to 710 days with the WL policy), and 594 days with the SLT-PTX policy (compared to

928 days with the PTX policy).
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Results Stratified by Blood Group

Table 4.36: Impact by policy on candidates and recipients with blood group A

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 26 (3) 1918 7.6 80.1 / 53.0 256 (32.4)

WL 12 (1.8) 2190 15.0 79.7 / 52.8 637 (66.2)
2:1 WL:PTX 12 (1.8) 2231 15.2 80.2 / 53.4 655 (65.2)
1:1 WL:PTX 14 (1.8) 2308 15.5 80.7 / 54.3 657 (51)
1:2 WL:PTX 16 (2.2) 2345 15.2 81.0 / 54.8 655 (68.6)

PTX 26 (2.8) 2412 14.1 82.8 / 58.1 394 (47.1)

SLT-WL 8 (1.6) 2056 14.4 78.7 / 51.1 485 (70)
SLT-2:1 8 (1.6) 2114 14.4 79.1 / 51.7 487 (81.8)
SLT-1:1 9 (1.3) 2142 14.5 79.4 / 52.1 506 (59)
SLT-1:2 9 (1.4) 2096 14.1 79.3 / 51.5 438 (52.1)
SLT-PTX 8 (1.4) 2004 13.4 78.5 / 50.5 231 (46.1)

ABO - A Trends were not as strong when stratifying by blood group compared to age

group and diagnosis group.

Waiting list deaths were minimised with the WL policy (12 per year) and increased to

26 per year with the PTX policy. Net benefit was maximised with the PTX policy (2412

days) and decreased as priority moved towards waiting list survival (2190 days with the

WL policy).

Post-transplant priority resulted in the highest survival rate at one year (82.8% com-

pared to 79.7% with the WL policy) and five years (58.1% compared to 52.8% with the WL

policy). The lowest waiting times were achieved with the PTX policy: 394 days compared

to 637 days with the WL policy.

Implementation of the SLT policies resulted in fewer ABO-A waiting list deaths, with

the range of waiting list deaths decreasing from 12 - 26 with the standard policies to 8 -

9 with the SLT policies. The SLT policies resulted in lower net benefit, with an average

net benefit 100 - 400 days lower than with the standard policies.

Post-transplant survival at one year was approximately 2% - 4% lower with the SLT

policies and 2% - 8% lower at five years. Average waiting times decreased by approximately

150 days on average with the SLT policies.
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Table 4.37: Impact by policy on candidates and recipients with blood group B

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 8 (0.9) 1410 5.7 76.5 / 46.7 342 (53.5)

WL 3 (0.6) 1738 12.0 76.2 / 45.8 494 (89.1)
2:1 WL:PTX 3 (0.5) 1757 12.2 77.0 / 46.6 574 (85.2)
1:1 WL:PTX 4 (0.8) 1839 12.4 76.9 / 47.7 673 (99.8)
1:2 WL:PTX 6 (0.9) 1928 12.5 77.6 / 48.9 756 (93.9)

PTX 9 (1) 2009 10.8 80.2 / 52.9 555 (84)

SLT-WL 2 (0.4) 1592 11.2 74.3 / 44.2 366 (78.2)
SLT-2:1 2 (0.6) 1637 11.8 75.4 / 45.1 412 (84.5)
SLT-1:1 3 (0.5) 1704 12.7 75.6 / 45.8 488 (86.8)
SLT-1:2 3 (0.6) 1685 12.0 75.6 / 45.2 482 (100)
SLT-PTX 3 (0.6) 1648 11.6 75.4 / 44.7 292 (61.3)

ABO - B The trends with ABO-B candidates and recipients were similar to ABO-

A: waiting list mortality increased as post-transplant priority increased (from 3 annual

waiting list deaths to 9). Net benefit was highest with the PTX policy (2009 days) and

post-transplant survival rates were also highest with the PTX policy: 80.2% at one year

and 52.9% at five years.

As with ABO-A, the SLT policies resulted in a reduction in waiting list deaths (down

to 2 - 3 per year) but also a decrease in net benefit (200 - 350 day decrease) and post-

transplant survival (1% to 5% at one year and 1.5% to 8% at five years).

Table 4.38: Impact by policy on candidates and recipients with blood group AB

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 1 (0.2) 1950 8.5 79.9 / 52.2 142 (22)

WL 0 (0.2) 2156 15.1 79.6 / 53.5 225 (106.3)
2:1 WL:PTX 0 (0.2) 2024 13.9 78.8 / 50.9 268 (96.8)
1:1 WL:PTX 1 (0.2) 2184 14.8 79.8 / 53.0 286 (89)
1:2 WL:PTX 1 (0.2) 2202 14.5 79.8 / 53.9 308 (105.1)

PTX 1 (0.3) 2090 12.0 80.7 / 53.1 124 (50.5)

SLT-WL 0 (0.1) 2004 13.1 79.5 / 50.2 135 (49.2)
SLT-2:1 0 (0.1) 2055 14.0 79.0 / 51.0 158 (72.4)
SLT-1:1 0 (0.1) 2075 13.5 78.7 / 51.4 191 (80.9)
SLT-1:2 0 (0.1) 1992 14.0 77.4 / 49.3 136 (54.5)
SLT-PTX 0 (0.1) 1930 12.2 78.4 / 50.6 73 (28.2)

ABO - AB There were relatively few ABO-AB candidates and recipients compared to

the other blood groups, as a result there were no strong trends. The standard policies

resulted in 0 to 1 annual waiting list death for ABO-AB candidates and the SLT policies

resulted in 0 waiting list deaths with a standard deviation of 0.1.
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Table 4.39: Impact by policy on candidates and recipients with blood group O

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

NHS-BT 55 (3.9) 1824 5.7 81.6 / 56.1 731 (66.2)

WL 31 (2.3) 2446 16.2 81.3 / 55.3 1141 (52.9)
2:1 WL:PTX 30 (2.1) 2551 16.8 82.0 / 56.6 1085 (65.2)
1:1 WL:PTX 28 (2.3) 2605 16.8 82.6 / 57.9 1047 (46.2)
1:2 WL:PTX 29 (2.6) 2719 16.9 83.7 / 60.0 928 (49)

PTX 41 (2.4) 2793 15.0 85.2 / 63.1 595 (43.3)

SLT-WL 23 (2.2) 2293 15.2 80.0 / 53.4 950 (44.5)
SLT-2:1 22 (2.2) 2341 15.5 80.4 / 54.1 907 (53.2)
SLT-1:1 21 (1.7) 2386 15.4 80.9 / 54.9 857 (44.3)
SLT-1:2 19 (1.4) 2362 15.4 80.4 / 54.6 754 (40.4)
SLT-PTX 22 (2) 2260 14.3 80.2 / 53.8 575 (50.2)

ABO - O In terms of absolute numbers, waiting list mortality was highest for ABO-O

candidates. Waiting list deaths followed an approximately ‘U’-shaped distribution, with

the fewest waiting list deaths being achieved with the 1:1 policy (28 per year). Waiting

list mortality increased in both directions to 31 per year with the WL policy and 41 per

year with the PTX policy.

Net benefit increased as priority shifted towards PTX survival, with the PTX policy

achieving the highest net benefit of 2793 days compared to 2446 days with the WL policy.

One year post-transplant survival also increased with increasing PTX priority, from

81.3% with the WL policy to 85.2% with the PTX policy. Five year post-transplant

mortality increased from 55.3% to 63.1%.

The SLT policies resulted in a reduction in waiting list deaths and waiting times.

Waiting list deaths decreased from 28 per year with the 1:1 policy to 21 per year with the

SLT-1:1 policy, the aproximate ‘U’-shaped distribution remained the same.

Net benefit decreased by 150 - 500 days depending on the policy, one year post-

transplant survival rates decreased 1% - 5% and five year survival decreased 2% - 9%.
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4.4 Discussion

4.4.1 Summary of Results

While the simulation results didn’t identify a single policy that outperformed all others

across all metrics for all candidates and recipients, they did identify key trade-off decisions

and general trends. At a population level, prioritising waiting list survival resulted in the

lowest waiting list mortality, which increased as priority shifted towards post-transplant

survival. This lower mortality rate however also came at the cost of lower net benefit and

post-transplant survival rates, and also higher average waiting times.

Net benefit increased as prioritising post-transplant survival increased, with the PTX

policy resulting in the highest net benefit. This may be due to the PTX policy selecting

patients with longer post-transplant survival durations, increasing the value on the left

hand side of the net benefit equation:

Net benefit = Post-transplant Survival−Waiting List Survival

It could be expected that candidates with high expected post-transplant survival would

also have higher expected waiting list survival, however, if the increase in post-transplant

survival is of a larger magnitude than the increase in waiting list survival, overall net

benefit would be higher.

While prioritising waiting list survival resulted in lower waiting list mortality overall,

it resulted in higher waiting list mortality for diagnosis groups A (COPD) (to a degree,

though the 1:1 and 1:2 policies maximised WL mortality for this group), B (PAH) and

C (CF). Group D (ILD) experienced the highest reduction in waiting list mortality from

prioritising waiting list survival: a 90% decrease from 50 annual waiting list deaths to 5.

Due to the relatively large proportion of group D candidates (34%), the outcomes for this

group may have skewed the overall population-level results for waiting list mortality.

Net benefit was maximised for all diagnosis groups with increasing priority on PTX

survival, with either the 1:2 or PTX policies maximising net benefit.

Implementation of SLT policies resulted in a very large reduction in waiting list deaths,

on the order of 30% - 50% compared to the WL and NHS-BT policies respectively. This

large decrease in mortality is due to the increased number of group D (ILD) candidates

receiving single lungs and therefore being removed from the waiting list at twice the rate

of the standard policies. The total number of waiting list deaths was similar between all

SLT policies, ranging from 31 to 34 per year. Average waiting times also decreased by

approximately 100 days. These benefits did however come at the cost of lower net benefit

and post-transplant survival.

SLT policies resulted in reduced waiting list mortality across all diagnosis groups, with

the largest reduction being with group D candidates which were the target demographic

for these policies. All diagnosis groups had reduced net benefit with the introduction of
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the SLT policies, with group D also experiencing the largest decrease in net benefit.

Applying an age threshold for ILD recipients to be eligible for SLT resulted in increased

waiting list mortality as shown in table 4.18. The most likely explanation for this is that

the age threshold reduced the number of recipients that could receive a SLT, resulting in

fewer candidates being transplanted and more candidates remaining on the waiting list,

and thus contributing to waiting list mortality.

All groups tended to have reduced post-transplant survival rates at one and five years,

with group D (ILD) again experiencing the largest decrease. All diagnosis groups experi-

enced reduced waiting times with the SLT policies.

Overall, the introduction of SLT policies resulted in a large reduction in waiting list

mortality, primarily benefiting group D, at the cost of slightly lower net benefit and post-

transplant survival rates for groups A (COPD), B (PAH) and C (CF), and relatively larger

decreases in these metrics for group D.

Up to age 50, candidates and recipients tended to benefit from post-transplant survival

being prioritised, however this changed at ages 51+ where prioritising waiting list survival

became more beneficial in terms of reducing waiting list deaths. Across all age groups the

highest net benefit was achieved with the 1:2 policy.

Post-transplant survival rates tended to be similar within age groups, regardless of the

allocation policy. However, the 16 - 50 age group tended to have higher post-transplant

survival rates and a narrower range in survival rates than the 51+ age group.

Table 4.40: Post-transplant survival tends to decrease with age, independent of the allocation
policy. The variation in post-transplant survival rates between policies increases in the 51+ age
group.

Age Group Lowest 1-Yr Highest 1-Yr Range (%)
PTX Survival (%) PTX Survival (%)

16 - 30 82.5 84.2 1.7
31 - 40 86.3 87.7 1.4
41 - 50 83.1 84.2 1.1
51 - 60 77.9 81.2 3.3
61+ 76.3 79.6 3.3

The impact of the SLT policies was less noticeable in the 16 - 50 age group. All age

groups tended to have reduced waiting list mortality across all SLT policies, with the only

exception being the SLT-PTX policy for ages 18-30.

Net benefit followed the same trend across age groups as post-transplant survival:

the reduction in net benefit with the implementation of SLT policies resulted in smaller

decreases in the 16 - 50 age group, with a larger reduction in the 51+ age group. Absolute

net benefit also tended to decrease with age.

Trends across blood groups were less clear. In general, the waiting list priority policy

resulted in the fewest waiting list deaths with ABO-O being the only exception, following

more of a shallow ‘U’-shaped distribution of waiting list deaths as priority shifted towards

148



Chapter 4. Lung Allocation

post-transplant survival. The highest net benefit across blood groups tended to result from

the PTX policy, with ABO-AB being the only exception with the 1:2 policy maximising

net benefit.

Post-transplant survival rates increased with increasing post-transplant priority across

all blood groups, with ABO-O patients having the highest post-transplant survival rates

and also the highest net benefit on average.

Implementation of the SLT policies reduced waiting list deaths across all blood groups

and SLT policies. As with other stratifications of the results, the trade-offs were the

same: the reduced number of waiting list deaths also resulted in lower net benefit and

post-transplant survival.

Attempts to adjust survival or net benefit calculations by using conditional survival

(CON) or risk-adjusted benefit (RAB) didn’t significantly change any of the performance

metrics.

4.4.2 Handling Protected Characteristics

Protected characteristics such as ethnicity, age, sex, and so on must be considered very

carefully for inclusion in an allocation score. By including such characteristics there is

risk of unfair bias/unintentional discrimination, lawsuits, and other legal issues. For the

models in this work, age and sex were used as part of a larger model that predicts risk

of mortality, and allocation is performed with respect to the balance of waiting list and

post-transplant mortality risk.

There was however a purposeful decision to not include ethnicity in the models. The

first reason is that variables such as sex or age have clear definitions, whereas ethnicity is

a vastly simplified proxy variable for a much more complex biological reality. The second

reason is the risk of a potential ‘feedback loop’ in allocation:

1. Individuals with a specific ethnicity ‘E’ have poor post-transplant outcomes due to

the difficulty of matching to a suitable donor due to biological reasons related to

their ethnicity

2. Survival models are trained on this data, identifying ethnicity ‘E’ as having higher

post-transplant risk

3. Allocation scores based on the survival models assign candidates with ethnicity ‘E’

lower scores

4. As a result of lower scores, candidates with ethnicity ‘E’ have access to lower quality

donor lungs, and therefore poor post-transplant outcomes

This same risk of a feedback loop can also be applied to transplant centres, for example,

if one centre tends to transplant higher risk recipients, or for other reasons has lower
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expected post-transplant survival. Including transplant centre as a variable in a survival

model will reinforce the poor outcomes at that centre.

Given these considerations, there were two possibilities of how to handle these vari-

ables. The first was to include them in the survival models, but for allocation the reference

value would be used regardless of ethnicity/transplant centre. This has the advantage of

including additional variables that are statistically significant in the model, without di-

rectly using protected characteristics. However, due to the way regression models work,

the inclusion or exclusion of variables impacts the risk coefficients of other variables (see

Appendix D.1 for more on this). This still introduces the risk of indirect bias/discrimina-

tion if there is a correlation between ethnicity and other variables used in the model. For

this reason the second option was used for this research: simply exclude these variables

from survival models and the allocation score. This way, allocation is not influenced at all

by ethnicity, transplant centre, or other protected characteristics.

There are also frameworks and methods being developed in the field of artificial intelli-

gence/machine learning to ensure fairness in models that are developed.142 These methods

could be incorporated into the methodologies presented in this work as potential future

work.

4.4.3 Alignment With / Contribution to the Literature

The results in this chapter align with some results published in the literature, but also

differ from certain publications. This subsection reviews the similarities and differences in

the survival models that were built, methods used in simulation, and simulated outcomes.

Several unique aspects of the methods described in this thesis are highlighted and their

contributions to the literature are discussed.

Survival Models and Variable Selection

Variable Selection There was agreement between variables used in the lung allocation

score143 and the survival models created in section 4.3.1. For waiting list survival both

models used diagnosis group, diabetes status, age at listing and FVC at listing. For post-

transplant survival both models used diagnosis group, creatinine and age. One difference

is that the models in this thesis used restricted cubic splines for some continuous vari-

ables, allowing a non-linear relationship between the variable and risk of mortality (see

appendix A for an explanation of RCS).

One contribution this thesis makes is demonstrating how to combine recipient and

donor variables to predict post-transplant survival (see appendix D.2.1). Currently the

LAS does not take any donor variables into consideration (such as DBD/DCD donor and

CMV status), the organ transplanted (left/right/pair), or donor-recipient interactions such

as donor-recipient height difference. Accounting for the interaction of the donor with the

recipient results in candidate rankings that dynamically adapt to the characteristics of the
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donor and each potential recipient, leading to allocation that is more patient-centred.

Hazard Ratios - Diagnosis Group The hazard ratios for each diagnosis group differed

between the waiting list survival model in this thesis and the model in the UNOS guide to

calculating LAS.42 The model in the UNOS guide shows that relative to group A (COPD),

group B (PAH) had the highest risk of mortality on the waiting list, followed by group C

(CF) and finally group D (ILD). However in this work, that ordering was almost reversed:

group D had the highest risk of mortality (relative to group A), followed by group B and

finally group C.

Hazard ratios by diagnosis group also differed for post-transplant survival. Table 4.41

shows a comparison of the hazard ratios presented in this chapter and a study comparing

BLT and SLT.52 The hazard ratios in the results section show groups B and D have similar

hazard ratios with group D having a slightly higher hazard ratio than group B, however,

group B has over 3 times the hazard ratio of group D in.52 Similar to the waiting list

survival model, the post-transplant model generated from this work results in the diagnosis

groups having opposite orderings of risk.

Table 4.41: Post-transplant hazard ratios by diagnosis group differ between the results presented
in this thesis for the UK population and those by Chang et al. for the US population.52 COPD
= Chronic Obstructive Pulmonary Disease, PAH = Pulmonary Arterial Hypertension/Pulmonary
Vascular Disease, CF = Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Group
Hazard Ratio
(Chang et al.)

Hazard Ratio
(Section 4.3.1)

A - COPD Reference Reference
B - PAH 3.37 0.85
C - CF 0.83 0.66
D - ILD 1.03 0.89

There are a number of potential reasons for these differences, the most likely being

the differences in characteristics, surgical procedures and patient management between

the US and UK lung transplant populations. These population differences will lead to

different survival rates and result in different hazard ratios being calculated. The choice

of variables for inclusion in a Cox model will also result in different hazard ratios being

calculated. The hazard ratio is calculated from the regression coefficients in the model,

and the regression coefficient for one variable assumes the values of all other variables

are unchanged. Therefore, adding or removing variables from a model influences the

coefficients of all variables in the model, so even with identical data sets, different variable

choices can lead to different hazard ratios being calculated for the same variables.

Hazard Ratios - Single vs Bilateral Lung Transplantation This work investigates

the impact of utilising SLT for recipients with ILD, similarly, Benvenuto et al.80 calculated

the hazard ratios for left-single, right-single and bilateral lung transplantation, but with
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COPD recipients being the target demographic. In the results published by Benvenuto

et al.80 right-single lung transplantation was used as the reference group, requiring the

hazard ratios in this work to be adjusted for comparison.

In this work, the post-transplant survival model (figure 4.8 on page 106) showed that

there was no statistical difference between right-single and bilateral lung transplantation,

but left-single lung transplantation had a statistically significantly higher risk compared

to BLT. Their results for COPD recipients showed that left-single lung transplant had a

hazard ratio of 1.19 (unadjusted model) or 1.24 (adjusted model) compared to right-single

lung transplant.

Converting the hazard ratio in this work to be relative to right-single lung transplant,

the resulting hazard ratio is HR = 1.51/1.08 = 1.398. For BLT, their work shows a hazard

ratio of 0.81 (unadjusted) or 0.88 (adjusted) relative to right-single lung transplant. In

this work, the hazard ratio is calculated as: HR = 1/1.08 = 0.9259. While the exact

hazard ratios differ, and despite the focus being recipients with COPD rather than ILD,

the trend of transplanting only the left lung resulting in the highest risk of mortality

matches between this work and the work by Benvenuto et al.80

A retrospective analysis of single vs bilateral lung transplantation found a similar

trend,52 though it did not differentiate between left-single and right-single lungs. Using

SLT as the reference group, they calculated the hazard ratio of BLT as 0.583. This

hazard ratio is similar to this work when comparing left-single lung transplant to BLT:

HR = 1/1.51 = 0.662.

Simulation Methods

The largest contribution of this work is the development of a novel lung allocation policy

simulation engine. The purpose of the engine is similar to TSAM139 but there are key

differences between TSAM and the simulation engine developed for this thesis (discussed

in section 4.2.7).

The most similar published literature to the work completed in this thesis is the work

by Valapour et al. to predict the potential impact of replacing the LAS in the US with

the CAS,100 which would be a large change to the US allocation system. In the same way,

the work in this chapter was to predict the impact of changing UK lung allocation from a

sequential centre-based policy to a national score-based policy.

To investigate the impact of the ratio of WL to PTX survival they used two different

priority-ratios: 2:1 and 1:1. The impact of this ratio was also investigated in this chapter,

and the range of ratios was expanded to cover the full spectrum from 1:0 WL:PTX to

0:1 WL:PTX, with the ratios 2:1, 1:1, and 1:2 in between the two extremes. The methods

were also similar when evaluating the impact of variations in allocation rules. Their work

varied the weight of ‘placement efficiency’ (a metric that considers the proximity of the

donor to the recipient and travel costs) for each WL:PTX ratio, resulting in six scenarios

being simulated.
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This work also simulated variations in allocation rules for a total of 46 scenarios:

1. 5 scenarios of ‘standard’ policies utilising BLT (section 4.3.5)

2. 4 additional scenarios using the standard WL policy with increased donor utilisation

(section 4.3.5)

3. 5 scenarios where SLT was used for patients with ILD (section 4.3.5)

4. 4 additional scenarios where the SLT-WL policy was simulated with increased donor

utilisation (section 4.3.5)

5. 1 additional scenario where the ordering of offers were reversed (right lung first

instead of left lung first) for SLT policies (section 4.3.5)

6. 2 additional scenarios to evaluate the impact of setting an age threshold to receive

SLT (section 4.3.5)

7. 5 scenarios using a 1:1 WL:PTX ratio combined with risk-adjusted benefit with

various weights applied to the risk factor (section 4.3.5)

8. 5 scenarios of using conditional survival combined with the WL policy (section 4.3.5)

9. 5 scenarios of using conditional survival combined with the 1:1 policy (secton 4.3.5)

Another difference, and also contribution is the simulation engine for this work allowed

multiple simulations to run in parallel, allowing 40 simulation runs to be completed per

scenario, compared to the 10 simulation runs using TSAM.

Simulation Results - Waiting List Mortality

Geographic Boundaries Geographic boundaries limit access to lung transplant, poten-

tially causing unnecessary waiting list mortality and likely resulting in sub-optimal alloca-

tion (as discussed in section 1.1.2). For the US CAS simulations100 a 36% to 47% decrease

in waiting list mortality was predicted with the removal of hard geographic boundaries. In

addition, the greatest decreases in waiting list mortality corresponding with placement ef-

ficiency having the lowest weight - indicating a correlation between prioritising geographic

proximity and increased waiting list deaths.

Despite different populations, policies and scenarios being simulated, the removal of

geographic boundaries had the same impact in the UK simulations. Table 4.14 on page 122

shows that centre-based allocation with the NHS-BT policy resulted in 90 annual waiting

list deaths, whereas using a national score-based system resulted in 46 to 47 annual waiting

list deaths (depending on whether a 2:1 or 1:1 ratio was used, respectively). This represents

a 48% to 49% decrease in waiting list mortality which is similar to the US simulations

(36-47%). However, the proportion of the decrease that can be attributed to removing
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geographical boundaries and the proportion attributed to to using a LAS-style allocation

score can’t be derived from these results.

Waiting List Mortality by Diagnosis Group The two major changes to UK lung

allocation that are simulated in this work are: (1) changing from centre-based to a national

named allocation system, and (2) using an allocation score instead of a tier-based system.

In the results published by Lingaraju et al.58 the impact of the LAS in the US is evaluated,

and the changes of ranking on the waiting list for each diagnosis group are given:

Table 4.42: Changes in rankings by diagnosis group comparing the pre-LAS and post-LAS eras in
the US, as given by Lingaraju et al.58 COPD = Chronic Obstructive Pulmonary Disease, CF =
Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Group Pre-LAS Ranking Post-LAS Ranking Description

Group A - COPD 9.3 14.2 Lower
Group C - CF 8.7 9.8 Slightly Lower
Group D - ILD 10.2 5.3 Much Higher

The results presented in this chapter don’t explicitly show changes in rankings, however

this can be inferred by making the assumption that higher rankings result in lower waiting

list mortality, and then looking at changes in waiting list mortality compared to the NHS-

BT policy. Table 4.27 on page 131 shows waiting list mortality increased for group A

(COPD) candidates, indicating a lower ranking, which is in agreement with the summary

in table 4.42. Tables 4.29 and 4.30 show almost 90% reductions in waiting list mortality for

group C (CF) and group D (ILD) candidates depending on the WL:PTX ratio simulated.

However, when comparing results using the same 2:1 ratio as the LAS, there was a 60%

decrease for group C and 85% decrease for group D. This indicates much higher rankings

for group D candidates which agrees with table 4.42, however the results for group C differ,

indicating a substantial increase in rankings for group C candidates as well.

The US CAS simulations100 predicted a 74% to 76% decrease (46 down to 11-12) in

waiting list mortality for group C candidates, and the results in this thesis predicted a

similar 62% to 76% decrease (21 down to 5-8). For group D, the US simulations predicted

a 42% to 56% decrease (278 down to 123-161) in waiting list mortality, whereas the

simulations in this chapter predicted a much larger 82% to 87% reduction (45 to 6-8).

Their results for group A predicted an unchanged waiting list mortality rate, whereas

the results from this work (table 4.27 on page 131) shows a 59% to 71% increase from

17 deaths per year to 27-29. However, it is worth noting that the changes that were

being simulated for the US100 focused on replacing the existing LAS scoring system with

CAS and the removal of geographic boundaries, whereas this work focused on simulating

the introduction of a scoring system, with the removal of geographic boundaries being a

secondary focus.

A UK study50 of the survival benefit of lung transplant for different diagnosis groups

presented similar waiting list mortality rates to those shown in this chapter. Their results
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span 11 years from 1995 to 2006, so for comparison the annual waiting list mortality rates

in this section were multiplied by 11 and displayed in table 4.43. The simulation engine

also assumed a 3% annual growth rate in population and started with 300 candidates on

the waiting list, resulting in a difference in absolute numbers. To compare waiting list

mortality rates, the percentage of total mortality by diagnosis group is also shown in the

table. The mortality rates for groups B (PAH) and C (CF) were very similar between the

results published by Titman et al.50 and this work. The main difference appears to be

that the simulation engine predicted a lower percentage of group A (COPD) candidates

dying on the waiting list (underestimate of 8.5% from observed), and a higher percentage

waiting list mortality for group D (ILD) candidates (overestimate of 10.4% from observed).

Table 4.43: A comparison of UK waiting list mortality by diagnosis group from the results published
by Titman et al.50 and the results in this chapter. COPD = chronic obstructive pulmonary disease,
BE = bronchiectasis, PH = pulmonary arterial hypertension/pulmonary vascular disease, CF =
cystic fibrosis, ILD = interstitial lung disease.

Diagnosis Waiting List Mortality Waiting List Mortality
- Titman et al.50 (% Total) - Thesis (% Total)

A - COPD and BE 184 (28.5%) 187 (20%)
B - PAH 30 (4.65%) 22 (2.35%)
C - CF 157 (24.34%) 231 (24.7%)
D - ILD 274 (42.5%) 495 (52.9%)

Waiting List Mortality by ABO The simulations in this work were used to evaluate

the impact of switching from a centre-based allocation system to a national allocation

system. The US simulation study100 evaluated the potential impact of removing the con-

centric ring based geographical boundaries in the US and using a CAS instead. However,

this study only used WL:PTX ratios of 1:1 and 2:1, so the same ratios in this work will be

used for comparison. When looking at the differential impact by blood group, the authors

stated:

Declines in waitlist deaths were more pronounced among type O candidates

than other blood types.

The results in this work likewise predicted a large decline in waiting list mortality for

ABO-O candidates as a result of removing geographical boundaries: a decrease from 55

with the NHS-BT policy to 28 with the 1:1 WL:PTX policy (a 49% decrease) to 30 with

the 2:1 policy (a 45% decrease) (see table 4.39).

However, unlike the results presented by Valapour et al.,100 the simulations in this

work predicted large decreases in waiting list mortality across all blood groups (except

ABO-AB, due to the extremely small numbers of candidates with this blood group). For

ABO-A candidates, waiting list mortality was 26 per year with the NHS-BT policy, and

decreased by 46 - 54% using national allocation (see table 4.36). For ABO-B candidates,
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the NHS-BT policy resulted in an average of 8 annual waiting list deaths, which decreased

to 3 - 4 (50 - 62% decrease) using national allocation (see table 4.37 on page 145).

Waiting List Mortality by Age Group The work by Valapour et al. shows waiting

list mortality by age group,100 the following quote from the paper aligns exactly with the

results in this chapter:

“[...] simulated waitlist deaths declined for all age groups.”

Tables 4.31 to 4.35 show that compared to the simulated NHS-BT policy, all age groups

experienced a decrease in waiting list mortality (compared to either the 2:1 or 1:2 WL:PTX

policy). This is summarised in table 4.44.

Table 4.44: All age groups experienced a decrease in waiting list mortality when simulating the
1:1 WL:PTX and 2:1 WL:PTX policies compared to the simulated NHS-BT policy.

Age Simulated NHS-BT Policy Simulated Waiting %
Group Waiting List Deaths List Deaths (Policy) Decrease

16-31 17 5 (1:1) 70.6%
31-40 8 3 (1:1) 62.5%
41-50 13 8 (1:1) 38.5%
51-60 38 19 (2:1) 50.0%
61+ 15 7 (2:1) 53.3%

As with the other comparisons to this study, the changes being modelled are different

but the overlap in results can still be considered a ‘soft’ validation of the results.

Simulating SLT: DES and Markov Models In a similar way that this work investi-

gated the impact of SLT on recipients with ILD in the UK, another study used a Markov

model144 to predict the impact of SLT on recipients with COPD in the US.91 Although

the focus in that study was on recipients with COPD, recipients with IPF (ILD) could also

undergo SLT in the simulations. The Markov model was used to simulate the probabilities

of candidates transitioning between different ‘states’. For example, if a candidate is on

the waiting list and is transplanted, they have transitioned from the ‘waiting list’ state

to the ‘transplanted’ state. This is a more abstract approach to simulating the problem

compared to DES, which simulates the underlying mechanisms of a system.

To simulate the interval between donors for the Markov model, the authors used UNOS

data to stratify donors by blood group, height, and region. The median donor interval

for ABO-A and ABO-O donors was then used. This is a simplifying assumption for their

model, and differs from the roulette selection used in this thesis that randomises the donor

interval according to the probability distribution derived from data.

Rather than simulating survival times for candidates, the daily probability of being

removed from the waiting list was calculated by dividing the number of individuals removed

from the waiting list for any reason other than transplantation by the waiting time. This
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was performed for the five most common lung transplant diagnoses, but did not take into

account other candidate variables. The calculated daily probability was then modelled

as a beta distribution145 that the Markov model sampled from. This approach assumed

candidates that were removed from the waiting list due to their condition deteriorating

died on the waiting list. The number of waiting list deaths was then calculated as a

constant proportion (85%) of candidates awaiting transplant. This is another simplifying

assumption, and this method of simulating waiting list mortality is very different from the

methods described in this thesis.

Post-transplant survival was modelled using ISHLT registry data. First the median

PTX survival was calculated for IPF/ILD recipients receiving SLT, and recipients with

cystic fibrosis, pulmonary hypertension, sarcoidosis and COPD receiving BLT. Then these

median PTX survival durations were used per-diagnosis in the model. The method of

determining PTX survival for COPD with SLT was more involved, but described in the

supplementary material published by Munson et al.91

Although the methods used by Munson et al. were very different from the methods

in this work, the result of increasing the use of SLT matched the results in this chapter.

They predicted a 6.7% increase in transplant recipients (increasing from 758 to 809) and

a 21.1% reduction in waiting list deaths (decreasing from 199 to 157). The results in

tables 4.19, 4.14 and 4.20 show an increased transplant volume of 12.7% to 26.0% and a

decrease in waiting list mortality of 28.3% to 55.8% when comparing each SLT policy to

its corresponding ‘standard’ policy. The results in this chapter suggest larger increases

in transplant rates and decreases in waiting list mortality for the UK population. These

differences are due to different assumptions, simulation methods and populations, however

the conclusion is the same: using SLT increases transplant rates and reduces waiting list

mortality.

The next comparison is post-transplant outcomes: Munson et al. evaluated PTX sur-

vival using the total number of years lived post-transplant for the entire population, and

calculated a difference of 9 years: 4, 586 years for the SLT policy and 4, 577 years for

the BLT policy. One downside of only using total PTX survival is that the SLT policies

result in increased transplant volumes, so more recipients will contribute to total sur-

vival, but the duration of post-transplant survival for recipients receiving SLT is unknown.

When comparing policies, more information can be gained by evaluating recipient-level

and population-level metrics. This chapter focuses on the average impact per recipient,

however population survival was also considered in section 4.3.5.

When the confidence intervals for the difference between these two policies were cal-

culated the range was from −34 years to +54 years. If the total PTX survival is assumed

to be the mean of 4, 586 and 4, 577 (4, 581.5 years), then the percentage difference ranges

from 0.74% to 1.2%. For comparison, the absolute differences in 1- and 5-year PTX sur-

vival in this chapter were calculated. The smallest variation was 1.2% when comparing the

1-year PTX survival rate of the SLT-WL and SLT-2:1 policies to their corresponding WL
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and 2:1 policies. The largest difference was 8.2% when comparing the SLT-PTX policy to

the PTX policy.

One consideration to make is that this work simulated a range of priority-ratios,

whereas the results published by Munson et al. compared SLT and BLT using data derived

from the LAS era which used a 2:1 WL:PTX ratio. Looking at the 2:1 WL:PTX policy,

the difference was 1.2% at 1-year and 1.9% at 5-years post-transplant. The results pre-

sented in this chapter suggest a slightly larger decrease in post-transplant survival (1.2%

and 1.9% at 1- and 5-years respectively) when utilising SLT than predicted by the US

results. The simulations in this thesis and also those published by Munson et al. predict a

relatively small decrease in post-transplant survival compared to the much larger decrease

in waiting list deaths. A summary of these comparisons is shown in table 4.45.

Table 4.45: Comparison of 1- and 5-year post-transplant survival rates between single-lung (for
ILD recipients) and bilateral lung transplant policies for each priority-ratio.

Priority-Ratio 1-Year PTX Survival 5-Year PTX Survival % Difference
Standard / SLT (Standard/SLT) (1-/5-yr PTX)

1:0 (WL) 80% / 78.8% 53.0% / 51.2% 1.2% / 1.8%
2:1 WL:PTX 80.5% / 79.3% 53.9% / 52% 1.2% / 1.9%
1:1 WL:PTX 81% / 79.6% 55% / 52.6% 1.4% / 2.4%
1:2 WL:PTX 81.8% / 79.3% 56.4% / 52.1% 2.5% / 4.3%
0:1 (PTX) 83.5% / 78.9% 59.5% / 51.3% 4.6% / 8.2%

The final comparison to make between the SLT and BLT policies is how they impacted

candidates and recipients with diagnoses other than the target population for SLT (group

D (ILD) for this thesis, and groups A (COPD) and D for Munson et al). The key takeaway

regarding the use of SLT in allocation is the same for the results presented here and the

results presented by Munsol et al.,91 they state (emphasis added):

“[...] this study demonstrates that by prolonging waiting times for every patient

listed below a single lung transplant recipient and a patient with COPD, often

by several donor cycles, a policy of BLT for COPD increases the risk of wait-

list mortality for potential single and bilateral recipients with many different

diseases. Indeed, it was found that a policy of SLT in the base model

resulted in an absolute reduction in the risk of waitlist mortality of

4.2% among all listed patients.”

The same conclusion can be drawn from the results presented in this chapter, but

applied to ILD (group D) candidates instead of COPD (group A) candidates. The SLT-1:2

policy resulted in the fewest waiting list deaths, representing a 39.2% reduction compared

to the 1:2 policy using only BLT. Although SLT was only targetted at group D recipients,

group A experienced a 20.6% reduction, group B a 50% reduction (though this was from

2 to 1 due to the relatively few recipients in group B), group C remained unchanged, and
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group D experienced an 80% reduction (from 15 with the 1:2 policy to 3 with the SLT-1:2

policy).

One explanation for this is that two group D candidates are removed from the waiting

list whenever a single donor is allocated for SLT. This results in group D candidates being

removed from the waiting list (due to transplant) at a higher rate than candidates in

other diagnosis groups. This results in less competition for subsequent donor lungs for all

candidates on the waiting list, resulting in an overall decrease in waiting list mortality.

In summary, the work in this thesis used a completely different set of methods applied

to a different population than used by Munson et al.,91 but arrived at the same conclusion

that the use of SLT results in an overall reduction in waiting list mortality, an increase in

transplant volume, and only a marginal change in post-transplant outcomes.

Simulated SLT PTX Outcomes Compared to Reported US and UK Outcomes

There is a published OPTN/SRTR report on lung transplantation in the US that includes

comparisons of post-transplant outcomes utilising SLT and BLT.19 The report shows that

BLT resulted in a higher 5-year post-transplant survival rate of 63.1% compared to SLT

with a 5-year survival rate of 53.3%.

BLT Using table 4.14 as a comparison of population-level outcomes for BLT, the results

in this chapter show 5-year PTX survival rates ranging from 53% with the WL policy to

59.5% with the PTX policy. If the same 2:1 WL:PTX priority-ratio as the LAS in the

US is used for comparison, the simulated 5-year PTX survival rate was 53.9% which is

still almost 10% lower than the 63.1% in the report. However, this could be a result of

population differences between the US and UK, as the simulation engine utilised a dataset

of UK patients. The UK NHS-BT organ specific reports do report lower mean 5-year PTX

survival for BLT, ranging from 56.6% in 202226 to 58.3% in 201921 which is 4.8% to 6.5%

lower than the OPTN/SRTR report.

With these considerations, the simulation engine does still appear to under-estimate 5-

year PTX survival by about 3%. However, when considering the 95% confidence intervals

included in the NHS-BT reports, the range of 5-year post-transplant survival rates for

BLT in the UK ranged from a lower bound of 52.5% in 2022 to an upper bound 62.1%

in 2019. With the confidence intervals in mind, the simulated range of mean 5-year PTX

survival rates are within the reported 95% confidence intervals.

SLT The 5-year PTX survival rates for the SLT policies are given in table 4.19. The

simulated 5-year PTX survival rates ranged from 51.2% with the SLT-WL policy to 52.6%

with the SLT-1:1 policy, which is much closer to the reported 53.3% survival rate in the

US.19 For the UK population, NHS-BT reported mean 5-year survival for UK patients

receiving SLT ranging from 38.2% in 2022 to 42.9% in 2020.21,24–26 This is approximately

10% lower than the simulated results and the US OPTN report. 95% confidence intervals

159



Chapter 4. Lung Allocation

for SLT recipients ranged from 27.7% in 2022 to 52.5% in 2020. The confidence intervals

between reported outcomes and mean simulation outcomes do overlap, but the simulated

results are near the upper 95% confidence limit and exceed it by 0.1% (52.6% simulated

vs the maximum reported 95% CI of 52.5%).

It is difficult to determine the precise reason for the differences in post-transplant

survival for SLT recipients between the simulation engine and reported outcomes. One

possibility is the simulated SLT algorithm selects for candidates with higher expected PTX

survival due to the allocation score including PTX survival as one of the variables in the

calculation. However, if this were the case, the SLT-WL policy would have much lower

5-year PTX survival than the other policies, as they will all give some weight to PTX

survival in the score calculation.

The most plausible explanation appears to be the difference between the observed

survival curve and the Weibull distribution that was fit to the population, shown in fig-

ure 4.11b on page 110. The figure shows the fit of the curve for post-transplant survival

isn’t as close as with waiting list survival, and at 5 years (1825 days) the fitted curve is

lower than the observed survival curve. However, the method of generating survival times

needs to be considered: the fitted curve is ‘shifted’ up or down according to the calculated

hazard ratio of each simulated transplant recipient, then a random number is generated

between 0 and 1. The survival duration is then determined by calculating the survival

duration that results in the proportion of the population surviving being equal to the ran-

domly generated number. At approximately 3000 days, the fitted curve crosses above the

observed curve, resulting in higher post-transplant survival durations being more likely to

be generated than what was observed. The effect of SLT is modelled using the hazard

ratio, so this slight over-estimation of post-transplant survival durations will also apply in

the case of SLT, resulting in slightly higher 5-year PTX survival rates than those observed.

Simulation Results - Post-transplant Survival

One large point of discrepancy between the results in this chapter and published results

are the post-transplant survival rates published in the OPTN/SRTR annual data report.19

The differences in 1- and 5-year post-transplant survival rates by diagnosis group are shown

in table 4.46. This chapter predicts 1-year PTX survival rates that are approximately 10%

lower for group A (COPD), 7% lower for group C (CF), and 10% lower for group D (ILD).

5-year survival rates are approximately 10% lower for group A, 5% lower for group B, 3%

lower for group C, and 10% lower for group D.

Because the OPTN report is for the US population, simulated 1- and 5-year post-

transplant survival rates were instead compared to the UK population using the NHS-BT

annual reports from 2018 to 2022.21,24–26,146 The results of this comparison on shown in

table 4.47 and have been visualised in figures E.9 to E.14 in appendix E.4 - note that

group B (PAH) is not included as this diagnosis was grouped into the “other” category in

the reports. The simulated range of 1-year post-transplant survival rates was within the

160



Chapter 4. Lung Allocation

range of observed rates for all diagnosis groups. For 5-year post-transplant survival, the

simulated range overlapped the lower end of the observed range for group A (COPD), was

within the intervals but on the higher end of the range for group C (CF), and was also on

the higher end of the range for group D (ILD). However, despite being on the higher end

of the range for group D recipients, the simulated 5-year post-transplant survival rates

were more centred for observations pre-2022.

Table 4.46: Differences between simulated 1-year and 5-year post-transplant survival rates (PTX)
shown in this chapter (UK population) and those published in the US OPTN/SRTR 2020 annual
data report.19 COPD = Chronic Obstructive Pulmonary Disease, PAH = Pulmonary Arterial
Hypertension/Pulmonary Vascular Disease, CF = Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Reported 1-year Simulated 1-year Reported 5-year Simulated 5-year
group PTX survival PTX survival PTX survival PTX survival

A - COPD 91% 78 - 81% 62.4% 49 - 53%
B - PAH 82% 78 - 83% 59.5% 52 - 59%
C - CF 92% 84 - 86% 66.6% 63 - 65%
D - ILD 88% 78 - 81% 57.8% 42 - 55%

Table 4.47: Comparison of simulated 1-year adn 5-year post-transplant survival rates (PTX) by
diagnosis group compared to the 2019-23 NHS-BT annual reports. The range is reported as
the minimum and maximum observed rates between 2018-22. COPD = Chronic Obstructive
Pulmonary Disease, CF = Cystic Fibrosis, ILD = Interstitial Lung Disease.

Diagnosis Reported 1-year Simulated 1-year Reported 5-year Simulated
group PTX survival PTX survival PTX survival PTX survival

A - COPD 73.1 - 88.2% 78.1 - 81.5% 51.2 - 65.5% 49.3 - 55.3%
C - CF 74.5 - 92.3% 84.8 - 86.1% 52.3 - 69.8% 62.6 - 65.0%
D - ILD 70.1 - 87.3% 77.9 - 81.5% 37.4 - 58.6% 48.6 - 55.3%

4.4.4 Simulation Benefits and Limitations

Accuracy of Survival Times

In section 4.3.4 the simulated survival times differed from observed survival times by as

little as 0.1% to as much as 7.2%. The accuracy of the simulated survival times tended to

increase as the number generated survival times increased, and with both waiting list and

post-transplant survival the accuracy was higher with the validation dataset rather than

the training dataset. The simulation engine generates hundreds of thousands of survival

times per simulation run, so using the percentage error from the highest subset sizes the

error for waiting list survival times is likely around 3% and for post-transplant survival

4%.

Generated waiting list survival durations tended to be lower than observed survival,

and generated post-transplant survival durations tended to be higher than observed. One

possible contributor to differences between observed and generated survival durations is
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the ‘flat tail’ in the survival curve for the observed data. This results in the survival curves

crossing due to the simulated survival durations being sampled from a distribution and

generally being ‘smooth’ as opposed to step-wise. The area between the the simulated

survival curve and flat tail of the observed curve will contribute to some degree to the

differences between generated and observed survival times.

While the survival models for waiting list and post-transplant survival had reasonable

calibration, the discrimination ability of the post-transplant model was weaker. The wait-

ing list survival model had a higher C-statistic of 0.73 on the training dataset and 0.66 on

the validation dataset, compared to the post-transplant survival model with a C-statistic

of 0.60 on the training data and 0.55 on the validation data (see pages 100 and 106). While

the C-statistic for post-transplant survival may be considered weak, it does represent an

improvement compared to the existing NHS-BT policy: 0.62 on the training cohort com-

pared to 0.54 with the NHS-BT policy, and 0.61 on the validation cohort compared to

0.52 with the NHS-BT policy (results in section 4.3.2).

The problem of poor discrimination for post-transplant outcomes is not unique to this

research, but has also been a topic of discussion for the US LAS, which uses a post-

transplant survival model with similar discrimination abilities.147 Informal conversations

with other statisticians have also revealed that predicting post-transplant survival for other

organs is also a challenge, and similar weak C-statistic measures have been observed when

predicting post-transplant survival for other organs.

Alternative Assumptions

One limitation with this simulation study (and simulation studies more generally) is that

simplifying assumptions must usually must be made, otherwise the system is generally too

complex to be computable in any reasonable amount of time. It is important that any

assumptions made should guide how results are interpreted - results from a simulation

study should not simply be followed blindly (i.e., a simulated allocation policy should

never just replace an existing policy solely on the basis of the simulation results).

In section 4.2.6 eight key assumptions were made, with assumptions 2 - 4 determining

how net benefit and post-transplant survival should be calculated. There are many other

assumptions that could be made, one set of assumptions will be discussed briefly here.

Survival was capped at 20 years for both waiting list and post-transplant survival, this

was to minimise the capping of survival times and approximate the longest post-transplant

survival duration observed in the dataset. However, nobody on the waiting list survived

or waited 20 years and it is reasonable to assume that if a candidate were to live 20 years

on the waiting list, they should not have been listed in the first place.

A shorter capping duration for waiting list survival of 5 years could be used instead. In

terms of actual waiting list survival observed in the dataset (including censored results),

only 1.5% of candidates had a survival duration ≥ 5 years. This results in an implicit

assumption that in the case where both waiting list and post-transplant survival are capped
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then the net benefit was 15 years (5475 days). Survival durations ≥ 20 years are possible,

and one study showed 16.4% of recipients survived to at least 20 years post-transplant.148

Assuming that if a candidate is correctly listed they have 5 or fewer years to live on the

waiting list means that the assumed 15 years of net benefit is a lower bound estimate,

rather than an upper bound estimate as discussed in section 4.2.6. This difference is

important: there is no longer a need to exclude data points that have a capped waiting

list survival duration (assumption #2). With these alternative assumptions the entire

dataset generated from the simulations can be used when calculating net benefit, post-

transplant survival rates, and other post-transplant related metrics.

These alternative assumptions were applied to the same datasets used to generate the

results in this chapter, resulting in additional simulated PTX outcomes being included

in the calculation of metrics in the ‘Alternative’ columns in table 4.48. It is interesting

to observe the similarity between the two sets of results: the alternative assumptions

included additional simulated outcomes that change the net benefit, relative benefit and

PTX survival calculations. The largest difference in net benefit was a 110 day (4.4%)

decrease, and the largest decrease in relative benefit was 4.0 (28.4%) - both for the PTX

policy. The largest difference in 1-year PTX survival was an increase of 0.9%, and for

5-year PTX survival an increase of 1.6% - both for the SLT-PTX policy. These differences

likely have minimal (if any) impact on any clinical meaning or interpretation, so despite

the necessity of having to make simplifying assumptions, there was no major difference

(in this case) when changing the assumptions.

The results for group D (ILD) were also re-calculated using these alternative set of

assumptions, to see if the impact of the SLT policies was the same. These results are

summarised in table 4.49, and show only marginal changes in performance metrics.

Table 4.48: Comparison of post-transplant outcomes between original assumptions used in this
thesis, and a potential alternative set of assumptions.

Policy Net Relative 1-Yr Post-Tx 5-Yr Post-Tx
(WL:PTX) Benefit Benefit Survival (%) Survival (%)

Original / Original / Original / Original /
Alternative Alternative Alternative Alternative

NHS-BT 1833 / 1838 6.8 / 4.8 80.2 / 80.3 53.3 / 53.7

WL 2238 / 2232 15.1 / 12.9 80.0 / 80.1 53.0 / 53.2
2:1 WL:PTX 2300 / 2312 15.5 / 13.2 80.5 / 80.8 53.9 / 54.4
1:1 WL:PTX 2376 / 2404 15.7 / 13.3 81.0 / 81.4 55.0 / 55.8
1:2 WL:PTX 2459 / 2484 15.7 / 13.0 81.8 / 82.3 56.4 / 57.3

PTX 2522 / 2412 14.1 / 10.1 83.5 / 83.4 59.5 / 59.4

SLT-WL 2100 / 2107 14.3 / 12.0 78.8 / 79.2 51.2 / 51.9
SLT-2:1 2155 / 2174 14.6 / 12.1 79.3 / 79.8 52.0 / 52.9
SLT-1:1 2197 / 2230 14.6 / 12.2 79.6 / 80.2 52.6 / 53.7
SLT-1:2 2165 / 2199 14.4 / 11.7 79.3 / 80.1 52.1 / 53.6
SLT-PTX 2073 / 2080 13.6 / 10.5 78.9 / 79.8 51.3 / 52.9
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Table 4.49: Comparison of the impact of the single-lung transplant (SLT) policies on candidates
and recipients with group D (ILD) diagnoses using the original set of assumptions and alternative
set of assumptions (marked with an ‘*’).

Policy Waiting List Net Benefit Relative 1/5-Yr PTX Waiting Time
(WL:PTX) Deaths (Days) Benefit Survival (%) (Days)

SLT-WL 2 (0.4) 1874 15.4 75.8 / 45.7 45 (10.4)
SLT-2:1 2 (0.5) 1902 15.4 76.1 / 46.0 56 (13.5)
SLT-1:1 3 (0.5) 1898 15.2 76.1 / 46.0 71 (12.6)
SLT-1:2 3 (0.5) 1813 14.7 75.5 / 44.7 51 (9.4)
SLT-PTX 1 (0.3) 1680 14.3 74.2 / 42.8 14 (1.3)

SLT-WL* 2 (0.4) 1912 14.20 76.10 / 46.10 45 (10.4)
SLT-2:1* 2 (0.5) 1934 14.20 76.30 / 46.50 56 (13.5)
SLT-1:1* 3 (0.5) 1932 14.10 76.40 / 46.50 71 (12.6)
SLT-1:2* 3 (0.5) 1841 13.50 75.80 / 45.10 51 (9.4)
SLT-PTX* 1 (0.3) 1685 13.10 74.30 / 42.90 14 (1.3)

General Purpose Applicability

The methods described in this thesis have been applied to simulating lung allocation, but

can be re-used and applied in other problem domains, as evidenced in chapter 3 where

simplified versions of the techniques used in this chapter were applied to triage during the

COVID-19 pandemic.

For scenarios requiring survival models, the automated process described in section 4.2.1

can be applied to any survival dataset containing sufficient data. The algorithm is sepa-

rate from any simulation engine code, enabling the code to be re-used for other problems

besides lung allocation.

The simulation engine can also be used (potentially with some modification) for prob-

lems related to limited resource allocation, due to the fact that it is paramaterised in

multiple ways:

� Coefficients describing the shape and scale of survival curves

� Coefficients in the Cox Proportional Hazards models for simulating survival dura-

tions

� Tables of time durations between events, their corresponding frequency, and frequen-

cies of the number of events

� Datasets containing the necessary variables for simulation

� Parameters to customise each simulation, such as number of simulation runs, simu-

lation duration, population growth rate etc.

In the case of UK lung allocation, there will be one set of parameters to describe waiting

list survival and a second set of parameters to describe post-transplant survival. If these
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techniques were to be applied to a difference organ (e.g., liver) or a different population

(e.g., US lung allocation) a different set of parameters would be required in each case.

This parameterisation ‘de-couples’ the simulation logic from the problem being sim-

ulated; so to apply the techniques to a different organ or allocation problem requires

configuring the engine with the necessary parameters and providing the needed datasets

as input. If specific logic relating to the new problem is required then additional code

can be written and included in the simulation engine, or if only minor modifications are

required the existing code can be edited.

4.4.5 A Brief Discussion on the Acceptability of Trade-offs �

The allocation policy can only dictate which candidates should be prioritised for transplant,

the performance metrics used for evaluating policies (waiting list mortality rates, net ben-

efit per patient, post-transplant survival rates) are an indirect result of the demographics

of candidates chosen for transplant.

When evaluating trade-offs, it is not only differences in performance metrics that should

be considered - the impacts on different groups of candidates and recipients (both positive

and negative) also need to be considered. The acceptability of a trade-off is subjective

(however there will be methods of quantifying acceptable trade-offs discussed in chapter 5),

in general, the question to be answered is: does the benefit to group ‘X’ outweigh the

negative impact on group(s) ‘Y’? The general principal is to maximise benefit to one

group while minimising negative effects on other group(s).

4.4.6 Is Lung Allocation Really Zero-Sum?

Lung allocation (and organ-allocation in general) can be seen as zero-sum, that is to say:

one person’s gain is another’s loss. Allocating lungs to one candidate (or in the case of the

SLT algorithm; two candidates) means that other candidates will not receive a transplant.

However, this is not strictly true - take the following example, at time T = 0:

1. Candidate A: Waiting list survival duration: 30 days

2. Candidate B: Waiting list survival duration: 45 days

3. Candidate C: Waiting list survival duration: 60 days

4. Candidate D: Waiting list survival duration: 90 days

Let’s now assume that compatible donors will arrive at times T = 25, T = 40, T = 55,

and T = 80. If the first donor is allocated to Candidate A, the second donor to Candidate

B, and so on, then all four candidates will receive a transplant without dying on the waiting

list. However, if the donors are allocated in the reverse sequence, first to Candidate D,

then to Candidate C and so on, then Candidate A and Candidate B will have died before
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the offers at T = 55 and T = 80 become available. In both scenarios the waiting list

and availability of donors are identical, the only difference is the allocation policy. This

simple example demonstrates two principles:

1. One candidate’s gain is not necessarily another candidate’s loss

2. The degree to which allocation can be considered zero-sum is determined by the

allocation policy

The definition of a candidate’s ‘gain’ has been loosely defined: if ‘gain’ is interpreted as

‘receiving a transplant’, it is not necessarily true that just because one candidate received

a transplant that other candidates can’t receive a transplant. If ‘gain’ is interpreted as

‘net benefit’, then just because one recipient gains (for example) 2000 additional days of

life doesn’t mean that another recipient loses 2000 days of net benefit.

In reality, the system is more complicated than the example shown since candidates can

be added or removed from the waiting list, compatibility between donors and recipients

varies, there is risk of primary graft dysfunction (PGD), the exact survival duration on

the waiting list is unknown, and the availability and characteristics of donors varies with

time. However, it can still be argued that even with these considerations lung allocation

is still not strictly zero-sum.

4.4.7 Clinical Applicability

One limitation of this work is that the results in this section are not directly clinically

applicable. The datasets used for generating these results spanned 20 years (from 2002 to

2022), and there have been a number of changes in allocation and practice in that time

(see section 2.4). Indications for lung transplant have changed, alternative treatments

have become available, and from 2020-2022 Covid-19 has had a large impact on lung

transplantation. For real-world clinical implementation a more recent cohort of candidates

and recipients should be used for survival modelling.

There is also another limitation in the datasets themselves: there are no indicators

of functional status, and crucial variables such as use of a ventilator or ECMO have a

high proportion of missing entries in the dataset (approximately 50%). To include these

variables in the allocation score, first data would have to be collected and made available

on functional status for survival modelling. Next, there would also need to be institutional

changes put in place to ensure that variables that are vital for predicting survival are being

consistently and correctly input at the time of registration and transplant to ensure high

quality data are available for research.
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4.5 Conclusion

Overall, waiting list mortality trends in the opposite direction of the benefit metrics and

post-transplant survival rates. Increasing one metric means having to compromise on

another.

Tables 4.50 and 4.51 summarise the costs and benefits of changing the priority of

waiting list and post-transplant survival. The tables are interpreted as follows: the current

policy is identified in the leftmost column, and the alternative policy is identified in the

topmost row. The cell where the the row and column intersect is split into two sections

labelled ‘Benefits’ and ‘Costs’.

For example, if the current policy was the 2:1 WL:PTX policy and it was replaced with

the PTX policy, post-transplant survival at 1 year would increase by 3% and at 5 years

5.6%, average net benefit would increase by 222 days and waiting times would decrease

by 197 days. This would come at the cost of 31 additional waiting list deaths per year.

The table can also be read in the opposite direction, so if the PTX policy was currently

in place and was to be replaced with the 2:1 WL:PTX policy, the benefits would become

costs and vice versa, and the +/− signs would flip. Using the previous example, there

would be 31 fewer waiting list deaths per year, at the cost of post-transplant survival

decreasing by 3% and 5.6% at one and five years, net benefit decreasing by 222 days and

waiting times increasing by 197 days on average.

The single-lung transplant policies showed great potential to decrease waiting list mor-

tality, however this needs to be weighed up against the reduction in net benefit and post-

transplant survival. One major limitation when simulating these policies is that left/right

lung preferences were not modelled. In reality this would reduce the number of viable

candidates for a single lung transplant, resulting in more frequent bilateral lung trans-

plants and a lower reduction in waiting list deaths. Despite this, the ability of the SLT

policies to have an effective impact of increasing the size of the donor pool has been clearly

demonstrated.

The key question that needs to be answered is: is the reduction in benefit and post-

transplant outcomes justified by the decrease in waiting list deaths?

This question needs to be answered not only at a population level, but for each sub-

population of lung transplant candidates and recipients, as each group is impacted differ-

ently by changes to allocation policy.

Finally, if the answer to the above question is “yes”, the next question that must be

answered is: which ratio of prioritising waiting list survival to post-transplant survival

represents the optimal trade-off between minimising waiting list mortality and maximising

benefit to recipients?

Techniques for deciding on optimal trade-offs exist, and are the subject of the next

chapter.
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Allocation Policy Costs and Benefits

Table 4.50: Summary of trade-offs between pairs of policies. The ‘benefits’ and ‘costs’ rows show
the positive and negative consequences of replacing the policy in the leftmost column (‘original
policy’) with the policy in the topmost row (‘new policy’). Acronyms: WLD = Annual Waiting
List Deaths, NB = Net Benefit, PTX-1 = 1-Year Post-transplant Survival Rate, PTX-5 = 5-Year
Post-transplant Survival Rate, WT = Waiting Time.

Original
Policy ↓

New
Policy
→

WL 2:1 WL:PTX 1:1 WL:PTX 1:2 WL:PTX PTX

NHS-BT Benefits WLD -44 WLD -44 WLD -43 WLD -39 WLD -13
NB +405 NB +467 NB +543 NB +626 NB +689

PTX-1 +0.3 PTX-1 +0.8 PTX-1 +1.6 PTX-1 +3.3
PTX-5 +0.6 PTX-5 +1.7 PTX-5 +3.1 PTX-5 +6.2

WT -73
Costs PTX-1 -0.2 WT +124 WT +122 WT +92

PTX-5 -0.3
WT +128

WL Benefits NB +62 NB +138 NB +221 NB +284
PTX-1 +0.5 PTX-1 +1 PTX-1 +1.8 PTX-1 +3.5
PTX-5 +0.9 PTX-5 +2 PTX-5 +3.4 PTX-5 +6.5
WT -4 WT -6 WT -36 WT -201

Costs WLD +1 WLD +5 WLD +31

2:1
WL:PTX

Benefits NB +76 NB +159 NB +222

PTX-1 +0.5 PTX-1 +1.3 PTX-1 +3
PTX-5 +1.1 PTX-5 +2.5 PTX-5 +5.6
WT -2 WT -32 WT -197

Costs WLD +1 WLD +5 WLD +31

1:1
WL:PTX

Benefits NB +83 NB +146

PTX-1 +0.8 PTX-1 +2.5
PTX-5 +1.4 PTX-5 +4.5
WT -30 WT -195

Costs WLD +4 WLD +30

1:2
WL:PTX

Benefits NB +63

PTX-1 +1.7
PTX-5 +3.1
WT -165

Costs WLD +26
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Allocation Policy Costs and Benefits

Table 4.51: Summary of trade-offs between pairs of policies, where ‘SLT’ indicates policies that
attempt to utilise single lung transplant for recipients with interstitial lung disease (ILD) in cases
where this results in greater overall net benefit, compared to transplanting a single recipient with a
lung pair. The ‘benefits’ and ‘costs’ rows show the positive and negative consequences of replacing
the policy in the leftmost column (‘original policy’) with the policy in the topmost row (‘new
policy’). Acronyms: WLD = Annual Waiting List Deaths, NB = Net Benefit, PTX-1 = 1-Year
Post-transplant Survival Rate, PTX-5 = 5-Year Post-transplant Survival Rate, WT = Waiting
Time.

Original
Policy ↓

New
Policy
→

SLT-WL SLT-2:1 SLT-1:1 SLT-1:2 SLT-PTX

NHS-BT Benefits WLD -57 WLD -58 WLD -57 WLD -59 WLD -56
NB +267 NB +322 NB +364 NB +332 NB +240

WT -43 WT -152
Costs PTX-1 -1.4 PTX-1 -0.9 PTX-1 -0.6 PTX-1 -0.9 PTX-1 -1.3

PTX-5 -2.1 PTX-5 -1.3 PTX-5 -0.7 PTX-5 -1.2 PTX-5 -2
WT +19 WT +9 WT +7

SLT-WL Benefits WLD -1 NB +97 WLD -2 PTX-1 +0.1
NB +55 PTX-1 +0.8 NB +65 PTX-5 +0.1
PTX-1 +0.5 PTX-5 +1.4 PTX-1 +0.5 WT -171
PTX-5 +0.8 WT -12 PTX-5 +0.9
WT -10 WT -62

Costs WLD +1
NB -27

SLT-2:1 Benefits NB +42 WLD -1 WT -161
PTX-1 +0.3 NB +10
PTX-5 +0.6 WT -52
WT -2

Costs WLD +1 WLD +2
NB -82
PTX-1 -0.4
PTX-5 -0.7

SLT-1:1 Benefits WLD -2 WT -159
WT -50

Costs NB -32 WLD +1
PTX-1 -0.3 NB -124
PTX-5 -0.5 PTX-1 -0.7

PTX-5 -1.3

SLT-1:2 Benefits WT -109
Costs WLD +3

NB -92
PTX-1 -0.4
PTX-5 -0.8
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5.1 Background

Chapter 4 demonstrated that there are several goals in any lung allocation policy that

could be optimised: reducing waiting list mortality, increasing net/relative benefit, in-

creasing post-transplant survival and reducing mean waiting time. However, these goals

are potentially conflicting, meaning that designing an allocation policy to maximise one

goal means having to compromise on one or several other goals.

The next question that must be answered is which goals are most important? This is a

subjective decision that will likely differ from person to person. There may be differences

in opinion between candidates, recipients, and clinicians, or even differences within each

group of candidates, recipients, and clinicians. Candidates on the waiting list and patients

that have received a transplant may have differing opinions, there could also be differences

between candidates, recipients, and their family members. Within the group of clinicians

there may be disagreement between cardiothoracic surgeons, physicians, nurses and other

healthcare professionals.

The goals that are prioritised will be specific to the population the allocation system

is being designed for. Priorities are likely to differ between countries due to societal

differences and impacted by the prevalence and quality of private or public healthcare

available in each country.

In order to select an ‘optimal’ lung allocation policy it is vital to understand the goals

and values across the entire lung transplant community. In this chapter a process will be

demonstrated which can quantify the subjective decisions as to which allocation goal(s)

are judged to be most important. This process is called the Analytic Hierarchy Process36

and has been utilised in many industries for many different purposes (see the review in

appendix G.2).

The AHP is a more advanced version of the pairwise comparison techniques used in

chapter 3. For CPAT the participants completed a pairwise comparison matrix containing

entries that decided which of each pair of criteria were more important. The AHP takes

this a step further by also having each participant specify how much more important they

feel one criterion is than another. The AHP also has methods to ensure the responses

received are consistent, or in other words; make logical sense, have not been filled at

random, and do not contain logical contradictions.

In practice, the AHP can be utilised by surveying key stakeholders (in this case, can-

didates, recipients, and professionals involved in the care of patients undergoing lung

transplantation), and having them compare allocation goals such as ‘reduce waiting list

deaths’, ‘increase post-transplant survival’ and ‘increase net benefit’. For each pair of

goals, the participant decides which (if any) they feel is more important, and specifies

the relative importance using a verbal and/or numeric scale. The survey responses can

then be converted to numeric entries in a pairwise comparison matrix and the resulting

weight of each goal (a numeric value between 0 and 1, with higher values indicating greater
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importance) can then be determined.

There are approaches other than pairwise comparisons that could be used, for example

participants could be asked directly their percentage preference for each of the goals. There

are a few issues with this approach. The first is that there is no mechanism to check

for consistency, for example if a patient’s preferences are split 20%/25%/55% between

three options, there is no way to know if they just chose a random option, whether they

understood the question or if there were any inconsistencies in their reasoning for choosing

those values. The other problem is the general difficulty of answering a question of this

style. It is much easier to say option ‘A’ is much more important than option ‘B’, or

options ‘C’ and ‘D’ are equally important, compared to trying to decide on a percentage

preference for one of the options, essentially giving 100 possible responses for an option.

Another possible approach is rank-ordering multiple options. This style of question is

more intuitive than selecting a percentage, especially when there are only a few options

to rank, however the weight of each preference can not be determined.

The AHP isn’t the only option to calculate weights from pairwise comparisons, there

are options such as the probabilistic Bradley-Terry model149 and Borda count.150 However,

the AHP has been much more widely used, has a lot of literature supporting it (see review

in G.2), provides an entire framework for decision making, identifies responses that are

low quality, and is relatively straightforward to implement computationally.

The overall goal of this chapter (and thesis more generally), is to combine the weighted

goals with the relative performance of each simulated policy, in order to identify which

policies are most desirable (or ‘optimal’) for each stakeholder. It must be emphasised that

these are general-purpose techniques being applied specifically to UK lung allocation. It is

possible to ‘pivot’ these techniques to other domains to assist with clinical decision making

in other contexts (as illustrated in chapter 3 with COVID-19).
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5.2 Methods

5.2.1 The Analytic Hierarchy Process §

The AHP was first proposed by Thomas L. Saaty in the 1970’s.36 The AHP captures the

three principles of problem solving:151

1. Decomposition - achieved by starting with a goal and repeatedly breaking the goal

into criteria and sub-criteria. This process is continued until all factors relating to

the overall goal have been included.

2. Comparative Judgements - achieved via a pairwise comparison process. This process

is repeated for every level in the hierarchy. Within each level, every pair of criteria

are compared and decision makers are asked: “When making a decision (with respect

to the goal) which of the two criteria is more important, and by how much?”

3. Synthesis of Priorities - achieved by combining (1) and (2) to calculate weights of

each priority

Comparative judgements use a verbal scale that corresponds to a numeric scale,152 and

is shown in table refsaatyverbalscale. Intermediate values can be chosen, for example ‘4’

would correspond to ‘moderate to strong importance’.

Table 5.1: Saaty’s verbal scale for comparing pairs of criteria and corresponding numeric values.152

Value Definition

1 Equal Importance
3 Moderate importance of one over the other
5 Strong importance of one over the other
7 Very strong importance of one over the other
9 Extreme importance of one over the other

The results of the comparisons are recorded using a pairwise comparison matrix. Each

entry in the matrix contains the judgement of how much more (or less) important the

criterion in the row is compared to the criterion in the column. A detailed mathematical

explanation of how to calculate weights from a pairwise comparison matrix and how to

ensure consistency in comparative judgements is given in appendix H.
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5.2.2 Application of the AHP to Evaluating Lung Transplant Patient

Preferences §

A range of allocation policies were simulated and evaluated in chapter 4 with varying

priorities of waiting list and post-transplant survival, and with the option of prioritising

single-lung transplant for ILD (group D) recipients. These simulation results (see results

starting on page 122) illustrate the key trade-offs between different allocation policies,

however, the choice of which is considered to be the ‘best’ policy is a subjective decision.

The AHP allows many subjective comparisons to be made by multiple individuals,

and then outputs objective measures (i.e., weightings) of the relative importance of mul-

tiple criteria (e.g., the relative importance of reducing waiting list mortality compared

to increasing post-transplant survival). This makes it possible to survey lung transplant

patients (both recipients and those on the waiting list), their family members and also

family members who have lost a relative while waiting for a transplant. This will allow

for a range of perspectives to be collected.

Allocation Goals Survey Design The first step taken to design the survey was to

decide which criteria will be compared. The number of survey questions (q) scales with

the number of criteria (n): q = n(n−1)
2 . There were 5 metrics used for evaluating allocation

policies which would result in 10 comparisons, however two of the metrics - net benefit and

relative benefit - are very similar measures. Informal discussions with clinicians, statis-

ticians and the CTAG patient group chair revealed that the concept of ‘net benefit’ was

more easily understood than ‘relative benefit’. The survey can be simplified by excluding

relative benefit, reducing the number of criteria to 4 and only requiring 6 questions. The

four criteria to be used for the survey would then be:

1. Reduce waiting list mortality

2. Increase benefit to patients

3. Increase survival duration after transplant

4. Reduce waiting time for transplant

The first question of the survey required participants to rank these four goals from

highest to lowest priority by rearranging the four goals on screen. Although this approach

can’t be used to calculate weights, it is a helpful ‘sense check’ to compare the directly

ranked goals against the (indirectly) calculated weights. This question was also placed first

with the intention being to start the participant thinking about the relative importance

of each goal before moving on to complete the pairwise comparisons.

The next step in the survey design was to present the options clearly for use with

the AHP. The AHP uses a 1 to 9 scale to compare each pair of criteria, which extends

in both directions and would result in 17 options per question. The verbal scale that
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Saaty gives only assigns descriptions to the values 1, 3, 5, 7 and 9 on the scale, this would

reduce the number of options to 9 per question, however this can be reduced further. Each

comparison can consist of two questions, the first would ask which of the two criteria is

more important, or if they are of equal importance, resulting in 3 options. If the criteria

are of equal importance then the second question can be skipped, otherwise 4 options

from the verbal scale: 3, 5, 7 and 9 corresponding to ‘moderate’, ‘strong’, ‘very strong’

and ‘extreme’ relative importance can be presented, resulting in a maximum of 7 options

per question.

As part of a service evaluation exercise, the surveys were circulated via the CTAG pa-

tient involvement group via email and social media, and internally within NHS-BT. This

was a voluntary survey where individuals could participate if they chose to and clicked

the link directing them to the survey hosted by Microsoft Forms.153 A range of perspec-

tives from clinicians, candidates on the waiting list, lung transplant recipients, and family

members of candidates requiring lung transplant were collected. Results were summarised

at a population level and also by demographic (for example, how do preferences for candi-

dates on the waiting list differ from those who have received a transplant?) To aggregate

multiple results into a decision on the most preferable policy there were two options:

1. Calculate the geometric mean across all comparison matrices, use the resulting com-

parison matrix to calculate weights for each of the four goals to select a policy

2. Calculate weights for each individual, then determine the most desirable policy at

an individual level and count this as a “vote”. Track the number of votes each policy

receives from each demographic.

The major shortcoming with option 1 is that opposing opinions cancel each other out,

for example the geometric mean of 9 and 1
9 is 1. If the geometric mean is used in cases like

this, the conclusion would be that the two criteria were of equal importance, rather than

showing there is a split in opinion. In the same case, option 2 would count one “vote” for

the policy that agrees with one side of the split in opinion, and one vote for the other,

giving a more representative measure of opinion. For these reasons, option 2 was decided

as the best approach for this use case.

The survey for candidates/recipients/family members is included in appendix I, and

for clinicians in appendix J.
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5.2.3 Visualising Survey Results with Ternary Diagrams §

Ternary diagrams are a useful way to visualise 3-dimensional data in 2 dimensions154 and

in this case can be used to visualise the preferences of clinicians, candidates and recipients

with respect to allocation goals. Each survey response can be plotted on the diagram

allowing a visual comparison of the similarities and differences in opinion between patients

(i.e., candidates and recipients) and clinicians (for an example of this, see figure 5.2).

Ternary diagrams can be used providing two conditions hold:

1. The measurement along each dimension is normalised into the 0 to 100 range

2. Any valid point in the 3-dimensional space must result in the sum of values along

all three axes summing to 100

Weights generated from the AHP are suitable for this purpose, as they sum to 1 so

can easily be scaled into the 0 to 100 range, thus meeting both of the above conditions.

One limitation is that only 3 variables can be visualised at once. However, of the

4 criteria used for the AHP survey, ‘waiting time’ is the only one not relating to the

survival of lung transplant patients. The three remaining criteria relate to (1) survival on

the waiting list, (2) additional survival from transplant and (3) survival after transplant.

These will be the three criteria visualised using ternary diagrams.

Each point on the ternary diagram can be written as a vector, where WL is the weight

given to reducing waiting list mortality, NB is the weight given to increasing net benefit,

and PTX is the weight given to maximising 1-year post-transplant survival. As a result of

how ternary diagrams are constructed and interpreted, the property WL+NB+PTX =

100 holds true for all points on the diagram: WL

NB

PTX


Next, the metrics for each policy are normalised in the range 0 - 1, with the number

of waiting list deaths being multiplied by −1, as lower values equate to more desirable

policies. Let Pn,m refer to the nth policy and metric m, min(P.,m) refer to the minimum

value of metric m on any of the policies, and max(P.,m) refer to the maximum value of

metric m on any of the policies. The results are all normalised using the formula:

|Pn,m| =
Pn,m −min(P.,m)

max(P.,m)−min(P.,m)

This results in there always being at least one policy where |P.,m| = 0 and |P.,m| = 1

for each metric, corresponding respectively to the worst and best performing policies on

that metric.
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The simulation results can then be represented as a matrix:
P1,WL P1,NB P1,PTX

P2,WL P2,NB P2,PTX

P3,WL P3,NB P3,PTX

P..,WL P..,NB P..,PTX

Pn,WL Pn,NB Pn,PTX


To assign a colour to each point on the ternary diagram, the overall performance

score is calculated using the matrix-vector product of the results matrix and the vector of

ternary diagram weights:

Performance Score =


P1,WL P1,NB P1,PTX

P2,WL P2,NB P2,PTX

P3,WL P3,NB P3,PTX

P..,WL P..,NB P..,PTX

Pn,WL Pn,NB Pn,PTX


 WL

NB

PTX



Finally, the index for the policy with the highest performance score is mapped to

a colour for that point on the ternary diagram. As this process is repeated, the areas

corresponding to the most desirable policy given a range of priority weights for each

metric can be visualised, this can be seen in figure 5.1.
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5.3 Survey Results

This section presents a summary of the survey results, identifies the policies that most

closely align with the survey results and calculates the trade-offs between those policies.

5.3.1 Demographics �

Two surveys were circulated to collect transplant candidate, recipient and family member

opinions (n = 100) and clinician opinions (n = 62). The demographics of candidate,

recipient and family member respondents are shown in table 5.2 and clinical respondents

in table 5.3.

Table 5.2: Number and percentage of allocation goal survey participants by demographic category.

Category Number (%)

Candidate on the active waiting list 7 (7%)
Family member of candidate on active waiting list 1 (1%)
Lung transplant recipient 74 (74%)
Family member of lung transplant recipient 7 (7%)
Family member of a candidate who was on the waiting list, but
passed away before receiving a transplant

1 (1%)

Other 10 (10%)

Table 5.3: Number of percentage of allocation goal survey clinical participants by demographic
category.

Category Number (%)

Transplant Surgeon 12 (19.4%)
Transplant Physician 14 (22.6%)
Transplant Recipient Co-ordinator 14 (22.6%)
Specialist Nurse in Organ Donation 9 (14.5%)
Transplant Nurse / Nurse Practitioner 3 (4.8%)
Governance/Administration/Policymaker 2 (3.2%)
Other 8 (12.9%)

5.3.2 Results of Question 1: Ranking Allocation Goals

The results of the four allocation goals that were ranked by candidates/recipients/family

members and clinicians are shown in tables 5.4 and 5.5 respectively. The tables show the

percentage of respondents that placed each goal as first, second, third, or fourth choice,

with first being highest priority and fourth lowest.
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Table 5.4: Percentage of candidates, recipients and their family members (n=100) that ranked
the four allocation goals in each position. First choice = highest priority, fourth choice = lowest
priority.

Goal Average % 1st % 2nd % 3rd % 4th

Rank Choice Choice Choice Choice

Reduce waiting list deaths 1 38.0% 26.1% 20.7% 15.2%
Increase post-transplant survival 2 34.8% 25.0% 19.6% 20.7%
Increase net benefit 3 10.9% 29.3% 31.5% 28.3%
Decrease waiting time 4 16.3% 19.6% 28.3% 35.9%

Table 5.5: Percentage of clinicians (n=62) that ranked the four allocation goals in each position.
First choice = highest priority, fourth choice = lowest priority.

Goal Average % 1st % 2nd % 3rd % 4th

Rank Choice Choice Choice Choice

Reduce waiting list deaths 1 37.7% 31.1% 18% 13.1%
Increase post-transplant survival 2 29.5% 19.7% 31.1% 19.7%
Increase net benefit 3 23% 21.3% 31.1% 24.6%
Decrease waiting time 4 9.8% 27.9% 19.7% 42.6%

5.3.3 Pareto Set of Simulated Policies §

In section 2.2.3 (on page 25) the concept of the ‘Pareto set’ was introduced, and this same

concept can be applied to the results of the simulated policies. In the case of the survey,

ternary diagrams were generated for the three metrics related to survival: waiting list

survival, post-transplant survival and net benefit. Table 5.6 shows the simulated results

for the initial five policies (page 122) and SLT policies from section 4.3.5 (page 124), along

with the three key metrics (note: 1-year post-transplant survival or 5-year post-transplant

survival can be used in this process, the results are identical). Four of the policies were

excluded from the Pareto set due to at least one policy performing equally or better on

all metrics.

Table 5.6 shows that out of the five initial policies (WL, .., PTX) only four need to

be considered. Three of the five SLT policies were eliminated, resulting in only two SLT

policies and overall 6 out of the 10 remaining to be considered.

5.3.4 Ternary Diagrams §

Each point on a ternary diagram represents a potential combination of preferences; in this

case the importance of reducing waiting list deaths, increasing net benefit, and increasing

post-transplant survival. The ternary diagrams in this section are colour-coded to show

which policy (according to its relative performance compared to the other simulated poli-

cies) most closely aligns with the three preferences at every point. The colour-coding of

the diagram is generated as a result of the simulations, and individual points that are
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Table 5.6: The standard five policies and SLT policies and their corresponding survival metrics.
Four policies can be removed from consideration as there are other policies that perform better on
all metrics.

Policy Annual
Waiting
List Deaths

Net Benefit
(Days)

1-Yr PTX
Survival
(%)

Eliminated

WL 46 2238 80.00 X
2:1 WL:PTX 46 2300 80.50
1:1 WL:PTX 47 2376 81.00
1:2 WL:PTX 51 2459 81.80
PTX 77 2522 83.50

SLT-WL 33 2100 78.80 X
SLT-2:1 32 2155 79.30 X
SLT-1:1 33 2197 79.60
SLT-1:2 31 2165 79.30
SLT-PTX 34 2073 78.90 X

plotted on the diagram correspond to individual responses to the allocation goals survey,

thus combining the results of the simulations and AHP in a single diagram.

The sum of the preferences must always equal 100%, this adds additional constraints

to the range of possible values for the preferences: each apex of the ternary diagram

represent 100% preference being assigned, but has an area of the ternary diagram of zero.

This results in the 2:1 and 1:1 WL:PTX policies being eliminated from the Pareto set. The

four policies remaining for consideration were: 1:2 WL:PTX, PTX, SLT-1:1 and SLT-1:2.

Figure 5.1 shows the ternary diagram with each area coloured according to which

policy aligns with the preferences at each point on the diagram.

The ternary diagram in figure 5.2 shows the preferences for every candidate/recipient

who responded to the survey. The responses tended to cluster near decreasing waiting list

deaths (SLT-1:2) and increasing post-transplant survival (PTX).

Figure 5.3 shows the preferences for every clinician who responded to the survey. The

clinician responses were more equally distributed than candidate/recipient responses, with

clusters near each corner of the diagram, demonstrating a wide spread in opinion. When

the skew in candidate/recipient demographics is considered (that is, 75% of respondents

had already received a transplant compared to the 7% on the active waiting list), this may

explain why there is a more even spread among clinicians by comparison.
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Figure 5.1: Ternary diagram showing which policy (colour coded) most closely aligns with prefer-
ences at each point. Each point on the diagram sums to 100%, with the percentage preference of
each of the three goals shown on each axis (decreasing waiting list deaths, increasing net benefit,
increasing post-transplant survival). Arrows for each goal point in the direction of increasing pref-
erence, with 100% corresponding to the highest preference and 0% to lowest.
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Figure 5.2: Ternary diagram showing distribution of candidate, recipient, and family member
preferences relating to lung allocation goals. The survey results for each respondent are plotted
with a solid circle. Each response corresponds to the percentage preference of each of the three
goals shown on each axis (decreasing waiting list deaths, increasing net benefit, increasing post-
transplant survival). Arrows for each goal point in the direction of increasing preference, with
100% corresponding to the highest preference and 0% to lowest.
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Figure 5.3: Ternary diagram showing distribution of clinician preferences relating to lung allocation
goals. The survey results for each clinician respondent are plotted with a solid circle. Each response
corresponds to the percentage preference of each of the three goals shown on each axis (decreasing
waiting list deaths, increasing net benefit, increasing post-transplant survival). Arrows for each goal
point in the direction of increasing preference, with 100% corresponding to the highest preference
and 0% to lowest.
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5.3.5 Survey Results �

Table 5.7 shows the number of candidate/recipient/family member preferences and clin-

ician preferences that aligned with each of the simulated policies (i.e., the number of

individual points that fall within each coloured region of the ternary diagram).

Table 5.7: Number of candidate/recipient/family member opinions and clinician opinions aligning
with each of the simulated policies.

Policy
Number of Aligned
Candidate/Recipient
Preferences (%)

Number of Aligned
Clinician Preferences (%)

Total (%)

1:2 15 (15%) 13 (21.0%) 28 (17.3%)
PTX 52 (52%) 30 (48.4%) 82 (50.6%)
SLT-1:1 4 (4%) 4 (6.5%) 8 (4.9%)
SLT-1:2 29 (29%) 15 (24.1%) 44 (27.2%)

The policy that aligned with the greatest number of overall preferences was the PTX

policy. However, it is important to note that the majority of candidate/recipient respon-

dents were lung transplant recipients (74%) and relatively few were on the active waiting

list (7%). It was expected that this skew in the demographics would also result in a bi-

as/skew in the results generated from this survey, however this may not have been the

case and will be discussed later in this section.

It is interesting to note the similarity in percentages comparing candidate/recipient

preferences to clinician preferences. There was a larger divide of opinion within groups than

between groups. The main differences were that a slightly larger percentage of clinicians

aligned with the 1:2 policy compared to candidate/recipients, and a lower percentage of

clinicians aligned with the SLT-1:2 policy.

5.3.6 Trade-offs �

The trade-off tables starting on page 168 can be condensed into a single table shown in

figure 5.8. This table shows the costs and benefits of replacing one policy with another. It

is interesting to observe that the policy that aligned with the greatest number of survey

participants (PTX) also outperformed the simulated existing policy (NHS-BT) on every

metric. Comparing the PTX policy to the second most aligned policy (SLT-1:2) reveals

the following trade-offs between the two policies (shown in bold in the table):

1. The SLT-1:2 policy would result in 46 fewer waiting list deaths per year.

2. The PTX policy would result in an additional 357 days of net benefit.

3. The PTX policy would result in a 4.2% increase in 1-year post-transplant survival

rates and a 7.4% increase in 5-year post-transplant survival.

4. The PTX policy would reduce the mean waiting time by 30 days.
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Table 5.8: Trade-offs between the four policies evaluated by the AHP survey technique and the
simulated existing policy (NHS-BT). The results in bold show a comparison of the policy that
aligned with the greatest number of survey participants (PTX) and the second-greatest number
(SLT-1:2). Acronyms: WLD = Waiting List Deaths, NB = Net Benefit, PTX-1 = 1-Year Post-
transplant Survival Rate, PTX-5 = 5-Year Post-transplant Survival Rate, WT = Waiting Time

Original
Policy ↓

New
Policy
→

1:2 WL:PTX PTX SLT-1:1 SLT-1:2

NHS-BT Benefits WLD -39 WLD -13 WLD -57 WLD -59
NB +626 NB +689 NB +364 NB +332
PTX-1 +1.6 PTX-1 +3.3 WT -43
PTX-5 +3.1 PTX-5 + 6.2

WT -73
Costs WT +92 WT +7

PTX-1 -0.6 PTX-1 -0.9
PTX-5 - 0.7 PTX-5 -1.2

1:2
WL:PTX

Benefits NB +63 WLD -18 WLD -20

PTX-1 +1.7 WT -85 WT -135
PTX-5 +3.1
WT -165

Costs WLD +26 NB -262 NB -294
PTX-1 -2.2 PTX-1 -2.5
PTX-5 -3.8 PTX-5 -4.3

PTX Benefits WLD -44 WLD -46
Costs NB -325 NB -357

PTX-1 -3.9 PTX-1 -4.2
PTX-5 -6.9 PTX-5 -7.4
WT +80 WT +30

SLT-1:1 Benefits WLD -2
WT -50

Costs NB -32
PTX-1 -0.3
PTX-5 -0.5
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5.4 Survey Results Discussion

The survey and analysis techniques used in this section demonstrate that there was no

consensus in opinion on what the most important goals of a lung allocation should be.

There was greater variance in opinion within the population of candidates/recipients and

clinicians that were surveyed than between populations.

It is worth reviewing the significance of the results generated in this chapter by taking

a high-level look at the process required to produce the results in table 5.8.

First, ten policies were simulated: five with a range of allocation priorities from WL

to PTX (section 4.3.5) and an additional five where SLT was used for recipients with ILD

(section 4.3.5).

Applying the concept of the Pareto set (section 2.2.3) resulted in narrowing down the

ten policies to six. Ternary diagrams were then colour-coded to visualise which policy

would be the most desirable at each point on the diagram; where every point on the

diagram represents a possible combination of preferences of decreasing waiting list deaths,

increasing post-transplant survival, and increasing net benefit (page 179). This further

reduced the number of policies under consideration to four (two policies effectively had an

area of zero on the ternary diagram).

The AHP was used to survey clinicians, transplant candidates, recipients and their

family members (page 174), making it possible to plot every survey response on ternary

diagrams. The number of responses in each colour-coded area were then totalled, showing

that the PTX policy aligned with the greatest number of candidates/recipients and clin-

icians (52% and 48.4% respectively, 50.6% overall). The SLT-1:2 policy aligned with the

second greatest number of candidates/recipients and clinicians (29% and 24.1% respec-

tively, 27.2% overall). This suggests that a real-world implementation of these methods

may want to implement a policy with a priority-ratio that prioritises post-transplant sur-

vival, such as the 1:2 WL:PTX or the PTX policy.

Finally, table 5.8 shows the trade-offs (i.e., costs and benefits) between the four remain-

ing policies from this process, including the trade-offs between the first- and second-most

‘popular’ policies. Thus, this table displays the main trade-offs between the policies

that (1) align with the greatest number of candidate/recipient/family member

preferences and clinician preferences and (2) are the highest performing on the

survival metrics of interest.

It will be necessary to survey additional candidates, recipients and family members

with greater participation amongst those on the active waiting list. When visualising the

difference in opinion between candidates on the active waiting list (figure 5.4) there was still

a spread of opinion. Contrary to what was expected, opinion doesn’t exclusively cluster

around decreasing waiting list deaths, though opinion does appear to skew somewhat

towards reducing waiting list deaths amongst candidates on the waiting list.
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Figure 5.4: Visualisation of opinions for candidates on the active waiting list. The survey results
for each respondent are plotted with a solid circle. Each response corresponds to the percentage
preference of each of the three goals shown on each axis (decreasing waiting list deaths, increasing
net benefit, increasing post-transplant survival). Arrows for each goal point in the direction of
increasing preference, with 100% corresponding to the highest preference and 0% to lowest.

Participants were surveyed without being informed of the simulation results. When

looking at the trade-off table in figure 5.8, despite the PTX policy aligning with the greatest

number of preferences, when comparing this to the second most frequently selected policy

(SLT-1:2), the reduction in waiting list deaths is very substantial. A reduction of 46

waiting list deaths per year may more than compensate for the small reduction in net

benefit (-357 days), 1-year post-transplant survival (-4.2%) and 5-year post-transplant

survival (-7.4%).

Any additional surveys should clearly explain the trade-offs between each of the poli-

cies, this could lead to a higher degree of consensus between candidates/recipients and

clinicians, and help identify which trade-offs are considered reasonable, and thus identify-

ing a policy that balances costs and benefits in line with candidate/recipient and clinician

opinion.
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6.1 Summary

This section summarises the range of topics covered in the main body of this thesis.

First, the lung allocation policies in the US, UK, Europe, Australia, New Zealand and

Scandinavian countries were reviewed. One common feature between all the allocation

policies that were reviewed was that they used sequential allocation, which requires hard

boundaries to be specified. The main problem with hard boundaries is that they can lead

to candidates with similar levels of disease severity (and therefore similar risks), having

different levels of access to transplantation. These problems were revisited in chapter 3,

where a sequential allocation system to prioritise hospitalised COVID-19 patients was

developed (CPAT). CPAT was developed in response to the COVID-19 pandemic; this

allowed the development of methods for allocating ITU resources to patients affected by

COVID-19. The methods developed for CPAT were a simplified, more limited version of

the methods that were used for lung allocation in chapter 5. By the end of chapter 3 the

limitations of the simplified methods became clear.

After the CPAT project concluded and a better understanding of the requirements

and potential limitations of automated allocation systems had been established, focus

returned to lung allocation. Next, the history of lung allocation policies was reviewed.

Early policies allocated lungs according to waiting time, however this biased allocation

towards candidates with less serious lung diseases. Over time, allocation systems were

changed to take into account the clinical urgency of each candidate, with the most notable

being the LAS (see page 45).

At a high level the concept of the LAS is quite straight forward: predict how long a

candidate is expected to survive on the waiting list and with a transplant, with the ‘net

benefit’ being the difference between these two predicted durations. Allocation can then

be based on prioritising candidates with the highest expected net benefit. This concept

was used to overcome the limitations of sequential allocation and was used throughout

chapter 4 to develop a simulation engine to evaluate the impact of different priority-ratios

of waiting list to post-transplant survival.

Although the concept of net benefit is straightforward, the introduction of priority-

ratios (i.e., weights determining the relative importance of WL and PTX survival) and the

use of SLT for recipients with ILD, the number of possible trade-offs grew rapidly. It then

became necessary to use an appropriate method to determine which policy (out of the

many possible options) was ‘optimal’ (i.e., aligns with candidate, recipient and clinician

beliefs on what an optimal allocation system should achieve). The AHP was determined

to be the appropriate method for this purpose.

Next, the AHP was reviewed in detail, which is a framework that can be used to assign

weights to various criteria by surveying and aggregating expert opinion. In the literature

there were examples of using the AHP to design an allocation policy directly, by assigning

weights to various clinical variables. However, the goal of the work in this thesis pivoted to
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using the AHP to evaluate the relative performance of each policy, rather than designing

the policy directly.

Chapter 4 addressed the shortcomings of the sequential approach used in chapter 3,

and investigated a number of potential allocation policies using a range of performance

metrics. At the end of chapter 4 the key output of this work is summarised in the form of

a number of trade-off tables, showing how changing priority from waiting list urgency to

post-transplant survival affects different groups of candidates and recipients. The trade-off

tables summarise results at a population level, and are also stratified by diagnosis group,

age group and blood group.

Chapter 5 ties everything together by demonstrating how the AHP can be used to

identify which allocation policy(s) most closely align with the goals and values of lung

transplant candidates, recipients, and their family members.
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6.2 Revisiting the Original Hypothesis, Goals, and

Contributions

6.2.1 Hypothesis

Finally, let’s revisit the original hypothesis in this thesis, stated in chapter 1.2 on page 11:

Improvements to the current UK lung allocation policy can be made by use of

survival analysis and simulation techniques. If the current UK lung allocation

policy can be simulated and performance metrics measured, then improvements

can be identified by using statistical techniques to compare the current and

potential alternative policies. In addition to this, if the current allocation

policy is sub-optimal with respect to the performance metrics of interest, then

there should exist at least one alternative policy that performs better according

to the metrics of interest.

This can be broken down into several logical statements that can each be proven or

falsified individually:

A. The UK lung allocation policy can be simulated

B. Performance metrics can be measured from the simulated UK lung allocation policy

C. Improvements can be identified using statistical techniques

D. There exists at least one alternative policy that performs better according to the

metrics of interest

E. The current allocation policy is sub-optimal

This can be represented in propositional logic as follows:

(A ∧B ⇒ C) ∧ (D ⇔ E)

This is interpreted as: “If statements A and (∧) B are true, then (⇒) statement C

should be true. If A and/or B are false, then nothing can be said about statement C,

however, if statements A and B are true and statement C is false, then the hypothesis has

been proven false. In addition (∧), if statement D is true then E should be true, or if D

is false then E should be false and vice versa (⇔). If D is true and E is false or vice versa

then the hypothesis has been proven false.”

This means that if all statements A - E can be demonstrated to be true, then the

hypothesis has been proven true.

Starting with statement A, section 4.2.2 (page 83) describes the approach taken to

simulate the NHS-BT policy and section 4.2.8 (page 96) describes the methods used to
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ensure the simulated results match what is observed in reality. Section 4.3.4 (page 112)

shows a comparison of observed and simulated results, showing that the simulation engine

successfully simulates the current NHS-BT policy, thus proving A to be True.

For statement B, section 4.2.6 (page 87) describes the performance metrics that were

measured, and section 4.3.5 (page 122) shows tables of performance metrics recorded for

each policy and scenario. Section 4.3.5 also contains results showing statistically significant

differences in waiting list mortality between policies. This shows that B and C are also

True.

Statement D can be proven True with the existence of one policy that performs

better on one of the performance metrics. The first table in section 4.3.5 contains five

policies that perform better than the NHS-BT policy on at least one metric. The SLT

policies in section 4.3.5 also perform significantly better in terms of reducing waiting list

deaths. These sections show that statement D is True, thus demonstrating that E is

True, or in other words, the current NHS-BT policy is sub-optimal with respect to at

least one performance metric. This also falsifies the null hypothesis (page 11): “There is

no statistically significant difference in performance metrics between the current UK lung

allocation policy and any alternative simulated policy.”

Finally, the initial statement in the hypothesis is supported: “Improvements to the

current UK lung allocation policy can be made by use of survival analysis and simulation

techniques.”

6.2.2 Goals

In section 1.2.3 (page 12) the goals for this thesis were outlined. Each goal will now be

evaluated to assess the degree to which it was completed.

Goal 1: Design and implement a simulation engine to predict the impact of

different lung allocation policies according to specific performance metrics

This was completed successfully, the methods are described in section 4.2.7 and ap-

pendix D. A number of performance metrics were collected: annual waiting list deaths,

average net benefit per recipient, average relative benefit per recipient, 1- and 5-year

post-transplant survival rates, average waiting time for transplant, annual transplant vol-

ume and life-years gained and lost. These results are presented and discussed throughout

section 4.3.

Goal 2: Quantify the goals and values that the lung transplant community

(i.e., patients, clinicians and other stakeholders) believe should be part of an

ideal allocation policy

This was completed successfully, however follow-up surveys will be required to gather

a wider and more representative sample of the lung transplant community. The methods

192



Chapter 6. Conclusion and Next Steps

for designing the survey are described in section 5.2 and the results are presented in

section 5.3.

Goal 3: Using the results generated from goal (2), identify which potential

policy most closely aligns with the goals and values of the lung transplant

community

This was also completed successfully as described and presented in sections 5.2.3 and 5.3.5.

As previously discussed, the survey was conducted with participants not being aware of

the trade-offs between the various policies. An additional follow-up survey that presents

trade-offs could be completed as future work.

Goal 4: Using goal (1) and the results from goal (3), compare the current and

proposed policies using performance metrics of interest

Table 5.8 on page 185 shows the trade-offs between the simulated NHS-BT policy and

the four top performing policies. Interestingly, the PTX policy outperformed the NHS-

BT policy on all performance metrics, and this was also the policy that aligned with the

greatest number of survey participants.

Goal 5: Ensure policies are equitable: all candidates should be prioritised

based solely on the same clinical criteria, it should not be possible to unfairly

influence candidate rankings, and rankings should not be skewed to benefit or

disadvantage specific groups of candidates

This goal is somewhat more subjective than the others, but can still be evaluated.

Candidates were prioritised using an allocation score that is derived from survival models

for waiting list and post-transplant survival. As a result of this, all (simulated) candidates

were prioritised using the same solely clinical criteria.

In terms of how easily the rankings could be manipulated: for both the waiting list

and post-transplant survival models, all variables were observable/measurable, or would

be recorded in a candidate’s medical record, such as being diagnosed with diabetes, prior

malignancy or requiring home oxygen.

Goal 6: Ensure policies are auditable: it should be possible to justify alloca-

tion decisions and understand the exact reasoning that was undertaken at the

time of allocation

This goal was completed for both CPAT and the lung allocation policies. For the

CPAT system, audit logs were saved any time a prioritised list of patients was requested

from the server. The audit log contained a snapshot of all patients and their condition

(comorbidities, demographic data such as age and sex) along with the date and time the

log was generated.

193



Chapter 6. Conclusion and Next Steps

The design of the lung allocation policies themselves are auditable: if a snapshot of

the waiting list was to be taken any time a match-run was performed, it would be possible

to justify allocation decisions by calculating allocation scores for every candidate on the

waiting list at the time of the snapshot. This is due to the policies being deterministic,

and not probabilistic or relying on random processes as discussed in section 2.2 on page 20.

Goal 7: Ensure policies are transparent to candidates: it should be clear to

candidates how their position on the allocation rankings was determined

This goal was mostly completed. Though not shown in the main body of this thesis, it

would be possible to visually show a candidate how their allocation score was calculated,

an example of this is given in figure 6.1.

The graph would be interpreted from left-to-right: the first column shows which at-

tributes contribute to increasing waiting list risk, with the size of the bar indicating the

relative magnitude of the risk. The next column shows attributes that decrease waiting

list risk. The next two columns show attributes that increase and decrease post-transplant

risk (note that these include donor variables such as the lung(s) being donated, and the

height difference between the donor and the candidate).

The last three bars show the total waiting list risk (i.e., total attributes decreasing risk

subtracted from total attributes increasing risk), total post-transplant risk, and finally net

benefit (the difference between waiting list risk and post-transplant risk). The scores are

based on the coefficients from the Cox models: the coefficients have simply been multiplied

by 100 and rounded down to the nearest integer. The units are intentionally abstract, since

mapping scores to predicted survival durations on the waiting list and post-transplant,

then showing these predictions to candidates could potentially cause undue distress.

The purpose of figure 6.1 is just to illustrate that the design of the allocation policy

makes this visualisation possible, however, the visualisation of candidate scores was not

a focus of this work, and no feedback has been received as to the clarity and ease of

interpretation for lung transplant candidates. Future research could focus on designing a

visualisation for candidates that is easy to understand.

194



Chapter 6. Conclusion and Next Steps

Figure 6.1: An example allocation score visualisation for a 54 year old candidate on home oxygen
with ILD, a BMI of 20, blood type O, being offered a left lung from a donor that is 10cm taller.
Columns from left-to-right are attributes that: increase risk of mortality on the waiting list, de-
crease risk on the waiting list, increase post-transplant risk, decrease post-transplant risk. The
final three columns are: overall waiting list risk, overall post-transplant risk and net benefit.

6.2.3 Contributions

In section 1.2.4 (page 13) the potential contributions to the literature (and lung trans-

plantation more specifically) were outlined. They are revisited here along with additional

contributions that came about as a result of this work.

Contribution 1: Development of predictive models for waiting list and post-

transplant survival for the UK lung transplant population

These predictive models were successfully created using the automated process de-

scribed in section 4.2.1 and appendix D.1, the models are shown in section 4.3.1. An

additional contribution as a result of this, is the utilisation of these models to create an

allocation score using the same methodology as the LAS, but applied to the UK popula-

tion.

Another unique contribution is the ability of the allocation score to take donor variables

and the combination of donor and candidate variables (such as height difference) into
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consideration. At the time of writing, no other lung allocation system in the world does

this, including the CAS in the US.

Contribution 2: Development of a novel simulation engine to assess the

impact of lung allocation design decisions on different groups of lung transplant

candidates

Contribution 3: Identification and quantification of the goals and values of

the UK transplant community

Contribution 4: Development of a framework that combines contributions

(1), (2) and (3) to identify the lung allocation policy that most closely aligns

with the goals and values of the UK transplant community

Contributions 2 - 4 correspond to goals 1 - 3 that have already been discussed and

successfully achieved.

Contribution 5: A general-purpose simulation engine that can simulate the

allocation of any limited resource (assuming sufficient data is available)

The simulation engine that was developed was tailored specifically to simulating UK

lung allocation, however this ‘tailoring’ was achieved by specifying a set of input parame-

ters and providing the necessary datasets to the simulation engine.

By providing different datasets and using a different set of input parameters, the

simulation engine can be used to evaluate allocation policies from other domains, thus

making the simulation techniques described in this thesis general purpose.

Contribution 6: A general-purpose framework for comparing allocation poli-

cies and selecting the most desirable policy

The methods in chapters 4 and 5 could be considered a description of a general-purpose

framework for clinical decision making/allocation of scarce resources. The overall high-

level process has been condensed and summarised in the section that follows.

Next are some additional contributions that were not originally outlined at the start

of this thesis. The first is the Clinical Prioritisation Assistance Tool (CPAT) developed as

a result of the COVID-19 pandemic. The methods that were developed were (unknown at

the time) a simplified version of the methods used for the AHP. These methods included

a novel combination of a modified version of Kahn’s algorithm, loop detection algorithms

and lexicographic sorting. This contribution can be summarised as a novel framework for

emergency decision making in scenarios with limited or no available data or literature.
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6.3 A Framework for Decision Making

The techniques used throughout this thesis are not specific to the allocation of lungs within

the UK. These methods could be used for other countries, other organs and to other health

resource allocation problems in general. The aim of this section is to outline a high level

framework that can be followed and customised for specific use cases.

6.3.1 Step 1 - Identify Main Processes and Interactions

The first step is to identify what is being simulated. A general outline of processes and

their interactions is given in chapter 4 for lung allocation, however this template can also

be used for other organs. From a more abstract point of view a model of processes and

interactions is very similar to a ‘Stock and Flow’ model.155 A ‘stock’ is a generic container

that holds an abstract quantity, and a ‘flow’ describes how quantities move between stocks.

A flow starts at a source, can pass through one or more intermediate points, and ends at

a sink.

This is illustrated in figure 6.2 with an example of a simplified economy. Funds flow

from sources ‘Employer Funds’ and ‘Bank Funds’ into the stock ‘Employee Bank Account’,

and eventually to the sinks of ‘Purchases’ and ‘Government Funds’. The rate of flow of

funds into the employee bank account are controlled by their salary, with the income tax

rate determining the amount of salary being diverted to government funds. The employee

bank account also earns interest, and the amount of interest earned is determined by the

interest rate and the account balance. Funds in the employee bank account stock then

flow to the ‘Purchases’ sink, and the rate of flow is determined by the account balance

(i.e., as the balance of the account approaches zero, the amount of spending decreases).

Finally, the sales tax rate determines the rate that funds spent on purchases are diverted

back to government funds.

In the case of the lung simulation model, the two flow sources are the patient listing

process and the donor availability process. Patients flow into the waiting list stock, and

flow out to either the ‘Waiting List Mortality’ sink, or to the intermediate ‘allocation

policy’ node, where the flow of donors combines with the flow of patients.

The flow terminates with the calculation of the post-transplant survival, benefit and

waiting time metrics.

Identifying the main processes and how they interact will inform which data is neces-

sary to collect/access, and also the structure of the simulation (see page 95 for an example

of this applied to lung allocation).
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Figure 6.2: Stock and flow diagram example using a simplified economy. Sources are ‘Employer
Funds’ and ‘Bank Funds’. Sinks are ‘Government Funds’ and ‘Spending’. ‘Employee Bank Account’
is a stock, and the quantity of funds in the account depend on the net difference between the flow
of funds into and out of the account.

6.3.2 Step 2 - Data Integrity

The next step is to ensure the quality and integrity of any data used for decision making

/ simulation.

It is generally useful to plot continuous values on histograms and tabulate discrete/-

categorical values to ensure they are within an expected range.

It is also necessary to decide how missing fields should be handled, some options are:

exclude any data points that contain missing values, use a default value, infer the value

from other fields (e.g. you can calculate BMI from height and weight even if the BMI

field isn’t populated) or use techniques such as multiple imputation. The data can then

be filtered to only contain valid rows that are usable for analysis.

Formal methods can be used to assist in the process of ensuring data integrity. Libraries

are available that allow invariants (i.e., properties that must always hold) to be specified

per row, column or cell in a Comma Separated Values (CSV) file.156 For example, a column

invariant could ensure that no value is a pre-specified number of standard deviations

from the mean value. This could highlight situations where a height should be input in

centimetres, but instead has been input in feet. A row invariant could ensure no values are

missing, and a cell invariant could cross-reference values, for example, ensuring an input
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BMI is within a certain range given a height and weight. If a CSV file is verified using

formal methods then all desired properties (invariants) are guaranteed to hold.

6.3.3 Step 3 - Extract Probability Distributions

The rate of ‘flow’ between ‘stocks’ in the model needs to be informed by observed data

in order to approximate reality. Where possible, parameters describing probability dis-

tributions should be calculated. For survival / time-to-event data, some options are the

exponential, Weibull and Gompertz distributions. For arrival frequencies/time between

events, a Poisson process/distribution or exponential distribution can be used. Roulette

selection as demonstrated in this thesis is also an option if no suitable probability distri-

bution can be found.

6.3.4 Step 4 - Identify Performance Metrics

In order to decide between multiple alternatives, performance metrics can help identify the

strengths and weaknesses of each option. It is important not to have too many metrics, but

equally there should be enough to distinguish differences in performance between options.

In the example given in this thesis, ‘net benefit’ and ‘relative benefit’ were essentially

different measures of the same metric, so ‘relative benefit’ could be dropped without

impacting the overall decision making process.

6.3.5 Step 5 - Simulate and Evaluate

Next, the system should be simulated, including all scenarios / options being considered.

The performance metrics for each option should be normalised in the range 0 to 1, with 0

corresponding to the worst performing option on that metric and 1 corresponding to the

best. This should result in there being a ‘best’ and ‘worst’ option for every metric.

6.3.6 Step 6 - Survey and Decide

The final step is to identify the key stakeholders with respect to the system being modelled,

then use the AHP to identify and decide on the most desirable option.

The weights from the AHP survey combined with the normalised performance metrics

from the previous step will identify the most desirable option for each stakeholder that

participated in the survey.

The overall decision could be decided using the option that was most frequently iden-

tified as being the most desirable (similar to a majority vote), or ternary diagrams could

be used to identify a set of weights that represents the best overall compromise between

all stakeholders.

This process will likely not be linear, proceeding from steps 1 through 6 in sequence,

arriving at the final result in step 6. As you work through the steps, assumptions may
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be found to be incorrect, alternative simulation scenarios may be proposed, additional

datasets may be needed, different performance metrics may be required and so on. This

will necessitate returning to earlier steps and working through the process again. Overall

this will likely be an iterative process that requires repeating steps many times.
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6.4 Research Limitations and Future Work

Survival Models

This research makes use of waiting list and post-transplant survival models and a simula-

tion engine that approximates the real-world processes of candidate listing for lung trans-

plantation, donor offering, donor lung allocation, waiting list survival and post-transplant

survival. As discussed in earlier sections, a model is a lower-resolution, more abstract view

of a real-world system. The predictions, trends and trade-offs contained in this thesis are

subject to a number of assumptions that must be taken into consideration if any real-world

implementation of this research were to take place. The quality of the results generated

from these techniques is limited by the quality of the data used for simulation, as such,

any real-world applications should use the highest quality datasets available.

In section 4.4.4 the difficulty of predicting post-lung transplant outcomes was discussed.

Future research should aim to improve predictions for post-transplant survival and identify

data that is not currently being collected that is predictive of post-transplant outcomes.

Research has already been completed comparing the Cox PH model to other survival

models such as accelerated failure time (AFT) models, and concluded that there was no

major difference in predictive ability between the types of model used.157,158 There may

also be individual psychological factors that impact post-transplant survival. Depression

and use of anti-depressants post-transplant has been associated with an increased risk of

mortality and graft loss,159,160 and adherence to therapy has also been associated with

post-transplant survival.161

One possible approach to increasing the concordance index of the models used for

simulation is to stratify the population by diagnosis group. A future iteration of this work

should look into developing separate survival models for each of the diagnosis groups and

calculating the C-statistic for each group. This may result in a higher overall C-statistic

for the population.

In section 4.4.3 the differences between simulated 5-year PTX rates and those observed

and published by NHS-BT21,24–26,146 were discussed. It was concluded the differences were

due to an imperfect fit between the parameterised survival curve and the observed survival

curve generated from the PTX survival dataset. Future work should focus on methods that

result in a better fit of survival curves used for simulation, such as the Royston-Parmer

flexible parametric model.162

Target Population

The next limitation is that this research only looked at the adult, first time, lung-only

recipient population. This work can be extended by expanding the dataset to include

paediatric patients and donors, re-transplants, and multi-organ recipients such as heart-

lung and lung-liver patients. Currently, once a recipient has been allocated within the
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simulation no further steps are taken for that individual. With appropriate data on re-

transplant rates, and also the risk of developing different grades of PGD, the simulation

engine can be extended so that there is a risk of developing complications post-transplant

requiring the recipient to be added back onto the waiting list. This would make it possible

to compare policies that handle re-transplants differently; should candidates requiring

another transplant be prioritised in the same way as a first-time candidate? Or should

they be lower priority since they have already “had their chance” at a transplant? Or is

the fact they are experiencing a potentially life-threatening complication with their lung

graft cause for re-transplanted candidate to be higher priority? What impact would this

have on other candidates on the waiting list?

Because the simulations in this thesis generate a waiting list survival duration at the

time a simulated candidate is added to the waiting list, the risk of mortality on the waiting

list remains constant from the time of listing. In reality a candidate’s “trajectory” on the

waiting list could change, and this should also be modelled to improve the accuracy of the

simulations.

For example, recent advances in treatment for cystic fibrosis patients has recently

resulted in their frequent removal from the waiting list, as the disease-specific treatment

is so effective they no longer require a lung transplant (see pages 16 and 18).

Conversely, prioritising candidates only once their clinical status has deteriorated may

not make the best use of limited donor lungs and could be resulting in poorer outcomes

post-transplant. Another extension to this work is to develop models that predict the

changes in a candidate’s clinical condition as time progresses on the waiting list, and

evaluate the impact of allocation policies that take changing risk into account.

The datasets used in this work have a limited number of rare patient characteristics.

For example, pulmonary arterial hypertension is relatively rare compared to the other

diagnoses, and very tall or very short patients are also rare, given that they are at the tail

ends of a normal distribution. The combination of these characteristics means there are

few (or zero) patients in the dataset with these rare combinations of attributes. The result

of this is that it is not possible to predict the impacts of different allocation policies on

these patients. Just because these attributes are rare and don’t occur in the dataset does

not mean they can’t occur at some point in the future. To overcome this limitation, the

attributes of patients used in the simulations must be expanded beyond what is contained

in the dataset. There are two ways this could be achieved:

The first is to check for any correlations between variables (for example, FVC and FEV1

are correlated), and if only a few variables are correlated then it may be possible to only

model survival with uncorrelated variables. Next, each variable used in the survival models

can have an appropriate distribution fit to it (e.g. normal, exponential). Then, instead

of sampling random rows from a transplant dataset, patient attributes can be generated

independently and randomly. This will result in a wider range of patient characteristics

being simulated, overcoming the limitations previously outlined.
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The second method is to make use of machine learning, more specifically generative

adversarial network (GAN)s.163 This approach is better suited to large datasets, where

there may be more complex correlations between variables. A GAN takes training data

as input, and through a training process generates new data that isn’t contained in the

original training dataset, but has the same underlying structure. This would allow ‘new’

transplant patients to be added to the datasets used for simulation, with the patient char-

acteristics still being realistic. The UK transplant datasets may not contain enough data

for this approach, however it may be possible to aggregate multiple datasets worldwide in

order to have sufficient data to utilise GANs.

Additional Simulation Scenarios and Policy Performance Metrics

In section 4.4.3 (page 153) the simulations performed in this thesis for the UK population

were compared to the simulations performed by Valapour et al.100 for the US population.

While the percentage reduction in waiting list deaths was similar, there was difficulty in

determining how much of of the decrease was due to the removal of geographic bound-

aries, and how much was due to the use of survival models and an allocation score. To

help answer this question, future work could compare the NHS-BT policy with geographic

boundaries to one without, and comparing each of the score-based policies with and with-

out geographic boundaries.

In section 4.4.3 the outcomes of SLT vs BLT are compared between this work and

published simulation results using a Markov model in the US.91 One difference between

the two methodologies is that the US study simulated SLT for candidates with ILD as

well as candidates with COPD, whereas only candidates with ILD were eligible for SLT

in the simulations performed in this thesis. Additional simulations could be performed to

evaluate the outcomes of SLT for COPD as well as ILD candidates.

There are additional metrics that could be used for evaluating the performance of poli-

cies. One interesting metric would be to calculate the probability of a recipient benefiting

from transplant. The net benefit metrics that were calculated in this thesis are an average

of a probability distribution. Due to the randomisation that is inherent in the simulation

engine, there are instances where simulated recipients receive a negative net benefit, due to

their simulated post-transplant survival duration being less than their simulated waiting

list survival duration. To calculate the probability of benefit, the calculation would be:

% Probability of Benefit =
Number of simulated recipients with net benefit ≥ 1 day

Total number of simulated recipients

This could be taken further by calculating the probability of achieving at least x years

of net benefit, for example 1 or 5 years. The results could be stratified by diagnosis group,

age group, blood group etc. to identify the characteristics of patients most likely to benefit

from transplant.
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Order of Offering Left and Right Lungs with the SLT Policies for ILD

Patients �

In section 4.3.5 the ordering of offers was evaluated to see if there was any difference

between offering the left lung first or the right lung first. On page 106 it is shown that

compared to a BLT, transplanting a single left lung had a hazard ratio of 1.51 (CI: 1.22

to 1.86, p <0.001), and transplanting a single right lung had a hazard ratio of 1.08 (CI:

0.87 to 1.34, p = 0.485).

The simulation results showed no statistical difference in mean net benefit per recipient

between allocating left-lung-first or right-lung-first (page 124). The SLT algorithm that

was implemented to generate the results in section 4.3.5 compares the net benefit from

BLT for a single recipient to the sum of net benefit for transplanting two ILD recipients

(page 85) with a strict left-then-right ordering. However, the SLT policy doesn’t have to

strictly decide on always allocating the left lung first or right lung first.

In practice, at an individual level it does matter which recipient receives the left lung

and which receives the right lung. If the SLT algorithm was implemented for real-world

allocation, this could result in clinicians listing their patients as only able to receive a right

lung in order to avoid them being allocated a left lung which has an expected lower net

benefit. However, this would be at the cost of a higher risk of death on the waiting list.

Alternatively the ordering of offers could be decided on a case-by-case basis.

An Alternative SLT Allocation Algorithm §

One alternative SLT algorithm could be the following:

1. Calculate net benefit for recipients of any diagnosis receiving a BLT

2. Calculate the total net benefit for ILD recipients using the ordering: left, then right

3. Calculate the total net benefit for ILD recipients using the ordering: right, then left

These options could then be ranked by total net benefit in descending order, this results

in six possible scenarios:

1. BLT ≥ left-first ≥ right-first

2. BLT ≥ right-first ≥ left-first

3. Left-first ≥ BLT ≥ right-first

4. Left-first ≥ right-first ≥ BLT

5. Right-first ≥ BLT ≥ left-first

6. Right-first ≥ left-first ≥ BLT
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In some scenarios, the ordering of offers is either pre-determined or does not need to be

considered: in scenarios 1 and 2, a BLT on a single patient would be performed. Scenario

3 dictates the SLT offering should be left-then-right, and scenario 5 dictates the offering

should be right-then-left. This leaves only scenarios 4 and 6 to be considered.

The ordering can then be determined using a number of possible methods, including

some from the field of decision theory: ‘maximin’, ‘maximax’, and ‘minimax regret’, all of

which are described in greater detail in appendix K.

Method 1: Use Total Net Benefit With this approach the total net benefit is com-

pared between left-first and right-first allocation. If left-first > right-first, then the left

lung is allocated first. If right-first > left-first, then the right lung is allocated first. The

final scenario is left-first = right-first, in this case, the ordering could be determined at

random (though random processes in allocation may be undesirable, see pages 24 and 25),

or one of the methods to follow could be used.

Method 2: Use the Maximin Strategy The maximin strategy164,165 would choose

the offer ordering (left/right/both lungs) that maximises the lowest net benefit a recipient

will receive compared to all other offering orders (this concept was discussed in section 2.2.1

under ‘Rawlsian Ethics’).

Method 3: Use the Maximax Strategy The maximax strategy165 chooses the offer

ordering that maximises the maximum net benefit received by any recipient. Note that

this method does not necessarily maximise the total net benefit as in method 1, due to

the fact that one recipient may lose more net benefit than the other recipient gains, even

if one of the recipients has the highest possible net benefit they could individually receive.

Method 4: Use the Minimax Regret Strategy The minimax regret strategy165

chooses the offer ordering that minimises the maximum ‘regret’ experienced by each

recipient depending on the offer ordering. The amount of regret experienced by each

recipient is the difference between the net benefit they received with the chosen order of

offering (left/right/both lungs), and the maximum possible net benefit they would have

received with alternative orderings.

Combining Methods If this approach were to be implemented in a real-world alloca-

tion algorithm, multiple methods could be used to determine the ordering of offers. This

would only be necessary in scenarios 4 or 6 as shown on page 204.

This would require determining the relative value of each approach and ranking them

from highest to lowest, this could be determined using the comparison matrices such as

those used for CPAT in chapter 3. For example, it could be decided the highest priority
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is to maximise the minimum net benefit, then to minimise maximum regret, then to

maximise total net benefit, and finally to maximise maximum benefit.

The SLT algorithm could then operate as follows:

1. Identify which ordering scenario is present

(a) If BLT results in the highest total net benefit, then allocate the lung pair

(b) If left-first or right-first results in the highest total net benefit, and BLT results

in the second-highest net benefit, then allocate in the order that results in the

highest total net benefit

(c) If BLT results in the lowest net benefit, then:

i. Use the ordering as determined by Method 2: Maximin. If choices are

identical, then move to next method

ii. Use the ordering as determined by Method 4: Minimax Regret. If choices

are identical, then move to next method

iii. Use the ordering as determined by Method 1: Total Net Benefit. If choices

are identical, then move to next method

iv. Use the ordering as determined by Method 3: Maximax. If choices are

identical, then move to the final method

v. Use an appropriate random number generator to randomly decide alloca-

tion order

It is unlikely in practice that a situation will arise that results in the necessity to decide

on the allocation order at random. However, should this situation arise it is important

to use a suitable random number generator. Many random number generating functions

in software make use of pseudorandom number generation. A pseudorandom number

generator is initialised with a seed value, and then generates a sequence of (apparently)

random numbers, however, if the same seed value is used then the exact same sequence of

numbers will be generated.

One option is to initialise the random number generator using Unix time, which is

the number of seconds elapsed since 00:00:00 Coordinated Universal Time (UTC) on 1

January 1970. This would allow for auditing of allocation decisions, as the timestamp

could be input to the random number generation function, which should output the same

pseudorandom number and result in the same offer ordering being chosen.

Another option is to use a true random number generator; these require a source

of entropy such as computer mouse movements, keyboard typing intervals or disk I/O

operations. While this ensures no bias in the random numbers, it is not possible to repeat

the generation process for auditing purposes.

Other potential extensions of this work are to apply it to other organs, other prioriti-

sation problems, or to lung transplant patients from other countries. The same processes
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could be repeated as outlined in this thesis, and trade-offs/trends can be identified. It will

then be possible to identify if the same trends show up in other transplant populations.

6.4.1 Final Words on Real-World Implementation

Through the course of completing the work for this thesis I was able to begin collaborating

with the Cardiothoracic Advisory Group (CTAG) within NHS-BT, who are responsible

for overseeing the UK lung allocation policy (meeting agendas and minutes where I was

present can be found at166–168). This has presented the opportunity to potentially have

this research guide the implementation of future UK lung allocation policies.

Before discussing further, it is worth recounting the principle of ‘Chesterton’s fence’,

named after the English philosopher G. K. Chesterton and published in his 1929 book

“The Thing”:169

In the matter of reforming things, as distinct from deforming them, there

is one plain and simple principle; a principle which will probably be called a

paradox. There exists in such a case a certain institution or law; let us say for

the sake of simplicity, a fence or gate erected across a road. The more modern

type of reformer goes gaily up to it and says, “I don’t see the use of this; let

us clear it away.”

To which the more intelligent type of reformer will do well to answer:

“If you don’t see the use of it, I certainly won’t let you clear it away. Go

away and think. Then, when you can come back and tell me that you do see

the use of it, I may allow you to destroy it.”

Applying this principle to the UK lung allocation system, the reasoning behind the

design of the current system should be understood - even if the reasoning is flawed or out-

dated - before replacing it with a new system. It may not be possible to fully understand

the reasoning behind all design decisions, however, an attempt should at least be made to

retrospectively understand the potential reasons for historical policy design decisions (i.e.,

“go away and think”).

The results in chapter 4 have demonstrated that the existing allocation policy has very

weak predictive ability compared to the models developed in this thesis (page 109), and

simulations have shown the use of a national allocation score significantly outperforms

the existing policy in terms of reducing waiting list survival and increasing net benefit

(pages 122 and 125).

The potential benefits may be perceived to outweigh any potential risks or unintended

consequences from replacing the existing allocation system with a national score-based

one, and the change could be justified if all stakeholders agree they are happy to take on

the risk to experience the benefits. However, Chesterton’s fence still applies: the benefits

are framed in the context of waiting list survival, post-transplant survival, and net benefit.
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The original reasoning behind the existing policy may have been in the context of equity

of access to transplant, ethical considerations, operational/practical limitations, budget

constraints, legal responsibilities, or some other context that has not been considered.

The two largest changes proposed by this work are the removal of geographic bound-

aries, and removing the strict condition that ABO-identical candidates are prioritised

ahead of ABO-compatible candidates. As discussed previously (section 1.1.2 on page 8),

the ABO-identical rule may be in place to allow ABO-O candidates greater access to

transplant. Centre-based allocation may be in place to reduce the costs of transporting

lungs across the UK, minimise CIT, or an attempt to prevent differing access to transplant

based on a candidate’s location.

These would represent large changes to the UK lung allocation system, and any change

(especially large changes) to a complex system introduces the risk of unintended conse-

quences; there are many potential complex interactions that could result in emergent

behaviour that is difficult or impossible to predict before the change is introduced.

If a real-world implementation of this work were to be pursued, it would require en-

gagement from all stakeholders, ensuring they understand the potential risks and benefits

of changing the existing allocation system, and agreement to implement the new system.

Continuous monitoring of candidate and recipient outcomes would be required to ensure

there are no unexpected or adverse consequences.
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An Introduction to Survival

Analysis

Survival analysis is a branch of statistics that focuses on analysing and predicting survival

durations and outcomes. In a more general sense, survival analysis focuses on analysing

“time-to-event” data, which does not necessarily have to relate to the mortality of individ-

uals. These same techniques can be used to analyse the reliability of consumer hardware

or machinery in a factory, where the time-to-event data specifies the time between hard-

ware/machinery failures.

The specific challenge that survival analysis deals with is censoring. For each individual

in a dataset, a survival duration can be recorded, however not all individuals in the dataset

have necessarily died. The survival duration in some cases gives a minimum survival

duration, or in other words, we know that individual X has survived at least t days, but

have no further data beyond that point in time. If we know an individual has survived

from time t0 to time t without dying, that data point is said to be right-censored.

One method for dealing with censored data is to simply ignore it and only use data

points where an event has been observed, however there are some problems with this

approach. The most immediate problem is that potentially useful information is being

discarded. Ideally an analysis would make use of all data that is available. The other

problem is that excluding data points with no event recorded results in over-estimating

mortality rates, biasing any models to predict shorter survival durations than would be

observed in reality.

To correctly account for censoring, survival datasets contain two values per observation:

the first is the observed survival duration in some unit (days, weeks, months, years etc.)

and the second is a censoring indicator. The censoring indicator is typically set to 1 to

indicate an event was observed, and 0 to indicate an event has not yet been observed. In

addition to these two variables, any other variables that could potentially be related to

mortality can be included.
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One basic way of analysing the survival of a population using right-censored survival

data is to use KM survival curves. The specifics of how the curve is calculated is beyond

the scope of this thesis, however a basic overview will be given here. The KM curve is

constructed by taking into account the number of individuals that are “at risk” and the

number of observed events at each point in time. The KM curve also takes the censoring

status of each individual into account. The x-axis is time, starting at 0 and increasing up

to the longest observed survival duration in the dataset. The y-axis is the proportion of

individuals surviving to that point in time.

Regardless of the population being analysed, all KM curves start at 100% survival at

time 0. The survival curve then decreases monotonically (i.e., remains the same or de-

creases, but never increases) with time as more events are observed and a lower percentage

of the population remains alive.

Some useful quantities can be calculated from a KM curve, for example the time at

which 50% of the population is alive gives the median survival time. The area under the

curve from time t0 up to some arbitrary time x (referred to as the restricted mean) gives

the mean survival duration of the population up to time x.

Along with the main survival curve, 95% upper and lower confidence intervals can

also be calculated. These can be plotted as a shaded area on the graph, or as dotted

lines above and below the survival curve. Typically, the confidence intervals widen with

time, as fewer and fewer observations are remaining in the dataset as time progresses.

The confidence intervals can also be used to visually compare the survival of different

populations. For example, if you wanted to analyse the efficacy of a treatment, you

could plot the survival curves and confidence intervals for a control population and a

treatment population. If there is a large amount of overlap of the confidence intervals

then the survival between populations is not statistically significant, or in other words the

treatment has not been observed to be effective at reducing mortality between the control

and treatment populations.

Rather than comparing visually, there are statistical techniques that can be used to

calculate a p-value to determine if there is a statistically significant difference in survival

between populations. One statistical test for survival data is the log rank test, which uses

the null hypothesis that there is no statistically significant difference between the survival

curves between two populations. A p-value ≤ 0.05 indicates that there is a statistically

significant difference between population survival.

For certain subsets of the population survival rates may differ. For example, mortality

may be higher for older individuals, or for individuals with certain medical conditions.

For few variables of interest, plotting separate survival curves may be practical, however,

as the number of variables increases this becomes impractical.

One of the most used survival models is the Cox PH model. The Cox PH model

was first described by Sir David R Cox in 1972 in his paper “Regression models and life-

tables”.124 In order to make use of the Cox PH model the proportional hazards assumption
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must hold. This assumption states that the relative hazard between two populations

remains constant. In relation to the KM survival curves, if the survival curves between

two populations intersect then the proportional hazards assumption has been violated.

If the proportional hazards assumption holds then the model can be parameterised as

follows:

h(t)× exp(X · β′)

Where h(t) is the hazard function, which takes time t as an input and returns the

instantaneous hazard rate at that time. If the hazard function is integrated, you have the

cumulative hazard function, H(t), which returns the total accumulated risk up to time

t of an event occurring. The survival function S(t) is related to the cumulative hazard

function as follows:

S(t) = exp(−H(t))

Cox observed that if the proportional hazards assumption holds, then h(t) does not

need to be explicitly defined. The benefit of this is that the Cox PH model can be used

to analyse the hazard ratio between different populations, without having to estimate or

compute the underlying hazard function.

In practice, a survival dataset is taken, containing survival durations and censoring

indicators, as well as any patient-specific variables of interested, referred to as covariates.

The vector X refers to the values of the covariates for an individual. The Cox PH model

then estimates the coefficients for each of the covariates, where the coefficients are the

vector β shown in the formula above. The coefficient vector is sometimes shown as β′,

the ′ symbol indicates the vector has been transposed, which means the vector is re-written

so that every row becomes a column:

β = (1, 2, 3)

beta′ =

 1

2

3


As with the KM survival curves, useful quantities can be calculated using a Cox PH

model. The first is the LP, referred to as the LP, or in some cases X-Beta. To calculate the

linear predictor, the dot product of patient covariates (vector X) and model coefficients

(vector β) is taken. The dot product is calculated by simply multiplying each element in

X with the corresponding element in vector β and summing the result.

An example is given below for a 50 year old male with a BMI of 32:

Patient Attributes = X = (Age,Sex: Female,BMI)
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X = (50, 0, 32)

Cox Model Coefficients = β = (0.02,−0.25, 0.015)

LP = X · β′

LP =
(

50 0 32
)
·

 0.02

−0.25
0.015

 = (50× 0.02) + (0×−0.25) + (32× 0.015)

LP = 1 + 0 + 0.48 = 1.48

This value is the linear predictor: an LP of 0 means there is neither an increase or

decrease in risk, a negative LP indicates a lower risk and a positive LP indicates a higher

risk of mortality. The hazard ratio (hazard ratio (HR)) can be calculated as follows:

HR = exp(LP)

Continuing the example from above, the hazard ratio would be:

HR = exp(1.48) = 4.4

This means that this individual has 4.4 times the risk of experiencing mortality com-

pared to the reference level, but what is the ‘reference level’?

Each variable in a Cox PH model can either be categorical (i.e., discrete) or continu-

ous. Some examples of categorical variables are biological sex (Male/Female), presence of

a certain medical condition (Yes/No) or smoking status (Never smoked/Occasional Smok-

er/Daily Smoker/Heavy Smoker). Some examples of continuous variables are age, height,

BMI and so on.

For every variable, a reference value must be specified. In the case of categorical

variables, one of the categories must be chosen to be the reference level. In the case of bio-

logical sex, if the reference level was specified as “Male”, then the coefficient for biological

sex gives the log-hazard ratio for “Female” compared to the reference level of “Male”. For

continuous variables such as age, one value can be specified as the reference value, and

the coefficient for the age variable tells you the log-hazard ratio per unit difference from

the reference age.

In some cases, there may not be a linear relationship between a continuous variable

and risk of mortality. For example, extremely low and extremely high values for BMI can
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result in a higher risk of death, with values in the middle resulting in a relatively lower

risk of death. There are several approaches for dealing with this, however the approach

chosen for the work completed in this thesis was to use RCS.

RCS allow non-linear relationships to be modelled between a continuous variable and

the model’s beta coefficient. To use RCS a number of “knots” need to be specified, in this

example, 3 knots will be used at ages 20, 40 and 55. RCS also include a linear term, so in

this case, four beta coefficients need to be calculated for a single continuous variable. For

this example, the coefficients will be as follows:

Linear : −0.05
Knot 20 : −0.00001
Knot 40 : 0.0002

Knot 55 : 0.00035

The linear term is fairly straightforward to calculate, it is simply −0.05 multiplied by

the individual’s age in years. The knot terms are more involved and are calculated using

the following formula:

Coefficient ∗max(value – knot value, 0)3

The max function returns the maximum of two values, so in the example of ‘Knot 20’

given above, if an individual is aged 20 or younger then the entire term evaluates to 0.

Here is an example calculation for a 15 year old:

max(value - knot value, 0)3 = max(15 − 20, 0)3 = max(−5, 0)3 = 03 = 0

This allows the coefficients to apply to specific ranges of values, by evaluating to zero

if the input value is less than or equal to the knot value. The next example shows the

calculation of an entire RCS term for an individual aged 47:

Linear term = −0.05 ∗ 47 = −2.35
Knot 20 = −0.00001 ∗max(47–20, 0)3 = −0.00001 ∗ 273 = −0.19683
Knot 40 = 0.0002 ∗max(47–40, 0)3 = 0.0002 ∗ 73 = 0.0686

Knot 55 = 0.00035 ∗max(47–55, 0)3 = 0.00035 ∗max(−8, 0)3 = 0.00035 ∗ 03 = 0

Summing all the above terms results in the RCS term being calculated as −2.47823. It is
also possible to plot the entire function for a range of ages (see figure A.1).

Throughout this thesis, wherever you see “RCS”, this refers to a continuous variable

that has been fit with a restricted cubic spline, allowing a non-linear relationship to exist

between the covariate and the risk of mortality.

It is also possible to measure the discrimination ability of a Cox PH model by calcu-

lating a measure known as the concordance index or C-statistic. This is a measure of how
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Figure A.1: Example restricted cubic spline allowing a non-linear relationship between age and
risk of mortality.

well the model can predict the relative risk of mortality between any two patients. The

calculation of the C-statistic is analogous to presenting pairs of patients to the model, and

noting which patient the model predicts is at a higher risk of mortality. A tally is kept

of how many predictions the model predicts correctly, and how many incorrectly. The

ratio of correct predictions to the total number of predictions is the C-statistic. If a model

is no better than random chance (i.e. flipping a coin to decide which patient is higher

risk), then the C-statistic will be 0.5. If the model makes perfect predictions, then the

C-statistic will be 1, and if the model makes a wrong prediction every time, the C-statistic

will be 0.

The model’s calibration ability can also be evaluated, which is the agreement between

the model’s predicted probabilities of an event occurring and the actual observed rate of

an event occurring. Calibration curves for a specific point in time can be generated by

repeatedly selecting a random subset of the population, observing the survival rate up to

the specified point in time, and recording the predicted survival rate. This will result in

a range of predicted probabilities and observed survival rates, which can be plot with the

predictions on the x-axis and the observed rates on the y-axis. If the model is perfectly

calibrated, then a diagonal line will run from the bottom left corner to the top right corner,
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meaning that the model’s prediction of the probabilities of survival perfectly match the

observed probabilities of survival. One measure of calibration is the Mean absolute error

(MAE). This is the mean deviation of the calibration curve from a perfect diagonal, with

an MAE of 0 indicating a perfectly calibrated model (at that time point).

Each individual variable in the model can also be evaluated in terms of the statistical

significance of the estimated coefficients. The 95% confidence intervals for each coefficient

is calculated, and is often shown on forest plots as a horizontal line spanning the range of

the confidence intervals for the hazard ratio for that variable. If the confidence intervals

overlap zero for the coefficients (or 1 for the hazard ratio), then the estimate of the

coefficients is not statistically significant. The further the confidence intervals are from 0,

the more likely the estimate of the coefficient is statistically significant. The default test

used in ‘R’ for evaluating Cox model coefficients is the Wald test and outputs a p-value

per coefficient.
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CPAT Ranking Methods §

B.1 CPAT Policy Design Process

The algorithms in this appendix can be used to rank a list of alternatives against a set of

criteria. An alternative refers to one possible option from a set of options. In this context

an alternative is a single patient (selected from a larger list of patients) that might be

prioritised based on risk to access limited resources for treatment of COVID-19 related

symptoms. The criteria refer to the means by which each patient is compared, for example

age, sex, and presence of certain co-morbidities.

B.1.1 Component 1 - Pairwise Comparisons and Tournament Graphs

Pairwise comparisons can be used to rank a set of criteria. A pairwise comparison matrix

can be constructed where each row and each column are mapped to the criteria of interest.

Within each cell of the matrix, the criterion in the row is compared to the criterion in the

column and an arrow is inserted into the cell pointing to the more important criterion. In

some cases it may be difficult to compare two criteria, in these cases the cell can be left

empty.

To illustrate this process, a set of five criteria will be used: A,B,C,D,E. The pairwise

comparison matrix is mirrored across the major diagonal, and the cells along the major

diagonal all compare a criterion to itself, therefore only the cells to the right of the major

diagonal are of interest. 

A B C D E

A X

B X X

C X X X

D X X X X

E X X X X X



216



Appendix B. CPAT Ranking Methods §

In this example, the matrix has been populated as follows (a ‘.’ is a cell where a

comparison could not be made):

A B C D E

A X ← . . ←
B X X ← . .

C X X X ← .

D X X X X ↑
E X X X X X


This matrix corresponds to the adjacency matrix of a graph, and because each criterion

is compared to every other criterion this is a special case referred to as a tournament

graph (36 - final paragraph of section 7). The corresponding graph for the above matrix

is shown in figure B.1.

Figure B.1: A directed graph generated from an adjacency matrix.

This graph can be used to determine the relative importance of each of the criteria,

but first the graph must be determined to be free of loops.
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B.1.2 The Problem with Loops

For any two nodes in the graph that are connected by a directed edge, the arrow points

to the criterion which is of greater importance. If a loop exists in the graph then a logical

contradiction has occurred. Take the case where A ← B, B ← C and C ← A, it is

impossible to determine which of the three criteria is most important. The corresponding

graph is shown in figure B.2.

Figure B.2: An example of a loop creating a logical contradiction

Starting at any node and following the directed edges results in returning to the same

node. In this example there is no way to order A,B and C.

When a loop is detected in the graph, this highlights the fact that there has been an

inconsistency in the comparisons the decision maker(s) have made. In this situation the

comparisons within the loop must each be re-evaluated and corrected until no loops are

found in the graph.

Once all loops have been removed, the resulting graph is a Directed Acyclic Graph

(DAG).170 DAGs are commonly used in computer science and statistics and can be used

in a number of fields for a range of problems such as scheduling and data compression. In

the case of CPAT the DAG will be used to determine the relative importance of criteria

used for ranking patients.

B.1.3 Topological Sorting

The DAG created in the previous section contains a number of directed edges, showing

which criteria are more important than others. However, to make use of the DAG it

is necessary to determine which criteria are of lowest importance, which are of higher

importance, and the relative importance of criteria in between. This can be accomplished

by performing a topological sort.

A topological sort requires a loop-free (or cycle-free) graph, which by definition a DAG

meets this requirement. Applying a topological sort to a DAG will result in a list of nodes
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(i.e. criteria) ranked in order of importance. One algorithm for performing a topological

sort on a directed graph is Kahn’s algorithm,110 which proceeds as follows:

1. Remove a node from the graph that has no incoming edges and place it in the list

of ranked nodes

2. Remove all edges that were connected to the node identified in step 1

3. Repeat until all nodes from the graph are in the list of ranked nodes

One issue with the standard algorithm is step 1: any node that has no incoming edges

can be chosen, and without any rules on which to select the algorithm is non-deterministic.

A non-deterministic algorithm has the potential to generate different orderings of the

criteria given the same tournament graph. One solution to this problem is rather than

having a prioritised list of individual nodes, instead a prioritised list of sets of nodes are

generated.111 The above algorithm was adjusted as follows:

1. Remove all nodes from the graph that have no incoming edges, add them to a set

and add this set to the list of ranked nodes

2. Remove all edges that were connected to the nodes identified in step 1

3. Repeat until all nodes from the graph are contained in sets within the list of ranked

nodes

The processes for the same example graph is shown in figure B.3. Once Kahn’s algo-

rithm has successfully been applied to the criteria of interest and a hierarchy of relative

importance is established, the next step is to encode the hierarchy using CPAT’s custom

DSL.
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B.1.4 Component 2 - Encoding CPAT Policies using a DSL

In the previous section, the relative importance of criteria were identified using Kahn’s

algorithm. The next step is to instruct the CPAT software to automatically rank a list of

patients using the criteria of interest.

CPAT encodes a policy using an ordered list of factors, with the most important factor

being placed on the first line and the least important on the last line. The relative impor-

tance of factors were determined in section B.1.3. Factors are logical expressions which

can be evaluated to True or False. CPAT supports the basic boolean operators: AND,

OR and NOT as well as some more advanced logical statements.

Bracketed Ranges Bracketed ranges can be used to test if a value falls within a range,

for example:

Age([85,120])

Selects all individuals with an age between 85 and 120 (inclusive).

N in Set If a patient has several boolean (i.e. True/False) fields the ‘N in Set’ statement

can be used to evaluate if at least N of those fields evaluated to ‘True’. For example:

3_in_set(Diabetes,Malignancy,Hypertension,CardiovascularDisease)

Selects all individuals with at least 3 of the diagnoses specified between the parentheses.

Option Fields Option fields can be selected if a patient has a field which can have

multiple options, for example ‘Smoking Status’ could have the possible values: ‘Never’,

‘Light’, ‘Moderate’, ‘Heavy’.

To select only the individuals with a ‘Moderate’ or ‘Heavy’ smoking status, the follow-

ing statement would be used:

SmokingStatus(Moderate,Heavy)

An Example Policy

The previously mentioned features can be combined using boolean operators to create

more sophisticated policies. Below is an example of a policy encoded using CPAT’s DSL,

with patients aged 80+ being the most important factor, and the patient’s sex being the

least important factor.

age([80,150]);

2_in_set(cardiovascular_disease, hypertension, diabetes);

cancer OR kidney_disease;

sex(Male);
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Errors and Warnings

The syntax for errors and warnings is identical, however there are two separate input fields

in the user interface and the results of errors and warnings are different.

The general syntax is:

error/warning message: factor;

Where any error or warning message can be written before ‘:’ and a factor encoded

in CPAT’s DSL is written on the right hand side. If an error is raised for a patient, that

patient is removed from the ranking list and the error message is given next to their name.

A warning is used to display a message, but still allows a patient to be ranked. These

can be used to highlight situations where there may be an inconsistency in the data that

has been input for the patient, but the currently entered value can still be used for ranking.

An example of an error could be for a system which is not designed to prioritise

paediatric patients, in this case the following would raise an error:

Patient aged under 18: age([0,17]);

An example of a warning is the use of the CFS for patients aged 65 years or younger.

The scale is designed for use with patients aged over 65, so the patient can still be ranked,

but a warning will be displayed for a clinician to review and confirm the data entered is

correct.

Use of CFS on patient aged <= 65: age([0,65]) AND cfs IS NOT NULL;

Once a policy has been encoded, it can be used to prioritise a list of patients, this

process will be explained in the next section.

Lexing and Parsing CPAT DSL

To interpret the custom CPAT DSL, the policy needs to go through two processes: lexing

and parsing. Lexing is the process of performing pattern matching on the raw text and

converting the text to a series of tokens. Pattern matching is accomplished using regular

expressions, for a full list of regular expressions used for CPAT, see appendix C.

The series of tokens output by the lexer are then interpreted and executed by the

parser. In the case of CPAT the DSL is parsed into a series of custom SQL queries, where

each line of the policy corresponds to a single query.

Each query selects a (possibly empty) subset of patients from the database and adds

the weight of the current coefficient to their total score. The algorithm in pseudocode is

shown below:
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# Split the policy into individual lines

policy_lines = extract_policy_lines(policy)

num_factors = count(policy_lines)

current_power = 2 ^ (num_factors - 1)

# Map patient id’s to a score

patient_scores = {id |-> 0 for all patient id’s}

foreach policy_line in policy_lines {

query = parse(policy_line) # Parse the policy to an SQL query

# Select all patients which match factors in current line of policy

patients_matching = select_matching_patients_from_DB(query)

# For each matching patient, increment their score by the weight

# of the current line in the policy

foreach patient_id in patients_matching {

patient_scores[patient_id] = patient_scores[patient_id] + current_power

}

# The next line will have half the weight of the current policy line

current_power = current_power / 2

}

This algorithm will take the current policy and a list of patients as input, and output

a mapping of patients to CPAT scores.

B.1.5 Component 3 - Lexicographic Sort

The previous steps all lead up to this final step: ranking patients in order of risk of

mortality. The first step determines which criteria should be used and which criteria are

most and least important. The second step encoded the ordered criteria using a DSL for

automation. This final step orders patients using the criteria specified using the DSL.

Patients are ranked using a lexicographic approach, which is the same approach used

for ordering words in alphabetical order in a dictionary. Figure B.4 shows an example of

checking the words ‘Apple’, ‘Banana’ and ‘Bandana’ are in alphabetical order.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5

Figure B.3: Modified Kahn’s algorithm: given a set of criteria (in this case labelled (a)-(e)) and
their relative importance (arrows point in the direction of increasing importance), a prioritised list
of sets is generated. Priority 0 is lowest priority and priority 2 is highest priority.
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Step 1

A P P L E

B A N A N A

B A N A N AD

A < B, go to next word

Step 2

A P P L E

B A N A N A

B A N A N AD
B = B, continue

Step 3

A P P L E

B A N A N A

B A N A N AD
A = A, continue

Step 4

A P P L E

B A N A N A

B A N A N AD
N = N, continue

Step 5

A P P L E

B A N A N A

B A N A N AD
A < D, go to next word

Figure B.4: Algorithmic example of checking the lexicographic (i.e., alphabetical) order of three
words.
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To place words in lexicographic order the following must be decided: which direction

should words be evaluated in? (i.e., left-to-right or right-to-left?) and which letters are

‘higher priority’ than others? (i.e., the alphabet).

The process (in the English language) begins with the left-most letter, with ‘A’ being

the highest ‘priority’ and ‘Z’ the lowest. If two words begin with the same letter, then the

next letter to the right is evaluated. This process is repeated until the list of words is in

alphabetic/lexicographic order.

With CPAT, the policy for ranking patients is the ‘word’, and each line of the policy

is a ‘letter’, however instead of being evaluated left-to-right, it is evaluated from top-

to-bottom (i.e., starting on the first line of the policy, and moving down to subsequent

lines).

The first line in the policy contains the most important factor and subsequent lines

are in decreasing order of priority. Consider two words beginning with different letters:

APPLE and BANANA from the previous example. ‘Banana’ begins with a ‘B’, and no matter

what the following letters are, it will never be placed before ‘Apple’ when being sorted

in alphabetical order. This constraint can be enforced mathematically as follows: for a

policy with N lines in total, the nth line of the policy has a weight of 2N−n.

Using the example policy in section B.1.4, the policy coefficients can be expressed as:

β = (8, 4, 2, 1)

For each individual patient, each line of the policy will evaluate to True or False for

that patient. This can be encoded as ‘1’ and ‘0’ respectively. For a male patient aged 85

with diabetes and hypertension, the covariate vector would be:

X = (1, 1, 0, 1)

The vector X can be thought of as a ‘word’ with an alphabet containing two ‘letters’:

1 and 0. The score can then be calculated (and lexicographic order enforced) as follows

Xβ
′
= (1, 1, 0, 1)


8

4

2

1

 = 13

A score can then be calculated for each patient, then the list can be sorted by CPAT

score in descending order, placing highest priority patients at the top of the list, and

thus, the list of patients can be said to be in lexicographic order. Patients with the same

score can be grouped, resulting in a ordered list of prioritised groups of patients. Patients

within the same group are at the same priority level, this is equivalent to sorting a list of

words into lexicographic order where there are duplicate words - patients with identical

characteristics will evaluate to the same score and same ranking.
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CPAT Regular Expressions §

Table C.1: Regular expressions used to parse the CPAT DSL.

Regex Explanation

(\w+)\s+IS\s+NULL Check if data field is null
(\w+)\s+IS\s+NOT\s+NULL Check if data field is not null
(\d+) in set\(([\w\,\!]+)\) Parse n in set statement
(\w+)\(([\w\,]+)\) Parse ‘option’ statement
(\w+)\s*\((\[\S+\])\) Parse bracketed range of values
(\w+) Parse ‘binary‘/boolean statement
(AND) Logical ‘AND’
(OR) Logical ‘OR’
(NOT) Logical ‘NOT’
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Description of Lung Simulation

Methods

D.1 Iterative Cox Model Building Algorithm |

This algorithm was implemented in R as described in.133 The algorithm iterates over

forward selection and backward elimination steps until the model can not be improved

further. At each step of the algorithm, two nested models are compared using the likelihood

ratio (LR) test to evaluate if there is a significant difference in the goodness of fit. If a

dataset is particularly large (such as those seen in the OPTN datasets), a p-value threshold

of 0.05 can be used. For smaller datasets, higher p-value thresholds can be used if few

variables are added to the model. In the case of the relatively smaller UK dataset, a

p-value threshold for the LR test of 0.15 was used.

The algorithm proceeds as follows:

1. Start with an empty model

2. Identify all variables that when added to the model individually, pass the LR test

3. Add all variables from step 2 to the model

4. Remove each variable in turn, check if it still passes the LR test, if not remove from

model

5. Go back to step 2, unless model is unchanged from previous iteration, in which case

terminate

The process is outlined in greater detail in figures D.1 to D.3.
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Start

List of
variables

to test

P-value
threshold

Cox Model 1

Survival
Dataset

Cox Model 2

Compare
Cox Model 1

and
Cox Model 2

Yes

No
Are models
identical?

End

Output Final Cox
Model

Initial/Previous
Cox Model

Replace Previous
Cox Model with

Cox Model 2

Key

Start/End

Data

Internal Memory

Process

Decision

Manual Input

Multi-Path Connector

Flow of Data

Flow of Execution

Forward
Selection

Backward
Elimination

Figure D.1: High-level overview of the iterative algorithm for creating a Cox Proportional Hazards
model through repeated forward selection and backward elimination steps.

228



Appendix D. Description of Lung Simulation Methods

Yes

No
Any

variables remaining
to test?

Add variable to
separate Cox

model

LR Test

Previous Cox
Model

+ Variable

Yes

P-value
less than or

equal to
threshold?

Add to list of
forward-selected

variables

Forward-selected
variables

Add forward-
selected variables

to Cox model

No

Cox Model 1

Survival
Dataset

Initial/Previous
Cox Model

Forward Selection

Start End

Figure D.2: The forward selection process compares the initial (typically empty) model or model
from the previous iteration to a ‘parent’ model with just a single variable added. All variables that
pass this forward selection process are subsequently added to the Cox model.
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Yes

No
Any

variables remaining
to test?

Remove variable
from separate

Cox model

LR Test

Cox Model 1 -
Variable

Yes

P-value
less than or

equal to
threshold?

Add to list of
remaining
variables

Remaining
variables

Create new Cox
model containing
only 'Remaining

variables'

No

Cox Model 2

Survival
Dataset

Cox Model 1

Backward Elimination

Start End

Figure D.3: The backward elimination process compares the model output from the forward se-
lection process to a model with a single variable removed, the LR test is then repeated and any
variables that no longer pass the test in the presence of other variables are removed.
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D.2 Generating Realistic Survival Times |

The Cox-Weibull survival duration generation formula as given in136 is shown below:

T =

(
− log(U)

λ exp(β′x)

)1/ν

and the Cox-Gompertz survival duration formula is:

T =
1

α
log

[
1− α log(U)

λ exp(β′x)

]
U is a uniform random number generated in the range (0, 1], this introduces randomness

into the process so that even if two patients have the same characteristics, a different

survival time will likely be generated.

β is the vector of coefficients from the Cox model being used to generate survival

times and x is a vector of patient covariates obtained from an appropriate lung transplant

dataset (a more detailed explanation is contained in section A).

The final parameters correspond to the shape (ν / α) and scale (λ) parameters that

describe the shape of the Weibull distribution fit to the survival data.

D.2.1 Accounting for Donor Characteristics

Post-transplant survival is determined by the combination of recipient characteristics,

donor characteristics, and type of transplant (left-lung, right-lung or lung pair).

To facilitate this, variables were categorised as those unique to the patient, those unique

to the donor, and ‘dynamic’ variables that must be determined at the time of transplant

within the simulation engine.

Within the simulation, at the time of transplant the β
′
x term is split into three separate

terms for patient (pat), donor (don), and dynamic (dyn) variables:

β
′
x = β

′
patxpat + β

′
donxdon + β

′
dynxdyn

This allows the simulation engine to combine patient and donor characteristics and

add additional years of life to patient’s initial ages at listing, decide on left/right/bilateral

lung transplant and also simulate the impact of accrued waiting time on post-transplant

survival.

D.2.2 Accounting for Informative Censoring

Allocation systems often prioritise patients with higher degrees of clinical urgency. As

a result of this, patients that are more likely to die are also more likely to have their

waiting list survival time censored due to that patient receiving a transplant. In situations

where the risk of censoring is correlated with the risk of mortality, ‘informative censoring’
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is present and must be accounted for. If informative censoring is not accounted for, the

Kaplan-Meier survival curve for waiting list survival will over-estimate waiting list survival.

This can have implications for patient rankings due to the waiting list survival not being

estimated correctly.

To visualise the degree of informative censoring, a technique from133 can be used. A

Cox model is built using whichever techniques are appropriate and the linear predictor

value for mortality is calculated for each patient. Next, the censoring indicators are

inverted: a ‘0’ becomes a ‘1’ and vice versa. A second Cox model is then built with these

inverted censoring indicators and a second set of linear predictor values are calculated

corresponding to the risk of being censored. These two sets of linear predictor values can

be plotted against each other to visualise the degree of informative censoring.

Two plots were generated comparing the degree of informative censoring in the OPTN

dataset to the NHS-BT dataset and are shown in figure D.4. For the UK/NHS-BT dataset,

there is no correlation between the linear predictors indicating no informative censoring,

however, possibly due to the use of the LAS in the US, the OPTN dataset shows strong

information censoring.

As lung allocation in the UK is the focus of this work and informative censoring

is not present it is not necessary to adjust for it. However, if informative censoring is

present, a technique called IPCW can be used. For a full explanation on performing these

calculations, see.171

Applying IPCW will change the coefficients in the Cox model, and the mean of the

coefficients will no longer be centred around zero. When generating waiting list survival

times the mean offset (µo) must be subtracted from the linear predictor, and the equation

given in136 must be adjusted as follows:

T =

(
− log(U)

λ exp(β′x− µo)

)1/ν
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(a)

(b)

Figure D.4: (a) Informative censoring check on the UK lung transplant dataset. Risk of mortality
is not correlated with risk of censoring, so no informative censoring is present in this dataset. (b)
Informative censoring check on the US lung transplant dataset. Risk of mortality is correlated
with risk of censoring, so informative censoring is present.
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D.3 Simulating Queueing Processes |

To accurately simulate the queuing processes involved with UK lung transplantation it

was necessary to generate two tables from the UK transplant dataset:

1. A table of time gaps between events (i.e., the time between donors becoming available

and the time between patients being added to the waiting list)

2. A table of event frequencies (i.e., when a donor does become available on a particular

day, how many donors become available on the same day?)

Poisson processes172 can be used for modelling queueing processes, however in this

case ‘roulette wheel selection’ was used for simulating the processes of patient listing and

donor offers. Roulette wheel selection173 was used to generate random time gaps between

events and also to decide on the number of events.

D.3.1 Generating Time Gaps

To generate a time gap, a random number is generated, which conceptually can be thought

of as a random point on a roulette wheel. Each number on the roulette wheel corresponds

to the time gap, and the size of each segment corresponding to each number is proportional

to the frequency of that time gap being observed in data.

To generate the roulette wheel, the following process is followed:

1. Order event timestamps in chronological order

2. Starting at the first timestamp, tabulate the time gap to the next event

3. Use the table generated in step 2 to generate a frequency table of time gaps

This process is illustrated in the following example:

Event Timestamp Time Gap

1 1
2 0
2 1
3 1
4 2
6 1
7 1
8 0
8 3
11 2
13 -
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Table D.1: For practical considerations, the ‘0’ time gap is not modelled. Roulette selection would
generate a time gap of ‘1’ 62.5% of the time, a gap of ‘2’ 25% of the time, and a gap of ‘3’ 12.5%
of the time.

Time Gap Frequency

0 2
1 5
2 2
3 1

D.3.2 Generating Event Frequencies

Once a time gap has been randomly generated, the number of events that will occur must

be generated as well.

A similar process is followed to generate a frequency table:

1. Order event timestamps in chronological order

2. Tabulate the frequency of each timestamp

3. Tabulate the frequency of the frequencies of the table generated in step 2

Using the same timestamps as in the previous examples, the frequency table from step

2 would be:

Timestamp Frequency

1 1
2 2
3 1
4 1
6 1
7 1
8 2
11 1
13 1

The frequency of frequencies table would then be:

Frequency Frequency of Frequency

1 7
2 2

This would result in a single event occurring 77.8% of the time, and two events occur-

ring 22.2% of the time.
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D.3.3 Roulette Wheel Selection Algorithm

Entries from table D.1 will be used to illustrate the roulette wheel selection algorithm.173

The algorithm proceeds as follows:

1. Generate an additional cumulative frequency column

2. Generate a uniform random number between 1 and the total cumulative frequency

(inclusive)

3. Starting at the lowest time gap, iterate over the cumulative frequency column and

find the value that is greater than or equal to the randomly generated number from

step 2

4. Use the corresponding time gap in the simulation

Time Gap Frequency Cumulative Frequency

1 5 5
2 2 7
3 1 8

Table D.2: Frequency and cumulative frequencies of observed time gaps in data, used for roulette
selection

For example, given table D.2, the following steps would be followed:

1. Generate a random number in the range [1, 8], for this example, say ‘6’

2. Look at the cumulative frequency corresponding to a time gap of ‘1’. 5 < 6 so

continue.

3. Look at the cumulative frequency corresponding to a time gap of ‘2’. 7 ≥ 6, so a

time gap of ‘2’ is generated.
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D.4 Risk-adjusted Benefit and Conditional Survival Policy

Methods |

D.4.1 Risk Adjusted Benefit

A method was developed to adjust the calculated net benefit for the amount of risk un-

dertaken to achieve that benefit, using similar concepts from.50

Immediately post-transplant, the risk of death is higher compared to remaining on

the waiting list, however the difference in risk decreases over time. Eventually the post-

transplant risk of death will become equal to the risk of death without a transplant, this

will be referred to as the ‘equity point’.

When prioritising patients, the number of days until the cumulative hazard of death

post-transplant equals the cumulative hazard of death remaining on the waiting list is

calculated. This requires the the patient’s linear predictors for waiting list and post-

transplant survival to be calculated (LPWL and LPPTX respectively), and also the shape

(ν) and scale (λ) parameters for the waiting list and post-transplant survival functions.

The equity point (EP) can then be calculated as follows:

EP = exp

(
LPWL + LPPTX − log(λWL) + log(λPTX)

νWL − νPTX

)
The probability of each patient surviving to this point in time post-transplant - P(EP)

- can then be calculated:

P(EP) = exp(λPTX × exp(LPPTX)× EPνPTX )

To prioritise the waiting list the allocation policy must specify the weight that should

be given to the risk-adjusted benefit (RABw). For each patient, the expected waiting list

and post-transplant survival durations are calculated (WL and PTX respectively), the

risk-adjusted benefit is then calculated as:

Net Benefit = PTX −WL

Raw Benefit = (1− RABw) ∗Net Benefit

Weighted Benefit = RABw ∗ P(EP) ∗Net Benefit

Risk-adjusted Benefit = Raw Benefit +Weighted Benefit

237



Appendix D. Description of Lung Simulation Methods

D.4.2 Conditional Survival

Conditional survival can be calculated as follows:

First the CON is calculated as outlined in:138

CS(t|s) = S(s+ t)

S(s)

Where CS(t|s) is the probability of living another t days given a patient has survived

s days and S is the survival function.

The survival function can be derived from the Weibull distribution used to simulate

survival durations and is given in136 as:

S(t) = exp(−λtν)

To adjust this survival function for use in the simulation engine the waiting list scale

and shape parameters are used (λWL and νWL respectively), and the equation is adjusted

to take the patient’s waiting list linear predictor (LPWL) into account:

S(t) = exp(−λWL exp(LPWL)t
νWL)

This adjusted survival function can then be used to calculate the conditional survival

- CS - for any patient, given their linear predictor of risk and the waiting list survival

parameters. Each policy also specifies a WL-Ratio and a PTX-Ratio for the relative weight

of waiting list and post-transplant survival, this can all be combined to give an adjusted

survival score:

(PTX-Ratio× PTX-Survival)− (WL-Ratio×WL-Survival× CS(t|s))
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D.5 Flowcharts and Pseudocode §

There are four main shapes used in the flowcharts in the following sections: rectangles,

circles, diamonds and hexagons. There are also two types of arrows: filled and hollow.

A rectangle defines a function, containing pseudocode explaining the sequence of steps

to accomplish a specific task (see box 1). A rectangle is also used to define a function

header, which gives the name of the function along with any required inputs (see box 2).

Circles are used as a convenient way to reference other functions (see box 3). An

abbreviation of the function name is contained in the circle, with arrows showing the flow

of execution. A solid filled arrow shows the primary flow of execution (see box 4), with

hollow white arrows showing function calls (see box 5).

A single-headed hollow arrow shows a function or process that is initiated but doesn’t

return a value to the calling function. A double-headed hollow arrow indicates a function

that returns a value (or the flow of execution) to the calling function (see box 5).

A hexagon indicates where the flow of execution branches into multiple parallel, in-

dependent threads of execution (see box 6), or where the results of multiple threads are

aggregated (see box 7).

A diamond indicates a decision/branch in the flow of execution, depending on the

condition contained in the diamond (see box 8).
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D.5.1 Entry Point

Figure D.5: At a high level, the simulation spawns a number of threads (T1 - Tn), each thread
simulates 20 years of allocation in parallel with other threads. Once the required number of
simulations in each thread have completed, the results are aggregated.

At the beginning of the simulation process, one or more simulation threads are spawned.

Each thread is independent of the others and will perform a fixed number of simulation

runs over a pre-specified simulation period in parallel with the other threads. In the case

of the UK lung allocation simulations, 8 threads performed 5 simulation runs of 20 years

each, resulting in a total of 40 simulation runs per simulated policy (and a speed increase

of 8 times).
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D.5.2 Simulation Thread

Figure D.6: Each simulation thread will run for SimulationYears and repeat
NumberSimulationRuns times. For each simulation run, the simulation engine is initialised
and then the patient listing and donor offering processes are started in parallel.

Each simulation thread takes two parameters as input: NumberSimulationRuns and

SimulationYears. NumberSimulationRuns specifies how many unique simulation runs

should be performed, and SimulationYears specifies the number of simulated years each

simulation should run for. For simplicity one year is defined as 365 days.

Before the two main processes are started, the simulation engine must be initialised to

ensure each simulation run is unique. The initialise simulation() function handles

the initialisation of the simulation engine and is abbreviated IS in the flow charts.
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D.5.3 Simulation Initialisation

Figure D.7: The .csv files containing patient data and donor data are loaded into memory, along
with the area-under-the-curve (AUC) lookup tables to quickly calculated expected survival dura-
tions. The waiting list is randomly initialised with init num patients patients.

To ensure each simulation is unique, the waiting list is initialised with init num patients,

randomly selected from the loaded patient list. The patient list is a CSV file containing

one patient per row, with each column corresponding to a variable associated with that

patient. Donor data is also stored in a CSV file and is loaded into memory for later use.

The generate waiting list() function handles the creation of the waiting list and is

abbreviated GWL in the flow chart.

Allocation is based on expected survival duration, calculated using the AUC of the

survival curve, integrated out to 20 years. In order to speed up computation, two AUC

lookup tables are loaded into memory corresponding to waiting list survival and post-

transplant survival. One column holds the LP value (rounded to 3 decimal places) and

the other column contains the pre-computed AUC value (i.e., the expected survival for

that LP value).
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D.5.4 Generating Waiting List

Figure D.8: A blank waiting list is populated with NumberPatients patients. For each patient a
randomised waiting list survival duration is generated, and a waiting list death event is scheduled
to occur once the survival duration has elapsed.

The waiting list is generated by looping NumberPatients times. First a random patient

is selected using the random patient from csv() function from the patients list (note:

this list was loaded in the initialise simulation() function). This patient is added to

the waiting list and then a random waiting list survival duration is generated.

Next, the timestamp of the patient being listed is stored, this will be used later to

calculate total waiting time. Finally, a waiting list death event is scheduled to occur after

waiting list surv days.

The details of calc WL surv() (CWS) and waitlist death event() (WDE) will be given

in later sections.
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D.5.5 Patient Listing Process

The patient listing process runs in a loop as long as the simulation is still running. To

accurately simulate the listing process four variables are used:

1. WaitingListGaps contains an ordered list of time gaps (in days) between subsequent

listings observed from data

2. WaitingListGapFreqs contains a list where the element at each index corresponds

to the frequency of the time gap at the same index in WaitingListGaps

3. WaitingListCounts is similar to WaitingListGaps, but contains an ordered list of

the number of listings occurring on the same day

4. WaitingListCountFreqs is similar to WaitingListGapFreqs, but corresponds to

the frequencies of listing occurrences stored in WaitingListCounts

Next, roulette selection is used to generate a time gap - which is the time gap in

simulated days before another listing event occurs - and also a number of new patients

which will be added to the simulated waiting list.

The number of new patients to add grows annually at a rate determined by

PopulationGrowthRate, resulting in the number of listings increasing in line with popu-

lation growth.

For each new patient added to the waiting list, the same sequence of events occur as

specified in the generate waiting list (GWL) function.

The two key functions in the listing process are the calc WL surv (CWS) and

waitlist death event (WDE) functions. These will be detailed in this section after the

roulette selection and population growth processes are explained.
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Figure D.9: Flowchart showing how the listing of new patients on the waiting list was simulated.
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D.5.6 Roulette Selection

Figure D.10: The roulette selection function takes a list of Values and Freqs corresponding to
the frequency of each value occurring. A randomised number is generated that will select a value
from Values with the corresponding probability contained in Freqs.

The roulette selection function is used to randomly select from a range of Values with

probability frequencies Freqs.

The first step is to generate a uniform random number between 1 and the sum of all

values contained in the Freqs array (inclusive). Next, the frequencies are iterated over and

added to a running total. If the running total is greater than or equal to the random

selection then the corresponding value from the Values array is returned.

Finally, the function should have returned before the loop terminates, if not an error

is raised. This is a sense check to ensure the function always returns a value.
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D.5.7 Population Growth

Figure D.11: Flowchart showing how population growth was simulated.

The population growth function (PG) is a generic function that can simulate a %

increase in the number of occurrences of events annually as the size of the population

grows. This function is used for three purposes:

1. Simulate the increase in the number of listings as a result of population growth

2. Simulate the increase in the number of donors offered for allocation as a result of

population growth

3. Simulate an increased number of donors being available for allocation as a result of

increased utilisation / donation rates

As the simulation progresses over multiple years, it is assumed that the population of

the country will continue to grow. This will result in an increase in the number of patients

added to the waiting list, and also the number of donors that are available. In the UK

dataset the number of listings and donor offers grow on average 3% per year.
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The additional population growth is calculated as:

growth = (1 + PopulationGrowthRate)
Timestamp

365

This will result in growth having a value ≥ 1, the next step is to subtract 1 to set

the range to [0, 1]. To calculate the number of additional patients, a loop executes

new patients times. For each new patient that would be added, there is a probability

determined by growth that an additional patient will also be listed. A random value is gen-

erated in the range [0, 1] and if it is ≤ growth then the number of additional patients

are incremented.

It is important to note that this technique of simulating additional listings only works

up to an additional growth of 100%. This is due to adding one additional listing if rand(0,

1) ≤ growth. If the population growth is ≥ 100% then rand(0, 1) ≤ growth will always

evaluate to true, therefore for every new listed patient there will always be one additional

patient, resulting in a maximum increase of 100%.
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D.5.8 Calculating Waiting List Survival

Figure D.12: Flowchart of the process used to generate random but realistic waiting list survival
durations.

The methods for generating realistic survival times are outlined in more detail in

section 4.2.1. It is unrealistic that a patient is listed with a very short life expectancy on

the waiting list. To account for this a min survival duration is specified, in the case

of UK lung allocation simulations, a minimum threshold of 14 days was used. The main

loop repeats until a survival duration ≥ min survival duration is generated.

The survival duration is randomised so that a patient with the same characteristics will

survive a different duration on the waiting list with each simulation. The survival dura-

tions are generated from a probability distribution determined by WL scale and WL shape,

corresponding to the scale (λ) and shape (ν) parameters of the Weibull distribution fit to

the waiting list survival data.

The survival duration is adjusted to the patient’s individual risk profile. This is ac-

complished using the linear predictor (LP) value calculated for that patient, which is the

dot-product of the variables associated with the patient (x) and the coefficients from the

Cox model (β). The LP value will shift the probability distribution to lower values as LP

increases and vice versa.
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D.5.9 Waiting List Death Event

Figure D.13: Flowchart showing the steps taken when a ‘waiting list death event’ occurs.

Once a randomised waiting list survival duration has been generated for a patient, a

waiting list death event is scheduled to occur once the survival duration (WL surv) has

elapsed. If a patient is transplanted this event is cancelled and will not occur, however

if a waiting list death event does occur, the number of waiting list deaths is incremented

and the patient is removed from the WaitingList.
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D.5.10 Donor Offering Process

The donor offering process follows a similar pattern to patient offering with a few key

differences:

1. A donor offering event triggers an ‘Allocation’ event where the allocation policy is

simulated

2. The baseline donor offering rate can be increased to simulate different scenarios using

the DonorIncreaseRate variable

The time gap between donors being offered for allocation and the number of donors

available for allocation are generated using the roulette selection function. Next, if

DonorIncreaseRate is set to a value greater than 0, the PopulationGrowth function

is used to randomly increase the number of donors available, with an average rate of

DonorIncreaseRate. For example, a DonorIncreaseRate of 0.05 would result in 5%

more donors being available for allocation compared to the baseline calculated from the

transplant data set.

The next step is to simulate population growth, this is accomplished in the same

way as with patient listings, however the key difference is that this compounds with the

DonorIncreaseRate. For example, with a population growth rate of 3% and a 5% increase

in the donor rate, after two years there would be an 11.4% increase in the donor rate:

1.05× 1.032 = 1.114

Once the number of donors to be offered has been determined, the main donor offering

loop is executed new donors times. Within the loop a new donor is selected randomly

from the dataset, then the allocation policy of interest is simulated (A in the flow charts).

There may be scenarios where there is no suitable recipient to match with the donor, in

this case the loop continues with the next donor, or terminates if all donors have been

simulated.

If a recipient has been identified from the allocation policy, the donor is assigned to

the recipient (allocated patient.assigned donor), the recipient is removed from the

waiting list, the recipient’s waiting list death event is cancelled, and finally post-transplant

survival metrics are calculated.

Once all donors have been allocated / discarded, the donor offering process waits gap

days (as determined by the roulette selection earlier) before repeating. This process will

run until the simulation stops running at the end of the simulation period.
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Figure D.14: Flowchart showing the donor offering process, which triggers the allocation policy
and selection of a candidate for transplant.
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D.5.11 Donor Allocation Function

Figure D.15: Flowchart showing the two main steps taken when allocating a donor: prioritising
the waiting list and screening incompatible patients.

The allocation process is split into two processes, the first is the prioritise list

function (PL), which ranks the patients on the waiting list from highest to lowest priority

according to the allocation policy. Next, screening criteria are applied to ensure only

compatible patients are matched with the donor (compatibility in this case is simulated

using ABO and height matching criteria).
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D.5.12 Prioritising Waiting List Function

Figure D.16: Flowchart showing how the waiting list is prioritised according to the allocation
scoring system in place.

The waiting list is prioritised by first calculating a priority score for each patient.

First the linear predictor (LP) for post-transplant survival is calculated using the combi-

nation of patient and donor characteristics using the calc PTX LP() (CPL) function.

The ptx LP value is then mapped to an expected survival duration using the calc PTX EV()

(CPE) function. The expected waiting list survival duration is also calculated using the

calc WL EV() (CWE) function. A priority score can then be calculated using the ex-

pected waiting list and post-transplant survival durations. The priority score depends on

the relative importance of post-transplant survival (PTX-Ratio) and waiting list survival

(WL-Ratio). These priorities are determined by the allocation policy.

If adjusted priority scores are being used, each patient’s total waiting time is sub-

tracted from their expected waiting list survival duration, meaning that if there were two

patients with identical characteristics, the patient with the longer waiting time will be

higher priority. This subtraction is not performed for unadjusted priority scores.

Finally the waiting list is returned to the allocation function with all patients ordered

from highest to lowest priority score.

This function calls three other functions: calc PTX LP (CPL), calc PTX EV (CPE) and

calc WL EV (CWE), which are detailed in the following sections.

255



Appendix D. Description of Lung Simulation Methods

D.5.13 Calculating Post-transplant Linear Predictor

Figure D.17: Flowchart showing the process where donor, recipient, and other dynamic variables
are combined to calculate the linear predict for post-transplant survival.

First, the total waiting time for the patient is calculated, then the additional fractional

years of life since listing are added to the patient’s age. Next, the individual linear predic-

tors for waiting time and age are calculated using restricted cubic splines (RCS) and the

corresponding coefficients from the post-transplant Cox model (CoxPTX).

The linear predictor for variables intrinsic to the patient are stored in Patient.patient lp,

and for variables intrinsic to the donor, Donor.donor lp.

The final post-transplant linear predictor is then simply: Patient.patient lp +

Donor.donor lp + wait time lp + age lp.
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D.5.14 Calculating Expected Survival Durations

Figure D.18: Two flowcharts showing how the expected survival duration on the waiting list is
calculated (CWE) and post-transplant (CPE)

There are two separate lookup tables for mapping linear predictors for waiting list and

post-transplant survival to expected survival durations. Expected survival in the case of

UK lung allocation simulations is the restricted mean up to 20 years.

The linear predictor value is rounded to three decimal places and then matched to a

survival duration in the corresponding lookup table.
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D.5.15 Screen Waiting List Function

Figure D.19: Flowchart showing how the waiting list is screened to only allow suitable candidates
to be matched to a donor.

The screening process iterates over every patient on the waiting list, starting at the

highest priority patient and progressing towards lower priority patients. For each patient

the blood group ABO compatibility must not be INCOMPATIBLE (and therefore, must be

COMPATIBLE or IDENTICAL). The donor-recipient height difference must also be within the

height difference threshold specified by HeightThresh.

The loop will continue until the highest priority patient meeting the screening criteria

is identified, this patient will be allocated the donor lungs in the allocation function.
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D.5.16 ABO Matching

Figure D.20: Flowchart showing the process where donor and candidate blood types are determined
to be ‘identical’, ‘compatible’, or ‘incompatible’.

The ABO matching function first checks if the donor and recipient blood groups are the

same, if so, it returns IDENTICAL. If the donor’s blood group is ‘O’, they are a universal

donor and therefore compatible with all other blood groups. Likewise, a patient with

blood group ‘AB’ is compatible with any donor blood group. In both these cases the

function returns COMPATIBLE. If none of the previous conditions hold, the ABO match is

INCOMPATIBLE.
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D.5.17 Post-transplant Metrics

Figure D.21: Flowchart showing how post-transplant metrics (post-transplant survival duration,
net benefit, relative benefit, and waiting time) were recorded.

To calculate the survival metrics post-transplant, the post-transplant linear predictor

is calculated using the calc PTX LP function that has already been described.

Next, the post-transplant linear predictor is used to generate a random post-transplant

survival duration using the calc PTX surv (CPS) function. Finally, net benefit can be

calculated as the difference between post-transplant survival and waiting list survival, and

relative benefit can be calculated as the ratio of the two survival durations. Waiting time

is simply the the time difference between the current Timestamp in the simulation and the

timestamp when the patient was first listed.
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D.5.18 Randomised Post-transplant Survival Duration

Figure D.22: Flowchart showing how random (but realistic) post-transplant survival durations
were generated.

The randomised post-transplant survival function works in almost the exact same way

as the waiting list survival function, however there is no minimum survival threshold, and

the scale and shape parameters are from the post-transplant survival dataset rather than

the waiting list survival dataset. The randomised survival time is used to calculate the

post-transplant metrics.
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E.1 Survival Times Validation Tables

Waiting List Survival Evaluation - Training Dataset(n = 3424)

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 1724 (145.2) 1853 (368.7) -129
200 1711 (104.3) 1806 (263.1) -95
300 1716 (89.7) 1794 (226.6) -77
400 1718 (73.5) 1805 (207.9) -86
500 1713 (66.7) 1793 (182.6) -79
600 1717 (61.4) 1792 (169.2) -74
700 1716 (55.9) 1780 (164.1) -64
800 1717 (53.3) 1785 (149.3) -67
900 1717 (51.2) 1783 (152.6) -65
1000 1714 (47.2) 1779 (142) -65
1100 1715 (43.8) 1777 (129.4) -62
1200 1717 (42.3) 1774 (133.1) -56
1300 1715 (41.2) 1780 (134.1) -65
1400 1717 (40.4) 1779 (129.6) -62
1500 1717 (39.2) 1771 (126.6) -53
1600 1714 (38.6) 1778 (117.8) -64
1700 1714 (36.3) 1777 (118.3) -62
1800 1716 (35.7) 1768 (110.6) -51
1900 1716 (34.4) 1769 (113.7) -53
2000 1718 (31.6) 1767 (110.5) -48
2100 1716 (32) 1769 (107.3) -53
2200 1717 (31.5) 1772 (103.1) -54
2300 1715 (33.3) 1772 (102) -56
2400 1716 (30.6) 1772 (96.8) -56
2500 1716 (29.9) 1764 (96.4) -48
2600 1717 (29.4) 1764 (95.9) -46
2700 1717 (28.4) 1763 (94.4) -45
2800 1716 (27.5) 1767 (90.7) -50
2900 1716 (28) 1764 (87.7) -48
3000 1716 (27.1) 1764 (88.5) -48
3100 1717 (27) 1773 (86.3) -56
3200 1717 (26.8) 1767 (86.1) -49
3300 1717 (25.1) 1770 (84.5) -53
3400 1715 (25.2) 1764 (83.9) -49
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Waiting List Survival Evaluation - Validation Dataset (n = 856)

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 1246 (97.1) 1275 (192.6) -29
200 1249 (68.5) 1244 (131.6) 5
300 1247 (56.9) 1245 (113.3) 2
400 1252 (49.1) 1243 (93.8) 8
500 1252 (42.4) 1251 (83.1) 1
600 1253 (39.4) 1247 (75.2) 6
700 1250 (35.6) 1249 (71.7) 1
800 1250 (33.6) 1245 (67.4) 5

Post-transplant - Training Dataset (n = 1705)

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 2917 (255.3) 2814 (295.8) 103
200 2929 (183.5) 2812 (206.4) 116
300 2926 (150.2) 2803 (173.5) 122
400 2923 (129.4) 2810 (150.4) 113
500 2923 (117.6) 2811 (129) 111
600 2923 (103.7) 2806 (122.2) 116
700 2922 (101.8) 2808 (113.1) 113
800 2924 (91.2) 2801 (102.5) 122
900 2929 (86) 2810 (101.1) 118

1000 2923 (82.9) 2805 (89.4) 118
1100 2929 (72.2) 2814 (90) 114
1200 2922 (73.7) 2814 (85.4) 108
1300 2922 (69.9) 2806 (86.2) 115
1400 2921 (67.5) 2811 (80.2) 110
1500 2927 (64.4) 2805 (78) 122
1600 2920 (64) 2814 (73.8) 106
1700 2924 (61) 2810 (72.6) 113

Post-transplant - Validation Dataset (n = 426)

Subset Size Simulated Restricted Mean Observed Restricted Mean Difference

100 2930 (263.9) 2924 (305.5) 6
200 2935 (186.1) 2902 (206.7) 32
300 2940 (151.9) 2905 (181.7) 34
400 2935 (129) 2902 (149.9) 32
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E.2 Waiting List Survival Times Validation Survival

Curves

Figure E.1: Comparison of observed versus simulated waiting list survival curves, using a random
subset of 100 and 500 lung transplant candidates to plot the survival curves.
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Figure E.2: Comparison of observed versus simulated waiting list survival curves, using a random
subset of 1000 and 3400 lung transplant candidates to plot the survival curves.
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Figure E.3: A comparison of survival curves for simulated and observed waiting list survival
durations, for a random selection of individuals from the validation dataset, with subset sizes 100
and 400.
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Figure E.4: A comparison of survival curves for simulated and observed waiting list survival
durations, for a random selection of individuals from the validation dataset, with subset size 800.
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E.3 Comparison of Simulated and Observed

Post-transplant Survival Curves

Figure E.5: Comparison of observed versus simulated post-transplant survival curves, using a
random subset of 100 and 500 lung transplant recipients to plot the survival curves.
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Figure E.6: Comparison of observed versus simulated post-transplant survival curves, using a
random subset of 1000 and 1700 lung transplant recipients to plot the survival curves.
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Figure E.7: Comparison of observed versus simulated post-transplant survival curves, using a
random subset of 100 and 200 lung transplant recipients from the validation dataset to plot the
survival curves.
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Figure E.8: Comparison of observed versus simulated post-transplant survival curves, using a
random subset of 300 and 400 lung transplant recipients from the validation dataset to plot the
survival curves.
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E.4 Simulated versus Observed 1- and 5-Year

Post-transplant Survival Rates by Diagnosis Group

The following plots show the range of 1- and 5-year post-transplant survival rates from

the NHS-BT organ specific reports from 2018 to 2022.21,24–26,146 For each year, the high,

low and mean from the report are shown, and the high, low and mean of the simulated

NHS-BT and WL:PTX policies is shown on the right side of each plot.

2018 2019 2020 2021 2022 Simula�on

High 88.2 86.7 84.8 87.8 86.2 81.5

Low 77.3 74.9 73.1 77.1 73.7 78.1

Mean 83.5 81.6 79.7 83.2 80.8 79.45
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Figure E.9: Simulated versus observed 1-year post-transplant survival rates for group A recipients
(COPD/Emphysema)
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2018 2019 2020 2021 2022 Simula�on

High 64.1 64.3 65.5 63.8 65.5 55.3

Low 51.8 51.8 52.6 51.2 52.9 49.3

Mean 58.2 58.3 59.4 57.8 59.5 51.9
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Figure E.10: Simulated versus observed 5-year post-transplant survival rates for group A recipients
(COPD/Emphysema)
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2018 2019 2020 2021 2022 Simula�on

High 85.4 88.9 89.9 91.3 92.3 86.1

Low 74.5 79.1 80.1 80.7 79.6 84.8

Mean 80.6 84.7 85.8 86.9 87.4 85.7
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Figure E.11: Simulated versus observed 1-year post-transplant survival rates for group C recipients
(cystic fibrosis)
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2018 2019 2020 2021 2022 Simula�on

High 69.8 68.9 68 65.6 66 65

Low 56.4 55.8 55 52.3 52.7 62.6

Mean 63.5 62.7 61.9 59.2 59.7 64.15
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Figure E.12: Simulated versus observed 1-year post-transplant survival rates for group C recipients
(cystic fibrosis)
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2018 2019 2020 2021 2022 Simula�on

High 85.9 87.3 83.4 83.8 84.2 81.5

Low 73.3 75 70.1 71.3 71.1 77.9

Mean 80.5 82.1 77.6 78.3 78.7 78.95
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Figure E.13: Simulated versus observed 1-year post-transplant survival rates for group D recipients
(ILD/IPF)
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2018 2019 2020 2021 2022 Simula�on

High 56.4 54 58.6 56.2 51.1 55.3

Low 40 38.1 43 42.5 37.4 48.6

Mean 48.5 46.2 51.1 49.5 44.4 50.76
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Figure E.14: Simulated versus observed 5-year post-transplant survival rates for group A recipients
(ILD/IPF)
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F.1 Waiting List Variables

Table F.1: The full list of variables available in the waiting list dataset. The descriptions were
taken verbatim from the NHS-BT dataset, which are not public so a citation is not possible.

Variable Type Description

ARECIP ID Numeric Anonymous ODT recipient
number

centre Factor Anonymous unit that
registered the patient for
transplant

rwtime Numeric Non-urgent waiting time
(days)

uwtime Numeric Urgent waiting time (days)

suwtime Numeric Super-urgent waiting time
(days)

adate on Date Registration date

init urgency Factor Initial urgency

urgency Factor Highest urgency

final urg Factor Final urgency

reg outcome Factor Outcome of registration

SEX Factor Sex

bld grp Factor Blood group

ethnic Factor Ethnicity

reg age Numeric Age at registration (years)

reg height Numeric Height at registration (cm)

reg weight Numeric Weight at registration (kg)

dis grp Factor Disease group

CMV Factor CMV status

HCV Factor HCV status

HBV Factor HBV status

HIV Factor HIV status

PREV HEART SURGERY Factor Previous open heart surgery
operations at registration

PREV THORACOTOMY Factor Previous thoracotomy at
registration

PREV SUDDEN DEATH Factor Previous sudden death
episode at registration

ANTIARRHYTHMICS Factor Antiarrhythmics (excluding
digoxin) at registration

HYPERTENSION Factor Hypertension requring
treatment in the last 5 years
at registration

VASCULAR DISEASE Factor Peripheral vascular disease
with intervention performed
or planned at registration
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AICD Factor AICD at registration

CEREBROVASCULAR Factor Cerebrovascular disease at
registration

CHOLESTEROL Numeric Cholesterol (mmol/l) at
registration

DIABETES Factor Diabetes at registration

PREV MALIGNANCY Factor Previous malignancy at
registration

PREDNISOLONE Numeric Daily dose of prednisolone
(mg) at registration

SMOKER Factor Smoker more than 5 a day
within 6 months at
registration

BILIRUBIN Numeric Bilirubin (µmol/l) at
registration

CREATININE Numeric Creatinine (µmol/l) at
registration

HOME OXYGEN Factor Home oxygen

NYHA CLASS Factor NYHA class at registration

PA SYSTOLIC Numeric PA systolic (mm Hg) at
registration

PA MEAN Numeric PA mean (mm Hg) at
registration

PCW Numeric PCW or LAP (mm Hg) at
registration

CARDIAC OUTPUT Numeric Cardiac output (l/min) at
registration

EJECTION FRACTION Numeric Ejection fraction (%) at
registration

FEV1 Numeric FEV1 (litres) at registration

FVC Numeric FVC (litres) at registration

VO2 MAX Numeric VO2 max (ml/kg/min) at
registration

SIX MIN WALK Numeric 6 minute walk test (m) at
registration

IN HOSPITAL Factor In hospital at registration

VENTILATED Factor Patient on ventilator whilst
in hospital at registration

INOTRPOES Factor Patient on intopes whilst in
hospital at registration

IABP Factor IABP whilst in hospital at
registration

VAD Factor VAD whilst in hospital at
registration

TAH Factor TAH whilst in hospital at
registration

ECMO Factor ECMO whilst in hospital at
registration
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F.2 Waiting List Model Coefficients

groupB groupC groupD groupOther

0.900855834 0.561848315 1.216314249 0.755787054

aboAB aboB aboO

0.115171359 -0.045771387 -0.009117243

rcs(rage)rage rcs(rage)rage’ rcs(rage)rage’’ rcs(rage)rage’’’

-0.023685532 0.051664519 0.002615299 -1.502032419

rcs(rbmi)rbmi rcs(rbmi)rbmi’ rcs(rbmi)rbmi’’ rcs(rbmi)rbmi’’’

-0.061741592 -0.402200019 1.527240158 -2.130369608

rcs(fev1)fev1 rcs(fev1)fev1’ rcs(fev1)fev1’’ rcs(fev1)fev1’’’

-1.331021371 20.346197113 -42.661130379 23.811978316

rcs(fvc)fvc rcs(fvc)fvc’ rcs(fvc)fvc’’ rcs(fvc)fvc’’’

-1.018608855 6.504393563 -30.244115542 40.592330411

sexFemale cmvPositive

-0.471347964 0.130035875

reg_diabetesYes - insulin dependent

0.386083312

reg_diabetesYes - not insulin dependent

0.042953679

reg_home_oxygenYes

0.556359018

smokerYes

0.442204969

rcs(reg_creatinine)reg_creatinine rcs(reg_creatinine)reg_creatinine’

0.001997659 -0.003724292

rcs(reg_creatinine)reg_creatinine’’ rcs(reg_creatinine)reg_creatinine’’’

0.164129370 -0.407194067
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F.3 Post-transplant Variables

Table F.2: The full list of variables available in the post-transplant dataset. The descriptions were
taken verbatim from the NHS-BT dataset, which are not public so a citation is not possible.

Variable Type Description

adonor id Numeric Anonymous ODT donor
number

arecip id Numeric Anonymous ODT recipient
number

atx id Numeric Anonymous ODT transplant
number

rwtime Numeric Routine wait time (days)

uwtime Numeric Urgent wait time (days)

suwtime Numeric Super-urgent wait time
(days)

rcod Factor Recipient cause of death

gstatus Factor Most recent outcome of graft

cof Factor Cause of failure

vtl stat Factor Vital status of recipient

tsurv Numeric Transplant survival time
(days)

tcens Factor Transplant censoring
indicator

gsurv Numeric Graft survival time (days)

gcens Factor Graft censoring indicator

psurv Numeric Patient survival time (days)

pcens Factor Patient censoring indicator

centre Factor Anonymous unit that
received and transplanted the
organ

retunit Factor Anonymous unit that
retrieved the organ

dhosp Numeric Anonymous donation centre

it Numeric Total ischaemic time hours
from cross clamp of donor to
reperfusion time (hours)

nhs grp Factor Recipient NHS group

rethnic Factor Recipient ethnicity

rsex Factor Recipient sex

rage Numeric Recipient age

rpaed Factor Recipient paediatric (¡16) or
adult

rbg Factor Recipient blood group
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rheight Numeric Height of recipient (cm)

rweight Numeric Weight of recipient (kg)

rbmi Numeric Recipient BMI

dtype Factor Donor type

dage Numeric Donor age

dpaed Factor Donor paediatric (¡16) or
adult

dage grp2 Numeric Donor age in 10 year
increments

dsex Factor Donor sex

dheight Numeric Donor height (cm)

dweight Numeric Donor weight (kg)

dethnic Factor Donor ethnicity

dbmi Numeric Donor BMI

re tx Factor Whether patient was
re-transplanted

abomatch Factor Donor vs recipient blood
group

pcd Factor Primary cause of
cardiothoracic disease

reg primary disease Factor Primary disease at
registration

reg pa systolic Numeric PA systolic (mm Hg) at
registration

reg pa mean Numeric PA mean (mm Hg) at
registration

reg cardiac output Numeric Cardiac output (l/min) at
registration

reg ejection fraction Numeric Ejection fraction (%) at
registration

reg fev1 Numeric FEV1 (litres) at registration

reg fvc Numeric FVC (litres) at registration

reg six min walk Numeric 6 minute walk test (m) at
registration

reg ecmo Factor ECMO whilst in hospital at
registration

urgent Factor Urgency status of transplant

ecmo Factor ECMO whilst in hospital at
transplant

reg diabetes Factor Diabetes at registration

reg prev malignancy Factor Previous malignancy at
registration

reg prednisolone Numeric Daily dose of prednisolone
(mg) at registration

reg smoker Factor Smoker more than 5 a day
within 6 months at
registration
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reg bilirubin Numeric Bilirubin (µmol/l) at
registration

reg creatinine Numeric Creatinine (µmol/l) at
registration

reg home oxygen Factor Home oxygen

reg in hospital Factor In hospital at registration

reg ventilated Factor Patient on ventilator whilst
in hopsital at registration

cmv tx Factor Recipient CMV status at
transplant

tx yr Numeric Year of transplant

tx type Factor Type of transplant

org txd Factor Type of cardiothoracic
transplant

multi tx Factor Multi-organ transplant
indicator

organ Factor Organ transplanted

dcmv Factor Donor CMV test result

dpast diabetes Factor Donor diabetes

dpast smoker Factor Donor smoker

dpast smoker amount Numeric Donor smoker amount
(number smoked per day)

rvent Factor Patient on ventilator whilst
in hospital at transplant

rcreat Numeric Creatinine (µmol/l) at
transplant

days tx hdu Numeric Number of days spent in
HDU after transplant

days tx itu Numeric Number of days spent in ITU
after transplant

days tx hosp Numeric Number of days spent in
hospital after transplant

theatre Factor Complications - return to
theatre

haemofiltration Factor Complications - haemofiltra-
tion/haemodialysis

other post op Factor Complications - other
mechanical assistance post-op

lost fup Factor Lost to follow up

gno lng Numeric Number of lung transplants
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F.4 Post-transplant Model Coefficients

aboAB aboB aboO

-0.000178869 0.150476675 -0.136174834

groupB groupC groupD groupOther

-0.166802279 -0.418684819 -0.116178487 -0.207907918

height_delta

-0.008938175

rcs(rage)rage rcs(rage)rage’ rcs(rage)rage’’ rcs(rage)rage’’’

-0.053912139 0.103493240 -0.274494375 0.099134897

rbmi reg_creatinine reg_home_oxygenYes

0.025338374 0.004484454 0.133490421

organLeft Lung organRight Lung

0.409946505 0.076364869

ddiabYes

0.271796358

reg_prev_malignancyYes dcmvPositive

0.344856145 0.221994142

rcs(dbmi)dbmi rcs(dbmi)dbmi’ rcs(dbmi)dbmi’’ rcs(dbmi)dbmi’’’

-0.108806341 0.593904281 -2.159848254 2.623263404

dtypeDCD dage

0.183683630 0.004406212
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The Analytic Hierarchy Process

(AHP) §

The AHP was first proposed by Thomas L. Saaty in the 1970’s.36 The AHP captures the

three principles of problem solving: decomposition, comparative judgements and synthesis

of priorities.151

Decomposition is achieved by starting with a goal, then breaking the goal down into

multiple criteria which can be further broken down into sub-criteria. This process is

continued until all factors relating to the overall goal have been included.

As a simple example, take the goal of selecting a house to purchase, as in section 2.2.3.

Instead of just considering price and size, the goal can be decomposed into many sub-goals:

1. Purchase House

(a) Location

i. Proximity to local amenities

ii. Proximity to schools

iii. Ofsted ratings of local schools

iv. Crime rates

v. Parking facilities

vi. Internet/TV/Phone service availability

vii. Public transport links

(b) Cost

i. Price of house

ii. Council tax band

iii. Service Fees / Ground Rent / Other Charges

iv. Energy efficiency and cost of utilities

v. Condition of house, cost of repairs/improvements
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(c) Size

i. Floor space

ii. Number of floors

iii. Size of driveway

iv. Size of garden

v. Built-in storage

Some of these sub-goals could be broken down further if desired, but the concept

of decomposition has been illustrated in this case with 3 tiers of goals: the main goal,

sub-goals and sub-sub-goals.

Comparative judgements are achieved using a pairwise comparison process. This pro-

cess is repeated for every level in the hierarchy. Within each level, every pair of criteria

are compared and decision makers are asked: “When making a decision (with respect to

the goal) which of the two criteria is more important, and by how much?”

A verbal scale corresponding to a numeric scale is shown in table G.1.152 Intermediate

values can be chosen, for example ‘4’ would correspond to ‘moderate to strong importance’.

Table G.1: Saaty’s verbal scale and corresponding numeric values.

Value Definition

1 Equal Importance
3 Moderate importance of one over the other
5 Strong importance of one over the other
7 Very strong importance of one over the other
9 Extreme importance of one over the other

In the example given above, first the sub-goals would be compared: location vs cost,

location vs size and cost vs size. Then within each sub-goal, the sub-sub-goals are com-

pared pairwise - this leads to the concepts of local weights, global weights and synthesis

of priorities.

For example, ‘floor space’ could have a local weight of 0.75 if it was very important

compared to other goals in the same level (number of floors, size of driveway etc.) However,

if the size of the property had a very low weight compared to the cost and the location

(say for example, 0.05), then floor space has a global weight of 0.75× 0.05 = 0.0375. This

is illustrated in figure G.1.
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Figure G.1: An example of decomposition along with local weights that can be synthesised into
global weights. Note that the root node of the graph always has a local weight of 1.

This process of calculating overall weights by combining local weights and global

weights is the process of synthesising priorities.

G.1 AHP Debate

After the initial publication of the AHP there was debate over the validity of the AHP.

The four main points of contention were:174

1. A lack of an axiomatic foundation for the AHP

2. Ambiguity in the questions asked during pairwise comparisons

3. The verbal 1 - 9 scale

4. Rank reversal

Each of these points will be discussed in the sections to follow.

Axiomatic Foundation Saaty published ‘Axiomatic foundation of the analytic hier-

archy process’ in 1986151 where four axioms are outlined: the reciprocal property, ρ-

homogeneity, the principle of hierarchic composition and expectations.

The reciprocal property is described using the analogy of comparing the weights of two

stones:151 “If one stone is judged to be five times heavier than another, then the other

is automatically one fifth as heavy as the first because it participated in making the first

judgment.” This property can be described mathematically for matrix A as: Aij = 1/Aji

for all i, j.

The axiom of ρ-homogeneity states that all elements in the same level of the hierarchy

should be comparable on a scale bounded by some positive real number (ρ). For example

using the scale given in table G.1, ρ = 9, therefore the entries in the matrix should range

from 1/9 to 9. The importance of this property can be illustrated with the following

question which violates ρ-homogeneity:
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“On a scale of 1 - 9, how large is the Milky Way galaxy compared to a single marble?”

The sizes of the two are not comparable on a 1 - 9 scale and human judgement is not

accurate when comparing criteria of massively different magnitudes. This is why in order

to accurately capture the judgements of a decision maker the criteria in the same level of

a hierarchy must be comparable. This axiom ensures this is the case.

The axiom of hierarchic composition allows the final weights of criteria to be calculated

by multiplying the local weight of a criterion by the global weight of the parent criterion,

all the way from the lowest nodes up to the original goal. This is ensured if: lower levels of

the hierarchy are dependent on higher levels, elements in the same level of the hierarchy

are not dependent on any other element at the same level and higher levels of the hierarchy

are not dependent on lower levels of the hierarchy.

The final axiom of expectations states that if an individual has a reason for believing

that alternatives should be ranked in a certain order, then they should expect the rankings

generated by the AHP to represent their expectations if the hierarchy captures all the

relevant criteria and alternatives.

Dyer claimed that the axiomatic foundation is flawed,175 Harker and Vargas in176

argued that the criticisms of the axioms are due to a lack of understanding of the underlying

theory of AHP.

AHP Question Ambiguity The criticism of the questions asked during pairwise com-

parison of criteria were due to a misunderstanding of how the questions should be asked.

Dyer175 originally posed the question in the form:

“How much better is Ai than Aj on a criterion?”

Harker and Vargas176 responded by showing a correct example:

“With respect to cost, which of the two cars (A or B) is preferred, and by how much?”

Watson and Freeling177 also argued that the questions are meaningless due to there

being no frame of reference. Harker and Vargas174 argued that the frame of reference

for answering the pairwise questions is irrelevant, since the entire exercise is to capture

a specific individual’s subjective perceptions of what they deem “more important” or

“strongly more important”. They also argued in their 1990 response176 that the criterion

(‘cost’ in the example question given previously) becomes the point of reference.

Scale of Preference Experimentation has shown that the 1 - 9 scale given by Saaty

was the most effective scale to use when comparing perceived relative distances of various

cities.174 In176 Harker and Vargas gave an example of a bounded scale (1 - 9) and an

unbounded scale and calculated the difference in the weights calculated in each case, the

difference was on the order of magnitude of 0.001.

Rank Reversal The most controversial criticism is the occurrence of rank reversals as

a result of using the AHP. An example of rank reversal is given by Dyer and Wendell
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in178 using four alternatives and four criteria. When only A1...A3 are ranked the resulting

ranking is: A3 > A2 > A1. However, when A4 is introduced then the resulting ranking is:

A1 > (A3, A4) > A2. This however occurred in a hierarchy with feedback loops between

the criteria and the alternatives and was “due to a misuse of the theory rather than a

faulty axiomatic base”.174

Belton and Gear179 also gave an example of rank reversal starting with three alter-

natives B > A > C, and upon introducing D which was a duplicate of B the ranking

becomes A > (B,D) > C. Harker and Vargas174 refute this point by stating that axiom 4

(expectations) requires that all criteria and all alternatives must be specified before apply-

ing the AHP. If two alternatives are not distinguishable then new criteria must be added

in order to distinguish them. Adding new criteria will result in a change in the structure of

the overall hierarchy and thus a change in the weights and potentially a change in ranking.

Dyer175 showed that rank reversal still occurs if an alternative is within 10% of another,

so not an exact duplicate. Both176 and180 argue that rank reversals are a feature of the

AHP and not a weakness of it.

Calculated Weights A more recent criticism in181 shows that the weights derived from

the AHP may not adequately represent the intensity of preference of the criteria. Given

(for example) four alternatives: x1, x2, x3, x4, if x1 is preferred to x2 and x3 is preferred

to x4 it is reasonable to assume that the weights of the alternatives maintain the relation:

x1 > x2 and x3 > x4.

What also needs to be considered is the intensity of preference. It should be expected

that if x1 is preferred to x2 more intensely than x3 is preferred to x4 then x1/x2 > x3/x4,

however in this paper it is shown to not always be the case.

G.2 Applications of the AHP

Despite this debate, the AHP has been widely researched and utilised across numerous

fields for various purposes. Vaidya182 reviewed 150 application papers and outlined the

various methods and sectors in which the AHP has been used. The methods the AHP was

utilised for were: selection of a single best alternative, evaluation of several alternatives,

cost-benefit analysis, allocation of resources, planning and development, prioritising and

ranking alternatives, decision making and forecasting.

The sectors in which the AHP has been utilised were: medicine, personal, social, man-

ufacturing, political, engineering, education, industry, government, management, banking,

sports and finance.

The AHP has been utilised for multiple purposes in the context of health care.183

It has been used for medical diagnosis, selection of treatment, selection of technologies,

human resource planning, evaluation of hospital performance and organ transplantation.

It was noted that there was some resistance from physicians about using a formal tool to
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assist in the decision making process, however it was believed that this resistance would

be overcome as more successful applications of the AHP were demonstrated.

G.2.1 AHP in Transplantation

The AHP has been proposed for use in the allocation of organs for transplantation. Two

notable examples in the literature propose a system for livers and a system for kidneys.

A framework is also proposed for transplantation in general.

Cook184 proposed a system of allocating livers utilising the AHP. Surgeons, anaes-

thesiologists, procurements coordinators, transplantation coordinators, financial officers,

ethicists and other experts were interviewed to determine which criteria should be included

in the AHP model. Judgements were informed by both the transplantation literature and

the personal experiences of surgeons and anaesthesiologists. After the initial pairwise

comparisons were completed some criteria had very low weights assigned to them so were

removed from the hierarchy. Screening criteria were defined, such as blood type com-

patibility (incompatible patients should be removed), donor size range and various risk

factors. The decision was made to use ischaemic times rather than distance since the mode

of transportation makes a large difference in total ischaemic time. The final consistency

index was calculated as 0.04 showing that the group judgements were consistent. Due

to the change in criteria and the weights assigned to them, the new rankings were differ-

ent to the rankings of the old system. Cook concluded that the system in place at the

time was never formally evaluated and that the AHP may provide the necessary equitable

evaluation to justify the allocation of livers for transplantation.

Taherkhani185 proposed a kidney allocation system to be used in Iran using the fuzzy

delphi method (FDM) and fuzzy AHP. ‘Fuzzy’ numbers have a range of possible values as

opposed to ‘crisp’ numbers which have a single specific value. Using the FDM, the criteria

identified for allocation were:

1. Blood type compatibility

2. HLA matching

3. Panel reactive antibodies

4. Age difference

5. Recipient age

6. Location

7. Transplant status (first time vs repeat transplant)

8. Waiting time

9. Medical urgency
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10. Predicted survival

11. Prior living donor

Three of these criteria were rejected for use in the new system. Location was rejected

due to the way logistics are handled in Iran: it is believed that better outcomes are achieved

by transporting the patient to the city in which they are to be transplanted, rather than

transporting the kidney. Prior donation was rejected due to there being a market for

selling kidneys. Transplantation status was rejected due to re-transplanted patients being

treat similar to first-time patients. The remaining criteria were grouped into two clusters:

equity and utility. The weights for the criteria are in table G.2.

Table G.2: Global and local weights of criteria used for prioritising kidney transplant patients,
published by Taherkhani et al.185

Criteria Sub-Criteria Local Weight Global Weight

Equity Medical Urgency 0.54 0.1782
(0.33 Global
Weight)

PRA 0.14 0.0462

Recipient Age 0.27 0.0891
Waiting Time 0.05 0.0165

Utility HLA Matching 0.35 0.2345
(0.67 Global
Weight)

Blood Type Compatibility 0.16 0.1072

Age Difference 0.11 0.0737
Predicted Survival 0.38 0.2546

The model was evaluated using the kidney transplantation dataset in Tehran. The

dataset covered the period from October 2017 to December 2017 and included 484 candi-

dates and 124 donors. The model was run and the chosen candidate was recorded for each

donor. Data containing the existing system’s choices were also available allowing com-

parison between the proposed and existing system. There was no outcome data available

so the Estimated post transplant survival (EPTS) score was used. Lower EPTS scores

indicate more years of graft function than higher scores.

Four measures of utility and three measures of equity were used for comparing the

effectiveness of the proposed system. The results are in table G.3.

The proposed model improved all utility measures except identical blood type alloca-

tions, however this is due to the current system being based on matching using identical

blood type. It also improved all equity measures except for average waiting time of urgent

patients. There was a slight increase in the average waiting time for urgent patients (0.9

years to 1.1 years). The average waiting time for all patients was reduced however from

1.7 years to 1.25 years. Sensitivity analysis was performed and for top-level criteria (utility

and equity), weights could vary by up to 50% without significantly changing the rankings,

and sub-criteria weights could vary up to 30%.
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Table G.3: AHP kidney allocation model performance compared to existing model, published by
Taherkhani et al.185

Category Measure Developed Model Existing Model

Utility Number of recipients with EPTS
< 20%

124/228 (54%) 83/230 (36%)

Average EPTS score of recipients 24.61% 41.37%
Average donor-recipient age
difference

5.3 years 8.1 years

Number of identical blood type
allocations

243/248 (98%) 248/248 (100%)

Equity Average waiting time 1.25 years 1.7 years
Average waiting time of urgent
patients

1.1 years 0.9 years

Number of paediatric allocations 20/22 (91%) 18/22 (82%)

The authors conclude that future research should compare the results for other organs

using ordinary AHP, fuzzy AHP and intuitionistic fuzzy AHP (IF-AHP).

Overall this paper demonstrates that the AHP can be used to aid allocation of organs

and improve allocation according to measures of utility and equity.

A general framework for applying the AHP to transplantation has also been proposed

and applied to liver allocation.186 The framework that was developed used the literature

to identify criteria relevant to liver allocation, and then incorporated medical opinions as

well as subjective and objective criteria in order to rank candidates. The authors proposed

that the use of the AHP made the model easy to implement, use and update.

Four main factors were identified as top-level criteria in the AHP model:

1. Urgency - risk of death based on medical criteria

2. Efficiency - risk of transplant failure, post-transplant life expectancy and well-being.

3. Benefit - Combination of urgency and utility - who will benefit most?

4. Equity - The belief that all patients have equal rights to organs.

Unlike in the traditional use of the AHP, the alternatives (candidates) did not undergo

pairwise comparison because the number of required comparisons would be intractable.

Instead the technique of absolute measurement was used, this was accomplished by split-

ting measurements into groups and performing pairwise comparison on the groups. For

example, Model for End-Stage Liver Disease (MELD) was broken down into five groups

of ranges and each group was assigned a weight.

In order to combine the judgements of multiple experts, the geometric mean was used.

A sensitivity analysis was performed on the four top-level criteria and it was shown that

adjusting the weights by ± 30% had no significant impact on the rankings, demonstrating

294



Appendix G. The Analytic Hierarchy Process (AHP) §

the stability of the developed model. The reliability of the model was also demonstrated

with its agreement with the decisions made by OPTN.

The authors propose that future research should look into the Analytic Network Pro-

cess (ANP) and believe that it may improve the accuracy of decision making.

G.2.2 AHP in Lung Transplantation

OPTN acknowledged the potential benefit of utilising MCDM methods in their concept

paper.187 They propose a ‘Continuous distribution framework’, which is defined as a

system which prioritises candidates based on a combination of points for multiple factors

related to transplantation.

The goal of continuous distribution is to address the problem of ‘hard boundaries’ which

prevent optimal distribution and to increase transparency of the system. Some examples

of hard boundaries are: distance from the donor, age and blood type compatibility. With

the current system an 11 year old candidate will always receive an organ offer before a 12

year old candidate which is a similar distance from the donor, even if the 12 year old has

a higher medical priority.

Hard boundaries will be removed by breaking down criteria into smaller sub-categories

and if possible using continuous functions for criteria. This will prevent candidates from

receiving a different priority just because they are slightly on one side of an arbitrary hard

boundary. An important part of developing the new system is to assign weights to the

criteria, the AHP is being used to accomplish this.188

A points based system could increase transparency by showing exactly how much each

attribute contributed towards the overall ranking. The viability of a points-based lung

allocation system was tested using a revealed preference analysis.189 Discrete choice mod-

elling was used to create an approximate composite scoring system. This composite system

was compared to previous match runs and was found to have a Spearman correlation of

0.933 and a Kendall-Tau correlation of 0.803 for adults. For paediatric candidates the

Spearman correlation was 0.911 and the Kendall-Tau correlation was 0.792. The corre-

lation was strong between the current system and the composite scoring system while

overcoming the problem of ‘edge cases’ near the hard boundaries.

The revealed preference analysis however doesn’t reveal the intended weights of the

criteria. Plans are being made for weights determined by the AHP to be compared against

the weights in189 to stimulate discussion on the appropriate weights for the new system.
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Calculations §

To illustrate the AHP in action, four criteria labelled A, B, C and D will be used.

A corresponds to the top row and left-most column of the comparison matrix, and D

corresponds to the bottom row and right-most column.

For example, if criterion A was deemed 5 times more important than C, the entry at

row 1 column 3 would be ‘5’. If B was judged as 3 times less important than C then the

entry at row 2 column 3 would be ‘1/3’:
A B C D

A . . 5 .

B . . 1/3 .

C . . . .

D . . . .


The reciprocal entries are also contained in the matrix. Logically, if A is 5 times more

important than C, then C is 1/5 as important as A and so on:
A B C D

A . . 5 .

B . . 1/3 .

C 1/5 3 . .

D . . . .


A criterion can not be more or less important than itself, so the diagonal elements are

all 1:
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A B C D

A 1 . 5 .

B . 1 1/3 .

C 1/5 3 1 .

D . . . 1


Due to the matrix being a reciprocal matrix, only n(n−1)

2 comparisons need to be made

to completely populate the matrix.

The AHP is not limited to a single decision maker. When performing pairwise com-

parisons group judgements can be taken and combined using the geometric mean.151 This

will allow the combination of multiple expert’s opinions to be used for calculating the

relative weight of importance of each criterion.

Once the matrix is populated each entry corresponds to the decision maker’s estimate

of the ratio of importance of the two criteria:
c1/c1 c1/c2 ... c1/cn

c2/c1 c2/c2 ... c2/cn

... ... ...

cn/c1 cn/c2 ... cn/cn


If the specific weights of each of the criteria c1...cn were known then the following

would hold:


c1/c1 c1/c2 ... c1/cn

c2/c1 c2/c2 ... c2/cn

... ... ...

cn/c1 cn/c2 ... cn/cn




c1

c2

...

cn

 =


c1 + c1 + ...+ c1

c2 + c2 + ...+ c2

...

cn + cn + ...+ cn

 = n


c1

c2

...

cn


Where n is the number of criteria. Finding the vector w = (c1...cn)

T such that Aw =

nw is the eigenvector problem.36 By finding the corresponding eigenvector to matrix

A, the elements of the eigenvector can be normalised to sum to one. Each entry then

corresponds to the weight of that criterion.

Saaty in36 defines consistency as: Aij ×Ajk = Aik for all i, j. In a perfectly consistent

and reciprocal matrix all eigenvalues of that matrix will be zero except a single eigenvalue

that equals n. That is to say, the transitive property holds for all pairwise comparisons of

the criteria. For example, if A is 2 times as important as B, and B is 3 times as important

as C, then A should be 6 times more important than C; any deviation from from a value

of ‘6’ when comparing A and C results in an inconsistency. In the case of the AHP, entries

in the matrix are estimates and thus prone to inconsistency.

Saaty places a limit on the amount of inconsistency that should be allowed in the

297



Appendix H. Worked Example of AHP Calculations §

matrix by calculating the consistency index (CI):

CI =
λmax − n

n− 1

Where λmax is the largest eigenvalue of the matrix and n is the number of criteria.

The CI can then be used to calculate the consistency ratio (CR):

CR =
CI

RI

Where RI is the average CI of a large number of randomly generated reciprocal matri-

ces. The CR should be below 0.1 for the pairwise comparisons to be considered consistent.
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Patient Involvement - Lung 
Allocation Policy Goals and Values
The way in which available donor lungs are offered to transplant centres for patients waiting 
for lung transplantation is called the Allocation Policy. The performance of the current NHS 
lung allocation policy is currently being reviewed and we welcome your input into this 
process by completing this survey. 

The purpose of the survey is to gain a greater understanding of what is important to patients 
waiting for lung transplantation, patients who have received a lung transplant, and also the 
perspectives of their families.

There are several different aims that an allocation policy could be designed to achieve: 
 

Reducing the number of patients dying on the waiting list before they are transplanted

Increasing the total additional days of life gained as a result of having a lung 
transplant (also called the net transplant benefit or the extra time provided by lung 
transplant compared to days of life without a transplant)  

Increasing the total amount of life lived after transplant (also called the post-
transplant survival duration)  

Reducing the time a patient must wait for a transplant

No single allocation policy can maximally achieve all of these aims and therefore 
compromises are inevitable. 
 
By completing this survey, you will help us understand which of the above aims are most 
important to you. You will be presented with pairs of aims, and you will need to decide if one 
aim is more important than the other, and if so, how much more important. If the aims are 
similar in importance, select "No Preference". 
 
The degree to which one aim is more important than the other can be indicated using the 
following scale:

1. Moderate
2. Strong
3. Very Strong
4. Extreme

Appendix I. Lung Allocation Goals Survey - Patient Involvement
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* Required

This survey requires you to compare six pairs of allocation policy aims and will take 
approximately 10 minutes to complete. 
 
--
Worked example: 
To demonstrate how the comparison scale is used, here is an example in the context of 
purchasing a new car. There will be only three aims: 
 
1 - Minimise cost 
2 - Maximise number of seats  
3 - Selecting favourite colour 
 
First aims 1 and 2 are compared, so a decision must be made comparing the importance of 
minimising cost and maximising seating capacity.  
 
There is no point selecting a car with a large seating capacity if it is unaffordable, but equally 
there is no point buying a cheap car that has insufficient number of seats . Given that any car 
that is unaffordable completely excludes it from consideration, it is decided that minimising 
cost is moderately more important than number of seats, so 'Minimise cost' is selected as 
being more important, and it is given an importance of 'Moderate'. 
 
Next, goals 1 and 3 are compared. The colour of the car is much less important than the cost 
of the car, so 'Minimise cost' is selected as being more important, with an importance of 
'Extreme'. 
 
Finally, goals 2 and 3 are compared. Again, the colour is not as important as the number of 
seats in the car, so 'Maximise number of seats' is chosen as being more important. However 
the relative difference in importance is less than when comparing colour to the cost of the 
car, so an importance of 'Very Strong' is selected. 
---
 
 

Patient on the active waiting list

Family member of patient on active waiting list

Lung transplant recipient

Family member of lung transplant recipient

Family member of a patient who was on the waiting list, but passed away before
receiving a transplant

Other

What is your experience/relation to lung transplantation? * 1.
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Reducing the number of patients dying on the waiting list

Reducing the time a patient must wait for a transplant

Increasing the total amount of life lived after transplant

Increasing the additional days of life gained as a result of having a lung transplant

How would you rank the following goals in order of importance? 
(Highest priority first)

2.

No Preference

Reducing the number of patients dying on the waiting list

Increasing the additional days of life gained from transplant

Which is of higher importance?

Reducing the number of patients dying on the waiting list
Increasing the additional days of life gained as a result of having 
a lung transplant

 * 

3.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 4.
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No Preference

Reducing the number of patients dying on the waiting list

Increasing the total amount of life lived after transplant

Which is of higher importance?

Reducing the number of patients dying on the waiting list
Increasing the total amount of life lived after transplant

 * 

5.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 6.

No Preference

Reducing the number of patients dying on the waiting list

Reducing the time a patient must wait for a transplant

Which is of higher importance?

Reducing the number of patients dying on the waiting list
Reducing the time a patient must wait for a transplant

 * 

7.
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Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 8.

No Preference

Increasing the additional days of life gained from transplant

Increasing the total amount of life lived after transplant

Which is of higher importance?

Increasing the additional days of life gained as a result of having 
a lung transplant
Increasing the total amount of life lived after transplant

 * 

9.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 10.
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No Preference

Increasing the additional days of life gained from transplant

Reducing the time a patient must wait for a transplant

Which is of higher importance?

Increasing the additional days of life gained as a result of having 
a lung transplant
Reducing the time a patient must wait for a transplant

 * 

11.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 12.

No Preference

Increasing the total amount of life lived after transplant

Reducing the time a patient must wait for a transplant

Which is of higher importance?

Increasing the total amount of life lived after transplant
Reducing the time a patient must wait for a transplant

 * 

13.
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This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 14.
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Appendix J

Lung Allocation Goals Survey -

Clinicians
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NHS-BT - Lung Allocation Policy 
Goals and Values
The way in which available donor lungs are offered to transplant centres for patients waiting 
for lung transplantation is called the Allocation Policy. The performance of the current NHS 
lung allocation policy is currently being reviewed and we welcome your input into this 
process by completing this survey. 

The purpose of the survey is to gain a greater understanding of what is important to 
clinicians, cardiothoracic surgeons and other key stakeholders with respect to lung 
transplantation.

There are several different aims that an allocation policy could be designed to achieve: 
 

Reducing the number of patients dying on the waiting list before they are transplanted

Increasing the total additional days of life gained as a result of having a lung 
transplant (also called the net transplant benefit or the extra time provided by lung 
transplant compared to days of life without a transplant)  

Increasing the total amount of life lived after transplant (also called the post-
transplant survival duration)  

Reducing the time a patient must wait for a transplant

No single allocation policy can maximally achieve all of these aims and therefore 
compromises are inevitable. 
 
By completing this survey, you will help us understand which of the above aims are most 
important to you. You will be presented with pairs of aims, and you will need to decide if one 
aim is more important than the other, and if so, how much more important. If the aims are 
similar in importance, select "No Preference". 
 
The degree to which one aim is more important than the other can be indicated using the 
following scale:

1. Moderate
2. Strong
3. Very Strong
4. Extreme
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* Required

This survey requires you to compare six pairs of allocation policy aims and will take 
approximately 10 minutes to complete. 
 
--
Worked example: 
To demonstrate how the comparison scale is used, here is an example in the context of 
purchasing a new car. There will be only three aims: 
 
1 - Minimise cost 
2 - Maximise number of seats  
3 - Selecting favourite colour 
 
First aims 1 and 2 are compared, so a decision must be made comparing the importance of 
minimising cost and maximising seating capacity.  
 
There is no point selecting a car with a large seating capacity if it is unaffordable, but equally 
there is no point buying a cheap car that has insufficient number of seats . Given that any car 
that is unaffordable completely excludes it from consideration, it is decided that minimising 
cost is moderately more important than number of seats, so 'Minimise cost' is selected as 
being more important, and it is given an importance of 'Moderate'. 
 
Next, goals 1 and 3 are compared. The colour of the car is much less important than the cost 
of the car, so 'Minimise cost' is selected as being more important, with an importance of 
'Extreme'. 
 
Finally, goals 2 and 3 are compared. Again, the colour is not as important as the number of 
seats in the car, so 'Maximise number of seats' is chosen as being more important. However 
the relative difference in importance is less than when comparing colour to the cost of the 
car, so an importance of 'Very Strong' is selected. 
---
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Transplant Surgeon

Transplant Physician

Transplant Recipient Co-ordinator

Specialist Nurse in Organ Donation (SNOD)

Transplant Nurse / Nurse Practitioner

Governance/Administration/Policymaker

Ethicist

Other

What is your experience/relation to lung transplantation? * 1.

Reducing the time a patient must wait for a transplant

Increasing the total amount of life lived after transplant

Increasing the additional days of life gained as a result of having a lung transplant

Reducing the number of patients dying on the waiting list

How would you rank the following goals in order of importance? 
(Highest priority first)

2.
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No Preference

Reducing the number of patients dying on the waiting list

Increasing the additional days of life gained from transplant

Which is of higher importance?

Reducing the number of patients dying on the waiting list
Increasing the additional days of life gained as a result of having 
a lung transplant

 * 

3.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 4.

No Preference

Reducing the number of patients dying on the waiting list

Increasing the total amount of life lived after transplant

Which is of higher importance?

Reducing the number of patients dying on the waiting list
Increasing the total amount of life lived after transplant

 * 

5.
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Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 6.

No Preference

Reducing the number of patients dying on the waiting list

Reducing the time a patient must wait for a transplant

Which is of higher importance?

Reducing the number of patients dying on the waiting list
Reducing the time a patient must wait for a transplant

 * 

7.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 8.
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No Preference

Increasing the additional days of life gained from transplant

Increasing the total amount of life lived after transplant

Which is of higher importance?

Increasing the additional days of life gained as a result of having 
a lung transplant
Increasing the total amount of life lived after transplant

 * 

9.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 10.

No Preference

Increasing the additional days of life gained from transplant

Reducing the time a patient must wait for a transplant

Which is of higher importance?

Increasing the additional days of life gained as a result of having 
a lung transplant
Reducing the time a patient must wait for a transplant

 * 

11.
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Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 12.

No Preference

Increasing the total amount of life lived after transplant

Reducing the time a patient must wait for a transplant

Which is of higher importance?

Increasing the total amount of life lived after transplant
Reducing the time a patient must wait for a transplant

 * 

13.

Moderate

Strong

Very Strong

Extreme

How much more important is your selected option? * 14.
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Appendix K

Description of Potential Future

Methods

K.1 Decision Theory: Maximin, Maximax, and Minimax

Regret

K.1.1 Maximin Strategy

The maximin strategy164,165 aims to maximise the minimum ‘payoff’ out of a set of choices.

In the context of this work, the payoff would be the amount of net benefit a patient receives,

and the set of choices would be offering the left lung first, the right lung first, or the lung

pair.

For example, given the following choices for scenario ‘4’ where the total net benefit for

left-lung-first > right-lung first:

Scenario 4: Left-first ≥ Right-first

Table K.1: Allocation choices where allocating left-lung first results in total higher net benefit than
right-lung-first.

Left Lung Candidate A Candidate B Total
Allocated To Net Benefit Net Benefit Net Benefit

Patient A 800 days 1500 days 2300 days
Patient B 900 days 1100 days 2000 days

If the left lung is allocated to Candidate A then the minimum net benefit received is

800 days. Alternatively, if the left lung is allocated to Candidate B, then the minimum

net benefit received is 900 days. The maximum value from the possible minimum values

is therefore 900 days, so the maximin strategy would choose to allocate right-then-left,

giving Candidate B the left lung and Candidate A the left lung, even though the total

overall net benefit is lower.

The example in table K.1 is just one possible permutation of values. In the example
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scenario, Candidate A always has a lower net benefit than Candidate B, however there may

be cases where one patient gains more net benefit than the other patient loses when com-

paring offering orders, the maximin strategy will still choose the ordering that maximises

the minimum net benefit received in these cases.

K.1.2 Maximax Strategy

The maximax strategy165 aims to maximise the maximum payoff from a set of options.

Using the example in table K.1 the maximum net benefit received from allocating the left

lung to Candidate A is 1500 days, and the maximum net benefit from allocating the left

lung to Candidate B is 1100 days. In this case, the maximum net benefit is maximised by

allocating the left lung to Candidate A.

K.1.3 Minimax Regret Strategy

The minimax regret strategy165 aims to minimise the maximum regret from a set of op-

tions. Continuing to use table K.1 as an example, if the left lung is allocated to Candidate

A, then Candidate A experiences 100 days ‘regret’ as they received 800 days of net ben-

efit compared to the 900 days of net benefit if Candidate B had received the left lung.

Conversely, in this case Candidate B would experience 0 days regret due to receiving the

highest possible net benefit available to them.

The first step would be to calculate a regret table:

Scenario 4: Left-first ≥ Right-first

Table K.2: Regret experience by each candidate depending on ordering of offers.

Left Lung Allocated To Candidate A Regret Candidate B Regret

Candidate A 100 days 0 days
Candidate B 0 days 400 days

Next, the maximum regret for each choice would be calculated: 100 days in the case

of Candidate A receiving the left lung, and 400 days if Candidate B receives the left lung.

So in this case Candidate A would be allocated the left lung as this results in the lowest

possible regret experienced.
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