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Abstract  

Mitochondrial DNA (mtDNA) is a maternally inherited, multi-copy genome that has the 

potential to be heteroplasmic, meaning that there can be different populations of mtDNA 

in a single cell. This is caused by the presence of different alleles, some of which can be 

pathogenic. Different alleles can be acquired throughout our lifetime in the context of 

aging for example, due to somatic mutation, but also inherited through the maternal 

lineage. Heteroplasmy levels vary between individuals, tissues, and cells, and there are 

various hypotheses that try to explain the variability in the level of pathogenic variants a 

disease carrier or affected mother can transmit to her offspring. The exact mechanisms 

involved in this variability are yet unclear however, genetic bottlenecks, mtDNA 

segregation, random genetic drift, and selection are the major candidates. The 

m.3243A>G variant is the most common, heteroplasmic pathogenic mitochondrial variant 

that is associated with several mitochondrial disorders, most notably MELAS 

(Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke like episodes). Knowledge of 

the genetic factors that influence levels of pathogenic mtDNA variants may contribute to 

drug discovery that manipulates heteroplasmy levels, as well as aid clinicians and genetic 

counsellors with providing accurate success rates in case mitochondrial donation 

therapies are considered. 

Family-based heritability studies have estimated that ~72% of the variance in m.3243A>G, 

can be attributed to additive genetic factors; the aim of this project was to identify these 

factors to further our knowledge of the pathways that influence m.3243A>G variability 

between individuals. To elucidate this, nuclear genome wide association studies (GWAS) 

were performed with the variable, age corrected m.3243A>G variant allele levels as the 

phenotype, within a cohort of 408 individuals carrying the m.3243A>G mutation from a 

multicentre cohort, which includes samples collected from centres across the UK, Italy, 

and Germany. Additional m.3243A>G carriers were identified using whole genome 

sequencing data from two large publicly available datasets (UK Biobank (UKBB) and 

100,000 genomes project (100kGP Genomics England)). None of the GWAS analyses 

yielded a significant association peak. META analysis combining GWAS data of the large 

public cohorts revealed a peak approaching significance on chromosome eight, led by 

SNP with rs1512802 (8:5882269G>C) (-log10(Pvalue) = 6.9).  

A mtDNA-GWAS was undertaken to determine whether mtDNA sequence context 

influences m.3243A>G levels, documenting an association in the 100kGP cohort which 
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mapped to haplogroup U (m.16356T>C, -log10(Pvalue ) = 3.5). This association was not 

observed in the META analysis, which combined the mtDNA GWAS analyses on 100kGP 

and the UKBB cohorts, suggesting that the association might have been a false positive. 

These results indicate that sample size is a significant limitation of this study, 

necessitating the identification of further m.3243A>G carrier samples to increase analysis 

detection power.  
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Chapter 1.  General introduction 

 

1.1. Mitochondrial Biology 

1.1.1 Origin and Evolution 

Once existing as free-living prokaryotes relying on the abundant carbon dioxide and 

water as a source of energy, over 2 billion years ago, an endosymbiotic relationship 

between two cells (an archaeon and an alpha protobacterium) occurred (Sagan, 1967). 

This "revolution" in the emergence of complex life was the key to the further 

development of cellular diversity and complexity, presenting a more efficient energy-

generation mechanism that the archaeon’s anaerobic metabolism could not have 

achieved, by that facilitating survival in the new oxygen saturated atmosphere (Muller 

and Radic, 2016). This was the starting point of a path to evolving into aerobic, eukaryotic 

cells (Martin and Müller, 1998). 

Evidence supporting this theory includes the fact that the mitochondria contain their own 

DNA, known as mitochondrial DNA (mtDNA), which is completely separate from the 

nuclear genome, circular as it is in bacteria, and shares similarities in the genes it encodes 

with bacterial genomes (Oborník, 2019). Over evolutionary timescales, much of the 

endosymbiont’s original genome, known as the mitochondrial genome, appears to have 

been lost or transferred to the nuclear genome. This created a complex system of mito-

nuclear coordination essential for the normal operation of the cell (Lane, 2017). Over 

time, through a process of gene transfer and gene reduction, this bacterium became an 

integral part of the host cell, unable to freely exist on its own yet protected from the 

outside world and able to thrive in its novel environment (Garg, Zimorski and Martin, 

2016; Lazcano and Peretó, 2017). 
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1.1.2 Mitochondrial Structure, Dynamics, and Function 

Each mitochondrion is surrounded by two distinct membranes: the phospholipidic outer 

mitochondrial membrane (OMM), and the cardiolipin rich, inner mitochondrial membrane 

(IMM) that folds into cristae, which increases the surface area available for ATP 

generation via the electron transport chain (ETC) (Vaillant-Beuchot et al., 2021). These 

cristae are the site of oxidative phosphorylation, where ATP is generated through 

nutrient oxidation coupled with electron transfer (Wilson, 2017) (Figure 1.1). Beyond 

energy production, mitochondria have essential roles in several other cellular functions 

such as, the regulation of cellular metabolism, steroid synthesis, calcium signalling, and 

the induction of programmed cell death by apoptosis (Manoli, Alesci and Chrousos, 2007; 

Spinelli and Haigis, 2018; Haas, 2019). Additionally, changes in ETC affect mitochondrial 

dynamics in terms of fission and fusion, and mitophagy, a mitochondrial quality control 

measure. Defects in these processes are associated with various diseases, for example 

PARKIN gene – related early onset Parkinson’s disease; mutations in this gene impair the 

E3 ubiquitin ligase activity of parkin, leading to a failure in marking damaged 

mitochondria for autophagic degradation. As a result, dysfunctional mitochondria 

accumulate within cells (Lücking et al., 2000; Clausen et al., 2024). 

Human mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is 

distinct from the nuclear genome.  It has a high mutation rate, and although mtDNA 

repair does happen, it is not as efficient for the mtDNA as the nuclear DNA (nDNA) 

(Allkanjari and Baldock, 2021). Some of these mutations are linked to different 

mitochondrial diseases, all which will be discussed in greater detail in sections to follow 

(Section 1.2.1 on mtDNA and Section 1.3 on mitochondrial disease) (Vercellino and 

Sazanov, 2022). Mitochondria also have their own ribosomes, which synthesize the 13 

proteins encoded by the mtDNA, all essential for the oxidative phosphorylation 

(OXHPOS) system (De Silva et al., 2015). 
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Figure 1.1: Mitochondrial Structure and interactions. A) A transmission electron micrograph of a 

human embryonic kidney cell line illustrates mitochondrial structure features including the inner 

membrane (IM), outer membrane (OM), intermembrane space (IMS), cristae (Cr), crista junction 

(CrJ), and endoplasmic reticulum (ER). (B) An immunofluorescence microscopy image showcases 

the mitochondrial network (green) and both mtDNA and nDNA (magenta), revealing mtDNA 

nucleoids within a fused mitochondrial network. [Figure taken from (Suomalainen and Nunnari, 

2024)]. 

 

1.1.2.1 Fission 

Fission is the separation of both the outer and inner membranes, followed by their 

rejoining to produce two daughter mitochondria. In order to ensure the functionality of 

each daughter mitochondrion, the amount of protein in the matrix, as well as the 

intermembrane space needs to be preserved. The scission of the OMM is finely 

orchestrated by a member of the dynamin GTPase protein, called DRP1. This is mostly 

found in the cytosol but is recruited to the OMM by an adaptor protein called FIS1; 

situated in the OMM with the majority of its protein-protein binding sites protruding to 

the cytosol. MFF is another OMM protein, whose exact function is yet unknown, but is 

crucial for fission as its loss blocks fission (Mozdy, McCaffery and Shaw, 2000; Fannjiang 

et al., 2004; Scott and Youle, 2010; Chapman, Ng and Nicholls, 2020). The fission of OMM 

is well characterised however, the mechanisms of IMM fission are yet to be fully 

elucidated (Figure 1.2-A). 
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1.1.2.2 Fusion  

The proteins involved in mitochondrial fusion are as follows: the OMM proteins; mitofusin 

1 (MFN1), and mitofusin 2 (MFN2), and the only IMM protein; optic atrophy factor 1 

(OPA1) (Hoppins et al., 2011). These proteins utilize the energy from GTP hydrolysis to 

merge adjacent mitochondria, which facilitates the exchange of mtDNA, proteins, and 

metabolites. The fusion of the outer mitochondrial membrane (OMM) is mediated by 

MFN1 and MFN2, which can form either heterodimers (MFN1 binding to MFN2), or 

homodimers (MFN2 binding to MFN2) (Hall et al., 2014). IMM fusion is facilitated by OPA1; 

in its absence only the OMMs are fused, leading to metabolic, mitochondrial disturbances 

(Chen, Chomyn and Chan, 2005) (Figure 1.2-B). 

 
Figure 1.2: Mitochondrial dynamics. (A) To initiate fission, the mt OMM needs to recruit Drp1 that 

binds to the protruding adaptor protein Fis1, and Mff. Drp1 then forms a ‘belt’ like structure that 

separates the mitochondria. (B) Fusion of the OMM is mediated by MFN1/2, where the formation 

of dimers pulls the two membranes together; IMM fusion is mediated by Opa1 protein. [Figure 

taken from (Tieu and Imm, 2014)]. 

 

1.1.2.3 Oxidative Phosphorylation and ATP Synthesis 

Oxidative phosphorylation (OXPHOS) is at the core of mitochondrial function as the 

process that converts metabolically derived carbon substrates into ATP, the main energy 

currency of the cell (Nolfi-Donegan, Braganza and Shiva, 2020). There are around 1136 

proteins comprising the mitochondrial proteome, but only 13 of them are encoded by the 

mtDNA (Rath et al., 2021a). Nuclear genes encode the majority of proteins required for 

OXPHOS complex construction, organization, maintenance, and function regulation 

(Wilson, 2017). Variants in these nuclear-encoded genes alter OXPHOS performance and 

hence exacerbate or help counteract mitochondrial dysfunction caused by mtDNA 

mutations (Horan, Gemmell and Wolff, 2013). Therefore, the study of mito-nuclear 
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communication is vital, as there is significant variation in OXPHOS efficiency among 

individuals carrying pathogenic mtDNA variants. 

In the case of glucose metabolism, OXPHOS is preceded by glycolysis, and tricarboxylic 

acid (TCA) cycle, also known as the Krebs cycle. Glycolysis takes place outside the 

mitochondria, in the cellular cytosol, and is the process that breaks down glycose into 

three to five NADH molecules, two pyruvate molecules, with two ATP molecules as a 

biproduct (Mitchell, 1961; Hatefi, 1985; Yellen, 2018).  

NADH and pyruvate molecules are then transported into the mitochondria and are 

utilised by the TCA cycle that takes place in the matrix. Through a series of redox 

reactions, this produces two additional ATP molecules, along with NADH and FADH2 

molecules that are key for the subsequent electron transport chain (Martínez-Reyes and 

Chandel, 2020).  

The electron transport chain (ETC) is the heart of oxidative phosphorylation. It consists of 

a sequence of protein complexes and mobile electron carriers embedded within the inner 

mitochondrial membrane (IMM) as illustrated in Figure 1.3. These complexes numbered I 

through IV, along with ATP synthase (complex V), execute the final and most energy-

efficient step of cellular respiration. The process begins with the oxidation of NADH and 

FADH2 by complexes I and II, respectively. This oxidation causes the release of electrons 

that pass through the chain, from one ETC complex to another with the help of two 

electron carriers: coenzyme Q (also referred to as ubiquinone, UQ), and cytochrome c 

(cyt c) (Protasoni and Zeviani, 2021).  

The ETC is completed by the reduction of oxygen to water by complex IV. Energy released 

through electron transfer is used to transport protons from the mitochondrial matrix to 

the intermembrane space, creating a proton gradient between the IMS and matrix. Such 

a gradient is suitable for ATP synthesis, facilitated by the ATP synthase complex (complex 

V) that allows protons to flow back through the IMM into the matrix, catalysing the 

conversion of ADP to ATP through a process referred to as chemiosmosis (Ramchandani 

et al., 2021).  



 

 6 

 

Figure 1.3: Three stages of the cellular respiration of glucose, with emphasis on OXPHOS. Electrons 

arising from cellular metabolism enter either complex I or complex II through hydrogen donations 

made by NADH and FADH2, respectively. They are later transferred to coenzyme Q, known as 

ubiquinone (UQ), hence allowing electron transport from complexes I or II to III. In this phase, 

electrons are then transferred to complex IV by cyt c. Cytochrome c oxidase (complex IV) also 

facilitates electron reduction of O2 given that oxygen is the terminal electron acceptor. The 

configuration from one complex into another induces the translocation of protons across the 

membrane to the intermembrane space. This electrochemical gradient gets exploited by complex 

V, thus synthesizing ATP. [Figure generated with Biorender.com]. 

 

1.1.2.4 Apoptosis 

Apoptosis, or programmed cell death, is a vital biological event required for maintaining 

tissue equilibrium, organogenesis, and the removal of compromised or dangerous cells 

(Kakarla et al., 2020). Intrinsic apoptosis is mainly mediated by mitochondria, a process 

triggered by a diverse range of cellular stressors, including DNA damage, oxidative 

pressure, and UV radiation (Nagata, 2018). Key regulators of apoptosis, such as 

cytochrome c and apoptotic protease-activating factor 1 (Apaf-1), are released from 

mitochondria into the cytosol, where they activate caspase cascades leading to cell 

demise (Heitzer, Auinger and Speicher, 2020; Obeng, 2021). When cytochrome c 

assembles with Apaf-1 it forms the apoptosome, which activates procaspase 9 into 
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caspase 9, initiating the activation of downstream effector caspases (Fitzgerald et al., 

2022). Altogether, this leads to chromosomal fragmentation. However, it is worth noting 

that mtDNA remains intact and does not fragment during apoptosis.  

Moreover, mito-nuclear interactions play a pivotal role in modulating apoptotic 

sensitivity. Nuclear-encoded factors, such as B-cell lymphoma 2 (Bcl-2) family proteins, 

regulate mitochondrial outer membrane permeabilization and apoptotic susceptibility 

(Hwang, Lee and Paik, 2022).  

 

1.1.2.5 Generation of Reactive Oxygen Species (ROS) 

Naturally, superoxide anion, hydrogen peroxide, and hydroxyl radical are by-products of 

mitochondrial respiration, collectively known as reactive oxygen species (ROS) 

(Hernansanz-Agustín and Enríquez, 2021). While playing crucial roles in cell signalling and 

host defence, an overproduction of ROS can overpower the cell's antioxidant defences, 

leading to oxidative stress and cellular damage. ROS are predominantly produced within 

mitochondria at complexes I and III of the electron transport chain during OXPHOS, 

marking OXPHOS as a significant source of ROS in cells. 

Mutations leading to OXPHOS dysfunction typically cause electron leakage from the ETC 

and increased ROS production (Hernansanz-Agustín & Enríquez, 2021). The extent of ROS 

generation is influenced by various factors; these include the nuclear genetic background 

of the cells, the specific topology of proton translocation and the inner membrane 

potential (Li et al., 2022). Besides, compromised antioxidant defence mechanisms such as 

diminished levels of glutathione and similar variations, amplify the damage caused by ROS 

in cells (Vianello et al., 2020). Nuclear-encoded factors cooperate with pathways by 

controlling the generation and detoxification of mitochondrial ROS, having an impact on 

cellular redox equilibrium (Vianello et al., 2020). In this regard, the upregulation of 

antioxidant genes is essential for neutralizing ROS creation. Furthermore, ROS-responsive 

elements in nuclear genes can be mutated and this mechanism may also alter the 

reactivity of the cell to oxidative stress, affecting the pathogenesis of various 

mitochondrial disorders (Heitzer, Auinger & Speicher, 2020). Therefore, the interpretation 

of the interaction between mitochondrial and nuclear genomes in ROS equilibrium is key 

in discovering intracellular pathogenic mechanisms of mitochondrial dysfunction.  
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1.1.2.6 Iron-Sulfur biogenesis and Calcium buffering 

In addition to their known functions in energy production and metabolism, mitochondria 

maintain iron-sulfur (Fe-S) clusters and calcium among the key essential regulatory 

functions (Mühlenhoff et al., 2020). Intracellularly, iron is utilised in three different forms: 

Fe-S clusters, heme synthesis, and mono/di iron proteins. Both Fe-S clusters and the 

synthesis of heme take place in the inner mitochondrial membrane (Petronek, Spitz and 

Allen, 2021). Fe-S clusters are necessary cofactors for many enzymes required in crucial 

operations such as DNA replication and repair, transcription, translation, and metabolism. 

The malfunction of this biogenesis mechanism severely affects mitochondrial activity and 

is linked to various complications, including neurodegenerative conditions and severe 

metabolic challenges (Tifoun et al., 2021).  

 

1.1.2.7 Calcium buffering  

Calcium storage and stability is a key mitochondrial function. Mitochondria serve as 

calcium stores, managing cytosolic levels and facilitating well-regulated intracellular 

signalling. The mitochondria absorb calcium ions through a unique pore situated on the 

internal membrane known as the Mitochondrial Calcium Uniporter (Supinski, Schroder 

and Callahan, 2020). This procedure assists in stabilizing the flow of cytosolic calcium and 

influencing cell metabolism. Proper control of calcium is required to avoid the many 

cellular end routes dependent on calcium, such as apoptosis and necrosis. 

 

1.1.2.8 Inter-organelle Communication: Signal Transduction, Vesicle Transport, and 

Membrane Contact Sites 

Communication among organelles is essential for coordinating different cellular 

functionalities as well as stimulating responses to various stimuli (Jain & Zoncu, 2022) 

(Figure 1.4). Mitochondria dynamically interact with other organelles, including the 

endoplasmic reticulum (ER), the nucleus, and the plasma membrane. Such interrelations 

include signal transduction pathways, vesicle-mediated molecule transmission, and 

membrane contact sites. Mitochondria release significant signal molecules such as 

reactive oxygen species and mitochondria-derived peptides in coordinating cellular 

responses to stress, energy requirements, and cell destiny resolution (Krupinska et al., 

2020). Signalling transmits the stimulation to various cellular events that transpire in 
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processes such as apoptosis, inflammatory responses, and metabolism. Mitochondrial 

signalling pathways are implicated in most diseases, including cancer and metabolic 

syndromes (Amorim et al., 2022; Popov, 2020). Vesicles permit the transmission of 

molecules between the mitochondrion and various cellular compartments. Mitochondria-

associated membranes (MAMs) are linking systems that function in lipid distribution, 

calcium signalling, and protein trafficking between the mitochondria and another 

organelle. MAM deregulation has been associated with impaired mitochondrial 

metabolism, ER stress, and neurodegenerative processes (Liu & Yang, 2022). Membrane 

contact sites, specifically two organelles' membranous membrane touch, permit 

immediate communication and the translation and synthesis of reactants of different 

metabolites and signal molecules. Mitochondria establish contact sites (MCSs) with 

various organelles, this occurs via unique tethering proteins that connect the spaces of 

adjacent radicals. Dysfunctional MCSs have been associated with increased incidences of 

metabolic diseases, neurodegeneration diseases, and increased viral load (Barazzuol, 

Giamogante & Calì, 2021). 

 
Figure 1.4: Mitochondrial contact sites. Schematic presents some functions that are mediated by 

contact sites between the mitochondria and various other cellular components, primarily via the 

flux of different metabolites. [Figure reproduced from(Collier et al., 2023)]. 
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1.2. Mitochondrial genetics  

1.2.1 mtDNA structure  

Reflecting their bacterial origin, mitochondria contain their own double stranded, circular 

DNA (mtDNA). 16,569 bp in length, the human mtDNA contains 37 genes which encode 13 

proteins that constitute core components of four of the five OXPHOS subunits (excluding 

complex II that is entirely nuclear encoded), 22 transfer RNAs (tRNA), and 2 ribosomal 

RNAs (rRNA) all required for the expression of these proteins (Anderson et al., 1981a). 

Most of the genes are encoded on the outer heavy, outer strand, named due to its higher 

G/C nucleotide content and thus, higher molecular weight (in comparison to the inner, 

light strand which is A/T rich). The mtDNA control region (1124bp), which has the highest 

substitution frequency, is the only non-coding region of the genome and serves as a 

promoter for both the H and L strands, and harbours the displacement (D) loop (Figure 

1.5. The individual letters in the mtDNA are designated for tRNAs, and they have been 

referred to as punctuation marks in the ‘tRNA punctuation model of processing’ 

proposed by Ojala, Montoya and Attardi, (1981). The tRNA punctuation model of 

processing describes the mechanism by which mitochondrial precursor RNA transcripts 

are converted into mature tRNAs, rRNAs, and mRNAs. In mtDNA, genes for these RNA 

molecules are often arranged in a continuous sequence, with tRNA genes acting as 

punctuation marks. Enzymes recognize these tRNA sequences (by their nucleotide 

sequences) and cleave the long precursor transcript at these specific sites, thereby 

releasing individual tRNAs along with rRNAs and mRNAs. This precise cleavage facilitates 

the further processing and maturation of these RNA molecules, ensuring the proper 

function of mitochondrial gene expression. This model underscores the vital role of tRNA 

sequences in guiding the accurate processing of mitochondrial RNA ahead of translation 

(Lopez Sanchez et al., 2011).  

The mitochondrial genetic code has some minor differences to the nuclear genome. Most 

notable is the use of two stop codons, which are "AGA" and "AGG" in mtDNA but are 

"UAA," "UAG," and "UGA" in the nuclear genome (Yamamoto et al., 2020). Lastly, "AUA," 

codes for methionine in mtDNA while coding for isoleucine in nDNA. Most mitochondrial 

protein synthesis is governed by the mitochondrial genome, but over 99% of proteins 

required for mitochondrial structure and functioning are encoded by nDNA (Calvo, 

Clauser and Mootha, 2016). Mitochondrial proteins that are encoded by the nuclear 
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genome are synthesized in the cytosol and successively imported into the mitochondria 

using well-defined import pathways. Proteins destined for the mitochondrial inner 

membrane and matrix are characterized by N-terminal presequences (Supinski et al., 

2020). The sequences facilitate their import by specific translocases that are present in 

the outer and inner membranes of the mitochondria, TOM and TIM, respectively. 

Following translocation, these sequences are removed by the mitochondrial processing 

peptidases to ensure the correct maturation of the respective proteins in the matrix (La 

Morgia et al., 2020). This symbiotic relationship between the nuclear genome and the 

mitochondrial import machinery demonstrates the intricate mechanisms by which the 

nuclear and mitochondrial genomes interact to ensure cellular homeostasis (Walker & 

Moraes, 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: The mammalian mitochondrial genome. Counterclockwise, figure depicts the mitochondrial 
double stranded DNA with labels of mtDNA genes. HSP1 and HSP2: heavy strand promoter regions; 
LSP: light strand promoter region; RNR1 and RNR2 genes: that respectively encode for 12S and 16S 
rRNAs; MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND5, and MT-ND6: genes encoding subunits of Complex I: 
ND1, ND2, ND3, ND4L, ND4, ND5, and ND6; OL: light strand origin of replication; MT-COI, MT-COII, MT-
COIII:  encoding subunits of Complex IV: COI, COII, COIII; MT-ATP6 and MT-ATP8: encoding the two 
subunits of Complex V ATPase 8 and 6; MT-CYB: encoding Cyt b protein, a polypeptide that forms one 
subunit of the respiratory chain Complex III; OH: heavy strand origin of replication; and the non-coding 
region (NCR), that includes the displacement D-loop; Single letters present the 22 tRNA genes [Figure 
obtained from Stewart and Chinnery, (2021)]. 
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1.2.2 Mitochondrial central dogma 

1.2.2.1 Replication  

Mitochondrial DNA replication is governed by a different set of mechanisms compared to 

nuclear DNA. The replication of mtDNA is carried out by DNA polymerase γ and specific 

associated proteins (Falkenberg, Larsson and Gustafsson, 2007; Chapman, Ng and 

Nicholls, 2020; Falkenberg and Gustafsson, 2020). Errors in mtDNA replication are linked 

to numerous mutations that result in mitochondrial diseases and have also been 

suggested as a contributing factor to the aging process (Fontana & Gahlon, 2020). 

Replication commences at the core of mtDNA nucleoids, which are discrete spheres that 

are roughly ~100nm in diameter, each containing mtDNA and its associated proteins 

(Robinow and Kellenberger, 1994; Lee and Han, 2017), and necessitates a strictly 

regulated concourse between mitochondrial and nuclear-encoded factors, again 

emphasising the importance of mito-nuclear communication (Roy et al., 2022).  

MtDNA replication is a critical cellular process that is central to cellular health and disease 

(Peeva et al., 2018). This requires the input of carefully assembled nucDNA-encoded 

proteins (Fontana & Gahlon, 2020). The precise molecular mechanism of replication is still 

under debate; three hypothesized models provide an understanding of the synchronous 

and asynchronous replication of mtDNA (Figure 1.6). The strand displacement model is 

one of the examples of the asynchronous models (Zinovkina, 2019). In this model, 

replication begins at a single origin and proceeds in a unidirectional manner. A new 

maternal H-strand is synthesized, and the stabilization of the displaced strand depends on 

mitochondrial single-stranded DNA-binding protein (mtSSB). Okazaki fragments are 

absent, and the mtDNA replication process occurs differently from nucDNA replication.  

The second model, the ribonucleotide incorporation throughout the lagging strand 

(RITOLS) model (Figure 1.6-B), has more similarities with the strand displacement model. 

However, in this case, RNA, as opposed to DNA, is bound to the maternal H-strand, 

leading to the process not requiring mtSSB (Holt & Reyes, 2012). The synchronous 

replication model (Figure 1.6) suggests that there is a two-direction replication that 

occurs from a specific origin and proceeds in both directions (Abraham et al., 2020). 

Simultaneous leading and lagging strand synthesis occurs, with Okazaki fragments 

incorporated into the lagging strand. The synchronous model is distinguished from the 

asynchronous models by the coordinated approach as well as the regulatory aspects that 

determine how the replication process occurs (Hämäläinen et al., 2019)  
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Figure 1.6: MtDNA replication. All models of mtDNA replication: the strand displacement (A); the 

RNA incorporated throughout the lagging strand (RITOLS) (B); and the leading and lagging 

strand-coupled (C) models. Arrows associated with replicating mtDNA are in a 5'–3' direction; 

continuous and dashed lines indicate DNA and RNA, respectively (only the long stretches of RNA 

as described for the RITOLS model are shown; no possible short RNA primers of the other models 

are present). Grey arrowheads indicate the quantity and the directionality of replication forks 

produced at the origin, according to each model. [Figure obtained from Zinovkina (2019)].  

 

Mitochondrial basal replication machinery consists of five proteins and a DNA substrate, 

this is depicted in Figure 1.7. DNA polymerase gamma (POLγ or POLG) which is the only 

DNA polymerase active in the mitochondria, is a heterotrimer that consists of one 

catalytic POLγA (encoded by POLG gene), and two monomers of the processivity subunit 

POLγB (encoded by POLG2). In addition to DNA helicase twinkle, and mitochondrial single-

stranded DNA-binding protein mtSSB (Wanrooij and Falkenberg, 2010). POLγA, mainly 

functions in proofreading during replication (Lim, Longley and Copeland, 1999). One 

POLγB monomer works by enhancing the replication rate, whereas the second subunit, 

closest to POLγA, stimulates enzyme-DNA interaction. The twinkle helicase moves ahead 

of the polymerase, unwinding the molecule and creating the mtDNA replication fork 

(Milenkovic et al., 2013). MtSSB has an essential function in protecting the ssDNA from 

nucleases and making sure that strands do not refold. Additionally, mtSSB stimulates 

primer recognition, which enhances mtDNA synthesis (Thömmes et al., 1995).  
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In addition to its role in transcription, POLRMT serves a role in both leading and lagging 

strand replication at the heavy strand origin of replication (OH) and the light strand (OL), 

where it functions as a primase by generating RNA primers needed for replication 

(Wanrooij et al., 2008).   

 

 

Figure 1.7: Mitochondrial replisome. An orange arrow with dashed lines depicts leading-strand 

synthesis by human DNA polγ and its components, the catalytic POLGA and two monomers of the 

accessory POLGB. TWINKLE moves ahead of the polymerase unfolding mtDNA strands, while 

mtSSB attaches to ssDNA preventing the refolding of DNA strands and protecting from nucleases. 

Meanwhile, POLRMT acts as a primase, creating primers at OL and OH necessary to initiate 

replication [Obtained from Farnum (2013)]. 

 

1.2.2.2 Transcription  

Mitochondrial transcription involves a complex of several proteins, including POLRMT, 

TFAM, TFB2M, and MTERF-1, which have distinct functions during the initiation, 

elongation, and termination of mtDNA transcription (Fisher and Clayton, 1988; Tiranti, 

1997; Falkenberg et al., 2002; Rebelo, Dillon and Moraes, 2011; Falkenberg, Larsson and 

Gustafsson, 2024). The isolation of POLRMT demonstrated that the protein is the enzyme 

responsible for the initiation of mtDNA transcription and as stated in the previous 

section, the synthesis of transcription primers that are degraded after initiation and 

replaced with fresh primers to allow for the elongation of newly polysomal RNA (Fontana 

& Gahlon, 2020). The second factor is TFAM, which has been identified as a critical 

determinant of the stability, packaging, and replication of mitochondrial DNA 

(Yakubovskaya et al., 2010). TFAM is particularly relevant to mammalian 

neurodegenerative diseases because of its role in the regulation of mtDNA copy number 

and transcription initiation (Song et al., 2024). Using knockdown experiments, upon the 

reintroduction of TFAM, the regulation of inflammatory responses due to the 
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accumulation of cytoplasmic, free mtDNA molecules, was restored (Liu et al., 2024). It is 

suggested that LIF2 motif of TFAM (Leucine rich sequence that helps TFAM bind to 

mRNA) binds to autophagy marker, LC3B; this activates the TFAM-mediated lysosomal 

activation pathway which degrades the leaked mtDNA molecules, by that exhibiting a 

protective mechanism by regulating mtDNA-driven inflammation (Liu et al., 2024). 

Additionally, TFAM interacts with two other proteins, TFB2M, and MTERF-1, to facilitate 

transcription, elongation, and termination. Transcriptionally, TFB2M is essential for the 

initiation of transcription, where it binds POLRMT in the presence of TFAM to initiate 

transcription (Figure 1.8).  

Once initiation is completed, TFB2M is dissociated, and the elongation complex is 

attached to mtDNA (Barshad et al., 2018). Finally, MTERF-1 is responsible for the 

transcription termination process to ensure that each terminal segment is transcribed 

correctly. It is essential for the expression and maintenance of the mtDNA genome as 

well as cellular bioenergetics (D’Souza & Minczuk, 2018).  

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Mitochondrial DNA transcription. Mitochondrial transcription initiation involves bi-

directional transcription of mtDNA mediated by TFAM, TFB2M, and POLRMT. The process starts 

with the binding of TFAM upstream from the HSP and LSP, setting off a torsional wave that 

unwinds the mtDNA helix. This unwinding then facilitates the binding of TBM2M and POLRMT to 

the promoter. The localization and dynamics of these factors have been explored in vivo, 

providing insights into the transcription initiation mechanism of mitochondrial genes within the 

nucleoid context. [Adapted from Rebelo, Dillon & Moraes (2011)]. 
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1.2.2.3 Translation  

Primarily, mitochondrial translation is facilitated by the mitochondrial ribosome, which 

like the cytosolic ribosome is composed of two subunits, the large (mtLSU) and small 

(mtSSU) (Farge & Falkenberg, 2019). It is also highly specialized since it ultimately 

translates crucial components of the OXPHOS system (Boczonadi, Ricci & Horvath, 2018). 

However, the mitoribosome’s composition presents adaptations to the matrix 

environment of the mitochondria and is a product of mitochondrial and nuclear genome-

encoded ribosomal components. Figure 1.9 shows the steps involved in mitochondrial 

translation.  

Human mitochondrial translation comprises four distinct phases: initiation, elongation, 

termination, and recycling. This process guarantees the generation of the 13 mtDNA 

encoded proteins, key components of the OXPHOS system (Iannello et al., 2019). The 

following discussion explores these subsides, emphasizing the fundamental mechanisms 

and their relevance. 

Initiation: The initiation (phase 1 in Figure 1.9) of mitochondrial translation occurs when 

the mitochondrial ribosomal subunits, together with initiation factors (mtIF2 and mtIF3) 

and mitochondria specific protein mS37, form the pre-initiation complexes. mtPIC-1 is 

formed upon the binding of mtIF3 and mS37, then the mtPIC-2 upon the binding of mtIF2 

(Mai et al., 2017). This facilitates the establishment of interactions within the initiation 

complex and the recruitment of the initiation complex to the mt-tRNA start codon (AUG 

or AUA) positioned in the ribosomal P site. Unless mtIF2 binds fMet-tRNAMet to mt-mRNA, 

transcription is not initiated, and the mRNA is released (D’Souza and Minczuk, 2018; 

Khawaja et al., 2020). Upon the successful recruitment of all necessary elements, 

polypeptide chain synthesis is initiated. 

Elongation: During the elongation phase, amino acids are sequentially added to the 

growing polypeptide chain. This step is enabled by mitochondrial elongation factors that 

physically guide aminoacyl-tRNAs to the A (acceptor) site of the ribosome (mtEF-G1). This 

is an energy demanding step that is facilitated by the hydrolysis of the active form 

EFTU.GTP. EFTU.GTP then is released from the ribosome in its inactive form known as EF-

TS, that is then activated by the addition of a GTP molecule (Wang et al., 2021). The 

precise matching of the tRNA anticodon with the mRNA codon initiates the formation of 

a peptide bond, allowing the ribosome to translocate along the mRNA (D’Souza & 
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Minczuk, 2018). This movement ensures that the polypeptide chain is synthesized in 

alignment with the genetic information.  

Termination and Recycling: Finally, termination is activated when an mRNA stop codon is 

presented at the mitoribosome A site, leading to the release of the newly synthesized 

polypeptide (De Silva et al., 2015). This phase involves mitochondrial release factors, such 

as mitochondrial release factor 1 (MTRF1L), which specifically binds to the mRNA stop 

codons and catalyses the release of the polypeptide and the tRNA from the ribosomal E 

site. Subsequently, ribosome recycling factors break down the post-termination 

ribosomal complex, disassembling the ribosomal subunits (with the help of EF-G2mt and 

MRRF) to make them available for initiating another translation round. This recycling 

stage is essential for maintaining translation efficiency, ensuring a supply of free 

ribosomes for new translation cycles (Hämäläinen et al., 2019). The coordination between 

these phases guarantees the swift and precise synthesis of mitochondrial proteins, crucial 

for both mitochondrial and cellular functionality.  
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Figure 1.9: Human mitochondrial translation. The process is divided into several phases, including 

initiation, elongation, termination, and recycling. In the initiation phase, two identified pre-

initiation assembly steps, mitochondrial preinitiation steps 1 and 2, have to occur for successful 

initiation. In the elongation phase, the aminoacyl-tRNA is transferred with the help of GTP to the 

A site of the mitochondrial ribosome. Meanwhile, the P site (peptidyl tRNA site) holds the tRNA 

carrying the growing polypeptide chain. Upon the completion of translation, tRNA is transferred 

to the ribosomal E site (exit site) ahead of being released from the ribosome. The termination of 

translation is initiated by MTRF1L, and the disassembly of the ribosomes is led by MRRF and EF-

G2mt. [Diagram from (Wang et al., 2021)]. 

 

1.2.3 Heteroplasmy  

The mitochondrial genome is polyploid; with copies relating to energy demand, one cell 

can host up to a few thousand mitochondria, each carrying multiple mtDNA molecules. 

Homoplasmy is when all the molecules in a cell or tissue are identical. On the other hand, 

heteroplasmy reflects the presence of different mtDNA populations within a single cell or 

tissue (Hauswirth and Laipis, 1982a). In an analysis of 56,434 mtDNA WGS data from 

gnomAD v3.1 database, it was estimated that 85% of unique mtDNA variants are 

homoplasmic (Laricchia et al., 2022). Although the majority of the identified pathogenic 
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mtDNA variants are heteroplasmic (Hong et al., 2023), it is important to note that not all 

heteroplasmies are pathogenic or linked to disease. In fact, it is estimated that almost 

every control or “healthy” individual harbours at least one heteroplasmic variant at an 

allele frequency between 0.5-1.5% (Wei et al., 2019a; Stewart and Chinnery, 2021a). 

Another recent study performed in the UK Biobank, found that 30.5% participants had at 

least one detectable heteroplasmy, which affected one of 10,161 sites (Hong et al., 2023). 

There are various hypotheses that try to explain the variability in heteroplasmy levels 

between individuals; random segregation, selection, and genetic bottlenecks being the 

major candidates.  

 

1.2.3.1 The threshold effect 

Heteroplasmy gives rise to a phenomenon known as the threshold level, which reflects 

the proportion of variant needed to manifest a phenotype (Figure 1.10). In other words, it 

is the level of pathogenic variants at which the wild type mtDNA can no longer 

compensate for the damaging effects (disrupted OXPHOS efficiency) caused by the 

pathogenic variant (Wallace, 1992; Rossignol et al., 1999).  

This was first investigated as the ‘mutation load’ effect by Wallace, (1986). For his 

investigations, Wallace used cybrid cells with a 16S rRNA gene mutation, and investigated 

chloramphenicol (CAP) resistance, which is an antibiotic that inhibits mitochondrial 

protein synthesis by targeting the mitochondrial ribosome. CAP resistance was found to 

occur only when >10% of the mtDNA carried the mutant, CAP-R variant.  

Transmitochondrial cybrid cells, or simply cybrid cells, are cells that have had their mtDNA 

content entirely depleted, and then replenished from a donor cell (King and Attardi, 

1989a) (more detail on cybrids in last paragraph of Section 1.2.4.2.1).  

This threshold has been known to differ for each pathogenic variant (Shoffner et al., 

1990a; Rossignol et al., 2003). For example, the most recent estimation of the threshold 

for m.3243A>G in muscle fibres is ~83% (Ahmed et al., 2022). 

Rossignol et al., (1999) has also suggested that the threshold for the same variant may 

differ between tissues; given the variable level of tissue sensitivity to defective OXPHOS. 

Moreover, this threshold is unlikely to be static; it is likely to depend on a range of factors 

affecting– from mito-nuclear genetic interplays, environmental impacts and distinct 

metabolic requirements of tissues. 
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Figure 1.10: Mitochondrial heteroplasmy and the threshold effect. Cartoon depicts different states 

of mitochondrial mtDNA content, where they can be completely either wild or mutant type, and 

are thus called homoplasmic, or a mixture of both, which is called heteroplasmic. When the level 

of mtDNA mutant types becomes intolerable and mitochondria’s OXPHOS efficiency is disrupted, 

this marks the crossing of that specific variant’s functional threshold. [Figure obtained from (Li et 

al., 2021)]. 

 

1.2.3.2 Tissue Distribution and Specificity 

Heteroplasmy is thought to be influenced by various factors, including mito-nuclear 

genetic variation, tissue-specific energy demand, and replication advantage of distinct 

mtDNA variants (Gupta et al., 2023). It is established that the level of pathogenic mtDNA 

variants differs between tissues. It is also well known that tRNA point mutations such as, 

m.3243A>G, and deletions have higher levels in post mitotic tissues such as skeletal 

muscle, compared to the constantly dividing tissues like blood and the epithelium 

(Chinnery et al., 1999; Stewart and Chinnery, 2021b). This is partially explained by the non-

dividing nature of postmitotic tissues, which consequently makes muscle tissue 

heteroplasmy the most accurate measure due to its stability. On the other hand, 

heteroplasmy levels in mitotic tissues such as blood were found to be different for each 

variant, some are stable over time, such as the m.8344A>G  variant, whereas others show 

a negative selection pattern, such as m.3243A>G, whose level decreases with age, which 

necessitates age-correction upon measurement (Grady et al., 2018; Bernardino Gomes et 

al., 2021). 

Tissue segregation of pathogenic variants varies across individuals however, it was found 

that m.14487T>C, for example, has the same segregation pattern in monozygotic twins, 

suggesting the role of nuclear control in tissue segregation (Spyropoulos et al., 2013; 

Maeda et al., 2016). 
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1.2.3.3 mtDNA Clonal Expansion 

Clonal expansion happens when a certain mtDNA variant in a cell or tissue increases over 

time in proportion to the rest (Kowald & Kirkwood, 2018). There are multiple theories 

that try to explain how clonal expansion happens, some of them hypothesise this to be a 

random process that is independent from cell division and is indifferent to the impact of 

variants on cellular function or fitness. Where some mitochondrial variants are ‘by 

chance’, replicated or passed on more frequently (Bernardino Gomes et al., 2021). 

Simulation studies have shown that relaxed replication alone is enough to cause changes 

in variant mtDNA proportions leading to a random genetic drift (Elson et al., 2001b). 

Additionally, single cell genotyping in two mouse models of human mtDNA disease 

revealed that variance of heteroplasmy increases equally over time in both mitotic 

(spleen) and post-mitotic (brain) tissues, implying the important role of relaxed 

replication in heteroplasmy variance in the absence of cell division (Glynos et al., 2023).  

Other hypotheses suggest the presence of selective factors that determine the dynamics 

of clonal expansion, resulting a strict mtDNA replication. For example, in Diaz (2002), 

mtDNA deletions were found to be preferentially replicated, presumably due to their 

faster replication rates compared to full-length molecules. However, this phenomenon 

was not observed in situ and was rather attributed to the experimental conditions, which 

involved the use of ethidium bromide, a substance known to be mutagenic to nDNA 

(more details in Section 1.2.4.2.1).  Another study on mtDNA deletions identified the 

perinuclear niche as the subcellular origin of clonally expanded mtDNA deletions (Vincent 

et al., 2018). The observed foci with increased mitochondrial molecules, as well as 

OXPHOS deficiency; were partially explained by the physical proximity to the nucleus 

(perinuclear), offering enhanced mito-nuclear signalling (Davis and Clayton, 1996).  

The nuclear genetic background, in particular, is likely to influence the dynamics of clonal 

expansion in a complex manner, through both the replication rate of individual mtDNA 

and the selective pressures predisposing some variants over the others. Mito-nuclear 

interactions are crucial in informing the dynamics of clonal expansion because nuclear-

encoded factors like Polγ must be in balance for normal replication, repair, and 

transcription of mtDNA. Therefore, variations in these factors are likely to lead to 

differences in the replication of variants, thereby influencing the rate of clonal expansion 

(Trifunov et al., 2018). Ma and O’Farrell, (2016) observed selective expansion of certain 
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mitochondrial single nucleotide variants (mtSNVs) in drosophila, which were 

advantageous on the cellular level rather than the whole organism, which is why it is 

referred to as ‘selfish replication’. The level of variants differ between tissues and over 

time (Goto, Nonaka and Horai, 1990; Rahman et al., 2001). The m.3243A>G for example, is 

a ‘variant with a moderate selection in replicating tissue’, where tissues do not show a 

complete clearance of the variant nor a complete stability over time (Bernardino Gomes 

et al., 2021). On the other hand, mtDNA deletion disease such as Pearson’s disease, shows 

a strong selection in blood yet paradoxically, is clonally expanded in muscle tissue 

(McShane et al., 1991; Grady et al., 2014).  As mentioned in previous sections, the exact 

drivers of this differential, tissue-specific expansions are yet to be determined. 

Recent work by Kotrys et al., (2024), provides evidence supporting the non-randomness 

surrounding heteroplasmy variability. Using a novel, SCI-LITE (single-cell combinatorial 

indexing leveraged to interrogate targeted expression) method, intracellular 

heteroplasmy was measured in base edited cell lineages within standard culture 

conditions. They suggest that non-synonymous mtDNA mutations are negatively 

selected, and that this happens at the level of cellular fitness rather than intracellularly 

and is fully driven by the conditions surrounding the cell, i.e., in cases where the 

accumulation of non-synonymous variants is advantageous, a maintenance of non-

synonymous mutations is observed. This was explored in dividing tissues, and in artificial 

environments which do not always fully translate into what is happening in organisms. 

This, as well, does not explain the observed mutation-specific shifts in blood, where 

m.3243A>G decreases with age, and heteroplasmic LHON-associated mutations for 

example, remain stable over time. Providing another instance where additional, heritable 

factors may be involved.  

 

1.2.3.4 The bottleneck effect 

Extreme inter-generational mtDNA heteroplasmy shifts were first observed in Holstein 

cows; suggesting the existence of a ‘mitochondrial bottleneck’ (Hauswirth and Laipis, 

1982b) (Figure 1.11). It was noted that if mtDNA populations were to be uniformly 

distributed to daughter cells, it would have been unlikely to observe progeny with the 

variant mtDNA molecules as the dominant population within a short time span as one 

generation, which is when the idea of a more random segregation pattern appeared 
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(Hauswirth and Laipis, 1982b; Olivo et al., 1983). The significant reduction in mitochondrial 

copy number (CN) during meiosis (Jenuth et al., 1996a; Cree et al., 2008a), may lead to a 

random assortment of mtDNA variants, drastically altering the proportion of mutated 

versus normal mtDNA, resulting a large difference in heteroplasmy levels across the 

generated oocytes (Howell et al., 1992). This was later observed in LHON pedigrees, 

where a rapid shift towards the variant allele at m.11788G>A was observed (Cree et al., 

2008a). 

The transmission of mtDNA pathogenic variants was found to follow different patterns, 

and this is explained by multiple factors: Blok et al., (1997) suggested that mtDNA variants 

affect the size of the bottleneck; variants such as m.8993T>G/C showed more rapid 

segregation than any other pathogenic variant (Wilson et al., 2016).  

A smaller mtDNA CN would mean a tighter bottleneck, which would be more likely to 

yield oocytes with either extremely high and low variant levels; those with very high 

levels may be unviable. On the other hand, a greater mtDNA CN results a wider 

bottleneck and a less rapid segregation, which explains the presence of individuals with 

more similar heteroplasmy levels in the same pedigree, something that applies to 

m.3243A>G. It is plausible that these variations cause a difference in mtDNA CN, either by 

selection, or as a compensation due to the faulty respiration. By studying preimplantation 

mouse embryos, 70% of the observed heteroplasmic variability was explained by the 

random distribution of mtDNA molecules during bottlenecks, suggesting that there are 

additional factors responsible for the remaining 30% (Cree et al., 2008b). 

In humans, it is established that genetic bottlenecks take place during the development 

of female germline cells (oogenesis) (Floros et al., 2018). Primordial germline cells (PGCs) 

undergo a period of severe reduction in the number of mitochondria, which is then 

followed by immense proliferation as they migrate throughout the embryo, on their way 

to developing into primary oocytes in the gonads (Floros et al., 2018). This is believed to 

mark the point when the bottleneck occurs. 

Additionally, an in vitro study on the development of early mammalian germ cells showed 

that low oxygen levels were able to simulate a mtDNA bottleneck by reducing mtDNA 

content; the reduced cellular oxygen consumption was stimulated by the pathogenic 

variants which may contribute to the variation in transmission between pathogenic 

variants (Pezet et al., 2021).  
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The bottleneck effect and maternal inheritance are significant determinants of the 

dynamics of mitochondrial DNA heteroplasmy. Such information is crucial for 

understanding how mtDNA variations cause diseases, from the aspect of maternal 

inheritance (Zhang, Burr & Chinnery, 2018). Particularly that there is evidence suggesting 

that segregation rates (bottlenecks), of the same, pathogenic variants are affected by 

common mtDNA variants, which explains the observed geographic as well as inter-familial 

differences (Zhang, Burr & Chinnery, 2018). 

The non-coding control region of the mitochondrial genome harbours LSP and HSP which 

play a vital role in mtDNA transcription, and it is believed to be the reason why 

deleterious variation in this region of the mtDNA are rarely inherited (Wei et al., 2020). It 

was thought that mature oocytes that underwent bottlenecks of the same mutation, 

would have similar heteroplasmy levels however, a study carried out by Pallotti et al., 

(2014) looked at two Italian families carriers for m.3243A>G mutation, in the first family, 

the mother transmitted intermediate, largely distributed pathogenic variant levels 

ranging from 10% to 75%; whereas in the second family, the pattern was much more 

skewed where one offspring had a pathogenic variant level of 81% and the four of his 

siblings had 0%. Indicating that variant segregation at bottlenecks in not random, and a 

range of ‘mutant loads’ can be obtained from the same pathogenic variant, suggesting 

that bottlenecks may indeed be under selective pressures potentially exerted by the 

nuclear DNA.  

Moreover, an investigation of mother-child pairs reported a dichotomous selection 

pattern for the m.3243A>G variant; children with high variant level have a statistically 

significant descending pattern when looking back at the mothers level (evidence for 

positive selection), and vice versa for children with low levels (suggesting negative 

selection) (Franco et al., 2022), however, the mechanistic explanation for this observation 

is unknown. Considering the severe biochemical effect of this mutation, which is rarely 

seen at extremely high heteroplasmy, a selection in favour seems to be disadvantageous, 

a potential reasoning for this might be a compensatory reaction; where in response to 

the mutation led decreased OXPHOS efficiency, mitochondria try to increase their mtDNA 

content (Khrapko and Turnbull, 2014). Thus far, several studies have reported the 

presence of selection in the inheritance of pathogenic mtDNA variants however, 

inheritance still has a random genetic drift component. Something that was confirmed in 
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a study looking at different pathogenic variant carrier oocytes, zygotes, and blastomeres 

retrieved from patients going through PGD and IVF (Otten et al., 2018). Where pathogenic 

variants with significantly less severe biochemical consequences, such as m.8993T>G, and 

m.14478T>C, in contrast to m.3243A>G, show no selection against high mutation load, 

and their inheritance is thought to be predominately led by randomness.  

Franco and colleagues suggest that on the population level, a positive selection for high 

frequency nascent mtDNA variants, and a negative selection for low frequency variants 

would have provided a protective mechanism, preventing the accumulation of these 

debilitating variants; by removing the low frequency variants, and uplifting the high 

frequency portion to a level that deems the embryo unfit for further development 

(Franco et al., 2022a). 

 

Figure 1.11: A genetic bottleneck affects mtDNA segregation. The genetic bottlenecks and is one of 

the explanations for highly variable levels of heteroplasmy seen in mature oocytes. As the PGC 

cells proliferate and develop into oogonia (primary oocytes) they first undergo a reduction in 

mitochondrial numbers, and it is estimated that this reduction accounts for 70% of the variability 

in heteroplasmy seen in offspring (Wei et al., 2020). The outcome of PGC proliferation and this 

bottleneck is mature oocytes with a wide range of pathogenic variant levels; when fertilised they 

can develop into embryos with an average heteroplasmy that are either higher, lower, or 

intermediate when compared to the mother. [Figure taken from Taylor and Turnbull, (2005)].  
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1.2.4 Inherited Mitochondrial DNA Variants 

1.2.4.1 Inherited Non-Pathogenic Variants 

Combinations of mtDNA SNPs that are conserved within populations and are passed on 

from a common maternal ancestor, are termed haplogroups. The relationship between 

haplogroups is represented by a phylogenetic tree, which has a theoretical origin at 

‘mitochondrial Eve’, who is estimated to have lived more than ~200,000 years ago in 

Africa (Figure 1.12) (Cann, Stoneking and Wilson, 1987; van Oven and Kayser, 2009a). 

Haplogroups that represent the African ancestry have the greatest sequence variation, 

which supports the hypothesis that all modern humans had an African common ancestor 

(Chen et al., 1995).  

Migration from Africa, and the geographical isolation of populations gave rise to two 

large branches from the African haplogroup L3; haplogroups M and N, which together 

encompass all of the modern non-L haplogroups (Wilson and Cann, 1992). Haplogroup R 

is the root of all European haplogroups, with haplogroup H being the most common 

(Richards et al., 2002). Understandably, haplogroups are often used to study human 

evolution, ancestry, migration patterns, and disease (Merriwether et al., 1991; Taylor and 

Turnbull, 2005; Guha et al., 2013).  

Although many of the SNPs that define haplogroups are likely to have little functional 

consequence, there is evidence to suggest that subtle functional differences between 

haplogroups may exist. This is thought to be a way that enabled the mitochondria to 

adapt to the bioenergetic needs of the populations in their new environments. For 

example, the macrohaplogroup N emerged with two amino acid variants: ND3 gene 

variant m.10389G>A and ATP6 nucleotide m.8701G>A. These changes influence 

mitochondrial membrane potential and calcium regulation, potentially improving 

coupling efficiency in colder climates (Kazuno et al., 2006; Ruiz-Pesini and Wallace, 2006; 

Wallace, 2015). On the other hand, the European haplogroup J, derived from 

macrohaplogroup N, was formed by reversing the ND3 m.10389G>A variant and gaining a 

new ND5 m.13708G>A variant (Ruiz-Pesini and Wallace, 2006). Wei et al., (2017b) used 

sequence diversity estimates on 30,506 individuals and concluded that pathogenic 

mtDNA variants are more common on more recent mitochondrial subclades, compared to 

older, macro haplogroups; which confirms the evolutionary, protective selection against 

low frequency nascent mtDNA variants mentioned in Section 1.2.3.4 (Franco et al., 2022a). 
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The correlation between haplogroups and various common diseases has been discussed 

in literature (Taylor and Turnbull, 2005; Hudson et al., 2007; 2013; 2014; Horan, Gemmell 

and Wolff, 2013), some haplogroups seem to play a protective role in disease whereas 

others increase disease susceptibility. 

Such findings highlight the complex dynamics between inherited mtDNA variants, nuclear 

genetic background, as well as mtDNA sequence variation in shaping the risk and 

expression of diseases (Horan, Gemmell and Wolff, 2013). Something that will be outlined 

in more detail in Chapter Six. 

 
Figure 1.12: Simplified phylogenetic tree. All letters of the alphabet except O are used. The star 

reflects the root of the tree, the African origin of all modern humans descending from the 

ancestral Eve. Haplogroup L3 represents the oldest haplogroup that is closest to mitochondrial 

Eve. Haplogroups M, and N are the haplogroups that emerged out of Africa and that encompass  

all modern haplogroups. Colours represent the continental distribution of these haplogroups 

where: AFR = Africa (red), ASA = Southern Asia (purple), SAM = South America (green), 

EUR = Europe (yellow), and EAS = East Asia (blue). [Figure recreated using Biorender.com from 

van Oven and Kayser, (2009), with information from Palanichamy et al., (2004); and Takeda et al., 

(2023)]. 

 

1.2.4.2 Pathogenic mtDNA variants  

Pathogenic alleles are found in more than 1 in 200 live births, and they arise de novo in at 

least 1 in every 1000 births (Elliott et al., 2008). More than 300 pathogenic mtDNA 

variants have been identified to date (Li et al., 2019). Pathogenic homoplasmic variants 
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are difficult to classify and have been generally poorly investigated due to their high 

population frequency, which makes it difficult to differentiate them from benign 

haplogroup markers (McFarland et al., 2002). The non-coding displacement D-loop is a 

mutation hotspot, compared to coding regions such as rRNA and tRNA genes which are 

‘mutational deserts’; possibly due to their critical roles in mtDNA translation (Elliott et al., 

2008; Stewart and Chinnery, 2021c).  

The single point mtDNA variant m.11778G>A, associated with LHON disease (Wallace et 

al., 1988), and m.8344A>G associated with myoclonic epilepsy and ragged red-fibres 

(MERRF) (Shoffner et al., 1990b), were the first few pathogenic mtDNA variants to be 

ever reported following the sequencing of the mitochondrial genome in 1981 (Anderson 

et al., 1981b).  

1.2.4.2.1 The pathogenic m.3243A>G variant 

The m.3243A>G variant (UUR) is the most common heteroplasmic, pathogenic mtDNA 

variant (Goto, Nonaka and Horai, 1990). It resides in the MTTL1 gene, encoding one of the 

mitochondrial tRNA-Leucine genes, specifically mt-tRNALeu(UUR) (Figure 1.13). The 

m.3243A>G variant is associated with a range of clinical phenotypes, from diabetes to 

deafness as well as syndromes such as mitochondrial encephalomyopathy lactic acidosis 

and stroke-like episodes (MELAS) (Whittaker et al., 2009, Mancuso et al., 2014, Nesbitt et 

al., 2013).  

 

Figure 1.13: Secondary structure of mt-tRNALeu(UUR). Figure depicts the location of MELAS 

associated variants on the secondary structure of mt-tRNAleu(UUR), with m.3243A>G marked with a 

red box. [Obtained from (Tetsuka et al., 2021)]. 
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Due to its high frequency, and extremely wide variety of associated clinical features (see 

Section 1.3.2 below), the m.3243A>G mutation is an extensively investigated pathogenic 

variant in mtDNA, particularly due to its yet elusive molecular pathology (Nesbitt and 

McFarland, 2011).  

The pathogenic mechanism of m.3243A>G can be described based on three main 

hypotheses: (1) impaired transcription of the mitochondrially encoded 16S rRNA, (2) 

decreased translational efficiency, and (3) reduced aminoacylation levels of the tRNALeu 

(UUR). Importantly, all three would significantly contribute to the development of 

mitochondrial dysfunction, lack of energy production, and, consequently, elevated 

oxidative stress (Blakely et al., 2013). Thus, the m.3243A>G mutation is thought to impact 

a variety of aspects of cellular metabolism and functioning. Below are the core models 

published to date. 

First, researchers proposed that the m.3243A>G mutation disrupts the transcription 

termination of mitoribosomal subunit (16S) rRNA. Using cell culture, mitochondria with 

m.3243A>G mutation were found to have an impaired transcription termination due to a 

disrupted binding efficiency of transcription termination factors like mTERF1, resulting in 

reduced termination efficiency. This suggested the impaired ability of mitochondria to 

produce the necessary rRNA needed for translation (Hess et al., 1991). 

Further studies using cybrid (ρ0) cells fused with m.3243A>G-carrying mitochondria 

identified a novel RNA transcript (RNA19), which supported the previous hypothesis 

suggesting that m.3243A>G mutation disrupts transcription termination. Cells with 

elevated levels of m.3243A>G presented with a perturbed OXPHOS function, a decreased 

level of mitochondrially translated proteins, and an increase in RNA19 (King et al., 1992). 

RNA19 transcripts were subsequently found to be a component of the mitoribosomes, 

affecting translation and contributing to disease (Schon et al., 1992). 

In the same year, Chomyn and colleagues reported that they did not find evidence for the 

mentioned defect in transcription termination or the presence of RNA19. Nonetheless, 

they noted a reduced efficiency in mTERF's binding to MT-TL1 during the transcription 

termination process, supporting the finding of Hess et al., (1991). Flierl et al. (1997) found 

no evidence of RNA19 or transcription termination defects either, instead they reported 

that mitochondrially encoded proteins from cells harbouring the m.3243A>G mutation 
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lacked leucine. M.3243A>G variant was also found to reduce the efficacy of the 

aminoacylation of mt-tRNALeu (UUR), which decreases its stability leading to a perturbed 

protein translation (Park, 2003).  

It was hypothesized that the instability of the mitochondrially encoded proteins in 

m.3243A>G carrier cells is due to mis-incorporated amino acids (Janssen, Maassen and 

van den Ouweland, 1999; Yasukawa, 2001). Where the mutant mt-tRNALeu (UUR) not only 

recognizes UUR (R = A or G) leucine codons but also UUY (Y = C or U) phenylalanine 

codons. This altered translation is believed to cause leucine to be incorporated into 

positions typically occupied by phenylalanine (Yasukawa, 2001), reducing the stability of 

mitochondrial proteins and increasing their susceptibility to degradation (Janssen, 

Maassen and van den Ouweland, 1999). 

Some studies, such as Janssen et al. (2007) did not find evidence for m.3243A>G variant 

led mis-incorporation of amino acids. The disruption in UUR decoding rather suggests a 

loss-of-function of mt-tRNALeu (UUR), whereas the mis-incorporation of amino acids 

suggests a gain-of-function. Sasarman et al. (2008) proposed that both loss- and gain-of-

function mechanisms together contribute to the pathogenic effects of the m.3243A>G 

variant. 

Most studies mentioned have employed the unstable transmitochondrial cybrid cells 

(discussed in Section 1.2.3.1) (King and Attardi, 1989b). These cells are typically created 

using ethidium bromide (EtBr) treated thymidine kinase (TK) inactive osteosarcoma cells 

(43TK- cells).  Treatment with EtBr exhausts their mtDNA, resulting in what are known as 

ρ0 cells. ρ0 cells are then reintroduced with external mitochondria to alter the mtDNA 

population within the cells. However, EtBr is also mutagenic to nuclear DNA, and so 

differences in downstream function may not be wholly attributed to the re-introduced 

mtDNA. Transmitochondrial cybrid cells, like other immortalized cell lines, often depend 

on glycolysis for ATP production, which can result in a decreased response to OXPHOS 

inefficiency (Inak et al., 2021). These factors complicate the comparison of results from 

transmitochondrial cybrid cell lines to mechanisms observed in vitro (Sasarman, 

Antonicka and Shoubridge, 2008). 

As an alternative to cybrids, immortalized patient-derived myoblasts have been used, 

potentially offering a more accurate depiction of in vitro mechanisms. The fact they are 

patient-derived means that the recreation of the patient-specific nuclear and 
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mitochondrial genome is possible, by that offering maximum replication of in-vitro, 

patient-specific conditions (Sasarman, Antonicka and Shoubridge, 2008; Inak et al., 2021). 

 

1.3. Mitochondrial disease  

1.3.1 Clinical Manifestation of Mitochondrial Disease 

Mitochondrial diseases present a wide clinical spectrum and might affect virtually any 

organ system at any age. One of the hallmarks of mitochondrial diseases is clinical 

heterogeneity, and their variable severity even in the same extended family and mutation 

carriers (Gorman et al., 2016) (Table 1.1).  Mitochondrial diseases can be caused by 

mutations in either the mitochondrial or the nuclear genome. 

This complexity somewhat explains why this group of diseases is hard to diagnose. The 

most commonly observed symptoms in adults are those associated with the central 

nervous system, muscle weakness and myopathies, whereas in paediatrics it is hypotonia, 

psychomotor delay, cardiorespiratory failure and lactic acidosis.  

Mitochondrial variations have been associated with several late-onset common diseases 

like Parkinson's and Alzheimer's (Hutchin and Cortopassi, 1995; Hudson et al., 2013a), type 

2 diabetes (Wang et al., 2001; Tang et al., 2006), and cancer (Canter et al., 2005; Wallace, 

2012). Which make the identification of mtDNA variants important not only for molecular 

diagnosis of mitochondrial diseases but for a number of more common, complex 

diseases.  

At last, it is worth mentioning that 50% and 80-90% of mitochondrial disease adult and 

paediatric patients, respectively, lack a molecular diagnosis as the genetic analyses 

carried out often fail to identify the causative mtDNA or even nuclear-disease-causing 

variants (Zeviani and Donato, 2004). The unusual nature of mitochondrial genetics, the 

limited methods available to manipulate mtDNA, and the lack of suitable disease models 

have stood in the way and hindered the ability to find a target for therapy or even the 

prevention of disease progression if symptoms are identified early on (Tuppen et al., 

2010).This however, is a fast-moving field with novel methods constantly emerging and 

holding a great promise (Gammage et al., 2014; Bacman et al., 2013; Mok et al., 2020; Silva-

Pinheiro and Minczuk, 2022).  
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Table 1.1: The clinical phenotypes most frequently observed in mitochondrial diseases. [Table 
reproduced from Zeviani and Donato, (2004)] 

 
Neurological manifestations Systemic manifestations  

Neuromuscular Heart 
Ophthalmoplegia Cardiomyopathy 

Myopathy  Cardiac conduction defects 
Exercise intolerance  

Peripheral sensory-motor Endocrine system 
Neuropathy Diabetes 

Central nervous system (CNS) Exocrine pancreas dysfunction 
Myelopathy Hypoparathyroidism 
Headache Multiple endocrinopathy 

Stroke Short stature 
Seizures  

Dementia Blood 
 Pancytopenia 

Movement disorders Sideroblastic anaemia 
Ataxia  

Dystonia Mesenchymal organs 
Parkinsonism Hepatopathy 

Myoclonus Nephropathy 
 Intestinal pseudo-obstruction 

Eye  
Blindness Metabolism 

Optic neuropathy Metabolic acidosis 
Pigmentary retinopathy Nausea and vomiting 

Cataract  
Ear  

Sensorineural deafness  

 

 

1.3.2 m.3243A>G-Related disease 

The population frequency of m.3243A>G is 140-250 per 100,000 however, disease 

prevalence is ~ 1 in 5000, which reflects the asymptomatic portion of m.3243A>G carriers 

in the population and can be attributed to their low variant levels  (Nesbitt and 

McFarland, 2011). The m.3243A>G variant is associated with a spectrum of clinical 

manifestations, among which are mitochondrial encephalopathy with lactic acidosis and 

stroke-like episodes (MELAS) syndrome, progressive external ophthalmoplegia (PEO), 

diabetes, and deafness. m.3243A>G affects multiple organs and systems, which results in 

a wide array of symptoms, such as muscle weakness, neurological impairments, or 

endocrine dysfunctions (Nesbitt et al., 2013). Traditionally, the spectrum of diseases 

associated with the m.3243A>G variant falls into two categories – syndromic and non-

syndromic presentations – as outlined in Mancuso et al. (2014). Given the vast clinical 

heterogeneity seen in patients with m.3243A>G for example, syndromic diagnosis is not 

always possible and thus phenotypic descriptions are used instead. For example, in some 



 

 33 

people, it may first manifest as diabetes and deafness simultaneously (van den Ouweland 

et al., 1992), with stroke-like episodes following shortly thereafter. PEO, which is an 

ophthalmological term denoting progressive weakness of eye muscles and ptosis, as well 

as other related symptoms can also arise (Moraes et al., 1993).   

Notably, elevated mutation load in different tissues, such as blood, urine, and muscle do 

not always correlate with the diversity and severity of symptoms. Individuals with high 

variant levels may sometimes be relatively asymptomatic, which highlights the 

phenotypic heterogeneity of m.3243A>G, something that remains to be poorly 

understood (Grady et al., 2018). Grady et al., (2018) estimated that age and age-corrected 

blood 3243A>G levels account for only ~25% of the observed phenotypic variability.  

Studies suggest that nuclear polymorphic background affects the phenotypic expression 

of mtDNA variants, which highlights the importance of studying mito-nuclear 

interactions. For example, in LHON, even though all children inherit the homoplasmic 

point mutation, only 10% of the females and 50% of males develop blindness, suggesting 

the influence of external factors such as nDNA variation (Taylor and Turnbull, 2005; 

Pickett et al., 2018). Supporting this, linkage was identified between X chromosome 

haplotype and mutations in the mitochondrial MTND gene, by that causing the visual 

impairment in LHON and explaining the observed sex bias however, the exact nDNA 

variants are yet to be identified (Hudson et al., 2005;Carelli et al., 2016). 

 

1.3.3 Mitochondrial disease diagnosis and treatment 

Diagnosing mitochondrial diseases is challenging because of the wide range of clinical 

symptoms and the complicated genetic composition of the mitochondria (Parikh et al., 

2009). Typically, the combination of the clinical assessment of the state of the patient, 

biochemical tests, and molecular genetic testing is used to detect the signs of 

mitochondrial dysfunction (Thompson et al., 2023). Current treatments only alleviate 

disease symptoms. As a measure to prevent the transmission of mitochondrial disease, 

mitochondrial replacement therapies, or mitochondrial donation was developed (Craven 

et al., 2010; Tachibana et al., 2013). First approved by the UK parliament in 2015 

(Kmietowicz, 2015a), then licenced by the Human UK Fertilization and Embryo Authority 

(HFEA) in 2017 (Kmietowicz, 2015b; Craven et al., 2018); this technique involves the 

transfer of the nuclear genome from an oocyte (or zygote) into the donors’ enucleated 
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egg cell (or zygote) that harbours healthy mitochondrial populations (Tachibana et al., 

2009). Nevertheless, the incomplete understanding of mitochondrial biology impedes the 

achievement of full recovery from mitochondrial diseases, particularly those caused by 

the m.3243A>G variant due to the multifactorial nature of disease progression and not 

fully uncovered role of nuclear DNA  (Chinnery et al., 2014; Lightowlers, Taylor and 

Turnbull, 2015). 

 

1.4 Nuclear DNA and mtDNA crosstalk in mitochondrial function and disease 

The role of functional synergy between nucDNA and mtDNA is paramount in cellular 

energy production, particularly given that 99% of the genes essential to mitochondria are 

encoded by the nuclear genome, including subunits of a whole respiratory complex (CII) 

(Calvo, Clauser and Mootha, 2016; Rath et al., 2021b). Processes in the mitochondria, such 

as translation, are also governed by the two genomes; and thus, the organelle’s 

functional integrity depends on efficient communication between the two via both 

anterograde (nucleus to mitochondria) and retrograde (mitochondria to nucleus) 

signalling. Disruption of this fine network leads to mitochondrial dysfunction and 

eventually disease expression (Horan and Cooper, 2014). 

Embryos derived from mitochondrial donation experiments on embryonic stem cell lines 

reported mtDNA heteroplasmy reversion (Kang et al., 2016; Hudson, Takeda and Herbert, 

2019). These recurrences were reported to happen at a rate of 15%, and an explanation for 

this might be that the nuclear genetic background is "favouring" certain mtDNA variants 

which would provide further evidence for nuclear-mitochondrial genetic interplay (Wei 

and Chinnery, 2020). nucDNA can affect mtDNA translation throughout embryo 

development by exerting selective forces, as well as throughout an individual's lifetime 

(Wei et al., 2019b). Importantly, a recent GWAS study by a team from 23andMe®, 

identified 20 nuclear loci associated with non-pathogenic mtDNA heteroplasmy, 

accounting for 20% of the observed heritability (Nandakumar et al., 2021). The identified 

loci were surrounding TFAM and TWNK genes vital for mtDNA replication, and others 

associated with mitochondrial funcition and quality control (CLEC16A, PRKAB1). This raises 

the potential that nDNA variability can regulate mtDNA heteroplasmy by modifying the 

mitochondrial replication capacity, once again highlighting that mitochondrial function 

involves significant genetic interdependence between the two genomes.  
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Another illustrative example of this cooperative adaptation is seen in Saccharomyces 

cerevisiae systems, where mtDNA from different ecological niches can lead to various 

phenotypes depending on the nuclear genetic background (Nguyen et al., 2020). This 

highlights a selective pressure for optimised mito-nuclear interactions, with profound 

implications for evolutionary trajectories and adaptation processes. 

 

1.4.1 Nuclear-Mitochondrial DNA crosstalk 

Mitochondrial maintenance disorders exemplify the complex outcomes arising from 

disruptions in the interactions between nucDNA and mtDNA (DiMauro et al., 2013; 

Viscomi and Zeviani, 2017). These disorders highlight the crucial role of genetic crosstalk 

in maintaining mitochondrial function and integrity (Bonnen et al., 2013). Exchange of 

mtDNAs between different yeast strains was found to not only impact growth rates also 

demonstrated that strains with native mtDNA configurations are fitter than those with 

altered mito-nuclear combinations (Lehtonen et a, 2016; El-Hattab, Craigen & 

Scaglia¸2017). This fitness disparity underscores the influence of natural mito-nuclear 

interactions on evolutionary fitness, particularly in response to environmental changes. 

For example, RNA differential expression analyses on different cancer cell types revealed 

a completely broken association between nuclear proteins and the mitochondrial P9 site 

methylation – which is a post transcriptional processing that yields a mature, functional 

tRNA (Idaghdour and Hodgkinson, 2017). This was found to be nucDNA genotype specific, 

where nuclear mutations in KIRC cohort (kidney and renal clear cell carcinoma) were 

identified as significant patient survival predictions.  

A study by Bellizzi et al. (2012) has shown a correlation between the methylation of nDNA 

and mtDNA haplogroups, where nuclear transmitochondrial cybrid cells harbouring the J 

haplogroup had increased levels of nDNA methylation compared to other haplogroups. 

This is believed to be initiated by the increase of reactive oxygen species as a result of 

mitochondrial malfunction. This proves that mtDNA can also modulate the nucDNA in a 

retrograde manner through epigenetics (Horan, Gemmell and Wolff, 2013b). Such findings 

further emphasise the deep interdependency between the nuclear and mitochondrial 

genomes.  
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Furthermore, in cases of impaired mitochondrial function, such as in cancer cells, 

depletion of mtDNA can lead to significant alterations in nuclear gene expression, 

impacting pathways involved in energy metabolism, cell signalling, and apoptosis (Di 

Nottia et al., 2021). 

 

1.5. Genetic Tools to Investigate Complex Diseases 

1.5.1 Prior Work 

Almost all diseases have a genetic component. Some, such as cystic fibrosis or sickle cell 

anaemia, are caused by mutations in a single, well-known gene (monogenic diseases). On 

the other hand, ~90-95% of diseases, including some mitochondrial, are polygenic and are 

also influenced by factors like lifestyle and environment; these are referred to as complex 

diseases. Genetic assessments such as linkage analysis, association studies, and 

heritability estimates have been instrumental in demystifying various Mendelian as well 

as complex diseases (Caspi et al., 2010). Typically, rare variants with a large effect size are 

associated with Mendelian disorders, whereas common variants with small effect sizes 

are involved in common, polygenic complex diseases, each method is powerful at 

detecting variants with a certain frequency/ effect size (Figure 1.14).  

The impetus for studying the m.3243A>G variant heteroplasmy and its nuclear modifiers is 

largely built on two pivotal findings: firstly, using variance components to estimate 

heritability, Pickett et al., (2019) estimated that 72% of m.3243A>G variant allele variability 

can be attributed to additive, nuclear genetic factors, highlighting the importance of 

exploring the role of nuclear genetic variation in influencing m.3243A>G levels. 

Subsequently, Boggan et al., (2022) identified a locus on chromosome 7q22 that is linked 

to m.3243A>G-related mitochondrial encephalopathy, further highlighting the significance 

of nuclear genetic factors in mitochondrial disorders.  

In this section I will outline the tools used in this thesis, mentioning their strengths and 

drawbacks with a focus on genome wide association studies (GWAS) as the main analysis 

approach. 
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Figure 1.14: Relationship between variant frequency and effect size (ES). Area between the dashed 

lines is where the ongoing research is focused. [Figure recreated from (Manolio et al., 2009a; 

Hertel et al., 2013)]. 

 

1.5.2 Heritability Studies 

Heritability studies provide crucial insights into how much of the variation in disease 

phenotypes and/or variant levels, can be attributed to genetic factors versus 

environmental influences (Farrar et al., 2013). There are two types of heritability studies: 

broad sense heritability, and narrow sense heritability. The former estimates the 

percentage of genetic contribution to the phenotypic variability in pedigrees and family 

data, whilst including factors with dominant, additive, as well as epistatic effects. The 

latter is typically conducted on populations and focuses on common genetic factors with 

only an additive effect. Some methods sum the proportion of heritability contribution and 

effect sizes of only significant GWAS SNPs, called GWAS heritability however, analyses 

that consider the contribution of all measured, additive genomic regions, referred to as 

SNP heritability, provide a more biologically accurate reflection (Yang et al., 2010a; 

Matthews and Turkheimer, 2022). Despite utilising all SNPs for estimating SNP heritability, 

the disparity between that and estimates of broad sense heritability is still vast for many 

phenotypes. This disparity has often been referred to as the issue of ‘missing heritability’ 
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(Maher, 2008), where, the broad sense heritability on family data yields a greater 

percentage of variation attributed to genetics, compared to SNP-based, or narrow sense 

estimations. There are multiple explanations for this, the missed variants in GWAS 

analyses due to low frequency and miniscule effect size, which means they end up being 

ungenotyped, is the most prominent reasoning (Zuk et al., 2014; MN et al., 2021; 

Matthews and Turkheimer, 2022). There have been studies suggesting that broad sense 

heritability has overinflated values, and that is because it considers all possible non-linear 

or non-additive factors (mentioned previously), something that the current designs of 

molecular heritability studies cannot detangle (Manolio et al., 2009b; Matthews and 

Turkheimer, 2022). Some researchers are convinced that these are two fundamentally 

different sets of analysis and that we should not even aim to have the retrieved estimates 

similar to one another; particularly that attempts to obtain this would require the overall 

restructuring of analysis methods (Longino H.E., 2013). Heritability analyses are discussed 

further in Section 1.5.5. 

 

1.5.3 Linkage Analysis 

Linkage analysis looks into identifying chromosomal regions that are shared amongst 

individuals with the same phenotype. The underlying premise is that, in genomic regions 

that contain phenotype-influencing variation, such individuals would have higher identity 

by descent estimates (IBD) than would be expected by chance, as parts of their genome 

co-segregate with the phenotype of interest (Taylor E.W. et al., 1997) (Figure 1.15). The 

likelihood of the data is calculated assuming the loci are linked or not, if LOD (estimates 

of multipoint logarithm of the odds), equals to 3.3, then evidence of significant linkage is 

said to be identified (Nyholt, 2000). Considering that linkage analyses utilise family data, 

population stratification is not a consideration even when multiple families are analysed – 

this is because each family is investigated for segregation patterns as a single entity.  

Linkage analysis can be parametric and non-parametric, and this reflects whether 

inheritance pattern is given as an input to the analysis. Non-parametric linkage analyses 

are useful in cases when the inheritance pattern is unknown however, parametric 

analyses are generally more powerful due to the increased sensitivity and greater analysis 

power (Penrose, 1952; Abecasis et al., 2002; Ott, Wang and Leal, 2015a; 2015b).  
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Although traditionally used in the context of monogenic diseases, linkage proved to be 

valuable for exploring complex, polygenic diseases (Sturtevant, 1913; Pulst, 1999; Slatkin, 

2008a). In the case of mitochondrial, m.3243A>G related pathologies, linkage analysis, as 

previously shown by Boggan et al., (2022), can reveal nuclear regions harbouring variants 

that potentially modulate mitochondrial disease phenotypes, highlighting a complex 

relationship.  

 
Figure 1.15: Pedigree depicting allele tracking via identitiy by descent (IBD). Coloured fragments 

represent chromosomal regions, it can be noticed that all affected individuals share the same 

fragment (orange), that they inherited from the ancestor in generation I. [Figure retrieved from 

(Boggan, 2022)]. 

 

1.5.4 Genome wide association studies (GWAS) 

In large scale studies, typically investigating complex diseases, linkage analyses have been 

limited in their ability to find underlying causative variants, partly because the regions 

identified are typically very large and contain many potential causative genes (Hirschhorn 

and Daly, 2005). GWA studies test for association between a phenotype and millions of 

individual loci across the genome, it is a technique based on the concept of linkage 

disequilibrium, where it calculates the deviation from the expected random segregation 

of variants across a population and so has a higher resolution, narrowing genomic regions 

down much further (Joiret et al., 2019) (Figure 1.16 and Table 1.2). GWAS became a critical 

tool of investigation in complex diseases through successful identification of genetic 

variants that increase disease susceptibility such as the 2007 study by the Wellcome Trust 
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Case Control Consortium, that identified variants associated with seven common diseases 

including type 1 and type 2 diabetes (more detail in Chapter Four) (Burton et al., 2007). 

GWAS is essential in my research for identifying specific m.3243A>G nuclear genetic 

modifiers of variant's allele level. By employing this technique, we can bridge the 

knowledge gap on how nuclear variants influence mitochondrial processes.  

Unlike linkage analysis, GWA studies can be greatly confounded by population 

stratification (Price et al., 2010a; Hellwege et al., 2017). Instead of detecting true, causal 

variants, analysis aims to detect variants that are shared amongst the study population 

i.e. in linkage disequilibrium (LD).  Population Stratification is typically accounted for using 

methods such as principal component analysis (PCA), which groups the population into 

variance explaining clusters, and by that, identifies population outliers (Patterson, Price 

and Reich, 2006; Price et al., 2006). Additionally, the presence of related individuals 

without providing records of that (cryptic relatedness), also impacts the accuracy of 

association analysis results (Sun and Dimitromanolakis, 2012). Mixed models have been 

proposed as suitable approaches in population-based studies to account for both 

confounding factors (Yu et al., 2006).  

Given that regression analysis underlies GWASs, a rule of thumb reported by Green in 1991 

is that the number of observations (individual samples) should be at least 50 plus eight 

multiplied by the number of predictors (SNPs) (50 + 8(𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟)) for testing the overall 

model (Green, 1991). This builds up the reasoning to why GWASs often struggle with 

having sufficient sample sizes.  For reproducible, significant GWAS results, large sample 

sizes are often required to ensure that the underlying regression model has enough 

power. Power calculations can be conducted ahead of analysis to determine the 

necessary sample size to reach the desired detection power (Moore, Jacobson and 

Fingerlin, 2019) (Section 4.2.5).  

GWA study designs can either include cases and controls for binary traits or measure 

quantitative traits across the entire sample. Researchers also have the option to use 

either population-based or family-based designs, although there is a shift against family-

based designs as they are typically highly underpowered (due to sample size and genetic 

diversity limitations), and were often resorted to as a way to avoid population structure, 

which given the emergence of methods to account for such confounding, is not a good 

justification (McCarthy et al., 2008; Holmes, Ala-Korpela and Smith, 2017). However, study 

design is also dictated by the studied disease, its inheritance patterns and penetrance, 
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where in some cases, family-based designs are most suited. There are numerous  

software packages used to conduct a GWAS; this is something that is thoroughly 

discussed in Chapter Three. 

Cohort construction depends on multiple factors: 1) required sample size, 2) analysis 

question and 3) availability of pre-collected data. This is a step that should be carefully 

considered to avoid bias. For example, participants enrolled (selected) based on their 

clinical diagnosis from hospitals and healthcare centres, or from cohorts encompassing 

individuals with rare diseases such as, Genomics England; exhibit ascertainment 

compared to cohorts recruited from the population (such as the UK Biobank) (Uffelmann 

et al., 2021). If not careful, using non-random data can lead to a collider bias, which is 

when two variables influence a third variable and the third variable is used as a 

conditional, which causes spurious associations (Cole and Hernán, 2002; Uffelmann et al., 

2021).  

Either genotype data that is retrieved from a suitable microarray, usually followed by 

imputation to increase marker density, or sequencing data can be used in GWAS. 

However, with the decreasing cost of sequencing technologies, GWASs are increasingly 

relying on the robust sequencing data (Salomon et al., 2016). 

Fine mapping is a post-GWAS analysis process that uses LD data along with the retrieved 

GWAS summary statistics and increases the resolution of variation found within any 

association peak. There are several sophisticated software packages that perform these 

analyses; in this thesis, FINEMAP was the software of choice (Section 4.1.3) (Benner et al., 

2016a). 

Upon the in-silico identification of an associated variant using GWA, various in-vitro 

functional analyses can step in to elucidate the biological implications of the pinpointed 

variant. It is worth mentioning that only 2-3% of GWAS fine mapped variants fall within 

coding genes (Visscher et al., 2017a). The remaining portion fall outside coding regions. 

One method for identifying target genes of genetic variants involves molecular 

quantitative trait loci (molQTL) analysis. This technique links genetic variants to specific 

molecular functions; for instance, eQTL analysis connects loci to RNA expression levels 

and there are several other techniques that can link variants to other molecular functions 

such as, pQTL (loci associated with protein abundance) (Chick et al., 2016), meQTL (loci 

associated with methylation levels) (Mulder et al., 2021), chQTL (loci associated with 
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chromatin accessibility, which reflects gene regulation) (Keele et al., 2020)  (Li et al., 2016; 

Barbeira et al., 2021; Uffelmann et al., 2021).  

Each of the above-mentioned method's unique approach makes it ideal for identifying 

different types of genetic variations that contribute to complex diseases. GWASs are 

particularly effective at detecting common variants with modest effect sizes. In contrast, 

linkage analysis excels in pinpointing rare variants with larger effect sizes (Ott et al., 2015). 

Below is a comparison table of the two approaches (Table 1.2). 

Approximately 300,000 associations with diseases, disorders, quantitative traits, and 

genomic traits have been identified by GWAS (Sollis et al., 2023). One prevalent example 

is from type 2 diabetes (T2D); its well-defined mode of inheritance and population 

prevalence made it easy to collect large, extended pedigrees (Vaxillaire and Froguel, 

2006). This made T2D at the forefront of diseases studied by different genetic analyses. In 

2003, Reynisdottir et al., identified regions of suggestive linkage to T2D on chromosomes 

5 and 10; later TCF7L2 was identified as the causative gene on chromosome 10. As 

association analyses developed and emerged from candidate gene approach to more 

unbiased approaches, PPARG as well as KCNJ11 were identified and are currently targets 

for anti-diabetes medications (Gloyn et al., 2003). Further examples will be discussed in 

Section 4.1.1. 
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Figure 1.16: A comparison between Genetic linkage and association analysis from the aspect of 

resolution. During gametogenesis, recombination leads to an independent assortment of 

alleles, (A) linkage analysis relies on deviations from independent assortment observed in 

family pedigrees. Analysis points at large regions and this is attributed to the fact that the 

specific ‘causal’ allele has segregated over a very small number of generations. (B) Association 

analysis utilises large samples to compare phenotype sharing and co-segregation of alleles 

over generations that undergo multiple rounds of recombination. The white triangle in the 

figure shows a co-segregating allele that is carried on the blue, much smaller fragment on the 

population level, hence offering by that higher analysis resolution. [Obtained from Semagn, 

Bjørnstad & Xu (2010)]. 
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Table 1.2: Comparison between linkage and association analysis techniques used in complex 

diseases. [Compiled from Joiret et al., (2019), March, (1999), Stranger, Stahl and Raj, (2011)] 

                           Linkage Analysis                      Association Analysis 

Methodology  

 

Phenotype and genetic 

data from individuals within 

pedigrees are collected. 

Analysis identifies genomic 

regions that are shared 

among affected individuals. 

Tests whether the 

frequency of SNPs differs 

between affected 

individuals and controls. 

Data studied  Related individuals Unrelated or related  

Range of effect detected Long (≤ 5 Mb) Short (≤100 Kb) 

Number of markers 

required 

5 ~ 10,000 (Depending on 

the size of the region and 

number of alleles for each 

marker) 

> 100,000  

Suitable applications Rare dominant traits, and 

common traits but lower 

resolution than GWAS 

Common traits 

Typical detection abilities Rare variants with large 

effect size 

Common variants with 

small effect size 

Drawbacks  

 

 

 

 

Disease heterogeneity 

decreases statistical power 

thus, disease penetrance 

should be relatively similar 

across the cases. 

Low power to detect genomic 

regions with small phenotypic 

effect. 

Fails at identifying rare 

variants/ variants with a 

strong effect. Population 

stratification and cryptic 

relatedness affect reliability 

of results. 

If a marker lies at a distance 

from disease locus and/or 

locus information content is 

not identified, then in case 

sequencing data is not 

available, a higher density 

SNP array is required.  

 

 Genotyping errors reduce power for both. Good data 

quality control is essential to ensure no false positives or 

false negatives.  
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1.6. Project Rationale and Aims 

The pathogenic m.3243A>G mitochondrial DNA variant is characterised by its clinical 

heterogeneity, (Xia et al., 2016; Parikh et al., 2015). Levels of the pathogenic m.3243A>G 

variant can be markedly different across individuals in the same pedigree. This 

heterogeneity poses a significant diagnostic and clinical challenge.  

As previously outlined, genetic bottlenecks, segregation, selection, are all phenomena 

that, to a degree, may explain this variability. It has been established that nuclear, 

heritable factors explain up to 72% of observed heterogeneity of m.3243A>G (Pickett et 

al., 2019a). However, the precise mechanisms of this nuclear influence remain poorly 

understood. Therefore, an in-depth investigation into how nuclear genetic variations can 

modulate the levels of m.3243A>G heteroplasmy is essential. The findings from such 

research could lead to developing therapeutic strategies that significantly reduce the 

impact of the m.3243A>G mutation. Furthermore, understanding the influence of nuclear 

factors in the context of m.3243A>G could provide a foundational model for studying 

other mitochondrial pathogenic variants, extending its significance and application in the 

broader field of mitochondrial disorders. Ultimately, advancing our understanding in this 

area could lead to more accurate prognostics, enhanced therapeutic strategies, and 

hopefully, a better quality of life for affected individuals and families.  

 

Hypothesis: I hypothesise that heritable genetic variants modulate the variability in 

m.3243A>G levels across individuals and that these may be identified using methods from 

complex disease genetics, such as GWAS. 

Aims: 

1. To define m.3243A>G carrier and obligate carriers in population cohorts to enable 

GWAS analyses. In addition to samples from the Newcastle-based, multi-centre 

cohort, which predominantly comprises patients with diabetes and neurological 

diseases selected for having m.3243A>G variant; I aim to further increase the 

sample size available for analyses by identifying additional 3243A>G carriers from 

the UK Biobank and the 100,000 genomes project (Genomics England). This is 

crucial for increasing analysis detection power. Additionally, it enables the 

comparison of m.3243A>G levels across all the three cohorts, which is essential for 

robust interpretation of analysis results.  
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2. Evaluate the suitability of various genetic association analysis methods and 

refine an optimal analysis framework that suits all cohorts. Considering the 

differences in pedigree and population structures across cohorts along with the 

substantial variation in the distribution of m.3243A>G levels among individuals, 

selecting an appropriate method is crucial. This objective involves conducting 

analyses using different statistical approaches to determine the most reliable 

method that effectively incorporates covariates, thereby minimising the risk of 

errors such as type I errors. 

3. To identify nuclear variants that are associated with detectable m.3243A>G 

levels. Through GWA analysis, I aim to identify nuclear variants that modulate 

m.3243A>G levels in individuals. This objective is key for advancing our 

understanding about the genetic architecture underlying variant heteroplasmy, 

which is important for understanding differential disease susceptibility and 

severity in carriers of m.3243A>G. 

4. Investigate the role of mtDNA variation in modulating m.3243A>G heteroplasmy. 

Using mitochondrial GWAS (miWAS), I will investigate whether sequence variation 

in the mitochondrial genome is associated with m.3243A>G levels and whether 

m.3243A>G is more commonly seen on different haplogroup backgrounds.   
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Chapter 2. Materials and methods 

2.1. Cohort structures 

2.1.1 Multicentre cohort  

This patient cohort contains data from 488 individuals carrying m.3243A>G, and includes 

samples collected from The UK Mitochondrial Disease Patient Cohort – Newcastle, 

University College London (UCL), Exeter Centre of Excellence for Diabetes Research, The 

German Network for Mitochondrial Diseases, and The Nationwide Italian Collaborative 

Network of Mitochondrial Diseases. The number of samples, along with the median age 

at last clinical assessment, are summarised in Table 2.1. Samples were known for having 

m.3243A>G however, to determine variant allele levels, m.3243A>G pyrosequencing was 

performed by Dr Roisin Boggan (Section 2.2.1). Of these samples, 445 individuals were 

SNP genotyped with the remaining excluded for having poor quality, or little DNA. Quality 

control (QC) steps on genotyped data were then performed (see Section 2.4.1 for more 

detail), 408 samples remained and were taken forwards for this project. 

The Newcastle and North Tyneside Research Ethics Committee (13/NE/0326) provided 

ethical approval for 258 samples, and patients provided written informed consent prior to 

their inclusion. Tissue samples from these patients were obtained with ethical permission 

from the Newcastle Mitochondrial Research Biobank (REC reference 16/NE/0267- 

Application Ref: MRBOC ID 016). Additionally, ethical approval for the inclusion of 54 

patient tissue samples received from UCL was provided by the Queen Square Research 

Ethics Committee, London, UK (09/H0716/76). A total of 110 individuals were referred for 

genetic testing from routine clinical care to the Exeter Genomics Laboratory at the Royal 

Devon and Exeter Hospital, and the study was approved by the North Wales ethics 

committee (17/WA/0327). Samples from 56 individuals were obtained from the German 

network for mitochondrial disorders “mitoNET”, with funding from the German Ministry 

of Education and Research (01GM1906A, 01GM1906B). Ethical approval for the clinical 

Registry (mitoREGISTRY) was obtained from the Ethics Committee of the LMU Munich 

(182-09), and approval for the Biobank (mitoSAMPLE) was secured from the Ethics 

committee of the Technical University Munich (200/15 S-SR). Furthermore, ten individuals 

from the University of Pisa, enrolled in the “Nationwide Italian Collaborative Network of 

Mitochondrial Diseases”, provided written consent for their inclusion in the study.  



 

 48 

Table 2.1: Summary of data included in the analyses. Table includes summary of data in all three 

cohorts used in this project: the multicentre cohort (rows two to six), 100k genomes project 

(Genomics England), and the UK biobank. 

Sub cohort N (M, F) Median age at first 

assessment (IQR) 

Median age-adjusted 

m.3243A>G variant 

levels (IQR, range) 

UK Mitochondrial Disease 

Patient Cohort 

258 (105, 153) 42.8 (24.3) 0.648   

(0.556, 0.002-1.000) 

University College London 54 (22, 32) 44 (24) 0.938   

(0.394, 0.074-1.000) 

Exeter Centre of Excellence 

for Diabetes Research 

110 (34, 76) 40 (17) 0.816   

(0.324, 0.002-1.000) 

German Network for 

Mitochondrial Disease 

56 (25, 31) 40.5 (20.5) 0.637   

(0.465, 0.058-1.000) 

The Nationwide Italian 

Collaborative Network of 

Mitochondrial Diseases 

10 (6, 4) 45 (9.75) 0.696   

(0.169, 0.490-1.000) 

Genomics England (100,000 

Genomes Project) 

176 (81,95) 35 (33.5) 0.078 

(0.222,0.016-1.000) 

UKBB 147 (72,75) 56.5 (14.5) 0.23  

(0.27, 0.033-1.000) 

 

2.1.2 Genomics England (100kGP) 

Through application number (RR97), access to 61,140 tiered and quality controlled rare 

disease genome datasets (release V12) were available. Data belong to individuals 

recruited for having rare, possibly hereditary disease symptoms, with or without a 

molecular diagnosis, along with their family members. To identify m.3243A>G carrier 

samples, Dr Dasha Deen (Bioinformatician) designed a mtDNA heteroplasmy calling 

pipeline (Section 2.2.2). This identified 116 individuals with age corrected m.3243A>G 

levels ≥ 1%. Using family IDs, the data were extracted from their relatives (134 individuals) 

which were subsequently used in family tracing (Section 2.2.3). From a group of 134 
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relatives, 60 obligate carrier samples were identified, these are relatives who are not 

necessarily clinically affected, but based on their position within the family are carrying 

the m.3243A>G variant at low levels. The total number of m.3243A>G samples was 176, 

with a median age of 35 (IQR = 33.5) (Table 2.1). 

2.1.3 UKBB 

Data in the UKBB belong to individuals recruited from the UK, aged between 40 and 69, 

who have provided a set of health-related data via questionnaires, physical 

measurements and - most importantly - a variety of samples including blood. 

Using application number 9072, our collaborators Dr Stuart Cannon and Dr Kashyap Patel 

(Exeter University), applied an in-house pipeline to identify m.3243A>G samples within 

the data available at that time (200,000 participants in the UKBB in May 2023). This led to 

the identification of 144 samples with variant age-corrected m.3243A>G levels ≥ 1% and 

using family tracing, 3 additional obligate carriers were identified. The total number of 

retrieved samples was 147, with a median age of 56.5 (IQR = 14.5) (Table 2.1). 

2.2. Methods of estimating m.3243A>G levels 

2.2.1 Pyrosequencing  

Pyrosequencing is a sequencing by synthesis technique, with an upper limit of 400 bases, 

often used in molecular diagnostic settings. Compared to Sanger sequencing, it is much 

faster and more cost efficient, providing a quantitative analysis that permits the accurate 

determination of fraction analysis, or in this case, the percentage of mtDNA variant 

heteroplasmy (Fernandes and Zhang, 2014).  

PCR amplified strands are attached to beads and immobilised into wells, once the 

sequencing primer is added, along with the appropriate annealing buffer, DNA synthesis 

is initiated. Upon the addition of dNTPs, inorganic pyrophosphatase is released (PIP i); 

which by turn undergoes reactions with ATP sulfurylase as well as luciferase enzymes. 

This emits a bright light that is detected by sensors. The immobilisation of strands allows 

the purification and washing each time a new dNTP is added (Harrington et al., 2013). The 

intensity of light produced is proportional to the amount of emitted PIP i, which reflects 

the number of identical bases that were added to the reaction. This is quantified by the 

height of peaks in the resultant pyro-grams (Figure 2.1). It is important to note that our 

reaction was designed to happen on the reverse strand, i.e. if it is an individual who 
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carries wild type variant at 3243 position, then dATPs will be aligning to SNP T at 3243, if it 

is an individual carrying the mutation, then light will be detected upon the addition of 

dGTPs.   

Using PyroMark® Q24 system from Qiagen (mutant mtDNA test sensitivity > 3%), Dr 

Boggan carried out the pre-pyrosequencing PCR as well as the pyrosequencing reaction 

and determined m.3243A>G variant levels on samples from University College London, 

the German Network for Mitochondrial Diseases, the Nationwide Italian Collaborative 

Network of Mitochondrial Diseases, and the Exeter Centre of Excellence for Diabetes 

Research (Table 2.2). The same assay was performed on samples from UK Mitochondrial 

Disease Patient Cohort however, these were performed by the NHS Highly Specialised 

Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne NHS Foundation Trust. In 

total, 445 samples were pyrosequenced. 

 

Figure 2.1: Pyro-grams depicting m.3243A>G variant levels.The sequence for m.3243A>G 

pyrosequencing is T/CCTGCCATCTT, in (A) The proportion of variants C:T is very alike, indicating 

that this is a sample with wild-type at 3243, compared to (B) where the ratio of C:T is skewed, 

reflecting an individual with 72% m.3243A>G variant level in their blood. [Figure retrieved from 

PyroMark software by Dr Roisin Boggan].  
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Table 2.2: PCR and pyrosequencing primer information. Pyrosequencing reaction was performed in 

line with instructions in PyroMark Q24 User Manual 01/2009 pages 33-40.   

Primers and ref  Sequence  Length (bp)  Tm (C˚)  

Sequencing 

(m.3243A_G_Rev_Seq)   

RefSeq NC_012920.1  

  

5’ ATG CGA TTA  CCG GGC 3’  

  
15  52.3  

Forward PCR   

(m.3243A_G_FBio)   

  

5’ /5Biosg/TAA GGC CTA CTT CAC AAA GCG 3’  

  
21  55  

Reverse PCR  

 (m.3243A_G_R)   

  

5’ GCG ATT AGA ATG GGT ACA ATG AG 3’   

  
23  53.5  

  

2.2.2 mtDNA Variant calling using WGS data from blood samples 

For 100kGP data, Dr Deen created a pipeline utilising Mutserve (v1.1), a software package 

designed specifically for mitochondrial variant detection (Weissensteiner et al., 2016a). 

Unlike standard variant calling software, which assume that the genome is diploid, 

mutserve deals with nuances specific to mtDNA including polyploidy and circularity. It 

also enables the detection of sites with a 1% allele frequency on each strand. 

The pipeline used mitochondrial WGS (release v12) data GRh38 to call mitochondrial SNPs. 

Individuals with m.3243A>G levels ≥ 1% were selected, after passing a quality cut off of 

Phred 30, and coverage ≥ 100X.  

Our collaborators in Exeter wrote their own pipeline for UKBB WGS data (GRh37) relying 

on MitoHPC software (Battle et al., 2022). Their cut-off for selecting individuals with 

m.3243A>G was also ≥ 1%. This pipeline excluded variants with a minor allele count (MAC) 

≤ 5, minor allele frequency (MAF) < 0.01%, and coverage ≤ 200X (Cannon et al., 2023). Both 

software packages ensure specificity and sensitivity for mtDNA (Dierckxsens, Mardulyn 

and Smits, 2020), as a screen for contamination, they utilise haplogroup data, and provide 

coverage statistics (Section 2.4.3.A-2 for more details).  

 

2.2.3 Age correction of m.3243A>G heteroplasmy 

Blood is one of the most non-invasive, easily obtained patient tissue samples, and blood 

corrected m.3243A>G levels have been the most reliable, and commonly used measure of 

heteroplasmy in the clinical assessment of mitochondrial patients. Grady et al., (2018) 
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determined that blood heteroplasmy declines with age at a rate of ~2.3% per year. This 

had to be accounted for given that data from 100kGP, UKBB, as well as most of the 

multicentre cohort come from sequenced/ genotyped blood samples. To do this, the 

blood age correction formula proposed by Grady et al., (2018), which adjusts for the 2.3% 

annual heteroplasmy decline (0.977), and accounts for the rapid decline in early age 

through the addition of 12, was applied.  

 

𝐴𝑔𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑏𝑙𝑜𝑜𝑑  𝑙𝑒𝑣𝑒𝑙 =
𝐵𝑙𝑜𝑜𝑑 ℎ𝑒𝑡𝑒𝑟𝑜𝑝𝑙𝑎𝑠𝑚𝑦

0.977(𝑎𝑔𝑒+12)
  

 

For the portion of samples that lacked blood levels of m.3243A>G in the multicentre 

cohort, estimates from urine samples were used (n=18). Due to gender differences in 

urine cellular content and mtDNA copy numbers, mutation load (variant heteroplasmy) in 

urine from males is 20% higher compared to females (Grady et al., 2018). This indicates the 

need to correct for sex when using urine samples and Dr Boggan used the adjusting 

formulae proposed by Grady et al., (2018) below:  

𝑀𝑎𝑙𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑢𝑟𝑖𝑛𝑒 𝑙𝑒𝑣𝑒𝑙 =  𝑙𝑜𝑔𝑖𝑡−1 ((
𝑙𝑜𝑔𝑖𝑡(𝑢𝑟𝑖𝑛𝑒 ℎ𝑒𝑡𝑒𝑟𝑜𝑝𝑙𝑎𝑠𝑚𝑦)

0.791
) − 0.625) 

𝐹𝑒𝑚𝑎𝑙𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑢𝑟𝑖𝑛𝑒 𝑙𝑒𝑣𝑒𝑙 =  𝑙𝑜𝑔𝑖𝑡−1 ((
𝑙𝑜𝑔𝑖𝑡(𝑢𝑟𝑖𝑛𝑒 ℎ𝑒𝑡𝑒𝑟𝑜𝑝𝑙𝑎𝑠𝑚𝑦)

0.791
) +  0.608) 

Five samples within the multicentre cohort had neither blood nor urine estimates 

available, and so the level of m.3243A>G was estimated from muscle tissue. Given that it 

is a post-mitotic tissue, variant heteroplasmies remain largely the same over time and 

thus, no adjustments are needed (Grady et al., 2018). 

 

2.2.4 Family tracing  

R package kinship2 was used to identify pedigrees in 100kGP data (Sinnwell, Therneau 

and Schaid, 2014). This showed that the 250 individuals (116 m.3243A>G carriers and 134 

relatives) belonged to 105 different pedigrees. Some filler individuals were added to 

enable pedigree drawing; these were given simple, sequential number IDs: 1, 2, 3 and so 

on. Age, age adjusted m.3243A>G levels, as well as the major and minor haplogroups 
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were included as additional information in pedigree drawings, the latter providing an 

additional quality control step for relatedness. Pedigrees were valuable for identifying the 

obligate carriers amongst the relatives; totalling 60 individuals, these are relatives who 

are clinically asymptomatic, but based on their position within the family are likely to 

carry the m.3243A>G variant at low levels (Figure 2.2). A minimum value of m.3243A>G 

allele frequency (1%) was assumed and assigned to these individuals, which then 

underwent age-correction using the formula above. Obligate carriers were consequently 

included in all analyses. 

 

Figure 2.2: A pedigree depicting an example of a family case in Genomics England. Pedigree shows 

a family of three children. One of the siblings is shaded reflecting m.3243A>G blood level above 

the chosen ≥1% threshold. The other two siblings have been classified as ‘obligate carriers’; this 

pedigree is a good representation of what this project is trying to unveil, the molecular genetic 

cause that has led to only one of the three siblings having detectable levels of the m.3243A>G 

variant.  

 

2.3. Implemented software 

A list of software packages utilised along with their version numbers and references is 

shown in Table 2.3. Briefly, the command line tools PLINK (versions 1.9 and 2), BCFTOOLS 

and VCFTOOLS were used to prepare genotyping/ sequencing data for analysis, as well as 

perform different quality control procedures. Three different GWAS software, FaSTLMM, 

REGENIE, and SAIGE were implemented and tested in Chapter Three of this thesis. For 

META analysis, GWAMA software was used. Ahead of the META, to ensure consistency in 

genomic assemblies across cohorts, LiftOver tool available from the UCSC website was 

used to lift over SNP coordinates.  
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Each software has its own way of referring to reference and alternative alleles, for 

example: REGENIE uses ALLELE 0 and ALLELE 1, SAIGE uses A1 and A2, for reference and 

alternative allele, respectively.  On the other hand, PLINK v1.9 assigns A1 as the minor 

allele, and A2 as the reference allele. In order to avoid inaccurate alignment of effect 

direction in my analyses, it was necessary to standardize the reference and alternative 

alleles across all studies. For that, MungeSumStats software, which aligns data to a 

reference genome (build 38 or 37) and reformats the summary statistics, was used. 

Finemap was the software of choice for fine mapping analysis following the META, and 

LDAK (SumHer) was implemented to estimate SNP based heritability.  

 

Table 2.3: List of the used software. 

Purpose Software Reference 

Data manipulation and quality 

control 

BCFTOOLS (v11.2.0) 

VCFTOOLS (v0.1.16) 

PLINK (v1.9) 

PLINK (v2) 

(Danecek et al., 2021) 

(Danecek et al., 2011) 

(Purcell et al., 2007) 

(Chang et al., 2015) 

Visualisation of results and 

plotting 

R (R studio V2023.3.1.446) (Posit team, 2023) 

GWAS FaSTLMM (v2.07) 

SAIGE (v0.35.8.3) 

REGENIE (v3.0.1) 

(Lippert et al., 2011a) 

(Zhou et al., 2018a) 

(Mbatchou et al., 2021a) 

META GWAMA (v2.2.2) (Mägi & Morris, 2010) 

Lifting over SNP coordinates 

between genome builds 

LiftOver  (v3.19) 

(https://genome.ucsc.edu/c

gi-bin/hgLiftOver)  

(Karchin et al., 2005) 

GWAS results standardisation 

and (ref/alt) allele flipping 

MungeSumStats (v1.10.1) (Murphy, Schilder and Skene, 

2021) 

Fine mapping  FINEMAP (v1.4.2) (Benner et al., 2016a) 

SNP based heritability estimates LDAK (SumHer) (Speed, Holmes and Balding, 

2020) 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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2.4. Methods of determining nuclear DNA variation and quality control (QC) 

2.4.1 SNP genotyping and imputation 

Quality-controlled, SNP genotyped, and imputed data from 408 individuals from the 

multicentre cohort were readily available by the time my project began. DNA samples 

from the multicentre cohort were SNP genotyped (genome build GRCh37 (hg19)) using 

the UKB_WCSG array, known as the UK Biobank Axiom® Array which is designed by the 

UK Biobank Array Design Group, and is widely used in research (Mizrahi-Man et al., 2022). 

The array carries 845,487 probes covering in total 825,928 markers, some with known 

disease associations and a MAF < 1%.  

To ensure that the probe with the best call quality for each marker was taken forwards, 

initial QC was performed within the Axiom analysis suite (AxAS: version 4.0.3.3) using 

internal Axiom® quality metrics (Fisher’s Linear Discriminant, FLD ≥4; Call rate ≥ 97; 

Heterozygous ratio offset ≥ 0; Homozygous ratio offset ≥ 0) all outlined in: (Boggan et al., 

2022b). Data from 654,115 SNPs was exported in linkage format. Excluding PCA analysis, 

the per individual QC was performed as described in (Boggan et al., 2022b) (Section 

2.4.3.A). The same data was taken forwards and a third round of QC was performed using 

PLINK (v1.9), all outlined in Section 2.4.3.B below.   

GWA studies require dense SNP data. To increase resolution, and avoid missing any 

associated variants, statistical imputation was performed by Dr Pickett. This was 

performed using Michigan imputation server, and the Haplotype Reference Consortium 

(Version r1.1.2016) reference panel, which consists of 64,940 haplotypes of primarily 

European ancestry (Das et al., 2016). The output was 5,579,969 SNPs with imputation 

quality R2>0.3.  

The available WGS data in UKBB (200,000 individuals) were used by the Exeter team to 

identify m.3243A>G carrier samples (Section 2.2.2 above). Genotyping data of the same 

200,000 individuals were used for GWA analysis. UKBB data were also genotyped and 

imputed using the same methods outlined above, QC steps within the AxAS suite where 

samples with a poor quality due to, contamination for example, were identified and 

excluded. In addition to an array of per individual QCs that are thoroughly discussed in 

the following paper: (Bycroft et al., 2018). 
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2.4.2 WGS 

Genomics England used Illumina’s technology and Platypus variant caller (v0.1.5) on 

61,676 rare disease individuals within Genomics England data release v12 (Rimmer et al., 

2014). For my analysis, after running Dr Deen’s pipeline and identifying individuals with 

m.3243A>G levels ≥ 1% (176 carrier and obligate carrier individuals), individual IDs were 

used to extract their nucDNA sequences. These data subsequently underwent a series of 

quality control steps, as outlined below. 

2.4.3 Quality control steps  

2.4.3.A Per individual QC (on 100kGP carrier and obligate carrier data) 

2.4.3.A.1 Checking for discordant sex 

As a check for discordant sex, X chromosome homozygosity was calculated. One 

reported female (Figure 2.3) deviated from expected values (1 for males and <0.2 for 

females (Wang et al., 2019)) and was consequently excluded from the downstream 

analysis.  

 

Figure 2.3: Discordant sex checks. Figure shows results from running PLINK sex checks; y-axis 

represents the F estimates of heterozygosity plotted against the frequency/count of samples. 

One clinically reported female had values above 0.2 and was excluded from downstream analysis. 
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2.4.3.A.2 Sample sequencing contamination 

Haplocheck detects contamination patterns in sequencing studies by analysing the 

mitochondrial DNA (Weissensteiner et al., 2021); out of 176 (116 carriers and 60 obligate 

carriers), 13 samples were identified as contaminated by the software. Of those, four 

samples showed >1.4% contamination and were discarded. Contamination levels for the 

remaining nine samples were below the threshold and thus, were retained.  

2.4.3.A.3 Identity by descent (IBD) 

IBD is a pairwise analysis which measures the estimated proportion of two individuals’ 

genomes that share either 0, 1, or 2 alleles inherited from a common ancestor. It takes the 

genome of each individual and compares it to everyone in the dataset to check the 

proportion of alleles shared. This was performed to check the relationships in the data 

and avoid any pedigree errors (Wang et al., 2019). Z0 is the fraction of the genome that 

shares 0 alleles from a common ancestor, Z1 the fraction sharing 1 copy, and Z2 the 

fraction sharing 2 copies. 

A parent-offspring pair would have an expected Z1 score of 1, a pair of full siblings 

(including dizygotic twins) would have an expected Z1 score of ~0.50 and Z0 score of 

~0.25 , and a pair of half siblings or second-degree relatives would have an expected Z1 

and Z0 score of ~0.50. On the other hand, unrelated individuals have a Z0 score of 1 

(Figure 2.4). 
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Figure 2.4: Identity by descent analysis. Plot depicts the IBD sharing of m.3243A>G carrier 

individuals in 100kGP cohort. This confirms all the reported familial relationships. Two individuals 

have an unidentified relationship however, considering the decreasing IBD scores and their 

closeness to the unrelated group of individuals, these might be third-degree relatives as IBD 

analysis is unreliable in identifying those. 

 

2.4.3.A.4 Per individual missingness and heterozygosity rates 

Individuals with heterozygosity rates that are considerably above, or below the mean 

values indicate: sample contamination, consanguinity (levels extremely below the 

thresholds), and population structure (levels extremely above the threshold) (Marees et 

al., 2018). Of 176 samples tested, nine individuals were not within the assigned thresholds 

for heterozygosity however, two individuals belonged to the same family and thus were 

retained whilst excluding the remaining seven. As it comes to per individual missingness 

of SNP reads, the generally accepted threshold is ≤ 0.02 (Marees et al., 2018), in this case, 

none of the samples exceeded a missingness of 0.006 (Figure 2.5).  
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Figure  2.5: Per individual missingness and heterozygosity rates. Green dashed line presents the 

mean heterozygosity rate and the red lines are the upper and lower limits (mean ±3*standard 

deviation) used as thresholds. Nine individuals were found outside the limits; one pair was from 

the same family, indicating a level of consanguinity which explained their decreased 

heterozygosity values. The remaining seven were excluded as their heterozygosity could not be 

explained by consanguinity, and thus were an indication of contamination and potentially 

population structure in the two samples above the thresholds. These were consequently 

removed. The recommended threshold for missingness is 0.02; none of the samples was close to 

exceeding this threshold.  

 

2.4.3.A.5 Principal component analysis (PCA) (on 100kGP data and multicentre cohort) 

PCA is a statistical method used to reduce the dimensionality of multivariate data into 

components that explain the variation in data. In genetics, it is used to estimate genetic 

components’ effect on the observed phenotypic variance however, it is also a method of 

genomic control that uses ancestry informative markers (Stranger, Stahl and Raj, 2011). 

The genomic inflation factor (λ), which is an indicative of how different/ similar GWAS 

results are compared to what is expected, is calculated by dividing the median of the first 

quantile in the chi-square distribution over 0.456, a value that reflects the median of the 

distribution under the null hypothesis (that is in the absence of inflation) (Devlin and 

Roeder, 1999). In case chi-square statistics are not available, then they can be obtained by 

running the retrieved per-SNP P values through the inverse chi-squared distribution 
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function. Values closer to 1 and up to 1.10 suggest no evidence of inflation. Inflation 

(values over 1.10) can be due to many factors including population stratification (PS), 

which is the difference in allele frequencies between populations. This can be accounted 

for by excluding PC eigenvalue outlier samples, or by including them as analysis 

covariates.  

As GWA studies without corrections made for population structure can lead to false 

associations, this was a critical step (Price et al., 2010b).  

Ahead of running the GWAS, data from m.3243A>G carrier individuals who passed the 

upstream QC analysis in both 100kGP (164 samples), and the multicentre cohort (408 

samples), was combined with reference data from 1000 genomes project (build 37 for the 

multicentre cohort and build 38 for Genomics England), PCA was performed with PLINK 

producing eigenvectors and eigenvalues as output. Values were plotted and compared to 

those from the 1000 Genomes Project which contains individuals from five genetically 

distinct populations; African, European, East Asian, AD mixed American, and South-Asian 

(Auton et al., 2015a). 

The majority of the individuals in all three cohorts appeared European (Figure 2.6), 

however, there are individuals from a variety of nuclear genetic backgrounds providing 

evidence that m.3243A>G does not occur exclusively within individuals of European 

ancestry as was once thought (this is discussed in more detail in Section 3.3.1 Figures A 

and B). As will be discussed in more detail in Section 3.3.2, association analyses 

performed after the exclusion of outlier samples yielded the best inflation factors, 

meaning it was the optimal way of correcting for PS, in comparison to including PCs as 

covariates. Based on this result, outliers of PC1 (<0) and PC2 (>-0.0175) values, such as 

individuals with family IDs E06, UCL_PED_009, and UCL_PED_014 as well as those seen 

when plotting PC2 and PC3 (PC3> 0.004) were excluded from downstream analysis, total 

in multicentre cohort is 24 individuals (Figure 6). The same was performed on the 100kGP 

data (shown in Figure 3.3), and the UKBB (by Dr Cannon) resulting in the exclusion of 28 

and 4 individuals, respectively. UKBB PCA plots are not shown as due to privacy 

regulations, they were not approved for export out of the environment. 
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2.4.3.A.6 Haplogroup determination 

Mitochondrial DNA sequence variations that are inherited in clusters across individuals of 

the same population are referred to as haplogroups (Torroni et al., 1996). They reflect 

ancestral background and dispite increased human migration, still somewhat reflect 

geographical distribution (Hägg et al., 2021). Haplogroup frequencies, and hence the 

variants that define them, vary between population groups (Biffi et al., 2010). Mutserve, 

which is the software used in Dr Deen’s Genomics England heteroplasmy calling pipeline, 

includes Haplocheck (Weissensteiner et al., 2021). This tool is used as a way to detect 

contamination in samples; however, these data were also used to provide additional 

insight into the mitochondrial genetic ancestries of individuals, testing whether this is 

associated with the variability of m.3243A>G levels (Chapter Five). For the multicentre 

cohort, Haplogrep (v2) was used to retrieve individual haplogroup data (Weissensteiner, 

Pacher, et al., 2016).
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Figure 2.6: Principal component analysis in multicentre cohort. (A) presents PC1 against PC2, and (B) is PC2 against PC3, in both plots, each point represents an 

individual, however labels present their family IDs. Labels belong to European population outlier individuals (24 in total) which were excluded from 

downstream analysis. Labels of individual families are consistent in both plots. 
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2.4.3.B Per SNP QC 

2.4.3.B.1 Minor allele frequency and missingness 

GWAS analyses are typically performed on genotype data retrieved from commercial 

platforms usually covering common variants. Given that the technique has been best at 

detecting common variants with a small effect size, PLINK v1.9 was used to filter both 

Genomics England WGS data, and the imputed, multicentre genotyping data for a MAF ≥ 

5% and SNP missingness <5%. This left a total of 6,957,718 and 5,575,537 SNPs in Genomics 

England and the multicentre cohort, respectively. 

 

2.4.3.B.2 Creation of relationship matrix files using linkage disequilibrium pruning 

GWAS software packages require a relationship matrix file as an input in order to 

incorporate information about relatedness into the model. Genetic relationship matrix is 

created using sparse SNP information (pruned for linkage disequilibrium). 

Deviations from the expected association of SNPs at one or more loci is termed as linkage 

disequilibrium (LD) (Lewontin and Kojima, 1960). This is typically due to SNPs being in a 

close proximity, which decreases their chance of crossing over during recombination in 

meiosis. LD is often used by evolutionary biologists to understand evolutionary and 

demographic events as each genetic ancestry has its own LD pattern (Slatkin, 2008b). To 

enhance the precision of analysis results and eliminate any duplicated data, LD pruning, 

which is a method that involves the removal of one SNP from a SNP pair that is in high LD 

within the dataset, is a recommended procedure (Dudbridge and Newcombe, 2015). To 

do so, PLINK was used with the following parameters: --indep-pairwise 50 10 0.1 where 50 

is window size in kb, 10 is step size, and 0.1 is r2 (measure of LD) value. This retained 

294,595 SNPs in the multicentre cohort and 382,300 in 100kGP. Figure 2.7 below presents 

a summary flow diagram of the quality control steps performed on the 100kGP data and 

the multicentre cohort.  
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Figure 2.7: Flow chart depicting the QC performed on both 100kGP and the multi centre cohort. 

Multicentre cohort consists of 488 individuals however, as mentioned in Section 2.1.1 genotyping 

data was available for only 445 samples. Dr Boggan performed two rounds of QC using Axiom 

analysis suite, as well as the necessary per individual QC using PLINK; which left 408 samples. I 

took the 408 QC’d data forward for my project and performed PC analysis and the second round 

of per SNP QCs. For the 100kGP data, I performed both per individual and per SNP QC; the 

number of individuals excluded at each QC step performed on 100kGP is indicated. QC performed 

on both cohorts are outlined in the tables. Total number of individuals that were carried forwards 

for analyses is 136 (excluding 28 outliers), and 384 (excluding 24 outliers) in 100kGP and the 

multicentre cohort, respectively.  

 

2.4.3.C Lifting over SNP coordinates between assemblies   

Genomics England data (100kGP) uses genome build 38, to ensure consistency, lifting 

over SNP coordinates from build GRCh37 to GRCh38 for both the multicentre cohort as 

well as UKBB data was performed using LiftOver, the web based UCSC lifting over tool 

http://genome.ucsc.edu  (Kent et al., 2002; Kuhn, Haussler and Kent, 2013). Files 

containing chromosome, position and position -1 data were uploaded as inputs and an 

output with the updated positions was given. This was performed prior to META analysis.  

 

 

 

 

https://genome.ucsc.edu/index.html
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2.5. Statistical tests  

2.5.1 Linear mixed modelling  

Mixed models, which underly one of the tested and investigated methods for my GWASs 

(in Chapter Three FASTLMM software), are called so because they have both fixed and 

random effects. As described in Winter, (2013) random effects are non-systematic 

parameters that have a predictable effect on data, such as principal components which 

reflect a population’s structure; whereas a fixed effect is typically what we are trying to 

test; it is systematic and is something that tends to be “exhausted” within the 

population. In this scenario it is individuals’ alleles at a given genomic locus, as a single 

locus can have two allele versions, and both varieties would certainly appear in the data. 

Both effects can be of a continuous or categorical nature, however, it is often 

recommended to resort to a logistic regression when the outcome is binary, avoiding 

biased estimates and incorrect inferences (more detail in Section 2.5.2). Linear 

regressions assume independence in the data points, if data belongs to groups (i.e. 

families, populations), a linear mixed model would be suited as it would account for the 

nested structure in the data (Gałecki and Burzykowski, 2013) (Figure 2.8). In case a simple 

linear regression is considered, the resultant model would fail to accurately predict the 

structure leading to false positives. A linear regression vs linear mixed models can be 

presented using the formulae below (Fox, 2002):   

     𝑌 =  𝛽0 + 𝛽1𝑋 + 𝜀     where:  𝑌: Dependant variable  

                                                             𝑋: Independent variable  

                                                            𝛽0: The intercept 

                                                           𝛽1 : Coefficient of the independent variable 

                                                              𝜀: Error term 

   𝑦𝑖 =  𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖   where:    𝑦𝑖: Dependant variable vector in the ith group 

                                                                  𝑋𝑖: Fixed effects in observations of group i.  

                                                                   𝛽: Coefficient of fixed effects 

                                                                 𝑍𝑖: Random effects in group i observations 

                                                                  𝑏𝑖: Coefficients of random effects 

                                                                  𝜀𝑖:  Vector of errors in observations of group i       



 

 66 

 

 

Figure 2.8: A linear regression on nested data points. Plot depicts a linear regression line (red) that 

runs through nested/grouped data points resulting in increased residuals indicating that the 

model fails to appropriately model the data. A LMM would result in multiple regression lines that 

would ensure a smaller residual, a smaller standard error value, and thus, a smaller p value. 

Leading to the best model prediction for each group (relatedness in the context of my GWAS). 

 

2.5.2 Generalised mixed models 

Both GMM and LMM allow the incorporation of random effects to account for correlated 

or nested data. However, GMM offer more flexibility in terms of the output variable 

where it allows for it to be both continuous (linear regression) or binary (logistic 

regression). Additionally, a LMM assumes a normal distribution for the output variable 

(also called as the error distribution) compared to different output distributions for GMM 

such as binomial or Poisson (Nettle, 2019). In summary, when there is structure in the 

data that needs to be accounted for, but the outcome cannot be normally distributed, 

maybe because of its categorical/ binary nature, then a generalised mixed model should 

be chosen. This is the model that underlies two GWAS software tested in Chapter Three, 

REGENIE and SAIGE. 
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2.5.3 META analysis    

META analysis started appearing in the literature at much higher rates in the late 1970s, 

and it was Glass who first defined the term as: “The statistical analysis of a large collection 

of analysis results from individual studies for the purpose of integrating the findings” 

(GLASS, 1976).   

A META is looked at as a method effective at assessing results from a group of studies, to 

later make conclusions about that particular body of research (Lean et al., 2009). Ideally, 

these studies should be picked at random in order to lead to precise effect estimates, 

however, there are concerns about this since, for example, large significant studies are 

published more often than studies with negative/ insignificant results and this can lead to 

selection bias. Despite these limitations, a META analysis of GWAS results is an effective 

tool in increasing analysis detection power.  Heterogeneity (𝐼2) is a measure of variation 

across studies, and it often directs us to the type of statistical model that would best 

suite our data (random or mixed effects META). A thorough overview of heterogeneity 

estimates as well as META analysis is in Sections 4.2.3 and 4.2.4. 

 

2.5.4 Fine mapping analysis  

An associated region can harbour thousands of variants that are in complex LD, and 

correlation patterns (Benner et al., 2016). Fine mapping following a GWAS or a META 

analysis, aims to pinpoint at the “causal” variant(s), possibly associated with the 

molecular mechanisms leading to the studied disease or trait, to reduce the number of 

SNPs for follow-up studies. If done in combination with functional annotations, this can 

also lead to the identification of disease target genes (Spain and Barrett, 2015). There are 

multiple methods for fine mapping. Considering the complexity of my studied phenotype, 

I decided to investigate software that allow the possibility of multiple causalities in a 

locus, compared to one causal variant. I chose to use FINEMAP (v1.4.2) for my analysis  

(Benner et al., 2016), which is thoroughly discussed in Section 4.2.6. 
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2.5.5 Power analysis 

Power analysis provide an estimate of the detection power given parameters such as, 

sample size, minor allele frequency, and effect size (ES); in addition to an estimate of the 

required sample size to detect variants with a certain level of significance, using a certain 

ES and MAF. GENPWR package in R (v1.0.4) (Moore, Jacobson and Fingerlin, 2019), was 

used to calculate the power of both GWAS and META analysis (see Section 4.3.1 for 

details). 
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Chapter 3. GWA analysis optimisation 

 

3.1 Introduction 

The focus of this chapter is GWAS optimisation.  The various software and study designs 

that were examined prior to deciding on the parameters that yielded the most optimal 

results for analysis will be evaluated. 

3.1.1 m.3243A>G investigations leading up to GWAS 

Heritability studies utilising variance components methods, adjusting for mother’s variant 

levels by including them as covariates, identified that 72% of m.3243A>G level variability is 

explained by additive genetic factors (Pickett et al., 2019). To investigate this, our team 

carried out linkage analysis, identifying a linkage peak (LOD ≥ 3.3) on chromosome one 

(Figure 3.1); results point at large areas within a chromosome. On the other hand, 

association analyses which rely on linkage disequilibrium and deviations from the 

expected random segregation of variants, step in to offer finer mapping of variants either 

within previously identified linkage regions, or in an unbiased scan of the genome with no 

a priori knowledge (Visscher et al., 2012; Joiret et al., 2019). To identify these variants and 

infer the percentage of heritability that that they account for (by dividing their combined 

effect sizes over the total heritability), GWA analysis was then the ideal continuation of 

our investigation. 
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      3.1.2 Evolution of GWAS  

In 1986, Bodmer suggested that using population data could provide linkage signals that 

are closer to the causative variant i.e., achieving finer mapping (Bodmer, 1986). 

Foreseeing the implications of future developments in the field of sequencing, Risch and 

Merikangas (1996) stated that “the future of the genetics of complex diseases is likely to 

require large-scale testing by association analysis”. They also stated that overcoming 

technological constraints and having access to more “polymorphism data” would enable 

the performance of association analysis without the prerequisite of initial linkage analysis, 

unveiling associations that identify variants with subtle effects that linkage analysis 

overlooks, thereby enhancing our understanding of disease aetiology (Visscher et al., 

2012).  

The completion of the human genome project (Powledge, 2003) improved our 

understanding of common variations. The increasing cost-efficiency of genotyping 

platforms, in addition to the growing accessibility to large cohorts, all marked the 

beginning of GWA studies era (Morris et al., 2010). These have proved to be extremely 

successful. Perhaps one of the best early examples is a study carried out by the Wellcome 

Trust Case Control Consortium (WTCCC) on a cohort of 2,000 British ancestry individuals 

Figure 3.1: Linkage analysis logarithm of the odds (LOD) score results. Linkage analysis for 

m.3243A>G levels on 65 individuals from 45 pedigrees was carried out to estimate the position of 

the contributing nuclear genetic factors. As a result, one region on chromosome 1 (179,262,018 to 

224,482,984) was identified with LOD score >3.3, and another region on chromosome 2 (26854157 

to 56854157) was identified as suggestive of significance. [Figure obtained from analysis carried 

out by Dr Boggan]. 
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for each of the common diseases chosen for the study, which identified three genes 

linked to type two diabetes, a region associated with obesity, four chromosome regions 

associated with type 1 diabetes, three regions associated with Crohn’s disease and one 

gene, PTPN2, that predisposes individuals to both type 1 diabetes and Crohn’s disease 

(Burton et al., 2007). 

As previously mentioned, methods of investigating complex diseases were found 

successful in many instances across different diseases. Due to its well-defined mode of 

inheritance and early onset, type 2 diabetes (T2D) made it easy to collect large, extended 

pedigrees (Vaxillaire and Froguel, 2006). This made T2D at the forefront of diseases 

studied by different genetic analyses. In 2003, Reynisdottir et al., identified regions of 

suggestive linkage to T2D on chromosomes 5 and 10, later it was found that chromosome 

10 harbours TCF7L2 gene, which is one of the key genes leading to diabetes. As 

association analyses developed and emerged from candidate gene approach to more 

unbiased approaches, PPARG as well as KCNJ11 were identified and are currently targets 

for anti-diabetes medications (Gloyn et al., 2003). 

Moreover, linkage and GWA studies were also successful in untangling the genetic 

structures of quantitative traits such as immunoglobin E (IgE). IgE is a mediator of allergic 

inflammation, with often increased levels in individuals with asthma. Pedigree-based 

studies attributed a considerable amount of its variability to genetic factors with 

heritability levels ranging from 36% to 78% (Meyers et al., 1987; Jacobsen et al., 2001). 

Several linkage reports have been published, all showing a great disparity between 

populations, for example, an area on chromosomes four and 18 were found in Caucasian 

ancestries, another linkage was found on chromosome two in Afro-American 

populations. A linkage study performed on 200 families (1,171 family members) collected 

from a regional referral centre for pateints with asthma in the Netherlands, pointed at at 

a region on chromosome two with strong evidence for linkage (2q33) (Xu et al., 2000). 

This region was found to harbour two candiadte T cell activation genes CTLA4 and CD28. 

Years later, a GWAS study on Taiwanses Han individuals was performed, and this 

identified a significant association with rs1181388 SNP in cytoband 2q33.2 within CD28 

gene (Lu et al., 2024). The same SNP was also reported in a study performed on the UKBB 

(Ghoussaini et al., 2021). 
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        3.1.3 Association tests 

The choice to deploy GWAS-type analyses depends on the nature of studied phenotype, 

the need to account for population structure and/or pedigree structure, as well as the 

presence of covariates to control for (Wang et al., 2019). GWA analysis methods can be 

classified into two groups: gene and SNP based investigations. Different approaches have 

been employed to account for population structure and different confounders and 

covariates such as, generalised mixed models (GMM) (Charles E. McCulloch & Shayle R. 

Searle, 2004), linear mixed models (LMM) (Loh et al., 2015), and variance components 

methods (VC) (Svishcheva et al., 2012); below is a comparison between those techniques 

(Table 3.1). 

Bearing in mind data structure in all cohorts, particularly in the multicentre cohort, it was 

necessary to account for family structure in the analysis; additionally, neither of the 

cohorts had a particularly large sample, and m.3243A>G levels did not follow a normal 

distribution in either of the cohorts, a choice was made to opt against normalisation as 

will be thoroughly discussed in Section 3.3.4. All these factors narrowed the options 

down to generalised and LMM models. Considering that a META analysis on the retrieved 

GWAS summary statistics was planned, to ensure that the data was treated in the same 

way, and results were reported consistently across studies, I wanted to make sure that 

the same software was applied to analyse data from all cohorts.     

In this chapter, the performance of REGENIE, SAIGE, and FaSTLMM were evaluated using 

the multicentre cohort, by comparing the lambda inflation factors obtained as a way to 

estimate their correction efficacy. Both REGENIE and SAIGE have been reported to be 

particularly efficient in biobank scale data (Schönherr et al., 2024). REGENIE and SAIGE are 

the default software used in UKBB and Genomics England (100kGP) cohorts, respectively.  

FaSTLMM is a popular choice in LMM based associations and has a relatively low memory 

and time footprint compared to other LMM-reliant software (Lippert et al., 2011)
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Table 3.1: Comparison between different GWAS methodologies. [Table compiled from Charles E. McCulloch & Shayle R. Searle, (2004); Liu et al., (2010); 

Loh et al., (2015); Svishcheva et al., (2012); Visscher et al., (2017); and Wang et al., (2019)] 

APPROACH WHEN TO USE BENEFITS DRAWBACKS SOFTWARE 

GENE-BASED 

ASSOCIATIONS 

-When wanting to identify genes that play a 

part in a network, pathway manner. 

-Detect multiple variants within genes and 

sum up their effects in an overall score. 

-Accounts for between individual genetic 

heterogeneity.  

-Reduces multiple testing problem by testing the 

genes in the genome rather than the millions of 

SNPs simultaneously. 

-Permutations are used to account for gene size and 

LD structures. 

Permutations are computationally challenging to 

be applied on the whole genome level hence why 

this kind of approach particularly requires a 

genetic relationship matrix. 

SAIGE-GENE  

VARIANCE 

COMPONENTS 

In case of unknown pedigree structures in 

the data, especially in the presence of 

enough genotyped SNPs. To account for any 

possible population structures even in 

seemingly homogeneous samples. 

-When using the two-step approaches that measure 

relationship matrices in the first step and then the 

association between the genotypes and phenotype 

of interest in the second, have proved to be speedy 

and efficient in dealing with sequencing data of 

thousands of individuals. 

-Estimates the phenotypic variance attributed to 

these factors (heritability). 

-Ascertainment biases are frequent, especially in 

non-normally distributed phenotypes.  

-It tends to require large sample sizes to perform 

accurately, in case of insufficient sizes, standard 

errors tend to be increased.  

-Better performance with quantitative traits. 

GRAMMAR-

Gamma 

LINEAR MIXED 

MODELLING 

Identifying associations while avoiding 

confounders as well as controlling for 

complex correlation structures.  

-Compared to other methods that also correct for 

population structure and relatedness, LMM is one 

of the fastest, most computationally efficient 

methods. 

-They assume that all variants are causal with a 

small effect size (Infinitesimal model). 

-High memory and time requirement that scales as 

the number of phenotypes increase. 

-Less power in ascertained case-control studies. 

FaST-LMM, 

GCTA, GEMMA, 

EMMAX, BOLT-

LMM 

GENERALISED 

MIXED MODELS 

When there are multiple covariates such as, 

age, sex, and array type that need to be 

corrected for in the analysis in addition to 

population structure. 

-No assumption of normality in the phenotype data 

is needed.  

- Accommodates different kinds of data; linear 

regressions can be used with continuous data 

whereas logistic regressions with binary/ categorical 

data. 

-In unbalanced case-control studies, Firth regression 

uses penalization that reduces bias and provides 

more reliable statistical inferences 

-Can be used with multiple traits at a time which is 

useful in analyses that investigate pleiotropy. 

-They assume that variants have an additive 

relationship with the phenotype. 

-More sensitive to population structure and 

relatedness compared to other methods.  

REGENIE, SAIGE, 

GMMAT 
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3.2. Methods 

       3. 2.1 FaSTLMM 

One of the biggest advantages of LMM is its ability to incorporate both fixed effects and 

random effects into the model in addition to accounting for population stratification and 

relatedness. Random effects can be clinical or different environmental factors such as: 

age, sex, BMI, or exposure (Dandine-Roulland and Perdry, 2016). To account for 

population stratification, it is a common practice to include 10 to 20 genetic principal 

components along with the fixed effects; this can be modelled as follows (Lippert et al., 

2011): 

∏⟦𝑋(𝑖)b +  𝑍(𝑖)𝑔 + 𝜖(𝑖)⟧

𝑛

𝑖=1

 

                               Where:  

                

 

 

In a linear mixed model, identified differences between populations receive more 

correction, and contributions identified due to relatedness are reduced, preventing by 

that the usage of redundant data that reflects correlation structure (Yang et al., 2014a). 

LMM have a high memory and time footprint that scales drastically as the sample size 

increases; a way around this has been through the development of an improved version 

called factored spectrally transformed LMM (FaST-LMM). Basic LMMs typically use either 

realized relationship matrix (RRM), or identities by descent (IBD) which use a subset of 

the markers in a step prior to association testing to elucidate relationships and 

confounders within the data. On the other hand, FaST-LMM utilises spectral 

decomposition used in PC analysis, that can be performed on all markers, removing by 

that the “cubic computation” per SNP that made LMMs computationally inefficient and 

time consuming with large samples (Lippert et al., 2011b). Another pitfall of LMMs that 

has been efficiently controlled in software like FaSTLMM and GCTA, is the loss of power 

whenever candidate markers are included in the RRMs/IBD step (Yang et al., 2014a).  This 

is due to over fitting of markers in the model; to avoid this, a new approach was 

developed by Listgarten et al., (2012) where they exclude candidate markers (low P 

𝑋(𝑖): the fixed effects for the ith individual 

𝑏 : fixed effect weights 

𝑍(𝑖) ∶ SNP data for the ith individual 

𝜖(𝑖)  : measurement error for the ith individual 

 

 

g : random effects 

𝜖(𝑖) :  residual error  
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values) when estimating genetic similarities using ~8,000 equally spaced markers. In my 

analysis, all options offered by the software were left to their default providing a quality-

controlled genotyping/sequencing file and a corresponding RRM file, different number of 

PCs were used as covariates which is further discussed in Section 3.3.2. 

A discovery T2D GWAS performed on an extended Emirati family (n=178), utilised 

FaSTLMM software after transforming the data into binary format, and testing different 

inheritance patterns (additive, dominant, recessive) (Al Safar et al., 2013). FaSTLMM was 

the software of choice as it provides correction for the underlying family structure 

between the tested individuals. This, for the first time, identified novel loci associated 

with T2D in an Arab family; authors highlighted the need for replication on a larger cohort 

to generalise these findings. Another GWAS utilised FaSTLMM on 196 British Caucasian 

families, investigating nuclear associated loci with N-acyl ethanolamine (NAE), and 

ceramide (CER), both biomarkers for coronary artery disease and T2D (McGurk, Keavney 

and Nicolaou, 2019).  

 

             3.2.2 REGENIE  

REGENIE was designed to allow multiple sophisticated regressions to be carried out in 

two steps. These ensure the confounding factors are accounted for, and that there is no 

“proximal contamination”, which is the inflation of false positives due to uncorrected for 

familial relationships and/or population structures. As outlined in Mbatchou et al., (2021), 

step 1 level 0 aims to reduce dimensionality – using ridge regression, SNPs are grouped 

into blocks where J ridge regression predictors are then identified, this provides a rough 

estimate of the number of candidate markers in each block which can also be considered 

as the chosen markers out of an LD block. For analyses in this thesis, a block of 1000 SNPs 

was utilised for J ridge regression. A second ridge regression, that is ideal when dealing 

with multicollinearity (when two independent variables are highly correlated), is then 

carried out in step 1 level 1, this time to merge the markers/predictors all into one that is 

decomposed into 23 chromosomes, by that allowing the implementation of LOCO (Leave 

One Chromosome Out) that ensures none of the identified associations are due to LD 

patterns in genomic regions (cross contamination). Step 2 can utilise either a linear 

regression, in case of a continuous phenotype, or a logistic regression if it is a binary/ 
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categorical trait, as will be discussed in Section 3.2.2 both regressions were tested but a 

linear regression was the one of choice.  

Results from step1 levels 0 and 1 can be saved and utilised for other phenotypes, reducing 

the used memory, and increasing analysis speed. Throughout this thesis however, only 

one phenotype was tested at a time.   

P values are based on a likelihood ratio test (LRT), and in case P values are below the 

specified threshold (typically 0.05), Firth correction (FIRTH, 1993) is used as a way to 

remove bias associated with standard maximum likelihood estimates, which can arise in 

small sample sizes due to the limited amount of information available and may lead to a 

mis-specified distribution. The addition of a penalty term to the log likelihood leads to 

more accurate results. REGENIE also uses saddle point approximation (SPA) as a way to 

provide a more accurate estimate of the underlying data distribution (Daniels, 1954). 

Where instead of relying on only the first two cumulants (mean and the variance) in data, 

it uses all entire cumulant generating function, which is a sequence of numbers that 

describe a distribution. The underlying formulae for each step in REGENIE are outside the 

scope of this thesis, (Mbatchou et al., 2021a) is a comprehensive resource for those 

seeking further insight.  

In this study, –firth and –pThresh of 0.01 (for mtDNA GWAS) and 0.05 (for nuclear GWAS) 

was used to indicate the p value threshold below which a firth regression should be 

applied.REGENIE has been used on several large-scale cohorts, such as the UKBB. It 

adjusts for confounding factors and is preferred for its speed, and efficient memory usage 

as analysis time does not scale-up with sample size as the case is with FaSTLMM, for 

example. More detail about the usage of REGENIE software is in Section 3.3.4. 

 

    3.2.3 SAIGE 

SAIGE was designed to tackle the problem of type 1 errors that typically arise from using 

linear mixed models on binary and unbalanced case-control data (Zhou et al., 2018a). The 

decreasing costs of genotyping as well as sequencing means that the number of 

databases and cohorts will be growing, and a small number of controls compared to 

cases in a database setting is often a commonly observed pattern. SAIGE stands for 

Scalable and Accurate Implementation of GEeneralised mixed model, and it runs in two 

steps – step 1 requires raw genotyping data and uses Gaussian restricted maximum 



 

 77 

likelihood (REML) to fit the null logistic model (Zhou et al., 2018a). This is used to estimate 

the parameters (variance components) of a model without relying on any predictors, 

creating a baseline model that will allow an accurate comparison upon the addition of any 

predictors, whether they are fixed or random (Gilmour, Thompson and Cullis, 1995). Step 

1 is when genetic relatedness and population patterns are identified, accounted for and 

fitted into the model. To decrease storage space and computational cost, SAIGE uses an 

iteration of the common generalised relationship matrix (GRM) tool for modelling called 

PCG, principal component analysis on genotypes. GRM compares the genomes between 

pairs of individuals however, PCG, just like PC analysis, identifies the largest sources of 

variation in a whole dataset in the form of principal components that are then used as 

covariates in the analysis (Zhang and Pan, 2015). To reduce memory storage and cost, 

SAIGE stores the genotype data in binary format, and calculates the PCG only once 

instead of storing, something that is essential when dealing with large samples. Step 2 

utilises a faster, more developed version of SPA called fastSPA (Dey et al., 2017), to test 

association between SNPs and the phenotype of interest, which is particularly efficient in 

correcting any inflation that may be caused by imbalanced case-controls. LOCO is also an 

available option for SAIGE, that ensures no cross contamination. When using SAIGE 

(v0.35.8.3), across all three cohorts, LOCO option was employed, with the remaining 

options left to default. The logistic regression model in SAIGE for both binary and 

continuous traits can be presented in the following:    

logit(𝜇𝑖) = 𝑋𝑖𝛼 + 𝐺𝑖𝛽 + 𝑏𝑖 + 𝜖𝑖 

 

𝑌𝑖 = 𝑋𝑖𝛼 + 𝐺𝑖𝛽 + 𝑏𝑖 + 𝜖𝑖 

 

 Where: 

 

 

 

 

 

 

logit 𝜇𝑖: is the probability of a binary outcome for the i-th observation 

𝑋𝑖 : covariates for the i-th observation 

𝛼 ∶ fixed effects coefficients associated with covariates in 𝑋𝑖 

𝐺𝑖: genomic data of the i-th observation used to account for any confounders 

𝛽 : effect size of 𝐺𝑖  

𝑏𝑖: random effects and intercepts for each i-th observation 

𝑌𝑖: continious outcome for the i-th observation 

𝜖𝑖: measurement error/ penalty  
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In studies comparing GWAS software, SAIGE was found to be much more time efficient 

with large-scale cohorts compared to LMM based software such as FaSTLMM and BOLT-

LMM however, as reported in (Yang et al., 2014b) it is extremely computationally 

challenging on large scale data. Additionally, SAIGE utilises dense GRM, and this puts 

analysis at risk of proximal contamination, which was also demonstrated in (Yang et al., 

2014b). All factors that reduced its usage in large scale analyses.  

 

3.2.4 Binary trait vs continuous trait GWASs 

Phenotypes are divided into two classes: continuous, and categorical. Both have been 

used in GWA studies however, continuous traits are often preferred and considered to be 

more powerful (Bush and Moore, 2012).  Given they provide the statistical test with more 

information, it ensures that an effect is identified and not lost as a type II error (Bush and 

Moore, 2012). Nonetheless, a continuous trait is not a perquisite for a successful GWAS. 

Generalised linear models utilising SPA such as, REGENIE and SAIGE, have been proposed 

to be one of the best methods to implement on binary traits as they not only ensure that 

all confounders are accounted for, but the restricted binary-mean structure (from 0 to 1) 

is modelled accordingly (Gurinovich et al., 2022; Yang et al., 2014). Binary trait associations 

have some advantage over continuous traits – particularly when the distribution of data is 

skewed, as it can be robust to ascertainment, and it offers faster computation (Jiang, 

Mbatchou and McPeek, 2015).  

As a way to test whether the association would yield better performance if m.3243A>G 

variant levels are coded as a binary trait, the cut_number function in R was used to group 

data into three quantiles. Data points that fell within the first quantile were coded as 0s 

and that belonging to quantile three were coded as 1s (Figure 3.2), analyses were 

performed with three different software and results are in the sections to follow.  
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Figure 3.2: Distribution of age-adjusted m.3243A>G levels in the multicentre cohort. Plot shows the 

distribution of variant levels as well as the first 3 quantiles (n=408).  

 

3.2.5 Principal component analysis (PCA)  

As outlined in Chapter Two, PCA is a dimensionality reduction procedure, which aims to 

explain the variability in data by reducing the number of variables while preserving as 

much information as possible (Lever, Krzywinski and Altman, 2017). To interpret results, 

1000 genomes project reference data which contains individuals from five genetically 

distinct populations: African, European, East Asian, admixed American, and South-Asian, 

was merged with data of each cohort. PLINK V1.9 (Purcell et al., 2007) 

(http://pngu.mgh.harvard.edu/purcell/plink/) was used to compute eigenvalues and 

eigenvectors.  

This information used to account for population structure, which will be discussed in the 

sections to follow. For ease, the comparisons and analysis outlined are all carried out on 

the multicentre cohort. 

 

3.3. Results 

3.3.1 Nuclear principal component analysis 

Analysis on the multicentre data, 100kGP, and the UKBB, each combined with 1000 

genomes reference data was performed using PLINK V1.9. Eigenvalue, and eigenvector 
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data from all three cohorts was retrieved. Figure 3.3 presents results from 100kGP 

(n=164) and the multicentre cohort (n=408). Collaborators from the university of Exeter 

performed PC analysis on the UKBB data (n=147) their results, however, are not 

presented in this thesis.  

As expected, based on patient recruitment centres, the majority of m.3243A>G carrier 

individuals fall within the European reference cluster, as seen in Figure 3.3. Individuals 

who fell outside of the European population cluster (outliers), were identified and were 

either excluded from the analysis or accounted for by including PCs as covariates. Scree 

plots representing the percentage of variance explained by the first 20 PCs (Figure 3.4) 

show that the percentage of variance for the first three PCs varies drastically between 

the two cohorts. In 100kGP, PC1 accounts for ~53% of variability whereas in the 

multicentre cohort it is only ~8%. This, as well as the greater number of identified outliers 

in 100kGP, can be attributed to the greater population variability and diversity of data, 

compared to the multicentre cohort that harbours a greater number of pedigree data.
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Figure 3.3: Principal component analysis biplots. (A+B) Results retrieved from 100kGP data, shows that the majority of m.3243A>G carriers (red) lay within the 

European population cluster. 24 individuals were excluded from analysis as they fell outside the European cluster. (C+D) Results from the multicentre cohort, 

total number of outliers identified is 28. Our Exeter collaborators identified 4 outliers (plots not shown). 
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Figure 3.4: Scree plot depicting percentage of variance explained by nucPCs in each of the cohorts. 

The elbow pattern in 100kGP can be observed after the 2nd component, where levels decrease 

dramatically compared to the multicentre cohort where levels stabilise after the 10th PC.
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3.3.2 Evaluating analysis software (FaSTLMM vs SAIGE vs REGENIE) 

Considering the population structure as well as the presence of pedigree data in the 

multicentre cohort, the choice of software depended on which was most effective at 

correcting for these confounding factors. To do so, due to ease of access, data from the 

multicentre cohort was used to test the performance of three software. As presented in 

the table above, both SAIGE and REGENIE rely on generalised mixed models whereas 

FaSTLMM uses linear mixed models.  

 

3.3.2.1 Does including principal components adequalty account for population stratification? 

The incorporation of principal components as covariates is a common way to adjust for 

population structure, however, as discussed above, most software are designed to 

account for this using their own underlying methods. To test whether the addition of PCs, 

in addition to the methods they use to account for stratification, would present a 

sufficient correction (lambda ≤1.1), analyses were performed including 10 PCs as 

covariates (Figure 3.5). Inflation factors calculated for results from FaSTLMM and SAIGE 

GWASs, are below the accepted 1.1, which shows a sufficient correction for population 

stratification. Quantile-quantile (QQ) plots are used to compare the distribution of 

observed p-values from the association test with the expected distribution of p-values 

under the null hypothesis (no association). In Figures 3.5-A and B, this is aligned to the 

red, diagonal line, but shows a slight deviation at the tail; which reflects the SNPs with an 

increased association -log10(P value), that mirrors the observed skyscrapers within the 

Manhattan plot. On the other hand, REGENIE (Figures 3.5-C), has an over inflated lambda, 

which points at under-correction of population structure consequently, the QQ plot 

shows no alignment with the expected line.  
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Figure 3.5: Multicentre GWAS results using first 10 nucPCs as covariates. (A) Analysis carried out on the full multicentre cohort (n=408) using FaSTLMM (B) 

SAIGE (C) REGENIE.
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3.3.2.2 Given the non-normal distribution of the studied phenotype, would analyses yield 

similar results if modelled as a binary trait? 

To test whether binary phenotype data would be a preferable input, multicentre 

m.3243A>G level data were converted into a binary format (as described in Section 3.2.4) 

(high (>0.8664982) and low (<0.534116982) levels) and used in GWAS (Figure 3.6). 

FaSTLMM and REGENIE showed the greatest difference upon using a binary phenotype, 

with an increase in inflation factors that indicated under correction. Given that FaSTLMM 

previously showed enough correction using 10 PCs, indicated that the increased inflation 

factor may be due to a reduced analysis power, especially that binary trait GWASs often 

require larger sample sizes compared to continuous trait GWASs (Visscher et al., 2017a). 

In a binary trait analysis, each individual provides less information about the underlying 

genetic variation compared to a continuous trait, where a range of values can better 

inform the analysis.  

The observed under-correction built the reason to return to using a continuous trait 

whilst investigating into methods to account for PS. 
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Figure 3.6: Multicentre GWAS results with m.3243A>G coded as a binary trait with 10 PCs. Figures depict Manhattan and a QQ plots retrieved from running the 

analysis on 408 individuals with a binary trait where m.3243A>G variant allele levels were converted into values of zeros and ones using (A) FaSTLMM. (B) 

SAIGE. (C) REGENIE.
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3.3.2.3 Does excluding principal component outliers account for population stratification and 

lead to robust results? 

Including PCs are a way of adjusting for PS however, as shown in Section 3.3.2.1, software 

like REGENIE yielded an over-inflated lambda. As a way to find an ultimate analysis design 

that would yield equally sufficient correction for PSs using different software, analyses 

were performed with a continuous phenotype without PCs as covariates yet excluding 

PCA outliers (n=24) (Section 3.3.3.1), which left 384 individuals for analysis (Figure 3.7). 

For the REGENIE software, the inflation factor decreased from 2.355 (Figure 3.5) to 1.042, 

indicating that the exclusion of outlier samples was a better suited analysis design for this 

software. The improved PS correction was observed in the Manhattan plot, where a 

Manhattan skyscraper pattern appeared as compared to the noise observed in design 

one. Both FaSTLMM and SAIGE showed a performance that was as good as with using 

covariates (Figure 3.5-A and B) where lambda inflation factors had almost no difference 

(FaSTLMM:1.007 to 1.008, SAIGE: 1.014 to 1.013).  

To summarise, based on lambda inflation factors and the amount of random statistical 

noise in Manhattan plots, SAIGE had an overall best performance with data. Lambda 

inflation factors were within the accepted limits of ~ 1 – 1.10 in all designs, and QQ plots 

showed no extreme deviations from the null hypothesis. Manhattan plots had no noise 

and the majority of data, although non-significant, seemed to align into ‘skyscraper’ 

patterns across the chromosomes - which indicates robustness and absence of false 

positives. FaSTLMM showed good performance as well, however, a decision was made to 

opt against it due to its discontinuation of maintenance since 2019. On the other hand, 

REGENIE did not provide enough correction in the case of binary trait nor in the case of 

including PCs as covariates, with overly inflated lambda values. However, it presented a 

sufficient correction in the case of excluding PC outliers. REGENIE was the software of 

choice for our collaborators from Exeter, given that I was planning to perform a META 

analysis combining GWAS results from the UKBB and 100kGP, to avoid any discrepancy, if 

possible, I preferred to be consistent and use the same software on both cohorts. 

REGENIE showed a sufficient correction for confounding factors on the multicentre 

cohort when removing outlier samples, as a step before making the decision to retain 

REGENIE for my analyses, software performance had to be tested on 100kGP data.  

Table 3.2 shows a summary of lambda inflation factors retrieved from all three designs. 
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Figure 3.7: Multicentre GWAS results excluding PCA European population outliers with no covariates. (A) Principal component analysis outliers were 

excluded from the analysis (n=24) leaving 384 individuals. These results are retrieved from running FaSTLMM. (B) SAIGE. (C) REGENIE. 
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Table 3.2: Summary table presenting the lambda inflation factors retrieved from the three 
evaluated analysis designs. 

 FaSTLMM SAIGE REGENIE 

Design 1: Including PCS as covariates 1.007 1.014 2.355 

Design 2: Excluding PCA outliers and no covariates 1.008 1.013 1.042 

Design 3: With a binary trait 1.987 1.016 2.457 

 

 

3.3.2.4 Does the chosen method also perform well in 100kGP data? 

For its speed, efficiency in correcting for confounding founders, mixed model 

framework that allows the incorporation of both fixed and random effects, and 

robustness with large sample sizes, REGENIE was demonstrated to be the method of 

choice in large cohort studies such as the UKBB, Biobank Japan, Taiwan Biobank, and 

FinnGen (Bovonratwet et al., 2023; Chen et al., 2023). This applied for our Exeter 

collaborators who performed analysis in UKBB. A REGENIE GWAS test was carried out 

on 100kGP data using the third analysis design (after excluding PCA outliers) (Figure 

3.8). REGENIE results on 100kGP show no noise in the Manhattan plot, and an 

acceptable inflation factor implying a good model fit, and correction for any possible 

confounders. Considering the good performance in both the multicentre cohort and 

100kGP, the software proved to be a suitable choice for analysing the studied 

phenotype.  

Figure 3.9 shows beta values retrieved from analysis design 3 using SAIGE and 

REGENIE. This positive correlation indicates that the direction of effect retrieved from 

both software is mostly the same, and the increase in BETAs is proportional. 

Therefore, although SAIGE seems to be the better choice as it shows consistent 

results when using both continuous and binary data, REGENIE is an acceptable 

alternative. As mentioned, to ensure the consistent usage of the same software 

across all three cohorts, this was the software retained for the remainder of this 

project.  

 

 λ= 

1.094 
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Figure 3.9: BETAs from running analysis with REGENIE vs SAIGE. Results retrieved from 

running analysis including PCs as covariates after excluding European population PCA outliers 

on the multicentre cohort. 

 λ= 1.076 

Figure 3.8: Results of REGENIE GWAS on 100kGP data. Manhattan plot shows a peak approaching 

significance on chromosome 15. QQ plot only deviates at the tail, and the lambda inflation factor is 

below 1.10 (1.094). 
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3.4 Discussion  

The comparison of multiple software on the ascertained, multicentre cohort 

demonstrated that both generalised mixed models and LMMs were efficient at 

accounting for GWAS confounders. Specifically, SAIGE showed the most consistent 

results in every analysis design. REGENIE on the other hand, provided an acceptable 

lambda in the analysis design that excluded outlier samples.  

I decided to use REGENIE on all datasets to ensure consistency, particularly that it 

was the software of choice by our Exeter collaborators on the UKBB cohort, and I 

intended to combine the UKBB and 100kGP data using a META analysis.  

 

The difference in software performance may be attributed to the distribution of data, 

as normally distributed data is easier to model making it less error prone. Something 

that I have tested (using inverse normalisation) however, decided not to use with 

either of the software; as the GWAS yielded peaks at completely different locations 

compared to before normalisation, indicating that the data were distorted. 

Normalising the data removes its natural variability by forcing it to follow a pattern 

against its ‘nature’ and losing its biological meaning. Several reports in literature 

support this and advise against normalising phenotype data ahead of GWA analysis, 

particularly that LMMs and GMMs are robust to different phenotypic distributions 

(Yang et al., 2010b; Zhou and Stephens, 2014). 

Up to date, REGENIE is the only software that has been translated into a Nextflow 

pipeline (Schönherr et al., 2024b), which is a powerful and versatile workflow 

management system designed to streamline and enhance the execution of complex 

computational workflows (Di Tommaso et al., 2017). This is key for biobank-scale 

analysis, including GWASs. By automating the pre and post analysis procedures, the 

whole process becomes much more reproducible, and time-efficient, which is key for 

researchers! The fact REGENIE was the software of choice is an indication of its 

thoroughly tested efficiency. In support of this,  Mbatchou et al., (2021b) compared 

the accuracy of effect sizes estimated by SAIGE and REGENIE software, degree of 

accounting for LD structure, analysis speed, and ability to analyse multiple traits at a 

time, on UKBB data. REGENIE with its underlying ridge regression and LOCO function 
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(discussed in Section 3.2.2) proved to be more efficient. Having said so, developers of 

REGENIE acknowledge that in studies of small sizes with high levels of relatedness, 

the efficacy of REGENIE decreases as it becomes overly conservative and is thus, not 

recommended for such cases (Zhou et al., 2018b).  

PC analyses demonstrated the presence of population structure in both cohorts and 

confirmed the necessity to account for this. The exclusion of outliers, rather than 

including PCs as covariates, presented with overall lower inflation factors (for all 

three software).  

Before excluding the usage of PCs as analyses covariates, I tested whether a better 

correction could be achieved upon the inclusion of additional PCs; this was done by 

performing analyses with 15 and then 20 PCs. Given the observed small percentage 

variance explained by each PC and its mild decrease after the assigned elbow at the 

10th PC (Figure 3.4), their addition led to an inflation factor well below 1, indicating 

over correction. The addition of further PCs was later found to be isolating the 

individual pedigrees, and so were dependent on pedigree size. Given that all used 

software account for family structure, this was driving the observed over-corrected 

inflation factors. These factors deemed the exclusion of outlier samples as the more 

appropriate solution in this case. 

Large cohorts present several challenges for conducting GWAS analyses, including: 

relatedness in samples, imbalance in case-controls, as well as the sheer scale of the 

data and its computational footprint. Both SAIGE and REGENIE have proved to be 

successful in large studies, in the UKBB one-third of the individuals are third degree 

(cousins) or even closer relatives (Bycroft et al., 2018b), and REGENIE was the 

method of choice in multiple studies on UKBB data (Zhu et al., 2023; Schönherr et al., 

2024b) as it uses GRM to efficiently account for that. It is also known that 66% of 

probands were recruited with family members in 100KGP (Hocking et al., 2023) and 

REGENIE was also used in multiple studies (Jadhav et al., 2023; Zheng et al., 2023). 

Having had tested the performance of different software on the studied phenotype, 

and establishing the most efficient method of adjusting for the underlying 

confounding confounders, led the way into performing the analysis on the remaining 

cohorts used in this project.  
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Chapter 4. GWAS and follow up analysis results 

This chapter will present GWAS results obtained from all three cohorts using the 

methodology described in Chapter Three, specifically, employing REGENIE software 

after excluding PCA outliers. Following the introduction of each analysis, the chapter 

will also discuss and present results from subsequent analyses, including META, fine 

mapping, and SNP-based heritability estimates. 

4.1. Introduction  

4.1.1 GWA analysis 

Ever since the first publication of a genome wide association study in 2005 (Klein et 

al., 2005a), 72,014 genotype-disease phenotype associations with a P < 5 x 10 -8 

significance have been made (The GWAS Catalogue - June 2024) (Sollis et al., 2023), 

demonstrating great success at the identification of novel disease associated genes 

(Tam et al., 2019). 

With the aim of understanding disease variation, a team from Harvard and 

Queensland universities used inverse variance methods on data from an insurance 

company called Aetna and investigated 560 diseases in 44 million individuals in the US 

(Lakhani et al., 2019). Out of that sample, 56,396 were twins and another 724,513 

were siblings. On average, they concluded that 60% of disease variance can be 

attributed to genetic factors (nature), whereas the remaining 40% are explained by 

environmental factors (nurture). In a quest towards a better understanding of the 

genetics behind disease, in the past 15 years, GWA studies, on many occasions, have 

realised their promise and identified disease associated loci. Crohn’s disease, type 2 

diabetes, cardiovascular diseases in addition to schizophrenia, have all been areas in 

which GWAS led to significant progress (Abdellaoui et al., 2023). As more national 

cohorts and resources such as The UK BioBank emerged, it was estimated that in the 

past five years, the average sample size used in GWAS publications have more than 

tripled (Abdellaoui et al., 2023). This, along with the increase in WGS data, genotyping 

array sizes, imputation technologies and software tools that have improved GWAS, 

has naturally led to an increased ability to identify more variants in both diseases and 

complex traits.  
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In the context of this work, up to date, our Newcastle based multi-centre cohort 

presents a uniquely large cohort of m.3243A>G carriers. However, compared to other 

diseases and traits, a GWAS on ~408 individuals is underpowered to detect variants 

with a small effect size. To increase sample size, two large publicly available cohorts: 

UKBB and 100kGP (Genomics England) were included. Based on population carrier 

rate of 140~250 in 100,000 (Manwaring et al., 2007a), we estimated to identify 

approximately ~280-500 (out of 200,000) and ~86-153 (out of 61,000) additional 

m.3243A>G carriers from each cohort, respectively.  

 

4.1.2 META analysis 

As discussed in Chapter Two, META analysis allows the aggregation of results from 

multiple independent studies, and there are multiple methods to choose from to 

conduct a META. The aim is always to reduce false positives and increase statistical 

power to detect the most modest effects from a GWA study, or in case there are any 

findings, it can also be used to assess their consistency across studies. In fact, it is 

considered as a routine part of GWAS (Begum et al., 2012). The largest type 2 diabetes 

META was conducted in 2018, combining 32 studies (Mahajan et al., 2018). This 

included 74,124 cases and 824,006 controls from European genetic ancestries. The 

study performed a GWAS on combined data and identified 231 significant loci 

(Mahajan et al., 2018; DeForest and Majithia, 2022). Another meta-analysis examined 

the association between mtDNA copy number and cardiovascular diseases (CVD). 

This combined five studies that in total analysed 8,252 cases and 20,904 controls, 

results indicated that variations in mtDNA copy number could serve as potential 

biomarkers for predicting the risk and prognosis of CVDs (Yue et al., 2018). Compared 

to the prevalence of T2D (6059 cases per 100,000) (Khan et al., 2019) and other 

common polygenic disorders, the prevalence of m.3243A>G carriers ranges from 140 

to 250 in 100,000 (Manwaring et al., 2007a). The disparity in prevalence dictated the 

sample size available to perform this analysis, and that is how META appeared to be a 

logical solution – given the impracticality of combining raw data to perform one large 

GWAS, META allowed the combination of multiple study results, by that overcoming 

the small detection power stemming from small, individual study sample sizes. 
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There are many caveats in a META analysis. Key caveats to consider include: 

publication bias; where studies with a positive result are more often published, 

consequently leading to an overestimation of the effect sizes (LeLorier et al., 1997). 

Selection bias is also a large caveat where studies considered should be similar in 

respect to criteria such as, population studied, sample size, study design and 

objective (Marsoni et al., 1990). Where significantly larger sample sizes will inevitably 

have a stronger influence on the results, and a high ‘heterogeneity’ in combined 

samples can reduce the reliability of the pooled effect size, making it difficult to draw 

clear conclusions (Walker, Hernandez and Kattan, 2008). 

 

    4.1.3 Fine mapping 

GWAS and META analysis have been successful in identifying thousands of loci 

associated with various diseases (Visscher et al., 2017b). However, linkage 

disequilibrium (LD) patterns add a layer of complexity when it comes to refining these 

results and pinpointing directly at the associated loci. Multiple additional factors 

influence the performance of fine mapping, things such as: sample size, SNP density, 

and the number of causal SNPs in a region and their effect size (Schaid, Chen and 

Larson, 2018). Typically, the greater the SNP density and sample size is, the easier it is 

to accurately determine LD structure; hence, the greater is the power to elucidate 

causal variants at a higher resolution. 

Fine-mapping software compute and output posterior inclusion probabilities (PIP), 

which is a way to quantify the probability of a certain variant being the one leading 

the association signal, by that reflecting the degree of uncertainty caused by LD (Cui 

et al., 2024). Similar to GWAS and META, there are different methods to choose from 

to conduct fine mapping (discussed in sections to follow). The accuracy of such 

analysis in general, is heavily dependent on analysis calibration – where the model 

used for retrieving genetic effects and the prior for genetic architecture is correctly 

modelled (Ulirsch, 2022). In an accurate fine-mapping setting, a PIP of > 90%, should 

indicate that 9 out of 10 variants are truly causal (Cui et al., 2024). Which placed 

emphasis on the importance of choosing the right software for these data. 
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4.1.4 SNP heritability estimates  

In 2014, a META study performed by the Psychiatric Genomics Consortium identified 

108 independent loci associated with schizophrenia (Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014). However, there was a huge disparity 

between the expected percentage of heritability compared to what was obtained 

from SNP based heritability analysis (64% compared to 3%). Once again, drawing the 

attention on the issue of missing heritability, in which estimates retrieved from classic 

heritability designs, are significantly higher than those explained by genetic variants 

(Mayhew and Meyre, 2017).  Classic heritability estimates use family, or twin data to 

estimate genetic similarity between individuals based on their relatedness. The 

output of that informs us about the degree genetics contributes to the phenotype, it 

however, does not provide insight about the actual underlying architecture (Zhu & 

Zhou, 2020).  

GWASs are best at detecting common variants with low effect size, having said so, in 

the case of missing heritability scenarios, just like the extremely polygenic 

schizophrenia, despite the large sample sizes, it is likely that there were more variants 

that were not picked up by the GWAS as significant, due to different reasons such as, 

their extremely small effect sizes, or the possibility that some SNPs were not 

genotyped due to their low frequencies (Visscher, Hill and Wray, 2008). This means 

that the 108 identified loci encapsulate only a small fraction of risk variants, that in 

total cover a small proportion of the expected heritability. Using variance 

components methods, Pickett et al., (2019) and colleagues used family pedigrees and 

estimated that the heritability of m.3243A>G is ~72%. To compare this with SNP-based 

heritability, GWAS and META analyses were performed with the aim of identifying 

associations with the variability of m.3243A>G levels, the output of these analyses 

provided the necessary inputs for SNP-based heritability calculations. 
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4.1.5 Significance thresholds  

To identify potential associations, it is necessary to determine a significance 

threshold. Bonferroni correction stands behind the generally accepted genomic 

significance threshold of p ≤ 5 x 10-8, which aims to correct for type 1 errors that arise 

from multiple testing that is characteristic in a GWAS, where typically more than a 

million SNPs are used. Despite the growing criticism, as it is thought to be very 

stringent leading to an increase in false negatives (Kaler & Purcell, 2019), this remains 

to be the generally accepted GWAS significance threshold that was employed in this 

chapter (Uffelmann et al., 2021). Bonferroni corrections assume that genetic data 

follow an independent nature which, given LD, we know is not true. Such 

assumptions are one of the reasons that make this correction over conservative 

(Johnson et al., 2010).  An alternative for this has been an extension of the false 

discovery rate (FDR), q value, which is the expected proportion of false positives 

obtained when calling that feature (SNP) significant (Storey, 2002). A p value instead, 

is a measure of the false negatives when calling a specific feature significant. Some 

suggest that q values provide a more direct measure of the significant findings 

themselves as compared to those around it, which makes reporting q values more 

practical (Storey and Tibshirani, 2003). Nonetheless, p values remain to be the 

significance measures routinely reported in GWA studies (Reed et al., 2015; Aguilar et 

al., 2019). 

 

4.2. Methods 

4.2.1 Studied cohorts  

As was outlined in Chapter Two, this project utilises data from m.3243A>G carriers 

and the identified obligate carriers from three different cohorts. GWAS conducted 

after the exclusion of non-European individuals identified from nuclear DNA principal 

component analysis, was found to yield the best correction for confounding factors 

(outlined in Section 3.3.1). The total number of outliers detected in the multicentre 

cohort was 24 (of 408 samples), 28 (of 164) in 100kGP data, and 4 (of 147) in the 

UKBB. As a result, the remaining sample sizes for the GWA studies were 384, 136, and 
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143 across the three cohorts, respectively. Data in each cohort underwent GWA 

analyses, and subsequently, using GWAS summary statistics, META analysis was 

performed. Due to the clinically ascertained nature of the data in the multicentre 

cohort, which resulted in a significantly different distribution of variant allele levels 

compared to the two population cohorts (see Section 3.5), I decided to exclude this 

cohort from both the META and fine mapping analyses. SNP heritability estimates 

however, were performed on META analysis output that combined 100kGP and the 

UKBB data, and separately, on the multicentre cohort data. 

 

4.2.2 GWAS analysis 

As was discussed in GWAS optimisation chapter (Chapter Three), REGENIE was the 

software of choice to conduct analysis on all three cohorts. As concluded from that 

same chapter, excluding PCA outliers resulted in a more optimal GWAS performance 

compared to including PCs as covariates. The phenotype used in all analyses was age-

adjusted m.3243A>G levels (Section 2.2.3). Ahead of running the analyses, data QC 

was performed as outlined in Section 2.4.3.B. 

 

4.2.3 META 

When there is access to genotyping/ sequencing data from different study 

populations, then data can be directly combined, and mega-analysis are performed. 

In this case however, the export of such data was not possible due to data privacy 

regulations and GWAS summary statistics from 100kGP and the UKBB were combined 

via a META analysis instead. Together, this yielded a sample size of 279. GWAMA 

(v2.2.2) was the software of choice, where GWAS summary statistics were the input 

and --quantitative flag was used, while leaving the rest to default. It is worth noting 

that a fixed effects META is the default in GWAMA. In the context of this study, 

GWAMA was the software of choice due to several features as it: (1) accounts for in-

between-study variation and population structure, and (2) makes analysis possible 

irrespective of the used array, by aligning data on the same reference strand which 

uses data from the Hap-Map and 1000 Genomes Project (Mägi and Morris, 2010b). To 
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decide on whether to perform a fixed, or random effect META, a between-study 

heterogeneity estimate is often useful. That is because a fixed effects META analysis 

assumes homogeneous allelic effects between studies, in case there is an increased 𝐼2 

estimate, then this assumption is inaccurate, and a random effects META should be 

used. This approach, first outlined in 1986 by DerSimonian & Laird, allows effect sizes 

(per SNP) to be different across studies, and instead, it utilises a generalised weighing 

method that considers the characteristics of each individual study, as well as the 

between-study heterogeneity.  

 

4.2.4 Between study heterogeneity estimates (𝑰𝟐) 

As was discussed, between-study heterogeneity is a measure necessary to determine 

which method is most suited for conducting a META analysis. There are different 

causes for between-study heterogeneity, particularly when studies are performed by 

different teams where (1) different QC measures are applied, and (2) analyses were 

performed on different populations using different data analysis methods. The most 

classic measure for heterogeneity is Cochran’s Q - this is obtained by summing the 

square of differences between each individual study and the pooled effect across 

studies at each tested SNP (Deeks JJ, Higgins JPT and Altman DG, 2023).  

Like a chi-squared distribution, it assesses the degree of difference between 

individual study effects and the pooled effect across studies (Mägi and Morris, 2010b). 

However, it depends on the number of studies considered and thus, has a low power 

with small studies (Gavaghan, Moore and McQuay, 2000).  

Conversely, in 2002, Higgins & Thompson proposed the widely popular  I2 measure 

which reflects the degree of variation due to heterogeneity (rather than chance or 

sampling errors) regardless of the number of studies (Mägi and Morris, 2010b). This is 

calculated using the formula below, and is a summary statistic provided by GWAMA 

software as a way to test whether the chosen (fixed effects META) approach is 

suitable or not: 

𝐼2 =  (
𝑄−𝑑𝑓

𝑄
)  ∗  100%    where:  𝑄: the chi-squared statistic     

                                                             𝑑𝑓: degrees of freedom  
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4.2.5 Power analysis  

Estimation of power in study designs is an important step to determine the reliability, 

as well as the reproducibility of study findings (Kumle, Võ and Draschkow, 2021). To 

determine the sample size needed to achieve a desired power, or to calculate the 

power of a study with a known sample size, an accurate specification of the used 

study design is essential. What is trickier is the ability to determine the closest 

underlying biological model of the study. It is often that we assume a certain 

biological model that is still unknown in practice (Lettre, Lange and Hirschhorn, 

2007). Most power calculation tools offer recessive, dominant, and additive genetic 

models. For this analysis, an R package called GENPWR (v1.0.4) was utilised (Moore, 

Jacobson and Fingerlin, 2019). A mis-specified model can lead to a loss of power, 

GENPWR allows robust calculations even under model misspecifications by increasing 

the degrees of freedom from the generally accepted 1 to 2 (Moore, Jacobson and 

Fingerlin, 2019). For these calculations an additive model was assumed, where the 

effect of having two risk alleles is twice as much of having one allele. This is also the 

model of choice in most GWAS analysis - mostly due to the fact this model assumes 

independence between alleles where the effect of each allele is independent of the 

presence of another allele (Zavala et al., 2011).  

Effect sizes are essential in interpreting GWAS results, they reflect the strength of 

correlation between an identified SNP and the disease/phenotype of interest (Politi et 

al., 2023). The most common measure of effect size is Cohn’s d where he classed 

effect sizes as follows: small (d = 0.2), medium (d = 0.5), and big (d ≥ 0.8) (Cohen, 

1988). An identified association may be significant, yet with a trivial effect size, which 

if to quote Cohn’s words: “The primary product of a research inquiry is one or more 

measures of effect size, not P values“ (Cohen, 1992). Such findings, however, may be of 

a cumulative/ additive effect, which is the expected outcome of the GWA studies in 

this project. Large sample sizes are needed to detect variants with a small effect size, 

as well as variants with a low minor allele frequency (MAF), that is an estimate of the 

prevalence of the less common allele in a particular population (Politi et al., 2023).  
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4.2.6 Fine mapping analysis 

Most available fine mapping software require original genotype-phenotype data to 

perform the analysis. In case of conducting the analysis after META, it is impractical 

and, in some cases, impossible to do so. Other software, such as, CAVIAR and 

PAINTOR rely on summary statistics however, their methods assume a random 

maximum number of causal variants in a locus, in CAVIAR for example, the default is 

six (Hormozdiari et al., 2014). Another caveat to consider is the way effect sizes are 

modelled.  An explicit assumption that is made by methods such as CAVIAR, is the 

normal distribution of effect sizes in each locus, which is not always true (Hormozdiari 

et al., 2014). The output of almost all fine mapping methods is a list of SNPs with 

posterior inclusion probability (PIP), where a PIP approaching one indicates causality.  

In Bayesian methods, this is calculated using the formula below, which requires a flat/ 

prior probability. In this case, the prior probability is that all SNPs are causal:  

 

𝑃(𝑆𝑗𝑐𝑎𝑢𝑠𝑎𝑙 |𝑑𝑎𝑡𝑎) =
(𝑃(𝑑𝑎𝑡𝑎|𝑆𝑗  𝑐𝑎𝑢𝑠𝑎𝑙) ∗  𝑃(𝑆𝑗𝑐𝑎𝑢𝑠𝑎𝑙))

∑ 𝑃(𝑑𝑎𝑡𝑎|𝑆𝑘  𝑐𝑎𝑢𝑠𝑎𝑙) ∗  𝑃(𝑆𝑘𝑐𝑎𝑢𝑠𝑎𝑙)𝑘
 

 

Where 𝑃(𝑆𝑗𝑐𝑎𝑢𝑠𝑎𝑙 |𝑑𝑎𝑡𝑎) is the probability of SNP j being causal given the data, and 

𝑃(𝑑𝑎𝑡𝑎|𝑆𝑗 𝑐𝑎𝑢𝑠𝑎𝑙) is the probability of the data given that SNP j is causal, and ∑ 𝑘 

being the sum of all possible causal configurations. In case only one SNP out of k 

SNPs was allowed to be causal, then there would be only k possible models/ 

configurations. Whereas, if more variants are allowed, the possible configurations 

increase exponentially. This is when strategies such as, limiting the number of causal 

variants in a locus, or shotgun stochastic search (SSS) algorithms (explained below) 

step in.  

A more recent software with a similar Bayesian statistical model, but different 

computational algorithm is FINEMAP (Benner et al., 2016). Just like the previously 

mentioned software, it requires summary statistics and SNP correlation data, that can 

be either from reference data such as, HapMap (Thorisson et al., 2005), 1000 

Genomes Project (Auton et al., 2015), or using GWAS Z scores (𝑍 =
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 𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒(𝛽) 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑎𝑑 𝑒𝑟𝑟𝑜𝑟 (𝑆𝐸)⁄ ); the latter is preferable as it ensures that no 

data are lost. FINEMAP investigates the most likely configurations in each association 

area, without setting a maximum number of potential causal variants in each locus. 

Additionally, it makes use of per SNP effect sizes retrieved from GWAS summary 

statistics (Benner et al., 2016). Another common output of fine mapping is credible 

sets, which is a set of variants that contain the causal variant with a 95% probability; 

this output is achieved by adding variants with the highest PIPs until the total is equal 

to 0.95. The smaller the credible set is the better, as it provides higher resolution 

(Schaid, Chen and Larson, 2018).  

FINEMAP is computationally more efficient due to the fact it relies on shotgun 

stochastic search (SSS) algorithms, which is a search approach used in regression 

models. It outperforms similar traditional methods such as Markov Chain Monte Carlo 

method (MCMC) in that it records multiple candidate models in parallel at each single 

iteration, compared to sequentially moving from one model to another which does 

not fully exploit the data (Hans, Dobra and West, 2007). The flags employed in 

running the software were –sss to indicate the shotgun stochastic search, as well as –

dataset 1 since the input was a single META analysis.  Additionally, to set the 

maximum number of casual SNPs, --n-causal-snps was used, once using five and 

another time using one. 

 

4.2.7 SNP based heritability estimates 

To choose a software for this analysis, options were narrowed down to those that 

can use summary statistics as an input; since retrieving individual-level genotypes was 

impossible due to data privacy, computational, and transfer restrictions.  

There are nine heritability models, and each one has a different way of describing 

how much heritability each SNP is expected to contribute (Tang, Wang and Zhang, 

2022). Ahead of running the analysis, it is key to choose a model; Bayesian variable 

selection regression (BVSR) was the first model used in heritability estimates (Zhu & 

Zhou, 2020). This assumes that only a small portion of SNPs contribute to the 

phenotype, and it assumes a point normal distribution of effect sizes across SNPs, 
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where only a fraction of SNPs will have an effect size (ES) of one, with the rest 

denoted as zeros (Guan and Stephens, 2011). A linear mixed model is one of the most 

common models used for heritability estimates, where all SNPs have a non-zero ES 

estimate and rather follow a normal distribution, this is applied in software such as 

GEMMA (Zhou and Stephens, 2012) and GCTA (Yang et al., 2011).  

More recently, different software have been developed with an attempt to create the 

most biologically accurate model. Unlike the aforementioned models, linkage 

disequilibrium adjusted kinships (LDAK), which is the model underlying the software 

of choice, SumHer (Speed and Balding, 2019), considers both LD and MAF data in 

estimating the per SNP ES. Given the underlying population structure in the data, 

considering LD when measuring heritability ensures more accurate results. Analysis 

required two input files, the (GWAS/META) summary statistics file, and a tagging file, 

found online (https://dougspeed.com/calculate-taggings/ ); which allows the software 

to estimate the expected heritability compared to that in a reference dataset (~1.07 

million common SNPs from 1000 GENOME project phase 3 study)(Auton et al., 2015). 

 

4.3 Results 

4.3.1 Power analysis 

Power calculations showed that there was 95%, 66%, and 60% power to detect an 

association (p < 10-8 / 𝛼 ≈ 0.05) to variants with MAF ≥ 0.05 and ES ≥ 0.6, in the 

multicentre cohort, 100kGP, and UKBB cohorts, respectively. By combining 100kGP 

and UKBB cohorts (n=279) via a META analysis; power is increased to 87% assuming 

the same, medium effect size of 0.6 and a large minor allele frequency (>0.05) (Figure 

4.1). In this analysis, there is sufficient power to detect common variants with medium 

to large effect sizes (Cohen’s d: ES ≥ 0.5) however, power decreases drastically when 

it comes to small effect sizes. Where to detect variants with MAF ≥ 0.05 and ES ≥ 0.3 it 

decreases from the values mentioned above to 68%, 38% and 32% in the multicentre 

cohort, 100kGP, and UKBB cohorts, respectively.  

https://dougspeed.com/calculate-taggings/
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Figure 4.1: Power calculations using GENPWR. Plot reflects the power to detect variants with 

different MAFs and ESs using 279 samples. Dotted line indicates 80% power.  

 

4.3.2 m.3243A>G variant allele levels 

As previously mentioned, GWAS was performed on age-adjusted blood m.3243A>G 

levels as the phenotype (Figure 4.2). As detailed in Chapter Two, the multicentre 

cohort is a clinically ascertained cohort of m.3243A>G carrier individuals. Age-

corrected variant levels fall within the same range of 0~1 across all three cohorts. 

However, the clinical ascertainment for individuals with mitochondrial disease 

diagnoses in the multicentre cohort explains the increased number of individuals with 

high variant levels (typically severe disease) in the multicentre cohort (blue in Figure 

4.2). 

Additionally, the 100kGP cohort (pink) shows a larger number of individuals with low 

variant allele levels compared to the UKBB. This discrepancy is attributed to the fact 

that the 100kGP identified 60 individuals as obligate carriers; before age correction, 

those were assigned a minimum allele frequency of 0.01, on the other hand, only 

three obligate carriers were identified in the UKBB. This discrepancy can also be 

explained by an overall lower number of individuals retrieved from the UKBB.  
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Figure 4.2: Age-corrected m.3243A>G variant levels in all three cohorts. Due to ascertainment 

in the multicentre cohort (blue), variant levels are skewed towards the higher levels 

compared to the other two cohorts. Individual counts with small variant levels in 100kGP 

(pink) are larger than those in the UKBB (navy), and that reflects the greater number of 

obligate carriers identified in the 100kGP cohort. 

 

4.3.3 GWAS results  

None of the three performed studies yielded a significant peak (Figure 4.3). However, 

peaks above the suggestive significance threshold of 5.3 were found in all three 

cohorts and they were as follows: in the multicentre cohort, a peak on chromosome 

one (lead SNP; 1:114542914A>T; -log(Pval) = 6.4); 100kGP with a peak on chromosome 

15 (15:62868505G>A; -log(Pval) = 6.2), and the UKBB on chromosome eight 

(8:128594837c>c; -log(Pval) = 5.6). QQ plots show a good alignment with the red, 

expected line, with no deviations at the origin, indicating an appropriate correction 

for confounding factors, and a slight deviation at the tail, which reflects the absence 

of SNPs above the genomic significance threshold. Lambda inflation factors, which 

are calculated by dividing the median of the first quantile in the chi-square 

distribution over 0.456, that reflects the median of the distribution under the null 
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hypothesis (that is in the absence of inflation), are all below 1.1; both of which are 

indicatives of adequate population correction, and appropriate choice of software. 

Table 4.1 shows a list of coding genes surrounding the GWAS peaks of suggestive 

significance in each of the cohorts. 



 

 107 

 

Figure 4.3: GWAS Manhattan, QQ plots and lambda inflation factors retrieved from different cohorts using REGENIE software. Results from: A the 

multicentre cohort, B 100kGP and C UKBB. None of the peaks reached the genomic significance threshold of 7.3 (log10(5x𝟏𝟎−𝟖)).  
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Table 4.1: Coding genes surrounding GWAS peaks in each of the studies. Table shows genes that are 

±0.5 Mb from GWASs’ highest peaks along with some of their protein functions.  [Peaks were viewed 

using LocusZoom and gene functions retrieved from GeneCards (Stelzer et al., 2016)]. 

Study Chromosome Surrounding 
genes 

Gene Functions 

Multicentre 
cohort 

1 HIPK1  The encoded protein is a Homeodomain 
Interacting Protein Kinase 1. It plays a part in 
gene expression and regulation of TP53 
pathways. 

 OLFML3 
 

Encodes a scaffold protein that plays an 
essential role in dorsoventral patterning 
during early development.  

 SYT6 
 

Involved in Ca+2 exocytosis, and vascular 
trafficking.  

 AP4B1 
 

Component of the adapter protein complex 4. 
Involved in vesicle formation and cargo 
selection.  

 BCL2L15 
 

Regulation of apoptosis by parathyroid 
hormone-related protein.  

 DCLRE1B 
 

Central role in telomere protection, DNA 
maintenance, and repair. 

 PTPN22 Involved in T-cell receptor signalling 
pathways. Mutations in this gene are 
associated with type 2 diabetes, and 
rheumatoid arthritis.  

100kGP 15 TLN2 Cytoskeletal protein that plays a significant 
role in actin filament formation, plays an 
important role in cell adhesion. 

  LACTB Mitochondrial serine protease that regulates 
mitochondrial lipid metabolism. Associated 
diseases are gastroenteritis and lung abscess. 

  CA12 Carbonic anhydrases which catalyzes the 
reversible hydration of CO2. Involved in 
cellular processes such as, respiration, and 
formation of cerebrospinal fluid, saliva and 
gastric acid. 

UKBB 8 POU5F1B Recently found to be encoding for a DNA-
binding transcription factor that plays a part 
in carcinogenesis and eye-development.  

  MYC Encodes a transcription factor that activates 
growth-related genes.  

 2 TRIB2 Involved in tyrosine kinase activity, in addition 
to transferring phosphorus containing groups.  
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4.3.4 GWAS within linkage peaks in the multicentre cohort  

Linkage analysis provided preliminary insights in the multicentre cohort; as outlined in 

Chapter Three, a region on chromosome one was identified with a LOD score > 3.3. 

Subsequent GWAS on the same dataset revealed a peak indicative of significance, also on 

chromosome one (Figure 4.3 -A). To compare the results, chromosome one data retrieved 

from both analyses were overlayed (Figure 4.4). The position of the peaks was visually 

widely disparate, linkage peaks, compared to those identified by GWA analyses, typically 

cover a greater genomic distance. The two peaks are separated by almost 80 megabases 

(Mb), specifically, the identified linkage peak spanned from 1:179,262,018-224,482,984, with a 

peak at 1:194,262,018, in contrast to the GWAS-identified peak (1:114,419,489-114,572,891), 

peaking at 1:114,542,914. The highest GWAS peak (lowest p value) within the linkage peak 

was at position 1:223,176,275, ~28 Mb away from the identified linkage peak.  

 

Figure 4.4: Linkage analysis LOD scores and GWAS P-values on chromosome 1 (GRCh37). X-axis shows 

base pair positions on chromosome one and the two y-axes show linkage LOD scores (black) and 

GWAS -log(P-value) (pink). 
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4.3.5 META 

To increase the power to detect an effect, I decided to combine GWAS results from the UKBB 

and 100KGP cohorts in a META analysis. A decision was made not to include results from the 

multicentre cohort because the distribution of m.3243A>G levels was very different in this 

cohort (Figure 4.5). 

Genotyping within the 100kGP cohort was performed using WGS whereas the UKBB cohort 

was genotyped using an array. However, both underwent the same QC steps, and analysis 

was performed using the same software, using the same study design. Nonetheless, data 

remain to be from two different cohorts, each with its own nuances. As mentioned in 

Section 2.1.3, data in the UKBB belong to individuals aged between 40 and 69, who do not 

represent the general population; with evidence suggesting the presence of bias towards 

‘healthy volunteer’ within the cohort (Fry et al., 2017). In contrast, the data used in 100kGP 

belonged to the “rare disease” subset of the cohort, which were ascertained through 

individuals presenting with a rare, likely genetic disorder, and also included close relatives of 

these individuals (Greene et al., 2023). Both cohorts, however, displayed similar distributions 

of m.3243A>G levels and likely represent levels within the general, non-ascertained 

population.  

Whilst acknowledging these differences, the average 𝐼2 calculated by GWAMA software, was 

15.10% (SD = 0.258), which according to Deeks JJ et al., (2023) is a value that indicates this 

heterogeneity “might not be important”.  As outlined in Begum et al., (2012), a random 

effect meta-analysis is not always the right choice for combining heterogeneous studies; 

particularly because an accurate estimate of heterogeneity can only be achieved with large 

numbers of studies. Due to this, and the negligible between-study heterogeneity, I chose to 

implement a fixed effects META analysis using GWAMA software. The retrieved results 

(Figure 4.5) demonstrated an effective inter- as well as intra-study correction with a lambda 

value of 1.029 and a QQ plot that deviated from the expected line only at the tail, reflecting a 

small number of SNPs with elevated -log10(p.values).  

A peak was approaching significance on chromosome eight. This was led by rs1512802 

(8:5882269G>C; -log10(Pvalue) = 6.9) that is in high LD with another group of SNPs in the 

same region. rs1512802 falls between two non-coding pseudogenes (Figure 4.6). 
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Figure 4.5: Manhattan and qq plot from 100kGP and UKBB fixed effects META. Peak on chromosome 

eight is approaching -log10(Pvalue) significance of 7.3 (indicated by the red line). QQ plot is well 

aligned to the expected, null line and lambda inflation factor is 1.029 which is within the permissible 

range of 1-1.10. 

 

 

Figure 4.6: LocusZoom view of META association peak on chromosome eight. The lead SNP, rs1512802, 

is an intergenic variant mapping between RN7SKP159 and AC087369.1 pseudogenes. 

 

 

 

 



 

 112 

META lead SNP was then used for a few downstream analyses. Using the gene ranking 

option in Open Target Genetics (Ghoussaini et al., 2021), MCPH1 gene that is 524,323 bp away 

from the lead SNP was the nearest coding gene. This encodes for a DNA damage response 

protein, microcephalin 1 which is involved in mitosis where it maintains the inhibitory 

phosphorylation of cyclin-dependent kinase 1, particularily important in neurogenesis. 

Associated diseases with mutations in this gene are the autosomal recessive microcephaly 1. 

Based on expression data from within the NIH website, this gene has increased expression in 

brain tissue, which reflects its function in neurogenesis, as was previously mentioned.   

GTEx portal is a comprehensive public resource that harbours gene expression data within 

multiple different tissues and consequently, expression quantitative trait loci (eQTLs), that 

reflect the significant associations with the expression of nearby genes. Search within the 

portal revealed no significant association between rs1512802 and the expression of of any 

gene within any tissue. HiC software using blood tissue as a proxy was used to investigate 

and visualise chromatic interaction data between rs1512802 and its surrounding genomic 

regions (Belton et al., 2012). Which as well, lacked any detectable interactions.   

 

4.3.6 Fine mapping 

META analysis results combining 100kGP and UKBB data were followed-up with fine mapping 

using FINEMAP software (Benner et al., 2016). This was performed on a region of ~2Mbs 

(5768569 – 5952421) encompassing 785 SNPs surrounding and within the peak identified by 

META analysis on chromosome eight (Figure 4.5). Results are shown in Table 4.2. As 

discussed in Section 2.5.4, SNPs with the greatest -log10(p.val) do not always coincide with 

those that have the highest PIP value, which indicates that the SNPs are most likely to be 

causal in fine mapping. In other words, it is incorrect to assume that the GWAS/META lead 

SNP is the causal. As a check, PIP and -log10(p.val) of SNPs identified in the first fine mapping 

credible set (total of 47 SNPs) were plotted (Figure 4.7). In Bayesian statistics, a credible set 

is a range of values (a set of SNPs in this context), within which the true parameter value lies, 

the credibility of a set diminishes as it descends (one being the largest), indicating a smaller 

probability of that set encompassing the true, causal SNP. Results show that in this case, the 

META lead SNP (rs1512802 / 8:5882269G>C) is in LD (0.6 < r2 <0.8) and in the same credible 
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set with those identified with the highest PIP value (=1). However, 8:5882269G>C itself was 

not identified as causal. 

The above was done using the parameter --n-causal-snps 5 that sets the maximum number of 

causal SNPs to 5. I have then tried the analysis using --n-causal-snps 1, and none of the SNPs 

presented a PIP = 1 i.e., analysis could not identify one SNP with a certainty of one and PIP 

value was distributed across 37 SNPs in the same credible set (compared to 47 SNPs in the 

previous design). None except for SNP 8:5882269G>C was shared between the two obtained 

credible sets. Also, SNP 8:5882269G>C had the highest PIP value of 0.1416, which can be 

explained by model constraint, where it was limited to assigning only one SNP as potentially 

causal, therefore resorting to the SNP with the smallest p value.  

 

Table 4.1: Fine mapping summary statistics from the top five SNPs, alongside the lead META SNP. Beta, 

SE and -log10(p) values are all retrieved from the input file given for fine mapping (META summary 

statistics). PIP is the measure of probability, and Z is the values position relative to the mean (in SD), 

which utilises the provided META summary statistics.  

rsid ß SE Z PIP -Log10p 

8:5782714C>T 0.032386 0.015481 2.09198 1 0.692 

8:5778926C>G -0.014495 0.026001 -0.557479 1 0.721 

8:5783389G>C -0.013499 0.013482 -1.00126 1 0.499 

8:5776324C>G -0.025597 0.016259 -1.57433 1 0.103 

8:5886877A>G 0.061576 0.015239 4.04069 1 4.504 

8:5882269G>C 0.076383 0.014387 5.30917 3.57898e-10 6.860 
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Figure 4.7: PIP and -log(10pval) of 47 SNPs in the first credible set obtained from fine mapping. Bars 

represent PIP values after multiplying by 10, whereas the red points are -log10(pvalues) of SNPs 

identified to be in the first fine mapping credible set. SNP 8:5882269G>C exhibits the greatest -

log10(p.val) indicated by the stars, whereas 5 bars have equal PIP values, reflecting the possible 

causality of these SNPs. 

 

4.3.7 Heritability estimates 

As discussed in previous chapters, 72% of m.3243A>G level variability was estimated to be 

explained by additive nuclear factors (Pickett et al., 2019). To elucidate how much of 

heritability was explained by the variants obtained from META analysis combining 100kGP 

and UKBB data, a SNP based heritability estimate was performed; this yielded a total value of 

(h2 = 17.717, SD = 4.757). Meaning that ~17% of m.3243A>G level difference is explained by 

nucDNA factors. SNP heritability estimates were also performed on the multicentre cohort, 

which includes the pedigrees used in the initial heritability estimate by Pickett et al., (2019); 

interestingly, this yielded a value of (h2 = 12.210, SD = 2.962) which is much lower to the 

estimated heritability value of 0.72 (standard error = 0.26). 
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4.4. Discussion 

In the early 2000s, the hope was that GWASs will have the power to identify, for example, 10 

common risk loci, each of which will explain 1/10 of h2, by that unravelling disease 

architecture as well as the molecular causes of disease. However, complex, polygenic 

diseases, in particular, proved to have much more complexity, leaving researchers with more 

unanswered questions than anticipated. None of the GWA studies presented here yielded a 

significant association; this may be attributed to an insufficient sample size and can be based 

on the performed power analysis, which did not show sufficient detection power for variants 

with MAF < 0.05 and ES < 0.6 (Section 4.3.1). m.3243A>G heterogeneity could be modulated 

by multiple variants with a much smaller effect size and/or, rare variants with large effect 

size. This GWAS would have missed rare variants as data were filtered for MAF > 0.05, 

additionally, the multicentre cohort and UKBB data are derived from a genotyping chip, 

followed by imputation, thus, some SNPs might be missing from the data. This explains the 

growing trend towards using WGS in GWA analysis (Selvaraj et al., 2022). A far bigger sample 

size would be needed to have enough power to detect small effect sizes. 

Additionally, when it came to the multicentre cohort analysis, one limitation might have been 

the lack of correction for between-cohort differences. For example, 110 individuals were 

recruited from Exeter Centre of Excellence for Diabetes Research, which might have led to 

differences in m.3243A>G levels between this portion of samples compared to those 

recruited from specialised, mitochondrial disease clinics (Newcastle, Italy, Germany). In case 

differences were significant, true associations would be missed, potentially leading to a null 

result or reduced effect sizes in the pooled analysis. This can occur when one cohort exerts a 

disproportionate influence, thereby 'averaging out' significant findings that might be present 

in other cohorts. A way around this would be by performing an ANOVA test; to quantify the 

differences between cohorts and determine whether the observed variation is statistically 

significant, something that would necessitate the use of cohorts as covariates in the analysis. 

Follow-up PC analysis might also help determine if individuals from different cohorts cluster 

together or separately based on genetic data, which would help determine additional outlier 

samples (if present) based on batch effects.  
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When it comes to the two population-based cohorts, results were not concordant; given the 

small sample sizes, this might as well be a lack of detection power, and that the signals 

appearing were rather analysis noise. The fact that each of the cohorts is ascertained in its 

own way, should also be acknowledged – 100kGP selects for individuals with suspected rare 

genetic disease whereas the UKBB cohort consists of individuals between 40-69 years of 

age, who have a reduced incidence of all-cause mortality compared to the general 

population (Bycroft et al., 2018a). These differences may influence both m.3243A>G levels 

and the genetic factors that determine these levels. 

The fact that the UKBB data belongs to individuals from an older age group, and that 

m.3243A>G has an annual, blood level decline rate of ~2% (Rajasimha, Chinnery and Samuels, 

2008), also explains why the number of retrieved samples was less than that expected 

(mentioned at the beginning of the chapter), where with a population carrier rate of 140~250 

in 100,000 (Manwaring et al., 2007a), we estimated to identify approximately ~280-500 (out 

of 200,000) yet the total retrieved number of samples was 147.  

The identification of further samples from 100kGP and the UKBB meant there was a bigger 

sample to analyse, and an increased power to detect “causal” variants. However, as 

previously mentioned (Section 4.3.5), due to the different distribution of phenotype levels 

across the three cohorts, a decision was made to exclude the multicentre cohort from the 

META (384 samples). This is mainly because the GWASs were trying to identify nuclear 

variants driving high levels of m.3243A>G (multicentre cohort) and those driving low to 

medium levels of m.3243A>G (UKBB and 100kGP). This left 279 samples cleared for analysis, 

together resulting a peak approaching significance on chromosome eight. 

Fine mapping identified five SNPs from the first credible set with values equal to one. These 

did not correspond to the SNPs with lowest p values from the META analysis, in fact, the SNP 

with the lowest p value had a PIP value well below one; indicating the uncertainty in its 

causality. PIP is a better measure of causality in fine mapping analysis than p value, or Z 

values; this is due to the fact that a PIP provides a probability measure that a variant is truly 

causal, whilst incorporating the effects of other variants and LD patterns, which are not 

accounted for when for example, calculating p values (Maller et al., 2012). 
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SNPs with PIP values of one were in LD with the lead META SNP, and had big, insignificant p 

values which translated into very small -log10(p values) as shown in Table 4.2 above. 

Interestingly, when changing the software’s default and asking for the top number of causal 

SNPs to be only one, although not equal to one, the lead META SNP (8:5882269G>C) 

appeared to have the largest PIP value in the obtained credible set. In fine mapping, it is 

generally recommended to allow for the possibility of multiple causal SNPs. This approach 

aligns better with the polygenic nature of complex traits and provides a more nuanced 

understanding of the genetic landscape. Limiting the model to one causal SNP might be 

overly simplistic and could result in miscalibration of analysis leading to misleading 

conclusions by focusing on the SNP with the smallest p-value, which may not truly be the 

causal variant (Burgess, 2022; Kanai et al., 2022). 

The obtained SNP heritability of 17.717% for the META analysis, and 12.210% for the multicentre 

cohort, compared to the estimated classic heritability of 72%, shows a similar pattern to that 

seen for other complex traits (Section 4.1.4). There are different explanations for the issue of 

missing heritability: GWASs detect common variants with small effect sizes whereas it might 

be that rare variants, which typically have a much bigger effect size, are accounting for a 

percentage of that heritability; additionally, most available genotyping panels do not tag 

copy number variants, and it is possible that they might have a biologically important 

function that is missed (Cirulli and Goldstein, 2010; Craddock, Hurles and Cardin, 2010). A 

further explanation for this might be the fact that the classic heritability estimates utilised 

mother’s m.3243A>G heteroplasmy data as covariates, by that enriching the residuals for the 

tested factors  (Pickett et al., 2019a). Which may account for some of the observed 

discrepancies in heritability. Figure 4.4 showed a discrepancy as well, where linkage and 

association peaks landed on different positions within chromosome one (separated by ~80 

MBs), this may be attributed to several reasons most notably, the inherent difference of the 

methods. This dictates different genetic resolutions, as well as variant types detected. Both 

methods, however, provide valuable, yet distinct insights into the genetic architecture of the 

trait, and their combined interpretation can offer a more comprehensive understanding of 

the genetic factors involved.  
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Understanding the contributions of these variants, alongside the need for far bigger sample 

sizes, will be necessary for us to achieve a full understanding of the nuclear factors that play 

a role in determining m.3243A>G heteroplasmy.  
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Chapter 5. Mitochondrial DNA GWAS (miWAS) 

 

5.1. Introduction 

As outlined in Section 1.2.6 mtDNA sequence variations can be maternally inherited and can 

also arise throughout our lifetime as somatic de novo mutations (Lawless et al., 2020).  

Inherited mtDNA variation are associated with several common diseases, including 

Parkinson’s disease (PD). Using association analysis, it was demonstrated by Hudson et al., 

(2013) that the m.2158T>C variant (mapping to J1b haplogroup) in mitochondrial MTRNR2 

gene, may provide a protective mechanism in PD, authors suggest that the variant could 

alter the synthesis of Humanin, the neurotoxicity suppressor protein encoded by this gene. A 

comprehensive study by Yonova-Doing et al., (2021) looked at mtDNA associations with 877 

different complex diseases within 358,916 British ancestry individuals from the UK biobank. 

This identified 260 novel associations such as, m.8655C>T and type 2 diabetes, m.14766T>C 

and increased levels of aspartate aminotransferase (AST) which is a biomarker of various 

liver diseases including hepatitis and cirrhosis. A study analysed 38,638 individuals with 11 

diseases, and 17,483 healthy controls, and suggested that common mtDNA variants may fill in 

the ‘missing heritability’ of several complex diseases (Hudson et al., 2014c). This identified a 

set of common mtDNA variants that were found to have an impact on several diseases. Such 

as the haplogroup U5a marker, m.14793 within MTCYB gene, and MTCO3 m.9477 variant, a 

marker of haplogroup U5, both associated with an increased risk of Schizophrenia, 

Parkinson’s disease (Huerta et al., 2005), ulcerative colitis, and multiple sclerosis. On the 

other hand, m.10398 variant within the MTND3 gene, a marker of both haplogroups J and K, 

was found to be linked to a reduced risk of several diseases such as Parkinson’s disease, 

multiple sclerosis and ischemic stroke (van der Walt et al., 2003; Hudson et al., 2014; Tzeng, 

2022).  

Studies using transmitochondrial cybrid cells have shown that OXPHOS function varies under 

the influence of different haplogroups (Gómez-Durán et al., 2010a). Hudson et al., (2007) 

have investigated the variable clinical presentation of Leber hereditary optic neuropathy 

(LHON) disease within carriers of different haplogroups; where carriers of the variant 
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m.11778G>A with haplogroup H background seem to have milder presentation of disease 

symptoms, and those with haplogroup J background were at a higher risk of visual failure 

(Carelli et al., 2006; Yu-Wai-Man et al., 2009). This raises the possibility that haplogroup H 

exerts a protective mechanism, whereas haplogroup J aggravates m.11778A>G-related 

disease (Carelli et al., 2006; Yu-Wai-Man ct al., 2009). Other studies have explained the tissue 

specificity of certain mtDNA variants, such as m.60T>C within liver and kidney by replication 

advantage, especially when found within or close to mtDNA replication regulation sites. 

These variants were found in non-related individuals exclusively within the specified tissues 

and in this context, their observation fit no particular haplogroup pattern (Samuels et al., 

2013). 

Using GWA studies Gupta et al., (2023) identified a length variant at the m.302A>AC position 

that is associated with mitochondrial copy number (mtCN) variation. The longer the segment 

surrounding m.302 is, the smaller the copy number. Where certain nucDNA genes such as 

TFAM and POLG2 were found to act in trans on the mitochondrial RNA polymerase (mtRNAP) 

switching off the replication machinery, by that modulating the efficiency of mtDNA 

replication. In contrast, haplogroup markers explained less than 0.5% of mtCN variability. 

Unlike nuclear DNA, there is no recombination within the mtDNA which is due to its circular 

nature and lack of recombination machinery (Saville, Kohli and Anderson, 1998). This, 

however, was a point of debate in the early 2000s, when Awadalla et al., (1999) suggested 

evidence for mtDNA recombination. Plenty of groups after failed to replicate their findings, 

deeming the absence of recombination in mtDNA as the most agreed upon theory in the 

mitochondrial community; and attributing the conclusions of Awadalla and colleagues as an 

artefact due to an inappropriate LD measure (Elson et al., 2001a).  

As a result of the absence of protective histones and the presence of ROS, some areas in the 

mtDNA are mutation hotspots that are ideal for the study of migration patterns. Additionally, 

due to the lack of recombination in mtDNA, all variants are inherited together as a single 

haplotype (Elson et al., 2001a), making it challenging to identify the specific variant 

responsible for an observed association. 

Given disease associations with mtDNA variation, it is plausible that the background 

sequence variation of mtDNA could affect m.3243A>G levels. In case an effect is identified, it 
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could either be in cis, such as in the case of haplogroup markers and LHON disease (Carelli et 

al., 2006), or in trans by involving nucDNA QTLs that influence mtDNA regulation (Gupta et 

al., 2023). An alternative mechanism that could regulate m.3243A>G heteroplasmy is a 

bioenergetic alteration, caused by OXPHOS modulating variants. Such as the inherited basal 

differences in OXPHOS capacity reported by Gómez-Durán et al., (2010b), where haplogroup 

H markers were suggested to have a delayed and reduced OXPHOS complex one assembly, 

slowing the bioenergetics of a cell. Disrupted OXPHOS may lead to a selective advantage for 

mtDNA molecules carrying compensatory variants that partially restore OXPHOS function 

(Khrapko and Turnbull, 2014). This could result in an increase in heteroplasmy for those 

compensatory variants. 

To answer this question, I conducted a mtDNA GWA analysis (miWAS) with the aim of 

determining whether mtDNA sequence variation is associated with m.3243A>G levels 

A study in the French population carried out by Pierron and colleagues (2008), used control-

region sequencing and RFLP survey of mtDNAs to determine haplogroups in m.3243A>G 

carriers. They report a statistically significant underrepresentation of m.3243A>G variant in 

carriers of haplogroup J from the French population. As an explanation, they hypothesised 

that the combination of m.3243A>G and haplogroup J could be lethal (potentially related to 

non-synonymous cyt b variation) and termed this hypothesis the ‘haplogroup J paradox’, 

hypothesising that this could result in negative selection of m.3243A>G on a J background. In 

their study, they have also observed m.3243A>G variant on different haplogroup 

backgrounds, suggesting that 3243 position is a mutational hotspot in European populations.  

Therefore, I also decided to investigate this within our population, with the aim of 

elucidating whether any of the haplogroups manifest a similar, increased selection against 

m.3243A>G in the European populations of Britain. 

 

 



 

 122 

5.2 Methods 

5.2.1 Data  

To investigate this, SNP genotyping and sequencing data of individuals with blood 

m.3243A>G levels ≥ 1% were used from three cohorts: the multicentre cohort, 100kGP 

(Genomics England), and the UKBB. In the multicentre cohort (408 individuals) had 222 

mtDNA SNPs genotyped using UK Biobank Axiom® Array at a genotyping rate of 0.997 per 

SNP. No individuals were excluded for missingness (threshold 2%).  After filtering using a 

MAF ≥ 0.01, and MAC ≥ 20, 53 SNPs were taken forward for analysis.  

MtDNA sequencing data of 136 individuals within Main Programme Genomics England Data 

Release v12.0, and genotyping data of 143 individuals in the UKBB were used.  After filtering 

for the same MAF and MAC thresholds, 69 SNPs were left in 100kGP data. For comparison 

reasons, particularly for META analysis, the same subset identified in 100kGP was used in 

UKBB data, where out of 69, 49 SNPs were matched. 

In analyses comparing haplogroup distributions across m.3243A>G carrier populations, since 

the families were of different sizes, only one individual was kept and that is to avoid any bias. 

Total left was 268, 102, and 30,046, in the multicentre cohort, the carrier portion of 100kGP, 

and the non-carrier portion of 100kGP, respectively.  

 

5.2.2 Haplogroup estimation 

Haplocheck is a software used to detect contamination patterns in both whole genome as 

well as targeted mitochondrial sequencing studies (Weissensteiner et al., 2021). This uses 

Haplogrep2 and is based on sequence data from Phylotree V17 (van Oven and Kayser, 2009b) 

as a reference to identify the major and the minor haplogroups in data (Weissensteiner et al., 

2016c). This was used as part of the quality control pipeline all cohorts underwent, which 

enabled the identification of participants’ haplogroup information. 
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5.2.3 mtDNA principal component analysis (PCA)  

Being one of the biggest confounders of GWASs, including miWAS, population structure (PS) 

had to be accounted for.  A 2010 study compared the utility and efficacy of PS correction by 

using mitochondrial DNA PCs (mtPCs), mitochondrial haplogroup data, or nuclear DNA PCs 

(nucPCs) in miWAS. It was found that using haplogroups was inferior to using mtPCs; where 

analysis carried out using mtPCs yielded significantly lower mitochondrial genomic inflation 

factors (mtGIF) (p = 0.022) compared to using haplogroups (Biffi et al., 2010).  The addition of 

nucPCs to mtPC adjusted analysis led to no significant difference in mtGIF (p = 0.41). It is 

possible that true mtDNA associations were missed in previously carried out miWAS studies 

which corrected for PS using nucPCs, because the addition of unnecessary nucPCs causes an 

increase in the degrees of freedom and therefore, a higher p value (Miller et al., 2019). To 

conduct mtDNA PC analysis, PLINK v1.9 was used to calculate eigenvectors and eigenvalues 

of mtDNA in both the multicentre cohort and the 100kGP cohort. As a great complement to 

nucDNA PCA studies, mtDNA was used to look deeper into the genetic ancestries of 

participants in both cohorts by overlaying results from mtDNA PC analysis over the 

previously performed nucDNA PC analysis (outlined in Section 3.3.1). 

Ahead of carrying out the miWAS, data were checked to belong to individuals of European 

nuclear ancestries, which is the same portion of individuals used in the nucDNA GWAS. As 

outlined in Section 3.3.1, this was done by excluding nucPCA outlier samples to prevent 

confounding factors in the GWAS. This step reduces the likelihood of type 1 errors and 

minimizes the risk of obtaining spurious associations due to differences in population-specific 

LD patterns rather than real genetic links. This resulted in cohort sizes of 384 (out of 408), 

136 (out of 164), and 143 (out of 147) for the multicentre, 100kGP, and UKBB cohorts, 

respectively. As outlined in Miller et al., (2019), in comparison to nucPCs, mtPCs are better at 

capturing intrapopulation variation, which can also be referred to as population 

substructures; therefore, by using mtPCs as covariates, correction for intra-European, 

mitochondrial genetic variations was ensured. 
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5.2.4 mtDNA GWA analysis optimisation  

As discussed in Section 2.1.1, the multicentre cohort contains data from related individuals 

belonging to 95 families, so this also had to be accounted for in the analysis design. The 

suitability of linear mixed effects modelling as well as linear regression models in such cases 

was thoroughly outlined in Sections 2.5.1 and 2.5.2. A comparison between association 

software performance on mtDNA data, as well as the effect of inclusion and exclusion of PCs 

is demonstrated in the results section below. REGENIE was also the software of choice for 

mtDNA GWASs. In step 1, to fit the regression model, pruned nucDNA data was used 

particularly to account for cryptic relatedness within the multicentre cohort and 100kGP. In 

step 2, mtDNA data consisting of 49, 69, and 53 SNPs from the multicentre cohort, 100kGP, 

and the UKBB, respectively, were tested for association. Both steps used mtPCs as 

covariates to account for PS, and age-adjusted m.3243A>G levels as the tested phenotype. 

 

5.2.5 Converting mapping data between genome builds. 

As outlined in Section 2.4.3.C, genomic builds were different across cohorts. To avoid SNP 

mismatching, lifting over of mtDNA SNP coordinates was necessary ahead of the META 

analysis. This was performed using the web based UCSC lifting over tool 

https://genome.ucsc.edu/cgi-bin/hgLiftOver   (Kent et al., 2002; Kuhn, Haussler and Kent, 

2013). 

 

5.2.6 META analysis  

As outlined in Sections 4.2.3 and 4.2.4, there are various statistical methods for performing 

META analysis; which method to employ largely depends on between-study heterogeneity 

(𝐼2). In this case, only two cohorts were combined, and thus, as advised in Dettori R. et al., 

(2022) a decision was made to carry on with a fixed-effects META analysis using PLINK v1.9. 

This relies on inverse variance weighting (Willer, Li and Abecasis, 2010), where combined 

effect sizes (ESs) are used. ESs reported to be statistically more powerful than using the 

combined z scores; because combined effect sizes have the benefit of incorporating the 

precision of each individual study i.e: studies with smaller variance and more precise 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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estimates contribute more to the combined effect size and vise versa.  The underlying 

statistical formula to calculate the combined effect size is as follows:  

 

𝐸𝑆𝑐 =  
∑ 𝑤𝑖 .𝐸𝑆𝑖

𝑘
𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1

             

 

where:  

 

The weights are calculated using the inverse of the variance of effect size in each study 

through the following: 𝑤𝑖 =  
1

𝐸𝑆𝑖
 

 

5.2.7 Significance threshold  

Bonferroni correction was used to derive the generally accepted GWAS significance 

threshold of 5 x 10−8. Therefore, I decided to use the same correction method to determine 

a significance threshold for this mtDNA GWA study; the -log10(pvalue) significance threshold 

for the multicentre cohort was 3.03, and for the two population cohorts was 2.99. The 

significance threshold plotted in Manhattan plots was rounded to 3.00. 

 

5.3. Results 

5.3.1 PCA analysis 

To view population structure in both cohorts, PC1 and PC2 then PC2 and PC3 eigenvalues 

retrieved from mtDNA PC analysis were plotted against each other (Figure 5.1). 95.3% and 

88% of individuals in the multicentre cohort and Genomics England carry one of the nine 

European ancestry haplogroups: H, I, J, K, T, U, V, W, and X. This reflects the fact that in both 

cohorts, patient data/ samples were recruited from centres across the UK and the broader 

European continent. Although rare, individuals with admixed American, African, as well as 

East and South Asian ancestry haplogroups were present, showing that m.3243A>G is not an 

 ESC ∶ combined effect size 
 ESi : effect size of i-th study 
 wi : weight assigned to the i-th study based on inverse variance 
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exclusively European variant as was once thought (J.Morten, Poulton and Sykes, 1995). 

Mitochondrial principal components were successful at capturing the variance into distinct 

haplogroups, as observed, PC1 captures the biggest portion of variance in the multicentre as 

well as 100kGP data (~ 12% and ~11%, respectively).  

The scatter plot also shows a degree of overlap between some haplogroup clusters, 

reflecting a shared genetic component. These groups however, could be further separated 

by plotting additional PCs, as they would provide more dimensions of variance to a two 

dimensional plot that is depicting multidimensional data (Figure 5.1).  

To enhance our understanding of the genetic ancestry of subjects involved in this analysis 

and to investigate the concurrence of ancestry data between the two genomes, mtDNA 

haplogroups and nucPCs retrieved from analysis carried out combining 1000 genomes 

reference data, as described in Chapter Three, were overlaid. This revealed some individuals 

with mixed genetic ancestry patterns such as those in Figure 5.2 – C, where three individuals 

carrying the matrilineal African mtDNA haplogroup L (magenta) clustered over the South 

Asian nucDNA ancestry. This discordance between the maternal (mitochondrial) and nuclear 

ancestry, reflects a diversity resultant from an African admixture that occurred at some point 

in their maternal lineage. However, the majority of individuals’ mitochondrial DNA ancestries 

coincide with their nucDNA ancestry, and their haplogroups lie over the expected nucPC 

cluster such as Figure 5.2 – D where a bright yellow cluster of Asian haplogroup M carriers 

lays over the South Asian nucPC cloud represented by diamonds, as well as the dense carrier 

group of European haplogroups clustered over the European nucPC cloud (Figure 5.2). 
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Figure 5.1: mtDNA PCA on both cohorts.  (A+B) depict plots of PC1 and PC2 plotted against each other on the multicentre cohort whereas (C+D) are 

those in Genomics England. 
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Figure 5.2: nDNA PCA and haplogroup plots. (A) Multicentre cohort nPC1 plotted against nPC2, (C) and nPC2 plotted against nPC3. (B+D) 100kGP 3 
principal components plotted against each other. Filled, coloured diamonds represent individuals from the m.3243A>G cohorts; colours represent the 
different mtDNA haplogroups. Beige shapes represent individuals from the 1000 genomes project reference data (GRCh 38) who belong to five 
genetically distinct populations; African, European, East Asian, AD mixed American, and South-Asian. Most individuals within the m.3243A>G cohorts 
belong to the European ancestry population; European haplogroups (I, J, K, R, T, U, V, W, X) cluster over the European nPC cluster. Some individuals with 
African haplogroup L, and European haplogroup H co-locate with the south Asian nPC cluster (C), reflecting a mixed, African/ European maternal and 
Asian nuclear ancestry.
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5.3.2 Frequency of m.3243A>G across different haplogroups  

As a replication of the study on the French population (Pierron et al., 2008), the frequency of 

haplogroups across 100kGP, the UKBB,  and the multicentre cohort was investigated in 

comparison to: 1) European population haplogroup reference data from from EUpedia , 2) 

the m.3243A>G non-carrier portion of Genomics England (100kGP) (for 100kGP data only), 

and 3) haplogroup reference data from EUpedia specifically for England (Capelli et al., 2003; 

Bowden et al., 2008; Winney et al., 2012; Hay, 2018). Haplogroups with fewer than ten entries 

in the multicentre cohort were counted as “other” in all three cohorts; those that remained 

were mainly European (H, J, K, T, and U). 

Haplogroup frequencies within the multicentre and UKBB m.3243A>G cohorts were broadly 

similar to the estimated frequencies within the European and English populations. 

Haplogroup H was the most common haplogroup across all cohorts (Figure 5.3), which is 

expected given it is the most common haplogroup in European populations. 

In Figure 5.3, confidence intervals (CIs) reflect the higher variability in England compared to 

Europe, which is the results of a smaller sample size (2,333 vs. 27,341).  

The frequency of haplogroup K was significantly higher in the multicentre cohort compared 

to Europe and England (Table 5.1; p<0.0001). However, this was not the case in the UKBB 

(Figure 5.3).  

As a replication for the comparison between the UKBB and multicentre cohort to the 

English/ European general populations, m.3243A>G carrier and non-carrier portion of the 

100kGP cohort were investigated separately (Figure 5.4). Results also show that the 

distribution of haplogroups does not differ between the carrier and non-carrier portion of 

100kGP. The elevated frequency of haplogroup K seen in the multicentre cohort compared to 

non-carrier populations, was not replicated within 100kGP cohort either.  

A significant difference in haplogroup distributions is observed between the European and 

the non-carrier portion of 100kGP data (Table 5.1, p < 0.0003), but not between the European 

and English populations. This reflects the fact that the non-carrier portion of 100kGP was 

selected for having a rare disease and thus, are not a reflection of the general, non-selected 

populations. Using the non-carrier portion of 100kGP as a comparison was instead a way to 
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compare the frequency of haplogroups between m.3243A>G carrier individuals and 

individuals of rare disease within the population.  

Although not significant, there is a greater number of m.3243A>G carrier individuals with 

haplogroup J in both the multicentre and the carrier portion of Genomics England, compared 

to non-carrier populations, the opposite trend is seen for UKBB’s m.3243A>G carriers (Figure 

5.3 and Figure 5.4). Therefore, these results do not replicate the previously reported 

association with haplogroup J in the French population (Pierron et al., 2008), as there are no 

signs of haplogroup J being underrepresented in m.3243A>G carrier populations.  

 

 

Figure 5.3: Comparison of European haplogroup frequencies between cohorts of m.3243A>G carriers 

and estimates of whole population frequency. Figure presents the percentage frequency of 

haplogroups and their confidence intervals across two cohorts of m.3243A>G carriers; the 

multicentre cohort (blue; one individual per family, total n=268 individuals) and UKBB (burgundy; 

n=143), compared to frequencies in the European population (violet; n=27341), as well as England 

(2333; n=green; both retrieved from EUpedia). 
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Figure 5.4: Haplogroup frequencies in 100kGP (GE) cohort m.3243A>G carrier and non-carrier 

individuals. Frequencies and confidence intervals retrieved while considering one individual per 

family, all from exclusively European nuclear genetic ancestry as per PCA analysis. 
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Table 5.1: Summary statistics for the comparison of haplogroup frequencies between m.3243A>G 

cohorts and population estimates. Summary of p values retrieved from chi2 tests, significance 

threshold for 150 tests was 0.0003 (0.05/150). Percentage differences for significant comparisons are 

presented in parenthesis, non-significant test values are denoted by NS. 

 

 

Haplogroup Cohort Multicentre GE carriers GE non-
carriers 

England UKBB 

H Multicentre NS     

GE carriers NS NS    

GE non-
carriers 

NS NS NS   

England NS NS NS NS  

Europe NS NS NS NS NS 

J Multicentre NS     

GE carriers NS NS    
GE non-
carriers 

NS NS NS   

England NS NS NS NS  

Europe NS NS <0.00001 
(1.14) 

NS NS 

T Multicentre NS     
GE carriers NS NS    

GE non-
carriers 

NS NS  NS   

England NS NS NS NS  

Europe NS NS <0.00001 
(1.8) 

NS NS 

U Multicentre NS     

GE carriers NS NS    

GE non-
carriers 

NS NS NS   

England NS  NS NS NS  
Europe NS NS <0.00001 

(3.33) 
NS NS 

K Multicentre NS     

GE carriers NS NS     

GE non-
carriers 

<0.00002 
(7.67) 

NS NS   

England <0.00001 
(8.4) 

NS NS NS  

Europe <0.00001 
(0.8) 

NS 0.000017 
(7.6) 

NS NS 

Other Multicentre NS     
GE carriers NS NS    

GE non-
carriers 

NS NS NS   

England NS NS NS NS  

Europe NS NS <0.00001 
(5.99) 

NS NS 
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5.3.3 Distribution of m.3243A>G levels across different haplogroups  

Having determined the frequency of haplogroups across m.3243A>G carrier individuals, I 

then asked whether m.3243A>G distribution differed between the most common 

haplogroups found in the multicentre and 100kGP data. Within each haplogroup, there was a 

wide distribution of m.3243A>G levels (Figure 5.5). In each of the cohorts, m.3243A>G levels 

were not associated with any particular haplogroup. Although not significant (chi2 test: 

p=0.186, p = 0.4) the median of m.3423A>G variant allele levels in both the multicentre 

cohort and 100kGP was the highest in samples harbouring haplogroup J. Levels of 

m.3243A>G are higher in the multicentre cohort compared to 100kGP as discussed in Section 

4.3.2. 

 

Figure 5.5: Haplogroups and distribution of m.3243A>G in the multicentre and Genomics England data. 

X-axis presents the haplogroups of individuals from the 100kGP cohort (blue) (n=134) and the 

multicentre cohort (light blue) (n= 384), plotted against their age-adjusted blood level of the 

m.3243A>G variant. Each dot represents an individual. Boxes show the interquartile range (IQR), 

which contains the middle 50% of the data (median line 2nd quartile). The bottom and top edges of the 

box indicate the first (25%) and third quartiles (75%), respectively. Whiskers extend to the smallest and 

largest values within 1.5 times the IQR.  
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5.3.4 mtDNA GWA analysis optimisation  

Having determined that m.3243A>G levels show no association with haplogroup background, 

I decided to perform a mtDNA GWAS to investigate associations between individual 

mitochondrial SNPs and m.3243A>G levels.  

To determine the optimal analysis method for a mtDNA GWAs, I first considered whether to 

include mtPCs as covariates. The percentage of variance explained (pve) in cohorts by the 

first 20 mtPCs was first visualised with a scree plot (Figure 5.6). The first ten principal 

components explained 69.04% of variability in the multicentre cohort, 69.7% in 100kGP, and 

73.6% in UKBB. To test the degree of correction for population stratification (PS), mtDNA 

data in the multicentre cohort were used to perform GWAS analysis: (1) without including 

PCs, and then (2) using the first five, (3) followed by ten PCs as covariates.  

The effect of the inclusion of PCs was observed through visual inspection of QQ plots and 

mtDNA genomic inflation factors (mtGIF) (Figure 5.7). Although not ideal, possibly owing to 

the limited number of SNPs, the mtGIF became closer to one, decreasing from 3.23 to 0.586 

upon the addition of the first five PCs and then from 0.586 to 0.572 upon the addition of 10 

PCs (Figure 5.7). Although the addition of PCs corrected for population structure and 

decreased the lambda from 3.23, values obtained after the addition of PCs were substantially 

less than one, which indicates over-correction, and raises concern over the potential of false 

negatives in the analyses. Referring to the scree plot below (Figure 5.6), using more than 10 

PCs would have captured more variance, potentially yielding a larger, more acceptable 

inflation factor. The analyses, however, were still performed on 10 PCs as a way to avoid over 

correction as I hypothesized that adding more PCs would have captured the underlying 

family structure in the data, rather than PS. Referring to Section 3.2.2, REGENIE is designed 

to adjust and account for family structures by using the relationship matrix data.  

After comparing the efficacy of linear mixed modelling and linear regression utilising 

software in Chapter Three, FaSTLMM was excluded, and the performance of two software 

(SAIGE vs REGENIE) was tested on mtDNA. Looking at the degree of deviation from the 

expected/ null line, as well as the inflation factors, SAIGE had an inflation factor closest to 

one, and thus is performing best with this data. However, as discussed in Chapter Four, to 

ensure consistency of results ahead of performing a META analysis, I chose to use REGENIE 
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to be consistent with the analysis performed in Exeter on the UKBB (Mbatchou et al., 2021c) 

(Figure 5.8).  

 

 

Figure 5.6: Scree plot depicting percentage of variance explained by mtPCs in each of the three 

cohorts. 
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Figure 5.7: QQ plots from miWAS 

on the multicentre cohort with 5 

then 10 mtPCs and without 

mtPCs using REGENIE. Results in 

pink were retrieved after 

performing the analysis with the 

addition of 10 mtPCs ( = ). 

Those in green were retrieved 

after the addition of 5 PCs 

( = ). Compared to the 

results without covariates (blue, 

 = 3.23), the QQ plot does not 

deviate from the origin of the 

(red) expected -log10(Pvals) line, 

which is the indicator of 

unaccounted for PS. 

 
Figure 5.8:  QQ plots retrieved 

from miWAS on the multicentre 

cohort with 10 mtDNA PCs using 

different software. Results in 

pink were retrieved after 

performing the analysis using 

SAIGE ( = 0.67, in blue)) and 

REGENIE ( = 0.57, in pink).  

 

software 

PCs 
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5.3.5 mtDNA GWAS  

Sequencing and genotyping data of 53, 49, and 69 SNPs from the multicentre cohort, 

100kGP, and the UKBB, respectively, was used to carry out an association analysis (miWAS); 

using REGENIE software, including the first 10 mtPCs as covariates and age-corrected 

m.3243A>G levels as the phenotype. In 100kGP data (Figure 5.9-B), one SNP (m.16356T>C, -

log10(p.val) = 3.5), which is within the mitochondrial control region, and can be found on 14 

separate subclades, was above the significance threshold of 3.00.  On the other hand, none 

of the SNPs were significant in the multicentre cohort nor the UKBB. All inflation factors 

were well below 1.1, these low values indicate an over correction for PS, leading to under 

inflation of p values (false negative results). QQ plots present deviations from the null 

hypothesis (red line). This is known to generally reflect several things such as, cryptic 

relatedness, population structure, genotyping errors, and small sample sizes (Clayton et al., 

2005). Additionally, in this case, the small number of tested SNPs can make the inflation 

factor a less stable measure. Thus, the observed increased p value in 100kGP data, at this 

stage, might be a false positive, particularly as it was not replicated in the UKBB data whose 

phenotype distribution is similar.  

 



 

 138 

 

Figure 5.9: mtDNA association analysis using REGENIE. Manhattan and quantile-quantile plots retrieved from the analysis on (A) the multicentre 

cohort, (B) 100kGP, and (C) the UKBB. One SNP in 100kGP data (B) was above the genomic significance threshold of 3.1. All three lambda inflation 

factors are not exceeding 1.1, QQ plots show deviation from the null hypothesis (red line).
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5.3.6 mtDNA META  

META analysis combined summary statistics retrieved from both 100kGP and the UKBB. As 

was outlined in Chapter Four, due to ascertainment and the different distribution of the 

phenotype where levels in the multicentre cohort are higher compared to those in the public 

cohorts, data of the multicentre cohort was not included. None of the tested 49 SNPs were 

significant, including m.16356T>C identified from the GWAS on 100kGP data. Variant 

m.16145G>A had the lowest p value, and had a positive direction of effect in both cohorts but 

was well below the META significance threshold. Lambda inflation factor was correspondent 

to the obtained QQ plot that showed a deviation from the red-expected line, which is likely 

due to the small number of tested SNPs and as mentioned in Section 5.1 the distinct LD 

pattern in mtDNA however, mtGIF was within the accepted range (1.06). 

 

 

 

Figure 5.10: META analysis results. None of the mitochondrial SNPs were approaching the significance 

threshold, additionally m.16356T>C SNP observed in 100kGP did not appear to be amongst the SNPs 

with the lowest META p values, with SNP m.16145G>A replacing it (-log10(pval)=1.7). QQ plot deviated 

from the expected line, potentially reflecting the limited number of tested SNPs. 
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5.4 Discussion  

GWA studies have primarily focused on the nuclear genome, and it is due to the 

characteristics of the mtDNA, such as the maternal inheritance and associated LD patterns, 

and lack of sufficient mtDNA genotyping/ sequencing data that made it challenging to 

conduct large-scale GWASs using mtDNA . Additionally, the fact that the majority of studied 

phenotypes are not mitochondrial related, made the mtDNA a rarer target for GWAS. 

There are no universal guidelines for this branch of analysis, nonetheless, the general 

principles of GWAS good practice such as, uniform data quality control thresholds, 

phenotype standardisation, maintenance of homogeneity within participants populations, 

have all been meticulously followed in this study.  

One SNP was above the significance threshold in 100kGP however, the fact that it was not 

replicated in the UKBB data, and that it was well below the significance threshold in the 

META analysis, indicated that it was likely to have been a false positive due to LD patterns. 

Mitochondrial GWASs in complex diseases have been usually underpowered and rarely 

replicated, in-part due to the differences in SNP frequencies (haplogroup markers) between 

populations over short geographical distances, which makes it more difficult to collect a 

homogenous, large enough study cohort, and makes the analysis more susceptible to type 1 

errors.  A larger sample size than that for nuclear GWASs is needed to achieve sufficient 

power to detect associations to rarer haplogroups and haplogroup markers, more so given 

the hypermutability of mtDNA which adds a further layer of complexity (Samuels et al., 

2006). Additionally, the inconsistencies in choosing a mtDNA reference sequence impair the 

comparability and generalizability of mtDNA GWAS studies (Ferreira and Rodriguez, 2024). 

However, just as the case with nuclear GWASs, small, homogenous study cohorts would be 

powered enough to detect associations to variants with large effect sizes. The fact that in 

this study we found none, indicates that if present, the mtDNA variants potentially 

underlying m.3243A>G heterogeneity are not with a large effect size. And thus, the notion 

that mtDNA variants or haplogroups are not associated with m.3243A>G levels, cannot be 

rejected. A larger sample size would not only enable the detection of small effect sizes, but 
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the inclusion of rarer variants into the analyses, which may be associated with m.3243A>G 

levels but were not tested due to sample size restrictions that dictated analysis power. 

Comparisons of haplogroup distributions between m.3243A>G carrier and non-carrier 

populations showed that the frequency of haplogroup K in the multicentre cohort was 

significantly higher compared to both the English as well as the European population. Up to 

date (June 2024), an increased frequency of haplogroup K in individuals with m.3243A>G 

variant have not been previously reported. However, haplogroup K has been previously 

associated with various complex diseases. For example, a study has investigated the 

distribution of haplogroups between a cohort of 620 Italian, idiopathic Parkinson’s disease 

(PD) patients, and two control groups from a matched genetic ancestry. They reported a 

significantly decreased frequency of haplogroup K in PD patients, suggesting a decreased 

risk of PD on haplogroup K backgrounds in Italians (Ghezzi et al., 2005). Another 

investigation performed on the Australian Blue Mountains Hearing Study, noted an increased 

prevalence of age-related hearing loss in individuals with haplogroup K background 

compared to other backgrounds, linking it to a potentially reduced mitochondrial function 

(Manwaring et al., 2007b).  

The fact that this pattern was not consistent across all variant carrier populations (the UKBB 

and carriers in 100kGP), may be due to the fact that the multicentre cohort is clinically 

ascertained, with individuals having higher levels of m.3243A>G, and thus are associated with 

different heritable factors. As shown in Figure 5.5, individuals with haplogroup K background 

show no significantly increased levels of m.3243A>G however, haplogroup K background is 

the second most common after haplogroup H in the multicentre cohort. This may suggest an 

overrepresentation of a particular haplogroup K subclade in carriers of high variant levels. To 

elucidate this, further analysis with finer haplogroup classifications would be needed. 

There have been several reports of haplogroups associated with mitochondrial function, 

copy number, and dynamics. The first of such examples is that conducted by Suissa et al., 

(2009) where they explained the observed increase of mitochondrial copy numbers on 

haplogroup J backgrounds. A variant that marks haplogroup J, m.295C>T, was suggested to 
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be causing an increased binding of TFAM, and the capacity of transcribing a region that is 

associated with RNA priming of mtDNA replication. Leading to significant increase of mtDNA 

copy numbers, with no difference in mtDNA transcript levels. This was followed by several 

other reports of decreased or enhanced mtDNA replication efficacy on different 

mitochondrial haplogroup backgrounds (Gómez-Durán et al., 2010c; Kenney et al., 2014; 

Gupta et al., 2023), all attributing this disparity to the effect of haplogroup marking SNPs that 

regulate mitochondrial functions by acting in trans with nuclear genes.  

And thus, a possible explanation for this increased frequency of haplogroup K could be 

similar to those findings mentioned above, where a certain marker within a haplogroup K 

subclade preferentially replicates mtDNA molecules carrying the m.3243A>G variant and thus 

predisposes individuals to having elevated levels of this variant. Using another clinically 

ascertained cohort will be a more accurate replication to this observation.   

Contrary to the study on the French population (Pierron et al., 2008), there was no evidence 

for haplogroup J underrepresentation in m.3243A>G carriers in the studied populations 

instead, haplogroup J was found to be one of the most common. And thus, this study does 

not support the reported ‘haplogroup J paradox’ observed in the French population, as 

haplogroup J shows no selection against m.3243A>G variant. However, haplogroup 

subclades in this project were not investigated, meaning that the finer genetic ancestry could 

not be specified, nor could we make the assumption that patients recruited in centres across 

the UK were exclusively of a British genetic ancestry.  

As mentioned in the introduction, there is a growing number of studies that has identified 

mtDNA variants in association to many complex diseases such m.7028T>C and alleles 

m.14766C>T and an increased risk of cardiomyopathy (Fernández-Caggiano et al., 2012), 

m.8655C>T and type 2 diabetes, (Poulton, 2002; Yonova-Doing et al., 2021). Based on this, it 

was valid to hypothesise the potential of observing an overlapping association to variants 

reported in related phenotypes to 3243 patients – but none were found. 
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Chapter 6. General discussion 

At the beginning of the thesis, the aims of this project were outlined and below I will 

summarise the results obtained from each individual chapter. This will then be followed by 

projects’ strengths and limitations, and finally a discussion of the implications and future 

directions of this project.  

 

6.1. Summary of the results  

6.1.1 Data collection 

To perform GWAS, the conducted power analysis estimated that with the available amount 

of data from m.3243A>G ascertained multicentre cohort (384 samples), there was a 95% 

power to detect variants with a MAF ≥ 0.05 and medium effect size of ≥ 0.6. To further 

increase power that would enable the detection of variants with a smaller effect size, a larger 

sample size is necessary (Cantor, Lange and Sinsheimer, 2010). This was the rationale behind 

employing heteroplasmy calling pipelines on 100kGP and UKBB data, which consequently 

identified 164 m.3243A>G samples from 100kGP and 147 additional samples from the UKBB.  

 

6.1.2 Chapter 3: GWAS analysis optimisation 

Data from the multicentre cohort were used to evaluate the performance of GWAS using 

different software, and various analysis designs (frameworks). After assessing lambda 

inflation factors, which reflect the degree of correction for confounding factors, excluding 

PCA European population-outlier samples from the analysis seemed to provide sufficient 

correction for data. REGENIE software was the most suitable choice given the factors 

thoroughly discussed in Section 3.3.2. 
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6.1.3 Chapter 4: GWAS and follow-up analysis 

GWA analyses were carried out separately on each one of the three cohorts. None of the 

studies presented a result significant on the genome wide scale however, top SNPs identified 

in 100kGP as well as the multicentre cohort were above the suggestive significance threshold 

of 5.3. In the multicentre cohort SNP (1:114542914A>T) had a -log(Pval) value of 6.4; 100kGP’s 

top SNP was on chromosome 15 (15:62868505G>A; -log(Pval)=6.2), and the UKBB on 

chromosome eight (8:128594837c>A -log(Pval)= 5.6). The cohorts had 95%, 66%, and 60% 

power to detect SNPs with MAF ≥5% and ES ≥ 0.6 at a genome-wide significant results, 

respectively.  

The 100kGP and UKBB data were combined via a fixed effects META analysis, which 

identified an association peak on chromosome eight with a top SNP rsID1512802 

(8:5882269G>C) having a -log10(p.val) of 6.9. This was identified as an intergenic variant 

falling between two non-coding pseudogenes.  

Fine mapping analysis revealed that the SNPs with the lowest p values, did not coincide with 

SNPs in the first credible set with the greatest PIPs. In fact, the lead SNP identified by META 

had a PIP far below one (3.57898e-10) however, it was in LD with those in the first credible 

set (0.6 < r2 <0.8). Fine mapping estimated five variants to have a PIP = 1, which is the highest 

estimate of potential causality. These variants reside around pseudogenes, and replication of 

analysis on a larger sample size is needed for drawing conclusions, particularly given that the 

initial META peak was only approaching significance (see Section 2.1 for further 

commentary). Following a series of GWAS and META analysis, SNP based heritability 

analyses were performed. Results indicated that approximately, 12.210% (SD = 2.962) and 

17.717% (SD = 4.757) of heritability may be explained by the nuclear factors captured by GWAS 

in the multicentre GWAS and the meta-analysis, respectively.  
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6.1.4 Chapter 5: Mitochondrial DNA GWAS (miWAS) and differential haplogroup 

distribution  

The only significant miWAS result was in the 100kGP m.3243A>G cohort where SNP 

m.16356T>C had a -log10(p.val) = 3.5; which is a haplogroup U marker. However, association 

with this SNP was not present in the META analysis combining 100kGP and UKBB data, 

indicating a potential false positive result.  

Although not significant, haplogroups J was found to be more common in m.3243A>G 

carriers in the multicentre cohort as well the 100kGP data, which contrary to the French 

study (Pierron et al., 2008), indicate no underrepresentation of haplogroup J in m.3243A>G 

carrier individuals. This pattern, however, was not observed in the UKBB data. Additionally, 

frequency of haplogroup K was significantly greater in the multicentre than the general 

population of Europe and England (p < 0.00001), this pattern was not consistent across all 

variant carrier populations (the UKBB and carriers in 100kGP), and may be due to the fact 

that the multicentre cohort is clinically ascertained, with individuals having higher levels of 

m.3243A>G, and thus are being modulated using different heritable factors. A replication, 

clinically ascertained cohort of m.3243A>G carriers would be needed to test whether this 

observation persists. 

 

6.2 Strengths and limitations  

The main limitation of this study has been sample size, which is a common challenge in rare 

diseases. Although identifying m.3243A>G carrier data from the UKBB and Genomics England 

has contributed an additional 279 samples, neither of the individual GWASs nor the META 

analysis combining UKBB and 100kGP data had sufficient power to detect variants with small 

effect sizes. The performed META analysis had 87% power to detect variants with MAF ≥ 0.2 

and ES > 0.6 at a genome wide significance. Small cohort studies, such as the GWAS on age-

related macular degeneration disease, which was conducted on 96 cases and 50 controls, 

was successful at identifying an association with a large effect, intronic, and common variant 
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in the complement factor H gene (CFH) (Klein et al., 2005b). However, the fact that no such 

variants were identified in this study suggests that the variants underlying m.3243A>G 

heterogeneity are either rare or have smaller effect sizes, both of which would require a 

larger sample size to be detected.  

Using ATAC sequencing methods on nine variant carriers, Walker et al., (2020) observed a 

significant, and rapid selection against m.3243A>G in T cells compared to other blood cell 

types, this observation was also confirmed by Franklin et al., (2023). However, bulk blood 

heteroplasmy measures average heteroplasmy levels across all blood cell types and blood 

variant heteroplasmy levels (with or without age correction) are equally good predictors of 

disease burden, when compared to estimates from muscle tissue (Grady et al., 2018). 

Nonetheless, age-correction formulae are needed to obtain an estimated measure of 

heteroplasmy at birth. All the presented age-correction formulae and blood heteroplasmy 

decline rates are estimates, and there is none that is 100% definitive (Rajasimha, Chinnery and 

Samuels, 2008). Franco et al., (2022) suggested that the age correction formula used in this 

project is under correcting for individuals with high m.3243A>G variant levels, and over 

correcting for those with low levels while being sufficient for those with medium levels. This 

stems from the observation that mutation levels in individuals with high variant levels tend 

to have a more aggressive decline than the proposed 2% (Rajasimha, Chinnery and Samuels, 

2008), whereas those with low levels stabilise, or in some cases, increase over time, 

indicating a dichotomous pattern that cannot be described by a single decline rate (Franco et 

al., 2022b). Having said so, unless better methods to estimate heteroplasmy are developed 

(Section 6.3.3 below), age-corrected measures from blood remain to be the source that was 

able to provide this project with the greatest number of samples. 

In addition to identifying m.3243A>G carrier samples, this project utilised family tracing to 

identify obligate carrier individuals. The minimum detection threshold set for the m.3243A>G 

calling pipeline was 1%, and this was the minimal value assigned to obligate carriers before 

taking them forwards for age-correction. Ideally, allele frequencies of obligate carriers 

obtained directly from the variant calling pipeline should have been used for age-correction. 
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Nonetheless, we estimate that the difference between age-corrected levels from the 

pipeline and those based on the arbitrary age-corrected values would be minimal. 

Efforts have been made with the attempt to explain the variability of m.3243A>G levels, 

genetic bottlenecks during inheritance (Hauswirth and Laipis, 1982b; Cruchaga et al., 2014), 

selection (Khrapko and Turnbull, 2014; Franco et al., 2022b), and random genetic drift (Wilson 

et al., 2016), have been the leading explanatory theories. However, Pickett et al., (2019) used 

family pedigrees and estimated that ~72% of the observed heterogeneity can be explained by 

heritable, genetic factors which is what this study endeavoured to discover.  

Up to date, this is the first GWAS study that investigates the underlying causes of the 

pathogenic m.3243A>G heteroplasmy variability. Although none of the GWASs yielded a 

significant result, this study is a proof of concept, with applicable methods that should be 

further employed on larger m.324A>G carrier cohorts.  

Additionally, the devised heteroplasmy calling pipelines, and data QC procedures 

implemented in this study would facilitate a faster identification of m.3243A>G carrier 

samples in further cohorts.  

 

6.3 Implications and further directions 

6.3.1 A more complex underlying structure  

As mentioned previously, GWAS have been successful in identifying loci associated with a 

plethora of complex, rare as well as common diseases. However, unless there are large 

sample sizes, the detection of associations with low frequency variants (0.5% ≤ MAF ≤ 5%), 

and rare variants (MAF < 0.5%) has not been a strong suit of GWAS (Lee et al., 2014a). The 

reason for this is multi-fold: (1) GWAS rely on the concept of LD, which facilitates the 

detection of casual variants, and rare variants are less likely to be found in LD with 

surrounding variants, which makes it a challenge for GWAS. (2) Rare variants tend to have 

large effect sizes, which may be detected with a relatively small sample size GWAS however, 

if the effect size of the rare variant is small or moderate, this will be left undetected. 
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Additionally, leaving rare variants unfiltered in the data ahead of a GWAS, whilst knowing 

that it is underpowered to detect them, leads to type 1 errors. Hence why rare variants were 

filtered out in this study.  (3) A large sample size is often crucial to achieve a sufficient 

detection power, and the detection of rare variant associations would require even a larger 

sample size – this is because rare variants tend to have a small population frequency and 

analysis detection power decreases as allele frequency decreases (Asimit and Zeggini, 2010).  

Momozawa & Mizukami, (2021) estimated that to detect genome-wide significant 

associations (p ≤ 5x10-8) with 80% power, a sample size of 100,000 individuals is needed for 

variants with a MAF of 0.01 and a complete correlation (ES of 1). For variants with an effect 

size of 0.1, a sample size of one million individuals is required. Additionally, they suggest that, 

because rare variants tend not to be in LD, more tests are needed for their identification and 

thus, an even lower significance threshold should be used, which further decreases the 

power (Lee et al., 2014b).  

Gene or region aggregation tests could be a method worth implementing on the data used in 

this project, as they help overcome the issue of missing associations with rare variants. 

Instead of analysing individual variants, they assess the combined impact of various genetic 

variants within a specific gene or region, increasing the ability to detect associations when 

multiple variants contribute to a particular trait (Asimit et al., 2012). For example, an 

association between Alzheimer’s disease and the PLD3 gene was identified using a gene-

burden test, which yielded a p-value of 1.4 × 10-11. In contrast, no single variant within the 

gene reached a significant p value. Numerous rare variants within the PLD3 were found to be 

shared among affected individuals, but their significance was limited by their very low MAF.  

Consequently, the gene-based test, which aggregated these rare variants, offered greater 

statistical power (Cruchaga et al., 2014). 
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6.3.2 The rise of large sequencing datasets 

The availability of large datasets provides a greater detection power for analyses such as 

GWAS. Large WGS datasets, would enable the identification of both m.3243A>G variant 

carriers (via variant calling pipelines), as well as rare nuclear variants (Section 6.2.1 above).   

There are growing efforts put into both constructing large WGS patient- as well as 

population-based datasets and making them more accessible to researchers worldwide. For 

example, in 2019, the world economic forum led the pilot project: Breaking Barriers to Health 

Data, with genomic institutions in Australia, Canada, the UK, and US to ‘create a model to 

share rare disease data across borders in  federated data systems’, updated in 2020, it was a 

proof of concept that balanced the need for data access with privacy and security concerns 

(Thorogood, 2020). 

Most recent example of available national datasets is the American ‘All of US’ research 

program, that is aiming to recruit and sequence data of more than half a million individuals 

across the US, from diverse, underrepresented nuclear ancestries (Bick et al., 2024). 

International, collaborative datasets have been limited by data sharing restrictions however, 

it is a constantly growing and improving area. Datasets such as The International Cancer 

Genome Consortium (ICGC) (Zhang et al., 2011), The Parkinson’s Progression Markers 

Initiative (PPMI) (Marek et al., 2011), and The International Multiple Sclerosis Genetics 

Consortium (IMSGC) (Booth et al., 2009) are the most notable.  

The recent publication of WGS data of additional 300,000 individuals’ data by the UK Biobank 

(Li et al., 2023), is currently being analysed by colleagues, and so is a work in progress that is 

further expanding this project by identifying additional carrier samples.  

Meanwhile, the use of animal models, such as mice, provides an idea of the possible 

underlying mechanisms in humans. For example, most of our understanding about germline 

selection and bottlenecks stemmed from initial research conducted on mouse embryos 

(Jenuth et al., 1996b; Cree et al., 2008b; Sharpley et al., 2012).  



 

 

 

 

150 

Due to their short reproductive cycle, large litters, and their genetic similarity to humans 

(mammals which are likely to have similar mechanisms), several methods have been 

developed to edit mouse mitochondrial genomes: such as mitochondrial-targeted zinc-finger 

nucleases (mtZFNs) (Gammage et al., 2014), or transcription activator-like effector nucleases 

(TALENs) (Bacman et al., 2013). However, the novel Double-strand break-induced DNA 

Deaminase Cytosine Base Editors (DdCBEs) method has provided higher precision and lower 

off-target effects (Mok et al., 2020). This new technology will enable the creation of further 

mitochondrial disease mouse models, as well as offering the potential to develop 

mitochondrial disease modifying cures based on mtDNA base editing (Silva-Pinheiro and 

Minczuk, 2022). 

 

6.3.3 Improved heteroplasmy estimates 

Blood has been routinely used for diagnosis and disease burden estimates, due to both its 

accuracy as well as practically. However, research is providing evidence on the incompletely 

accurate picture provided by bulk blood measurements (Franco et al., 2022b). This 

necessitates an improved measurement approach, or ideally, measurement from muscle 

tissue whose variant allele levels is known to remain stable over time (and so no age 

corrections would be needed) (Stewart and Chinnery, 2021b). This, however, is much more 

invasive, expensive and impractical for routine measurements and sample collections. Given 

access to this tissue is no longer a prerequisite for diagnosing m.3243A>G-related 

mitochondrial disease, adds an additional layer of complexity. 
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6.4 Final Conclusion  

This project lays the groundwork for further exploration into the intricate relationship 

between genetic variation (involving both the nuclear and mitochondrial genomes) and the 

m.3243A>G variant, and how these influence variability in mtDNA heteroplasmy. The 

identification of m.3243A>G heteroplasmy associated factors would give us crucial insight 

into the timing this ‘interplay’ happens based on gene expression patterns. Whether for 

example, expression is enriched in early stages of oogenesis, in embryo development stages, 

or postnatally. 

Findings from such investigations would not only further our knowledge about the 

mechanisms underlying m.3243A>G variant level heterogeneity, but it would provide insight 

into the aetiology underlying other, rarer mitochondrial pathogenic variants, such as 

m.8344A>G. This would ultimately improve our understanding of mitochondrial DNA disease, 

which holds the promise of improving patient outcomes and the lives of those that suffer 

from mitochondrial DNA disease.  
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