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Abstract

Randomised control trials (RCTs) typically compare one experimental treatment to

a control. However, over recent years, with the growing availability of many treatments

for evaluation and the increasing complexity of determining which are promising, a

growing need has emerged for more efficient trial designs. Accordingly, adaptive designs

have gained popularity in clinical research, including multi-arm multi-stage designs and

platform trial designs. Such designs aim to improve the clinical trial process by allowing

the removal and/or addition of treatment arms during the course of the trial.

In almost all clinical trial designs, randomisation remains a fundamental principle

to ensure unbiased treatment comparisons. This is no less true of adaptive designs,

yet randomisation routines have received less attention for such studies compared to

historical fixed sample designs. Therefore, throughout this thesis, the key considerations

discussed include the importance of proper randomisation approaches and allocation

ratios to achieve clinical trial objectives in adaptive trials.

First, I compare different randomisation approaches in the context of multi-arm trials

to achieve various trial objectives, such as group size balance, covariate balance, effect

precision, low allocation predictability, and high power. Next, two adaptive clinical trial

designs are considered: multi-arm multi-stage designs build on multi-arm designs by

incorporating interim analyses with stopping rules. In particular, if an experimental

treatment shows poor performance, it can be dropped early. In this design, allocation

ratios can be fixed throughout the trial, flexible (adjusted based on observed interim

data), or pre-specified but variable across the study stages.

Finally, attention shifts to randomisation methods in a platform trial design, to which

new treatments can be added or dropped over time, and allocation ratios might need

to be modified to achieve the study objective(s). Here, the focus is on randomisation



approaches with different allocation ratios, aiming to achieve high covariate balance,

especially for a newly added arm in the trial.
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Chapter 1

Background and motivation

1.1 Introduction

Before any new medical treatment becomes available to the public, clinical trials must

be conducted to ensure that the treatment is safe and effective (Pocock, 2013). Clinical

trials are research studies conducted in which human participants are involved to evaluate

the efficacy and safety profile of a new treatment (or, more broadly, an intervention,

procedure, or device) relative to the currently available treatments. Typically, this

means ascertaining that the new treatment is superior to existing treatments or placebo

(Matthews, 2006).

Such trials are usually divided into several phases. Phase I trials often involve a small

number of healthy volunteers. However, in some circumstances, such as when testing

treatments for a fatal disease, those involved may consist of patients who have previ-

ously exhausted all available treatment alternatives. Phase I trials focus on studying

the pharmacokinetics (i.e., the movement of the treatment through the body), phar-

macodynamics (i.e., the treatment’s effect on the body), and toxicity of a treatment,

with the primary objective being to establish a tolerable dose range. Phase II trials are

then conducted on patients with the disease of interest. These are initial efficacy studies

1
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conducted to determine the dose and frequency of dosing required to successfully treat

patients (Peace and Chen, 2010). If a treatment is indicated as effective during phase II,

then it proceeds to phase III. These are large-scale, costly confirmatory trials in which

the experimental treatment is compared to a control (standard treatment or placebo),

with the primary goal of establishing the treatment’s effectiveness. After approval of the

treatment, its long-term effects on the patient population are monitored during phase

IV trials following release to the market.

A well-designed clinical trial must include: a control group, blinded, and randomi-

sation (Byar et al., 1976; Matthews, 2006). These are essential components to design

any successful clinical trial. In particular, designs that incorporate randomisation and a

control group are referred to as a randomised control trial (RCT). More explicitly, such

trial designs have two key features: i) the new treatment is administered to a group of

patients (treatment arm), and another treatment, often the current standard-of-care or

placebo, is administered to another group of patients at the same time (control arm).

This is what makes the trial controlled; and ii) patients are allocated to the treatment

and control groups with some element of chance (randomisation).

The idea of randomisation was first introduced by (Fisher, 1926), who randomly

assigned treatments to blocks or plots of land in an agricultural study. Randomisation

was then introduced into clinical studies in the early 1930s by Amberson Jr et al. (1931).

However, the randomisation principle was not implemented in clinical trials until 1948 by

the Medical Research Council. This landmark study, led by Sir Austin Bradford Hill, is

recognised for establishing the use of random numbers to allocate patients to treatment

and control groups; these random numbers helped eliminate potential biases in patient

selection and achieve effective balancing of groups for comparison (Rosenberger et al.,

2018).

Randomisation is the process of assigning patients to different treatment groups using

random elements, ensuring that each patient has an equal chance of being allocated

2
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to any treatment group. The use of randomisation in clinical trials has substantial

advantages. First, randomisation (at least theoretically) ensures the treatment arms

are more comparable in terms of patients baseline characteristics (covariates). In non-

randomised observational studies, attempting to achieve such comparability typically

involves adjusting for or matching for known covariates. However, this does not ensure

control for other unknown covariates. Randomisation, on the other hand, also allows

comparability for unknown covariates (Chow and Liu, 2008; Rosenberger and Lachin,

2015). This means that any observed difference between the treatment arms at the end

of the trial is due to the treatment itself rather than any other factors (covariates).

Second, randomisation can also eliminate selection bias, which refers to the bias

that can be introduced by selecting particular patients to receive specific treatments

(Rosenberger and Lachin, 2015). In a RCT, this can occur if the clinician or investigator

knows or can predict what treatment will be assigned next; the result can be biassed by

selecting a patient expected to be more likely to benefit from that treatment. Selection

bias has been discussed in the literature since the 1950s (e.g., Blackwell and Hodges Jr

(1957)), modelled the impact of a clinician’s attempt to guess the next allocation and

then select a particular patient for a particular treatment (Rosenberger and Lachin,

2015).

Berger (2005) distinguishes between allocation concealment and masking. The au-

thor describes allocation concealment as the negation of the ability to observe upcoming

allocations, so that investigators are unaware of the treatment assignment until after it

has been assigned. Masking is more complex because it necessitates keeping the treat-

ment assignment unrevealed until the end of the trial. It is not always possible to mask

investigators, but it is always possible to conceal allocation. Allocation concealment

plays a crucial role in preventing selection bias, as noted by Rosenberger and Lachin

(2015). However, selection bias can occur even when allocation concealment is present,

as investigators can still attempt to predict the next treatment assignment. Certain

3
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randomisation procedures, as we shall see through the thesis, reduce the predictability

of treatment assignments and mitigate selection bias further.

Based on the discussion above, a well-chosen randomisation routine in clinical trials

should incorporate specific properties to ensure the success of the trial. The desirable

properties of such a routine include:

• Balance. A well-designed randomisation process should ensure that the groups

being compared are balanced in terms of known and unknown covariates. This

minimises the risk of confounding variables affecting the results, as it ensures

that these factors are equally distributed across all treatment groups, making the

comparison of outcomes between groups fair and unbiased (See, e.g., Heritier et al.

(2005) and Bruce et al. (2022)).

• Randomness. The allocation of patients to different treatment groups must be

unpredictable to both the patients and the investigators. As I mentioned above,

this helps prevent potential biases by ensuring that each participant has an equal

and independent chance of being assigned to any group (Rosenberger and Lachin,

2015).

• Simple Implementation. The randomisation process should be easy to implement

in practice. If the method is too complex, there may be errors in execution, which

could lead to unintentional biases. A simple and clear procedure helps ensure that

the randomisation is carried out consistently and correctly throughout the trial.

All the above randomisation properties are applicable for almost RCTs. However, it

should be noted that several methods of randomisation are possible and that, some of

these are more effective than others in achieving comparable groups. This issue will be

explored in more details throughout this thesis.

Therefore, the scope of this thesis is to explore and evaluate several randomisation

methods and allocation ratios within the context of multi-arm and adaptive clinical trial

4
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designs. I begin by describing multi-arm and adaptive clinical trial designs in Sections 1.2

through 1.4. Following this, Sections 1.5 and 1.5.4 provide a comprehensive overview of

randomisation methods and allocation ratios that have been discussed in the literature.

1.2 Two-arm fixed sample trials

The prototypical randomised control trial (RCT) is a two-arm parallel group trial that

compares one experimental treatment to control treatment or placebo. This design is

simple and is often used to evaluate distinct treatments. In this trial design, a pre-

determined number of patients are randomly assigned to one of two treatment groups.

The trial is then conducted, and the outcomes of the two treatment groups are compared

to assess the effectiveness of the new treatment. However, this may not be always efficient

for complex clinical objectives.

1.3 Multi-arm trials

While RCTs have become a mainstay of trial implementation in practice, investigators

have recently sought to improve upon this design by comparing several treatment arms

simultaneously. These multi-arm randomised control trials have become increasingly

popular due to their myriad of benefits compared to two-arm trials. These benefits

include: i) the efficient comparison of several treatments in a single trial reduces the

required sample size, whilst also saving time and money, compared to conducting sep-

arate trials for each treatment (Juszczak et al., 2019); ii) evaluating different doses of

the same treatment within a single trial design allows investigation of the optimal dose

and minimises the need for additional trials (Mossop et al., 2022); and iii) assessing

the efficacy of combining multiple experimental treatments can help identify the most

successful combinations (Jones and Kenward, 2003).
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Despite all the benefits of multi-arm trial designs, they are typically large and ex-

pensive, and they can take a long time to complete. In March 2004 the United States

Food and Drug Administration (FDA) released a landmark report expressing concern

about the slowdown in innovative treatments that were being submitted for approval

(U.S. Food and Drug Administration, 2004). The report indicated “an urgent need to

improve the efficiency and effectiveness of the clinical trial process, including improved

trial design”. Consequently, in March 2006, the FDA released a document indicating

that biomarker development and streamlining clinical trials are the two most important

areas for improving medical product development (U.S. Food and Drug Administration,

2006). Streamlining clinical trials includes the advancement of innovative trial designs,

such as adaptive designs (ADs).

1.4 Adaptive clinical trial designs

An AD is defined as a clinical trial design that allows modification(s) to be made to

one or more aspects of the trial design based on accumulating data from patients in

the trial (Jaki, 2015; Pallmann et al., 2018; Burnett et al., 2020). These modifications

are performed on the basis of interim analyses, without compromising the validity and

integrity of the ongoing trial. The interim analyses are conducted at pre-specified times

throughout the trial, to allow investigators to decide whether or not to, e.g., make

modifications to the sample size, the number of treatment arms, and/or the treatment

allocation ratios (that is the ratio of patients assigned to the experimental arms relative

to the control arm) (Jaki, 2015; Pallmann et al., 2018; Burnett et al., 2020). Despite the

recent growth in attention received by ADs, they have been around for more than 50

years, and ADs have now been developed to improve efficiency in all phases of clinical

research (Bauer et al., 2016).

An example of an AD is the group sequential design (GSD), which was developed to
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evaluate the efficacy/futility of a single treatment arm through a series of pre-planned

interim analyses, allowing clinical benefit to be assessed under economic and ethical

constraints (Pocock and Simon, 1975; O’Brien and Fleming, 1979; Gordon Lan and

DeMets, 1983; Whitehead and Brunier, 1990; Jennison and Turnbull, 1999; Wassmer

and Brannath, 2016). If multiple treatments are of interest, a Multi-Arm Multi-Stage

(MAMS) design may be more beneficial (Stallard and Todd, 2003; Magirr et al., 2012;

Urach and Posch, 2016).

1.4.1 Multi-arm multi-stage designs

The MAMS design allows investigators to evaluate multiple experimental treatments

simultaneously over multiple study stages. MAMS designs are increasingly being imple-

mented in practice due to their myriad of advantages over traditional clinical studies:

1. Multiple research questions can be answered simultaneously in a single trial rather

than sequentially or through a series of separate trials. This helps investigators

gain more information about treatments and make faster decisions about future

development.

2. Instead of using a separate control group for each treatment, a shared control

group can be used, which can reduce required sample sizes and trial costs.

3. A head-to-head comparison of treatments can be carried out directly, reducing

the potential for bias arising from comparisons between treatments evaluated in

different trials.

4. All patients are randomised upon enrollment to one of the treatment arms at the

beginning of the trial. This ensures balance in covariates across treatment arms

and mitigates selection bias.

7
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5. At the end of each stage, an interim analysis is conducted to determine which, if

any, of the treatment arms performs better or worse than the control arm to justify

their removal from further study in subsequent stages. These interim analyses allow

investigators to monitor the safety and efficacy of the treatments throughout the

trial. This helps identify potential risks or lack of effectiveness early, minimising

the exposure of patients to harm or ineffective treatments (Chow and Chang, 2006).

Some MAMS trials allow early stopping for efficacy performing several interim anal-

yses on the same trial, increasing the chance of falsely rejecting a null hypothesis (type

I error rate inflation). Consequently, several methods are available to control this error,

such as: i) alpha spending functions, as proposed by Demets and Lan (1994), to spec-

ify how much of the overall type I error rate (typically 5% two-sided) can be spent at

each interim analysis; ii) functional-form stopping boundaries (e.g., Pocock and Simon

(1975); O’Brien and Fleming (1979)), which adjust the significance level for each interim

analysis to compensate for multiple testing.

Figure 1.1 illustrates an example of a MAMS trial that includes two experimental

arms compared to a shared control arm. At the interim analysis, experimental arm 2

dropped out of the trial, while experimental arm 1 continued to the end of the trial.

1.4.2 Platform trial designs

In addition to the implementation of ADs, a notable advancement in clinical trial study

designs to improve efficiency is the use of a “master protocol” (Park et al., 2023). A

master protocol is a trial design that allows testing of several treatments, individually

or in combination, as well as testing multiple diseases simultaneously, all under a single

protocol. The use of master protocols in clinical trials is increasing, as it provides a

more streamlined and cost-effective approach to drug development (Berry et al., 2015).

Investigators can effectively investigate multiple, potentially very distinct, hypotheses
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Figure 1.1: Illustration of a multi-arm multi-stage design.

within one study.

One of the master protocol designs is a MAMS platform trial which refer to ADs

that allows new treatments to be introduced to the ongoing trial over time, even if they

are not pre-specified in the planning stage. The platform trial designs have numerous

advantages, encompassing all the benefits of the previously mentioned MAMS designs

in Subsection 1.4.1, along with additional advantages such as:

1. Incorporating new treatment(s) for testing allows for an expedited evaluation and

decision making regarding these treatment(s), saving time and resources.

2. Platform trials also provide the flexibility to update the control arm as the trial

progresses. This is particularly useful when, for example, the platform trial demon-

strates that a treatment is much more effective than a control treatment. In such

cases, a successful treatment can be promptly introduced to benefit patients and

become the new control treatment against which all subsequent treatments are

tested in the trial, creating a potential cycle of improvement.

3. In platform trials, when new experimental arm(s) are added at a certain time point,
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there will be a group of patients who were previously enrolled in the control arm.

At analysis time, there are two different situations for comparing the newly added

arm to the control arm: i) the newly added treatment arm is only compared

to control arm patients recruited during the same time period as the enrolled

patients in the newly added arm; ii) the newly added arm can be compared to all

previously enrolled patients and current patients in the control arm. According to

this, the control arm can be divided into a concurrent control and non-concurrent

controls based on enrolment time relative to specific experimental arms. When

non-concurrent controls can be leveraged, additional efficiency advantages may be

possible (Berry et al., 2015).

Figure 1.2 illustrates an example of a platform trial that initially starts as two-

arm, then later a new treatment arm is added. In this illustration, patients are initially

randomised with fixed (often equal) allocation randomisation, then the new experimental

arm is added to the trial, and patients are again randomised to all treatment arms using

a fixed allocation ratio.

Figure 1.2: Illustration of a platform trial.
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The most commonly cited example of a MAMS platform design is the STAMPEDE

trial, which is a multi-centre randomised phase III trial that evaluated new treatments

in men with hormone-naive prostate cancer (Parmar et al., 2017). This trial initially

started with five experimental arms, then five additional experimental arms were added

during the course of the trial. Another recent example of a platform trial is RECOV-

ERY (Randomised Evaluation of COVID-19 Therapy). This is one of the largest inter-

national platform trials, aiming to identify effective treatments for patients hospitalised

with COVID-19. The RECOVERY trial started with five treatment arms, and as it

progressed, it added 10 additional treatment arms. The trial’s objective is to deter-

mine whether any of the different treatments (as of June 2022) reduced mortality in

COVID-19 patients. (Horby et al., 2020).

Despite the fact that clinical trial designs have undergone significant changes over

the years, randomisation remains a crucial element in almost all controlled trial designs.

1.5 Randomisation in clinical trials

Randomisation approaches can be broadly categorised into two classes: conventional

(or fixed) randomisation and adaptive (or restricted) randomisation (Chow and Liu,

2008). Conventional randomisation approaches use predetermined probabilities to in-

dependently allocate patients to various treatment arms. However, this method can

accidentally result in imbalances between treatment arms.

Consequently, the concept of adaptive randomisation has been proposed to miti-

gate such imbalances. This can be achieved by dynamically adjusting the probability

assignment to the treatment arms throughout the trial (Wei, 1978). The adaptive ran-

domisation process takes place at each time of enrolling a new patient in the trial. In

clinical trials, adaptive randomisation is often applied with respect to treatment, co-

variates, or clinical response (Chow and Liu, 2008). Therefore, adaptive randomisation
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approaches can be referred to as treatment adaptive randomisation, covariate adaptive

randomisation, or response adaptive randomisation.

The primary focus of this thesis will be on conventional randomisation, treatment

adaptive randomisation, and covariate adaptive randomisation. For an overview of re-

sponse adaptive randomisation, the reader is referred to Atkinson and Biswas (2013).

1.5.1 Conventional (or fixed) randomisation

Conventional randomisation, also known as fixed randomisation, involves treatment al-

location probabilities that remain constant throughout the trial (Berger et al., 2021).

In this method, investigators pre-specify allocation probabilities to each treatment arm

before the trial begins. The patients are then allocated accordingly using a random num-

ber generator, which ensures that each patient has a fixed probability of being assigned

to any treatment arm.

The simplest and most straightforward fixed randomisation method is simple ran-

domisation (SR), also known as complete randomisation. SR can be thought of as

randomly assigning patients to a particular treatment arm by the toss of a coin. The

main feature of this method is its high level of randomness. However, SR can result in

an imbalance between treatment arms; this may be particularly critical when there is an

important covariate to balance (Matthews, 2006). This limitation was recognised earlier

in agricultural studies by Fisher (1992). The author proposed dividing the experimental

field into blocks (or groups) with similar conditions. Subsequently, different treatments

were randomly assigned to these blocks, ensuring that each treatment received a fair

representation within each block with similar conditions. This approach effectively min-

imised the impact of key factors that influence study outcomes and allowed a more

accurate comparison of treatment effects (Fisher, 1992).

Since then, several authors (e.g., Cochran (1939)) have suggested the use of strat-

ification within blocks in clinical trials to control for specific known covariates. This
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is referred to as stratified block randomisation (SBR). The aim of SBR is to eliminate

the potential bias that could occur when there are covariate imbalances between the

treatment arms. Currently, SBR method is the most popular and widely used randomi-

sation approach in practice due to its effective ability to balance on patients covariates

(Zagoraiou, 2017; Berger et al., 2021; Bruce et al., 2022).

Although SBR method has been widely used in clinical trials, it is not without lim-

itation. A particular limitation can occur when there are a large number of important

covariates or a small number of covariates with many levels. In a clinical trial, a com-

bination of these important covariates may be defined as a strata. In this case, these

strata may not achieve balance because some of them may contain only a few patients,

particularly in a small clinical trial. To account for this, several researchers, including

Taves (1974) and Pocock and Simon (1975) proposed covariate adaptive randomisation

to better balance a large number of strata; we discuss such approaches below. An-

other limitation of SBR is that it can introduce some level of allocation predictability

compared to other randomisation methods, such as SR. For example, for a two-arm

comparison with small block sizes (e.g., 2 or 4), the sequence of treatment assignments

within a block can become predictable after the first few patients are enrolled. This pre-

dictability arises due to the limited number of possible combinations within the block.

This predictability can be further increased if the allocation sequence within blocks is

not randomised.

1.5.2 Treatment adaptive (or restricted) randomisation

Treatment adaptive randomisation, also known as restricted randomisation, aims to

reduce the deviation from the target treatment allocation ratio. Treatment adaptive

randomisation approaches effectively modify the assignment probabilities of new patients

based on the current treatment imbalance (Chow and Chang, 2006; Chow and Liu, 2008).

This helps to ensure a more balanced allocation of patients between treatment arms as
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the trial progresses.

Examples of popular treatment adaptive randomisation methods include the Biased

Coin Design (BCD), as introduced by Efron (1971). In this method, the randomisation

process starts with an equal assignment probability for each treatment arm. Then, when

a new patient is ready to be allocated, the assignment probability is biased in favour

of the treatment group that currently has fewer patients. Specifically, Efron (1971)

suggested using an assignment probability of 2/3 to the smaller arm. While easy to

understand, the BCD may not be sufficiently effective in practice because this increased

assignment probability is constant and fixed throughout the trial.

Consequently, several authors have modified the BCD to achieve better treatment

balance. For example, Wei (1977, 1978) developed an adaptive BCD where the assign-

ment probabilities update according to the degree of imbalance between treatment arms;

this is known as an urn design UD. The UD has been extensively studied and developed

in research due to its flexibility. Although, the UD design is advantageous in that it can

be readily applied to clinical trials with two or more treatment arms, it is important to

consider its limitations and the potential for treatment imbalance, especially in larger

trials (Rosenberger and Lachin, 2015).

Furthermore, Soares and Wu (1983) extended the BCD in an attempt to reduce

treatment imbalances, referring to their design as the Big Stick Design (BSD). In this

method, a predetermined threshold specifies the maximum acceptable difference in the

number of patients allocated to each treatment arm, this is known as “maximum tolerated

imbalance” (MTI). The MTI intervenes when necessary to prevent treatment arms from

deviating too far from each other. For illustration, in the BSD, patients are randomly

assigned to treatment arms until a pre-specified MTI is reached. The following patient

will then be allocated deterministically to the treatment group with fewer patients. This

clearly effectively caps the imbalance between treatment arms. However, treatment

allocation is completely predictable for certain participants, given knowledge of past
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assignments.

In addition to the BSD, there are other proposed methods within the MTI family,

such as Chen’s procedure (Chen, 1999), the maximal procedure (MP) (Berger et al.,

2003), and the block urn design (BUD) (Zhao and Weng, 2011). Chen’s design com-

bines elements of the BCD and BSD, referred to as Biased Coin Design with Imbalance

Tolerance (BCD-IT). This method was proposed to achieve better treatment balance

and reduce the assignment predictability that occurs with the BSD. In the BCD-IT

method, patients are randomly assigned to treatment arms until a pre-specified MTI

is reached. Then, a new enrolled patient will be randomised to treatment arms with a

pre-defined biased assignment probability. Although the BCD-IT method can achieve

a level of treatment balance while reducing the predictability of assignment, it is only

suitable for a two-arm trial due to the difficulty in calculating the assignment probability

based on both previous assignments and MTI thresholds (Zhao et al., 2018).

Furthermore, the MP design and BUD were proposed for two or more treatment arms.

The MP design proposed to maximise the number of feasible allocation sequences under

both the MTI threshold and the length of the allocation sequence (Berger et al., 2003).

However, its implementation is difficult as there is no simple algorithm for calculating

the conditional allocation probability based on previous assignments (Zhao et al., 2018).

The BUD was proposed by combining aspects of both the UD and block randomisation,

to achieve both of their objectives (Zhao and Weng, 2011). However, this approach

may not be suitable for small clinical trials as it requires a reasonable sample to achieve

balance.

In fact, adaptive treatment randomisation procedures have received considerable

interest in recent decades as an effective approach to improve the balance between treat-

ment arms (Chow and Liu, 2008). Therefore, in research studies, various methods have

been developed in different formats, especially as extensions of the BCD and UD (e.g.,

Chen (2000); Antognini and Giovagnoli (2004); Bailey and Nelson (2003); Kuznetsova
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and Tymofyeyev (2015)). However, not all are (often, if ever) considered for implemen-

tation in practice, for several reasons:

• Complexity. Some of the developed methods can enhance the level of complexity

in implementation and interpretation (Zhao et al., 2018). In practice, simplicity

and ease of implementation are often prioritised. This is particularly true for

more complex clinical trial designs. More specifically, in adaptive randomised

control trials, investigators look for a simpler and more effective implementation

of randomisation approaches (Chow and Chang, 2006), since the trial design is

already more complex compared to traditional two-arm trials.

• Some randomisation methods may not be applicable for multi-arm trials or when

there is a need to account for covariates. For example, the BSD and BCD-IT

were proposed and recommended only for two-arm trials (Berger et al., 2003; Zhao

et al., 2018).

• Several randomisation methods are designed specifically for equal allocation ratios,

such as the BSD. Therefore, they are not applicable for trials that wish to use

unequal allocation ratios (Soares and Wu, 1983).

• Not all randomisation methods are applicable in all clinical trial settings. More

specifically, in emergency settings or trials with significant time pressures, adaptive

randomisation methods might be impractical. This is because these methods of-

ten require real-time data analysis and decision-making, which can be challenging

under time constraints. In such cases, SR or SBR might be more practical options.

These methods are easier to administer quickly and without the need for extensive

computational support, ensuring that the trial can proceed without delays.
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1.5.3 Covariate adaptive randomisation

In covariate adaptive randomisation, the assignment probability is adjusted based on

previous assignments within strata. This concept was proposed in the early 1970s by

several authors (Taves, 1974; Pocock and Simon, 1975), to balance a large number of

covariates. Taves (1974) termed it minimisation, proposing it as an appropriate ap-

proach for a multi-arm clinical trial to minimise overall treatment imbalances for a large

number of strata. His proposal was entirely deterministic. This means that a new en-

rolled patient is allocated with certainty to the treatment that minimises the imbalance.

Subsequently, Pocock and Simon (1975) modified the minimisation approach by incor-

porating allocation probabilities (i.e., a random element) to reduce the deterministic

assignment. Specifically, instead of strictly allocating the new patient to the treatment

arm that minimises the imbalance, the patient will be allocated to that arm with a pre-

specified fixed probability. This allows the option that would minimise the imbalance to

be weighted more heavily, while retaining a chance that the patient could be allocated

to other treatment arms, to improve randomness (Taves, 1974; Pocock and Simon, 1975;

Tymofyeyev et al., 2007; Lauzon et al., 2022).

Since then, minimisation with a random element has become widely used in clinical

trials to achieve marginal balance between each covariate separately. It has been widely

argued to be the best method to achieve covariate balance in practice (Kuznetsova and

Tymofyeyev, 2012). However, this is only when equal allocation is desired for two or

more treatment arms, expanding it to unequal allocation proved challenging (Han et al.,

2009; Kuznetsova and Tymofyeyev, 2012). Han et al. (2009) showed that the minimisa-

tion process needs to be modified for trials involving unequal treatment allocations. The

authors introduced two modifications: the first was referred to as naive minimisation. In

this method, the unequal allocation ratio is accounted for in calculation of the required

imbalance score. This can be achieved by dividing the treatment counts within each fac-
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tor level by the treatment allocation ratios. Once the preferred treatment is determined,

the assignment probability would be computed as for the minimisation process for equal

treatment allocations. Han et al. (2009) showed, however, that this simple modification

can lead to deviations from the target allocation ratio, especially when the allocation

probability given to the preferred treatment is relatively low. To avoid this problem,

the authors proposed a second modification, called biased coin minimisation (BCM). In

BCM, the allocation probabilities assigned to each treatment are varied depending on

their allocation ratio, when they are the preferred treatment.

Kuznetsova and Tymofyeyev (2012) showed that although BCM leads to an allocation

ratio at the end of the trial that is close to the targeted one, it does not preserve the

allocation ratio at every allocation step. The authors argued that if the allocation ratio is

not preserved at every step, the probability of allocation to a particular treatment tends

to fluctuate in periodic cycles, providing an opportunity for selection bias throughout

enrolment. The authors then proposed a method to achieve unequal allocations while

preserving the allocation ratio at every allocation, using a blocking approach. They

showed that as long as the block size remained small, this method showed good balancing

properties.

1.5.4 Allocation ratios

The choice of a randomisation method often also depends on the pre-determined alloca-

tion ratio that are needed to achieve the specific clinical trial objective. The allocation

ratio is defined, as previously mentioned, as the ratio of patients assigned to the experi-

mental arms relative to the control arm. At the planning stage of a RCT, it is paramount

to pre-specify the allocation ratio for several reasons, such as: i) by pre-specifying the

allocation ratio, investigators avoid the temptation to manipulate enrolment based on

their own expectations or preliminary results. This helps maintain the trial’s objectivity

and the validity of its findings; ii) a carefully chosen allocation ratio can optimise the

18



Chapter 1. Background and motivation

trial power and/or minimise the expected sample size. The allocation ratio can indeed

have a considerable impact on the clinical trial power. In two-arm trials, balanced (i.e.,

equal) allocation is often the preferred approach, partly due to the fact that it maximises

power under quite general assumptions (Neuhäuser et al., 2021).

However, in multi-arm trials, balanced allocation is likely to be optimal only if the aim

of the trial is to perform a pairwise comparison between all treatment arms. In particular,

it may not be preferred when comparing a shared control arm with experimental arms

(Neuhäuser et al., 2021). Most famously, Dunnett (1955) showed that, under certain

conditions, the optimal allocation ratio to maximise the statistical power can be achieved

by allocating the square root of the number of experimental arms to the control arm

for every patient in an experimental arm. This approach enhances the precision of the

control mean, which in turn improves the ability to detect significant differences between

the treatments and the control. Furthermore, its appropriateness may be impacted

when: i) there is heterogeneity in the variance of outcomes between treatment arms; ii)

an investigator wants to change the allocation ratio to assign more patients to superior

treatment(s); iii) there is unequal interest in certain treatment comparisons; and iv)

there is a differential treatment cost with a limited budget.

One can also justify imbalanced allocation ratios for ethical reasons or recruitment

purposes (Dumville et al., 2006). For example, in clinical trials where the experimental

treatment is considered highly promising or has significant public health implications,

such as a new AIDS treatment, an unequal allocation ratio might be used, such as 2:1 in

favour of the experimental treatment over the control (Rosenberger and Lachin, 2015).

This approach prioritises the experimental treatment and can enhance recruitment by

allowing more patients to receive the potentially beneficial treatment. Furthermore, it

is important to notice that the experimental treatment may be harmful. Therefore,

investigators can reduce the number of patients allocated to the potentially harmful

treatment. This approach allows for the assessment of the experimental treatment’s
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effects while reducing the risk of patients receiving harmful treatment.

1.6 Aims and objectives

The aim of this thesis is to determine efficient randomisation routines and allocation

ratios that can be used in multi-arm trials, including adaptive MAMS and platform

designs. The specific objectives are:

• To compare different randomisation methods in the context of multi-arm trials in

the presence and/or absence of covariates.

• To explore and identify efficient stage-wise allocation ratios in the context of

MAMS trials, in terms of maximising the marginal, disjunctive, or conjunctive

power.

• To evaluate different methods of randomising patients in platform trial designs,

focusing on covariate imbalance and assignment randomness as new arm(s) are

added.

1.7 Outline

Chapter 2 provides a comprehensive simulation study, motivated by two real clinical

trials, to empirically evaluate several different randomisation procedures in the context

of multi-arm trials. Several randomisation procedures are considered, specifically simple

randomisation, permuted block randomisation, stratified randomisation with permuted

blocks, urn design, block urn design, stratified block urn design, and minimisation. Nu-

merous properties of the randomisation procedures are evaluated, including group size

balance, covariate balance, loss of precision (i.e., increase in the variance of treatment

effect estimates), and predictability of assignment. Different definitions of statistical
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power relevant in multi-arm trials, marginal, disjunctive, and conjunctive, are also com-

pared.

Following this, Chapter 3 explores a range of practical combinations of stage-wise

allocation ratios in Multi-Arm Multi-Stage designs to determine efficient stage-wise al-

location ratios that can increase power. In this chapter, I begin by describing how to

compute the operating characteristics of MAMS designs when allowing the stage-wise al-

location ratios to vary. A real clinical trial is again used as motivation for the parameters

assumed in the evaluation.

Chapter 4 provides a simulation study to assess different randomisation procedures

and allocation ratios in the type of adaptive clinical trial design that recently gained

expanded popularity during the COVID-19 pandemic: platform trials. The following

randomisation approaches are considered for different allocation ratios: simple randomi-

sation, stratified randomisation with permuted blocks, stratified block urn design, and

minimisation. Covariate balance and the assignment predictability are once more com-

puted and contrasted across the randomisation procedures.

To conclude, a general discussion about randomisation methods, allocation ratios,

and directions for future research is presented in Chapter 5.
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Chapter 2

A comparison of randomisation

methods for multi-arm clinical trials

In this chapter, I compare and evaluate several commonly utilised randomisation meth-

ods, alongside other theoretically advantageous but less often employed methods, in

order to provide general guidance on which randomisation methods should be consid-

ered for use in practice in a multi-arm trial. This work has been published in Statistics

in Biopharmaceutical Research Azher et al. (2023).
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2.1 Background

Multi-arm trials are a type of clinical trial in which at least two experimental treatment

arms are evaluated and compared. These treatments can be compared to a common

control arm, to different controls for each treatment arm, or directly to each other. This

is in contrast to traditional two-arm trials, which only compare one intervention against a

control. Multi-arm trials can be used to evaluate different doses of the same treatment,

entirely different treatments, or different combinations of treatments. Most often, all

treatment arms recruit patients at the same time, allowing for direct comparison from

the start (an exception to this is multi-arm platform trials, which will be the focus of

Chapter 4). Furthermore, the number of patients allocated to each arm is typically

predetermined before the trial begins (exceptions to this include multi-arm multi-stage

trials, which will be the focus of Chapter 3). As introduced in Section 1.1, a fundamental

component of multi-arm trial design is the process of allocating patients to treatment

arms (randomisation). This helps to control for bias and confounding factors that could

otherwise influence the study results.

There are numerous methods that could be used for randomisation in a multi-arm

trial, as described in Section 1.5, each with its own advantages and disadvantages. The

choice of an appropriate randomisation routine in a multi-arm trial is also crucial and

depends on several factors, including the trial’s characteristics (e.g., sample size and

the number of covariate) and the study objectives; for example, some trials might aim

for equal allocation across all treatment arms, while others might aim to allocate more

patients to promising treatments based on emerging data (adaptive randomisation).

In this chapter, I therefore provide an assessment of several more popular methods

from across the categories of randomisation procedures, including: Simple Randomisa-

tion (SR), Permuted Block Randomisation (PBR) (Matts and Lachin, 1988), Stratified

Block Randomisation (SBR) (Kernan et al., 1999), Urn Design (UD) (Wei, 1977), Block
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Urn Design (BUD) (Zhao and Weng, 2011), Stratified Block Urn Design (SBUD) (Zhao,

2014), and Minimisation (Taves, 1974) (See table 2.1).

The simplest of these methods is SR, which is a procedure that assigns patients with

a pre-specified probability to each of the treatment arms, without considering previous

assignments, covariate data, or other information. In a very large trial, SR provides a

high likelihood that covariates are well-balanced across all treatment arms, which means

that randomisation is the first step towards ensuring an unbiased comparison (i.e., dif-

ferences between groups are due to the treatment or random variation). However, for a

smaller trial, the likelihood of a chance imbalance in important covariates can increase

markedly for SR, as it does not take into account previous assignments. Furthermore,

SR imparts a large possibility that the number of patients assigned to each treatment

arm may differ notably, which may impact power. For these reasons, a variety of ran-

domisation routines have now been developed that seek to increase the likelihood of

balance on specified covariates believed to be of principal importance and/or improve

balance in the number of patients assigned to each treatment.

Amongst these, Wei (1977) proposed the UD to force a small trial to be better-

balanced in terms of group size, but to provide behaviour like SR as the size of the trial

increases (Matts and Lachin, 1988). This is one example of a treatment adaptive ran-

domisation approach, in which the treatment assignment probability is modified based

on previous assignments. In this approach, an (hypothetical) urn contains balls with

different labels based on the number of treatments. To assign a patient to a treatment,

a ball is randomly selected from the urn, its label is observed, and the patient allocated

to the arm associated with this label. The ball is then returned to the urn, along with α

more balls of the same label, and β more balls of each of the other labels. This drawing

procedure is repeated for each new assignment. The values of α and β can be any integer

numbers. The UD can provide good allocation randomness whilst potentially increas-

ing power due to the improved balance in the number of patients on each treatment,
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particularly in a small trial. However, it may cause time related biases (the absolute

imbalance can increase as the sample size increases) (Zhao and Weng, 2011).

Another popular randomisation method is block randomisation, which is one of the

fixed randomisation methods that utilises a fixed probability assignment throughout the

trial. In block randomisation, patients are assigned to treatment arms through ‘blocks’

that contain a specified number of allocations to each treatment arm in some given order.

The size of each block is typically an integer multiple of the number of treatment arms,

ensuring balance in the number of patients assigned to each arm within each block.

PBR is a commonly used version of block randomisation, in which each block has its

own specified randomly ordered treatment assignments. Then, a patient enrolling into a

trial is allocated using the next assignment in the current block. In PBR, the block sizes

may also be varied and randomly chosen. This helps to overcome a potential problem

with block randomisation, at least for small block sizes, in which the next treatment

assignment could become predictable.

Furthermore, PBR is a highly popular allocation method in clinical trials because it

is easy to implement, and it has consistent imbalance control. However, PBR imparts

deterministic assignments. In contrast, the UD has high randomness, but does not

guarantee balance across treatment arms. To achieve the conflicting requirements of the

balance of treatment allocation and the randomness of treatment assignments, the BUD

was proposed by Zhao andWeng (2011) as a sub-type of MTI procedure (see Section 1.5.2

for more details on MTI procedures). The BUD is relatively simple and in theory

combines the advantages of the PBR and UD procedures that I also consider. The BUD

can be understood by considering two urns, termed active and inactive. Assignments

are made based on random draws from the active urn, while the algorithmic returning

of balls from the inactive urn to the active urn enables myopic control of assignment

imbalances (see Subsection 2.2.1 for more details on implementing BUD).

Although the UD and PBR can help ensure balance in the number of patients as-
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signed to each treatment arm, they do nothing to help balance between arms with

respect to key covariates. A possible method to overcome this issue that I consider is

SBR, in which patients are divided into strata according to important covariates. Then,

PBR is used to generate the allocations within each stratum. Unfortunately, when the

number of strata is large, SBR can perform poorly in ensuring balance between treat-

ment arms (Matthews, 2006). In a similar method to the way SBR extends PBR, I also

consider implementing the BUD within strata, to better balance covariates. I term this

the SBUD.

Finally, I also consider a method from one of the more widely-used adaptive randomi-

sation classes, covariate adaptive randomisation (Hu et al., 2014), which can provide bal-

ance over a large number of covariates. Specifically, I evaluate the use of minimisation.

In minimisation, important covariates are identified before a trial starts and assignment

of a new patient to a treatment arm is determined to minimise the differences between

the arms in terms of these covariates. A number of metrics for evaluating such differ-

ences between arms have been proposed; each works in terms of a total imbalance across

the specified covariates. In its purest form, minimisation does not involve any random

allocation; knowledge of all patient covariates allows the treatment allocations to be

entirely predicted. To avoid such predictability of assignment, in practice a random

element is usually added to a minimisation procedure. This is typically in terms of both

using SR for some initial period of a trial, and in terms of allocating patients to the arm

recommended by the minimisation routine with only a certain non-guaranteed chance.

With numerous randomisation routines available, previous works have sought to

both describe exactly how these procedures work and also to compare their performance

in terms of key metrics such as group size imbalance and lack of randomness. See, for

example, Stigsby and Taves (2010), Berger et al. (2021), and Bruce et al. (2024). Most of

this work has been restricted to the context of two-arm RCTs. Multi-arm trials are now

increasingly recommended due to their improved efficiency from the shared control arm,
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as well as other operational advantages. It is critical that investigators make deliberate,

informed choices about allocation methods in the context of multi-arm trials, with it

possible that variation in performance of available routines in a two-arm setting may be

exacerbated further in a multi-arm domain.

Previous works that have addressed treatment allocation procedures within the con-

text of multi-arm trials include Atkinson (2002), which compared seven allocation meth-

ods for multi-arm studies, each being extensions to biased coin designs, in terms of

two performance metrics: loss of precision, and selection bias. Ryeznik and Sverdlov

(2018) also compared several adaptive randomisation methods in terms of allocation

balance, randomness, and numerous other statistical operating characteristics. Further-

more, Baldi Antognini and Zagoraiou (2011) proposed the covariate-adaptive biased coin

design and compared it to Atkinson’s DA-biased coin design in terms of loss of precision

and selection bias. Atkinson’s DA-biased coin design is known as an optimal method

in adaptive randomisation. This method uses a general linear regression model and a

biased coin allocation strategy for balancing across covariates to minimise the variance

of the estimated treatment difference (Begg and Iglewicz, 1980).

Note that, in particular, I am unaware of any previous work that has considered

covariate imbalance under the more popular treatment allocation methods for multi-arm

trials or evaluated whether different methods are more suited to studies with a certain

number of treatment arms. Seeking to address these issues and more, my primary goal

in this chapter is to guide researchers on how to best allocate patients to treatments

in a fixed-sample multi-arm trial. To achieve this, as well as considering performance

measures relevant to two-arm trials, I also consider the multi-arm specific issue of there

being several types of statistical power.
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2.2 Methods

I assume that the trial contains K treatment arms, indexed by k = 0, . . . , K − 1, where

arm k = 0 is a shared control arm and arms k = 1, . . . , K−1 are experimental treatment

arms. In the trial, N patients are to be allocated to one of the K treatments; I index

the patients by i = 1, . . . , N . I assume that the ideal goal would be to achieve a

1 : 1 : 1 : · · · : 1 allocation across the treatment arms. Alternative allocation targets

could be treated similarly: I return to comment on such a setting in Section 2.6. For each

patient, J covariates will be measured, indexed by j = 1, . . . , J . I use Ti = 0, . . . , K − 1

as an indicator variable for the treatment patient i was assigned to and Xi,j as the value

of covariate j for patient i. For brevity in what follows later, I denote by Nk,l the number

of patients allocated to arm k amongst patients i = 1, . . . , l

Nk,l =
l∑

i=1

I(Ti = k).

Here, I(A) is the indicator function on event A. For simplicity, I similarly set Nk

as the number of patients in arm k on trial conclusion, i.e., Nk = Nk,N . Denoting the

outcome variable from patient i by Yi, the following model is then used to analyse the

data

Yi = µ+
J∑

j=1

Xi,jβj +
K−1∑
k=1

I(Ti = k)θk + ϵi.

Here, µ is a fixed intercept term, βj is a fixed effect for covariate j, and θk is a fixed

effect for the difference between experimental arm k = 1, . . . , K− 1 and the control arm

k = 0. I assume that ϵi ∼ N(0, σ2), such that the above is a multiple linear regression

model for the continuous outcomes Yi. Our interest is assumed to be in performing

two-sided tests for the difference between the experimental arms and the control. That

is, in testing
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H0,k : θk = 0, H1,k : θk ̸= 0,

for k = 1, . . . , K − 1. To evaluate evidence regarding these hypotheses, I use t-tests,

rejecting H0,k when

∣∣∣∣∣∣ θ̂k√
V ar(θ̂k)

∣∣∣∣∣∣ > Ψ−1
N−J−(K−1)(1− α/2),

where θ̂k is the estimated effect of the experimental arm k relative to the control

arm, and V ar(θ̂k) is the variance of the estimated effect for k. In addition, Ψν(x) is

the cumulative distribution function of a central t-distribution on ν degrees of freedom

evaluated at x. This provides a per-hypothesis type I error rate of α. For simplicity,

and because many treatment allocation methods work in terms of strata defined through

binary covariates, I assume Xi,j = 0, 1. I discuss extension to continuous covariates in

Section 2.6. In what follows, I will consider the impact of varying the values for many of

the parameters above. Next, I describe the six considered distinct methods for assigning

the treatment allocations Ti in the above-described type of multi-arm trial.

2.2.1 Considered randomisation methods

Simple Randomisation (SR)

In SR, patients are allocated completely at random to one of the K treatment arms.

That is, P(Ti = k) = 1/K for each patient i = 1, . . . , N and each arm k = 0, . . . , K − 1.

Permuted Block Randomisation (PBR)

For PBR, I assume that the blocks are of length B, and that each block contains B/K

assignments to each treatment, based on a pre-specified (random) permuted block or-

dering. Furthermore, I assume that all possible blocks of length B are employed. For
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example, when B = 3 and K = 3, the permuted block used in each block could be any

of 012, 021, 102, 120, 201, or 210. I will refer to this design as PBR(B).

Denote by bi = 1, 2, . . . the block to which patient i belongs. Then, the probability

that each patient is assigned to a given treatment depends only on the assignment of the

previous patients in their block. Specifically, the probability of assignment to treatment

k for patient i is given by

P(Ti = k) =
B/K −

∑i−1
l=1 I(bl = bi)I(Tl = k)

B −
∑i−1

l=1 I(bl = bi)
.

Stratified Block Randomisation (SBR)

Often, PBR is used within pre-defined strata. This is SBR. I denote by si = 1, . . . , S

the strata to which patient i belongs. As for PBR, I assume that all possible blocks of

length B are used within each stratum, and refer to this design as SBR(B). Then the

probability patient i is assigned to treatment k is given by

P(Ti = k) =
B/K −

∑i−1
l=1 I(bl = bi)I(sl = si)I(Tl = k)

B −
∑i−1

l=1 I(bl = bi)I(sl = si)
.

In what follows, I assume that the strata are defined based on all possible com-

binations of the presence/absence of covariates j = 1, . . . , Jrand, for Jrand ≤ J , such

that there are S = 2Jrand strata, and Jrand is the number of covariates included in the

randomisation scheme.

Urn Design (UD)

In the UD, the randomisation algorithm dynamically changes the treatment assignment

probabilities based on the degree of assignment imbalance, with the goal of achieving

balance between treatment arms over time. It can be understood by supposing an urn

contains balls with K different labels (e.g., 0, . . . , K − 1), with each label relating to
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a specific treatment. Initially, there are w balls with each label. When a new patient

enters the trial, a ball is drawn randomly; if its label is k then this patient is allocated

to arm k. This ball is then replaced. In addition, α balls of label k are added to the urn,

as well as β balls with labels k′ ̸= k. This procedure is repeated for each assignment.

Although real urns may be used to demonstrate the procedure, in practice urns are

simulated on a computer, especially when α or β are not integers. The probability mass

function of the first assignment is given by P (T1 = k) = 1/K. Then, the probability of

assignment to treatment k for patients i = 2, . . . , N is

P(Ti = k) =
w + αNk,i−1 + β{(i− 1)−Nk,i−1}
Kw + {α + β(K − 1)}(i− 1)

.

I will refer to an UD with particular parameter values as UD(w, α, β).

Block Urn Design (BUD)

The randomisation process for the BUD can be illustrated by a model with two urns,

termed active and inactive. Suppose again that the block length is B, which is a multiple

of K; explicitly, suppose that B = λK, where λ is the number of ‘minimal balanced sets’

in each block. This λ is pre-defined by investigators to control the imbalance between

treatment arms. Note that when the block contains only one minimal balanced set (i.e.,

λ = 1), the BUD is equivalent to PBR.

Then, the allocation procedure starts with an empty inactive urn and λ balls with

K distinct labels (again 0, . . . , K − 1) in the active urn. When a treatment assignment

is requested, a ball is randomly selected; if this is of label k then this patient is assigned

to arm k. This ball is then placed in the inactive urn. This process is repeated for each

assignment until a minimal balanced set is present in the inactive urn. Then, one ball

of each label is returned to the active urn from the inactive. Other balls, if any, remain

in the inactive urn. Then, balls are again drawn from the active urn and placed into the
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inactive urn until once more it contains at least one ball of each label, which are then

again transferred to the active urn. This entire process is repeated until all patients

have been assigned. In this case, it can be shown that

P(Ti = k) =
λ+minl=0,...,K−1Nl,i−1 −Nk,i−1

B +Kminl=0,...,K−1Nl,i−1 − (i− 1)
.

I will refer to a BUD using a particular value of λ as BUD(λ).

Stratified Block Urn Design (SBUD)

In SBUD, I apply the BUD within pre-defined strata. As above, si = 1, . . . , S denotes

the strata to which patient i belongs. Furthermore, as for the BUD, I assume that the

block length within each stratum is B = λK, with λ once more the number of ‘minimal

balanced sets’ in each block. Then the probability patient i is assigned to treatment k

is given by

P(Ti = k) =
λ+minl=0,...,K−1Nl,i−1,si −Nk,i−1,si

B +Kminl=0,...,K−1Nl,i−1,si − {
∑i

l=1 I(sl = si)− 1}
.

Here, Nk,i,s is the number of patients that have been assigned to treatment k in

stratum s, amongst the first i patients. That is

Nk,l,s =
i∑

l=1

I(Ti = k)I(si = s).

As for SBR I assume that the strata are defined based on all possible combinations

of the presence/absence of covariates j = 1, . . . , Jrand, for Jrand ≤ J , such that there are

S = 2Jrand strata. I will refer to a SBUD using a particular value of λ as SBUD(λ).
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Minimisation

Minimisation can be illustrated as follows: set Ni,j,k,l as the number of patients that

have been assigned, amongst the first i patients, to treatment k, whose jth covariate

takes the value l. That is

Ni,j,k,l =
i∑

m=1

I(Tm = k)I(Xm,j = l).

Then, suppose that the next patient, patient i + 1, has covariate information

Xi+1,1, . . . , Xi+1,J . The number of patients thus far at these levels, for arm k, is given

by Ni,j,k,Xi,j
for j = 1, . . . , J . The marginal imbalance on each level of covariate j across

all treatment arms can be measured by the range as follows

RG(Ni,j,0,Xi,j
, . . . , Ni,j,K−1,Xi,j

) = max
k=0,...,K−1

Ni,j,k,Xi,j
− min

k=0,...,K−1
Ni,j,k,Xi,j

.

For brevity, I focus here on the range as an intuitively simple measure of imbalance,

but note that other measures are also possible. See Jin et al. (2019) for further details.

The total hypothetical imbalance, if patient i + 1 is assigned to arm k, is then defined

as a weighted sum of the level-based imbalances for covariates that are including in the

minimisation routine. I assume these are covariates j = 1, . . . , Jrand, where Jrand ≤ J is

the number of covariates included in the randomisation scheme

Ii+1,k =

Jrand∑
j=1

wjRG(Ni,j,0,Xi,j
, . . . , Ni,j,k,Xi,j

+ 1, . . . , Ni,j,K−1,Xi,j
).

Here, the weights wj are pre-specified and indicate the relative importance of covari-

ates in measuring the imbalance (Jin et al., 2019). To incorporate a random component

into the minimisation routine, patient i is allocated to a treatment arm as follows
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P(Ti = k) =


pmin

| argmin
i=0,...,K−1

{Ii−1,0,...,Ii−1,K−1}|
: k ∈ argmin

i=0,...,K−1
{Ii−1,0, . . . , Ii−1,K−1},

1−pmin

(K−1)−| argmin
i=0,...,K−1

{Ii−1,0,...,Ii−1,K−1}|
: otherwise.

That is, probability pmin is dedicated to assigning patient i to one of the arms that

minimises the subsequent imbalance, and probability 1 − pmin to the remaining arms.

Here, I also consider a modification to the algorithm above such that patients i =

1, . . . , ⌈qN⌉ are allocated using SR (i.e., the first 100q% of patients are allocated via

P(Ti = k) = 1/K; this is sometimes termed a ‘burn in’ period). Only after this is the

minimisation routine described above employed.

Later, I will fix q = 0.1, but will consider different values of pmin and thus will identify

a particular minimisation routine as Mini(pmin).

2.2.2 Performance evaluation metrics

As I mentioned in the introduction Section 1.1, randomisation is the cornerstone of a

clinical trial in achieving a balance between treatment arms while considering patient

covariates that could influence outcomes and following the rules of random allocation.

Therefore, in this section, I examine some important evaluation metrics that are used

to compare the different randomisation methods. These include group size balance,

covariate balance, loss of precision (i.e., an increase in the variance of treatment effect

estimates), and allocation predictability. I also compare different definitions of statistical

power relevant in multi-arm trials: marginal, disjunctive, and conjunctive powers.

Maximal imbalance according to group sizes

The maximum absolute difference between the number of patients in each experimental

arm and the shared control arm, max(|N1 − N0|, . . . , |NK−1 − N0|), is used as our first
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performance metric.

Degree of imbalance according to patient covariates

To evaluate the ability of the allocation techniques to balance covariate factors between

arms, the proportion of patients in each arm with Xi,j = 1 was calculated as

cj,k =
NN,j,k,1

Nk

.

Then, the maximum absolute difference in these proportions for each experimental

arm compared to the control, for each covariate j, was calculated as

Cj = max (|cj,1 − cj,0|, . . . , |cj,K−1 − cj,0|).

The value of max (C1, C2, . . . , CJ) is used as our second performance metric. Note

that the range of j here is j = 1, 2, . . . , J , i.e., all covariates (not just those poten-

tially used in the randomisation routine) are used in computing the maximal covariate

imbalance.

Maximal treatment effect variance inflation

‘Loss’ is one of the evaluation methods that has previously been used to compare different

multi-arm trial randomisation methods. It relates to the increase in the variance of

treatment effect estimates due to the imbalance caused by randomisation and is defined

based on a general formula for the variance of the treatment estimates when accounting

for such imbalance (Atkinson, 2002; Baldi Antognini and Zagoraiou, 2011). For ease of

interpretation, I here work directly in terms of the treatment effect variances, examining

the percentage by which they increase relative to their theoretical value under perfect

balance.

To this end, note that in the case of perfectly balanced assignment (in terms of
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both arms and covariates), the variance of each treatment effect would be given by

2Kσ2/N (Atkinson, 2002). Using this, the maximal treatment effect variance inflation

is computed as follows, and used as our third performance metric

max {V ar(θ̂1), . . . , V ar(θ̂K−1)}
2Kσ2

N

.

Allocation predictability

Predictability is a popular indicator that has been used to measure the lack of random-

ness of an allocation routine. It is defined as the proportion of times an investigator

correctly guesses the next patient assignment when the investigator is assumed to know

the allocation of all previous patients and they guess the next allocation as whichever

arm currently has the fewest assignments (randomly allocating when multiple arms have

equal lowest assignment). Formally, this is that the investigator guesses the assignment

of patient i, Gi, as

Gi ∼ Multinomial(pi,0, . . . , pi,K−1),

pi,k =
I{Nk,i−1 = min (N0,i−1, . . . , NK−1,i−1)}∑K−1
l=0 I{Nl,i−1 = min (N0,i−1, . . . , NK−1,i−1)}

.

Then, the predictability, our fourth performance metric, is given by

1

N

N∑
i=1

I(Ti = Gi).

Power

It is also important to consider the statistical power of the trial to detect present treat-

ment effects (when they exist). However, the power of a multi-arm trial is more complex

compared to a two-arm trial. In a multi-arm trial, power can be defined in various ways.
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I consider

• The marginal power for a specific arm k, Pk(θk), which is the probability of reject-

ing the null hypothesis H0,k when the null hypothesis is not true.

Pk(θk) = P(Reject H0,k|θk).

• The disjunctive power Pdis(θ1, . . . , θK−1), which is the probability of rejecting at

least one of the null hypotheses H0,1, . . . , H0,K−1

Pdis(θ1, . . . , θK−1) = P(Reject at least one of H0,1, . . . , H0,K−1|θ1, . . . , θK−1).

• The conjunctive power Pcon(θ1, . . . , θK−1), which is the probability that all of the

null hypotheses H0,1, . . . , H0,K−1 are rejected

Pcon(θ1, . . . , θK−1) = P(Reject all of H0,1, . . . , H0,K−1|θ1, . . . , θK−1)

Where all these powers are conditional on the treatment effects being non-zero (θk ̸=

0). The simulation results I present focus on the change in power. To contextualise

this information across different settings, I also consider the change in sample size this

represents under the assumption of equal allocation across the arms. For example, a 1%

difference in power from 60% to 61% does not represent a large change in the sample

size, but a change in the power from 98% to 99% represents a much larger change in the

sample size.
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2.3 Motivating examples

The two different settings that I considered based on real clinical trials were as follows.

The first setting (Burant et al., 2012) (Setting 1) is a randomised control trial of TAK-

875 in outpatients with type 2 diabetes who had not responded to diet or metformin

treatment. On the assumption of a standard deviation of 1.1% for the change from

baseline in HbA1c, 420 patients were considered (for a 10% dropout rate) as sufficient to

achieve at least 80% power to detect a relevant treatment effect of 0.6% between TAK-

875 and placebo using a two-sample t-test at a 5% type I error rate (i.e., no multiplicity

adjustment was made). Ultimately, 384 patients were randomly assigned to receive one

of seven arms (i.e., K = 7): placebo, five doses of TAK-875, or glimepiride. In our

simulation study, I considered 350 as the default total sample size distributed amongst

the treatments, considering in all N = 175, 350, 700. Correspondingly, I set δ = 0.006

and σ = 0.011.

The second setting (Diacon et al., 2012) (Setting 2) is a prospective RCT in which

patients were recruited from outpatient clinics in Cape Town and randomised to re-

ceive one of the following treatments: bedaquiline, bedaquiline-pyrazinamide, PA-824-

pyrazinamide, bedaquiline-PA-824, PA-824-moxifl oxacinpyrazinamide, or unmasked

standard antituberculosis treatment as a positive control (i.e., K = 6). The primary

outcome was the change in 14-day early bactericidal activity. Eighty-five eligible pa-

tients were planned for inclusion in the study, based on achieving 80% power for each

comparison of an experimental arm against control at a standardized effect size of 1.2

with α = 0.05 (i.e., without multiplicity adjustment), allowing for a 20% dropout rate.

In our simulation study, I therefore considered N = 43, 85, 170, setting δ = 1.2 and

σ = 1.
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2.4 Simulation Study

The goal of this simulation study is to evaluate the randomisation methods described

in Section 2.2.1 in terms of group size imbalance, covariate imbalance, treatment effect

variance, predictability, and power (marginal, disjunctive, and conjunctive). These eval-

uation metrics have been discussed in the literature as standard criteria for assessing

randomisation methods in several studies (see, e.g., Bruce et al. (2024)). The choice of

parameters is informed by two real clinical trial settings to make decisions and robustness

assessment. Full details about the statistical models and parameter values underpinning

the data simulations are presented below.

Parameter assumptions

I utilise simulation to evaluate the performance measures discussed in Section 2.2.2

for the considered allocation methods (see Table 2.1). I chose two quite different real

trials (Burant et al., 2012; Diacon et al., 2012) that motivate the simulation studies’

assumptions in terms of variation in sample size, the number of experimental arms,

treatment effects, and the standard deviation.

The following summarises the assumptions common across the two considered set-

tings. I consider three values for N in each instance: taken to be half of, equal to, and

twice that in the motivating real trial. All simulations were performed under the ‘global

alternative hypothesis’ in which θk = δ > 0 for k = 1, . . . , K−1. I assumed the presence

of four binary covariates (J = 4), with the value of Xi,j drawn independently for all i

and j as Xi,j ∼ Bern(0.25).

I assumed two different situations regarding these covariates use in the randomisation

routines (where applicable). First, I assumed that the four binary covariates were all

used in the randomisation (i.e., Jrand = 4). This assumption allows the evaluation of

the impact of a large number of strata (S = 16) on small clinical trials, as demonstrated
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in setting 2 (see, Table 2.2 for more details). Second, I assumed that only the first two

covariates were used in the randomisation (i.e., Jrand = 2); this allows assessment of how

well covariates not included in the randomisation routine are balanced.

I also assumed different effects of the four covariates, loosely classified as large,

medium, small, and no effect on the mean of the outcome. This allowed us to determine

how different randomisation procedures affect the power in the presence of different

covariate effect sizes. Specific values for the effect of the covariates on the mean of the

outcome data were nominated as β1 = δ, β2 = 0.5δ, β3 = 0.1δ, and β4 = 0.

Each of the allocation methods discussed in Section 2.2 was examined. For the

allocation methods utilising blocks (i.e., PBR and SBR) I considered B = K and B =

3K. In the UD, I assumed w = α = 1 and β = 2, i.e., UD(1, 1, 2). In the BUD

and SBUD, I assumed λ = 3. For minimisation, I considered q = 0.1 and pmin =

0.7, 0.9. Using different levels of pmin (moderate and stronger levels to achieve covariate

balance) allows for a closer examination of the differences between moderate and strong

probability assignments in achieving covariate balance while reducing predictability.

For each parameter combination, 10,000 simulation replicates were carried out to

empirically estimate the performance metrics described in Subsection 2.2.2. Finally, I

calculated the Monte Carlo error (MC) for each parameter combination by dividing the

standard deviation by the square root of the number of simulation replicates.

Table 2.1: Randomisation Methods Evaluated.

Method Acronym
Simple Randomisation SR
Urn Design UD
Permuted Block Randomisation PBR
Block Urn Design BUD
Stratified Block Randomisation SBR
Stratified Block Urn Design SBUD
Minimisation Mini
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Table 2.2: Settings and Scenarios parameters Considered in the Simulation Study.

Symbol Definition Setting 1 Setting 2
K Number of experimental treatment arms. K = 7 K = 6
N Total sample size. N=175, 350, 700 N=43, 85, 170
δ Treatment effect δ = 0.006 δ = 1.2
σ Standard deviation σ=0.011 σ=1

Table 2.3: Glossary of the assumptions common parameters across the two considered set-
tings.

Symbol Definition
J = 4 Total number of covariates.
B = K, 3K Number of blocks used in PBR, BUD, SBR, and SBUD.
w = 1 Number of balls with each label in the UD.

α = 1
The number of additional balls added to the urn for the treat-
ment arm that a newly enrolled patient is assigned to in the UD.

β = 2
The number of additional balls added to the urn for the other
treatment arms in the UD.

λ = 3 ’minimal balanced sets’ in the BUD and SBUD.
q = 0.1 ’burn-in’ period in the minimisation.
pmin = 0.7, 0.9 probability assignment in the minimisation.
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2.5 Results

2.5.1 Degree of imbalance according to group sizes

The simulation results comparing the performance of the randomisation methods with

respect to balancing group sizes are illustrated in Figure 2.1. As expected, PBR(K),

PBR(3K), and BUD(3) have consistently low group size imbalance. In contrast, SR

and UD(1, 1, 2) performed less well in both settings, with the maximum mean imbal-

ance slightly higher in SR. As would have been anticipated, the larger the block size,

the greater mean maximal imbalance in PBR and SBR. Furthermore, SBUD(3) per-

formed slightly less well in both settings than the SBR procedures. The results indicate

SBR(3K) or SBUD(3) should potentially not be considered if group size balance is crit-

ical. Overall though, there is little difference between the PBR, SBR, BUD, and SBUD

designs across the considered scenarios.

When Jrand = 2, the mean maximum imbalance in the number of patients allocated

to each arm for Mini(0.7) becomes much larger than its result with Jrand = 4. Our

findings indicate that for the smaller considered value of Jrand, Mini(0.7) performs more

like SR and the UD, while it is more comparable to PBR, SBR, BUD, and SBUD

when Jrand = 4. In contrast, Mini(0.9) has low mean maximal imbalance for both

Jrand = 2 and Jrand = 4. This highlights the importance of careful choice of pmin. To

investigate this further, a small number of additional simulations were performed for the

minimisation setting. They indicated, as would be expected, that the mean maximal

imbalance increases as pmin decreases (as the procedure then functions more like SR).

In both settings and scenarios, the maximum MC error of 0.14 was observed for

SR, with a mean maximum imbalance of 10.48 and a 95% confidence interval of [10.21,

10.75].
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Figure 2.1: The empirical mean maximum group size imbalance between the control arm
and each of the experimental arms is shown by setting and the value of Jrand.

2.5.2 Degree of imbalance according to patient covariates

The simulation results comparing covariate imbalance for different randomisation meth-

ods are displayed in Figure 2.2. As would be anticipated, the mean maximal covariate

imbalance decreases for all methods as a function of the sample size. As many not have

been anticipated, the degree of imbalance reduction as N is increased appears similar

for each method.
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In both settings, SR, UD(1, 1, 2), the PBR designs, and BUD(3) have similar covari-

ate imbalance based on our chosen metric. This is to be expected given none utilise

covariate information in the patient allocation. For Jrand = 4, Mini(0.9) is the best

performing method. Mini(0.7) and SBR(K) are the next best methods, performing sim-

ilarly. SBR(3K) and SBUD(3) have slightly weaker, but still strong, performance. This

indicates a large pmin may be necessary to outperform SBR and SBUD in some scenarios.

By contrast, for Jrand = 2, I found that all considered allocation methods had similar

mean maximal covariate imbalances, albeit with a small difference between randomisa-

tion methods for the lowest sample size in both settings. SBUD(3) had arguably the

best performance for Jrand = 2. This highlights that methods which force balance on

certain covariates provide no improvement in balance for other uncorrelated covariates

of interest compared to simpler techniques such as SR and PBR.

To explore the influence of pmin on the performance of the minimisation method,

Appendix A.1 presents results for Jrand = 1, 2, 3, 4. These indicate that, as would be

anticipated, the imbalance for covariates not utilised in the allocation are unaffected by

the value of pmin. However, for those covariates used in the allocation, a large reduction

in imbalance can be achieved by increasing pmin. This is particularly true when Jrand = 1.

In both settings and scenarios, the maximum MC error of 0.002 was observed, with

a mean maximum covariate imbalance of 0.20 and a 95% confidence interval of [0.196,

0.20].

2.5.3 Maximal treatment effect variance inflation

The simulation results comparing the treatment effect variance inflation are displayed

in Figure 2.3, given as empirical mean percentages. Reflecting the results in Figures 2.1

and 2.2, they show that the highest treatment effect variance inflation results from SR

and UD(1, 1, 2), and that the inflation decreases as a function of the sample size. For

Setting 1 with Jrand = 2, Mini(0.7) also performs poorly. SBR(3K) and SBUD(3)
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Figure 2.2: The empirical mean maximum covariate imbalance between the control arm and
each of the experimental arms is shown by setting and the value of Jrand.

are generally the next worst performing procedures. Mini(0.9) has consistently low

maximum treatment effect variance inflation.

In both settings and scenarios, the maximum MC error of 0.014 was observed for

SR, with a maximum treatment effect variance inflation of 0.98 and a 95% confidence

interval of [0.95, 1.00].
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Figure 2.3: The empirical mean maximum treatment effect variance inflation (given as a
percentage) is shown by setting and the value of Jrand.

2.5.4 Allocation predictability

Predictability of allocation is shown in Figure 2.4. It is clear that predictability is

generally unaffected by the sample size. In Setting 1, the simulation results show that

the lowest predictability results from using SR, UD(1, 1, 2), SBUD(3), or SBR(3K). For

these methods, the mean proportion of correct guesses is similar to guessing at random.

By contrast, the predictability of PBR(K) is much higher.
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As expected, the predictability of Mini(0.7) is lower when compared to Mini(0.9). In

Setting 2, notably, the predictability of Mini(0.7) is lower than PBR(3K).

When Jrand = 2, as opposed to Jrand = 4, there was a small (3-6%) decrease in

predictability for minimisation. For the SBR procedures and SBUD(3), predictability

was instead lower for Jrand = 4.

In both settings and scenarios, the maximum MC error of 0.0003 was observed, with

a mean predictability of 0.14 and a 95% confidence interval of [0.139, 0.14].
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Figure 2.4: The empirical mean predictability is shown by setting and the value of Jrand.
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2.5.5 Power

Figure 2.5 displays the results for the marginal (for H0,1), disjunctive, and conjunctive

power when Jrand = 4 (results for Jrand = 2 are not shown but are very similar to

Figure 2.5). As expected, all powers increase with the sample size for all allocation

methods. In most cases there is evidently little difference in the resultant powers across

the considered methods. The only possible exception to this is the smallest considered

sample size in Setting 2.

To examine whether the small observed variations in power seen in Figure 2.5 corre-

spond to large changes in sample size, Figure 2.6 indicates how the powers vary under

SR as a function of the sample size. Consider for example the marginal power in Set-

ting 2 under Mini(0.9) when N = 85, estimated as approximately 88%. By contrast,

UD(1, 1, 2) has the smallest marginal power, estimated as approximately 84%. Figure 2.6

tells us that an increase in marginal power from 84% to 88% may be considered as cor-

responding to an increase in sample size from approximately 86 to 96 under SR. Thus,

the variations in power in Figure 2.5 do not represent a large change in total sample size

of the trial.
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2.6 Discussion

Various allocation methods have been proposed to minimise the imbalance between

treatment arms according to group sizes and important patient covariates. However,

there has been little consideration of their relative performance for multi-arm trials.

This study provides useful insights on this, with a simulation study motivated by two

real multi-arm trials.

The selection of an appropriate allocation method for a trial may be influenced by

many factors, including the number of arms, the sample size of the trial, and the number

of covariates considered. However, the goals for patient randomisation in comparative

clinical trials remain the same: to ensure the allocation is not predictable and to con-

trol imbalance in group sizes and according to key prognostic factors. Depending on

the setting, these goals may be prioritised differently. To inform the selection of the

most appropriate method, it is important to evaluate different options based on their

performance.

In both settings, the best allocation methods for minimising imbalance in the group

sizes were the PBR procedures and the considered BUD (Figure 2.1). However, ar-

guably there was little overall difference in the mean maximal group size imbalance

when considered relative to the total sample size.

With regard to covariate imbalance, when Jrand = 2, all allocation methods had

similar maximal covariate imbalance in both settings, because of the two covariates not

utilised in the allocation (Figure 2.2). This emphasises an important point, discussed

many times previously in the two-arm context (see, e.g., Taves (1974) and Atkinson and

Donev (1992)), that SBR, SBUD, and minimisation will not provide improved balance

on covariates not included in the allocation routine that are uncorrelated with those

included in the allocation routine. The effectiveness of SBR, SBUD, and minimisation

may thus be highly dependent on pre-trial knowledge of which covariates may affect the
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outcome data.

Using either PBR or BUD within strata (i.e., the SBR and SBUD designs) had simi-

lar, strong performance. The advantages of MTI procedures or PBR methods have been

discussed extensively within the literature in relation to two-arm trials not attempting

to balance for covariates (see, e.g., Berger et al. (2016)). Such advantages did not appear

clear in the considered multi-arm setting with multiple strata.

I note again that Mini(0.9) performed better than SBR(K) when Jrand = 4 in terms of

covariate balance. Thus, minimisation can be more effective at balancing larger numbers

of covariates. However, this comes at a large cost in terms of the predictability (see

below and Figures 2.3 and 2.4). Predictability of assignments provides the potential for

selection bias, which increases with a higher frequency of predictable assignments. The

simulation results demonstrate a differential effect on how the block size in the various

methods has an impact on the mean predictability. Specifically, whilst the smaller

block size increased predictability by a large amount for PBR, SBR was less affected.

Significantly, the minimisation routines considered had a much larger predictability than

the SBR and SBUD routines when Jrand = 4; evidencing a minimisation penalty noted

above. We note, though, that this is for our particular definition of predictability and

may not be the case if one assumes guesses are made with some knowledge of covariate

data.

Regarding treatment effect variance inflation, a desirable allocation rule has low

variance alongside low predictability. However, these factors generally work against

each other. As a result, the randomisation rules with the highest predictability typically

had the lowest variances.

Despite some variation in the mean group size imbalances, as well as in the covariate

imbalance (Figures 2.1 and 2.2), the simulation results showed that the choice of alloca-

tion method did not have a major impact on the different types of power (Figure 2.5).

The only notable differences appeared in Setting 2 due to the small assumed sample size.
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Thus, there is little need to consider power when choosing an allocation methodology in

the design scenario considered (Wason et al., 2014).

Providing a short precise summary of the findings is challenging given the volume of

results and metrics considered. However, there are certain conclusions that we believe

can be drawn. Evidently, the UD and SR had the highest imbalance in group sizes and

covariates, causing them to have the largest treatment effect variance inflation. How-

ever, they had the lowest predictability. PBR with a small block size is perhaps the

most commonly used randomisation method (McPherson et al., 2012; Parmar et al.,

2014). Based solely on our considered metrics, a strong argument can be made that

SBR is an overall better choice, providing the best trade off in performance overall and

simplicity. The SBUD is theoretically superior, but such theoretical advantages may not

outweigh the increased complexity in the multi-arm context unless the trial is very large

in terms of both arms and strata. Despite controversy regarding the use of minimisa-

tion in randomised trials (Treasure and MacRae, 1998; Taves, 2010), minimisation was

more successful in achieving a combination of group size balance and covariate balance

compared to using either SBR or SBUD. Its predictability and treatment effect variance

inflation were comparable to a considered PBR routine. However, its gains over SBR

and SBUD may be considered insubstantial when weighed against a greatly increased

predictability. A potential caveat to this statement is the dependence of the perfor-

mance of minimisation on the choice of the parameter pmin, though Figures 2.2 and 2.4

indicate that it would likely not be possible to find a value for pmin resulting in similar

predictability to SBR or SBUD that retains an advantage in covariate balance (Brown

et al., 2005).

I conclude with some limitations of this work. In this chapter, I considered several

popular randomisation methods. These represent only a small subset of available meth-

ods, and examination of other methods can be considered for future work. In addition,

I only considered balancing up to four binary covariates. Such categorical covariates
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are common in clinical trials. Even continuous covariates are typically discretised to

be included in the randomisation routine (Taves, 2010). However, the breakdown of a

continuous covariate into subcategories may lead to loss some of important information

(Stigsby and Taves, 2010). Therefore, there are several allocation methods that have

been proposed (Su, 2011; Ma and Hu, 2013) to balance continuous covariates as well

as categorical. Investigation of such methods within the context of multi-arm trials for

allocation methods is left for further research. Moreover, I assumed all covariates im-

pacting the outcome data were included in the final analysis model. When there is one

or more unobserved covariate correlated with treatment assignment, the estimate for the

treatment effect can be biased (Liu and Hu, 2022). The effect of unobserved covariates

on statistical inference under randomisation procedures in multi-arm trials is thus also

an important issue for future study.

Furthermore, I considered statistical analysis based on a continuous outcome; results

for other outcomes, such as binary or time to event, may differ. I also considered a sta-

tistical test based on population model assumptions. If randomisation-based inference

was applied instead, this could affect our conclusions. Additionally, we only consid-

ered equal allocation ratios across all considered randomisation methods. The choice of

randomisation procedure for a RCT with unequal allocation requires special additional

considerations, such as the allocation ratio preserving property (Kuznetsova and Tymo-

fyeyev, 2012). Finally adaptive changing of allocation ratios (i.e., (covariate) response

adaptive randomisation) has been increasingly commonly considered within the context

of multi-arm trials (Sverdlov, 2016; Park et al., 2020). Comparison of the methods dis-

cussed here to such adaptive randomisation methods is an additional potential topic for

future work.
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Chapter 3

Efficient stage-wise allocation ratios

in multi-arm multi-stage designs

In this chapter, I determine stage-wise allocation ratio for MAMS designs that can

help increase power, extending previous works that focus primarily on designs with a

common allocation ratio across the trial. I start by first describing theory for MAMS

designs that can incorporate stage-wise allocation ratios. I then explore combinations

of common allocation ratios used in clinical practice.
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3.1 Background

MAMS trials compare multiple experimental treatments simultaneously across multiple

stages under a single trial. As was described earlier in the thesis in Subsection 1.4.1,

these experimental treatments may comprise entirely different treatments, combinations

of treatments, or different doses of the same treatment. MAMS designs can bring siz-

able gains in efficiency over conducting a series of single-stage two-armed trials (Grayling

et al., 2018), and even compared to a single-stage multi-armed trial. Use of MAMS de-

signs therefore may allow more treatments to be investigated when the potential number

of patients to recruit is low (Wason et al., 2016) (see Subsection 1.4.1 for more details).

However, designing, implementing, and analysing MAMS trials presents unique chal-

lenges to traditional trials. MAMS trials are complex studies because of their involve-

ment of multiple treatment arms, interim analyses, and even potential design adapta-

tions based on accumulating data. Typically, MAMS studies are structured to have

pre-specified interim analyses at specific time points (Jaki, 2015). For example, the first

interim analysis may be when the response of interest has been observed from n1 pa-

tients, the second analysis planned when the response is available from n2 patients, and

so on. At each of the interim analyses, a decision is made on which treatment arm(s)

will continue and which will be stopped. This decision is based on pre-defined stopping

rules based on test statistics for each treatment.

MAMS designs have many different sub-categories that differ mainly in the treatment

selection mechanism used during the interim analyses (Wason et al., 2016). For example,

a ‘Pick-the-winner’ design selects the most promising experimental treatment (at the first

interim analysis) and compares it to the control arm in the subsequent stages (Stallard

and Todd, 2003; Thall et al., 1988; Whitehead and Jaki, 2009). This may be extended to

allow for more than one treatment to be continued after the first interim analysis, with

instead a pre-determined number of treatment arms in each stage (Stallard and Friede,
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2008). Kelly et al. (2005) recommended instead selecting all treatments that are ‘similar’

to the best performing one. By contrast, Royston et al. (2003) and Magirr et al. (2012)

addressed study designs with several stages in which all treatments are continued at each

stage provided that they are sufficiently promising. This class of design, often referred

to as a group-sequential MAMS design, is the one that will be considered throughout

this chapter.

Much work has now been done on MAMS designs. An aspect of designing MAMS

trials that has not been exhaustively investigated to date is the choice of allocation

ratio to the experimental arms, relative to the control arm, in each of the stages. As

discussed previously in Subsection 1.5.4, allocation ratios have a considerable effect on

the operating characteristics of a clinical trial, influencing, in particular, power, which in

turn may impact the required sample size and overall trial cost (Dumville et al., 2006).

The selection of an appropriate allocation ratio has thus received much attention in the

literature within the context of fixed sample two-arm and multi-arm trials Sverdlov and

Rosenberger (2013).

In two-arm trials where the outcome of interest has the same standard deviation

in both arms, the optimal allocation ratio to maximise power is 1:1. However, this is

not the case in single-stage multi-arm trials; the optimal allocation has been shown to

be to approximately allocate the square root of the number of experimental arms to

the control arm for each patient allocated to each experimental arm (Dunnett, 1955).

This result is applicable under the assumptions of Dunnett’s test of normally distributed

data and homogeneity of variance to maximise marginal, disjunctive, and conjunctive

powers (Neuhäuser et al., 2021). Beside maximising the power, this approach might be

preferable in multi-arm trials because it reduces the chance that patients are allocated

to potentially unsafe or toxic treatments compared to allocating equal numbers to all

arms. The flip side is that this could negatively impact recruitment.

However, this square-root rule is not likely to be optimal in the case of a MAMS trial,
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as experimental treatments can be stopped early in interim analyses. In the STAMPEDE

trial (Sydes et al., 2009), it was decided to randomise two patients to the control arm

for every one patient randomised to each experimental arm. The rationale for this was

that the common control arm is used in every pairwise comparison, so higher precision

provides greater power. Moreover, the effect of the allocation ratio can be seen in the

correlation between pairs of test statistics that are used to test different treatments;

Wason and Jaki (2012) showed that by increasing the allocation to the control arm, the

correlation between the test statistics is reduced. This would increase statistical power

because the control arm acts as a common reference group for all comparisons, and a

larger control arm provides more data to estimate this reference, leading to potentially

more similar estimates for each treatment compared to a smaller control group.

Furthermore, Wason and Jaki (2012) investigated the optimal allocation ratio in

group-sequential MAMS trials, for various numbers of experimental arms and stages, as

part of a wider search for optimal MAMS designs that minimise the expected sample

size (ESS, the average number of patients that would be enrolled in the study). The

authors found that in a trial with four experimental arms and three stages, the optimal

allocation ratio to maximise the marginal power was approximately 1.33 patients to the

control arm for each patient allocated in each experimental arm. They also found that

the optimal allocation ratio increases when there are six experimental arms, but remains

considerably below 2:1 (Wason et al., 2016).

The limitations of Wason and Jaki (2012) include the fact that the authors only

considered one definition of power (marginal) and assumed that the same allocation

ratio would be used at each stage. In addition, while they found that as the number of

treatments increases the optimal allocation ratio also increased, a less clear pattern was

reported on the effect of increasing the number of trial stages.

In practice, the allocation ratios could vary between stages, and this could be benefi-

cial as it could reduce the pairwise correlation between test statistics at different stages.
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Perhaps due to the complexity of assessing the operating characteristics of MAMS de-

signs, no paper has yet explored identifying a design that maximises the marginal, dis-

junctive or conjunctive power.

The primary aim of this chapter is to address this question and to identify the most

powerful stage-wise allocation in MAMS trials analytically. Furthermore, another study

aim is to investigate how the stage-wise allocation ratio affects the ESS. I proceed by

describing the type of MAMS design under consideration, including providing derivations

of the expressions required to calculate their operating characteristics when allowing the

stage-wise allocation ratios to vary. I then detail a motivating example, the TAILoR

trial (Pushpakom et al., 2020), that is subsequently used in the investigation of the

impact of the choice of a variety of stage-wise allocation ratios. I conclude with some

recommendations based on my work.
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3.2 Methods

3.2.1 Hypotheses and test statistics

I consider a MAMS trial that compares K − 1 experimental treatment arms (indexed

by k = 1, . . . , K − 1) against a common control arm (k = 0) through a maximum of

J ≥ 2 stages (such that there are K arms in the trial initially). I am interested in

testing the efficacy of experimental treatments compared to the control, and thus I test

K − 1 one-sided hypotheses, given by H0k : δk ≤ 0, k = 1, . . . , K − 1, where δk is a

parameter that represents the difference in effect between experimental treatment k and

the control. This difference may be defined in terms of, e.g., means if the outcome is

normal, the log-odds ratio if the outcome is binary, or the log-hazard ratio if the outcome

is time-to-event. For brevity, in what follows, I set δ = (δ1, . . . , δK−1)
⊤ a vector of length

(K − 1).

To test the hypothesis H0k, after each stage j = 1, . . . , J , I calculate standardised

test statistics Zjk, k = 1, . . . , K − 1, to compare the experimental arms k (still present

in the trial) to the control arm, using all patients allocated up to analysis j. The test

statistics, in general, depend on the type of outcome and the test statistic used. I

restrict my attention to test statistics that follow a multivariate normal distribution. It

should be noted that test statistics will be asymptotically normal when: i) the data is

normally distributed, and the test statistic is either an unadjusted t-test or a t-test for

the treatment effect after adjustment for covariates; ii) the data is binary, and the test

statistic is either the unadjusted log odds ratio or the estimated log odds ratio from a

logistic regression model with adjustments for covariates; iii) the data is time-to-event,

and the test statistic is the log-rank test or the Cox model with adjustment for covariates

(Jennison and Turnbull, 1999; Wason and Jaki, 2012; Wason and Mander, 2012).

For simplicity, I focus specifically on the case where Yijk ∼ N(µk, σ
2) represents

the primary outcome obtained from patient i = 1, . . . , njk in arm k = 0, . . . , K − 1
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in stage j = 1, . . . , J , with σ assumed to be known. Here, njk is the sample size of

arm k in stage j. We now have δk = µk − µ0, with δk the mean difference between

experimental treatment k and the control arm. I focus on the case where nj0 = rjnjk,

k = 1, . . . , K − 1 (for arms k still present in the trial in stage j), such that there is a

rj : 1 stage-wise allocation ratio between the control arm and the present experimental

arms in stage j = 1, . . . , J . Note that with this, for simplicity and practical relevance, I

have assumed that the sample size for all experimental arms still present in the trial is

equal. Furthermore, this leaves 2J parameters to specify for all possible allocations in

all stages to be known, without loss of generality n10, . . . , nJ0 and r1, . . . , rJ . I will write

these as n0 = (n10, . . . , nJ0)
⊤ and r = (r1, . . . , rJ)

⊤ vectors of length J .

Now, we have

Zjk =
Ȳjk − Ȳj0

σ
√

1
ñj0

+ 1
ñjk

= δ̂jkI
1/2
jk ,

with

Ȳjk =
1

ñjk

j∑
l=1

nlk∑
i=1

Yilk,

ñjk = n1k + · · ·+ njk,

δ̂jk = Ȳjk − Ȳj0,

and Ijk the information for treatment k at stage j. I also define r̃j such that ñj0 = r̃jñjk.

Then, I can write

Ijk =
1

σ2
(

1
ñj0

+ 1
ñjk

) ,
=

1

σ2
(

1
ñj0

+
r̃j
ñj0

) ,
=

ñj0

σ2 (1 + r̃j)
.
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It can be shown that the vector of test statistics Z =

(Z11, . . . , ZJ1, . . . , Z1(K−1), . . . , ZJ(K−1))
⊤, a vector of length JK, is multivariate

normal, with expectation and variance given by

E(Zjk) =
δk

σ
√

1
ñj0

+ 1
ñjk

= δkI
1/2
jk ,

Cov(Zj1k1 , Zj2k2) =

(
ñj10

ñj20

)1/2
1 + I(k1 = k2)r̃j2

(1 + r̃j1)
1/2 (1 + r̃j2)

1/2
, 1 ≤ j1 ≤ j2 ≤ J,

where I(X) is the indicator function on eventX. A derivation of this covariance structure

is given at the end of this chapter in Supplementary Materials 3.6.

3.2.2 Stopping rules

I consider a MAMS trial with both interim efficacy and futility monitoring, denoting

the stopping boundaries for the various stages by e = (e1, . . . , eJ)
⊤ ∈ RJ and f =

(f1, . . . , fJ)
⊤ ∈ RJ , with fj < ej for j = 1, . . . , J − 1 and fJ = eJ . Note that there are

two broad sub-types of MAMS stopping rule: one terminates the entire trial as soon

as any null hypothesis is rejected (simultaneous stopping) and the other continues until

test statistics for all experimental arms have all crossed either an efficacy or a futility

bound (separate stopping) (Urach and Posch, 2016). In this chapter, I consider only

separate stopping. Thus, the decision rules are as follows. After stage j = 1, . . . , J

• Denote the set of experimental arms still present in the trial at stage j by Kj ⊆

{1, . . . , K − 1}. It is the case that k ∈ Kj if Z1k ∈ [f1, e1), . . . , Zj−1k ∈ [fj−1, ej−1).

• For k ∈ Kj

– If Zjk < fj drop arm k from the trial for futility.

– Else if Zjk ≥ ej then reject H0k and drop arm k from the trial for efficacy.

– Else add k to Kj+1.
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• If Kj+1 ̸= ∅ then proceed to stage j + 1, retaining the control arm and those arms

k ∈ Kj+1.

3.2.3 Operating characteristics

I will be interested in the impact the choice of stage-wise allocation ratios has on several

statistical quantities. The first of these will be the family-wise error rate (FWER),

defined as the probability of incorrectly rejecting at least one true null hypothesis. It is

common in MAMS designs, at least in a confirmatory setting, to control the FWER.

Next, as this is a multi-arm setting, there are several possible definitions of power

that may be of interest depending on the research question that the trial is designed

to address. Most typically these are the marginal, disjunctive, and conjunctive powers.

As was described in the previous chapter, the marginal power, Pk(δk), is the probabil-

ity of rejecting the null hypothesis H0k. The disjunctive power, Pdis(δ1, . . . , δK−1), is

the probability of rejecting at least one null hypothesis H0,1, . . . , H0,K−1, whereas the

conjunctive power, Pcon(δ1, . . . , δK−1), is the probability of rejecting all of the null hy-

potheses H0,1, . . . , H0,K−1. All these powers are conditional on the treatment effects

being non-zero (δk ̸= 0). A comprehensive review of power definitions in multi-arm

trials is given in Dmitrienko et al. (2009).

Finally, I will be interested in the ESSs of various designs, as this is the metric most

often used to evaluate how efficient a MAMS design is. Next, I therefore describe how

each of these statistical quantities can be computed.

I utilise the notation from Grayling et al. (2017). Specifically, I define two vec-

tors of random variables that summarise the unknown study outcome. I use Ω =

(Ω1, . . . ,ΩK−1)
⊤ to denote the final stage at which each experimental treatment was

present, i.e., Ωk = ωk ∈ {1, . . . , J} if treatment k was present in the trial up to and in-

cluding stage ωk. Further, Ψ = (Ψ1, . . . ,ΨK−1) is used to define which null hypotheses

are rejected. Explicitly, Ψk = ψk = 1 if H0k is rejected and Ψk = ψk = 0 otherwise.
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As an example, if J = K = 2 and the outcome is that treatment k = 1 is stopped

for futility at the interim analysis, and treatment 2 has its null rejected at the final

analysis, the random vectors would be observed to take the values Ω = ω = (1, 2)⊤ and

Ψ = ψ = (0, 1)⊤. All possible values of {Ω,Ψ} can then be defined as

Ξ =
{
{ω,ψ} : ω ∈ {1, . . . , J}K−1,ψ ∈ {0, 1}K−1

}
.

Several subsets of Ξ will be of use to us in computing the operating characteristics

of interest. These define when a specific null hypothesis (H0k) is rejected (Ξk), when

at least one null hypothesis is rejected (Ξdis), and when all of the null hypotheses are

rejected (Ξcon). They are given by

Ξk = {{ω,ψ} ∈ Ξ : ψk = 1} ,

Ξdis =

{
{ω,ψ} ∈ Ξ :

K−1∑
k=1

ψk > 0

}
,

Ξcon = {{ω,ψ} ∈ Ξ : ψ1 = · · · = ψK−1 = 1} .

Next, I write the probability of any outcome {Ω,Ψ} = {ω,ψ}, conditional on the

choices of n0, r, e, f and the treatment effects δ, as P(ω,ψ|n0, r, e,f , δ). Furthermore,

I denote the sample size required by the trial when {Ω,Ψ} = {ω,ψ} by n(ω) (as this

is independent of ψ). I have

n(ω) =

max{ω1,...,ωK−1}∑
j=1

nj0 +
K−1∑
k=1

ωk∑
j=1

njk,

= ñmax{ω1,...,ωK−1}0 +
K−1∑
k=1

ñωk0

r̃ωk

.

Using the above, I can determine the marginal power for H0k, the disjunctive power,
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the conjunctive power, and the ESS of a design as

Pk(n0, r, e,f , δ) =
∑

{ω,ψ}∈Ξk

P(ω,ψ|n0, r, e,f , δ),

Pdis(n0, r, e,f , δ) =
∑

{ω,ψ}∈Ξdis

P(ω,ψ|n0, r, e,f , δ),

Pcon(n0, r, e,f , δ) =
∑

{ω,ψ}∈Ξcon

P(ω,ψ|n0, r, e,f , δ),

ESS(n0, r, e,f , δ) =
∑

{ω,ψ}∈Ξ

P(ω,ψ|n0, r, e,f , δ)n(ω).



δ > 0

Using the result from Magirr et al. (2012) on strong control of the FWER in MAMS

trials, I can also compute the maximal FWER of a design as FWER(n0, r, e,f) =

Pdis(n0, r, e,f ,0).

In practice, to power the trial, it is common to consider power under the least

favourable configuration (LFC), as defined by Dunnett (1955). Without loss of general-

ity, the LFC for treatment k = 1 may be assumed. To define the LFC, two thresholds are

specified: a clinically interesting effect, θ1 > 0, and an uninteresting effect, θ0 < θ1. The

LFC for k = 1 is then given by when δ1 = θ1 and δ2 = · · · = δK−1 = θ0. The marginal

power for H01 under its LFC is P1{n0, r, e,f , (θ1, θ0, . . . , θ0)
⊤}. The sample size (and

allocation ratios) are then generally chosen such that P1{n0, r, e,f , (θ1, θ0, . . . , θ0)
⊤} ≥

1− β for some specified β.

All that remains is to describe how the probabilities P(ω,ψ|n0, r, e,f , δ) can be

determined. In brief, these may be computed easily and efficiently using the method of

Genz and Bretz (2002) (see, e.g., Grayling et al. (2017) for details) or via simulation

(see, e.g., Wason et al. (2016) for details). There is little practical difference between

their relative merits (i.e., speed and precision) for small values of J and K.
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3.3 Motivating Example: TAILoR

As motivation for many of the assumed parameter values, I use the TAILoR trial (Push-

pakom et al., 2020). The TAILoR trial was originally designed to utilise a two-stage

design (J = 2) to test four different doses of Telmisartan (K = 5), though in the ac-

tual trial only three different doses (K = 4) were included. The primary objective was

to study the effects of Telmisartan, an angiotensin II receptor blocker, at 20, 40 and

80 mg dosages on the homeostasis model of insulin resistance (HOMA-IR) at 24 weeks

compared to the common control arm. The maximum allowed sample size was set as

376 patients, with the interim analysis planned after 50% of these patients had observed

data. A one-sided FWER of 5% was specified, while a 1:1:1:1 allocation was used at

each stage to randomise patients between treatment arms (i.e., r1 = r2 = 1). The

stopping boundaries were set as f = (0, 2.086)⊤ and e = (2.782, 2.086)⊤. Finally, the

“interesting” treatment effect assumed in the power calculations was θ1 = 0.545. Using

the above, I have examined the impact of the choice of stage-wise allocation ratios in

two scenarios:

• Scenario 1: Sets K = 4 , J = 2, maxN = 376, σ = 1, f = (0, 2.086)⊤, e =

(2.782, 2.086)⊤, and θ1 = 0.545. I then consider multiple combinations of allocation

ratios, specifically (r1, r2) ∈ {1, 1.3̇, 1.5,
√
3, 2, 2.5, 3, 4}2.

• Scenario 2: Sets K = 5, J = 3, and σ = 1. It then sets the treatment effects,

maximum allowed sample size, and stopping boundaries based on those derived

in Magirr et al. (2012) for these assumptions. That is, it sets maxN = 465,

f = (0, 0, 2.182)⊤, e = (3.779, 2.672, 2.182)⊤, and θ1 = 0.65. I then consider

(r1, r2, r3) ∈ {1, 1.3̇, 1.5, 2, 2.5}3.

For each scenario, I divide the maximum allowed sample size equally between the stages,

such that nj = maxN/J . Then, the allocation to the control arm in stage j is set as

n0j = rjnj/{rj + (K − 1)}.
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Note that the choice of stage-wise allocation ratios has an impact on the FWER, for

fixed values of n0, e, and f . For a fair comparison, I ensured all designs had the same

FWER by modifying the values of e and f stated above. Specifically, for each considered

r I searched for the value of c that would ensure that FWER(n0, r, ce, cf) = α = 0.05.

For each r considered in each scenario, I analytically compute the marginal, disjunc-

tive, conjunctive power, and ESS when δ = (θ1, . . . , θ1)
⊤ (henceforth referred to as the

global alternative hypothesis). I also calculated the ESS under the global null, given by

δ = 0.

67



Chapter 3. Efficient stage-wise allocation ratios in multi-arm multi-stage designs

3.4 Results

Figure 3.1 displays the computed powers for Scenario 1, with Figure 3.2 giving the

corresponding results for Scenario 2. Figures 3.3 and 3.4 give the ESSs under the global

alternative hypothesis for Scenarios 1 and 2 respectively; findings were similar for the

global null hypothesis.

3.4.1 Marginal power

In Scenario 1, the highest marginal power was approximately 76%, achieved for a range

of r1 across 1 to 2, with a range of r2 over 1.33 to 2. In contrast, r1 = r2 = 4 generated

the lowest observed marginal power of approximately 68%.

In Scenario 2, the highest marginal power was approximately 72%, achieved for r1 = 1

with r2 ∈ {1.3̇, 2} and r3 = 2.5. Allocation ratios of r1 ∈ {2, 2.5} with r2 = r3 = 1

provided the lowest observed marginal power of 67%.

3.4.2 Disjunctive power

In Scenario 1, the highest disjunctive power of approximately 96% was achieved using

r1 = 4 with r2 = 2. Interestingly, r1 = r2 = 1 resulted in the lowest disjunctive power of

92%.

In Scenario 2, the highest disjunctive power of 97% was achieved when r1 = r2 =

r3 = 2.5. Whilst, as for Scenario 1, the use of r1 = r2 = r3 = 1 generated the lowest

disjunctive power.

These findings indicate that, almost universally, increasing the number of patients

in the control arm increased the disjunctive power across the two considered scenarios.
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3.4.3 Conjunctive power

In Scenario 1, the highest conjunctive power of 54% was achieved using (r1, r2) = (1, 1.3̇).

Using (r1, r2) = (4, 4) resulted in the lowest conjunctive power observed, which was

approximately 37%.

In contrast, the highest conjunctive power in Scenario 2 was generated using r1 =

r2 = 1, with r3 = 1.3̇. Whilst using an allocation of r1 = r2 = 2.5 with r3 = 1 provided

the lowest conjunctive power.

Overall, these results demonstrate that allocating more patients to the control arm

caused a reduction in the conjunctive power.

3.4.4 Expected sample size

As expected, alteration of the stage-wise allocation ratios is associated with variation

in the ESS. The results illustrate that lower ESSs were achieved by setting r1 = 2 for

various allocation ratios in the subsequent stage(s). Notably, the ESSs were higher for

r1 = 1 in both scenarios, which is significant given many trials use equal allocation in

practice.
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Figure 3.1: The empirical marginal, disjunctive, and conjunctive powers are shown for Sce-
nario 1, as a function of the stage-wise allocation ratios r1 and r2.
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Figure 3.2: The empirical marginal, disjunctive, and conjunctive powers are shown for Sce-
nario 2, as a function of the stage-wise allocation ratios r1, r2, and r3.
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Figure 3.3: The empirical expected sample sizes under the global alternative hypothesis are
shown for Scenario 1, as a function of the stage-wise allocation ratios r1 and r2.
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Figure 3.4: The empirical expected sample sizes under the global alternative hypothesis are
shown for Scenario 2, as a function of the stage-wise allocation ratios r1, r2, and r3.
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3.5 Discussion

MAMS designs are a broad class of adaptive design that can improve the efficiency of

clinical trials. In this study, I aimed to examine the effect on MAMS designs of modify-

ing their stage-wise allocation ratios, examining in particular the impact on statistical

power, to identify efficient stage-wise allocation ratios that can increase the marginal,

disjunctive, or conjunctive power. Notably, modifying allocation ratios of MAMS at

each stage increases the chance of FWER compared to use same allocation ratio in each

stage. Therefore, I considered controlling the FWER at 0.05 for each allocation ratio

(see Appendix A.2). Simultaneously, I determined the effect of various allocation ratios

on the ESS, in all cases controlling the FWER to the desired level.

The results demonstrate differential effects of how the stage-wise allocation ratios

impact the different types of power. In both scenarios, it was clear efficient alloca-

tion ratios for large conjunctive power were associated with a more balanced allocation

between the control and experimental arms. In contrast, the disjunctive power was

generally increased when more patients were allocated to the control arm vs. the exper-

imental arms. However, exceedingly large allocation ratios did have a negative impact

on the disjunctive power. These results reflect what has previously been demonstrated

for how the disjunctive and conjunctive power in trials with multiple endpoints are im-

pacted by the correlation between these outcomes (Senn and Bretz, 2007). Specifically,

as the correlation between endpoints increases, the disjunctive power decreases, while

the conjunctive power increases. As shown in Wason and Jaki (2012) increased control

arm allocation reduces the correlation between test statistics.

Furthermore, the efficient stage-wise allocation ratios for marginal power seemingly

increased in each stage. For example, in Scenario 2, the allocation ratios that resulted in

maximal marginal power were similar in stages 1 and 2, but increased in stage 3. The re-

sults also indicate that there is a range of allocation ratios that provide similar power. For
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example, in Scenario 1, the marginal power is similar for (r1, r2) ∈ {1.33, 1.5, 1.43, 2}2,

whereas the disjunctive power is similar for (r1, r2) ∈ {1.33, 1.5, 3}2 and the conjunctive

power for (r1, r2) ∈ {1.5, 1.73, 2, 2.5}2.

Although the results presented indicate that the allocation ratios can have a notable

impact on power, the ESS variation was relatively small. For example, Scenario 1

reported a notable possible increase in disjunctive power from 90% to 96% through the

implementation of efficient stage-wise allocation ratios. However, the ESS for 90% power

was 244, whereas for 96% power, it was 241, resulting in a reduction in the expected

sample size of 1.23%. This reduction was calculated by dividing the difference in ESS

between the two conditions (96% and 90% power) by the ESS for 90% power. This

is consistent with previous papers about optimal multi-stage designs (Wason and Jaki,

2012). Thus, I suggest that modifying the allocation ratio so that there is an increased

number of patients allocated to the control group can affect the power of a study without

a meaningful increase to the required sample size.

Before concluding, it is important to recognise several limitations of this work. In this

study, I only considered group-sequential stopping rules for selecting which treatments

to retain for subsequent stages. The retained arms were then used in combination

with pre-specified stage-wise allocation ratios. There is another, arguably more direct,

approach to altering the allocation ratio in subsequent stages depending on the observed

treatment outcomes; this method is known as RAR. RAR may be more effective than a

MAMS design, even one with carefully chosen stage-wise allocation ratios, at increasing

power under a range of potential treatment effects (Wason and Trippa, 2014). RAR is,

however, more complex in practice than the MAMS designs considered here.

Furthermore, I do not consider dropping out of participants. These factors may

influence the optimal allocation ratio and the required sample size. If there are variations

in dropout rates between treatment arms, the intended allocation ratio might deviate

from the desired one, affecting the desired statistical power and raising concerns about
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potential biases. Several researchers, therefore, discuss this point (e.g., Möcks et al.

(2002); Greene (2015)) to mitigate the impact of dropout and early termination on the

study design. For example, investigators could consider adjusting the intended allocation

ratio to account for the expected rate of dropout, ensuring that the desired allocation

ratio between treatment arms is maintained throughout the trial. This adjustment may

involve enrolling more patients in the expectation that some will drop out before reaching

the analysis stage.

Another limitation is that I focused on optimising the power given a fixed sample

size. This would be equivalent to minimising the sample size for a fixed power but may

give different results to other optimisation criteria that are used in trials. Additionally, I

focused on group-sequential MAMS designs which use pre-specified stopping boundaries.

The optimal allocation ratio may be different for other MAMS designs, such as the drop-

the-losers design.

Moreover, I only focused on the situation where the outcome is normally distributed,

with known variance, and the outcome is the same at each analysis. These results should

readily extend to alternative endpoint types, as asymptotically normally distributed test

statistics are often used for binary and survival outcomes. However, many MAMS trials

being carried out do use different outcomes at each stage (Jaki, 2015). For example,

the outcome in the first stage could be binary, while the outcome in the second stage

could be time-to-event. Further work exploring efficient stage-wise allocation ratios

when different outcomes are used in each stage would be of interest. Additionally, I

have assumed that the interim analyses are equally spaced in terms of the number of

patient recruited in each stage. Further work is required to identify the most efficient

stage-wise allocation ratios to maximise power for unequally spaced interim analyses.
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3.6 Supplementary Materials: Test statistics covari-

ance structure

Here, I describe how to drive the covariance formula for the test statistics between

experimental arms at the same stage and across different stages. Any notation not

defined here has been given in Subsection 3.2.

Set Zj = (Zj1, . . . , Zj(K−1))
⊤, Ij = (Ij1, . . . , Ij(K−1))

⊤, and δ̂j = (δ̂j1, . . . , δ̂j(K−1))
⊤. I

use the ‘Hadamard product’ of two vectors, ◦, defined as

(a1, . . . , an) ◦ (b1, . . . , bn) = (a1b1, . . . , anbn),

and the ‘Hadamard square-root’ of a vector, ◦1/2, defined as

(a1, . . . , an)
◦1/2 = (a

1/2
1 , . . . , a1/2n ).

Finally, I set

Diag{(a1, . . . , an)⊤} =



a1 0 0 · · · 0

0 a2 0 · · · 0

0 0
. . . . . .

...

...
. . . . . . . . . 0

0 · · · · · · 0 an


.
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Then, for 1 ≤ j1 ≤ j2 ≤ J

Cov(Zj1 ,Zj2) = Cov{(δ̂j11I
1/2
j11
, . . . , δ̂j1(K−1)I

1/2
j1(K−1))

⊤, (δ̂j21I
1/2
j21
, . . . , δ̂j2(K−1)I

1/2
j2(K−1))

⊤},

= Cov{(δ̂j11, . . . , δ̂j1(K−1))
⊤ ◦ (I1/2j11

, . . . , I
1/2
j1(K−1))

⊤,

(δ̂j21, . . . , δ̂j2(K−1))
⊤ ◦ (I1/2j21

, . . . , I
1/2
j2(K−1))

⊤},

= Cov(δ̂j1 ◦ I
◦1/2
j1

, δ̂j2 ◦ I
◦1/2
j2

),

= Diag(I
◦1/2
j1

)Cov(δ̂j1 , δ̂j2)Diag(I
◦1/2
j2

),

= Diag(I
◦1/2
j1

)V ar(δ̂j2)Diag(I
◦1/2
j2

).

Note that Cov(δ̂j1 , δ̂j2) = V ar(δ̂j2). This is a fundamental result in group sequential

design theory. It can be found in the book (Jennison and Turnbull, 1999) as Equation

(11.1) with a derivation for normal linear models given in Theorem 11.1.

This tells us that Cov(Zj1k1 , Zj2k2) = I
1/2
j1k1

Cov(δ̂j2k1 , δ̂j2k2)I
1/2
j2k2

. Note that

Cov(δ̂jk1 , δ̂jk2) =
σ2

ñj0

+ I(k1 = k2)
σ2

ñjk1

,

=
σ2

ñj0

{1 + I(k1 = k2)r̃j} .

Thus

Cov(Zj1k1 , Zj2k2) = I
1/2
j1k1

Cov(δ̂j2k1 , δ̂j2k2)I
1/2
j2k2

,

=

{
ñj10

σ2 (r̃j1 + 1)

}1/2(
σ2

ñj20

)
{1 + I(k1 = k2)r̃j2}

{
ñj20

σ2 (r̃j2 + 1)

}1/2

,

=

(
ñj10

ñj20

)1/2
1 + I(k1 = k2)r̃j2

(1 + r̃j1)
1/2 (1 + r̃j2)

1/2
,

as stated earlier.
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Chapter 4

Randomisation methods in a

multi-arm multi-stage platform trial

design

In Chapter 2, it was clearly laid out how numerous randomisation methods were evalu-

ated in the context of multi-arm clinical trials, where all treatment arms begin simulta-

neously. In this chapter, I evaluate the performance of several of the same randomisation

methodologies (e.g., SR, SBR, SBUD, and Mini) in the context of a platform trial design

in which a new experimental arm is introduced to the trial at a pre-specified time point.

Particular focus is paid to performance under varying target allocation ratios after the

addition of the new arm.
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4.1 Background

Platform trials assess multiple experimental treatments for a particular indication con-

tinuously; these trials can persist until a treatment with the desired risk/benefit profile

is identified (Woodcock and LaVange, 2017). That is, the key feature of platform trials

is their ongoing nature in which new treatment arm(s) can be added to the trial as

they become available, while ineffective or harmful ones can be removed. This contin-

uous evaluation process allows for quicker identification of promising treatments. Such

trial designs have substantial advantages over traditional trial designs (Saville and Berry,

2016), as detailed in Section 1.4.2. Recently, there has been an increasing interest in plat-

form trials, leading to significant methodological advancements in trial designs within a

relatively short period, particularly during the COVID-19 pandemic. During this time,

Vanderbeek et al. (2022) identified 58 platform trials registered between January 2020

and May 2021 globally.

Platform trial designs can be categorised into two main types based on how the treat-

ment arms are introduced (Park et al., 2019): pre-planned platform trials and unplanned

(adaptive) platform trials. In pre-planned platform trials, the number of treatment arms

and their characteristics are specified before the trial starts. These trials often involve

specific treatment comparisons planned based on existing research or hypotheses. In

such trials, the timing of introducing each arm might also be pre-defined. In adaptive

platform trials, however, new arm(s) can be added or dropped at any time point. This

allows for a more flexible and dynamic approach, allowing investigators to adapt the

trial based on emerging findings (The Adaptive Platform Trial Coalition, 2019; Park

et al., 2020).

Although platform trials offer considerable advantages, careful planning and execu-

tion are crucial for their success. Consequently, several authors have discussed some

of the issues of introducing new treatment arm(s) to an ongoing trial using different
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optimality criteria and statistical analysis procedures. For example, Elm et al. (2012)

evaluated the operating characteristics of pairwise comparisons in trials that added a

new arm. The authors focus on the family-wise type I error rate, power, sample size,

and choice of analytical methods (linear model and pooled data methods). Cohen et al.

(2015) summarised the literature regarding statistical methods and design considera-

tions when adapting a trial by adding a new treatment midway through recruitment

and investigated trials that have added an arm in practice and how they addressed the

statistical considerations. Choodari-Oskooei et al. (2020) evaluated the type 1 error rate

when introducing new arm(s). Furthermore, Bennett and Mander (2020) determined op-

timal allocation ratios for platform trials, in terms of minimising the total sample size

and achieving a desirable marginal power, when not adjusting for potential time trends.

Ren et al. (2021) described statistical considerations with respect to type 1 error and

power in three-arm umbrella trials that add in an arm. The authors also discussed the

optimal allocation ratio for the control arm in periods in which treatment arms overlap,

in terms of minimising the sum of variances of the treatment effect estimators. Finally,

Bofill Roig et al. (2023) investigated the optimal allocation ratios in terms of minimising

the maximum standard error of the treatment effect estimators.

Although the current literature acknowledges some challenges of incorporating new

treatment arm(s) into ongoing trials, there is a lack of research explicitly addressing

randomisation methods. Perhaps unsurprisingly therefore, Pitre et al. (2023) identified

that 17 (68%) out of the 25 published platform trials used SR, 7 (28%) applied RAR, and

only one used minimisation methods. The randomisation process in platform trials is

quite complex because each time a new arm is introduced, the randomisation algorithm

must be adapted to account for the new arm, which of course affects the allocation to

all arms. The complexity is particularly notable when:

• The trial has a fixed sample size, and therefore the remaining sample size is limited

when a new treatment arm is introduced. The randomised allocation process to
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assign patients to the initial and newly introduced treatment arms may become

difficult.

• The study aims to achieve high covariate balance and compare multiple treatment

arms simultaneously. This requires a sophisticated randomisation method that

goes beyond simple random allocation and actively considers the distribution of

covariates across existing arms and newly added arm(s), given one may anticipate

the existing arms would be better balanced.

This raises the question of how patients should be allocated in the newly added arm,

relative to the control arm and other treatment arms, to reduce the covariate imbalance.

Furthermore, it is of interest to know if any randomisation approach can achieve high

covariate balance whilst also maintaining strong assignment randomness.

The primary aim of this chapter, therefore, is to address this question and identify an

efficient randomisation method, accounting for the selected allocation ratios, to reduce

covariate imbalance and increase assignment randomness. I first describe several evalu-

ated randomisation methods for the particular platform trial design under consideration.

I consider both randomisation methods that are widely implemented in platform trials,

such as SR, as well as other methods that performed well in the context of multi-arm

trials as shown in Chapter 2, e.g., SBR and SBUD. I then detail a motivating exam-

ple, the FLAIR trial (Howard et al., 2021), which is subsequently used in investigating

the impact of the choice of a variety of allocation ratios with particular randomisation

methods.

82



Chapter 4. Randomisation methods in a multi-arm multi-stage platform trial design

4.2 Methods

4.2.1 Two-stage platform trials

Consider a two-stage platform trial that initially has K1 = K treatment arms present,

with a total planned sample size of N = N1 +N2, where Ns is the sample size of stage

s = 1, 2. An additional treatment is added in stage 2, such that the number of treatment

arms is then K2 = K + 1. The randomisation process in this design is described in two

steps:

• In stage 1, N1 patients are to be allocated to one of the treatment arms, k1 =

0, 1, . . . , K − 1, where k1 = 0 is a shared control arm, present throughout the

trial, and k1 = 1, . . . , K − 1 are experimental arms. This is to be realised such

that the allocation ratio is r1,0 : r1,1 : · · · : r1,K−1. In this stage, a popular

allocation ratio choice is equal randomisation (Sverdlov et al., 2022). Therefore,

I assume that patients are to be allocated to each initially-present treatment arm

with r1,0 = r1,1 = · · · = r1,K−1 = 1.

• Stage 2 starts with the introduction of a new treatment; the remaining N2 patients

are then to be allocated to the existing arms and the new arm, indexed k2 =

0, 1, . . . , K, with allocation r2,0 : r2,1 : · · · : r2,K . In this stage, I consider various

possible allocation ratios, to allow flexibility in directing more patients to the new

arm, compared to the initially-present arms.

I set Rs to be the sum of the allocation ratios in stage s. That is

Rs =
Ks∑
k=0

rs,k.

Furthermore, I index the patients in stage s by i = 1, . . . , Ns. I will then use I(Ti,s = k)

as an indicator variable, taking the value 1 if patient i in stage s is assigned to treatment
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k and 0 otherwise. Then I set

Ns,k,l =
l∑

i=1

I(Ti,s = k).

That is, Ns,k,l is the number of patients in stage s assigned to arm k, amongst the first

l patients.

Finally, for simplicity, I assume that a set of J covariates of interest, indexed j =

1, . . . , J , will be measured and be the same in both stages. I use Xi,j,s for the value

of covariate j for patient i in stage s. As many treatment allocation methods work in

terms of strata defined through binary covariates, Xi,j,s is assumed to take values 0 or

1.

4.2.2 Considered allocation procedures

I consider four different randomisation methods for the considered platform trial design:

SR, SBR, SBUD, and Mini.

Simple Randomisation (SR)

SR can be implemented in the assumed platform trial design as follows. In stage 1, each

patient has an equal chance of being assigned to one of k1 = 0, . . . , K − 1. Then, in

stage 2, when the new arm is introduced to the trial, SR can be easily implemented using

unequal allocation ratios. Combined, the probability patient i in stage s is assigned to

treatment k is given by

P(Ti,s = k) =
rs,k
Rs

.

Stratified Block Randomisation (SBR)

The SBR process in pre-planned platform trials is assumed to function as follows
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1. 2J strata are specified, defined from all possible combinations of covariates j =

1, . . . , J . I use ci,s for the strata to which patient i in stage s belongs.

2. A chosen block size B, which is a multiple of the allocation ratios in both stages

(see below for an example), is nominated.

3. In stage s, the Ns patients are allocated into fixed blocks of size B based on

their stratum ci,s. Each block contains a random permuted sequence of allocations

containing a predetermined number of allocations to each treatment arm based on

the desired allocation ratios.

The treatment assignments will therefore differ in each stage depending on the num-

ber of arms and the allocation ratio to each arm. For example, suppose that a platform

trial was planned to begin with two arms using allocation ratio 1:1. Then, in stage 2,

a new treatment is introduced, with the allocation ratio switched to 1:1:2. If B = 8 is

chosen, 4 patients are randomly assigned to each treatment per block in stage 1, but in

stage 2 the assignment changes to assign 2 patients each for the initially-present arms,

and 4 for the new arm, within each block.

Define the block to which patient i in stage s is assigned to as bi,s. Then, the

probability patient i in stage s is assigned to treatment k is

P(Ti,s = k) =
B(rs,k/Rs)−

∑i−1
l=1 I(bl = bi)I(cl = ci)I(Tl,s = k)

B −
∑i−1

l=1 I(bl = bi)I(cl = ci)
.

Stratified Block Urn Design (SBUD)

As in SBR, the randomisation process begins with predefined strata ci,s and allocation

ratios rs,k for each arm k and stage s. Furthermore, a chosen MTI threshold should be

predetermined that specifies the maximum acceptable difference within each stratum in

the number of patients allocated to each treatment arm, indexed λ (see Subsection 2.2.1).

Following this, the block size B = λRs is predetermined, which is a multiple of the
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allocation ratios in both stages as in SBR (see below for an example), is nominated.

The assignment process of SBUD can then be illustrated within each stratum in each

stage by a model with two urns, termed active and inactive. The allocation procedure

starts with an empty inactive urn and B balls in the active urn. In the active urn, the

balls have ks distinct labels, representing each of the arms present in stage s. When a

treatment assignment is requested, a ball is randomly selected; if this is of label k then

this patient is assigned to arm k. This ball is then placed in the inactive urn.

This process is repeated for each assignment until a minimal balanced set is collected

in the inactive urn. These Rs balls are then returned to the active urn from the inactive

one. Other balls, if any, remain in the inactive urn. Then, balls are again drawn from

the active urn and placed into the inactive urn until it contains a minimal balanced set

once more ,which are then again transferred to the active urn.

Returning to the previous example, if λ = 2 and B = 6 are chosen, 6 balls with

distinct labels for each treatment are added to the active urn in stage 1, but in stage

2 the number of balls is changed to 3 balls for each of the initially-present treatments,

and 6 balls for the new treatment.

With the above, the probability patient i in stage s is assigned to treatment k is

given by

P(Ti,s = k) =
rs,kλ+ rs,kN

∗
i−1,ci

−Nk,i−1,ci

B +RsN∗
i−1,ci

− {
∑i

l=1 I(cl = ci)− 1}
,

Where N∗
i−1,ci

is the number of minimal balanced sets in previous assignments in

stratum c and Nk,i,c is the number of patients who have been assigned in stage s and

stratum c who have been assigned to treatment k, amongst the first i patients. That is,

Nk,i,c =
i∑

l=1

I(Ti,s = k)I(ci = c).
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Minimisation

The standard minimisation method proposed by Taves (1974); Pocock and Simon (1975),

was later expanded to unequal allocation ratios using allocation ratio preserving biased

coin minimisation (ARP BCM) to preserve the allocation ratio at every allocation step

(Kuznetsova and Tymofyeyev, 2012; Jin et al., 2019) (see Subsection 1.5.3 for more

details).

In platform trials, the minimisation algorithm can be described as follows: in each

stage s, patients i = 1, . . . , qNs are allocated to the ks treatment arms using SR, where

q is termed a ‘burn-in; period, and takes range between 0 and 1. Following this, patients

are allocated to a treatment k to minimise the marginal imbalance. The marginal

imbalance can be measured by the range, variance, or standard deviation (Kuznetsova

and Tymofyeyev, 2012; Jin et al., 2019). For brevity, I focus here on the range as an

intuitively simple and commonly used measure of imbalance (Jin et al., 2019).

After a new arm is introduced (stage 2), minimisation could be implemented in two

different cases:

• The minimisation algorithm takes into account the characteristics and allocation

of patients already enrolled in the existing arms of the trial. This historical data is

considered “non-concurrent” for the new arm since no patients have been assigned

to it yet. This might be preferable in some settings, when a high covariate balance

is highly desirable for the existing arms.

• The minimisation process can be implemented independently at each stage s. This

approach ensures balance in treatment allocation across different stages of the trial.

Each stage functions as a separate trial with its own minimisation process.

In this chapter, I consider both cases: where the minimisation algorithm in stage 2 relies

on the allocations in stage 1, and where it is implemented independently in each stage

s.
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The ARP BCM can be illustrated as follows. Set Ni,j,s,k,l as the number of patients

who have been assigned, among the first i patients, to treatment k, whose jth covariate

takes the value l in stage s. That is

Ni,j,s,k,l =
i∑

m=1

I(Tm,s = k)I(Xm,j = l).

Then, suppose that the next patient, patient i + 1, has covariate information

Xi+1,1,s, . . . , Xi,j,s. The number of patients up to this point at these levels in stage

s, for arm k, is given by Ni,j,s,k,Xi,j
for j = 1, . . . , J .

The marginal imbalance can then be defined by the range at each level of the covariate

j across all treatment arms using ARP BCM to adjust the allocation ratio in each

randomisation step. That is:

RG(Ni,j,0,Xi,j
/r0, . . . , Ni,j,Ks,Xi,j

/rs,k) = max
s,k=0,...

Ni,j,s,k,Xi,j
/rs,k − min

s,k=0...
Ni,j,s,k,Xi,j

/rs,k.

The total hypothetical imbalance, if patient i+ 1 is assigned to arm k in stage s, is

then defined as a weighted sum of the level-based imbalance for covariates included in

the minimisation routine

Ii+1,s,k =
J∑

j=1

wjRG(Ni,j,0,Xi,j
/rs,0, . . . , Ni,j,s,k,Xi,j

/rs,k).

Here, the weights wj are pre-specified and indicate the relative importance of covariates

in measuring the imbalance (Jin et al., 2019). Then, probability pmin is dedicated to

assigning patient i to one of the arms that minimises the subsequent imbalance, the

probability (1 − pmin) to the remaining arms. Later, I will fix the burnin parameter

q = 0.1, and identify a particular minimisation routine as Mini(pmin).
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4.2.3 Performance evaluation metrics

In Chapter 2, I evaluated the randomisation methods in terms of covariate imbalance

and allocation predictability at the end of the trial. However, in this chapter, I consider

evaluating randomisation methods with a set of allocation ratios in terms of covariate

balance and randomness as the trial progresses. I also examine the overall performance

for each of the randomisation methods considered, which is the trade-off between covari-

ate balance and randomness.

Degree of imbalance according to patient covariates

To evaluate the ability of the allocation techniques as the trial progresses to balance

covariate factors between arms, the proportion of patients in each arm with Xi,j = 1 is

calculated as:

υi,j,k =
Ni,j,k,1

Ni,k

.

Then, the maximum absolute difference in these proportions is calculated for each ex-

perimental arm compared to the control arm, for each covariate j, as

Υi,j = max (|υi,j,1 − υi,j,0|, . . . , |υi,j,k − υi,j,0|).

These maximum of these differences max (Υi,1,Υi,2, . . . ,Υi,J) is used as a performance

metric. A randomisation procedure with low imbalance is preferable. Note that the

maximal covariate imbalance is computed after each patient i allocated to treatment

arm.

Allocation predictability

As mentioned in Subsection 2.2.2, the choice of randomisation method has a major

impact on predictability, which is a popular indicator for evaluating randomisation rou-
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tines. Predictability can be defined as the number of times the allocation could have

been determined correctly by an investigator who knows the treatment allocation of all

previous patients and tries to correctly identify the next allocation as whichever arm

currently has the fewest assignments, factoring in the allocation ratio planned for each

treatment arm.

Since the randomisation process for platform trial designs involves different stages,

each with different treatment arms and allocation ratios, I calculate predictability inde-

pendently for each stage s. I measured the predictability through:

Gi ∼ Multinomial(pi,s,0, . . . , pi,s,K),

pi,s,k =
I{Ns,k,i−1 = min (Ns,0,i−1/rs,0, . . . , Ns,K,i−1/rs,K)}∑K

l=0 I{Ns,l,i−1 = min (Ns,0,i−1, . . . , Ns,K,i−1)}
.

The predictability for each stage is given by

Ωs =
1

Ns

Ns∑
i=1

I (Ti = Gi) .

Then, the predictability for both stages is defined by

ΩN =
1

N

N∑
i=1

I (Ti = Gi) .

Covariate balance/randomness trade-off

In the simulation study, at the end of the trial, the maximum value of maximum covariate

differences for each experimental treatment arm is defined as

ΥN = max(Υ1,N ,Υ2,N , . . . ,ΥK,N)

The values of ΥN and ΩN are rescaled to (Υ∗
N and Ω∗

N) by the minimum and range

for each allocation ratio to calculate an overall weighted score that can be used as an
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evaluation metric. The weighted score is defined as

ξ(N) =

√
(Υ∗

N)
2 + (Ω∗

N)
2

2
.

This assumes that covariate balance and unpredictability have equal importance. A

randomisation procedure with a small ξ(N) is preferable. This measure is useful as it

takes into consideration the common trade-off between balance and predictability.
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4.3 Motivating Example

As motivation for many of the assumed parameters values, I use the FLAIR trial (Howard

et al., 2021). The FLAIR trial is a randomised controlled confirmatory trial in chronic

lymphocyte leukaemia. It was originally planned as a two-arm trial (K = 2), with a

planned total sample size of N = 754 to achieve 80% power. Then, a new treatment arm

was planned to be added halfway through the trial (N1 = N2 = 377). Minimisation,

with a random element, was implemented to achieve covariate balance with respect

to important categorical covariates such as gender, age, disease severity, and medical

centres. In this trial, patients were equally randomised to one of the open treatment

arms throughout the trial (i.e., rs,k = 1 for all k and s).

4.4 Simulation study

Using the above motivating trial, I have examined different randomisation methods

with multiple allocation ratios in terms of the performance measures discussed in Sub-

section 4.2.3. The following summarises the common assumptions across two considered

scenarios. I consider N = 754 to be the total sample size, with N1 = N2 = N/2. I

assume that four binary covariates, J = 4, were used in the randomisation routine with

a value of Xi,j drawn independently for all i and j as Xi,j ∼ Bern(0.25). For minimisa-

tion, I considered q = 0.1 and pmin = 0.7. The above are applied in the following two

scenarios:

• Scenario 1: Sets K = 2 initially. In stage 2, patients are to be allocated to one

of the K + 1 treatments using one of several possible allocation ratios, specifically

(r2,0, r2,1, r2,2) ∈ {(1, 1, 1), (3, 1, 2), (2, 1, 3), (2, 1, 2), (1, 1, 2), (1, 1, 3), (2, 1, 1)}. For

SBUD, I assume λ = 4. For SBR, I consider B = 4R2; specifically, B = 12, for

allocation ratios of 1:1:1; B = 16 for allocation ratios of 1:1:2, 2:1:1; B = 24 for
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allocation ratios of 3:1:2 and 2:1:3; and B = 20 for allocation ratios of 2:1:2 and

1:1:3.

• Scenario 2: Sets K = 3 initially. In stage 2, patients are to

be allocated to one of the K + 1 treatments using one of sev-

eral possible allocation ratios, specifically (r2,0, r2,1, r2,2, r2,3) ∈

{(1, 1, 1, 1), (3, 1, 1, 2), (2, 1, 1, 3), (2, 1, 1, 2), (1, 1, 1, 2), (1, 1, 1, 3), (2, 1, 1, 1)}.

For SBUD method, I assume λ = 3. For SBR, I consider B = 3R2; specifically,

B = 12 for allocation ratios of 1:1:1:1; B = 15 for allocation ratios of 1:1:1:2

and 2:1:1:1; B = 21 for allocation ratios of 3:1:1:2 and 2:1:1:3; and B = 18 for

allocation ratios of 1:1:1:3, and 2:1:1:2.

Furthermore, I also consider evaluating the implications of using Mini(0.7) with non-

concurrent data in the stage 2 randomisation process. For each conidered set of param-

eter combinations, 10,000 simulation replicates were performed to empirically estimate

the performance metrics.
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4.5 Results

4.5.1 Degree of imbalance according to patient covariates

The simulation results comparing the covariate imbalance for the considered scenarios are

presented in Figures 4.1 and 4.2. As expected, in both scenarios, the maximum covariate

imbalance decreases for all randomisation methods as patient allocation progresses. In

addition, as expected, I observe that the covariate imbalance for the treatment arms

becomes closer to each other as the number of patients allocated increases. This trend

is observed for all randomisation methods.

Furthermore, the simulation results illustrate that in both scenarios, SR consistently

underperforms compared to other methods in terms of covariate balance in all treatment

arms (existing and newly added arms). This is in line with the expected limitations

of SR, as it does not attempt to control the potential imbalances in the covariates.

Mini(0.7) on the other hand, appears to consistently perform slightly better in terms

of covariate balance for all treatment arms and allocation ratios compared to the other

randomisation methods considered.

Surprisingly, Figures 4.1 and 4.2 demonstrate that allocating more patients to only

the newly added arm (e.g., 1:1:2, 1:1:3, 1:1:1:2, and 1:1:1:3) leads to a slightly higher

covariate imbalance for this treatment arm as the trial progresses compared to other

allocation ratios (e.g., 2:1:1, 2:1:2, etc); this applies to all randomisation methods.

Moreover, Figure 4.3 illustrates the simulation results exploring the influence

of Mini(0.7) on covariate imbalance using past assignments in existing arms (non-

concurrent data). Notable, the allocation ratios of 3:1:2 and 2:1:1 achieved a similar co-

variate balance at the end of the trial using non-concurrent assignments in the Mini(0.7).

This imbalance is even lower compared to the existing arm. This suggests that using

non-concurrent data in the Mini(0.7) process might actually improve covariate balance

compared to using only concurrent data.
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In addition, the allocation ratio of 2:1:2 achieves a similar covariate imbalance for the

newly added arm and the existing arm. This indicates that considering non-concurrent

data does not introduce bias towards the existing arm, which is crucial for fair compar-

isons at the end of the trial.
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Figure 4.1: The empirical covariate imbalance between the control arm and each of the
experimental arms, for each of the randomisation methods, under a variety of allocation ratios
in stage 2 (Scenario 1).
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Figure 4.2: The maximum covariate imbalance between the control arm and existing arms
and between the control arm and newly added arm for each of the randomisation methods and
under a variety of allocation ratios in stage 2 (Scenario 2).
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Figure 4.3: The empirical covariate imbalance between the control arm and each of the exper-
imental arms, for minimisation method, under of allocation ratios in stage 2, when considering
past assignments and without considering past assignments (Scenario 1).
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4.5.2 Allocation predictability

The allocation predictability is shown in Figures 4.4 and 4.5 for scenarios 1 and 2 re-

spectively. Mini(0.7) is more predictable relative to SBR, SBUD, and SR in both stages,

according to the simulation results. In addition, in both scenarios, allocation predictabil-

ity increases as patient allocation progresses except for SR.

As expected, use of a randomisation method with an unequal allocation ratio can have

a considerable impact on predictability. For example, Mini(0.7) with unequal allocation

ratios have higher predictability compared to Mini(0.7) with equal allocation ratio.

The predictability of Mini(0.7) is higher with allocation ratios of 1:1:3 (Scenario 1)

and 1:1:1:3 (Scenario 2) compared to Mini(0.7) with all other allocation ratios considered.

By contrast, the predictability of SBR, SBUD, and SR with different unequal alloca-

tion ratios is lower compared to those with equal allocation ratio. This means that these

methods rely more heavily on randomisation, especially with unequal allocation ratios.

Furthermore, in both scenarios, the SBR and SBUD have similar predictability, although

this is slightly lower in SBUD for allocation ratios of 2:1:1:1, 2:1:1:2, and 1:1:1:2.

4.5.3 Covariate balance/randomness trade-off

Tables 4.1 and 4.2 illustrate simulation results evaluating the overall performance of

covariate balance and randomness at the end of the trial. The results indicate that SBUD

performs slightly better than SBR for some but not all considered stage 2 allocation

ratios; these two methods generally perform similarly. However, SBUD performs slightly

better than SBR for some but not all considered stage 2 allocation ratios. On the

other hand, SR and Mini have similar overall performance that is inferior to the other

randomisation methods considered.
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Figure 4.4: The empirical mean predictability for each stage, under a variety of stage 2
allocation ratios (Scenario 1).

100



Chapter 4. Randomisation methods in a multi-arm multi-stage platform trial design

Figure 4.5: The empirical mean predictability for each, under a variety of stage 2 allocation
ratios (Scenario 2).
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Table 4.1: The trade-off between covariate balance and predictability at the end of the trial
for different randomisation methods and allocation ratios (Scenario 1).

Method Allocation Maximum Predictability Overall
ratio in covariate in both performance
stage 2 imbalance stages

SR 1:1:1 0.076 0.42 0.71
SBR 1:1:1 0.038 0.43 0.27
SBUD 1:1:1 0.043 0.43 0.22
Mini 1:1:1 0.035 0.46 0.71
SR 1:1:2 0.068 0.50 0.81
SBR 1:1:2 0.039 0.52 0.28
SBUD 1:1:2 0.042 0.51 0.20
Mini 1:1:2 0.039 0.54 0.71
SR 1:1:3 0.065 0.55 0.69
SBR 1:1:3 0.043 0.56 0.22
SBUD 1:1:3 0.047 0.56 0.18
Mini 1:1:3 0.044 0.59 0.71
SR 2:1:1 0.083 0.38 0.71
SBR 2:1:1 0.036 0.39 0.26
SBUD 2:1:1 0.041 0.39 0.21
Mini 2:1:1 0.034 0.42 0.71
SR 2:1:2 0.070 0.45 0.71
SBR 2:1:2 0.039 0.46 0.23
SBUD 2:1:2 0.046 0.46 0.28
Mini 2:1:2 0.032 0.49 0.71
SR 2:1:3 0.066 0.50 0.71
SBR 2:1:3 0.038 0.51 0.24
SBUD 2:1:3 0.043 0.51 0.23
Mini 2:1:3 0.035 0.54 0.71
SR 3:1:2 0.074 0.42 0.71
SBR 3:1:2 0.037 0.43 0.24
SBUD 3:1:2 0.044 0.42 0.26
Mini 3:1:2 0.030 0.46 0.71
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Table 4.2: The trade-off between covariate balance and predictability at the end of the trial
for different randomisation methods and allocation ratios (Scenario 2).

Method Allocation Maximum Predictability Overall
ratio in covariate in both performance
stage 2 imbalance stages

SR 1:1:1:1 0.09 0.29 0.71
SBR 1:1:1:1 0.04 0.31 0.22
SBUD 1:1:1:1 0.04 0.31 0.20
Mini 1:1:1:1 0.04 0.36 0.71
SR 1:1:1:2 0.08 0.37 0.71
SBR 1:1:1:2 0.04 0.38 0.20
SBUD 1:1:1:2 0.05 0.38 0.19
Mini 1:1:1:2 0.04 0.43 0.71
SR 1:1:1:3 0.07 0.40 0.71
SBR 1:1:1:3 0.04 0.43 0.24
SBUD 1:1:1:3 0.05 0.42 0.22
Mini 1:1:1:3 0.04 0.48 0.71
SR 2:1:1:1 0.09 0.27 0.71
SBR 2:1:1:1 0.04 0.28 0.19
SBUD 2:1:1:1 0.05 0.28 0.21
Mini 2:1:1:1 0.03 0.33 0.71
SR 2:1:1:2 0.08 0.33 0.71
SBR 2:1:1:2 0.04 0.35 0.20
SBUD 2:1:1:2 0.05 0.34 0.24
Mini 2:1:1:2 0.03 0.40 0.71
SR 2:1:1:3 0.07 0.38 0.71
SBR 2:1:1:3 0.04 0.39 0.21
SBUD 2:1:1:3 0.05 0.39 0.26
Mini 2:1:1:3 0.03 0.44 0.71
SR 3:1:1:2 0.08 0.31 0.71
SBR 3:1:1:2 0.04 0.32 0.22
SBUD 3:1:1:2 0.05 0.32 0.28
Mini 3:1:1:2 0.03 0.37 0.71
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4.6 Discussion

It can be practically advantageous to add new experimental arms to an existing trial, as

it does not include the long process of starting a whole new trial (Sydes et al., 2012; Elm

et al., 2012). This means that the evaluation of the newly emerging treatment arm(s) can

be sped up, conducted at reduced costs, and with a lower number of patients required

(Cohen et al., 2015). To date, though, no work has sought to assess what influence

randomisation routines may have on the efficiency of platform trials. Therefore, in

this chapter, I evaluated several randomisation methods under a variety of allocation

ratios, focusing on their covariate imbalance and assignment randomness when a new

experimental arm is added to an ongoing trial. I also considered the trade-off between

covariate balance and randomness.

The results demonstrate that increasing the allocation ratio for only the newly added

arm does not minimise the covariate imbalance if all treatment arms finish recruitment

simultaneously. To minimise covariate imbalance, it would be preferable to decrease

the allocation ratio in the existing arm and increase the allocation ratio in both the

control and newly added arms. This is also recommended by Bennett and Mander

(2020) to maximise the overall power when adding a new experimental arm, and all

treatment arms finish recruitment simultaneously. In the paper, the authors stated that

the optimal allocation ratio (in a trial concluding with a control and two treatment

arms) would be 1.236:0.566:1 (Bennett and Mander, 2020). This ratio could be, at least

approximately, implemented in practice by using minimisation or through using a large

block size.

Furthermore, the results illustrate that Mini(0.7) performs better in terms of covari-

ate balance compared to other randomisation methods for different allocation ratios,

particularly when the platform trials initially start with more than two experimental

arms, as in scenario 2. On the other hand, Mini(0.7) with unequal allocation ratios is
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more predictable compared to the other randomisation methods considered. Note that

in platform trial designs, it should be impossible for any investigator to have all of the

knowledge needed for the above guessing strategy, even when the trial is open-label. In

this study, predictability is rigorously defined to quantify its potential impact. However,

in practice, it does not matter whether the next allocation is predictable, but rather

whether those in a position to influence recruitment believe that they know what will

happen next with higher chance, regardless of this being correct or not. Nevertheless,

acting upon a belief that is not correct could introduce bias.

Although SBR is a common randomisation method in RCTs due to its advantages

(Lin et al., 2015), it may be challenging to implement effectively in platform trials with

varying numbers of treatment arms and unequal allocation ratios. SBR requires careful

assessment of the number of covariates that can be stratified and careful choice of the

size of the block, to avoid partially filled blocks and overall imbalances. Similarly, this

may also be more challenging for SBUD due to the need to predetermine both the block

size and MTI.

Furthermore, Tables 4.1 and 4.2 show that SR and Mini do about the same at the

end of the trial when the goal is to get both high covariate balance and randomness.

This is because SR is highly random, while Mini performs best in terms of covariate

balance. The overall performance difference between SBR and SBUD depends on the

allocation ratio and the number of initial arms.

Before concluding, it is important to recognise the limitations of this work. I have

focused on the case where all treatment arms finished recruiting simultaneously. In prac-

tice, instead of recruiting to all treatment arms until the end of the study and reducing

the allocation to the existing treatment arm, the existing treatment arm(s) could finish

recruitment early. Reducing allocation to the existing experimental treatment arm(s)

when the new treatment arm is added delays learning about the effect of the existing

treatment arm. Further work is required to identify effective randomisation approaches
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when recruitment does not continue for all arms until trial conclusion.

Moreover, in this chapter, I focused on covariate balance with a large sample size.

However, evaluating different clinical trial power (marginal, disjunctive and conjunctive

powers) and controlling FWER for different allocation ratios and randomisation methods

would be valuable for future research. I also examined the trade-off between balance and

randomness, assuming that both characteristics (as measured by the specified metrics)

hold equal importance. However, this assumption may not universally apply in practice.

Consequently, exploring different weights assigned to these characteristics could be an

interesting for further research.

In addition, I explored the allocation ratios when a new treatment enters the ongoing

trial halfway through the study. In many platform trials, a new treatment arm(s) would

enter the trial at different time points. This could be a challenging point; particularly

when a new treatment enters a trial after randomising half of the planned sample size. In

this case, increasing allocation ratios further towards the control arm and newly added

arm would be required to achieve high covariate balance. Further research would be

useful to evaluate allocation ratios that achieve a high covariate balance. However, in the

results, the considered allocation ratio in the first stage is always equal randomisation,

and does not depend on the allocation ratios chosen for stage 2.

Furthermore, in this study, I assumed a fixed total sample size. Therefore, exploring

multiple allocation ratios is arguably more limited, as it involves redistributing patients

across existing and new arms. Possible future work could look at adjusting the allocation

ratio to minimise the covariate imbalance with an adaptive sample size. Moreover, I

assumed only binary covariates that are the same for both stages. Further research

exploring different covariate scenarios would be of interest. Lastly, I have assumed

that the new arm was added halfway through the trial. Future research examining

performance when adding a new treatment arm at different time points could be helpful.
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Concluding remarks and

recommendations

5.1 Summary

This thesis has focused on randomisation methods and the choice of allocation ratio

in three different clinical trial designs, including multi-arm, MAMS, and platform trial

designs. Each chapter sought to address a different issue that could potentially prevent

these designs from being implemented in practice. In the following, I outline each chapter

in turn and highlight the main contributions within.

5.1.1 Chapter 2: Randomisation in multi-arm trial designs

In Chapter 2, I evaluated and compared randomisation methods that investigators com-

monly use in practice for two-arm trials, within the context of multi-arm trials. I also in-

cluded evaluation of several proposed methods that have less-often been used in practice,

to examine if they are worth considering for future use. Several performance measures

were used for comparison of the methods, including group size balance, covariate bal-

ance, loss of precision, and predictability of assignment. I also compared performance for
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different definitions of statistical power: marginal, disjunctive, and conjunctive powers.

Several conclusions were drawn from my work:

• Choosing an appropriate randomisation approach in RCTs is challenging because

each approach has strong performance properties in one, but not all, of the eval-

uation metrics. Therefore, the choice of the randomisation approach depends on

the clinical trial objectives. For example, if a clinical trial objective is to achieve

balanced group sizes, PBR provides better performance.

• Investigators have argued extensively against minimisation because it is more pre-

dictable compared to other randomisation methods, but in fact including more

covariates in the randomisation procedures leads to a reduction in the predictabil-

ity. Therefore, I recommend using minimisation when there are a large number of

covariates that need to be included in the randomisation routine.

• For smaller numbers of covariates, SBR arguably performs better compared to

other randomisation methods, but investigators must be very careful about the

choice of block size; a larger block size means larger group size and potential

covariate imbalance.

• Larger block sizes increase allocation randomness but decrease the treatment bal-

ance, as at the end of recruitment a larger proportion of the block can remain

unfilled.

5.1.2 Chapter 3: Multi-arm multi-stage trial designs

Before selecting a suitable randomisation method, it is necessary to identify a suitable

allocation ratio, with consideration of how the choice of allocation ratio impacts power.

In multi-arm trials, the optimal allocation ratio to maximise power has been identified

as allocating the square root of the number of experimental arms in the control arm for

108



Chapter 5. Concluding remarks and recommendations

each patient in each experimental arm. Equivalent results were not available for MAMS

trials. Therefore, in Chapter 3, I studied the impact of stage-wise allocation ratios on

marginal, disjunctive, and conjunctive power in a MAMS trial. I also investigated the

impact on the expected sample size of the choice of stage-wise allocation ratios. The

results showed that:

• The stage-wise allocation ratio does not have a remarkable impact on expected

sample size. Therefore, investigators should not hope that the use of alternative

allocation ratio can reduce the required sample size.

• The most efficient stage-wise allocation ratios in MAMS trials can indeed vary sig-

nificantly depending on several factors, including: i) the type of power (marginal,

disjunctive, and conjunctive); ii) the number of arms; iii) the number of stages;

and iv) other key design parameters (e.g., desired error rates).

5.1.3 Chapter 4: Platform trial designs

Motivated by the fact that platform trials have increased in popularity in drug develop-

ment, particularly because of COVID-19, I sought to determine suitable randomisation

methods (across possible allocation ratios) to reduce the covariate imbalance between a

newly added arm and the control arm. The simulation results indicated:

• Minimisation is more amenable to the use of non-concurrent data or concurrent

data only in the randomisation algorithm than other methods. Considering the use

of non-concurrent data in the minimisation method can achieve a high covariate

balance compared to using concurrent data only.

• Allocating more patients to only the newly added arm, did not minimise the co-

variate imbalance.
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5.2 Areas for further work

5.2.1 Optimal allocation ratios for other types of MAMS de-

sign and platform trial design

With numerous types of MAMS design, each has different optimal/efficient allocation

ratios. In Chapter 3, I only considered a group sequential MAMS design; numerically

searching for the best performance amongst a set of allocation ratios considered. How-

ever, searching for the optimal performance allocation ratio would be of interest for

further research.

In Chapter 4, I also considered a set of allocation ratios in platform trials to evaluate

randomisation methods with different allocation ratios in terms of covariate balance and

assignment randomness. Future research could investigate optimal allocation ratios and

explore the initial allocation ratios at the start of trials for each randomisation method.

5.2.2 Multiple and different outcomes

In Chapters 2 and 3, my focus was principally on analysing continuous outcomes. How-

ever, it is important to recognise the importance of other outcome types, such as time-to-

event and binary data. While we anticipate that our results would not materially change

for other outcome types, verification of this expectation would be helpful. Additionally,

researchers often encounter multiple outcomes of interest, which can present analytical

challenges. Future research could explore methods to handle these complexities and

incorporate various types of outcomes into RCT randomisation routines and analyses.

I also considered throughout statistical tests based on a model. If randomisation-

based inference was applied, this could affect our conclusions. Thus, further aspects of

interest include the evaluation of how randomisation-based inference would impact our

conclusions.
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5.2.3 Incorporation of continuous covariates

Throughout this thesis, I only assumed the presence of binary covariates. However,

in practice, covariates could be categorical with different levels and also could be con-

tinuous. Often, an important continuous covariate is categorised to different levels to

incorporate it into a randomisation routine. However, sometimes it may be preferable to

keep it as it is; in this case investigators would benefit from the extension of our results

to consider which available method can best balance continuous covariate data across

treatment arms.

5.2.4 Response Adaptive Randomisation

Traditional clinical trials allocate patients to each treatment arm using a fixed allocation

ratio. However, in some clinical trial cases, the allocation ratio is modified to assign more

patients to the treatment arm that has demonstrated the best performance compared to

other treatments (Hu and Rosenberger, 2006). RAR allows this allocation to change as

the trial progresses. Therefore, RAR has been increasingly commonly considered within

the context of adaptive randomisation (Saville and Berry, 2016).

Throughout this thesis, randomisation methods were evaluated for fixed allocation

ratios to each treatment arm. However, evaluating (covariate) response adaptive ran-

domisation to achieve, for example, a maximum overall power would be interesting in

future research.
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Appendix

A.1 Supplementary materials for Chapter 2

The simulation results for the minimisation method, in terms of the number of covariates

used in the allocation method (Jrand) and the assumed value of pmin, are given below.
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Table A.1: Simulation results for minimisation in Setting 1.

N Jrand pmin Mean maximal Mean minimal Mean Mean maximal
group-size and maximal predictability treatment effect
imbalance (SD) covariate imbalance (SD) variance inflation (SD)

175

1

0.7

8.40 (8.29) [0.04,0.23] [0.03,0.19] 0.16 (0.02)
2 3.95 (4.59) [0.02,0.13] [0.03,0.19] 0.21 (0.03)
3 1.84 (2.11) [0.01,0.09] [0.03,0.19] 0.25 (0.03)
4 1.24 (1.21) [0.01,0.09] - 0.26 (0.03)

175

1

0.9

1.43 (1.40) [0.01,0.06] [0.03,0.18] 0.25 (0.03)
2 0.89 (0.90) [0.01,0.05] [0.03,0.18] 0.28 (0.03)
3 0.67 (0.76) [0.01,0.05] [0.03,0.19] 0.31 (0.03)
4 0.58 (0.69) [0.01,0.05] - 0.31 (0.03)

350

1

0.7

14.48 (15.14) [0.03,0.19] [0.02,0.13] 0.16 (0.02)
2 6.03 (7.59) [0.01,0.09] [0.02,0.13] 0.20 (0.02)
3 2.06 (2.56) [0.01,0.05] [0.02,0.13] 0.24 (0.02)
4 1.26 (1.21) [0.01,0.05] - 0.26 (0.02)

350

1

0.9

1.46 (1.44) [0.00,0.03] [0.02,0.13] 0.24 (0.02)
2 0.85 (0.91) [0.00,0.02] [0.02,0.13] 0.28 (0.02)
3 0.66 (0.74) [0.00,0.02] [0.02,0.13] 0.30 (0.02)
4 0.59 (0.70) [0.00,0.03] - 0.31 (0.02)

700

1

0.7

26.41 (29.31) [0.03,0.17] [0.01,0.09] 0.16 (0.01)
2 10.48 (14.11) [0.01,0.06] [0.01,0.09] 0.20 (0.01)
3 2.24 (3.21) [0.00,0.03] [0.01,0.09] 0.23 (0.02)
4 1.27 (1.21) [0.00,0.02] - 0.25 (0.01)

700

1

0.9

1.47 (1.43) [0.00,0.01] [0.01,0.09] 0.24 (0.01)
2 0.86 (0.91) [0.00,0.01] [0.01,0.09] 0.28 (0.01)
3 0.67 (0.75) [0.00,0.01] [0.01,0.09] 0.30 (0.01)
4 0.58 (0.69) [0.00,0.01] - 0.31 (0.01)
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Table A.2: Simulation results for minimisation in Setting 2.

N Jrand pmin Mean maximal Mean minimal Mean Mean maximal
group-size and maximal predictability treatment effect

imbalance (SD) covariate imbalance (SD) variance inflation (SD)

43

1

0.7

3.08 (2.81) [0.05,0.30] [0.06,0.35] 0.20 (0.06)
2 1.89 (1.93) [0.04,0.24] [0.06,0.34] 0.26 (0.06)
3 1.32 (1.37) [0.03,0.23] [0.05,0.33] 0.29 (0.06)
4 1.07 (1.08) [0.03,0.23] - 0.30 (0.06)

43

1

0.9

1.13 (1.32) [0.02,0.15] [0.05,0.33] 0.29 (0.06)
2 0.79 (0.84) [0.02,0.15] [0.05,0.33] 0.33 (0.06)
3 0.67 (0.72) [0.02,0.16] [0.05,0.33] 0.34 (0.06)
4 0.59 (0.67) [0.02,0.17] - 0.35 (0.06)

85

1

0.7

4.71 (4.28) [0.04,0.23] [0.04,0.24] 0.20 (0.04)
2 2.31 (2.46) [0.02,0.15] [0.04,0.24] 0.26 (0.04)
3 1.41 (1.45) [0.02,0.13] [0.04,0.24] 0.29 (0.04)
4 1.14 (1.10) [0.02,0.13] - 0.30 (0.04)

85

1

0.9

1.17 (1.14) [0.01,0.08] [0.04,0.24] 0.29 (0.04)
2 0.81 (0.85) [0.01,0.08] [0.04,0.24] 0.32 (0.04)
3 0.67 (0.72) [0.01,0.08] [0.04,0.24] 0.34 (0.04)
4 0.60 (0.68) [0.01,0.09] - 0.35 (0.04)

170

1

0.7

7.49 (7.08) [0.03,0.17] [0.03,0.17] 0.20 (0.03)
2 2.96 (3.35) [0.02,0.09] [0.03,0.17] 0.25 (0.03)
3 1.49 (1.53) [0.01,0.07] [0.03,0.17] 0.28 (0.03)
4 1.17 (1.09) [0.01,0.07] - 0.30 (0.03)

170

1

0.9

1.22 (1.19) [0.01,0.04] [0.03,0.17] 0.29 (0.03)
2 0.85 (0.84) [0.01,0.04] [0.03,0.17] 0.32 (0.03)
3 0.70 (0.71) [0.01,0.04] [0.03,0.17] 0.34 (0.03)
4 0.66 (0.65) [0.01,0.04] - 0.35 (0.03)
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Table A.3: The simulation results on mean maximal group-size imbalance for minimisation
with different values of pmin, when Jrand = 2.

Setting N pmin Mean maximal group-size imbalance (SD)

1 350

0.65 8.98 (11.19)
0.70 6.03 (7.59)
0.75 3.64 (4.53)
0.90 0.87 (0.90)

1 700

0.65 16.61 (21.87)
0.70 10.48 (14.11)
0.75 5.26 (7.38)
0.90 0.86 (0.91)

2 43

0.65 2.25 (2.32)
0.70 1.89 (1.93)
0.75 1.53 (1.57)
0.90 0.79 (0.84)

2 85

0.65 2.95 (3.16)
0.70 2.32 (2.43)
0.75 1.77 (1.81)
0.90 0.81 (0.85)
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A.2 Supplementary materials for Chapter 3

Simulation results for Chapter 3

The simulation results for the minimisation method, in terms of the number of covariates

used in the allocation method (Jrand) and the assumed value of pmin, are given below.
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A.3 R code

• R code for Chapter 2 to reproduce the results is available from https://github.

com/Ruqayya20/allocation_methods-in-multi-arm-trial

• R code for Chapter 3 to reproduce the results is available from https://github.

com/Ruqayya20/MAMS/blob/main/stage/wise-allocation-ratios.

• R code for Chapter 4 to reproduce the results is available from https://github.

com/Ruqayya20/platform-trials.git.
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