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Abstract 

Process intensification (PI) technologies are challenging the traditional unit operations 
in a wide range of engineering processes. The Rotating Packed Bed (RPB) or the 

Higee is a compact mass transfer machine that could challenge the conventional 

absorption/desorption columns especially in the off-shore oil facilities where space 

and weight are of great importance. This counter-current mass transfer operation 
between the gas and the liquid phases occurs at high rotational speed and with a short 

residence time. 

The objective of the project was to test the capability of the mass transfer machine 
(RPB) in gas sweetening field. Therefore, a RPB pilot plant facility was modified 

then experimentally tested for the chemical absorption of 4 vol. % C02/Air mixture 

using different concentrations of aqueous ethanolamine solutions (30,55,75, and 100 

wt. %) at different temperatures (20', and 40"C). 

The hydraulic capacity or the flooding behaviour of the machine was initially 

investigated and then compared with Sherwood correlation. In addition, Wallis 

method was approached to correlate the flooding data. The analysis of the carbon 
dioxide concentration in the liquid and gas samples was carried out by a gas 

chromatograph. Týe mass transfer studies were carried out to identify the effect of 

temperature, rotor speed, liquid flowrate, and concentration on the HTU. The 

percentage recovery of carbon dioxide was 98.6,92.8,88.4 and 44.4% for 100,75,55, 

and 30 wt% MEA solutions. 

In addition, the regeneration of the amine solution by steam was investigated at 

various (G/L) ratios and rotor speeds. It was observed the efficiency of the operation 

was highest when the ratio (kg steanVL solution) was greater than 0.4. 

Key Words: Rotating packed bed, process intensification, Higee, gas sweetening, 
MIEA, carbon dioxide, absorption, steam desorption, HTU. 
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Chapter 1: Introduction 

CHAPTER 1 

INTRODUCTION 

The field of process intensification (PI) got momentum in late 1970s when ICI 

engineers pioneered this field. The main objective was to reduce the size of the Main 

Plant Items (MPI) in the bulk chemical industries in order to reduce the installation 

costs, by a factor of 10 or more, with the application of novel and compact 

technologies (Ramshaw, 1983). 

Reducing the size of unit operations and/or integrating their functions can 

substantially save costs by reducing civil engineering and piping works. However, PI 

success is not only limited to its early advantage of reducing the size and weight of 

equipment and thus saving space, but the vision, even at that early stage, was to 

improve efficiency, inherent safety, as well as reducing the energy consumption and 

environmental impact. These advantages were accomplished due to the short 

residence time and low volume of multi-phase operations. 

(Hendershot, 2000) supported the utilization of PI technologies in the chemical 
industries due to process minimization, which add inherent safety factor to the 

equation of plant design. The concept of PI has evolved in the last three decades, and 

now covers both the bulk chemicals industry and the small volume speciality 

chemicals production. (Green, 1998) reviewed the PI technologies currently under 
investigation: rotating packed beds (RPB), spinning disk reactor, compact heat 

exchanger, in-line mixing devices, combined chemical reactor-heat exchangers, 

oscillatory flow reactors, and microreactors. 

Both the RPB and the spinning disk reactor technologies take advantage of centrifugal 
fields as stimulants for PI (Ramshaw, 1993). The wisdom of using centrifugal fields 

is to benefit from the fact that the dynamic behaviour of multiphase fluids is dictated 

by the interphase buoyancy factor Apg. Therefore, increasing the centrifugal 

acceleration improves the slip velocity, which in turn improves the flooding 

characteristics and interfacial shear stress, and consequently boost mass transfer 

coefficient. 
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(Stankiewicz and Moulijn, 2000) stressed the effect of process intensification on 
transforming the chemical engineering field. They predicted that the intensified 

equipment and processing techniques would cause extinction of the traditional unit 

operations in the 21" Century in a similar approach to the advancement in electronics 
field. The vision was to apply efficient and integrated devices such as pipeline 

reactors or 1-2 m rotating devices as an alternative to long columns or reactors. 

The industrial technology in operation throughout the world for removing acid gases 
involves the application of the conventional packed columns for both absorption and 
desorption. The main objective of this research is to develop and test a high 

performance mass transfer device (Iligee) that is capable of absorbing and desorbing 

carbon dioxide using various strengths of alkanolamine solutions. 

The application of I-Egee technology in gas sweetening field in the offshore oil 
industry will provide a cornerstone in plant design by critically reducing the size and 

weight of absorber/desorber, increasing the inherent safety of offshore sites and 

performing efficient mass transfer operations. 

An initiative by the Norwegian government to restore C02 emissions in the year 2000 

to the 1989 level, led to the introduction of a C02-tax costing oil companies a 

staggering US$ 355 millions in 1994. The high cost of tax forced the oil companies to 

seek new technologies for the reduction of greenhouse emissions (Falk-Pedersen et 

al., 1995). Norsk Hydro, a Norwegian energy, chemicals and metals group, declared 

an initiative to invest in an environmental-friendly project for the generation of 

electricity. Figure 1.1 shows a schematic diagram of the overall process. The 

feedstock to synthesis process (reformer) is natural gas (CH4), which will produce 
Hydrogen as the main product and carbon dioxide as a by-product. Hydrogen will be 

fed to the gas and steam turbines for the production of electricity, while carbon 
dioxide will be injected into the Grave oil reservoir in the Norwegian continental shelf 

of North Sea for recovering oil. By utilizing carbon dioxide in oil recovery, a 

reduction of 90% emission of this greenhouse gas is attainable. 
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Figure 1.1: Schematic diagram of overall process for production of electricity 

and oil recovery. 

(Green, 1999) described an overall methodology to start-up a PI industrial project as 

shown in Figure 1.2. The business drivers for the current research project is to utilise 
the concept of the compact Higee machine in offshore facilities in order to reduce 
C02-related taxes as explained earlier. The knowledge elicitation step is 

acknowledged in Chapter 2 with a detailed brainstorming of the concept of 

regenerable mass transfer, process chemistry, rate limiting step, reaction kinetics, and 

the rotating packed beds concept. The detailed design description of the experimental 

pilot plant rig is shown in Chapter 3. The flooding and solubility experiments are 

shown in Chapter 4. The early mass transfer studies showed that the recovery of 

carbon dioxide in the absorption runs were only 40% using 30wt% MEA lean 

solution, which was based upon the typical high-range MEA solution strength in the 

modem conventional absorbers. As the Ifigee is a radical mass transfer machine in 

terms of the fast residence time, the PI blockers were reviewed and it was decided to 

study the effect of MEA strength on mass transfer characteristics. Chapter 5 shows 
the absorption and desorption studies. Chapter 6 shows the conclusions and 

recommendations for future work. Finally, a list of appendices shows the detailed 

calculations, solubility data, and the gas chromatography calibrations. 
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Figure 1.2: The PI methodology courtesy of (Green, 1999) 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Regenerable Mass Transfer Processes 

2.1.1 Introduction 

Purification of a gas stream by a liquid solvent is an important chemical engineering 

mass transfer operation. (Pearce, 1993) categorized acid gas removal methods into 7 

groups as shown in Figure 2.1. 

Gas Sweetining Methods 

Chemical Solvents Physi al Solvents Chemical / Physic al Solid Gas Membrane Gas 
Solvents Treating Processes Treating Process 

Regenerativ Regenerative Chemical Non-chemical 

Figure 2.1: Classification of the gas sweetening methods 

The liquid-vapour mass transfer operation can either be accompanied with or without 

chemical reaction depending on the type of the chosen solvent. The former is called 

chemical solvent and the latter is known as physical solvent. The criteria for choosing 

an appropriate solvent depend on the composition, temperature, and pressure of feed 

gas and the required specification on sweet gas as shown in Figure 2.2 (Tennyson and 
Schaaf, 1977). 

From the economic point of view, chemical solvents are favourable when the partial 

pressure of acid gas in both the sour and sweet streams is low. Furthermore, the 

chemical reaction between the base liquid and the acid gas can be reversed by 

changing the operating condition of the process thus regenerating the chemical 

solvent. 
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The vapour-liquid equilibrium curves of the chemical solvent shows that fewer 

theoretical stages are required to achieve high acid gas clean-up. The shape of the 

equilibrium curve is due to the high ionic strength of the chemical solvents. Other 

advantages of chemical solvents are: higher capacity, higher degree of removal of acid 

gas, higher absorption mass transfer coefficient, and higher desorption mass transfer 

coefficient. 

However, there are limitations that should be investigated, such as: cost of chemicals, 
high heat of absorption, corrosion, side reactions, and possible environmental 

concems. 
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Figure 2.2: Choice of solvent in gas treating (Tennyson and Schaaf, 1977). 

There are five main fields that applies gas/liquid absorption and desorption processes 

(Charpentier, 1982): (1), Liquid phase processes e. g. nitration, polymerisation; (2) Gas 

scrubbing e. g. C02, H2S; (3) Pure products manufacturing e. g. H2SO4, HN03; (4) 

Biological processes e. g. aerobic fermentation; and (5) Multi and two phase flow e. g. 

oil recovery. 



Chapter 2: Literature Review 7 

2.1.2 Description of the Operation of A Conventional Gas Treating Plant 

Removal of the acid gases (H2S and C02) or gas sweetening is an important industrial 

application. The removal of carbon dioxide is a common target in the manufacture of 
Hydrogen, ammonia, natural gas production and the recovery Of C02 from the flue 

gases. The main items of a conventional gas sweetening plant are: absorber, desorber 

and flash drum as shown in Figure 2.3. 

The lean alkanolamine solution is fed to the top of the absorber and the sour gas is fed 

at the bottom thus a mass transfer counter-current process takes place throughout the 

length of the packing. The sour components of gas stream are diffused with 

exothermic chemical reactions into the alkanolamine solution. The sweet gas is 

released at the top of absorber and a C02-rich alkanolamine at the bottom. 

The next stage is to regenerate rich alkanolamine. The rich solution is heated up 

using the hot lean ethanolamine from the bottom of the desorber. It is then flashed off 
before being fed to the desorber in order to remove as much as possible of the flashed 

gases so that less steam is desirable for regeneration. The flashed liquid is then fed to 

the top of the desorber. The desorption takes place when the equilibrium partial 

pressure of carbon dioxide in the rich solution is greater than its partial pressure in the 

gas phase. Steam is used as a desorption medium because it provides energy to 

reverse the carbon dioxide and alkanolamine reaction, lowers the partial pressure of 

carbon dioxide in the gas phase, and provides sensible heat to raise the temperature of 

the rich amine to the lean amine exiting desorber. 

The flashing occurs when total equilibrium vapour pressure, i. e. the sum of 

equilibrium partial pressure of acid gas and solvent, exceeds total pressure of the 

system. The kinetics of flashing is not fully understood, though, it can be considered 

as boiling in which nucleation governs the kinetics. A measurement system is 

required over the flash drum in order to define the conditions at the top of desorber. 

Table 2.1 shows the operating data for aqueous MEA gas treating plant. 

Figure 2.4 shows the position of the operating line in the counter-current gas-liquid 

absorber and desorber for a chemical solvent. 
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2.1.3 Operating Modes 

There are three modes of operation: Rich End Pinch (REP), Lean End Pinch (LEP), 

and Unpinched (UP). In REP and LEP the lean solvent is recycled to the top of 

absorber whereas for UP mode the solvent is recycled to low feed point. The packing 
height in REP and LEP should be large to accommodate a pinch whereas it should be 

small enough in UP mode to avoid existence of a pinch. 

In REP a high steam rate is maintained at the bottom of desorber thus ideally a lean 

solvent is always fed to absorber. 

2.1.4 Operating Variables 

The operating variables are: (1) steam rate to desorber, (2) liquid circulation rate, (3) 

feed gas rate, (4) composition, and temperature, (5) pressure in the absorber and 
desorber, (6) composition of the lean and rich solutions and of the flashed solution, 
(7) composition of the gas exiting from the absorber, (8) temperatures at the lean and 

rich end of both absorber and desorber. 
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Figure 2.3: Flowsheet of a typical amine plant 
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Figure 2.4: Position of the operating line in the absorber and desorber. 
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Table 2.1: Operating data for Aqueous MEA Gas Treating Plant, (Kohl and Nielsen, 

1997) 

Gas Feed rate 72 MMscfd Solution Flow rate 2,000 gpm 

%wt MEA 10-18 

Feed gas analysis 

C029 %Vol 

S02, PPMV 

H2S, grains/100scf 

10-15 

10-100 

0 

Outlet gas analysis 

C021 %Vol 

S02s PPMV 

H2S, grains/100scf 

0.1-0.3 

1-5 

0 

Lean solution loading 

Mol C02/mol MEA 0.062 

Rich Solution Loading 

Mol C02/mol MEA 0.415 

Absorber 

Number of columns 1 Diameter ID, ft 14.5 

Height, ft 133 Internals Two 23-ft 

beds of 

polypropylene 

saddles 

Water wash 2 trays Pressure, psig 0 

Stripper 

Number of columns 1 Diameter ID, ft 12.5 

Total trays 18 Wash trays 
1 12 

Pressure, psig 5-10 Bottom temperature, 'C 118.3 

Steam to reboiler, 
lb/gal of solution 

1.13 
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2.2 Chemistry 

2.2.1 Selection of Amine 

There are different types of amines applied in the industry, namely: primary (e. g. 

monoethanolamine - MEA), secondary (e. g. diethanolamine - DEA), ternary (e. g. 

triethanolamine - TEA), sterically-hindered, and mixtures of amines. The structural 
formulas of common amines are shown below. 

C- C-OH 

NH 

H 

C- C-OH 

NH 

C-C- OH 

Monoethanolamine (MEA) 

c- C-OH 

N-C - C-OH 
\C-C 

-OH 

Triethanolamine (TEA) 

Diethanolamine (DEA) 

C- OH 

N- CH3 
\C-C 

-OH 

Methyldiethanolamine (MDE. 

Monoethanolamine (MEA) is selected as the chemical solvent throughout this 

research due to the availability of vast literature bank related to the laboratory scale 

physico-chemical data. Furthermore, MEA has a large proportion of the amine world 

market share (40%) as shown in Figure 2.5. 
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Figure 2.5: Share of MEA in amines global market (DuPart et al., 1993a) 

MEA occupies a large slice of the amine market due to few factors such as: higher 

reaction rate, better stability, high alkalinity, cheaper, easier to reclaim, higher 

capacity due its lower molar mass thus minimizes the amount of solvent to be 

circulated, high solubility and low liquid phase mass transfer coefficient. However, 

its limitations are: formation of a stable carbarnate, high vaporization losses due to its 

high vapour pressure, higher enthalpy of reaction with C02 (20 kcal/gmol), high 

corrosion rate, and formation of degradation products with oxygen. 

2.2.2 Classification of Amine 

Initially, Bronsted proposed a classification system for the solvents based upon three 

properties: dielectric constant, acidic strength, and basic strength. He came up with 

eight classes of solvents and denoted a plus sign to indicate predominance and a 

negative sign to indicate weakness or absence. Most amines were in class seven 

which has a positive basicity and negative dielectric constant and relative acidity. 

Figure 2.6 shows the current solvent classification scheme (Popovych and Tomkins, 

1981). Solvents are broadly divided into amphiprotic and aprotic. The former is 

capable of accepting and donating protons whereas the latter is unable to transfer 
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protons. The amphiprotics are further subdivided into protogenic (acidic), protophilic 
(basic), and neutral. Amines, which react with C02, are amphiprotic protophilic 

solvents. Water is classified as amphiprotic neutral solvent. Therefore, a mixture of 

water and amine exhibits basic properties. 

Classification of Solvents 

AnTEprotic AFA 

Ncutrd Diplu aprdic I kcA "nonpla? I loroc aprotic 

Pp F- hobic s rotopHc mol Moleculu solvc6 AnTholci rotop 

Figure 2.6: Classification of solvents 

2.2.3 Amine Concentration 

Choice of amine strength is not an easy decision due to the economic and technical 

considerations (Butwell, 1968). The economic considerations are: capital investment, 

utility cost, daily losses through vaporization, chemical reaction, or degradation 

losses. The technical considerations are: acid gas loading, degasification rates, and 

corrosion. 

Table 2.2 reviews the recommended MEA strength in the literature. In 1960s, most of 

the authors recommended 15wt% MEA solution due to the lack of corrosion 
inhibitors and the use of carbon steel as the main material of construction. However, 

progress in corrosion chemistry and employment of stainless steel in sensitive parts of 

sweetening plant enabled the use of higher amine concentration. 



Chapter 2: Literature Review 14 

Table 2.2: Review of historical recommended MEA strength. 

Source %wt. Notes 

MEA 

Peagan et al 15 

(Butwell, 1968) 20 Ammonia synthesis industry: minimum 
difficulty in removal Of C02 as long as 

rich loading is less than 0.45 mol/mol. 

(Connors, 1958) 15-20 - 

(DuPart et al., 15-20 Rich loading 0.3-0.35 mol/mol 
1993b) 

(Dingman et al., 15 Rich loading 0.35 mol/mol 
1966) 

(Kohl and Nielsen, 32 Add corrosion inhibitors when acid gas is 

1997) only C02- 

The drawbacks in increasing the ethanolarnine concentration are: difficulty in the 

regeneration of strong solution, the increase of vapour pressure of carbon dioxide over 

the concentrated ethanolamine solution (Figure 2.8), higher heat of reaction will cause 
increase in the temperature thus higher vapour pressure, carbon dioxide flashing in the 

heat exchangers and piping prior to stripping column, high concentration of carbon 
dioxide in stripper, and different types of corrosion. Figure 2.7 shows that the vapour 

pressure of pure MIEA is higher than DEA or diluted solution of MIEA. 
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Figure 2.7: Vapour pressure of amines. 

2.2.4 Reaction Kinetics 

Figure 2.8: Vapour pressure Of C02 at 

different MEA concentration (Kohl and 

Nielsen, 1997). 

The reaction in the solution is between ethanolamine and acid gas (COA Carbon 

dioxide is a Lewis acid i. e. accepts electrons. The amine has two functional groups: 

amine and hydroxyl. The amine provides the basicity to the chemical compound and 

reacts with acid gas. The hydroxyl group increases the solubility of alkanolarnine in 

water thus reducing the vapour pressure of arnines so that less is lost at the top of the 

absorber or stripper. Furthermore, as a consequence to the kinetics of the reaction, 

carbon dioxide reacts at a finite rate with amine thus the selectivity towards C02 can 
be controlled by changing the type of amine, or, in a mixed amine system, the ratio of 

various amines in solution. 

The main reactions that occur in the solution (Kohl and Nielsen, 1997): 

a) Ionization of water: 

H20 ý) H+ + OH" (2.1) 

b) Hydrolysis and ionization of dissolved carbon dioxide: 
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C02+H, Oý )HC03-+H+ (2.2) 

c) Protonation of alkanolamine: 

RNH2+H+ ( )RNH3+ (2.3) 

Furthermore, (Astarita et al., 1983) and (Zarzycki and Chacuk, 1993 ) categorized 

main reactions according to loading level: 

CARBAMATE FORMATION: It is the main reaction when loading < 0.5. The 

mechanism can be explained by zwitterion theorem, which determines the rate- 

limiting step. (R El C21140H) 

C02+2RNH, ( )RNH3++RNHCOO- (2.4) 

BICARBONATE FORMATION: It occurs at all values of loadings. 

C02+RNH, +H, O( )RNH3++HC03- (2.5) 

CO, +H, O( )H++HC03- (2.6) 

C02+OH"( )HCO, - (2.7) 

Direct mechanisms of bicarbonate formation are neglected due to the slow reaction 

rates. 

CARBMATE REVERSION: It is the main reaction when the loading > 0.5. 

C02+RNHCOO'+2H, O( )RNH2+2HC03- (2.8) 

At loadings > 0.5, the reaction becomes slower thus there is a need for more residence 

time in the absorption apparatus. 

2.2.5 The Rate Limiting Step 

(Caplow, 1968) proposed a zwitterion mechanism for the bimolecular reaction of 

amines (not alkanolamines) with C02, Carbon dioxide reacts with an amine molecule 

to form an intermediate (a zwitterion) then this intermediate instantaneously reacts 

with another amine/base molecule to form a carbarnate and a protonized amine/base. 
Thus, the forward reaction of zwitterion formation is the rate-detern-ýining step and it 

is first order with respect to C02 and RNH2 and second order overall. 
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co -LLft. - 2+ RNH2 
-k 

Kýl 

Kb 

RNH2+COO- + RNH2 
Iýb 

RNH2+Coo- 

RNH3++ RNHCOO- 

Combining Equations (2.9) and (2.10) above yields: 

CO +2 RNH RNH ++ RNHCOO- (2.11) 
22 lq% 3 

(Danckwerts, 1979) extended this to the absorption Of C02 by primary, secondary and 

ternary alkanolamines and (Critchfield and Rochelle, 1987) introduced reversibility 

thus enabling to describe both mass transfer mechanisms of absorption and 
desorption. 

(Danckwerts, 1979) derived an overall forward reaction rate equation with the 

assumption of quassi-steady state condition. 

kl [COJ[R2ýMl 

1+ 
k., 

r(kb*[BI) 

(2.12) 

The base (B) can be any base in the solution (amine, H20, and 011- species). If the 

second term in the denominator << 1.0 then the rate equation becomes: 

r=k, [C021 [R2NHI (2.13) 

Equation 2.14 shows the zwitterion fonnation and Equations 2.15,2.16 and 2.17 show 
three possible parallel reactions for deprotonation reactions for carbarnate formation 

from NIEA. 

Zwitterion fonnation: 

R-N: c 

I II H0 

- `- 
1\ 
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Zwitterion deprotonation (3 parallel reactions): 

H- 0 
1120 

11\ 

H H\ 

0: R_N-C 

HH 

H H\ 

R_N: R_NC 

14 H 

2.2.6 Kinetic Data 

0 

4ý, R-N -C + H30+ 
1\ 

o- 

0H 
R-N -C + R-N -H 

1\ 

o- 1 

(Blauwhoff et al., 1984) reviewed the literature kinetic data for the amines. It was 

concluded that the reaction rate constant for MEA quoted by Hikita et al. (1977) fits 

well the kinetic data investigated by other recent sources. 

The reaction between carbon dioxide and the amine is second order. Thus, the rate 

equation is: 

rC02 = k2 [C021 [MEA]. (2.18) 

where k2 is the second order reaction rate constant (1/mole/s), and LC02] and [MEA1 

are the concentrations of carbon dioxide and the amine respectively. In addition, k2 

value for the temperature range of 5-80'C is given by Ilikita et al (1977): 

Logio k2: -- 10.99 - (2152 / T). (2.19) 
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2.2.7 Properties of Monoethanolarnine (MEA) 

2.2.7.1 Physical Properties 

Appendix A shows the physical properties diagrams of aqueous MEA solutions: 

viscosity, specific heat, total vapour pressure, specific gravity, boiling point, heat of 

vaporization, volatility, heat of solution, refractive index, and surface tension (Atadan, 

1955). 

2.2.7.2 Oxidation 

In the presence of free oxygen, with and without carbon dioxide, alkanolamines are 

degraded to forrn heat stable salts (Rooney et al., 1998). Oxygen reacts with 

alkanolamines to form heat-stable acids such as: formic acid, ammonia, substituted 

amide, high molecular weight polymers, glycine, glycolic acid, formic acid, acetic 

acid, and oxalic acid. These reactions are irreversible and produce heat-stable salts: 

formate, oxalate, acetate, thiocyanate, sulphate and chloride. As a result, there is a 

reduction in the amine available for gas removal, increase in corrosion and solution 

viscosity. 

Thus, it is recommended that the storage tanks of ethanolamines should be blanketed 

with nitrogen in order to keep the air away. In case of oxygen contamination, 

scavengers such as sulphites and hydrazine could be injected to reduce oxygen 

solubility and build up of heat stable salts. 

2.2.7.3 Foaming 

Reduction in surface tension of amine solution by contaminants increases the foaming 

tendencies (Pauley, 1991). The main contaminants are oxidation and degradation 

products that form a thin film that is elastic and capable of encapsulating a gas bubble. 

The direct consequence of foam formation is the reduction in the gas treating capacity 
because of the reduction in the effective mass transfer area. 

2.2.7.4 DiffusivitY Of C02 in Aqueous Solutions of Monoethanolamines 

As mass transfer is accompanied by chemical reaction, it is impossible to obtain 
directly the diffusivity Of C02 in MEA solution. However, it is possible to estimate 
the diffusivity of C02 in alkanolamines solutions using data of a non-reacting gas 
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such as N20 (Versteeg and Van Swaaij, 1988). N20 is a non-reacting gas that has 

similar configuration, molecular volume, and electronic structure to C02. The N20 

analogy was applied by (Laddha et al., 1981) to estimate the solubility Of C02 in 

alkanolamine solutions. The methodology of such estimation is as follows: 

Firstly, diffusivities Of C02 and N20 in water can be calculated: 

D C02 ý 2.35 * 10-6 ex - 2119) 
(2.20) 

T 

DN20 

-25.07 
* 1()-6 ex - 2371) (2.21) 

T 

Thus, the diffusivity Of C02 and N20 in water at 298K is 1.78* 10-9 and 1.92* 10-9 m2/s 

respectively. Then the modified Stokes-Einstein relation can be used to calculate the 

diffusion coefficient of N20 in the arnine solution. 

(DN20 
'U 

0.6 )affýlle 

Sol 
= 

(DN20 
JUO. 

6 )water 
(2.22) 

The viscosities of water and 30wt% MEA at 298K are respectively 0.8937* 10-3 
, 

2.27* 10-3 Pa. s. Thus, the diffusivity of N20 in arnine solution is 1.10*10-9 M2/S. 

Thereafter, applying N20 analogy to calculate the diffusivity Of C02 in arnine 

solution. 

DN20 DN20 

(2.23) 
D CO 2 amine sol. 

D CO 2 water. 

Thus, the diffusivity Of C02 in arnine solution is 1.02*10-9 m2 /S. 
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2.3 Mass Transfer Processes 

2.3.1 Physical Mass Transfer Processes 

2.3.1.1 General Concepts 

When liquid and gas comes into contact, mass transfer takes place between the two 

phases until equilibrium prevails. The laws that govem the rate of mass transfer 

between the two phases can only be determined by experiments. 

The r6sistance to mass transfer between the liquid and the gas is across both sides of 

the interface. (Whitman, 1923) proposed splitting the driving force across the gas 
film and the liquid film. Therefore, the basic mass transfer equation for the transfer of 

component (A) across an interface for a physical solvent is: 

NA=kG (PAG 
-PAi)=koL 

(CAi 
-CAL) (2.24) 

where NA is the overall rate of mass transfer, kG is gas film mass transfer coefficient 
(m/s), VL is physical liquid film mass transfer coefficient (M/s), CAi is the 

concentration at the interface, CAL is the concentration in the bulk of liquid, PAi is the 

partial pressure at the interface and PAG is the partial pressure at the bulk of gas. 

The mass transfer coefficient is linear for the physical solvents and highly non-linear 
for the chemical solvents. Furthermore, the fugacity is continuous across the 

interface. 

In industry, it is more familiar the use of overall mass transfer coefficients rather than 

the film mass transfer coefficients. Thus, Equation (2.24) becomes: 

NA=KG (PAG 
-PA. ) = 

KL (CAe 
-CAL) (2.25) 

where PAe is the partial pressure of A in equilibrium with a solution having the 

composition of the main body of liquid, and CAe is the concentration of A in solution 
in equilibrium with the main body of gas. 

The relationships between overall mass transfer coefficients and the film coefficients 

are: 

A=1+H 
(2.26) 

KG kG kaL 
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1=I+1 (2.27) 
KL koL HkG 

Henry's Law applies when equilibrium is assumed linear in the system. 

Thus, p, =Hc, (2.28) 

Where H is Henry's law coefficient. 

Combining Equations (2.25) and (2.28) into (2.27) yields: 

PA 

_C Ai 
NA -H1 (2.29) 

koL HkG 

According to Equation (2.29), there are two mathematical limiting behaviours 

(Astarita et al., 1983): 

I- Gas Phase Control: 

koL (2.30) 
H kG 

Thus, NA=kG (PA-HCAL) (2.31) 

Which means that the solute is very soluble (low Henry's constant value) in the liquid 

and therefore the resistance is mainly in the gas phase. 

2- Liquid Phase Control 

koL 
(2.32) 

HkG 

PA 

Thus, N= kOL( 
H- 

CAi (2.33) 

Which implies that the resistance is mainly in the liquid i. e. the solute is less soluble 
in the liquid (high Henry's constant value). 

In conclusion, the resistance to mass transfer in the absorption of carbon dioxide into 

alkanolamine solution is primarily in the gas phase because the solute is readily 

soluble (low Henry's constant value). 
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2.3.1.2 Mass Transfer Models 

This section reviews briefly the theoretical models that describe the hydrodynamics of 
the liquid next to the gas-liquid interface. Mass transfer is a function of the fluid 

physical properties, concentration difference, interfacial area, and the degree of 
turbulence (Coulson et al., 1993). The gas absorption mass transfer mechanism can 
be described as follows: soluble gas diffuses to surface then dissolves in liquid and 

then passes into the bulk of the liquid. Different theories describe the resistance to 

transfer at the phase boundary and the conditions in the region of the phase boundary. 

2.3.1.2.1 The Two film Theory 

(Whitman, 1923) established the first theory of mass transfer between two phases. 
The theory indicates that mass transfer occurs between gas/liquid in a stagnant film by 

molecular diffusion. The total mass transfer resistance is located in the films. At the 

interface, a laminar layer is assumed to exist on each side of the films (Dankwerts, 

1970). 

Uquid Gas 

Figure 2.9: Concentration profile of physical absorption using Two-film 

Theory 

Figure 2.9 shows both of the gas and liquid hypothetical layers on each side of the 
interface. The concentration gradient is linear inside each layer and the stagnant film 

is assumed to have a uniform thickness. Therefore, the mass transfer flux for 

equirnolecular counter-diffusion and in the absence of a chemical reaction is: 
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N =D 
CAe 

-CAL 
(2.34) 

45 

Thus, KL = 
DA 

(2.35) 
8 

2.3.1.2.2 The Penetration Theory 

(Iligbie, 1935) proposed a new theory for liquid-side mass transfer resistance in 

absorption without chemical reaction. The mass transfer was attributed to fresh 

material brought by eddies at interface where unsteady state transfer takes place for a 

fixed period at the freshly exposed surface. The mass transfer coefficient varies with 

the square root of diffusivity (KLa-, rD--). The assumptions of the penetration theory 

as applied to packed beds are: very short exposure time, infinitely thick film, liquid 

flow is laminar and the liquid is completely remixed at junctions of the packing 

material. The only limitation of the penetration theory is the hypothesis that all mass 

transfer components stay on the surface/interface for the same length of time (t). 

The average flux for instantaneous mass transfer is: 

t* ýý-D 

t. - CL) Nf Ni.,, (t) dt =2t. (Ci (2.36) 
0 

Thus, K,, =2 (2.37) 

Where t* is the exposure time of the liquid to the gas. The driving force for the mass 

transfer coefficient is the difference between the interfacial concentration and the 

concentration in the liquid at the beginning of the short absorption period: 

7r dp 
2v 

(2.38) 

where dp is the characteristic dimension (e. g. filament thickness) and v is the liquid 

film velocity. Equation (2.39) is based on (Nusselt, 1916) theory for fully developed 

larninar flow. 

=(pg, 
52 

=X (2.39) 
3, u 8pp 
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where F is the liquid flowrate per unit width: 

r- 
52 9p (2.40) 

2, u 

Therefore, substituting Equations (2.38), (2.39), (2.40) into (2.37) yields: 

Sh = 
KLdp 

=0.919 
i 

-P 

1/3 

SC112 Re 113 Gr' /6 (2.41) 
D a. 

(Davidson, 1959) developed three models based upon the Penetration Theory to 

predict the HTU in a packed bed for liquid phase mass transfer. 

First model assumes that the bed consists of a large number of vertical and completely 

wetted surfaces. 

H' 
= 0.345 ScY2 Re, Y3 Gr'Y6 

dp 
(2.42) 

The second model assumes that the bed is made from a large number with randomly 
inclined flat surfaces of equal lengths. 

HTUL y 
= 0.244 ScY2 ReY3 Gr 6 

dp 
(2.43) 

And the third model assumes that the bed is made from a large number of randomly 
inclined flat surfaces of random lengths. 

"TUL yy 
dp = 0.1833 Sc 2Rey3Gr 6 (2.44) 

2.3.1.2.3 Surface-Renewal Models 

(Danckwerts, 1951) suggested that the surface of liquid has a variety of elements that 

exposes to the gas for different lengths of time and thus be absorbed at different rates. 
A distribution function f(O) describes the distribution of surface elements. The 

average flux for instantaneous mass transfer is: 

. 

ýA 

Nf Nj. 
ý, 

(O)v(O) dO (CAi 
- CAO)jVf(o) dO (2.45) 

00 
40 

KL =. CD-AS (2.46) 
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where "s" is the rate of surface renewal. The mass transfer rate coefficient is 

proportional to the square root of the diffusivity and thus similar to the penetration 

theory. 

2.3.2 Mass Transfer Accompanied by Chemical Reaction 

2.3.2.1 Introduction 

A chemical solvent enhances the rate of mass transfer by chemically reacting with the 

solute gas. The degree of enhancement is in incorporated into the physical mass 

tTansfer equation: 

IN 
AL 

Ichem 
= 

[kAL Ichem IC*AL 
-CAL] (2.47) 

Using the two-film theory to define the mass transfer coefficient: 

[KAL Ichem 
-"ý 

DAL 

(2.48) 115L Lhem 

Eq, Uation (2.48) implies that the chemical absorption has different thickness to the 

physical absorption. 

The ratio of physical and chemical molar fluxes is defined as the enhancement factor: 

E= 
[kAL Ichem 

(2.49) [kAL lphys 

Substituting Equation (2.49) into (2.47) yields: 
[NAL Ichem 

=EkAL 
[c* 

AL -CALI (2.50) 

where kAL is the physical mass transfer coefficient. 

2.3.2.2 Reasons for Higher Rate of Mass Transfer Using Chemical Solvents 

Chemical reaction enhances the rate of sour gases absorption. The reason for higher 

absorption rates with chemical reaction can be categorized into two effects 
(Glasscock, 1990): 

2.3.2.2.1 Equilibrium considerations 

The overall gas phase mass transfer coefficient is: 
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N- P-p* 
-= Kg (P-P*) 

1+H 
kg Ek , 

(2.51) 

The driving force for the above equation is the difference between the partial 

pressures Of C02 in the gas phase and the equilibrium partial pressure Of C02 that 

corresponds to the concentration Of C02 in the liquid phase. Chemical reactions in the 

liquid phase between C02 and basic species reduce the equilibrium partial pressure 

thus increasing the driving force. 

2.3.2.2.2 Non-equilibrium considerations 

The above overall gas phase mass transfer coefficient is similar to the equation for 

physical system except the existence of the enhancement factor "E'. The reason that 

the chemical reaction enhances absorption rate is that the gas is consumed at the gas- 
liquid interface. The reaction causes an increase in the concentration gradient Of C02 

at the gas-liquid interface and therefore an increase in the absorption rate. 

2.3.2.3 Reaction Regimes 

There are three distinct reaction regimes: slow, fast and instantaneous. A 

dimensionless ratio (D is a measure of relative rates of reaction and diffusion time. 

tD 

tr 
(2.52) 

tD (diffusion time) is the time available for molecular diffusion before mixing of the 

liquid phase makes the concentration of liquid uniform. And t, (reaction time) is the 

time required by the chemical reaction to change considerably the concentration of the 

limiting reactant. 

If (D<<1 then the reaction is in the slow regime and there is no rate enhancement. If 

(D->- then the reaction is in the instantaneous regime. An intermediate regime occurs 

when (D>>1 and called the fast regime. 

(Astarita et al., 1983) quoted the reaction times for the three regimes: 

Slow reaction tr lo-, 

Fast reaction 10-2: ý, trý:. 10-6 S 
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Instantaneous reaction t, < 10-1 s 

In the case Of C02 absorption by alkaline solutions, the magnitude of the reaction 

times is 10-5_10-7 s, which implies that the reaction is in grey area between fast and 

instantaneous reaction. 

The diffusion time, tD. is defined as follows: 

k=D (2.53) L 
fT 

D D 

tD 
- 

S2 

(2.54) 
D 

where D is the diffusivity and 8 is the film thickness. The range Of tD in industry is 

provided by (Astarita et al., 1983): 

4*10"3 <tD<4*10-2 sec 

100 

=-No 

, 10 

1 V-0 10 100 

Figure 2.10: Asymptotic behaviour for I 

Figure 2.10 shows the asymptotic behaviour of mass transfer accompanied by 

chemical reaction. The reaction between alkanolamine and carbon dioxide is very fast 

and as a consequence carbon dioxide is readily soluble in the alkanolamine solution. 
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2.4 Rotating Packed Bed (RPB) 

2.4.1 Comparison Between the Classical Packed Tower and RPB 

For the chemical engineer, the classical packed tower is used for different mass 

transfer operations such as distillation, and absorption. The tower is basically a 

cylindrical shell filled with different packing materials, shapes, and sizes; and 

positioned vertically. The gravitational acceleration is constant throughout packing 

and the pressure drop is due to drag forces. Liquid enters at the top of the packed 

column and flows downward under the influence of gravity. The gas enters at the 

bottom and flows upward through the packing. Thus a counter-current mass transfer 

takes place and the packing provides the area of contact. The efficiency of the packed 

tower for mass transfer depends upon the specific area of the packing and the liquid 

irrigation rates (Coulson et al., 1991). 

On the other hand, the I-Egee mass transfer machine has different shape and mode of 

operation (Ramshaw, 1993). The Higee machine is constructed using a doughnut- 

shaped rotor, which is mounted on a shaft, and filled with high specific area packing. 
Gas phase is forced to enter from the outer periphery and flows radially inwards and 

passes through a rotating packed material before exiting. The liquid phase enters 
from the eye of the machine through a spray nozzle, which radially sprays it outwards. 
Therefore, a counter-current mass transfer occurs between the phases accompanied by 

centrifugal force. The rotational speed gives an extra degree of freedom, i. e. by 

selecting the specific rotational speed; both the residence time and the thickness of 

mass transfer film can be controlled. Furthermore, the enhanced acceleration causes 
higher flooding velocities and improved volumetric mass transfer coefficients. As a 

result, both of these features lead to a particularly compact mass transfer contactor for 

a given duty. 

2.4.2 Background 

This section details the historical development on the field of rotating packed beds: 

(Chambers and Wall, 1954) designed a centrifugal absorber with 21 in. diameter and 
10 in. height (Figure 2.11). The mass transfer between phases occurs in the intermesh 

of concentric rings and no packing was utilized. It was successfully applied in 

reducing the carbon dioxide concentration in the air mixture from 14% to 2% with 
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application of pure MEA solution. The pilot rig was made from mild steel thus the 

rich solution was deteriorated due to the corrosive nature of pure MEA solution. The 

results were not expressed in terms of gas mass transfer coefficient as the author 

suggested that its values could mislead the reader because Henry's Law is applicable 
for to short contact time. 

pouqlý 1ý 

1 11 -- "I., 00UOR 'OUT 

GAS IN, 

IG- 

AS OUT 

Figure 2.11: Chamber's centrifugal absorber. 

Table 2.3 shows the absorption results using dirty MEA solution while Table 2.4 

shows the absorption results using new MEA solution. The comparison indicated the 
importance of MEA solution quality which in this case was deteriorated due to metal 

corrosion products, oxidation products etc. 
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Table 2.3: Absorption results using dirty MEA. 

Gas Flow Liquid Flow a/b C02 in gas (%) Absorption 

(m3/hr) 

a 

(I J n-ý n) 

b 

In Out (kg/hr) 

56.63 6.44 8.79 16.3 2.3 16.01 

84.95 6.44 13.19 15.8 4.5 19.82 

113.27 6.44 17.58 14.3 6.6 18.37 

141.58 6.44 21.98 16.3 8.7 23.22 

Table 2.4: Absorption results using new MEA 

Rotor speed Gas flow Liquor Rate C02 in gas (%) Absorption 

(RPM) (m3/hr) (Umin) In Out (kglhr) 

2300 116.1 5.68 14.8 2.2 29.49 

2300 209.54 5.68 14.8 4.9 43.55 

2690 209.54 5.45 14.8 4.9 43.55 

2690 339.80 5.68 13.6 7.2 0 A; 49.45 

2690 339.80 9.85 12.8 4.3 60.79 

2690 396.44 11.36 14.8 5.6 78.03 

2690 396.44 11.36 14.7 5.7 76.67 

2690 481.39 17.05 10.2 1.3 85.29 

2690 538.02 17.05 10.8 2.0 95.27 

2690 566.34 17.05 12.0 2.0 114.33 

(Pillo and Dahlbeck, 1960) scrubbed H2S from coke oven gas using liquid ammonia. 
Ifigh efficiency was achieved by carrying out ideal counter-current washing. It was 

shown that the unit has lower residence time. 
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(Vivian et al., 1965) studied the effect of centrifugal acceleration on carbon dioxide 

desorption from water in a packed column mounted on a large centrifuge. The 

column is 6 in. ID, 1 ft high and filled with3/4in. rasching rings. The total body force 

ratio of the centrifugal field to the gravity used (rO/g) was varied between 1-6.4. 

They reported that for desorption of carbon dioxide from water into air, the liquid side 

mass-transfer coefficient varied with centrifugal acceleration as follows: 

KL aa rw 
9 

0.41: 5 p: 5 0.48 

(2.55) 

In comparison, the correlation for mass transfer coefficient in a short wetted-wall 

column by Vivian and Peaceman (1956) is: 

KL h 
=0.443 

4r 
0.4 

(Nsc 3p2/p2)1/6 

D 
)"2 (gh (2.56) 

The gravity term in the centrifuge has higher power exponent (0.41-0.48) than the 

gravity term in the short wetted-wall column (1/6). (Vivian et al., 1965) attributed the 

increase to the higher interfacial area with increasing body force due to centrifugal 
forces. Also, it was shown the effect of gravity upon the liquid mass transfer 

coefficient for different liquid flowrates. 

(Podlbieiniak, 1966) invented a rotational vapour liquid contactor (deodorizer) for 

stripping out odour and flavour substances from triglyceride oil using steam. The 

machine worked well for removing low amount of impurities (0.1-0.2%) from 

triglyceride oil. The advantages of the machine were: short contact time between 

phases, reduction in oil loss due to entrainment, more efficient contact between phases 

and a reduction in the loss due to hydrolysis because of low residence time. Figure 

2.12 shows apparatus of centrifugal contactor. The contactor is basically a cylindrical 

rotor mounted on a shaft. There are contacting elements in the rotor in which the gas 

and the liquid phases counter-currently mix. The speed of rotation is between 500- 

1000 RPM. The liquid phase is heated to around 450-500'F before being introduced 

to the machine. The vessel is kept under vacuum (1-6 mmHg) by connecting the 

vacuum equipment to steam outlet. 
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I 
L 

Figure 2.12: Podlbieiniak's deodrizer. 

In a new milestone, in late 1970s, ICI patented the Higee concept (Mallinson and 
Ramshaw, 1982, Ramshaw and Mallinson, 1981). The Higee machine was 

constructed using a doughnut-shaped rotor, which is mounted on a shaft, and filled 

with high specific area packing. Liquid enters through the eye of the machine and 
flows outwardly throughout the packing whereas the vapour enters from the periphery 

of the casing and inwardly thus a counter-current mass transfer takes place. (Ramshaw 

and Mallinson, 1981) showed that both the gas and the liquid film controlled mass 
transfer coefficients for water-oxygen system and ethanol-methanol system 

respectively, increase substantially in comparison to a stationary column as shown in 

Table 2.5 and Table 2.6. 
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Table 2.5: Mass Transfer Coefficients for Gas Film Control Process 

Permeable Rotation Speed Mean KG *10' KGa 

Element (RPM) Acceleration (m/s) 
(KG a) 

grav 

(m/s) 

Glass Beads 1000 760 3.94 4 

1750 2354 4.83 5 

Stainless Steel 1000 760 10.8 8 

Gauze 1750 2354 12.69 9 

Table 2.6: Mass Transfer Coefficients for Liquid Film Control Process 

Permeable 

Element 

Water Flow 

rate 105 

m'/s 

Rotational 

Speed 

(RPM) 

Mean 

Acceleration 

(m/sI) 

KL * 105 M/S KLa 

(KLa)gmv 

1 mm Glass 3 1250 1197 21.2 37 

Beadsd 3 1500 1727 24.9 42 

5 1500 1727 20.3 41 

5 1750 2354 21.7 44 

Copper 4 1500 1727 19.4 27 

Gauze 4 1750 2354 20.6 28 

6 1500 1727 26.7 29 

6 1750 2354 31.5 34 

The mean acceleration, a., was defined by: 

N )2 (10 + ri )I /2 

a. =(2 60 2 
(2.57) 
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where N is the rotation speed per minute (RPM), r,, and ri are the outer and inner radii 

of the packed bed respectively. 

(Tung and Mah, 1985) showed that the penetration theory was capable of describing 

the liquid mass transfer behaviour in the Higee machines. It was found that the mass 

transfer coefficient predicted by the penetration theorem was as accurate as the 

experimental data. The following set of equations was developed to calculate the 

mass transfer coefficient based upon the following assumptions: complete mixing of 
liquid at the junctions of packing materials, falling film and negligible shear. 

4D 
KL 

;rd 
2v 

3, u 
= 8, u p) 

Y3 

2 
9p 

2, u 

KL d3 
V 

SC Y2 Sh =-p = 0.919 Lp ReY3 Gr 6 
D a. 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(Bucklin et al., 1988) investigated the application of 11igee in H2S removal with 
MDEA. The loading of acid gas was unexpectedly high. There was 25% error in 

accuracy of analysis due to use of dry chemical analysis and that influenced the 

calculations of mass balances. Also, higher circulation of amine and increase in 

thickness of packing was not possible due to flooding of rotor. 

(Keyvani and Gardner, 1989) investigated the operating characteristics of RPB and 

published a model for the pressure drop characteristics of RPB, residence time 
distribution, and power required by RPB using air-C02-H20 system. It was shown 
that contrary to conventional columns, the pressure drop for dry and wet beds at 

constant liquid and gas flowrates was AP a 0. The packing in use was aluminium 
foam metal with a 92% porosity and has a specific surface area of 600-300 m2/m3. 
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The speed of the rotor was 500-2000 rpm (60-1000g). Average HTU achieved was 
1.4-4.0 cm. 

(Al-Shaban et al., 1992) showed using hydrodynamics studies on a large centrifugal 

water deoxygenator (1 m diameter) the existence of a non-uniformity bubble 

distribution throughout the radial length of the rotor. It was shown that the potential 

savings on the offshore installations besides reduction in space and weight. 

(Singh et al., 1992) stripped efficiently 
VOCs from ground water using 

centrifugal liquid contactor (Figure 2.13). 

Their flooding curve underestimated the 

classical Sherwood flooding correlation 

curve. The mass transfer data was 

presented using the area of transfer unit 
(ATU) as shown in Equation 2.63 and 
2.64. Equation 2.65 correlates geometry 

of gas-liquid contactor and mass transfer: 

ATU= 
34000 L 

at2 "La, JUL 

2 

a, 
3 

LIQUID 
INLET 

VAPOR 
OJTLET 

STATIONARY 
HOUSING 

SEAL LIQUID 
DISTRIBUTOR 

MOTOR ...... VAPOR FACXING 
INLET 

--SEAL 

LIQUID I t=-j ROTOR 
OUTLET SHAFT 

Figure 2.13: Singh's siripper 

(2.63) 

ATU =Q I KLa 
(2.64) 

XI-Y/H-(I-y 
S S)+(// In S) 

ATU-6- 
X2 - 

Y/H s 
(r. 2-r, 2) 

(2.65) 

(Liu et al., 1996) investigated the pressure drop dependency on the flowrates of the 
liquid and gas besides the influence of rotor speed. The gas film mass transfer 

coefficient for stripping ethanol solution using air was influenced by gas and liquid 

flowrates as well as by the rotor speed. They developed a correlation that predicts the 

overall gas-film mass transfer coefficient for RPB and his experimental data were 

within ± 30% of the calculated values. 
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KGaRT 
= 3.1 11 * 10-3 ReGa 1.163 

Re L. 
0.631 

GrG 
0.25 (2.66) 

DGa t2 

The design equation for gas mass transfer is: 

( _S)YI-HcX2 
+S In 1 

_ 
G,,, 

1 
Y2 

-HcX2 7r 
(r2 2_r, 2) (2.67) 

zKGa p, (I 
- 
YS) 

Where ATUG = 
G. 

z KGa p, 
(2.68) 

(Kelleher and Fair, 1996) studied the distillation of cyclohexane/n-heptane in a 11igee 

contactor. The mass transfer efficiency, pressure drop, and hydraulic capacity were 

modelled and investigated. The design of RPB was based upon ATU concept because 

11igee is in a polar coordinate system. Equation (2.69) shows the design equation: 

;r (ro 2_ 
ri 

2) 
= (ATU) (NTq (2.69) 

where the ATU term was defined as follows: 

ATUL -ý 
L (2.70) 

PL h KL a. 

ATUG =L (2.71) 
PG hKG a. 

(Bums and Ramshaw, 1996) showed by a visual study that the type of liquid flow in 

RPB is determined by centrifugal acceleration. The maximum speed of the rotor was 
1620 RPM, and with a declon packing which has a porosity of 0.95 and a surface area 

of 1500 m2/m3. At low rotational speeds (300-600 RPM) the liquid travelled in 

rivulets then changed to droplet flow at higher rotational speed (600-800 RPM). The 

rivulet flow lead to the highest maldistribution of the liquid and the gas within the 

packing; while the droplet flow increased the wetting of the packed bed. 

(Zhenh et al., 1997) applied the Higee technology for water deaeration. Two Mgee 

machines were manufactured in order to reduce the oxygen content of water from 6- 

14 pprn to less than 50 ppb using natural gas as the stripping medium. Table 2.7 

compares the I-Egee technology with the conventional vacuum tower. It is apparent 
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that the weight, height, and the quality of mass transfer operation favour the new 

technology especially in offshore operations. 

Table 2.7: Comparison between the Higee technology and a conventional vacuum 

tower in water deaeration (Zhenh et al., 1997). 

Vacuum Tower Higee Technology 

Number of units 1 2 

Capacity (T/d) 10,000 2x6,000 

Platform Area (m 2) 30 2x 10 

Height (m) 14 3 

Weight (T) 60 (dry) 

130 (operation) 

180 (full of water) 

2x 10 

2x 10.5 

2x 11 

Residual 02 in water (ppm) 1 (Summer) 

2-3 (Winter) 

< 0.05 

< 0.05 

Power (M) 155 2* 160 

(Waldie and Harris, 1998) investigated the performance of the high intensity contactor 
in stripping dissolved aromatics from water. The machine was not mechanically 

rotating (like Higee); instead the centrifugal force was generated by injecting the 

liquid phase tangentially into a permeable tube through which the gas flows counter- 

currently. It was found that the volumetric mass transfer coefficient, KU, was 
hundreds times more and has lower HOL in comparison to the conventional packed 

column. 

jog[ýL2 1_1+l] 

Number of transfer units, NOL xi 
1S 

S- 
(2.72) 

S 
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Where the stripping factor is, S= 
HG. 
PL. 

(2.73) 

(Trent et al., 1999) developed a commercial RPB as a reactive stripper for the 

production of HOCL The unit had a product yield greater than 90%. The overall gas- 

side mass transfer coefficient was 40-60 s'I. 

(Sanilya et al., 2001) investigated the gas the phase mass transfer operation using a 

centrifugal contactor with wire-gauze packing (porosity 0.91 and specific surface area 
2196 m2/m3). The gas phase mass transfer coefficient in the RPB was lower than its 

value in the packed column due to maldistribution of the liquid. Figure 2.14 shows 

their experimental unit. Equation 2.74 determines the average volumetric mass 

transfer coefficient: 

ln(c; / Ql C. 
-F2 

- ri 
2) 

;rar. 

Figure 2.14: Sanilya's centrifugal 

(2.74) 

contactor. 
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2.4.3 Packed Bed Design 

2.4.3.1 Mass Transfer Equations in RPB 

Figure 2.15 shows a schematic diagram of the RPB. The solute mass balance on a 
differential volume on the gas is presented in Equation (2.75): 

fSolute accumulationj = ISolute flow in minus outj- fSolute lost by absorptionj 

There is no solute accumulation, thus: 

fSolute flow in minus outj = fSolute lost by absorptionj (2.76) 

L, 

yj 

Figure 2.15: A section of counter-current mass transfer in RPB 

The cross section area of RPB is: 

S= 21r (r. - ri) = 2; r dr 

Thus, the differential volume is, 

Ll X2 

G, Y2 

(2.77) 

dV = 2; r rh dr (2.78) 

h 

I dh I 
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The amount of carbon dioxide in the air/C02 mixture passes the differential volume of 
RPB is G moles/area 2 hr and therefore the rate of mass transfer of gas to the liquid is: 

d(QGY)=KGa (y - y*) dV (2.79) 

where a is the interfacial area per unit volume of packing section and dV is the 
differential volume of packing. Integrating the above equation and rearranging for the 

volume of bed: 

V= 
QG Y dy 

* 
(2.80) 

KG af YIY-Y 

It can be expressed in tenns of the height of the bed as follows: 

y 
H= G (2.81) 

AKGa Y, y-y* 

Or in a more familiar way: 

H= GY dy 
(2.82) 

pKGa Y, y-y* 

Where A is the cross sectional area. The integral part is known as the Number of 
Transfer Units (NTU) and the terrns (Qr, /A KG a) or (G /p Kr, a) represents the Height 

of a Transfer Unit (HTU). 

The total height of a packed bed can be found from the following equation: 

H= HTU * NTU (2.83) 

The packed height is substituted with the radial depth (R. -Ri). Therefore, the number 
of transfer units can be expressed as follows: 

NTU =R, -Ri (2.84) 
HTU 

where R,, and Ri are the outside and the inside radii of the bed. 



Chapter 3: Experimental Facility 42 

CHAPTER 3 

EXPERIMENTAL FACILITY 

3.1 Objective of the Experiments 

The objective of this chapter is to provide a detailed description of the design of the 

experimental facility. It is used to gather both flooding and gas-liquid mass transfer 

data for carbon dioxide/ethanolamine solution system. Flooding behaviour of 

ethanolamine solution is determined visually. There are two different mass transfer 

modes of operation for this prototype: absorption of carbon dioxide from air/C02 

mixture by different concentrations (30,50,80,100 wt%) of ethanolarnine solution; 

and desorption of carbon dioxide from ethanolamine solution by steam or air. 

The following sections describe rig flowsheet, mechanical details of the RPB, 

Air/C02 system, steam delivery system, and outlines the sampling procedures for both 

gaseous and liquid streams. 

3.2 Flowsheet of the Rig 

Figure 3.1 shows the flowsheet of the experimental facility. Ethanolamine solution is 

stored under a nitrogen blanket in the polypropylene feed tank (420 Q. The feed tank 

is usually 60-70% full and it is equipped with a level indicator. A three-way valve 

configuration allows the feedstock to be routed into three directions. Firstly, route A 

allows the feedstock to be continuously recycled back to the feed tank in order to have 

a homogenous solution batch or it could be applied to route the product batch back to 

the feed tank after finishing an experimental run. Secondly, path B allows the 

homogeneous feedstock to be routed to a closed circuit heating system in order to 

raise its temperature. Finally, path C allows the prepared ethanolamine solution to be 

pumped to the Higee rig. There are two polypropylene diaphragm valves (George 

Fischer, Type 315) prior to flowmeters (35 SX, and 65P) to control manually the 

amount of irrigation rate to the Ifigee rig. The calibration charts of both the 

flowmeters are shown in Appendix B. The flameproof magnetic drive centrifugal 

pump (Totton Pumps Limited) has a flowrate of 380 Umin, 23 m head, and it is made 
from PVDF. All the pipelines are made from polypropylene except two stainless steel 
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pipelines extended from the Higee rig to the product tank in order to tolerate hot and 

corrosive ethanolamine solution during the desorption runs. The Higee rig is inside a 

flameproof enclosure, which is equipped with a ventilation system. 

The gas phase could either be C02/air mixture or steam depending on the mode of the 

operation. The liquid product is routed to product tank via two stainless steel (42 mm 

OD) pipes. Stainless steel is used because during the stripping operation the 

temperature can exceed 100'C. The product gas is ventilated to the atmosphere via an 

exhaust fan. 

Feed Tank 
(TOP) 

0.42 M3 
To exhaust 

Steam Deliverey System 

A 02 syatem Product Taný CL 
(Bottom) 

32 mm OD 0.42 m3 
25 mm ID 

pp 

I 

C 

Higee 
LM FIOWMeters '' 42 mm OD, 

sampling point 
36 mm ID, 

Heating B ss 

System 

Figure 3.1: Flowsheet of experimental facility 

3.3 Material of Construction 

Due to the corrosive nature of loaded ethanolamine solution, it was decided to use 

only stainless steel and polypropylene as the material of construction for the rig. The 

rotor is entirely made from stainless steel whereas the piping and the storage tanks are 

made from polypropylene. In addition, the liquid sample tubing is made from 

stainless steel to avoid contamination of the ethanolamine sample. 

There are many sources in the literature that highlights the importance of the material 

of construction selection for arnine application. (Hawkes and Mago, 1971) indicated 

that the ethanolamine solution is not corrosive to steel but becomes corrosive when 
loaded with acidic gas. 
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(Wong et aL, 1985) highlighted factors that contributes to the corrosiveness of Z71 
ethanolarnme solution such as: type of amine, amine concentration, acid gas loading, 

elevated temperature, acid gas flashing from solution, Solution degradation products, IC 
and heat-stable salts. However, the two most important factors are: arnme 

concentration and acid gas loading z: 1 Z:, I 

(Dingman et al., 1966) recommended alternative ways to minimize the corrosion in 

MEA units. They recommended MEA solution strength of 15wt% as a design basis 
1=1 C71 

because of its lower Corrosion rate and greater processing flexibility. The maximum tD Z7 

total recornmendcd acid gas loading for rich MEA solution is 0.35 mol CO-, /mol MEA 
:. 7 - 

as shown in Figure 3.3 and the maximum lean loading is 0.1-0.15. Furthermore, it 47, C, 
was recommended to apply less stripper pressure in order to minimize the temperature 

of regeneration that could degrade the solution as shown in Figure 3.2. 
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Figure 3.2: Phase equilibrium data for Figure 3.3: Optimum and recommended ZZ, 

amine strength. 
MEA solutions. 

(DuPart et al., 1993b) advised the use of stainless steel rather than carbon steel 

because the corrosion rate for stainless steel Is <0.1 mm. per year whereas it is 103.0 

mm. for carbon steel when experiments were conducted to absorb carbon dioxide 

using 20wt% MEA solution at 115'C. Furthermore, it was pointed out that the 

potential of acid gas flashing is higher for stronger amine concentrations because they Z: ý t:, 
can not achieve high mol/mol equilibrium rich loadings as the lower strength ammes. C, 
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3.4 Rig Support Frame 

Figure 3.4 shows the mechanical details of the Higee support frame. The frame was Zý Cý 
sufficiently riold to withstand any out of balance forces during rotor operation for C, 

upto speed of 1000 RPM. The upper part holds a RPB, a buffer tank and a motor. 

The lower part is kept for holding the inlet gas-sampling vessel. The structure is 

made from mild steel and it is painted in order to avoid corrosion in the case of 

ethanolamine spillage. In addition, the height of structure allows the RPB to be z: 1 1: 1 

visually inspected during the flooding operation. 
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Figure 3.4: The Rio Support Frame t: l -- 
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3.5 Rotor 

Figure 3.6 shows the cross sectional view of the rotor. A belt connects the stainless 

steel horizontal shaft to a motor. 

The speed of the rotor is varied with a manual controller. A stroboscope was used to 

calibrate the rotational speed of the bed. The instrument emits flashes on the rotating 
bed and hence determines the exact number of flashes per minute. Figure 3.5 shows 

that the stroboscope results were in good agreement with the manual controller. 
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Figure 3.5: Comparison between the stroboscope results and the manual 

controller. 

The ethanolarnine solution was released via a 4-arm distributor onto the inner surface 

of the packing in an outward direction. The solution accelerated rapidly in thin layers 

throughout the packing assisted by the high rotational speed of the rotor (Pilo, 1974). 

The formation of thin layers enhanced mass transfer due to large surface to volume 

ratio. According to visual analysis carried out in this department by (Bums and 
Ramshaw, 1996), the rotational speed of rotor was the main influence on the type of 
flow in a RPB. The experimental runs were conducted at 600-1000 RPM rotor speed, 

which implies that the type of the flow in the RPB was droplet flow and hence less 

maldistribution of the liquid in the RPB and thus better mass transfer operation. 
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The carbon dioxide/air mixture entered via a rotary union (Deublin, part number 450- 

191-029) positioned at the end of the horizontal shaft and then passes into the gas 

plenum chamber before entering 72 holes drilled in the stainless steel disc located on 

the outer side of packed bed. It then flows inwardly within the packing in a counter- 

current direction to the flow of the ethanolamine solution. The flow of carbon 
dioxide/air mixture was turbulent prior to reaching the Ifigee rig in order to ensure 
better mixing between the gas and the liquid inside the packed bed. 

In the desorption runs, all the components of the absorption experiments remained the 

same with the exception of the rotary union (Deublin, part number: 525-086-026) 

which must be replaced in order to safely handle the saturated steam. 

Details of the rotor are shown in Figure 3.7. The packed bed was sandwiched 
between the stainless steel disc and the perspex disc. The dimensions of the packed 
bed are 398 mm OD, 156 mm ID, and an axial depth of 52 mm. The packing material 

occupies 25 mm of the axial thickness and a 27 mm polypropylene disc spacer 

occupies the remaining depth. The purpose of reducing the size of the packed bed 

axial thickness was to increase the flooding velocity of the RPB. Furthermore, it 

allowed better wetting of the packing by the ethanolamine solution. 

Figure 3.8 shows the details of the stainless steel disc. The diameter of disc is 454 

mm and there are 72 holes drilled on the circumference in order to allow feed gas to 

enter from gas plenum. The overall gas flow area passed into the packing is 

3.619* 10-2 M2. On the other hand, the dimensions of the perspex disc are 454 mm OD 

and 130 mm ID. There are 8 equi-spaced cut-outs of 3mm. deep in the perspex. disc to 

allow liquid an exit path. In addition, the perspex. was used as a transparent front 

cover in order to aid the visual observation of the packed bed during operation. Also, 

the rotor was completely sealed in order that the ethanolamine solution does not come 
into contact with the outside atmosphere and thus be subjected to degradation. A 

splash-guard encloses the rotor with its chimney leading to an exhaust fan. 

The peripheral liquid lute seal has two functions. Firstly, it allows the ethanolamine 

solution to discharge from the RPB into the buffer tank. Secondly, it forces the sour 

gas towards the 'eye' of the RPB. Directing the path of the sour gas towards the 'eye' 

of the rotor is a simple engineering mechanism, which depends upon the difference in 

the liquid levels as shown in the magnification of liquid seal in Figure 3.6. The 
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stainless steel lip allows build up of liquid head, which is higher than the inside head 

thus forcing the sour gas towards the 'eye' of the rotor. 
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Figure 3.6: Cross sectional view of the I-Egee rig 



Chapter 3: Experimental Facility 49 

3mm 

3tainless Steel sheets 

E E E 
E E E 
Itt OD 
LO 0) Q) 
It Cl) Lr) 
"' " ""i "ý 

olypropylene disc 

3mml 
T 

M4M 12 mm 

Figure 3.7: Cross sectional view of the rotor C, 

Figure 3.8: Details of tile stainless steel disc 
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3.6 Packing 

Expanded Stainless Steel Small Mesh 

(707S) from "The Expanded Metal 

Company Limited" was chosen as the 

rotor packing. The mesh is fabricated by 

expanding flat sheets of metal. 

The stainless steel expamet sheets were 

cut into a doughnut-shape as shown in 

Photograph 1. The maximum number of' 

sheets in RPB is 25 as shown in 

Photograph 2. The packed bed density is 

1877.8 k g/M3, porosity is 0.76, and total 

surface area per unit volume is 2132 Photograph 1: Doughnut shape of the packing mesh 

m 2/M3 
. The relevant calculations are 

shown in Appendix C 

Photograph 2: Stainless steel mesh packed in the rotor 
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3.7 Liquid Distribution to the RPB 

Ethanolamine solution irrigates the RPB using a stationary stainless steel 4-arm 

distributor as shown in Figure 3.9. There are 8 holes drilled in each arm, each of 2 

mm diameter parallel to the radial direction with 45* spacing. The pressure drop 

across the distributor is 68.24 kPa based upon an ethanolamine solution flowrate of 50 

I-Imin and taking into account vena contracta of flow (Appendix D). Photograph 3 

shows the position of the distributor in the eye of the RPB and Photograph 4 shows 

the details of the distributor. 

In the absence of the 4-arm liquid distributor, free vortices are created inside the 'eye' 

of the rotor and cause the formation of a low-pressure region and hence alter the 

composition of any representative sweet gas sample. The presence of the 4-arm liquid 

distributor is to substantially reduce any effect of such vortices. In addition, the 

rotation of the packed bed causes the formation of forced vortices inside the 'eye' of 
the rotor but in a similar fashion the 4-arrn distributor reduces any such effects. The 

shape of the 4-arm liquid distributor is engineered in order to break off both the free 

and the forced vortices and hence reduces substantially any effects of windage in the 
liquid distribution area. 

The distributor irrigates the packed bed in a more uniform way with the application of 
32 holes, which jets liquid in a short trajectory. Furthermore, experiments proved that 

the 4-arm distributor achieved lower HTU values compared to a single pipe 
distributor (Hassan-beck, 1997). 

Stainless Steel pa 
mesh (x 25) Disc Spacer 

3eal 

Figure 3.9: Irrigation of RPB with 4-arm distributor. 
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Photograph 3: Position of 4-an-n distributor in the "eye" of the rotor. 

Photograph 4: A 4-arm liquid distributor 
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3.8 Carbon dioxide / Air Mixture 

The purpose of the system is to 

deliver a steady, turbulent and 
homogeneous flow of carbon 
dioxide and air mixture (sour gas) 

to the Higee rig for the duration of 

experiment, which is approximately 
15 minutes. The air-C02 system is 

shown in the Photograph 5 and a 
flowsheet of the system is shown in 

Figure 3.10. 

Air is supplied from the 

department's main compressor 
(Belleiss Morcom) with a maximum 

& 

pressure of 55 psi and a maximum Photograph 5: C02/Air mixture system 
delivery of 203 rn 3 /min. 

A non-return valve is installed in the air pipeline in order to prevent carbon dioxide 

backflow and thus eliminating any contamination to the departmental air. A 

flowmeter, a thermocouple and a pressure gauge measure the macroscopic properties 

of air. 

The carbon dioxide source was a single BOC cylinder with a capacity of 34 kg (@ 50 

bar, 15'C). The flow of carbon dioxide from the cylinder is a steady state, steady- 
flow throttling process across a restriction. Carbon dioxide is stored in liquid form 

but due to its vapour pressure gaseous carbon dioxide is discharged from the cylinder. 
The pressure is reduced from 50 barg to 4.5 barg at a constant enthalpy. 

In order to ensure a uniform flow, the gas temperature is restored to its ambient value 
by passing it through a copper coil immersed in a water tank. The 10 in copper coil 

with 4.50 mm inside diameter provides 0.87 kW heat to the cold carbon dioxide as 

shown in Appendix E. Figure 3.11 shows the temperature of carbon dioxide after the 
heat exchanger and the departmental air stream. It shows that the temperature profile 

of both of the gaseous streams becomes stable after 10 minutes of operation. It 

clearly shows that the temperature decreases with time because the carbon dioxide 
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bottle becomes colder. Therefore, the pressure and the temperature of the stream are 

measured in order to make the necessary corrections in the mass balance calculations. 

Finally, both the air and the carbon dioxide streams are combined and allowed to have 

a sufficient length of distance to mix in order to ensure homogeneity before being fed 

to the Higee rig. 
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Figure 3.10: Flowsheet Of C02/Air system 
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Figure 3.11: Effect of time on the temperature Of C02/Air Stream 
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3.9 Dry Steam System 

The purpose of the steam system is to deliver a 

maximum flowrate of 300 kg dry and saturated steam 

per hour to the Higee rig. However, departmental 

steam can not be routed directly to the pilot rig due to 

its high pressure and the possibility of condensate 

contamination. Therefore, it is necessary to design a 
dry steam delivery system. 

Photograph 6 shows the steam delivery system and 
Figure 3.12 shows the corresponding flowsheet. An 

insulated 2" bore pipe is extended from departmental 

steam to a separator (Spirax Sarco (DN 25, PN40)), 

which separate dry steam from any condensate. Then, 

an insulated3/4" bore pipe carries wet steam to a filter 

(Spirax Sarco) to remove dirt so that it does not cause 
any failure to the steam trap. The steam trap 

distinguishes between condensate and live steam thus Photograph 
it opens to discharge condensate to drain but closes to 

system 
trap the steam. 

6: Dry steam 

On the other hand, an insulated I" bore pipe carries dry stearn, which is initially 

filtered then its pressure reduced by a pressure-reducing valve (P,, a,, = 19 bar) (Spirax 

Sarco, GGG 40.3) and then measured by a pressure gauge. For safety reasons, a 

pressure relief valve is installed with a maximum set pressure of 5.17 bar. To confirm 
the presence of dry steam a sight glass is installed prior to the steam flowmeter 

(Nixon). 
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Figure 3.12: Flowsheet of steam delivery system 

3.10 Liquid Sampling 

Flowmeter 

To Higee Rig 

For each experimental run, three samples of ethanolamine solution were taken. 

Figure 3.13 shows the liquid sampling positions. A lean ethanolamine solution 

sample is taken prior to the liquid distributor. After counter-current 

absorption/desorption operation in the Higee, two rich ethanolamine solution samples 

are taken. The rationale of taking two rich ethanolamine solution samples is to 
investigate the end effects. A stainless steel sample line (A) is extended to a position 

as close as to the periphery of the RPB in order to collect liquid droplets as they 

emerge from the liquid seal. A stainless steel sample line (B) is extended from the 
bottom of the buffer tank. The liquid samples are collected in sealed 250 m-L glass 
flasks. All the sampling point lines are flashed before and during the experimental 

run in order to collect a representative sample. The rich ethanolamine samples are 

usually analysed within 24 hours using gas chromatography. 

3.11 Gas Sampling 

For each absorption/desorption run, there is a need to analyse the composition of the 
inlet and outlet gas phase and specifically the concentration of carbon dioxide. 

Section 3.8 shows the preparation of the carbon dioxide/air mixture. Samples of sour 
gas are taken prior the gas mixture is fed to the lEgee using four 10 m-L syringes. 
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Sweet gas samples were taken from the 'eye' of rotor as shown in Figure 3.14. The 

sweet gas is passed from the 'eye' of RPB to a gas sample vessel via 8mm. teflon 

piping. The sweet gas is then discharged via a rotary vacuum pump (Speedivac, 

model ES35) to the atmosphere. Four 10 mL syringes were used to collect samples 
from the gas-sampling vessel as shown in Photograph 7. It was decided to take four 

samples per experiment for each gas sampling point in order to ensure that correct and 

representative data was recorded. It is important to ensure that no liquid is vacuumed 
into the lines so that only dry samples were collected. The tips of the syringes were 

covered in order to avoid air leakage. The sour and sweet gas samples were 
immediately analysed using gas chromatography and they were not kept overnight to 

avoid contamination. Section 5.2 shows the dry run experiments that were carried out 

to ensure that representative sweet gas samples were withdrawn from the 'eye' of the 

rotor. 
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Photograph 7: Sampling of sweet gas 
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CHAPTER 4 

FLOODING BEHAVIOUR OF THE RPB 

4.1 Introduction 

This chapter initially provides the necessary background information by reviewing the 

literature of flooding in conventional packed beds and RPBs. Then, a visual study 

was carried out in order to identify the flooding behaviour of the contacting fluids: air 

and 30wt% ethanolarnine solution. 

The conventional packed tower has a fixed diameter, the liquid flows downwards and 

the gas flow upwards in a counter-current mass transfer operation, and the column 

operates at I g. As a consequence, the flooding occurs throughout the column. 

In contrast, the RPB has a variable area of contact due to the doughnut-shape of the 

rotor, the liquid flows outwardly and the gas flows inwardly, and it operates at 100- 

1000 g. The flooding occurs in the 'eye' of the rotor because it has the lowest 'g' and 

the highest mass fluxes. 

The measurement of pressure drop across the RPB was not carried out as this subject 

was already investigated and modelled by other authors. 

4.2 Literature Review 

The review of the literature is divided into two sections: flooding in the conventional 

packed towers, and in the RPBs. Initially, it is important to review the flooding 

behaviour in the packed towers because it is the building block for studying the 
flooding behaviour in the RPB. 

The next two sections discuss the mechanism of flooding and cite generalized 

expressions and equations, which predict the flooding points in the conventional 

packed towers and the RPBs. 

4.2.1 Flooding in Packed Towers 

It is important that the packed tower should not reach the flooding conditions during 

operation. Therefore, it is necessary to predict the maximum flux-rate of the liquid 



Chapter 4: Flooding Behaviour of the RPB 60 

and the gas; as well as the liquid flux-rate that should provide sufficient wetting to the 

packed bed. The actual liquid and the gas flux-rates are determined by a combination 

of the knowledge of the limiting capacity and an economic feasibility studies. 

(White, 1935) carried out experiments on air/water system in order to visualize the 

flooding mechanism in a packed bed. The air flowrate was gradually increased over 

the packing at a constant flow of water. It was observed that there is a gradual 
increase in the amount of liquid held-up in the packing as well as the formation of gas 
bubbles. As a consequence, the liquid hold-up caused the reduction of the channel 

area available for the gas flow. Three flow regimes were defined as shown in Figure 

4.1: (1) the pressure drop increases with the second power of the gas velocity at low 

gas flowrate; (2) the pressure drop increases more rapidly with the second power of 

the gas velocity at higher gas flowrate; (3) a great increase in the pressure drop with a 

slight increase in the gas velocity. The transition from the first to the second flow 

regimes was defined as the loading point and the transition from the second to the 

third flow regimes was defined as the flooding point. 
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Figure 4.1: Pressure Drop Regimes in 

a Packed Column. 

Prior to (Sherwood et al., 1938), most of the experimental flooding velocities were 

conducted on air/water system. (Sherwood et al., 1938) investigated the effect of the 
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physical properties of gas and liquid on the flooding velocities. A widely-used 

generalized correlation was developed and presented in a log-log diagram (Figure 

4.2): 

U02S 
J. 

L 
0,5 

g 0.2 
vs. 

( L pg 

gF3 PL G PL 
(4.1) 

where uO is the superficial gas velocity, S is the surface area of packing, g is the 

acceleration of gravity, F is the fraction of free volume in packing, L is the superficial 

mass velocity of liquid, G is the superficial mass velocity of gas, PG and PL are the 

density of gas and liquid respectively. There are two distinct lines: dumped Raschig 

rings and stacked rings. The flooding velocities for stacked rings are higher than the 

Raschig rings. The gravity term (g) is included in the ordinate term in order to have a 
dimensionless ratio: 

(gas velocity based on free area)' 
=- 

Uý 23S 
(4.2) 

hydraulic mean radius %S F 

(Piche et al., 2001) expressed the ordinate for (Sherwood et al., 1938) figure as a 

mathematical function of the abscissa for dumped rings. 
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Figure 4.2: Flooding Diagram by Sherwood 
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log(Y) = -0.2866 log 2 (X) _ 1.0997log(X)-1.6784 (4.3) 

(Szekely and Mendrykowski, 1972) showed that the Sherwood plot described well the 

flooding behaviour of high-density liquid (up to 13.6 g/cm3) and high interfacial 

tension liquid (up to 500 dynes/cm). 

(Silvey and Keller, 1966) argued that there is not a consistent definition of flooding 

point. In fact, around 10 definitions of the flooding point were cited and they were 

not considered meaningfully equivalent. However, they did not propose a new 

approach for correlating packed tower capacity but only highlighted the need for a 

new one. Figure 4.3 shows the discrepancies of the flooding data around the (Lobo et 

al., 1945) correlation on a linear scale. 
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Figure 4.3: Discrepancies on (Lobo et al., 
1945) Correlation 

(Sarchet, 1942) compared the value of the visual flooding velocity with the 

corresponding graphical flooding velocity. It was shown that the visual flooding data 

for different type of packing materials were 15-20% below the graphical flooding 

points. The visual study showed that at low gas velocities the gas was the continuous 

phase and when flooding was approached the gas became the discontinuous phase. 
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(Hutton et al., 1974) proposed a mechanism for flooding in packed columns. The 

analysis showed that flooding is initiated by (1) instability due to the interaction 

between the pressure gradient and liquid hold-up at a constant gas and liquid 

flowrates; and (2) wave type instability. In comparison, flooding is initiated only by 

wave type instability in wetted-wall columns (Cetinbudaklar and Jameson, 1969). 

(Piche et al., 2001) applied artificial neural network computing and dimensional 

analysis to generate a flooding capacity correlation of randomly dumped packed beds 

for a wide range of data in absorption and distillation. The correlation absolute 

average relative error was 16.1% and a standard deviation of 20.4%. The study 
identified the physical properties that influence the flooding capacity in a packed bed, 

namely: liquid superficial velocity, liquid viscosity, gas density, bed porosity, packing 

surface area, and column diameter. Their investigation highlighted the limitations of 

earlier flooding correlations in terms of accuracy and the generalization. In addition, 

a better method of statistical analysis was applied to improve the prediction of the 
flooding. 

4.2.2 FIooding in Rotating Packed Bed 

Flooding occurs in the 'eye' of the RPB because it has the lowest centrifugal 

acceleration and the mass fluxes are highest. Understanding the dynamics of flooding 

could explain the higher hydraulic capacity and the enhancement to the mass transfer 

of the 11igee. 

The Sherwood correlation (Figure 4.2) can be modified in order to accommodate the 
high speed of the RPB. The physical properties (density) and the superficial mass 

L flowrates of the liquid and the gas fix the value of abscissa, X=GF; 
L 

. Therefore, 

U2a 
the ordinate value, Y='3P EG- js fixed. 

g. 6 PL 

The value of the gravitational acceleration (g) in the ordinate has to be replaced with 
(rjO) where (o is the rotational speed and ri is the inside radius. 

It is expected that higher values of the gas velocity and/or the specific surface of 

packed bed are achieved by accelerating the rotational speed of the packed bed 
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because the ratio of the gas and the liquid densities as well as the voidage remains 

constant in the ordinate formula. 

As a consequence, the increase in gas velocity leads to higher throughput and thus 
higher hydraulic capacity of the Mgee. In addition, the higher packing density 

material (ap) may be expected to lead to better contact and mixing of the liquid/vapour 

phases, better mass transfer operation, and thus achieving lower HTU values. 

(Kelleher and Fair, 1996) flooding data deviated only within 10% of the values 

predicted by (Sherwood et al., 1938). The flooding point was identified by a sudden 
increase in the pressure drop when it was plotted against the rotational speed. 

(Lockett, 1995) showed that Wallis model could be used as a better alternative for 

predicting the flooding behaviour in structured packing than the widely used 
Sherwood Plot. The flooding experiments were conducted on air/water system and 
the packed bed was a corrugated aluminium foil with specific surface area of 1770 
m2/m3. The pressure drop of 500 Pa/100 rpm was the criterion used to identify the 
flooding point. 

(Keyvani and Gardner, 1989) performed pressure drop experiments at constant liquid 

rates and variable RPM and gas flowrates. It was concluded that the pressure drop is 

proportional to RPM and gas flowrates. However, the flooding point was not clearly 
defined by an abrupt and sudden change in the pressure drop as the classical case in 

the conventional packed beds. This behaviour could be due to the fact that only the 

total pressure drop was measured; which was a combination of the pressure drop 

across the rotor, and the pressure drop between the housing and the spinning rotor. 

(Singh et al., 1992) defined flooding in terms of a critical operating speed in which the 

pressure drop increase by ý: 500 Pa/100 rpm. 

(Hassan-beck, 1997) carried out both visual and pressure drop flooding experiments 

on a RPB using water and air. Figure 4.4 shows his visual flooding data results. The 

pressure drop results at the flooding point showed that there is no sudden hike. 
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Figure 4.4: (Hassan-beck, 1997) visual flooding data on Sherwood plot. 

The identification of flooding point in the Higee machine by a substantial increase in 

the pressure drop was observed by (Kelleher and Fair, 1996) and (Singh et al., 1992). 

These flooding points did not deviate significantly from those predicted by Sherwood 

correlation. However, (Keyvani and Gardner, 1989) and (Hassan-beck, 1997) did not 

observe similar increase in pressure drop. 

4.3 Visual Study of the Flooding Behaviour in RPBs 

4.3.1 Flooding Experimental Facility 

The flooding experiments were conducted on the experimental facility that was fully 

described in Chapter 2. The liquid phase is 30wt% ethanolamine solution and the 

gaseous phase is air supplied from the department's compressor. 

4.3.2 The Procedure for the Determination of the Flooding Point 

The three operating variables that influenced the flooding point are: speed of rotor 
(RPM), liquid flowrate (L), and gas flowrate (G). The procedure for visual 
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determination of the flooding point is to neutralize two of the operating variable and 

manipulate the third one. 

Therefore, it was possible to carry out two procedures in order to reconfirm the 

results. Initially, the speed of rotor and the liquid flowrate were set to a constant 

value then the gas flowrate was gradually increased until an excessive splash of 

ethanolamine solution was observed in the 'eye' of the rotor. If the gas flowrate was 

allowed to increase beyond the flooding point, the ethanolamine solution was 

observed to accumulate in the centre of the rotor. The second procedure entails a 

constant flowrate of the liquid and gas then similarly decreasing steadily the rotor 

speed until a similar splash of ethanolamine solution was observed in the 'eye' of the 

rotor. 

4.3.3 Flooding Point Results 

4.3.3.1 Sherwood Correlation 

The specific combinations of gas flowrate, liquid flowrate and rotor speed for each 
flooding point enables the calculation of the abscissa and the ordinate in the Sherwood 

Plot. A detailed illustrative example of such calculation is shown in Appendix F. 

The flooding point data are tabulated in Appendix F and presented on Sherwood Plot 

in Figure 4.5. It is shown that the flooding velocities in the I-Egee are higher than 

those for dumped rings. In fact, the flooding points data are closer to the stacked 

rings profile. In comparison, (Singh et al., 1992) found that Sherwood correlation for 

dumped rings underestimates the rotational speed limit for Sumitomo packing but it 

was in good agreement with wire gauze packing. In addition, a second-order 

polynomial curve fit was proposed for the experimental data (Equation 4.4); and 
Figure 4.5 compares their curve with Sherwood correlations for dumped and stacked 

rings and the current investigation data. 

log y=-2.27 -1.14 log(x) -0.17 [log (x)]' (4.4) 
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Figure 4.5: Flooding behaviour at different liquid flowrates. 

The relationships between the three operating variables are illustrated in Figure 4.6 

and Figure 4.7. It is evident from Figure 4.6 that increasing the RPM, at a constant 
liquid flowrate, allows a higher gas flowrate and thus corresponds to a higher flooding 

velocity. This implies that increasing the rotational speed of the bed increases the 

capacity of the Higee. In addition, Figure 4.6 shows that the gas flowrate increases as 

the liquid flowrate decreases at a constant RPM. 

Another representation of the data is shown in Figure 4.7. It shows that increasing the 

RPM leads to a reduction in the L/G ratio at a constant liquid flowrate. This implies 

an increase in the gas flowrate and hence leads to a higher capacity for the Higee. 
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Figure 4.6: Flooding gas flowrate vs. RPM at varying liquid flowrate. 

100 

80 

60 1 

40 

20 

0 
0 200 400 600 800 

RPM 

Liquid Flowrate I #14.2kg/s/m2 018.4 kg/s/m2 034.3kg/s/m2 A 43.9kg/s/m2l 

Figure 4.7: L/G vs. RPM at varying liquid flowrate 

1000 



Chqpter 4: Flooding Behaviour of the RPB 69 

4.3.3.2 Wallis Correlation 

Another approach to correlate flooding in counter-current two phase flow is suggested 

by (Wallis, 1969). (Lockett, 1995) expanded this approach to rotating beds. 

CG 0.5 
+MC1,0.5 =c (4.5) 

where 

CG =U G[ 
PG 

]0.5 

(4.6) 
PI, - PG 

(15 

CL =UL[ 
PL 

PL 
PG 

(4.7) 

, is the capacity factor for gas (m/s), C1, is the capacity factor for liquid (M/s), where Cc 

UG and UL are the superficial velocity of gas and liquid respectively (m/s), and m and 

are constants. 

Figure 4.8 shows the flooding diagram using Wallis method. The slopes of straight 
lines were 2.245,2.195,1.745,1.100,2.067, and 2.036 for speed rotor of 300,400, 

500,600,700 and 800 RPM respectively. The average slope value (excl. 600 RPM) 

is 2.058. The low slope magnitude for 600 RPM may highlight inaccurate data points. 
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Figure 4.8: Flooding data using Wallis Plot 
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The constant (C) in Equation (4.5) is defined as follows: 

C= C' (g. d)0.25 (4.8) 

Thus, it is possible to include the rotation of the packed bed as the gravity (g) term 

could be substituted by (r. (o 2 ). 

C= Cq ((02 r d) 0.25 (4.9) 

Where C' is a dimensionless constant, and d is the characteristic dimension of the 

packing. If the structured packing is geometrically similar, as the case with expamet, 

then the characteristic dimension of the packing (d) is inversely proportional to the 

specific surface area of the packing (a) (Note: a= 2132 m 2/M3). 

A dimensional acceleration is defined as the ratio of rotor acceleration to the gravity. 
I r co- Ng =9 (4.10) 

Substituting Equation (4.10) into (4.11) yields: 

C=Aa-0" Ngo"' 

Equation (4.5) can be used to calculate C. Then, varying C with Ng as shown in 

Figure 4.9 in order to calculate the exponent of Ng. The slope of the line is 0.22 and 

that corresponds to 13% deviation from the initial value. In addition, the value of 

constant A can be calculated and it equals 2.29. 
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Q 

Figure 4.9: Variation of C with Ng 
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The value of the exponent on (a) is assumed to be -0.25 as there is no available data 

to investigate the variation of C with (a). 

'Iberefore, the Wallis equation that could be used to predict the flooding behaviour in 

the expamet packing in the rotating beds is: 

CG 0.5 
+2.058CL 

0.5 

= 2.29 a -0.2' N90.22 P-0.03 (4.12) 

The viscosity term is added as a minor correction and it is the ratio of the liquid 

viscosity to that of water at 70'F. The viscosity of water is 10 cP and the viscosity of 
30 wt% MEA solution is 2.8 0 and hence the correction factor is 1.04. 

(Lockett, 1995) correlated a relationship between Sherwood and Wallis flooding 

representations. Equation (4.13) shows such relationship, which varies CG with 

L E` 
and the flooding data are plotted in Figure 4.10. 

v PI, 

2 
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cG2.29 a'N9p0.5 (4.13) 
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Figure 4.10: Sherwood-Wallis flooding plot. 
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Equation (4.13) shows that Sherwood and Wallis correlations are closely related. 
However, it is thought that Wallis method is a better way of representing flooding 

data because the data are organized in straight lines, which makes it easier to remove 

outliers. 

4.3.4 The Effective Wetted Area of the RPB. 

The purpose of this section is to illustrate theoretically the profile of the effective 

wetted area (a.., ) with the divergence of the ethanolamine solution through the cross 

section of the packed bed. (Onda et al., 1968) correlation is utilized to predict the 

effective wetted area of the conventional packed bed. Appendix F shows the 

necessary modifications to Onda's correlation in order to be applied for the RPBs. 

The wetted area is assumed to be similar to the effective interfacial area in the Higee 

due to its small packing sizes (Kelleher and Fair, 1996). 

Figure 4.11 shows that the effective wetted area of the RPB decreases with the 
increase in the radius of the RPB. The outer radius of the packed bed is 

approximately 17% less wet than the inside radius. Furthermore, the correlation 

shows that the RPB is wetter at higher rotor speeds. However, (Munjal et al., 1989) 

explained the reasons for the Onda's correlation for gravity flow to under-predict the 

effective gas-liquid interfacial area for rotating beds. 
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CHAPTER 5 

Method of Analysis and Solubility Experiments 

5.1 Introduction 

Figure 5.1 shows the components of the mass balance that should be analysed 

accurately. Therefore, it is vital to measure the concentration of carbon dioxide in the 

sour/sweet gas samples and the concentration of carbon dioxide in the ethanolamine 

solution. 

Lean MEA 
Solution 

Air/Co2mixture 

Higee MEA/Air/C02 I 
mixture 

Rich MEA 
Solution 

Figure 5.1: Mass balance across the Higee rig for absorption cycle. 

There are three ways to determine the concentration of carbon dioxide in aqueous 

ethanolamine solutions: physical, indirect and gas chromatography. Early co-workers 

used chemical and indirect methods but with the advance in chemical analysis 
technologies gas chromatography became another popular option. 

The C02 solubility data for 30 wt. % MEEA solution were measured for the loading 

range of 0.2-0.3 mol carbon dioxide/mol MEEA at 250,4011,600, and 800C using a 

simple equilibrium technique. The chosen loading range was based upon the 
industrial interest. In addition, the results of the experiments were modelled and then 
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compared against (Jou et al., 1995) solubility data as most of the solubility data for 

other investigators were at higher loading ranges. 

5.2 Determination of the carbon dioxide concentration in an 

aqueous ethanolarnine solution 

5.2.1 Chemical Methods 

This section reviews the titration and analytical methods applied to determine the 

concentration of carbon dioxide in ethanolamine solution. 

(Mason and Dodge, 1936) tried unsuccessfully to apply titration methods to determine 

the amount of carbon dioxide in the ethanolamine solution. Therefore, another 

analytical technique was considered. It was based upon acidifying the heated 

solution, then absorbing the evolved carbon dioxide by ascaritel. 

Figure 5.2 shows the Modified Knorr's method to determine the amount of carbon 

dioxide in carbonates. The carbon dioxide is evolved from the carbonates by an acid 

then absorbed by caustic and weighed (Furman, 1962). 

(Jones et al., 1959) determined the concentration of carbon dioxide in aqueous 

monoethanolamine by two methods: precipitation as carbonate with barium chloride 

or modified Knorr procedure. The latter method involves the acidification of the 

sample with sulphuric acid then the solution was heated in order to evolve carbon 

dioxide. After that, carbon dioxide was swept from the reaction vessel with nitrogen 

and then passed over a tube containing a C02 absorbent. The results obtained using 

the modified Knorr method were preferred because the precipitation method gave 

lower amounts of carbon dioxide at higher gas loadings due to the formation of 

carbamates. 

(Jeffery and Kipping, 1962) developed a gas-chromatographic method for 

deten-nining the concentration of carbon dioxide in rocks and minerals; and its results 

were in good agreement with those obtained by the traditional methods. It was then 

further developed in order to determine the concentration of carbon dioxide in 

1 Ascarite: Sodium hydroxide-asbestos preparations, used as absorbent for carbon dioxide (Bennett, 

1986). 
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ethanolamine solutions. The CO, -MEA mixture was boiled with a diluted 

orthophosphoric acid and the reaction liberates carbon dioxide. The gas was then 

passed to a gas chromatograph in order to detect its concentration with a thermal 

conductivity cell. Howevcr, it was necessary to calibrate the instrument with each 

new hatch of samples because of continuous deterioration to the chromatographic 

column. 
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Figure 5.2: Modified Knorr Method 

(Jou et al., 1995) used a precipitation-titration method to analyse the liquid sample. 

The aliquot was added to 0.1 rnol/dm 
3 BaCl2 in order to precipitate the carbonate as 

BaC03. After two days ofaging in order to allow BaC03 particles to agglomerate, the L- C, 

mixture was filtered and then washed with distilled water until the pH of the filtrate 

was 5.0-5.6. Then, the distilled water was added to the precipitate and it was titrated 
3 

against 0.1 mot/dM HCI. 

The limitations ofthe above methods are: the analysis time is long and could take in 

excess of two days, the potential need for a large liquid sample, and the need to be 
I 

careful with small details as a sli, (,,, ht en-or in the experimental procedure could C, 

produce a larger error in tile results. zn 
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5.2.2 Indirect Methods 

The direct methods depend on finding a physical property of the ethanolamine 

solution that could vary in a sensible way during carbonation. The potential 

properties were: viscosity, refractive index, surface tension, specific gravity, pH, and 

electrical conductivity. (Atadan, 1955) concluded that the deviation for most of these 

properties was small with the increase of carbonation. 

The reaction between the ethanolamine and carbon dioxide is exothermic. Therefore, 

it is possible to calculate the acid gas loading by correlating the rise in the temperature 

of the solution and the heat of reaction. However, accurate measurement of 
temperature rise is not possible because of heat dissipation to the gas phase and to the 

equipment. 

(Moore, 1986) investigated the possibility of using the variation of refractive index as 

a tool for finding out the acid gas loading. However, there was a small variation of 
the refractive index with the carbonation ratio. Furthermore, there was the necessity 
to produce a new calibration curve for any change to the ethanolamine solution. 

The titration curves of a2N solution of primary, secondary and tertiary 

ethanolamines are shown in Figure 5.3. It is evident that MEA has higher alkalinity 
than other amines. The smooth curves of the amines in comparison to the KOH 

solution were due to the presence of non-ionized species (Kohl and Nielsen, 1997). 

Furthermore, the pH was reduced from 12.8 to 9.1 when the loading was increased 

from 0 to 0.5 mol C02/mol MEA. In addition, Figure 5.4 shows that the pH decreases 

as the temperature rises. The pH was reduced from 12.5 to 11.9 when the temperature 
increased from 70'F to 130'F. Similarly, the disadvantage is the need to calibrate 
for each different ethanolamine solution composition. 
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5.2.3 Gas Chromatography 

This method was introduced in 1950s and since then it has became a popular 
t echnique for the analysis of liquid and gas samples because it provides on-line 
detection of the eluted species, high resolution; and produces fast, repeatable and 

reliable results. 

(Pearce et al., 1993) described the operating conditions of a Hewlett-Packard Model 

5880 chromatograph used by The Dow Gas Conditioning Laboratory. A1 pL liquid 

solution was injected into the sample port. The carrier gas was helium and two 
different columns were used to detect alkanolamine and carbon dioxide by a thermal 

conductivity detector. However, hydrochloric acid was injected every fourth sample 
in order to pretreat the carbon dioxide column and another pre-treatment method was 

used for the alkanolamine column in order to obtain repeatable results. (Moore, 1986) 

applied similar operating conditions for his PhD work on carbon dioxide absorption 
by diethanolamine solution. 

(Jou et al., 1982, Jou et al., 1993, Jou et al., 1995) had performed solubility 

experiments in alkanolamine solutions at different temperatures, pressures, and 

concentrations. The equipment and procedures for their experiments changed over 
the years. As shown in Table 5.1, a comparison is made between the current 
investigation gas chromatograph and (Jou et al., 1995). 
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Table 5.1: Comparison between the GCs' used by Jou et al. (1995) and the current 
investigation. 

Jou et al. (1995) Current Investigation 

Column 1.63 m*3.175 mm. Refer to Table 5.3. 

Stainless steel packed 
column of chromosorb, 104 

Detector TCD FID 

Oven temperatures 
Injection port 300'C 375'C 
Column 250'C 100-150'C 
Detector 200'C 250'C 

Carrier gas, flowrate He, 22 cm 3 /min. He, 10.8 cm3/min. 
Injection volume 5 gL 0.2 gL 
Retention time 
C02 0.44 min 4.28 min. 
H20 1.04 min - 
MEA 8.20 min 7.02 min 
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5.3 Analysis Method: Gas Chromatography 

Figure 5.5 shows a schernatic diagram of the gas chromatography developed by zn 

Unicam Chromatography (UK) to detect the concentration of carbon dioxide in the 

gaseous phase and the concentration of carbon dioxide and ethanolamine in the 

aqueous solution. 

The retention time ofthe liquid and gas samples were 10 minutes and the results were rý 
accurate and repeatable. In addition, only 0.2 ýtl- of liquid sample and IOmL gaseous 

sample were required. 

st 

Figure 5.5: Schematic diagram ofthe gas chromatography 

5.3.1 Description or the Process 

5.3.1.1 Analysis of the Liquid Sample. 

A total volume ol'O. 2 ltL liquid sample is injected manually through a rubber septurn 

into the sample injector port with the aid of aI ltL Hamilton syi -Inge. The barrel of 

the syringe is made from glass and the needle is stainless steel. The entire sample is 

contained in the needle (Harris, 1991 ). The liquid sample is vaponzed in the injector 
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port as the temperature of the injector oven reaches 375'C. The operating conditions 

of the process are shown in Table 5.2. 

The gaseous sample is then mobilized through the first column by helium. Both 

carbon dioxide and air (02, N2) will diffuse through the first column much faster than 

the ethanolamine. The second column separates carbon dioxide from air. Both 

columns operate at 100'C and their details are shown in Table 5.3. 

Carbon dioxide is then catalytically converted to methane using hydrogen. A Flame 

Ionization Detector (FID) detects the organic gas (methane). The divert valve is 

closed during this stage thus forcing the flow of carbon dioxide towards the FID, 

through the catalyst converter. 

After 5.5 minutes, the divert valve opens and hence the mid-point gas pressure directs 

the flow of the ethanolamine-rich gas from the first column directly to the FID. The 

rationale of this action is to avoid bringing the ethanolamine into contact with the 

catalyst converter because it could poison the catalyst. 

The sensitivity of the FH) is set to LOW for liquid samples. The duration of the 

analysis cycle is 10 minutes. Appendix G shows the necessary steps for 

determination the calibration of C02-MEA-H20 liquid samples. 

5.3.1.2 Analysis of the Gas Sample. 

Initially, the gas sampling valves are in fill position. Then, a 10 mL gas sample is 

injected via a syringe in order to purge the sample loop (stream 2). After that, another 
10 mL gas sample fills the sample loop, which is then brought inline with the carrier 

stream. 

The combined gaseous mixture is then flushed onto column 1 while the divert valve is 

closed. The carbon dioxide elutes from column 1 through column 2 to the catalytic 

converter where it is converted to methane and detected by the FID. Finally, the 

ethanolamine (if present) reaches the end of column 1 then the divert valve opens and 

ethanolamine elutes via the valve to the detector. 

The sensitivity of the FID is set to MEDIUM and the duration of analysis cycle is 10 

minutes. Appendix H shows the calibration steps for C02-air sample. 
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Table 5.2: Operating conditions of GC. 

Detector Oven Temperature 250'C Polarity REAR 

Injector Oven Temperature 375'C Backing Off + 

Auxiliary (Valve) Oven 

Temperature 

150'C Output I Volt. 

Column Oven Temperature 1000C Ramp 1 25'C/mýin 

Initial Time 1 min. Upper Time 8 min. 

Upper Temperature 150'C 

FID Amplifier Settings 

- Methods 1 and 3 

- Method 2 

LOW 

NED 

Table 5.3: Details of the column 1 and column 2. 

Column I Column 2 

Tubing Material Fused Silica Silcosteel 

Length 25 m 1m 

Diameter 0.53 mm, (ID) 1/8" O. D. 

Stationary Phase CP Wax for Amines Carbosieve S-II 

80-100 mesh 

Film Thickness 2.0 gm 

Activate/Preheat 200'C 
- 

225'C 

Preheat time 
[ 

2hrs 16hrs 
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5.3.2 FID (Flame Ionization Detector) 

Figure 5.6 shows a schematic diagram of a typical FID. The effluents from column 1 

and 2 are mixed with hydrogen and air before being burned in the FID. The carbon 

atoms of organic materials (methane and MEA) produce CH radicals that are ionized 

in a hydrogen-oxygen flame. 

CH +04 CHO+ + e- 
thode 

The Hydrogen flame contains a 

significant amount of free electrons due 

to the ionization and the flow of 

electrons causes hydrogen flame to Anode 
and 

have an electrical conductivity. The f lame tip Igniter coil 
electrical conductivity of a hydrogen Glass 

flame is small but with the introduction Air Inlet insulation 

of organic vapours it increases and can 
Colu ffn 
outlet 

be recorded (Littlewood, 1970). Hydrogen Inlet 

A FID is insensitive to inorganic Figure 5.6: Main components of the FID 
compounds such as: H20, C02, and 02- 

In addition, the sensitivity of the FID is 

two orders of magnitude more than the 
Thermal Conductivity Detector (TCD). 

5.3.3 The Carrier Gas 

The mobile phase chosen for the process is helium. It provides good resolution at 
high flowrates (10.8 ml/min) due to rapid diffusion of the solutes through it. In 

addition, helium enhances rapid equilibrium between the mobile and the stationary 

phases in the columns and hence achieves a smaller H. E. T. P. (Harris, 1991). 

5.3.4 GC output 

Figure 5.7 shows a typical output signal from the FED detector to the liquid solute 

concentration. The chromatograrn shows two components: the small peak on the left 

represents carbon dioxide and it has a4 minutes retention time. The second peak 
represents monoethanolamine and it has a retention time of 6.5 minutes. 
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Figure 5.7: A typical chromatogram for C02 and MEA peaks in liquid 

sample. 
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5.4 Solubility Experiments 

5.4.1 Introduction 

The solubility data determine the maximum amount of the gas species that the 

reactive liquid can absorb under specific conditions of temperature, pressure, and 

concentration. In addition, it estimates the driving force when calculating the rate of 

absorption. 

The equilibrium solubility data Of C02 in ethanolamine solutions are mostly for low 

amine strength (<30wt%) due to the use of low amine concentrations in the industrial 

applications in order to avoid corrosion problems in mild steel equipment. However, 

higher concentrations are possible nowadays due to the use of stainless steel and 

corrosion inhibitors. 

5.4.2 Literature Review 

(Mason and Dodge, 1936) presented carbon dioxide equilibrium data in MEA 

solutions (3,12,30,56, and 74 wt%) at temperatures of 0', 25', 50', and 75'C and at 

partial pressures of carbon dioxide ranging from 1.38-99.85 kPa. A curve fitting 

method was used to correlate the data. The equilibrium data relevant to this research 

are shown in Appendix J. 

(Atadan, 1955) extended the earlier solubility data to a wider range of operating 

conditions: 0-600 psia, 0-75T, and 0.5-12.5N MIEA. In addition, he proposed a 

ýolubility equation: 

S=Qpm (4.1) 

where s is the solubility (mol C02/mol MEA), P is the partial pressure of carbon 
dioxide (psia), Q and m are parameters that depend upon the temperature and the 

strength of MEA(Table 5.4). 
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Table 5A Values of Q and m for (Atadan, 1955) equation. 

Normality Temperature 

Oc 

Q m Normality Temperature 

Oc 

Q m 

2.5 30 0.525 0.137 7.5 30 0.457 0.106 
50 0.469 0.132 50 0.430 0.089 
70 0.371 0.140 

. 
70 0.405 

. 
0.069 

5.0 30 0.387 0.154 10 30 0.566 1 0.031 
50 0.418 0.122 50 0.469 8 
70 10.375 10.125 170 0.421 

(Jones et al., 1959) carried out solubility experiments for acid gases in MEA solution 
(15.3 wt%). In short, a 500 in 3 stainless steel equilibrium vessel containing 2L of 
15.3 wt. % MEA solution was held in a thermostatic oil bath and rocked for 2 hours in 

order to establish equilibrium. The solubility data were in good agreement with those 

obtained by (Mason and Dodge, 1936). 

(Deshmukh and Mather, 1981) developed a thermodynamic model for the solubility 
of C02/H2S in alkanolamine solutions for a wide range of temperatures, partial 

pressures and concentrations. The model incorporates both the dissociation of 

electrolytes in the aqueous solution and the vapour-liquid equilibrium of acid gas 

species (i. e. fugacities and activity coefficients). The model was in a good agreement 

with the experimental data of C02/MEA system at all temperatures and normalities. 

As part of their solubility experiments, (Lee et al., 1974) studied the solubility Of C02 

in 30wt% MEA solution at 40' and 100'C. The partial pressure Of C02 was ranging 
from 0.167 - 959.6 psia. Similarly, (Shen and Li, 1992) studied the solubility Of C02 

in 30wt. % MEA solution at temperatures of 40*, 60', 80", and 100'C; and at partial 

pressure of carbon dioxide ranging from 1.1 - 1975 kPa. The concentration of carbon 
dioxide was determined by titration and the gas chromatography technique was used 
to analyse the vapour samples. In addition, (Nasir and Mather, 1977) studied the 

solubility Of C02 in 30wt% MEA solution at 100'C; and the partial pressure of carbon 
dioxide was ranging from 0.00214-2.96 kPa. The precipitation and titration. method 

was used to analyse the liquid samples and gas chromatography was used to analyse 



ChUter 5: Method of Analysis and Solubility Experiments 87 

the gas samples. Furthermore, (Murrieta-Guevara et al., 1993) studied the solubility 

Of C02 in 30wt. % MEA solution at 30', 50' and 100'C and the partial pressure of 

carbon dioxide ranging from 1.5-2120.3 kPa. 

(Jou et al., 1995) published a wide range of experimental solubility data Of C02 in 

30wt. % MEEA solution at a temperature range of 0', 25*, 40', 60', 80', 100', 120' and 

150'C and the partial pressure Of C02 ranging from 0.001-20,000 kPa (Jou et al., 

1995). The liquid samples were analysed by both the precipitation-titration method 

and a chromatographic technique; and the gas sample were analysed by a gas 

chromatograph. Figure 5.8 shows the solubility Of C02 in a 30wt. % MEA solution. 
Their experimental data was in good agreement with the model developed by 

(Deshmukh and Mather, 198 1). 

Figures 5.9,5.10,5.11 and 5.12 compare 

their results with the work of other 10 
4 

researchers. Generally, it is evident from the 10 
3 

Figures that their data are lower than the 109 

other solubility results. The deviation in 10' 
Figure 5.11 was attributed to the method of 

analysis of the liquid sample by (Lee et al., 
1974); and the noticeable deviation 

10-2 

behaviour of the trend in Figure 5.9 was 

attributed to the use of unsuitable apparatus 
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Figure 5.8: Solubility data for 30wt% MEA 

solution (Jou et al., 1995). 
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5.4.3 Solubility Experiments 

5.4.3.1 Materials and Equipment 

The amine solutions were prepared from distilled water and 99+ % strength analytical 

ethanolan-tine (Sigma). The MEA solution was made to the desired strength. Table 

GI in Appendix G shows a comparison between the determination of amine strength 
by weight against titration with bromophenol blue indicator. The difference between 

the two methods was a mere 0.5%. Oxygen-free nitrogen (@ 175 bar, 15 ̀ Q and a 

carbon dioxide cylinder with a capacity of 34 kg (@50 bar, 15*Q were supplied from 

BOC. The carbon dioxide is stored in liquid form; but due to its vapour pressure 

gaseous carbon dioxide is discharged from the cylinder. 

The pre-saturator is a 250 mL glass flask, which is approximately half filled with 

distilled water. A glass leg was immersed inside the water and bubbles a uniform 

flow of C02/N2 mixture. The flow of the gas mixture was controlled by two needle 

valves. The saturated gaseous mixture was then directed to the equilibrium vessel. 

The 1L glass equilibrium vessel is shown in Figure 5.13. There are 3 openings to the 

vessel. The gas mixture was allowed to enter the vessel through V1. The prepared 
MIEA solution was injected into the vessel through V3 via a syringe. In addition, V2 

was kept open during the loading of carbon dioxide into the ethanolamine in order not 

to pressurize the glass vessel. 

The equilibrium vessel was rocked at a rate of 100 rpm for 24 hours in a shaker 

platform using Sanyo Orbital Incubator (Model IOX400. XX2. C). The equilibrium 

vessel was kept inside the incubator at a specific temperature environment. The 

maximum allowed temperature was 60'C. 

For solubility experiments at 80'C, the equilibrium vessel was immersed in a water 
bath. Plastic balls were put afloat on the surface of the water in order to reduce its 

vaporization rate. The temperature in both the incubator and the water bath was 

controlled to ± 0.1 OC. 
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5.4.3.2 Experimental Procedure 

The calibrations procedures and charts for determining the concentration of carbon 
dioxide and ethanolamine in the liquid and gas samples are shown in Appendices G, 

H and I. 

Figure 5.13 shows a schematic diagram for the preparation of the equilibrium vessel. 
Initially, the 1L flask was purged with a saturated N2/C02 mixture. The flowrate of 
N2/C02 mixture was controlled by two needle valves. A gaseous sample was 

analysed in order to check that a moderate initial carbon dioxide concentration was 

achieved in order to accelerate the loading of carbon dioxide into the ethanolamine 

solution. Then, 5 mL of the prepared 30wt% ethanolan-ýine solution was injected into 

the flask through V3. The solution was continuously bubbled with the C02/N2 

mixture and the liquid samples were constantly analysed in order to check the loading. 

The target loading range is 0.2-0.3 mol C02/mol MEA. Figure 5.14 shows the 

increase in carbon dioxide peak with time. 

After achieving the required loading, both V1 and V2 were closed. After that, the 

sealed flask was either taken to the incubator if the solubility temperature is 60*C or 

below; or taken to the water bath for 80'C solubility experiment. After 24 hours, both 

the liquid and gas samples were analysed. The liquid sample was taken carefully and 

slowly by a1 gL Hamilton syringe in order to avoid both the degassing of carbon 
dioxide and/or the creation of air bubbles in the needle of the syringe. In addition, the 
body of the needle was cleaned with a tissue prior of being injected into the sample 

port. 
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Figure 5.14: The increase of the carbon dioxide peak in the solution with time. 
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5.4.3.3 Results and Discussion 

In order to confirm that the equilibrium was established in the reactive vessel, gaseous 

samples were taken at different time intervals as shown in Figures 5.16 and 5.17 for 

two different loadings. It is evident that equilibrium prevails after approximately 

three hours. However, the vessel was continuously rocked at 100 rpm for 24 hours in 

order to ensure the state of equilibrium between the phases. 

The isotherms of the solubility data for carbon dioxide in 30 wt. % MEA solution at 

25', 40', 60", and 80'C are tabulated in Table K1 in Appendix K and presented in 

Figures 5.18,5.19,5.20, and 5.21 respectively. The partial pressure of carbon dioxide 

was ranging from 0.006442 - 2.39 kPa. Those figures show that the solubility data 

are higher than those of (Jou et al., 1995). The higher deviation behaviour is similar 

to the results of other researchers in the solubility field. 

The solubility data at different temperatures were presented on linear graphs rather 

than the usual log-log graphs because the loading range was 0.2-0.3 and it was easier 

to show the deviation between the current data and those obtained by (Jou et al., 

1995). 

Each experimental point was analysed 2-3 times in order to check the reproducibility 

of the data. The difference in the liquid phase analysis was a mere 0.5% and in the 

gas phase between 1-4%. Therefore, the average value of the analysis was considered 

to represent the solubility data. 

An attempt is made to quantify the approximate magnitude of deviation between the 

experimental data with those of (Jou et al., 1995). Therefore, a linear relationship is 

assumed to correlate the 2-3 points in the 0.2-0.3 loading range for (Jou et al., 1995) 

data. On that basis, an approximate deviation could be established between the 

current research partial pressure and those of (Jou et al., 1995) at a specific loading 

value. Table K2 in Appendix K tabulates the magnitude of the deviation for all the 

experimental values and Figure 5.15 illustrates the average deviation for each 

temperature group. Figure 5.15 shows that the error decreases with the rise in 

temperature, which could be attributed to the possibility of less accuracy at low C02 

partial pressures. 
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Figure 5.15: Percentage deviation between the solubility data and (Jou et al., 
1995). 

5.4.3.4 Correlation of Data 

The solubility data for 30 wt'Y(, MEA solution at 25', 40', 60', and 80'C between 0.2- 

0.3 loading were modelled in a similar fashion to the method used by (Atadan, 1955). Cý 
The model is based upon the power equation and the values of Q and m are presented 

in Table 5.5: 

s=Q Pill (4.1) 

where s is the solubility (mol CO, /mol MEA), P is the partial pressure of cat-bon 
dioxide (kPa), Q and rn are parameters that depend upon the temperature. 

Table 5.5: Values ofQ and m for power equation. 

Temperature 

(11C) 

Q m Coefficient of determination 

r2 

25 6.2539 4.5447 0.98759 

40 51.6652 5.1455 0.99350 

60 370.3773 5.1964 0.99971 

so 839.2923 4.5108 0.99924 

--- ----------------------- 

----------- --- 

- --------------------------------------- 

------ ------------------------------------ 

25 40 60 80 

Temperature (C) 
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Figure 5.16: Carbon dioxide concentration vs. Time at 0.285 loading and @ 25'C. 
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Figure 5.17: Carbon dioxide concentration vs. Time at 0.248 loading and (d), 25'C. 
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CHAPTER 6 

Troubleshooting of the Pilot Rig 

6.1 Dry Runs Experiments 

6.1.1 Introduction 

The purpose of running the RPB with gas-only operation or a dry run is to assess the 

fluid flow behaviour in the "eye" of the rotor in order to withdraw a representative 

outlet gaseous sample. This information was used to identify any necessary redesign 

of the Higee rotor and/or the gas sampling system. 

In order to close the mass balance, it is desirable to withdraw representative 
inlet/outlet gaseous samples. The inlet sour gas stream is turbulent hence a 
homogenous sample is readily available. However, the position of the outlet sampling 

point and its corresponding composition provide some uncertainties as similar 

problems were encountered in early ffigee experiments carried out in ICI (Ramshaw, 

2001). 

It is believed that vortices are developed inside the 'eye' of the rotor when in 

operation. These vortices cause the creation of unstable area in which the fluid 

behaviour is comparable to the behaviour of wind inside a hurricane. The tendency to 

create a free vortex produces a low-pressure region in the centre of the rotor. The 

formation of a lower pressure region at the rotor axis could trigger the movement of 

the atmospheric air into the rotor 'eye' thereby causing the dilution of the carbon 
dioxide concentration. In addition, it is believed that the shape of the 4-ann liquid 

distributor should suppress the effect of free vortices. 

Therefore, it is desired to test these hypotheses in order to obtain a representative and 

a reliable sample point. 

6.1.2 Procedure of the Runs 

A 2-vol% mixture of carbon dioxide and air was routed to the Fligee rig and a gaseous 

sample was withdrawn on entry. The mixture was allowed to pass through the packed 
bed in the absence of the aqueous ethanolarnine solution. The RPB was run at 



Chapter 6: Troubleshooting of the Pilot Rig 98 

different speeds 0,500,800, and 1000 RPM in order to assess the effect of the rotor 

speed on the composition of the sour gas mixture. 

Two gaseous samples were withdrawn: Sample (A) from the 'eye' of the rotor and 

sample (B) from inner edge of the packed bed as shown in Figure 6.1. All the gaseous 

samples were analysed with the aid of a gas chromatograph. 

A'r/C02 Mixture to the 
Packed Bed Exhaust Fan through a 

Cqmney 

Stainless Steel Disc Polypropylene Blanking Disc Dis 

Perspex Front Disc 
Gas Plenum 

Air leaked into the RPS in Splash Guard 
the gap between the moving 

and the stationary parts 
Stationary Liquid k 

Distributor 

Sour Gas 
To vacuum pump 

Atmo phenc air sucked 
intoSRPB by vortices 

Buffer Tank 

To product tanks 

Figure 6.1: Sampling points: (A) eye; (B) periphery and positions of 

air leakage into the RPB 

6.1.3 Results of the Dry Runs 

As noted above, all the inlet/outlet gaseous samples should have an equivalent 

composition because there is no liquid/vapour mass transfer in operation. However, 

Figure 6.2 and Table LI shows that there is a high percentage difference between the 

inlet and outlet gas composition in the preliminary trials. It is observed that the 

difference increases at higher rotor speeds and the errors were higher for samples 

withdrawn from the 'eye' of the rotor in comparison to those withdrawn from the 

inner edge of packed bed. A typical example to calculate the error between the inlet 

and the outlet gas composition is shown in Appendix L. 
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6.1.4 Discussion 

The increase in the 111.111111tUde of the error between the inlet and the outlet 

composition was due to the dilution of carbon dioxide concentration by the 

atmospheric air. The air is leaked into the system due to the formation of a low- 

pressure regime inside the rotor envelope. Free vortices inside the 'eye' of the rotor 

creates a low-pressure repine coupled with high angular velocity of the gas. 

There are two types of' vortices developed inside the rotor: tree and forced. The 

forced vortices are developed because the angular velocity of the inflowing gas is 

virtually the sarne of' the rotating packed bed by virtue of the oas-rotor frictional 

interaction. 

The 4-arms of' the 11(lUid distributor should minimize the effects of free vortex by 

suppressing its movement. In addition, identifying the positions of air leakage could 

minimize the effect ofthe free vortex. 

0 500 800 1 Uou 
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6.1.5 Troubleshooting of the Rig 

The possible locations that air can be leaked into the rotor: the vicinity of the splash 

guard that the 4-arm distributor is placed into the 'eye' of the rotor; secondly the 

upper part ofthe buffer tank as shown in Figure 6.1, and the gap between the moving 

and the stationary parts at the back ofthe rotor. 

Initially, a transparent extension was connected to the splash guard next to the 4-arm 

distributor and hence the front cover was totally sealed as shown in Figure 6.3. Zý 

Another set of' experiments showed that the error was significantly reduced as shown Cý 
in Figure 6.4. However, the error was still great at high rotational speeds and can 17, In, 
cause discrepancies in the calculations ofmass balance. 

Air/CO2 Mwure to the 
Exhaust Fan through a 

Packed Bed Chimney 

Stainless Steel Disc propylene Blanking Disc 

Gas Plenum 
Perspex Front Disc 

Splash Guards 

Stationary Liquid 
Distributor 

Sour Gas 

ýA- 
To vacuum pump 

Silicasel added to tight 
B Air leaks positions sealed 

leak position 

Sealed Buffer Tank 

To product tanks 

Figure 6.3: Air leakaues blocked 

Therefore, it was decided to seal any discontinuity between the splash guard and the 

buffer tank as shown in Figure 6.3 at points A, B, and C. In addition, the gap between L, 

the moving shaft and the stationary splash guard at the back of the rotor is kept to a 

minimum. Furthermore, silicone adhesive was applied in all the contacting surfaces 
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between the splash guard and the buffer tank in order to completely seal the system C- 
from the outside medium. 

The last two experimental runs in Table LI shows that the error was i-educed 

substantially for eye measurements to a mere 0.9% at low sour gas flowrate (110 

m3 /hr) and 0.71'/c at high gas flowrate (155 m3 /hr) when the rotor is operated at 

maximurn speed (1000 RPM). 

It was decided to collect a gaseous sample from the 'eye' of the rotor in preference to C, 

the inner edge sampling point. The latter was discarded because it was very close to 

the inside surface ofthe RPB and hence the ethanolamine solution was vacuumed into 

the teflon piping causing contamination to the gaseous sample. 
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Figure 6.4: (/(, error between inlet/outlet C02 concentrations after initial modifications to the 

Higee rig. 
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6.2 Absorption Runs 

6.2.1 Introduction 

The initial absorption runs were used as an exercise to close the mass balance across 

the rig and to obtain preliminary mass transfer results. The concentration of MEA 

solution was downgraded from 85wt% to 30wt% by blending with distilled water. 
The operational difficulties encountered with the mass balance were clarified and 

statistically analysed. 

The preliminary mass transfer results indicated that the overall gas phase Height of 
Transfer Unit (HTUOG) was approximately 20 cm. at ethanolamine solution flowrate 

of 20 Umin and at a room temperature of 20'C. 

However, the extensive absorption runs over a six-month period caused deterioration 

of the physical condition of the 30 wt. % MEA solution. It was observed that the 

solution appearance changed from colourless to dark yellowish due to the increase of 

carbon dioxide concentration in the solution and hence a subsequent rise in the 

ethanolamine solution loading. Furthermore, the careful selection of the material of 

construction for the rig (stainless steel and polypropylene) allowed minimum dirt 

accumulation in the solution. 

After achieving a reasonable mass balance error accuracy, it was decided to carry out 

a matrix of experimental absorption runs in order to investigate the effects of varying 

the rotational speed, temperature, and the ethanolamine solution flowrate on the 

height of transfer unit (HTU) using different amine strengths (100,75,55, and 30 

wt. %) with 4.0 vol. % C02/Air mixture. 

Therefore, a fresh batch of pure ethanolamine solution (100 wt% MEA) was stored in 

the feed storage tank. After investigating the effects of rotational speed, temperature 

and the liquid flowrate at constant ethanolamine concentration, the solution was 
diluted with distilled water in order to downgrade the amine strength to the next level. 
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6.2.2 Mass Balance Across the Higee Rig 

6.2.2.1 Operational Procedure 

The flowsheet of the process is available in Section 2.2 and the descriptive 

explanations of the experimental components were previously stated in Chapter 2. 

The following procedure was carried out for each mass transfer experimental run: 
The ventilation exhaust was switched ON in order to safeguard the working 

environment around the 11igee rig as it reduces the build up of carbon dioxide 

concentration in the pilot plant enclosure. Then, any previous accumulated solution 

was drained from the liquid sampling points. 

In order to ensure uniform feed composition, the aqueous MEA solution was 

circulated between the feed and the product reservoirs for approximately 15 minutes. 
Then, the circulation pump was switched off and most of the MEA solution was kept 

in the feed reservoir. After that, the Higee rotor was accelerated to approximately half 

of the intended experimental run speed and then the feed valve was opened gradually 
to the desired flowrate. The rotor speed was then gradually increased to the desired 

RPM. 

A turbulent and uniform C02/air mixture (sour gas) was delivered to the 11igee rig as 
described in Section 2.8. The temperature and the pressure of each gaseous 

component were measured in order to make the necessary corrections in the mass 
balance calculations. Appendix B shows the calibration charts for the aqueous 

ethanolamine amine solution flowmeters and the relationship between the air flowrate 

and its gauge pressure. 

The Fligee rotor was run for approximately 5-10 minutes before representative 

gas/liquid samples were withdrawn as described in Section 2.10 and 2.11. 

After the experimental run was completed (approximately 15 minutes), the 

ethanolarnine solution pump was switched off and both the air and the carbon dioxide 

valves were closed. Then, the speed of the rotor was gradually reduced to a standstill. 
Finally, the ventilation exhaust was allowed to operate for a further 15 minutes in 

order to secure the pilot plant enclosure. 



Chapter 6: Troubleshooting of the Pilot Rig 
- 

104 

6.2.2.2 Results and Discussions 

Twelve absorption experimental runs were carried out using 30wt% MEA solution 
batch. The purpose of the exercise was to close the mass balance across the Higee; 

and to ascertain the behaviour and the effectiveness of the mass transfer operation. 
The solution strength (30 wt. %) was selected based upon the advice of the industrial 

sponsor (Eimer, 1999), which reflected the typical higher-range MEA solution 

concentration applied in the gas sweetening plants. 

The results of the experimental runs for the analysis of sour gas stream, sweet gas 

stream, lean MEA solution, rich MEA solution (periphery), and rich MEA solution 
(tank) are presented in Table 0-1 in Appendix 0. 

The concentration of carbon dioxide in the sour gas stream was initially 2 vol. % for 

the first 10 experimental runs then it was doubled to 4 vol. % for the last 2 runs. The 

speed of the rotor was set at 1000 RPM for most of the runs in order to attain the 

highest possible absorption efficiency (Note: the maximum feasible rotor speed was 
1000 RPM due to safety and mechanical limitations as disclosed in Section 2.4). The 

flowrate of the lean MEA solution was progressively increased from 12 Umin (2x 

runs) to 20 Umin (5x runs) and finally to 50 Umin (5x runs). The rationale of 
increasing the lean MEA solution flowrate was to investigate the effect of increasing 

the 1JG ratio. 

The high Re number (5* 104_1 . 3*105) of the combined air/C02 stream in the feed 

indicates that the flow of the sour gas mixture is turbulent and hence a well mixed 

gaseous stream is delivered to the lEgee rig. 

A typical calculation of mass balance across the lEgee rig is shown in Appendix M. 

It was evident that the magnitude of the error was higher using 2 vol. % C02 sour gas 

stream (Run 1-10) in comparison to 4 vol. % (Run 11 & 12). 

Figure 6.5 and Table 6.1 illustrate the dilemma of the mass balance deviation. For 

example, an increase by +0.0045 in the average loading of the rich NIEA solution 

sample for Run #6 could substantially reduce the mass balance error from 60% to 
6.5%. Similar behaviour was verified in other runs. 
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Figure 6.5: The effect of a slight change of the loading on mass balance (Periphery 

Samples). 

Table 6.1 shows a statistical summary of the replicate loading results for the lean and 

the rich (periphery) MEA solution. The coefficient of variation for the lean and the 

rich solution are 0.27% and 0.61 % respectively. Thus, it is clear that a good 

agreement is achieved between the replicate loading measurements. 

Lean Solution Rich Solution (Periphery) 

Number of samples 2 2 

Mean 0.1106 0.1142 

Median 0.1106 0.1142 

Standard deviation 0.0003 0.0007 

Table 6.1: Statistical summary of the loadings for the lean and the rich MEA solution 
for Run 6. 

However, the mass balance calculations depend on the magnitude of the difference 

between the average lean and the rich MEA solution loadings. Assuming that the two 
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solutions are independent random samples with means of 0.1106 and 0.1142 for Run 

6. Thus, the difference between the sample means is 0.0036. In addition, the 

confidence intervals were calculated in order to estimate the accuracy of such 
difference: 

80% confidence interval: 0.0036 ± 0.0017 

90% confidence interval: 0.0036 ± 0.0034 

95% confidence interval: 0.0036 ± 0.0068 

Similarly, the 95% confidence interval for run 8 is: 0.0037 ± 0.0035. Therefore, it is 

apparent that achieving a good accuracy in mass balance is handicapped by the small 
difference between the lean and the rich MEA loadings. In comparison, the 95% 

confidence interval for Run 12 was: +0.0057 ± 0.0018. 

This highlighted the importance of getting accurate analysis for both the carbon 
dioxide and MEA concentrations in the liquid samples. An improved technique for 

the delivery of the 0.2 gL liquid sample into the gas chromatograph port by the 

Hamilton syringe was identified: (1) the sample was purged xlO times into the 

syringe, (2) aI gL sample was initially withdrawn from the sample flask then the 

excess volume was purged out, (3) the long stainless steel syringe's needle was 

cleaned with a tissue, (4) the syringe was inserted inside the gas chromatograph 

sample port for approximate duration of 3 seconds, (5) the sample was then injected 

and after that the syringe was removed and finally the gas chromatograph RUN button 

was pressed. 

Tables 6.2 and 6.3 show that the technique was successful in reducing the distribution 

range of the peak area for both MEA and C02 (Note: there are two different samples 
thus higher peak areas for the second sample). 

The standard deviation of the MEA peak was improved from 6.2% to 1.3% and 

similarly the standard deviation of the C02 peak was improved from 6.4% to 1.5%. 
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Table 6.2: MEA peak areas calculated by the GC for Sample 1&2. 

Sample I Sample 2 

MEA Peak Area 179.2 208.1 
181.1 207.4 
182.1 214.6 
196.3 211.5 
173.9 207.6 
167.3 208.7 
162.1 206.4 

Average 177.4 209.2 

Standard deviation 11.1 2.8 

Table 6.3: Carbon dioxide peak areas calculated by the GC for Sample 1&2. 

Sample 1 Sample 2 

C02 Peak Area 21.6 26.9 
23.7 27.0 
23.7 27.9 
23.5 27.3 
26.1 26.5 
22.7 27.0 
21.6 26.7 

Average 23.3 27.0 

Standard deviation 1.5 0.4 

The American Society for Testing Materials (ASTM) T,, test was carried out to 

identify any carbon dioxide concentration outliers in the gas phase data but it was 

shown that all the data were not significantly deviated from the average and hence no 

measurements were discarded (Skoog et al., 1992). However, very few data were 
discarded in results of the absorption runs in the next section. 

It was evident that the use of higher carbon dioxide concentration would increase the 

accuracy of the mass balance. Therefore, the concentration of carbon dioxide in the 

sour stream was increased to 4 vol. % for Run #11 and #12. As a consequence, the 

mass balance error was reduced to a maximum of 12.8%. Any further improvement 

to the magnitude of the error was restricted by the low value of the loading increase. 

For example, the loadings for run #11 and #12 were increased from 0.1294 and 
0.1343 to 0.1348 and 0.1400 respectively. Thus, the difference between the lean and 
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the rich aqueous MEA solution loadings were 0.0054 and 0.0052. In addition, the 

repeatability of the liquid sample analysis proved that the deviation in the third and 
fourth decimal point was unavoidable and hence even taking the average value of the 

loading had its limitations. 

As a consequence, it is clear from the mass balance calculations that the difference in 

the loadings in the liquid phase is small in relation to their absolute value and the 

expectation of 10% mass balance closure was unrealistic. Hence, it was decided to 

base all the mass transfer performance calculations on the gas phase carbon dioxide 

concentrations that could be measured most accurately. The accuracy of gas phase 

measurements was in the range of 1-10%. In addition, the purpose of the absorption 

process is to lower the sour carbon dioxide concentration thus it is more convenient to 

employ overall gas phase mass transfer parameters. 
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CHAPTER 7 

Mass Transfer Studies 

7.1 Introduction 

This chapter describes the mass transfer experiments carried out to determine the 

efficiency of the Higee in the absorption and the desorption of carbon dioxide from 

different alkanolamine solutions strengths. 

Section 7.2 describes briefly the chemical absorption using two-film theor. Section 

7.3 theoretically determines residence time, reaction time, and diffusion time. Section 

7.4 investigates the effects of rotational speed, temperature, and alkanolamine 
flowrate at different amine strengths (100,75,55, and 30 wt%) in the absorption runs. 

Section 7.5 compares I-Egee mass transfer machine with conventional column. 

Section 7.6 shows the results of the desorption experiments using either air or steam 

as the regenerative medium. Finally, Section 7.7 shows the significance of the end 

effect in the mass transfer machine. 

7.2 Application of Two-Film Theory in Absorption with Chemical 

Reaction 

Reaction Zone 

C., 
C., 

C., 

0 

I. 

9 

0 
Z 

0 

C12 

in 

R 
CD 

Figure 7.1: Concentration gradients of mass transfer accompanied by a 

chemical reaction. 
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(Sherwood and Pigford, 1952) described the profiles of the reactants and the products 

of a rapid second order irreversible chemical reaction in the liquid phase (Figure 7.1) 

using steady state two-film theory. 

The absorption process proceeds as follows: the solute gas (A) diffuses through the 

gas film then dissolve and reacts with the absorbent (B) in a reaction zone in the 

liquid film. As a consequence of the chemical reaction, the amount of (B) will reduce 

in the liquid film and hence fresh quantities will diffuse from the liquid bulk to the 

interface. In fact, the diffusion of (B) from the liquid bulk to the reaction zone 

forces the diffusion of (A) in the liquid film thus the reaction zone is a small distance 

away from the gas/liquid interface. 

The concentration of the dissolved gas and the absorbent are assumed to be negligible 

in the reaction zone. The thickness of the reaction zone is assumed to be small 

compared to the liquid film thickness. The reaction zone is assumed to be at a 

distance X from the gas/liquid interface. The magnitude of the distance X is a 

function of the diffusivities of the solute gas (A) and the absorbent (B) as well as the 

concentration of (B) in the liquid solution (Morris and Jackson, 1953). 

If the soluble gas reacts at the surface of the liquid then the gas film controls the rate 

of the absorption. If the reaction occurs in a narrow zone within the liquid film then 

the rate of absorption is controlled by the rate of diffusion in the liquid as the rate of 

reaction is much higher then the rate of diffusion. 

7.2.1 Mass Transfer Control 

7.2.1.1 Fundamental Equations 

The followings show mathematically that the absorption of carbon dioxide by MEA 

solution is controlled by the liquid phase using the two-film model (Eimer, 2000). 

The basic mass transfer equation for the transfer of component (A) across an interface 

for a physical solvent is: 

NA ý- kG (PAG - PA) --: 
VL (CAi - CAL) 

- (7.1) 

Where kG and kL are gas-film transfer coefficient and liquid-film transfer coefficient 

respectively. If the solution is in equilibrium and obeys Henry's Law then it is 

possible to combine both resistances: 
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1+H; 
and 

I=I+1 
KG kG koL KL koL HkG 

(7.2) 

where KG and KL are the overall gas-phase transfer coefficient and liquid phase 
transfer coefficient respectively. 

For mass transfer accompanied by a chemical reaction, the enhancement factor should 
be introduced into the above equation in order to incorporate the acceleration to mass 
transfer in the liquid film by the chemical reaction. 

I=1+H; 
and 

1=1+1 (7.3) 
KG kG koLE KL koLE HkG 

It is possible to calculate the enhancement factor (E) using: 

E= JM- (7.4) 

where M is defined by (Dankwerts, 1970). 

D C02 k, 
(7.5) (k'L )2 

where k, is the rate coefficient for the pseudo first order reaction. 

k, =k2 [MEA1 (7.6) 

where k2 is the kinetic rate constant and it is given by (I-likita et al, 1977) for the 

temperature range of 5-80'C: 

Loglo k2: -- 10.99 - (2152 / T). (1/mole/s). (7.7) 

Table 7.1 compares liquid film controlled system (absorption of carbon dioxide by 

MEA) and gas film controlled system (absorption of ammonia by water). 

The calculations show that the resistance to mass transfer for the absorption of carbon 
dioxide by 30 wt. % MEA solution is in the liquid film. Furthermore, a spreadsheet 

was developed to verify the effect of the variation of temperature and NIEA 

concentration on the liquid side resistance to mass transfer. Table 7.2 shows that the 
liquid side resistance decreases with higher temperatures and concentrations. 
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Table 7.1: Summary of mass transfer data for NH3-H20 and C02-MEA-H20 systems 

NH3-H20 C02- Reference 

MEA-H20 

MEA Concentration, - 4919 
Mol/m 

3 

Diffusion Coefficient, 1.64*10-9 1.02* 10-9 (Cussler, 1997) for NH3-H20, 

m'/s Section 2.2.7.4 for amine system. 

Henry's Coefficient, 0.0000165 0.02977 (Perry and Green, 1984), (Eimer, 

bar. m3/mol 1994) 

Diffusion Time (td), (Astarita et al., 1983) 

sec. 0.004 0.004 

Low value 0.04 0.04 

High value 

kL'= (D/td)1/2, m/s 

Low value 0.000640 0.000505 

High value 0.000202 0.000160 

Average 0.000421 0.000333 

kr,, mol/(m2. bar. s) 4 4 (Cussler, 1997) 

Danckwerts' M - 200.7 (Dankwerts, 1970) 

Enhancement Factor, E 1 14.2 

llkr,, m2. bar. s/mol 0.25 0.25 

1-1/409 M2 bar. s/mol 0.043 6.3 

% liquid resistance 15 96 
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Table 7.2: Effect of the variation of concentration and temperature on the liquid-side 

mass transfer resistance. 

MEA Solution Concentration (wt. %) 

Temperature ("C) 30 55 75 100 

20 96 95 94 93 

40 94 92 90 89 

7.2.1.2 Mathematical Limiting Behaviour 

Furthermore, a mathematical limiting behaviour was devised by (Astarita et al., 1983) 

to determine the position of the resistance to mass transfer: 

A- Gas Phase Control: 

kL 
HkG 

Which means that the solute is very soluble (low Henry's constant value) in the liquid 

and therefore the resistance is mainly in the gas film. 

B- Liquid Phase Control 

kL 
HkG 

Using the data available in Table 7.1, the value of (kL/H. kG) is 5.81 for NH3-H20 

system, indicating gas phase control. For the C02-MEA-H20 system (kL/H. kr, ) is 

0.039 indicating liquid phase control. 

7.2.1.3 Plate Efficiency 

In addition, (Kohl, 1956) observed that the chemical absorption of carbon dioxide by 

alkanolamines gave 8-25% plate efficiency. In comparison, the gas film controlling 

processes (such as the absorption of ammonia) gave >80% plate efficiency. 
Therefore, it was concluded that the absorption of carbon dioxide is a liquid film 

controlling process. 
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7.3 Time Parameters in the Higee 

7.3.1 Residence Time 

The purpose of this section is to theoretically calculate the residence time of the liquid 

in the rotor. (Munjal et al., 1989) proposed an approximate analytical expression that 

predicts the thickness of asymptotic liquid film in the RPBs. The assumptions of the 

model were reviewed by (Basic and Dudukovic, 1995). It was assumed that the 

packing surface was completely wetted (i. e. ap = a, ), and the liquid flows through the 

RPB in the forms of films. In addition, the coriolis and gravitational forces were 

considered negligible. 

h 3VIF 
1/3 

9 
(7.8) 

where h is the film thickness (m), v is the kinematic viscosity of the liquid W/o, r is 

the liquid flowrate per unit width (m), and g is the gravitational acceleration (m/s 2). 

In a RPB, the above parameters can be defined as: 

g=rw 2 (7.9) 

r=QL 
x 

x= 27c rZa, 

where x is the unit width (m), a, is the wetted area per unit volume (m2/m3), r is the 

radial position (m), and Z is the axial depth of the packing material (m). Combining 

Equation (7.9), (7.10) and (7.11) into (7.8) yields: 

h =( 
3VQL 1/3 

(2 ir rZa,, )(r-ý; q (7.12) 

The volume of the liquid films in the packed bed could be calculated by using: 

V=l hRPBa,, 2yr rZ dr 
ri 

(7.13) 

The result of the integration yields: 
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1/3 

v 3v Q,, 
2 

(a,, 2; rZ) 
[r2 4/3 

_ r, 
4/31 

27rZ a,, w 
(7.14) 

Hence, the residence time is the ratio of the volume and the liquid volumetric 
flowrate: 

v 
res Qll 

(7.15) 

If we consider an example: (30wt% MEA solution at 40'Q 

r2 0.199 m, ri= 0.078 m, Z=0.025m, (9=105 rad/s(1000 RPM). 

p 1005 kg/M3 v=1.5* 10-6 M2/S a,,, = 2132 M2/M3, 

QL=0.66 kg/s = 0.66* 10-3 M3/S 

Thus, V=2.6* 104 M3. 

Hence the residence time t,, = 0.39 s. 

Similarly, the residence time for the experimental runs was calculated at different 

amine strengths, liquid flowrates, and rotor speeds. 

Figure 7.2 shows the residence time for different amine concentrations at a liquid 

flowrate of 40 L/min and at 40'C. It shows that the more concentrated amine solution 
has higher residence time due to its higher kinematic viscosity or shear stress. 
Furthermore, the increase of the rotor speed leads to shorter residence time due to the 

acceleration of the liquid by the centrifugal forces. 
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Figure 7.2: Residence time for different amine strengths at 40'C and 40 L/min. 
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Figure 7.3 shows the effect of liquid flowrate and temperature at constant MEA 

strength (30 wt%) on the residence time. The irrigation of the RPB with higher liquid 

flowrates leads to shorter residence time due to higher liquid superficial velocities. 

Furthermore, the temperature rise of the ethanolamine solution causes the reduction of 

the viscous forces and consequently leads to shorter residence time. 

1.2 
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Figure 7.3: Variation of liquid flowrate and temperature on the Residence time at 30 wt%. 

7.3.2 Reaction Time 

The reaction time (t, ) could be calculated as follows (Astarita et al., 1983): 

I 
tr -- kcFm. (I -2 

(7.16) 

where kCF is the second order reaction rate constant defined in Equation (2.19); and 

mo, and yo are respectively the solution molarity and the loading at the bulk liquid 

composition. 

The molarities of the solution at different concentrations are: 4,920 Mol/M3 (30wt%), 

9,020 mol/m 3 (55wt%), 12,300 Mol/M3 (75wt%), and 16,395 Mol/M3 (I 00wt%). The 

average experimental lean loadings of the solution are 0.02,0.05,0.10, and 0.33 mol 

C02/MOI MEA at 100,75,55, and 30wt% respectively. In addition, the rate constant 
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(kcF) is sensitive to the temperature of the solution and equals 4.42 and 13.02 

m3/mol/s at 20' and 40'C respectively. 

Based on the above, it is possible to calculate the reaction time (Q for a matrix of 

temperatures and concentrations as shown in Table 7.3. It is apparent that the 

decrease of the MEA concentration solution causes slower reaction time. In addition, 
doubling the temperature causes 66% faster reaction time. 

Table 7.3: Reaction time x 105 (s) at different arnine concentrations. 

Temperature MEA solution concentration 

(OC) 100 wt% 75 wt% 55 wt% 30 wt% 

20 1.41 1.94 2.79 6.87 

40 0.48 0.66 0.95 2.33 

Based on the reaction regimes reviewed in Section 2.3.2.3, the above calculated 

reaction times (Q categories the reaction between the MEA solution and carbon 
dioxide as very fast but not instantaneous. 

7.3.3 Diffusion Time and Film Thickness 

According to the film theory model for the physical absorption, the mass transfer flux 

is defined as: 

N= D (C. 
I - C. ) (7.17) 

h 

The liquid phase mass transfer coefficient is then defined as: 

0L 

The "diffusion time" OD) concept is defined by (Astarita et al., 1983) from the 

following equation: 

FD 

D 
koL =7 (7.19) TD 

Thus, combining Equations (6.18) and (6.19) yields: 
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tD ý' (7.20) 

The film thickness in the RPB could be calculated by integrating Equation (7.12): 

h 
3vQL 1/3 dr 

(7.21) 
(2; r Za,, )(wg 

r/Z3 

113 

h=3 
3vQL (r2 1/3 

_ ri 
1/3) 

(7.22) (2 ;rZa,,, )( c-o-9 

The diffusion time (W in industrial mass transfer units' lies in the range (0.004 < tD < 

0.04 sec. ). Tables Pl, P2, P3, and P4 shows the diffusion time for the experimental 

runs at different operating conditions. The average diffusion time for 30,55,75, and 
100 wt. % MEA solutions are 0.012,0.036,0.073, and 0.086 seconds respectively. 
The average film thickness for 30,55,75, and 100 wt. % MEA solutions are 4.7,8.2, 

11.3,12.3 [tm. Therefore, the diffusion time is highest at the more concentrated 

amine solutions due to larger film thickness. 

7.3.4 The Enhancement Factor 

In mass transfer coupled with a chemical reaction, the enhancement factor (1) is 

defined as the square root of the relative rates of reaction and diffusion (Astarita et al., 
1983). 

fLD 

tr tr 
(7.23) 

Table 7.4 shows that average enhancement factors at different amine concentrations 

and operating temperatures. The enhancement factors are highest at strong amine 

concentrations and higher operating temperatures, which indicates a combination of 
longer diffusion time and shorter reaction time. 

In addition, the mass transfer data shows that the magnitude of the enhancement 
factor increases with slower rotor speed at constant concentration, temperature and 
liquid flowrate. The rotor speed influences only the diffusion time but not the 

reaction time. The higher rotor speed results in thinner film thickness and hence 

shorter diffusion time and subsequently lower enhancement factors. 
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Table 7.4: Average enhancement factors (1) for RPB. 

Temperature MEA solution concentration 

(OC) 100 wt% 75 wt% 55 wt% 30 wt% 

20 90.7 72.7 38.3 11.7 

40 101.3 76.2 55.3 14.4 

Table 7.5 shows the enhancement factors for the conventional columns. The 

calculation of the enhancement factor is based upon Equation 7.23. The diffusion 

time range for the conventional column (i. e. 1 g) is 0.04-0.004 s (Astarita et al., 1983). 

The reaction time calculated in Section 7.3.2 remains unchanged, as it is only 

dependent on the solution characteristics. Thus, it is possible to calculate the higher 

and lower bounds of the enhancement factors at 20' and 40'C. It is clear that the 

lEgee enhancement factors are higher than those of the conventional columns at 50, 

75 and 100 wt% arnine solutions. 

Table 7.5: High/Low enhancement factors (1) for conventional columns. 

Temperature MEA solution concentration 

(OC) 100 wt% 75 wt% 55 wt% 30 wt% 

20 53.3/16.8 45.4/14.4 37.9/12.0 24.1n. 6 

40 91.3/28.9 77.8/24.6 64.9/20.5 41.4/13.1 

7.4 Absorption Runs 

7.4.1 Calculation of HTU 

The difficulty of separation is expressed as the number of transfer units (NTU). The 

number of overall transfer units based upon the change in gas concentration is defined 

as follows for equi-mol4r counter diffusion (Colburn, 1939): 

NTUOG =Y 
dy 

(7.24) 
yj yy 
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Assuming that the continuous counter-current fluids pass through the Higee rotor in 

plug flow, both the operating and the equilibrium lines are straight (dilute solutions), 
Henry's law is valid, and the absorption heat effects are negligible. In addition, the 

process is liquid film limited (Section 7.2.1) and the reaction between the amine and 

the carbon dioxide is very fast especially with higher arnine concentrations (Section 

7.3.2) then the interfacial carbon dioxide concentration is negligible. Furthermore, 

assuming that the reaction is irreversible then the equilibrium partial pressure is zero 
(y*=O) (McCabe et al., 1993). Hence, the integral term can be simplified to: 

NTU OG= 

I dy 
* =In 

Y2 

Yi Y-Y Yi 
(7.25) 

The terminology used to express the efficiency of the I-Egee is the Height of the 

Transfer Unit (HTU). Section 2.4.3 derives the equation to calculate the total height 

of bed from the mass balance across the RPB. 

H= NTUOG. x HTUOG. (7.26) 

Hence, the height of the transfer unit HTUOG could be calculated by: 

HTUOG -ý 
Ar 

:- 
Ro -Ri (7.27) 

NTUOG NTUOG 

where R. and Ri are the outside and the inside radii of the RPB. (Note: The 

abbreviation of the Height of the Transfer Unit (HTU) for the absorption runs refers to 
HTUoG). 

7.4.2 Effect of Varying the RPM 

The Higee was operated between 600 and 1000 RPM and thus the mean centrifugal 

acceleration was 597 and 1657 M. S-2 or a gravitational acceleration of 31 and 87 g 
(based upon the inside diameter) or angular acceleration of 62.8 and 104.7 rad/s. 
Unfortunately, the speed of the Higee rotor was limited to 1000 RPM due to 

mechanical and safety worries. 

Figures 7.4,7.5,7.6, and 7.7 show the effect of increasing the rotational speed of the 

rotor from 600 to 1000 RPM on the HTU at a constant flow of ethanolarnine solution 
(20, and 40 Umin. ) and temperature (20*, and 40'C) for 30wt. %, 50wt. %, 80wt% and 
100wt% of ethanolamine solution concentration respectively. 
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It is evident from these plots that the rise in the rotational speed of the rotor leads to a 

reduction in the HTU value. On increasing the speed from 600 to 1000 RPM, the 

average HTU decrease is 5,9,10, and 13 % for 30wt%, 55wt. %, 75wt%, and 100wt% 

strength ethanolamine solutions respectively. 

The above experimental results are consistent with the theory and the work of other 

researchers. The more efficient operation of the Higee at higher rotor speeds may be 

due to the fact that the rise in the rotor speed causes the reduction of the angular 

ethanolarnine solution maldistribution in the packed bed (Bums, 1996). 

The visual analysis carried out in this department by (Bums, 1996) using water and 

emulsion paint solution showed that the speed of the rotor is solely influencing the 

type of the flow in the RPBs. There are three types of flow: 

a) Pore flow: the liquid travel as rivulets. The angular maldistribution is the 

highest and hence minimum gas/liquid interfacial area. 

b) Droplet flow: droplets of the liquid travels through the packing voids. 

c) Film flow: the liquid travels as a thin film over the packing surface area. 

Pore flow was observed at low rotor speeds (<90 rad/s) and film and droplet flow at 
high rotational speeds (>130 rad/s). (Jamil, 1997) performed similar visual analysis 
but using more viscous solutions: water and propylene glycol solutions (11.5 and 21 

cP). The pore flow occurred at low rotor speeds (<63.5 rad/s) and droplet and film 

flow occurred at high rotational speed (>125 rad/s). Thus, it could be concluded that 

the low rotational speeds of the experiments carried out at 600 RPM has much higher 

level of maldistribution than the experiments carried out at 1000 RPM due to different 

type of liquid flow behaviour inside the RPB. 

Furthermore, the flooding exercise in Chapter 4 proved that the increase in the 

acceleration of the Higee causes a subsequent rise to the interphase velocity 

throughout the packed bed. This fact in conjunction with a large specific area causes 

the creation of thin films and small droplets and hence the overall result is a better 

mass transfer operation as shown by the small HTU values. 
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Figure 7.4: Variation of HTU with rotor speed at constant temperature and liquid 

flowrate for 30wt% solution. 
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Figure 7.5: Variation of HTU with rotor speed at constant temperature and liquid 

flowrate for 55wt% solution. 
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Figure 7.6: Variation of HTU with rotor speed at constant temperature and liquid 

flowrate for 75wt% solution. 

5 

4 

Z) 

* 40Umin, 40C 

0 40Umin, 20C 

A 20Umin, 40C 

0 20Umin, 20C 

0 
400 500 600 700 800 900 1000 1100 

RPM 

Figure 7.7: Variation of HTU with rotor speed at constant temperature and liquid 

flowrate for 100 wt% solution. 
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7.4.3 Effect of Varying the Temperature 

Figures 7.8,7.9,7.10, and 7.11 show the effect of increasing the temperature from 20' 

to 40T on the HTU at a constant flow of ethanolamine solution (20, and 40 Umin. ) 

and rotational speed of the rotor (600 and 1000 RPM) for 30wt. %, 55wt. %, 75wt% 

and 100wt% of ethanolamine solution concentration respectively. 

It is evident from these plots that the rise in the temperature leads to a reduction in the 

HTU value. The average HTU decrease is 13,25,45 and 12 % for 30wt%, 55wt. %, 

75wt%, and 100wt% strength ethanolamine solutions respectively. 

The efficiency of the Higee machine improves with the temperature rise due to few 

factors: 

I- The temperature rise reduces the viscosity of the MEA solution as shown in Table 

7.6. As a consequence, the residence time of the mass transfer operation decreases. 

In addition, the film thickness becomes thinner and hence the diffusion time is 

reduced. 

Table 7.6: Kinematic viscosities (centistokes) of the MIEA solutions at 20' and 40'C. 

Temperature 30 wt% 55 wt% 75 wt% 100 wt% 

20'C 2.5 10 40 47.5 

40'C 1.5 6 9 13 

2- The reaction time becomes faster with the temperature rise as shown in Table 7.3. 

3- The enhancement factor is higher with the temperature rise as shown in Table 7.4. 

As a consequence, the higher temperature improves the physical properties of the 

solvent as well as the rate of the chemical reaction and hence increases the overall 

efficiency of the mass transfer operation. 
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Figure 7.8: Variation of HTU with temperature at constant liquid flowrate and rotor 

speed for 30wt% solution 
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Figure 7.9: Variation of HTU with temperature at constant liquid flowrate, and rotor speed 
for 55wt% solution. 



Chapter 7: Mass Transfer Studies 126 

10 

9 

8 

7 

6 

0 
5 

D 

X 4 

3 * 40Umin, 600 RPM 

N 40Umin, 1000 RPM 
2 

A 20Umin, 600 RPM 

1 * 20Umin, 1000 RPM 

0 

0 10 20 30 40 50 60 
Temperature (C) 

Figure 7.10: Variation of HTU with temperature at constant liquid flowrate and rotor speed for 

75wt% solution. 
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Figure 7.11: Variation of HTU with temperature at constant liquid flowrate and rotor 

speed for 100wt% solution 
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7.4.4 Effect of Varying the Liquid Flow 

Figures 7.12,7.13,7.14, and 7.15 show the effect of increasing the flowrate of 

ethanolamine solution from 20 to 40 L/min. on the HTU at constant temperature (20* 

and 40'Q and rotational speed of the rotor (600 and 1000 RPM) for 30wt. %, 55wt. %, 

75wt% and 100wt% of ethanolamine solution concentration respectively. 

It is evident from these plots that the rise in the ethanolamine solution leads to a 

reduction in the HTU value. The average HTU drop is 25,16,5 and 10 % for 30wt%, 

55wt. %, 75wt%, and I 00wt% strength ethanolarnine solutions respectively. 

The effect of liquid flowrate on enhancing the mass transfer is more apparent at 

ethanolamine concentration of 30 and 55 wt%. At higher concentrations, it seems that 

the HTU is independent of the liquid flowrate. Furthermore, it is observed that the 

efficiency of the mass transfer is highest at 40*C and 1000 RPM. 
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Figure 7.12: Variation of HTU with liquid flowrate at constant temperature and rotor 

speed for 30wt% solution. 
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Figure 7.13: Variation of HTU with liquid flowrate at constant temperature and rotor 

speed for 55wt% solution 
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Figure 7.14: Variation of HTU with liquid flowrate, at constant temperature and rotor 

speed for 75wt% solution 
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Figure 7.15: Variation of HTU with liquid flowrate at constant temperature and rotor 

speed for I 00wt% solution 

7.4.5 Effect of Varying the Concentration of the Ethanolamine Solution 

Figures 7.16 and 7.17 show the effect of increasing the concentration of the 

ethanolamine solution (30,55,75,100 % wt) on the HTU at ethanolamine solution 
flowrate of 40 and 20 L/min. respectively with constant temperature (20' and 40'Q, 

and constant rotational speed of the rotor (600 and 1000 RPM). 

It is evident from these plots that the dilution of the ethanolamine solution leads to an 
increase of the HTU value. Figure 7.16 shows that the increases of the HTU are: 1.6, 

1.9, and 6.8 folds with the incremental dilution of the pure MEA solution at a liquid 

flowrate of 40 L/min. Similarly, Figure 7.17 shows that the increases of the HTU are: 
1.5,2.1 and 8.6 folds with the incremental dilution of the pure MEA solution at a 
liquid flowrate of 20 L/min. 

An alternative representation of the experimental data is the % recovery variation with 

arnine strength. Figures 7.18 and 7.19 show the effect of increasing the concentration 

of the ethanolarnine solution (30,55,75,100 % wt) on the % recovery at 
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ethanolamine solution flowrate of 40 and 20 Umin. respectively with constant 

temperature (20' and 40'Q, and constant rotational speed of the rotor (600 and 1000 

RPM). The percentage recovery of carbon dioxide was 98.6,92.8,88.4 and 44.4% for 

100,75,55, and 30 wt% MEA solutions. 

The sharp enhancement to the HTU and % recovery at higher amine concentrations is 

believed to be due to the accelerated absorption chemistry especially if coupled with 
higher temperatures. However, the increase of the MIEA concentration is thought to 

reduce the mass transfer because it increases the viscosity of the liquid and hence 

reduces the rate of diffusion of the reactive species. (Strigle, 1987) suggested that the 
KGa values showed "an overall reduction of 5% for an increase of one normal increase 

in the 1ýMA concentration above three normal. " 
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Figure 7.16: Variation of HTU with liquid concentration at constant temperature, 

rotor speed, and at 40 L/min liquid flowrate 
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Figure 7.17: Variation of HTU with liquid concentration at constant temperature, rotor 

speed, and at 20 L/min. liquid flowrate. 
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Figure 7.18: Variation of % recovery with liquid concentration at constant 

temperature, rotor speed, and at 40 L/min liquid flowrate. 
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Figure 7.19: Variation of % recovery with liquid concentration at constant temperature, 

rotor speed, and at 20 L/min liquid flowrate. 
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7.5 Comparison with Other Mass Transfer Machines 

7.5.1 Rotating Beds 

Section 2.4.2 shows the centrifugal absorber designed by (Chambers and Wall, 1954). 

This mass transfer machine was used to absorb carbon dioxide using pure MEA 

solution. 
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Figure 7.20: Comparison between current investigation and Chambers and Wall 

(1954) machine. 

Figure 7.20 compares % recovery from the two mass transfer machines. The Higee 

machine achieved recovery in excess of 98% in comparison to a maximum of 85% for 

(Chambers and Wall, 1954). However, it was not possible to introduce large 

quantities of sour gas stream because the concentration of carbon dioxide should be in 

excess of 4 vol. % and hence the volumetric air flowrate was restricted to 57 M3 /hr. 

7.5.2 Conventional Column 

Table 2.1 shows typical engineering dimensions of a conventional gas sweetening 

plant. The absorber consists of two 7-m (23 ft) beds of polypropylene saddles. The 

number of transfer units for the absorber is 4.1 (for simplification purposes NTU = 

0. j 

0 10 20 30 40 50 60 70 

GIL (m3lhry(Umin) 
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ln(C02Jn/CO2, 
out). Therefore, the HTUOG is computed to be 3.4 m. In comparison, the 

average HTUOo for the 11igee machine using 30wt% MEA solution is only 21 cm. 

7.6 Desorption Runs 

7.6.1 Calculation of HTU 

The HTU in the stripping operation could be calculated by using the same 

assumptions that were mentioned for the calculations of HTU during the absorption 

operation. Therefore, the expression in terms of the number of overall liquid transfer 

units is (Treybal, 1980): 

NTUOL ý1 In 1- 
L. X2- Y11M + 

Lm 
(7.28) 

1_ 
L. mG. xl-yl/m mG. 

mGm 

The concentration of carbon dioxide in the inlet gaseous stream is none thus the above 

equation is reduced to: 

NTUOL ý- 
1 

In 1- 
L�, ý2+L. (7.29) 

l_ 
L. 

1 

mG. x, mG. ( 

mGm 

or 

NTUOL =1 In 1- 1 x' ,1 (7.30) 

, -(1) 
1( 

s xi s- s 
where S is defined as the stripping factor. 

mG ýý in S, 

A L. 
(7.31) 

The total height of bed is calculated from the mass balance across the RPB. 

H= NTUOL- x HTUOL, (7.32) 

Hence, the overall height of the transfer unit based on the liquid phase (HTUOL) could 
becalculated by: 
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HTUOL: - 
Ar 

-": 
RO -R 

NTUOL NTUOL 

The solubility behaviour of carbon dioxide in different amine concentrations and at 
different temperatures show the equilibrium line is curvature in nature and it is very 

steep at loadings greater than 0.1. 

These difficulties in estimating the slope of the equilibrium line were overcome by 

assuming that the curve is linear in the operating line section. 

7.6.2 Air 

A desorption exercise was canied out on 30 wt. % NIEA solution using air medium. 
This exercise was carried out after completing the initial absorption mass transfer 

experiments and prior to using the pure MEA solution. Air is not a potential stripping 

medium candidate because exposing the lean solution to air could promote the 

formation of degradation products (Section 2.2.7.2) and hence reduce its reactivity. 

Therefore, these experiments were only carried out to investigate the stripping 

efficiency of 11igee machine. 

The MEA solution was initially heated to an average temperature of 70'C then a 

counter-current mass transfer operation was carried out to desorb carbon dioxide 

using air at ambient temperature. The results of the experiments are shown in Table 

P-5. Figure 7.21 shows the variation of (G/L) ratio with HTU. The slope of the 

equilibrium line was extrapolated to be 32.2. The magnitude of the HTU is very large 

and hence indicates a poor performance of the 11igee mass transfer machine when air 

at ambient temperature is the desorbing medium. 

However, the results could have been improved if the air was preheated as the 

regeneration of the rich alkanolamine solution demands a substantial heat inflow to 

reverse the chemical reactions, as the carbarnate formation in the absorption operation 
is an exothermic reaction that releases 20 kcal/gmol. 

7.6.3 Steam 

The desorption runs were carried out for 30wt% and 55 wt% MEA solutions at 

atmospheric pressure. The ethanolamine solution was preheated to 70'C for 30wt% 

and 60'C for 60wt% MEA solution. The flow of steam inside the rotating shaft, the 
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gas plenum, and the holes was subsonic as the Mach number (Ma) was approximately 
0.43. In addition, the pressure drops calculated in different Higee compartments were 

not significant as shown in Appendix N. The results of the runs are presented in 

Tables P-6. 

The concentration of carbon dioxide, collected at the centre of the rotor, was less than 
10% (Run 1). These gas samples were analysed and it appeared that the remaining of 
the sample was air. 

Therefore, the experimental procedure was improved by allowing the steam to be 

routed to the rig for a longer period (approximately 15 minutes) prior to the 

introduction of the rich ethanolamine solution. As a consequence, the atmospheric air 

which occupies the small void volume between the rotor and the outer enclosure was 

completely purged by the steam. Runs 2 shows that the improvement to the 

experimental procedure was partially successful as the carbon dioxide concentration 
increased to approximately 60%. 

The gas samples were collected using 10 mL plastic syringes. The gaseous sample 

contained a mixture of carbon dioxide and steam. As the gas sample was withdrawn 
into the syringe, the steam condensed and hence the resulting pressure drop forced the 

outside atmospheric air into the syringe. Therefore, the atmospheric air contaminated 
the sample content and that was unavoidable because it happened very fast. (Strigle, 

1987) quoted that the overhead vapours in a conventional stripper contained 27 mol% 
C02 and the balance was water vapour. 

The slope of the equilibrium line for 30wt% MEA solution at 100'C is estimated to be 

140 and it is 370 for 60wt% MEA solution. These high equilibrium slope values 

contributed to high stripping factors calculated for the desorption runs. Figure 7.22 

shows the variation of (G/L) ratio with HTU for 30wt% MEA solution at 800 RPM. 

Similarly, Figure 7.23 shows the variation of (G/L) ratio with HTU using 60 wt. % 

MEA solution at 600 and 1000 RPM. The increase of the molar (G/L) ratio reduces 
the HTU and it becomes less than 1.0 m when the ratio is greater than unity where the 

amount of steam consumed is (>0.4 kg steam/L solution). Table 2.1 shows the 

operating conditions and the physical dimensions of a conventional desorber. The 

amount of steam consumed is 0.1 kg steamAL solution. However, the column 
temperature and pressure are higher than the Higee machine. 



Chapter 7: Mass Transfer Studies 137 

The temperature of the ethanolamine solution leaving the rig was in excess of I OO'C. 

There were no operational problems in dealing with high temperature ethanolamine 

solution because of the careful selection of the material of construction for the rig. 
However, it was noted that the fumes emitted during the air stripping were more 
irritating than when steam stripping. 
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Figure 7.21: Variation of HTU with G/L on desorption of carbon dioxide from 

30wt% MEA solution using air. 
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Figure 7.22: Effect of variation of HTU with (G/L) ratio on steam desorption of 

carbon dioxide from 30 wt% MEA solution @ 800 RPM. 
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Figure 7.23: Effect of variation of (G/L) ratio on steam desorption of carbon dioxide 

from 60 wt% MEA solution g 600 and 1000 RPM. 
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7.7 End Effects 

In order to correctly determine the efficiency of the RPB, the "end effects" should be 

taken into consideration. Therefore, it was decided to analyse the ethanolarnine 

solution exiting the RPB from two locations as described in Section 3.10. 

For absorption runs, the average buffer tank loading was higher than the average 

periphery loading by -11.6 (except run #8), -1.7, -0.2, and 0.4% for 100,75,55, and 
30 wt. % respectively. The pure amine had the highest difference and this could be 

contributed to the high viscosity of the solution, which lead to the accumulation of 

very few liquid droplets in the periphery sample point in comparison to a fairly good 

amount of the liquid for the less viscous solutions. 

For steam desorption runs, the periphery loading was higher than the buffer tank 

loadings by 1.7% (excluding run 2). However, it seems from the HTU values 

calculated for the buffer tank and the periphery liquid sample points that even such 

small difference could influence the magnitude of the calculated HTU. The reason of 

such difference could be attributed to the possibility of steam condensation in the cold 

stainless steel periphery sample point. It appeared that the strength of the amine was 
less due to the dilution of the sample by steam. Thus, the HTU values quoted for the 

mass transfer operation were based upon the buffer tank samples. For air desorption 

runs the buffer tank loading was higher than the periphery loadings by 0.26%. 

It is clear from the above that there is little difference between theýoadings in the 

periphery and the buffer tank, which indicates minimum mass transfer operation 

outside the RPB. In addition, the higher loading at the periphery in comparison to the 

loading in the buffer tank was in agreement with the rational of further mass transfer 

outside the RPB. 
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CHAPTER 8 

Conclusions and Recommendations 

8.1 Conclusions 

The objective of the PhD project was to study the potential mass transfer performance 

of the I-Egee technology on a pilot-plant scale for the absorption and the desorption of 

carbon dioxide from MEA solutions. 

The packed bed material applied throughout both the absorption and the desorption 

cycles was stainless steel expamet with very high specific surface area (2132 m 2/M3) 

and a moderate voidage (0.76). 

The liquid and gas flowrates used in the mass transfer runs achieved a maximum 16% 

flooding at the inner radius of the RPB when operating at ethanolamine solution rate 

of 20-40 L/min and the gaseous Air/C02 rate at 57 rn 3 /hr and the thickness of the RPB 

is 25 mm. Therefore, the full hydraulic capacity of the Higee was not fully exploited. 

The criterion for determining the efficiency of the mass transfer experiments was the 

height of the transfer units. The effects of rotor speed, temperature, ethanolamine 

circulation rate, and amine concentration were investigated. 

These experimental runs highlighted the importance of the amine concentration in the 

application of the Higee technology in this particular case of gas sweetening process. 
The absorption cycle was most effective when the concentration of amine was at least 

55wt% in which the % recovery of sour gas was 88% and the HTU value was in the 

region of 3.9-6.9 cm. In addition, the operation was most optimized when the 

ethanolamine irrigation rate was 40 Umin, the rotor speed was 1000 RPM and the 

solution was preheated to 40'C. 

The mass transfer operation is theoretically liquid film limited and the increase of the 

amine concentration could have reduced the magnitude of the liquid resistance by 

increasing the rate of the reactive species to the liquid film in spite of the fact that the 
increase of the concentration would result in increase of viscosity and hence a 

reduction of the diffusion rates. The higher rotational speed ensures that the 

maldistribution in the RPB is minimum as the type of the flow is supposed to be 
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droplet flow instead of the pore flow in the lower rotor speeds. Furthermore, the 

higher irrigation rates ensured more wetting of the packed bed and the temperature 

rise allowed the solution to be physically less viscous and enhanced the rate of the 

reaction between the acid gas and the alkanolamine solution. 

The HTU in the regenerative operation were more efficient at high molar (G/L) ratio. 
However, the amount of the ratio (kg steamAL solution) is approximately 0.43 for the 
lowest HTU achieved. 

8.2 Recommendations 

The research project was initially focused on achieving specific outlined targets. 

These main targets were investigated and examined throughout the three years 
duration of the experimental work. Nevertheless, this research outlines a number of 

topics that could be further investigated: 

1- The effect of using different chemical solvents or a mixture of different 

solvents. In this research different concentrations of NEA solutions were utilized. 
However, the only drawback with those solutions is the energy required in the 

regeneration, as the carbarnate formation is an exothermic reaction that releases 20 

kcal/gmol. An alternative chemical solvent is a mixture of tertiary amine (MDEA) 

with small amount of MEA in order to accelerate the rate of reaction. The heat of the 

reaction Of C02 with MDEA is 11.6 kcal/gmol thus less energy is required to reverse 

the reaction (Glasscock et al., 199 1). 

2- There is still a gap for the equilibrium solubility data bank at high MEA 

concentrations (50,75,100 wt%) at loadings less than 0.5. 

3- The effect of increasing the rotor speed upto >2000 RPM. These speeds 

provide greater potential for enhancing the mass transfer as was proven with the 

experimental results. The behaviour of the liquid flow type inside the packed bed 

would improve from droplet to film and hence better gas/liquid contact. In addition, 

the film thickness is expected to reduce with higher rotations and hence less mass 

transfer resistance. 

4- The effect of using other variations of packing material configurations with 
different specific surface areas and/or porosities such as stainless steel knitmesh or 

exparnet with preferably higher porosities and lower specific surface areas. (Trent et 
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al., 1999) found out that it is preferable to use higher porosities packing material 

rather than higher specific surfaces because the impact of the liquid with the packing 

material leads to the formation of small liquid droplets in the voids. (Note: the current 

research uses stainless steel exparnet with a porosity of 0.76 and a specific surface 

area of 2132 M2/M3). 

5- It is necessary to devise an intensified reboiler for the desorption cycle in order 
to achieve a fully miniaturized chemical process. 

6- The effect of using different liquid distributor arrangements. For example, the 

number of arms in the liquid distributor could be increased; or the number of holes or 
its diameter in each arm could be modified in order to manipulate the liquid injection 

velocities delivered to the RPB. 

7- The effect of varying the gas flowrate. It is thought the RPB behaves in a 

similar fashion to the conventional columns i. e. a rise in the gas flowrate leads to a 

reduction in the HTU (Keyvani, 1989). 

8- The effect of using different grades of steam such as superheated steam during 

the desorption runs. 
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Nomenclature 

Latin 

A Area per unit volume (MI/ml) 

Gas-liquid interfacial area (Eqn. 1.66) (MI/ml) 

Axial distance between disks of rotor (Eqn. 1.71) (m) 

a, Centrifugal acceleration (m/s) 

ae Effective interfacial area (M2/m 3) 

a. Mean acceleration (M/S2) 

ap Specific surface area of packing (M2/m 3) 

at Total interfacial area of packing per unit volume of the (M2/M3) 

equipment 

a,, Wetted surface area per unit volume (rn2/rn) 

B Base 

cc Concentration of solute in casing (MOI/M3) 

C, Concentration of solute at the outlet of rotor (Mol/m 3) 

CA Molar concentration of A (kmol/M3) 

CAii Ci Molar concentration of A at interface (kmol/m3) 

CAe Molar concentration of A in liquid phase in (kmol/M3) 

equilibrium with partial pressure PAG in gas phase 

CAU CL Molar concentration of A in bulk of liquid (kmol/M3) 

d Size of packing element (Eqn. 1.42) (ft) 

dp Diameter of the packing material (m) 

D, DG Diffusion coefficient of gas (M2/S) 

DA Diffusion coefficient of dissolved gas A (M 2/S) 

E Enhancement factor 
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F Fraction of free volume in packing (m3/m3 tower 

volume) 

9 Gravitational acceleration (M2/S) 

G Superficial mass velocity of gas (kg/s/m2) 

G' Gas mass flux (k g/M2. S) 

G. Molar flow rate of gas (Eqn. 1.67) (mol/s) 

Molar flow rate of gas (Eqn. 1.70) (kmol/m2. s) 

h Height of short wetted-wall column (m) 

H Axial bed depth (m) 

H Henry's law constant (N/M2 )/(kmol/ 

MI) 

11C Henry's law constant (Eqn. 1.67) 0 

HL Height of liquid phase transfer unit (ft) 

I Enhancement factor 0 

k-I Reaction rate constant (1/s) 

K, First order reaction rate constant (I/s) 

K2 Reaction rate constant (1/s) 

kb Rate constant (1/mole. s) 

kG Gas film transfer coefficient (s/m) 

Kgae Average gas-side volumetric mass transfer coefficient (I/s) 

Kr, Overall gas phase transfer coefficient (s/m) 

KGa Overall volumetric gas-film mass transfer coefficient (mollatm. m3. s) 

VL Physical mass transfer coefficient in liquid phase (m/s) 

KL Overall liquid phase transfer coefficient (m/s) 

KLa Overall mass transfer coefficient (I/s) 

L Superficial mass velocity of liquid (kg/m2/s) 
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L Axial length of packing (m) 

L' Liquid mass flux (kg/m2/s) 

L. Liquid molar flux (kmol/M2. S) 

in Slope of equilibrium curve 

N Rotation speed per minute (RPM) 

N, NA Molar rate of absorption of A per unit (kmol/s/m2) 

NOL Number of overall liquid transfer units 

PAe Partial pressure of A in equilibrium with concentration (N/M2) 

CAL in liquid phase 

PAG Partial pressure of A in bulk of gas phase (N/M2) 

PAi Partial pressure of A at interface (N/M2) 

Pt, P Total pressure in the system (atm) 

Q9 Volumetric flow rate of gas (M3/S) 

Q Volumetric flowrate of liquid (in 3/S) 

r Rate of reaction (mol/l. s) 

ri, ri Inner radius of the rotor (m) 

rog 172 Outer radius of rotor (m) 

S Stripping factor = (HG/Q) 

S Surface area of packing (Eqn. 3.1) (m 2/M3) 

s Fractional rate of surface renewals (I/s) 

tD Diffusion time (s) 

tr Reaction time (s) 

t Exposure time of liquid to the gas. (s) 

T Temperature K 

u Surface velocity of liquid (m/s) 

110, ug Superficial gas velocity (m/s) 
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v Liquid film velocity (m/s) 

X1, X1 Mole fraction of a gas component in inlet liquid 

stream 

X27 X2 Mole fraction of a gas component in outlet liquid 

stream 

Y1, Yi Mole fraction of a gas component in intlet gas stream 

Y29 Y2 Mole fraction of a gas component in outlet gas stream 

z Axial height of the packing (m) 

Dimensionless Groups 

Gr Grashof number (gd 3/V2) 

GrG Gas Grashof number (dp 2 
ac/VG 

2) 

Re, Reynolds number for vertical surfaces (Eqn. 1.42) (411ag) 

Re Reynolds number (Eqn. 1.62) (Uatg) 

ReG Gas Reynolds number of mass transfer (G'/atgG) 

Reu Liquid Reynolds number for mass transfer (L'atgL) 

Sc, Nsc Schmidt number (v/D), (p/pD) 

Greek Symbols 

C Porosity 

96 Gas viscosity (kg/m. s) 

9 Viscosity (Pa. s) 

P Density (kg/m3) 

0 Time of exposure of liquid to gas (s) 

Film thickness (m) 

Ratio of diffusion and reaction times 

Liquid mass flow rate per wetted perimeter (kg/s. m) 
VG Dynamic gas viscosity (mI/s) 

(0 Rotational speed (rad/s) 

Subscripts 
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A Soluble gas 
E Equilibrium 

Eq Equilibrium 

G Gas phase 
Inner 

Value at interface 

L Liquid phase 

0 Outer 

0 Overall 

At equilibrium 

Abbreviations 

ATU Area of transfer unit (m 2) 

C02 Carbon dioxide 

DEA Diethanolamine 

DGA Diglycolamine 

DEPA Diisoprpanolamine 

HTU Height of transfer unit 

MEA Monoethanolamine 

MDEA Methyldiethanolamine 

N20 Nitrous Oxide 

NTU Number of transfer unit 

TEA Triethanolamine 
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Appendix A 

Properties of Monoethanolamine 

Manufacture 

Alkanolamines are produced by the reaction of ethylene oxide with ammonia. The 

products of the reactor are: mono-, di-, and tri-alkanolamines, which are separated 
downstream. 

OH 

/0\1 
NH3- + CH2 CH2 NH2C112u112 

Physical Properties of MEA 

Table A-1: The physical properties of MEA 

Common Name Monoethanolarnine (MEA) 

Molecular Formula C21-17NO 

CAS Registry Number [141-43-51 

Chemical Abstracts Name 2-aminoethanol 

Specific Gravity 20/20'C 1.0179 

Freezing Point 10.5*C 

Boiling Point 170.5'C 

Flash point 95 T 

Viscosity @ 20'C 24.1 cP 

Refractive Index 1.4544 n"O D 

VapourPressure @ 20T 0.4 mmHg 

Heat of Vaporization, 1 atm 355 Btu/Ib 

Specific Heat @ 20T 0.648 Btu/lb/OF 

Solubility in 

Water 

n-Heptane 
- g/100 g 
0.06 g/100 g 
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Calibration Charts for Ethanolamine Solution and Air Flowmeters 
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Appendix C 

Properties of the Rotating Packed Bed 

Expamet Density 

(Perry and Green, 1984) reported the density of steel to be in the range of 7700-7830 

kg/m3. Thus, the density of steel is chosen as 7800 k g/M3 

Packed bed density 

Packed bed density can be calculated using the following formula: 

Packed bed density = Weight per unit area * 
Number of sheets 

Axial depth 

Weight per unit area = 1.69 kg/m2 (provided by manufacturer). 

Number of sheets = 30. 

Axial depth = 27 mm. 

Thus, packed bed density = 1.69 * 
30 

= 1877.78 kg/m3 
0.027 

Determination of expamet porosity 
The relationship between packed bed density and porosity is as follows: 

Packed bed density =p= pss (1 - e) +. F pj, 

where pss is stainless steel density, paj, is air density and F, is the porosity. By 

neglecting air density, the above equation can be re-arranged as follows: 

1-L = 1- 
1877.78 

= 0.76 
AS 7800 
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Determination of Surface Area of Expamet 

The dimensions of rotating packed bed (RPB) is shown in Figure A: 

156 mrr 

27 mm 

Figure C-1: Dimensions of RPB 

The volume is calculated as follows: 

)2 ID )2 
* 0.398 )2 

7 
(OD 

Axial depth = ;r 22(2 
0.156 )2 

* 0.027 = 2.843 * 10-3 M3 
2 

The cross-sectional area = 

7r * (OD 2- ID 2)= l(0.3982 
-0.156 

2) 
= 0.1053 M2. 

44 
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Expamet Configuration 

H 

Figure (A) 

Figure C-2: Exparnet Configuration 

10 
LW 

Figure (A) shows a cross section area of expamet mesh with dimension of HxD. 

Figure (B) shows building block of mesh. Its shape can be approximated into two 

opposite triangles. The nomenclatures used in the above figures are: 

width =w=0.56 mm 

thickness =t=0.46 mm 

LW = Long way of mesh dimension = 4.75 mm. 

SW = Short way of mesh dimension =2h=2.38 mm. 

Thus, tan 0=h- Sw 
ý-. 5 LW LW 
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0= tan 
2.38) 

= 26.61 
4.75 ) 

From Figure (c): 

LW. tan 0 
2 

LW 

Cos 0 

The formula for calculating surface area of expamet mesh can be derived as follows: 

Surface area of mesh = number of strands * surface area of a single strand. 

Number of strands =H= 
2H 

h LW. tan 0 

Surface area of a single sheet =2 (w + t) 1 -2- =2 (w + t) 
D 

LW Cos 0 

Thus, Surface area of mesh = 

4 (w + t) 
DH 4 (w + t) * Cross sectional bed area LW sin 0 EW sin 0 

Thus, total surface area =4* 
(0.56 + 0.46) 

* 0.105 * 30 = 6.06 m2. 4.75 sin(26.61) 

Thus, surface area per unit volume = 
6.06 

= 2132 m2/m3. 2.843 * 10 -3 
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Appendix D 

Pressure Drop in 4-Arm Liquid Distributor 

The configurations of 4-ann distributor are as follows: 

Number of arms =4 

Length of each arm = 12 cm = 0.12 m. 

Number of holes per arm =8 

Diameter of each hole =2 mm. = 0.002 m 

2mm 
025mm 

lomm 

1 

nnnc 
Figure D-1: Sudden contraction to the liquid flow in 4-arm distributor. 

The physical properties of 30wt% ethanolamine solution @ 30'C are: density = 1013 

kg/m3, and dynamic viscosity = 2* 10-3 Pa. s. 

The following calculations are based upon an ethanolarnine solution flowrate of 50 

Urnin = 0.00083 m'/s. 

Cross sectional area of each hole = ;r 
(hole diameter)' 

4 

7r * 
0.002 2=3.141 

* 10-6 M2. 
4 

Flowrate per hole Total flowrate 
= 

0.00083 
-25.9 

* 10-6 M3/S. 
Number of holes 8*4 
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, 

D2 

Velocity of solution for each hole =Q= 
25.9 * 10-6 

= 8.24 m/s A 3.141*10-' 

pud 1013*8.24*0.002 Re = ---- =* 10-3 
8,347. 

lu 
2 

The pressure drop for a sudden contraction to the effective area of the flow could be 

calculated as follows (Coulson et al., 1993): 

Apf pu 

where Cc is the contraction coefficient and it varies between 0.6 and 1.0 as the ratio of 
the pipe diameters varies from 0 to 1 (the ratio is 0.2 in our case). Assuming a 

common value for Cc of 0.67. The velocity of fluid (u) refers to the smaller pipe. 

Thus, the pressure drop is: 

Apf 10 13 * 8.24 21- 
1]2 = -8.34 kPa. 

2 
[0.67 

Thus, the total pressure drop in each arm due to the sudden contraction is 66.72 kPa. 

The pressure drop in each arm due to frictional loss can be calculated as follows: 

Mean velocity -- 
Q 

rd 1 
2/4 

0.00083 
= 0.0002075 m/s. 4 

2 
; r(0.01)2 

=-=0.0000785 44 

Thus, the mean velocity = 2.64 m/s. 

The Reynolds number = Re jý 
d= 1013 * 2.64 * 0.01 

= 1.3 * 104 

IU 2*10-3 

The pipe roughness = 0.000045 rn (commercial steel) 

Thus, the relative roughness =e=0.000045 = 0.0045 
d 0.01 

Accordingly, the fanning friction factor = 0.009 (Holland and Bragg, 1995). 
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The frictional pressure drop per unit length is given by: 

L1 1013 * 2.64 2 

APf =4 - 
E-U-1=4*0.009* 

= 12.7 kPa / m. f( 
di) 2(0.01 2 

The distance between the holes in each arm is approximately 0.5 cm. Thus, the 

frictional pressure drop is only 0.06 kPa between the two holes distance. This loss is 

negligible in comparison to the total pressure drop due to the sudden contraction in 

the holes. The length of each arm is 0.12 m thus the frictional pressure drop per arm 
is 1.52 kPa. 

The total pressure drop in each arm = 66.72+1.52 = 68.24 kPa. 
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Appendix E 

Heat Transfer Rate in C02 Heating System 

4.50 mm 

Copper pipe 
.., 

10 m 

Water bath 0 
20.0 C 

Figure E-1: Dimensions of the Copper Pipe 

The specifications of copper pipe in water bath are shown in the above schematic 
diagram. Properties of carbon dioxide at 255 K are: Prandtl Number = Npr = 0.775, p 

= 1.978 k g/M3, thermal conductivity =k=0.0132 W/m. K, ýt = 0.0128 * 10-3 Pa. s., 

and water viscosity @ 20C= g,, =1* 10-3 Pa. s. 

Typical carbon dioxide flowrate = 45 lJmin= 750* 10-6 m3/s = 47.15 m/s. 

Reynolds number of pure carbon dioxide flow inside pipe is: 

NRe 
= 

Di up= (0.0045)(47.15)(1.978) 
- 32,787.7 

Ju 
(0.0128 *10-3) 

The correlation for heat transfer coefficient for turbulent flow inside a pipe under the 
following conditions (NRe> 104,0.7<N,,, <700, I, /D>60) is: 

Nusselt Number = NNu = 
ý-D 

= 0.023 NReo*'Npr 1/3(_Ii_)0.14 

k A, 

h (0.0045) 
= 0.023 (32787.7)0" (0.775)"3 0.0128*10-' 

-] 

0.14 

(0.0132) 1.0 * 10-3 

Solving for h= 137.96 W/M 2 K. 
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Assume a typical value for water side heat transfer coefficient = 10,000 W/m2. K. 

The areas can be calculated as follows: 

2 Ai =n Di L= it (0.0045)(10) = 0.141 rn . 

2 A, D, L (0.00635)(10) = 0.2 m. 

ALm = 
AO-Ai 

- 
0.2-0.141 

=0.169m 2. 
ln(AO/Ai) ln(O. 2/0.141) 

The resistances can be calculated as follows: 

Ri =11=0.051 hi Ai 0.141 * 137.96 

R. =1=1 =0.5*10-' ho Ao 0.2*10000 

Thermal conductivity for copper is 380 W/m. K. 

R. r. -ri =((0.00635-0.0045)/2)= 14.4 * 10-6 

k A]Lm 380*0.169 

2: R=0.051+ 0.5 * 10«3 +l4.4 * 10 = 0.0515 

Overall heat transfer coefficient is: 

Ui Ai (T. -Ti) = 
T' T' 
ER 

Thus, Ui =II= 137.7 W/M 2X -ýj ER 0.141*0.0515 

Thus, heat transfer rate =q= Ui Ai (TcTi) = 137.7 * 0.14 1 *45 = 873.7 W=0.87 kW 
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Appendix F 

Determination of the Flooding Point in RPB 
In order to locate the flooding point of RPB in the Sherwood Plot, the following 

calculations should be carried out: 

Determination of abscissa: 

Liquid: 30wt% MEA solution 

Flowrate of Liquid =L= 21.06 Urnin 

Density of 30wt% MEA solution = 1000 k g/M3. 

Molecular weight of 30wt% MEA solution = 48.1 

L 60minlOOOkg m3 kg 
Thus, L= 21.06 --= 1263.62- 

min hr m3 IOOOL hr 

L= 1263.62 
-= 

1263.62 
= 26.27 

kmol 
molecular weight 48.1 hr 

Gas: Air is routed from the departmental compressed air. 

Flowrate of Gas =G= 120 M3 /hr. 

Density of air = 1.2 kg/m 3. 

Molecular weight of air = 29 kmol / kg. 

Atmospheric pressure = 749.025 mmHg. 

Gauge pressure = 0.93 barg. 

0.5 

M3 

[0.93 
+ 

749.025 

Corrected air flowrate (M3 /hr) = 120 

( 

760 

)] 

,= 167.1 M3 /hr 
hr (749.025) 

j L 760 

m3g kmol Corrected air flowrate = 167.1 * 1.2 200.5L = 6.9 
hr m hr hr 
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Therefore, the abscissa can be calculated as follows: 

L 26.27 

x 0.131617 
GL6.9 ý 1000 F; 

L Determination of ordinate 

Packing density = ap = 2132 M2/M3 (Refer to Appendix 

Packing porosity =c=0.76 (Refer to Appendix 

Inside diameter = di = 156 mm = 0.156 m. 

Therefore, the hydraulic performance of packed bed = 

_ 
Packing density 

= 
ap 

= 
2132 

= 4856.8 m2 
(Packing porosity)' C3 0.76 3m3 

Rotational speed = 500 RPM. 

co = 
RPM 

* 2; r = 52.36 s-1 60 

Area of packed bed = 2; r * ri * Axial Thickness =2*0.156 * 0.025 = 0.0 123 
2 

The flooding occurs in the eye of rotor. 

Air Flowrate 167.1 m' I 
Thus, the flooding velocity = Areaof PackedBed ='3600 hr 0.0123 M2 

= 3.79 m/s. 

The gravitational acceleration is defined as follows in RPB: 

9=2* 52.36 2= 213.8 m (. ýi-) 
(i) =(11*156) 22s2 

The ordinate is defined as follows: Y= 
Ug2 J. ap I p, 

9 '03 PL 

Thus, Y=3.792 * 4856.8 *(1.2 = 0.3911 
213.8 1000 
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Table F-1: Experimental Flooding Data 

RPM L 

(Umin. ) 

Corrected Qg 

(m3lhr) 

Flooding 

Velocity 

ug (m/S) 

x Y 

300 16.26 101.0 2.29 0.168 0.397 

400 167.1 3.79 0.102 0.611 

500 214.9 4.87 0.079 0.647 

300 21.06 93.2 2.11 0.236 0.338 

400 136.2 3.09 0.161 0.406 

500 167.1 3.79 0.132 0.391 

600 202.2 4.58 0.108 0.398 

700 318.5 7.22 0.069 0.725 

300 39.34 25.3 0.57 1.625 0.025 

400 71.7 1.63 0.573 0.113 

500 117.8 2.67 0.349 0.194 

600 156.3 3.54 0.263 0.238 

700 190.0 4.31 0.216 0.258 

800 241.9 5.48 0.169 0.320 

400 50.3 30.5 0.69 1.722 0.020 

500 71.7 1.63 0.732 0.072 

600 126.8 2.87 0.414 0.156 

700 156.3 3.54 0.336 0.175 

800 190.0 4.31 0.276 0.197 
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Effective Wetted Area of the Packing (Onda's Method) 

Onda's equation (Sinnott, 1993) for effective wetted area of packing is: 

a,, c 
. 75 ( l2w )0.1 -0*05 I: 

W2 
)0.2 

=1- exp 1.45 !! -C- a 

I- ( 

OrL a JUL p2L g PLPL a 

where: 

a,, = effective interfacial area of packing per unit volume, M2/M3 

a= actual area of packing per unit volume = 2132 m2/nI 3 

crc critical surface tension for steel = 75* 10-3 N1m. 

(IL 30 wt% Ethanolamine solution surface tension = 65.3 * 10-3 N1m. 

9L 30 wt% Ethanolamine solution viscosity = 2.5 * 10-3 N. s/m 2 

PL 30 wt% Ethanolamine solution density = 1000 k g/M3. 

9= Acceleration due to gravity = O. ri 

Rotor Speed = 1000 RPM = 104.7 rad. /s 

Bed radius = 78 mm. 

Thus, g=O. r = (104.7) 2* 78 
855.4 rIVS2 

1000 

Maximum liquid volumetric flowrate = 50 Umin. 

Liquid mass flowrate = 50 
L* min * 

lm' 
* 1000 

kg 
= 0.83Lg 

min 60sec 100OL m3s 

r= radius = 78 mm. 

Bed thickness =A=0.025 m. 

Cross sectional area = 2.7r. r. A =; r (2 * 0.078) * 0.025 = 0.0 123 M2 

0.83_ 2/s. Lw Liquid mass flowrate per unit cross-sectional area == 67.5 kg/m 
0.0 123 

Applying the above equation = 
E-" 

= 0.73 
a 

Thus, a, = 1556 M2/M3. 
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Appendix G 

Calibration of the Ethanolamine Solution 

Measurement of S. G. of MEA: @ 22.5"C (Room temperature). 

Weight of 50 ml flask = 31.7665 g. 

Weight of flask + distilled water = 82.2913 g. 

Weight of flask + MEA solution = 86.0171 g. 

Weight of water = 50.5206 g. 

Weight of MEA = 54.2506 g. 

Thus, S. G. of 30 wt. % MEA = 54.2506 / 50.5206 = 1.073742. 

The quoted literature value of SG4 20 is 1.014. Thus, the error is 5.6%, which can be 

mainly attributed to difference in base water temperature. 

Determination of Amine Strength by Weight 

30 wt% MEA/water solution was prepared by weighing in 500 ml. flask using 

PM4800 DeltaRange balance 0.02g). 

An example is given: 

Weight of water = 49.54 g. 

Weight of MEA = 21.20 g. 

Thus, % wt MEA = 30% 

Weight of pure COz injected = 2.94 g. 

Thus, %C02 = 3.99, %MEA = 28.77, % water 67.23. 

MOI C02 / MOI MEA = (2.94/44) / (21.20161.09) = 0.193 

Determination of Amine Strength by Titration 

A titrimetric method was applied in order to determine strength of amine solution. A 

I ml sample was measured with aI ml syringe and placed into a flask then few drops 

of bromophenol blue indicator were added in order to get an observable physical 
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change in appearance from blue to white when 0.1 M HCI was added from 50 mL 
burette. The pH change was from 4.5 to 5.0 (Skoog et al., 1992). 

Amine concentration %= (ml of HCI) (Molarity of HCI) (milliequivalent weight of Amine) 
(sample size in ml) (S. G. of approx. amine) 

Nfilliequivalent weight of. MEA is 0.061, DEA is 0.105, NMEA is 0.119, and DIPA 
is 0.133. 

Comparison between Determination of Amine Strength by Weight and Titration. 

Table G-1: Comparison between weight technique and titration to calculate MEA 

strength. 

Exp. MEA 

wt % 

C02 

wt % 

molco 2 
mol MEA 

MEA Strength 

by titration 

% error in MEA 

determination 

1 29.81 0.65 0.030 29.69 0.4 

2 29.34 1.15 0.054 27.60 5.93 

3 29.62 1.22 0.057 29.08 1.82 

4 29.60 1.38 0.065 30.86 -4.26 

5 29.39 2.08 0.098 29.94 -1.87 

6 29.23 2.57 0.123 31.01 -6.09 

7 29.09 3.01 0.144 27.30 6.15 

8 29.97 3.89 0.180 31.21 -4.14 

9 28.77 3.99 0.193 29.23 -1.60 

10 29.44 5.30 0.259 26.4 7.03 

11 28.29 5.68 0.279 26.4 6.68 

12 27.95 6.85 0.340 28.69 -2.65 

14, 27.78 7.43 0.370 28.15 -1.33 

Average 29.02 28.89 3.56 
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The average error between titration and weight experiments is 3.56%. For calibration 

purpose, the set of data obtained by weight experiments will be supplied to the gas 

chromatograph software. 

Preparing a Calibration Chart 

The concentrations of aqueous ethanolarnine solutions used in this research are: 30, 

50,80, and 100wt%. Hence, four calibration charts were prepared and then used 

according to the solution strength in operation. 

The procedure of calibration is as follows: Different concentrations of carbon dioxide 

in ethanolamine solution were prepared. Then, 0.2 ýtl, sample was injected into the 

liquid port in the gas chromatograph via a syringe. The sensitivity of the FID was set 

to LOW and METHOD 3 was used to store the calibration file. 

AM 
ib 

Figure G-1: The increase in C02 concentration in 

30wt% MEA solution leads to colour change. 

The peak areas of carbon dioxide and ethanolamine were then plotted against its 

corresponding concentrations and hence a calibration chart was feasible. 

For example: The calibration chart for 30wt% MEA solution is: 

(a) Linear equation for absorbed carbon dioxide and forcing line through origin: 

Area = 9.196726 Concentration 

Coefficient of determination = 0.99431 
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Retention time = 4.188 min. 

(b) Linear equation for MEA and forcing line through origin: 

Area= 6.008881 Concentration. 

Coefficient of detennination = 0.95194 

Retention time = 7.655 min. 
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Appendix H 

Calibration of Carbon Dioxide/ Air 
This section outlines the experimental procedure necessary to prepare C02/air 

sampling standards. The samples were then analysed by the gas chromatograph, 

which generates an invariable peak area for a specific C02/air mixture. 

Experimental Procedure 

The following steps are used to prepare a calibration gas sample: 

A glass cylinder is purged with compressed air for 5 minutes at moderate flowrate as 

shown in Figure A. 

Flow of compressed air is stopped then the inlet and the outlet valves are closed and 
hence the air at atmospheric pressure occupies the cylinder. 

Pure C02 is injected into the cylinder via a1 mL syringe as shown in Figure B. The 

cylinder is then shaken for 10 minutes with the aid of small glass balls in order to 

enhance the mixing. 

A well-mixed sample is taken with a 10 mL syringe in order to be analysed by the gas 

chromatograph. 

Compressed Air 

309.2 mL Glass Cylinder 

Figure A 
Figure H-1: Procedure for Gas Calibration. 

1 mL Syringe 

Figure B 
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Determination of Cylinder Volume 

Weight of cylinder = 179.38 g. 

Weight of cylinder and water = 486.73 g. 

Thus, weight of water = 308.35 g. 

Temperature of water = 24.5C. 

Density of water @ 24.5C = 997.172 kg/m3. (Perry and Green, 1984) 

Thus, volume of cylinder = 
308.35 

= 309.2245 mL. 0.997172 

Determination of Air/CO2 Composition 

Volume of cylinder = 309.2245 ml. 

Typical composition Of C02 in air = 0.03 vol% (300 ppmv). 

Thus, amount of initial C02 inside the cylinder = 0.0003 * 309.2245 = 0.09276 mL. 

C02 introduced by the syringe =1m. L. 

Thus, total C02 =1+0.09276 = 1.09276 mL. 

PPMV C02 = 
quantity of component* 106 = 

1.09276 106 
= 3522.48 

total quantity 309.2245+1 

Similarly, two other amounts of C02/air mixtures were prepared and analysed by the 

gas chromatograph, which produced specific peak area for each concentration. 

Therefore, three levels of concentrations were used to calibrate carbon dioxide peak as 

shown in the print out of gas calibration file. The linear regression of the calibration 

data was good with 0.99817 coefficient of determination. 
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Appendix I 

Gas Chromatography Calibration Charts 

, 
The following calibration charts were prepared: 

Gas Phase: Calibration charts for absorption runs (IOW C02%) and desorption runs 
(high C02%): 

1-1: Low concentration Of C02 in air. 

1-2: High concentration Of C02 in air. 

Liquid Phase: Calibration charts were prepared for different amine strengths for 

C02-MIEA-H20 system: 

1-3: 100 wt%. 

1-4: 80 wt%. 

1-5: 50 wt%. 

1-6: 30 wt% 
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Calibration File , alibration 

METHOD2 
ýF Calc Method : 
)Olynomial order 1 

, 
forcing line through origin 

ýeak Carbon Dioxide 
ýT(Mins) 4.207 
-rea 0.000000 * C2 + 0.120868 *C+0.000000 Area 
'esidual Stcl Dev : 5.057 320.4 
ýesiclual Mean -0.073 
, Oefficient of Dete rmination : 0.99817 

Use Area Samples Max Min Conc Residual 
Y 42.929 1 352.2480 0.353 
Y 42.996 1 352.2480 0.420 
Y 44.353 1 352.2480 1.777 
Y 42.769 1 352.2480 0.193 
Y 43.456 1 352.2480 0.880 
y 190.090 1 1620.739 -5.807 
Y 190.959 1 1620.739 -4.938 
Y 196.348 1 1620.739 0.451 
Y 194.854 1 1620.739 -1.043 

.0Y 195.452 1 1620.739 -0.445 IY 320.393 1 2551.114 12.043 
2Y 314.095 1 2551.114 5.745 
3Y 311.834 1 2551.114 3.483 
4Y 304.926 1 2551-114 -3.424 
.5Y 297.488 1 2551.114 -10.862 

MEA 
ins) 7.025 

-D PEAK 
0.000000 * C2 + 0.109602 1C+0.000000 

I-t 13: 08 Tue Feb 19 2002 

Last changed 12: 51 Mon Jun 19 2000 

/ 

I 

2551.1 
Conc(C) 

Area 
109.6 

1000.0 
Conc(C) 



libration Calibration File 

METHOD2 
Calc Method 
ynomial order 1, forcing line through origin 

k Carbon Dioxide 
Mins) 4.042 
a 0.000000 * C2 + 1.232046 *C+0.000000 
idual Std Dev : 0.000 
idual Mean : 0.000 
fficient of Determination : 1.00000 

Use Area Samples Max Min Conc Residual 
Y 1232.046 2 1235.172 1228.920 1000.000 0.000 

13: 11 Tue Feb 19 2002 T-2 
Last changed 13: 07 Tue Jan 30 2001 

Area 
1232.0 

1000.0 
Conc(C) 



Va-libration Calibration File 

METHOD3 
ýF Calc Method : 
Olynornial order 1, forcing line through origin 

eak Carbon Dioxide 
T(Mins) 4.005 
rea 0.000000 * C2 + 10.18371 *C+0.000000 
esidual Stcl Dev : 2.480 
esidual Mean : . 0.650 
Oefficient of Determination : 0.99400 
Use Area Samples Max Min Conc Residual 
Y 68.248 6 71.736 65.715 6.560123 1.441 
Y 25.012 5 25.384 24.670 2.788951 -3.390 

eak MEA 
IT(Mins) 7.031 
ýrea 0.000000 * C2 + 7.798319 *C+0.000000 
ýesiclual Stcl Dev: 2.407 
ýesidual Mean : 0.000 
oefficient of Determination : 0.99997 
Use Area Samples Max Min Conc Residual 
Y 774.440 6 783.433 765.603 99.00000 2.407 
Y 769.627 5 774.744 765.329 99.00000 -2.407 

13: 14 Tue Feb 19 2002 

Last changed 16: 27 Thu Mar 08 2001 

Area 
68.2 

Area 
774.4 

6.6 
Conc(C) 

99.0 
Conc(C) 



alibration Calibration File 

METHOD3 
W Calc Method 
)Olynomial order 1, forcing line through origin 

)eak Carbon Dioxide 
ýT(Mins) 3.986 
ýrea 0.000000 * C2 + 11.44648 *C+0.000000 
ýesidual Std Dev : 0.276 
ýesidual Mean 0.029 
N , Oefficient of Determination : 0.99985 
Use Area Samples Max Min Conc Residual 
Y 31.924 8 34.616 28.712 2.761140 0.318 
Y 43.225 6 45.655 40.696 3.796495 -0.231 

13: 17 Tue Feb 19 2002 

Last changed 10: 27 Tue May 15 2001 

Area 
43.2 

Conc(( 

MEA 
ins) 6.479 

0.000000 * C2 + 8.086693 C+0.000000 
ual Std Dev: 0.126 
ual Mean : -2.5E. 14 
icient of Determination : 1.00000 

Use Area Samples Max Min Conc Residual 
Y 647.062 8 660.380 637.881 80.00000 0.126 
Y 646.809 6 652.332 636.097 80.00000 -0.126 

Area 
647.1 

80 
Conc( 



', 'alibration Calibration File 

METHOD3 
IF Calc Method 
ýOlynornial order 1, forcing line through origin 

eak Carbon Dioxide 
T(Mins) 3.970 
rea 0.000000 * C2 + 7.756038 *C+0.000000 
esidual Stcl Dev : 0.347 
esidual Mean : -0.036 
, oefficient of Determination : 0.99917 
Use Area Samples Max Min Conc Residual 
Y 16.742 4 17.804 15.727 2.210053 -0.399 Y 23.686 4 24.367 23.298 3.016196 0.292 

eak MEA 
T(Mins) 6.011 
rea 0.000000 * C2 + 7.407646 *C+0.000000 
esidual Stcl Dev: 13.039 
esidual Mean : 0.000 
oefficient of Determination : 0.99630 
Use Area Samples Max Min Conc Residual 
Y 357.343 4 387.014 334.647 50.00000 -13.039 Y 383.421 4 390.513 377.188 50.00000 13.039 

13: 19 Tue -Fe b- 1-9 2-0-0, ý 

Last changed 18: 59 Tue May 29 2001 

Area 
23.7 

Area 
383.4 

3.0 
Conc(C) 

m 

50.0 
Conc(C) 



alibration Calibratio-n File 13: 21 Tue Feb 19 2002 CAý 

METHOD3 Last changed 13: 08 Mon Jan 22 2001 
F Calc Method 
Dlynornial order 1, forcing line through origin 

eak Carbon Dioxide 
T(Mins) 4.004 
rea 0.000000 * C2 + 83.09149 *C+0.000000 Area 
esidual Std Dev : 6.855 513.3 
esidual Mean : -2.337 
Oefficient of Determination : 0.99861 
Use Area Samples Max Min Conc Residual 
Y 121.582 6 124.837 118.154 1.623555 -13.322 
Y 209.309 6 215.536 199.677 2.481593 3.110 
Y 73.789 7 76.743 71.306 0.941176 -4.414 
Y 513.291 12 546.654 390.429 6.142022 2.941 

6.1 
Conc(C) 



alibration Calibration File 

METHOD3 
F Calc Method 
Olynornial order 1, forcing line through origin 

eak MEA 
, T(Mins) 6.594 
, rea 0.000000 * C2 + 
! esidual Std Dev : 25.683 
ýesidual Mean : 0.355 

71.04056 *C+0.000000 Area 
2103.6 

; Oefficient of Determination : 0.99924 
Use Area Samples Max Min Conc Residual 
Y 2068.609 6 2121.106 2033.098 29.51293 -28.006 
Y 2103.573 6 2142.083 2056.034 29.35642 18.076 
Y 2091.864 7 2117.634 2068.649 29.74394 -21.162 
Y 2032.997 12 2143.443 1552.946 28.15477 32.867 

13: 21 Tue Feb 19 2002 

Last changed 13: 08 Mon Jan 22 2001 

29.7 
Conc(C) 
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Appendix J 

Literature Solubility Data 
Table J-1: (Mason and Dodge, 1936) Solubility Data. 

MEA Concentration Temperature Partial Pressure 

% wt. (1, C) C02 (kPa) mol. C02/mol MEEA 

30 25 99.02 0.657 

33.97 0.601 

13.15 0.563 

5.94 0.539 

1.41 0.507 

50 90.23 0.574 

32.69 0.527 

9.58 0.525 

9.53 0.505 

1.38 0.453 

75 69.06 0.493 

19.00 0.460 

7.30 0.418 

56 25 98.08 0.588 

33.61 0.554 

13.19 0.532 

5.97 0.519 

1.48 0.495 

50 93.47 0.538 

34.03 0.522 

9.90 0.492 

1.43 0.443 

75 74.60 0.468 

20.41 0.458 

7.56 0.424 
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MEA Concentration Temperature Partial Pressure 

% wt. (OC) C02 (kPa) mol. C02/mol MEA 

74 25 99.85 0.548 

34.16 0.518 

6.05 0.521 

50 95.46 0.525 

94.59 0.525 

34.58 0.501 

26.12 0.495 

10.07 0.483 

10.06 0.503 

10.05 0.496 

10.05 0.508 

1.45 0.467 

75 83.96 0.479 

22.40 0.453 

8.56 0.395 



Appendix J: Experimental Solubility Results B 

Table J-2: (Jou et al., 1995)Solubility Data. 

NIEA Concentration 

% wt. 

Temperature 

(OC) 

Partial Pressure 

C02 (kPa) mol. C02/mol MEA 

30 25 97.2 0.694 

55.1 0.648 

11.8 0.583 

2.80 0.540 

0.392 0.494 

0.0600 0.439 

0.00927 0.323 

0.00213 0.211 

40 103 0.646 

36.1 0.609 

8.09 0.557 

2.57 0.513 

0.604 0.461 

0.0677 0.365 

0.00896 0.203 

0.00147 0.0888 
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MEA Concentration Temperature Partial Pressure 
% wt. (OC) C02 (kPa) mol. C02/mol MEA 

30 60 82.0 0.527 

34.1 0.565 

11.0 0.504 

2.01 0.438 

0.528 0.389 

0.0579 0.206 

0.0193 0.119 

0.00428 0.0564 

so 56.0 0.517 

16.0 0.460 

2.67 0.348 

0.278 0.187 

0.0992 0.118 

0.0465 0.0781 

0.00484 0.0236 

0.00296 0.0174 

100 109.0 0.481 

69.0 0.477 

39.0 0.422 

19.0 0.381 

1.43 0.188 

0.136 0.0566 

0.00724 0.0117 
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Appendix K 

Experimental Solubility Results 

Tablc K-1: Expcrimcntal Solubility Data. 

Tcmpcmturc Partial Avcragc Loading Average Deviation from 

(10c) Prcssurc Partial 
mol CO 2 

Loading (Jou ct al., 

C02 (kPa) Prcssure mol MEA mol CO 2 
1995) data, % 

CO, (kPa) mol MEA 

25 0.006901 0.006442 0.2092 0.2109 66.54 

0.006130 0.2100 

0.006295 0.2134 

0.007404 0.007404 0.2345 0.2345 50.55 

0.007849 0.007849 0.2360 0.2360 52.13 

0.01198 0.012319 0.2526 0.2526 60.90 

0.01266 

0.011148 0.011148 0.2557 0.2528 56.68 

0.2514 

0.2515 

0.020902 0.020902 0.2842 0.2850 67.07 

0.2858 

0.022159 [0.022159 0.2853 0.2853 68.85 

Avcragc de viation 60.38 

40 0.020717 0.021239 0.2097 0.2105 44.78 

0.021759 0.2113 

0.039907 0.039789 0.2531 0.2523 32.43 

0.039672 0.2515 

0.099898 0.093658 0.2991 0.2946 54.92 

0.114349 0.2977 

0.110576 



ApVcndix K--ExrSHmcntil Solubility Rcsults K2 

Temperature Partial Average Loading Average Deviation from 

(0c) Pressure Partial 
Mol CO 

2 
Loading (Jou et al., 

CO, (kPa) Pressure mol MEA Mol CO 
2 

1995) data, % 

C02 (kPa) mol NIEA 

40 0.097163 0.108274 0.2910 0.2984 59.73 

0.087986 0.2917 

0.095826 

1 

0.3010 

1 

Average deviation 47.96 

60 0.131752 0.139170 0.2207 0.2209 30.89 

0.144210 0.2212 

0.141548 

0.334923 0.341922 0.2600 0.2597 42.72 

0.348922 0.2595 
-5"588104 0.630519 0.2945 0.2933 55.25 

0.644472 0.2922 

0.658980 

Average deviation 42.95 

80 0.664316 0.6506553 0.2010 0.2036 19.37 

0.641920 0.2063 

0.645730 

0.805934 0.8103565 0.2141 0.2146 15.09 

0.814779 0.2151 

2.101058 2.1048705 0.2687 0.2664 30.74 

2.108683 0.2640 

2.360338 2.3912560 0.2708 0.2718 35.68 

2.422174 0.2727 

Average deviation 25.22 



AVIKndix K: 
-E-xlKdmcntal 

Solubility Results K3 

Tabic K-2: Lincar rclationships bctwcen 0.2-0.3 loading data for (Jou et al., 1995) 

Tcmpcraturc C02 partial prcssurc =A (Loading) +B 

25 A=0.0638, B=-0.0113 

40 A=0.3626, B=-0.0646 

60 A=2.5689, B=-0.4713 

so A= 14.857, B=-2.5003 
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Appendix L 

Dry Runs Results 

A typical dry run calculations 
RPIM = 500 

COI flowratc 

M nowmctcr reading: 40 Umin. 

M pressure gauge: 0.6 bar. 

Corrected CO, flowratc = 40 L *( 0.6+1.013 
0.5 

= 50.5 L 
min. 1.013 min. 

Air flowratc 

Air flowmctcr reading: 110 m3/hr = 1833.3 Umin. 

COz pressure gaugc: 0.7 bar. 

L Corrected air fI owratc = 1833.3 = 
0.7 + 1.013 0.3 L 

= 2384 
nun. 1.013 min. 

ncorctical CO, composition 

% CO, = 
50.5 * 100 = 2.073 

50.5+2384 

Actual CO, comp2sition 

The Gas Chromatograph (GCI) recorded the inIct C02 = 2.065%. 

% Error betwccn GC and theo 

% E.. -. - 
2.073-2.065 * 100 = 0.4 

2.073 

Outlet CO, comMsition 

A) Composition of C02 at the 'eye' = 2.007 

Error bctwccn the inict and outIct C02 compositions = 2.8% 

B) Composition of C02 at the 'periphery' = 2.029 

Error between the inlct and outict C02 compositions = 2.5%. 
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Appendix M 

Typical Mass Balance Calculation 
A typical mass balance calculation across the 11igee is shown below for Run #4: 

Rotor Speed = 1000 RPM. 

SOUR GAS 

A) Carbon Dioxide Flowrate 

The flowrate of the fluid is proportional to the square root of its density in variable 

area meters (Coulson et al., 1993). In addition, the ideal gas law shows that the 
density is a function of its temperature and pressure. Hence, the flowmeters readings 

were corrected as shown: 

Pressure Of C02 stream = 0.6 barg. 

Temperature Of C02 stream = 19'C. 

Reading Of C02 flowmeter = 40 Urnin. 

Room Temperature = 22 'C. 

. 
(0.6+1.013 0,5 (295 )0*5 

Corrected C02 flowrate = 40* -= 50.73 Urnin. = 3.04M3 /hr. 
1.013 

) 

292 

B) Air Flowrate 

Pressure of air stream = 0.75 barg. 

Reading of air flowmeter = 110 m 3/hr. 

Temperature of air stream = 20'C. 

( 0.75 + 1.013 )0" ( 295 )0" 
Corrected air flowrate =I 10 *-= 145.9 m3/hr. 1.013 293 

C) Combined Air/C02 mixture 

Total Flowrate = 3.04 + 145.9 = 148.9 M3 /hr. 

Temperature = 10 'C = 283 K. 

Pressure = 2.5 psia = 118.52 kPa. 



Appendix M: Typical Mass Balance Calculation M2 

Molar Flowrate @ STP = 
273.15 * 118.52 * 148.9 

= 7.50 kmol / hr 
283 101.3 22.414 

Measured concentration Of C02 in the sour stream = 18294 ppmv = 1.8294 vol %. 

Calculated concentration Of C02 in the sour stream = 
2.93 * 100 = 2.08 vol%. 139.5 

Thus, the error between the calculated and the measured carbon dioxide concentration 
is 12%. 

SWEET GAS 46 

Measured concentration Of C02 in the sweet stream = 11140 ppmv = 1.114 vol%. 

Therefore, the amount of carbon dioxide absorbed = 

7.50 * 
(1.8294-1.114) 

= 0.054 kmol C02 / hr = 2.36 kg C02 / hr. 
100 

LEAN ETHANOLAMINE 

MEA solution density = 1000 kg/m3. 

Molecular weight, MEA 61. 

Molecular Weight, C02 44. 

Flowrate of aqueous MEA Solution = 20.32 Urnin. = 0.34 kg/s. 

The lean ethanolarnine sample was analysed by the gas chromatograph twice: 

% Wt-t C02 = 2.277,2.269 

wt., MEA = 31.773,31.736 

The loading of the solution could be computed as follows: 

(2.277/44) 
= 0.0994 mol C02/mol MEA (31.773/61) 

The loading of the second sample is 0.0991 mol C02/mol MEA. Thus, the average 
loading is 0.0993 mol C02/mol MEA. Also, the average MEA concentration is 

31.755 wt%. 

Mass rate of MEA = 
31.755 * 0.34 = 0.11 kg MEA/s 

100 



Appendix M: Typical Mass Balance Calculation M3 

Molar rate of MEA = 
0.11 * 3600 = 6.34 kmol MEA/hr. 
61 

RICH ETHANOLAMINE 

There are two sampling points for rich ethanolamine: 

The periphery where the concentration is likely to represent that of the exit solution 
from the rotor most accurately; and 

The buffer tank where there will have been an opportunity for further mass transfer 

(end effect) in the machine enclosure. 

Periphery 

0/0 Wto C02 = 2.400,2.444 

% wt, MEA = 31.354,31.701 

Similarly the loadings = 0.1061,0.1069 mol. C02/mol MEA. 

The average loading = 0.1065. 

Thus, 
kmol C02 

- 
(al 

- a2) * kmol MEA 
= (0.1065 - 0.0993) * 6.34 = 0.05 

hr hr 

kgC02 
= 0.05 * 44 = 2.02 

hr 

Thus, % mass balance error using the periphery sample = 

kgC02 rkgC02 

hr 
_]liquid- 

L -hr 
100 = 

2.02-2.36 
* 100 = 14.4% 

kgC02 I 

gas 

2.36 
hr 

Similarly, the % mass balance error using the buffer tank sample = 0.6% 
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Appendix N 

Steam Desorption Runs 

Mach Number 

The Mach number (Ma) is defined as: 

Ma = 
Speed of gas u 

Speed of sound c 

The speed of sound can be calculated as follows: 

NF- y PV = 
FRT 

M m 
where y is the ratio of the heat capacities = cP/CV = 1.2 (Steam Tables in Perry) 

Thus, the speed of the sound =c= 
11.2 * 8314 * 373.15 

= 455 m/s N 18 

2 The diameter of the shaft is 33 mm. Thus, the cross sectional area = 8.55 cm. 

The maximum steam flowrate = 0.1 kg/s = 0.167 m 3/S. (steam density = 0.6 k g/M3) 

Thus, the velocity of the gas = 0.167/ (8.55*10-4)=195.3 m/s. 

Thus, Mach number = 195.3/455 = 0.43. 

Pressure Drop Calculations 

3 

Figure N-1: Different flow compartments in the Iligee 



Appendix N: Steam Desolption Runs N2 

Figure N-1 shows different flow compartments in the Higee: (1) shaft, (2) gas 

plenum; and (3) holes in the stainless steel disc. 

(1) Shaft 

Diameter of the horizontal pipe = 33 mm. = 0.033 m. 

Length of the horizontal pipe = 305 mm = 0.305 m. 

Cross sectional area = 8.55 cm2. 

Flowrate of steam = 0.1 kg/s = 0.167 m3/s. 

Thus, the velocity = 0.167/(8.55* 10 -4 )=195.3 m/s. 

Pressure drop = 0.5 pu2=0.5 * 0.6 * 195.3 2= 11.4 kPa 

(2) Gas Plenum 

It comprises of two areas: 

A) 

Length = 20 mm. 

Diameter = 455 mm. 

Area = 7c DL=0.028 m2. 

Velocity = 0.167 / 0.028 = 5.8 m/s. 

Similarly, the pressure drop = 10.2 Pa. 

B) 

Length = 20 mm. 

Diameter = 33 mm. 

Area = 7c DL=0.00207 m2. 

Velocity = 0.167 / 0.00207 = 80.4 m/s. 

Similarly, the pressure drop = 1.9 kPa. 



Appendix N: Steam Desolption Runs N3 

(3) Holes in the Stainless Steel Disc 

For each hole: 

Length = 12.5mm. 

Diameter =8 mm. 

Area =nDL=0.000314 m2. 

Number of holes = 72. 

Thus, the total area = 0.02262 rn 2 

Velocity = 0.167 / 0.02262 = 7.37 m/s. 

Similarly, the pressure drop = 16.3 Pa. 
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Appendix 0 

Mass Balance Results 



Table 0-1: Results of Mass Balance Runs for MEA Solution(30 wt%) 
Lean MEA Solution 

Temperature (C)I 

Average cc 
Flowrate, Flowrate, Before After C02, MEA, (kmol Average kg kmol MEA, Umin kg/s Higee Higee %Wt/Wt %wt/Wt C021kmo cc MEA/s MEA/hr %Wt/Wt 

Run I MEA) 
12.97 0.22 room tem erature (20 2.094, 30.890, 31 0.0940, 0.0918 0.07 3.98 p 

C) 2.053, 31.414, 0.0906, 
1 2.060 31.420 0.0909 

12.41 0.21 room temperature (20 2.188 30.942 31 0.0980 0.0980 0.06 3.77 
2 C) 

18.29 0.30 2.276, 30.628, 31 0.1030, 0.1017 0.10 5.66 
room temperature (20 2.332, 31.795, 0.1017, 

C) 2.321 32.05 0.1004 
3 

1 

20.32 0.34 room tem erature (20 2.277, 31.773, 32 0.0994, 0.0993 0.11 6.34 1 p 
C) 2.269 

1 
31.736 

I 
0.0991 

I 
. 4 - 23.36 0.39 2.373, 31.104, it 0.1058, 0.1dý§ 0.12 7.18 

room temperature (20 2.398, 31.449, 0.1057, 
C) 2.452, 31.867, 0.1067, 

2.375, 31.184, 0.1056, 
5 - 2.361 30.971 0.1057 

20.42 0.34 room t; mperature (20 2.473, 31.069 31 0.1104, 0.1106 0.11 6.23 
6 1 C) 2.478 31.01ý 0.1108 

23.36 0.39 room temperature (20 2.478, 32.108, 32 0.1070, 0.1069 0.12 7.3Z 
7 C) 2.471 32.087 0.1068 

50.30 0.84 28.0 35.0 2.757, 32.554, 33 0.1174, 0.1175 0.27 16.0; 
2.759, 32.303, 0.1184, 
2.746 32.657 0.1166 

81 
51.03 0.85 23.1 27.1 2.818, 31.720, 33 0.1232, 0.1220 0.28 16.35 

2.898, 32.949, 0.1219, 
2.872, 32.783, 0.1215, 

9 2.889 32.991 0.1214 
51.03 0.85 23.1 27.1 2.843, 32.222, 32 0.1212, 0.1217 0.27 16.1 

2.844 32.265 0.1222 
10 1 1 

1 
1 

51.40 0.86 22.3 25.3 3.107, 32.531, 33 0.1324, 0.1294 0.28 16.56 
3.022, 32.392, 0.1293, 
3.063, 32.777, 0.1296, 
3.063, 33.222, 0.1278, 
3.049 33.104 0.1277 

11 
52.13 0.87 23.2 26.2 3.254, 32.667, 34 0.1381, 0.1343 0.29 17.27 

ý3.126, 32.470, 0.1335, 
3.271, 33.470, 0.1355, 
3.311, 33.675, 0.1363, 
3.199, 33.133, 0.1339, 
3.385, 34.839, 0.1347, 
3.385, 3S. 048, 0.1339, 
3.217, 33.525, 0.1330, 
3.290, 34.318, 0.1329, 
3.243, 33.821, 0.1329, 
3.327, 33.940, 0.1359, 
3.213, 33.622, 0.1325, 
3.297, 34.107. 0.1340 

1 12 1 1 1 1 1 3.240 33.61 1 0.133ý 
1 

I II 

Rich M EA - Per iphery 
Cc 

C02, MEA, (kmol Average lunol kg %error %wt/wt %wt/wt C02/kmo cc C02 / hr C02/hr 
I MEA) 

2.301 30.34 0.1051 0.1051 0.03 1.18 -57. ý 

2.448, 31.993, 0.1061, 0.1076 0.03 1.46 -42.0 
2.503, 31.866, 0.1089, 
2.498, 32.221, 0.1075, 
2.398 30.851 0.1078 
2.400, 31.354, 0.1061,1 0.1065 0.05 --- 2.50 -14.3 
2.4" 31.701 0.10691 

[ T 

2.532, 31.358, 0.1119, 0.1119 0.04 1.91 -30.5 
2.574, 31,850, 0.1120, 
2.513 31.137 0.1119 

2.600, 31.423, 0.1147, 0.1142 0.02 0.99 -59.2 
2.595 31.641 0.11371 1 
2.611, 31.901, 0.1135. 0.1134 0.05 2.11 -17.6 
2.637 32.264 0.1133 
2.806, 31.836, 0.1222, 0.1212 0.06 2.64 15.8 
2.822, 32.600, 0.1200, 
2.826 32.285 0.1214 

2.885, 32.072, 0.1247, 0 1233 0.02 0.92 -56.5 
2.960, 33.287 0.1233, 
2.917, 33.088: 0.1 222 

1 

2.908 32,793 1 0.229 
3.001, 33.010, 0.1260, 0.1257 0.06 2.84 374 
2.942 32.534 0.1254 

3.244, 33.131, 0.1357, 0.1348 0.09 3.96 -16.1 
3.288, 33.571, 0.1358, 
3.249, 33.385, 0.1349, 
3.262, 33.854, 0.13 , 3.237, 33.450, 0.1342, 
3.193, 33.153, 0.1335, 
3.245, 33.146, 0.1357, 
3.200 32.886 0.1349 1 

3.408, 33.577, 0.1407, 0.1400 0.10 4.28 1.8 
3.463, 33.785 0.1421, 
3.287, 32.860: 0.1387, 
3.346, 33.523, 0.1384, 
3.416, 33.668, 0.1407, 
3.418 34.052 0.1392 

Rich MEA -T ank 
a 

C02, MEA, (kmol Average kmol kg %error 
%wt/wt %wt/wt C02/kmo Ot C02 I hr C021hr 

I MEA) 
2.. 277, 31.619, 0.0998, 0.0998 0.032 1.390 -47.6 
2.257, 31.484, 0.09 
2.286 31.650 0.100 
2.408 30.830 0.1083 0.1083 0.0391 1.702 -38.3 

2.458, 31.265, 0.1090, 0.1084 0.038 1.676 -33.5 
2.403, 31.017, 0.1074, 
2.478 31.547 0.1089 

2.413, 31.504, 0.1062 0.1073 0.051 2.245 -4.8 
2.472 31.6231 0.108ý 

1 

2.525, 31.211, 0.1122, 0.1131 0.051 2.260 -17.6 
2.554 31.084 0.1139 

2.621, 32.015, 0.1135, 0.1141 0.021 0.945 -60.9 
2.599 31.447 0.11461 

2.569, 31.812, 0.1120, 0.1124 0.040 1.766 -30.9 
2.598 31.958 0.112 
2.841, 32.328, 0.1218, 0.1226 0.082 3.628 EU 
2.829, 31.955, 0.1227, 
2.922, 32.403, 0.1250, 
2.829 32.437 0.1209 1 
2.952, 32.881, 0.1245, 0.1246 0.043 1.870 -11.3 
2.999, 33.133, 0.1255, 
2.954 33.087 0.1238 1 

2.936, 32.682, 0.1245, 0.12495 0.053 2.311 9.2 
2.923 32.313 0.1254 

3.275, 33.524, 0.1354, 0.134771 0.090 3.944 -16.4 
3.291, 33.215, 0.1374, 
3.267, 33.185, 0.1365, 
3.291, 34.490, 0.1323, 
3.262, 33.548, 0.1348, 
3.146, 32.711, 0.1333, 
3.221 33.391 0.1337 

1' - 3.401, 34.040, 0.1385, 0.139625 0.091 4.020 7- 43 
3.372, 33.616, 0.1391, 
3.387, 33.633, 0.1396 , 3.432 33.664 0.1413 



Sour Gas 

Run 

Corrected 
C02 

Flowmeter 
(Umin) 

Corrected 
C02 

Flowmeter 
(m3/hr) 

Corrected 
Air 

Flowmeter 
(m3/hr) 

Temperature 
(C) 

Pressure 
(psig) 

Total 
Flowrate 
kmol/hr 

Re C02 
Vol% 

Average 
C02 

(Vol%) 

1 50. 7 2. 9 143.8 10 2.5 1 7.39 1.31 E+05 
1.826 
1.80 , 6 1.817 

2 50.7 2.9 145.9 10 2.5 7.49 1.33E+05 1.848 1.848 

3 50.7 2.9 1 145.9 10 1 2.5 7.49 11.33E+05 1.829 1 1.829 

4 50.7 2.9 145.9 10 2.5 7.49 1.33E+05 1.829 1.829 

5 51.0 3.0 147.5 

1 

10 

lwll 

2.5 7.58 1 1.34E+05 1.829 1.8291 

6 51.5 3.0 147.5 10 2.5 7.58 1.34E+05 1.826 1.826 

7 51.5 3.0 147.5 10 2.5 7.58 1.34E+05 1.826 1.826 

8 21.8 1.3 52.9 10 2.5 2.73 4.84E+04 2.171 2.171 

9 21.8 1.3 52.9 10 2.5 2.73 4.84E+04 2.065 2.065 

10 21.8 1.3 52.9 10 2.5 2.73 4.84E+04 2.065 2.0651 

11 49.0 2.8 52.9 10 2.5 2.81 4.98E+04 
4.720, 
4.8001 4.7601 

12 43.51 2.51 52.91 101 2.51 2.791 4.95E+ 4.1301 4.1301 

Swe et Gas 

Average kmol C02 kg C02 C02 
C02 Absorbed / Absorbed / NTU HTU (cm) Vol% (Vol%) hr hr 

1.00 0 1.00 0 o. 060 '0 __g. 65,3 0.6 20.3 
0.990 , 1.031 1.011 . 

063 ;-o. c 2.76C 0.6 20.1 

1.093 
, 1.064 , 1.036 1.065 

, -- 
0-057 2_521 0.5 22.4 

1.126 , 1.111 , 
1.106 1.114 0.054 2.358 0.5 24.4 

1.102, 
0.965, 
0.953 1.007 

_2., 
062 

----? --743 
0.6 20.3 

1.110, _ 

1.092 1.101 0055 2.416 0.5 23.9 
1.053, 
1.067 1.06C, . 

058 2.556 0.5 22.2 

0.272 0.273 0.052 2.279 2.1 5.8 

0.338, 
0.314, 
0.273 0.30 0.048 2.108 1.9 6.4 

0.292, 
0.304, J 

1 

0.307 0.301 0.04 8 2.117 1.9 6.3 

0.986, 
0.956, 
0.942, 
0.930, 
0.906 0.944 0.107 4.714 1.6 7.5 

0.745, 
0.725, 
0.701, 
0.704, 
0.692, 
0.6881 0.7091 0.0951 4.2021 1.81 6.9] 
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AbsorptioiVclesorption Results 
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T2ble P-4: Results of . %bsorption Runs for MEA Nolution (. 14) wt"e) 
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Table P5: Reueneration bv Air P-3 
Run 1 2 3 4 5 6 
Date 11 -Dec 16-Jan 17-Jan 18-Jan 23-Jan 23-Jan 
Speed (RPM) 600 600 1000 800 800 800 
C02 - inlet 441.1 683.2 645.8 554.5 548.7 674.0 
C02 - outlet 1166.5 1306.8 1969.2 2883.3 3997.8 5384.5 
Ratio 2.6 1.9 3.0 5.2 7.3 8.0 
Liquid rate 
Urnin 20.3 11.0 19.3 35.3 37.1 37.1 
kg/hr 1219.8 659.7 1158.2 2118.9 2228.5 2228.5 
Kmol/h 25.4 13.7 24.1 44.1 46.3 46.3 
Gas rate 
m3/hr 146.0 177.5 145.5 126.4 65.3 86.0 
kg/hr 175.3 213.0 174.6 151.7 78.3 103.1 
kmol/hr 6.0 7.3 6.0 5.2 2.7 3.6 
G/L 0.24 0.54 0.25 0.12 0.06 0.08 

Temperature C) 

Feed Tank 57.61 70.01 72.0 1 74.5 1 69.5 1 70.5 
BufferTank 52.01 52.51 55.0 1 64.5 62.0 64.0 
Difference 1 5.61 17.5 1 17.0 1 10.0 1 7.5 1 6.5 

Loading (mol C02 mol MEA) 

Feed 0.4087 1 0.4336 1 0.4141 1 0.4115 1 0.4067 1 0.4112 
Product Liquid 
A) Side 0.3957 1 0.4295 1 0.4073 1 0.4080 1 0.4043 1 0.4056 
B) Buffer Tank 0.3981 1 0.4289 1 0.4066 1 0.4077 1 0.4048 1 0.40751 

Stripping Factor 7.2 16.2 7.6 3.6 1.8 2.3 
NTU - Side 0.032 0.010 0.017 0.008 0.006 0.014 
HTU (m) - Side 3.7 12.5 7.3 14.4 20.4 8.9 

I End Effect(%) 1 0.581 0.141 0.181 0.071 0.101 0.47 
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