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Abstract

Communication Structured Acyclic Nets (CSA-nets) are a Petri net-based formalism used to

represent the behaviour of Complex Evolving Systems (CES). CSA-nets, comprising sets of

acyclic nets, are suitable tools for modelling and visualising the behaviour of event-based

systems. Each subsystem is represented using a separate acyclic net, linked to others through

a set of buffer places depicting their interactions.

However, CSA-nets suffer from challenges especially in analysing and visualising CESs

that have a large number of subsystems resulting from alternative and concurrent execution

scenarios. Moreover, CSA-nets currently lack the capability to represent multiple or coloured

tokens, thereby limiting their ability to represent several similar processes simultaneously.

This thesis introduces extensions for CSA-nets to capture compactly the relationships between

interacting systems’ components represented by sets of acyclic nets. Specifically, it introduces

a way of folding buffer places to address the issue of a large number of buffer places. Then it

introduces a new class of CSA-nets, called Parameterised Communication Structured Acyclic

Nets (PCSA-nets), using multi-coloured tokens and allowing places to accept multiple tokens

distinguished by parameters. The thesis also aims at improving the visualisation of csa-nets

by rearranging their component acyclic nets to minimise the number of crossing arcs by

taking inspiration from the main ideas behind three well-known sorting algorithms (bubble

sort, insertion sort, and selection sort). Furthermore, this thesis presents a novel approach

that combines TCP protocol anomaly detection with visual analysis through CSA-nets.

The strategy provides a clear visualisation of cyber attack behaviours, leading a deeper

understanding of Distributed Denial of Service (DDoS) patterns and their underlying causes.

A new concept of Timed-Coloured Communication Structured Acyclic Nets (TCCSA-nets)
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is introduced, which allows elaboration of the system’s performance and emphasising the

system’s operations in real-time. This approach allows for the classification of messages as

abnormal if their duration exceeds a predetermined time limit.
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Chapter 1

Introduction

1.1 Background

The rapid advancements in digital technologies have revolutionised the landscape of data

generation and collection, leading to an unprecedented surge in the volume, velocity, and

variety of data, often referred to as big data [66, 21]. This exponential growth of data has far

outpaced the capabilities of traditional data processing and analysis techniques, necessitating

the development of novel approaches to effectively handle and derive meaningful insights

from this data deluge. Modelling and visualisation have emerged as crucial techniques in

this regard, enabling the transformation of raw data into comprehensible and actionable

knowledge. These techniques provide a structured framework to represent the complex

relationships and patterns hidden within the data, facilitating the exploration, interpretation,

and communication of data-driven insights. By leveraging various modelling paradigms, such

as mathematical models, statistical models, and machine learning algorithms, researchers and

practitioners can explore the intricate dynamics of complex systems and develop predictive

and prescriptive models to support decision-making processes. Moreover, the integration

of interactive visualisation techniques improves how we interpret and use these models.

This allows users to explore and interact with the data directly. Consequently, they can

uncover hidden patterns and trends that may not be apparent through traditional means. The

combination of modelling and visualisation techniques has become indispensable. These
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methods empower organizations to fully harness the potential of their data assets. As a

result, they drive innovation across diverse domains, from business intelligence to scientific

discovery. As the complexity and scale of data are growing continuously. Consequently,

the development and refinement of advanced modelling and visualisation approaches will

remain critical research areas. These efforts lay the foundation for more efficient, effective,

and insightful data-driven decision-making in response to the evolving challenges posed by

big data.

Recently, the advancement of complex evolving systems (CES) is posing more and more

challenges to researchers and investigators. The hurdle is that CESs is that such systems have

a large number of sub-components interacting with each other and are subject to an wide

range of external factors [11]. Additionally, CES are usually characterised by complicated

evolution features which means that the system is not fully designed at a single point in

time, but it continuously evolves. In line with this evolving feature, it is hard to state that

there are complete assumptions and correctly stated requirements for CESs. Therefore,

there is a need to develop reliable usable software for this task. In practice, successful

software keeps evolving without stopping, and it has been shown that such systems consume

about 40-70% of the budget in the maintenance costs [37]. Accordingly, in the professional

approach, evolution must be considered prior to the design. The importance of structure in

aiding designers to cope with design complexity is well-accepted, especially in the software

engineering domain with its procedures, classes, types, etc., and in the VLSI design domain

with its higher order logics, graph-based models. The effective use of such structuring

notations greatly reduces the complexity of designs, involved in their representation and

manipulation. Thus, the main purpose of a system design is to define how a systems will

work [69].

Cybercrime modelling and investigation is a prominent example of CES system [98]. In

particular, with the rapid development of the Internet and the Internet of Things [99], cyber-

crimes are rapidly increasing, making them a significant challenge. These system consist

of several subsystems that communicate with each other. This communication can be syn-

chronous or asynchronous. One of the main hurdles in such systems is how to find out
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how the system will behave. Cybercrime investigation systems use different techniques and

tools such as formal model and attack graph to support with their investigations. Thus, to

mitigate this complexity while trying to improve the system’s performance, it is advisable to

represent complex behaviours in a visualised form. This is expected to ease the analyses of

the systems and depict the failure points. Visualising big complex systems using methods

that ensure precision, consistency, and dependability makes it possible to provide a clearer

view of the events and conditions occurring in the system. For example, in the context of

network security, visualising data flow can help identify patterns of suspicious activity, such

as unusual login attempts or data transfers. This allows linking the events to specific details,

such as the location where the cybercrime occurred. In other words, the investigator has a

clearer representation of the situation, which helps simplify the understanding of the crime.

There are not many tools that can support visualisation of crime investigations. However,

some assistance can be provided by Petri nets [50], process algebras [26], and Unified

Modeling Language (UML) [83]. The main limitation of these approaches is that they make

it difficult to model the evolution of a system in a practical and detailed manner. They often

struggle to capture all the relevant details and dynamic changes over time, missing critical

interactions and behaviors. As a result, these models may not accurately reflect the true

dynamics of the system, leading to incomplete or incorrect analyses. This issue is especially

pronounced with large systems such as cybercrime investigations, where there are more

interactions between components, or representing the system as one model makes it difficult

to understand and trace. In contrast, offering an approach that allows representing the large

system as subsystems while showing the interactions between these subsystems makes the

modeling of such systems easier to analyse and investigate.

A promising notation in this area, in terms of formal semantics and user-friendly tools,

are acyclic nets and Communication Structured Acyclic Nets (CSA-nets), which are an

extension of acyclic nets introduced to characterise the behaviour of complex evolving

systems. Figure 1.1 shows an acyclic net with three conditions (represented by circles) and

two events (represented by squares). The idea of CSA-net is to combine multiple acyclic nets

by means of relations (implemented using so-called buffer places) with the aim of modelling
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the dependencies between the components. Moreover, CSA-nets can represent the system’s

evolving behaviour through the use of ‘behavioural abstraction’. This provides CSA-net

with the ability to portray how the system evolves. It should be noted that the idea behind

CSA-nets is to improve the cognitive understanding of the modelled CESs by using acyclic

nets for individual subsystems.

p1
a

p2

b
p3

Fig. 1.1 Acyclic net.

In this thesis, we use CSA-nets as a means to handle various types of data within CESs. We

develop algorithms and tool extensions for visualising and analysing data represented in

extended CSA-nets. Also, we carry out evaluations and tests of these algorithms and tools

to establish their effectiveness. Our approach was twofold, namely theoretical research and

practical implementation. In the theoretical aspect, we propose a new class of models extend-

ing CSA-nets, focusing particularly on abstraction, and developing suitable formalisation for

this purpose. For the practical implementation, we improve the visual graph representation

of CSA-nets by reducing the number of crossings generated from communications between

different subsystems. Moreover, in terms of application, we employ CSA-nets to analyse and

detect SYN-flood attacks and create and implement supporting algorithms.

1.2 Aims and objectives

The aim of this PhD project was to develop and extend the CSA-nets framework to enhance its

capability in modelling large systems, and to visualise such systems effectively. In essence,

this would allow CSA-nets to effectively and meaningfully visualise behaviours of CESs

which are common in practice yet still lack robust scientific and engineering support. This

proposed research sought to address this imbalance by developing a methodology and tools

centered on abstraction-based representations of system behaviours. Thus, the primary

research question was:
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Can CSA-nets effectively model large and complex evolving systems?

This has led to a subsequent research question:

Can CSA-nets handle a substantial number of data entries in specific datasets,

such as cybercrime data?

The first question concerns the structure and components of CSA-nets and whether they can

adequately represent large complex systems. The next question focuses on the capacity of

CSA-nets to handle data within such representations. To address both questions, new method-

ologies for CSA-nets were designed and implemented, and the following key objectives have

been identified.

Objectives

1. Determining the current limitations in CSA-nets

CSA-nets depend on the concept of conditions and events. Moreover, buffer places

are used to depict the relations between different system components (acyclic nets).

However, not all the involved components are of major importance to a specific task or

scenario in the modelling. Intuitively, the complexity of the system gets worse as the

number of components increases. Thus, the presence of a high number of components

may degrade the performance and disadvantage investigators.

2. Surveying the existing approaches for mitigating model complexity in domains

such as Petri nets

Extensive literature exists on the topic of model complexity and approaches for miti-

gating it in various areas of computer science. The goal here was to understand the

techniques used to manage model complexity and their effects on the model.

3. Developing the concept of model parametrisation for CSA-nets

Extending the concept of CSA-nets to effectively manage various data types includes,

specifically, addressing the challenge of numerous components in CSA-nets. The
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goal here was to develop a folding mechanism for buffer places resulting in master

buffer place. After that, the goal was to introduce parametrisation for CSA-nets using

multi-coloured tokens.

4. Improving the visualisation of CSA-nets

CSA-nets consist of large numbers of acyclic nets, especially when modelling CESs. In

particular, the arcs representing relationsips induced by buffer places often intersect

with each other, making the model particularly hard to understand. This could make

CSA-nets an unattractive choice. The goal here was to improve the representation

of CSA-nets by minimising arc crossings generated from communication between

different subsystems.

5. Exploring how CSA-net can be applied in the field of cybersecurity

Focusing on Distributed Denial of Service (DDoS) attacks as a case study, which are

widely occurring on the Internet due to their ability to exploit multiple protocols. In

particular, the SYN-flood attack, targeting the TCP three-way handshake process by

overwhelming a system with a large number of SYN messages, thereby consuming

its computational and communication resources. To offer deeper insights into the

intricacies of the TCP SYN-flood attack, the goal was to propose a visual simulation

approach with the aim of benefiting from features provided by CSA-nets.

1.3 Contributions

Our main contributions developed to meet the aims and objectives of the undertaken research

are as follows:

1. A survey of the existing approaches of mitigating model complexity in Petri nets

Numerous attempts have been made in the area of Petri nets with a specific focus on

complexity management through methods like folding and parametrisation. To fulfill

Objective 2, we conducted a review of the literature on these attempts, concentrating

on techniques proposed for managing complexity. Our aim was to identify effective
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approaches and methods that tackle the complexity of modelling, both in terms of

structure and behaviour.

2. Parametrisation of CSA-nets aimed at dealing with model complexity

CSA-nets consist of sets of acyclic nets that communicate with each other through

buffer places. However, this can generate an excessive number of buffer places, making

the model hard to visualise and analyse. Additionally, having several components

that perform similar task can result in the development of a complicated model. We

introduce two extensions for CSA-nets, which can be used to efficiently depict the

relationships between interacting systems’ components represented by sets of acyclic

nets. Specifically, we introduced a way of folding buffer places, and introduced

parametrisations for CSA-nets. The combination of these techniques should lead to

improved visualisation and analysis of large and complex CSA-nets. These outcomes

align with Objective 3.

3. A practical improvement for the visualisation of CSA-nets

To meet Objective 4, we improved the portrayal of the CSA-net by reducing the number

of crossing arcs. The effectiveness of visual representations is paramount in dealing

with complex systems, where nodes and edges are crucial in conveying relationships

and structures. Accordingly, we took the inspiration from the core concepts of three

well-known sorting algorithms—bubble sort, insertion sort, and selection sort—and

integrated them with formulas to calculate crossings. We conducted experimental

comparisons to evaluate the improvements resulting from each approach. The results

indicate the high effectiveness of the selection sort-inspired approach.

4. Detecting SYN-Flood Attack Using CSA-nets

With respect to Objective 5, we introduced the concept of TCCSA-nets, which facil-

itates a detailed analysis of the system’s performance and its real-time operations.

Specifically, we modelled clients and servers as acyclic nets, capturing their communi-

cation through the three-way handshake. A new algorithm was introduced to monitor
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communication between these nets. Essentially, this algorithm tracks packets that

successfully complete the communication sequence, identifying any abnormal packets

that fail in the process. This innovative approach enables the classification of messages

that exceed a predefined processing time threshold as abnormal, while treating other

messages as normal communication.

1.4 Thesis outline

The thesis is organised as follows:

Chapter 1 provides an introduction to the thesis, outlining its objectives and contributions.

Additionally, it includes a list of publications that are part of this thesis.

Chapter 2 provides an overview of the background details and related work relevant to

Structured Occurrence Nets, visualisation, and cybersecurity.

Chapter 3 presents acyclic nets and communication structured acyclic nets (CSA-nets),

including related notions and properties.

Chapter 4 presents a new class of extended CSA-nets, called parametrised CSA-nets. Also,

it providides notions and properties related to their structure and semantics.

Chapter 5 provides new approaches to improve representation of CSA-nets, using the ideas

from well-known sorting algorithms to minimize their crossings.

Chapter 6 introduces the concept of TCSA-nets to detect SYN-flood attacks.

Chapter 7 summarises and concludes the work, and also proposes directions for further

research.

1.5 List of Publications

Parts of this thesis have been documented in the following publications:

1. Alahmadi, M., 2021. Master Channel Places for Communication Structured Acyclic

Nets. In PNSE@ Petri Nets (pp. 233-240).

2. Alahmadi, M.: Parametrisation of CSA-nets. PNSE@Petri Nets (2022)
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3. Alahmadi, M.: Parameterised CSA-nets. PNSE@Petri Nets (2023)

4. Alahmadi, M. and Koutny, M.: Improving placement of CSA-nets. International

Conference on Smart Computing and Application (ICSCA) (2023)

5. Alahmadi, M.: Detecting SYN Flood Attack using CSA-nets. CS & IT Conference

Proceedings (2023)

6. Alahmadi, M., Alharbi, S., Alharbi, T., Almutairi, N., Alshammari, T., Bhattacharyya,

A., Koutny, M., Li, B. and Randell, B.: Structured Acyclic Nets. arXiv preprint

arXiv:2401.07308 (2024)

1.6 Basic formal notations used throughout the thesis

All sets used in the structures considered in this thesis are finite. The disjoint union of sets

X and Y is denoted by X ⊎Y , and nonempty sets X1, . . . ,Xk form a partition of a set X if

X = X1 ⊎·· ·⊎Xk. The set of all subset of a set X is denoted by P(X).

For a binary relation R, xRy means that (x,y) ∈ R. The composition of two binary relations,

R and Q, is a binary relation given by R◦Q = {(x,y) | ∃z : xRz∧ zQy}. Moreover, for every

k ≥ 1, w define:

Rk =

 R if k = 1

R◦Rk−1 otherwise .

Let X be a set and R ⊆ X ×X . Then

1. idX = {(x,x) | x ∈ X} is the identity relation on X .

2. R is reflexive if idX ⊆ R.

3. R is irreflexive if R∩ idX =∅.

4. R is transitive if R◦R ⊆ R.

5. (X ,R) is a partial order if R is irreflexive and transitive.
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6. R+ = R1 ∪R2 ∪ . . . is the transitive closure of R.

7. R is acyclic if R+∩ idX =∅. ⋄

1.7 List of Acronyms

This table provides a list of all acronyms and their full meanings used throughout the thesis.

Acronym Full Meaning
CES Complex Evolving Systems
AN Acyclic Net
ON Occurrence Net
SON Structured Occurrence Net
CSO-nets Communication Structured Occurrence Nets
BSO-nets Behavioural Structured Occurrence Nets
PA-nets Parameterised Acyclic Nets
PCSA-nets Parameterised Communication Structured Acyclic Nets
TCCSA-nets Timed-Coloured Communication Structured Acyclic Nets
TCP Transmission Control Protocol
DoS Denial of Service
DDoS Distributed Denial of Service
SYN Synchronous
ACK Acknowledgment

Table 1.1 List of Acronyms and their full meanings



Chapter 2

Structured Occurrence Nets,

Visualisation, and Cybersecurity

2.1 Introduction

This chapter provides the background for this thesis, offering an overview of Structured

Occurrence Nets (SONs), visualisation, and cybersecurity. Specifically, it presents extensions

of SONs, which will be explored further in Chapter 3 and Chapter 4. Moreover, the chapter

presents a discussion and review of current literature on visualisation and crossing arcs,

laying the groundwork for Chapter 5. It also provides an overview of cybersecurity and cyber

attacks setting the stage for a detailed analysis of the TCP protocol in Chapter 6.

2.2 Structured occurrence nets (SONs)

Structured Occurrence Nets (SONs) are a framework of formal models that can be used to

analyse and visualise complex evolving systems. This section will provide an overview of the

literature surrounding SONs. A broad insight into SONs forms the foundation of this thesis,

where we will address their structure, extensions, advantages and limitations.
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2.2.1 Occurrence nets

Occurrence nets are directed acyclic graphs that represent causality and concurrency, en-

capsulating all information pertaining to a single system execution [106]. The fundamental

relationships between events in occurrence nets involve causality and concurrency. Causally

dependent events are ordered, while concurrent events remain unordered. Furthermore, it

is possible to generate an occurrence net as a direct representation of a system’s execution

history [104]. During each system execution, the process is able to unambiguously delineate

the causal and concurrent connections between the occurring events. This extends not only

to computer components, but also to human and physical process components, such as those

involved in criminal or accident investigations.

p1

p2

p3

p4

p5

p6

a

b

c
d

Fig. 2.1 Occurrence net.

Graphically, Figure 2.1 depicts an occurrence net composed of three main components: (i)

places, represented by circles; (ii) events (or transitions), represented by rectangles; and (iii)

flow relation, represented by directed arcs. The initial places in an occurrence net do not have

an input event, whereas the final places have no output event. Moreover, each place can only

have a single input event and only one output event [104]. Furthermore, every event within

an occurrence net should have a minimum of one input and one output place. A global state,

also referred to as a marking, is a set of places, and it is represented by black tokens placed

inside the corresponding circles. The presence of a black token within a circle signifies its

‘activation’ within a potential execution history of the system modelled by the net [69].

In their original form, SONs are an extension of occurrence nets used to represent the exe-

cution behaviour of complex systems [105, 104, 106]. They consist of multiple occurrence

nets that are connected through different types of formal relationships designed to capture

information pertaining to either the actual/expected interaction behaviours or the collected

evidence to be analysed. The strength of SONs lies in their structure, where complex repre-
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sentations can be simplified when compared to analogous representations while providing a

direct means of modelling emerging structures [69].

2.2.2 Communication structured occurrence nets (CSO-nets)

Communication Structured Occurrence Nets (CSO-nets) comprise multiple occurrence nets

that are linked through unique elements referred to as ‘buffer places’. Buffer places are

capable of modelling both asynchronous and synchronous communication [69]. Events

serve as the means to link these occurrence nets with each other through these buffer places.

Figure 2.2 depicts a simple CSO-net, which comprises two occurrence nets: ocnet1 and

ocnet2. Asynchronous communication between the two occurrence nets is represented by

arrows, as seen between the events c and a in different occurrence nets linked through a single

buffer place q1. Thus, event a will never be executed before c in any execution sequence.

A synchronous communication is represented by arrows pointing in both directions, using

buffer places q2 and q3, as observed between events b and d. Thus, these two events have to

be executed simultaneously.

ocnet1

ocnet2

p1 p2 p3

a b

p4 p5 p6

c d

q1 q2 q3

Fig. 2.2 Communication structured occurrence net (CSO-net).

2.2.3 Behavioural structured occurrence nets (BSO-nets)

Behavioural Structured Occurrence Nets (BSO-nets) are used for modelling the activities of

evolving systems. Each BSO-net contains a two-level hierarchy of CSO-nets which is useful
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for tracking the execution history [106]. The lower level represents behavioural details for

various stages of evolution contained within the upper level. BSO-nets offer insights into

the stages of a system’s evolution on one level, while each phase of activities represents the

stages of the system’s evolution on the other level [69]. The connections across both levels

help to highlight the relationships between the two kinds of behaviors.

The intended interpretation of Figure 2.3 is that the upper level offers a high-level perspective

of a system that has undergone two successive versions, depicted by two states (p1 and

p2) of the upper occurrence net, with the event in the middle representing a version update

(transition a). The lower occurrence net illustrates the system’s behavior during the same

period. Moreover, the ‘behavior’ relation functions across the two levels of description,

linking states in the lower part with those in the upper part that abstract them.

That is, any state can be viewed either as a state of a system or as representing a system

with its own states and events. For example, p1 can be seen either as a state of the system or

as a system with its own states and events (including r1, b, and r3). Generally, it is possible

to have sets of related occurrence nets, some showing the evolution of systems and others

depicting their behaviors. Thus, the former can be seen as the behavioral abstraction of the

latter. A formal definition of this two-level occurrence net is omitted in this thesis; for more

details, see ( [106, 69]).

p1 p2

a

r1 r3 r6

b c

Fig. 2.3 Behavioural structured occurrence net (BSO-net).
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2.2.4 Acyclic nets and communication structured acyclic nets (CSA-

nets)

The original models of the SON framework were based on occurrence nets. More recently,

and in this thesis, this base model has been generalised to acyclic nets [8]. In general, an

acyclic net represents multiple rather than a unique execution history of a system, and can

be seen as a collection of overlapping occurrence nets. The main part of this thesis will be

concerned with the model of CSA-net which is a direct generalisation of CSO-nets where the

role of the component occurrence nets is played by acyclic nets.

2.3 Other graphical modelling techniques

In addition to the models described above, there exist other formal, systematic, and mathe-

matical frameworks that are able to represent, analyse, and verify intricate system behaviours.

Commonly used models include (general) Petri nets, coloured Petri nets, attack graphs, and

finite state machines. These models contribute to improved reliability, validity and pre-

dictability throughout the design process of computational modelling, primarily due to their

ability to offer visual representations and rigorous methodologies for modelling, validating,

and optimising processes. Such models are invaluable in various domains, including software

design and cybersecurity. This section will explore several modelling techniques cited in the

literature, identifying their importance, uses, and advantages.

2.3.1 Petri nets

Petri nets are a mathematical and graphical tool suitable for a wide range of systems, first

proposed by Carl Adam Petri in 1962 to simulate concurrent behaviour within systems. Petri

nets are particularly useful when analysing information processing systems characterised by

concurrency, asynchrony, distribution, parallelism, and nondeterminism. Visually, Petri nets

are often likened to flow charts, block diagrams, and networks, and the tokens in Petri nets fa-

cilitate the visualisation of the system’s dynamic and simultaneous actions [89]. Petri nets are
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also capable of facilitating communication between practitioners and theoreticians, empow-

ering practitioners to learn more systematic modelling techniques from theoreticians while

enabling theoreticians to construct more realistic models based on practitioners’ ideas [89].

2.3.2 Coloured Petri nets (CPNs)

Coloured Petri nets (CPNs) are a graph-oriented language for concurrent system design, simu-

lation, and verification with their base provided by Petri nets [59]. CPNs offer a discrete-event

modelling language that combines the capabilities of Petri nets with a high-level program-

ming language. The CPN programming language, based on the standard ML programming

language, provides a natural means of expressing information types for managing information

and creating parameterisable models. The primary difference between Petri nets and CPNs is

that in CPNs a place can contain multiple (coloured) tokens with associated data attributes at

any given time. Consequently, CPNs are suitable for applications where multiple data tokens

are possible, such as distributed systems and communication protocols. As in Petri nets,

there are four major components that make up a CPN: (i) places; (ii) transitions and (iii) arcs,

represented by circles, rectangles or boxes, and arrows, respectively. These three components

are additionally annotated and describe how to manipulate the coloured tokens (with colours

which can be attributed to specific data types).

2.3.3 Attack graphs

The primary function of attack graphs is to identify potential areas of vulnerability in

a system that can provide routes of attack for cybercriminals [112]. Attack graphs are

commonly used in areas such as computer networks and systems, offering insights into

vulnerabilities and corresponding countermeasures. In essence, attack graphs provide visual

approach to identifying the routes that an attacker may use to compromise a network.

Specifically, it represents every node that has vulnerabilities linked to it. The node with

the greatest likelihood of being attacked can be termed a vulnerable node. Simple network

scans are inadequate for assessing the security of modern complex, multiple platforms
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networks with software applications. Therefore, it is crucial to ensure regular assessment

of cybersecurity defences [55]. Using attack graphs, cyber-attack graphs offer a visual

representation and deeper understanding of the connections among a network’s vulnerabilities,

potential strategies of an attacker, and the comprehensive risk to an organization’s network.

Thus, attack graphs allow organisations to identify vulnerabilities and provide important

insight into how their networks can be exploited, making attack graphs essential for protecting

critical digital assets [114]. Figure 2.4 shows an example of an attack graph representation of

the modeled access token manipulation [130].

Fig. 2.4 Attack graph [130]

2.3.4 Finite state machines

Finite State Machines (FSMs) are a conceptual model commonly used in computational

theory [14]. In essence, FSMs depict how a system changes between different states, capturing

the system’s behaviour and outcomes in a sequential flow of events. In any particular instance,

an FSM is in one of the states coming from a predefined finite set of states. The progression

from one state to another is termed as a transition and is in response to the specified inputs.

The behaviour of an FSM is predetermined by its initial state [113]. There are two basic

kinds of finite-state machines, deterministic FSMs and nondeterministic FSMs, and for

every non-deterministic FSM, an equivalent deterministic FSM can be designed [2]. Various

contemporary applications use FSMs, executing predefined sequences of operations controlled

by series of external events. Although FSMs have been used in computational modelling for a
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long period, the FSM based approaches are limited by their memory constraints, determined

by their state size [77]. Moreover, FSM can not represent concurrency. Thus, FSM have been

surpassed by other computation models, primarily due to computational power of modern

modelling techniques.

2.4 Visualisation

This section focuses on visualisation and its significance for data representation. Additionally,

it examines the issue of crossing arcs, a common challenge in visualisation, and explores

sorting algorithms as a potential solution in the domain of SONs.

Visualisation has been widely utilised to provide researchers and decision-makers with de-

tailed insights into data. It involves representing data graphically in a way that is both easy to

understand and articulate. Consequently, visualisation is particularly important for analysing

complex system and large data sets in a clear, precise, and efficient manner. Moreover,

visualisation facilitates the analysis of data from multiple sources and diverse perspectives,

enabling insights at various levels [79]. Graphical representation often communicates ideas

more clearly than the text alone, making the primary benefit of visualisation its capacity to

reveal hidden patterns more readily than other formats, such as raw data tables [87]. Another

advantage of visualisation is its rapid adaptability to model changes. It is also characterised

by an high optimisation capability, which has led to a wide range of applications in the

field of computer science. As problems increase in complexity, visualisation tends to have

a greater impact. In other words, it is beneficial for large data sets, where it can assist in

identifying correlations and detecting anomalies [3].

2.4.1 Crossing arcs

Visualisations have a unique ability to present complex data from multiple sources while

identifying intricate relationships, making data easily accessible. It is important to ensure

that predefined criteria are in place to ensure data visualisation exhibits both efficiency and

clarity, facilitating straightforward interpretation. Although graph visualisation is playing
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an essential role in showing its ability to present complex data, one of key challenges that

must be addressed is the presence of ‘crossing arcs’. The term ‘crossing arcs’ refers to the

intersections that occur when edges or arcs in a graph cross over one another [93].

The crossing of the arcs in diagrams can have a significant impact on the clarity and

interpretability of visualisation. Specifically, it makes difficult for users to identify the

links between nodes and recognise connections, especially of large and complex models.

However, despite the importance of edges/arrows in the structure and representation of

graphics in linking components, crossing arcs is consider one of the most common barriers

in visualisations [75]. Thus, identifying the presence of crossing arcs, followed by attempts

to minimise the occurrence of crossing arcs in visual representations, is crucial. This is

important for facilitating and enhancing the understanding of data while preventing erroneous

interpretations [129, 75]. However, visualisation of data and minimising the occurrence of

crossing arcs is not a new concept and has been an area of intense research for several years.

One well-established attempt to minimise crossing arcs is to colour the crossing edges with

a different colour. This approach makes the edges stand out from each other and aims to

reduce the negative effect of crossing edges. [61]. Despite the intentions of this approach,

the use of different colours may not be beneficial, especially with large and complex systems

that contain a significant number of interactions between their components.

In addition to using contrasting colours to mitigate the impact of crossing arcs, another

approach is to convert visualised graphs into a better format, such as planar graphs [41].

This can be achieved by applying several vertexes splitting criteria and removes the crossing

edges. However, this approach can make it difficult to track the original non-split nodes

and may limit the graphs readability. Therefore, it is important to use the minimum number

of vertex splittings, but identifying the minimum number required is difficult. In a recent

study [92], the authors addressed the difficulty of tracking original non-split nodes when

using vertex splitting. Specifically, they proposed new approach by re-embedding the split

nodes while keeping the non-split nodes in their original positions, thus maintaining stability.

An earlier attempt to reduce crossing edges was presented in [82], which proposed a heuristic
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strategy using the strategic oscillation approach. The approach proposed in centred around

an iterative greed strategy for both the constructive and destructive processes.

Using CSA-nets as an example, for a CSA-net representing system behaviour, the component

acyclic nets yield rather simple graphs that are typically very long and contain very few

crossings. However, the primary problem with this approach is that arcs representing

communication between subsystems (acyclic nets) can cross several acyclic nets, and the

resulting crossing edges may severely diminish the comprehension of the overall graphical

display. In an attempt to address this problem, the component acyclic nets can be reordered

in a way that minimises the number of crossings. To work towards achieving this goal, one

can use ideas coming from the domain of sorting algorithm. In this particular case, sorting

algorithms can reorder the component acyclic nets aiming at reducing the crossing edges.

This approach offers several benefits, including not changing the display of the individual

component acyclic nets.

2.4.2 Reducing crossing using sorting algorithms

In the domain of graph visualisation, the clarity of the graph is critical for understanding

the data presented. One of the major challenges in this area is mitigating the crossing of

arcs which could create visual clutter and impede comprehension. This issue is especially

prevalent in layered graphs where nodes are arranged across distinct levels. The sequence

in which these nodes are positioned can significantly influence the number of arc crossings.

Therefore, the quality of graph representation often hinges on the proper ordering of its

elements. To address this, sorting algorithms have proven to be a valuable method for

reducing arc crossings. They aid in establishing an optimal or near-optimal sequence of nodes

within each layer, which diminishes the likelihood of arc crossings. However, the selection

of an appropriate sorting algorithm is critical in optimising the clarity of a visualisation [120].

In this section, we will recall three well-known algorithms: Insertion Sort, Bubble Sort, and

Selection Sort.
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Insertion sort

Insertion sort [88] is a popular sorting algorithm. Assuming that there is an array of n values,

it begins by creating another empty array, and then it picks up one value at a time from the

unsorted array and inserts it in its correct position in the sorted one. The time complexity is

O(n2) in the worst case which limits its applicability with big data [62].

Selection sort

Selection sort [54] is another popular sorting algorithm that works by dividing the array into

two parts, the left part which is the sorted one and the right part which is the unsorted one.

The algorithm begins by searching for the smallest item in the right part, then swaps it with

the leftmost item in the left part. This exercise is repeated until all the items in the right part

are moved to the left part. As in the insertion sort, the algorithm’s time complexity is O(n2)

in its worst case [46].

Bubble sort

Bubble sort works by iterating over the array of items and comparing each item with the

following one and swapping them if the following item is smaller. This is repeated until there

are no more swaps to perform. As for the other two sorting algorithms, in the worst-case it

has time complexity of O(n2) [47].

2.5 Cybersecurity

Cybersecurity is the practice of protecting internet connections from various threats [109].

The field of cybersecurity encompasses the protection of all connected hardware, software,

and data [116]. Fundamentally, it aims to thwart unauthorised access to these components by

protecting them from any potential attack [84]. This protection can be implemented at both

the global and individual levels. At its highest level, cybersecurity seeks to prevent attacks

that could disable or disrupt a system’s services such as malware, phishing, and Distributed

Denial of Service (DDoS) attacks [128]. A significant challenge is that many cyber threats
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manifest at the protocol level [40]. Robust cybersecurity should enable individuals and

enterprises to maintain a strong defense against malicious attacks. This would ensure that

customers can trust that their data will remain secure, unaltered, and accessible only through

authorised means.

This section provides an overview of cyber security, including protocols, network attacks,

and mitigation strategies. These topics, particularly the network protocols and defensive

measures against network attacks, will be delved into more comprehensively in Chapter 6.

2.5.1 Networking and Protocols

Protocols are defined as sets of rules facilitating the exchange of data between devices [108].

They are essential in maintaining active and secure Internet-based activities and communica-

tions. These protocols play a crucial role in the digital realm through enabling communication

among various Internet components. Cyberattacks often happen when these protocol rules

are broken [36]. Based on their main functionality, protocols are generally categorised into

three broad categories. The first is network communication protocols, primarily dedicated to

transferring data across the Internet. This category also handles tasks like authentication and

error detection with the Transmission Control Protocol (TCP) [117] and can be example in

this category. The second category is network security protocols which focus on ensuring

safe data transmission. The Secure Socket Layer (SSL) [35] is a protocol in this category

which helps secure internet connections and enables safe communication between both

ends. The third category is network management protocols, which establish various policies

for monitoring network performance. This facilitates easy troubleshooting for a reliable,

fault-tolerant network. The Internet Control Message Protocol (ICMP) [124] is well-known

in this category for aiding in diagnosing network connectivity issues.

2.5.2 Network attacks and threats

Networking is integral to everyday communications but remains vulnerable to cyber-attacks.

These attacks often aim for unauthorised access to networks, with the intention to either steal
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or alter data. Generally, network attacks fall into two main categories. The first is passive

attacks [101], where attackers may eavesdrop on or intercept sensitive information, lacking

the capability to modify the data. The second category is active attacks [90], which involve

direct interference with the data, potentially altering or damaging it. Various forms of such

attacks include:

1. Malware [18]: This kind of attack has a wide range of forms. It is abbreviated after

malicious software and can be any kind of virus, spyware, or trojan. The intention of

these programs varies, but the majority aim to steal personal data or prevent access to

specific resources.

2. Man-in-the-Middle Attack [122]: This kind of attack occurs when an attacker eaves-

drops on a communication channel between two parties. By this, the attacker can

hijack the channel to either alter the message sent or steal the data.

3. Denial-of-Service (DoS) Attack [94]: This kind of attack represents a major risk in

which the attacker floods the network with a huge amount of messages with the aim

of depleting their resources and bandwidth. This consumes the server’s resources and

slows it down or is completely overwhelmed and unable to respond. This attack has a

more hazardous form when it is distributed DoS (DDoS). Such DDoS involves several

attackers performing DoS on the same server at the same time.

2.5.3 TCP protocol

The Transmission Control Protocol (TCP) facilitates the exchange of data between devices

and ensures reliable packet delivery. Often described as the backbone of the Internet due to

its extensive range of applications, TCP is particularly prevalent in network communications

where errors in data delivery are unacceptable. This protocol begins by establishing a

connection between the sender and the receiver, maintaining this connection throughout

the communication process, which classifies TCP as a connection-oriented protocol. TCP

employs a method known as the three-way handshake to establish connections. Additionally,

it divides larger data into smaller packets, ensuring data integrity throughout the process [27].
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Fig. 2.5 TCP header.

TCP also employs error detection strategies to ensure that the data has been received correctly.

This includes setting the connection timeout duration, activating the checksum field, and

receiving and sending acknowledgments. Accordingly, any missing packets can be easily

detected and recovered by resending them again.

TCP connection is a full duplex that is established using a well-known mechanism referred

to as a three-way handshake. Generally, this mechanism allows both the sender and receiver

to synchronize (SYN) and acknowledge (ACK) each other. As its name implies, it consists

of three consecutive steps, as follows. First, the client sends a SYN message to the receiver

(server), requesting to connect. Second, the receiver responds with both SYN and ACK. The

SYN in this case means that the server is ready to connect and the ACK confirms receiving

the sender’s previous SYN message. Finally, the client sends ACK to the server, confirming

receiving its previous message and the connection is now established. These steps are

summarised in Figure 2.6.

The TCP has an informative header, as shown in 2.5, including 11 fields. The most important

fields are the source and destination port numbers. Each of these is 16 bits and is used to

represent the sender and receiver applications. Moreover, to achieve reliability, two fields;

sequence and acknowledgment numbers are used. Both are 32 bits. The former represents

the amount of data sent in one session, while the latter represents a request for the next TCP

segment. For easy decapsulating the header a 4-bit field named DO is used to represent the

header length. For the connection-oriented feature, 9-bits flag known as control bits are used.
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Fig. 2.6 Three-way handshake process

They are used to establish connections, send data and terminate connections. These include

an urgent pointer, ACK flag, push (PSH), reset connection (RST), SYN, and FIN. Additionally,

there are 16-bits referred to as window defining how many bytes the receiver is willing to

receive. Another 16-bits is referred to as a checksum is used to check if the TCP header is

OK or not. A final field is the option that can be valued between 0 and 320 bits.

In this thesis, our primary focus is on using the TCP protocol as a case study. The reason

behind choosing such a protocol is twofold. First, it is widely used in a large number of

applications. Second, it suffers from several types of cyberattacks, like the SYN-flood attack.

SYN-flood attack

Despite its high importance on the Internet, TCP is vulnerable to several cyberattacks, such as

SYN-flood attack [133]. Specifically, the SYN-flood attack targets the three-way handshake

mechanism during the establishment of a TCP connection. Technically, SYN-flood is a type

of DDoS that exploits the three-way handshake to consume the server’s resources. It involves

sending repeated SYN request packets to the server ports using fake IPs. These requests

appear to be legitimate, and the server is deceived and tries to respond to them (SYN-ACK),

which, in turn, wastes its resources. This attack is summarised in Figure 2.7. The hurdle is

that it is hard for the TCP protocol to detect such a situation. This is because TCP is called

a half-open connection [91]. This occurs when the third step of the three-way handshake
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Fig. 2.7 A graphical representation for direct SYN-flood attack.

including sending final ACK to the server, fails or if the host closes the connection without

acknowledging the other.

Attackers use various source IP addresses while flooding the target server with SYN packets;

otherwise, their attacks will be readily prevented by firewalls. This is commonly known as IP

address spoofing which includes injecting raw IP packets with authentic IP and TCP headers

and also manipulating local firewall rules to bypass the firewall entirely. Additionally, IP

address spoofing techniques can be classified into various categories depending on the type

of spoofed source addresses used in the attack packets [4].

The SYN-flood attack is carried out in three ways:

1. Direct SYN Flood Attack; shown in Figure 2.7: This situation arises when an attacker

floods the target with an overwhelming number of SYN messages originating from the

same source IP address. To counteract this, the targeted device needs to be sufficiently

sophisticated to refrain from replying to SYN-ACKs messages.

2. SYN Spoofed Attack; shown in Figure 2.8: Involves sending a massive amount of SYN

messages from different IP addresses. This is named forged/spoof IP addresses and are
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Fig. 2.8 A graphical representation for SYN Spoofed attack.

hard to discover. In this way, the server responds to a fake device (spoofed IP), so the

packet is discarded over the Internet. The major task on the attacker side is to correctly

choose the set of IP addresses that are not in use.

3. DDoS SYN attack; shown in Figure 2.9: In this variant, the victim server receives SYN

packets at the same time from several infected computers under the control by the

attacker. These infected computers are called botnets.

In the literature, researchers provided several techniques to detect SYN-floods:

1. SYN Cookies: This method involves encoding the connection state information into the

initial sequence number (ISN) sent by the server in the SYN-ACK packet. This allows

the server to avoid allocating resources for half-open connections until the client sends

the final ACK packet.

2. Increasing SYN Queue Size: By increasing the size of the SYN queue on the server, the

system can handle more simultaneous connection attempts, making it more resilient to
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Fig. 2.9 DDoS SYN attack

SYN-flood attacks. However, this approach may not be sufficient against large-scale

attacks.

3. Rate Limiting: This approach involves limiting the number of SYN packets accepted

by the server within a specified period. While this can help mitigate SYN-flood attacks,

it may also affect legitimate clients’ ability to connect.

4. Eliminating the oldest half-open connection: By eliminating the predefined number of

the oldest half-open connection from the SYN log. This frees up the queue and allows

new connections to be established. However, this does not work well with DDoS.

5. Firewall Filtering: This involves configuring the firewall rule with the aim of filtering

out, but not limited to, the DDoS SYN messages and unauthorised access.

2.6 Conclusion

This chapter introduced the background related for the thesis by introducing three areas.

Initially, we delved into SON and explored their properties and extensions including acyclic

nets and communication acyclic nets. However, while CSA-nets offer a robust framework

for modeling various processes, it has some limitations. A notable drawback is its inability

to efficiently model scenarios involving multiple tokens, which affects its capacity to abstract

components in complex systems comprehensively. This restriction underscores a critical



2.6 Conclusion 29

need for further development in this area to enhance its modeling capabilities. This will be

the topic of Chapter 4. The second focus area encompassed visualisation techniques aimed at

minimising crossing arcs in the domain of CSA-nets which is the topic of Chapter 5. In par-

ticular, CSA-net faces significant challenges in representing large-scale systems. Specifically,

the issue of crossing arcs remains particularly problematic, detracting from the clarity and

effectiveness of the visual representation. This limitation points to an urgent need for innova-

tive solutions that can address these challenges, thereby improving the interpretability and

utility of CSA-net in representing complex systems. The third area of exploration provided a

basic background about the topic of Chapter 6. Specifically, it provided how to model and

visual TCP attacks. While CSA-net emerges as a promising framework for modeling and

analysing complex systems such as cyber crime investigation, its application in the domain of

cybersecurity, particularly in combating cybercrime, reveals gaps. The framework’s current

capabilities fall short of effectively addressing the nuances and complexities of cyber threats,

indicating a pivotal area for future research and development. However, addressing these

challenges is essential for advancing the field and enhancing the practical application of SON

in diverse domains.





Chapter 3

Acyclic Nets and Communication

Structured Acyclic Nets

3.1 Introduction

Acyclic Petri nets are a type of Petri nets that are directed graphs with no cycles. This implies

that there are no circular path in which one can begin at a certain point (either a place or

transition) and return to the same point by following a sequence of directed connections.

The absence of such cycles simplifies analysis of the representations of behaviours and their

attributes. In particular, they are useful where the sequence of events is strictly linear, such as

in manufacturing processes and workflow systems. That is, they are beneficial for modelling

situations in which a particular process or operation does not occur more than once, or in

which processes do not return to their already visited point.

In recent years, there has been significant interest in acyclic nets, as they can be used to

model system behaviours in various application areas; for example, cybercrime investiga-

tion [57, 132], AI, and clinical investigations. The model presented in this chapter is that of

Communication Structured Acyclic Nets (CSA-nets), as used in [12, 13]. A CSA-net consists

of multiple acyclic nets interacting through buffer places. CSA-nets allow both asynchronous

and synchronous communication between acyclic nets, and so can represent the concurrent
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behaviour of the system as well as synchronisation behaviour. They are suitable tools for

modelling and visualising the behaviour of event-based systems.

This chapter adapts the work presented in [8], which includes the foundation for all notions

and semantics in this thesis. Specifically, it introduces the notions and notations required

to develop the current work and is organised as follows. In Section 3.2, we introduce the

basic notions and examples related to acyclic nets. Section 3.3 presents the semantics of

such a model, including step sequences, executed steps, and defines well-formed acyclic

nets. In Section 3.5, we introduce the notion of Communication Structured Acyclic Nets

(CSA-nets) and provide examples demonstrating how different executions of a concurrent

scenario are generated. Furthermore, in Section 3.6, we offer examples to illustrate how

various behavioural notions related to step sequences and reachable markings of CSA-net are

captured.

3.2 Acyclic nets

When used, for example, as a representation of an incident, an acyclic (Petri) net is a

component “database” of empirical facts (expressed using places, transitions, and arcs linking

them) accumulated during an investigation. Transitions (events) and places (conditions/local

states) are related through arrows representing causal and/or temporal dependencies (hence,

the database is required to be acyclic). Moreover, acyclic nets can represent alternative

ways of interpreting what has happened and so may exhibit (backwards and forwards)

non-determinism.
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Fig. 3.1 Acyclic net acnet1.
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Definition 3.2.1 (acyclic net) An acyclic net is a triple acnet = (P,T,F), where P(= Pacnet)

and T (= Tacnet) are disjoint finite sets of places and transitions respectively, and F(= Facnet)

is the flow relation included in (P×T )∪ (T ×P) such that:

1. P is nonempty.

2. F is acyclic.

3. For every t ∈ T , there are p,q ∈ P such that pFt and tFq.

The set of all acyclic nets is denoted by AN. ⋄

Graphically, places are represented by circles, transitions by boxes, arcs between the nodes

represent the flow relation, and markings are indicated by black tokens placed inside the

circles.

In addition to the acyclicity of F , it is required that each event has at least one pre-condition

(pre-place) and at least one post-condition (post-place). Acyclic net can exhibit backward

non-determinism (when more than one arrow is incoming to a place) as well as forward

non-determinism (when more than one arrow is outgoing from a place).

Notation 1 (direct precedence in acyclic net) Let acnet be an acyclic net. To indicate rela-

tionships between different nodes, for all x ∈ Pacnet∪Tacnet and X ⊆ Pacnet∪Tacnet, we denote

the directly preceding and directly following nodes as follows:

•x = preacnet (x) = {z | zFacnetx}, •X = preacnet (X) =
⋃
{•z | z ∈ X}

x• = postacnet (x) = {z | xFacnetz}, X• = postacnet (X) =
⋃
{z• | z ∈ X} .

Moreover, the initial and final places are respectively given by:

Pinit
acnet = {p ∈ P | •p =∅} and Pfin

acnet = {p ∈ P | p• =∅} .

Note that having the notations like •x in addition to (more explicit) preacnet (x) helps to keep

some of the subsequent formulas short.
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Proposition 3.2.1 ([8]) Pacnet =Pinit
acnet⊎postacnet (Tacnet) =Pfin

acnet⊎preacnet (Tacnet), for every

acyclic net acnet.

Example 1. In Figure 3.1, acnet1 is an acyclic net such that •p5 = preacnet1 (p5) = {c,d}

and a• = postacnet1 (a) = {p2, p3}. Moreover, Pinit
acnet1 = {p1} and Pfin

acnet1 = {p6, p7}. ⋄

Definition 3.2.2 (occurrence net) An occurrence net is an acyclic net such that |•p| ≤ 1

and |p•| ≤ 1, for every place p. The set of all occurrence nets is denoted by ON. ⋄

p1

p2

p3

p4

p5a
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c

Fig. 3.2 Occurrence net.

An occurrence net is an acyclic net with a completely clear record of all causal dependencies

between the events (transitions) it involves. In other words, it exhibits backward determinism

(at most one arrow is coming to a place) and forward determinism (at most one arrow is going

out from a place). According to the step sequence semantics defined later on, occurrence

nets are deterministic in the sense that each transition has a fixed set of direct or indirect

predecessors, which have to occur before the transition is executed. Once a transition is

enabled, no other transition can disable it. We also consider acyclic nets where only backward

non-determinism is disallowed.

Definition 3.2.3 (backward deterministic acyclic net) A backward deterministic acyclic

net is an acyclic net such that |•p| ≤ 1, for every place p. The set of all backward deterministic

acyclic nets is denoted by BDAN. ⋄

In the literature, backward deterministic acyclic nets are sometimes called nondeterministic

occurrence nets or even occurrence nets (in which case occurrence nets as defined above are

called deterministic occurrence nets).
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Fig. 3.3 Backward deterministic acyclic net bdacnet1.

Example 2. Figure 3.3 shows a backward deterministic acyclic net. ⋄

An acyclic net may exhibit both forward and backward nondeterminism and, as a result,

represent several different possible execution histories. Next, we present scenarios and

maximal scenarios as structurally defined execution histories of acyclic nets. The role of

such notions is, in particular, to identify structurally all execution histories which can then be

inspected, simulated, and analysed using graph based algorithms.

Scenarios of an acyclic net are acyclic subnets which start at the same initial marking and

are both backward and forward deterministic. As a result, each scenario represents a distinct

execution history with clearly determined causal relationships. Note that scenarios are more

abstract than (mixed) step sequences defiined latyer on, as one scenario will in general

correspond to many step sequences.

Below, for two acyclic nets, acnet and acnet′, we denote acnet′ ⊑ acnet if Pacnet′ ⊆ Pacnet,

Tacnet′ ⊆ Tacnet, Pinit
acnet′ = Pinit

acnet, and

Facnet′ = Facnet|(Pacnet′×Tacnet′)∪(Tacnet′×Pacnet′)
.

In other words, if acnet′ is a subnet of acnet with the same set of initial places.

Definition 3.2.4 (scenario and maximal scenario) Let acnet be an acyclic net.

1. A scenario of acnet is an occurrence net ocnet such that ocnet ⊑ acnet.

2. A maximal scenario of acnet is a scenario ocnet such that there is no scenario ocnet′

satisfying ocnet ⊑ ocnet′ and ocnet′ ̸= ocnet.
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The set of all scenarios of acnet is scenarios(acnet), and the set of all maximal scenarios is

maxscenarios(acnet). ⋄

Intuitively, scenarios represent possible deterministic executions (concurrent histories). Max-

imal scenarios are complete in the sense that they cannot be extended any further.

Note that an occurrence net has exactly one maximal scenario (itself).

Example 3. Figure 3.4 shows two maximal scenarios, ocnet1 and ocnet2, of the acyclic net

in Figure 3.1. ⋄
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(b) ocnet2

Fig. 3.4 Two maximal scenarios of the acyclic net in Figure 3.1.

3.2.1 Causality, concurrency, and conflict

This section introduces structural properties of acyclic nets.

Definition 3.2.5 (structural notions) Let acnet = (P,T,F) be an acyclic net.

1. Two transitions t ̸= u ∈ T are in direct (forward) conflict, denoted t#0u, if they have a

common place in their predecessors, i.e., •t ∩ •u ̸=∅.

2. Two transitions t ̸= u ∈ T are in direct backward conflict if they have a common place

in their successors, i.e., t•∩u• ̸=∅.
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3. Two nodes x ̸= y ∈ P∪T are concurrent, denoted xcoy, if neither x#y nor xF+y nor

yF+x.

4. causedacnet(x) = {y ∈ P∪T | xF+y} are the elements caused by x ∈ P∪T . Moreover,

causedacnet(X) =
⋃

x∈X causedacnet(x), for X ⊆ P∪T .

⋄

Intuitively, conflicts between transitions/events arise when they share a common pre-place

(in forward non-determinism) or a common post-place (in backward non-determinism), while

concurrency is a result of multiple post-places emerging from a single transition [71].

In an acyclic net, forward non-determinism can only occur when there are output transitions

for some place p (i.e., |p•|> 1), and backward non-determinism can only occur when there

are multiple input transitions for some place p (i.e., |•p|> 1).

3.3 Step sequence semantics of acyclic nets

In this section we introduce notions related to the behaviour of acyclic nets. A step is a set of

transitions/events that could have happened at the same time and caused a move from one

sysytem’s state (marking) to another.

Definition 3.3.1 (step and marking of acyclic net) Let acnet be an acyclic net.

1. The markings of acnet, denoted by markings(acnet), are the subsets of P:

markings(acnet) = P(Pacnet).

2. The steps of acnet, denoted by steps(acnet), are defined as:

steps(acnet) = {U ∈ P(T ) | ∀t ̸= u ∈U : preacnet (t)∩preacnet (u) =∅}.

Hence, in a step no two transitions share a pre-place.
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3. The default initial marking of acnet is Minit
acnet = {p ∈ P | preacnet (p) =∅}. ⋄

Graphically, markings are indicated by black tokens placed inside the corresponding circles.

Example 4. For the acyclic net bdacnet1 depicted in Figure 3.3, we have Minit
bdacnet1 = {p1}

and steps(bdacnet1) = {U ∈ P({a,b,c,d}) | c /∈U ∨d /∈U}. ⋄

Definition 3.3.2 (enabled and executed step of acyclic net) Let M be a marking of an a-

cyclic net acnet. A step U of acnet is enabled at marking M if preacnet (U)⊆ M. It can then

be executed and yield the marking

M′ = (M∪postacnet (U))\preacnet (U).

This is denoted by M[U⟩acnet M′. ⋄

Enabling a step in a global state (marking) amounts to having all its pre-places marked. The

execution of such a step adds tokens to all its post-places and then removes tokens from all

its pre-places.

Note that markings of acyclic nets are safe by definition, i.e., a place can only ‘hold’ at most

one token. That is, if M[U⟩acnet M′ and a ̸= b ∈U are such that p ∈ a•∩b•, then p will ‘hold’

only one token in M′.

To capture the behaviour of acyclic nets (and other nets later on), we use step sequences,

involving reachable markings and executed steps.

Definition 3.3.3 ((mixed) step sequence of acyclic net) Let M0,M1 . . . ,Mk (k≥ 0) be mark-

ings and U1, . . . ,Uk be steps of an acyclic net acnet such that Minit
acnet = M0 and we have

Mi−1[Ui⟩acnet Mi, for every 1 ≤ i ≤ k. Then

1. µ = M0U1M1 . . .Mk−1UkMk is a mixed step sequence from M0 to Mk.

2. σ =U1 . . .Uk is a step sequence from M0 to Mk.

The above two notions are denoted by M0[µ⟩⟩acnet Mk and M0[σ⟩acnet Mk, respectively. More-

over, M0[σ⟩acnet denotes that σ is a step sequence enabled at M0, and M0[⟩acnet Mk denotes

that Mk is reachable from M0. ⋄
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Note that if k = 0 then µ = M0 and the corresponding step sequence σ is the empty sequence

denoted by λ .

The previous definition considers the start point of an execution as an arbitrary marking.

The next definition will introduce various notions related to behaviour, and assumes that the

starting point of system executions is the default initial marking.

Definition 3.3.4 (behaviour of acyclic net) The following sets capture various behavioural

notions related to step sequences and reachable markings of an acyclic net acnet.

1. sseq(acnet) = {σ | Minit
acnet[σ⟩acnet M} step sequences.

2. mixsseq(acnet) = {µ | Minit
acnet[µ⟩⟩acnet M} mixed step sequences.

3. maxsseq(acnet) = {σ ∈ sseq(acnet) | ¬∃U : σU ∈ sseq(acnet)}

maximal step sequences.

4. maxmixsseq(acnet) = {µ ∈ mixsseq(acnet) | ¬∃U,M : µUM ∈ mixsseq(acnet)}

maximal mixed step sequences.

5. reachable(acnet) = {M | Minit
acnet[⟩acnet M} reachable markings.

6. finreachable(acnet) = {M | ∃σ ∈ maxsseq(acnet) : Minit
acnet[σ⟩acnet M}

final reachable markings.

7. fseq(acnet) = {U1 . . .Uk ∈ sseq(acnet) | k ≥ 1 =⇒ |U1|= · · ·= |Uk|= 1}

firing sequences.

We can treat individual transitions as singleton steps; e.g., a step sequence {t}{u}{w,v}{z}

can be denoted by tu{w,v}z. ⋄

Example 5. The following hold for the acyclic net bdacnet1 in Figure 3.5.

1. sseq(bdacnet1) = {λ ,a,ab,ac,ad,abc,acb,abd,adb,a{b,c},a{b,d}}.

2. mixsseq(bdacnet1) = {{p1},{p1}a{p2, p3},{p1}a{p2, p3}{b,c}{p4, p5}, . . .}.
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Fig. 3.5 Acyclic net bdacnet1 of Figure 3.3 with the initial marking indicated.

3. maxsseq(bdacnet1) = {abc,acb,a{b,c},abd,adb,a{b,d}}.

4. maxmixsseq(bdacnet1) = {{p1}a{p2, p3}{b,c}{p4, p5}, . . .}.

5. reachable(bdacnet1) = {{p1},{p2, p3},{p2, p5},{p2, p6},{p4, p3}, . . .}.

6. finreachable(bdacnet1) = {{p4, p5},{p4, p6}}.

7. fseq(bdacnet1) = {λ ,a,ab,ac,ad,abc,acb,abd,adb}. ⋄

3.4 Well-formed acyclic nets

A basic requirement of criterion applied to acyclic nets is well-formedness. Its major purpose

is to guarantee a clear depiction of causality in modelled behaviours. A well-formed definition

of acyclic net is derived from the notion of a well-formed step sequence. Note that well-

formedness is stronger than safeness. In particular, it prevents the same transition from

executing more than once. So, a well-formed acyclic net represents executions in which each

transition can only be executed once.

Definition 3.4.1 (well-formed step sequence of acyclic net) A step sequence U1 . . .Uk of

an acyclic net acnet is well-formed if the following hold for every M0U1M1 . . .Mk−1UkMk ∈

mixsseq(acnet):

• postacnet (t)∩postacnet (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.

• postacnet (Ui)∩postacnet (U j) =∅, for all 1 ≤ i < j ≤ k. ⋄
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Intuitively, in a step sequence of a well-formed acyclic net, no place ‘receives’ a token more

than once. This ensures an unambiguous representation of causality in the behaviour of acnet.

It then follows that in such a step sequence, no place is a pre-place of an executed step more

than once, the order of execution of transitions does not influence the resulting marking, and

each step sequence can be sequentialised to a firing sequence.

Definition 3.4.2 (well-formed acyclic net) An acyclic net is well-formed if each transition

occurs in at least one step sequence and all the step sequences are well-formed. The set of

all well-formed acyclic nets is denoted by WFAN. ⋄

Checking that an acyclic net is well-formed can be done by looking at its firing sequences.
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Fig. 3.6 Acyclic net which is not well-formed.

Example 6. The acyclic net in Figure 3.5 is well-formed, but the acyclic net in Figure 3.6

is not. The reason why the acyclic net in Figure 3.6 is not well-formed is that, intuitively,

nothing prevents the execution of b and c first, followed by d. However, in such a case, it

is impossible to determine whether d was caused by b or by c. In other words, the causal

history for transition d is unclear, as it is not evident whether it is caused by transition b or

transition c. Nonetheless, transition d will be executed whenever a token is generated by

transition b or c. ⋄

Proposition 3.4.1 ([8]) An acyclic net acnet is well-formed iff each transition occurs in at

least one firing sequence and all the firing sequences are well-formed.
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3.5 Communication structured acyclic nets (CSA-nets)

A communication structured acyclic net is a complete “database” consisting of several disjoint

acyclic nets that can communicate through special buffer places. These buffer places allow

instantaneous transfer of tokens and can involve a cycle when synchronous communication

is modelled. Also, CSA-nets can exhibit backward and forward non-determinism.

Definition 3.5.1 (CSA-net) A communication structured acyclic net (or CSA-net) is a tuple

csan = (acnet1, . . . ,acnetn,Q,W ) (n > 1)

such that:

1. acnet1, . . . ,acnetn are well-formed acyclic nets with disjoint sets of nodes (i.e., places

and transitions). We also denote:

Pcsan = Pacnet1 ∪·· ·∪Pacnetn

Tcsan = Tacnet1 ∪·· ·∪Tacnetn

Fcsan = Facnet1 ∪·· ·∪Facnetn .

2. Q is a finite set of buffer places disjoint from Pcsan ∪Tcsan.

3. W ⊆ (Q×Tcsan)∪ (Tcsan ×Q) is a set of arcs.

4. For every buffer place q:

(i) there is at least one transition t such that tWq; and

(ii) if tWq and qWu then transitions t and u belong to different component acyclic nets.

⋄

That is, in addition to requiring the disjointness of the component acyclic nets and the buffer

places, it is also required that buffer places pass tokens between different acyclic nets.

As stated in [67], when sufficient resources are available, the standard Petri nets can be

viewed as an asynchronous concurrency model with a firing (or step) sequence semantics.
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When a step is executed, each of its transitions may also be fired. It is hard to express (struc-

turally) that a transition that is enabled must (wait to) synchronise with another transition.

However, it is easy to make an otherwise enabled transition to wait for another transition to

be enabled by employing a message (in the form of a token that the second transition leaves

in a designated input location of the first transition). The introduction of buffer places which

are used by the CSA-nets, was motivated by such considerations.

Assume that transition t has an output buffer place q which is also an input buffer place

for transition v. When t is fired, the token will be added to q. Such a token can either stay

there to be used at a later time (following the standard asynchronous communication), or

be immediately taken by v in the same step. Such a communication is like a telephone

connection between a caller and callee with an answering machine.

The existing literature includes concepts similar to buffer places. According to [29], standard

Petri net models lack a mechanism for synchronous communication, necessitating additional

places and transitions that can lead to complex structures. The paper [29] suggested using

communication channels to extend Coloured Petri Nets, by following the ideas described

in Communicating Sequential Processes (CSP)[56], which is a programming notation used

to describe patterns of interaction in concurrent systems, and Calculus of Communicating

Systems (CCS)[85], which is a process algebra developed for describing computational

processes in concurrent systems, where multiple computations happen simultaneously and

potentially interact with each other. This type of extension is considered a robust description

primitive (see, e.g., [74]). Another example is Petri nets with zero places by [25]. The primary

characteristic of zero-safe nets is the fundamental concept of transition synchronisation,

leading to the notion of concurrent ‘transaction’. To achieve this, zero-safe nets include not

only ordinary places, known as stable places, but also zero places, which cannot hold any

tokens in observable markings. Moreover, they are based on firing sequences that progress

from one ‘stable’ marking (a marking where all zero places are empty) to another stable

marking, without impacting ordinary places along the way (e.g., [68] modelled protocols in

which one partner can be ahead of the other during communication using such a feature).
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The REO approach [17], which is a channel-based exogenous coordination model, builds

complex coordinators, called connectors, from simpler ones and uses channels (similar to

buffer places) to coordinate software components. Similarly, [110] employed REO channels

to construct Petri net models for communication between systems.

Benefits in modelling using buffer places can be illustrated by the following scenario

with two acyclic nets, acnet1 and acnet2. Assume that acnet1 wants to communicate syn-

chronously with acnet2 through any of the transitions t1, . . . , tn, and acnet2 wants to syn-

chronise with acnet1 via any of the transitions v1, . . . ,vn. This could be achieved by gluing

each ti with each v j, leading to the creation of n2 new transitions. Alternatively, we could

add just two new buffer places, q and q′, along with 4n new arcs (i.e., (t1,q), . . . ,(tn,q),

(v1,q′), . . . ,(vn,q′), (q′, t1), . . . ,(q′, tn), and (q,v1), . . . ,(q,vn)). Extending this scenario to

include k acyclic nets with a requirement for synchronisation all of them using exactly one

of the n transitions across these k nets, the direct modelling approach would necessitate

creating nk new transitions. However, achieving synchronisation could be equally effective

by employing just k buffer places, significantly simplifying the model.

acnet1

acnet2

p1

p2

p3

p4a b

c d

p5 p6 p7

e f

q1 q2 q3

Fig. 3.7 Communication structured acyclic net csan.

Notation 2 (direct precedence in CSA-net) Let csan=(acnet1, . . . ,acnetn,Q,W ) be a CSA-

net, x ∈ Pcsan ∪Tcsan ∪Qcsan, and X ⊆ Pcsan ∪Tcsan ∪Qcsan. Then

precsan (x) = {y | yFcsan x ∨ yWcsan x}, precsan (X) =
⋃
{precsan (z) | z ∈ X}

postcsan (x) = {y | xFcsan y ∨ xWcsan y}, postcsan (X) =
⋃
{postcsan (z) | z ∈ X}
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denote direct predecessors and successors of x and X, respectively. Moreover,

Pinit
csan = Pinit

acnet1 ∪·· ·∪Pinit
acnetn and Pfin

csan = Pfin
acnet1 ∪·· ·∪Pfin

acnetn

are the initial and final places of csan, respectively. ⋄

In CSA-nets, the buffer places can be considered as intermediary points that transfer tokens

between different component acyclic nets. By holding tokens, buffer places facilitate the

flow of control between individual acyclic nets. The causal nature of buffer places differs,

for example, from that of places in the standard occurrence nets which introduce causal

relationship between input transitions and output transitions. Instead, buffer places introduce

what is usually called ‘weak causality’. For example, suppose that t is an enabled input

transition of a buffer place b, and v is an output transition of b (with pre-places disjoint

from the pre-places of t) whose all pre-places other than b are marked. Then, two execution

scenarios are possible: t is fired first and then v is fired, or t and v are fired simultaneously

as the step {t,v}. The second scenario would not be possible if b was an ordinary place.

Intuitively, weak causality in this case means that t is executed ‘not later’ than v. Note that

weak causality of buffer places was first discussed in [70]

Proposition 3.5.1 ([8]) For every CSA-net csan,

Pacnet ⊎Qacnet = Pinit
acnet ⊎postcsan (Tcsan) = Pfin

acnet ⊎preacnet (Tacnet).

Example 7. Figure 3.7 shows a CSA-net which is composed of two acyclic nets such that

postcsan (p1) = {a,c}, precsan (p4) = {b,d}, and postcsan (e) = {q1, p6}. Moreover, transi-

tions e and c are communicating asynchronously, so they can be executed at the same time,

or e then c. However, c cannot be executed before e in asynchronous communication. The

relation between e and c can be captured by the presence of q1 ∈ postcsan (e)∩precsan (c). On

the other hand, d and f must be executed simultaneously as they are involved in synchronous

communication. ⋄
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Note that CSA-net can exhibit backward and forward non-determinism. Moreover, they can

additionally contain synchronous cycles involving only buffer places.

Definition 3.5.2 (CSO-net) A communication structured occurrence net (or CSO-net) is

cson ∈ CSAN such that:

1. The component acyclic nets belong to ON.

2. |precson (q)|= 1 and |postcson (q)| ≤ 1, for every q ∈ Qcson.

3. No place in Pcson belongs to a cycle in the graph of Fcson ∪Wcson.

The set of all CSO-nets is denoted by CSON. ⋄

A CSO-net provides a full record of all causal dependencies between the events involved in a

single ‘causal history’. In terms of behaviour defined later, CSO-nets exhibit both backward

determinism and forward determinism. However, we also consider CSA-nets with only

forward nondeterminism.

Example 8. Figure 3.8 depicts a CSO-net. ⋄

ocnet1

ocnet2

p1

p3

p4

c d

p5 p6 p7

e f

q1 q2 q3

Fig. 3.8 Communication structured occurrence net.

Definition 3.5.3 (BDCSA-net) A backward deterministic communication structured acyclic

net (or BDCSA-net) is bdcsan ∈ CSAN such that:

1. The component acyclic nets belong to BDAN.
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2. |prebdcsan (q)|= 1, for every q ∈ Qbdcsan.

The set of all BDCSA-nets is denoted by BDCSAN. ⋄

BDCSA-net is a CSA-net providing full and unambiguous record of backward causal depen-

dencies. BDCSA-nets exhibit backward determinism, but forward determinism is not required.

Scenarios for CSA-nets can be defined similarly as for acyclic nets.

Below, for two CSA-nets,

csan = (acnet1, . . . ,acnetn,Q,W ) and csan′ = (acnet′1, . . . ,acnet′n,Q
′,W ′),

we denote csan ⊑ csan′ if

1. acneti ⊑ acnet′i, for every 1 ≤ i ≤ n.

2. Q ⊆ Q′.

3. precsan (t) = precsan′ (t) and postcsan (t) = postcsan′ (t), for every t ∈ Tcsan.

Definition 3.5.4 (scenario and maximal scenario of CSA-net) Let csan be a CSA-net. A

scenario of csan is a CSO-net cson such that cson ⊑ csan. Moreover, cson is maximal if there

is no scenario cson′ ̸= cson such that cson ⊑ cson′.

The set of all scenarios of csan is denoted by scenarios(csan), and the set of all maximal

scenarios of csan is denoted by maxscenarios(csan). ⋄

Intuitively, the scenarios of a CSA-net are its subnets that begin with the same initial

marking and exhibit both backward and forward determinism. This means they represent

executions with well-defined causal relationships. Note that scenarios depict potential

executions (concurrent histories) that adhere to the dependencies imposed by the flow

relation. Specifically, this implies that all transitions can be executed and places marked at

some point during an execution. Moreover, maximum scenarios are considered complete, as

they cannot be extended any further.

Proposition 3.5.2 ([8]) maxscenarios(cson) = {cson}, for every CSO-net cson.
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That is, an occurrence net has only one maximal scenario (itself), which can be understood

as a precise depiction of a single execution history.

Example 9. Figure 3.8 shows a maximal scenario for the CSA-net in Figure 3.7. ⋄

3.6 Step sequence semantics of CSA-nets

This section will introduce notions related to the behaviour of CSA-nets.

Definition 3.6.1 (step and marking of CSA-net) Let csan be a CSA-net.

1. steps(csan) = {U ∈ P(Tcsan) | ∀t ̸= u ∈U : precsan (t)∩precsan (u) =∅} are the steps.

2. markings(csan) = P(Pcsan ∪Qcsan) are the markings.

3. Minit
csan = Pinit

csan is the default initial marking. ⋄

That is, in CSA-net steps can involve events from one or more acyclic nets, provided that

precsan (t)∩precsan (u) =∅ for every t ̸= u. Furthermore, markings in CSA-net can consist

of both places and buffer places. The initial marking in a CSA-net is made up of the initial

markings of all acyclic nets participating in the CSA-net. Note that buffer places are excluded

from initial marking.

Example 10. steps(csan1) = {U ∈ P({a,b,c,d,e, f}) | a ∈ U =⇒ c /∈ U} and Minit
csan1

=

{p1, p5}, for the CSA-net in Figure 3.7. ⋄

Definition 3.6.2 (enabled and executed step of CSA-net) Let M be a marking of a CSA-net

csan.

1. enabledcsan(M) = {U ∈ steps(csan) | precsan (U) ⊆ M ∪ (postcsan (U)∩Q)} are the

steps enabled at M.

2. A step U ∈ enabledcsan(M) can be executed yielding a new marking

M′ = (M∪postcsan (U))\precsan (U) .
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This is denoted by M[U⟩csan M′. ⋄

That is, enabling a step in CSA-nets requires having all input places of the acyclic nets

present in the marking (global state), including buffer places. Also, if an input buffer place

is not present in the step, it has to be an output place for a transition in the step. In other

words, a step in CSA-nets not only uses tokens locally for each acyclic net but also uses

tokens from different acyclic nets that are present in buffer places. This mechanism allows

for synchronising transitions from different acyclic nets.

The dynamic behaviour of csan is captured by step sequences and mixed step sequences, as

follows.

Definition 3.6.3 (mixed step sequence and step sequence of CSA-net) Let M0, . . . ,Mk (k≥

0) be markings and U1, . . . ,Uk be steps of a CSA-net csan such that Mi−1[Ui⟩csan Mi, for every

1 ≤ i ≤ k.

1. µ = M0U1M1 . . .Mk−1UkMk is a mixed step sequence from M0 to Mk.

2. σ =U1 . . .Uk is a step sequence from M0 to Mk.

The above two notions are denoted by M0[µ⟩⟩csan Mk and M0[σ⟩csan Mk, respectively. More-

over, M0[σ⟩csan denotes that σ is a step sequence enabled M0, and M0[⟩csan Mk denotes that

Mk is reachable from M0. ⋄

Note that if k = 0 then µ = M0 and the corresponding step sequence σ is the empty sequence

denoted by λ .

Example 11. Figure 3.9 shows a CSA-net. Some of its mixed step sequences are:

µ1 = {p1, p7}{d}{p2, p5, p7}{a,b,c}{p3, p6, p8}{e}{p4, p8}

µ2 = {p1, p7}{d}{p2, p5, p7}{a}{p3,q1, p5, p7}{b,c}{p3, p6, p8}{e}{p4, p8}

µ3 = {p1, p7}{d}{p2, p5, p7}{a,b}{p3,q1, p6,q2, p7}{e}{,q1,q2, p4, p7}{c}{p4, p8}.
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Fig. 3.9 A CSA-net model.

Definition 3.6.4 (behaviour of CSA-net) The following sets capture various behavioural

notions related to step sequences and reachable markings of a CSA-net csan. This definition

assumes that the starting point is the default initial marking.

1. sseq(csan) = {σ | Minit
csan[σ⟩csan M} step sequences.

2. mixsseq(csan) = {µ | Minit
csan[µ⟩⟩csan M} mixed step sequences.

3. maxsseq(csan) = {σ ∈ sseq(csan) | ¬∃U : σU ∈ sseq(csan)}

maximal step sequences.

4. maxmixsseq(csan) = {µ ∈ mixsseq(csan) | ¬∃U,M : µUM ∈ mixsseq(csan)}

maximal mixed step sequences.

5. reachable(csan) = {M | Minit
csan[⟩csan M} reachable markings.

6. finreachable(csan) = {M | ∃σ ∈ maxsseq(csan) : Minit
csan[σ⟩csan M}

final reachable markings.

Example 12. The following hold for the CSA-net in Figure 3.7.

1. sseq(csan1) = {λ ,{a,e},{a,e}b, · · ·}.

2. mixsseq(csan1) = {{p1, p5},{p1, p5}{a,e}{p2, p6,q1}, . . .}.
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3. maxsseq(csan1) = {ab,aeb,abe,{a,e}b,a{b,e},ec{d, f},{e,c}{d, f}}.

4. maxmixsseq(csan1) = {{p1, p5}{a,e}{p2, p6,q1}b{p4, p6,q1}, . . .}.

5. reachable(csan1) = {{p1, p5},{p2, p6,q1}, . . .}.

6. finreachable(csan1) = {{p4, p6,q1},{p4, p7}}. ⋄

3.7 Well-formed CSA-nets

A fundamental requirement for CSA-net is well-formedness, which essentially guarantees

a clear representation of causality in the behaviours they represent. The concept of a well-

formed CSA-net is derived from the idea of a well-formed step sequence.

Definition 3.7.1 (well-formed step sequence of CSA-net) A step sequence U1 . . .Uk of a

CSA-net csan is well-formed if the following hold:

1. postcsan (t)∩postcsan (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.

2. postcsan (Ui)∩postcsan (U j) =∅, for all 1 ≤ i < j ≤ k. ⋄

Intuitively, in CSA-net, a well-formed step sequence means that no place or buffer place is

filled by a token more than once in any given step sequence. In other words, no transition is

executed and no token is consumed more than once. The order of execution of transitions

does not influence the resulting marking.

Definition 3.7.2 (well-formed CSA-net) A CSA-net is well-formed if each transition occurs

in at least one step sequence and all step sequences are well-formed. The set of all well-

formed CSA-nets is denoted by WFCSAN. ⋄

Example 13. Figure 3.10 shows a non-well-formed CSA-net. The reason is that postcsan (c)∩

postcsan (e) ̸=∅ and a{b,d}{c,e} is a valid step sequence. In other words, it is not clear at

place p6 whether the token transition is from c or e. ⋄
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Fig. 3.10 A CSA-net model.

By satisfying backward and forward determinism, CSO-nets enjoy some essential be-

havioural properties ‘for free’.

Proposition 3.7.1 ([8]) Each CSO-net is well-formed.

Proposition 3.7.2 ([8]) A CSA-net is well-formed iff each transition occurs in at least one

scenario, and each step sequence is a step sequence of at least one scenario.

Proposition 3.7.3 ([8]) Step sequences of a well-formed CSA-net do not contain multiple

occurrences of transitions.

Each step sequence σ of a well-formed CSA-net csan induces a scenario scenariocsan(σ) =

scenariocsan(
⋃

σ) such that σ ∈ maxsseq(scenariocsan(σ)). Thus, in a well-formed CSA-net,

different step sequences may generate the same scenario, and conversely, each scenario is

generated by at least one step sequence. Moreover, two maximal step sequences generate the

same scenario iff their executed transitions are identical.

3.8 Conclusion

This chapter introduced the basic notions and examples related to acyclic nets and CSA-nets,

including their structure, semantics, step sequences, executed steps, and well-formedness.

Additionally, we discussed the use of CSA-nets as an extension of CSO-nets, enabling both
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asynchronous and synchronous communication between different subsystems through buffer

places. This makes them an appropriate tool for modelling and visualising event-based

system behaviour, including concurrent and synchronisation behaviour. The next chapter

will introduce a new extension of acyclic nets and CSA-nets through a new class called

parameterised CSA-nets.





Chapter 4

Parametrisation of CSA-nets

Communication Structure Acyclic Nets (CSA-nets) are a Petri net-based formalism used to

represent the behaviour of Complex Evolving Systems (CESs). CSA-nets consist of sets of

acyclic nets that communicate with each other through a set of buffer places. However, this

can generate an excessive number of buffer places, making the model hard to visualise and

analyse. Additionally, having several components that perform similar tasks can result in the

development of a complicated model. This chapter introduces two extensions for CSA-nets,

which are used to simplify the depiction of the relationships between interacting system

components represented by acyclic nets. Specifically, it introduces a way of folding buffer

places to address the issue of a large number of buffer places. In addition, it introduces

parametrisations for CSA-nets which uses multi-coloured tokens. The combination of these

techniques should lead to improved visualisation and analysis of large and complex CSA-nets.

We apply mechanisms found in the domain of coloured Petri nets.

4.1 Introduction

Complex evolving systems are composed of a large number of subsystems that interact

with each other concurrently. This growth necessitates the integration and interaction of

several subsystems, supporting, e.g., processing, and analysis. They are often characterised

by dynamically changing structures and features, as well as intricate behavioral patterns.
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Moreover, these system can have large amount of data stored on servers, hard drives, and

in the cloud. In particular, there is a vast amount of data available, and this continues to

grow due to advances in digital sensors, communications, and storage technologies. The

addition of new features can affect the behavior of the entire system. Thus, these systems

are highly complex in terms of interpreting and visualising their behavior [49]. Therefore,

effective visualisation of systems comprising large amounts of data can greatly enhance the

ability to analyse and understand them, thereby extracting useful knowledge which can assist

in making the right decisions. One example of CESs with large data volumes is found in

cybercrime investigation. In such applications, the generated data is crucial, necessitating

high-quality analysis. A major specific advantage in cybercrime investigations is that such

analysis enables the early detection of crimes, thus facilitating crime prevention [39]. For

instance, it allows investigators to establish connections between criminal activities and

locations through data representations, which in turn facilitates the detection of criminal

activities [95]. This is achieved by extracting valuable knowledge from large and complex

datasets and identifying useful information from various data sources.

Although CSA-nets provide a means to analyse and visualise complex systems, challenges

arise as the data scale increases. Specifically, the growing number of nodes makes the model

more difficult to understand. This growth leads to an increase in the number of places,

transitions, and buffer places, which often complicates the model, making it challenging to

analyse and visualise effectively. Furthermore, a limitation of CSA-nets is to only present one

token in a place at any given time, which in turn limits their ability to represent several similar

processes simultaneously (essentially, each process must be modeled individually). Thus, by

abstracting or parametrising certain components and allowing places in CSA-nets to represent

multiple tokens, we can enhance the representation and foster a clearer understanding of the

problem under study. In particular, it could assist investigators in detecting causality and

dynamic behaviors between events, which would aid in analysing such systems.

Parametrisation, a form of abstraction in modeling, is a method of representing a common

part for all processes or objects in a model, which can be used later for different inputs [30].

This makes complex models easier and more effectively represented in the model through
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simplified processes. That is, we can view parametrisations as a way to simplify processes

while maintaining their validity. However, manipulation of models using abstractions is an

important part of the model development process. The interesting point about parametrisation

is that it simplifies the process of testing the effect of changing inputs on the outputs. This

can be likened to a function definition in programming, where the programmer calls the

function with different inputs to test the outputs. This facilitates a deeper understanding of

the relationships between inputs and outputs. Additionally, it streamlines the system tracing

process by automatically adjusting the results of one parameter in response to modifications

in others. Another benefit of parametrisation is that it reduces the number of components

in the process, which results in a much more pleasant visualisation, and this is where

our contribution lies. With this in mind, parametrisation can be viewed as a approach

for improving system visualisation. Usually, when modelling systems, each tiny piece of

information is modelled. If CSA-nets are used for this task, the number of the components

can be large, resulting in a complex model.

This chapter focuses on improving the visualisation of CSA-nets by addressing two main

challenges. Firstly, it introduces the concept of ‘Master Buffer Places’ that fold potentially

numerous buffer places into a single node. In essence, master buffer places offer a parametri-

sation for a set of buffer places. This extension provides a folding mechanism to CSA-nets,

effectively tackling the concern of excessive buffer places. Secondly, we present a new

class of CSA-nets, called ‘parametrised CSA-nets’, which extends the single-token concept.

This approach aims to enable places to accommodate multiple tokens, each distinguished by

specific parameters or colours.

4.2 Related work

Modelling complex and evolving systems can help in solving real-world problems safely and

efficiently by providing an important method of system analysis that is easily understood.

However, modelling such systems are challenging task due to the high volume of interrelated

components. In other words, gaining a clear understanding of how CESs evolve over varying
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variable values is not an easy task, as it might require modifications in the model. Moreover,

as the process under study becomes more complex, the visual form of modelling also becomes

complex, which may hinder understanding the model correctly.

Parametrisation has been viewed as an approach that can help in improving the models’

complexity, in particular in Petri nets, by improving their visualisation. However, Petri nets

encompass a wide range of different classes. For example, [52] extended the traditional

Petri net approach by integrating a hierarchical structure into parametrised Petri nets (PPNs).

This simplified model complexity by parametrising transitions and token types, enabling the

management of systems with numerous places and transitions, and thus yielding a visually

appealing and user-friendly graphical representation. Moreover, Ermel and Weber [43]

accommodated the diversity of Petri net classes and developed the Parametrised Petri Net

Kernel (PNK), a flexible framework for various Petri net-like structures. This kernel facilitates

the modification of Petri nets, allowing users to create custom PNs tailored to their needs

by defining specific net characteristics. It supports high-level abstraction for CESs while

simplifying the representation of system component interactions.

The concept of colour is also proposed in the literature to facilitate the modelling and

validation of systems where concurrency, communication, and synchronisation play major

roles. In this context, Jensen et al. [60] introduced Coloured Petri Nets (CPNs), which

organises a model as a set of modules, taking into account the time required to execute

events in the modelled system. This approach aims to attach information at the token level,

resulting in a compact representation of CESs such as [78]. In the same context, [131]

using CPNs to model how social robots and users communicate continuously. They did this

by showing the robots’ behavior in graphs, making it easier to spot complex patterns of

communication and understand events happening together or separately. This method helped

them gain a deeper insight into where privacy might be at risk. Similarly, [51] used CPNs

to create a model of a defense system that hides its identity to trick attackers. This use of

CPNs has been effective in closely examining how data is captured, controlled, and collected.

Moreover, [44] employed CPNs to model network-controlled systems characterised by high

traffic that could be vulnerable to faults and cyber attacks. In particular, using CPNs, they
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modelled a sensor fault and correction mechanism using to test the system’s performance. In

the same direction [96] improved the attack trees, a well-known graphical security model,

using CPNs to focus on system scalability investigation.

CSA-nets are another robust modelling tool able to describe systems with interrelated

components. However, a significant limitation lies in their inability to handle CESs with

a high volume of components, and here is where our work comes in. Specifically, in this

chapter, we introduce a novel class of CSA-nets that harnesses the combined power of

parametrisation and colored tokens. This innovative approach enables CSA-nets to offer more

comprehensive and meaningful insights into CESs while abstracting away intricate details.

4.3 Towards master buffer places

Despite the fact that CSA-nets rely on a robust and effective structure that reduces complexity

compared to other representations, they lack the ability to visualise and analyse large amounts

of data simultaneously. Specifically, only one token can be represented in one buffer place

at any given time. In other words, a new token cannot be introduced into the same place

until the previous one has been processed. That is, it needs at least one buffer place for each

link between transitions in different acyclic nets. This approach can lead to a surge in buffer

places when the CSA-nets scale up, making the model challenging to visualise and analyse.

However, the complexity is accentuated when dealing with acyclic nets that represent many

communication activities between them. In particular, these activities introduce additional

layers of intricacy, demanding careful handling to maintain the fidelity of the model. One

possible solution to address this issue is to fold buffer places into one node. This can

be achieved by allowing buffer places to accept and represent more than one token at a

time. Nevertheless, the primary challenge of handling scalability with large datasets will be

addressed by leveraging the semantic information available due to the semantic structuring

embedded in CSA-nets.

Example 14. Figure 4.1 shows a CSA-net in which two acyclic nets, acnet1 and acnet2,

communicate through seven buffer places, q0, q1, ..., q6. Each buffer place can represent
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and hold only one token at a time. Consequently, if the depicted model were to expand, the

number of buffer places could significantly increase. ⋄

c0 e0 c1 e1

c2 e2 c3 e3 c4 e4 c5

c6 e5 c7 e6 c8 e7 c9

e8 c10 e9 c11 e10 c12

q0 q1 q2 q3

q4

q5 q6

c13 e11 c14 e12

c15 e13 c16 e14 c17 e15 c18

c19 e16 c20 e17 c21 e18 c22

e19 c23 e20 c24 e21 c25

acnet1

acnet2

Fig. 4.1 A CSA-net model with 7 buffer places.

4.4 Master buffer places (MBPs)

In CSA-nets, buffer places link different acyclic nets with each other and allow the transfer

of tokens yielding two types of communication: synchronous and asynchronous. The aim

of this work is to extend and refine CSA-nets to effectively visualise large amounts of data,

thereby enhancing model visualisation and analysis. Specifically, we propose introducing

Master Buffer Places (MBPs) to bring conciseness to the CSA-net by collapsing (folding)

multiple buffer places into MBPs. In essence, MBPs can hold and represent more than one

token at a time, preventing the need for an excessive number of buffer places. This can enable

the component acyclic nets to communicate through a unique master buffer place. Within an

MBP, tokens will be differentiated by unique colors. A specific token will be presented in

the MBP without interference from other tokens in each execution, ensuring it is ‘color-safe’,

provided that the original CSA-net was safe. This improvement, reducing the number of

buffer places, would optimise CSA-net visualisation, resulting in a model that is both more

readable and comprehensible without affecting the behaviours they represent.



4.4 Master buffer places (MBPs) 61

c0 e0 c1 e1

c2 e2 c3 e3 c4 e4 c5

c6 e5 c7 e6 c8 e7 c9

e8 c10 e9 c11 e10 c12

c13 e11 c14 e12

c15 e13 c16 e14 c17 e15 c18

c19 e16 c20 e17 c21 e18 c22

e19 c23 e20 c24 e21 c25

q0

q0
q1

q1

q2

q2

q3

q3

q4

q4

q5

q5

q6

q6

MBP

Fig. 4.2 A version of the CSA-net of Figure 4.1 with a master buffer place.

Example 15. Figure 4.2 represents an adaptation of the CSA-net in Figure 4.1, where the

seven buffer places, q0, q1, ..., q6, are folded into a single MBP q. Additionally, annotations

have been added to the arcs to indicate which coloured tokens will be inserted into the MBP q

when transitions are executed. ⋄

In essence, Figure 4.2 folds seven buffer places, q0, q1, ..., q6, into one MBP by collapsing

them into a single node q, which can accommodate more than one coloured token at a

time. We have also added annotations on the arcs adjacent to the new places and modified

the execution rules accordingly. It is important to note that the annotations q0, q2, ..., q6

represent a set of the original buffer places (now treated as coloured tokens). Note also

that the execution rules follow the standard idea of coloured Petri nets, ensuring that the

tokens ’flowing’ along the arcs match the annotations. The tokens in master buffer places are

simply the original buffer places. This approach could significantly enhance the visualisation,

understanding, and analysis of CSA-nets by minimising their structural complexity.

Example 16. Figure 4.3(a) depicts an example of a CSA-net which intuitively combines

two executions (conflict): one involving a and c, and the other involving b, d, c, and e.

Additionally, there are two buffer places, q1 and q2: one between a,b and c, and another

between d and e. Figure 4.3(b) shows the CSA-net of Figure 4.3(a), where the two buffer

places have been replaced by a single MBP q. ⋄



62 Parametrisation of CSA-nets

acnet1

acnet2

acnet1

acnet2

a

b d

c e

q1 q2(a)

a

b d

c e

q:{q1,q2}

q1

q1

q1

q2

q2

(b)

Fig. 4.3 CSA-net and a corresponding version with one master buffer place.

4.4.1 Managing MBPs

Although the folded buffer simplifies the visualisation by reducing the number of buffer

places in the model, it introduces certain challenges. Specifically, folding multiple buffer

places into a single MBP can lead to crossings between acyclic nets, especially when the

model includes several acyclic nets (subsystems). A primary challenge, therefore, is to ensure

a clear and well-structured display without undesirable arc crossings.

Example 17. Figure 4.5 shows a version of the CSA-net of Figure 4.4, where three acyclic

nets communicate with each other through a single master buffer place. This MBP folds the

four original buffer places: q1, q2, q3, and q4. ⋄

The last example shows that introducing a single MBP (or a small number of MBPs) could

lead to an excessive number of crossings. Specifically, unless it is placed ‘outside’ the

outline of the underlying occurrence nets — which is generally not feasible due to the
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acnet1

acnet2

acnet3

p1

a

p2

b

p3

c

p4 p5

d

p6

e

p7 p8

f

p9

q1 q2

q3 q4

Fig. 4.4 CSA-net with four buffer places.
acnet1

acnet2

acnet3

a

p1 p2

b

p3

p5

c d

p4 p6

p8

e f

p7 p9

q:{q1,q2,q3,q4}
q1 q2

q3 q4

Fig. 4.5 A version of the CSA-net of Figure 4.4 with one master buffer place.

large size of the individual acyclic nets making them too large to fit on a single screen —

such crossings would be unavoidable. Consequently, folding buffer places into MBPs can

result in extensive crossings, thereby complicating the model’s analysis and visualisation

and making its understanding more challenging. One possible solution to this issue is to

create sufficiently many MBPs. This leads to an important problem: ‘ how to determine the

number and placement of MBPs (either automatically or semi-automatically) to optimise the

visualisation of CSA-nets?’ This is the topic of Chapter 5.

Example 18. Figure 4.6 shows a version of the CSA-net of Figure 4.4 after creating two

MBPs. This clearly leads to a better visualisation than the attempt shown in Figure 4.5. ⋄
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acnet1

acnet2

acnet3

a

p1 p2

b

p3

p5

c d

p4 p6

p8

e f

p7 p9

q:{q1,q2}

q′:{q3,q4}

q1

q1

q2

q2

q3

q3

q4

q4

Fig. 4.6 A version of the CSA-net of Figure 4.4 with two master buffer places.

4.5 Parametrised CSA-nets (PCSA-nets)

Parametrised Petri nets fold places and transitions into a CPN model, resulting in a more

compact model with fewer places and transitions [60]. In this section, we will apply the

same concept of folding to the components of CSA-nets while retaining their primary rules

(specifically, being acyclic). We will introduce a new class of CSA-nets, called Parametrised

CSA-nets (PCSA-nets). PCSA-nets will allow places to accept multiple tokens, which are

distinguished by ‘colours’ to differentiate tokens carrying various data types. This extension

streamlines the modelling of complex systems by allowing individual places or transitions to

handle multiple token types, rendering the model both more clear and concise.

Example 19. Figure 4.7(b) depicts a parametrised version of a simple CSA-net of Fig-

ure 4.7(a), where two (conflicting) parts of acnet2 are folded (collapsed) into a single

parametrised structure acnet′2. Clearly, the two parts have the same net structure. Thus, the

idea is to determine the set of components that are behaving identically, and then represent

them as a single substructure. Figure 4.7(b) uses typed parameters to achieve the desired

effect through passing tokens to parametrised transition. Examples of firing sequences in

Figure 4.7(a) are: abdce, abdcf, abedc, and adfbc. Note that the execution of behaviours will

not change after parametrising. ⋄

That is, this process can allow for the reuse of the model multiple times and increase

comprehension, making larger systems under investigation easier to handle.
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acnet1

acnet2

acnet1

acnet′2

a

b

c

d

e

f

q1 q2(a)

a

b

c

d

g[x]

q2

q1

x : {q1,q2}
(b)

Fig. 4.7 A CSA-net with an arc adjacent to the MBP annotated with variable x with the domain
{q1,q2}, and a mapping g defined so that g[q1] = e and g[q2] = f .

4.6 Formalisation

In this section, we provide a formalisation of the approach proposed in this chapter. We first

introduce parametrised acyclic nets, and then parametrised communication structured acyclic

nets.

4.6.1 Parametrised acyclic nets

Definition 4.6.1 (parametrised acyclic net) A parametrised acyclic net (or PA-net) is a

tuple pacnet = (P,T,F,acnet, ι ,col), where:

• acnet = (P′,T ′,F ′) is a well-formed acyclic net.
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• col is a finite set of colours (or parameters).

• P (P ̸=∅) and T are disjoint finite sets of places and transitions, respectively.

• F ⊆ (P×T )∪ (T ×P) is a flow relation.

• ι : P∪T → P(P′∪T ′)\{∅} is a node annotation mapping.

We denote, for all x ∈ P∪T , p ∈ P, and u ∈ T ′:

prepacnet (x) = {z | zFx} prepacnet (u, p) = ι(p)∩preacnet (u)

postpacnet (x) = {z | xFz} postpacnet (u, p) = ι(p)∩postacnet (u) .

We then assume that the following hold.

1. (P∪T )∩ (P′∪T ′) =∅,
⋃

ι(P) = P′, and
⋃

ι(T ) = T ′.

2. For all t ∈ T and u ∈ ι(t) we have the following, where
⊎

is assumed to be applied to

non-empty sets:1

preacnet (u) =
⊎
{prepacnet (u, p) | p ∈ prepacnet (t)}

postacnet (u) =
⊎
{postpacnet (u, p) | p ∈ postpacnet (t)} .

3. If u ∈ T ′ and R ⊆ P are such that

preacnet (u) =
⊎
{prepacnet (u, p) | p ∈ R}

then then there is t ∈ T such that u ∈ ι(t) and prepacnet (t) = R.

4. For every p ∈ P,

ι(p)\Minit
acnet =

⋃
{postpacnet (u, p) | u ∈

⋃
ι(prepacnet (p))} .

5. For every p ∈ Pinit
acnet, there is exactly one place pinit ∈ P such that p ∈ ι(pinit). ⋄

1Thus, for example, {prepacnet (u, p) | p ∈ prepacnet (t)} is a partition of preacnet (u).
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Note that we do not assume that F is acyclic since the acyclity of the behaviour of acnet will

lead to the acyclicity of the behaviour of pacnet.

Intuitively, ι(t) specifies different ‘modes’ of the execution of a transition t ∈ T , and ι(p)

specifies the places of acnet which can be ‘present’ in p ∈ P in the executions of pacnet.

Definition 4.6.1(2) means that, for each mode u ∈ ι(t), the arcs incoming to t ‘deliver’ the

input places of u, and similarly for the output arcs. Definition 4.6.1(3) means that, for any

potential distribution of the ‘preset’ of u ∈ Tacnet, there is a transition t ∈ T with the mode u

which can input this ditribution of the preset. Definition 4.6.1(4) states that ι(p) is determined

by the modes of the input transitions.

Example 20. Figure 4.8 shows a parametrised acyclic net pacnet = (P,T,F,acnet, ι ,col)

such that

acnet = ({p1, p2, p3, p4},{a,b},{(p1,a),(a, p2),(p3,b),(b, p4)}),

and
P = {r1,r2} T = {t} F = {(r1, t),(t,r2)}

ι(r1) = {p1, p3} ι(t) = {a,b} ι(r2) = {p2, p4}

col = {1,2}.

We then have, for example, prepacnet (a,r1) = {p1} and postpacnet (b,r2) = {p4}. ⋄

(a)

p1

a

p2

p3

b

p4
α

r1:{p1, p3}

t

{a,b} r2:{p2, p4}

(b)

Fig. 4.8 An acyclic net ((a)); and its parametrised version (PA-net) with col = {1,2}, where
α = {p1:1, p1:2, p3:1, p3:2} ((b)).

To capture the behaviour of pacnet, we will use parametrised places and transitions:

Ppacnet = {(p,r,c) ∈ P′×P× col | p ∈ ι(r)}

Tpacnet = {(u, t,c) ∈ T ′×T × col | u ∈ ι(t)} .
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Intuitively, (p,r,c) is an instance of place p of the original acyclic net coloured by c, which

resides in the place r of pacnet. (Another way of interpreting (p,r,c) is that it represents

coloured token (p,c) present in the place r.) Similarly, (u, t,c) represents mode in which

transition t operates as if it were transition u of the original acyclic net coloured by c.

Moreover, we denote for (u, t,c) ∈ Tpacnet (and similarly for subsets of Tpacnet):

prepacnet ((u, t,c)) =
⋃
{preacnet (u, p)×{p}×{c} | p ∈ prepacnet (t)∧ c ∈ col}

postpacnet ((u, t,c)) =
⋃
{postacnet (u, p)×{p}×{c} | p ∈ postpacnet (t)∧ c ∈ col} .

That is, prepacnet ((u, t,c)) and postpacnet ((u, t,c)) determine the tokens which transition t in

mode u consumes and produces when fired.

Example 21. The PA-net on the right in the Figure 4.8 is supposed to be equivalent to two

copies of the acyclic net on the left as indicated by col={1,2}. Therefore, there are two pairs

of initial tokens (in total 4 tokens), one corresponding to mode 1 and the other to mode 2.

That is, for the PA-net in Figure 4.8 we have, for example, prepacnet ((a, t,1)) = {(p1,r1,1)}

and postpacnet ((b, t,2)) = {(p4,r2,2)}. ⋄

4.6.2 Behaviour of PA-nets

In this section we will introduce notions related to the behaviour of parametrised acyclic net.

Definition 4.6.2 (marking and step of PA-net) Let acnet be a PA-net.

1. The markings of pacnet, denoted by markings(pacnet), are the subsets of Ppacnet.

2. The default initial marking is:

Minit
pacnet = {(p, pinit,c) | p ∈ Minit

acnet ∧ c ∈ col}. (4.1)

3. The steps of pacnet, denoted by steps(pacnet), are:

steps(pacnet) = {U ∈ P(Tpacnet) | ∀t ̸= u ∈U : prepacnet (t)∩prepacnet (u) =∅} .
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4. Given a marking M and r ∈ P, we denote

M(r) = {(p,c) | (p,r,c) ∈ M}= {(p1,c1), . . . ,(pk,ck)},

and in the diagrams place p1:c1, . . . , pk:ck inside p. ⋄

That is, p1:c1, . . . , pk:ck are coloured tokens present in p at marking M. Moreover, each

place p of pacnet is annotated by p:ι(p), and each transition t by ι(t). The same convention

is used for the buffer places and CSA-nets later on. We also say that M is colour-safe if

M(r)∩M(s) =∅, for all r ̸= s ∈ P. Note that Minit
pacnet is colour-safe.

Example 22. The initial marking of the PA-net in Figure 4.8 is given by Minit
pacnet =

{(p1,r1,1),(p1,r1,2),(p3,r1,1),(p3,r1,2)}. ⋄

Definition 4.6.3 (enabled and executed step of PA-net) Let M be a marking of a PA-net

pacnet. A step U of pacnet is enabled at marking M if prepacnet (U) ⊆ M. It can then be

executed and yield

M′ = (M∪postpacnet (U))\prepacnet (U).

This is denoted by M[U⟩pacnet M′. ⋄

Enabling a step in a PA-net is similar to that in an acyclic nets, where the global state requires

all its pre-places to be marked. The execution of such a step first adds tokens to all its

post-places and then removes tokens from all its pre-places.

Definition 4.6.4 (mixed step sequence of PA-net) Let (Minit
pacnet =)M0,M1 . . . ,Mk (k ≥ 0) be

markings and U1, . . . ,Uk be steps of pacnet such that we have Mi−1[Ui⟩pacnet Mi, for every

1 ≤ i ≤ k. Then

µ = M0U1M1 . . .Mk−1UkMk

is a mixed step sequence of pacnet. This is denoted by µ ∈ mixsseq(pacnet). Moreover, µ is

well-formed if the following hold:

• postpacnet (t)∩postpacnet (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.
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• postpacnet (Ui)∩postpacnet (U j) =∅, for all 1 ≤ i < j ≤ k.

Note that in such a case Mi is colour-safe, for every 0 ≤ i ≤ k. ⋄

Example 23. Two of its mixed step sequences in Figure 4.8 are:

µ1 = Minit
pacnet {(a, t,2)} M1 {(b, t,2),(b, t,1)} M2 {(a, t,1)} M3

µ2 = Minit
pacnet {(b, t,1),(a, t,2)} M4 {(a, t,1),(b, t,2)} M3,

where:
M1 = {(p1,r1,1),(p2,r2,2),(p3,r1,1),(p3,r1,2)}

M2 = {(p1,r1,1),(p2,r2,2),(p4,r2,1),(p4,r2,2)}

M3 = {(p2,r2,1),(p2,r2,2),(p4,r2,1),(p4,r2,2)}

M4 = {(p1,r1,1),(p2,r2,2),(p4,r2,1),(p3,r1,2)}.

⋄

To express full consistency between the behaviour of pacnet and that of the underlying

acyclic net acnet, we need a notion of projection of the steps and markings of pacnet onto

the steps and markings of acnet.

For every subset X of Ppacnet ∪Tpacnet and c ∈ col, X ↓c = {x | (x,y,c) ∈ X}. Moreover, for

every sequence ξ = X1 . . .Xk of subsets of Ppacnet ∪Tpacnet, we denote ξ ↓c = X1 ↓c . . .Xk ↓c.

Example 24. Let µ1 be as in Example 23. Then

µ1 ↓1 = {p1, p3} ∅ {p1, p3} {b} {p1, p4} {a} {p2, p4}

µ1 ↓2 = {p1, p3} {a} {p2, p3} {b} {p2, p4} ∅.

Note that both µ1 ↓1 and µ1 ↓2 are mixed step sequences of the original acyclic net. ⋄

Proposition 4.6.1 Let pacnet be as in Definition 4.6.1.

1. If µ ∈ mixsseq(pacnet) then µ is well-formed and µ ↓c ∈ mixsseq(acnet), for every

c ∈ col.
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2. If µc ∈ mixsseq(acnet), for every c ∈ col, are sequences of the same length, then there

is µ ∈ mixsseq(pacnet) such that µ ↓c = µc, for every c ∈ col.

Proof 4.6.1 (1) Let µ =M0U1M1 . . .Mk−1UkMk and c∈ col. The result is proven by induction

on k.

If k = 0 then µ = M0 = Minit
pacnet. Then µ is well-formed and µ ↓c ∈ mixsseq(acnet) follow

from Definition 4.6.1(5) and Eq. (4.1).

The inductive case follows from the well-formedness of acnet, Definition 4.6.1(3), and the

following fact: for every (u, t,c) ∈ Tpacnet,

prepacnet ((u, t,c))↓c = preacnet (u) and postpacnet ((u, t,c))↓c = postacnet (u).

Also, it is important that the tokens and modes of transition firings based on different colours

do not ‘interfere’ with each other in pacnet.

(2) Let n be the common length of the mixed step sequences µc (for every c ∈ col).

Let c∈ col. We observe that there is a mixed step sequence νc = Zc
1 . . .Z

c
n ∈mixsseq(pacnet),

which only uses transitions and tokens based on the parameter c, such that νc ↓c = µc. (Note

that Definition 4.6.1(3) ensures that u ∈ T ′ can be ‘executed’ with parameter c when M is a

colour-safe marking of pacnet such that preacnet (u)⊆ M ↓c.)

Let µ = Z1 . . .Zn, where Zi =
⋃

c∈col Zc
i . Again, since the tokens and modes of transition

firings based on different colours do not ‘interfere’ with each other in pacnet, we obtain

µ ∈ mixsseq(pacnet). Moreover, by construction, µ ↓c = µc, for every c ∈ col. ⋄

The assumption that the mixed step sequences µc (for every c ∈ col) have the same length

can be easily satisfied by adding extra empty steps to the ‘shorter’ ones.

Proposition 4.6.1(1) means that the behaviour of pacnet is well-formed and based on the

behaviour of acnet. Conversely, Proposition 4.6.1(2) means that all the behaviours of acnet

are represented by the behaviours of pacnet.
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4.6.3 Parametrised communication structured acyclic nets

We now introduce a parametrised version of communication structured acyclic nets. Since

the definitions closely follow those in the previous section, we keep explanations short.

Definition 4.6.5 (parametrised communication structured acyclic net) A parametrised com-

munication structured acyclic net (PCSA-net) is a tuple

pcsan = (pacnet1, . . . ,pacnetn,Q,W,Q′,W ′, ι ′,col) (n ≥ 1)

such that:

• pacneti = (Pi,Ti,Fi,acneti, ιi,col), for 1 ≤ i ≤ n, are PA-nets.

• csan = (acnet1, . . . ,acnetn,Q,W ) is a well-formed CSA-net.

• Q′ is a set of (master) buffer places, and W ′ ⊆ Q′×T ∪T ×Q′, where T = T1∪·· ·∪Tn,

is a set of arcs adjacent to these places.

• ι ′ : Q′ → P(Q)\{∅} is an annotation mapping such that Q =
⊎
{ι(q) | q ∈ Q′}. For

every q ∈ Q, qpcsan will denote the unique buffer place in Q′ such that q ∈ ι ′(qpcsan).

• col is a finite set of colours (or parameters).

We also assume that the sets of nodes of pacnet1, . . . ,pacnetn,Q,Q′ are pairwise disjoint and

W ′ = {(x,y) ∈ Q′×T ∪T ×Q′ | (ι(x)× ι(y))∩W ̸=∅},

where ι = ι1 ∪·· ·∪ ιn ∪ ι ′. ⋄

The idea of Definition 4.6.5 is similar to that of PA-net, and so the following notations are

close to those introduced before :

Tpcsan = Tpacnet1 ∪·· ·∪Tpacnet1 and Ppcsan = Ppacnet1 ∪·· ·∪Ppacnet1 ∪ Q̃,
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where Q̃ = {(q,qpcsan,c) | q ∈ Q∧ c ∈ col}. Moreover, we denote, for all 1 ≤ i ≤ n and

(u, t,c) ∈ Tpacneti:

prepcsan ((u, t,c)) = prepacneti ((u, t,c)) ∪ {(q,qpcsan,c) ∈ Q̃ | qWu}

postpcsan ((u, t,c)) = postpacneti ((u, t,c)) ∪ {(q,qpcsan,c) ∈ Q̃ | uWq}.

Example 25. Figure 4.9 shows an example of PCSA-net. ⋄

We also denote P = P1 ∪ ·· · ∪Pn ∪Q′ and F = F1 ∪ ·· · ∪Fn ∪W ′, and, for all x ∈ P∪T ,

p ∈ P, and u ∈ Tcsan, we denote:

prepcsan (x) = {z | zFx} prepcsan (u, p) = ι(p)∩precsan (u)

postpcsan (x) = {z | xFz} postpcsan (u, p) = ι(p)∩postcsan (u) .

Proposition 4.6.2 For all t ∈ Tpcsan and u ∈ ι(t):

precsan (u) =
⊎
{prepcsan (u, p) | p ∈ prepcsan (t)}

postcsan (u) =
⊎
{postpcsan (u, p) | p ∈ postpcsan (t)} .

Example 26. Figure 4.9(a) shows a CSA-net where two acyclic nets (the upper one

exhibiting concurrency and the lower exhibiting alternative) communicate through two buffer

places. Figure 4.9(b) shows a corresponding representation after parametrising. Note that

ι(r1) = {p1} and ι(t1) = {a} for the upper acyclic net, while ι(r7) = {p7} and ι(t5) = {e, f}

for the lower acyclic net. Intuitively, ι(t5) specifies different ‘modes’ of the execution of

transition t5 for each mode u ∈ ι(t5), the arcs incoming to transition {t5} ‘deliver’ the input

places of u, and similarly for the output arc. ⋄

4.6.4 Behavioural properties of PCSA-nets

In this section, we will introduce the behaviors of PCSA-nets. Generally, these are similar to

those in Chapter 3, so we will keep this discussion brief.
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p1
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b
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p4
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p6
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q1 q2(a)

α

r1:{p1}
t1

{a}

r2:{p2}
t2

{b} r3:{p3}

t3
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t4

{d}
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t5

{e, f}
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q:{q1,q2}

(b)

Fig. 4.9 A CSA-net (a); and its PCSA-net version (resulting introducing an MBP and folding
the lower acyclic net) with col = {1,2}, where α = {p1:1, p1:2} and β = {p7:1, p7:2} (b).

Definition 4.6.6 (marking and step of PCSA-net) Let pcsan be as in Definition 4.6.5.

1. The markings of pcsan, denoted by markings(pcsan), are the subsets of Ppcsan and

Qpcsan.

2. The default initial marking of pcsan is Minit
pcsan = Minit

pacnet1 ∪·· ·∪Minit
pacnetn .
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3. The steps of pcsan are

steps(pcsan) = {U ∈ P(Tpcsan) | ∀t ̸= u ∈U : prepcsan (t)∩prepcsan (u) =∅} .

4. A step U of pcsan is enabled at marking M if

prepcsan (U)⊆ M∪ (postpcsan (U)∩ Q̃),

where Q̃ = {(q,qpcsan,c) | q ∈ Q∧ c ∈ col}. It can then be executed and yield

M′ = (M∪postpcsan (U))\prepcsan (U).

This is denoted by M[U⟩pcsan M′. ⋄

Definition 4.6.7 (mixed step sequence of PCSA-net) Let pcsan be as in Definition 4.6.5.

Moreover, let M0,M1 . . . ,Mk (k ≥ 0) be markings and U1, . . . ,Uk be steps of pcsan such that

M0 = Minit
pcsan and we have Mi−1[Ui⟩pcsan Mi, for every 1 ≤ i ≤ k. Then

µ = M0U1M1 . . .Mk−1UkMk

is a mixed step sequence of pcsan. This is denoted by µ ∈ mixsseq(pcsan). Also, µ is

well-formed if the following hold:

• postpcsan (t)∩postpcsan (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.

• postpcsan (Ui)∩postpcsan (U j) =∅, for all 1 ≤ i < j ≤ k.

Note that in such a case Mi is colour-safe, for every 0 ≤ i ≤ k. ⋄

We also use the same notion of projection as for PA-nets, and then obtain a result showing

full consistency between the behaviour of a PCSA-net and its underlying CSA-net.

Proposition 4.6.3 Let pcsan be as in Definition 4.6.5.
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1. If µ ∈ mixsseq(pcsan) then µ is well-formed and µ ↓c ∈ mixsseq(csan), for every

c ∈ col.

2. If µc ∈ mixsseq(csan), for every c ∈ col, are sequences of the same length, then there

is µ ∈ mixsseq(pcsan) such that µ ↓c = µc, for every c ∈ col.

Proof 4.6.2 The proof is similar to that of Proposition 4.6.1.

4.7 Conclusion

This chapter introduced two extensions of CSA-nets using the concepts of folding and

parametrisation. The analysis and visualisation of CSA-nets is a challenging task, especially

for large and complex systems. The proposed parametrisation technique can contribute to

improving visualisation and increasing the ability to understand models under investigation.

Future work will consider other forms of folding, e.g., merging together entire components

of acyclic nets and subsequently the extension to behavioural structured acyclic nets.



Chapter 5

Improving Placement of CSA-nets

Communication Structured Acyclic Nets (CSA-nets) are a Petri net-based formalism for

representing interactions between subsystems of complex evolving systems (CES). CSA-nets,

composed of sets of acyclic nets, are suitable for modelling and visualising the behaviour of

event-based systems. Each subsystem is represented using a separate acyclic net and is linked

with other acyclic nets through a set of buffer places. These buffer places connect different

acyclic nets and depict their interactions. The challenge arises as the growth of subsystems

increases the number of arc crossings. This chapter focuses on improving the visualisation of

CSA-nets by rearranging their component acyclic nets to minimise the number of crossing

arcs. Specifically, this chapter takes inspiration from the main ideas behind three well-known

sorting algorithms, viz., bubble sort, insertion sort, and selection sort, and integrates them into

formulas to compute crossings. Experiments are carried out to compare the improvements

resulting from following each of the three approaches. The outcomes point to the high

effectiveness of the selection sort-inspired approach.

5.1 Introduction

The use of CSA-nets for example, in criminal investigations, can encounter significant hurdles

due to the complexity and sheer volume of the information involved. These obstacles pose

considerable challenges for investigators attempting to interpret CESs and making accurate
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and timely decisions [24]. This becomes particularly critical as the volume of data increases

because the complexity of the visualisation can significantly hinder effective analysis and

decision-making. Specifically, an increasing number of subsystems that communicate

with each other leads to an increase in the number of buffer places, resulting in a higher

number of crossings in the model. However, minimising the crossing number is an NP-

hard problem [63, 45]. To alleviate these issues, enhancing the visualisation of CSA-nets

representations could play a crucial role, enabling much better understanding of the problem

under investigation. Such an improvement would assist investigators in identifying, e.g.,

causality among the events, thereby aiding system analysis.

Reducing the crossing number for CSA-nets resembles a sorting problem where the goal is

to find the most efficient arrangement of acyclic nets to reduce the total count of crossings.

In other words, by sorting acyclic nets in a manner that minimises the number of crossing

arcs or edges in the visualisation, the model’s representation can be improved. One of the

efficient approaches to enhance the clarity and readability of such representations is to employ

sorting algorithms to arrange the acyclic nets. By doing so, we aim to make the graphical

representation more comprehensible.

Sorting algorithms [72] are designed to reorder items in a list or array, either in increasing

or decreasing sequence [19]. They are key to numerous computational activities, ranging

from displaying data in a form understandable to humans to enhancing the efficiency of

intricate algorithms. In the realm of layered graphs [28], also referred to as layered digraphs

or hierarchies, sorting algorithms hold substantial significance. They contribute to various

aspects of layered graph visualisation and are instrumental to their success. There are several

sorting algorithms such as bubble sort, insertion sort, selection sort, quick sort, merge sort

and heap sort [86]. Each of these algorithms has its strengths and weaknesses and is best

suited to particular kinds of tasks and data types. The right algorithm to use depends on the

specifics of the problem at hand, including the size of the list, the range and type of values,

and the desired time and space complexity [80].

In this thesis, we investigate three elementary sorting algorithms, namely Bubble Sort,

Insertion Sort, and Selection Sort. These sorting techniques, while simple, can be quite
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effective in properly arranging the acyclic nets and ultimately enhancing the visualisation

of CSA-nets. Given these algorithms’ characteristics, they can be employed strategically

depending on the specific requirements of the CSA-nets under consideration, such as the

size of the acyclic nets and the degree of ‘unsortedness’. The overall aim is to optimise the

visual representation, reduce crossing arcs, and thus improve readability and analysis. This

strategic utilisation of sorting algorithms in enhancing visualisation provides a significant

step forward in the field, contributing to more effective cybercrime investigation [33], AI

interpretation, clinical investigation, and other applications of CES.

This chapter proposes an innovative approach to enhance the visualisation of CSA-nets by

reorganising the acyclic nets with the objective of minimising the crossing number.

5.2 Related work

The techniques of data visualisation, like directed graphs [31, 20], are essential for various

applications, such as financial fraud detection, and the analysis of social and biological

networks. This is due to the merits of such techniques for analysing complex data, identifying

patterns, and extracting valuable insights. The main components of such techniques are the

nodes and edges/arrows [23].

The effectiveness of visual representations is paramount when dealing with complex sys-

tems, where nodes and edges serve as crucial elements in conveying relationships and

structures [34]. However, this results in an high number of edges that may present a common

hindrance in visualisations due to their intersection. Such a problem is commonly known as

crossing arcs. This problem is widely agreed to be an inhibitor in understanding graphs as it

profoundly affects the clarity of visual representations and hinder the understandability of

visualisations [100]. Moreover, the characteristics of complex systems usually make it very

difficult to yield drawings free of crossings [93]. Consequently, the topic of reducing arc

crossings has been a focal point for researchers with the aim of minimising the total number

of arc crossings [32], and several strategies have been devised for this purpose. For example,

Jianu et al. [61] propose to employ colouring schema for the crossing arcs. In particular,
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they colour the intersecting edges with contrasting colours to maximise the viewer’s ability

to distinguish them. Another issue that arises from crossing arcs, especially with directed

graphs, is when the arrowheads crosses the edges. This commonly occurs when several

edges are incident to a common node. Then, it becomes hard to see whether a specific

edge is incoming or outgoing to a specific node. Binucci et al. [23] proposed placing the

arrowhead at different points along the arc. Specifically, they introduced a solution using

integer linear programming that employs a heuristic approach to determine whether to place

the arrowhead along the entire edge lines or at a specific point (for example, the midpoint) of

these arcs. More recently, Francisco et al. [81] concentrated on radial layered graph which is

a subclass of graphs where the nodes are arranged in a circular shape around a predefined

node referred to as the root. Each successive circle is represented by a larger circle radiating

outward. The nodes in each circle are of the same distance from the root node. This type

of graph is of major importance in genomics visualisation. Similar to a directed graph,

crossing edges limits the applicability of a radial layered graph. Therefore, they developed

an algorithm to minimise edge crossings in radial layered graphs that do not require adding

or removing nodes and edges. Using a two-step process of counterclockwise circle rotation

and edge-to-segment path conversion, the algorithm optimises node placements within their

circular layers.

A different attempt was carried out by Domrös et al. [38]. This includes using the dummy

vertices technique between layered crossings which involves introducing a new path between

two crossing layers. For example, a crossing arc between layer A and layer C through layer

B can be replaced by new paths, one between layer A and layer B and the other between B

and C. However, this technique will decrease the readability of the graph and might make

the graph hard to follow because the number of vertices will increase.

Focusing on one emerging technology, the big graphs of NoSQL, which focus on data

relationships rather than data values. The issue is that arrows cross with each other while

trying to elaborate on the relationships in the data. Accordingly, Adoni et al. [1] proposed an

efficient parallel and distributed algorithm for large-scale graph partitioning called Distributed

Placement of Hub-Vertices (DPHV) to reduce the complexity of queries by dividing the
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graph into multiple sub-graphs. However, it is an NP-complete problem and presents

numerous challenges. Walter et al. [127] proposed a practical method for drawing cable

plans of complex, custom-configured machines. They introduced ’port groups’ to model

plug sockets, allowing ports within a group to change their position for improved aesthetics,

while maintaining contiguity. The method was tested on both real-world and synthetic data

simulating real-world scenarios. Their experiment was compared with Kieler, a tool used to

model and analyse complex systems. The approach resulted in 10-30% fewer crossings while

performing similarly or slightly worse than Kieler in terms of bend count and computation

time.

One popular technique in this area is Sugiyama-style [118], otherwise known as the layered

or hierarchical graph drawing. It is a specific method employed for the visualisation of

directed graphs which arranges the vertices of the graph across distinct horizontal tiers or

layers, predominantly orienting the edges in a downward direction. The paradigmatic design

of a layered drawing aspires to be an upward planar drawing, wherein all the edges align in a

uniform direction, and no edge intersects another.

Going to modelling tools, CSA-net can be viewed as a directed graph that depicts the

relations between complex system components. With no exceptions, CSA-net suffers from

the crossing arc issue. The hurdle is that, to the best of our knowledge, no attempts have been

carried out to reduce the crossing in the field of CSA-net. Accordingly, this chapter focuses

on improving the placement of CSA-net components using sorting algorithm to mitigate this

issue.

5.3 Placement of CSA-nets

CSA-nets are represented by subsystems that facilitate communication between them. While

the component acyclic nets yield relatively simple graphs that are typically (very) long and

have few crossings, the primary challenge arises from the arcs that represent communication

between subsystems (acyclic nets). These arcs can cross several acyclic nets, thereby

diminishing the comprehension of the overall graphical display. A potential solution is to
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reorder the placement of the acyclic nets in a manner that minimises the total number of

crossings. From this perspective, minimising the crossing number for CSA-nets can be seen

as a kind of sorting problem, where the goal is to find the most effective placement of acyclic

nets. In this chapter, we investigate how the principles behind basic sorting algorithms might

aid in developing effective placement strategies for the component acyclic nets in a CSA-net.

Specifically, this work aims to examine strategies to reduce the number of crossings between

acyclic nets and arcs representing communication in a CSA-net by optimising the placement

of the acyclic nets.

acnet1

acnet2

acnet3

acnet4

g1 g2 g3 g4a b c

t1 t2 t3 t4d e f

s s2 s3 s4g h i

r1 r2 r3 r4j k l

q1 q2 q3

q4 q5 q6 q7

q8 q9

Fig. 5.1 A graphical representation of a CSA-net with 4 acyclic nets causing 6 crossings.

Throughout this chapter, we assume that we are given a CSA-net

csan = (acnet1, . . . ,acnetn,Q,W )

as in Definition 3.5.1. Moreover we assume that:

• n ≥ 3 since only then it makes sense to consider different placements of the component

acyclic nets.
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• For each buffer place q ∈ Q there is exactly one transition t and exactly one transition

u such that tWq and qWu.

• For all 1 ≤ i, j ≤ n we denote by mi, j the number of buffer places q such that there are

t ∈ Tacneti and u ∈ Tacnet j satisfying tWq and qWu. To simplify some of the formulas,

we will also use the notation ci, j = mi, j +m j,i, for all 1 ≤ i, j ≤ n. Note that ci, j = c j,i,

for all 1 ≤ i, j ≤ n.

Additionally, we assume that csan is represented graphically by placing the acyclic nets one

above the other (that is, in the form of a stack). Initially, the placement is acnet1, . . . ,acnetn.

In general, a placement can be represented by an integer array H with n entries indexed

0,1, . . . ,n− 1. It represents the placement acnetH(0), . . . ,acnetH(n−1) of the acyclic nets

which are the components of the CSA-nets csan, and so it is a permutation of the integers

1,2, . . . ,n. Initially, Hinitial = (1,2, . . . ,n).

CSA-net consists of a number of disjoint acyclic nets that communicate through special

buffer places. These buffer places can generate many arcs ‘crossing’ other acyclic nets, which

makes the model hard to visualise and analyse. Therefore, our idea is to develop algorithms

which will serve the placement purpose efficiently and accurately.

Consider, for example, a graphical representation of CSA-net in Figure 5.1, where there

are 6 crossings generated by buffer-related arcs passing through acyclic nets. For example,

the communication between acnet1 and acnet3 generates three crossings. The placement of

acyclic nets shown in Figure 5.1 could be improved, for example, by Figure 5.4. The result

would generate only one crossing.

In the initial placement, for all buffer places q ∈ Q and transitions t ∈ Tacneti and u ∈ Tacnet j

such that tWq and qWu, the arcs adjacent to q pass through exactly |i− j|−1 acyclic nets

placed in-between acneti and acnet j. We refer to each such passing as a ‘crossing’.1 That is,

initially, when we place the acyclic nets according to Hinitial = (1,2, . . . ,n), the number of

1Note that we assume that each buffer connection between acneti and acnet j generates one crossing with
any acyclic net in-between acneti and acnet j.
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acnet1
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acnet4
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Fig. 5.2 A graphical representation of a CSA-net with 4 acyclic nets after applying bubble
placement to the CSA-net from Figure 5.1 causing 2 crossings.

crossings is:

cross(Hinitial) = ∑i̸= j(|i− j|−1) ·mi, j

= ∑i< j(|i− j|−1) · ci, j

(5.1)

In general, for a placement given by permutation H, we have:

cross(H) = ∑
i ̸= j

(|i− j|−1) ·mH(i),H( j)

= ∑
i< j

(|i− j|−1) · cH(i),H( j)

(5.2)

Eq.(5.1) describes how to calculate the number of crossings in the initial placement. Eq.(5.2)

describes how to calculate the number of crossings in the placement given by an arbitrary

placement represented by H.

The aim of our work is to place the acyclic nets so that the number of these crossings is

minimised. In other words, to find H such that cross(H) is as small as possible. In this

chapter, we investigate different algorithms inspired by three well-known sorting strategies,

namely, bubble sort, insertion sort, and selection sort. The reason behind choosing these



5.4 Bubble-sorted placement 85

algorithms is due to their simplicity and their reasonable running time compared to others.

Moreover, they are known to be consistent sorting algorithms requiring constant space.

acnet1

acnet3

acnet2

acnet4

g1 g2 g3 g4a b c

t1 t2 t3 t4d e f

s s2 s3 s4g h i

r1 r2 r3 r4j k l

q1 q2 q3

q4

q5 q6 q7q8 q9

Fig. 5.3 A graphical representation of a CSA-net with 4 acyclic nets after applying insertion
placement to the CSA-net from Figure 5.1 causing 2 crossings.

5.4 Bubble-sorted placement

Bubble sort [16] is a sorting algorithm that iterates over a list of n items while comparing

each neighboring pair in the list. The strategy is to swap the pair’s members if they are

not in the correct order. The swapping is repeated in up to n− 1 passes of the list [123].

While not suitable for large data sets due to its relatively high time complexity [42], it proves

to be quite useful for smaller or nearly sorted lists, making it a good fit for CSA-nets with

fewer acyclic nets or when the nets are nearly in the desired order. We apply this concept

by carrying out the comparison step, taking into account the number of crossings. More

precisely, we examine acnetH(i) and acnetH(i+1), and swap them if this reduces the total

number of crossings.
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Proposition 5.4.1 (difference crossing) Let H be a placement, 0 ≤ i < n−1, and H ′ be the

placement given, for every 0 ≤ j ≤ n−1, by:

H ′( j) =


H(i+1) if j = i

H(i) if j = i+1

H( j) otherwise

Then diffcross = cross(H)− cross(H ′) can be computed by:

diffcross =
i−1

∑
j=0

(cH(i),H( j)− cH(i+1),H( j))+
n−1

∑
j=i+2

(cH(i+1),H( j)− cH(i),H( j)). (5.3)

where:

• If i = 0 then ∑
i−1
j=0(cH(i),H( j)− cH(i+1),H( j)) is omitted.

• If i = n−2 then ∑
n−1
j=i+2(cH(i+1),H( j)− cH(i),H( j)) is omitted.

Proof 5.4.1 Swapping acnetH(i) with acnetH(i+1) does not affect the numbers of crossings in-

duced by buffers between the acyclic nets acnetH(0), . . . ,acnetH(i−1),acnetH(i+2), . . . ,acnetH(n−1).

Moreover, we have that:

• each buffer place (in either direction) between acnetH(0), . . . ,acnetH(i−1) and acnetH(i)

induces one more crossing;

• each buffer place (in either direction) between acnetH(0), . . . ,acnetH(i−1) and acnetH(i+1)

induces one less crossing;

• each buffer place (in either direction) between acnetH(i+2), . . . ,acnetH(n−1) and acnetH(i)

induces one less crossing;

• each buffer place (in either direction) between acnetH(i+2), . . . ,acnetH(n−1) and acnetH(i+1)

induces one more crossing;

• buffer places (in either direction) between acnetH(i) and acnetH(i+1) induce no cross-

ings (before and after swapping).
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It then follows that

cross(H)−cross(H ′) =
i−1

∑
j=0

cH(i),H( j)−
i−1

∑
j=0

cH(i+1),H( j)−
n−1

∑
j=i+2

cH(i),H( j)+
n−1

∑
j=i+2

cH(i+1),H( j).

That is, crossings between the acyclic nets outside the swapped pair, acnetH(i) and acnetH(i+1),

remain unchanged by the swap. This implies that the swap does not change crossings between

acnetH(0), . . . ,acnetH(i−1),acnetH(i+2), . . . ,acnetH(n−1). Moreover, for any buffer place con-

necting the sequence before acnetH(0), . . . ,acnetH(i−1) and acnetH(i) as well as between

acnetH(i+2), . . . ,acnetH(n−1) and acnetH(i), there is an increase in one crossing. This is be-

cause swapping changes their relative positions. Also, buffer places connecting the sequence

before acnetH(0), . . . ,acnetH(i−1) and acnetH(i+1) as well as acnetH(i+2), . . . ,acnetH(n−1) and

acnetH(i), experience one less crossing, due to the change of relative positions. Note also that

the buffer places between acnetH(i) and acnetH(i+1) do not change the number of crossings

as a result of the swap.

Hence Eq.(5.3) is correct. ⋄

The diffcross in (5.3) has two summations that are used to compute whether acnetH(i) is to

be swapped with acnetH(i+1). The interpretation of each summation is as follows.

1. The first summation, ∑
i−1
j=0(cH(i),H( j)− cH(i+1),H( j)), checks if the number of com-

munication arrows from H(i) to the preceding nets is more or less than those from

H(i+1). If the summation is positive, H(i) has more connections to the preceding nets

compared to H(i+1). If the summation is negative, H(i+1) has more connections to

the preceding nets. This helps determine if swapping H(i) with H(i+1) might reduce

the total number of crossings.

Example 27. Consider that we are focusing on the fifth acyclic net, and the total

numbers of arrows from the fifth and sixth acyclic net to the preceding four acyclic

nets are 10 and 15, respectively. This means that the sixth acyclic net is more related to

the first four acyclic nets and it would be better to swap it with the fifth acyclic net. ⋄
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2. The second summation, ∑
n−1
j=i+2(cH(i+1),H( j) − cH(i),H( j)), checks if the number of

communication arrows from H(i+ 1) to the succeeding nets is more or less than

those from H(i). If the summation is positive, H(i+ 1) has more connections to

the succeeding nets compared to H(i). If the summation is negative, H(i) has more

connections to the succeeding nets. This helps determine if swapping H(i) with

H(i+1) might reduce the total number of crossings.

Example 28. Consider that we are focusing on the fifth acyclic net, and the total

numbers of arrows from the fifth acyclic net and sixth acyclic net to the four last acyclic

nets are 7 and 5, respectively. This means that the fifth acyclic net is more related to

the last four acyclic nets and it would be better to swap it with the sixth one. ⋄

That is, if we treat each summation as a condition, we can infer that if both conditions

are satisfied, the final result of the summations will be a negative value (less than zero),

confirming the validity of the swapping.

Algorithm 1: bubble placement (see Figure 5.2)
1 Function BubblePlace():
2 H = (1,2, . . . ,n)
3 repeat
4 stop = true
5 for i = 0 to n-2 do
6 Compute the crossing difference as per Eq.(5.3)
7 if diffcross < 0 then
8 temp = H(i)
9 H(i) = H(i+1)

10 H(i+1) = temp
11 stop = f alse
12 end
13 end
14 until stop;
15 return H

Algorithm 1 provides details of the implementation. Note that the algorithm will always

terminate. This is because each successful swap, indicated by diffcross value, reduces the total

number of crossings, ensuring that the algorithm converges. Note that diffcross calculates
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the ‘effect’ of swapping acnetH(i) with acnetH(i+1) which are currently placed next to each

other. If diffcross < 0 the swapping reduces the number of crossings. All we need to do is

calculate the difference between the total number of crossings now, and after the swap. Note

that to determine the effect of swapping one does not need to calculate the total number of

crossings which is quadratic (see Eq.(5.2)). The calculation given in Eq.(5.3) is linear, and

so much more efficient.

Example 29. To illustrate Algorithm 1 with an example, consider the CSA-net shown in

Figure 5.1, which initially has 6 crossings. The algorithm begins by iterating through

the acyclic nets as per the loop in line 5. Initially, the index i is set to 0 (represent-

ing the first acyclic net), and when substituting into Eq.(5.3), the term ∑
i−1
j=0(cH(i),H( j)−

cH(i+1),H( j)) is omitted because the summation cannot run from 0 to -1. However, the

term ∑
n−1
j=i+2(cH(i+1),H( j)− cH(i),H( j)) is calculated, resulting in a crossing value of 1 for

the first acyclic net. Consequently, the condition in line 7 is not met, indicating that no

swapping will occur, and the first acyclic net will remain in its position. Moving on to the

second acyclic net, the term ∑
i−1
j=0(cH(i),H( j)− cH(i+1),H( j)) is executed. Furthermore, the

term ∑
n−1
j=i+2(cH(i+1),H( j)− cH(i),H( j)) is calculated, resulting in a crossing value of -2 for the

second acyclic net. Accordingly, the condition in line 7 is met, leading to the swapping of

the second acyclic net with the third acyclic net. This process is repeated until all the acyclic

nets have been visited. The final configuration of the CSA-net after sorting using bubble sort

is shown in Figure 5.2. By examining the figure, we can observe that bubble sort has reduced

the number of crossings from the initial 6 to 2 in the model. ⋄

5.5 Insertion-sorted placement

Insertion Sort [115] is another straightforward sorting technique. This algorithm sorts a list

by shifting each element to its correct position in the sorted portion of the list, one item at a

time [107]. Although it shares the same time complexity limitations as Bubble Sort for larger

datasets, it performs efficiently on nearly sorted lists. Thus, it can be a suitable choice for

sorting CSA-nets in contexts akin to those mentioned for Bubble Sort. In this method, we
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continuously insert the first unsorted element into its optimal location and shift subsequent

elements following this position to accommodate the newly inserted element. Similar to the

bubble placement approach, the insertion placement also considers the number of crossings.

Proposition 5.5.1 ((cost of insertion)) Let H be a placement, 0 ≤ j ≤ i < n−1, and H ′ be

the placement given, for every 0 ≤ m ≤ n−1, by:

H ′(m) =


H(i) if m = j

H(m−1) if j < m < i

H(m) otherwise

Then cost j defined as:

∑
k,l≤i

(|k− l|−1) · cH ′(k),H ′(l)− ∑
k,l≤i−1

(|k− l|−1) · cH(k),H(l)

can be computed as:

cost j =
j−1

∑
k=0

i−1

∑
m= j

cH(k),H(m)+
j−1

∑
k=0

(| j− k|−1) · cH(k),H(i)+
i−1

∑
m= j

| j−m| · cH(i),H(m). (5.4)

where:

• If j = 0 the we omit ∑
j−1
k=0 ∑

i−1
m= j cH(k),H(m) and ∑

j−1
k=0(| j− k|−1) · cH(k),H(i).

• If j = i then we omit ∑
j−1
k=0 ∑

i−1
m= j cH(k),H(m) and ∑

i−1
m= j | j−m| · cH(i),H(m).

Proof 5.5.1 Inserting acnetH(i) at position j means that each buffer place (in either direction)

between acnetH(0), . . . ,acnetH( j−1) and acnetH( j), . . . ,acnetH(i−1) induces one more crossing.

Hence (5.4) is correct. ⋄

The cost of insertion placement is an elaboration of the cost in Eq.(5.4) associated with

an insertion operation. This equation is divided into separate summations, each capturing a

specific aspect of the cost incurred. The double summation ∑
j−1
k=0 ∑

i−1
m= j cH(k),H(m) calculates

the cost between every pair where k is before the insertion point j and m is between the
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insertion point j and the position of the inserted element (i1). It essentially measures how the

insertion affects the cost between elements that were before j and those that were between

j and i. The second summation ∑
j−1
k=0(| j − k| − 1) · cH(k),H(i) calculates the cost between

each element before the insertion point j and the element being inserted at i. Note that the

term | j − k| − 1 modifies the cost based on how far each element k is from the insertion

point j. This reflects how the insertion changes the relative positions of these elements.

The summation ∑
i−1
m= j | j −m| · cH(i),H(m) computes the cost between the inserted element

originally at position i and each element between the insertion point j, and | j −m| is a

modifier that accounts for the distance between the insertion point and each element m in

this range.

Algorithm 2: insertion placement (see Figure 5.3)
1 Function InsertionPlace():
2 H = (1,2, . . . ,n)
3 for i=1 to n - 1 do
4 bestcost = maxint
5 for j = 0 to i do
6 Compute cost j as per Eq.(5.4)
7 if cost j < bestcost then
8 bestcost = cost j
9 position = i

10 end
11 end
12 for j = position to i-1 do
13 H( j+1) = H( j)
14 end
15 H(position) = i
16 end
17 return H

Algorithm 2 provides details of the implementation. In this case, before each iteration for i,

we assume that H is such that H(0), . . . ,H(i−1) already contain the ‘best’ placement for

the acyclic nets acnetH(0), . . . ,acnetH(i−1). The iteration step then finds the ‘best’ place for

the acyclic net acnetH(i) with respect to H(1),H(2), . . . ,H(i− 1) (the relative ordering of

acnetH(0), . . . ,acnetH(i−1) is unchanged). Then acnetH(i) is inserted. Note that the acyclic
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nets acnetH(i+1), . . . ,acnetH(n−1) are not considered when placing acnetH(i). Note also that

if position = i then the loop for j = position to i−1 is not executed.

acnet1

acnet3

acnet4

acnet2

g1 g2 g3 g4a b c

t1 t2 t3 t4d e f

s s2 s3 s4g h i

r1 r2 r3 r4j k l

q1 q2 q3

q4

q5 q6 q7

q8 q9

Fig. 5.4 A graphical representation of a CSA-net with 4 acyclic nets after applying selection
placement to the CSA-net from Figure 5.1 causing only one crossings.

Example 30. An illustrative example of Algorithm 2 is provided using the CSA-net depicted

in Figure 5.1, which initially contains 6 crossings. Similar to the bubble sort algorithm,

the procedure begins by addressing the first acyclic net, as outlined in line 3. In line 4, a

default high value, in this case, 1000, is assigned as the best cost. The reason is to guarantee

that the conditional statement in line 7 is satisfied during every iteration, simplifying the

determination of the optimal position for each acyclic net. The operational steps of the

algorithm are as follows:

For all acyclic nets, excluding the first one, crossings are calculated as defined by Eq.(5.4).

It is important to note that, in this context, the terms ∑
j−1
k=0 ∑

i−1
m= j cH(k),H(m) and ∑

j−1
k=0(| j−

k|−1) · cH(k),H(i) are excluded. The reason for this exclusion is that it leads to a cost of 0

for the first acyclic net relative to the second acyclic net. Although this value is less than

the predefined threshold of 1000, no swaps occur due to the unsatisfied condition in line 12,
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which stipulates that i cannot be equal to j. This ensures that the first acyclic net remains in

its original position in the sorted sequence.

Moving on to the second acyclic net, where i = 2, both terms ∑
j−1
k=0 ∑

i−1
m= j cH(k),H(m) and

∑
j−1
k=0(| j− k|−1) · cH(k),H(i) are considered. As a result, a cost of 0 is determined between

the second and third acyclic nets. Since this value is below the 1000 threshold, a swap

is required. Specifically, the positions of the second and third acyclic nets are exchanged.

Continuing this methodology results in an insertion-sorted CSA-net, visually represented

in Figure 5.3. A visual inspection of the figure confirms that the insertion sort algorithm

successfully eliminates 4 of the initial 6 crossings present in the model. ⋄

5.6 Selection-sorted placement

Selection sort maintains two lists, one contains the sorted values and the other contains the

unsorted values [121]. Initially, the former is empty and in each iteration, the algorithm

selects the smallest value in the unsorted list and migrates it to the sorted list. However,

sorting the acyclic nets is different from sorting a list of elements, and we will use the number

of crossings for each acyclic net with other acyclic nets to select the acyclic net which should

be placed. Algorithm 3 shows the pseudocode of the proposed algorithm.

Each buffer place between acneti to anet j generates |i− j|−1 crossings. Hence the number

of crossings generated by the acneti, referred to as k(i) is given by

k(i) = ∑
j ̸=i

(|i− j|−1) ·mi, j (5.5)

where mi, j is the number of buffer places between acneti and acnet j.

Eq.(5.5) could be rewritten by excluding the distance between the acyclic nets, as follows.

k′(i) = ∑
j ̸=i

ci, j (5.6)
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Algorithm 3: selection placement (see Figure 5.4)
1 Function SelectionPlace():
2 Initialize array k of size n
3 Initialize empty H
4 for i = 1 to n do
5 Compute k(i) as per Eq.(5.5)
6 end
7 Let M = max(k)
8 H.add(M)
9 while there is acyclic net not added to H do

10 foreach acneti such that i ̸∈ H do
11 foreach acnet j such that j ∈ H do
12 Compute k(i) as per Eq.(5.6)
13 end
14 end
15 Let M = max(k)
16 H.add(M)

17 end
18 return H

Then, Algorithm 3 can be modified. This means that the criteria to detect the impact of

crossings is computed just by looking at the number of buffer places between two acyclic

nets.

Algorithm 3 aims to determine the optimal placement order for acyclic nets within a CSA-net

to minimise crossings. It begins by initialising array k to store the computed crossing values

for each acyclic net and the empty list H to represent the placement order. The core of the

algorithm involves calculating the crossing values for each acyclic net. Initially, these values

are computed using Eq.(5.5), which takes into account the relationships between acyclic nets

in the net. Each crossing value indicates how many crossings an acyclic net would cause if

placed at a particular position in the sequence. Once the initial crossing values are calculated,

the algorithm selects the acyclic net associated with the highest crossing value and adds it

to the placement order H. This process ensures that the acyclic net most likely to cause

crossings is placed first, strategically reducing potential crossings. The algorithm then enters

an iterative phase, where it continues to add acyclic nets to H. In each iteration, it calculates

updated crossing values for the remaining acyclic nets based on their connections with the
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already placed acyclic nets in H. These updated crossing values are computed using Eq.(5.6),

which considers the influence of already placed acyclic nets on the potential crossings. The

algorithm repeats this iterative process until all acyclic nets have been placed. The final

placement order H represents the nearly optimal arrangement to minimise crossings within

the CSA-net. By strategically selecting and placing acyclic nets based on their calculated

crossing values, the algorithm effectively reduces the number of crossings in the net, resulting

in an improved layout for visual representation.

Example 31. An illustrative example of Algorithm 3 is provided using the CSA-net depicted

in Figure 5.1, which initially contains 6 crossings. The algorithm starts by computing the

distance in line 5 using the equation, which yields the values of k(i) for each acyclic net.

Hence, the value of k(i) is computed using the formula:

k(i) = ∑
j ̸=i

(|i− j|−1) ·mi, j

where |i− j|−1 represents the number of crossings generated between the positions of nets

acneti and acnet j, and mi, j is the number of buffer places between acneti and acnet j. This

formula effectively calculates the crossings generated between acneti and all other acyclic

nets acnet j. The calculated values are shown in Table 5.1.
Table 5.1 Explanation of k values for each acyclic net

Acyclic Net (acneti) Calculation of k(i) Resulting k(i)
1 (|1−2|−1) ·m1,2 +(|1−3|−1) ·m1,3 +(|1−4|−1) ·m1,4 k(1) = 3
2 (|2−1|−1) ·m2,1 +(|2−3|−1) ·m2,3 +(|2−4|−1) ·m2,4 k(2) = 3
3 (|3−1|−1) ·m3,1 +(|3−2|−1) ·m3,2 +(|3−4|−1) ·m3,4 k(3) = 0
4 (|4−1|−1) ·m4,1 +(|4−2|−1) ·m4,2 +(|4−3|−1) ·m4,3 k(4) = 0

That is, k(i) represents the number of crossings generated by placing a specific acyclic

net acneti at a certain position in the sequence of acyclic nets. Specifically, the purpose

of computing k(i) is to determine the impact of each acyclic net on the overall number of

crossings within the CSA-net.

Thus, by calculating k(i) for each acyclic net, the algorithm can place the nets in a way that

minimises the total number of crossings. Specifically, according to line 7 in the algorithm,
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we set M = 1 as it is the maximum value in Table 5.1. Note that it is also possible to start

with M = 2 as k(2) = 3. Then, acyclic net 1 is added to H; H = (1), the sorted list. Now, we

pin acyclic net 1 as we iterate using the loops in lines 9 and 10. Specifically, we re-compute

the distance as in Eq. (5.5) from acyclic net 1. This yields k(2) = 0, k(3) = 3, and k(4) = 0.

As k(3) = 3, acyclic net 3 is selected to follow acyclic net 1 in H; H = (1,3).

In the next iteration, we recompute the distance from the remaining acyclic nets (2 and 4)

with respect to those in H (1 and 3). This yields, k(2) = 0 and k(4) = 1. Therefore, acyclic

net 4 is selected to follow acyclic net 3 in H; H = (1,3,4). Intuitively, there is only one

acyclic net remaining. Consequently, this yields a sorted list H = (1,3,4,2). The outcomes

of this approach are illustrated in Figure 5.4. Examination of the figure confirms that the

selection sort algorithm successfully reduces 5 of the initial 6 crossings in the model.

⋄

5.7 Experimental results and discussion

To test the placement algorithms proposed in the previous sections, we developed a Java code,

which is available at [5]. The code was executed on a MacBook PC with a 2.2GHz Intel

Core i7 processor and 8GB of RAM. We conducted experiments for each algorithm with

varying numbers of acyclic nets, ranging from 5 to 100, running each test for 1000 iterations.

The input matrices were randomly generated to specify the number of buffer places between

each pair of acyclic nets. We calculated the number of crossings for the initially generated

model and for the models resulting from the three placement algorithms. Then, we computed

the average crossing number for each placement algorithm and the average for the initially

generated crossings. From these averages, we derived the percentage of improvement using

the formula:
(AvgInitialCrossing−AvgCrossing(A)) ·100

AvgInitialCrossing

where AvgCrossing(A) is the average crossing number for algorithm A. The results of

this experiment are presented in Table 5.2. It indicates that selection placement is the

most effective. For example, when n = 100, selection placement reduced the crossings by
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approximately 81%, whereas the strongest competitor, bubble placement, managed to reduce

the crossings by only about 9%. To further validate the results for the selection placement,

we reran its outputs through the best competitor algorithm and recalculated the crossings.

This is shown in the last column of Table 5.2. The results demonstrate that there is only about

a 0.07% improvement for n = 100.
Table 5.2 Percentage of improvement for each algorithm and the splitting strategy. The first
three columns show the results of bubble, insertion and selection placement, respectively. The
fourth column shows the precentage of improvement after feeding the selection placement
result to the bubble placements. The last column shows the effect of using the splitting
strategy with selection placement.

n BubblePlace InsertionPlace SelectionPlace BubbleAfterSelection Splitting
5 70.46 67.63 96.61 0.15 98.14

10 37.48 25.44 87.01 0.72 96.36
20 25.47 8.07 85.54 0.67 93.24
40 16.81 2.62 83.51 0.22 92.54
60 13.00 1.49 83.39 0.18 94.27
80 9.27 0.84 81.81 0.12 94.65
100 9.17 0.56 81.13 0.07 93.74

Table 5.3 The amount of improvement added as the number of items n increase.

Range Bubble Insertion Selection
5-10 46.81 62.38 9.94
10-20 32.04 68.28 1.69
20-40 34.00 67.53 2.37
40-60 22.67 43.13 0.14
60-80 28.69 43.62 1.89

80-100 1.08 33.33 0.83
Mean 27.55 53.05 2.81

Moreover, we compared the percentage of improvement at each level with its predecessor.

The outcome of this experiment is illustrated in Table 5.3. Consider, for example, the first row:

‘5-10’ depicts the percentage of improvement at n= 10 with that at n= 5. Upon examining the

last row, which represents the mean value, it becomes clear that the selection sort algorithm

possesses the smallest mean, indicative of its steady and stable behavior. Moreover, closer

inspection of the table reveals that as the number of acyclic nets n increases, the percentage

of improvement tends to decrease. This is expected since, as the number of iterations
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Fig. 5.5 Time taken by three sorting algorithms.

increases, the algorithms have less optimization to perform. An intriguing observation can

be made when comparing these results with those in Table 5.2: at n = 5, the selection sort

exhibits about 97% improvement. This accounts for its small mean improvement in Table 5.3,

underscoring its high convergence speed. To visualise the behavior of the algorithm rather

than simply quantify it, Figure 5.5 portrays the improvement percentage in relation to the

number of iterations. A striking observation is the curve for selection sort, which tends

towards the horizontal, denoting its resilience to the increase in the number of items.

Table 5.4 shows the comparison of three placement algorithms—bubble placement, insertion

placement, and selection placement—across various metrics.
Table 5.4 Comparison of Bubble, Insertion, and Selection Placement Algorithms.

Metric Bubble Placement Insertion Placement Selection Placement
Average Improvement (%) 25.38 15.23 85.71

Best Improvement (%) 70.46 67.63 96.61
Worst Improvement (%) 9.17 0.56 81.13

Stability (STD) 21.39 22.14 5.44

That is, the data in the table highlight the superior performance of the Selection Placement

algorithm in reducing the number of crossings in acyclic nets. It consistently achieves

the highest average and best improvements and performs reliably even in the worst-case
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scenarios. The low standard deviation further underscores its stable performance. In contrast,

Bubble Placement and Insertion Placement show higher variability and generally lower

effectiveness in reducing crossings.

5.8 Result validation and evaluation

In the previous experiment, we assessed the algorithms’ performance in terms of reducing

crossings. To elaborate, we conducted a comparative analysis of the three sorting algorithms,

focusing on the percentage reduction in crossings. This analysis led to the conclusion

that the selection sort algorithm performed the best in terms of crossing reduction. In the

subsequent experiment, our aim shifted to evaluating the practical applicability of a specific

algorithm. To achieve this, we measured the time it takes to execute a specific operation,

namely the replacement of acyclic nets (acyclic nets). These two experiments serve distinct

research objectives, providing insights into different facets of the algorithms’ functionality

and usability.

5.8.1 Time evaluation

This experiment is focused on comparing the time required by the three sorting algorithms to

determine the optimal placement. The results of this experiment are visually represented in

Figure 5.6. The observation clearly indicates that the selection sort algorithm stands out as

the fastest among the three algorithms in terms of execution speed. This finding underscores

the practical advantages of selecting the selection sort algorithm, especially in scenarios

where the prompt placement of elements is crucial.

5.9 Further improvement - splitting

The splitting strategy involves dividing the acyclic nets into two equal length lists. These two

lists are then processed independently by the algorithm, allowing for a more specialised and

tailored treatment of each group. The final placement, resulting from this dual processing,
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Fig. 5.6 A comparison of the time taken by each algorithm to reduce the crossing number.
Note that the insertion placement running time is omitted as it falls in the range [0.02 - 23.46]
millisecond.

becomes a combination of two stack-like placements, positioned side-by-side within the

overall layout. This approach can potentially reduce the number of crossings further by

isolating the nets into more manageable subsets.

The rationale behind the splitting strategy is to minimize crossings by dividing acyclic

nets into smaller, more manageable groups. By processing these groups independently,

the algorithm can optimize each subset, leading to a more organized and less cluttered

overall layout. Crossings in the layout can be categorized into direct crossings and buffer-

based crossings. Direct crossings occur between immediate connections, while buffer-based

crossings involve intermediary buffer places. The splitting strategy primarily reduces direct

crossings but can introduce buffer-based crossings.

Example 32. Consider the CSA-net shown in Figure 5.4 which is the selection sorting

(resulting in 1 crossing) for the Figure 5.1 with initial 6 crossings. The idea is to split CSA-net

in, for example, two columns with the aim of reducing the crossing further. This is depicted

in Figure 5.7. That is, we can observe that we have zero crossing which in turn results in a

much more pleasant and easy to track figure.
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Fig. 5.7 A graphical representation of a CSA-net with 4 acyclic nets after applying splitting
CSA-two equivalent lists.

Empirical data shows that the splitting strategy can significantly reduce the number of

crossings. For example, in scenarios with 100 acyclic nets, the average reduction in crossings

was approximately 40%. While the splitting strategy reduces direct crossings, it can introduce

buffer-based crossings, which need to be managed carefully. Additionally, the increased

complexity of managing two separate lists can impact computational efficiency. Future

research could explore adaptive splitting strategies that dynamically adjust the size and

number of splits based on the characteristics of the acyclic nets. Additionally, applying the

splitting strategy to other domains, such as circuit design or network optimization, could

yield further insights.

⋄
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Experimental results are shown in Table 5.2, where we can notice that there is a further

improvement w.r.t. the results of selection placement. E.g., for n = 100, there is about 13%

improvement which confirms the suitability of the splitting strategy to the placement of

acyclic nets. However, this splitting strategy can also be adapted and applied with other

placement algorithms, including bubble and insertion sort algorithms.

5.10 Conclusion

In this chapter, we focused on enhancing the visualisation of CSA-nets by optimising the

placement of individual acyclic nets to minimise crossing numbers. We achieved this by

adapting three well-known sorting algorithms. Our experimental results demonstrated the

superiority of the selection placement strategy. Additionally, we discussed the splitting

strategy to further enhance the placement process. This approach involves dividing the

acyclic nets into two separate lists, each processed independently by the algorithm. The final

placement is a combination of two stack-like arrangements positioned side-by-side. In the

future we aim to refine these ideas by introducing dynamic placement strategies based on

specific criteria such as time intervals or communication events. In essence, we intend to

dynamically adjust the placement of acyclic nets, replacing them at predefined time intervals

or after a set number of communications within a specific time frame.



Chapter 6

Detecting SYN Flood Attack Using

CSA-nets

6.1 Introduction

Distributed Denial of Service (DDOS) attacks disrupt regular internet traffic by overwhelming

servers with vast amounts of data, leading to resource depletion [73]. The diverse nature of

malicious packets in these attacks complicates their analysis and makes detecting such attacks

difficult [76]. Although DDOS attacks frequently target the transport layer, they can also

exploit other layers using methods such as ICMP, SYN, and UDP flooding [58]. Attackers

can manipulate the network layer by altering the IP packet header, flooding servers with

irregular packets. Tracing the origin of these attacks is challenging due to the widespread use

of IP spoofing. As a result, attackers leverage attributes like packet size, rate, bit rate, and

arrival time to drain server resources [64]. The Transmission Control Protocol (TCP) — an

essential internet protocol — initiates connections through a three-way handshake involving

SYN and ACK messages [22]. TCP is widely used across the internet for various services,

leveraging flags such as SYN, ACK, and RST to manage connection status and data transport.

SYN-flooding attacks can be direct or involve IP address spoofing, with the most potent

form being a distributed attack utilizing multiple zombie computers to inundate the target.

Attackers exploit this by continuously sending SYN packets with fake IP addresses, leading
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to network saturation and server unresponsiveness [10]. A TCP-SYN-flood attack, a subtype

of DDOS attack, capitalizes on the TCP handshake process to overwhelm the targeted server,

rendering it inoperable. In this assault, TCP connection requests flood in faster than the server

can process, inducing network congestion. Such an attack not only disrupts server services

but also compromises the security of the client-server communication channel. It is hard to

detect, can arise without prior security alerts, and is considered permissible since it does not

directly exploit network vulnerabilities or misuse resources [125].

CSA-nets as discussed in [69, 104, 13, 15, 6] are designed to analyse and visualise complex

systems, such as those involving in cyber-attacks. They can aid in planning, tracing, and

monitoring system efficiency. CSA-nets represent such a system as distinct acyclic nets

interconnected by buffer places. These buffer places enable connections between subsystem

components through both synchronous and asynchronous communications. Additionally,

CSA-nets incorporate numerous properties in their formalisation, including causality, concur-

rency, and synchronisation, which can be invaluable for protocol analysis. In other words,

they have the capability to model and analyse network communication protocols, aiding in

the detection and understanding of abnormal network behaviours. Despite their potential,

the application of CSA-nets for modelling network protocols and detecting connection ab-

normalities remains undiscovered. Thus, this mathematical model could assist researchers

and practitioners in identifying the root causes of such anomalies, integrating the study and

modelling of these behaviours with detection methodologies.

This chapter introduces a novel approach for analysing and visualising cybersecurity be-

haviours using CSA-nets. Specifically, it models clients and servers as acyclic nets, empha-

sising their communication via the three-way handshake. A new algorithm is introduced to

discern communication between these nets. Essentially, the algorithm tracks packets that

successfully complete the communication sequence and identifies any abnormal packets that

fail in completing the process. That is, by using the capabilities of CSA-nets, this approach

could offer deep insights into anomalous TCP activity and help detect malicious activities

and uncover their root causes in the interactions between clients and servers.
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6.2 Related work

A Distributed Denial of Service (DDOS) attack is a widespread network assault aimed at

overwhelming computational resources and bandwidth, hindering the ability of legitimate

users to access services. This attack typically involves substantial packet flooding, making

it a more extensive version of a denial of service (DoS) attack. Attackers can effortlessly

change their IP addresses, thus bypassing blacklisting. Over the years, numerous techniques

for detecting and mitigating DDOS attacks have been developed, such as those targeting

TCP flood attacks. Researchers [97] proposed a machine learning (ML) approach to identify

DDOS attacks. This approach involves two main steps: feature extraction and model

detection. The feature extraction process serves to remove superfluous features, isolating the

most critical features of DDOS attack traffic. These features are then used as inputs in the

model detection phase, which uses the random forest algorithm to train the attack detection

model. Their experimental results suggest that the ML-based DDOS attack detection method

yields a high detection rate for common DDOS attacks. In [111] argued that DDOS attacks

from local networks pose greater threats than external ones due to detection complexities.

Using a spacecraft simulator’s real-time telemetry software, they analyzed both benign

and malicious packets. Their detection method was designed for TCP and HTTP Flood

DDOS attacks. They observed that the PSH&ACK flags, initially set low during regular

data transfers, surged during attacks. Consequently, they introduced two algorithms. The

primary one detects TCP floods by counting the PSH&ACK flags. If this count surpasses a

predefined limit in a specific duration, it indicates an attack. A recent study [102] investigated

machine learning (ML) algorithms for real-time DDOS attack detection, addressing prevalent

attack types like UDP flood, ICMP ping flood and TCP-SYN-flood. A classification model

was crafted based on ML, trained to distinguish benign from malicious network traffic.

Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbors (KNN) algorithms were

found to be effective in detecting attack traffic. However, KNN presents computational

complexity as it requires assessing the distance between the identified node and all other

nodes in the training dataset, followed by computing these distances. Consequently, KNN

can contribute to the computational workload of detection devices in the Software-Defined
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Networking architecture and potentially result in significant detection delays. Furthermore,

Decision Trees (DT) exhibit a shorter learning time compared to Random Forest (RF). That

is, DT emerged as a more streamlined option, making it the favored classification model. A

study [103] centered on detecting DoS attacks within the transmission control protocol (TCP)

three-way handshake. The researchers introduced a detection and prevention mechanism

for the TCP-SYN-flood attack through the use of an adaptive threshold. This threshold was

calculated via the ‘Adaptive threshold algorithm’. The outcomes highlight the proficiency of

the proposed approach in identifying and preventing TCP-SYN-flood attacks by leveraging

an adaptive thresholding technique. Moreover, a study [119] investigated ML and data

mining algorithms for detecting DDOS attacks, particularly TCP-SYN-flood attacks, using

the CAIDA dataset. The decision stump and the One-R (OR) algorithm were highlighted for

their accuracy, with performance metrics supporting their effectiveness.

In the field of modeling, several studies have been undertaken. One such study [65]

introduced a Petri net-based model to differentiate between DDOS attacks and legitimate

communications, both on the server and client sides. When deployed on the server side,

this model endeavors to reduce time complexity. It aims to identify and discard malicious

packets, while allowing valid communications. Packets are categorised using a confidence

index, specifically designed to prioritise against untrusted network attacks. Legitimate

communications receive high index values and are positioned in a high-priority queue,

whereas malicious communications are allocated to a lower-priority queue. This strategy

enhances the detection and filtering of malicious attacks, leading to improved server efficiency.

In addition, Structured Occurrence Nets (SONs) are another mathematical and graphical

modelling formalism used to detect these types of behaviours. SONs were used to identify

DNS tunneling attacks, a technique leveraged by adversaries to extract data from multiple

accounts [9]. In this model, each packet is represented as an individual occurrence net. If

a token securely transits from the start to the finish of the SON, the packet is recognized as

legitimate. Conversely, if it does not, it is deemed indicative of a DNS attack.

Despite the widespread use of machine learning (ML) techniques in the development of in-

trusion detection systems (IDS) for detecting and classifying cyber-attacks, several challenges
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arise. Malicious attacks are constantly evolving and occurring in large volumes, necessitating

a adaptable solution [126]. As attacks adapt by altering their behaviors, the feature distribu-

tions may change, causing the trained models to perform poorly and fail to detect new attacks.

This problem is referred to as domain-shift, which typically requires collecting new training

data and retraining the model to adapt to changes in the target domain [48]. Thus, there

is still a need for a deeper understanding of abnormal behaviors and the role of modeling

techniques in detection. Developing novel anomaly detection techniques to improve learning,

adaptation, and threat detection in diverse network environments is crucial [134]. Specifically,

one could solution is combining the strengths of both methodologies can provide a more

comprehensive and nuanced understanding of abnormal behaviors and enhance detection

capabilities. By leveraging the predictive power of machine learning and the insights into

structure and behavior from modeling, researchers can create a synergistic effect, resulting in

more robust and reliable solutions.

Client1

Server

Client2

c11
c21 c31 c41send − SYN receive− SYN−ACK send −ACK

s1
s2 s3 s4receive− SYN send − SYN−ACK receive−ACK

c12
c22 c32 c42send − SYN receive− SYN−ACK send −ACK

q1 q2 q3

q4 q5 q6

Fig. 6.1 Two clients ready to establish TCP Three-way handshake communication with the
server.

6.3 TCP protocol

The CSA-net visualisation framework is designed to aid in the analysis of complex system

such as cybercrime investigations. It uses acyclic nets to represent different systems, and these
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individual acyclic nets are interconnected by buffer places that can model both asynchronous

and synchronous communication between subsystems. The buffer places are employed to

link events and connect the acyclic nets with each other. An example of this is depicted

in Figure 6.1, which illustrates a CSA-net with two acyclic nets (CLIENT1, CLIENT2)

representing clients connected to a server represented by an acyclic net (SERVER) through

buffer places q1,q2, . . . ,q6. CSA-net offers a set of promising built-in features that enable

the analysis of systems under study and understanding their behaviours and interactions.

Coloured tokens are one of these characteristics that aid in the non-overlapping of interacting

tokens (e.g., packets), providing the ability to distinguish between packets based on unique

features that prevent them from interfering with each other. Another feature of CSA-net is

reachability, which is a verification property used to track the reachability of tokens from the

initial marking. These properties allow for the modelling and tracking of both the normal

behaviours of the TCP protocol for analysis and visualisation, as well as abnormal behaviours

that may indicate a DDoS attack.

6.4 Coloured communication structured acyclic nets (ccsa-

nets)

A coloured communication structured acyclic net consists of multiple disjoint acyclic nets

that can communicate through buffer places, which allow instantaneous transfer of tokens

and can involve a cycle only when synchronous communication is implemented. Given

the material presented in the preceding chapters, some technical definitions are omitted or

described informally.

Definition 6.4.1 (coloured acyclic net) A coloured acyclic net is a tuple

acnet = (P,T,F,col,ex,gd),

where P and T are disjoint finite sets of places and transitions respectively, and F ⊆

(P×T )∪ (T ×P) is the flow relation such that:
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• P is nonempty and F is acyclic.

• For every t ∈ T , there are p,q ∈ P such that pFt and tFq.

• col is a mapping assigning nonempty finite set of colours to every place.

• ex is an arc expression function that assigns an arc expression to each arc x = (p, t) or

x = (t, p) so that Type[ex(x)] = col(p).

• gd is a mapping assigning a boolean guard to each transition. (In this case guards

are very simple and ensure that all the input tokens used in transition firing are of the

same colour and all the tokens produced have the same colour too.)

Definition 6.4.2 A coloured communication structured acyclic net (or CCSA-net) is a tuple

ccsan = (cacnet1, . . . ,cacnetn,Q,W,col′,ex′) (n ≥ 1)

such that:

• cacnet1, . . . ,cacnetn are colured acyclic nets.

• csan = (acnet1, . . . ,acnetn,Q,W ) is a well-formed CSA-net (as defined in [6]), where

each acneti is an acyclic net obtained from cacneti after deleting the last three compo-

nents.

• col′ is a mapping assigning nonempty finite set of colours to every buffer place in Q.

• ex′ is an arc expression function that assigns an arc expression to each arc x = (q, t)

or x = (t,q), where q ∈ Q, so that Type[ex(x)] = col(q).

The execution semantics of CCSA-nets follows the standard coloured net rules as well as

the execution rules of CSA-nets [6] and is omitted in this Chapter. Markings of a CCSA-net

assign sets of suitable coloured tokens to the places of csan as well as the buffer places. The

execution rule is basically the same as for CSA-nets assuming that all the input tokens used

in transition firing are of the same colour and all the tokens produced have the same colour
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Table 6.1 Detailed description of client and server acyclic nets

Content meaning
c1 Client is ready to initiate a connection SYN

snd-SYN Client sends request to server to establish connection
c2 Client waits for response from Server
rcv-SYN-ACK Client receives response from Server ACK

c3 Client is ready to send SYN/ACK to Server
snd-ACK Client sends SYN/ACK to Server
c4 Client is ready to establish connection and push data to Server
s1 Server is ready to initiate connection with Client
rcv-SYN Server receives request from Client to establish connection
s2 Server is ready to send ACK to Client
snd-SYN-ACK Server sends ACK to Client
s3 Server waits for response from Client
rcv-ACK Server receives SYN/ACK from Client
s4 Server is ready to establish connection and push data to Client
x,y represent the expression on the arc, which can be a function or operator.

too. Intuitively, this means that the executions corresponding to different colours do not

interfere with each other (see Figures 6.3-6.9) Thus, coloured tokens ensure non-overlapping

of interacting tokens (e.g., packets), allowing differentiation based on unique features to

prevent interference [6]. In the CCSA-net case, a well-formed step sequence means that

no place or buffer place is filled by the same coloured token more than once in any given

step sequence. This mechanism allows for synchronising transitions from different acyclic

nets (e.g., clients and server), which then aids in modelling the behaviours of the three-way

handshake process. ccsan is ‘well-formed’ and so its executions (scenarios) allow to represent

well-defined causal relationships and properties. These properties can assist in detecting and

recording the entire causal history and so help in detecting abnormal behaviours that might

occur during the three-way handshake process.

6.5 Analysing three-way handshake by CCSA-net

In this section, we analyse the three-way handshake using CCSA-net representation. Specifi-

cally, we rely on the structures and behavioural properties to model and analyse such kinds

of cybercrime investigations. In other words, we use acyclic nets to represent different
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subsystems (Client and server) as individual acyclic nets and connect them through buffer

places to model both asynchronous and synchronous communication between them.

6.5.1 Structure of TCP model

Structurally, the three-way handshake process can be represented by two different acyclic nets

linked by buffer places. Figure 6.2 demonstrates the three-way handshake process between

clients and the server using a CCSA-net, which contains separate acyclic nets representing

clients (the upper one) and the server (the lower one). The places/status are represented

by circles, showing the current status of the process (e.g., SYN, SYN-ACK or ACK), while

transitions — represented by squares — are responsible for transferring tokens from one

place/status to another. Moreover, buffer places q1, q2 and q3 — represented by bold circles

— are responsible for transferring tokens between different acyclic nets synchronously or

asynchronously. Expressions and guards can be displayed on arcs and transitions (e.g., x

and y in Figure 6.2), and these expressions can be functions or operators written in ML

(a programming language). This adds additional constraints on the arcs and transitions,

e.g., determining the amount of traffic the server can process at a time or the time limit the

server waits for an acknowledgment as we used in classifier model in Figure 6.10. Table 6.1

provides a detailed description of the Client and Server nodes. Initially, tokens representing

different clients can be placed in c1 and be moved by firing transitions (from place to another

place by firing a transition). Each token has different colour to distinguish between different

clients during communication. Table 6.2 gives detailed description of the features of each

token. Therefore, we can analyse the handshake process based on the model’s structural

properties to ensure its soundness. Moreover, the structural properties of CCSA-net such

Table 6.2 Detailed description of colour sets of token

colour set description
IP-source contains the IP address of the source machine
IP-destination contains the IP address of the destination machine
source-port contains the source port number of the source machine
destination-port contains the destination port number of the destination machine
TCP-flags contains the flags of TCP packet (SYN, ACK or RST)
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as causality can aid our understanding of how packets are transmitted between Client and

Server through three-way handshake communication. This can provide administrators and

investigators with insights into the causes of DDOS attacks and help them understand how to

prevent future attacks. Specifically, this mechanism allows recording the causality between

executed transitions which helps in detecting and tracing the process of such communication.

Thus, investigators can benefit from extracting the causality of fired transitions to visually

understand abnormal behaviours during the connection before delving into the cause and

effect of such behaviour. That is, the three-way handshake can be effectively represented

(structurally) using a properly structured CCSA-net.

Clients
Server

A,B

c1
c2 c3 c4

x

y

snd-SYN rcv-SYN-ACK snd-ACK

A,B

s1
s2 s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

q1 q2 q3

Fig. 6.2 CCSA-net model for communication between clients and server showing two clients
(tokens) ready to establish connection with server.

6.5.2 Behaviour of TCP model

To analyse the three-way handshake behaviourally, we will leverage the built-in features and

formal properties inherent in the semantics of CCSA-nets [6]. These can be used to analyse

communication behaviour and detect abnormal situations that might arise during a connection.

Such properties can be discovered by the reachability analysis, which verifies the traceability

of tokens from the initial marking, and well-formedness, guaranteeing a clear representation

of causality. Both these mechanisms allow us to model and trace the standard behaviours

of the TCP protocol and to pinpoint abnormal behaviours, such as SYN-flood attacks. Note

that well-formedness is a fundamental criterion for CSA-nets and also CCSA-nets, and it

essentially guarantees a clear representation of causality in the behaviours of the net. The

CSA-net in Figure 6.2 is well-formed and so it ensures a clear representation for each token
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during the connection, assisting in detecting specific abnormal behaviours in communication

between clients and servers.

6.6 TCP three-way handshake and CCSA-nets

In the preceding section, we analysed the three-way handshake based on the structure and

behavioural properties of CSA-nets, discussing specific properties of this model. This section

demonstrates and utilises the behaviours (steps) of the three-way handshake by employing

CCSA-net to analyse and detect abnormal behaviours (SYN-flood).

6.6.1 Normal behaviour

The TCP protocol employs a three-way handshake to establish a reliable connection between

two devices. This procedure is captured in three principal steps using the CCSA-net. As

depicted in Figure 6.2, tokens A and B, which represent two packets, reside at c1. Through

the snd-SYN event, the client sends a SYN token, transmitting, for example, token A to c2 and

q1, as illustrated in Figure 6.3. Upon receiving this, the server’s rcv-SYN action is activated,

transferring token A from s1 to s2 (as shown in Figure 6.4). This progression signifies the

client’s anticipation of the server’s response to make the initial SYN communication. In the

second handshake phase, with token A positioned at s2, the SYN-ACK action is triggered,

sending token A to s3 and q2 (as shown in Figure 6.5). Subsequently, the client acknowledges

the server’s SYN-ACK action through the rcv-SYN-ACK event, moving token A to c3, as

captured in Figure 6.6. In the final handshake step, the client responds via the snd-ACK

action, shifting token A from c3 to c4 and q3 (as represented in Figure 6.7). The server’s

subsequent rcv-ACK action in Figure 6.8 finalises the handshake, ensuring an established

connection between both entities.
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Clients
Server
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c2 c3 c4snd-SYN rcv-SYN-ACK snd-ACK
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s2 s3 s4rcv-SYN snd-SYN-ACK rcv-ACK

A q1 q2 q3

Fig. 6.3 Server received client’s request and preparing to respond to this request.
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q1 q2 q3

Fig. 6.4 Second handshake SYN-ACK using snd-SYN-ACK and rcv-SYN-ACK.
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Fig. 6.5 Client received server’s request and preparing to response for server’s request.
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q1 q2 q3

Fig. 6.6 Connection for third-handshake using snd-ACK and rcv-ACK events.

6.6.2 Abnormal behaviour

In the abnormal behaviour of the SYN-flood attack, attackers manipulate the standard be-

haviour to inundate a server, thereby making detection increasingly challenging. As depicted

in Figure 6.9, the server fails to receive the third handshake response (ACK) from the client.
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Fig. 6.7 Server received client’s acknowledgment and preparing to start reliable connection
with client.
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Fig. 6.8 Both client and server are ready to push data between each other.
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Fig. 6.9 Abnormal behaviour as token A is frozen in c3.

Even though the snd-ACK transition is enabled, token A remains frozen at c3. This strat-

egy overwhelms the server with a surge of SYN requests, leading to numerous half-open

connections and consequently making the server unresponsive.

6.7 Timed-CCSA-nets

This section introduces the method for integrating timing information into CCSA-nets. This

integration enables TCCSA-nets to elaborate on the system’s performance, capturing the

system’s operations in real-time. Moreover, with this timing feature, CCSA-nets become

suitable for modelling systems where correctness depends on event timing. In contrast to
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CCSA-nets, this timed variant offers deeper insights into behaviours, such as the average

system runtime and adherence to deadlines for real-time processes. The primary distinction

between timed and untimed CCSA-nets lies in their token structure, as tokens now include

additional values denoting time. The token time (timestamp) quantifies the duration of

execution for each token. This timestamp is set to zero for each token in the initial markings.

Token timestamp is denoted by Ts. For instance, Ts = 0 indicates that the token time is zero,

signifying that the token remains in its initial marking. Once the transition snd − SYN is

executed, the token time starts and begins to increment based on the firing of transitions.

Figure 6.10 provides an illustrative example of a TCCSA-net. The formal notation for

TCCSA-nets is provided in Definition 6.7.1.

Client

Server

Ts := Ts +Tp Ts := Ts +Tp

Ts := Ts +Tp Ts := Ts +Tp

Ts := Ts +Tp

Ts := Ts +Tp

(168.1.1,192.1.1,8080,80, SYN,@0)

(168.1.2,192.1.1,8080,80, SYN,@0)

(168.1.3,192.1.1,8080,80, SYN,@0)

(168.1.4,192.1.1,8080,80, SYN,@0)

A
B
C
D A,B,C

Clients
SYNsent SYN-ACK received ACK-received

snd-SYN rcv-SYN-ACK snd-ACK

A,B,C

SIdle

SYN-rcv
classifier

SYN-ACK-snd

ACK-received

alarmed
rcv-SYN snd-SYNACK rcv−ACK

alarm

q1 q2 q3

Fig. 6.10 CSA-net model after applying classification for normal and abnormal behaviours.

Definition 6.7.1 A Timed coloured communication structured acyclic net (or TCCSA-net) is

a tuple

ccsan = (cacnet1, . . . ,cacnetn,Q,W,col′,ex′) (n ≥ 1)

such that:

• cacnet1, . . . ,cacnetn are coloured acyclic nets.

• csan = (acnet1, . . . ,acnetn,Q,W ) is a well-formed CSA-net (as defined in [6]), where

each acneti is an acyclic net obtained from cacneti after deleting the last three compo-

nents.
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• col′ is a mapping assigning nonempty finite set of colours to every buffer place in Q.

Each colour set is now can be timed or untimed.

• ex′ is an arc expression function that assigns an arc expression to each arc x = (q, t)

or x = (t,q), where q ∈ Q, so that Type[ex(x)] = col(q).

That is, Definition 6.4.2 is extended by introducing a timed colour set for each token,

enabling it to carry a time value during execution. Specifically, the colour set col can be

either timed or untimed. All places associated with a timed colour set are termed ‘timed

places’, and the arcs connected to these places are named accordingly. Additionally, these arcs

can carry an expression function or operator, expressed in ML (for instance, a programming

language). This introduces further constraints on the arcs. In ML, transitions can also feature

a time delay expressed as a type TIME or guard associated with transitions that evaluate to

either true or false based on the current marking (place). Thus, the colour set of a token t can

be described as a vector composed of six types, detailed as follows:

(IPsrc, IPdst ,Portsrc,Portdst ,Flag,Ts).

Time values are updated during the model’s execution (i.e., upon each event firing). At

any given point, we can assess the status of the token by inspecting its values. Once the

token’s execution is finished, the value Ts represents the duration of a token has spent within

the model (e.g., completing a three-way handshake). Algorithm 4 outlines the concept of

initialising timing for CCSA-nets tokens. Intuitively, time increments with the firing of a

token at each place, which indicates the duration taken for the token to transition from its

current place to the next.

The process time Tp quantifies the duration of consuming the token for each transition. This

facilitates the computation of metrics, such as the average time of processing transitions,

which provides deeper insight into the analysis of such communication systems. Moreover,

it is assumed that each transition can be fired once its input places are present, depending on

the time needed to consume a token by the transition (e.g., no restriction on firing transitions).

In other words, the time required for a transition to consume a token can vary based on
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Algorithm 4: TCCSA-nets
Input :CCSA-net
Output :TCCSA-net

1 Initialization
2 for each token i in the initial marking do
3 Initialize the token colour set. Initialize the token timestamp Ts[i] to zero.
4 end
5 Execution
6 while CCSA-net is executing do
7 for each token in the initial marking i do
8 Once the token is fired in the first event Update the token timestamp Ts[i] by

adding the processing time Tp of the transition.
9 end

10 end

different criteria, such as network latency or bandwidth. However, delays may occur within

the process. Specifically, in attack scenarios, a server could wait for an acknowledgment from

the client for an indeterminate period. In other words, attackers can force client machines

to delay or stop sending acknowledgments to the server, resulting in the process time of the

(snd-ack) event not being completed (i.e., creating a half-open connection). Thus, in the

model, transitions may include delay expressions, represented as expressions of the TIME

type. However, it is assumed that there are no time delays on transitions snd − SYN and

snd− SYN−ACK and output arcs. In other words, we assume the first and second handshake

are completed within a normal timeframe between clients and the server. This assumption

simplifies the analysis at this stage, ignoring certain types of delays that could occur during

the first and second handshakes, and focuses on computing the token’s age within the model

and comparing it with a predefined threshold to distinguish between normal and abnormal

activities.

That is, the cumulative time within the model includes all timestamps resulting from the

execution of all transitions. For example, if the initial event (snd − SYN) starts with a

timestamp of zero (the initial marking at the beginning of the model’s execution), and the

process time Tp for this transition is five seconds (i.e., the duration required to consume the

token in the snd − SYN event), this indicates that the token takes (0 + 5) seconds to transition
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to the subsequent place (rcv− SYN). In other words, we add the current timestamp of the

token to the process time for each transition. Consequently, we compute the cumulative time

throughout each token’s execution to discern its behavior. Our aim is to identify any anomalies

by detecting tokens that exceed the specified threshold for receiving acknowledgment from

the client in each communication.

6.8 Classification and simulation tokens by TCCSA-net

The extension of TCCSA-net provides a beneficial framework for identifying unusual be-

haviours, such as those exhibited in SYN-flood attacks. It uses the timing attribute of tokens

in combination with a predefined threshold to analyze and detect abnormal patterns by classi-

fying tokens. Specifically, we rely on a predefined threshold to classify tokens. These tokens

are identified using the flow ID/colour set, which includes IP source, IP destination, Source

port, Destination port, Flags, and Timestamp. The algorithm assesses each token/packet

independently, determining whether it is indicative of abnormal behaviour or standard com-

munication. For instance, as illustrated in Figure 6.15, tokens can be classified as abnormal

if their time values exceed the predefined threshold set for the alarm transition.

Formally, in TCCSA-nets, events can only be enabled if their input tokens are present in the

preceding places. We rely on these properties, combined with time, to detect any abnormal

activities that can occur during communication. In practical terms, for example, the classifier

will send the token to rcv− ACK when the server acknowledges it. In other words, the

rcv−ACK event on the server side will only be enabled when all its inputs are in place to

fire rcv−ACK and complete the three-way handshake. This means the rcv−ACK event will

not be activated until the client sends their acknowledgment (see Figure 6.15). That is, an

alarm which is enabled event is executed if the token’s time exceeds the threshold, indicating

a potential SYN-flood attack. This means, when the alarm transition is fired, the rcv−ACK

transition will not be executed and ACK− received place will not be reachable. The reason

is that rcv−ACK will not have all its input places available to fire. Specifically, the token in

the classifier place will be consumed by the alarm transition.
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The threshold, denoted as τ , is a predefined threshold representing the maximum allowable

time the server waits to rcv-ack from the client. We assumed threshold to be 30 seconds,

which represents the maximum duration the server will wait to receive an rcv-ack from the

client, completing the three-way handshake. It is important to note that the server’s waiting

duration can vary based on the criteria set by the network administrator. The procedure for

identifying abnormal behaviour is outlined in Algorithm 5. Specifically, the algorithm starts

by defining the maximum allowable time τ . Moreover, every communication is portrayed as

a token. The timestamp Ts of token i is expressed as:

Ts := Ts +Σ(Tpi) (6.1)

That is, Ts denotes the timestamp for a token at any specific time, and Tp signifies the

time needed to consume token by transition. For instance, if the timestamp at a specific

point,(e.g., SYN-rcv place) is 5 seconds, and the process time, which represents the time

needed to consume the send-SYN-ACK transition, is 3 seconds, then the timestamp upon

firing send-SYN-ACK will be 5+3 = 8 seconds. In other words, we add the process time for

consuming each token to the timestamp.

The equation computes the token’s timestamp for each token independently, combined

time required to complete all transitions inside the model. Note that, the goal of computing

process time ( time needed by transition to consume token) is to give accurate measure

of time needed by each transition which can help in analysis such a communication. For

example, we can benefit from process time Tp to calculate the average time for server to

consume client token. Note also that this approach can be further extended and refined by

examining various communication statuses and packet properties, such as response averages,

traffic bandwidths, or server capacities, which is a topic for future work and could improve

the detection of such behaviours. However, detecting a SYN-flood attack can be modelled as

a classification problem that differentiates between the network flow states of ‘attack’ and

‘normal’. In this context, we rely on our new TCCSA-net extension to discern and differentiate

between normal and abnormal behaviours. Specifically, we allow server to operate within

designated timeframes to process client requests.
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Example 33. Let Tp be the processing time for each step (transition), and Ts be the

cumulative sum at each step. The cumulative summation can be expressed as:

Ts = 0+Tp1

Ts = Ts +Tp2

Ts = Ts +Tp3

Ts = Ts +Tp4

Ts = Ts +Tp5

Ts = Ts +Tp6

where:

• Tp1 = 4 seconds (snd − SYN),

• Tp2 = 3 seconds (rcv− SYN),

• Tp3 = 4 seconds (snd − SYN−ACK),

• Tp4 = 3 seconds (rcv− SYN−ACK),

• Tp5 = 5 seconds (snd −ACK),

• Tp6 = 2 seconds (rcv−ACK).

Thus, the summation simplifies to: Ts = (0+ 4)+ 3+ 4+ 3+ 5+ 2 and so Ts = 21. This

represents a cumulative approach where the initial Ts starts at 0, and each subsequent

processing time is added to the running total of Ts, demonstrating a continuous build-up on

the last total. Note that this method will be applied to each token, ensuring that we compute

the timestamp for all tokens within the model.

⋄

Furthermore, Tt quantifies the timer that starts once the alarm transition is enabled for each

token. If a token reaches rcv−ACK before the Tt timer expires, then the rcv−ACK transition

will be triggered; otherwise, the alarm transition will be executed. It is important to note that
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the total timestamp of a token may vary upon reaching the classifier. This variation occurs

because packets (tokens) can experience delays or latency within the network. However, the

classifier will add an additional 30 seconds to the token’s timestamp before classifying it as

abnormal. For instance, if the token’s timestamp is 19 when it reaches the classifier place,

then the maximum total waiting time for such a token is 49 seconds before it is classified

as abnormal. This approach will be applied to each token within the model. It is crucial to

understand that this approach is employed to demonstrate that TCCSA-net can be used as

promising tool to analyse and visualise the three-way handshake in order to detect abnormal

activities that could occur during communication.

Algorithm 5 is designed for classifying tokens which represent communication packets, into

categories of either normal or abnormal based on their adherence to a predefined threshold.

Specifically, it processes each token independently using a time threshold τ and a timer Tt

that initiates upon a token’s arrival at a classifier place. The primary objective is to determine

the legitimacy of each token’s communication pattern within a specified duration. Upon

each token’s arrival at the classifier, a timer specific to that token starts, measuring the

elapsed time since its classification process began. The algorithm employs a straightforward

decision-making criterion to ensure the status of each token: if a token reaches the designated

rcv−ACK transition before its associated timer exceeds the τ threshold, it is deemed normal.

This classification implies that the token’s communication is within expected parameters,

suggesting legitimate traffic. Conversely, tokens failing to meet this condition within the

allowed timeframe are classified as abnormal, indicating potential anomalies or security

concerns, such as participation in a SYN-flood attack. This methodological approach enables

the effective identification of communication packets that deviate from expected temporal

patterns, offering a mechanism for flagging potential threats.

Example 34. Let us revisit the scenario with the cumulative time (Ts +Tp) required for a

token to complete its process, and introduce a classification condition τ ≤ Tt , where τ is set

to 30 seconds. The dynamic timer Tt starts from zero upon the token’s arrival at the classifier

place.
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Algorithm 5: Token Classification Algorithm for Detecting Abnormal Tokens
Input : N tokens from m clients representing communication packets,

τ // Time threshold in seconds,
Tt // Timer for each token to measure elapsed time since processing started

Output :Classification of each token as either normal or abnormal
1 Initialization:
2 Start processing tokens
3 for i = 1 to N do
4 if token i reaches classifier place then
5 Start timer Tt for token i
6 if rcv−ACK transition is enabled before Tt exceeds τ then
7 Token i is classified as normal
8 end
9 else

10 Token i is classified as abnormal
11 end
12 end
13 end

For this example, consider the processing times leading to a cumulative timestamp Ts as

follows:

• Tp1 = 4 seconds (snd − SYN),

• Tp2 = 3 seconds (rcv− SYN),

• Tp3 = 4 seconds, (snd − SYN−ACK)

resulting in a cumulative processing time:

Ts = (0+4)+3+4 = 11

seconds.

Upon reaching the classifier, we evaluate the classification condition with τ = 30 seconds

and a dynamic timer Tt that counts up from zero. Assuming that Tt reaches 10 seconds by

the time the classification decision is made, we insert these values into the classification

condition:
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30 ≤ 10

In this case, the condition τ ≤ Tt is not satisfied, indicating that the token does not meet

the classification criteria based on the set threshold within the given time. In other words,

the packet (token) still in the normal time-frame. Thus, alarm transition will not fire until

the τ ≤ Tt is satisfied. Conversely, assuming that Tt reaches 31 seconds by the time the

classification decision is made, we insert these values into the classification condition:

30 ≤ 31

That is, in the case the condition τ ≤ Tt is satisfied, indicating that the token meets the

classification criteria based on the set threshold within the given time. In other words, alarm

transition will be fired.

⋄

This example demonstrates how the classification of tokens is determined by comparing

their processing time against a fixed threshold τ and the elapsed time Tt since the token’s

arrival at the classifier. The condition provides a straightforward method for classifying

tokens based on their processing timelines and the dynamic context of their arrival at critical

checkpoints.

6.8.1 Simulation of SYN-flood attack by Timed-CSA-net

In this section we will provide more details about Timed-CSA-net by simulating firing steps.

Initially, when client is ready to send a request to the server, transition snd − SYN is enabled

and ready to fire. Once snd − SYN fires, token A will be sent to q1 and SYN− sent, and the

timestamp will be updated based on process time needed to consume snd− SYN transition as

illustrated in Figure 6.11.

Figure 6.12 demonstrates that transition rcv− SYN on server side is enabled and ready to

fire. Consequently, rcv− SYN is executed, and token A will be sent to the SYN− rcv place.

Additionally, the timestamp is updated.
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Fig. 6.11 snd − SYN is enabled and ready to fire with the timestamp 0.
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Fig. 6.12 transition rcv− SYN on server side is enabled and ready to fire

In Figure 6.13, the transition snd − SYN − ACK is enabled. Consequently, it executes,

sending the token to the classi f ier, SYN−ACK− snd places, and the buffer place q2.

In Figure 6.14, the alarm transition is enabled; however, it will not execute due to a guard

condition on the transition, meaning it will only execute if the condition is satisfied. At the

same time, the rcv− SYN−ACK transition is enabled and executed, sending token A to the

SYN−ACK− received place.

Figure 6.15 demonstrates that the client is ready to send an acknowledgment to the server.

Therefore, by sending token A to q3 and ACK−received, the client sends its acknowledgment

to the server, waiting for the server to accept the acknowledgment.
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Fig. 6.13 transition snd − SYN−ACK on the server side is enabled and ready to fire.
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Fig. 6.14 alarm transition is enabled and timer Tt is started.

In Figure 6.16, the transition rcv − ACK is enabled as all its input places are present.

Consequently, it will execute, confirming that the acknowledgment from the client has been

received, and data transmission between them will commence.

Figure 6.17 shows that both side received acknowledgment and data transmission between

them will start.

In Figure 6.18, potential attack behaviors can occur. Specifically, even though the transition

snd − ACK on the client side is enabled, attackers may force client machines to refrain

from sending acknowledgments to the server. However, the timer in the condition on the

alarm transition evaluates this communication based on the condition assigned to the alarm

transition. In other words, the alarm transition will wait until the threshold time is exceeded;

then, it will send token A to the alarmed place, indicating a potential attack.
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Fig. 6.15 client is ready to send an acknowledgment to the server by sending token A to q3
and ACK− received
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Fig. 6.16 transition rcv−ACK is enabled as all its input places are present.

6.9 Experimental Setup

The proposed algorithm aims to enhance the detection of DDoS attacks by integrating the

analysis and visualisation of client-server communication. This approach not only focuses

on achieving high detection rates but also provides network administrators with detailed

insights into network traffic, enabling the identification of potential DDoS attack patterns. In

other words, this approach will combine the detection process with the power of modelling

which provides more insight for the analysis and detection of such attacks. The experiment is

designed to evaluate the effectiveness of our algorithm using the CICIDS 2019 dataset. The

performance of the algorithm will be assessed through various metrics, including accuracy,

True Positive (TP) rate, True Negative (TN) rate, False Negative (FN) rate, and False Positive

(FP) rate.
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Fig. 6.17 Both side received acknowledgment and data transmission between them will start
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Fig. 6.18 potential attack behaviors occur

Proposed Algorithm

Algorithm 5 is designed for classifying tokens which represent communication packets,

into categories of either normal or abnormal based on their adherence to a predefined

threshold. Specifically, it processes each token independently using a time threshold τ and

a timer Tt that initiates upon a token’s arrival at a classifier place. The primary objective

is to determine the legitimacy of each token’s communication pattern within a specified

duration. Upon each token’s arrival at the classifier, a timer specific to that token starts,

measuring the elapsed time since its classification process began. The algorithm employs a

straightforward decision-making criterion to ensure the status of each token: if a token reaches

the designated rcv−ACK transition before its associated timer exceeds the τ threshold, it is

deemed normal. This classification implies that the token’s communication is within expected

parameters, suggesting legitimate traffic. Conversely, tokens failing to meet this condition

within the allowed timeframe are classified as abnormal, indicating potential anomalies
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or security concerns, such as participation in a SYN-flood attack. This approach enables

the effective identification of communication packets that deviate from expected temporal

patterns, offering a mechanism for flagging potential threats.

Experimental Procedure

The experiment involves the following steps:

1. Dataset: We utilised the CICIDS 2019 dataset [53], which is publicly accessible. This

dataset comprises over a million tokens, each representing a packet described by 27

conditional features. These tokens were categorised into two groups: normal and

abnormal.

2. Data Preprocessing: Handle missing values by applying suitable imputation tech-

niques to ensure the dataset’s integrity for accurate analysis.

3. Hardware and Software Configuration: The proposed algorithm was evaluated using

Python on a Mac PC equipped with an Intel Core i7 CPU and 16 GB of memory. The

code for the algorithm is publicly available at [7].

4. Performance Evaluation: Assess the algorithm’s performance using a confusion

matrix to determine accuracy, TP rate, TN rate, FN rate, and FP rate.

6.9.1 Assumptions

In our experiments, we made several key assumptions: The CICIDS 2019 dataset is assumed

to be representative of real-world network traffic, including both normal and abnormal

packets. While all 27 features provided in the dataset are relevant for distinguishing between

normal and abnormal packets, we will specifically rely on six key features, as detailed in

Table 6.2, to serve as identifiers for each packet. Additionally, the dataset may have an

imbalanced distribution of normal and abnormal packets, which our algorithm needs to

handle appropriately.
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6.10 Comparative Analysis

Although our algorithm’s accuracy of 90% is slightly lower compared to the top-performing

methods such as Decision Tree (97.38%) and Random Forest (97.34%) reported in [102],

it offers significant advantages in practical applications. One major benefit is its ability

to visualise network interactions, aiding network administrators in gaining a deeper under-

standing of network traffic and identifying potential DDoS attack patterns more effectively.

This detailed insight is crucial for timely and efficient mitigation strategies, a feature less

emphasised in other methods that primarily focus on detection rates.

Algorithm Detection Rate (%)
Our Proposed Algorithm 90.00
K-Nearest Neighbours (KNN) [102] 94.93
Naïve Bayes (NB) [102] 71.41
Decision Tree (DT) [102] 97.38
Random Forest (RF) [102] 97.34

Table 6.3 Comparison of Detection Rates with State-of-the-Art Methods

That is, our approach could assist in understanding and adapting to new attack behaviours

without the need for extensive retraining required by traditional machine learning approaches.

This adaptability is primarily due to the integration of analysis and visualisation of client-

server communication. Moreover, this approach could be improved to enable dynamic pattern

recognition, enhance situational awareness, and provide a proactive defence mechanism.

For example, by continuously monitoring and visualising network traffic, the approach can

identify deviations from normal patterns that may indicate a new type of attack. Specifically,

real-time adaptability ensures that network administrators can swiftly understand and respond

to emerging threats, providing a robust defence against evolving DDoS scenarios. Future

work will aim to validate these capabilities further, as current results primarily demonstrate

the efficacy of our method in existing attack scenarios.
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6.11 Conclusions

This chapter presented a novel approach for modelling SYN-flood TCP DDOS attacks using

TCCSA-nets. The approach includes a detection algorithm that distinguishes between normal

and attack communications, with a specific focus on TCP-SYN-flood flags attacks. Our

approach extends the advantages of CSA-net’s concept through the use of the timing feature,

which enables the algorithm to determine whether a packet is normal or not. One of the

noteworthy features of this approach is its ability to provide and visualise detailed information

on TCP DDOS attacks, which can be utilised further to prevent the attack. The algorithm was

tested on publicly available data, and the results were impressive. Specifically, the algorithm

achieved a 90% discrimination accuracy between normal and attack communications. Moving

forward, we aim to improve this approach by considering additional possible scenarios that

cause TCP attacks. Moreover, we plan to enhance this model to operate in real-time situations

for real-time detection.





Chapter 7

Conclusions

7.1 Conclusion

This thesis introduced extensions to the CSA-nets framework, which enhance the management

and visualisation of complex systems such cyber-crime investigations. Specifically, Chapter 2

provides essential background about the challenges posed by the proliferation of big data

and the complexity of CESs. It highlights the need for effective modelling and visualisation

techniques to handle vast and intricate data within such systems. The chapter also emphasises

the importance of structure and visual representation in simplifying the understanding of

complex systems, particularly in the context of cyber-crime modelling and investigation.

While mentioning limitations of the existing tools, it elaborates on CSA-nets as a promising

formal notation for modelling CESs. Moreover, it outlines both the theoretical research

and practical implementation adopted in the thesis, with a focus on improving the visual

representation of CSA-nets and their application in cyber-attack detection.

In Chapter 3, we discussed acyclic nets and CSA-nets in detail, explaining their structure

and functionality. CSA-nets proved useful in a variety of domains, notably in cyber-crime

investigations, due to their capability to model diverse forms of communication within com-

plex systems. Chapter 4 presented innovative approaches to enhancing the comprehensibility

and usability of CSA-nets, a modelling framework designed to illustrate the operations of

complex systems. These systems are often challenging to understand, given their multifaceted
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components and interactions, which can lead to overly complex models. We addressed this

issue through two primary strategies. Firstly, we introduced a technique for minimising

buffer places caused by high volume of communication between subsystems, by folding

them. Secondly, we proposed the use of colours or parameters for tokens to represent distinct

types of information within the same framework. These extensions are intended to simplify

the visualisation and understanding of these intricate models.

Chapter 5 focused on enhancing the visualisation of CSA-nets by arranging the compo-

nent acyclic net to reduce the frequency of line crossings. We employed ideas from three

straightforward yet effective sorting methods for this purpose. Our evaluations indicated

that, selection sort, was particularly effective for positioning the acyclic nets. Additionally,

we investigated a splitting strategy to further refine this process. This technique involves

dividing the acyclic nets into two groups, addressing each group independently, and then

reassembling them.

Chapter 6 introduced a new approach to model and detect SYN-flood TCP DDOS attacks

using CSA-nets. The approach focused on modelling SYN-flood attacks with CSA-nets, includ-

ing a detection algorithm that differentiates between normal and attack communications, with

a particular emphasis on TCP-SYN-flood attacks. This method enhances the functionalities

of CSA-nets by integrating timing features to assess packet normality. A significant aspect

of this approach is its ability to provide detailed insights and visualisation of TCP DDOS

attacks, contributing to attack prevention efforts. Experimental outcomes demonstrated a

90% accuracy rate in distinguishing between normal and attack communications.

7.2 Future Work

Following the work presented in this thesis, we see several areas for future research. For

Chapter 4, our aim is to explore additional forms of folding, such as integrating entire

components of acyclic nets, and to enhance the behaviour of CSA-nets by implementing

parameterisation and employing coloured tokens for Behavioural Structured Acyclic Nets

(BSA-nets). This methodology is designed to improve the intelligibility of BSA-nets for
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facilitating comprehension of the stages within a system’s evolution. We plan to continue

refining and simplifying these models for dealing with complex and voluminous data, such

as those encountered in cyber-security challenges.

In Chapter 5, we explored ways to improve visualisation through sorting algorithms. For

future, our efforts will focus on enhancing these techniques by adopting dynamic placement

strategies based on specific criteria, such as time intervals or communication events. More-

over, we will further explore the splitting strategy we introduced to find the ideal number of

splits that maximises good results and addresses any crossing it could generate.

Focusing on cyber-attack detection, as a continuation of the work carried out in Chapter

6. We will explore extending our research beyond TCP-SYN-flood attacks to encompass a

broader spectrum of TCP flags and packet attributes and diversifying the scope of attack

techniques to explore other types of attacks. Additionally, we aim to develop a tool for

detecting cyber-attacks in real-time, enabling users and investigators to benefit from our

detection methodology by analysing and visualising data, helping them understand potential

abnormal behaviours.
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