
Evaluation and Detection of
Adversarial Attacks in ML-based NIDS

Huda Ali Alatwi

Supervisor: Dr. Charles Morisset

School of Computing
Newcastle University

This dissertation is submitted for the degree of
Doctor of Philosophy

Secure and Resilient Systems Group September 12, 2024

I dedicate this thesis to my dear son Faris. . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my
own work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer
than 150 figures.

Huda Ali Alatwi
September 12, 2024

Acknowledgements

I thank Allah for guiding me and providing the strength to successfully complete my PhD
research. I would like to express my deepest gratitude to my supervisor, Dr. Charles Morriset,
for his invaluable guidance, unwavering support, and insightful feedback throughout the course
of my research. I extend my deepest appreciation to my family and friends for their steadfast
encouragement and support. To my dear son Faris, your laughter and joy have been my greatest
inspiration, brightening every step of this journey. I also sincerely thank my home country Saudi
Arabia and Tabuk University for providing me with a full scholarship to pursue my doctoral
studies.

Abstract

A Network Intrusion Detection System (NIDS) monitors network traffic to detect unauthorized
access and potential security breaches. A Machine Learning (ML)-based NIDS is a security
mechanism that uses ML algorithms to automatically detect and identify suspicious activities
or potential threats in a network by analyzing traffic patterns, distinguishing between normal
and malicious behaviors, and alerting or blocking unauthorized access. Despite high accuracy,
ML-based NIDS are vulnerable to adversarial attacks, where attackers modify malicious traffic
to evade detection and transfer these tactics across various systems. To the best of our
knowledge, several crucial research gaps persist in this area that have not yet been addressed.
First, there are no systematic threat models for identifying and analyzing potential threats
and vulnerabilities in ML-based NIDS. This lack of structured threat modeling hinders the
development of comprehensive defense strategies and leave these systems vulnerable to adversarial
attacks that exploit unknown weaknesses in the ML algorithms or system architecture. The
current literature employs generic adversarial attacks mainly designed for image recognition
domain to assess the resilience of ML-based, but no research has verified the realism and
compliance of these attacks with network domain constraints. Investigating whether these
attacks produce valid network is crucial to determine their real-world threat level and the
suitability of ML-based NIDS for deployment. Another gap in the literature is the lack of
comprehensive evaluations that include a wide range of models, attack types, and defense
strategies using contemporary network traffic data. This gap makes it difficult to verify the
generalizability and applicability of the findings for real-world. The absence of standardized
metrics further hampers the ability to evaluate and compare the resilience of ML-based NIDS
to adversarial attacks. Finally, there is no a lightweight solution that effectively detects and
classifies adversarial traffic with scoring high accuracy on both clean and perturbed data with
proven efficiency over recent dataset and across various attack types and defenses.

These gaps hinder the robustness of ML-based NIDS against adversarial attacks. Therefore,
this Ph.D. thesis aims to address these vulnerabilities to enhance the ML-based NIDS resilience.

The overall contributions include; 1) A threat modeling for ML-based NIDS using STRIDE
and Attack Tree methodologies; 2) An investigation of the realism and performance of generic
adversarial attacks against DL-based NIDS; 3) A comprehensive evaluation for adversarial
attacks’ performance consistency, models’ resilience, and defenses’ effectiveness; 4) Adversarial-
Resilient NIDS, a framework for detecting and classifying adversarial attacks against ML-based
NIDS.

Table of Contents

List of Figures x

List of Tables xi

List of Abbreviations xii

1 Introduction 1
1.1 Research Problem . 3
1.2 Research Aim . 4
1.3 Research Questions . 4
1.4 Contributions . 8
1.5 Thesis Structure . 8
1.6 Publications . 9

2 Background 11
2.1 Summary . 11
2.2 Network Intrusion Detection Fundamentals . 11
2.3 Machine Learning Fundamentals . 12

2.3.1 Machine Learning Approaches . 12
2.3.2 Machine Learning Tasks . 12
2.3.3 Machine Learning Depth . 13

2.4 Machine Learning Pipeline . 13
2.4.1 Problem Definition . 14
2.4.2 Data Collection . 14
2.4.3 Data Preprocessing . 14
2.4.4 Model Selection . 15
2.4.5 Model Training . 15
2.4.6 Model Evaluation . 15
2.4.7 Model Deployment . 16

2.5 Deep Learning Fundamentals . 16
2.6 Adversarial Machine Learning Fundamentals . 18

2.6.1 Adversarial Threat Model . 19
2.6.2 Adversarial Attacks . 22

2.7 Conclusion . 22

Table of Contents

3 Threat Modeling for ML-based NIDS 24
3.1 Summary . 24
3.2 Introduction . 24
3.3 Related Work . 25
3.4 Background . 26

3.4.1 Threat Modeling . 26
3.4.2 STRIDE Model . 26
3.4.3 Attack Tree Model . 27

3.5 Threat Modeling for ML-Based NIDS . 27
3.5.1 ML-based NIDS Components . 28
3.5.2 Adversary Model . 29
3.5.3 Attack Surface . 29
3.5.4 Data Flow Diagram . 30
3.5.5 Threat Assessment . 30

3.6 Attack Tree Model For ML-Based NIDS . 31
3.7 STRIDE Model For ML-Based NIDS . 35
3.8 Discussion . 37
3.9 Conclusion . 38

4 Adversarial Machine Learning in NIDS Domain: A Systematic Review 39
4.1 Summary . 39
4.2 Introduction . 39
4.3 Related Work . 40
4.4 Methodology . 41

4.4.1 Research Questions . 41
4.4.2 Search Strategy . 42
4.4.3 Inclusion and Exclusion Criteria . 42
4.4.4 Data Extraction . 42

4.5 Generating Adversarial Attacks for ML-based NIDS 43
4.5.1 Reinforcement Learning Attacks . 43
4.5.2 Generative Adversarial Networks Attacks 43
4.5.3 Surrogate Model Attacks . 44
4.5.4 Genetic Algorithms Attacks . 45
4.5.5 Constrained Generic Attacks . 45
4.5.6 Certain Features Manipulation Attacks 46
4.5.7 Other Approaches . 46

4.6 Evaluating ML-based NIDS Resilience to Adversarial Attacks 49
4.7 Defending ML-based NIDS Against Adversarial Attacks 52

4.7.1 Adversarial Training . 53
4.7.2 Ensemble Learning . 54
4.7.3 Feature Reduction . 54

vii

Table of Contents

4.7.4 Hybrid Approaches . 55
4.7.5 Other Approaches . 55

4.8 Discussion . 59
4.8.1 Findings Analysis . 59
4.8.2 Research Questions . 63

4.9 Conclusion . 66

5 Realism vs. Performance for Adversarial Examples Against DL-based NIDS 67
5.1 Summary . 67
5.2 Introduction . 67
5.3 Network Traffic Constraints . 68
5.4 Literature Drawbacks . 69
5.5 Experimental Setup . 70

5.5.1 Datasets . 70
5.5.2 Dataset Preprocessing . 71
5.5.3 Adversarial Attacks & Target Model Implementation 72
5.5.4 Evaluation Metrics . 72

5.6 Experimental Results & Analysis . 73
5.6.1 Attacks Performance . 74
5.6.2 Attacks Unrealism . 76

5.7 Discussion . 77
5.7.1 Attacks Unrealism . 78
5.7.2 Attacks Infeasibility . 79

5.8 Conclusion . 79

6 Resilience Evaluation and Detection of Adversarial Attacks in ML-based
NIDS 81
6.1 Summary . 81
6.2 Introduction . 81
6.3 Literature Drawbacks . 83
6.4 Resilience Index . 84
6.5 Adversarial-Resilient Network Intrusion Detection System (AR-NIDS) 86
6.6 Experimental Setup . 87

6.6.1 Adversary Model . 87
6.6.2 Dataset . 87
6.6.3 Dataset Preprocessing . 88
6.6.4 Adversarial Attacks & Models Implementation 88
6.6.5 Evaluation Metrics . 90

6.7 Resilience Evaluation of ML-based NIDS to Adversarial Attacks 91
6.7.1 Models Performance Over Clean Test Data 91
6.7.2 Models Performance: Clean vs. Adversarial 92

viii

Table of Contents

6.7.3 Models Adversarial Resilience . 93
6.7.4 Adversarial Attacks Performance . 93

6.8 Evaluation of Adversarial-Resilient NIDS Framework 95
6.8.1 Baseline Ensemble (BE) . 95
6.8.2 Adversarially Trained Models (ATM) . 96
6.8.3 Adversarially Trained Ensemble (ATE) 97
6.8.4 Performance of Adversarial Attacks Classifier 97

6.9 Impact of Defense Strategies on Adversarial Attacks Efficacy 98
6.10 Discussion . 99
6.11 Conclusion . 100

7 Conclusion 101
7.1 Summary . 101
7.2 Discussion . 101

7.2.1 Threat Modeling Analysis for ML-Based NIDS: Uncovering Hidden Risks . . . 101
7.2.2 Adversarial Evasion Attacks on ML-based NIDS: Reviewing Current Knowledge102
7.2.3 Evaluating the Realism of Adversarial Attacks: Bridging Theory and Reality . 102
7.2.4 Enhancing ML-Based NIDS Resilience: Shielding the Shield 103

7.3 Future Work . 104
7.4 Challenges and Research Opportunities . 104
7.5 Conclusion . 105

Appendix A Experiments Reproducibility 106
A.1 Introduction . 106
A.2 Computer Configuration . 106
A.3 Packages . 106
A.4 Experiment 1: Realism vs. Performance for AEs Against DL-based NIDS 107

A.4.1 Datasets . 107
A.4.2 Model Parameters . 107
A.4.3 Code Repository . 107

A.5 Experiment 2: Evaluating and Detecting AEs in ML-based NIDS 108
A.5.1 Datasets . 108
A.5.2 Model Parameters . 108
A.5.3 Code Repository . 108

Appendix B Datasets Description 109
B.1 WSN-DS Dataset . 109
B.2 BoT-IoT Dataset . 109
B.3 NF-UQ-NIDS Dataset . 110

References 111

ix

List of Figures

2.1 Machine Learning Pipeline . 13
2.2 Neuron Structure in DNN . 17
2.3 DNN Structure . 17
2.4 Threat Model of Adversarial Attacks . 19

3.1 Threat Modeling Scheme . 28
3.2 Components of ML-based NIDS . 29
3.3 DFD of ML-based NIDS . 30
3.4 ML-based NIDS Attack Tree Threat Model . 35

4.1 Distribution of Studies per Category . 59
4.2 Distribution of Studies per Environment . 60
4.3 Distribution of Studies per Dataset . 60
4.4 Distribution of Studies per Setting . 60
4.5 Distribution of Studies per Defense Mechanism 61
4.6 Most Utilized Adversarial Attacks . 62

5.1 Evasion Rate vs. Unrealism Index over WSN-DS 75
5.2 Evasion Rate vs. Unrealism Index over BoT-IoT 75
5.3 White-box Attack Unrealism Metrics Percentages . 76
5.4 Black-box Attack Unrealism Metrics Percentages . 76

6.1 Adversarial-Resilient NIDS . 87
6.2 ML-NIDS Resilience to Adversarial Attacks . 90
6.3 Baseline Models Resilience Index . 93
6.4 Attack Success Rates Against Baseline Models 94
6.5 Attack Success Rates Against Defense Models 95
6.6 Defense Models Resilience Index . 95
6.7 Comparison Baseline Models vs. Defense Models 96
6.8 Impact of Defense Strategies on Adversarial Attacks Efficacy 98

x

List of Tables

3.1 Threats Assessment for ML-based NIDS Attack Tree Model 34
3.2 Threats Assessment for ML-based NIDS Using STRIDE Model 36
3.3 Countermeasures for ML-based NIDS STRIDE Model Threats 37

4.1 Literature Classification Characteristics . 42
4.2 Generating Adversarial Attacks for NIDS Studies 48
4.3 Generating Adversarial Attacks for NIDS Studies 49
4.4 Evaluating NIDS Resilience to Adversarial Attacks Studies 52
4.5 Defending NIDS Against Adversarial Attacks Studies 57
4.6 Defending NIDS Against Adversarial Attacks Studies 58
4.7 Overview of Used NIDS Datasets in the Literature 59

5.1 Comparison with Related Works . 70
5.2 Used Features in the Datasets . 71
5.3 Feed-Forward DNN Model Parameters . 72
5.4 Attacks Assessment on WSN-DS & BoT-IoT Datasets 75
5.5 Attacks Unrealism Metrics on WSN-DS & BoT-IoT Datasets 78

6.1 Employed Attacks and Defense Comparison [⊙=Attacks, ⊕=Defense] 84
6.2 Statistics of Used NF-UQ-NIDS Dataset . 88
6.3 Samples Distribution in Train and Test Data . 88
6.4 Parameters of ML-based NIDS Models . 89
6.5 Performance Metrics for Binary Classification 90
6.6 Baseline Models Performance over Clean vs Adversarial Data 92
6.7 Adversarial Attacks Classifier Performance . 97

A.1 Feed-Forward DNN Model Parameters . 107
A.2 Parameters of ML-based NIDS Models . 108

B.1 Description of WSN-DS Dataset . 109
B.2 Description of BoT-IoT Dataset . 109
B.3 Description of NF-UQ-NIDS-v2 Dataset . 110

xi

List of Abbreviations

A2PM Adaptive Perturbation Method
AE Adversarial Example
AIDAE Anti-Intrusion Detection AutoEncoder
AIDTF Adversarial Intrusion Detection Training Framework
AR-NIDS Adversarial-Resilient Network Intrusion Detection System
ART Adversarial Robustness Toolbox
ASR Attack Success Rate
AT Adversarial Training
ATE Adversarially Trained Ensemble
ATM Adversarially Trained Models
Adaboost Adaptive Boosting
BA Balanced Accuracy
BB Black Box
BFAM Bruteforce Blackbox Method
BIM Basic Iterative Method
BiGAN Bidirectional Generative Adversarial Network
CIFGSM Constraint Iteration Fast Gradient Sign Method
CNN Convolutional Neural Network
CPGD Constrained Projected Gradient Descent
CSV Comma Separated Values
CW Carlini and Wagner
Catboost Categorical Boosting
DAE Denoising Autoencoder
DAGMM Deep Autoencoding Gaussian Mixture Model
DBN-LSTM Deep Belief Network Long Short Term Memory
DDoS Distributed Denial of Service
DFD Data Flow Diagram
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
DoS Denial of Service
EL Ensemble Learning
EN Elastic Net
ER Evasion Rate
ET Extra Trees
FCDNN Fully Connected Deep Neural Network
FENCE Feasible Evasion Attacks on Neural Networks in Constrained Environments
FFDNN FeedForward Deep Neural Network
FGDM Feature Grouping and Multimodel Fusion Detector
FGSM Fast Gradient Sign Method
GA Genetic Algorithms
GAN Generative Adversarial Network
GAN-AT Generative Adversarial Network Adversarial Training
GB Gradient Boosting
GBDT Gradient Boosting Decision Tree
GenAAL Generative Adversarial Active Learning
HSJ HopSkipJump
IDS Intrusion Detection System
IF Isolation Forest

xii

IFGSM Iterative Fast Gradient Sign Method
IoT Internet of Things
JSMA Jacobian Saliency Map
KNN K-Nearest Neighbors
LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno
LDA Linear Discriminant Analysis
LGBM Light Gradient Boosting Machine
LR Logistic Regression
LSTM Long Short Term Memory
MANDA MANifold and Decision boundary-based
MFA Multi-Factor Authentication
MIFGSM Momentum Iterative Fast Gradient Sign Method
ML Machine Learning
MLP Multi-Layer Perceptron
MoEvA Multi-Objective Evolutionary Adversarial Attack
NB Naive Bayes
NIDS Network Intrusion Detection System
NIDSFM Network Intrusion Detection System Flow Merge
PCA Principal Component Analysis
PF Perturbed Features
PGD Projected Gradient Descent
PSO Particle Swarm Optimization
QDA Quadratic Discriminant Analysis
QoS Quality of Service
RBM Restricted Boltzmann Machine
REDNN Robust, Effective, and Resource Efficient Fully Connected Neural Network
RF Random Forest
RFE Recursive Feature Elimination
RI Resilience Index
RL Reinforcement Learning
RNN Recurrent Neural Network
RONI Reject on Negative Impact
RePO Reconstruction from Partial Observation
SAE Stacked Autoencoder
SE Stacking Ensemble
SGD Stochastic Gradient Descent
SIGSM Selective and Iterative Gradient Sign Method
SNN Self-Normalizing Neural Network
SPSA Simultaneous Perturbation Stochastic Approximation
STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege
SVM Support Vector Machine
SeqGAN Sequence Generative Adversarial Network
TANTRA Timing-Based Adversarial Network Traffic Reshaping Attack
UASG Universal Adversarial Sample Generator
UI Unrealism Index
VAE Void Adversarial Example
WB White Box
WGAN Wasserstein Generative Adversarial Network
XAI Explainable Artificial Intelligence
XGB eXtreme Gradient Boosting
ZOO Zeroth Order Optimization

xiii

Chapter 1. Introduction

As the first line of defense, the network intrusion detection system (NIDS) carries the responsibil-
ity of protecting and securing the network against the attacks generated by malicious traffic. A
NIDS is a network security detective control that monitors network traffic in order to recognize
any malicious and anomalous activities that can be part of an attack [29]. It secures the
network resources against cyberattacks, destruction, and unauthorized access or modification;
hence it ensures resources’ availability, confidentiality, and integrity [29]. It can be broadly
classified into signature-based and anomaly-based systems [100]. Signature-based NIDS use
predefined patterns to detect known threats, excelling at identifying these but failing with new
threats. Anomaly-based NIDS detect deviations from established normal behavior, which helps
in identifying novel attacks but can lead to more false positives. In essence, signature-based
NIDS are precise for known threats, while anomaly-based NIDS offer wider coverage for unknown
threats [100].

Machine learning techniques are integrated into NIDS due to their ability to adapt to evolving
cyber threats, handle large volumes of data, and provide high accuracy rates. By automatically
extracting relevant features and continuously improving detection through re-training, machine
learning enhances NIDS effectiveness against diverse attacks [100]. Despite these benefits,
machine learning-based security solutions face serious issues, notably adversarial attacks [70].
These attacks involve carefully crafted inputs that cause models to make incorrect classifications
which raises concerns about the reliability of ML-based NIDS [151].

These attacks exploit vulnerabilities in the underlying machine learning algorithms of the
NIDS. Poisoning attacks inject altered data into the training set to manipulate ML-based
NIDS behavior. This compromises the model’s integrity, hinders its ability to accurately
distinguish between normal and malicious traffic, and leads to degraded performance. [34, 135].
Oracle attacks leverage the model’s responses to crafted queries to extract sensitive information,
compromising the confidentiality and integrity of the NIDS and facilitating the development of
advanced evasion techniques [34, 135]. Evasion attacks manipulate the malicious traffic to evade
detection by exploiting vulnerabilities in the model’s decision boundary [34, 135]. These attacks
can bypass security measures and allow undetected malicious activities to harm the network.

Failing to recognize and address the vulnerabilities that can be exploited by these attacks
renders ML-based NIDS highly susceptible to them. This susceptibility can lead to potential
breaches and compromised network security which undermines the core function of these systems.
Without identifying and addressing these vulnerabilities, ML-based NIDS systems cannot
anticipate and counter the adversarial attacks which mislead the detection system, degrade its

1

performance, extract confidential information, or trigger hidden malicious activities [135]. This
allows malicious actors to bypass defenses, infiltrate networks, and potentially cause significant
security breaches.

Systematic threat modeling emerges as a vital solution to this problem. It offers a structured
approach to identify, quantify, and prioritize security risks [145]. By systematically modeling
threats, we can pinpoint the vulnerabilities inherent in ML algorithms and the others posed
by inadequate security measures, allowing for proactive threat mitigation before harm occurs.
Moreover, threat modeling enhances the security and efficacy of ML-based NIDS by effectively
quantifying and prioritizing threats [145]. This process guides the development of targeted
countermeasures, addresses immediate vulnerabilities, and supports the continuous improvement
of detection algorithms and system architecture. Consequently, NIDS can effectively detect
malicious activities and maintain resilience against evolving threats.

Many studies in the literature have demonstrated that generic adversarial attacks can
effectively trick DL-based NIDS and evade detection [42, 45, 52, 69, 72, 75, 89, 92, 117, 123, 125,
169, 170, 175, 149]. However, the degree to which these manipulations accurately represent real
network behavior was not explored. These approaches were designed for unconstrained domains
such as image recognition, where features can be independently altered without restrictions [14].
In contrast, NIDS traffic data must follow domain-specific constraints, including interdependent
and fixed or limited feature values [14]. The absence of a metric for quantitatively measuring the
realism of outputs from generic adversarial attacks poses a significant challenge in the objective
evaluation and comparison of how closely they resemble actual network traffic. Without such
a metric, it is difficult to assess the true efficacy and threat level of adversarial examples in
real-world scenarios. This gap hinders the ability to determine the practical impact of these
attacks on ML-based NIDS and their viability for real-world deployment.

Developing this metric would bridge this critical gap, enabling the evaluation of whether
adversarial traffic adheres to the constraints and patterns of legitimate network traffic. This
would enhance our understanding of the real threat posed by adversarial attacks and inform the
applicability of ML-based NIDS for real-world deployments.

In the context of ML-based NIDS, the concept of resilience has garnered increasing attention
in the literature [166, 140]. Resilience refers to a model’s ability to maintain its effectiveness
in the face of adversarial attacks or other perturbations, a characteristic that is essential for
ensuring robust and reliable performance over time. Several studies have highlighted the
importance of resilience, noting that traditional metrics like accuracy or precision may not
fully capture a model’s ability to resist or recover from adversarial manipulation [166, 140].
Given the dynamic and hostile environments in which NIDS operate, ensuring resilience is
crucial. NIDS must reliably detect and respond to various attacks without frequent retraining or
manual intervention. This highlights the need for a standardized metric that not only evaluates
traditional performance but also measures a model’s consistency and reliability under adversarial
conditions, providing a comprehensive assessment of its resilience.

2

1.1 Research Problem

Significant research has been conducted on evaluating and defending against adversarial
attacks in ML-based NIDS [133, 46, 132, 92, 45, 52, 125, 140, 1, 178]. Despite these advancements,
much of the literature focuses on isolated aspects of the problem, often evaluating specific attacks
or defenses in a limited scope. A comprehensive assessment that account for the consistent
performance of various attacks, models resilience, and the effectiveness of defenses are still
lacking. This issue is exacerbated by the reliance on outdated datasets, which diminishes the
relevance of findings to current real-world network traffic [134]. Furthermore, the absence of a
standardized metric to measure resilience hampers the objective assessment of ML-based NIDS
resilience to adversarial attacks. Therefore, a comprehensive evaluation encompassing a wide
range of attacks, models, and defenses, using recent datasets and standardized metrics, is crucial.
It ensures real-world applicability, identifies strengths and weaknesses, establishes benchmarks,
and provides reliable and credible findings.

Researches on enhancing the resilience of ML-NIDS against adversarial attacks have ex-
plored various strategies, including adversarial training [132, 92, 52, 125, 140, 1, 178], ensemble
learning [133, 46], and the development of specialized adversarial detectors [45]. These efforts
have demonstrated some improvements in the ability of ML-based NIDS to withstand adver-
sarial perturbations. However, the necessity for ongoing research to enhance these solutions
becomes apparent when considering the trade-offs associated with current methods. Increased
computational overhead can limit the scalability of NIDS, while reduced accuracy on clean
data can compromise the overall effectiveness of the system in identifying legitimate threats.
Higher complexity and latency can also impede the real-time detection capabilities essential for
mitigating cyber threats promptly. Moreover, the limited generalization capabilities of many
existing approaches mean that they may not perform well against a wide range of adversarial
attacks, reducing their practical applicability in dynamic and evolving network environments.

Therefore, it is essential to develop a solution that can effectively detect and classify
adversarial traffic, while maintaining resilience to perturbed data and ensuring high performance
on clean data. Additionally, the solution must demonstrate generalized efficiency through
comprehensive evaluations across a variety of attack types, comparison to the sate-of-art defense
mechanisms, and over recent datasets. This rigorous approach will validate its robustness and
practical applicability.

1.1. Research Problem

Based on the reasoning on the previous section, we aim to address the following research gaps:
• Absence of threat models for ML-based NIDS, which systematically identify and analyze

potential threats and vulnerabilities, puts network infrastructures at risk if these threats
are not identified and proactively mitigated.

• Lack of investigation into the alignment of outputs from generic adversarial attacks with
actual network traffic constraints. Assessing whether these attacks comply with network

3

1.2 Research Aim

traffic constraints is crucial to determine if they pose real threats and potentially render
the ML-based NIDS unsuitable for real-world deployment.

• Insufficient comprehensive evaluations that encompass various models, defense approaches,
and different types of attacks while utilizing recent and representative real-world network
traffic data. Additionally, the absence of a standardized metric for consistent assessments
and comparisons of ML-based NIDS resilience further complicates this issue. Without
such rigorous evaluations and standardized metrics, the generalizability and applicability
of the findings to real-world scenarios are difficult to validate.

• Need for a solution that can detect and classify adversarial traffic, remain resilient against
attacks and maintain high performance on clean data, proving its robustness and practical
applicability through comprehensive evaluations against various attacks and state-of-the-
art defenses.

1.2. Research Aim

This thesis aims to enhance the resilience of ML-based NIDS against adversarial attacks in
order to improve their reliability and security for real-world deployments, while ensuring they
remain highly effective and efficient.

1.3. Research Questions

This thesis examines the following research questions:

RQ1. What are the potential threats and vulnerabilities associated with em-
ploying machine learning approaches in NIDS, and what effective countermeasures
can be devised to enhance their security and trustworthiness? (Chapter 3)

We identified and categorized 22 distinct threats specifically associated with machine learning
models in NIDS. These threats are thoroughly documented in Section 3.6. Utilizing attack tree
threat modeling approach, we systematically organized these threats based on their occurrence,
whether before or after model deployment, as depicted in Figure 3.4. Additionally, we conducted
a detailed risk assessment, summarized in Table 3.1, to evaluate the potential impact and
likelihood of each identified threat. Our risks assessment provides a clear picture of the ML-
based NIDS’s vulnerabilities and helps in prioritizing threats that require immediate attention.

Moreover, we advised a series of robust countermeasures, detailed in Table 3.1, encompassing
both technical and procedural strategies. Implementing these countermeasures can significantly
enhance the security and trustworthiness of ML-based NIDS and ensure their resilience against
the identified threats.

To provide holistic threat modeling, we also applied the STRIDE method to systems’ data
flow to spot other threats that imposed by inadequate security measures, detailed in Table 3.2.
In total, 46 threats were identified using the Attack Tree and STRIDE approaches, necessitating

4

1.3 Research Questions

mitigation for deploying a resilient ML-based NIDS. Our comprehensive threat modeling and
risk assessment serve as a critical foundation for enhancing the resilience and reliability of these
systems. Despite the dynamic nature of adversarial attacks and the possibility of new threats
emerging, the structured models we presented ensures that ML-based NIDS can be effectively
adapted and fortified against a wide range of vulnerabilities.

RQ2. What adversarial evasion attacks are employed for ML-based NIDS, what
mitigation strategies exist, and what are the limitations and research improvement
considerations? (Chapter 4)

We conducted a systematic review of evasion adversarial attacks against ML-based NIDS
and identified various techniques used to generate tailored adversarial attacks. These include
reinforcement learning, GANs, surrogate models, genetic algorithms, constrained generic attacks,
and specific feature manipulations, as comprehensively documented in Section 4.5. We also
identified the employed mitigation strategies to counter these attacks in Section 4.7, which include
adversarial training, ensemble learning, feature reduction, and hybrids of these approaches.

However, we identified several limitations, as presented in Section 4.8.2. The proposed
adversarial attack generation methods often assume detailed adversary knowledge of the target
NIDS, which may not be realistic. Techniques like RL-based frameworks, GANs, and genetic
algorithms can be computationally expensive and time-consuming, limiting their real-time
applicability. GANs and surrogate models require large, high-quality datasets, and their
generated adversarial examples may lack transferability across different models. Additionally,
some techniques are restricted to specific attacks or require labeled data, which is not always
practical. The employed defense mechanisms have drawbacks: adversarial training leaves models
vulnerable to new attacks, feature reduction can reduce discriminative power, and ensemble
learning has high computational overhead.

In Section 4.8.2, we addressed the limitations of current generation methods by suggesting
the design of attacks in a black-box setup, considering real-world factors like network dynamics
and traffic volumes, and ensuring resource efficiency for real-time deployment. For defenses, we
recommended strategies that generalize well across various attack types, efficiently use resources,
and maintain high detection accuracy without significant computational overhead or latency.
Additionally, comprehensive evaluation using standardized datasets and metrics is crucial for
ensuring their effectiveness and reliability in real-world scenarios.

Our findings highlight the need for ongoing research to refine these techniques, ensuring they
are both practical and effective in dynamic, real-world settings. Strengthening the resilience
of NIDS against adversarial attacks requires a balanced approach that considers both the
robustness of detection mechanisms and the operational feasibility of the proposed solutions.

RQ3. To what extent do the outputs from generic adversarial attacks align with
the characteristics of real network traffic, and how does evaluating the realism and

5

1.3 Research Questions

feasibility of these attacks contribute to assessing the suitability of ML-based NIDS
for real-world deployments? (Chapter 5)

We found that the outputs from generic adversarial attacks often do not align well with
the characteristics of real network traffic due to several unrealistic modifications, as detailed
in Sections 5.6.2 and 5.7. Specifically, many white-box attacks, such as BIM, PGD, and CW,
manipulate an extensive number of features, often exceeding 85%. This level of perturbation
is unrealistic in practical scenarios as adversaries typically cannot access or control such a
vast number of features in real network environments. Furthermore, these attacks introduce
out-of-range values, which are values outside the expected range for certain features, making
the traffic easily detectable by traditional systems and thus less effective in evading detection.

Additionally, many adversarial attacks alter binary features by introducing non-binary values,
which are nonsensical in a real-world context where features should only be 0 or 1. For example,
features that denote a true or false condition in the network traffic are assigned decimal or
negative values, which break the semantic integrity of the traffic. Similarly, categorical features
are often perturbed to trigger multiple categories simultaneously, which is unrealistic because a
categorical feature should only belong to one category at a time.

These unrealistic modifications underscore the infeasibility of such adversarial attacks in
real-world scenarios, as they disrupt the natural structure and behavior of network traffic.
This finding implies that many current adversarial attack methods may not provide a realistic
assessment of the robustness of ML-based NIDS when deployed in real-world environments. We
need to utilize more sophisticated attack techniques that maintain the realism of network traffic
to better evaluate and improve the resilience of ML-based NIDS.

RQ4. What metric can be used to effectively evaluate and rank the resilience
of ML-based NIDS for deployment? (Chapter 6)

We introduced the Resilience Index (RI) as a comprehensive metric for evaluating and ranking
the resilience of ML-based NIDS models against adversarial attacks, as described in Section 6.7.3.
RI combines balanced accuracy (BAadv), macro F1 score (F1adv), and Attack Success Rate (ASR).
BAadv and F1adv provide insight into detection accuracy, while ASR measures vulnerability to
evasion. This unified metric balances detection accuracy with adversarial resilience, enabling
effective selection of robust NIDS models for deployment.

However, the Resilience Index is not without limitations. Its effectiveness depends on the
quality and diversity of the adversarial examples used for evaluation. If the adversarial examples
are not representative of real-world scenarios, the RI might overestimate a model’s resilience.
Additionally, while RI combines multiple metrics, it may still not capture all dimensions of
resilience, such as computational efficiency and real-time performance.

Our findings suggest that the Resilience Index can significantly improve the evaluation pro-
cess for ML-based NIDS, facilitating the comparison and selection of robust models. However,
to ensure its reliability and practical applicability, the Resilience Index must be validated using
diverse and realistic adversarial examples.

6

1.3 Research Questions

RQ5. Which attacks maintain consistent performance across different model archi-
tectures, and how are they impacted by various defense strategies? (Chapter 6)
Among the attacks we analyzed in Section 6.7.4, the PGD, FGSM, and DeepFool attacks demon-
strate consistent performance across different model architectures. These attacks exhibit high
median success rates, ranging between 0.88 and 0.82, indicating their reliability and effectiveness
in overcoming different ML architectures and exploiting common model weaknesses.

The attacks are impacted differently by various defense strategies, with distinct patterns
observed in their effectiveness, as detailed in Section 6.9. Adversarial training significantly
reduces the success rates of Group 1 attacks (PGD, FGSM, DeepFool, HSJ, and CW2), dropping
success rates to as low as 0.05 for PGD and 0.03 for FGSM, indicating its effectiveness in
mitigating these attacks. However, ensemble learning proves counterproductive for this group,
increasing success rates to 0.98 for PGD and 0.95 for FGSM, suggesting it may introduce
exploitable vulnerabilities. Conversely, for Group 2 attacks (ZOO, JSMA, and CW∞), ensemble
learning effectively reduces success rates, such as lowering JSMA to 0.13 and CW∞ to 0.09,
highlighting its robustness. Adversarial training, on the other hand, increases susceptibility
for these attacks, with success rates rising to 0.44 for ZOO and 0.39 for CW∞. This analysis
underscores the importance of tailoring defense strategies to specific attacks to enhance overall
model resilience.

RQ6. How can adversarial attacks be effectively detected and classified while
maintaining high performance on both clean and perturbed data and minimizing
overhead, and can integrating adversarial training with ensembling techniques
achieve this? (Chapter 6)

We integrated adversarial training with ensembling to increase overall model resilience, as
detailed in Section 6.8.3 and 6.5. Adversarial training enhances a model’s ability to detect
adversarial examples by exposing it to perturbed data during training, thereby improving
its robustness. Ensembling, on the other hand, diversifies model perspectives by combining
multiple models, which boosts resilience against attacks through varied data interpretations. By
leveraging the strengths of both approaches, we achieved better generalization across clean and
adversarial examples, providing a multi-layered defense against adversarial attacks.

We trained a range of models using adversarial training and selected the best-performing
one. To enhance it further, we built a homogeneous ensemble of this top model. We selected
homogeneous ensembling to reduce overhead, as it involves using multiple instances of the same
model type. This approach simplifies optimization and parallelization, streamlines implemen-
tation, and ensures efficient resource allocation. Additionally, it offers more predictable and
consistent training and inference times. In contrast, heterogeneous ensembling introduces higher
complexity and resource demands. We employed two techniques for building this ensemble:
bagging and boosting. Bagging involves training multiple models on different subsets of the
data and aggregating their predictions, enhancing stability and accuracy. Boosting involves

7

1.4 Contributions

iteratively training the models and improving performance on misclassified instances, resulting
in a robust final model.

1.4. Contributions

This thesis has made significant contributions to adversarial machine learning in network
intrusion detection, including:

1. We conducted threat modeling for ML-based NIDS using STRIDE and Attack Tree tech-
niques that comprehensively identified and assessed potential threats and vulnerabilities.
The proposed threat models enable designing effective countermeasures to prevent poten-
tial attacks and deploy resilient ML-based NIDS. (In answer to RQ1)

2. We surveyed the body of knowledge and discussed strengths and limitations. We conducted
a meta-data analysis to uncover research trends and patterns and derived key findings.
We suggested enhancements and identified directions for impactful future research. (In
answer to RQ2)

3. We validated the compliance of generic adversarial attacks with network domain constraints
and assessed their feasibility for real-world scenarios. We implemented and compared
these attacks on a DL-based NIDS using multiple datasets, examined the generated
perturbations and established a notion of "attack unrealism." This assessment reveals their
performance and realism characteristics. (In answer to RQ3)

4. We provided a comprehensive evaluation of various adversarial attacks, detection models,
and defense methods. We introduced the Resilience Index a standardized measure to
compare the ML-based NIDS’s resilience for informed deployment decisions, and analyzed
attacks performance’s consistency across different defense mechanisms for devising tailored
countermeasures for each attacks type. (In answer to RQ4 and RQ5)

5. We conducted a comprehensive evaluation of ensemble learning and adversarial training
and comparied their strengths and weaknesses. We developed the Adversarial-Resilient
NIDS, a framework featuring a lightweight adversarially trained ensemble that excels at
detecting adversarial attacks while maintaining high accuracy on clean data. (In answer
to RQ6)

1.5. Thesis Structure

The rest of this thesis is structured as follows:
• Chapter 2. Background: This chapter presents the fundamental concepts that form

the basis of this research. It provides background information related to network intrusion
detection, machine learning, and adversarial machine learning.

• Chapter 3. Threat Modeling for Machine Learning-Based Network Intrusion
Detection Systems: This chapter proposes threat models for ML-based NIDS using

8

1.6 Publications

Attack Tree and STRIDE approaches. Attack Tree modeling identifies threats exploiting
ML algorithm vulnerabilities, while STRIDE uncovers additional technical threats in the
system’s data flow. The analysis identified 46 potential threats, providing insights into
various attack vectors and aiding in the development of hardening measures to prevent
such attacks. (Contribution 1)

• Chapter 4. Adversarial Machine Learning in Network Intrusion Detection
Domain: A Systematic Review: This chapter surveys current literature, categorizing
research into three areas: creating tailored adversarial attacks for ML-based NIDS, assessing
system resilience, and developing defense mechanisms. It discusses the literature’s strengths,
limitations, and improvement opportunities. It also addresses current shortcomings, and
offers suggestions for future research. (Contribution 2)

• Chapter 5. Realism versus Performance for Adversarial Examples Against DL-
based NIDS: This chapter investigates the vulnerability of DL-based NIDS to adversarial
examples by analyzing the effectiveness and realism of various generic attacks across two
different datasets. It provides examination of the perturbations generated by these attacks
and establishes "attack unrealism" using a set of characteristics whose presence invalidates
the realism of the perturbed traffic data. It offers a constrasting analysis of the attacks’
performance and realism, and provides a discussion on the practicality and feasibility of
these attacks in real-world scenarios. (Contribution 3)

• Chapter 6. Resilience Evaluation and Detection of Adversarial Attacks in
ML-based NIDS: This chapter presents a comprehensive evaluation of various adversarial
attacks, models, and defense methods. It introduces the Resilience Index to evaluate the
resilience of ML-based NIDS and analyzes attack performance consistency across different
defenses and detection models. It compares ensemble learning and adversarial training as
defense mechanisms. Finally, it introduces the Adversarial-Resilient NIDS, a multi-layered
framework that effectively detects and classifies adversarial attacks, excelling in detection
accuracy and adversarial resilience using a lightweight adversarially trained ensemble.
(Contribution 4 & 5)

• Chapter 7. Conclusion: This chapter provide a discussion for the thesis, outlines our
future work, and highlights challenges and further research opportunities.

1.6. Publications

Throughout the thesis, certain chapters 3,4, and 5 have been formed from my publications,
which represent my original work and were conducted under the editorial and supervisory
guidance of my supervisor, Charles Morisset. The following is a list of these publications:

• Alatwi, Huda Ali, and Amjad Aldweesh. "Adversarial black-box attacks against network
intrusion detection systems: A survey." 2021 IEEE World AI IoT Congress (AIIoT). IEEE,
(2021). [9] (Chapter 4).

9

1.6 Publications

• Alatwi, Huda Ali, and Charles Morisset. "Threat Modeling for Machine Learning-Based
Network Intrusion Detection Systems." 2022 IEEE International Conference on Big Data
(Big Data). IEEE, (2022) [11]. (Chapter 3)

• Alatwi, Huda Ali, and Charles Morisset. "Realism versus Performance for Adversarial
Examples Against DL-based NIDS." In Proceedings of the 38th ACM/SIGAPP Symposium
on Applied Computing, (2023) [12]. (Chapter 5)

10

Chapter 2. Background

2.1. Summary

In this chapter, we establish the foundation for comprehending network intrusion detection,
machine learning, deep learning, and adversarial machine learning. We start by distinguishing
between host-based and network-based intrusion detection systems and presenting detection
methodologies. Then, we explore the fundamentals of machine learning and the differentiation
between shallow and deep learning. Lastly, we present the concepts of adversarial machine
learning, followed by a detailed examination of various adversarial attack strategies and the
associated threat model.

2.2. Network Intrusion Detection Fundamentals

Intrusion detection is the process of dynamically monitoring and inspecting events over a
network or system for suspicious behaviors that pose possible threats [29, 13]. An intrusion
detection system is a hardware device or software application that performs this task, and it
can be primarily host-based or network-based [29]. The host-based IDS monitors and logs
malicious behaviors on a single host, such as unauthorized access attempts or file integrity
violations. In contrast, the network-based IDS monitors network traffic and inspects different
network layers for suspicious activities, such as a flooding flow indicating a DoS attack [29].
The NIDS utilizes three major methodologies to detect malicious activities: signature-based,
anomaly-based, and stateful protocol analysis [29]. A signature-based IDS (i.e., misuse
detection) detects intrusions by matching network traffic to predefined patterns of known
attacks with very low false alarms [13]. The significant disadvantage of this approach is that
it fails to detect zero-day attacks. An anomaly-based IDS, also known as behavior-based
IDS, leverages statistical and machine learning techniques to identify anomalies and novel
attacks by comparing network traffic against a baseline of normal behavior [13]. This approach
aims to detect deviations that may indicate potential threats. Zero-day attacks, which exploit
previously unknown software vulnerabilities before a patch can be released, pose a significant
challenge to network security because they leave systems vulnerable without an immediate
defense [29]. While anomaly-based IDS can potentially identify these attacks, its effectiveness is
often hindered by a lack of accuracy and a high rate of false positives [29]. A stateful protocol
analysis IDS (i.e., deep packet inspection) inspects the packets’ content and tracks the state of
application protocols used over the network. It compares observed traffic to the normal activity
of a protocol to discover deviations [29].

11

2.3 Machine Learning Fundamentals

2.3. Machine Learning Fundamentals

Machine learning empowers computers to accomplish tasks without being explicitly pro-
grammed by learning from a provided dataset to solve the problem at hand. Machine learning
encompasses various algorithms that can be categorized according to their approach, application,
and depth [88].

2.3.1. Machine Learning Approaches

• Supervised learning, is a type of machine learning where the algorithm is trained on
a dataset with labeled examples. Each input data point in this dataset is paired with
a corresponding output, which could be a discrete label (in the case of classification) or
a continuous value (in the case of regression). The algorithm’s objective is to learn the
relationship between the inputs and their associated outputs so that it can accurately
predict the output for new, unseen data [88, 100, 91].

• Unsupervised learning, is a type of machine learning where the algorithm is trained on
data that has no labeled outputs. Unlike supervised learning, where the goal is to predict
a known label, unsupervised learning seeks to find hidden patterns or intrinsic structures
in the input data. The algorithm works independently to group, cluster, or reduce the
dimensions of the data, helping to uncover the underlying relationships between data
points [88, 100, 91].

• Semi-Supervised learning, is a machine learning approach that lies between supervised
and unsupervised learning. It involves training a model using a combination of a small
amount of labeled data and a large amount of unlabeled data. The idea is to leverage
the small labeled dataset to guide the learning process, while the large unlabeled dataset
helps improve the model’s accuracy and generalization [88, 100].

• Reinforcement learning, is a machine learning approach where an agent learns to
make decisions by interacting with its environment [91]. Unlike traditional methods that
require labeled data, RL involves the agent exploring the environment, taking actions,
and receiving feedback in the form of rewards or penalties. The agent’s objective is to
develop a strategy, or policy, that maximizes the total accumulated rewards over time. By
continuously refining its actions based on the outcomes, the agent progressively improves
its decision-making, ultimately aiming to achieve the best possible results in a given task.

2.3.2. Machine Learning Tasks

Based on the approach and nature of available data, machine learning algorithms are used to
build models that can achieve one of these common tasks [47]:

• Classification learns a predictive function from a pre-labeled dataset that can assign
a class label to an unseen data instance. It approximates a mapping function (f) from
labeled input instances (X) to discrete output classes (y).

12

2.4 Machine Learning Pipeline

• Clustering discovers hidden patterns in the feature space of unlabeled inputs and groups
these points based on similarities or distance measures into unknown classes (i.e., clusters).

• Dimensionality Reduction transforms a dataset from a high-dimensional space into
a compact low-dimensional space while maintaining the significant characteristics of the
original dataset as much as possible.

• Regression learns a predictive function by examining the relationship between a set
of predictor (independent) variables and response (dependent) variables, estimating a
continuous-value outcome for a given observation accordingly.

• Association Rule Learning uses metrics of interestingness to identify strong rules that
relate the antecedent (X) to the consequence (Y).

2.3.3. Machine Learning Depth

• Shallow Learning encompasses conventional machine learning techniques that do not
utilize multiple layers or hidden connections [88].

• Deep Learning uses multiple layers of nodes in artificial neural networks to extract
high-level representations of features from raw inputs [88].

2.4. Machine Learning Pipeline

The ML process involves a series of interconnected steps designed to build, evaluate, and deploy
models that can learn from data and make predictions. Figure 2.1 outlines the key stages in the
ML pipeline, from data collection and data processing to model selection, training, evaluation,
and deployment [50].

Figure 2.1 Machine Learning Pipeline

13

2.4 Machine Learning Pipeline

2.4.1. Problem Definition

The first step in developing a ML-based NIDS is to clearly define the problem by understanding
the network environment and identifying the types of data and potential threats [50]. Objectives
must be specified, such as focusing on detecting known attacks, discovering novel threats, or
both. It’s also important to determine the appropriate machine learning approach—supervised,
unsupervised, or semi-supervised—based on the availability of labeled data [50]. Additionally,
understanding requirements like acceptable false positive rates, real-time detection, and scalabil-
ity is crucial to ensuring the NIDS design is effective.

2.4.2. Data Collection

After defining the problem, the next crucial step is data collection, which directly impacts the
effectiveness of a ML-based NIDS. Data can be sourced from network traffic captures (e.g.,
Wireshark, Tcpdump), firewall and router logs, IDS alerts, and synthetic datasets [105]. It
should reflect both normal network behavior and a variety of malicious activities.

For supervised learning, the data needs to be labeled as benign or malicious. This labeling
process is labor-intensive and requires expertise. If labeled data is not available, unsupervised
learning techniques may be employed, though they face challenges in interpreting anomalous
behavior. The collected data must be representative of the real-world network environment,
including various times and conditions [105]. Data preprocessing tasks include packet decoding,
feature extraction (e.g., IP addresses, port numbers), and aggregation of network flow [105].
Regular updates are necessary to address evolving threats and maintain the NIDS’s effectiveness.

2.4.3. Data Preprocessing

Raw data is often noisy, incomplete, and inconsistent, making data preprocessing a crucial step in
the machine learning pipeline. Data preprocessing involves several tasks, including [50, 55, 7, 105]:

• Data Cleaning: This step involves handling missing values, removing duplicates, and
correcting errors. Techniques such as imputation, where missing values are filled in based
on statistical methods, or outlier detection, where anomalous data points are identified
and handled, are commonly used [50, 55, 7, 105].

• Data Transformation: Transforming data into a suitable format or structure is essential
for model training. This may include normalization or standardization of numerical features,
encoding categorical variables, and feature extraction to reduce dimensionality [50, 55, 7].

• Data Splitting: To evaluate the performance of a machine learning model, the data is
typically split into training, validation, and test sets. The training set is used to fit the
model, the validation set is used to tune hyperparameters and prevent overfitting, and the
test set is used to assess the model’s generalization ability on unseen data [50, 55, 7, 105].

14

2.4 Machine Learning Pipeline

2.4.4. Model Selection

Model selection in ML-based NIDS involves choosing algorithms suited to detecting network
anomalies and attacks. Key models include [105]:

• Linear Models: Simple and interpretable, such as logistic regression, useful for detecting
specific patterns but may lack depth for complex attack scenarios.

• Decision Trees and Ensemble Methods: Decision trees offer clarity in rules, while
ensemble methods like Random Forests and Gradient Boosting improve detection accuracy
and handle varied attack patterns.

• Support Vector Machines (SVM): Effective in high-dimensional feature spaces, SVMs
can distinguish between normal and malicious network activities with high precision.

• Neural Networks: Deep learning models, including Convolutional Neural Networks
(CNNs) for feature extraction and Recurrent Neural Networks (RNNs) for sequential data,
are adept at identifying sophisticated and evolving attack patterns.

• Clustering Algorithms: Techniques like k-means and DBSCAN are used for anomaly
detection by grouping similar network behaviors and highlighting deviations indicative of
potential attacks.

2.4.5. Model Training

Once a model is selected, the training process begins. Model training involves feeding the
training data into the algorithm and adjusting the model’s parameters to minimize the error
between its predictions and the actual outcomes. This is typically done by optimizing a loss
function, such as cross-entropy [50, 55, 7].

• Optimization Algorithms: Techniques like Gradient Descent, including its variants
(SGD, Adam), are used to minimize the error between predicted and actual network
behaviors by adjusting model parameters.

• Hyperparameter Tuning: Key settings, such as learning rate and number of layers,
are optimized using methods like grid search or Bayesian optimization to enhance model
performance.

• Regularization: To avoid overfitting, methods such as L1/L2 regularization, dropout,
and early stopping are applied to ensure the model generalizes well to new, unseen network
data.

2.4.6. Model Evaluation

After training, the model must be evaluated to ensure it effectively detects network anomalies
and attacks. This is achieved by using validation and test datasets to assess how well the model
generalizes to new and unseen network traffic. Key aspects of model evaluation include [50, 55, 7]:

15

2.5 Deep Learning Fundamentals

• Performance Metrics: metrics such as accuracy, precision, recall, and ROC-AUC are
used to assess how well the model detects network anomalies and attacks.

• Cross-Validation: Cross-validation is a technique where the training data is split into
multiple folds, and the model is trained and evaluated multiple times, each time on a
different fold. This provides a more robust estimate of the model’s performance and helps
in detecting overfitting.

2.4.7. Model Deployment

After training, the model must be evaluated to ensure it effectively detects network anomalies
and attacks. This is achieved by using validation and test datasets to assess how well the model
generalizes to new and unseen network traffic. Key aspects of model evaluation include [50, 55, 7]:

• Scalability: The model must handle high volumes of network traffic and provide real-time
threat detection with minimal latency.

• Monitoring: Continuous monitoring is essential to detect any performance degradation
due to data drift, where the network behavior changes over time, affecting the model’s
accuracy.

• Model Retraining: Regular retraining with new network data is crucial to ensure the
model remains effective against evolving threats. Automated retraining pipelines are often
implemented to streamline this process in production environments.

2.5. Deep Learning Fundamentals

Deep learning is a subfield of machine learning based on artificial neural networks. Neural
Networks are biologically inspired by the structure of the human brain and imitate its behavior
to solve complex data-driven problems. A neural network consists of layers of perceptrons,
also known as neurons, which are the core processing units of the network. A perceptron is a
fundamental unit in a neural network that takes input values, applies a set of weights to them,
and passes the weighted sum through an activation function to produce an output. This process
enables the network to learn and make decisions based on the input data [13, 33, 58].

A neural network mainly consists of an input layer that acquires the inputs, an output layer
that predicts the final result, and one or multiple hidden layers (i.e., deep neural network) in
between that perform complex computations [13, 33, 58]. The neurons in one layer are connected
to neurons in the next layer through links. These links are initially assigned random numerical
values termed weights [58]. Each neuron multiplies its inputs by their corresponding weights
and adds a bias, which is a constant value specific to that neuron. The result, known as the
weighted sum, is then passed through a non-linear activation function, which determines
whether the neuron should be activated or not. This activation function serves as a threshold,
allowing the neuron to produce an output only if certain criteria are met.

16

2.5 Deep Learning Fundamentals

When a neuron is activated, its output is transmitted to neurons in the subsequent layer;
this process of passing data through the network is called forward propagation. In the
output layer, the neuron with the highest activation value determines the final output, which is
expressed as a probability for the prediction [13, 33, 58].

The network is trained using the back-propagation algorithm, which adjusts the weights
to minimize prediction error, or the difference between the actual output and the predicted
output [13, 33, 58]. During back-propagation, the error is propagated backward through the
network. This involves calculating the gradient of the error with respect to each weight and bias
using the chain rule of calculus [13, 33, 58]. The algorithm updates the weights by moving them
in the direction that reduces the error, effectively improving the network’s accuracy. Weights
that contribute to correct predictions are increased, while weights leading to incorrect predictions
are decreased [13, 33, 58]. The network undergoes iterative cycles of forward propagation and
back-propagation, refining its weights with multiple inputs until it achieves a high accuracy in
predictions. Figure 2.2 shows an illustration of a neuron in a neural network1.

Figure 2.2 Neuron Structure in DNN

Deep neural networks (DNN) are advanced enough to perform feature engineering using
raw inputs independently [13, 58]. The use of multiple hidden layers enables the extraction of
features and the discovery of latent structures in unprocessed and unlabeled inputs. Figure 2.3
graphically illustrates the architecture of a typical deep neural network composed of multiple
layers (at least two hidden layers) of neurons. Each layer learns to transform its multidimensional
inputs into a more compact and abstract representation. Therefore, the network can be viewed
as a highly complex non-linear mapping function that converts high-dimensional inputs into a
lower-dimensional space [13, 58].

x0

x1

x2

x3

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 2

ŷ1

ŷ2

Output
layer

Figure 2.3 DNN Structure
1Source: becominghuman.ai

17

2.6 Adversarial Machine Learning Fundamentals

2.6. Adversarial Machine Learning Fundamentals

Szegedy et al.[151] revealed for the first time that small but intentionally crafted perturbations
(i.e., adversarial examples) added to the training inputs could lead neural network models to
misclassify, such as wrongly classifying a "panda" as a "gibbon". These examples were found to
be transferable between models; examples designed to fool a particular a deep learning model
can also be effective in misleading different models. This property is called transferability.
Such examples that can transfer between different models are known as cross-modal examples.
Another form of transferability is cross-dataset, where adversarial examples generated over
a particular dataset can be used to attack another model trained on a different dataset[71].
Furthermore, adversarial examples generated to deceive a specific neural network can fool the
same network even when it is trained on different datasets. In practice, adversaries utilize these
transfer-based attacks by using outputs from the targeted model to train a substitute model
and then crafting adversarial examples for the surrogate model that can transfer to the original
model in a black-box setting [118].

Machine learning algorithms depend on data for building models and performing classification
tasks. These learned models can make incorrect decisions with high confidence due to carefully
crafted and manipulated perturbations added to legitimate inputs, known as adversarial
examples[33]. In other words, an adversarial example is a data instance with tiny intentional
feature perturbations that deceive models and cause them to misclassify. Adversarial examples
undermine machine learning algorithms’ fundamental assumption that training and testing
datasets have the same distribution (data stationarity)[33]. The models assume that the
distribution of test data follows the training data, which is not always the case in the real world.
Adversaries exploit this flawed assumption and use combinatorial optimization, local search, and
convex programming to discover adversarial examples that compromise model security [158].

Most approaches for generating adversarial examples add a calculated perturbation (γ) to a
legitimate example (x) to generate a new version (x′) while minimizing the distance between
the legitimate example (x) and the adversarial example (x′), and shifting the prediction to the
intended adversarial result. Adversarial attacks involve feeding these adversarial examples (i.e.,
perturbed inputs) to the model either during the training phase (poisoning attack) or inference
phase (evasion attack) to force it into making wrong decisions. From the attacker’s perspective,
these examples are crafted to bypass detection by the models, degrade their performance,
and probe them to gain information about model parameters and training datasets. From
the defender’s perspective, they are used to conduct vulnerability assessments and debugging
for the models, evaluate their resilience to noise, and increase their generalization abilities.
Adversarial machine learning is an emerging research field focused on making the models robust
against adversarial attacks by assessing vulnerabilities and designing appropriate defensive
mechanisms [70].

18

2.6 Adversarial Machine Learning Fundamentals

Threat Model for Adversarial Attacks

Influence

Causative

Exploratory

Specificity

Integrity

Availability

Privacy

Violation

Targeted

Indiscriminate

knowledge

White-box

Black-box

Gray-box

Strategy

Evasion

Poisoning

Oracle

Mode

Non-colluding

Colluding

Frequency

One-time

Iterative

Figure 2.4 Threat Model of Adversarial Attacks

2.6.1. Adversarial Threat Model

The adversarial threat model provides an abstraction to profile the adversary based on aspects
such as its capabilities, goals, knowledge, and strategies. A widely established taxonomy of
adversarial attacks is proposed by Huang et al. [70]. It classifies attacks based on three main
characteristics as follows:

• Influence refers to the adversary’s capabilities over the target model. Accordingly, these
attacks can be causative or exploratory. Causative attacks occur during training and aim
to affect the learning process of the model, also known as poisoning attacks. Exploratory
attacks occur after the model’s deployment and may include probing the model to discover
information about its internals or its training dataset, such as in model stealing attacks.

• Security violation refers to the element of the CIA triad (confidentiality, integrity,
availability) that the adversary compromises. It can be classified into integrity attacks,
availability attacks, and privacy attacks. Privacy attacks result in the disclosure of
information that violates the model’s secrecy or the privacy of its users. Integrity
attacks aim to manipulate a model so that it misclassifies certain data instances. These
attacks typically cause true positives—correctly identified anomalies—to be classified
as false negatives, incorrectly labeling them as normal. The goal is to undermine the
model’s accuracy by introducing adversarial inputs that evade detection. Such attacks
are particularly dangerous in critical systems like network intrusion detection, where
undetected threats can have severe consequences. Availability attacks seek to render a
model unusable by overwhelming it with inputs that cause widespread errors, including
both false positives and false negatives. Rather than targeting specific instances, these
attacks degrade the model’s overall performance, making it unreliable. This is often done
by flooding the system with noise, leading to a breakdown in the model’s functionality.

The key difference between these attacks is their focus: integrity attacks selectively alter
specific outcomes to reduce accuracy, while availability attacks disrupt the entire system,
leading to broader operational failure.

19

2.6 Adversarial Machine Learning Fundamentals

• Specificity refers to the span of the adversary’s inputs that are planned to be misclassified.
It can be classified into targeted attacks or indiscriminate attacks. Targeted attacks
aim to force the model to misclassify a particular data instance or a small subset of data
instances. Indiscriminate attacks aim to force the model to misclassify a general class
of data instances, such as classifying all true positive data points as false negatives. This
attack degrades the model’s reliability by maximizing prediction errors in general.

This taxonomy has been expanded to comprehensively cover definitive assumptions, which
include the following [30]:

• Adversary knowledge refers to the extent of accessible knowledge about the model and
its structural properties to the attacker. It can be categorized into white-box attacks,
black-box attacks, and gray-box attacks. In white-box attacks, the adversary has
complete knowledge about the model and its parameters (e.g., features, training dataset,
algorithm, hyperparameters, and in the case of a neural network, the model’s architecture,
weights, activation function, and the number of layers). Such knowledge is exactly what
the creator of the model has, which in the majority of real-world scenarios is not feasible
for the adversary to have. In black-box attacks, the adversary has no knowledge about
the model or its parameters and only knows the model’s returned output (i.e., labels or
confidence scores). This setting is commonly assumed for attacking online machine learning
services. Most adversarial attacks are white-box; however, due to the transferability of
adversarial examples (AEs), they can be used for black-box attacks as well. In gray-box
attacks, the adversary has constrained knowledge or limited access (e.g., access to the
training dataset, access to the predicted classes, access to the predicted probabilities, or a
definite number of queries to the model).

• Strategy refers to the adversary’s phases of actions for launching the attack, which can
be one of the following: evasion attacks, poisoning attacks, or oracle attacks. Evasion
attacks, also known as exploratory attacks, involve manipulating inputs to deceive a
previously trained model. In this attack, no influence over the training data is assumed. For
instance, in a NIDS case, the attack payload is encoded to evade detection, compromising
the targeted system. Additionally, the adversary may aim to provoke concept drift in
the system, causing continuous retraining and consequently degrading its performance.
Evasion attacks typically use an optimization approach to find a small perturbation (σ) that
maximizes the loss function. Such an increase in the loss function can be significant enough
to cause the model to misclassify. Poisoning attacks, also known as causative attacks,
involve corrupting the training data or model structure during training to compromise
the learning process, violate the model’s integrity, and degrade its performance in the
deployment phase. The adversary trains an anomaly-based NIDS with a labeled attack
dataset as ground truth, causing the system to fail to detect cyber attacks. In an oracle
attack, the adversary creates a substitute model that retains most of the original model’s
functionality and designs attacks against it, which are then launched against the original
targeted model. Although this type of attack enables attacking the targeted system in

20

2.6 Adversarial Machine Learning Fundamentals

a black-box setting, it suffers from transfer loss as not all adversarial examples transfer
effectively from one model to another. Therefore, a very large number of training instances
are needed to train the substitute model to enhance the attack’s efficacy.

Other researchers have extended the threat model further to cover the following:
• Attack Mode: It is commonly assumed in most related literature that the adversary

works alone to achieve the attacks, known as non-colluding attacks. Another possible
assumption is that multiple adversaries can cooperate to boost attack efficiency and hide
their traces, known as colluding attacks[126].

• Attack Frequency refers to how often an adversarial example is optimized. Attacks
are categorized into one-time or iterative attacks based on the frequency of optimizing or
updating the generated adversarial examples. One-time attacks optimize the generated
adversarial examples once without any iteration. On the other hand, iterative attacks
update adversarial examples multiple times. For a real-time attack, adversaries should
choose a one-time attack instead of an iterative attack. Iterative updating results in better
optimized adversarial examples that overcome one-shot attacks; however, this approach is
computationally expensive and requires more interactions with the targeted model (i.e.,
more queries)[176].

Adversarial examples are intended to be as close as possible to the original examples. Therefore,
introducing tiny perturbations is the fundamental premise for generating them. There are three
aspects to analyze the introduced perturbation: perturbation limitation, perturbation scope,
and perturbation measurement [176].

• Perturbation limitation

– Optimized perturbation, define perturbation as the target of the optimization
problem and aim for minimizing the introduced perturbation as much as possible.

– Constraint perturbation, define perturbation as the constraint of the optimization
problem and demand it to be small enough.

• Perturbation scope

– Individual attacks, craft distinct perturbations for each clean instance of the inputs.

– Universal attacks, craft a general perturbation for the entire dataset, and this
general perturbation is applicable to any clean input. Most of the existing adversarial
techniques create the perturbations individually. Universal perturbations facilitate
deploying adversarial examples in the real world. In such a case, the adversary does
not need to amend the perturbation when the input changes.

• Perturbation measurement

– lp measures introduced perturbations by p-norm distance [176]. There are three lp

distance metrics in the literature l0, l2, and l∞. l0 counts the number of features to be
perturbed. l2 measures the Euclidean distance between the original and adversarial
example. l∞ denotes maximum magnitude of perturbation added to each feature.

21

2.7 Conclusion

– Psychometric perceptual adversarial similarity score (PASS) is a metric for quantifying
adversarial images.

2.6.2. Adversarial Attacks

Adversarial examples are used to attack machine learning models at training time (poisoning
attacks) or at inference time (evasion attacks). To recall, white-box attacks can be launched
when the adversary has access to model gradients, such as model weights. In contrast, in
black-box attacks, the adversary knows almost nothing about the targeted model and depends
on the returned outputs to tweak the perturbations. White-box attacks are more powerful than
black-box ones as they succeed in crafting adversarial examples that target the victim model
with minimal effort and time and do not rely on the attacks’ transferability. The robustness
of adversarial example generation techniques depends on their ability to produce adversarial
examples that are as close as possible to the original examples.

Jacobian-based Saliency Map Attack (JSMA) identifies the most influential features of input
data by analyzing the Jacobian matrix, which measures how changes in each feature affect the
model’s output. It then manipulates these critical features to craft adversarial examples that
mislead the model while making minimal alterations to the input [119]. The Basic Iterative
Method (BIM) applies iterative small perturbations to the input data, optimizing them over
multiple steps to generate adversarial examples [84]. Carlini-Wagner (CW) formulates the
generation of adversarial examples as an optimization problem, aiming to find the minimum
perturbation that induces misclassification while considering a specific distance metric [31].

DeepFool calculates the minimum perturbation required to shift the model’s decision bound-
ary for a given input, crafting adversarial examples with minimal changes that are highly likely
to be misclassified by the target model [104]. Fast Gradient Sign Method (FGSM) is a one-step
attack that perturbs input data in the direction of the gradient of the loss function to create
adversarial examples [59]. Projected Gradient Descent (PGD) combines the principles of BIM
and FGSM by iteratively applying small perturbations and projecting the perturbed input back
onto a valid data space [90].

Zeroth Order Optimization (ZOO) leverages only model query access to iteratively generate
adversarial examples, effectively bypassing model defenses and posing a significant threat in
scenarios where model architecture and parameters are unknown [39]. Hopskipjump (HSJ)
generates adversarial examples by combining gradient-based optimization with a greedy search,
exploiting model vulnerabilities with limited queries and making it a potent threat against deep
learning models [36].

2.7. Conclusion

In this chapter, we laid the groundwork for understanding network intrusion detection, machine
learning, deep learning, and adversarial machine learning. We distinguished between host-based
and network-based intrusion detection systems, investigating their detection methodologies.

22

2.7 Conclusion

Additionally, we delved into various machine learning approaches, tasks, and the differentiation
between shallow and deep learning. We introduced the concept of adversarial machine learning
and provided a detailed exploration of various adversarial attack strategies and their associated
threat models.

In understanding the foundational concepts of ML-based NIDS, we set the stage for identifying
the inherent vulnerabilities and potential threats these systems face in real-world applications.
This leads us to the critical task of threat modeling, where we systematically analyze and
address these security challenges to enhance the robustness and reliability of ML-based NIDS,
which will be discussed in detail in the following chapter.

23

Chapter 3. Threat Modeling for ML-based NIDS

3.1. Summary

To ensure NIDSs play their vital roles in securing the network against cyber attacks, it is
necessary to identify how they can be attacked by adopting a viewpoint similar to the adversary
to identify vulnerabilities and defenses hiatus. Accordingly, effective countermeasures can be
designed to thwart any potential attacks. NIDS, employing machine learning approaches, found
to be susceptible to adversarial attacks where subtle perturbations are inserted into inputs during
inference to evade classifier detection or during training to degrade performance. Yet, modeling
adversarial attacks and the associated threats of employing the machine learning approaches for
NIDSs was not addressed. One of the growing challenges is to avoid ML-based systems’ diversity
and ensure their security and trust. In this chapter, we conduct threat modeling for ML-based
NIDS using STRIDE and Attack Tree approaches to identify the potential threats on different
levels. We model the threats that can be potentially realized by exploiting vulnerabilities in
machine learning algorithms through a simplified structural attack tree. To provide holistic
threat modeling, we apply the STRIDE method to systems’ data flow to uncover further technical
threats. Our models revealed a noticing of 46 possible threats to consider. These presented
models can help to understand the different ways that a ML-based NIDS can be attacked; hence,
hardening measures can be applied to prevent these potential attacks from achieving their goals.

3.2. Introduction

Despite ML-based NIDS’s ability to detect known and unknown malicious traffic with high
accuracy, adversaries continually evolve their techniques to evade detection, with adversarial
attacks emerging as a prominent example. [9, 10]. These attacks manipulate input data to evade
detection at inference time, or inject malicious data during training to compromise the integrity
of the model [9, 10]. Additionally, they can be utilized to probe the detection model with crafted
queries to reverse-engineer it, potentially revealing confidential information. [159, 71].

The attack surfaces of ML-based systems are widening, and their security and trust are
significant concerns. Yet, modeling the security threats against these systems, particularly the
ML-based NIDS, was not considered. To address this gap, we propose two threat models for
ML-based NIDS that identify the potential threats that can be realized due to loopholes in

24

3.3 Related Work

the machine learning algorithms or the lack of security controls. Therefore, the main research
question this chapter attempts to answer:

What are the potential threats and vulnerabilities associated with employing
machine learning approaches in NIDS, and what effective countermeasures can be
devised to enhance their security and trustworthiness?

Threat modeling is a well-accepted paradigm for developing a secure system that involves
identifying, enumerating, and prioritizing the potential security threats [145]. It intends to
equip the system defenders with an analysis of what security measures need to be applied to
mitigate the identified threats. There are different threat modeling approaches; however, we
adopt the Attack Tree and STRIDE models based on our careful assessment. Attack trees
provide a systematic representation of systems security based on varying attacks [108]. We utilize
the attack tree modeling to enumerate all the possible threats associated with vulnerabilities
and loopholes within machine learning approaches that an adversary can exploit to attack an
ML-based NIDS. To spot the other technical threats, we apply the STRIDE strategy at the
components level including the data flow among them. STRIDE is an acronym for six groups
of threats Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege [98]. Our proposed models identified 46 noticing threats against ML-based
NIDS. We believe these threat models will assist ML-based NIDS designers in assessing their
approaches and in designing hardening measures.

Contributions: The contributions of this chapter are as follows:
• C1: To identify potential threats and attack vectors that could compromise the ML-based

NIDS security.

• C2: To assess the vulnerabilities within the ML-based NIDS that could be exploited by
the identified threats.

• C3: To Assess threats impact and likelihood to determine their associated risk levels.

• C4: To suggest countermeasures to mitigate the identified risks.
Organization: The rest of the chapter is organized as follows: Sec 3.3 presents some related

work. Sec 3.4, provides a brief background on threat modeling approaches. Sec 3.5, explains our
threat modeling methodology. The proposed threat models for ML-based NIDS are given in
Sec 3.6 and Sec 3.7. Sec 3.8 provides a discussion. Sec 3.9 presents the conclusion.

3.3. Related Work

Research on ML-based NIDS security encompasses three key areas: developing adversarial
attacks, evaluating model resilience against evasion techniques, and improving model resilience.
The first area focuses on proposing evasion attacks tailored for NIDS, employing techniques
like Reinforcement Learning [23], Generative Adversarial Networks [183, 14], and Genetic
Algorithms [14]. The second area assesses the resilience of various NIDS models against generic
evasion adversarial approaches [77, 43, 124, 132, 92, 45, 52]. The third area aims to bolster ML-

25

3.4 Background

based NIDS resilience against evasion attacks through methods such as adversarial training [132,
92, 45, 52], feature removal [140, 53], and ensemble learning [140, 53]. While significant research
attention has been directed towards addressing adversarial attacks, particularly evasion attacks,
it’s noteworthy that the majority of studies overlook other potential threats confronting ML-
based NIDSs realized by outsider or insider threat agents.

Threat modeling is a proactive engineering process that systematically analyzes a system to
uncover security flaws. Without it, identifying which parts of the system need strengthening
becomes challenging. This chapter employs attack tree and STRIDE threat modeling processes
to analyze potential threats against ML-based NIDSs. Additionally, we conduct risk assessment
and propose security countermeasures for identified threats. This chapter represents the first
attempt to propose threat models for NIDSs utilizing machine learning approaches for malicious
traffic detection.

3.4. Background

In this section, we provide brief background knowledge on the fundamentals of threat modeling
and the threat modeling approaches utilized in this chapter: the STRIDE model and the Attack
Tree model.

3.4.1. Threat Modeling

Threat modeling is a systematic process to identify the potential threats and vulnerabilities of
the system from the adversary’s point of view and what possible countermeasures can be applied
to mitigate these threats [145]. This process is composed of five steps that involve identifying
the following elements [107]: 1) Assets, are items of value and criticality for delivering some
operations and attracting the adversary to compromise, such as hardware, software, services, and
data. 2) Attack surface, are the different points of the system that vulnerable to unauthorized
entry by some adversary. 3) Adversary model, are the characteristics that define the adversary,
such as who he is and what are his motives and capabilities. 4) Vulnerabilities and Threats,
vulnerabilities refer to the weaknesses within the asset that the adversary can leverage for security
compromise. Threats are events in which the adversary exploits the asset’s vulnerabilities to
mount an attack. 5) Mitigation measures, are the security solution that can be applied to
prevent, detect, or reduce the impact of threats.

3.4.2. STRIDE Model

STRIDE is a threat modeling approach covering six security threat categories: Spoofing, Tam-
pering, Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege [98].
Each element of the STRIDE approach corresponds to a violation of some desirable security
property: authenticity, integrity, non-reputability, confidentiality, availability, and authoriza-
tion. Spoofing, is providing false data that fools the target system into gaining authorized
access. Tampering, is applying unauthorized updates or modifications to the system, system’s

26

3.5 Threat Modeling for ML-Based NIDS

components, or data. Repudiation, is denying the responsibility of performing some actions
intentionally. Information Disclosure, is revealing confidential data to unauthorized parties.
Denial of Service, is disrupting the system services availability, efficiency, and performance.
Elevation of Privilege, is an unauthorized increase of privileged access beyond what is initially
given.

3.4.3. Attack Tree Model

An attack tree is a conceptual and hierarchical diagram demonstrating how an asset can be
compromised [108]. It provides a schematic presentation of the system’ security as a function of
any viable attacks. The model is tree-structured where the root node is the target and connected
with multiple leaf nodes representing the different paths to accomplish the attack goal [108].
The tree shows how low-level malicious activities cooperate to accomplish the adversary’s goal.
The adversary may reap benefits, and the target endures some impacts at any level of the tree;
however, the impacts get more harmful at the higher levels. A successful attack traverses the
tree from accomplishing the actions at the leaf nodes to overcoming the target at the root. The
fundamental building blocks of the attack tree are as follows [108]:

• Root node, is the top node and represents the target of the attack.

• Leaf nodes, are the lowest nodes in the tree and denote the actions the adversary can
take to reach the attack goal.

• Intermediate nodes, are the nodes between the root node and the leaf nodes and
represent the adversary’s sub-goals and intermediate states towards the ultimate goal.
These nodes are either AND or OR nodes, often denoted by the Boolean Algebra shapes.
The activities represented by nodes immediately beneath an AND node must all be
performed to attain the goal represented by the above AND node. On the other hand,
if any of the nodes beneath an OR node are achieved, then the OR node state is also
attained.

Certain combinations of leaf nodes’ actions will meet the tree’s AND/OR nodes’ logic and lead
to one or more paths toward the ultimate goal. These combinations identify all the possible
actions the adversary may take, known as attack scenarios. Different attack scenarios demand
different resources and depending on the adversary’s capabilities some attacks scenarios more
preferable than others. Analyzing which scenario suits the best a given adversary is known as
capabilities analysis.

3.5. Threat Modeling for ML-Based NIDS

This chapter aims to perform threat modeling for ML-based NIDS by following the consolidated
scheme depicted in Figure 3.1. We identify the components of a ML-based NIDS that reveal
functionalities, interactions, and relationships between them. Next, we derive the attack surface
based on the access points of each component. Furthermore, we detail the interactions among

27

3.5 Threat Modeling for ML-Based NIDS

the system components using a data flow diagram to derive a complete threat model that covers
all possible threats. Afterward, we use two threat identifying approaches to model the potential
threats against a ML-based NIDS. We employ the Attack Trees to model threats associated
with machine learning algorithms’ vulnerabilities. Additionally, we apply the STRIDE method
to the data flow diagram to spot further technical threats. As a result, we provide an assessment
of the identified threats. Finally, we present possible defensive mechanisms that can aid in
mitigating the identified threats.

System Components

Attack Surface

Data Flow Diagram

Attack Tree Model

Threat Assessment Possible Mitigations

STRIDE Model

Figure 3.1 Threat Modeling Scheme

3.5.1. ML-based NIDS Components

Figure 3.2 depicts the major components of a typical ML-based NIDS: a data source, a pre-
processing module, a detection module, and security responses [105]. Data source, is the
fundamental component of any NIDS to build up the detection module. Network traffic data
needs to be collected first for constructing offline data set that compromises a large diversity
of normal and abnormal traffic to train the model. After training the model, real-time traffic
is monitored for anomaly detection. A packet sniffer module is responsible for continuously
capturing the network traffic and can be implemented by either passive or in-line deployment
approaches. Network flows are aggregated at checkpoints based on one feature at a given time,
such as protocols or source/destination IP addresses[105]. Pre-processing module, transforms
the raw traffic data into an understandable format that can be fed as input into the machine
learning model. It comprises four activities: features generation, features selection, features
conversion, and features normalization. Feature generation, constructs feature vectors from
the captured packets using tools such as Netflow, Netmate, Tcptrace, Argus, and BRO-IDS.
Feature reduction, eliminates duplicated, irrelevant, unimportant, and noisy features. It
involves two substeps: features selection and features extraction. Features selection identifies
a subset of the original features that contribute most to the class labels. Features extraction
converts feature vectors from high to low dimensional space using dimensionality reduction
approaches. Feature conversion, maps the categorical features to numeric vectors using a
unified format. Feature normalization, applies a scaling function to convert the numeric values
to a common scale without amending the differences between them to prevent some features
from dominating the others. Common approaches for scaling data are Z-score normalization
and Min-Max scaling. Detection module, uses the constructed model to analyze the network
flow for malicious behavior and makes a classification decision. Response module, uses the
classification result from the detection module to invoke the appropriate actions for the given
flow according to a set of predefined policies.

28

3.5 Threat Modeling for ML-Based NIDS

R
ea

l
N

et
w

o
rk

 E
n

v
ir

o
n
m

en
t

P
re

p
ro

ce
ss

in
g

Feature Conversion

Detection

System Model

Defense Response

Feature Generation

Feature Reduction

Training

Feature Normalization

P
re

-p
ro

ce
ss

ed
 D

at
a

Training Traffic

Monitoring Traffic

Training Data

Monitoring Data Decision Action

Figure 3.2 Components of ML-based NIDS

3.5.2. Adversary Model

Our threat model considers two profiles of adversaries: insider and outsider. The insider
adversary is within the perimeter of the network and can access the ML-based NIDS directly,
and the harm he causes can result from intentional or accidental activities. The outsider
adversary does not have direct access to the target. However, he is able to initiate the attack
remotely or through a compromised node in the network that has direct access to a component
within the system. Regarding the adversary’s goals, we assume the adversary seeks to launch
targeted or reliability attacks. In targeted attacks, the adversary aims to enforce the system
to induce a definite prediction for a given input. On the other hand, in reliability attacks, the
adversary aims to maximize prediction errors overall without necessarily inducing a certain
prediction. Furthermore, we define the capabilities of the adversary as causative or exploratory.
In Causative attacks, the adversary is able to affect either the learning process or inference
of the detection system. In exploratory attacks, the adversary is able to probe the system to
extract information that can be exploited for different purposes.

3.5.3. Attack Surface

We define the attack surface of a ML-based NIDS as all the access points are susceptible to
being exploited by both insider and outsider adversaries to launch their attacks. This can be
described with respect to the pipeline of the system architecture in Figure 3.2. The system
development begins with constructing a detection model based on the pre-collected offline
training dataset. After system deployment, the network traffic is collected via sensors and
processed before being fed to the detection module, which makes prediction decisions. This
output is then communicated to the defense response module to be acted upon. In such a
system, the adversary may seek to 1) tamper with collection or pre-processing of input data, 2)
subvert the detection model, 3) exploit the model outputs, or 4) interfere with them. Each of
these attack surface points is a relevant attack vector.

29

3.5 Threat Modeling for ML-Based NIDS

Figure 3.3 DFD of ML-based NIDS

3.5.4. Data Flow Diagram

Figure 3.3 represents the DFD of a ML-based NIDS that shows. The DFD consists of five
elements: an external entity, data store, data flow, trust boundary, and process. An external
entity, depicted as a rectangle, sends/receives data or requests/responses services with the other
system components. Data flow, represented as an arrow, illustrates the directional movement of
data such as network traffic, input/output data, functional calls, and remote procedure calls
between data stores, external entities, and processes. A process, represented as a sphere, handles
an incoming data flow and produces an output for a system service or component. The data
store, represented as, handles a location to retain the data for later access. A trust boundary,
represented in dashed lines, illustrates changes in trust levels or privileges. Here, we consider the
machine learning components as processes as they take input data and perform some operations
to produce output. We use this DFD to identify potential threats using the STRIDE model.

3.5.5. Threat Assessment

In this section, we conduct a qualitative assessment of potential threats to a ML-based NIDS.
The assessment is structured around three critical dimensions: Vulnerability, Potential
Impact, and Conditions [16]. Each threat is evaluated based on these factors to provide a
comprehensive understanding of the risks involved.

• Vulnerability: This refers to the specific weaknesses in the system that could be exploited
by an adversary. We identify and categorize vulnerabilities within the system, focusing on
areas such as authentication, access controls, and system configuration.

• Potential Impact: The potential impact assesses the consequences of a successful
exploitation of a vulnerability. This includes the severity of damage to the system’s
integrity, availability, confidentiality, or any other critical aspect that the attack may
affect. The impact is generally classified as low, medium, or high, depending on the extent
of the damage.

30

3.6 Attack Tree Model For ML-Based NIDS

• Conditions: This dimension considers the specific conditions or prerequisites necessary
for a threat to be realized. This includes factors such as the presence of certain system
configurations, the accessibility of certain network resources, or the need for insider
knowledge. Understanding the conditions helps in estimating the likelihood of the threat
materializing.

These factors are used to assess the threats identified using the Attack Tree and STRIDE models
in the following sections 3.6 and 3.7.

3.6. Attack Tree Model For ML-Based NIDS

In this section, we present our attack tree model for the ML-based NIDS. The attack tree was
constructed based on the attack surface identified in Section 3.5.3. Starting from this generic
attack tree, ML-based NIDS threats can be investigated, and more complex attack trees can be
structured for each of them. To analyze the machine learning detection model, we define the
adversary’s main goal as to compromise the system in the root node and then his sub-goals
which are the different ways of achieving the main goal in the intermediate nodes. Finally, we
specify the adversary’s actions to realize each sub-goal in the leaf nodes.

In the visual attack tree for ML-based NIDS depicted in Figure 3.4, the structure begins with
a root node that represents the overarching attack goal, which is compromising the functionality
of the NIDS. This root node is then subdivided into primary branches, each categorizing different
attack methods based on their timing relative to the deployment of the model. The branches are
divided into two main categories: attacks that occur before model deployment and those that
occur after. Attacks occurring before model deployment target the model during its development
or training phases, while attacks occurring after model deployment target the model once it is
operational. Each of these main categories is further broken down into sub-nodes, which detail
specific attack types and techniques. For example, under the "Poisoning" branch, there are sub-
nodes for "Data Injection," "Label Manipulation," and "Input Manipulation," each representing
different ways an adversary might corrupt the training data. Similarly, the "Evasion" branch is
split into nodes such as "White-box Evasion", "Black-box Evasion," and "Gray-box Evasion",
with further sub-nodes describing various strategies within those categories. This hierarchical
structure allows for a clear and organized representation of how different attack methods relate
to one another and contribute to the overall goal of compromising the NIDS. Each node in the
tree captures the nature of the attack and its potential impact, providing a comprehensive view
of possible threats and vulnerabilities within the system.

Our proposed attack tree model is shown in Figure 3.4, and classified 22 attacks generally
based on their times of occurrence before or after the model deployment. The risk assessment of
the identified threats is provided in Table 3.1. We provide a detailed description of the identified
attacks below.

1.1 Poisoning: adversary corrupts the training data or the logic of the model. The
adversary may aim to force the model to induce wrong predictions on specific inputs or reduce

31

3.6 Attack Tree Model For ML-Based NIDS

its overall performance and the quality of its decisions making it unreliable or unusable after
the deployment.

• 1.1.1 Data Injection: adversary inserts new malicious inputs to alter the data distribu-
tion.

• 1.1.2 Manipulation: adversary alters the existing training data.

– 1.1.2.1 Label Manipulation: adversary manipulates the class labels of the original
training dataset.

– 1.1.2.2 Input Manipulation: adversary manipulates the features values of the
original training dataset.

• 1.1.3 Logic corruption: adversary subverts the way the model algorithm learns making
it unable to learn correctly.

1.2 Backdoor: adversary causes targeted misclassifications or accuracy degradation of the
model over specific inputs that meet some hidden property.

• 1.2.1 Trigger Backdoor: adversary embeds hidden behaviors into the model, which only
activate and induce misclassification on inputs containing certain triggers while keeping
the model function as intended in normal conditions. The adversary may implant the
backdoor by manipulating the model parameters directly or injecting poisoned inputs into
the training dataset.

• 1.2.2 Triggerless Backdoor: adversary exploits vulnerabilities in the working mechanism
of the model. For instance, dropout layers in neural networks prevent the model from
over-fitting; however, the model performs perfectly on the training data but badly on
real-world data.

2.1 Evasion: adversary manipulates traffic to force the detection model into an incorrect
decision and bypass detection.

• 2.1.1 White-box Evasion: adversary crafts traffic to evade detection based on complete
knowledge about the model (i.e ., parameters, hyperparameters, training data features,
architecture, model internals like weights or coefficient values).

• 2.1.2 Black-box Evasion: adversary has no knowledge about the model nor training
data. However, he collects input-output pairs or accesses training data distribution to
exploit the detection model [33]. Using the collected input-output pairs, he trains a
surrogate model. Then, he uses white-box approaches to craft adversarial inputs over the
surrogate model, which then they can transfer over the target detection system [33].

– 2.1.2.1 Strict Evasion: adversary collects the input-output pairs from the detection
model to train a substitute model.

– 2.1.2.2 Adaptive Evasion: adversary accesses the detection model as an oracle, so
he can craft adaptive inputs and observes the oracle’s outputs.

– 2.1.2.3 Non-adaptive Evasion: adversary can access the distribution of training
data, and then he trains a local model over data examples from the same distribution.

32

3.6 Attack Tree Model For ML-Based NIDS

• 2.1.3 Gray-box Evasion: adversary has partial knowledge of the model, such as the
model parameters, architecture, or training data.

2.2 Model Inversion: adversary attempts to reconstruct the dataset was used in training
the targeted model. The adversary maliciously quires the model repeatedly for maximum
confidence results to reveal secret data inputs based on the returned outputs. Countermeasures
for ML-based NIDS Threats Identified Using STRIDE Model

2.3 Model Extraction: adversary sends malicious queries to the detection model to expose
the algorithm’s internal details (e.g., parameters, weights, etc.). The adversary infers this
information based on the model output class probabilities and predictions with respect to chosen
inputs. The adversary may use this information to train a substitute model in order to steal the
functionality of the targeted system.

2.4 Inference: adversary probes the detection model with different inputs to reveal secret
information about the model by weighting the outputs.

• 2.4.1 Attribute Inference: adversary infers missing attributes by exploiting public
information received from the system. The adversary has partial knowledge of a particular
record in the training data and uses the model and the record’s incomplete information to
infer the missing information.

• 2.4.2 Membership Inference: adversary infers whether a specific data sample was a
part of the model training data or not based on the returned output. The model outputs
stronger confidence scores when fed with its training data, as opposed to new and unseen
data. The adversary aims to rebuild the records used for model training.

2.5 Model Reprogramming: adversary uses crafted queries to repurpose the detection
system and makes it execute unexpected tasks that was not programmed for.

2.6 Trojan: adversary controls the detection system’s behavior after malicious modification
or distribution of the model that works as expected in normal conditions.

2.7 Model Manipulation: adversary provides falsified data as feedback to the system
steering the model improvements in the wrong direction. machine learning models keep learning
and improving by taking constant feedback from the environment, such as in reinforcement-based
NIDS systems.

2.8 Model Replacement: adversary manipulates the pre-trained model or replaces the
genuine model with a malicious one.

2.9 Model Supply Chain: adversary compromises the model after being deployed through
vulnerabilities in the system dependencies provided by 3rd parties.

2.10 Model Dependencies: adversary exploits traditional vulnerabilities such as buffer
overflow in the model software dependencies to control the system.

2.11 Model Fuzzing: adversary uses an automated process to send random inputs to
expose vulnerabilities.

33

3.6 Attack Tree Model For ML-Based NIDS

Attack Description Vulnerability Potential Impact Conditions

Data Injection Injecting malicious data to cor-
rupt the training process or bias
model predictions.

Lack of proper access controls Corruption of the model’s integrity, lead-
ing to inaccurate or unreliable predic-
tions.

Requires access to the training
data or process. Higher risk
in environments with weak data
controls.

Label Manipulation Altering labels in the training
dataset to mislead the model.

Lack of proper access controls,
data encryption, secure devel-
opment

Decreases model accuracy by associat-
ing incorrect labels with data points.

Requires access to labeled train-
ing data. More likely in sys-
tems without strong data in-
tegrity checks.

Input Manipulation Manipulating input data to
cause the model to make incor-
rect predictions.

Lack of proper access controls,
data encryption, secure devel-
opment

Causes incorrect predictions during in-
ference, affecting the model’s reliability.

Requires control over input data.
Higher risk in environments with
insecure data handling.

Logic Corruption Corrupting the logic of the
model through manipulation of
data or parameters.

Lack of proper access controls,
secure development, penetra-
tion testing

Leads to erroneous decision-making by
the model, undermining its trustworthi-
ness.

Requires deep knowledge or ac-
cess to the model’s logic or train-
ing process.

Trigger Backdoor Embedding hidden triggers that
cause the model to behave ma-
liciously when activated.

Lack of proper access controls,
secure development, penetra-
tion testing

Can cause targeted failures or unautho-
rized actions when the trigger is acti-
vated.

Requires embedding triggers dur-
ing the training phase or model
development.

Triggerless Back-
door

Backdoors without specific trig-
gers that can be activated under
certain conditions.

Lack of penetration testing Allows adversaries to control the
model’s behavior unpredictably.

Harder to detect, can be embed-
ded during model development
or update phases.

White-box Evasion Crafting inputs that evade
detection by fully exploiting
model knowledge.

Lack of proper access controls,
secure development

Allows adversarial inputs to bypass the
model, leading to undetected threats.

Requires full knowledge of the
model, feasible in open-source or
weakly secured models.

Strict Evasion Creating adversarial inputs un-
der strict constraints to avoid
detection.

Lack of proper query controls Enables the evasion of detection sys-
tems, leading to security breaches.

Requires an understanding of
model constraints and behavior.

Adaptive Evasion Modifying inputs based on feed-
back to continuously evade de-
tection.

Lack of proper query controls Increases the effectiveness of evasion at-
tacks, leading to ongoing security issues.

Requires iterative access to the
model’s responses, common in
dynamic threat environments.

Non-adaptive Eva-
sion

Single-shot evasion without
feedback, typically against less
adaptive models.

Lack of proper access controls,
secure development

Enables initial bypassing of the model
but may be less effective long-term.

Requires knowledge of model be-
havior, more effective against
static defenses.

Gray-box Evasion Crafting inputs with partial
knowledge of the model to evade
detection.

Lack of proper access controls,
secure development

Allows bypassing of security measures
while exploiting limited model knowl-
edge.

Feasible when some but not all
model details are known to the
adversary.

Inversion Reconstructing sensitive train-
ing data by querying the model.

Lack of proper query controls Potential exposure of confidential infor-
mation used in training.

Requires repeated access to the
model’s outputs, more likely in
publicly accessible models.

Extraction Inferring the model’s parame-
ters or structure through re-
peated queries.

Lack of proper query controls Unauthorized replication or understand-
ing of the model, compromising intellec-
tual property.

Feasible with extensive query-
ing, more likely in poorly secured
query interfaces.

Attribute Inference Predicting missing attributes
from the input data based on
model outputs.

Lack of proper query controls Exposure of sensitive or private infor-
mation through model outputs.

More likely when the model out-
puts detailed information, like
confidence scores.

Membership Infer-
ence

Determining if a particular data
point was part of the model’s
training set.

Lack of proper query controls Breach of data privacy and potential
exposure of sensitive information.

Higher risk in models that out-
put detailed or confidence-based
responses.

Reprogramming Reusing the model for unin-
tended tasks, causing unpre-
dictable behavior.

Lack of proper query controls Leads to misuse of the model for unin-
tended or malicious purposes.

Requires knowledge of input-
output mappings, feasible in
complex models.

Trojan Embedding hidden, malicious
functionalities in the model that
can be activated later.

Lack of proper access controls,
secure updating, system moni-
toring

Causes unauthorized actions when
triggered, leading to severe security
breaches.

Can be introduced during model
development or updates. Hard
to detect before activation.

Manipulation Steering the model’s learning
process by providing misleading
feedback.

Lack of proper query controls,
system monitoring

Leads to degraded performance or incor-
rect learning outcomes, compromising
the model’s effectiveness.

Feasible in systems relying on
feedback loops or continuous
learning.

Replacement Substituting the original model
with a malicious one.

Lack of proper access controls,
system monitoring

Complete control over the system by
the adversary, leading to severe security
issues.

Requires high-level access to the
model deployment environment.

Supply Chain Compromising the model or
its components through third-
party dependencies.

Lack of secure development,
penetration testing, patching

Introduces vulnerabilities that can be
exploited, potentially affecting the en-
tire system.

More likely in environments with
complex dependencies and third-
party integrations.

Model Dependen-
cies

Exploiting vulnerabilities in
model dependencies or external
libraries.

Lack of secure development,
penetration testing, patching

Can lead to indirect compromises, af-
fecting the model’s overall security.

Feasible in systems with many
external dependencies, especially
those not regularly updated.

Fuzzing Randomly testing the model
with numerous inputs to find
vulnerabilities.

Lack of proper query controls May expose unexpected weaknesses,
leading to future exploits.

More likely in systems with open
interfaces and extensive query ca-
pabilities.

Table 3.1 Threats Assessment for ML-based NIDS Attack Tree Model

34

3.7 STRIDE Model For ML-Based NIDS

Figure 3.4 ML-based NIDS Attack Tree Threat Model

3.7. STRIDE Model For ML-Based NIDS

In this section, we use the STRIDE model to identify potential threats that target the data flows
and the system services. The model was applied to the Data Flow Diagram 3.5.4 to identify
security problems in data stores, data flows, and system processes. By utilizing the STRIDE
approach, we found that specific threats are more likely to occur for a certain type of element
in the data flow diagram. Data stores are more likely to be vulnerable to tampering, denial of
service, information disclosure, and repudiation attacks. Data flow threats are likely related
to tampering, information disclosure, and denial of service. The likely threats associated with
an endpoint or an external entity are spoofing, repudiation, and elevation of privileges attacks.
Lastly, a process is susceptible to all threats of spoofing, tampering, repudiation, information
disclosure, denial of service, and elevation of privileges. Table 3.2 shows the identification of
threats that we conducted using the STRIDE threat model. The threats are grouped according
to the categories defined in the STRIDE model. Each threat is assessed in terms of its impact,
severity, and probability as described in 3.5.5. The majority of potential threats are tampering
(7), followed by spoofing (5), information discourse (4), and denial of service (4). The least
number of threats were repudiation (2) and elevation of privileges (2). Furthermore, Table 3.3
illustrates possible mitigation solutions for each group of the identified threats.

35

3.7 STRIDE Model For ML-Based NIDS

Category Threat Vulnerability Potential Impact Conditions

Spoofing

Adversary impersonates an autho-
rized source to request or response
to system services

Lack of proper authentication Service disruption, data ma-
nipulation, unauthorized ac-
cess

Requires access to system
credentials or network

Adversary impersonates an autho-
rized source to create, update, delete
data

Lack of proper authentication Data integrity compromise,
potential data loss

Exploitation of insufficient
authentication mechanisms

Adversary impersonates an autho-
rized source to update or delete the
system configuration

Lack of proper authentication System malfunction, in-
creased vulnerability

Weak configuration controls
or lack of logging mecha-
nisms

Adversary impersonates an autho-
rized source to send or receive data

Lack of proper authentication Data theft, loss of confiden-
tiality

Insufficient encryption or ac-
cess controls

Adversary uses false credentials to
gain admin access to the system or
data

Lack of proper authentication Total system compromise,
data breach

Weak authentication, poor
password management

Tampering

Adversary alters the data on the flow
or at rest

Lack of proper access controls,
encryption

Data corruption, loss of in-
tegrity

Lack of data integrity checks
or encryption

Adversary alters the system configu-
ration

Lack of proper access controls,
encryption

System malfunction, weak-
ened security

Poor configuration manage-
ment or lack of encryption

Adversary alters the system detection
decision outputs

Lack of proper access controls Reduced detection accuracy,
misleading system responses

Poor access control mecha-
nisms or insufficient logging

Adversary deletes data from the
database

Lack of proper access controls Loss of critical information,
service disruption

Inadequate backup systems,
weak access controls

Adversary inserts malicious data into
the database

Lack of proper access controls Corrupted data, false sys-
tem outputs

Lack of validation checks or
poor access controls

Adversary alters, creates, or deletes
the system services

Lack of proper access controls Service disruption, compro-
mised system integrity

Poor system monitoring, in-
sufficient logging

Adversary alters the sys-
tem/data/services access controls

Lack of proper access controls Unauthorized access, data
breach

Poor access control mecha-
nisms or lack of encryption

Repudiation
Adversary disables logging services Lack of proper access controls,

security monitoring
Loss of audit trail, difficulty
in tracing activities

Weak logging mechanisms,
poor access controls

Adversary deletes or alters the sys-
tem/data/services audit trails and ac-
cess logs

Lack of proper access controls,
encryption, security monitor-
ing

Loss of audit trail, difficulty
in forensic analysis

Poor access controls, insuffi-
cient encryption

Information
Disclosure

Adversary intercepts and relays on-
flow data

Lack of proper access controls,
encryption

Loss of confidentiality, data
breach

Insufficient encryption,
weak access controls

Adversary accesses sys-
tem/data/services meta-data

Lack of proper access controls,
encryption

Exposure of sensitive infor-
mation, loss of confidential-
ity

Poor access controls, insuffi-
cient encryption

Adversary eavesdrops on a connection
between two sources

Lack of proper access controls,
encryption

Loss of confidentiality, data
breach

Insufficient encryption,
weak access controls

Adversary accesses data at rest Lack of proper access controls,
encryption

Loss of confidentiality, data
breach

Insufficient encryption,
weak access controls

Denial of
Service

Adversary floods the system’s sources
with massive requests

Lack of proper configuration
of access control lists, load bal-
ancing

Service disruption, reduced
system performance

Weak load balancing, poor
access control configurations

Adversary blocks services from access-
ing the system resources

Lack of proper configuration
of access control lists, harden-
ing measures

Service disruption, reduced
system availability

Poor configuration of access
controls, insufficient harden-
ing

Adversary crashes or destabilizes the
system’s operations by exploiting
bugs

Lack of system patching System downtime, potential
system failure

Unpatched vulnerabilities,
lack of system monitoring

Adversary occupies the communica-
tion channel bandwidth

Lack of proper configuration
of access control lists, conges-
tion control

Service disruption, reduced
communication efficiency

Poor access control config-
urations, weak congestion
control

Elevation of
Privilege

Adversary gains unauthorized access
and escalates it to administrator ac-
cess

Lack of proper access controls,
security monitoring and log-
ging

Total system compromise,
data breach

Weak access controls, insuf-
ficient monitoring

Adversary exploits flaws in the sys-
tem to elevate access privileges (e.g.,
buffer overflow, RootKit, or back-
doors)

Lack of system patching, se-
curity monitoring and logging

Total system compromise,
unauthorized access

Unpatched vulnerabilities,
insufficient logging and mon-
itoring

Table 3.2 Threats Assessment for ML-based NIDS Using STRIDE Model

36

3.8 Discussion

Threats Possible Mitigation

Spoofing Secure authentication and identification mechanisms, secure password requirements,
multi-factor authentication (MFA), digital signatures, certificates, and strong encryption
mechanisms.

Tampering Digital signatures, cryptographic hashing, isolation and access checks, permissions, access
controls, integrity checks, audit logging for accessing data, software integrity diagnosis,
data integrity diagnosis, data inputs validation, outputs encoding, and static code analysis.

Repudiation Secure authentication, secure logging and auditing, digital signatures, log file analysis, and
digital forensics technology.

Information
Disclosure

Sensitive data encoding techniques include hashing and encryption, isolation, permissions,
proper access controls, and authorization.

Denial of
Service

Load balance, congestion control, redundancy, failover, QoS, bandwidth throttle,
hardening and limiting allowed requests, limiting the amount of resources needed for
handling a not-authorized connection, firewalls, and malware detection methods.

Elevation of
Privilege

Least privilege authorization, antivirus, system patching and updating, auditing, strong
password policies and enforcement, multi-factor authentication, user inputs sensitization,
privileged account protections, access controls, group or role membership, privilege
ownership, managing identity life cycle, hardening system components through
configuration changes, closing ports, removing unnecessary access.

Table 3.3 Countermeasures for ML-based NIDS STRIDE Model Threats

3.8. Discussion

We implemented threat modeling to identify the security threats of employing machine learning
technologies for network anomaly detection. 24 threats against the ML-based NIDS framework
were identified using the STRIDE threat modeling. Overall, the more common identified threats
were tampering, spoofing, information disclosure, and denial of service, each of which can
be exploited to significantly endanger the ML-based NIDS. The least common threats were
repudiation and elevation of privilege. An attack tree was implemented for possible threats
associated with machine learning vulnerabilities. The attack tree model revealed 22 possible
threats. We demonstrated that an adversary can realize specific malicious goals by exploiting
threats at different components in the system. The results of the Attack Tree and STRIDE
approaches are meaningful, sufficiently broad, and easily understandable to system designers
in order to develop security hardening measures. The suggested countermeasures can help
to mitigate some of the identified threats. However, these solutions come with a trade-off
in performance. When assessing the security implications of employing machine learning
technologies for NIDS, the proposed threat models can be taken as a starting point for a more
profound risk assessment. We found that not all threats are relevant or can pose high risks.

Previous research on ML-based NIDS security primarily focused on developing adversarial
attacks tailored to these systems, assessing their resilience, or implementing defenses against
such attacks [9]. However, in this chapter, we identified 22 threats that target the machine
learning detection model using attack tree modeling, and 24 threats by the STRIDE approach.

37

3.9 Conclusion

Threat modeling is crucial for real-world deployment of ML-based NIDS as it helps to reduce
risk exposure and validate the effectiveness of security controls.

We developed threat models for ML-based NIDS that offer guidance for resilient real-world
deployment. These models aid in identifying threats, designing defensive countermeasures, and
securing systems from various security risks. While these models address the current threats,
ongoing threat modeling processes will be crucial for identifying emerging threats and designing
effective solutions to enhance ML-based NIDS security.

3.9. Conclusion

In this chapter, we explored the potential threats and vulnerabilities associated with employing
machine learning approaches in NIDS, and devise countermeasures to enhance their security and
trustworthiness. We provided a comprehensive overview of threat modeling for ML-based NIDS
using Attack Tree and STRIDE approaches. By systematically identifying, categorizing, and
assessing potential security threats, the models offer valuable insights into the vulnerabilities
inherent in machine learning algorithms and the risks posed by inadequate security measures.
In total, 46 threats were identified, necessitating mitigation for deploying a resilient ML-based
NIDS.

Furthermore, we highlighted the practical utility of these threat models by demonstrating
their applicability in considering potential attacks on each component of the detection system
when developing hardening measures. This approach facilitates a more holistic approach to
security enhancement in ML-based NIDS deployments.

Overall, the proposed threat models represent a significant contribution to the field, providing
a foundational framework for future research aimed at addressing ML-based NIDS security
threats and enhancing risk assessments.

As we have identified 46 potential threats through our comprehensive threat modeling in
this chapter, it becomes evident that understanding and addressing evasion attacks in the
context of ML-based NIDS is of paramount importance. This chapter has laid the foundation
for recognizing the vulnerabilities and risks associated with machine learning algorithms in
NIDS. To delve deeper into adversarial evasion attacks and explore potential solutions, we will
proceed to the next chapter, where we conduct a systematic review to highlight these attacks in
the literature.

38

Chapter 4. Adversarial Machine Learning in NIDS Domain: A
Systematic Review

4.1. Summary

Despite their impressive accuracy of in detecting malicious traffic, ML-based NIDS are susceptible
to adversarial attacks which encompass various strategies, with poisoning and evasion being
among the most prevalent. Poisoning attacks inject malicious data into the training dataset to
compromise the model’s integrity, while evasion attacks manipulate input data during inference
to bypass detection. Based on our threat modeling conducted in the previous Chapter 3, we have
identified evasion attacks as a significant threat for ML-based NIDS. These attacks are highly
probable as they don’t require direct access to training data or internal privileges. Given that
adversaries in network cyber attacks are mostly external agents, evasion tactics are commonly
employed. Therefore, in this chapter, we focus on presenting a comprehensive overview of
the current state-of-the-art in adversarial evasion attacks against ML-based NIDS. Drawing
upon a structured analysis of the literature, we synthesize and categorize the existing body of
work into generating tailored adversarial examples for ML-based NIDSs, evaluating ML-based
NIDS resilience, and developing defensive mechanisms. We present the existing methodologies,
discussing their strengths, limitations, and potential avenues for improvement. Overall, this
chapter offers a comprehensive overview and assessment of the body of knowledge, identifies
gaps in current research, and provides insights for future works.

4.2. Introduction

Threat of adversarial attacks is increasingly investigated in machine learning models across
various domains, such as images and text recognition. However, the specific challenges posed
by such attacks in the context of NIDS have not received adequate attention. ML-based NIDS
operate in real-time which requires prompt detection of adversarial attacks to prevent security
breaches. Failures can lead to severe consequences, such as data breaches and reputational
damage which demands a robust and effective defense. Additionally, network environments are
dynamic, with evolving threats necessitating adaptive adversarial defense strategies. Furthermore,
resource constraints demand lightweight and efficient defense mechanisms for effective operation
in ML-based NIDS. The lack of research addressing these challenges in the NIDS domain
motivates us to conduct a comprehensive overview to fill this gap.

39

4.3 Related Work

In this chapter, we explore adversarial evasion attacks against ML-based NIDS. We start with
an overview of various techniques for generating adversarial attacks, encompassing a spectrum of
approaches ranging from reinforcement learning to generative adversarial networks and genetic
algorithms. Subsequently, we pivot to evaluating the resilience of ML-based NIDS against
generic adversarial attacks. Then, we explore different defense mechanisms such as adversarial
training, ensemble learning, and feature reduction. We analyze the literature methodologies
highlighting strengths, and weaknesses. We also provide meta-data analysis to identify research
trends and patterns and derive key findings. We tackle relevant research questions concerning
the drawbacks of current methodologies and suggestions for enhancements. This review serves
as a foundational resource offering insights into the current state of research and opportunities
for further advancement. The main research question this chapter attempts to answer:
What adversarial evasion attacks are employed for ML-based NIDS, what miti-
gation strategies exist, and what are the limitations and research improvement
considerations?

Contributions: The contributions of this chapter are as follows:
• C1: To provide a comprehensive overview of the sate-of-art of adversarial evasion attacks

in the ML-based NIDS domain.

• C2: To synthesis, classify and identify key characteristics in the literature.

• C3: To present literature methodologies and highlight strengthens weakness, considerations
for improvements

• C4: To provide meta-analysis, identify research trends and patterns, and derive key
findings

• C5: To identify research gaps and provide recommendations for future work.
Organization: The rest of this chapter is structured as follows: Sec 4.3, discusses previous

related surveys. Sec 4.4, describes the methodology of conducting this review. Sec 4.5 introduces
novel techniques for generating adversarial attacks on ML-based NIDS. Sec 4.6 evaluates
ML-based NIDS models’ resilience to adversarial attacks. Sec 4.7 covers countermeasures for
safeguarding ML-based NIDS against adversarial attacks. Sec 4.8, discusses surveyed studies,
remarkable findings, and research question answers. Lastly, Sec 4.9 provides a conclusion for
this chapter.

4.3. Related Work

In other related works, Buczak and Guven [29] discussed the complexity and challenges of using
machine learning and data mining approaches for network intrusion detection; however, the
threats of adversarial attacks were outside the scope of their study. Biggio and Roli [28] provided
a detailed overview on the evolution of adversarial learning in the domains of computer vision
and cybersecurity; nevertheless, this problem in the area of network anomaly detection was not
covered. Qiu et al. [129] presented a general review on adversarial machine learning attacks

40

4.4 Methodology

against a wide range of deep learning-based AI applications with a concise consideration of some
security applications such as intrusion detection, malware detection, and cloud security. Ibitoye
et al. [71] provided a survey on some of the adversarial attacks against machine learning
applications in network security, including intrusion detection, spam filtering, and malware
detection. Zhang et al. [179] addressed adversarial attacks as the drawback of applying deep
learning solutions into mobile and wireless networking without covering security applications
like network intrusion detection. Martins et al. [93] provided a limited review on some researches
have applied the concepts of adversarial machine learning into malware and network intrusion
detection contexts. Overall, these studies have narrow scopes, domain-specific focuses, and
superficial exploration of adversarial attacks in network intrusion detection, highlighting the
urgent need for more comprehensive research. Therefore, in this chapter, we conduct a systematic
review to provide a thorough summary of existing research, identify gaps and inconsistencies,
and facilitate knowledge translation.

4.4. Methodology

This chapter summarizes and investigates the state-of-the-art comprehensively to draw general
conclusions and prelude further research. To elaborate this review, we followed the framework
proposed by Kitchenham [80] which involves three main stages: planning, conducting, and
reporting. A review protocol was established for the planning stage that formulates the following
elements: research questions, search strategy, study selection criteria, and data extraction
strategy.

4.4.1. Research Questions

This chapter investigates the threat of adversarial examples towards ML-based NIDS and how
this problem was addressed in the literature. Accordingly, this chapter tries to answer the
following sub-research questions:

• RQ1. What are the drawbacks of the proposed techniques for generating adversarial
attacks against ML-based NIDS?

• RQ2. What are the requirements for developing effective and practical techniques for
generating adversarial attacks against ML-based NIDS?

RQ3. What are the common limitations in assessing ML-based NIDS resilience’s to
adversarial attacks, and how can be addressed?

• RQ4. What are the proposed countermeasures to mitigate the adversarial attacks against
ML-based NIDS, their strengthens and limitations?

• RQ5. What are the considerations for developing effective defenses against adversarial
attacks on ML-based NIDS?

The answers to these questions are provided in the discussion Section 4.8.2.

41

4.4 Methodology

4.4.2. Search Strategy

We selected the following research keywords "adversarial machine learning" "OR" "Adversarial
Attack" "AND" "network intrusion detection". The search on five selected scholarly databases:
Scopus, Google Scholar, arXiv, WebofScience, and ResearchGate. It yielded 230 papers.

4.4.3. Inclusion and Exclusion Criteria

The retrieved research results underwent a comprehensive filtering process based on formulated
inclusion and exclusion criteria, encompassing all types of publications from workshops, sympo-
siums, conferences, or journals. Papers not written in English, inaccessible, or not addressing
adversarial machine learning attacks in the network intrusion detection domain were excluded.
Furthermore, papers applying adversarial machine learning in domains such as malware, medical
images, 3D, time-series, and logs data were omitted. The main inclusion criteria focused on
papers addressing adversarial examples against different DNN architectures designed for NIDS,
employing supervised, semi-supervised, or unsupervised approaches commonly implemented
for NIDS, while excluding reinforcement learning-based ones. Additionally, studies needed to
address the problem in traditional networks, IoT, SDN, or WSN networks, excluding other types
of networks such as industrial control systems (ICS) or cyber-physical systems (CSPs). In total,
112 papers were included as primary studies, which were then analyzed and categorized based
on their application of adversarial machine learning into three groups in subsequent sections. 4.5,
4.6, and 4.7.

4.4.4. Data Extraction

To address the research questions, we conducted a data extraction procedure. This involved
identifying a list of characteristics to extract from each study, aiming to gather relevant
information for addressing our research questions and identifying classification criteria for
categorizing the literature. The description of each characteristic is provided in the table 4.1.

Characteristic Description
Year Year of the publication.
Dataset Dataset used for experimental evaluation.
Model ML algorithms used for experimental evaluation.
Defense Countermeasures proposed/used against adversarial attacks.
Environment Type of network traffic (traditional, SDN, wireless, IoT).
Setting Assumed adversary knowledge (white/black/grey-box).
Attack Method for generating adversarial examples.
Results Outcomes of the experimental evaluation.
Purpose Objective of the study (e.g., propose new adversarial attacks, evaluate ML-based NIDS resilience, introduce

new defense or assess the existing mechanisms.

Table 4.1 Literature Classification Characteristics

42

4.5 Generating Adversarial Attacks for ML-based NIDS

4.5. Generating Adversarial Attacks for ML-based NIDS

In this section, we explore the creation of adversarial attacks targeting and tailoring for ML-based
NIDS. We provide an overview of various techniques used to generate these adversarial examples,
we categorize these approaches into Reinforcement Learning Attacks, Generative Adversarial
Networks Attacks, Surrogate Model Attacks, Genetic Algorithms Attacks, Constrained Generic
Attacks, Certain Features Manipulation Attacks, and combinations of these approaches.

4.5.1. Reinforcement Learning Attacks

Several studies have introduced reinforcement learning RL-based frameworks for generating
adversarial network traffic. Hore et al. [68] developed Deep PackGen, achieving a 66.4 success
rate in disguising malicious packets as benign ones using deep reinforcement learning. Apruzzese
et al. [23] proposed an RL-based framework employing 2DQN and Sarsa algorithms to generate
realistic adversarial examples, focusing on small perturbations to achieve high evasion rates with
limited queries Wu et al. [171] proposed a RL-based framework automatically adds perturbations,
updating adversarial traces based on feedback from the detector and an action sequence modifying
spatial and temporal traffic features.

Tan et al. [153] proposed evasion technique involves a Kalman filter-based algorithm,
predefined packet mutation operators, and Strength Enhanced Deep Q-learning (SE-DQN) for
operator selection, but it’s only applicable to non-payload NIDSs. Wang et al. [165] introduced
a framework involves the agent generating adversarial flow by interacting with the detection
model, learning optimal perturbation strategies within a 14-action space to modify transport
layer properties without impacting the application layer’s malicious function.

While these RL-based frameworks demonstrate high evasion rates against detection models in
controlled settings, their real-world effectiveness is less clear. RL-based approaches often require
significant computational resources for training and execution. This could limit their practicality
for widespread use by attackers, especially against high-throughput network environments.

Many RL-based attacks assume the adversary has full knowledge of the target detection
model and access to its outputs for feedback. In real-world scenarios, attackers may not have
such privileged access. This limitation makes it more difficult for them to create effective
adversarial traffic.

4.5.2. Generative Adversarial Networks Attacks

Usama et al. [158] utilized GAN to generate adversarial examples, altering only non-functional
properties of the traffic, and employed adversarial training to enhance models resilience. Hassan
et al. [65] utilized tabular GANs to synthesize adversarial DDoS samples to evaluate models’
resilience. Chauhan and Heydari [35] proposed using GANs to generate polymorphic DDoS
attacks, updating attack profile features and merging them with previous adversarial examples
to evade NIDS detection while maintaining a low false-positive rate.

43

4.5 Generating Adversarial Attacks for ML-based NIDS

Chen et al. [37] proposed an Anti-Intrusion Detection AutoEncoder (AIDAE) framework
generates adversarial examples by learning the distribution of normal features and generating new
random features to bypass detection without targeted IDS feedback. It considers the correlation
between discrete and continuous features and utilizes both an autoencoder and a GAN for crafting
adversarial examples. Shieh et al. [144] utilized Wasserstein Generative Adversarial Networks
with Gradient Penalty (GP-WGAN) to generate DDoS adversarial traffic, and introduced an
adversarial GAN intrusion detection system (AG-IDS) with dual discriminators for adversrail
flow detection. . Cheng et al. [40] proposed Attack-GAN generates adversarial traffic at the
packet level using Sequence Generative Adversarial Nets with policy gradient, but it’s limited
to generating fixed-length packets.

Zolbayar et al. [183] proposed a GAN-based algorithm for generating practical adversarial
flow, learning the model’s decision behavior without internal knowledge, and introducing
active learning to enhance success rates and reduce training examples in the framework. Lin
et al. [87] introduced IDSGAN, a Wasserstein GAN-based framework that generates adversarial
traffic while preserving the distribution of the original traffic. Functional features representing
basic attack characteristics remain unchanged, while non-functional features are modified. Yan
et al. [173] proposed DOS-WGAN, which uses Wasserstein GANs to synthesize DoS traffic
characteristics from benign traffic probability distribution.

Han et al. [62] proposed approach automatically mutates original traffic using GAN to
generate adversarial examples for non-payload features and PSO to approximate these exam-
ples to the misclassification boundary. Shu et al. [146] ntroduced a Generative Adversarial
Active Learning (Gen-AAL) algorithm, which combines GANs with active learning to generate
adversarial attacks, requiring only a limited number of queries to the targeted model for labeled
instances.

GANs exhibit remarkable flexibility and versatility in generating diverse and realistic
adversarial examples tailored to different attack scenarios and objectives. They can also facilitate
adaptive adversarial training which enhances model resilience against attacks. However, GANs’
effectiveness is heavily dependent on large, high-quality datasets. Limited or biased data may
yield unrealistic or ineffective adversarial examples, and reduce attack success rates.

Moreover, GANs training is resource-intensive, requiring powerful hardware and significant
time investment. This can hinder their scalability and practicality in real-time or large-scale
systems. Additionally, adversarial examples crafted by GANs often lack transferability across
different models because of model-specific features and dataset differences. This limits their
generalizability and applicability across varied architectures and training datasets.

4.5.3. Surrogate Model Attacks

He et al. [67] proposed the Liuer Mihou attack, a packet-based adversarial evasion technique,
which generates attacks against a surrogate model using predefined mutation operations. The
results indicate that existing feature-level defensive mechanisms like Feature Squeezing and Mag-

44

4.5 Generating Adversarial Attacks for ML-based NIDS

Net are ineffective in defending against this attack. Qiu et al. [128] employs model extraction to
replicate the targeted model, saliency maps to identify significant features, and gradient-based
methods like FGSM to generate adversarial examples.. Guo et al. [61] proposed a method that
trains a substitute model with a similar decision boundary to the target model and extends the
BIM to generate adversarial traffic based on it.

Surrogate model attacks involve replicating the behavior of a target ML-based NIDS by
extracting its parameters or behavior and creating a surrogate model. Adversarial examples are
subsequently generated based on this surrogate model. Despite advantages like reduced resource
demands and stealthiness, their effectiveness heavily relies on the availability of diverse training
data and assumes adversaries possess detailed knowledge about the target NIDS. These factors
pose limitations on the attack’s success rate and practicality in real-world scenarios where such
information may not be readily accessible.

4.5.4. Genetic Algorithms Attacks

Mogg et al. [101] employed GA to generate optimal attack features from benign samples
mimicking real attacks and using the model’s output as feedback to compute fitness.

Genetic algorithms hold promise for crafting adversarial examples against ML-based NIDS by
efficiently exploring solution spaces. However, their computational demands and potential lack
of generalization impact their practicality and effectiveness in real-world deployment scenarios.

4.5.5. Constrained Generic Attacks

Mohammadian et al. [102] employed Jacobian Saliency Map to identify significant features
and perturbation magnitudes for generating adversarial examples. Chernikova and Oprea [41]
introduced a framework called FENCE (Feasible Evasion Attacks on Neural Networks in
Constrained Environments) for generating adversarial examples in constrained domains with
linear or non-linear feature dependencies, utilizing gradient-based methods and mathematical
constraints to ensure compliance. However, it assumes a white-box scenario where both the
feature set and detection model are known. Simonetto et al. [148] introduced two methods:
Constrained Projected Descent (C-PGD), which integrates differentiable constraints into the
loss function to guide PGD optimization, and Multi-Objective Evolutionary Adversarial Attack,
employing a multi-objective search strategy to optimize perturbation distance, misclassification,
and constraint fulfillment simultaneously. Despite ensuring compliance with domain constraints,
these methods are feature-space attacks. Wang et al. [168] proposed the Constraint-Iteration
Fast Gradient Sign Method (CIFGSM), capable of addressing network traffic complexity, feature
correlations, and diverse feature types.

Teuffenbach et al. [155] proposed an approach that organizes features into groups, assigning
weights to each group to indicate modifiability. They utilize the CW attack to optimize
perturbation and feature weights based on feature space and perturbation budgets, restricting
perturbations to accessible and independent features. Gómez et al. [57] proposed the Selective

45

4.5 Generating Adversarial Attacks for ML-based NIDS

and Iterative Gradient Sign Method (SIGSM), a method that selectively manipulates features
in adversarial attack generation. Yang et al. [174] introduced a white-box adversarial attack
method, universal adversarial sample generator (U-ASG), for autoencoder-based semi-supervised
network anomaly detection, targeting changeable features with an optimization-based approach.

These attacks often rely on white-box scenarios, assuming complete access to model in-
formation. This limits their applicability in real-world settings. Many approaches involve
computationally intensive processes and may struggle with generalization across diverse datasets
and network architectures.

4.5.6. Certain Features Manipulation Attacks

Apruzzese and Colajanni [24] generated adversarial network flows by randomly altering four fea-
ture. This approach lacks of specificity in the alterations made, potentially limiting effectiveness
and efficiency. Aiken and Scott-Hayward [6] introduced Hydra, a tool generating adversarial
evasion attacks to bypass TCP-SYN DDoS attack detection, manipulating bidirectional traffic,
packet rate, and payload size. However, it’s limited to creating adversarial examples for TCP-
SYN saturation attacks only.

Khamaiseh et al. [78] proposed a tool for generating adversarial evasion attacks to bypass
detection of four saturation attacks (TCP-SYN, TCPSARFU, UDP, and ICMP) by perturbing
three traffic features: IPv4 source address change rate, Ethernet source address change rate,
and Packet rate. Apruzzese et al. [26] generated adversarial attacks by adding random values
to three features: (i.e., exchanged_bytes, duration, and total_packets). Anthi et al. [19]
proposed a method to generate adversarial examples for DoS attacks by perturbing top-ranked
features from the InfoGain Ratio ranking method, but it’s limited to DoS attacks and supervised-
based NIDS models. Usama et al. [160] introduced a black-box adversarial attack requiring
access to label outputs, utilizing mutual information for crafting adversarial perturbations and
substitute model training for launching attacks. This reliance on label outputs for crafting
attacks, potentially limiting applicability in real-world scenarios. Usama et al. [159] roposed an
adversarial attack leveraging Mutual Information to extract important features from normal and
DoS examples, then minimizing the distance between DoS example features using constrained
l1 norm minimization.

4.5.7. Other Approaches

Alhajjar et al. [15] investigated using PSO, GA, and GANs to generate adversarial examples
for network traffic. Sun et al. Sun et al. proposed the transFerable Adversarial Traffic (FAT), a
black-box transferable adversarial traffic generation method, evading ML-based encrypted traffic
classifiers by building proxy classifiers mimicking the target model and translating adversarial
features into traffic. Zhang et al. [181] proposed BFAM, a Brute-force Black-box Method to
Attack Machine Learning-Based systems, which operates in a black-box setup, requiring only

46

4.5 Generating Adversarial Attacks for ML-based NIDS

the model outputs and confidence scores. BFAM iteratively adds perturbations to features until
the confidence score for the target label increases.

Peng et al. [121] proposed an enhanced boundary-based approach to generate adversarial
DoS examples, perturbing both continuous and discrete features to optimize Mahalanobis
distance and considering DoS traffic characteristics. Operating in a black-box setting, it utilizes
query outputs and optimization methods. Abusnaina et al. [4] proposed FlowMerge, which
merges a representative mask flow from a selected target class with the features of the original
flow, using averaging or accumulating techniques. However, FlowMerge’s testing was limited to
a CNN model, and it assumes complete knowledge of the model and traffic features. Vitorino
et al. [162] presented A2PM for generating targeted and untargeted adversarial examples in
a grey-box setting, but it requires knowledge of the complete feature set and only preserves
constraints on numeric and categorical features, omitting complex constraints on single and
correlated multiple feature values.

Sharon et al. [143] introduced TANTRA, a timing-based adversarial network traffic reshaping
attack that modifies malicious traffic using timestamp attributes to evade detection without
altering the packet’s content. Zhang et al. [180] proposed NIDSFM to generate adversarial
examples preserving the latent spatial features of benign examples while maintaining malicious
functionality. Kuppa et al. [83] proposed a black-box attack against DL-based anomaly detectors
using manifold approximation and spherical adversarial subspaces, suitable for threshold-based
detectors with unclear anomaly and normal class boundaries. Venturi et al. [161] introduced
a time-based adversarial attack on sequential binary detectors, inserting delays in malicious
samples to alter their arrangement in the test set, aiming to assess the model’s dependence on
temporal information for detection.

Some of these methods have limitations, such as being restricted to specific types of attacks
like TCP-SYN saturation or certain DoS attacks. Additionally, techniques relying on specific
knowledge about the target system or labeled data may not always be practical in real-world
scenarios. Moreover, there’s no guarantee of evasion success as detection systems may adapt,
leading to an ongoing struggle between attackers and defenders. Furthermore, black-box attacks
relying on substitute model training may encounter issues with the transferability of adversarial
examples across different models or real-world environments.

47

4.5 Generating Adversarial Attacks for ML-based NIDS

Ref Year Network Dataset Setup Attack Model Defense

[153] 2022 Traditional CICIDS2018 GB RL [153], FGSM, GAN,
Random Policy

MLP, Adaboost, DT, LR,
RF

DTA [153]

[23] 2021 Traditional, CTU-13, UNB
Botnet

GB RL RF, WnD AT

[171] 2019 Traditional CTU-13 BB RL DT, CNN N/A
[68] 2023 Traditional CICIDS2017-

18
BB RL DT, RF, MLP, DNN,

SVM
N/A

[165] 2021 Traditional, CTU-13,
ISOT

BB RL CNN-LSTM, XGBoost N/A

[35] 2020 Traditional CICIDS2017 BB GAN [35] DT, LR, NB, RF AT
[65] 2022 Traditional CICIDS2017 WB tabular-GAN RF, DT, LR, NB N/A
[37] 2020 Traditional CICIDS2017,

NSL-KDD,
UNSW-NB15

WB AE, GAN Adaboost, CNN, DT,
KNN, LR, LSTM, RF

N/A

[144] 2021 Traditional NSL-KDD WB WGAN-GP [144] KNN, MLP, RF GAN-AT
[40] 2021 Traditional CTU-13 BB Seq-GAN DT, LR, MLP, SVM N/A
[183] 2022 Traditional NSL-KDD,

CICIDS2017
WB,
BB

GAN, Active Learning DNN, LR, SVM, KNN,
DT

N/A

[87] 2018 Traditional NSL-KDD BB WGAN DT, KNN, LR, MLP, NB,
RF, SVM

N/A

[173] 2019 Traditional KDDCup99 BB WGAN CNN N/A
[62] 2020 Traditional,

IoT
Kitsune, CI-
CIDS2017

BB,
GB

GAN, PSO Kitsune, MLP, LR, DT,
SVM, IF

FR

[158] 2019 Traditional KDDCup99 BB GAN DNN, GAN, KNN, RF,
SVM

GAN-AT

[146] 2020 Traditional CICIDS2017 BB GAN, Active Learning GB-DT N/A

[67] 2022 IoT Kitsune, [67] GB Surrogate Model, Muta-
tion Operations

Kitsune, SOM, RRCF,
LOF, OCSVM, IF, Ellipti-
cal Envelope

Feature
Squeez-
ing,
Mag-Net

[128] 2020 IoT Kitsune BB IFGSM, Substitute Model,
Saliency Maps

Kitsune N/A

[61] 2021 Traditional CICIDS2018,
KDDCup99

BB BIM, Substitute Model CNN, KNN, MLP, SVM,
Residual Network

N/A

[101] 2021 Traditional NSL-KDD BB GA DT N/A

[148] 2021 Traditional CTU-13 WB,
GB

C-PGD, MoEvA2 MLP, RF AT

[168] 2020 Traditional NSL-KDD WB CIFGSM, IFGSM DT, CNN, MLP N/A
[155] 2020 Traditional CICIDS2017,

NSL-KDD
WB Optimized- CW AE, DBN, DNN N/A

[57] 2021 ICS Electra WB Selective and Iterative
Gradient Sign Method

Dense Neural Network N/A

[41] 2019 Traditional CTU-13 WB Gradient-based iteration DNNs N/A
[174] 2020 Traditional KDDCup99 WB U-ASG Deterministic AE, VAE N/A

[6] 2019 SDN CICIDS2017,
DARPA

BB [6] RF, SVM, LR, KNN N/A

[78] 2020 SDN simulated BB [78] DNN, IF, KNN, NB, SVM N/A
[24] 2018 Traditional CTU-13, CI-

CIDS2017,
CICIDS2018,
UNB Botnet

GB [24] RF, DT, AdaBoost, MLP,
KNN, GB, LR, SVM

FR

[26] 2019 Traditional CTU-13 BB [26] KNN, MLP, RF AT, FR
[19] 2021 IoT Testbed WB InfoGain Ratio [19] RF, SVM, J48, DT,

Bayesian Network
AT

[160] 2019 Tor UNB-CIC Tor BB MI, Substitute Model DNN, SVM N/A
[159] 2019 Traditional NSL-KDD WB MI, [159] DNN, SVM N/A

[15] 2020 Traditional NSL-KDD,
CICIDS2017

WB PSO, GA, GAN SVM, DT, NB, KNN,
RF, MLP, GB, LR, LDA,
QDA, BAG

N/A

Table 4.2 Generating Adversarial Attacks for NIDS Studies48

4.6 Evaluating ML-based NIDS Resilience to Adversarial Attacks

Ref Year Network Dataset Setup Attack Model Defense

[181] 2020 Traditional ADFA-LD,
DREBIN,
NSL-KDD

BB BFAM LR, MLP, NB, RF N/A

[121] 2019 Traditional CICIDS2017,
KDDCup99

BB Improved Boundary DNN N/A

[4] 2019 SDN [111] WB CW, DeepFool, ENM,
MIM, PGD, FlowMerge

CNN AT

[162] 2022 Traditional,
IoT

CICIDS2017,
IoT-23

GB[FS] A2PM [162] MLP, RF AT

[136] 2021 Traditional ICSX2016 WB UAP One-Dimensional CNN N/A
[143] 2021 Traditional,

IoT
CICIDS2017,
Kitsune

BB TANTRA [143], LSTM Autoencoder, IF, Kitsune AT

[180] 2022 Traditional NSL-KDD,
UNSW-NB15,
CICDDoS2019

GB NIDSFM 3L-IDS, LUNET, CNN-
BiLSTM, SVM, LR, KNN,
RF, DT

N/A

[161] 2022 Traditional CTU-13 BB time delays LSTM N/A
[83] 2019 Traditional CICIDS2018 BB Manifold Approximation

Algorithm, spherial local
subspaces

AE, BiGAN, DAGMM,
GAN, IF, One-Class SVM

N/A

[150] 2023 Traditional CICIDS2017,
MTA

BB FAT [150] LR, DT, SVM, MLP, IF,
LSTM, FS-Net

N/A

[102] 2023 Traditional CICIDS2017,
CICIDS2018,
CICDDoS2019

WB JSMA [102] DNN, DT, RF, NB, LR N/A

Table 4.3 Generating Adversarial Attacks for NIDS Studies

4.6. Evaluating ML-based NIDS Resilience to Adversarial Attacks

In this section, we comprehensively review existing literature on evaluating the resilience of
ML-based NIDS, encompassing a range of adversarial attack techniques and their impacts on
the NIDS performance.

Yang et al. [175] employed three black-box attacks for generating adversarial examples: one
using the CW method on a substitute model similar to the victim model, another utilizing the
ZOO method for gradient estimation, and the last employing a WGAN for crafting adversarial
examples. Duy et al. [48] investigated the use of various GAN types, including: Wasserstein
Generative Adversarial Networks with Gradient Penalty (WGAN-GP), WGAN-GP with two
timescale update rule (WGAN-GP TTUR), and AdvGAN to generate adversarial examples.

Vitorino et al. [163] assessed classifiers against constrained adversarial examples generated
with A2PM. Alshahrani et al. [18] employed GAN-generated adversarial examples for evasion
and poisoning attacks on LR and DT models, with DT models proving more vulnerable to
evasion and LR models more impacted by poisoning. Merzouk et al. [97] assessed a Deep-RL
model’s performance against FGSM and BIM attacks in two setups: two-class and multi-class
detection, testing both targeted and untargeted versions of the attacks.

Pujari et al. [127] examined the impact of FGSM, JSMA, and CW attacks on model
performance, highlighting the influence of dataset feature counts on vulnerability to these
attacks. Jmila and Khedher [77] evaluated the resilience of seven shallow ML-based classifiers
against various adversarial attacks, finding differing impacts depending on the attack type,

49

4.6 Evaluating ML-based NIDS Resilience to Adversarial Attacks

with a trade-off between resilience and overall performance. Additionally, the authors explored
using Gaussian data augmentation to enhance model resilience across different classification
settings. Talty et al. [152] evaluated the performance of MLP, Classification Tree, RF, KNN, LR,
Gradient Boosting models under the FGSM, PGD, and Boundary Attacks using the NSL-KDD
dataset.

Kulikov and Platonov [82] assessed an LSTM model against FGSM and JSMA using the
UNSW-NB15 dataset. Rashid et al. [132] evaluated the effects of JSMA, FGSM, BIM, DeepFool,
and CW attacks on a DNN model, and found that the CW attack had the most significant
impact on its performance. Jadidi et al. [73] demonstrated the impact of FGSM attacks on
reducing an ANN classifier’s performance across two datasets: BoT-IoT for IoT networks and
Modbus for large-scale industrial IoT networks.

Mathews et al. [94] compared EN and TextAttack in deceiving an RNN-based DDoS detector,
finding TextAttack achieved a 100 success rate, while EN achieved 67.63. Rigaki [133] generated
adversarial examples against an MLP substitute model using FGSM and JSMA, then transferred
them to attack other models (DT, SVM, RF, and Majority Voting). Results indicated all
classifiers were impacted, with linear SVM being most affected and RF most resilient. Warzyński
and Kołaczek [170] tested an FNN binary classifier’s resilience against FGSM attack, resulting in
significant performance degradation where all adversarial instances were misclassified as benign,
yielding a False-Negative rate of zero.

Wang [169] assessed an MLP classifier’s resilience against FGSM, JSMA, DeepFool, and CW
attacks, observing that these attacks effectively reduced the classifier’s AUC in the adversarial
setting, with FGSM being the most effective and CW the least effective. Seven features targeted
by the attacks were identified, suggesting the need for improved protection against exploitation
by adversaries. Clements et al. [42] assessed the resilience of Kitsune, a lightweight DL-NIDS for
IoT networks, against FGSM, JSMA, CW, and ENM adversarial attacks. Results demonstrated
100 success rates in availability attacks for CW and ENM, and all attacks achieved 100 success
rates in integrity attacks.

Peng et al. [123] proposed an ENIDS framework to evaluate ML-based NIDS resilience
against four adversarial attacks (PGD, MI-FGSM, L-BFGS, and SPSA), finding varying degrees
of resilience among the models, with DNN performing the worst and MI-FGSM achieving the
best performance. Ibitoye et al. [72] compared SNN and FNN resilience against FGSM, BIM,
and PGD attacks, finding FNN outperforming SNN in accuracy but SNN demonstrating greater
resilience. Feature normalization significantly lowered accuracy rates but enhanced resilience to
adversarial examples for both models. Jeong et al. [75] evaluated AE and CNN performance
against FGSM and JSMA attacks, revealing significant accuracy decreases. Huang et al. [69]
assessed three port-scan attack detection models (MLP, CNN, LSTM) against FGSM, JSMA,
and JSMA-RE attacks, with JSMA resulting in the most substantial performance decline,
ranging from 14 to 42.

Martins et al. [92] evaluated classifiers’ resilience against adversarial examples from four
attack methods: FGSM, JSMA, DeepFool, and CW. DAE emerged as the most resilient classifier,

50

4.6 Evaluating ML-based NIDS Resilience to Adversarial Attacks

while RF exhibited the best performance, with just a 0.1 reduction in AUC between original
and manipulated datasets. Piplai et al. [125] evaluated a GAN classifier’s resilience against
adversarial attacks using FGSM, finding that despite adversarial training, its performance
degraded, with the lowest attack success rate reaching 41. This suggests adversarial training
may not be effective in this context. Sriram et al. [149] compared ML and DL models for network
intrusion detection in adversarial and non-adversarial environments, generating adversarial
examples with FGSM and JSMA attacks.

Pacheco and Sun [117] evaluated DT, SVM, and RF classifiers against JSMA, FGSM, and
CW attacks, finding FGSM most effective on BoT-IoT and CW most effective on UNSW-NB15.
SVM was least resilient on both datasets, while RF was most resilient, and JSMA was least
effective on both. Debicha et al. [45] analyzed FGSM, BIM, and PGD attacks on a DNN-NIDS
model, finding FGSM reduced accuracy to 14.13, with BIM and PGD further reducing it to
8.85. Adversarial training improved resilience but resulted in a slight accuracy decrease on clean
data. Maarouf et al. [89] evaluated encrypted traffic classification models’ resilience against
ZOO, PGD, and DeepFool attacks. While DL-based models outperformed conventional ML in
an adversarial-free setup, their resilience varied depending on the attack type, with DeepFool
being the most effective against both model types.

Fu et al. [52] tested model resilience against FGSM adversarial examples, with adversarial
training enhancing resilience, particularly for LSTM models. However, this approach may reduce
accuracy on normal examples by making decision boundaries more adaptable to adversarial
examples, potentially undermining model judgment. Zhong et al. [182] proposed MACGAN,
a framework to evaluate and enhance the resilience of ML-based NIDS. It comprises manual
analysis of traffic features and a GAN for evading detection models, modifying only perturbable
features.

The literature on evaluating ML-based NIDS against adversarial attacks reveals several areas
for improvement. Studies often focus on specific attacks or datasets, limiting the generalizability
of their findings. Additionally, there’s limited exploration of the transferability of adversarial
attacks across different datasets.

51

4.7 Defending ML-based NIDS Against Adversarial Attacks

Ref Year Network Dataset Setup Attack Model Defense

[48] 2023 SDN CICIDS2018,
InSDN

GB WGAN-GP, WGAN-GP
TTUR, AdvGAN

DT, LR, CNN, MLP,
LSTM

AT

[163] 2023 IoT IoT-23, Bot-
IoT

GB A2PM RF, XGB, LGBM, IF AT

[152] 2021 Traditional NSL-KDD WB FGSM, PGD, Boundary MLP, Classification Tree,
RF, KNN, LR, GB

N/A

[82] 2021 Traditional UNSW-
NB15

WB FGSM, JSMA LSTM N/A

[132] 2022 IoT DS2OS WB JSMA, FGSM, BIM,
DeepFool, CW

DNN AT

[73] 2022 IoT BoT-IoT,
ModBus

WB FGSM DNN AT

[77] 2022 Traditional NSL-KDD,
UNSW-
NB15

WB,
BB

FGSM, BIM, PGD,
JSMA, CW, DeepFool,
ZOO, Boundary, HSJ

Adaboost, Bagging, GB,
LR, DT, RF, SVC, DNN

Gaussian Data Aug-
mentation

[94] 2022 Traditional KDD DDoS-
2019 [142]

BB EN, TextAttack RNN N/A

[133] 2017 Traditional NSL-KDD GB JSMA DT, MLP, RF, SVM,
Majority Voting Ensemble

N/A

[170] 2018 Traditional NSL-KDD WB FGSM DNN N/A
[169] 2018 Traditional NSL-KDD WB CW, DeepFool, FGSM,

JSMA
MLP N/A

[175] 2019 Traditional NSL-KDD BB WGAN, Substitute Model,
ZOO

DNN N/A

[42] 2019 IoT Kitsune WB FGSM, JSMA, CW, ENM Kitsune N/A
[69] 2019 SDN Theirs WB FGSM, JSMA, JSMA-RE CNN, LSTM, MLP N/A
[72] 2019 IoT BoT-IoT WB BIM, FGSM, PGD DNN, SNN Feature Normalization
[92] 2019 Traditional CICIDS2017,

NSL-KDD
WB CW, DeepFool, FGSM,

JSMA
DT, DNN, DAE, NB, RF,
SVM

AT

[123] 2019 Traditional NSL-KDD WB L-BFGS, MIFGSM, PGD,
SPSA

DNN, LR, RF, SVM N/A

[75] 2019 Traditional NSL-KDD WB FGSM, JSMA AE, CNN N/A
[149] 2020 Traditional NSL-KDD WB FGSM, JSMA Adaboost, CNN, DT,

DNN, K-Means, LR,
LSTM, NB, RF, SVM

N/A

[182] 2020 Traditional,
IoT

CICIDS2017,
Kitsune

BB WGAN IF, Kitsune, RBM, SAE,
SVM

N/A

[117] 2021 Traditional,
IoT

BoT-IoT,
UNSW-
NB15

WB CW, FGSM, JSMA DT, RF, SVM N/A

[45] 2021 Traditional NSL-KDD WB BIM, FGSM, PGD DNN AT
[52] 2021 Traditional,

IoT
CICIDS2018 WB FGSM CNN, LSTM, Gated

Recurrent Unit
AT

[89] 2021 Traditional SCX VPN-
NonVPN,
NIMS

WB,
BB

DeepFool, PGD, ZOO CNN, DNN, KNN, Recur-
rent NN, C4.5

N/A

[125] 2020 Traditional IEEE Big
Data2019

WB FGSM GAN AT

[127] 2022 Traditional BoT-IoT,
UNSW-
NB15, CI-
CIDS2018

WB FGSM, JSMA, CW MLP, DT, RF, SVM N/A

[18] 2022 Traditional CICIDS2017 WB GAN DT, LR N/A
[97] 2022 Traditional NSL-KDD WB FGSM, BIM Deep-RL N/A

Table 4.4 Evaluating NIDS Resilience to Adversarial Attacks Studies

4.7. Defending ML-based NIDS Against Adversarial Attacks

In this section, we explore several defense strategies for enhancing the robustness of ML-based
NIDS, encompassing adversarial training, ensemble learning, and feature reduction techniques.
Additionally, we address challenges associated with implementing and adapting these defenses.

52

4.7 Defending ML-based NIDS Against Adversarial Attacks

4.7.1. Adversarial Training

Xiong et al. [172] proposed Adversarial Intrusion Detection Training Framework (AIDTF)
includes an attacker model, a defender model, and a black-box trainer module. The attacker
model produces adversarial samples to deceive the defender model, which distinguishes between
real and fake samples. The generated samples are combined with those from the training
set to train the NIDS, achieving a 99 recognition rate for attack samples. Abou Khamis and
Matrawy [2] assessed the min-max formulation’s efficacy as a defense mechanism by augmenting
crafted inputs during model training and tested it against five white-box attacks, resulting in
improved model accuracy rates, with an average increase from 39 to 92.

Abdelaty et al. [1] proposed GADoT, an adversarial training approach utilizing a GAN to
generate DDoS samples for training. Results indicate that while a high accuracy NIDS may
have over 60 undetected malicious flows under adversarial attacks, GADoT reduces this to 1.8 or
less. Chaitou et al. [32] investigated the effect of resource allocation increases for GAN models
on attackers and defenders, analyzing the training process sensitivity of GANs for adversarial
attack generation and detection models to different resource parameters. Experiments assessed
evasion capabilities with varying resource levels, including network layers, dataset distribution,
and training epochs.

Grierson et al. [60] introduced the min-max method to enhance adversarial training, mini-
mizing the maximum loss to decrease misclassification of adversarial examples while maintaining
detection accuracy over clean data. Dyrmishi et al. [49] explored using unrealistic adversarial
examples to bolster the detection model’s resilience, achieving a high accuracy of 99.70 for
botnet detection through adversarial training with PGD samples against those from the FENCE
approach [41].

Benzaïd et al. [27] proposed a DL and SDN-based framework for application-layer DDoS
self-protection, utilizing MLP for detection and employing adversarial training as a defense
mechanism. Novaes et al. [112] introduced a detection and defense system utilizing GAN for
DDoS attack detection in SDN, showing superior performance compared to MLP, CNN, and
LSTM models.

Nugraha et al. [115] tested MLP and CNN-LSTM DL models with two adversarial datasets
and found that including more adversary examples in the training dataset improved MLP
model resilience. Peng et al. [122] presented an adversarial sample detector (ASD) mploying
a BiGAN, where the generator learns the distribution of normal samples and an adversarial
sample detection module calculates reconstruction and discriminator matching errors to detect
and remove adversarial samples.

AbouKhamis et al. [3] explored the min-max approach, using the max approach to generate
adversarial samples and the min approach as a defense mechanism to optimize the IDS during
training. The paper also demonstrates that PCA-based feature reduction can improve the
resilience of the detection model.

Some studies utilize different approaches for adversarial training like the min-max formulation
and GANs which have shown promise in enhancing ML-NIDS robustness against adversarial

53

4.7 Defending ML-based NIDS Against Adversarial Attacks

attacks. Other studies utilized multi-layered approaches combining different approaches which
may offer comprehensive defense strategies.

However, challenges include the difficulty in generalizing to unseen attacks or real-world
environments, computational overhead in complex methods like GANs, and addressing diverse
adversarial attacks. Adversarial training remains computationally intensive and time-consuming,
often leading to overfitting to specific attacks and reduced performance on clean data.

4.7.2. Ensemble Learning

Nguyen et al. [109] proposed an adversarial attacks detector using LightGBM, positioned before
the NIDS to identify adversarial examples. Placed after preprocessing and feature extraction,
this detector identifies and discards adversarial samples before they reach the main intrusion
detection component. Shu et al. [147] introduced Omni, a method proposing an ensemble
of models with hyperparameters distant from the attacker’s model to counter non-adaptive,
non-targeted, and white-box evasion attacks. However, it is limited to these specific attack
types.

Nowroozi et al. [114] proposed SPRITZ-1.5C, an ensemble architecture comprising a two-
class model (CNN), two one-class classifiers (autoencoder trained with benign and malicious
examples), and a dense model. Apruzzese et al. [22] proposed AppCon, which utilizes ensemble
learning and effectively mitigates over 75 of adversarial attacks without performance degradation
in non-adversarial settings.

Ensemble learning offers robustness by combining multiple models, each capturing different
aspects of the data or vulnerabilities to attacks, thereby enhancing system resilience. However,
some of these methods introduce complexity which makes implementation and maintenance
challenging. This can potentially hinder scalability.

Additionally, the computational overhead of ensemble methods and additional detection
layers may impact real-time performance and scalability.

4.7.3. Feature Reduction

McCarthy et al. [95] investigated the effectiveness of feature selection for enhancing models’
resilience, they analyzed the features that discriminate between the original and adversarial
traffic. They applied RFEto remove the features with the largest absolute difference under the
FGSM attack and retrained the detection model. The evaluation results indicated that the
model achieved the highest accuracy rate when most features were used, but it rarely exceeded
0.60 under the attack. However, using feature removal, the model achieved an accuracy rate
of 0.86 over the FGSM’s adversarial examples with no drop in accuracy over the unperturbed
examples.

Ganesan and Sarac [53] proposed using Recursive Feature Removal (RFR) to remove features
targeted by adversarial attacks, creating multiple reduced feature sets. An ensemble of ML
models, including DNN, SVM, LR, and RF, trained on these sets enhances resilience against

54

4.7 Defending ML-based NIDS Against Adversarial Attacks

adversarial examples, detecting attacks missed by individual classifiers with complete feature
sets.

While removing features that are most susceptible to attacks can enhance resilience, it
may also result in the loss of important features that contribute to accurate detection of non-
adversarial traffic. This could negatively impact the model’s overall performance.

The proposed techniques involve additional computational costs, particularly when applied
iteratively or in ensemble approaches. This overhead could be prohibitive in real-time NIDS
applications.

4.7.4. Hybrid Approaches

Wang et al. [164] introduced Def-IDS, which combines a multi-class generative adversarial
network (MGAN) for crafting mimic examples and a multi-source adversarial retraining (MAT)
module integrating adversarial examples from various attacks (FGSM, DeepFool, JSMA, and
BIM). Ganesan and Sarac [53] proposed using multiple smaller feature sets to train an ensemble
of classifiers, which outperforms a single model trained with the complete set of features.

Randhawa et al. [131] proposed RELEVAGAN utilizes deep reinforcement learning to
generate semantic-aware adversarial examples for training the discriminator of a GAN-based
botnet detector. This approach accelerates generator convergence by focusing solely on evasive
examples within semantic limits, addressing data imbalance, ensuring functionality, and reducing
training time. Alahmed et al. [8] used a GAN-based defense to strengthen an RF model against
ZOO attacks. Three setups were tested: using all 78 features, Recursive Features Elimination
(RFE), and Principal Component Analysis (PCA). The PCA model achieved the highest F1
score of 0.77, while RFE scored the lowest at 0.64.

Schneider et al. [140] employed five resilience metrics to identify the most susceptible
features to perturbation by adversarial example generation methods (i.e., PSO, GA, GAN, and
PGD). These metrics include feature importance tests, visual analysis, distance measurements,
feature dropout, and adversarially trained feature importance comparisons. They also tested
the effectiveness of four defense mechanisms including mutable feature removal, adversarial
training, ensemble methods, and outlier alarms. Zhang et al. [178] presented TIKI-TAKA, a
framework testing three NIDS classifiers against five attack methods. They introduced three
defense methods—adversarial training, query detection, and model voting ensembling.

These approaches suffer from the limitation of efficiently balancing defense effectiveness and
computational overhead. Additionally, ensemble learning may complicate model interpretation
and deployment, while deep reinforcement learning-based methods often demand substantial
computational resources.

4.7.5. Other Approaches

Chen et al. [38] utilized a GAN model to create an adversarial dataset, integrating the perturbed
samples with normal training data for adversarial training. They then proposed a DBN-LSTM

55

4.7 Defending ML-based NIDS Against Adversarial Attacks

model for detecting adversarial examples. Khettaf and Bouzar-Benlabiod [79] presented NIDS-
DEFEND framework detects decision-based adversarial examples with a two-layer approach.
The first layer uses a statistical test to identify adversarial flows, while the second layer employs
a model to pinpoint individual adversarial examples. A drawback is that the performance may
vary depending on the chosen statistical test and classifier.

Nowroozi et al. [113] proposed a feature randomization approach where the training method
of the target network (TN) involves selecting random features from the flatten layer of the source
network (SN). They used an SVM model as the target, receiving these random features from the
flatten layer of a CNN model as the source. A drawback is that effectiveness of randomization
heavily relies on the selection of features and the randomness introduced. Furthermore, the
performance might degrade if randomization interferes with learning meaningful representations.

Tcydenova et al. [154] introduced an XAI-based has two phases: initialization and detection.
LIME extracts explanations from an SVM model for normal instances during initialization. In
the detection phase, if traffic is classified as normal, the input explanation is compared with
those from initialization. Yet, this approach is time-consuming and inefficient due to the rarity
of attacks compared to normal traffic. This time-consuming nature of explanation extraction
might limit scalability. Additionally, reliance on explanation-based detection may not generalize
well to diverse attack scenarios.

Hashemi and Keller [64] presented Reconstruction from Partial Observation (RePO) employs
denoising autoencoders and merges inputs with various random masks before inputting them
into the model. Multiple random masks make the NIDS more resilient to adversarial attacks by
introducing non-determinism.

Mohanty et al. [103] a Stacking Ensemble (SE) model combining DT, KNN, and RF
predictions for better traffic classification accuracy. They added a two-layer auto-encoder for
defense, with a detector to identify adversarial examples and a denoiser to remove noise from
those examples. Wang et al. [167] proposed MANDA, a MANifold and Decision boundary-based,
which detects adversarial examples by leveraging inconsistencies between manifold evaluation and
model inference. It assesses model uncertainty on perturbations, identifying adversarial inputs
when there’s a disparity between the detection model’s classification and manifold evaluation.

Jiang et al. [76] proposed the FGDM framework (Feature Grouping and Multi-model Fusion
Detector), which detects adversarial examples by grouping features and combining predictions
from multiple models with different structures. It maintains accuracy even without adversarial
samples, performing well in both adversarial and non-adversarial scenarios.

Qureshi et al. [130] introduced RNN-ADV, a Random Neural Network-based NIDS trained
with ABC algorithm, outperforms DNNs against JSMA attacks.

Debicha et al. [46] employed adversarial training and an ensemble of detection models,
discovering that the ensemble exhibited greater resilience against transferable attacks compared
to a single model.

Debicha et al. [44] proposed using multiple transfer learning-based adversarial detectors in
a parallel NIDS. Each detector handles a portion of the data processed by the IDS. Combining

56

4.7 Defending ML-based NIDS Against Adversarial Attacks

the decisions of these detectors showed improved detection of adversarial traffic compared to
relying on a single detector.

Zakariyya et al. [177] introduced Robust, Effective and Resource Efficient FCNN (REDNN)
model designed to withstand adversarial attacks and optimize resource usage, ideal for resource-
constrained environments like IoT networks. REDNN balances accuracy with reduced training
time and memory requirements.

Pawlicki et al. [120] proposed an adversarial detector using neural activations to spot
attacks during inference. They collected neural activations from an ANN trained on part of the
CICIDS2017 dataset during testing. These collected neural activations were used to train and
test various classifiers.

These defense approaches exhibit weaknesses such as dependency on training data quality,
computational overhead, vulnerability to new attacks, complexity, potential accuracy trade-offs,
and limited generalization to diverse attacks and models.

Ref Year Network Dataset Setup Attack Model Defense

[114] 2022 IoT RIPE-Atlas,
N-BaIoT

WB I-FGSM, FGSM, JSMA,
L-BFGS, PGD, BIM,
DeepFool, CW

CNN-based Au-
toencoder

EL

[113] 2022 Traditional UNSW-NB15 BB JSMA, PGD, L-BFGS, I-
FGSM, FGSM, DeepFool,
BIM, CW

CNN, SVM Feature Randomiza-
tion

[44] 2022 Traditional CICIDS2017,
NSL-KDD

WB FGSM, PGD, CW, Deep-
Fool

DL TAD [44]

[109] 2022 Traditional CICIDS2017 WB CW, DeepFool, FGSM,
JSMA

DNN EL (LightGBM)

[8] 2022 Traditional CICIDS2017 BB ZOO RF GAN-AT with FR
[79] 2022 Traditional NSL-KDD BB FGSM, JSMA, CW2,

BIM, DeepFool, Boundary,
HSJ

Autoencoder with
LSTM cells

Statistical test

[172] 2023 Traditional NSL-KDD BB FGM, FGSM, PGD,
JSMA

Adaboost, DNN,
DT, GB, KNN,
LR, NB, RF, SVM

AT [172]

Table 4.5 Defending NIDS Against Adversarial Attacks Studies

57

4.7 Defending ML-based NIDS Against Adversarial Attacks

Ref Year Network Dataset Setup Attack Model Defense

[38] 2023 SDN CICDDoS2019 WB GAN GAN, CNN, LSTM, MLP,
DBN-LSTM

DBN-LSTM model

[154] 2021 Traditional NSL-KDD WB PGD SVM LIME (XAI approach)
[140] 2021 Traditional NSL-KDD PSO, GA, GAN, PGD DT, RF, LR, LDA, QDA,

MLP
Mutable FR, AT, EL, Outlier Alarms

[1] 2021 Traditional custom-SYN,
Scapy-SYN,
CICIDS2017,
UNB201X

GAN, FGSM, BFP AT

[32] 2021 Traditional NSL-KDD GAN GAN AT
[60] 2021 Traditional NSL-KDD WB FGSM, PGD MLP Min-Max AT
[177] 2022 IoT N-BaIoT,

Kitsune,
WUSTL

WB FGSM, PGD, Semantic,
Random Noise

FCDNN Robust, Effective and Resource
Efficient FCNN (REDNN)

[147] 2022 Traditional NSL-KDD,
CICIDS2017,
CICIDS2018

WB FGSM, BIM, JSMA,
DeepFool, CW

EL

[53] 2021 Traditional KDDCup99,
CICIDS,
DARPA

Hydra [6] Ensemble Classifiers with reduced
features

[76] 2022 IoT MedBIoT,
IoTID

BB [76] LSTM, RNN, DT, FGDM Feature Grouping and Multi-model
fusion Detector

[167] 2022 Traditional NSL-KDD WB FGSM, BIM, CW, [167] MLP, LR, KNN, BNB,
DT, SVM

MANDA [167]

[49] 2022 Botnet CTU-13 FENCE [41], PGD AT
[139] 2022 Traditional NSL-KDD WB FGSM, PGD, DeepFool MLP, DT, RF, linear

SVM
AT

[103] 2022 Tor CIC-
Darknet-
2020

WB,
BB

FGSM, BIM, DeepFool,
Boundary

Stacking Ensemble (RF,
KNN, DT)

Two-staged Autoencoder

[158] 2019 Traditional KDDCup99 BB GAN DNN, GAN, KNN, RF,
SVM

GAN-AT

[178] 2020 Traditional CICIDS2018 BB Boundary, HSJA, NES,
Opt, Pointwise

CNN, LSTM, MLP Adversarial Query Detection, AT, EL

[2] 2020 Traditional NSL-KDD,
UNSW-
NB15

WB BIM, CW, DeepFool,
FGSM, PGD

DNN, CNN, Recurrent
NN

Min-Max Formulation

[3] 2019 Traditional UNSW-
NB15

WB BCAS, BGAS, dFGSMS,
rFGSMS

DNN Min-Max Formulation, AT, FR

[130] 2020 Traditional NSL-KDD WB JSMA RNN-ADV trained with
ABC, DNN

RNN-ADV trained with ABC

[22] 2020 Traditional CTU-13 GB [25] Adaboost, DT, MLP, RF,
WnD

Queries attempts restriction, EL

[64] 2020 Traditional CICIDS2017 WB [63] DAE, Kitsune, BiGAN,
DAGMM

RePO

[27] 2020 SDN CICIDS2017 WB FGSM MLP AT
[120] 2020 Traditional CICIDS2017 WB BIM, CW, FGSM, PGD Adaboost, DNN, RF,

SVM, KNN
Neurons Activation

[46] 2021 Traditional NSL-KDD WB FGSM, PGD DNN, DT, LDA, LR, RF,
SVM

EL, Detect & Reject

[53] 2021 SDN CICIDS2017,
DARPA,
KDDCup99

WB Hydra DNN, LR, RF, SVM FR, EL

[95] 2021 Traditional CICIDS2017 WB FGSM DNN FR
[112] 2021 Tradi-

tional,
SDN

CICIDS2019,
Emulated
Real SDN
environment

WB GAN CNN, GAN, LSTM, MLP GAN-AT

[115] 2021 SDN Theirs, Em-
ulated Real
SDN environ-
ment

WB Tabular GAN, Emulated
Adversary SDN dataset

MLP, CNN-LSTM AT

[164] 2021 Traditional CICIDS2018 WB BIM, DeepFool, FGSM,
JSMA

DNN Ensemble Retraining

[122] 2020 Traditional NSL-KDD WB FGSM, MIFGSM, PGD DNN BiGAN-AT
[131] 2022 Traditional CICIDS2017,

CICIDS2018,
ISCX-2014

WB RFL GAN GAN-AT with RFL

[86] 2022 Traditional CICIDS2017 WB PGD, ZOO, FGSM, CW,
JSMA

DT, LR, XGB, SVM,
DNN, Ensemble of (DT,
XGB, SVM), Ensemble of
all

EL with AT

Table 4.6 Defending NIDS Against Adversarial Attacks Studies
58

4.8 Discussion

Ref. Dataset Network Year Attacks Categories
[157] KDD CUP 99 Traditional 1999 DoS, Probe, User 2 Root and Remote to User
[116] NSL-KDD Traditional 2009 DoS, Probe, User 2 Root and Remote to User
[56] DARPA Traditional 2009 DDoS, Malware, Spambots, Scans, Phishing
[54] CTU-13 Traditional 2011 Botnet
[156] Kyoto Traditional 2015 Botnet
[106] UNSW-NB15 Traditional 2015 Backdoors, Fuzzers, DoS, Generic, Shell code, Reconnaissance, Worms,

Exploits, Analysis
[17] WSN-DS Wireless 2016 Greyhole, Blackhole, Scheduling, Flooding.
[111] SDN traffic SDN 2016 DDoS
[141] CICIDS2017 Traditional 2017 DoS, DDoS, SSH-Patator, Web, PortScan, FTP-Patator, Bot.
[20] Mirai IoT 2017 Botnet
[141] CICIDS2018 Traditional 2018 Bruteforce Web, DoS, DDoS, Botnet, Infilteration.
[81] BoT-IoT IoT 2018 DDoS, DoS, OS Service Scan, Keylogging, Data exfiltration
[99] Kitsune IoT 2018 Recon, Man in the Middle, DoS, Botnet Malware
[74] IEEE BigData cup Traditional 2019 N/A

Table 4.7 Overview of Used NIDS Datasets in the Literature

4.8. Discussion

In this section, we conduct a meta-data analysis to identify trends and patterns in research,
extracting key insights. Subsequently, we address pertinent research questions regarding
limitations in existing methodologies and propose suggestions for improvements.

4.8.1. Findings Analysis

35%

40%

25%

Def. Gen. Eva.

Figure 4.1 Distribution of Studies per Category

Figure 4.1, illustrates the distribution of studies across different categories: 40% focus on
introducing novel techniques for generating adversarial attacks against ML-based NIDS, followed
by 35% proposing defensive solutions or evaluating existing defense mechanisms for NIDS.
Additionally, 25% of the studies are dedicated to assessing the resilience of ML-based NIDS
against adversarial examples generated by general approaches.

59

4.8 Discussion

74%

8%

14%

4%

Traditional SDN IoT other

Figure 4.2 Distribution of Studies per Environment

Figure 4.2 reveals that the majority of studies 74% are centered on traditional networks,
while fewer 14% address adversarial attacks in IoT networks. Given the increasing prevalence
of IoT devices in various contexts like smart homes and buildings, there’s a growing need for
research to protect these networks from adversarial threats.

23%

18%

7%7%
5%

5%

4%

3%

28%

NSL-KDD CICIDS2017 CICIDS2018 CTU-13 UNSW-NB15

KDDCup99 Kitsune BoT-IoT Other

Figure 4.3 Distribution of Studies per Dataset

Figure 4.3, indicates that the NSL-KDD dataset, utilized by 28% of the surveyed studies, is
the most popular. However, it’s considered outdated and not representative of modern networks.
Similarly, the KDDCup99 dataset, used by 5% of the studies, suffers from similar shortcomings,
including redundancy issues that bias ML algorithms. Recent datasets reflecting real-world
network complexity are needed for evaluating NIDS performance under adversarial attacks.
Additionally, standard datasets for benchmarking purposes should be prioritized, as 5% of the
studies either used uncommon datasets or emulated their own.

57%

35%

8%

WB BB GB

Figure 4.4 Distribution of Studies per Setting

60

4.8 Discussion

Figure 4.4 demonstrates that a significant portion of the studies focused on white-box attacks
57%. Despite their potential impracticality in real-world scenarios, white-box attacks offer
a controlled environment for assessing model vulnerabilities and refining defense strategies.
By understanding how easily adversaries can manipulate model behavior with full access
to internal parameters and architecture, robustness of ML-based NIDS can be iteratively
improved. Conversely, experimental results from black-box studies revealed notable evasion
rates, highlighting the substantial potential for adversaries to compromise NIDS without prior
knowledge. Given their practicality in real-world scenarios, addressing the threat and defense
against black-box attacks becomes imperative. A holistic approach that considers both white-box
and black-box attack scenarios should be adapted to develop more resilient ML-based NIDS
against adversarial threats in real-world environments.

46%

26%

7%

6%

15%

N/A Adversarial Training Feature Removal Ensemble Learning Other

Figure 4.5 Distribution of Studies per Defense Mechanism

As can be seen in Figure 4.5, the proposed solutions, including adversarial training, feature
removal, and ensemble learning, represent common approaches to mitigate adversarial attacks in
the NIDS domain. However, there is a notable gap in exploring alternative defensive mechanisms
from other domains, such as image recognition, which may offer valuable insights and strategies.
The unique challenges of NIDS, such as the need for low-overhead methods due to real-time
operation, necessitate careful consideration when adapting defensive mechanisms from other
domains.

While generic countermeasures exist, they often fall short of addressing the diverse range
of adversarial attacks effectively. Therefore, there’s a pressing need to develop attack-agnostic
defense approaches capable of handling the increasing variety of adversarial threats. This
approach contrasts with attack-specific methods like adversarial training, which may only be
effective against a narrow range of attacks.

Additionally, the effectiveness of most defensive techniques has primarily been tested on
white-box attacks, overlooking challenges posed by black-box adversaries. Comprehensive
assessment in both settings is crucial to enhance the applicability and resilience of defensive
methods across a wide variety of scenarios.

61

4.8 Discussion

25%

13%

13%
15%

10%

9%

9%

3% 3%

FGSM PGD JSMA
GAN CW BIM
DeepFool ZOO Boundary

Figure 4.6 Most Utilized Adversarial Attacks

Figure 4.6 shows the most utilized generic approaches for crafting adversarial examples to
evade NIDSs. FGSM perturbs input features in the direction of the gradient of the loss function
to induce misclassification. Its strength lies in its simplicity and efficiency, making it a popular
choice for crafting adversarial samples. However, FGSM attacks may lack robustness against
defenses such as gradient masking or input transformation.

PGD and BIM iteratively perturb input features to maximize classification errors. Their
strength lies in their versatility and effectiveness across various ML models. However, their
iterative nature can be computationally expensive and require knowledge of the target model’s
architecture, limiting their applicability in real-world scenarios.

GANs generate realistic adversarial samples that are indistinguishable from legitimate traffic
making them highly effective in evading ML-based NIDS. However, GANs require significant
computational resources which limits their practicality for real-time attacks.

CW formulates the generation of adversarial samples as an optimization problem to minimize
perturbation while maximizing misclassification. However, CW attacks are computationally
intensive and require access to model gradients. DeepFool crafts adversarial samples by iteratively
perturbing input features along the direction of the decision boundary. However, DeepFool
attacks require multiple iterations.

ZOO performs black-box attacks by querying the target model without access to gradients.
Its strength lies in its ability to bypass gradient-based defenses and adapt to different ML
architectures. However, ZOO attacks may require a large number of queries and may be less
efficient compared to white-box attacks.

Boundary attack generates adversarial samples by perturbing input features along the
decision boundary. Its strength lies in its ability to bypass gradient-based defenses and generate
diverse adversarial samples. However, boundary attacks may require extensive computational
resources.

These attacks are mainly designed for deep learning models, with PGD, BIM, HSJ, JSMA,
and FGSM shown to be the most effective attacks. Although these attacks can transfer through
other models, their effectiveness can vary depending on the model’s architecture and parameters.

62

4.8 Discussion

4.8.2. Research Questions

In this section, we answer the research questions identified in Section 4.4.1.
RQ1. What are the drawbacks of the proposed techniques for generating

adversarial attacks against ML-based NIDS?
Overall, the effectiveness of RL-based frameworks, GANs, surrogate model attacks, genetic

algorithms, and other methods in crafting adversarial examples against ML-based NIDS varies in
real-world scenarios due to computational demands, data requirements, and limitations in access
to target system information. RL-based approaches require significant resources and assume full
knowledge of the target system which limits their practicality. GANs offer flexibility but require
large, high-quality datasets and are computationally intensive. Surrogate model attacks reduce
resource demands but rely on detailed target system knowledge. Genetic algorithms efficiently
explore solution spaces but struggle with generalization and computational demands. Many
methods are limited to specific attack types or require detailed target system information. This
makes these methods difficult to apply effectively in real-world settings.

The common drawbacks of the proposed techniques can be summarized as follows:
• Target System Knowledge: Most techniques assume the adversary has detailed knowledge

of the target NIDS, such as its architecture, parameters, and behavior. This privileged
access may not be available in real-world scenarios.

• Computational complexity: Many techniques, like RL-based frameworks, GANs, and
genetic algorithms dcan be computationally expensive and time-consuming. This limits
their application in real-time processing network environments. In practice, attackers
require quick and efficient methods to generate adversarial traffic in real-time scenarios.

• Data Requirements: Techniques like GANs rely heavily on large, high-quality datasets
to generate realistic adversarial examples. Limited or biased data can lead to ineffective
attacks, reducing success rates. Similarly, surrogate model attacks require diverse training
data for accurate replication of the target NIDS’s behavior.

• Transferability Issues: Adversarial examples generated by GANs and other techniques
may lack transferability across different models due to model-specific features and dataset
differences. This limits their generalizability and applicability across varied architectures
and training datasets.

• Limited Applicability: Some techniques are restricted to specific types of attacks or require
labeled data, which may not always be practical in real-world scenarios. Additionally,
white-box attacks relying on complete model information may not be feasible in real-world
settings where such information is not readily accessible.

63

4.8 Discussion

RQ2. What are the requirements for developing effective and practical techniques
for generating adversarial attacks against ML-based NIDS?

• Black-box Setup: The attacks should be designed in a black-box setup, operate without
detailed information about the ML-based NIDS architecture and parameters. This
approach better reflects the limited information attackers typically have. White-box
attacks, which assume detailed knowledge of the target NIDS, are often infeasible in
real-world scenarios.

• Adaptation to Defense Mechanisms: The attacks must be tested against state-of-the-art
defenses to demonstrate their ability to continually achieve evasion success in the presence
of mitigation methods.

• Maintain Resources Constraints: The attacks should be efficient to deploy in real-time
environments, considering computational resources and time constraints.

RQ3. What are the common limitations in assessing ML-based NIDS resilience’s
to adversarial attacks, and how can be addressed?

• Lack of Standardized Benchmarks Datasets: The absence of standardized benchmark
datasets hinders easy and effective comparisons of NIDS models and attack techniques.
Addressing this limitation involves incorporating contemporary and diverse datasets that
accurately represent real-world network traffic. These datasets should also encompass a
wide array of adversarial attack types to comprehensively test ML-based NIDS resilience.
Incorporating standardized benchmarks streamlines evaluation comparisons. This ensures
consistent assessments and enhances the reproducibility and generalizability of results.

• Lack of Standardized Evaluation Metrics: The absence of standardized evaluation metrics
makes it difficult to comprehensively assess the effectiveness of ML-based NIDS against
adversarial attacks. Employing a diverse set of metrics covering model accuracy, attack
evasion rates, and transferability of attacks is essential. Defining these as standardized
evaluation metrics ensures the reliability and generalizability of assessment results and
facilitates easy comparison with other studies.

RQ4. What are the proposed countermeasures to mitigate the adversarial attacks
against ML-based NIDS, their strengthens and limitations?

Tailored solutions specifically designed to protect ML-based NIDS against adversarial attacks
are currently lacking. Instead, many studies defending NIDS models against adversarial machine
learning attacks draw upon mitigation countermeasures from various domains, such as image
recognition. These defensive mechanisms include adversarial training, feature reduction, and
ensemble learning, each with its own set of strengths and limitations.

Adversarial training enhances models’ resilience by exposing them to adversarial examples
during training. This process increases their ability to withstand known attacks. However, they
may still remain vulnerable to unseen attacks which limits their effectiveness against evolving
threats.

64

4.8 Discussion

Feature reduction aims to mitigate adversarial attacks by simplifying the input space. This
reduces the number of potential vulnerabilities. While this can enhance model robustness, it
often comes at the cost of decreased detection performance in non-adversarial scenarios. The
simplified features may fail to capture relevant information effectively.

Ensemble learning, on the other hand, leverages the diversity of multiple models to improve
overall accuracy, particularly on unperturbed examples. However, this approach may not fully
address all attack scenarios and can significantly increase computational expenses and memory
requirements.

These limitations highlight the necessity for continuous research to develop more comprehen-
sive and robust defenses tailored explicitly for ML-based NIDS. Such defenses should address
both known and unforeseen attacks, while also maintaining high performance over clean data
and remaining computationally efficient.

RQ5. What are the considerations for developing effective defenses against
adversarial attacks on ML-based NIDS?

Considering the following factors enables designing defenses that enhance ML-based NIDS
resilience while maintaining high performance and scalability.

• Generalization and Adaptability: Defense approaches should generalize across attack types
and adapt to unforeseen and evolving threats. While some strategies may effectively address
specific attacks, their limited ability to generalize to diverse attacks undermines their
generality and robustness. For example, although techniques like adversarial training prove
effective against known threats, they render ML-based NIDS susceptible to unforeseen
attacks.

• Computation and Resource Efficacy: Defense approaches should be designed to utilize
resources efficiently. Some of the proposed techniques, especially those involving complex
models like GANs and deep reinforcement learning, can be computationally intensive and
require substantial resources. Implementing these defenses in real-time NIDS systems may
be challenging.

• Scalability and Real-time Response: Defense approaches should avoid excessive computa-
tional overhead, memory requirements, and significant latency. For example, ensemble
methods may introduce delays due to the additional processing time needed for aggregating
predictions.

• Preservation of Performance: Defense approaches should maintain high accuracy on
legitimate network traffic without introducing degradation in the ML-based NIDS’s
performance. For example, overly aggressive adversarial training techniques could lead to
overfitting on adversarial examples and generate false alarms on benign traffic.

• Comprehensive Evaluation: Defense approaches should be thoroughly evaluated using
standardized datasets and metrics across various attack scenarios to validate their effec-
tiveness and reliability.

65

4.9 Conclusion

4.9. Conclusion

In this chapter, we provided a comprehensive overview of the landscape of adversarial evasion
attacks against ML-based NIDS. We categorized the body of research into three main areas:
generating tailored adversarial examples for ML-based NIDS, evaluating the models’ resilience,
and developing defensive mechanisms. Within each category, we discussed the proposed
methodologies, strengths, limitations, and potential avenues for improvement. This chapter
serves as a foundational resource providing an overview and assessment of the existing knowledge,
identifying gaps in current research, and offering insights for future works.

In this review, we found that the generic evasion attacks were the most commonly employed
techniques to assess the resilience of ML-based NIDS, as observed in Sec 4.8.1. These attacks
are mainly designed for unconstrained domains (i.e., image processing), where the adversary
can perturb any arbitrary amount of pixels, and the features can be amended independently.
However, it’s noteworthy that the applicability of these attacks for ML-based NIDS was not
investigated in the literature. In the NIDS field, traffic data must adhere to specific domain
constraints that restrict the features can be modified. This sets the stage for the next chapter,
where we delve deeper into the realism versus performance trade-offs for adversarial examples
against DL-based NIDS, and explore the practicality and viability of these attacks in real-world
scenarios.

66

Chapter 5. Realism vs. Performance for Adversarial Examples
Against DL-based NIDS

5.1. Summary

In the previous chapter, we found that the existing research utilizes the generic methods for
generating adversarial examples to evaluate the resilience of DL-based NIDS against adversarial
attacks, Section 4.6. However, these methods were primarily developed for unconstrained
domains, such as image recognition, and their suitability for the network traffic domain has
not been investigated. In this chapter, we evaluate whether the examples generated by these
attacks adhere to network traffic constraints to determine their real threat level and potential
impact on the viability of DL-based NIDSs for real-world deployment. We first implement the
main adversarial attacks selected from the literature (FGSM, BIM, PGD, NewtonFool, CW,
DeepFool, EN, Boundary, HSJ, ZOO) for two different datasets (WSN-DS and BoT-IoT) and
we compare their relative performance. We then analyze the perturbations generated by these
attacks and use a set of invalidation metrics that imply invalid network traffic, to establish a
notion of "attack unrealism". We offer a contrasting analysis of the attacks’ performance and
realism, and provide a discussion on the practicality and feasibility of these attacks in real-world
scenarios. We conclude that, for these datasets, some of these attacks are performant but not
realistic.

5.2. Introduction

Recent research uses standard techniques to evaluate DL-based NIDS against adversarial traffic,
though these were initially designed for image processing, where adversaries can alter any
number of pixels and features independently [9, 10]. For NIDS, the traffic data must preserve
some domain constraints that restrict how features can be perturbed, e.g., interdependence
between the values of several features, features with fixed values, features with a limited range
of values [14]. Therefore, this chapter attempts to answer the following research question:

To what extent do the outputs from generic adversarial attacks align with the
characteristics of real network traffic, and how does evaluating the realism and
feasibility of these attacks contribute to assessing the suitability of ML-based NIDS
for real-world deployments?

67

5.3 Network Traffic Constraints

We assess the performance of these attacks along with their realism in terms of the compliance
of their outputs with the traffic domain constraints. The assessment was conducted for the
attacks in two setups, targeted and untargeted, against multi-classification DL-based NIDSs. We
use the Unrealism Index metric, which is an average of percentages of void adversarial examples
and features perturbation to measure the unrealism of the attack.

Contributions: The contributions of this chapter are as follows:
• C1: To implement a range of prominent adversarial attacks (e.g., FGSM, BIM, PGD,

NewtonFool, CW, DeepFool, EN, Boundary, HSJ, ZOO) in two setups targeted and
untargeted on distinct datasets representing different types of network traffic (WSN-DS
and BoT-IoT).

• C2: To quantify the alterations each attack introduces to the original network traffic and
assess their inconsistency with actual network behavior.

• C3: To introduce a new Unrealism Index that quantifies "attack unrealism" by evaluating
how much the manipulated traffic deviates from genuine network traffic.

• C4: To provide an assessment for the attacks’ performance vs realism.

• C5: To provide a discussion of attacks’ validity and feasibility in real-world scenarios.
Organization: The rest of this chapter is structured as follows: Sec 5.3, presents a brief
description for network traffic constraints. Sec 5.4 explores the limitations of the previous
related works and the gaps we do address. Sec 5.5 describes the setup of our experiments,
evaluation metrics, and validation metrics. Sec 5.6 presents the results and analysis. Sec 5.7,
provides a discussion of the validity and feasibility of using these attacks in real-world scenarios.
Lastly, Sec 5.8 presents our conclusion.

5.3. Network Traffic Constraints

In unconstrained domains such as (e.g., image recognition), the features are independent
and can be perturbed arbitrarily. However, network traffic features are constrained by some
characteristics such as [14]:

• Every feature can have a continuous, categorical, or binary value.

• The values of some features can be highly interdependent and correlated.

• The values of some features can be constant and unmodifiable.
The binary feature can take either 1 or 0, the categorical feature takes a value that belongs
to one category at once, and the numeric feature can only take a value within the allowed
range. Additionally, some features may be highly interdependent or fixed and unchangeable.
For instance, some features are linearly related, and others are immutable, such as protocol
type or connection flag. The adversarial perturbations must maintain the above constraints to
generate valid and functional flow.

68

5.4 Literature Drawbacks

5.4. Literature Drawbacks

In this section, we discuss some drawbacks of the previous studies that employed generic adver-
sarial evasion techniques to prove their effectiveness in evading and degrading the performance
of DL-based NIDS models.

Yang et al. [175] used three black-box attacks—substitute model, WGANs, and ZOO—to
mislead a DNN classifier into misclassifying attack traces as normal traffic.

Warzyński and Kołaczek [170] demonstrated that FGSM fully compromised a DNN classifier
on the NSL-KDD dataset, confirming its applicability to network traffic. Clements et al. [42]
highlighted the vulnerability of Kitsune, a lightweight DL-NIDS, to FGSM, CW, and ENM
attacks on the Mirai dataset. Wang [169] compared the effectiveness of FGSM, DeepFool, and
CW attacks on an MLP classifier using NSL-KDD.

Peng et al. [123] observed performance drops in DNN, SVM, RF, and LR classifiers against
various attacks on NSL-KDD. Ibitoye et al. [72] found that while DNNs were more accurate,
SNNs were more resilient to FGSM, BIM, and PGD attacks on BoT-IoT. Jeong et al. [75]
evaluated Autoencoder and CNN resilience to FGSM on NSL-KDD.

Huang et al. [69] assessed the impact of FGSM on MLP, CNN, and LSTM models for SDN
environments. Martins et al. [92] reported performance deterioration in DT, RF, SVM, NB,
NN, and DAE classifiers under FGSM, DeepFool, and CW attacks. Sriram et al. [149] analyzed
the effect of FGSM on various classifiers using NSL-KDD.

Piplai et al. [125] used GANs defensively against adversarial examples and to address
class imbalance, but found them defeated by FGSM. Debicha et al. [45] reported significant
performance degradation in DNN models under FGSM, BIM, and PGD attacks. Maarouf
et al. [89] concluded that DL models are generally more robust to adversarial examples than
traditional ML models.

Pacheco and Sun [117] confirmed that FGSM and CW attacks reduced the performance of
DT, SVM, and RF classifiers on BoT-IoT and UNSW-NB15 datasets. Fu et al. [52] evaluated
CNN, LSTM, and GRU robustness to FGSM on CICIDS2018. Merzouk et al. [96] focused
on FGSM, BIM, DeepFool, and CW attacks against a binary MLP classifier using NSL-KDD,
though their scope was limited to a few white-box attacks.

The previous studies focused on compromising DL-based NIDS using generic evasion ad-
versarial attacks and have stated the vulnerability of detection models to these attacks and
regarded them as significant threats. Although these attacks achieve high evasion rates, the
studies did not verify the realism or practicality of the generated adversarial traffic for real-world
scenarios.

The literature overall and importantly has three significant flaws. First, they did not
consider the necessity of maintaining traffic domain constraints in generating the adversarial
flow for preserving the validity and functionality of attack traces. Second, they assume the
adversary can freely perturb any amount of features that can break the semantic links among
the interdependent features. Lastly, they assume a white-box threat model, where the adversary

69

5.5 Experimental Setup

has access to the parameters of the targeted model, which is not commonly feasible in real-world
scenarios.

To fill this gap, we verified the realism of adversarial flow and its compliance with network
domain constraints. Furthermore, we validated the outputs of widely used white-box and
black-box evasion attacks in targeted and untargeted setups over two recent traffic datasets
representing different contemporary networking contexts. Table 5.1 demonstrates the attacks
used by the literature to assess the resilience of a wide spectrum of conventional and DL-based
NIDS and whether domain constraints verification was conducted for produced adversarial
network traffic or not.

White-Box Black-Box
C. V.?

Ref.
Attacks BIM CW DeepFool FGSM NewtonFool PGD ZOO HSJ EN Boundary

[170] ✓

[169] ✓ ✓

[175] ✓

[42] ✓ ✓ ✓

[69] ✓

[72] ✓ ✓ ✓

[92] ✓ ✓ ✓

[123] ✓

[96] ✓ ✓ ✓ ✓

[75] ✓

[149] ✓

[117] ✓ ✓

[45] ✓ ✓ ✓

[52] ✓

[89] ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1 Comparison with Related Works

5.5. Experimental Setup

In this section, we provide detailed information about the implementation of the experiments.
We describe the used datasets, dataset preprocessing procedure, attack implementation, and
targeted model architecture. Then, we explain the used metrics to evaluate the performance of
the detection model, and realism of the crafted adversarial traffic by measuring its compliance
with network domain constraints.

5.5.1. Datasets

We utilized two recent datasets that represent advanced networking environments a wireless
sensor network (WSN-DS) and an IoT network (BoT-IoT). WSN-DS contains 374,661 records
representing normal traffic and four different types of DoS attacks, namely: flooding, TDMA,
grayhole, and blackhole [17]. BoT-IoT compromises a approximately 3.6 million records in its
proposed scaled version of the best 10 features [81]. These features were selected by comparing
Entropy and Correlation scores. Ideal features have high Entropy (indicating less redundancy)
and low Correlation (indicating less similarity to others). The scores were normalized, and
Correlation values were inverted so that higher scores in both measures indicate more independent
and informative features [81]. the dataset represents normal IoT network traffic and various

70

5.5 Experimental Setup

attacks that include DDoS, DoS, Keylogging, Data exfiltration, OS and Service Scan. Table 5.2
outlines the features used for the experiments, with detailed descriptions of the datasets’ features
provided in Table B.1 and Table B.2.

For the training and testing split, we used scikit-learn’s train_test_split function to
randomly divide the WSN-DS dataset into 80% for training and 20% for testing, with the
random_state parameter set to a default value. For BoT-IoT, we utilized the pre-split training
and testing datasets provided by the original authors.

For training our supervised multi-classifier FFDNN, we used the labels in these datasets
as the target variable. WSN-DS labels include blackhole, grayhole, flooding, scheduling, and
normal traffic, while BoT-IoT labels differentiate between DDoS, DoS, theft, reconnaissance,
and normal traffic, as shown in Table 5.2.

Features WSN-DS BoT-IoT

Binary is_CH, JOIN_S, Join_R N/A
Numeric Who_CH, Dist To CH, Consumed_Energy, ADV_S,

ADV_R, SCH_S, SCH_R, Rank, DATA_S, DATA_R,
Data_Sent_To_BS, dist_CH_To_BS, send_code,

Seq, state_number, Stddev, Min, Max,
Srate, Drate, N_IN_Conn_P_SrcIP,
N_IN_Conn_P_DstIP

Categorical N/A Proto
Label Blackhole, Grayhole, Flooding, Scheduling, or Normal. DDoS, DoS, Theft, Reconnaissance, and

Normal

Table 5.2 Used Features in the Datasets

5.5.2. Dataset Preprocessing

Data preprocessing is a crucial stage to convert raw inputs into an understandable format by the
ML algorithm. The first step in this stage is One-Hot Encoding which converts categorical
features into numeric ones. We applied this step to the BoT-IoT dataset. However, there
was no need for one-hot encoding for the WSN-Ds as the dataset does not contain categorical
features. The second step is standardization, in which all numeric features are converted into
a standard scale. Min-Max Normalization was used to transform the features into a scale
between 0 and 1. This step is essential as the dataset has feature values with different scales
drawn from different distributions or tainted by outliers. Furthermore, normalization prevents
the features with large values from dominating others which causes imbalanced results. This
method converts the maximum value into 1, the minimum value into 0, and the other values
into decimals between 0 and 1. It is calculated via the following equation:

X(norm) = X − X(min)
X(max) − X(min) (5.1)

where X denotes the feature value, Xmin the minimum feature value, Xmax the maximum feature
value.

One-hot encoding and min-max normalization are widely used for ML-based NIDS compared
to other methods due to their specific advantages in handling categorical and numerical data[138].
One-hot encoding is superior to other encoding methods, like label encoding, because it prevents

71

5.5 Experimental Setup

models from misinterpreting categorical variables as ordinal data with inherent numerical
relationships [5]. This is crucial for NIDS, where features like protocol types or service names
do not have a natural order. In contrast, min-max normalization is preferred over techniques
like standardization (z-score normalization) because it scales numerical features to a fixed range,
ensuring that all features contribute equally during model training [138, 5]. This is especially
important in NIDS, where features may vary significantly in magnitude and scaling all features
to the same range helps improve the performance and stability of the model. Both methods
ensure that the data is appropriately prepared for machine learning algorithms, enhancing the
model’s ability to learn and generalize from the data effectively.

5.5.3. Adversarial Attacks & Target Model Implementation

The Adversarial Robustness Toolbox (ART) library[110] was used to generate the adversarial
examples using the examined approaches and with the default parameters. The target model
was a Feed-Forward Deep Neural Network (FF-DNN) implemented using the Keras library
with a TensorFlow backend. The architecture of the model and the training parameters are
demonstrated in Table 5.3. The implementation details for the experiment can be found in the
code repository1.

Parameter Value

No. of hidden layers 3
Layer 1 128 neurons
Layer 2 64 neurons
Layer 3 32 neurons
Dropout 0.25
Optimizer ADAM
Activation function ReLU and Sigmoid
Learning rate 0.01
Epoch 100
Batch Size 64

Table 5.3 Feed-Forward DNN Model Parameters

5.5.4. Evaluation Metrics

We selected Evasion Rate (ER) as the primary metric to evaluate the performance of the
attack. ER refers to the proportion of perturbed attack instances misclassified as benign by the
detection model. The higher achieved ER by the approach indicates a more performant attack.

ER = Misclassified Attacks Records

Total Attacks Records
× 100 (5.2)

To measure the realism of the attack, we consider three metrics.
• Approaches producing adversarial examples by manipulating all the features are unlikely

to lead to realistic attacks; the adversary cannot have control over all of the traffic features
to change them in a fine-grained manner. Furthermore, such massive manipulation breaks

1The repository is available at: https://mega.nz/folder/U7lhARbY#0gZ8kghKYXrrDg_nvfPH7A

72

https://mega.nz/folder/U7lhARbY#0gZ8kghKYXrrDg_nvfPH7A

5.6 Experimental Results & Analysis

the semantic links between the correlated features. We introduce the metric PF measuring
the percentage of perturbed features:

PF = Average of Perturbed Features

Total Features
× 100 (5.3)

• Adversarial examples that do not comply with the network domain constraints given in
Section 5.3, e.g. by introducing out-range values to the continuous features, assigning
non-binary values to the binary features, and triggering multiple categories at once for
categorical features, are unlikely to correspond to realistic traffic [14]. We introduce a
generic metric VAE b measuring the percentage of these void adversarial examples:

VAE c = Attacks Records violating b

Total Attack Records
× 100 (5.4)

We consider in the following V AEoor, V AEnb and V AEmc for the constraints out-range,
non-binary and multi-categories, respectively.

• The Unrealism Index (UI) is calculated by averaging the metrics above that are relevant
to a particular dataset.

UI W SN−DS = PF + VAEor + VAEnb

3 (5.5)

UI BoT −IoT = PF + VAEor + VAEmc

3 (5.6)

5.6. Experimental Results & Analysis

In this section, we report and analyze the outcomes of executing the attacks in targeted (T)
and untargeted (U) setups over the two datasets.

Table 5.4 shows assessment results of attacks performance and unrealism over the two
datasets, using the metrics introduced in the previous section, presented in decreasing order
based on Evasion Rate. Figures 5.1 and 5.2 demonstrate the Evasion Rate and Unrealism Index
of the attacks over the WSN-DS and BoT-IoT datasets, respectively.

Figures 5.3 and 5.4 demonstrate the average percentages of void adversarial examples for
each validation metric over the two datasets for white-box and black-box attacks, respectively.
The suffixes (-T) and (-U) were added to the attack names to refer to the attacks in targeted
and untargeted setups, respectively.

Lastly, Table 5.5 displays the validation metrics that were violated by the attacks over the
two datasets. The results were presented in descending order based on the number of violated
validation metrics scored by the attacks over the two datasets.

73

5.6 Experimental Results & Analysis

5.6.1. Attacks Performance

As reported in Table 5.4 the model over the BoT-IoT dataset recorded less ER of 0.06 on the
clean attack instances compared to the WSN-DS model which scored an ER of 2 as shown
in Table 5.4. This difference can be justified by the imbalance of normal and attacks data
distribution between the two datasets. The attack instances are the majority of the BoT-IoT
dataset records with a percentage of 99%, while they are the minority in the WSN-DS dataset
with a percentage of 9.2%. However, both models were able to detect the clean attack traces
with high accuracy.

From Table 5.4, we can see the variation in the attack effectiveness in terms of ER over
the two datasets. Overall, we can observe that the performance of each attack depend on the
dataset type. What stands out in Figures 5.1 and 5.2 is that the attacks overall achieved higher
evasion rates over the WSN-DS compared to the BoT-IoT. The attacks over WSN-DS achieved
ERs between 100-1.44 and 61.65-0.01 over BoT-IoT.

The white-box and the black-box attacks performed better in both setups, targeted and
untargeted, over the WSN-DS dataset compared to the BoT-IoT.

Two reasons can justify that; first, the proportion of benign traffic instances constitutes
about 91% of the WSN-DS dataset, which enriches learning the characteristics of normal flow
behavior by the targeted attacks.

The second reason can be attributed to the number and datatype in a dataset. The WSN-DS
dataset consists of binary and continuous features represented in numbers. The attacks could
introduce any arbitrary numbers to these fields with the possibility of generating successful
evasive examples. However, the BoT-IoT dataset contains continuous features and a categorical
feature (proto) as shown in Table 5.2. A categorical feature can take one value from a finite set
of possible values. The proto feature can be a value from a set of five values i.e., arp, tcp, udp,
icmp, and ipv6-icmp. After one-hot encoding, this feature is represented in a binary vector in
which only the corresponding category is assigned to 1, and the others are zeros. The attacks
spread their perturbations to all features and introduce arbitrary numbers to fields belonging
to a categorical feature that must be zeros, and only one of them can be 1. Such massive
perturbation results in corrupted examples that cannot evade the detection model and are easily
detected. This explains the terrible performance of the attacks over the BoT-IoT dataset.

It is apparent from Table 5.4 that the BIM and PGD attacks are the top performing white-
box attacks over the two datasets with ERs of 65 and 12 in the targeted and untargeted setups,
respectively.

The results of our experiments support the findings of previous research that has demonstrated
that multi-step (iterative) perturbation strategies such as PGD and BIM are among the strongest
attacks compared to the single-step attack (e.g., FGSM) [85].

The multi-step adversarial perturbation generation is an extension of the single-step method
in which it iteratively adds a perturbation that follows the sign of the gradient with respect to
the current adversarial example of the original input [85]. The PGD attack is similar to BIM.
The differences are that PGD adds more iterations and uses random initialization. Because of

74

5.6 Experimental Results & Analysis

that, they had the same effect on the detection model as shown in Table 5.4. Although other
studies support the same finding of us [77, 45], the BIM attack was reported as performing
better than the PGG in [72].

What is striking in Table 5.4 is that the black-box attacks performed better than the
white-box, with the EN being the best.

Although the EN is optimized to limit total perturbation across feature-space inputs, it
minimizes the number of perturbed features. Therefore, the high effectiveness of this attack
can be attributed to its ability to produce adversarial examples with minimal perturbation.
As a consequence, the resulting examples become very close to the original examples and can
successfully fool the detection model.

The Boundary and HSJ reported closer ERs. That can be justified by the fact that they are
both from the same family of decision-based attacks, with HSJ is an extension of the Boundary
attack.

Attack Setup
WSN-DS BoT-IoT Avg.

%ER %PF
%VAE

UI W SN−DS %ER %PF
%VAE

UI BoT −IoT ER UI
VAEor VAEnb VAEor VAEmc

- Clean - 2 0 0 0 0 0.06 0 0 0 0 1.03 0

W
hi

te
-b

ox

BIM T 84.59 92.69 100 98.79 97.16 45.43 85.27 98.38 93.73 92.46 65.01 94.81
PGD T 84.59 92.69 100 98.79 97.16 45.43 85.27 98.38 93.73 92.46 65.01 94.81
CW2 T 36.36 44.94 0 34.36 26.43 0.89 33.53 0.47 0.83 11.61 18.63 19.02
FGSM T 12.51 100 100 100 100 3.85 100 100 100 100 8.18 100
CW∞ T 2 98.5 0 97.92 65.47 0.06 99.8 4.03 99.94 67.92 1.03 66.7
NewtonFool U 22.2 90.63 85.04 89.59 88.42 4.76 90.33 90.47 90.43 90.41 13.48 89.42
BIM U 19.77 91.38 92.9 92.9 92.39 3.83 89.93 94.05 94.05 92.68 11.8 92.54
PGD U 19.77 91.38 92.9 92.9 92.39 3.83 89.93 94.05 94.05 92.68 11.8 92.54
CW2 U 20.26 70.44 0 63.3 44.58 0.01 55.13 1.11 32.45 29.56 10.14 37.07
DeepFool U 7.02 93.13 87.61 92.88 91.21 0.35 94.33 94.04 94.05 94.14 3.69 92.68
FGSM U 4.81 94.25 92.9 92.88 93.34 0.5 95.8 94.05 94.05 94.63 2.66 93.99
CW∞ U 4.22 22 0 3.94 8.65 0.03 43.27 1.85 15.98 20.37 2.13 14.51

B
la

ck
-b

ox

EN T 85.02 50.06 0 42.59 30.88 61.65 49.93 0 43.49 31.14 73.34 31.01
HSJ T 100 92.69 0 98 63.56 23.32 47.2 4.14 23.31 24.88 61.66 44.22
Boundary T 91.79 95.31 0 98 64.44 20.38 48.73 1.3 24 24.68 56.09 44.56
ZOO T 1.41 1.81 0.59 0.59 1 0.01 1.07 0.04 0.04 0.38 0.71 0.69
HSJ U 28.1 85.88 0 99.16 61.68 0.48 86.07 58.72 99.74 81.51 14.29 71.6
Boundary U 26.89 91.25 0 99.99 63.75 0.98 93.93 53.4 100 82.44 13.94 73.1
EN U 10.36 34.44 0 5.77 13.4 1.01 41.2 0 14.33 18.51 5.69 15.96
ZOO U 6.86 13.06 13.89 13.96 13.64 0.15 50.07 55.1 52.94 52.7 3.51 33.17

Table 5.4 Attacks Assessment on WSN-DS & BoT-IoT Datasets

Figure 5.1 Evasion Rate vs. Unrealism Index over
WSN-DS

Figure 5.2 Evasion Rate vs. Unrealism Index over
BoT-IoT

75

5.6 Experimental Results & Analysis

Figure 5.3 White-box Attack Unrealism Metrics Per-
centages

Figure 5.4 Black-box Attack Unrealism Metrics Per-
centages

5.6.2. Attacks Unrealism

In Figure 5.1, the data points are more widely dispersed, indicating significant variability in the
unrealism index even among attacks with similar evasion rates. This suggests that while some
attacks achieve high evasion rates, they also generate highly unrealistic traffic, which could
make them easier to detect. Conversely, in Figure 5.2, the attacks are more clustered, especially
for lower evasion rates, indicating that the unrealism index is more consistent in this dataset.
This consistency might imply that, for BoT-IoT, attacks that succeed in evading detection
are more uniformly realistic, potentially posing a greater challenge for NIDS models. Overall,
these figures highlight the importance of considering both the effectiveness and the realism of
adversarial attacks when evaluating the resilience of NIDS models.

Percentage of Features Perturbation: As shown in Figure 5.3 the majority of white-box
attacks manipulated on average above 85% of the features over the two datasets including BIM,
PGD, CW, and NewtoonFool which were the best performing. However, CW2-T and CW∞-U
altered around 35% of the features. Though, as shown in Table 5.4 they reported low ERs of
18.63 and 2.13, respectively. Most of the black-box attacks manipulated around 62% of the
feature, as can be observed from Figure 5.4. Although the ZOO-T, ZOO-U, and EN-U attacks
were the least, they scored low ERs between 0.71-5.69 (Table 5.4).

From these results, it is clear that these attacks altered a vast amount of the traffic features
by over 50%. The unrealism of the attack can be attributed to the infeasibility of accessing
and controlling such amount of features by the adversary in real-world scenarios. Furthermore,
massive features modification will break the semantic links among the features, invalidating
traffic traces realism.

Out-Range Values: It is apparent from Figure 5.3 that the white-box attacks except CW2
and CW∞ generate above 90% adversarial examples that hold out-range values. The CW2 and
CW∞ produce between 0.24-2.02 void adversarial examples. However, their ERs range between
18.63-1.03, as can be seen in Table 5.4. The targeted black-box attacks produced on average

76

5.7 Discussion

less than 2.07% adversarial examples with out-range values, and 23% in the untargeted setup,
as shown in Figure 5.4.

Each feature in traffic can take a value within a limited range of possible values. For instance,
the Rank feature in WSN-DS has originally a range of values between [0,99] which scaled to [0,1]
using min-max normalization for model training. However, the BIM-T attack, best performing,
introduced values [-0.3,0.57] for that feature which do not comply with the [0,1] range.

Non-Binary Values: As can be seen in Figure 5.3, the majority of white-box attacks
introduced non-binary values to the binary features with percentages of void adversarial examples
above 90%, except CW2 and CW∞-U. In the back-box attacks, Boundary and HSJ generated
above 98% void adversarial examples. The ZOO attack produced the lowest percentage of void
adversarial examples. However, it achieved averaged ERs between 0.71 and 3.51 in targeted and
untargeted setups, respectively.

The WSN-DS dataset contains three binary features: Is_CH, JOIN_S, JOIN_R which can
take only 0 or 1, as shown in Table 5.2. However, the BIM-T attack introduced values between
[-0.1,1.3], [-0.3,1.1], [-0.3,1.09] for those features, respectively. For instance, the Join_S feature
in the WSN-DS dataset denotes whether the join request was sent from the sensor node to the
head of the cluster, which can be True or False, i.e., a flag value of 1 or 0. Assigning a decimal
or negative value to this feature makes no sense.

Multi-Category Belonging Values: It is apparent from Figure 5.3, that the majority
of white-box attacks triggered multiple categories at once for the categorical feature for above
90% of adversarial examples, except CW2 and CW∞-U. In the untargeted back-box attacks,
Boundary and HSJ generated almost 100% void adversarial examples. The other attacks
produced less than 50%.

The BoT-IoT dataset includes a categorical feature proto as shown in Table 5.2. A categorical
feature contains a limited number of possible values. The proto feature has five values i.e., arp,
tcp, udp, icmp, and ipv6-icmp. After one-hot encoding, this feature is mapped into a binary
vector containing either 0 or 1. Here, only the associated category is assigned to 1 and the
others to 0. However, the attacks spread their perturbations overall of the fields that belong to
the encoded categorical feature, which triggers multiple categories at once.

5.7. Discussion

In this section, we summarize the key findings and place our findings in the context of the
literature that has employed the examined attacks to assess the resilience of ML-based NIDS
to adversarial evasive examples. We discuss the literature from two points of view: First, the
compatibility of the generated adversarial traffic with domain constraints of network traffic;
Second, how likely the adversary can utilize these attacks for real-world scenarios.

77

5.7 Discussion

5.7.1. Attacks Unrealism

Previous studies on assessing DL-based NIDS resilience to adversarial attacks ignored the
compliance of generated examples with network domain constraints [170, 169, 175, 42, 69, 72,
92, 123, 75, 149, 117, 45, 52, 89]. Our findings note that the outputs of these attacks are void
and unrealistic as they do not obey traffic data restrictions.

As can be seen in Table 5.4, the top performant techniques violated the validation metrics
for realistic adversarial attacks. The attacks vary in the percentages of unrealistic adversarial
examples they produce. Some approaches generated less unrealistic adversarial examples.
However, they were the least performing attacks. On the other hand, the highest effective
attacks created the highest percentages of unrealistic adversarial examples.

We found that all of the attacks introduce non-binary values to binary features and trigger
multiple categories at once to categorical features, as demonstrated in Table 5.5. Most of the
attacks violate all of the metrics explained in sections 6.6.5 and 5.3 over the two datasets as
shown in Tables 5.5.

Although some of the adversarial examples generation methods can be theoretically successful,
no attack maintains all of the domain constraints. These techniques can not lead to practical
and realistic attacks as they violate the network domain constraints. They break the semantic
links among the features due to the high percentage of perturbed features, as shown in Table 5.4.

These findings indicate that these attacks result in void data that cannot represent practical
and realistic packets that can be delivered over the network. Therefore, they cannot be used to
prove the resilience of DL-based NIDS to adversarial evasive flow in a real-world setup.

Attack Setup
WSN-DS BoT-IoT

A B C A B D

W
hi

te
-b

ox

BIM T ✓ ✓ ✓ ✓ ✓ ✓

FGSM T ✓ ✓ ✓ ✓ ✓ ✓

PGD T ✓ ✓ ✓ ✓ ✓ ✓

CW∞ T ✓ ✓ ✓ ✓ ✓

CW2 T ✓ ✓ ✓

BIM U ✓ ✓ ✓ ✓ ✓ ✓

DeepFool U ✓ ✓ ✓ ✓ ✓ ✓

FGSM U ✓ ✓ ✓ ✓ ✓ ✓

NewtonFool U ✓ ✓ ✓ ✓ ✓ ✓

PGD U ✓ ✓ ✓ ✓ ✓ ✓

CW2 U ✓ ✓ ✓ ✓ ✓

CW∞ U ✓ ✓ ✓

B
la

ck
-b

ox

Boundary T ✓ ✓ ✓ ✓

ZOO T ✓ ✓ ✓ ✓

HSJ T ✓ ✓ ✓ ✓

EN T ✓ ✓ ✓

ZOO U ✓ ✓ ✓ ✓ ✓

Boundary U ✓ ✓ ✓ ✓ ✓

HSJ U ✓ ✓ ✓ ✓ ✓

EN U ✓ ✓

A=%of Perturbed Features over 50% B=Out-Range Values
C=Non-Binary Values D=Multi-Class Values

Table 5.5 Attacks Unrealism Metrics on WSN-DS & BoT-IoT Datasets

78

5.8 Conclusion

5.7.2. Attacks Infeasibility

Similar to the literature, the implemented attacks work with feature vectors extracted from
preprocessed raw network traffic in the form of tabular CSV files. Such attacks are known as
feature-space attacks, in which perturbations are applied directly to the inputs of the detection
model. The data processor component in the NIDS parses raw packets to extract important
features analyzed by the detection engine to classify the passing traffic using pre-constructed ML
models. To implement such attacks, the adversary either has to know what features are parsed
on the other side or control the channel of transforming the raw traffic to the preprocessed ML
model inputs. Acquiring capabilities over the feature set or the preprocessing pipeline by the
adversary is unlikely feasible for real-world scenarios. Differently, the problem-space attacks
involve manipulating the actual packets and producing new adversarial ones. The difficulty
of these attacks lies in perturbing the original raw input that corresponds to the adversarial
feature vector. Although they are challenging to implement, they are feasibly realistic as the
adversary can have the capability to craft the packet contents compared to knowing the feature
set or controlling the preprocessing procedure.

A common drawback in literature is they assume white-box attack scenarios where the
adversary can access everything related to the target system and have complete knowledge of
the model architecture, parameters, hyperparameters, weights, and configurations. Hence, the
adversary can directly craft adversarial examples by computing or approximating the model
gradients [170, 169, 42, 69, 72, 92, 123, 96, 75, 149, 117, 45, 52, 125]. To gain such knowledge,
the adversary must access the model source code. However, the source code can be unobservable
for a commercial NIDS or securely stored on a different machine for in-house NIDS [21]; hence,
these attacks are unlikely feasible. In real-world scenarios, the white-box attack assumption is
unlikely common as the adversary in most cases an outsider.

Furthermore, they did not consider that the required perturbations for generating the
adversarial examples do not directly correlate to modifying the actual network packets; hence,
their incapability for end-to-end attacks was not taken into account. The authors applied the
generic adversarial examples generation methods to the statistical features collected from the
packet metadata. Moreover, they did not demonstrate how the adversarial raw packets can be
generated. These attacks are known as feature-space attacks that transform the original feature
vector as an into a new perturbed feature vector. Although such attacks can be theoretically
successful, they operate at the preprocessed traffic data level, not at the packet level; therefore,
the adversary cannot use them for real-world scenarios. On the other hand, the problem-space
attacks perturb the raw packets to produce new functional adversarial ones that can result in
realistic end-to-end attacks.

5.8. Conclusion

In this chapter, we validated the compliance of the generated adversarial examples with network
domain constraints of network traffic and discussed the feasibility of utilizing these examples

79

5.8 Conclusion

for real-world attacks. We assessed the outputs of seven white-box and four black-box attacks
widely used in the literature, and they were implemented in different settings: targeted and
untargeted. Furthermore, we incorporated a wireless sensor network traffic representing a
different networking environment that has not been investigated and an IoT network traffic.

We demonstrated the effect of adversarial evasion attacks on the performance of a DL-based
NIDS. Overall, the attacks vary in their performance, and some attacks achieved remarkable
Evasion Rates. However, they result in void adversarial examples that do not comply with the
network traffic domain constraints. The examined attacks introduce arbitrary and unrealistic
perturbations such as non-binary values to the binary features that only accept 0 or 1, out-range
values to the numeric features that have a fixed range of possible values, or trigger multiple
categories at once to the categorical features. Furthermore, some of the attacks manipulate more
than half of the traffic features; controlling such amount of features in a fine-grained manner is
unlikely feasible to the adversary and eventually breaks the semantic links between the features.
Based on these Unrealism metrics, we concluded that although these attacks can be performant,
they are impractical and unrealistic for DL/ML-based NIDSs.

For realistic adversarial evasion attacks setups, we derived the following considerations:
crafting valid examples that comply with network traffic domain constraints, using black-box
threat models, and maintaining minimal knowledge and capabilities over the target model.

Assessing ML-based NIDS against even unrealistic adversarial attacks offers crucial insights
into the limits of ML-based NIDS models. By analyzing these attacks, we can devise better
detection mechanisms for real-world attacks and prepare NIDS for future, more sophisticated
threats and extreme conditions. This sets the stage for the next chapter, where we evaluate the
resilience of a wide range of ML-based NIDS models and detect adversarial attacks.

80

Chapter 6. Resilience Evaluation and Detection of Adversarial
Attacks in ML-based NIDS

6.1. Summary

Based on our systematic review in Chapter 4, we found a lack of comprehensive evaluations
encompassing diverse models, attack types, and defense strategies using contemporary network
traffic data. This hinders the verification of findings for real-world scenarios. The absence of
standardized metrics complicates comparisons of ML-based NIDS resilience. Additionally, there is
no lightweight solution that effectively detects and classifies adversarial traffic with high accuracy
on both clean and perturbed data, demonstrating efficiency across recent datasets, diverse attacks,
and defenses. Therefore, in this chapter, we conduct a comprehensive evaluation, including 15
detection models, 8 adversarial attacks, and 3 defense approaches. We introduce the Resilience
Index as a metric for evaluating the resilience of ML-based NIDS models against adversarial
attacks. We analyze attacks performance and stability across different models and defense
methods. We investigate ensemble learning and adversarial training as defense mechanisms
against adversarial examples and compare their strengths and weaknesses. Subsequently, we
introduce the Adversarial-Resilient NIDS, a framework featuring an adversarial attack detector
aimed at identifying such attacks. Utilizing an adversarially trained ensemble (ATE), the
detector excels in accurately identifying eight types of adversarial attacks. Through rigorous
experimental evaluations conducted over the NF-UQ-NIDS dataset, a recent standardized
network traffic dataset that accumulated from various environments including traditional and
IoT networks featuring twenty types of cyber attacks, the ATE detector showcases remarkable
efficacy in comparative analyses with state-of-the-art defenses. It significantly diminishes the
attack success rate from 0.41 to a mere 0.03, while achieving an exceptional overall performance
rating of 0.98. Furthermore, the proposed framework incorporates an adversarial attack classifier
designed to determine the type of employed adversarial attack after its detection, exhibiting a
classification accuracy of 0.97.

6.2. Introduction

Adversarial examples feature transferability property refers to the ability to fool multiple models,
even those with different internal architectures [151]. This allows attackers to use a surrogate
model to create adversarial traffic that deceives one detector and then use the same samples to

81

6.2 Introduction

attack another model without knowing its internals [151]. Detecting and assessing the resilience
of ML-based NIDS against adversarial examples are crucial for network security. These examples
exploit ML model vulnerabilities, causing misclassifications and potentially allowing malicious
traffic to go undetected. [66, 10]. The aim of this chapter is to answer the following research
questions:

1. What metric can effectively evaluate the resilience of ML-based NIDS models
against adversarial attacks, and how do the models rank accordingly? (Sec-
tion 6.7.3)

Employing resilient ML-based models against adversarial attacks for NIDSs requires the
identification of an effective evaluation metric to quantify their resilience. This question
aims to determine such metric and provide models’ resilience ranking.

2. Which attacks maintain consistent performance across different model architec-
tures, and how are they impacted by various defense strategies? (Section 6.7.4
and 6.8)

Tailoring countermeasures to universally effective attacks can optimize defense efficiency.
Additionally, understanding how defenses impact the attacks is crucial for evaluating their
efficacy and limitations. This question seeks to identify the consistent performing attacks
for better defense prioritization, and find the best defense for each attack type.

3. Can ensemble methods improve the resilience of ML-based NIDS against
transferable adversarial example? (Section 6.8.1)

Ensemble methods combine multiple NIDS models to make collective decisions. This ques-
tion examines whether ensemble techniques can mitigate the transferability of adversarial
examples by leveraging diverse models with different vulnerabilities and decision-making
processes.

4. To what extent does adversarial training enhance the resilience of models
against adversarial attacks, and does it result in degradation in their perfor-
mance? (Section 6.8.2)

Adversarial training retrains models with adversarial examples to enhance resilience, yet
excessive exposure to adversarial perturbations may cause models to prioritize recognizing
them, potentially hindering generalization. This question examines adversarial training’s
impact on model resilience against attacks and overall performance.

5. Can integrating adversarial training with ensembling techniques improve the
detection of adversarial examples against ML-based NIDS? (Section 6.8.3)

Adversarial training strengthens a model against specific attacks, while ensemble methods
enhance performance by using diverse models. Combining these approaches can leverage
their complementary nature. This question examines whether such integration improves
models resilience and overall performance.

82

6.3 Literature Drawbacks

Contributions: The contributions of this chapter are as follows:
• C1: To provide a comprehensive evaluation for adversarial attacks’ performance, detection

models’ resilience, and defenses methods’ effectiveness.

• C2: To introduce the Resilience Index, a standardized measure for evaluating the resilience
of ML-based NIDSs.

• C3: To analyze the performance consistency of attacks across different detection models
and defense mechanisms.

• C4: To evaluate the state-of-the-art defenses, ensemble learning and adversarial training,
and compare their strengths and weaknesses

• C5: To present the Adversarial-Resilient NIDS, a framework for effectively and efficiently
detecting and classifying adversarial attacks.

• C6: To identify the most effective defense strategy for each attack type.
Organization: The rest of this chapter is structured as follows: Sec 6.3 explores the limitations
of the previous related works and the gaps we do address. Sec 6.4 describes our proposed
Resilience Index. Sec 6.5 introduces the AR-NIDS framework. Sec 6.6, details the experimental
setup. Sec 6.7, presents the experimental results. Sec 6.8, evaluates the proposed AR-NIDS
framework. Sec 6.9, demonstrates the impact of defense strategies on adversarial attacks efficacy.
Sec 6.10, discusses our results’ implications, highlighting the strengths and limitations of attacks,
models and defenses. Finally, Sec 6.11 concludes with a summary for the chapter.

6.3. Literature Drawbacks

The literature employs two major defensive mechanisms to increase the resilience of DL-
based NIDS towards evasion adversarial attacks: adversarial training and ensemble learning.
Adversarial training involves training the model on both clean and adversarially crafted examples
to improve its resilience against thee examples [132, 92, 45, 52, 125, 140, 1, 178]. On the
other hand, ensemble learning enhances prediction accuracy by combining diverse models and
compensating for individual weaknesses. In adversarial detection, this integration of multiple
models with different strategies can hinder adversarial attacks from exploiting vulnerabilities in
a single model [133, 46].

There are several notable gaps in the existing research on defense mechanisms against
adversarial attacks for NIDS. Firstly, the reliance on outdated datasets like NSL-KDD raises
concerns about the generalizability of findings to current network traffic and the evolving threat
landscape [45, 140, 133, 46]. Using more recent and diverse datasets is essential for understanding
defense mechanisms’ effectiveness in real-world scenarios. Additionally, most studies use only
one dataset, which limits the generalizability of findings [132, 52, 125, 140, 158, 178, 133, 46, 95].
Another gap is the limited evaluation of defense mechanisms against various types of adversarial
attacks. Many studies focus on specific attack methods, which does not provide a comprehensive

83

6.4 Resilience Index

view of a defense mechanism’s resilience [52, 125, 158, 115, 95]. Evaluating defense strategies
against a broader spectrum of attacks is crucial for identifying strengths and weaknesses
across different threat scenarios. Additionally, most evaluations are conducted under white-box
attack scenarios, overlooking the importance of assessing defense mechanisms against black-box
attacks where attackers have limited knowledge. Real-world attackers often operate under such
constraints, making it imperative to evaluate the resilience of defense mechanisms in more
realistic scenarios.

Previous studies have not provided solutions for detecting and classifying adversarial traffic
that ensure both resilience against adversarial attacks and sustained high performance on
clean data. Furthermore, there is a lack of thorough evaluations across various adversarial
attack generation techniques. To address these gaps, we propose the Adversarial-Resilient NIDS
framework. This framework employs a multi-layered approach, including an Intrusions and
Adversarial Detector and an Adversarial Attacks Classifier, to effectively detect and classify
adversarial attacks. We evaluate its effectiveness using the NF-UQ-NIDS dataset [137], which
includes recent network traffic data from traditional and IoT networks and features twenty types
of cyber attacks. Our comprehensive assessment covers 8 types of adversarial attacks, including
white-box and black-box scenarios, and 15 different machine learning methods for NIDS models.

Table 6.1 provides a comparative overview of employed defense mechanisms against specific
white-box and black-box adversarial evasion attacks. These mechanisms as discussed above
include: Adversarial Training (AT), Ensemble Learning (EL), and our approach Adversarially
Trained Ensemble (ATE).

Ref [132] [73] [133] [92] [45] [52] [125] [140] [1] [32] [147] [139] [158] [178] [27] [46] [95] [112] [115] [122] [86] [114] [109] [8] [35] [144] [62] [158] [4] Ours

⊙

JSMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DeepFool ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FGSM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PGD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ZOO ✓ ✓ ✓

HSJ ✓ ✓

⊕

EL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AT ✓

ATE ✓

Table 6.1 Employed Attacks and Defense Comparison [⊙=Attacks, ⊕=Defense]

6.4. Resilience Index

In this section, we introduce the Resilience Index (RI) to evaluate ML-based NIDS models’
resilience against adversarial attacks. RI combines key indicators: balanced accuracy (BAadv,
macro F1 score (F1adv), and Attack Success Rate (ASR). BAadv and F1adv measure detection
accuracy, while ASR gauges vulnerability. RI provides a unified metric that balances detection
performance and adversarial robustness. Here’s a breakdown of the mathematical reasoning
behind the formulation:

• BAadv: The average of the true positive rate (sensitivity) and the true negative rate
(specificity). It is particularly useful when dealing with imbalanced datasets, as it provides
a more accurate reflection of the model’s performance across different classes. In the

84

6.4 Resilience Index

context of adversarial attacks, BAadv represents the model’s ability to correctly classify
both normal and adversarially perturbed samples.

BAadv = 1
2

(
TP

TP + FN + TN
TN + FP

)

• F1adv: The harmonic mean of precision and recall. It balances the trade-off between
false positives and false negatives. In adversarial settings, F1adv indicates the model’s
effectiveness in correctly identifying adversarial samples while minimizing misclassifications.

F1adv = 2 × Precision × Recall
Precision + Recall

Where:
Precision = TP

TP + FP , Recall = TP
TP + FN

• ASR: The proportion of adversarial samples that successfully evade detection. A higher
ASR indicates that the adversary is more successful in fooling the NIDS. Therefore, ASR
is a negative indicator of resilience: the lower the ASR, the more resilient the system.

ASR = Number of Successful Adversarial Samples
Total Number of Adversarial Samples

• RI: is formulated by combining the metrics as:

RI = (BAadv + F1adv − ASR) + 1
3

The formula is designed to balance these three metrics into a single value (RI), which
ranges between 0 and 1:

Best Case (RI = 1): When When BA_adv = 1, F1_adv = 1, ASR = 0

Substituting these values:

RI = (1 + 1 − 0) + 1
3 = 3

3 = 1

This represents the scenario where the model performs perfectly against adversarial attacks.

Worst Case (RI = 0): When BA_adv = 0, F1_adv = 0, ASR = 1

Substituting these values:

RI = (0 + 0 − 1) + 1
3 = 0

3 = 0

This indicates that the model fails to defend against adversarial attacks, resulting in a
poor resilience score.

85

6.5 Adversarial-Resilient Network Intrusion Detection System (AR-NIDS)

– Interpretation of Each Term:
∗ BAadv and F1adv are positively associated with resilience; higher values are better.
∗ ASR is negatively associated with resilience; higher values indicate a weaker

system.

– Normalization:
∗ The addition of 1 ensures that the numerator is positive even if BAadv + F1adv −

ASR is slightly negative.
∗ Dividing by 3 averages the three components, normalizing the index to a consistent

scale.

– Mathematical Justification: The Resilience Index can be viewed as a weighted sum
of the key performance metrics, normalized to a fixed scale. Here’s the breakdown:

∗ Weighted Sum: The formula BAadv + F1adv − ASR combines the metrics
linearly, reflecting the contribution of each to the overall resilience.

∗ Normalization and Shift: Adding 1 ensures that the index is positive, avoiding
negative values that could be non-intuitive. Dividing by 3 scales the result to a
more interpretable range.

∗ Interpretability: The index simplifies interpretation by combining three critical
aspects of resilience into a single score. This allows for easy comparison across
different models or configurations.

6.5. Adversarial-Resilient Network Intrusion Detection System (AR-NIDS)

In this section, we present the Adversarial-Resilient NIDS, a layered framework for detecting
and classifying adversarial attacks.

Figure 6.1 illustrates the two main layers of our framework: the Adversarially Trained
Ensemble Detector and the Adversarial Attacks Classifier. The Adversarially Trained Ensemble
(ATE) detector combines the power of adversarial training and ensemble learning. Adversarial
training exposes the model to adversarial examples during training to enhance its resilience.
Ensemble learning leverages the diversity of multiple models, achieving superior performance
compared to individual models. The ATE detector is a multiclassifier trained with the LGBM
algorithm on a dataset of clean and perturbed data, labeled as normal, attack, or adversarial.
To optimize performance, ensemble techniques like bagging and boosting are used. Bagging
trains multiple models on different data subsets and aggregates their predictions, while boosting
iteratively improves models by focusing on misclassified instances, creating a resilient final model.
In operation, the ATE detector categorizes incoming traffic: normal traffic passes through,
while abnormal traffic triggers alerts, blocks, or activates security protocols. Adversarial traffic
is routed to the Adversarial Attack Classifier, which uses an LGBM classifier to identify the
specific attack type. This enhances threat understanding and enabling targeted defense.

86

6.6 Experimental Setup

Training Data

Adversarial Normal Attack

Adversarial Training

Diverse Models

Hyperparameters Tuning

Best Performing Models

Ensembling Techniques

Adversarially Trained Ensemble

Adversarial Attacks Classifier

AdversarialNormal Attack

Hyperparameters Tuning

Figure 6.1 Adversarial-Resilient NIDS

6.6. Experimental Setup

6.6.1. Adversary Model

We assume the adversary’s goal is to subvert the network detection model by generating malicious
traffic that evades detection. He exploits vulnerabilities in the model’s decision-making process,
crafting adversarial examples that cause misclassification while maintaining malicious intent,
such as data exfiltration, launching attacks, or compromising network services. Using advanced
techniques like gradient-based or optimization-based attacks, the adversary designs examples
specifically to fool the detection model. He can have a complete knowledge of the model’s
architecture, parameters, and training data, acting as either an insider or an external threat
with access to the model’s source code, data, or a substitute model that provides insights into
the detection model’s behavior.

6.6.2. Dataset

Numerous publicly accessible datasets have been used to develop and assess ML-based NIDS.
However, variations in feature sets among these datasets make it challenging to reliably compare
ML models across different scenarios. This hinders their generalization across diverse network
environments and attack scenarios. This gap prompted Sarhan et al. [137] to present standardized
NIDS datasets with consistent, practical features based on NetFlow. We utilized the NF-UQ-
NIDS dataset [137], which contains 11,994,893 records: 9,208,048 benign (76.77%) and 2,786,845
attack records (23.23%), and includes twenty distinct attack categories. The original dataset
contains nearly 12 million records, which can be computationally intensive to process and
analyze. Sampling a representative subset allows for more efficient experimentation, reducing
the computational resources and time required while still maintaining the integrity and diversity
of the data. We selected a representative subset of 6,338,509 records, with 81.8% normal and
18.2% attack records. The detailed description of the dataset’s features is demonstrated in
Table B.3.

87

6.6 Experimental Setup

Table 6.2 summarizes the prevalence of each type of traffic. The dataset was stratified into
training (80%) and testing (20%) subsets based on class labels. To streamline the task into a
binary classification problem for network anomaly detection, all attack types were unified under
a single class label, ’Attack’. Table 6.3 shows the distribution of samples in the training and
testing datasets.

Flow Type Number of Samples Ratio %
Benign 5,184,112 81.7727
DDoS 151,866 2.3942
password 151,866 2.3942
injection 151,866 2.3942
xss 151,866 2.3942
DoS 151,866 2.3942
Reconnaissance 151,866 2.3942
scanning 151,866 2.3942
Brute Force 27,721 0.4372
Infiltration 26,131 0.4121
Bot 16,829 0.2655
Exploits 6,591 0.1039
Fuzzers 4,462 0.0704
Backdoor 3,856 0.0608
Generic 2,268 0.0358
mitm 1,723 0.0272
ransomware 784 0.0124
Theft 533 0.0084
Shellcode 312 0.0049
Analysis 90 0.0014
Worms 35 0.0006
Total 6,338,509 100

Table 6.2 Statistics of Used NF-UQ-NIDS Dataset

Samples Train Test

Normal 4,147,289 1,036,823
Attack 923,518 230,879
Adversarial 820,903 205,224

Table 6.3 Samples Distribution in Train and Test Data

6.6.3. Dataset Preprocessing

The features were transformed using Min-Max normalization, rescaling them within the range of
0 to 1. This normalization addresses issues of non-uniform distributions and outliers, preventing
largevalued features from dominating and causing imbalanced results. Mathematically, Min-Max
scaling is represented as:

X(norm) = X − X(min)
X(max) − X(min) (6.1)

6.6.4. Adversarial Attacks & Models Implementation

The Adversarial Robustness Toolbox (ART) library[110] was used to generate adversarial
examples within a targeted attack scenario, using default parameters. Eight adversarial attack
techniques—FGSM, PGD, HSJ, JSMA, DeepFool, CW2, ZOO, and CW∞ —were employed
to create adversarial instances of malicious network traffic samples. These methods generated

88

6.6 Experimental Setup

102,612 adversarial examples for training and 25,623 for testing by manipulating true attack
samples in the datasets. Table 6.3 shows the distribution of samples in the training and testing
datasets.

The Feed-Forward Deep Neural Network (FF-DNN) was built using Keras with TensorFlow
backend. Bayesian Optimization was used for hyperparameter tuning to achieve optimal accuracy.
Bayesian Optimization is a method for finding the best value of a function with expensive
evaluations. It uses a probabilistic model, like a Gaussian Process, to predict the function’s
behavior and guide where to sample next. This helps efficiently find the optimum with fewer
evaluations [51]. Additionally, fifteen conventional Machine Learning (ML) algorithms were
selected due to their widespread use in developing ML-based NIDS. These algorithms include
Random Forest (RF), Decision Tree (DT), Extra Trees (ET), Logistic Regression (LR), eXtreme
Gradient Boosting (XGBoost), Catboost, Gradient Boosting Decision Tree (GBDT), Light
Gradient Boosting Machine (LGBM), Adaptive Boosting (Adaboost), Multilayer Perceptron
(MLP), Multinomial Naive Bayes, Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), and Stochastic Gradient Descent (SGD). For reproducibility, classifiers were
implemented with default parameters as outlined in Table 6.4. This study focuses on assessing
the transfer and impact of adversarial examples on the overall accuracy of these models. It
compares their performance under normal and adversarial conditions. The implementation
details for the experiment can be found in the code repository1.

Model Parameters

FF-DNN
Layers: [Dense(128, activation=relu), Dropout, Dense(64, activation=relu), Dropout,
Dense(2, activation=softmax)], Optimizer: Adam

RF n_estimators=100, criterion=’gini’, max_depth=None
DT criterion=’gini’, splitter=’best’, max_depth=None
ET c n_estimators=100, criterion=’gini’, max_depth=None
LR penalty=’l2’, C=1.0, solver=’lbfgs’
XGBoost objective=’binary:logistic’, n_estimators=100, max_depth=3
Adaboost base_estimator=None, n_estimators=50, learning_rate=1.0
NB alpha=1.0, fit_prior=True, class_prior=None
LDA solver=’svd’, shrinkage=None, priors=None
QDA priors=None, reg_param=0.0, store_covariance=False, stor_covariances=None
SGD loss=’hinge’, penalty=’l2’, alpha=0.0001
GBDT n_estimators=100, learning_rate=0.1, max_depth=3, mi_samples_split=2
Catboost iterations=100, depth=3, learning_rate=0.03, boosting_type= ’Ordered’
LGBM n_estimators=100, learning_rate=0.1, max_depth=-1, boosting_type= ’gbdt’
MLP hidden_layer_sizes= (100,) activation= ’relu’ solver= ’adam’ learning_rate_init= 0.001

Table 6.4 Parameters of ML-based NIDS Models

The assessment of the transferability property of adversarial attacks was designed as follows,
see Figure. 6.2: 1) randomly split the dataset into training and testing sets, 2) train a range
of binary supervised classification algorithms, 3) generate malicious adversarial traffic against
the FF-DNN model in a white-box setup, 4) evaluate the attack success rate of the generated
adversarial samples in 3 over the trained models in 2 in a black-box setup.

1The repository is available at: https://mega.nz/folder/U7lhARbY#0gZ8kghKYXrrDg_nvfPH7A

89

https://mega.nz/folder/U7lhARbY#0gZ8kghKYXrrDg_nvfPH7A

6.6 Experimental Setup

Dataset

TestingTraining

AttackAttack NormalNormal

Generated Adversarial Traffic

FGSM HSJ

DeepFool ZOO

JSMA PGD

CW2 CW

Assess

Transferability

Trained ML-based NID

FFDNN LGBM DT

Adaboost RF GBDT

QDA XGB LDA

SGD NB LR

Catboost MLP ET

Figure 6.2 ML-NIDS Resilience to Adversarial Attacks

6.6.5. Evaluation Metrics

Models Performance
The confusion matrix helps assess a binary model’s performance, detailing true positives (correctly
classified attacks), false positives (normal instances misclassified as attacks), true negatives
(correctly identified normal instances), and false negatives (attacks classified as normal). These
four terms are used to derive the following evaluation metrics:

Metric Definition Formula

Accuracy Ratio of correctly classified instances. T P +T N
T P +T N+F P +F N

Precision
Ratio of correctly classified positive instances out of all

instances classified as positive.

T P
(T P +F P)

Recall Ratio of actual positive cases correctly identified. T P
T P +F N

F-1 Harmonic mean of precision and recall. 2·(P recision×Recall)
P recision+Recall

Table 6.5 Performance Metrics for Binary Classification

In evaluating imbalanced datasets, particularly in network anomaly detection scenarios
where ’attack’ instances are rare compared to ’normal’ instances, standard accuracy metrics
can be misleading. Instead, we prioritize metrics like balanced accuracy, recall, precision, and
F1-score. Balanced accuracy offers a more reliable measure of the model’s overall performance
across all classes, regardless of their frequencies. In assessing the impact of adversarial examples
on NIDS models, we prioritize attack class recall and normal class precision. Attack class
recall measures the classifier’s ability to capture most attack instances. High attack class recall
indicates effective detection of most attack instances, despite adversarial manipulations. Normal
class precision reflects the classifier’s accuracy in identifying normal instances. Lower precision
indicates misclassification of attacks or adversarial instances as normal, indicating evasion of
detection. Finally, we favor the F1-score as it combines precision and recall, offering a balanced
view of overall performance. Specifically, we use the macro F1-score, averaging scores for each

90

6.7 Resilience Evaluation of ML-based NIDS to Adversarial Attacks

class without weighting by frequencies, ensuring equal contribution from each class for a reliable
measure of performance.

Adversarial Attacks Performance

• Attack Success Rate (ASR): Raito of adversarial examples that are able to fool the model
and cause it to make an incorrect prediction. A lower success rate indicates that the
model is more resilient against adversarial examples, as fewer examples are able to fool
the model.

ASR = number of successful AEs

total number of AEs
(6.2)

6.7. Resilience Evaluation of ML-based NIDS to Adversarial Attacks

In this section, we delve into a comprehensive assessment of the resilience of ML-based NIDS in
the face of transferable adversarial attacks. This evaluation encompasses two crucial perspectives:
the models’ performance when exposed to clean test data and their behavior under the influence
of adversarial test data.

6.7.1. Models Performance Over Clean Test Data

Table 6.6 displays the performance evaluation results of the models under an adversarial-free
environment and an adversarial setting. Firstly, balanced accuracy is useful for imbalanced data,
equally weighting normal and attack instances, providing an unbiased assessment of the model’s
ability to detect attacks. Ensemble and Decision Tree-Based methods (Catboost, DT, ET, RF,
XGBoost) achieve high scores (0.98), while linear (SGD, LR, LDA) and probabilistic models
(NB, QDA) perform below 0.83, with QDA at 0.66. Secondly, the macro F1 score, the average
of F1 scores for each class, reflects overall performance balance across classes. Ensemble and
Decision Tree-Based methods achieve high F1-scores of 0.98, while MLP, FFDNN, GBDT at
0.95. Linear and probabilistic models score lower, between 0.76 and 0.46.

Overall, the excellent performance of ensemble tree-based methods can be attributed to their
ability to mitigate overfitting, capture complex relationships in network data, and maintain
resilience to noise and outliers, offering resilience and flexibility by aggregating predictions from
multiple base learners. On the other hand, Linear models like SGD, LR, LDA, and probabilistic
models like NB and QDA exhibit limitations in capturing complex, nonlinear relationships
in data. This limitation can hinder their ability to distinguish between normal and attack
instances, especially in high-dimensional and nonlinear datasets.

91

6.7 Resilience Evaluation of ML-based NIDS to Adversarial Attacks

Model
Balanced Accuracy Precision (Normal) Recall (Attack) Macro F1-score

clean adversarial Drop clean adversarial Drop clean adversarial Drop clean adversarial Drop
QDA 0.66 0.48 0.18 0.98 0.68 0.3 0.97 0.61 0.36 0.46 0.43 0.03
FFDNN 0.95 0.78 0.17 0.98 0.84 0.14 0.92 0.57 0.35 0.95 0.81 0.14
RF 0.98 0.82 0.16 0.99 0.87 0.12 0.97 0.65 0.32 0.99 0.86 0.13
Catboost 0.98 0.84 0.14 0.99 0.88 0.11 0.97 0.69 0.28 0.98 0.87 0.11
DT 0.98 0.84 0.14 0.99 0.88 0.11 0.97 0.69 0.28 0.98 0.87 0.11
ET 0.98 0.84 0.14 0.99 0.88 0.11 0.97 0.68 0.29 0.98 0.87 0.11
XGB 0.98 0.86 0.12 0.99 0.9 0.09 0.97 0.74 0.23 0.98 0.89 0.09
Adaboost 0.93 0.84 0.09 0.98 0.9 0.08 0.93 0.75 0.18 0.89 0.85 0.04
GBDT 0.96 0.87 0.09 0.99 0.91 0.08 0.94 0.76 0.18 0.95 0.89 0.06
LR 0.81 0.75 0.06 0.94 0.86 0.08 0.78 0.67 0.11 0.75 0.75 0
MLP 0.95 0.89 0.06 0.98 0.92 0.06 0.91 0.8 0.11 0.96 0.91 0.05
LGBM 0.96 0.91 0.05 1 0.95 0.05 0.98 0.87 0.11 0.92 0.9 0.02
SGD 0.83 0.78 0.05 0.95 0.88 0.07 0.82 0.73 0.09 0.76 0.77 -0.01
LDA 0.69 0.66 0.03 0.88 0.78 0.1 0.43 0.36 0.07 0.72 0.68 0.04
NB 0.7 0.67 0.03 0.89 0.8 0.09 0.54 0.48 0.06 0.69 0.68 0.01

Average 0.89 0.79 0.1 0.97 0.86 0.11 0.87 0.67 0.2 0.86 0.8 0.06

Table 6.6 Baseline Models Performance over Clean vs Adversarial Data

6.7.2. Models Performance: Clean vs. Adversarial

Creating adversarial instances usually requires knowledge of the target ML model’s architecture,
but these examples often deceive other models as well. In this section, we generate adversarial
samples using eight techniques against the FFDNN model, add them to the test data with class
labels as 1, matching the attack instances, and then evaluate the models’ performance compared
to baseline performance on clean data only.

As can be seen in Table 6.6, the models show a significant performance drop on adversarial
data compared to clean data. The average balanced accuracy decreases from 0.89 to 0.79. QDA,
FFDNN, and RF see substantial drops (0.16 to 0.18), while Catboost, DT, ET, and XGB
experience decreases of 0.12 to 0.14. In contrast, LR, MLP, LGBM, SGD, LDA, and NB show
minimal drops of 0.03 to 0.06.

The average recall for the attack class drops significantly by 20%, from 0.87 on clean data
to 0.67 on adversarial data. This indicates a decreased ability to correctly identify attacks,
leading to misclassification of perturbed instances as normal. The recall metric highlights the
model’s resilience to manipulation attempts intended to deceive it into misclassifying attacks
as normal. For QDA, FFDNN, and RF models, recall decreases significantly, with reductions
ranging from 0.36 to 0.32, indicating high vulnerability to adversarial manipulations. The ET,
CatBoost, DT, XGB, Adaboost, and GBDT models experience moderate recall declines, with
losses ranging from 0.29 to 0.18. In contrast, the LR, MLP, LGBM, SGD, LDA, and NB models
show only minor decreases in recall, with reductions ranging from 0.06 to 0.11, demonstrating
better resilience against such manipulations.

As can be seen in Table 6.6, the average precision of the normal class decreases by 11%, from
0.97 on clean data to 0.86 on adversarial data. This signifies a reduction in the model’s accuracy
in correctly identifying normal instances. The decrease suggests that more instances that are
actually attacks or anomalies are incorrectly classified as normal, attributed to adversarial
manipulations. QDA shows the highest vulnerability with a decrease of over 30%. Adaboost,
GBDT, LGBM, LR, MLP, RF, SGD, and XGB show decreases of around 10% or less, indicating

92

6.7 Resilience Evaluation of ML-based NIDS to Adversarial Attacks

greater resilience. In contrast, Catboost, DT, ET, FFDNN, LDA, and NB display notable
decreases of over 10% in precision.

6.7.3. Models Adversarial Resilience

Figure 6.3 Baseline Models Resilience Index

We use our Resilience Index (RI) introduced in Section 6.4 to evaluate the resilience of
ML-based NIDS models against adversarial attacks. RI combines key performance indicators:
balanced accuracy (BAadv), macro F1 score (F1adv), and Attack Success Rate (ASR), providing
a holistic view of the model’s resilience. BAadv and F1adv assess detection accuracy and resilience
under adversarial conditions, while ASR measures vulnerability to evasion. RI offers a unified
metric balancing detection accuracy and resilience against adversarial manipulation, aiding in
the selection of the most effective NIDS models.

Top Performing Models (High RI): Models like LGBM, MLP, and GBDT exhibit high
RI values due to their complex architectures and ability to capture intricate patterns. These
top-performing models are promising for NIDS deployment, effectively detecting intrusions even
with adversarial attacks. Techniques such as feature engineering, regularization, or ensembling
may further enhance their resilience.

Mid-Range Models (Moderate RI): Models like Catboost, DT, ET, RF, and LR have
moderate RI values. While they perform reasonably well, they may have higher ASR compared
to top-performing models. Decision tree-based models are sensitive to small input perturbations
and prone to overfitting, leading to poor generalization and vulnerability to adversarial attacks.
LR’s linearity limits its ability to capture complex, non-linear relationships, making it susceptible
to outliers. Deploying these models for NIDS requires additional defenses or complementary
models to enhance their resilience.

Lowest Performing Models (Low RI): Models like NB, LDA, and QDA achieve the
lowest RI values among the baseline models. These models are all based on strong assumptions
about the underlying data distribution, which may not hold true in the presence of adversarial
manipulations. They may struggle to adapt to complex, non-linear relationships in the data,
leading to reduced resilience. Deploying them in NIDS systems may lead to suboptimal threat
detection and higher risk of successful adversarial evasion.

6.7.4. Adversarial Attacks Performance

We utilize various statistical metrics to assess the performance and stability of attacks across
diverse models. The mean success rate offers an average performance measure, with higher values

93

6.7 Resilience Evaluation of ML-based NIDS to Adversarial Attacks

indicating greater overall success. The median success rate, less affected by extreme values,
reveals effectiveness; a high median suggests reliability, while a low median indicates variability.
Standard deviation gauges success rate variability around the mean: higher values denote more
variability, lower values signify consistency. The range, showing the spread between highest
and lowest success rates, indicates variability: wider ranges suggest greater variability, narrower
ranges imply more consistent performance. Collectively, these metrics offer a comprehensive
analysis of attack effectiveness and stability across models.

Figure 6.4 Attack Success Rates Against Baseline Models

In Figure 6.4, the PGD, FGSM, and DeepFool attacks show median success rates between
0.88 and 0.82, demonstrating high performance consistency. PGD’s iterative approach refines
perturbations based on loss function gradients, effectively overcoming defenses and exploiting
common model weaknesses. FGSM uses target model gradients to efficiently craft perturbations
by computing loss function gradients with respect to input data, maximizing loss and causing
misclassification. DeepFool’s iterative method calculates minimal perturbations to linearize
decision boundaries, creating adversarial examples close to the original input. Its model-agnostic
nature allows it to be applied across various models and architectures without needing specific
modifications.

HSJ and CW2 exhibit moderate effectiveness with average success rates of 0.53 and 0.47,
respectively, with HSJ showing less consistency. HSJ’s heuristic search strategy explores the
input space for perturbations but can be inconsistent due to not always finding optimal solutions.
CW attacks, optimized for minimal perturbations, may not transfer well if models are less
sensitive to small changes. ZOO’s success rate of 0.41 indicates lower effectiveness. As a
black-box technique, it estimates gradients numerically rather than analytically, leading to less
finely tuned adversarial examples that don’t exploit the model’s vulnerabilities as effectively.
JSMA and CW∞ demonstrate the least effectiveness and low consistency, with median success
rates of 0.25 and 0.18, respectively. JSMA, notably inconsistent like HSJ, relies on saliency
maps from model gradients, which vary significantly across models due to differing decision
boundaries and feature sensitivities. Thus, perturbations for one model may not deceive another
effectively.

94

6.8 Evaluation of Adversarial-Resilient NIDS Framework

6.8. Evaluation of Adversarial-Resilient NIDS Framework

In this section, we explore ensemble learning and adversarial training as defenses against
adversarial examples, examining their limitations and efficacy. We also present our solution:
an adversarially trained ensemble. This approach combines the benefits of both techniques,
demonstrating superior performance and resilience against adversarial attacks.

Figure 6.5 Attack Success Rates Against Defense Models

Figure 6.6 Defense Models Resilience Index

6.8.1. Baseline Ensemble (BE)

Ensemble learning combines multiple models to improve predictive performance by leveraging
their diverse strengths. In adversarial detection, it may enhance accuracy by aggregating
multiple models with different detection strategies, making it harder for adversaries to exploit
single-model vulnerabilities.

We implemented three ensemble techniques to assess their effectiveness against adversarial
examples: hard voting (HV), soft voting (SV), and meta-learning (ML). In hard voting, the
final prediction is based on the majority vote among models. In soft voting, class probabilities
are averaged or weighted, and the class with the highest probability is chosen. Meta-learning
trains a model on the outputs or features of base models to enhance performance by leveraging
their diversity. We selected RF, CB, DT, ET, XGB, GBDT, LGBM, FFDNN, and MLP based
on their high balanced accuracy rates over clean data, as presented in Table 6.6.

95

6.8 Evaluation of Adversarial-Resilient NIDS Framework

While all ensemble models achieved a balanced accuracy of 0.98 on clean data, their average
balanced accuracy on adversarial data was 0.87, as depicted in Figure 6.6, lower than individual
models like LGBM and MLP, which scored 0.90, as illustrated in Figure 6.3. Meta-learning
had the lowest attack success rate at 0.52, followed by soft voting at 0.55 and hard voting at
0.60 (Figure 6.6). However, individual models like LGBM, MLP, and GBDT had lower attack
success rates (0.25 to 0.45). The ensemble models averaged an RI of 0.74, lower than individual
models LGBM (0.85), MLP (0.83), and GBDT (0.77).

Overall, despite high balanced accuracy on clean datasets, ensemble methods do not improve
resilience against transferable adversarial examples. They often show lower accuracy and higher
attack success rates compared to individual models like LGBM, MLP, and GBDT, falling behind
in effectiveness and resilience as measured by RI. Thus, ensemble methods may not significantly
enhance resilience to adversarial examples in NIDS compared to individual models.

6.8.2. Adversarially Trained Models (ATM)

Adversarial training involves training a model on both clean and adversarial examples to
enhance resilience against attacks. Exposure to adversarial examples helps the model focus
on generalizable features and ignore irrelevant ones. However, excessive exposure may cause
the model to prioritize recognizing adversarial perturbations, decreasing performance on clean
examples and risking overfitting to specific perturbations, which can hinder generalization.
We retrained the baseline models on the same training dataset, augmented with adversarial
examples. The models were trained as multiclassifiers to distinguish between normal, attack,
and adversarial instances. Table 6.3 shows the class distribution in the training dataset.

Although adversarial training was initially expected to decrease overall performance, the
majority of adversarially trained models actually exhibit higher scores across all metrics. They
achieve an average balanced accuracy of 0.82 and an F1 score of 0.82, compared to 0.79 and 0.80
for baseline models. Attack success rates drop by 44.46%, from 0.56 to 0.25. Using the RI as a
comprehensive metric, adversarially trained models score 0.8, outperforming baseline models
at 0.68. Overall, adversarial training slightly enhanced performance and significantly reduced
attack success rates, suggesting it effectively improves model resilience without compromising
performance.

Figure 6.7 Comparison Baseline Models vs. Defense Models

96

6.8 Evaluation of Adversarial-Resilient NIDS Framework

6.8.3. Adversarially Trained Ensemble (ATE)

Adversarial training shows potential in detecting adversarial examples and can be enhanced by
integrating other defense techniques. This combined approach strengthens the model’s ability
to identify and counter adversarial attacks.We integrate adversarial training with ensembling
to increase overall resilience. This approach diversifies model perspectives, boosting resilience
against attacks by leveraging varied data interpretations. Ensemble redundancy enhances
security by reducing the risk of all models falling for the same adversarial example. Leveraging
the ensemble’s varied strengths improves performance and generalization across clean and
adversarial examples, providing a multi-layered defense.

Based on the results in Figure 6.6, LGBM showed the highest RI score of 0.95 among
adversarially trained models. We chose LGBM for constructing a homogeneous ensemble using
bagging and boosting techniques. Bagging trains multiple models on different subsets of the
training data and aggregates their predictions. Boosting iteratively trains models, focusing on
misclassified instances to improve performance, resulting in a strong final model.

As shown in Figure 6.6, our proposed Adversarial Trained Ensemble (ATE) model with
LGBM base demonstrates superior performance. It significantly reduces the attack success
rate to 0.03, compared to 0.56 for baseline ensembles and 0.25 for adversarially trained models.
Additionally, it achieves the highest balanced accuracy and F1 score of 0.98, outperforming all
other models across performance metrics.

As illustrated in Figure 6.6, our ATE achieves an outstanding RI of 0.98, outperforming
all other model groups. The RI increases from 0.68 for baseline models to 0.74 for baseline
ensembles, then to 0.80 for adversarially trained models, and peaks at 0.98 for the ATE. These
results highlight the ATE’s potential for effectively detecting and mitigating adversarial examples,
reducing their transferability.

Attack Precision Recall F1-Score Support

CW2 0.94 0.94 0.94 25653
CW∞ 0.92 0.95 0.93 25653
DeepFool 1.00 1.00 1.00 25653
FGSM 1.00 1.00 1.00 25653
HSJ 0.96 0.93 0.95 25653
JSMA 0.95 0.94 0.94 25653
PGD 1.00 1.00 1.00 25653
ZOO 1.00 1.00 1.00 25653

Accuracy 0.97 205224
Macro Avg 0.97 0.97 0.97 205224
Weighted Avg 0.97 0.97 0.97 205224

Table 6.7 Adversarial Attacks Classifier Performance

6.8.4. Performance of Adversarial Attacks Classifier

The Adversarial Attacks Classifier using an LGBM model achieved an overall accuracy of 0.97.
Table 6.7 shows the classification report, highlighting varying success in classifying different
attacks. Attacks like DeepFool, FGSM, PGD, and ZOO achieved an F1 score of 1.00, indicating

97

6.9 Impact of Defense Strategies on Adversarial Attacks Efficacy

strong performance in correctly classifying these instances. In contrast, CW2, CW∞, HSJ, and
JSMA had F1 scores ranging from 0.93 to 0.95.

6.9. Impact of Defense Strategies on Adversarial Attacks Efficacy

Figure 6.8 reveals distinct patterns in the effectiveness of adversarial attacks on different
defensive models. We can categorize the attacks into two primary groups based on their success
rates and the impact of defense mechanisms.

Group 1, including PGD, FGSM, DeepFool, HSJ, and CW2, shows a marked reduction in
success with adversarial training, with success rates dropping to 0.05 for PGD and 0.03 for
FGSM. However, ensemble learning is counterproductive, increasing success rates to 0.98 for
PGD and 0.95 for FGSM. This suggests adversarial training is highly effective for this group,
while ensemble learning may introduce exploitable vulnerabilities.

Group 2, comprising ZOO, JSMA, and CW∞, responds differently. Ensemble learning
effectively mitigates these attacks, reducing success rates significantly—for example, JSMA to
0.13 and CW∞ to 0.09. Conversely, adversarial training increases success rates for ZOO and
CW∞ to 0.44 and 0.39, respectively. This suggests ensemble learning provides a more robust
defense for these attacks, while adversarial training may inadvertently increase susceptibility.

The analysis highlights the varied effectiveness of defense mechanisms against adversarial
attacks. Adversarial training significantly reduces success rates for Group 1 attacks but is less
effective for Group 2, where ensemble learning performs better. Conversely, ensemble learning
worsens resilience for Group 1 attacks. This underscores the need to tailor defense strategies to
specific attacks, leveraging each method’s strengths to improve overall model resilience.

Our proposed Adversarial Trained Ensemble enhances resilience against all types of adversarial
attacks. By combining adversarial training with ensemble methods, we achieve dramatic
reductions in attack success rates, with zero success rates for all attacks except ZOO, which is
reduced to 0.27. This approach leverages both defense mechanisms’ strengths, ensuring robust
and comprehensive protection against adversarial attacks.

Figure 6.8 Impact of Defense Strategies on Adversarial Attacks Efficacy

98

6.10 Discussion

6.10. Discussion

In this section, we discuss the implications of our results, highlighting the strengths and
limitations of various attacks, models and defenses, and provides insights for future research
and practical deployment.

Our analysis revealed that ensemble and decision tree-based methods (e.g., Catboost, DT,
ET, RF, XGBoost) demonstrate superior performance on clean data due to their ability to
capture complex relationships and mitigate overfitting. However, these models, along with
others, exhibit significant performance degradation when subjected to adversarial attacks. The
substantial drop in balanced accuracy and macro F1-score for models like QDA, FFDNN, and
RF under adversarial conditions highlights the vulnerability of these approaches to adversarial
manipulation. Interestingly, linear models (e.g., SGD, LR, LDA) and probabilistic models (e.g.,
NB, QDA) display minimal performance drops, which could be attributed to their simpler
architectures. Despite their robustness to perturbations, these models struggle with the inherent
complexity of network traffic data, reflected in their lower overall performance metrics.

Our evaluation of various adversarial attack techniques shows that iterative methods like
PGD, FGSM, and DeepFool are highly effective and consistent across different models. These
attacks exploit the models’ vulnerabilities by refining perturbations, often resulting in successful
evasion. The lower success rates of attacks like ZOO, JSMA, and CW∞ suggest variability in
their ability to deceive models, pointing to potential areas for enhancing model robustness.

The exploration of ensemble learning and adversarial training as defense mechanisms reveals
nuanced insights. Ensemble models, while achieving high balanced accuracy on clean data,
do not significantly enhance resilience against adversarial attacks. In fact, they often show
lower resilience compared to individual models like LGBM and MLP. This indicates that
simply aggregating predictions from multiple models does not necessarily confer robustness
to adversarial perturbations. Adversarial training, on the other hand, demonstrates a notable
improvement in model resilience. The retrained models exhibit higher balanced accuracy and
F1 scores on adversarial data, with a significant reduction in attack success rates. This suggests
that adversarial training effectively strengthens the models’ ability to generalize and recognize
adversarial patterns. However, the potential risk of overfitting to specific perturbations warrants
careful consideration and further research.

Our proposed Adversarially Trained Ensemble (ATE) model, combining adversarial training
with ensembling, exhibits superior performance and resilience. The ATE model significantly
reduces attack success rates and achieves the highest balanced accuracy and F1 scores across all
evaluated models. This approach leverages the strengths of both defense mechanisms, providing
a robust and comprehensive solution for detecting and mitigating adversarial examples.

The impact of defense strategies on adversarial attacks reveals distinct efficacy patterns. For
Group 1 attacks (PGD, FGSM, DeepFool, HSJ, CW2), adversarial training significantly reduces
success rates, highlighting its effectiveness. However, ensemble learning increases these attacks’
success rates, potentially introducing vulnerabilities. Conversely, for Group 2 attacks (ZOO,
JSMA, CW∞), ensemble learning effectively reduces success rates, while adversarial training

99

6.11 Conclusion

increases susceptibility. This divergence underscores the need for tailored defenses against
specific attacks. The Adversarially Trained Ensemble (ATE) model stands out, demonstrating
superior performance by leveraging both methods’ strengths, achieving near-zero success rates
across most attack types, and providing robust, comprehensive protection. This combined
approach underscores the importance of multifaceted defense strategies in enhancing NIDS
resilience against diverse adversarial threats.

For model design, the insights stress the importance of selecting appropriate models based
on the trade-offs between performance on clean data and resilience to adversarial attacks. For
defense strategies, the nuanced effectiveness of defense mechanisms against different attack
types suggests that a one-size-fits-all approach is insufficient. Tailored defenses are necessary for
different attack vectors. The effectiveness of the ATE model implies that integrating multiple
defense strategies can offer comprehensive protection, reducing the success rates of various
adversarial attacks.

While previous studies often focused on individual defense mechanisms or specific attacks,
this study’s strengths include a comprehensive evaluation of diverse models and attacks, detailed
analysis of defense mechanisms, and the introduction of a novel ATE model. This model,
which combines the strengths of different defense strategies, represents a significant and novel
contribution not extensively explored in prior research.

6.11. Conclusion

In this chapter, we provided a comprehensive assessment of the performance of 8 adversarial
attacks, the resilience of 15 different detection models, and the effectiveness of three defense
methods. We introduced the Resilience Index as a metric for evaluating the resilience of
ML-based NIDS models against adversarial attacks. This index combines performance metrics
with the attack success rate to offer a comprehensive assessment of the model’s resilience.
Employing various statistical metrics, we analyzed attacks performance and stability across
different models. Additionally, we investigated ensemble learning and adversarial training as
defense mechanisms against adversarial examples and compared their strengths and weaknesses.
Importantly, we introduced the adversarial-resilient NIDS, a multi-layered framework comprising
an Intrusions and Adversarial Detector along with an Adversarial Attack Classifier. Leveraging an
Adversarially Trained Ensemble, the detector demonstrates proficiency in accurately identifying
eight types of adversarial attacks. Thorough experimental evaluations on the NF-UQ-NIDS
dataset—a recent standardized network traffic dataset gathered from diverse environments
including traditional and IoT networks featuring twenty types of cyber attacks—alongside
comparative analyses with state-of-the-art defenses, the ATE detector demonstrates remarkable
efficacy. It significantly reduces the attack success rate from 0.41 to just 0.03, while achieving
an outstanding overall performance rating of 0.98. Furthermore, the framework incorporates an
adversarial attack classifier, achieving a classification accuracy of 0.97 in determining the type
of adversarial attack employed.

100

Chapter 7. Conclusion

7.1. Summary

In this chapter, we provide a discussion of the thesis and outline our future work. Finally, we
highlight some challenges observed during our research and potential opportunities for further
advancements.

7.2. Discussion

In this Ph.D. thesis, we introduced comprehensive threat models for ML-based NIDS and investi-
gated the realism and impact of generic adversarial attacks on DL-based NIDS. Additionally, we
conducted a comprehensive assessment encompassing the performance of attacks, the resilience
of detection models, and the effectiveness of defense approaches. Finally, we presented the
Adversarial-Resilient NIDS, a lightweight framework for detecting and classifying adversarial
attacks.

7.2.1. Threat Modeling Analysis for ML-Based NIDS: Uncovering Hidden Risks

In chapter 3, we provided comprehensive threat models for ML-based NIDS. Our models
enable proactive defense by anticipating and addressing potential threats before they occur.
These models enable for the prioritization of efforts based on the severity and likelihood of
different attacks by providing not only vulnerabilities identification but also risks quantification.
This ensures efficient resource allocation and focused security measures. Overall, our models
contribute to developing more robust ML-based NIDS by implementing the recommended
countermeasures and working on areas for security improvements in the detection algorithms
and system architectures.

Using STRIDE and Attack Tree methodologies, we provided a comprehensive security
perspective, ensuring no threat vector is overlooked. The Attack Tree technique maps potential
threats from ML algorithm vulnerabilities, while STRIDE examines data flow to identify
additional technical threats. We identified and categorized 46 distinct threats, revealing
vulnerabilities at various levels of ML algorithms and detection system data flows. Our models
highlight how ML-based NIDS can be compromised and the diverse avenues for potential attacks.
This facilitates the development of targeted and effective hardening measures. Our threat models

101

7.2 Discussion

offer a foundational framework for future research on addressing security threats in ML-based
NIDS.

Despite the thoroughness of our threat models, it is crucial to acknowledge that the dynamic
nature of cyber threats necessitates continuous updating and validation of these models. As
adversaries evolve their tactics and ML algorithms advance, new vulnerabilities may emerge,
requiring ongoing research and adaptation of defense mechanisms. This iterative approach
ensures that the threat models remain relevant and effective in safeguarding ML-based NIDS
against an ever-changing landscape of cyber threats.

7.2.2. Adversarial Evasion Attacks on ML-based NIDS: Reviewing Current Knowledge

In chapter 4, we presented a more detailed and structured categorization of the literature than
previously available by conducting a thorough analysis of 112 research studies in the field.
We offered an extensive overview and evaluation of existing knowledge, highlighted gaps in
current research, and recommended potential research directions and practical considerations
for enhancing the resilience of NIDS against adversarial attacks.

we surveyed the up-to-date literature and synthesized the existing body of work into three
main areas: generating tailored adversarial examples for ML-based NIDS, evaluating the
resilience of these systems, and developing defensive mechanisms. We critically examined and
categorized these studies, discussing their strengths and limitations, and identified potential
avenues for improvement. Additionally, we conducted a meta-data analysis to uncover research
trends and patterns, derived key findings, and addressed relevant research questions regarding
the shortcomings of current approaches. Based on this analysis, we suggested enhancements
and provided insights for future research and development in the field.

7.2.3. Evaluating the Realism of Adversarial Attacks: Bridging Theory and Reality

In chapter 5, we bridged the gap between theoretical adversarial attacks and real-world network
scenarios, introducing the "Unrealism Index" to evaluate adversarial attacks’ realism. The
Unrealism Index is a novel metric to measure how adversarial manipulations diverge from real
network traffic. We conducted a comprehensive evaluation of a wide range of adversarial example
attacks across different datasets, providing a rich resource for understanding their performance
and realism.

From our research, we now have a deeper understanding of the limitations and unrealistic
aspects of current adversarial example generation methods in the realm of network traffic. We
revealed the disconnect between the theoretical efficiency of common adversarial attacks and
their practical execution against DL-based NIDS, due to their often unrealistic manipulations.
Our work underscored the necessity for adversarial examples that are effective, realistic, and
compliant with network traffic constraints. This new knowledge propels future research towards
more realistic and practical threat models, emphasizing problem-space perturbations and black-
box approaches that more accurately represent the capabilities of real-world adversaries.

102

7.2 Discussion

Although our proposed Unrealism Index employs metrics to exclude unrealistic attacks,
compliance with these metrics does not guarantee the complete realism of the adversarial
examples. There may still be instances where adversarial traffic passes the validation metrics
but does not accurately reflect real-world network conditions. This highlights the need for
ongoing refinement of the Unrealism Index and the development of more sophisticated validation
techniques that better capture the complexities and nuances of actual network traffic.

7.2.4. Enhancing ML-Based NIDS Resilience: Shielding the Shield

In chapter 6, we did several key areas of enhancement in the field. Through comprehensive
experimental evaluations, we assessed the resilience of 15 different ML-based NIDS models
against 9 types of adversarial attacks, including both white-box and black-box attacks. We used
the NF-UQ-NIDS dataset features recent network traffic data from various traditional and IoT
networks, and encompasses twenty types of cyber attacks. This comprehensive experimental
setups ensures the generalizability and applicability of our findings to real-world scenarios.
We provided the Resilience Index a standardized measure to compare the ML-based NIDS’s
resilience for informed deployment decisions. Additionally, We identified the most consistently
performing attacks. Defense’ efficiency can be optimized by designing targeted countermeasures
to the attacks that exhibit generalized effectiveness across all NIDS models. We performed a
comprehensive assessment of ensemble learning and adversarial training and highlighted their
strengths and weaknesses. Finally, we introduced the Adversarial-Resilient NIDS framework,
which employs a multi-layered approach to robustly detect and classify adversarial attacks. Our
framework maintains both high performance and resilience.

Our analysis revealed key findings on the performance and resilience of machine learning
models and defense strategies against adversarial attacks in NIDS. Ensemble and decision
tree-based methods (e.g., Catboost, DT, ET, RF, XGBoost) excel in clean data scenarios due to
their ability to capture complex relationships, yet they suffer significant performance degradation
under adversarial conditions. In contrast, linear models (e.g., SGD, LR, LDA) and probabilistic
models (e.g., NB, QDA) display minimal performance drops due to their simpler architectures
but struggle with the inherent complexity of network traffic data. Iterative attack techniques like
PGD, FGSM, and DeepFool consistently exploit model vulnerabilities, while attacks like ZOO,
JSMA, and CW∞ show variable success rates. Ensemble learning does not significantly enhance
resilience against adversarial attacks, often showing lower resilience compared to individual
models. However, adversarial training notably improves resilience, although it risks overfitting
to specific perturbations. Our proposed Adversarially Trained Ensemble (ATE) model, which
combines adversarial training with ensembling, demonstrates superior performance and resilience,
reducing attack success rates and achieving the highest balanced accuracy and F1 scores. Defense
strategies show distinct efficacy patterns, with adversarial training significantly reducing success
rates for Group 1 attacks (PGD, FGSM, DeepFool, HSJ, CW2), and ensemble learning effectively
reducing success rates for Group 2 attacks (ZOO, JSMA, CW∞).

103

7.3 Future Work

These findings imply that selecting appropriate models involves trade-offs between perfor-
mance on clean data and resilience to adversarial attacks. Defense strategies must be tailored to
specific attack vectors, as a one-size-fits-all approach is insufficient. The effectiveness of the ATE
model suggests that integrating multiple defense strategies can provide comprehensive protection,
reducing the success rates of various adversarial attacks. However, our Adversarial-Resilient
framework, while covering covers eight types of adversarial attacks, this scope, though extensive,
is not exhaustive. Other unseen or emerging adversarial methods not included in this study
could evade detection highlighting the need for expansion of the detection model to address the
unknown and evolving attacks. Our study’s strengths include a comprehensive evaluation of
diverse models and attacks, detailed analysis of defense mechanisms, and the introduction of
the novel ATE model.

7.3. Future Work

In future work, we will integrate Explainable Artificial Intelligence (XAI) techniques to enhance
the interpretability of the Adversarial-Resilient NIDS framework. XAI will provide insights into
our framework’s decision-making process and identify key features for adversarial detection. This
integration increases transparency and aids in understanding adversarial attacks by clarifying
why certain decisions are made. By using XAI to analyze feature importance and decision
patterns, we can identify specific aspects of the framework that adversarial attacks exploit, thus
helping us uncover our framework’s vulnerabilities. This understanding allows us to diagnose
weaknesses more effectively and implement targeted improvements to enhance the framework’s
robustness.

Additionally, we will use GANs to create diverse sophisticated and realistic adversarial
examples to enhance the robustness and adaptability of our framework. This approach ensures
better preparation and defense against a broader range of evolving attacks.

One of the most intriguing aspects of our future work is the comparative evaluation of
supervised and unsupervised models in terms of their resilience against adversarial attacks. By
assessing the strengths and weaknesses of each approach, we aim to gain valuable insights into
their responses to various adversarial attacks. This comparative study will guide improvements
in enhancing ML-based NIDS models’ resilience, allowing us to develop hybrid or enhanced
approaches that leverage the best features of both supervised and unsupervised models.

7.4. Challenges and Research Opportunities

Beyond our contributions in this thesis to enhancing ML-based NIDS against adversarial attacks,
several challenges remain. Addressing these will pave the way for more resilient and efficient
ML-based NIDS capable of mitigating evolving adversarial threats.

Adversarial defenses often require complex, computationally intensive techniques to achieve
high detection accuracy. This can result in significant computational overhead. Research should
focus on finding optimal solutions that maximize performance and minimize overhead. This

104

7.5 Conclusion

can include utilizing lightweight algorithms, implementing efficient data processing methods,
optimizing model architectures, using approximation techniques, and employing selective feature
extraction.

Standardized metrics are essential for providing a common framework to consistently evaluate
and compare the effectiveness of adversarial attacks and defenses. The absence of such metrics
makes it challenging to assess the effectiveness of different approaches and compare results
across studies. Research should focus on defining and validating metrics that capture various
aspects of adversarial robustness, including detection rate, false positive rate, impact on network
performance, and resilience to different types of attacks.

Generating adversarial examples is time-consuming process. This underscores the critical
need for standardized and comprehensive datasets to streamline the assessment of NIDS defenses.
These datasets must encompass a wide range of existing adversarial attacks, including realistic
and sophisticated ones. These datasets are crucial for rigorously testing the robustness of models
against adversarial attacks and for training them to recognize and mitigate such threats. The
absence of such datasets limits the ability to generalize findings. Standardized datasets would
enable consistent evaluation and comparison of defense mechanisms.

Non-ML-based NIDS, which often rely on signature-based or heuristic methods, are still
widely used. However, their vulnerability to ML-based adversarial attacks is not investigated.
How can these traditional systems be compromised by adversarial techniques typically targeting
ML-based NIDS, and in what ways do these attacks differ.

Existing literature evaluates the impact of adversarial attacks on ML-based classification
models and how their resilience can be enhanced. However, there is a notable gap in research
on anomaly detection approaches, their resilience to adversarial attacks, and potential defense
mechanisms. Investigating these aspects is crucial to uncover the strengths of both classification
and anomaly detection approaches, which can then be combined to create a comprehensive
defense against adversarial attacks.

7.5. Conclusion

In conclusion, we have made significant contributions to the field of ML-based NIDS by
conducting comprehensive threat modeling using STRIDE and Attack Tree techniques to
identify and mitigate potential vulnerabilities. Our extensive survey and meta-data analysis
have provided valuable insights into research trends and highlighted areas for future exploration.
We investigated the vulnerability of DL-based NIDS to various adversarial attacks, assessing
their effectiveness and realism, and established "attack unrealism" to evaluate the practicality
of these attacks in real-world scenarios. The introduction of the Resilience Index offers a
standardized measure for assessing ML-based NIDS resilience, facilitating informed deployment
decisions. Furthermore, our development of the Adversarial-Resilient NIDS framework, featuring
a lightweight adversarially trained ensemble, demonstrates exceptional efficacy in detecting
adversarial attacks while maintaining high accuracy on clean data. These advancements
collectively enhance the robustness and reliability of ML-based NIDS.

105

Appendix A. Experiments Reproducibility

A.1. Introduction

This chapter ensures the reproducibility of the experiments conducted in this study. It includes
details about the computer configuration, software packages, and specific information for each
experiment, including datasets, model parameters, and code repositories.

A.2. Computer Configuration

All experiments were conducted on a computer with the following configuration:
• Processor: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 2.40 GHz

• RAM: 8 GB

• Graphics Card: NVIDIA GeForce RTX 3080

• Storage: 500 GB SSD

• Operating System: Windows 10 Home

A.3. Packages

The following software packages and versions were used across all experiments:
• Python: 3.8.8

• TensorFlow: 2.11.0

• Keras: 1.3.2

• Pandas: 0.25.0

• NumPy: 1.21.6

• ART (Adversarial Robustness Toolbox): 1.17.1

• Scikit-learn: 1.0.2

• Joblib: 1.3.2

106

A.4 Experiment 1: Realism vs. Performance for AEs Against DL-based NIDS

A.4. Experiment 1: Realism vs. Performance for AEs Against DL-based NIDS

A.4.1. Datasets

We used two datasets for this experiment:

• WSN-DS: Contains 374,661 records with normal traffic and four DoS attacks: flooding,
TDMA, grayhole, and blackhole [17].

• BoT-IoT: Includes 3.6 million records with normal IoT traffic and attacks such as DDoS,
DoS, Keylogging, Data exfiltration, OS, and Service Scan [81]. Available at BoT-IoT
Dataset.

• Detailed feature descriptions are in Tables B.1 and B.2.

• WSN-DS was split into 80% training and 20% testing using scikit-learn’s train_test_split.
BoT-IoT used pre-split datasets from the authors.

• Labels: WSN-DS includes blackhole, grayhole, flooding, scheduling, and normal traffic.
BoT-IoT includes DDoS, DoS, theft, reconnaissance, and normal traffic (Table 5.2).

A.4.2. Model Parameters

The parameters for the models used in this experiment are detailed in Table A.1 below.

Parameter Value

No. of hidden layers 3
Layer 1 128 neurons
Layer 2 64 neurons
Layer 3 32 neurons
Dropout 0.25
Optimizer ADAM
Activation function ReLU and Sigmoid
Learning rate 0.01
Epoch 100
Batch Size 64

Table A.1 Feed-Forward DNN Model Parameters

A.4.3. Code Repository

The code for this experiment is available at:
• Repository: https://mega.nz/folder/U7lhARbY#0gZ8kghKYXrrDg_nvfPH7A

107

https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/bot-iot-dataset
https://mega.nz/folder/U7lhARbY#0gZ8kghKYXrrDg_nvfPH7A

A.5 Experiment 2: Evaluating and Detecting AEs in ML-based NIDS

A.5. Experiment 2: Evaluating and Detecting AEs in ML-based NIDS

A.5.1. Datasets

We used the NF-UQ-NIDS dataset for this experiment:
• Dataset Records: It has 11,994,893 records (9,208,048 benign, 2,786,845 attack).

• Features Description: See Table B.3

• Subset Used: 6,338,509 records (81.8% normal, 18.2% attack).

• Sampling Rationale: Reduces computational load while preserving data diversity.

• Classification: Unified attack types into a single ’Attack’ class.

• Splits: Stratified into 80% training and 20% testing subsets.

• Traffic Statistics: See Table 6.2 and Table 6.3.

A.5.2. Model Parameters

The parameters for the models used in this experiment are detailed in the Table A.2 below.

Model Parameters

FF-DNN
Layers: [Dense(128, activation=relu), Dropout, Dense(64, activation=relu), Dropout,
Dense(2, activation=softmax)], Optimizer: Adam

RF n_estimators=100, criterion=’gini’, max_depth=None
DT criterion=’gini’, splitter=’best’, max_depth=None
ET c n_estimators=100, criterion=’gini’, max_depth=None
LR penalty=’l2’, C=1.0, solver=’lbfgs’
XGBoost objective=’binary:logistic’, n_estimators=100, max_depth=3
Adaboost base_estimator=None, n_estimators=50, learning_rate=1.0
NB alpha=1.0, fit_prior=True, class_prior=None
LDA solver=’svd’, shrinkage=None, priors=None
QDA priors=None, reg_param=0.0, store_covariance=False, stor_covariances=None
SGD loss=’hinge’, penalty=’l2’, alpha=0.0001
GBDT n_estimators=100, learning_rate=0.1, max_depth=3, mi_samples_split=2
Catboost iterations=100, depth=3, learning_rate=0.03, boosting_type= ’Ordered’
LGBM n_estimators=100, learning_rate=0.1, max_depth=-1, boosting_type= ’gbdt’
MLP hidden_layer_sizes= (100,) activation= ’relu’ solver= ’adam’ learning_rate_init= 0.001

Table A.2 Parameters of ML-based NIDS Models

A.5.3. Code Repository

The code for this experiment is available at:
• Repository: https://mega.nz/folder/QjMGhArI#mZElWXo98eDAMTPXSEbfog

108

https://mega.nz/folder/QjMGhArI#mZElWXo98eDAMTPXSEbfog

Appendix B. Datasets Description

B.1. WSN-DS Dataset
Feature Description

Node ID A unique ID to distinguish the sensor node in any round and at any stage.
Time The current simulation time of the node.
Is CH? A flag with value of 1 for Cluster Head, 0 for normal node.
Who CH? The ID of the CH in the current round.
RSSI Received Signal Strength Indication between the node and its CH in the current round.
Distance to CH The distance between the node and its CH in the current round.
Max distance to CH The maximum distance between the CH and the nodes within the cluster.
Average distance to CH The average distance between nodes in the cluster to their CH.
Current energy The current energy for the node in the current round.
Energy consumption The amount of energy consumed in the previous round.
ADV_CH send The number of advertise CH broadcast messages sent to the nodes.
ADV_CH receive The number of advertise CH messages received from CHs.
Join_REQ send The number of join request messages sent by the nodes to the CH.
Join_REQ receive The number of join request messages received by the CH from the nodes.
ADV_SCH send The number of advertise TDMA schedule broadcast messages sent to the nodes.
ADV_SCH receive The number of TDMA schedule messages received from CHs.
Rank The order of this node within the TDMA schedule.
Data sent The number of data packets sent from a sensor to its CH.
Data received The number of data packets received from CH.
Data sent to BS The number of data packets sent to the Base Station (BS).
Distance CH to BS The distance between the CH and the BS.
Send Code The cluster sending code.
Attack Type It is a class of five values: Blackhole, Grayhole, Flooding, Scheduling, or normal.

Table B.1 Description of WSN-DS Dataset
B.2. BoT-IoT Dataset

Feature Description

pkSeqID Row Identifier
Proto Textual representation of transaction protocols within network flow.
Saddr Source IP address
Sport Source port number
Daddr Destination IP address
Dport Destination port number
Seq Argus sequence number
Stddev Standard deviation of aggregated records
N_IN_Conn_P_SrcIP Number of inbound connections per source IP.
Min Minimum duration of aggregated records
state_number Numerical representation of feature state
Mean Average duration of aggregated records
N_IN_Conn_P_DstIP Number of inbound connections per destination IP.
Drate Destination-to-source packets per second
Srate Source-to-destination packets per second
Max Maximum duration of aggregated records
Attack Class label: 0 for Normal traffic, 1 for Attack Traffic
Category Traffic category
Subcategory Traffic subcategory

Table B.2 Description of BoT-IoT Dataset

109

B.3 NF-UQ-NIDS Dataset

B.3. NF-UQ-NIDS Dataset
Feature Description

IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address
L4_SRC_PORT IPv4 source port number
L4_DST_PORT IPv4 destination port number
PROTOCOL IP protocol identifier byte
L7_PROTO Layer 7 protocol (numeric)
IN_BYTES Incoming number of bytes
OUT_BYTES Outgoing number of bytes
IN_PKTS Incoming number of packets
OUT_PKTS Outgoing number of packets
FLOW_DURATION_MILLISECONDS Flow duration in milliseconds
TCP_FLAGS Cumulative of all TCP flags
CLIENT_TCP_FLAGS Cumulative of all client TCP flags
SERVER_TCP_FLAGS Cumulative of all server TCP flags
DURATION_IN Client to Server stream duration (msec)
DURATION_OUT Server to Client stream duration (msec)
MIN_TTL Min flow TTL
MAX_TTL Max flow TTL
LONGEST_FLOW_PKT Longest packet (bytes) of the flow
SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow
MIN_IP_PKT_LEN Length of the smallest flow IP packet observed
MAX_IP_PKT_LEN Length of the largest flow IP packet observed
SRC_TO_DST_SECOND_BYTES Source to destination bytes per second
DST_TO_SRC_SECOND_BYTES Destination to source bytes per second
RETRANSMITTED_IN_BYTES Number of retransmitted TCP flow bytes (src to dst)
RETRANSMITTED_IN_PKTS Number of retransmitted TCP flow packets (src to dst)
RETRANSMITTED_OUT_BYTES Number of retransmitted TCP flow bytes (dst to src)
RETRANSMITTED_OUT_PKTS Number of retransmitted TCP flow packets (dst to src)
SRC_TO_DST_AVG_THROUGHPUT Source to destination average throughput (bps)
DST_TO_SRC_AVG_THROUGHPUT Destination to source average throughput (bps)
NUM_PKTS_UP_TO_128_BYTES Packets whose IP size ≤ 128 bytes
NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and ≤ 256 bytes
NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and ≤ 512 bytes
NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and ≤ 1024 bytes
NUM_PKTS_1024_TO_1514_BYTES Packets whose IP size > 1024 and ≤ 1514 bytes
TCP_WIN_MAX_IN Max TCP window size (src to dst)
TCP_WIN_MAX_OUT Max TCP window size (dst to src)
ICMP_TYPE ICMP type × 256 + ICMP code
ICMP_IPV4_TYPE ICMP type
DNS_QUERY_ID DNS query transaction ID
DNS_QUERY_TYPE DNS query type (e.g., 1 = A, 2 = NS)
DNS_TTL_ANSWER TTL of the first A record (if any)
FTP_COMMAND_RET_CODE FTP client command return code

Table B.3 Description of NF-UQ-NIDS-v2 Dataset

110

References

[1] Abdelaty, M., Scott-Hayward, S., Doriguzzi-Corin, R., and Siracusa, D. (2021). Gadot: Gan-based adversarial
training for robust ddos attack detection. In 2021 IEEE Conference on Communications and Network Security
(CNS), pages 119–127. IEEE.

[2] Abou Khamis, R. and Matrawy, A. (2020). Evaluation of adversarial training on different types of neural
networks in deep learning-based idss. In 2020 International Symposium on Networks, Computers and
Communications (ISNCC), pages 1–6. IEEE.

[3] AbouKhamis, R., Shafiq, O., and Matrawy, A. (2019). Investigating resistance of deep learning-based ids
against adversaries using min-max optimization. arXiv.

[4] Abusnaina, A., Khormali, A., Nyang, D. H., Yuksel, M., and Mohaisen, A. (2019). Examining the Robustness
of Learning-Based DDoS Detection in Software Defined Networks. 2019 IEEE Conference on Dependable and
Secure Computing, DSC 2019 - Proceedings.

[5] Agarwal, S. (2013). Data mining: Data mining concepts and techniques. In 2013 international conference on
machine intelligence and research advancement, pages 203–207. IEEE.

[6] Aiken, J. and Scott-Hayward, S. (2019). Investigating adversarial attacks against network intrusion detection
systems in sdns. In 2019 IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), pages 1–7. IEEE.

[7] Akkiraju, R., Sinha, V., Xu, A., Mahmud, J., Gundecha, P., Liu, Z., Liu, X., and Schumacher, J. (2020).
Characterizing machine learning processes: A maturity framework. In Business Process Management: 18th
International Conference, BPM 2020, Seville, Spain, September 13–18, 2020, Proceedings 18, pages 17–31.
Springer.

[8] Alahmed, S., Alasad, Q., Hammood, M. M., Yuan, J.-S., and Alawad, M. (2022). Mitigation of black-box
attacks on intrusion detection systems-based ml. Computers, 11(7):115.

[9] Alatwi, H. A. and Aldweesh, A. (2021). Adversarial black-box attacks against network intrusion detection
systems: A survey. In 2021 IEEE World AI IoT Congress (AIIoT), pages 0034–0040. IEEE.

[10] Alatwi, H. A. and Morisset, C. (2021). Adversarial machine learning in network intrusion detection domain:
A systematic review. arXiv preprint arXiv:2112.03315, pages 0034–0040.

[11] Alatwi, H. A. and Morisset, C. (2022). Threat modeling for machine learning-based network intrusion
detection systems. In 2022 IEEE International Conference on Big Data (Big Data). IEEE.

[12] Alatwi, H. A. and Morisset, C. (2023). Realism versus performance for adversarial examples against dl-based
nids. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, pages 1549–1557.

[13] Aldweesh, A., Derhab, A., and Emam, A. Z. (2020). Deep learning approaches for anomaly-based intrusion
detection systems: A survey, taxonomy, and open issues. Knowledge-Based Systems, 189:105124.

[14] Alhajjar, E., Maxwell, P., and Bastian, N. (2021). Adversarial machine learning in network intrusion
detection systems. Expert Systems with Applications, 186:115782.

[15] Alhajjar, E., Maxwell, P., and Bastian, N. D. (2020). Adversarial machine learning in network intrusion
detection systems. arXiv preprint arXiv:2004.11898.

[16] Allen, B., Rachelle Loyear, C., et al. (2017). Enterprise security risk management: Concepts and applications.

[17] Almomani, I., Al-Kasasbeh, B., and Al-Akhras, M. (2016). Wsn-ds: A dataset for intrusion detection
systems in wireless sensor networks. Journal of Sensors, 2016.

[18] Alshahrani, E., Alghazzawi, D., Alotaibi, R., and Rabie, O. (2022). Adversarial attacks against supervised
machine learning based network intrusion detection systems. Plos one, 17(10):e0275971.

111

References

[19] Anthi, E., Williams, L., Javed, A., and Burnap, P. (2021). Hardening machine learning denial of service
(dos) defences against adversarial attacks in iot smart home networks. computers & security, page 102352.

[20] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Durumeric, Z., Halderman,
J. A., Invernizzi, L., Kallitsis, M., et al. (2017). Understanding the mirai botnet. In 26th {USENIX} security
symposium ({USENIX} Security 17), pages 1093–1110.

[21] Apruzzese, G., Andreolini, M., Ferretti, L., Marchetti, M., and Colajanni, M. (2021). Modeling realistic
adversarial attacks against network intrusion detection systems. arXiv preprint arXiv:2106.09380.

[22] Apruzzese, G., Andreolini, M., Marchetti, M., Colacino, V. G., and Russo, G. (2020a). AppCon: Mitigating
evasion attacks to ML cyber detectors. Symmetry, 12(4).

[23] Apruzzese, G., Andreolini, M., Marchetti, M., Venturi, A., and Colajanni, M. (2020b). Deep reinforcement
adversarial learning against botnet evasion attacks. IEEE Transactions on Network and Service Management,
17(4):1975–1987.

[24] Apruzzese, G. and Colajanni, M. (2018a). Evading botnet detectors based on flows and random forest with
adversarial samples. In 2018 IEEE 17th International Symposium on Network Computing and Applications
(NCA), pages 1–8. IEEE.

[25] Apruzzese, G. and Colajanni, M. (2018b). Evading botnet detectors based on flows and random forest with
adversarial samples. In 2018 IEEE 17th International Symposium on Network Computing and Applications
(NCA), pages 1–8. IEEE.

[26] Apruzzese, G., Colajanni, M., Ferretti, L., and Marchetti, M. (2019). Addressing adversarial attacks against
security systems based on machine learning. In 2019 11th International Conference on Cyber Conflict (CyCon),
volume 900, pages 1–18. IEEE.

[27] Benzaïd, C., Boukhalfa, M., and Taleb, T. (2020). Robust self-protection against application-layer (d) dos
attacks in sdn environment. In 2020 IEEE Wireless Communications and Networking Conference (WCNC),
pages 1–6. IEEE.

[28] Biggio, B. and Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning.
Pattern Recognition, 84:317–331.

[29] Buczak, A. L. and Guven, E. (2015). A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Communications surveys & tutorials, 18(2):1153–1176.

[30] Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfellow, I., Madry, A., and
Kurakin, A. (2019). On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705.

[31] Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pages 39–57. IEEE.

[32] Chaitou, H., Robert, T., Leneutre, J., and Pautet, L. (2021). Assessing adversarial training effect on idss
and gans. In 2021 IEEE International Conference on Cyber Security and Resilience (CSR), pages 543–550.
IEEE.

[33] Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and Mukhopadhyay, D. (2018). Adversarial
attacks and defences: A survey. arXiv preprint arXiv:1810.00069.

[34] Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and Mukhopadhyay, D. (2021). A survey on
adversarial attacks and defences. CAAI Transactions on Intelligence Technology, 6(1):25–45.

[35] Chauhan, R. and Heydari, S. S. (2020). Polymorphic adversarial ddos attack on ids using gan. In 2020
International Symposium on Networks, Computers and Communications (ISNCC), pages 1–6. IEEE.

[36] Chen, J., Jordan, M. I., and Wainwright, M. J. (2020a). Hopskipjumpattack: A query-efficient decision-based
attack. In 2020 ieee symposium on security and privacy (sp), pages 1277–1294. IEEE.

[37] Chen, J., Wu, D., Zhao, Y., Sharma, N., Blumenstein, M., and Yu, S. (2020b). Fooling intrusion detection
systems using adversarially autoencoder. Digital Communications and Networks.

[38] Chen, L., Wang, Z., Huo, R., and Huang, T. (2023). An adversarial dbn-lstm method for detecting and
defending against ddos attacks in sdn environments. Algorithms, 16(4):197.

[39] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. (2017). Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, pages 15–26.

112

References

[40] Cheng, Q., Zhou, S., Shen, Y., Kong, D., and Wu, C. (2021). Packet-level adversarial network traffic
crafting using sequence generative adversarial networks. arXiv preprint arXiv:2103.04794.

[41] Chernikova, A. and Oprea, A. (2019). Fence: Feasible evasion attacks on neural networks in constrained
environments. arXiv preprint arXiv:1909.10480.

[42] Clements, J., Yang, Y., Sharma, A., Hu, H., and Lao, Y. (2019). Rallying adversarial techniques against
deep learning for network security. arXiv preprint arXiv:1903.11688.

[43] Clements, J., Yang, Y., Sharma, A. A., Hu, H., and Lao, Y. (2021). Rallying adversarial techniques against
deep learning for network security. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 01–08. IEEE.

[44] Debicha, I., Bauwens, R., Debatty, T., Dricot, J.-M., Kenaza, T., and Mees, W. (2023). Tad: Transfer
learning-based multi-adversarial detection of evasion attacks against network intrusion detection systems.
Future Generation Computer Systems, 138:185–197.

[45] Debicha, I., Debatty, T., Dricot, J.-M., and Mees, W. (2021). Adversarial training for deep learning-based
intrusion detection systems. arXiv preprint arXiv:2104.09852.

[46] Debicha, I., Debatty, T., Dricot, J.-M., Mees, W., and Kenaza, T. (2022). Detect & reject for transferability
of black-box adversarial attacks against network intrusion detection systems. In Advances in Cyber Security:
Third International Conference, ACeS 2021, Penang, Malaysia, August 24–25, 2021, Revised Selected Papers,
pages 329–339. Springer.

[47] Dhall, D., Kaur, R., and Juneja, M. (2020). Machine learning: a review of the algorithms and its applications.
Proceedings of ICRIC 2019: Recent innovations in computing, pages 47–63.

[48] Duy, P. T., Khoa, N. H., Do Hoang, H., Pham, V.-H., et al. (2023). Investigating on the robustness
of flow-based intrusion detection system against adversarial samples using generative adversarial networks.
Journal of Information Security and Applications, 74:103472.

[49] Dyrmishi, S., Ghamizi, S., Simonetto, T., Traon, Y. L., and Cordy, M. (2022). On the empirical effectiveness
of unrealistic adversarial hardening against realistic adversarial attacks. arXiv preprint arXiv:2202.03277.

[50] El Naqa, I. and Murphy, M. J. (2015). What is machine learning? Springer.

[51] Frazier, P. I. (2018). Bayesian optimization. In Recent advances in optimization and modeling of contemporary
problems, pages 255–278. Informs.

[52] Fu, X., Zhou, N., Jiao, L., Li, H., and Zhang, J. (2021). The robust deep learning–based schemes for
intrusion detection in internet of things environments. Annals of Telecommunications, pages 1–13.

[53] Ganesan, A. and Sarac, K. (2021). Mitigating evasion attacks on machine learning based nids systems in
sdn. In 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), pages 268–272. IEEE.

[54] Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014). An empirical comparison of botnet detection
methods. computers & security, 45:100–123.

[55] Ge, Z., Song, Z., Ding, S. X., and Huang, B. (2017). Data mining and analytics in the process industry:
The role of machine learning. Ieee Access, 5:20590–20616.

[56] Gharaibeh, C. S. U. M. (2009). (2009) DARPA 2009 Intrusion Detection Dataset. [Online].

[57] Gómez, Á. L. P., Maimó, L. F., Celdrán, A. H., Clemente, F. J. G., and Cleary, F. (2021). Crafting
adversarial samples for anomaly detectors in industrial control systems. Procedia Computer Science, 184:573–
580.

[58] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[59] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

[60] Grierson, S., Thomson, C., Papadopoulos, P., and Buchanan, B. (2021). Min-max training: Adversarially
robust learning models for network intrusion detection systems. In 2021 14th International Conference on
Security of Information and Networks (SIN), volume 1, pages 1–8. IEEE.

[61] Guo, S., Zhao, J., Li, X., Duan, J., Mu, D., and Jing, X. (2021). A black-box attack method against
machine-learning-based anomaly network flow detection models. Security and Communication Networks, 2021.

113

References

[62] Han, D., Wang, Z., Zhong, Y., Chen, W., Yang, J., Lu, S., Shi, X., and Yin, X. (2020). Practical traffic-space
adversarial attacks on learning-based nidss. arXiv preprint arXiv:2005.07519.

[63] Hashemi, M. J., Cusack, G., and Keller, E. (2019). Towards evaluation of nidss in adversarial setting. In
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence
for Data Communication Networks, pages 14–21.

[64] Hashemi, M. J. and Keller, E. (2020). Enhancing robustness against adversarial examples in network
intrusion detection systems. In 2020 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 37–43. IEEE.

[65] Hassan, A. A., Hussein, M. S., AboMoustafa, A. S., and Elmowafy, S. H. (2022). Synthesis of adversarial
ddos attacks using tabular generative adversarial networks. arXiv preprint arXiv:2212.14109.

[66] He, K., Kim, D. D., and Asghar, M. R. (2023). Adversarial machine learning for network intrusion detection
systems: a comprehensive survey. IEEE Communications Surveys & Tutorials.

[67] He, K., Kim, D. D., Sun, J., Yoo, J. D., Lee, Y. H., and Kim, H. K. (2022). Liuer mihou: A practical frame-
work for generating and evaluating grey-box adversarial attacks against nids. arXiv preprint arXiv:2204.06113.

[68] Hore, S., Ghadermazi, J., Paudel, D., Shah, A., Das, T. K., and Bastian, N. D. (2023). Deep packgen: A deep
reinforcement learning framework for adversarial network packet generation. arXiv preprint arXiv:2305.11039.

[69] Huang, C. H., Lee, T. H., huang Chang, L., Lin, J. R., and Horng, G. (2019). Adversarial attacks on
SDN-based deep learning IDS system. Lecture Notes in Electrical Engineering, 513:181–191.

[70] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar, J. D. (2011). Adversarial machine
learning. In Proceedings of the 4th ACM workshop on Security and artificial intelligence, pages 43–58.

[71] Ibitoye, O., Abou-Khamis, R., Matrawy, A., and Shafiq, M. O. (2019a). The threat of adversarial attacks
on machine learning in network security–a survey. arXiv preprint arXiv:1911.02621.

[72] Ibitoye, O., Shafiq, O., and Matrawy, A. (2019b). Analyzing adversarial attacks against deep learning for
intrusion detection in IoT networks. arXiv.

[73] Jadidi, Z., Pal, S., Selvakkumar, A., Chang, C.-C., Beheshti, M., Jolfaei, A., et al. (2022). Security of
machine learning-based anomaly detection in cyber physical systems. arXiv preprint arXiv:2206.05678.

[74] Janusz, A. and Kałuza (2019). Ieee bigdata 2019 cup: suspicious network event recognition. In 2019 IEEE
International Conference on Big Data (Big Data), pages 5881–5887. IEEE.

[75] Jeong, J., Kwon, S., Hong, M.-P., Kwak, J., and Shon, T. (2019). Adversarial attack-based security
vulnerability verification using deep learning library for multimedia video surveillance. Multimedia Tools and
Applications, pages 1–15.

[76] Jiang, H., Lin, J., and Kang, H. (2022). Fgmd: A robust detector against adversarial attacks in the iot
network. Future Generation Computer Systems, 132:194–210.

[77] Jmila, H. and Khedher, M. I. (2022). Adversarial machine learning for network intrusion detection: A
comparative study. Computer Networks, page 109073.

[78] Khamaiseh, S. Y., Alsmadi, I., and Al-Alai, A. (2020). Deceiving machine learning-based saturation attack
detection systems in sdn. In 2020 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pages 44–50. IEEE.

[79] Khettaf, D. and Bouzar-Benlabiod, L. (2022). Defending the defender: Detecting adversarial examples for
network intrusion detection systems. arXiv preprint arXiv:2203.01467.

[80] Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University,
33(2004):1–26.

[81] Koroniotis, N., Moustafa, N., Sitnikova, E., and Turnbull, B. (2019). Towards the development of realistic
botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation
Computer Systems, 100:779–796.

[82] Kulikov, D. and Platonov, V. (2021). Adversarial attacks on intrusion detection systems using the lstm
classifier. Automatic Control and Computer Sciences, 55(8):1080–1086.

114

References

[83] Kuppa, A., Grzonkowski, S., Asghar, M. R., and Le-Khac, N.-A. (2019). Black box attacks on deep anomaly
detectors. In Proceedings of the 14th International Conference on Availability, Reliability and Security, pages
1–10.

[84] Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236.

[85] Kurakin, A., Goodfellow, I. J., and Bengio, S. (2018). Adversarial examples in the physical world. In
Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC.

[86] Lin, Y.-D., Pratama, J.-H., Sudyana, D., Lai, Y.-C., Hwang, R.-H., Lin, P.-C., Lin, H.-Y., Lee, W.-B.,
and Chiang, C.-K. (2022). Elat: Ensemble learning with adversarial training in defending against evaded
intrusions. Journal of Information Security and Applications, 71:103348.

[87] Lin, Z., Shi, Y., and Xue, Z. (2018). Idsgan: Generative adversarial networks for attack generation against
intrusion detection. arXiv preprint arXiv:1809.02077.

[88] Liu, H. and Lang, B. (2019). Machine learning and deep learning methods for intrusion detection systems:
A survey. applied sciences, 9(20):4396.

[89] Maarouf, R., Sattar, D., and Matrawy, A. (2021). Evaluating resilience of encrypted traffic classification
against adversarial evasion attacks. arXiv preprint arXiv:2105.14564.

[90] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

[91] Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research
(IJSR).[Internet], 9(1):381–386.

[92] Martins, N., Cruz, J. M., Cruz, T., and Abreu, P. H. (2019). Analyzing the footprint of classifiers in
adversarial denial of service contexts. In EPIA Conference on Artificial Intelligence, pages 256–267. Springer.

[93] Martins, N., Cruz, J. M., Cruz, T., and Abreu, P. H. (2020). Adversarial machine learning applied to
intrusion and malware scenarios: a systematic review. IEEE Access, 8:35403–35419.

[94] Mathews, J., Chatterjee, P., Banik, S., and Nance, C. (2022). A deep learning approach to create dns
amplification attacks. arXiv preprint arXiv:2206.14346.

[95] McCarthy, A., Andriotis, P., Ghadafi, E., and Legg, P. (2021). Feature vulnerability and robustness
assessment against adversarial machine learning attacks. In 2021 International Conference on Cyber Situational
Awareness, Data Analytics and Assessment (CyberSA), pages 1–8. IEEE.

[96] Merzouk, M. A., Cuppens, F., Boulahia-Cuppens, N., and Yaich, R. (2020). A deeper analysis of adversarial
examples in intrusion detection. In International Conference on Risks and Security of Internet and Systems,
pages 67–84. Springer.

[97] Merzouk, M. A., Delas, J., Neal, C., Cuppens, F., Boulahia-Cuppens, N., and Yaich, R. (2022). Evading
deep reinforcement learning-based network intrusion detection with adversarial attacks. In Proceedings of the
17th International Conference on Availability, Reliability and Security, pages 1–6.

[98] Microsoft (2023). Threats - microsoft threat modeling tool - azure. Threats - Microsoft Threat Modeling
Tool - Azure | Microsoft Docs.

[99] Mirsky, Y., Doitshman, T., Elovici, Y., and Shabtai, A. (2018). Kitsune: an ensemble of autoencoders for
online network intrusion detection. arXiv preprint arXiv:1802.09089.

[100] Mishra, P., Varadharajan, V., Tupakula, U., and Pilli, E. S. (2018). A detailed investigation and analysis
of using machine learning techniques for intrusion detection. IEEE Communications Surveys & Tutorials,
21(1):686–728.

[101] Mogg, R., Enoch, S. Y., and Kim, D. S. (2021). A framework for generating evasion attacks for machine
learning based network intrusion detection systems. In International Conference on Information Security
Applications, pages 51–63. Springer.

[102] Mohammadian, H., Ghorbani, A. A., and Lashkari, A. H. (2023). A gradient-based approach for adversarial
attack on deep learning-based network intrusion detection systems. Applied Soft Computing, page 110173.

[103] Mohanty, H., Roudsari, A. H., and Lashkari, A. H. (2022). Robust stacking ensemble model for darknet
traffic classification under adversarial settings. Computers & Security, page 102830.

115

References

[104] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2574–2582.

[105] Moustafa, N., Hu, J., and Slay, J. (2019). A holistic review of network anomaly detection systems: A
comprehensive survey. Journal of Network and Computer Applications, 128:33–55.

[106] Moustafa, N. and Slay, J. (2015). Unsw-nb15: a comprehensive data set for network intrusion detection
systems (unsw-nb15 network data set). In 2015 military communications and information systems conference
(MilCIS), pages 1–6. IEEE.

[107] Myagmar, S., Lee, A. J., and Yurcik, W. (2005). Threat modeling as a basis for security requirements. In
Symposium on requirements engineering for information security (SREIS), volume 2005, pages 1–8. Citeseer.

[108] Nagaraju, V., Fiondella, L., and Wandji, T. (2017). A survey of fault and attack tree modeling and
analysis for cyber risk management. In 2017 IEEE International Symposium on Technologies for Homeland
Security (HST), pages 1–6. IEEE.

[109] Nguyen, X.-H., Nguyen, X.-D., and Le, K.-H. (2022). Preventing adversarial attacks against deep learning-
based intrusion detection system. In International Conference on Information Security Practice and Experience,
pages 382–396. Springer.

[110] Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M., Zantedeschi, V., Baracaldo, N.,
Chen, B., Ludwig, H., et al. (2018). Adversarial robustness toolbox v1. 0.0. arXiv preprint arXiv:1807.01069.

[111] Niyaz, Q., Sun, W., and Javaid, A. Y. (2016). A deep learning based ddos detection system in software-
defined networking (sdn). arXiv preprint arXiv:1611.07400.

[112] Novaes, M. P., Carvalho, L. F., Lloret, J., and Proença Jr, M. L. (2021). Adversarial deep learning
approach detection and defense against ddos attacks in sdn environments. Future Generation Computer
Systems, 125:156–167.

[113] Nowroozi, E., Mohammadi, M., Golmohammadi, P., Mekdad, Y., Conti, M., and Uluagac, S. (2022a).
Resisting deep learning models against adversarial attack transferability via feature randomization. arXiv
preprint arXiv:2209.04930.

[114] Nowroozi, E., Mohammadi, M., Savas, E., Conti, M., and Mekdad, Y. (2022b). Spritz-1.5 c: Employing
deep ensemble learning for improving the security of computer networks against adversarial attacks. arXiv
preprint arXiv:2209.12195.

[115] Nugraha, B., Kulkarni, N., and Gopikrishnan, A. (2021). Detecting adversarial ddos attacks in software-
defined networking using deep learning techniques and adversarial training. In 2021 IEEE International
Conference on Cyber Security and Resilience (CSR), pages 448–454. IEEE.

[116] of New Brunswick, U. (2023). Nsl-kdd dataset. https://www.unb.ca/cic/datasets/nsl.html .
[117] Pacheco, Y. and Sun, W. (2021). Adversarial machine learning: A comparative study on contemporary

intrusion detection datasets. In ICISSP, pages 160–171.

[118] Papernot, N., McDaniel, P., and Goodfellow, I. (2016a). Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277.

[119] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A. (2016b). The limitations of
deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P),
pages 372–387. IEEE.

[120] Pawlicki, M., Choraś, M., and Kozik, R. (2020). Defending network intrusion detection systems against
adversarial evasion attacks. Future Generation Computer Systems, 110:148–154.

[121] Peng, X., Huang, W., and Shi, Z. (2019a). Adversarial attack against dos intrusion detection: An improved
boundary-based method. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), pages 1288–1295. IEEE.

[122] Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., and Yan, Q. (2020). Detecting adversarial examples for network
intrusion detection system with gan. In 2020 IEEE 11th International Conference on Software Engineering
and Service Science (ICSESS), pages 6–10. IEEE.

[123] Peng, Y., Su, J., Shi, X., and Zhao, B. (2019b). Evaluating deep learning based network intrusion detection
system in adversarial environment. ICEIEC 2019 - Proceedings of 2019 IEEE 9th International Conference
on Electronics Information and Emergency Communication, pages 61–66.

116

https://www.unb.ca/cic/datasets/nsl.html

References

[124] Peng, Y., Su, J., Shi, X., and Zhao, B. (2019c). Evaluating deep learning based network intrusion detection
system in adversarial environment. In 2019 IEEE 9th International Conference on Electronics Information
and Emergency Communication (ICEIEC), pages 61–66. IEEE.

[125] Piplai, A., Chukkapalli, S. S. L., and Joshi, A. (2020). Nattack! adversarial attacks to bypass a gan based
classifier trained to detect network intrusion. In 2020 IEEE 6th Intl Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,(HPSC) and
IEEE Intl Conference on Intelligent Data and Security (IDS), pages 49–54. IEEE.

[126] Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E., and Loukas, G. (2019). A taxonomy and
survey of attacks against machine learning. Computer Science Review, 34:100199.

[127] Pujari, M., Pacheco, Y., Cherukuri, B., and Sun, W. (2022). A comparative study on the impact of
adversarial machine learning attacks on contemporary intrusion detection datasets. SN Computer Science,
3(5):1–12.

[128] Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., and Qiu, M. (2020). Adversarial attacks against network
intrusion detection in iot systems. IEEE Internet of Things Journal.

[129] Qiu, S., Liu, Q., Zhou, S., and Wu, C. (2019). Review of artificial intelligence adversarial attack and
defense technologies. Applied Sciences, 9(5):909.

[130] Qureshi, A. U. H., Larijani, H., Mtetwa, N., Yousefi, M., and Javed, A. (2020). An Adversarial Attack
Detection Paradigm with Swarm Optimization. Proceedings of the International Joint Conference on Neural
Networks.

[131] Randhawa, R. H., Aslam, N., Alauthman, M., Khalid, M., and Rafiq, H. (2022). Deep reinforcement
learning based evasion generative adversarial network for botnet detection. arXiv preprint arXiv:2210.02840.

[132] Rashid, M. M., Kamruzzaman, J., Hassan, M. M., Imam, T., Wibowo, S., Gordon, S., and Fortino, G.
(2022). Adversarial training for deep learning-based cyberattack detection in iot-based smart city applications.
Computers & Security, page 102783.

[133] Rigaki, M. (2017). Adversarial deep learning against intrusion detection classifiers. https://www.
diva-portal.org/ smash/get/diva2:1116037/FULLTEXT01.pdf .

[134] Ring, M., Wunderlich, S., Scheuring, D., Landes, D., and Hotho, A. (2019). A survey of network-based
intrusion detection data sets. Computers & Security, 86:147–167.

[135] Rosenberg, I., Shabtai, A., Elovici, Y., and Rokach, L. (2021). Adversarial machine learning attacks and
defense methods in the cyber security domain. ACM Computing Surveys (CSUR), 54(5):1–36.

[136] Sadeghzadeh, A. M., Shiravi, S., and Jalili, R. (2021). Adversarial network traffic: Towards evaluating the
robustness of deep-learning-based network traffic classification. IEEE Transactions on Network and Service
Management, 18(2):1962–1976.

[137] Sarhan, M., Layeghy, S., Moustafa, N., and Portmann, M. (2021). Netflow datasets for machine learning-
based network intrusion detection systems. In Big Data Technologies and Applications: 10th EAI International
Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual
Event, December 11, 2020, Proceedings 10, pages 117–135. Springer.

[138] Sarhan, M., Layeghy, S., and Portmann, M. (2022). Towards a standard feature set for network intrusion
detection system datasets. Mobile networks and applications, pages 1–14.

[139] Sauka, K., Shin, G.-Y., Kim, D.-W., and Han, M.-M. (2022). Adversarial robust and explainable network
intrusion detection systems based on deep learning. Applied Sciences, 12(13):6451.

[140] Schneider, M., Aspinall, D., and Bastian, N. D. (2021). Evaluating model robustness to adversarial
samples in network intrusion detection. In 2021 IEEE International Conference on Big Data (Big Data),
pages 3343–3352. IEEE.

[141] Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In ICISSp, pages 108–116.

[142] Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). Developing realistic distributed
denial of service (ddos) attack dataset and taxonomy. In 2019 International Carnahan Conference on Security
Technology (ICCST), pages 1–8. IEEE.

117

https://www.diva-portal.org/smash/get/diva2:1116037/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1116037/FULLTEXT01.pdf

References

[143] Sharon, Y., Berend, D., Liu, Y., Shabtai, A., and Elovici, Y. (2021). Tantra: Timing-based adversarial
network traffic reshaping attack. arXiv preprint arXiv:2103.06297.

[144] Shieh, C.-S., Nguyen, T.-T., Lin, W.-W., Huang, Y.-L., Horng, M.-F., Lee, T.-F., and Miu, D. (2022).
Detection of adversarial ddos attacks using generative adversarial networks with dual discriminators. Symmetry,
14(1):66.

[145] Shostack, A. (2014). Threat modeling: Designing for security. John Wiley & Sons.

[146] Shu, D., Leslie, N. O., Kamhoua, C. A., and Tucker, C. S. (2020). Generative adversarial attacks against
intrusion detection systems using active learning. In Proceedings of the 2nd ACM Workshop on Wireless
Security and Machine Learning, pages 1–6.

[147] Shu, R., Xia, T., Williams, L., and Menzies, T. (2022). Omni: automated ensemble with unexpected
models against adversarial evasion attack. Empirical Software Engineering, 27(1):1–32.

[148] Simonetto, T., Dyrmishi, S., Ghamizi, S., Cordy, M., and Traon, Y. L. (2021). A unified framework for
adversarial attack and defense in constrained feature space. arXiv preprint arXiv:2112.01156.

[149] Sriram, S., Simran, K., Vinayakumar, R., Akarsh, S., and Soman, K. P. (2020). Towards Evaluating the
Robustness of Deep Intrusion Detection Models in Adversarial Environment. Communications in Computer
and Information Science, 1208 CCIS(January):111–120.

[150] Sun, H., Peng, C., Sang, Y., Li, S., Zhang, Y., and Zhu, Y. (2023). Evading encrypted traffic classifiers by
transferable adversarial traffic. In Collaborative Computing: Networking, Applications and Worksharing: 18th
EAI International Conference, CollaborateCom 2022, Hangzhou, China, October 15-16, 2022, Proceedings,
Part II, pages 153–173. Springer.

[151] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2013).
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

[152] Talty, K., Stockdale, J., and Bastian, N. D. (2021). A sensitivity analysis of poisoning and evasion attacks
in network intrusion detection system machine learning models. In MILCOM 2021-2021 IEEE Military
Communications Conference (MILCOM), pages 1011–1016. IEEE.

[153] Tan, S., Zhong, X., Tian, Z., and Dong, Q. (2022). Sneaking through security: Mutating live network
traffic to evade learning based nids. IEEE Transactions on Network and Service Management.

[154] Tcydenova, E., Kim, T. W., Lee, C., and Park, J. H. (2021). Detection of adversarial attacks in ai-based
intrusion detection systems using explainable ai. HUMAN-CENTRIC COMPUTING AND INFORMATION
SCIENCES, 11.

[155] Teuffenbach, M., Piatkowska, E., and Smith, P. (2020). Subverting Network Intrusion Detection: Crafting
Adversarial Examples Accounting for Domain-Specific Constraints, volume 12279 LNCS. Springer International
Publishing.

[156] University, K. (2023). Traffic data from kyoto university’s honeypots. http://www.takakura.com/
Kyoto_data/ .

[157] University of California, Irvine (2023). Kdd cup 1999 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[158] Usama, M., Asim, M., Latif, S., Qadir, J., et al. (2019a). Generative adversarial networks for launching
and thwarting adversarial attacks on network intrusion detection systems. In 2019 15th international wireless
communications & mobile computing conference (IWCMC), pages 78–83. IEEE.

[159] Usama, M., Qadir, J., Al-Fuqaha, A., and Hamdi, M. (2019b). The adversarial machine learning conundrum:
Can the insecurity of ml become the achilles’ heel of cognitive networks? IEEE Network, 34(1):196–203.

[160] Usama, M., Qayyum, A., Qadir, J., and Al-Fuqaha, A. (2019c). Black-box adversarial machine learning
attack on network traffic classification. In 2019 15th International Wireless Communications & Mobile
Computing Conference (IWCMC), pages 84–89. IEEE.

[161] Venturi, A., Zanasi, C., Marchetti, M., and Colajanni, M. (2022). Robustness evaluation of network
intrusion detection systems based on sequential machine learning. In 2022 IEEE 21st International Symposium
on Network Computing and Applications (NCA), volume 21, pages 235–242. IEEE.

[162] Vitorino, J., Oliveira, N., and Praça, I. (2022). Adaptative perturbation patterns: Realistic adversarial
learning for robust intrusion detection. Future Internet, 14(4):108.

118

http://www.takakura.com/Kyoto_data/
http://www.takakura.com/Kyoto_data/

References

[163] Vitorino, J., Praça, I., and Maia, E. (2023). Towards adversarial realism and robust learning for iot
intrusion detection and classification. Annals of Telecommunications, pages 1–12.

[164] Wang, J., Pan, J., AlQerm, I., and Liu, Y. (2021a). Def-ids: An ensemble defense mechanism against
adversarial attacks for deep learning-based network intrusion detection. In 2021 International Conference on
Computer Communications and Networks (ICCCN), pages 1–9. IEEE.

[165] Wang, J., Qixu, L., Di, W., Dong, Y., and Cui, X. (2021b). Crafting adversarial example to bypass
flow-&ml-based botnet detector via rl. In 24th International Symposium on Research in Attacks, Intrusions
and Defenses, pages 193–204.

[166] Wang, M., Yang, N., Gunasinghe, D. H., and Weng, N. (2023). On the robustness of ml-based network
intrusion detection systems: An adversarial and distribution shift perspective. Computers, 12(10):209.

[167] Wang, N., Chen, Y., Xiao, Y., Hu, Y., Lou, W., and Hou, T. (2022). Manda: On adversarial example
detection for network intrusion detection system. IEEE Transactions on Dependable and Secure Computing.

[168] Wang, Y., Wang, Y., Tong, E., Niu, W., and Liu, J. (2020). A c-ifgsm based adversarial approach for deep
learning based intrusion detection. In International Conference on Verification and Evaluation of Computer
and Communication Systems, pages 207–221. Springer.

[169] Wang, Z. (2018). Deep Learning-Based Intrusion Detection with Adversaries. IEEE Access, 6:38367–38384.

[170] Warzyński, A. and Kołaczek, G. (2018). Intrusion detection systems vulnerability on adversarial examples.
In 2018 Innovations in Intelligent Systems and Applications (INISTA), pages 1–4. IEEE.

[171] Wu, D., Fang, B., Wang, J., Liu, Q., and Cui, X. (2019). Evading machine learning botnet detection
models via deep reinforcement learning. In ICC 2019-2019 IEEE International Conference on Communications
(ICC), pages 1–6. IEEE.

[172] Xiong, W. D., Luo, K. L., and Li, R. (2023). Aidtf: Adversarial training framework for network intrusion
detection. Computers & Security, page 103141.

[173] Yan, Q., Wang, M., Huang, W., Luo, X., and Yu, F. R. (2019). Automatically synthesizing DoS attack
traces using generative adversarial networks. International Journal of Machine Learning and Cybernetics,
10(12):3387–3396.

[174] Yang, C., Zhou, L., Wen, H., and Wu, Y. (2020). U-ASG: A universal method to perform adversarial
attack on autoencoder based network anomaly detection systems. IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications Workshops, INFOCOM WKSHPS 2020, pages 68–73.

[175] Yang, K., Liu, J., Zhang, C., and Fang, Y. (2019). Adversarial Examples Against the Deep Learning Based
Network Intrusion Detection Systems. Proceedings - IEEE Military Communications Conference MILCOM,
2019-October:559–564.

[176] Yuan, X., He, P., Zhu, Q., and Li, X. (2019). Adversarial examples: Attacks and defenses for deep learning.
IEEE transactions on neural networks and learning systems, 30(9):2805–2824.

[177] Zakariyya, I., Kalutarage, H., and Al-Kadri, M. O. (2022). Robust, effective and resource efficient deep
neural network for intrusion detection in iot networks. In Proceedings of the 8th ACM on Cyber-Physical
System Security Workshop, pages 41–51.

[178] Zhang, C., Costa-Pérez, X., and Patras, P. (2020a). Tiki-taka: Attacking and defending deep learning-based
intrusion detection systems. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing
Security Workshop, pages 27–39.

[179] Zhang, C., Patras, P., and Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey.
IEEE Communications surveys & tutorials, 21(3):2224–2287.

[180] Zhang, R., Luo, S., Pan, L., Hao, J., and Zhang, J. (2022). Generating adversarial examples via enhancing
latent spatial features of benign traffic and preserving malicious functions. Neurocomputing, 490:413–430.

[181] Zhang, S., Xie, X., and Xu, Y. (2020b). A Brute-Force Black-Box Method to Attack Machine Learning-
Based Systems in Cybersecurity. IEEE Access, 8:128250–128263.

[182] Zhong, Y., Zhu, Y., Wang, Z., Yin, X., Shi, X., and Li, K. (2020). An adversarial learning model for
intrusion detection in real complex network environments. In International Conference on Wireless Algorithms,
Systems, and Applications, pages 794–806. Springer.

[183] Zolbayar, B.-E., Sheatsley, R., McDaniel, P., Weisman, M. J., Zhu, S., Zhu, S., and Krishnamurthy, S.
(2022). Generating practical adversarial network traffic flows using nidsgan. arXiv preprint arXiv:2203.06694.

119

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Research Problem
	1.2 Research Aim
	1.3 Research Questions
	1.4 Contributions
	1.5 Thesis Structure
	1.6 Publications

	2 Background
	2.1 Summary
	2.2 Network Intrusion Detection Fundamentals
	2.3 Machine Learning Fundamentals
	2.3.1 Machine Learning Approaches
	2.3.2 Machine Learning Tasks
	2.3.3 Machine Learning Depth

	2.4 Machine Learning Pipeline
	2.4.1 Problem Definition
	2.4.2 Data Collection
	2.4.3 Data Preprocessing
	2.4.4 Model Selection
	2.4.5 Model Training
	2.4.6 Model Evaluation
	2.4.7 Model Deployment

	2.5 Deep Learning Fundamentals
	2.6 Adversarial Machine Learning Fundamentals
	2.6.1 Adversarial Threat Model
	2.6.2 Adversarial Attacks

	2.7 Conclusion

	3 Threat Modeling for ML-based NIDS
	3.1 Summary
	3.2 Introduction
	3.3 Related Work
	3.4 Background
	3.4.1 Threat Modeling
	3.4.2 STRIDE Model
	3.4.3 Attack Tree Model

	3.5 Threat Modeling for ML-Based NIDS
	3.5.1 ML-based NIDS Components
	3.5.2 Adversary Model
	3.5.3 Attack Surface
	3.5.4 Data Flow Diagram
	3.5.5 Threat Assessment

	3.6 Attack Tree Model For ML-Based NIDS
	3.7 STRIDE Model For ML-Based NIDS
	3.8 Discussion
	3.9 Conclusion

	4 Adversarial Machine Learning in NIDS Domain: A Systematic Review
	4.1 Summary
	4.2 Introduction
	4.3 Related Work
	4.4 Methodology
	4.4.1 Research Questions
	4.4.2 Search Strategy
	4.4.3 Inclusion and Exclusion Criteria
	4.4.4 Data Extraction

	4.5 Generating Adversarial Attacks for ML-based NIDS
	4.5.1 Reinforcement Learning Attacks
	4.5.2 Generative Adversarial Networks Attacks
	4.5.3 Surrogate Model Attacks
	4.5.4 Genetic Algorithms Attacks
	4.5.5 Constrained Generic Attacks
	4.5.6 Certain Features Manipulation Attacks
	4.5.7 Other Approaches

	4.6 Evaluating ML-based NIDS Resilience to Adversarial Attacks
	4.7 Defending ML-based NIDS Against Adversarial Attacks
	4.7.1 Adversarial Training
	4.7.2 Ensemble Learning
	4.7.3 Feature Reduction
	4.7.4 Hybrid Approaches
	4.7.5 Other Approaches

	4.8 Discussion
	4.8.1 Findings Analysis
	4.8.2 Research Questions

	4.9 Conclusion

	5 Realism vs. Performance for Adversarial Examples Against DL-based NIDS
	5.1 Summary
	5.2 Introduction
	5.3 Network Traffic Constraints
	5.4 Literature Drawbacks
	5.5 Experimental Setup
	5.5.1 Datasets
	5.5.2 Dataset Preprocessing
	5.5.3 Adversarial Attacks & Target Model Implementation
	5.5.4 Evaluation Metrics

	5.6 Experimental Results & Analysis
	5.6.1 Attacks Performance
	5.6.2 Attacks Unrealism

	5.7 Discussion
	5.7.1 Attacks Unrealism
	5.7.2 Attacks Infeasibility

	5.8 Conclusion

	6 Resilience Evaluation and Detection of Adversarial Attacks in ML-based NIDS
	6.1 Summary
	6.2 Introduction
	6.3 Literature Drawbacks
	6.4 Resilience Index
	6.5 Adversarial-Resilient Network Intrusion Detection System (AR-NIDS)
	6.6 Experimental Setup
	6.6.1 Adversary Model
	6.6.2 Dataset
	6.6.3 Dataset Preprocessing
	6.6.4 Adversarial Attacks & Models Implementation
	6.6.5 Evaluation Metrics

	6.7 Resilience Evaluation of ML-based NIDS to Adversarial Attacks
	6.7.1 Models Performance Over Clean Test Data
	6.7.2 Models Performance: Clean vs. Adversarial
	6.7.3 Models Adversarial Resilience
	6.7.4 Adversarial Attacks Performance

	6.8 Evaluation of Adversarial-Resilient NIDS Framework
	6.8.1 Baseline Ensemble (BE)
	6.8.2 Adversarially Trained Models (ATM)
	6.8.3 Adversarially Trained Ensemble (ATE)
	6.8.4 Performance of Adversarial Attacks Classifier

	6.9 Impact of Defense Strategies on Adversarial Attacks Efficacy
	6.10 Discussion
	6.11 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Discussion
	7.2.1 Threat Modeling Analysis for ML-Based NIDS: Uncovering Hidden Risks
	7.2.2 Adversarial Evasion Attacks on ML-based NIDS: Reviewing Current Knowledge
	7.2.3 Evaluating the Realism of Adversarial Attacks: Bridging Theory and Reality
	7.2.4 Enhancing ML-Based NIDS Resilience: Shielding the Shield

	7.3 Future Work
	7.4 Challenges and Research Opportunities
	7.5 Conclusion

	Appendix A Experiments Reproducibility
	A.1 Introduction
	A.2 Computer Configuration
	A.3 Packages
	A.4 Experiment 1: Realism vs. Performance for AEs Against DL-based NIDS
	A.4.1 Datasets
	A.4.2 Model Parameters
	A.4.3 Code Repository

	A.5 Experiment 2: Evaluating and Detecting AEs in ML-based NIDS
	A.5.1 Datasets
	A.5.2 Model Parameters
	A.5.3 Code Repository

	Appendix B Datasets Description
	B.1 WSN-DS Dataset
	B.2 BoT-IoT Dataset
	B.3 NF-UQ-NIDS Dataset

	References

