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Abstract

Recently, it has been appealing to integrate Blockchain with IoT in several domains, such

as healthcare and smart cities. This integration facilitates the decentralized processing of

IoT data, enhancing cybersecurity by ensuring data integrity, preventing tampering, and

strengthening privacy through decentralized trust mechanisms and resilient security measures.

These features create a secure and reliable environment, mitigating potential cyber threats

while ensuring non-repudiation and higher availability. However, Blockchain performance is

questionable when handling massive data sets generated by complex and heterogeneous IoT

applications. Thus, whether the Blockchain performance meets expectations will significantly

influence the overall viability of integration. Therefore, it is crucial to evaluate the feasibility

of integrating IoT and Blockchain and examine the technology readiness level before the

production stage. This thesis addresses this matter by extensively investigating approaches to

the performance evaluation of Blockchain-based IoT solutions. Firstly, it systematically re-

views existing Blockchain simulators and identifies their strengths and limitations. Secondly,

due to the lack of existing blockchain simulators specifically tailored for IoT, this thesis

contributes a novel blockchain-based IoT simulator which enables investigation of blockchain

performance based on adaptable design configuration choices of IoT infrastructure. The

simulator benefits from lessons learnt about the strengths and limitations of existing works

and considers various design requirements and views collected through questioners and

focus groups of domain experts. Third, the thesis recognises the shortcomings of blockchain

simulators, such as support for smart contracts. Therefore, it contributes a middleware that

leverages IoT simulators to benchmark real blockchain platforms’ performance, namely

Hyperledger Fabric. It resolves challenges related to integrating distinctive environments:



viii

simulated IoT models with real Blockchain ecosystems. Lastly, this thesis employs Machine

Learning (ML) techniques for predicting blockchain performance based on predetermined

configurations. Contrariwise, it also utilises ML techniques to recommend the optimal

configurations for achieving the desired level of blockchain performance.
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Chapter 1

Introduction

1.1 Introduction

Recently, there has been an increasing interest in the convergence between IoT and Blockchain

to unlock the potential of both paradigms [1]. The Internet of Things (IoT) has emerged

as a transformative technology, connecting billions of devices and enabling innovative ap-

plications in various domains, such as healthcare, transportation, manufacturing, and smart

cities [2]. IoT devices, equipped with sensors and communication capabilities, generate large

amounts of data that can be analysed to derive valuable insights and optimise processes.

However, as the number of IoT devices grows exponentially, concerns about security, privacy,

and scalability have become increasingly prominent [3]. Traditional centralised architectures,

where all data and control flow through a single point, pose significant risks and limitations

for IoT systems. Centralised servers are vulnerable to attacks, single points of failure, and

performance bottlenecks, which can compromise the integrity, availability, and efficiency of

IoT applications [4].

Several studies foresee the opportunities of leveraging blockchain technology to miti-

gate IoT issues and even revisit the way of thinking about IoT solutions [5]. This is due

to several features associated with blockchain technology, such as decentralisation, high

availability, mitigation of single points of failure, immutability, transparency, and traceability



2 Introduction

[6]. Blockchain enables secure data sharing among untrusted parties, prevents tampering

with stored data, and provides a verifiable audit trail for IoT transactions [7].

Despite the promising opportunities of integrating blockchain with IoT, there are several

challenges and complexities along the way. For instance, IoT devices are often resource-

constrained, with limited processing power, storage capacity, and bandwidth [8]. Participating

in blockchain consensus mechanisms and maintaining a full copy of the ledger can be

computationally intensive and energy-consuming, which may not be feasible for many

IoT devices [9]. More importantly, the decentralised nature of blockchain can result in

performance overhead and scalability issues, especially when dealing with high transaction

volumes and real-time data processing requirements [10]. To fully realise the potential

of blockchain IoT integration, it is crucial to thoroughly investigate the design choices,

configuration trade-offs, and performance implications of different blockchain architectures

and consensus algorithms in the context of IoT systems.

The use of simulation for the early evaluation of emerging technologies, such as Blockchain

and IoT, is crucial for ensuring the planning, design and development of proactive solutions

[11]. In particular, simulation can help identify points of strength and limitations, as well

as analyse the requirements for achieving a desired performance target. Even in the post-

production stage, simulation enables the reproduction of issues, the tracking of root causes,

and the proposal of an optimised solution.

As opposed to testing in a real-world environment, simulation can help with all of the

above with minimum risk, less cost possible, and mitigated ethical concerns, particularly

for critical systems [12]. Furthermore, simulation can assist researchers and enthusiasts in

experimenting with large-scale, heterogeneous, and complex systems such as Blockchain

and IoT, which are difficult to access in many cases. In the context of blockchain-based IoT,

simulation allows modelling and exploring various scenarios, testing different configurations,

and assessing the performance and associated trade-offs of blockchain-based IoT applications.

The simulation also provides insight into the behaviour and interactions of the IoT and

Blockchain components under various conditions.
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Despite the importance of simulation for blockchain-based IoT solutions, there is currently

a lack of comprehensive and flexible simulation frameworks specifically designed for this

domain [13]. Existing simulation tools often focus on either IoT or blockchain independently,

lacking the necessary integration and extensibility to capture the unique characteristics and

requirements of blockchain IoT systems [14]. Moreover, many simulation frameworks

are limited in their ability to model diverse IoT scenarios, blockchain architectures, and

consensus algorithms, hindering the exploration of novel solutions and comparative analysis

[14, 11].

To address these limitations, this thesis aims to provide a simulation framework that

covers various aspects of evaluating the performance of blockchain-based IoT systems. First,

it systematically reviews Blockchain and IoT simulation as of today’s practice. Second, it

proposes a modular and extensible simulator for evaluating blockchain-based IoT systems.

Third, it proposes a middleware architecture to integrate IoT simulators with real blockchain

platforms. Finally, it incorporates machine learning (ML) techniques to predict overall per-

formance and recommend optimal configuration parameters to achieve a desired performance

target.

1.2 Research Aim, Questions and Objectives

Estimating the performance of a Blockchain-based IoT Ecosystem is a challenging task.

While several studies have focused on simulating either Blockchain or IoT separately, no

extensive study has considered integrating both technologies. This thesis aims to tackle the

challenges associated with evaluating the performance of a Blockchain-based IoT Ecosystem

by proposing and implementing various approaches. To achieve this, the thesis seeks to

answer the following research questions:

1. RQ1. What techniques and configurations are used in current blockchain simulators?

Exploring the current state-of-the-art Blockchain simulation assists in understanding

the subject and learning from existing knowledge, lessons, and experience. Given

that there has not been a systematic review of Blockchain simulation, and to properly
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answer this question, this thesis holds the objective of conducting a systematic review

of Blockchain simulations, which is useful for

(a) Exploring and understanding the subject of blockchain simulation.

(b) Categorising existing simulators based on their modelling approaches, types of

simulated blockchain platforms, and supported blockchain features.

(c) Identifying the capabilities and shortcomings of existing blockchain simulators

in terms of performance evaluation.

(d) Analysing the usability of existing Blockchain simulators for IoT applications.

(e) Investigating areas where more research and development work is needed to

advance the state-of-the-art.

2. RQ2. Given the lack of existing simulation frameworks for evaluating the performance

of Blockchain-based IoT ecosystems, what is required to bridge the gap?

There has been a growing interest in utilising Blockchain for IoT applications. While

there are simulators for each, the systematic review reveals that no existing framework

considers both in a unified simulator for performance evaluation purposes. Therefore,

this thesis holds the following objectives in this regard (see Figure 1.1 for a visual

illustration):

(a) Gathering key requirements that must be satisfied in the simulator dedicated to

evaluating blockchain-based IoT ecosystems. These requirements are analysed to

determine key features, capabilities, modelling approach, critical performance

aspects, configuration options, parameter fine-tuning process, and evaluation

output. The ultimate goal is a simulator that can capture the characteristics of

a real platform that integrates an IoT ecosystem with Blockchain, mimics its

behaviour, and produces reasonably identical performance metrics. In order

to realise a proper simulation framework design and implementation, there are

various sources considered for the requirements-gathering process, which are:
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i. Examining the systematic review findings with a focus on relevant existing

simulators in terms of their capabilities and shortcomings, shortcomings,

and what lessons are learnt from their experience.

ii. Questioners to consider key requirements proposed by subject-matter experts

and ensure quality coverage.

iii. Interviews with experts who express their desire to participate in further

discussion and analysis of the requirements.

(b) Designing a simulation framework for evaluating the performance of blockchain-

based IoT ecosystems. This step considers the outputs of the requirements

gathering and analysis procedures.

(c) Validating the simulation framework design by holding a workshop that involves

subject-matter experts. The workshop is intended to present the proposed simula-

tion framework design to the select experts, consider their feedback on areas of

strengths and weaknesses via questionnaires, and conduct a focus group for open

discussions on the matter.

(d) Refining the simulation framework design to consider the outcomes of the valida-

tion process and any areas of improvement.

(e) Materialising a reference implementation for the simulation framework design.

(f) Validating and evaluating the reference implementation to ensure whether it meets

the goals of framework design and can capture by conducting the following:

i. Carrying out a goal-oriented approach for measuring the software imple-

mentation quality, namely GQM, short for Goal, Question, Metric. It helps

confirm whether the simulation framework implementation aligns with the

intended design goals.

ii. Suggesting a use case scenario about a blockchain-based IoT ecosystem.

The use case scenario is intended for simulator demonstration, evaluation,

and validation.
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iii. Implementing the use case scenario in real settings (A real blockchain plat-

form and a simplified IoT system).

iv. Benchmarking the real implementation to obtain performance indicators to

be utilised for comparison purposes.

v. Implementing the use case scenario using the proposed simulator to produce

the same performance indicators.

vi. Conducting a statistical analysis to validate whether the simulator perfor-

mance evaluation corresponds to their counterparts produced by the simula-

tor.

Fig. 1.1 The Research Methodology for Realising a Blockchain-based IoT Simulator
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3. RQ3. How feasible is it to utilise IoT simulators as workload generators to benchmark

the performance of real blockchain platforms?

For performance evaluation purposes, not all blockchain features (i.e. smart contracts)

can be perfectly simulated for every scenario. A set of real Blockchain platforms exists

that are open source, accessible, and can be deployed to scalable cloud computing re-

sources. However, large-scale IoT infrastructures are not easily accessible for research

and development purposes. To answer this question, this thesis proposes a middleware

architecture that addresses the gap between IoT simulators and real blockchain plat-

forms for performance benchmarking purposes. The following objectives are set for

this matter:

(a) Design a middleware architecture that addresses the challenges associated with

the connection and interaction between blockchain platforms and IoT simulators

(b) Ensure interoperability and data synchronisation between the two distinctive

environments.

(c) Provide a reference implementation that demonstrates the middleware architec-

ture.

(d) Validate correct operations by utilising the implemented middleware for bench-

marking an IoT simulator with a real blockchain platform.

4. RQ4. How do machine learning techniques assist in predicting blockchain performance

metrics and identifying optimal configuration parameters?

Blockchain infrastructure is heterogeneous and complex. Numerous factors influencing

the overall blockchain performance must be considered before an organisation investi-

gates blockchain viability before production. While simulation can help investigate

the performance of blockchain-based IoT applications, there would be multiple trial

and error processes until the right configuration parameters are determined for optimal

blockchain performance. To answer this question, this thesis holds the following

objectives:
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(a) Investigate proper machine learning techniques for prediction and recommenda-

tions.

(b) Design and implement ML models to predicate the overall blockchain perfor-

mance (i.e., throughput, latency, etc.) based on predefined configuration parame-

ters.

(c) Design and implement ML models to recommend optimal configuration parame-

ters to achieve desired blockchain performance.

Considering the thesis aim, research questions, and associated objectives, the thesis has

proposed and implemented various approaches, as outlined in Section 1.3. These approaches

include developing a novel simulation framework that integrates both Blockchain and IoT

technologies (discussed in Chapter 5), designing a middleware architecture to enhance

benchmarking capabilities (discussed in Chapter 6) and utilizing machine learning models

to predict performance metrics and optimize configurations (discussed in Chapter 7). The

findings from these efforts demonstrate that the proposed approaches have successfully

achieved the task of estimating and evaluating the performance of a Blockchain-based IoT

Ecosystem. Consequently, these contributions have successfully achieved the research aim

and addressed the research questions and objectives, as summarised in Chapter 8.

1.3 Primary Contributions

The primary contributions of this research are as follows:

1. The first primary contribution is a systematic mapping study on blockchain simulation.

It addresses the first research question (RQ1) and is included in Chapter 3. This contri-

bution is published in a research work[13] that extensively and systematically surveys

the domain of Blockchain simulations. It critically classifies existing blockchain simu-

lation studies based on their features, capabilities, and limitations. Moreover, it delves

into the implementation of existing open-source blockchain simulators to analyse their

supported configuration parameters and performance evaluation metrics. It critically
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compares their code quality, flexibility, reliability, and maintainability. Furthermore, it

investigates whether and how these simulators are scientifically validated.

2. The second primary contribution is a simulation framework for evaluating the perfor-

mance of blockchain-based IoT ecosystems. It addresses the second research question

(RQ2). It is covered in two Chapters 4 and 5. The contribution of the simulation frame-

work is the first in the literature to combine IoT and Blockchain in a unified simulation

tool for performance evaluation purposes. The simulation framework undergoes a

rigorous evaluation and validation procedure, including requirements gathering and

analysis, conceptual design, implementation and validation, as visualised in Figure 1.1.

Two published scientific papers [14, 15] is associated with this contribution with re-

gard to requirements gathering and analysis, as well as design conceptualisation and

validation. A third paper about the implementation and experiments has also been

prepared and submitted to a journal.

3. The third primary contribution is a middleware architecture that enables utilising IoT

simulator for benchmarking real blockchain platforms. It addresses the third research

question (RQ3) and is included in Chapter 6. It resolves major challenges associated

with the distinction between simulated execution environments (IoT simulators) and

real execution environments (Blockchain platforms). Therefore, it enables connec-

tivity and communication between both ends to enable utilising IoT simulators (i.e.

IoTsim-Osmosis [16]) as workload generators to benchmark the performance of a real

blockchain platform (i.e. Hyperledger Fabric [17]. A scientific paper has been prepared

and submitted to a journal that elaborates on the design of middleware architecture, its

implementation, and the validation process.

4. The fourth primary contribution is designing and implementing machine learning mod-

els trained by incorporating large data sets generated from the proposed blockchain-

based IoT simulator. It addresses the fourth research question (RQ4) and is included in

Chapter 7. Two purposes are considered in this regard as follows. First, employing the

k-nearest neighbours (kNN) method for predicting the overall blockchain performance
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based on various elements such as the number of nodes, miners, and transactions.

Second, an enhanced version of the Salp Optimization (ISO) algorithm incorporating

rough set theory is introduced to handle performance uncertainty and identify opti-

mal configuration parameters for achieving a target blockchain performance. This

contribution has been published at a scientific conference [18].

1.4 List of Publications

The research findings from chapters 3, 4, 5 and 7 have been published in international

conferences and journals. The primary researcher did the majority of the work, including the

idea, running the experiments, and writing the paper. The co-authors contributed significantly

through discussions, paper revisions, editing, and comments.

Conference Papers

1. Albshri, A., Alzubaidi, A., Awaji, B., and Solaiman, E. (2022). Blockchain Simu-

lators: A Systematic Mapping Study. In 2022 IEEE International Conference on

Services Computing (SCC) (pp. 284-294). (This work covers chapter 3).

Authors Contributions: Designing and developing the framework for the systematic

mapping study on blockchain simulators was carried out by A. Albshri. A. Albshri led

the data collection and analysis. A. Albshri designed and executed the literature review

and data extraction; A. Albshri analyzed the data. A. Albshri drafted the manuscript,

then reviewed and edited it by A. Albshri, E. Solaiman, A. Alzubaidi, and B. Awaji; E.

Solaiman is the lead supervisor of the project.

2. Albshri, A., Awaji, B., and Solaiman, E. (2022). Investigating the Requirement of

Building Blockchain Simulator for IoT Applications. In 2022 IEEE International

Conference on Smart Internet of Things (SmartIoT) (pp. 232-240). (This work covers

chapter 4).
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Authors Contributions: Designing and collecting data to investigate the requirements

for building a blockchain simulator for IoT Applications was carried out by A. Albshri;

A. Albshri developed the methodology; A. Albshri designed and executed the data

collection and analysis. A. Albshri drafted the manuscript, then reviewed and edited it

by A. Albshri, E. Solaiman, and B. Awaji; E. Solaiman is the project’s lead supervisor.

3. Albshri, A., Alzubaidi, A., and Solaiman, E. (2022). A Model-Based Machine

Learning Approach for Assessing the Performance of Blockchain Applications.

In 2023 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp.

46-55). (This work covers chapter 7).

Authors Contributions: A. Albshri designed and developed the machine learning

models for assessing blockchain performance; A. Albshri developed the methodology;

A. Albshri led the data collection. A. Albshri implemented the ML models; A. Albshri

analyzed and evaluated the results. A. Albshri drafted the manuscript, then reviewed

and edited it by A. Albshri, E. Solaiman, and A. Alzubaidi; E. Solaiman is the project’s

lead supervisor.

Journal Papers

1. Albshri, A., Alzubaidi, A., Alharby, M., Awaji, B., Mitra, K., & Solaiman, E. (2023). A

conceptual architecture for simulating blockchain-based IoT ecosystems. Journal

of Cloud Computing, 12(1), 1-26. (This work covers chapter 4 and 5).

Authors Contributions: Designing and developing the conceptual architecture for

simulating blockchain-based IoT ecosystems was carried out by A. Albshri; A. Albshri

and A. Alzubaidi developed the methodology; A. Albshri evaluated the conceptual

architecture. A. Albshri drafted the manuscript, then reviewed and edited by A. Albshri,

E. Solaiman, A. Alzubaidi, M. Alharby, K. Mitra, and B. Awaji; E. Solaiman is the

project’s lead supervisor.
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Under Review

1. The paper entitled “SimBlockLink: A Middleware for Linking IoT Simulations with

Real Blockchain Platforms for Enhanced Performance Evaluation”, by Alzubaidi,

A., Albshri, A., Mitra, K., Ranjan, R., & Solaiman, E., has been submitted to the

Journal of Blockchain: Research and Applications. It is relevant to the chapter 6.

Authors Contributions: Designing and developing the SimBlockLink middleware

architecture for linking IoT simulations with real blockchain platforms was carried

out by A. Alzubaidi and A. Albshri; A. Albshri developed the methodology; A.

Albshri developed the conceptual framework and middleware implementation; A.

Albshri evaluated the SimBlockLink middleware architecture; A. Albshri drafted the

manuscript; then, reviewed and edited by A. Albshri, A. Alzubaidi, E. Solaiman and K.

Mitra; E. Solaiman is the project’s lead supervisor.

My Contribution Scope: The collaborative work in Chapter 6 focuses on improving

the design and implementation of an existing tool previously developed by Alzubaidi.

The improved version of this tool has been specifically adapted to serve the purpose of

my thesis, which focuses on blockchain performance benchmarking using IoT simula-

tors. In contrast, the previous version of the tool was primarily focused on a different

purpose: examining SLA compliance in a multi-cloud setting within the context of IoT.

While this chapter required a different design, implementation, and results analysis, the

tool has been significantly improved, particularly in terms of the transaction submission

mechanism and compatibility with recent blockchain advancements. Consequently, the

tool was redesigned, reimplemented, and validated to serve the purpose of my work.

Collaborative Research

In addition to the publications mentioned above, I have co-authored several research papers

in the Blockchain field. However, these papers have not directly contributed to this thesis.

The following is a list of those papers:
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1. Awaji, B., Solaiman, E., & Albshri, A. (2020). Blockchain-based applications

in higher education: A systematic mapping study. In Proceedings of the 5th

International Conference on Information and Education Innovations (pp. 96-104).

Co-Author Role: A. Albshri’s role in this paper involved collecting data from various

sources. Additionally, A. Albshri collaborated with B. Awaj to analyze and classify

the papers based on pre-specified factors and contributed to the manuscript’s review

and editing.

2. Awaji, B., Solaiman, E., & Albshri, A. (2022). Development and Evaluation of a

Trusted Achievement Record of Accomplishments for Students in Higher Ed-

ucation Using Blockchain. In International Conference on Computer Supported

Education (pp. 100-124).

Co-Author Role: A. Albshri’s contributions to this paper included designing the

methodology in collaboration with B. Awaj, as well as reviewing and editing the

manuscript.

1.5 Thesis Structure

This thesis primarily consists of the contributions outlined in Section 1.3. Subsequent

sections provide an overview of the thesis structure and associate each contribution with its

corresponding chapter.

• Chapter 2 provides an overview of blockchain technology, its integration with the

Internet of Things (IoT), and evaluation methods for blockchain-based IoT applications.

• Chapter 3 provides a comparative analysis of blockchain simulators, focusing on their

features, code quality, and the validation of metrics.

• Chapter 4 analyzes expert opinions on the necessity and design of a simulation frame-

work for blockchain-based IoT ecosystems, incorporating two studies and interviews

to understand associated opportunities and challenges.
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• Chapter 5 proposes an architecture for simulating blockchain-based IoT systems,

including design, implementation, and performance evaluation through statistical

analyses.

• Chapter 6 develops a middleware to connect IoT simulators with blockchain platforms,

detailing its design, implementation, and benchmarking capabilities for evaluating

blockchain performance under simulated IoT workloads.

• Chapter 7 introduces machine learning models for predicting blockchain performance

metrics and optimizing blockchain configurations.

• Chapter 8 summarizes the thesis’s contributions and limitations and suggests directions

for future research.

• Appendix A provides the technical details for the reference implementation of the

Blockchain-based IoT simulation framework proposed in Chapter 5.

• Appendix B illustrates the user manual for the implemented simulator.

• Appendix C provides the technical details for conducting the comparative analysis

between the implemented simulator and a real blockchain platform to examine the

accuracy of the former’s performance evaluation in terms of transactions throughput

and latency.



Chapter 2

Background

Summary

This chapter provides a background for the thesis, covering the main aspects of it. First, it

provides an overview of blockchain technology and highlights its characteristics, such as types

of blockchain networks, consensus protocols, smart contracts, and transaction execution 2.1.

Next, it provides an overview of the Internet of Things (IoT) concept and its architecture 2.2.

The chapter then sheds light on a set of challenges associated with IoT 2.3. The following

section delves into the motivations behind integrating these two technologies, highlighting the

benefits and challenges associated with their convergence. It further classifies the motivations

based on system functionality by distinguishing between essential and non-essential features.

Finally, it explores four key evaluation approaches for blockchain-based IoT systems 2.4:

Benchmarking, Simulation, Middleware, and Model-based machine learning.

2.1 Blockchain Technology

This section overviews the fundamentals of blockchain technology, its key characteristics,

and potential applications in various industries.
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2.1.1 An Overview of Blockchain Technology

In centralised systems, a single authority usually processes transactions between parties.

With this model, various challenges must be dealt with, including security vulnerabilities

(e.g., unauthorised access), reliability concerns (e.g., single point of failure), trust levels, and

misconduct acts. Blockchain technology was introduced with the promise of overcoming

these challenges by allowing untrusted parties to interact in a distributed manner without

the need for a third party. Unlike centralised systems, a blockchain system is essentially a

decentralised system that processes transactions by an interconnected network of independent

computing nodes. Every processed transaction is immutably recorded within blocks on a

replicated ledger over participating nodes.

The participating nodes are responsible for maintaining the validity of the commonly

shared ledger by collecting transactions from a pool of pending transactions, validating the

picked transactions, and appending them to new blocks. Each validating node proposes

its block of transactions by propagating it to other peers for consensus on the validity of

the block’s structure and content. Ultimately, a successfully validated block will end up

appended to the ledger of each participating node.

Blockchain derives its name from its ledger structure, which organises its transactions

into a chain of blocks, as depicted in Figure 2.1. Each block is uniquely identified by a

cryptographic hash and linked to its predecessor, forming a series of interlinked blocks.

Once a block is generated and appended to the blockchain ledger, misbehaving nodes find it

difficult to alter transactions without rewriting all proceeding blocks. This property makes

the blockchain system resistant to tampering and the double-spending problem [19]. The

unique blockchain data structure promotes transparency and traceability while ensuring high

availability through data replication across participating nodes.
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Fig. 2.1 A chain of blocks

Bitcoin [20] is the first and most well-known Blockchain example, which solely serves

the purpose of being a decentralised cash system over a peer-to-peer (P2P) network. Bitcoin

lacks the openness and programming capabilities needed to develop further decentralised ap-

plications beyond financial use cases. Consequently, several blockchains emerged to remedy

this shortcoming by offering agnostic blockchain infrastructure and smart contracts. Hyper-

ledger Fabric [17], Ethereum [21], and Quorum [22] are common examples of Blockchain

platforms for Decentralised Applications (DApp). The concept of smart contracts plays an

essential role in these blockchain platforms, which is a computer programme that can be

incorporated into the blockchain to provide unified instructions to the participating nodes

about processing and recording transactions and their payload data. Consequently, it has been

possible to seamlessly integrate blockchain with various technologies such as the Internet

of Things (IoT) and Cloud computing to serve a multitude of decentralised applications in

several domains such as education, healthcare, supply chain, manufacturing, and others.

2.1.2 Blockchain Characteristics

2.1.2.1 Decentralisation and Consensus Mechanisms

Blockchain is generally considered a decentralised peer-to-peer (P2P) network system and

infrastructure. Contrary to centralised systems, no single author can manage the ledger,

process transactions, and decide their validity and finality [23]. Therefore, Blockchain, being

a decentralised system, usually employs consensus mechanisms to compensate for the lack

of a single authority to help validating nodes reach a common decision on transactions’
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validity and finality [24]. Given the multitude of validating nodes, consensus mechanisms

are important to guarantee data integrity and consistency across the blockchain network [23].

Several studies have explored various consensus protocols utilized in different blockchain

networks, including those discussed by [25] and [26]. For instance, Bitcoin employs Proof-

of-Work (PoW) as its consensus mechanism. Although Ethereum used to adopt the same

consensus protocol, it has recently transitioned towards a more lightweight protocol known

as Proof-of-Stake (PoS). Furthermore, various Ethereum-based independent networks have

adopted different consensus protocols, such as Proof of Authority (PoA) and Proof of Elapsed

Time (PoET). Hyperledger Fabric, which operates as a consortium and a permissioned

network, follows a modular approach to consensus mechanisms, allowing the adoption of any

protocol in theory and by design [17]. Currently, the recommended and supported consensus

protocol for Hyperledger Fabric is Raft.

2.1.2.2 Types of Blockchain Networks

While most blockchain platforms emphasise the concept of decentralisation, they can be

categorised into three main types of network openness: public, consortium and private [27].

Each type has its own unique characteristics, advantages, and disadvantages, as illustrated in

Table 2.1.

1. Public Blockchains: also interchangeably referred to as permissionless blockchains,

which enables any node to join the network, view the ledger and participate in transac-

tions processing and block validation. Public blockchain networks are characterised

by a high degree of decentralisation and transparency, where all users possess the

same privilege levels. Several open blockchain platforms, such as Bitcoin [20] and

Ethereum [21], encourage validating nodes to participate in the network by providing

incentives in the form of cryptocurrencies or tokens. Public blockchains are particu-

larly distinguished by their high degree of inclusiveness and transparency. They also

exhibit outstanding resistance to single points of failure, partially due to the extensive

participant base. Nonetheless, they come with drawbacks such as privacy concerns,

limited transaction processing capacity, extended delays, and substantial energy usage.
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These disadvantages are mainly due to the large number of validating nodes and re-

liance on heavyweight consensus protocols (e.g., Proof-of-Work). Given their open

nature, public blockchain networks follow an economic model in which clients hold

the responsibility for covering transaction costs, which can be seen in many cases as a

disadvantage.

2. Consortium Blockchains: also interchangeably referred to as permissioned blockchains,

only enables a predetermined set of authorised and authenticated nodes to participate

in transaction processing and block validations. Typically, these nodes are under the

control of organisations that are part of a consortium. Positioned as a blend between

public and private blockchains, consortium blockchains offer a level of decentralisation

while retaining control and privacy features, as exemplified by Hyperledger Fabric [17].

The key benefits of consortium blockchains include increased transaction processing ca-

pacity, reduced latency, and improved privacy compared to public blockchains. These

advantages are mainly due to the limited number of participating nodes and reliance

on lightweight consensus mechanisms (e.g. RAFT, a crash-fault-tolerant protocol).

Moreover, consortium Blockchains present a structured governance framework, allow-

ing members to establish and adhere to enforced rules and guidelines. Unlike public

blockchain networks, participating organisations are responsible for covering the cost

of running and operating the underlying infrastructure and transaction processing.

3. Private blockchains: Also referred to as permissioned blockchains, private blockchains

are under the full control of a single organisation. Private blockchains are the least

network in terms of decentralisation. It can be any public or consortium blockchain

platform, but with the exception that participation is limited to nodes under a single

authority. This limited form of decentralisation could enable higher transaction pro-

cessing capacity, minimal delay, and the ability to exercise complete authority over the

network and its members. Furthermore, private blockchains can be useful for achieving

a higher confidentiality level by enabling ledger access restrictions. Nevertheless,
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private blockchains can be seen as redundant since node participation is limited to a

single authority.

The selection among public, consortium, and private blockchains depends on their suitabil-

ity to various use cases and requirements. Public blockchains are well-suited for applications

that emphasise decentralisation, transparency, and security, such as cryptocurrencies and de-

centralised finance (DeFi) applications. Private blockchains are most suitable for applications

that prioritise efficiency, confidentiality, and governance, such as internal record-keeping and

asset tracking within a single entity. Consortium blockchains are optimal for applications

that necessitate a trade-off between decentralisation, efficiency, and confidentiality, such as

supply chain management and cross-border payments.

Table 2.1 Comparison of the key features of public, consortium, and private blockchains.

Feature Public Blockchain Consortium Blockchain Private Blockchain

Access Permissionless Permissioned Permissioned

Decentralisation High Medium Low

Transparency High Medium Low

Performance Low Medium High

Privacy Low Medium High

Governance Decentralised Partially centralised Centralised

Examples Bitcoin, Ethereum Hyperledger Fabric Any Blockchain platform

2.1.2.3 Smart Contracts

Following the introduction of Bitcoin, several generic blockchain platforms were developed

to utilise blockchain features beyond financial use cases [28]. These generic blockchain

platforms mainly rely on the concept of smart contracts to express the logic of transaction

execution. The concept of smart contracts is not a new concept. Szabo (1994) [29] first

introduced the concept, defining it as "a computerised transaction protocol that executes

the terms and conditions of a contractual agreement", thereby enabling self-enforcement

without the need for trusted intermediaries.

With the advent of blockchain technology, this concept has materialised to existence as

an electronic program stored on the chain, intended to act as a trusted intermediary code of
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conduct between participants, even in the light of no mutual trust. To provide a practical

definition, smart contacts, in the context of blockchain, are programmed instructions that

describe how validating nodes must execute transactions. Ethereum and Hyperledger Fabric,

for instance, enable the deployment and execution of smart contracts. The former introduces

a new programming language called Solidity for developing smart contracts, while the latter

provides smart contract development frameworks based on existing programming languages

such as JavaScript, Golang, and Java.

It is worth noting that once the smart contract is deployed, it is difficult to upgrade

the smart contract. Different Blockchain platforms have different degrees of immutability

in smart contracts, ranging from full immutability, as would be the case with Ethereum,

to partial immutability, as would be the case with Hyperledger Fabric. This feature is

important for countering possible cyberattacks or misconduct. The latter allows smart

contract upgradability under rigorous governance procedures for approving a new smart

contract version. In any case, and as Figure 2.2 illustrates, each validating node deploys

a replica of the smart contract to execute a block of pending transactions. Provided that

the outcome of the transaction execution is validated and agreed upon, the outcomes are

immutability recorded on the ledger.

Fig. 2.2 Validating nodes execute pending transactions via their replica of a smart contract
and record the outcome into their copy of the ledger
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2.2 Internet of Things (IoT)

This section provides an overview of the concept of the Internet of Things (IoT), as well as

its architecture and components.

2.2.1 An Overview of IoT

The Internet of Things (IoT) concept is established around the idea of enabling virtually

anything to connect to the Internet and actively communicate meaningful information [30]. It

facilitates the creation of intelligent systems by processing and analysing vast amounts of data

collected from sensors and devices and actively responding to changing factors. IoT promises

the creation of unprecedented business value with less human intervention, improved produc-

tivity, and effective decision-making [31]. Technically, IoT is a heterogeneous network of

interconnected devices, objects, and gadgets that are usually featured with capabilities such

as sensing, actuation, computing resources, connectivity, and communication [32]. One can

think of a wide range of applications that can benefit from the IoT concepts, including smart

homes [33], smart cities [34], Telemedicine [35], and smart grids [36].

2.2.1.1 IoT Architecture

Several proposed IoT architectures exist in the literature, such as Al-Fuqaha et al.[37] and

Bouakouk et al.[38]. This thesis conveniently adopts the architecture proposed by Xu et

al.[39]. which is composed of four layers, mainly perception, networking, service and

application, as shown in Figure 2.3.

1. Perception Layer: The perception layer is directly associated with the physical world.

In this layer, sensors are used to collect environmental information, while actuators

are used to respond to received data or changing factors [40]. The perception layer

accommodates the following:
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Fig. 2.3 IoT architecture

(a) Any things attached to industrial controllers such as Programmable Logic Con-

trollers (PLC), Remote Terminal Units (RTU), Intelligent Electronic Devices

(IED), or even commercial controllers such as Raspberry Pi and Arduino.

(b) Sensors collect data from their surroundings, such as temperature, humidity,

pressure, smoke, fire, position, posture, etc.

(c) Actuators that can respond to events and take actions [40] whether they are

electronic (e.g., relays), pneumatic (e.g., rod-style cylindrical) or hydraulic (e.g.,

hydraulic rotating valves).

2. Networking Layer: The network layer is responsible for connecting things to the Inter-

net to enable the transmission of their collected data from the perception layer to their

destination. There are various networks, connectivity, communication protocols, and

technologies involved. Some of them are specifically suited for lightweight IoT devices,

while others are well-established and not only used for IoT purposes but can be found

elsewhere. For instance, Well-established connectivity protocols and technologies in

the network layer can involve Wireless networks (e.g. Wi-Fi and Bluetooth), Wired

networks (e.g. Ethernet), and Cellular networks (e.g. 3G, 4G or 5G). The Hypertext

Transfer Protocol (HTTP) is a well-established communication and messaging proto-



24 Background

col that is still in use for IoT purposes. On the other hand, lightweight connectivity

protocols and technologies that are well-suited for constrained-resources IoT devices

include, but are not limited to, Low-Power Wide-Area Networks NB-IoT, LoRaWAN

and Sigfox, Radio Frequency Identification (RFID), and Near Field Communication

(NFC) [41]. Regarding lightweight communication and messaging protocols, Message

Queuing Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP)

are some examples that can suit IoT devices in most cases [37].

3. Service Layer: The service layer is responsible for processing and managing the data

collected from the perception layer and transmitted through the network layer. This

layer handles various tasks, such as things management, data storage, data analysis,

and decision-making. For instance, devices collected data sets from their attached

sensor. Given proper authentication and authorisation from the device management

component at the service layer, devices can send data for long-term storage, which

can then be analysed to extract insights and make informed decisions [40]. Moreover,

the service layer is also concerned with business logic control, configuration, updates,

monitoring, and security [40].

4. Application layer: This layer represents the generated value from connected things

to the internet. The generated value can be in the form of an emerging application

or an enhanced experience. Applications can be divided into two categories, which

are critical applications (e.g. industrial) of life quality applications (e.g. smart home).

Either way, the application layer interfaces with end users and other machines for

interaction and communication with the underlying IoT ecosystem. For instance, it

can provide a user-friendly interface, whether desktop, web, or mobile Graphical

User Interface (GUI), allowing users to control IoT devices and access visualised data

remotely. Dashboards and visualisation tools can provide interactive and intuitive

representations of data, which can be particularly beneficial for monitoring and alerting

purposes [42]. Application Programming Interfaces (APIs) and Software Development

Kits (SDKs) are also related to the application layer since they enable other machines
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and applications to integrate and extend the underlying IoT system and communicate

with it. Several domains, such as healthcare, smart cities, education, agriculture, and

others, can take advantage of the underlying IoT system to innovate an unprecedented

application or enhance traditional systems by introducing an enhanced experience [43].

2.3 Integration of Blockchain with IoT

This section highlights areas where the integration of blockchain and IoT can be appealing and

explains the benefits and challenges associated with their convergence. It also differentiates

between motivations that are essential for system functionality and those that are beneficial

but not strictly necessary.

2.3.1 Motivation for Integrating Blockchain with IoT

Several challenges associated with typical IoT systems call for revisiting current models

and incorporating revolutionary and effective technologies and methods. When considering

the features of Blockchain technologies, they present an appealing opportunity to utilise

Blockchain technology to overcome challenges of IoT or simply for creativity and innovation

grounds [44]. For example, the following are some of the IoT challenges that can possibly be

addressed by blockchain features:

1. Reduced Latency: In a centralised system, data sets are usually persisted in a central

data storage. Hence, undesirable delays can occur when sending collected data from

geographically dispersed devices to a central hub or requesting data [45]. Distributed

nodes can process and store data locally, which may help in reducing latency and

enabling faster response for real-time applications such as traffic management or smart

grids [45]. Fog Computing, which is an IoT extension, is distributed by nature and

can directly benefit from the distributed nature of Blockchain technology [46]. With

Blockchain, Fog nodes can benefit from the local ledger to mitigate the need for mobile

IoT devices for constant communication with the distant cloud, minimizing delays

caused by network congestion or geographical distance [46].
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2. High Availability: It is a vital aspect for critical IoT systems, such as manufacturing

and smart grids, to remain functional whenever needed [32]. Any downtime or inter-

ruption in the availability of any part (e.g. sensors, devices, networks, servers, and

applications) of such heterogeneous and complex IoT systems can hinder effective

operations and lead to significant life and financial losses. Most traditional IoT systems

are heavily dependent on centralised servers, in which a failure at the latter causes the

entire ecosystem to degrade or, worse, completely get out of service [47]. This case is

extremely undesirable in critical systems that require high reliability and dependability.

The adoption of a highly available system approach (i.e., redundancy) can positively

enhance the ability of IoT systems to operate continuously. One of the essential

advantages of blockchain is its ability to mitigate the risk of a single failure point,

which sounds appealing for resolving such issues in IoT systems [48]. In Blockchain,

all validating nodes can continue to validate transactions and record their outcomes,

even if some nodes are out of service. Once absent nodes are available, they can

synchronise their ledger and carry on their operations from that point [49].

3. Trust and Accountability: A typical IoT application involves multiple stakeholders

and various participants to deliver its aims and goals [50]. For instance, an IoT-

based shipment tracking system can involve suppliers, various international customs,

cargo companies, warehouses, delivery companies, etc. As to which party to trust

for transaction validation and data integrity, it can be problematic. Independent

third-party entities may sound appealing, but there are several issues associated with

them, such as cost, single point of failure, and potential misconduct [51]. Blockchain

removes the need for a single authority or a third party. It offers a high level of trust

because the majority of participants must come to a consensus on transaction validity

based on preset rules and procedures [51]. Transactions transparency, traceability, and

immutability features can provide an out-of-the-box accountability tool, which prevents

the dilemma of finger-pointing where each involved party refuses to be responsible for

a failure, given the lack of hard evidence.
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4. Security and Resilience: IoT applications rely heavily on generated data for decision-

making and delivering the intended business value. Hence, it is important to maintain

the integrity of the data, whether it is in transit or rest, as well as the security of the

overall IoT system from harmful actions [32]. Each IoT node can present a potential

failure point when exposed to cyberattacks such as distributed denial of service (DDoS)

attacks, injection attacks, and other security threats [52]. Additionally, the reliance

on centralised systems, such as a single cloud provider or Supervisory Control and

Data Acquisition (SCADA) systems, can introduce a single point of failure when being

vulnerable to attacks [53]. In such an event, the overall IoT system can negatively

diverge from the intended behaviour.

Blockchain is infamous for its security-by-design feature, employing well-established

cryptography algorithms and hashing techniques wherever possible at the journey

of transactions [54]. To begin with, the Zero-trust architecture is adopted in the

vast majority of blockchain platforms [55]. A public key infrastructure (PKI) is

also essential for sending, processing, and persisting transactions in these blockchain

platforms. The data organisation into a chain of hashed blocks and transactions

consolidates immutability, making it difficult for any blockchain node to tamper with

the data in their local ledgers maliciously. Even if a node manages to execute malicious

actions or is compromised for any reason, several measures are in place to tackle the

issue, such as the distribution nature of the blockchain network, the mitigation of

points of a single failure, replication and consensus mechanism. These are some of the

reasons why blockchain can be considered for securing IoT networks and preserving

data integrity.

2.3.2 Challenges Associated with the Convergence between Blockchain

and IoT

Despite the opportunities of integrating Blockchain with IoT, several challenges and points of

consideration must be accounted for when designing a blockchain-based IoT solution, which
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arises from the complexities of both technologies and the difficulties in implementation. The

following are examples of which:

1. Resource Constraints: Many IoT devices are often battery-powered and have lim-

ited energy resources that make energy efficiency a critical factor in the design of

blockchain-based IoT architectures [10]. On the other hand, several blockchain plat-

forms employ heavyweight consensus protocols (i.e. Proof of Work (PoW)) and

security measures (i.e. PKI and Zero Knowledge Proof (ZKP)), which require high

computational resources to cope with [56]. Furthermore, several IoT devices are

limited in their capabilities, such as processing, storage, connectivity and commu-

nication protocols [10]. Consider a scenario where IoT devices must continuously

operate within the blockchain network, which calls for the need to address associated

challenges given the lack of sufficient IoT capabilities.

2. Scalability: Many IoT applications can generate a massive amount of datasets from

an enormous number of IoT devices, such as in healthcare and power grid. Unlike

centralised systems, scalability is a major challenge in integrating blockchain with

IoT, given the level of distribution and decentralisation of most blockchain platforms.

This is particularly imminent with blockchain platforms that depend on heavyweight

consensus mechanisms (e.g., PoW), which severely impacts the overall performance

and limits transaction throughput [10]. This fact defeats the purpose of utilising

blockchain to reduce latency in the overall system, even if it succeeds in reducing

latency between IoT devices and local blockchain nodes.

3. Integration Complexity: Both IoT and Blockchain are complex and heterogeneous,

each with its own set of protocols, standards, and architectures. This complexity

presents several challenges that can hinder research and development (R&D) efforts in

experimenting with blockchain-based IoT solutions [14]. While Blockchain platforms

are mostly accessible thanks to their open-source nature and scalable cloud services,

a significant obstacle lies in accessing sufficiently actual IoT infrastructure for ex-

perimental purposes. Implementing a real-world IoT system to assess the viability
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and effectiveness of a blockchain-driven approach can be laborious and demanding

in terms of resources, necessitating the setup of the tangible quantity of equipment,

acceptable infrastructure scale, and the combination of different elements and tech-

nologies [57]. Additionally, organisations may encounter challenges related to funding,

understaffing, or technical knowledge to conduct practical testing and assessment of

Blockchain-based IoT solutions [15] before the production stage.

2.3.3 Essential and Non-essential Motivations for Integrating Blockchain

with IoT

When considering the integration of blockchain with IoT, it is important to differentiate

between motivations (e.g. features) that are essential for system functionality and those that

are beneficial but not strictly necessary. This section highlights and distinguishes between

the motivations discussed in Sections 2.3.1 and 2.3.2.

Essential Motivations

These motivations address critical challenges and are often required to ensure the effective

operation of IoT systems.

1. High Availability: Critical IoT systems like manufacturing and smart grids need

continuous operation. Blockchain’s decentralization prevents single points of failure,

ensuring system functionality despite node failures.

2. Security and Resilience: IoT systems require data integrity and protection from

cyberattacks. Blockchain’s cryptography and hashing ensure data immutability and

system reliability, safeguarding IoT networks.

3. Trust and Accountability: Blockchain’s consensus mechanisms provide a transpar-

ent, traceable, and immutable transaction record, essential for multi-stakeholder IoT

applications like supply chain management.

4. Scalability: IoT applications generate vast data, posing scalability challenges. Blockchain

can manage this, but heavy consensus mechanisms like PoW can impact performance.
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Non-essential Motivations

These motivations offer substantial benefits and opportunities for enhancement but are not

always critical for the core functionality of IoT systems.

1. Reduced Latency: Reducing latency enhances real-time performance but isn’t always

critical. Blockchain can improve IoT performance by processing data locally, reducing

delays from network congestion or distance.

2. Resource Constraints: IoT devices often have limited power and processing. Address-

ing these constraints is important but not always critical. Blockchain needs significant

resources, but lightweight consensus or task offloading addresses blockchain’s high

computational needs.

2.4 Performance Evaluation Approaches

Evaluating the performance of Blockchain-based IoT systems is essential for assessing their

viability and effectiveness. Performance evaluation may take place in the early stages or

after the production stage. Given the complexity of both such systems and the difficulty

of accessing a large and sufficient IoT infrastructure, this thesis is more focused on the

early stages of performance evaluation. The performance evaluation must account for the

unique characteristics and requirements of each of the underlying technologies and the

convergence between them [58]. The distributed nature of blockchain networks, combined

with the heterogeneity and resource constraints of IoT devices, necessitates the design of

experiments that can capture the complex interactions and performance trade-offs between the

various components. This involves the selection of appropriate metrics, such as transaction

throughput, latency, and energy consumption, as well as the design of realistic workloads and

network properties that can practically reflect real-world deployments. The remainder of this

section provides an overview of key performance evaluation approaches employed in this

thesis, which are Benchmarking 2.4.1, Simulation 2.4.2, Middleware 2.4.3, and Model-based

machine learning 2.4.4.
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2.4.1 Benchmarking Approaches

Benchmarking is a methodical process that involves conducting standardised and reproducible

evaluations of blockchain-IoT systems, comparing their performance against established

baselines and other state-of-the-art solutions [59, 60]. The benchmarking approach can

enable a more objective and comparable assessment of different blockchain-IoT implemen-

tations, allowing researchers to identify strengths, weaknesses, and areas for improvement.

The output of a benchmarking process can help improve the system design by identifying

performance bottlenecks [61].

Key properties and requirements must be met to ensure effective benchmarking, including

repeatability, comparability, and relevance [62]. Benchmarks must be developed using a

rigorous scientific process based on well-established and acknowledged metrics that are

practical and widely applicable to research and real-world contexts [63]. For instance, the

Hyperledger Performance and Scale Working Group [64] developed an evaluation framework

for assessing key metrics of blockchain performance, such as throughput, latency, rates

of success/fail rates, and others. IoT-wise, there have been several studies that propose a

performance evaluation framework for typical IoT architecture layers, such as Cloudrank-d

[65] for cloud performance and EdgeBench [66] for edge layer performance [67]. Moreover,

the IEEE Standardisation Association introduced a framework for the convergence between

Blockchain and IoT [68].

Benchmarks can be categorised into two types: microbenchmarks and macrobenchmarks

[69]. Microbenchmarks focus on evaluating small, specific parts of a software system, while

macrobenchmarks assess the performance of larger, complex systems, often simulating real-

world scenarios. Others may also classify benchmarks based on workload characteristics or

the types of metrics used, such as latency, throughput, and utilisation [61]. Several tools have

been developed for benchmarking blockchain technologies such as Blockbench [70], and

Hyperledger Caliper [71]. The former is a benchmarking framework for private blockchains

that evaluates key performance metrics across four layers of blockchain abstraction: consen-

sus, data model, execution engine, and application. The latter is an evaluation framework
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designed to stress the performance of several blockchain platforms, including Hyperledger

Fabric, Ethereum, and others.

Several studies have focused on evaluating the performance of blockchain technologies

in different contexts. Rouhani and Deters [72] examined Ethereum’s efficiency on a private

blockchain, comparing Ethereum clients Geth (PoW-based) and Parity (PoA-based). Baliga

et al. [73] carried out an experimental study on Hyperledger Fabric (HLF) version 1.0, using

Caliper to benchmark transactional parameters and chaincodes (smart contracts), focussing

on their impact on latency and performance in micro-workloads. Similarly, Mazzoni et al.

[74] conducted a study on the ConsenSys Quorum blockchain using Hyperledger Caliper to

benchmark throughput and latency with a focus on the Raft, Clique PoA, and IBFT consensus

algorithms under varying network sizes and transaction loads. Expanding the scope, Chen

et al. [75] investigated the performance of private Ethereum blockchain networks in IoT

contexts, deploying these networks on an IoT testbed and Google Cloud and examining

the latency of processing blocks and their transactions. The authors demonstrated the

feasibility of using private Ethereum networks for IoT applications, highlighting the impact of

network size, transaction complexity, and hardware resources on overall performance. Lastly,

Ferreira et al. [76] focused on the performance of blockchain hash functions, particularly

in IoT environments, testing various cryptographic functions such as MD5 and SHA series.

The authors evaluated the computational cost and energy consumption of different hash

functions in resource-constrained IoT devices, identifying the most suitable algorithms for

the integration of blockchain with IoT.

Despite the benefits of the benchmarking approaches, they are largely based on a trial-

and-error process and do not guarantee an automated discovery of optimal performance.

Moreover, it is essential to recognise that most existing blockchain benchmarking tools treat

systems under tests as black boxes and may not capture all the nuances and complexities of

real-world IoT. To date, no blockchain benchmarking tool is specifically designed to consider

IoT applications. Therefore, the selection of appropriate benchmarks and metrics can be

challenging, as different IoT applications may have varying requirements and priorities. It is

most likely that users of blockchain benchmarking tools, such as Hyperledger Caliper, must
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express the IoT logic in the form of a programming code, which may introduce an unpleasant

learning curve.

2.4.2 Simulation Approchaes

Experimenting with a system in real life can be, in several cases, impossible, impractical,

or very costly [77]. Simulation is a common practice for mimicking the actual system’s

behaviour and evaluating systems performance in a controlled and reproducible manner[78].

Simulation requires modelling the system under test, whether it is already in existence or

still under design. Simulation modelling can be defined as a method for creating an abstract

representation of the system composed of mathematical formulas, structural relationships,

and logical relationships [78]. Modelling can be classified as deterministic, stochastic, static

or dynamic [79]. The latter can further be classified as continuous or discrete [80].

Simulation allows experimenting without interrupting an actual system or having to

implement a corresponding system from scratch. Simulation can be used to describe and

predict how various conditions or scenarios will affect the behaviour of the system, as well as

to test new policies and design alternatives. Simulation can be considered a viable option for

performance evaluation, given the support for modularity and a wide range of configurations

[77]. However, developing accurate and realistic simulation models of such complex and

heterogeneous systems can be challenging, as they require a deep understanding of the

underlying technologies and their interactions. Additionally, simulation results may not

always reflect the performance and behaviour of actual physical systems, and validation

against real-world data is essential to ensure the accuracy and reliability of simulation-based

evaluations. Several simulation studies have attempted to model IoT systems and blockchain

platforms.

The remainder of this section reviews relevant IoT simulators, as detailed in Table 2.2.

Chapter 3 presents a comprehensive review and analysis of existing blockchain simulators.
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2.4.2.1 IoT Simulation

IoT simulation can include modelling end-to-end IoT architecture including, but not limited

to, sensors, devices, smart things, connectivity technologies, communication protocols,

platforms, cloud infrastructure, and applications. Simulated IoT models enable testing

and analysis of various scenarios and configurations without the need for expensive and

time-consuming deployment of physical IoT equipment, software, and other resources [81].

Numerous research efforts have been dedicated to simulating different Internet of Things

(IoT) aspects, as detailed in Table 2.2.

For instance, SimIoT simulator, proposed in [82], is designed to simulate IoT devices and

their interaction with cloud environments, facilitating the experimentation and evaluation

of resource management techniques in IoT cloud systems. Similarly, the Edge-Fog Cloud

architecture in [83] focuses on the distributed processing of IoT data using edge devices

and fog nodes, with the aim of reducing latency and network congestion. Furthermore,

the IoTSim-Edge simulator [84] and the iFogSim simulator [85] extend the capabilities

of the CloudSim simulator [86] to model IoT and edge computing environments. IoTSim-

Edge emphasises capturing the complexity of IoT and edge infrastructure, while iFogSim

focuses on evaluating resource management policies in fog computing environments based

on various metrics. Additionally, EdgeCloudSim [87] and EdgeNetworkCloudSim [88]

offer advanced modelling and performance evaluation for edge computing systems and

the placement of service chains in edge cloud environments, respectively. Both simulators

extend existing frameworks to capture the specifics of edge computing. MyiFogSim [89],

a further extension of iFogSim [85], targets virtual machine migration in fog computing

environments, with a focus on user mobility and maintaining service quality. FogNetSim++

[90] stands out for modelling distributed fog computing environments, offering unique

features such as heterogeneous devices, mobility models, fog node scheduling algorithms,

and handover mechanisms. Lastly, IoTSim-Osmosis [16] extends existing simulators to

model IoT applications over an edge-cloud continuum, with the aim of testing and confirming

osmotic computing principles and algorithms in heterogeneous environments.
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Table 2.2 Comparison of features and capabilities of different simulators for modelling and
simulation IoT applications.
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Simulation
Purpose

IoT Devices
and Cloud

IoT Devices
and

Edge/Fog

IoT Devices
and Edge

IoT Devices,
Edge/Fog,
and Cloud

IoT Devices
and Edge

Cloud
and Edge

IoT Devices,
Edge/Fog,
and Cloud

IoT Devices
and

Edge/Fog

IoT Devices,
Edge/Fog,
and Cloud

Source Code No Yes Yes Yes Yes Yes Yes Yes Yes

Simulation
Type

Discrete
event

N/A Discrete
event

Discrete
event

Discrete
event

Discrete
event

Discrete
event

Discrete
event

Discrete
event

Programming
Language

SimJava Python Java Java Java Java Java C++ Java

Based on [92] N/A [86] [86] [86] [88] [85] N/A [86]

Cloud Yes No No Yes No Yes Yes No Yes

SDN/SDWAN No No No No No No No No Yes

Network No No Yes Yes No No No Yes Yes

Edge/Fog No Yes Yes Yes Yes Yes Yes Yes Yes

Physical
Things

Yes Yes Yes Yes Yes No Yes Yes Yes

Blockchain
Interface

No No No No No No No No No

Monitoring No No No No No No No No No

2.4.2.2 Blockchain Simulation

Several blockchain simulation studies have been proposed to capture various aspects of

blockchain, such as blockchain networks, data structure, consensus mechanisms, transaction

processing and validation, and others [13]. Chapter 3 provides a comprehensive review and

analysis of existing blockchain simulators, which is self-sufficient in this regard.

2.4.2.3 The Lack of Blockchain-based IoT Simulators

Despite the extensive efforts to develop simulators for both blockchain and IoT systems, there

remains a notable gap in the research landscape: To our knowledge, no existing simulators

specifically focus on the integration of these two pivotal technologies. To address this gap,
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Chapter 5 introduces a novel simulation framework designed to simulate the integration of

blockchain with IoT systems.

2.4.3 Middleware Approaches

Chapter 6 presents a novel middleware approach for utilising existing IoT simulators to

evaluate the performance of real blockchain platforms. The proposed middleware plays a

crucial role in enabling seamless communication and interaction between simulated IoT

models and blockchain networks. It addresses the challenges of heterogeneity, scalability,

and security aspects by providing abstractions and services that facilitate the integration of

simulated large-scale IoT systems with a real blockchain platform. It resolves issues related

to the distinction between simulated IoT environments and real blockchain platforms, such as

synchronisation and the problem of race conditions. This section overviews the middleware

concept and reviews related works.

2.4.3.1 Overview of Middleware Concept

The concept of Middleware plays a crucial role in complex systems by serving as an interme-

diary between disparate components and bridging the gap between them [93]. The concept

of middleware abstracts the complexity of different technologies, platforms, and protocols,

which allows developers to focus on business logic rather than delving into unnecessary

concerns associated with integration and compatibility. The middleware can manage and

facilitate seamless interactions among diverse software applications or components, often

across distributed networks [94]. It also incorporates features that improve scalability and

performance, such as load balancing, caching, and failover mechanisms, while ensuring

robust security measures, including authentication, authorisation, and encryption [94]. In

environments characterised by complex transactional processes, such as IoT and Blockchain,

the middleware concept is indispensable to maintain data consistency and integrity [93].
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2.4.3.2 Related Middleware works

Some existing studies propose a middleware approach in the context of Blockchain and IoT

to address a wide range of needs. For example, Tapas et al. [95] propose a middleware that

focusses primarily on securing communication between IoT applications and the Ethereum-

like blockchain platform. Similarly, Samaniego and Deters [96] developed a middleware

that operates a mining-based blockchain to achieve a zero-trust IoT security management

mechanism. Danish [97] suggests a middleware that considers IoT requirements to select the

optimal storage strategy, whether data should be stored on-chain or off-chain within a cloud-

based storage. Wang et al. [98] introduces a middleware that synchronises data between real

IoT applications and Hyperledger Fabric while ensuring coherence and consistency. However,

it exclusively focuses on SQL queries and lacks a rigorous correctness examination that

should have considered failure recovery and concurrent execution. Similarly, Zhou et al. [99]

propose a similar middleware approach but concentrate only on synchronising read queries

from Hyperledger Fabric to a conventional database, omitting write operations to the ledger.

Despite the various middleware solutions presented in the literature for blockchain and

IoT, the majority assume access to real IoT infrastructure and Blockchain platforms for

specific purposes such as security and storage. Furthermore, several existing works do not

consider experimenting with a large-scale IoT system, most likely because of the lack of

access to extensive IoT infrastructure. Therefore, in Chapter 6, we present and develop an

intermediary solution that bridges the simulated Internet of Things (IoT) and real blockchain

technology for performance evaluation purposes.

2.4.4 Machine Learning (ML) for Performance Evaluation

Machine Learning (ML) algorithms can be broadly classified into three main categories:

supervised, unsupervised, and reinforcement learning techniques. Supervised learning

algorithms learn from labelled data, unsupervised learning algorithms discover hidden

patterns in unlabelled data, and reinforcement learning algorithms learn by interacting with

an environment [100]. ML techniques have demonstrated effectiveness and robustness for
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system evaluation purposes [101]. The process of training an ML model starts by collecting

data from the system under study, using these data to train the ML model, and then using the

model for:

1. Predicting the system performance under different conditions.

2. Identifying performance areas of strengths and bottlenecks

3. Recommending procedures to enhance the overall performance.

Despite the facilitation offered by simulation and benchmarking tools, both rely on prede-

termined parameters to model the behaviour of the blockchain system. Consequently, they

can be limited in achieving the best possible performance due to the difficulty in determining

the optimal values for the configuration parameters. On the other hand, model-based machine

learning can play a vital role in optimising the performance and efficiency of the integrated

architecture. By leveraging the predictive capability of machine learning models, it is pos-

sible to explore a wide range of design options and configurations. This approach enables

the identification of optimal system parameters, such as block size, transaction rate, and

consensus algorithm, that maximise the performance and scalability of the blockchain-based

IoT system.

In their quest for optimal performance, some studies have focused on characterising

the performance features of existing blockchain platforms under varying workloads and

supported consensus algorithms. In doing so, they aim to reveal the maximum attainable

performance in terms of throughput and latency characteristics. For example, Rouhani

and Deters [102] conducted a comprehensive performance analysis of Ethereum in which

they evaluated the two most widely used Ethereum Virtual Machines (EVM), which are

Proof-of-Work (PoW)-based Geth and Proof-of-Authority (PoA)-based Parity. Similarly, an

in-depth analysis of the performance of the Quorum blockchain was performed by Baliga

et al. [73]. These studies have provided information on performance approximations under

a given set of conditions. Nevertheless, there has not been an approach that combines ML

techniques with the simulation of Blockchain-based IoT for performance evaluation, which
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can benefit from the large data sets generated from the IoT simulation to achieve reliable and

more accurate results.

2.5 Conclusion

The background chapter provides an overview of the knowledge body required to cover

the concept of Blockchain-based IoT simulation proposed for performance evaluation. It

unpacks the main keywords in the thesis topic, which are IoT, Blockchain, Simulation, and

performance evaluation, by introducing them to the reader from the perspective of this thesis

and highlighting their definition, characteristics, importance, relevance, and examples. The

integration of IoT with Blockchain is highlighted in terms of applicability and associated

advantages. To motivate and justify the need for a simulation framework for evaluating

Blockchain-based IoT systems, this chapter delves into the challenges of evaluating the

viability and the overall performance of such complex and heterogeneous systems. Then,

it overviews various performance evaluation approaches this thesis considers, which are

benchmarking methods, simulation, middleware, and machine learning. Finally, this chapter

presented the general methodology outlook, which this thesis follows in conducting its tasks,

starting with a systematic study of Blockchain simulators with regard to IoT, the simulation

architecture and implementation, the middleware approach for connecting IoT simulators

with real blockchain platforms and lastly the machine learning approaches for predicting the

overall performance of blockchain-bases IoT systems and recommending optimal values for

configuration parameters for achieving a target performance. The following chapters delve

into the details of conducting the methodology tasks and presenting their outcomes.





Chapter 3

Blockchain Simulators: A Systematic

Mapping Study

Summary

Blockchain technology has gained significant interest from researchers, government, and

industry due to its potential to revolutionize various domains. However, the lack of tools

for evaluating proposed blockchain solutions and their applications limits their real-world

implementation. Organisations are hesitant to adopt blockchain unless they are assured of

its benefits, as deploying blockchain systems can be complicated and require substantial

resources.

To address this issue, researchers have developed various blockchain simulators that

enable designing, testing, and analysing blockchain solutions before actual implementation.

The quality and utility of these simulators depend on factors such as their usability, reliability,

efficiency, and ability to vary the system parameters.

This chapter presents a systematic mapping study that provides an in-depth review of the

state-of-the-art blockchain simulation, comparing their features, capabilities, supported plat-

forms, and consensus mechanisms; examines the configuration parameters and performance

metrics covered by each simulator to evaluate the source code quality of publicly available

simulators; to determine which performance metrics are scientifically validated in the studies
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proposing each simulator; and discuss the current limitations and future research directions

in the field of blockchain simulation.

This chapter is organised as follows: Section 3.1 provides a brief introduction to this

chapter and highlights the challenges it seeks to address. The Research Question (RQ),

the contributions of this chapter, and its relevance to the published paper are explained in

Section 3.2. Section 3.3 reviews the literature with regard to similar systematic studies. The

research methodology is given in Section 3.4. Section 3.5 outlines the results of the systemic

mapping. Section 3.6 provides a detailed discussion about the current simulators and their

limits. Finally, Section 3.7 concludes the chapter.

3.1 Introduction

Traditionally, transactions and exchanges between parties have typically been carried out

within a centralised structure, which requires the contribution of a third party (e.g. a bank).

The hurdle is that this manner of transaction relies mainly on the third party, and if the party

encounters a failure, the system completely stops. This problem is commonly known as a

single point of failure (SPOF) [103]. What is more, high fees are often associated with third

parties. Blockchain has arisen to handle these issues (both SPOF and high fees) by permitting

nodes (parties) to associate with one another in a decentralized (aka distributed) way without

the contribution of a third party. This is why this technology has gained researchers’ attention

and enthusiasm in recent years. Formally, blockchain uses a distributed/shared database

that logs all the executed transactions within a network [104]. In other words, through the

use of a distributed ledger, blockchain makes all transactions available and verifiable by all

nodes. Interestingly, the involved nodes are transparent to the chain state update. In particular,

thanks to the decentralized nature, nodes can transparently view all transactions occurring at

a given time. Each node has its own copy of the chain that is updated following every newly

confirmed block.

In the beginning, blockchain was designed for handling the exchange of a digital currency

– referred to as Bitcoin [20] – in a peer-to-peer network. Following the success of Bitcoin
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technology, a number of other blockchain solutions emerged, such as Ethereum in July

2015 and Hyperledger in December 2015. Since then, these solutions have been applied

to various application domains, such as the Internet of Things (IoT) [105]. Specifically,

Bitcoin networks offered money-related exchanges through the utilisation of the eponymous

tokens: bitcoins. The tokens subsequently developed an immense financial worth [106].

Other blockchains like Ethereum [107] permitted code to be executed within the blockchain

system, granting flexibility to the transactions and exchanges, commonly known as smart

contracts [108]. By and large, the reason behind the success of blockchain technology is its

wide range of merits. Firstly, blockchain creates immutable ledgers, which by nature are

unable to be changed or altered. Once a transaction is created and registered, it cannot be

altered [109]. Secondly, a vital characteristic of blockchain is its reliance on decentralized

control, in which the resources of all nodes involved are used to overcome the issue of SPOF.

Thirdly, blockchain can efficiently protect users’ identities. Fourthly, blockchain technology

has stronger security due to the mitigation of the SPOF issue [108]. Finally, blockchain

enables participating nodes to collaboratively process transactions in a timely manner [110].

From a practical perspective, like other systems, experimenting with in-production

blockchain systems can cause unnecessary costs, safety threats, resource consumption, and

environmental issues [111]. In order to limit possible faults and unexpected failures and

to identify bottlenecks, simulations are commonly employed, using various design setups

before the implementation of the actual design or when making amendments to existing

systems. Similar to emulation, simulation is of high value when tackling complicated tasks

in a complicated environment [112].

3.2 Research Questions, Contributions, and Relevance to

Published Work

Section 3.2.1 provides a detailed explanation of the Research Question (RQ) and highlights

the contributions associated with this chapter. Section 3.2.2 clarifies the relevance of this

chapter to the published paper, as outlined by the publications listed in Section 1.4.
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3.2.1 Research Question and Contribution

Research Question 1 (RQ1): What techniques and configurations are used in current

blockchain simulators? To answer this question, this chapter contributes a comprehensive

systematic mapping study that follows the process used in [113]. It critically classifies

existing blockchain simulation studies based on their features, capabilities, and limitations.

Moreover, it delves into the implementation of existing open-source blockchain simulators

to analyse their supported configuration parameters and performance evaluation metrics. It

critically compares their code quality, flexibility, reliability, and maintainability. Furthermore,

it investigates whether and how these simulators are scientifically validated.

3.2.2 Relevance of the Chapter to the Published Paper

This chapter corresponds to the work published in [13], which provided a review and

categorization of blockchain simulators from different aspects. While closely aligned with

the original publication, this chapter extends the discussion by analyzing the importance of

parameters supported by several simulators, such as P1, P11, M8, and M14, highlighting

their relevance to the field.

3.3 Related work

Since 2017 blockchain has gained great attention from the researcher. Therefore, several

survey article has recapitulated some of blockchain features, below are some attempt in this

direction.

An early attempt to cover the blockchain aspect is carried out by Anilkumar et al. [114].

The main focus of this review article is to cover the popular and noteworthy blockchain-based

platforms. Specifically, a brief description of Ethereum, IBM OBC, Intel Sawtooth Lake,

BlockStream Sidechain Elements and Eris is given. Moreover, to solidify their notes, the

characteristics of these platforms (like usability, currency, and security) are defined. Finally,

a small number of simulation platforms for Ethereum are listed. Despite being an informative
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review, several aspects are missing, including the recent simulators, evaluation metrics and

the set of configured inputs. More recently, Wan et al. [115] provide a review article that

sums up blockchain technology and its frontier operations. The main focus of this review is

to shed light on the main design principles of blockchain. Specifically, they elaborate on how

the data is handled, how the block is validated and how to solve conflict among users. Then,

a detailed comparison between the different types of blockchains (public, private) is given.

Moving on to the consensus layer, a brief description of PoW and PoS is given. Additionally,

they elaborated on the differences between Bitcoin networks and Ethereum networks. Finally,

they emphasise the importance of blockchain simulators. In this direction, a brief description

of the different simulation models (discrete event, stochastic), with some little examples,

is given. However, a comprehensive discussion about the detailed description and features

of the simulator is lacking. Moreover, no words are given about how to validate/evaluate

blockchain systems.

To cover such a gap, Smetanin et al. [112] provide a review of the state-of-the-art

evaluation approaches for blockchain systems. The metrics used for evaluating a blockchain

system are reviewed. The lower and upper bound of each metric is given. Additionally, they

reviewed the set of challenges associated with each metric. Also, the academic activities for

evaluating blockchain, like queuing models, Markov processes, Markov Decision Processes

and random walk, are deeply discussed. Then, a discussion about 7 simulators is given.

Finally, the main challenges facing these simulators, like lack of adoption and lack of

standardization, are listed. By and large, a large number of simulators in the literature are

missing in the review. Moreover, no focus is given to the set of configured inputs and outputs

for each simulator.

Another direction focusing on distributed ledger technology (DLT) is carried out by

Smetanin et al. [116]. They reviewed the tools and instruments used for evaluating DLT.

Accordingly, they begin by deeply introducing DLT concepts. Additionally, a detailed

analysis of the system behaviour of DLT is covered. Also, the main methodologies used for

DLT are reviewed. With no exception, a wide set of simulators designed for simulating DLT
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in the literature are reviewed. Finally, the future directions are discussed. The hurdle is that

the only focus here is on DLT, which neglects other technologies.

Returning back to the traditional blockchain concept, another review paper is published

by Fan et al. [117]. The main focus here is the empirical analysis of blockchain performance

and analytical modelling. In the former, the experimental analysis and simulation are

reviewed, while in the latter, the stochastic models applied to performance evaluation are

investigated. Furthermore, the blockchain benchmarking tools with respect to the layers are

deeply discussed. Finally, experimental analysis between blockchain systems is carried out.

The lack of focus on configuring inputs and outputs, however, is the only limitation.

Paulavicius et al. [118] provide a systematic review and empirical analysis of blockchain

simulators. They begin by introducing DLT with a detailed description of its layer of

abstraction. Then, the existing simulators in the literature are listed with comparative

analysis. This includes focusing on the model type of the simulator, language/framework

used and availability of source code. The interesting point is that they gave a complete picture

of the input/output parameters for each layer. Unfortunately, they did not shed light on each

simulator’s evaluation/validation aspects.

To the best of our knowledge, there is no extensive survey given so far for blockchain

simulators. Therefore, this work addresses that gap by systematically analyzing the con-

figuration parameters (inputs) and produced metrics (outputs) supported by each simulator.

Furthermore, it investigates which metrics supported by each simulator are scientifically

validated/evaluated. Moreover, code quality comparison is carried out to assess the source

code of the covered simulators.

3.4 Research Methodology

This chapter conducts a systematic mapping study [113] with the aim of investigating studies

pertaining to blockchain simulators. The reason for adopting a systematic mapping method

in this chapter is to go beyond the shallow description of existing blockchain simulators.

That is, a systematic mapping review not only helps narrow down the subject exploration to
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specific questions but also provides analytical methods that critically examine the literature

on blockchain simulators. The findings of this study will also enable us to identify and map

important research directions. Figure 3.1 shows the five steps of systematic mapping used in

this study.

Definition of
Research Question

Process Steps

Review Scope

Outcomes

Conduct Search

All Papers

Screening of Papers

Relevant Papers

Keywording using
Abstracts

Classification
Scheme

Data Extraction
and Mapping Process

Systematic Map

Fig. 3.1 Steps of the systematic mapping study.

3.4.1 Systematic Mapping study Questions

This chapter aims to answer the following questions:

RQ1. What techniques and configurations are used in current blockchain simula-

tors?

RQ2. Which metrics supported by existing blockchain simulators are scientifically

validated/evaluated?

RQ3. What are the limitations of the current simulators?

3.4.2 Performing the Literature Search

In this stage, the recent scientific papers and articles relevant to the research topic (blockchain

simulators) are identified. For this purpose, the term “blockchain simulator" is used as the

keyword to search scientific databases. To specify the search, the query execution ensures

the existence of both “blockchain" and “simulator" in the title or abstract. Furthermore,

four highly reputable scientific databases were chosen: ACM Digital Library, IEEE Explore,

Springer, and Scopus. For precise, accurate, and up-to-date results, high-quality articles

published in books, journals, conferences, symposiums, and workshops were selected.



48 Blockchain Simulators: A Systematic Mapping Study

3.4.3 Searching for Relevant Studies

In this stage, studies related to our research questions were searched. We utilised the same

searching strategy as in [119]. Specifically, we eliminated all the papers that were irrelevant

to the topic based on their titles. If we were uncertain about a paper, we skimmed its abstract.

Generally, we utilised exclusion criteria to filter out the search results, by which non-English

papers, grey literature or newsletters, and papers with no full text were eliminated from the

search.

3.4.4 Searching Abstracts for Keywords

In this stage, keywords were used to classify the relevant papers. We utilised the same

keyword process as in [118]. Firstly, we read the abstract of each paper to spot the most

significant keywords and their primary contributions. Secondly, we used these extracted

keywords to classify the paper. Once all papers were classified, they were investigated, and if

needed, switches between classifications were made.

3.4.5 Data Extraction and Mapping Processes

In this stage, the required information was gathered from the papers according to their

relevance to the above-stated research questions. Thus, we gathered different data items from

each study, which, in turn, highlighted the objectives and contributions of the studies.

3.5 Study Results

This section is designed mainly to outline the results of the systematic mapping study carried

out on blockchain simulators. The results of searching and screening for relevant papers are

discussed. Afterwards, the resulting classification is given.
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3.5.1 Searching and Screening Results

As discussed above in Section 3.4, searching and screening are two steps in the systematic

mapping study. In the searching phase, we searched for all papers using the keyword

‘blockchain simulator’ in different scientific databases, as stated above. The search returned

259 papers in total (as of 7 January 2022). In the screening phase, upon investigating the

title and abstract of the papers, we excluded 209 irrelevant papers. These excluded papers

are those whose main contribution is not focused on simulating the blockchain. The reason

behind the high number of eliminated papers is twofold. Firstly, many papers were irrelevant

to our study since our focus was to explore blockchain simulators from a technical perspective.

Secondly, some of the excluded papers were about general aspects of blockchains, with

no contributions related to our pre-defined research questions. After that, duplicate papers,

specifically 23, were removed, resulting in 27 final papers. Finally, we excluded seven

papers that were relevant to specific applications; i.e. they provided no useful information on

simulation for general blockchains. As a consequence, we ended this phase with 20 papers

on which to carry out our systematic mapping study.

3.5.2 Taxonomy for Blockchain Simulators

Following the keywording strategy discussed in Section 3.4, we characterised the simulators

according to several criteria:

1. Overview of blockchain simulators: This represents further information related to

the identified blockchain simulators in Table 3.1.

2. Comparative analysis: This critically compares existing simulators based on their

available open-source implementation. The comparison is focused on their supported

configuration parameters (inputs) and generated metrics (outputs) as per Table 3.3.

3. Code Quality: This provides a general report about the source code, including a

number of bugs, code smell, and security hotspot, as shown in Table 3.4.
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4. Scientifically Validated/Evaluated Metrics: This is to represent which supported

metrics by each simulator are scientifically validated/evaluated in their corresponding

papers, as shown in Table 3.5.

3.5.3 Overview of Blockchain Simulators

The systematic review resulted in 20 relevant blockchain simulators. Table 3.1 lists and

examines them based on the following criteria:

1. Code availability: Reflects if the source code of the simulator is publicly available on

GitHub.

2. Programming language and library: Reflects the programming language and the

libraries used for coding the simulator.

3. Core of the simulator: Reflects if the simulator inherits a base simulator or is built

from scratch.

4. Purpose and objective: Reflects if the simulator is designed for assessing performance

and/or security.

5. Blockchain platform: Reflects the type/platform of the simulated blockchain, i.e.

Bitcoin, Ethereum, and IOTA.

6. Consensus algorithm: Reflects the implemented consensus algorithm in the simulator.

This section provides a summary of each blockchain simulator as follows. An early

attempt in 2015 was carried out by Miller and Jansen [120], who proposed a discrete

event Shadow-Bitcoin simulator. Its main focus was to simulate Bitcoin networks. This

simulator utilises the concept of shadowing, which permits the use of parallel processing.

Accordingly, the simulator has the ability to provide insights about the simulated multi-

threading application in a scalable manner. The shadow-Bitcoin simulator is recognised

as a dynamic and stochastic simulator that was developed using pure Python. The code is

publicly available on GitHub. PoW consensus algorithm is implemented in this simulator.
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The simulator is able to focus on transaction propagation and provide insights about the

system’s performance and security.

Wang and Kin [121] propose a blockchain simulator named FastChain, which extends

Shadow-Bitcoin to support evaluating the correlation between throughput, block propagation

time, and bandwidth-informed neighbour selection algorithms. FastChain facilitates the

tuning of several parameters that influence the blockchain’s performance with regard to block

rate and throughput.

A similar attempt is carried out by Stoykov et al. [122], who proposed a discrete-event and

dynamic simulator named VIBES, which stands for Visualisations of Interactive, Blockchain,

Extended Simulations. It is coded in Scala with the aim of enabling empirical insights

and analytics about the blockchain performance under various parameters, such as network

topology and area size, are simulated, with the aims of predicting the total processing time,

the total number of transactions processed, throughput (transactions per second), block

propagation delay. While VIBES focuses on simulating Bitcoin-style blockchain networks,

Ethereum is out of its scope. Following this, Deshpande et al. [123] proposed ethernet

VIBES (eVIBES), a further improvement of VIBES, to mimic the behaviour of the Ethereum

network. It depends on a reactive manifesto model using an orchestrator and reducer in its

core. The orchestrator is used to control the simulator, which receives the parameter settings

from the user and feeds them to the Ethereum network.

Another discrete-event, dynamic and stochastic simulator for simulating generic blockchain

is proposed by Piriou and Dumas [124]. The authors find that the previous simulators depend

on applying consensus algorithms in a sequential manner, which may result in a double-

spending attack. Accordingly, they mainly contribute a generic blockchain-style simulator

with a focus on distributed consensus protocols, namely, PoW and PoS. The source code

is written in Python and utilises the PyCATSHOO library, which allows for dealing with a

large number of parameters of interest. The simulator sheds light on the impact of various

parameters on the overall performance. This is done through the integration with the Monte

Carlo simulation, which is known for its ability to check dynamic behaviour.
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Wang et al. [125] also proposed a discrete-event and stochastic simulator that has the

ability to simulate the complex and dynamic behaviour of the Bitcoin blockchain network.

The main aim of this simulator is to evaluate the blockchain performance by setting various

parameters such as simulation time, number of nodes, mining time, block size and transaction

size.

Aside from traditional simulations, Memon et al. [126] proposed a queuing blockchain

simulator using the M/M/n/L queuing system. This simulator is coded in Java and was

designed with the aim of simulating PoW-based mining operations, which are known to be

costly and time-consuming tasks.

BlockSim is one of the well-established simulators, which is initially proposed by Alharby

and Moorsel [127]; and has been further developed in [128]. The source code, written in pure

Python, is publicly available on GitHub. This simulator aims to mimic the implementations

of public blockchains (Bitcoin and Ethereum) using PoW. Like other discrete-event simu-

lators, it enables testing the influence of various configurations on the overall blockchain’s

performance. This is done via two different modes of simulation, which are full transactions

and light transactions techniques. The former emulates a realistic blockchain network and

records detailed logs of a typical transaction journey. According to the simulator’s authors,

this technique is time and resources-intensive; however, it provides an in-depth insight into

the network latency measurement. On the other hand, the latter simulates the blockchain

network’s behaviour by employing a single transaction pool and omits several transaction

details, which is, according to its authors, more effective in terms of time and computing

consumption; however, it can be useful for other purposes other than latency measurement

such as transactions throughput and execution cost.

Further, Polge et al. [129] appraise BlockSim [127] simulator’s performance with Bitcoin.

However, as per their study, most of the existing simulators lack several important features,

such as extensibility and failure to cover all aspects/metrics. Therefore, an extended version

referred to as BlockPerf is proposed to alleviate BlockSim issues. It is also written in

Python with the aim to realise a stochastic, dynamic and discrete event simulator depending

on PoW consensus protocol. Similarly, Agrawal et al. [130] state that BlockSim [127] is
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restricted to simulating blockchain networks (either Bitcoin or Ethereum) over a single CPU,

which results in bottleneck problems. Therefore, BlockSim-Net, another extended version of

BlockSim, is proposed as a distributed simulator. What distinguishes BlockSim-net from the

traditional BlockSim is the ability to focus on the actual propagation of blocks. Furthermore,

it is useful for the assessment of blockchain application security (such as a selfish mining

attack on PoW).

Another discrete-event blockchain simulator is proposed by Faria and Correia [131]; also

named as BlockSim. Not to be confused with other BlockSim simulators in [127], it is also

coded in Python and leverages the SimPy 3 library. Unlike the other BlockSim, it simulates

blockchain networks over specific intervals. Thus making it a discrete-event, stochastic and a

dynamic simulator.

Fattahi et al. [132] have stated that BlockSim, proposed by Faria and Correia [131], is

a reliable simulator able to evaluate blockchains. However, it does not simulate some real

features, such as Merkle tree transactions. Therefore, they proposed an extended version

of BlockSim, referred to as SIMulator, for application to blockchains (SIMBA). Similar to

its forerunner, it is written in Python and uses SimPy 3 features. Also similar to BlockSim

[131], it is a stochastic and discrete-event simulator.

Pandey et al. [133] also proposed another blockchain simulator named BlockSIM, with

"sim" capitalised. BlockSIM. It is a stochastic discrete-event and dynamic simulator written

in Python using the SimPy library. It facilitates evaluating the performance of Ethereum

and Hyperledger blockchain networks and supports both the PoW and PoA protocols. More

recently, in 2020, Alsahan et al. [134] extended this work and proposed a local Bitcoin

simulator that has the ability to enable fast simulation for large-scale networks without

affecting the mining process quality. It is a virtualization based simulator with the ability to

model different network topologies.

Wang et al. [135] proposed a ChainSim simulator that evaluates peer-to-peer blockchain

networks. The simulator’s main aim is to alleviate the burden of computing resources and

the financial cost needed for deploying and experimenting with blockchain systems. Such
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a simulator has the ability to simulate blockchain-based applications with thousands of

involved nodes.

Another direction is to simulate concurrent operations within blockchain networks. To do

so, Gouda et al. [136] propose the Blockeval simulator, which uses deep learning algorithms

to allow the simulation of scalable blockchain systems. This makes Blockeval’s a modular

simulator for assessing the performance of private blockchain networks. Moreover, it can

elaborate on the metrics used for assessing the system. Blockeval’s main contribution is

twofold. Firstly, it can be used to assess the scalability of the proposed blockchain system.

Secondly, it can analyse the security of the proposed blockchain system.

Another attempt that was modelled with both PoW and PoS protocols was carried out by

Aoki et al. [137]. The simulator, the SimBlock, was written in Java. It can be differentiated

from its peers by its ability to investigate blockchain performance with different node

behaviours. SimBlock is considered as a stochastic, dynamic, and discrete-event simulator

that focuses on modelling block generation and message transmissions.

This work has been further extended by Basile et al. [138]. They state that SimBlock

fails to simulate the block mining process; thus, they address this limitation in their work.

Banno and Shudo [139] also extended SimBlock to support the simulation of thousands of

nodes and to improve the neighbour selection strategy. Moreover, it enables the assessment

of the influence of relay networks on overall performance.

Beyond typical blockchain data structure, Zander et al. [140] proposed the DAGsim sim-

ulator that uses a Directed Acyclic Graph (DAG) approach to represent a scalable distributed

ledger, which allows simulating a vast amount of transactions over a large number of nodes.

This simulator is influenced by the philosophy of a DLT network called IoTA [141]. An

interesting feature provided by DAGsim is the support of modelling and experimenting with

malicious nodes. The code is written in Python with the ability to run in O(n2), where n is

the number of nodes. This made DAGsim an agent based stochastic and dynamic simulator.

The final output of the simulator is a DAG representing the structure of all transactions.

By and large, there are four simulation models found in the literature of blockchain

simulators, namely, stochastic, dynamic, discrete event, virtualization models. Bear in
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mind that all the simulators are discrete-event except the queuing model simulation in

[126], the agent-based simulation in [140], and the virtualization-based modelling in [134].

We also find that existing blockchain simulators do not support consensus mechanisms

other than PoW, PoA and PoS; among them, PoW is the only protocol implemented in all

simulators. As regards PoS and PoA, there is only one simulator that implements each of

them. Another interesting observation is that Bitcoin is the most popular blockchain network,

being implemented in 15 out of the 21 covered simulators.
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Table 3.1 A summary of blockchain simulators. Each row represents a separate simulator,
while the columns represent the features. Note that all the simulators are stochastic dynamic
simulators and characterized as being discrete-event except the three simulators, namely:
Modelling by queuing theory simulation [126] that is queuing model, DAGsim [140] that is
agent-based, and Local Bitcoin [134] that is virtualization based.

Simulator Year GitHub
Code

Prog.
Lang. Library Core PRF. Security Platform Consensus

Shadow-Bitcoin [120] 2015 ✓1 Python N/A Shadow ✓ ✓ Bitcoin PoW

VIBES [122] 2017 ✓2 Scala N/A N/A ✓ ✓ Bitcoin PoW

Stochastic Blockchain
Models [124]

2018 N/A Python PyCATSHOO N/A ✓ ✓ Generic PoW/PoS

Behavior and Quality of
Blockchain [125]

2018 N/A Python SimPy N/A ✓ ✗ Bitcoin PoW

eVIBES [123] 2018 ✓3 Scala N/A [122] ✓ ✗ Ethereum PoW

Modeling by Queuing
Theory [126]

2018 N/A Java N/A [142] ✓ ✗ Bitcoin PoW

BlockSIM [133] 2019 ✓4 Python SimPy 3.0 N/A ✗ ✗ Ethereum/
Hyperledger

PoW/PoA

DAGsim [140] 2019 N/A Python N/A N/A ✓ ✗ IOTA IOTA

BlockSim [127] 2019 ✓5 Python N/A N/A ✓ ✗ Bitcoin/
Ethereum

PoW

FastChain [121] 2019 N/A N/A N/A [120] ✓ ✗ Bitcoin PoW

simBlock [137] 2019 ✓6 Java N/A N/A ✓ ✗ Bitcoin PoW/PoS

Blocksim [131] 2019 ✓7 Python SimPy 3.0 N/A ✓ ✗ Bitcoin/
Ethereum

PoW

Ext-simblock [139] 2019 N/A Java N/A [137] ✓ ✗ Bitcoin PoW

BlockSim-Net [130] 2020 N/A Python N/A [127] ✓ ✗ Bitcoin/
Ethereum

PoW

ChainSim [135] 2020 N/A Python N/A [127] ✓ ✗ Bitcoin/
Ethereum

PoW

Local Bitcoin Network
[134]

2020 ✓8 Python N/A N/A ✓ ✗ Bitcoin PoW

SIMBA [132] 2020 ✓9 Python SimPy 3.0 [131] ✓ ✗ Bitcoin PoW

Ext 2-simBlock [138] 2021 N/A Java N/A [137] ✓ ✗ Bitcoin PoW

BlockPerf [129] 2021 ✓10 Python N/A [127] ✓ ✗ Bitcoin PoW

BlockEval [136] 2021 ✓11 Python SimPy N/A ✓ ✗ Bitcoin PoW

1 https://github.com/shadow/shadow-plugin-bitcoin
2 https://github.com/i13-msrg/vibes
3 https://github.com/i13-msrg/evibes
4 https://github.com/RoseBay-Consulting/BlockSim
5 https://github.com/maher243/BlockSim
6 https://github.com/dsg-titech/simblock
7 https://github.com/carlosfaria94/blocksim
8 https://github.com/noureddinel/core-bitcoin-net-simulator
9 https://github.com/nyit-vancouver/SIMBA
10 https://github.com/Deadlyelder/BlockPerf
11 https://github.com/deepakgouda/BlockEval

https://github.com/shadow/shadow-plugin-bitcoin
https://github.com/i13-msrg/vibes
https://github.com/i13-msrg/evibes
https://github.com/RoseBay-Consulting/BlockSim
https://github.com/maher243/BlockSim
https://github.com/dsg-titech/simblock
https://github.com/carlosfaria94/blocksim
https://github.com/noureddinel/core-bitcoin-net-simulator
https://github.com/nyit-vancouver/SIMBA
https://github.com/Deadlyelder/BlockPerf
https://github.com/deepakgouda/BlockEval
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3.5.4 Comparative Analysis

After searching the internet for blockchain simulators and noting their main design principles,

we focused on the operational range of each simulator. Specifically, we study the set of

supported configuration parameters (inputs) and provided metrics (outputs) by each simulator.

A brief description of each is given in Table 3.2. To this end, no existing blockchain

simulator can support all configurations parameters (P) and produced metrics (M). Table 3.2

highlights these parameters/metrics and their association with each of the blockchain layers.

By inspecting Table 3.3, we can notice that out of the 16 parameters, the least number of

implemented parameters is 5, which is the case with Local Bitcoin [134]. In other words,

at least 40% of the parameters are implemented. On the other hand, at most, about 81% of

the parameters are implemented, which is the case with both BlockSim [131] and BlockPerf

[129]; i.e. 13 parameters. Similarly, not all the metrics are supported by all simulators.

The least number of supported metrics is 4, which represents 25% of the metrics as is with

BlockSIM [133]. By contrast, at most 88% of the parameters are implemented, which is the

case with BlockPerf [129]; i.e. 13 parameters. Accordingly, we can notice that BlockPerf

[129] is the richest simulator with both parameters and metrics.
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Table 3.2 The definition of the parameters and metrics used with respect to blockchain layers.

Layer P/M Definition P/M Definition

Network Layer

(P1) Total number of
nodes

number of involved nodes (P7) Payload transaction
size (unit: Megabyte)

Maximum transaction size

(P1.1) Regions of nodes
(unit: geographical)

Geographical location of
each node

(P8) Block size (unit:
Megabyte)

Maximum block size
configured

(P2) Total number of
connections

Number of possible
connections

(M1) Average block size Average block sizes

(P3) Average block prop-
agation delay (unit: sec-
onds)

Average time delayed in
the propagation process of
each block

(M2) Average block
propagation time

Average time taken to
propagate blocks

(P4) Average transaction
propagation delay (unit:
seconds)

Average time delayed in
the propagation process of
each transaction

(M3) Average transaction
propagation time

Average time taken by the
simulator to propagate
transaction

(P5) Average bandwidth
(unit: bits per second)

Bandwidth assumed for
the simulated network

(M4) Throughput (unit:
Tx/second)

Throughput taken to the
end of the simulations

(P6) Average latency (unit:
seconds)

Average latency assumed
for the simulated network

Data layer

(P9) Generate random
transactions (unit: Integer
of Tx per second)

Automatically generated
transactions (M6) Security Security assessement

(M5) Chain of block Resulting chain

Consensus layer

(P10) Average mining
power (Hash Rate)

Average used mining
power

(M7) Average block
interval

Average time for the
blocks to accept transac-
tions

(P11) PoW consensus
Algorithm

Ability to implement PoW
consensus algorithm

(M8) Number of generated
blocks

Total number of generated
blocks

(P12) Other consensus
Algorithm

Ability to implement other
consensus algorithms than
PoW

(M9) Number of mined
blocks

Total number of mined
blocks

(P13) Average transaction
fee (unit: cryptocurrency)

Average transaction fees (M10) Rate of orphan
blocks (unit: percentage)

Percentage of the orphan
blocks

(P14) Block Interval (unit:
seconds)

Average time for creating a
block

(M11) Fork Resolution Determine forks occurred
as protocol change

Incentive layer
(P15) Reward for min-
ing a new block (unit:
cryptocurrency)

Amount of reward config-
ured

(M12) Reward for a miner
(unit: cryptocurrency)

Amount of reward con-
sumed

Execution layer
(M13) Time of executing a
contract (unit: seconds)

Time taken to execute a
contract

(M14) Validation of
contract and execution
time

How the simulator vali-
dates the contract

Application layer

(P16) Simulation run time
(unit: seconds)

Configured simulation
time

(M16) Simulation time
(unit: seconds)

Represents the actual time
taken by the simulator

(M15) Resources usage How the simulator keeps
track of the resource
usage/utilization
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Table 3.3 Set of parameters available in each simulator. For a detailed description of the
parameters, refer to Subsection 3.5.4. The sign  means that the parameter is available in the
simulator, while the sign#means that the parameter is not available in the simulator. The last
row represents the total number of simulators supporting a particular parameter. Similarly,
the last column represents the total number of parameters supported by a particular simulator.
The bold values represent the maximum values, and the underlined values represent the
minimum values.

Simulator Parameters Total
P1 P1.1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

Shadow-Bitcoin [120]   # # #  # # #  #  # # #  # 6

VIBES [122]  #    # #      # # #  # 10

eVIBES [123]  # # # # # #  #    # # #   6

BlockSIM [133]  # # # # # #      # #  #  8

BlockSim [127]  # #   # #      #     12

SimBlock [137]    # #   #  #      #  12

BlockSim [131]     #        #   # # 13
Local Bitcoin [134]  # #  # # # # # #   # # # #  5

SIMBA [132]     #        # #  # # 12

BlockPerf [129]   #   # #      #     13
BlockEval [136]     # # #    #  # #    11

Total 11 6 5 7 3 4 3 8 8 9 9 11 1 4 7 6 7

Simulator Metrics Total
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

Shadow-Bitcoin [120] # # #  #   #  # #   #   8

VIBES [122]           # # # # #  11

eVIBES [123]   #  # #       #  #  11

BlockSIM [133]  # #  # #   # # # # # # # # 4

BlockSim [127]  #    # #      # # #  10

SimBlock [137]   # #  #   #  # # # # #  7

BlockSim [131]     # # #   #  # # # # # 7

Local Bitcoin [134] # # #  # # #   #   # #  # 6

SIMBA [132]   #  # # #   #  # # # #  7

BlockPerf [129]      # #          14
BlockEval [136]   # #  # #      # # #  9

Total 9 7 4 9 5 2 5 10 9 6 7 6 2 2 3 8
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3.5.5 Code Quality

To solidify the view about the simulators, we assess their source code from different aspects,

which will help researchers determine the future trends and modifications needed for each

simulator. Below is a detailed description of the aspects used.

1. Lines of Code: The number of code lines.

2. Comments(%): The percentage of commented lines.

3. Duplication(%): The percentage of duplicated lines.

4. Files: The number of code files.

5. Bugs: The number of bugs.

6. Code Smells: The complexity degree of understanding the code.

7. Security Hotspots: The number of source code parts that need a major overhaul from

the security aspect.

We have used the Sonarqube [143] and the Count Lines of Code (CLOC) [144] tool to

assess the codes of the simulators. An interesting point about such a tool is its ability to shed

light on the previous aspects mentioned above. A detailed description of this comparison is

shown in Table 3.4. With a quick skimming of the table, we can notice that eVIBES [123]

has the largest number of lines while being Bug-free. On the other hand, local Bitcoin [134]

has the least number of lines while also being Bug-free. Another interesting point is that six

simulators out of 11 are Bug-free. Despite being the most reputable, BlockSim [127] has the

largest number of bugs with about 6% code duplication.
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Table 3.4 Evaluating aspects of each simulator using Sonarqube and CLOC tool.

Simulator Evaluation Aspect
Lines

of Code
Comments

(%)
Duplication

(%)
Files Bugs Code Smells Security

Hotspots

Shadow-Bitcoin [120] 1218 12 0 17 4 117 12

VIBES [122] 20773 1.8 0 118 2 19 2

eVIBES [123] 25909 5 0 166 0 53 0

BlockSIM [133] 712 22 0 35 0 28 4

BlockSim [127] 1730 18 5.8 2.9 65 215 11

SimBlock [137] 2487 53 2.4 37 6 128 9

BlockSim [131] 1721 18 0 27 0 28 4

Local Bitcoin [134] 323 13 15 6 0 4 36

SIMBA [132] 2284 15 3 36 0 56 4

BlockPerf [129] 1668 4 0 26 0 26 6

BlockEval [136] 2761 76 0 20 1 71 1

3.5.6 Scientifically Validated/Evaluated Metrics

For the picture to be complete, we also shed light on the scientifically validated/evaluated

metrics in the corresponding paper for each simulator. A summary of this is shown in Table

3.5. According to the reviewed simulators, there are 15 validation/evaluation metrics; a brief

description of each is given below.

1. Block propagation time: The time taken from sending to receiving a block.

2. Transaction propagation time: The time taken from sending to receiving a transac-

tion.

3. Average of block size: The average block size generated during the simulation period.

4. Transaction throughput: The rate at which a set of valid committed transactions

occurs in a defined time period.

5. Network delay: The total delay in the network.

6. Number of generated blocks: The total number of the generated blocks during a

simulation period.



62 Blockchain Simulators: A Systematic Mapping Study

7. Number of valid blocks: The total number of valid blocks created during the simula-

tion.

8. Block verification time: The average time taken to verify the generated blocks during

the simulation period.

9. Uncle or stale blocks: The number of generated uncle/stale blocks during a simulation

period.

10. Fork resolution: Reflects whether a fork has ever occurred during the simulation.

11. Pending transaction: The simulator’s ability to keep track of the transaction number

while awaiting confirmation.

12. Mining difficulty: The difficulty assigned for each transaction.

13. Mining reward: The amount of the used rewards for the mining processes that

occurred throughout the simulation.

14. Processing speed: Tthe average time the simulator takes to carry out a specific task

during the simulation period.

15. System stability: Eventual consistency achieved over time by participating blockchain

network nodes regarding the ledger replicas.

Having mentioned the previous metrics, we also focused on the distribution of these metrics

over the blockchain layers. Table 3.5 shows the set of metrics associated with each layer.

Moreover, from the table, we can see which metrics are implemented for each simulator. On

closer inspection, we notice that the majority of the metrics (7 out of 15) are focusing on

the consensus layer. On the other hand, the incentive layer has the least share of the metrics

(only one metric). Also, there are nine simulators focusing on validating and evaluating the

network layer. On the consensus layer, we can notice that only seven simulators validate

such a layer. With the least attention, the incentive layer is validated in one simulator only.

From another viewpoint, with six validation/evaluation metrics, VIBES [122] comes out at
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the top, whereas shadow-Bitcoin [120] has the least number of validation/evaluation metrics

(1 metric).

Table 3.5 The scientifically validated/evaluated metrics of each simulator with respect to
different layers. The signs  and # depicts the available and missing metrics, respectively.
The last row represents the total number of simulators used in a particular metric. Simi-
larly, the last column represents the total number of metrics used by a particular simulator.
The bold values represent the maximum values, and the underlined values represent the
minimum values.

Simulator Approach used Total

Network
layer

Consensus
layer

Incentive
layer General

B
lo

ck
pr

op
ag

at
io

n
tim

e

Tr
an

sa
ct

io
n

pr
op

ag
at

io
n

tim
e

A
ve

ra
ge

of
bl

oc
k

si
ze

Tr
an

sa
ct

io
n

th
ro

ug
hp

ut

N
et

w
or

k
de

la
y

N
um

be
ro

fg
en

er
at

ed
bl

oc
k

N
um

be
ro

fm
in

ed
bl

oc
k

B
lo

ck
ve

ri
fic

at
io

n
tim

e

U
nc

le
or

st
al

e
bl

oc
ks

Fo
rk

re
so

lu
tio

n

Pe
nd

in
g

tr
an

sa
ct

io
n

M
in

in
g

di
ffi

cu
lty

M
in

in
g

re
w

ar
d

Pr
oc

es
si

ng
sp

ee
d

Sy
st

em
st

ab
ili

ty

Shadow-Bitcoin [120] #  # # # # # # # # # # # # # 1

VIBES [122]  #   #  # #  # # # #  # 6
eVIBES [123] # # # # #  #  # # # # # # # 2

BlockSIM [133] # # #  # # # # # # # # # #  2

BlockSim [127] # # #  #  # #  # # # # # # 3

SimBlock [137]  # # # # # # # # # # # # # # 1

BlockSim [131]   # # # # # # # # # # # # # 2

Local Bitcoin [134] # # # #  # # # # # #  # # # 2

SIMBA [132]  #  # # # #  # # # # # # # 3

BlockPerf [129] # #   # #  #  # # #  # # 5

BlockEval [136] # # # # # # # # #   # # # # 2

Total 4 2 3 4 1 3 1 2 3 1 1 1 1 1 1

3.6 Discussion

According to the results obtained in Section 3.5, this section is dedicated mainly to outlining

proposed solutions to the predefined research questions stated in Section 3.4.
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RQ1. What techniques and configurations are used in current blockchain simula-

tors?

The systematic mapping study reveals that 11 out of 20 blockchain simulation studies

publicly provide their source code. The majority of existing simulators are stochastic,

which is immensely complex and requires in-depth statistical capabilities to ensure realistic

outcomes. Additionally, several blockchain simulators are dynamic, aligning well with

the evolving nature of blockchain networks. For example, dynamic simulators allow for

the investigation of blockchain behaviour under varying conditions, such as changes in the

number of miners (nodes) over time.

Regarding configuration parameters, existing blockchain simulators show significant

variation in their focus on certain parameters (refer to Table 3.3). Notably, BlockSim

[131], and BlockPerf [129] emerge as the most comprehensive, supporting 13 configuration

parameters each. In contrast, Local Bitcoin [134] supports the fewest parameters, controlling

only five. The total number of nodes (P1) and Proof of Work (PoW) consensus algorithm

(P11) are consistently included across simulators, underscoring their importance in evaluating

network scalability, security, and performance.

The consistent inclusion of the total number of nodes (P1) across simulators highlights

its foundational role in blockchain simulations for assessing network scalability, decentral-

ization, and robustness within blockchain environments. Simulators that incorporate this

parameter facilitate meaningful comparisons and benchmarking across diverse blockchain

settings. The extensive support for PoW (P11) reflects its central role in securing blockchain

networks, especially those similar to Bitcoin. PoW requires computational effort to validate

transactions, making it a key factor in performance evaluations. However, the limited support

for alternative consensus algorithms (P12) in existing simulators reveals a significant gap in

current simulation capabilities. This gap is important because it restricts the ability to explore

and test newer, potentially more efficient consensus mechanisms that could address some of

the limitations of PoW, such as high energy consumption and slower transaction times.

By inspecting the generated metrics by each simulator, we find that the number of gen-

erated blocks (M8) is widely supported, except by Shadow-Bitcoin [120], indicating its
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importance for measuring network throughput and latency. This metric reflects the network’s

ability to process transactions efficiently, a crucial aspect of blockchain performance. On

the other hand, contract validation and execution time (M14) are the least supported metric,

with only eVIBES [123] and BlockPerf [129] including it. Given the increasing integration

of smart contracts into blockchain platforms, understanding the performance implications of

M14 is essential for optimizing blockchain usability and efficiency.

RQ2. Which metrics supported by existing blockchain simulators are scientifically

validated/evaluated?

To better understand the system’s behaviour, a set of validation/evaluation metrics is

needed to assess the overall system’s performance. Generally, blockchain systems can be

judged from different viewpoints as follows.

1. Usability and reliability: Is the system ready for being implemented in a real-world

situation? This is related to assessing the deployed network. The network can be

assessed using two metrics: volume of P2P traffic and packet loss. The former

represents the network’s ability to perform under elevated traffic, while the latter

represents the ratio of lost packets. In view of this metric, the system is usable if it is

able to exchange a large amount of traffic with the fewest lost packets.

2. Functional testing: Is the system able to provide promising results? This is related

to assessing the blockchain itself. Blockchain can be assessed using three metrics:

transaction throughput, latency, and finality time. The transaction throughput repre-

sents the amount of successfully committed transactions per second. Blockchain is

successful if it is able to provide high transaction throughput, especially in the case of

permissionless blockchain. The latency represents the time taken for the effect of the

transaction to be reflected; it should be minimal. Finally, the finality time represents

the transaction’s time to be committed. This metric is highly important as if wrongly

adjusted, it decreases the system’s efficiency.
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3. Resource testing: Are the involved nodes operating properly? This is related to assess-

ing the involved nodes. Theoretically, this is assessed using the resource metrics, which

represent the computational power (CPU/GPU, memory, storage capacity, connectivity,

and cache ratio) of the nodes. This metric is of high importance, as low resources can

incur a significant negative impact on the chain.

The systematic mapping study reveals that there is no simulator able to assess the sys-

tem’s performance from all the different viewpoints. From the source code viewpoint,

existing blockchain simulators support multiple metrics. However, their correspond-

ing papers do not validate/evaluate all of them. Again, the problem is not with the

simulators themselves but with the target application. Focusing on the network layer,

all simulators except eVIBES [123] and BlockEval [136] are concerned with relevant

metrics. VIBES [122] implements 3 out of the five network metrics. BlockSim [131],

SIMBA [132] and BlockPerf [129] implement only 2 out of them. Shadow-Bitcoin

[120] implements only one network metric.

On the consensus layer, seven simulators implement associated metrics. VIBES [122],

eVIBES [123], BlockSim [127], BlockPerf [129], and BlockEval [136] implement only

2 out of the consensus metrics. Local Bitcoin [134] and SIMBA [132] implement only

one metric related to the consensus layer.

On the incentive layer, the mining reward metric is only supported by BlockPerf [129].

Regarding the general metrics, the processing speed metric is only implemented in

VIBES [122], while the system stability metric is only supported by BlockSIM [133].

RQ3. What are the limitations of the current simulators?

The limitations of the covered simulators can be expressed by the following viewpoints.

1. Usability: Great headway has been made in the field of simulating blockchain, but

the work is limited. The usability of such simulators is hindered by the fact that there

are a large number of parameters that need to be adjusted (such as the simulation

scenario and the execution environment); this necessitates a deep understanding of

blockchain technology. Furthermore, most of the existing simulators require coding
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skills and/or knowledge of command-line interfaces. However, some effort has been

made to mitigate this issue through the use of web interfaces, as in VIBES [122] and

eVIBES [123].

2. Availability and Scalability: the majority of the simulators virtually run multiple

blockchain nodes on a single machine, which naturally suffers from limited resources.

Thus, it can be challenging to generalise the outcomes of simulated blockchain models

on real-world blockchain networks (i.e. resource usage and energy consumption).

Moreover, there is no focus on node behaviour under different sources of power and

resources, i.e. blockchain running on custom ASIC-based computers. Additionally,

to the best of our knowledge, the majority of existing simulators do not draw much

attention to the consensus layer; and many of them solely focus on PoW algorithms

while neglecting others, such as PoS, PoA, Raft, and others.

3. Applicability: the majority of simulators are predominantly targeted for financial

applications, such as Bitcoin. However, no generalisation has been made outside the

field of finance. The hurdle is that there is no simulation to support the integration

of blockchain with other technologies. For instance, none of the covered simulators

are specifically tailored to experiment with the intersection of blockchain with other

domains such as IoT, Cloud, Cybersecurity, Supply Chain, and others.

3.7 Conclusion

Modelling and simulation have been useful in several disciplines, and blockchain is no

exception. Such practice allows for experimenting with complex systems, such as blockchain

systems, with minimum cost and effort. The presented systematic study mainly investigates

blockchain simulators, their features and capabilities. The results showed that there are

20 simulators dedicated to this purpose. We focused on 11 simulators whose source code

is publicly available. Additionally, it highlights scientifically validated/evaluated metrics

supported by each simulator.
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Most existing simulators support stochastic, dynamic and discrete event modelling ap-

proaches. We find that the majority of existing blockchain simulators support dynamic

modelling, which aligns well with the nature of blockchain networks. Regarding the evalua-

tion/validation process, not all simulators are interested in the same collection of evaluation

metrics or blockchain layers. Moreover, we find that not all supported metrics by each

simulator are scientifically validated/evaluated in their corresponding papers.

To date, no blockchain simulator can comprehensively cover all blockchain facets. More-

over, existing blockchain simulators are unsuitable for supporting other technologies, such as

cloud and IoT. Blockchain simulation is generally still in its infancy, and further research is

needed in this direction. The next chapters address the lack of existing Blockchain simulation

for IoT purposes by introducing a simulation framework that considers complex architectures

where Blockchain and IoT paradigms are integrated. The simulation framework focuses on

evaluating the performance of modelled Blockchain-based IoT scenarios in various ways,

including pure simulation, middleware that connects the simulator with real blockchain

platforms, and machine learning techniques for performance prediction, as well as planning

configuration parameters to produce a target performance level.



Chapter 4

Investigating the Requirement of Building

Blockchain-based IoT Simulation

Summary

The Internet of Things (IoT) has enabled the management of a vast number of smart devices.

Still, existing IoT architectures tend to depend on centralised models, which are at risk of

single points of failure and security limitations. Blockchain technology offers a potential

solution to improve IoT architectures and realise unprecedented opportunities. However,

both blockchain and IoT are complex, making it difficult to assess the performance of IoT

systems integrated with blockchain, especially in the presence of highly heterogeneous

devices. Therefore, simulation tools are needed to enable the modelling and evaluation of

such systems prior to real-world deployment.

This chapter is the first part of this thesis effort to realise a simulation tool for blockchain-

based IoT systems with a focus on performance evaluation purposes. This chapter aims to

gather and analyse the requirements for the simulation tool based on perspective and feedback

from subject-matter experts. A two-part study was conducted to gather the requirements

for designing and implementing a blockchain-based IoT simulator. Firstly, a questionnaire

was used to confirm the benefits of designing a simulator to analyse the performance of IoT

integrated with blockchain. Secondly, participants were interviewed to understand the key
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challenges they face with blockchain-based IoT during performance evaluation, along with

features required for a simulator for such cases, and to gather insights into how blockchain

can benefit IoT. This chapter paves the way for the next Chapter 5 to facilitate the design and

implementation of the simulator.

The remainder of this chapter is organised as follows: Section 4.1 provides a brief

introduction to this chapter and highlights the challenges it seeks to address. Section

4.2 explains the Research Question (RQ), highlights the chapter’s contributions, and its

relevance to the published paper. Section 4.3 presents the objectives of the study. The

methods employed in this study are detailed in Section 4.4. The results are presented in

Section 4.5 and then discussed in Section 4.6. Section 4.7 presents the study’s proposals and

the requirements specification for a blockchain-based IoT simulator. Section 4.8 concludes

the chapter.

4.1 Introduction

The Internet of Things (IoT) constitutes a vast network of interconnected devices, including

sensors, actuators, smart TVs, and smart cars. These devices can communicate and share

data with one another or with users. Several issues are associated with the centralisation of

most IoT architectures, as highlighted by Section 2.3. Several Blockchain features, such as

those in Section 2.1.2, invite the utilisation of Blockchain to decentralised IoT architectures.

However, IoT and Blockchain technologies are highly complex and heterogeneous, not to

mention the integration of both (see Section 2.3.2 for further details). Simulators investigate

a system’s parameters and behaviour [145], which can be useful for complex systems that

must be examined before actual deployment [146, 147]. Blockchain and IoT are good

examples that can benefit from simulation because blockchain and IoT consist of various

interconnected layers [148, 149]. Simulators can substantially reduce the financial costs

needed to deploy real blockchain or IoT systems. Also, simulators allow investigation of

a system’s performance under different configuration setups. Nevertheless, the systematic

mapping study, in Chapter 3, reveals that no existing simulator specifically considers the
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combination of IoT and Blockchain for performance evaluation purposes. Therefore, this

thesis ridges the gap by contributing a blockchain-based IoT simulator for performance

evaluation purposes, which can benefit the industry and academia.

4.2 Research Questions, Contributions, and Relevance to

Published Work

Section 4.2.1 provides a detailed explanation of the Research Question (RQ) and highlights

the contributions associated with this chapter. Section 4.2.2 clarifies the relevance of this

chapter to the published paper, as outlined by the publications listed in Section 1.4.

4.2.1 Research Question and Contribution

Research Question 2 (RQ2): Given the lack of existing simulation frameworks for evalu-

ating the performance of Blockchain-based IoT ecosystems, what is required to bridge the

gap? To answer this question, this thesis contributes a simulation framework for evaluating

the performance of blockchain-based IoT ecosystems. The contribution of the simulation

framework is the first in the literature to combine IoT and Blockchain in a unified simulation

tool for performance evaluation purposes. This chapter specifically undertakes the first

step for realising the simulator by gathering and analysing relevant requirements based on

subject-matter experts. This step is essential for conducting the next chapter, Chapter 5,

which, in turn, designs and builds the simulator based on the outcomes of this chapter.

4.2.2 Relevance of the Chapter to the Published Paper

This chapter is closely aligned with the corresponding publication [14], which explores the

requirements for developing a simulator to assess the performance of IoT integrated with

blockchain. It addresses the primary challenges encountered in blockchain-based IoT and

examines how blockchain technology can enhance IoT systems. While it covers the same

key topics and presents similar information as the publication, this chapter goes further by
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expanding on the methodology with additional details. Moreover, it incorporates a thematic

analysis of interview data and outlines specific requirements for designing and developing a

simulation framework to evaluate the performance of blockchain-IoT integration.

4.3 Objectives

This chapter aims to obtain the opinions and perspectives of research participants regarding

blockchain’s potential contributions to IoT. For example, enabling IoT data transparency and

security. Once the participants’ thoughts are gathered, the proposed system’s requirements

and the required tools and mechanisms can be established. This process is described in

relation to a number of objectives, as follows:

1. To gather the required information from experts in the field regarding:

(a) The usage of IoT in our daily life.

(b) The most commonly used blockchain types.

(c) The IoT data that should be stored on the blockchain.

(d) The consensus algorithms required for the simulator.

(e) The users’ needs as regards the blockchain log.

(f) The possibility of using IoT nodes as blockchain nodes.

2. To provide analytical information regarding:

(a) Participants’ opinions about having an integrated blockchain IoT simulator.

(b) Participants’ opinions on modelling various types of blockchain in the simulator.

3. To design a simulator to validate the integrated blockchain IoT systems.

4.4 Method

This study employs a sequential explanatory design [150], starting with a questionnaire

(quantitative) phase followed by an interview (qualitative) phase to explore the perspec-
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tives of professionals and researchers on developing a blockchain-based IoT simulation

framework. The following subsections outline the approaches and procedures used in the

study. Section 4.4.1 details participants’ identification, selection, and recruitment, along

with a summary of their number and demographic characteristics. Section 4.4.2 describes

the methods and procedures utilized for collecting and analyzing both questionnaire and

interview data.

4.4.1 Participants

Participants were selected from a pool of individuals who met the criteria for involvement in

this study through a multi-stage process detailed in the following subsections.

4.4.1.1 Identifying Potential Participants

The study targeted individuals with relevant expertise and experience in the Blockchain and

IoT fields by identifying several key sources. These included professional academic networks

like ResearchGate, specialized research groups focused on Blockchain and IoT, both within

and outside the researcher’s educational institution, and scholarly publications related to

these fields. During this stage, we gathered contact information, including email addresses

that facilitate subsequent communication and invitations to participate in the study.

4.4.1.2 Selection Criteria

After identifying potential participants in the previous step, we established specific selection

criteria. These criteria included relevant experience for practical and professional work in

blockchain and IoT and a review of their publications in these fields.

4.4.1.3 Recruitment Approach

1. Online Questionnaire: The selected participants were distributed via email to com-

plete an online questionnaire. The email included an overview of the study’s objectives,

their expertise’s importance, an estimated completion time, and a link to the question-
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naire. Out of the 42 individuals invited, 25 completed the questionnaire. However,

seven participants were excluded during the analysis stage due to their low familiarity

with blockchain and IoT, as the study targeted participants with expertise. As a result,

18 of the 25 participants’ responses were included in this study.

2. Follow-up Interviews: The selected participants for follow-up interviews received

email invitations that outlined the study’s purpose, emphasized the importance of their

expertise in Blockchain and IoT, and specified the expected time commitment. Ten

participants were chosen for follow-up interviews based on several criteria, including a

high level of familiarity with the field as determined by quantitative analysis results,

as well as demographic factors such as academic level, experience, and areas of

interest. Participants’ willingness and availability for interviews were also considered

in the selection process. Then, follow-up emails were sent to confirm participation.

Ultimately, six out of the ten participants who agreed to participate were interviewed.

4.4.1.4 Demographics

The participants’ demographic, including their academic levels, professional backgrounds,

and research interests and experiences, is summarized in Table 4.1.
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Table 4.1 Participant Demographics

Participant Academic
Level

Professional
Background Interest Experiences

1 PhD Academia Blockchain-based SLA in the context of IoT 4

2 PhD Academia IoV, Blockchain and IoT 4

3 PhD Academia IoT, Blockchain and AI 3

4 PhD Academia Data management and blockchain 2

5 Master Industry Remote health monitoring using IoT and blockchain 1

6 PhD Academia Blockchain, Formal modelling and AI 2

7 Master Industry Blockchain, supply chain management and IoT 4

8 PhD Academia Decentralized networks for IoT 1

9 PhD Academia Blockchain with IoT scalability 3

10 Master’s Industry Blockchain for smart city 3

11 PhD Academia IoT and blockchain 3

12 PhD Academia Blockchain-based IoT 1

13 Master’s Industry Blockchain, AI and IoT 3

14 PhD Academia Blockchain integration with AI 2

15 PhD Academia IoT and blockchain 2

16 Master Industry IoT security using blockchain 1

17 PhD Academia Blockchain, IoT and Cloud 3

18 PhD Academia Blockchain, IoT 4

4.4.2 Data Collection and Analysis Methods

This section describes the methods and procedures utilized for collecting and analyzing both

Questionnaire 4.4.2.1 and Interviews 4.4.2.2.

4.4.2.1 Questionnaire

The questionnaire was designed based on the study’s objectives outlined in section 4.3

and was subsequently administered via the SurveyMonkey platform. The questions were

specifically crafted to explore participants’ perceptions and attitudes towards various aspects

of blockchain technology, with a particular focus on simulating blockchain-based IoT. The

questionnaire comprised nine closed-ended questions, utilizing a Likert scale ranging from 1

(’strongly disagree’) to 5 (’strongly agree’).
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Prior to distributing the questionnaire to the primary participants, a pilot test was con-

ducted with a small sample group. This preliminary step aimed to assess the questionnaire’s

clarity, relevance, and ease of completion. Based on the feedback from the pilot test, refine-

ments were made to ensure the questionnaire was well-suited to the target participants, as

discussed in section 4.4.1.

Following data collection, a statistical analysis was carried out using the Statistical

Package for the Social Sciences (SPSS). This analysis included a reliability test through

Cronbach’s Alpha, which yielded a value of 0.796, indicating a high level of internal

consistency among the questions.

Furthermore, the findings were presented through descriptive analysis, with graphical

representations employed to illustrate response distributions and highlight key findings as

provided in section 4.5.1.

4.4.2.2 Interviews

The 6Ps framework by Oates [151] was utilized to design and implement the follow-up

interview, ensuring the quality and consistency of the process throughout the study. This

framework encompasses six key elements: purpose, paradigm, process, participants, product,

and presentation. The procedure for applying this framework is detailed below, with a

summary in Table 4.2.
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Table 4.2 Summary of the 6Ps Framework

6Ps Scope Question Procedure

Purpose Motivation Why was this interview conducted? - Gathered expert insights, challenges, and
requirements for a Blockchain-IoT simulator

Paradigm Data What method was used? -Qualitative,
-Semi-structured interview

Process Function How was the data analyzed? - Thematic analysis

Participants People Who was involved? - Participants, Blockchain, and IoT

Product Results What were the outcomes? - Challenges, Benefits, Requirements,
Recommendations

Presentations Place
& Time

Where and when were the interviews
conducted?

- Conducted via Zoom, Scheduled based on
participants’ availability, Approximately 60 minutes

1. Purpose: This study aimed to collect information concerning their opinions on using

IoT-based Blockchain, as well as comprehending their requirements for a simulation

environment to assess blockchain-based IoT. The participants were asked to answer

the following questions:

(a) What are the major challenges you face when dealing with blockchain-based

IoT for any evaluation purposes?

(b) Which features make blockchain suitable for the IoT?

(c) What are the anticipated outcomes of utilising blockchain within the IoT?

2. Paradigm: The study adopted a qualitative research method to explore the insights of

experts in the field of Blockchain and IoT technologies to identify the key challenges,

benefits, and specific requirements for designing a simulator to evaluate integrated

Blockchain-IoT systems’ performance. It relied on semi-structured interviews, which

were well-suited for capturing viewpoints and detailed explanations that quantitative

methods may overlook.

3. Process: The research employed a semi-structured interview methodology to gather

qualitative data. The interview guide was developed based on the study’s objectives,
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including key questions that addressed challenges, opportunities, and requirements for

developing a simulation framework related to Blockchain and IoT.

Each interview began with an introduction explaining the study’s purpose. The re-

searcher then followed the prepared guide (e.g., motivation scenario, challenges of

integration, etc.) to allow flexibility for participants to elaborate on relevant topics.

Interviews were recorded with participants’ consent for accurate transcription and

analysis.

After each interview, the recordings were transcribed verbatim, and thematic analysis

[152] was applied to identify significant patterns and themes. The data coding process

involved open coding, followed by axial coding to connect related themes, as explained

in Section 4.4.2.3.

4. Participants: The study included six participants with experience in Blockchain and

IoT technologies. The participants were chosen based on the criteria, as illustrated

in 4.4.1.

5. Product: The research produced several key outcomes, providing valuable insights

into integrating Blockchain and IoT technologies. The primary products of the study in-

cluded identifying challenges in using Blockchain with IoT, requirements for designing

a simulation environment, and recommendations, as presented in section 4.7.

6. Presentations: The interviews were conducted via the Zoom platform, allowing

experts in different geographic regions to participate remotely. The sessions were

scheduled to accommodate the participants’ time zones at various times based on their

availability. Each interview lasted approximately 60 minutes, providing sufficient time

for in-depth discussions.
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4.4.2.3 Thematic Analysis Procedure

The thematic analysis was conducted following a systematic process that involved several key

steps: familiarization with the data, generating initial codes, searching for themes, reviewing

themes, defining and naming themes, and finally, writing the report.

1. Familiarizing with the Data

The first step in the thematic analysis involved familiarizing ourselves with the data

gathered from the previous step 4.4.2.2. This process began with repeated reading of

the interview transcripts and the questionnaire responses. The aim was to immerse in

the data to develop a deep understanding of the content and context. During this phase,

we took notes on initial thoughts and potential patterns that appeared significant.

2. Generating Initial Codes

Once familiarized with the data, the next step was to generate initial codes. Coding

involves identifying and labelling segments of the data that are relevant to the research

questions. Each code represents a specific feature of the data that appeared interesting

or meaningful. In this study, coding was applied systematically across the entire data

set with cross-references to the data sources and identifiers, as shown in Table 4.3.

Table 4.3 Summary of Generating Initial Codes.

RQ Initial Round Final Round Quote of
Participants ResponseInitial Code Final Code

RQ1

C1: Difficulty evaluating perfor-
mance due to cost

C1: Costly real-world performance
measurement

“The obstacle lies in investigat-
ing the performance and cost of
these technologies."

C2: Difficulty in monitoring system
performance

C2: System monitoring difficulty “...is the difficulty of monitoring
systems’ performance."

C3: Heterogeneity and mobility of
IoT Devices

C3: System heterogeneity and
mobility

“..blockchain-based IoT chal-
lenges is system evaluation because
of the heterogeneity and mobility of
IoT devices."

C4: Difficulty obtaining perfor-
mance statistics

C4: Difficulty obtaining perfor-
mance statistics

“...challenge is how to obtain
various statistics about the sys-
tem..."

C5: Complexity of Blockchain and
IoT

C5: Complexity measuring perfor-
mance

“...blockchain and the IoT, it is
difficult to measure performance due
to the complexity of both technolo-
gies. "

Continued on next page
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Table 4.3 – continued from previous page

C6: Focus on either IoT or
blockchain

C6: Single-focus simulators “...there are many proposed
simulators for Blockchain and IoT
in the literature; however, each
simulator either focuses on IoT or
blockchain."

C7: Lack of features supported in
Blockchain or IoT simulator

C7: Lack of feature coverage “... use a cloud simulator to
evaluate the system. Having a
Blockchain simulator with IoT
features... "

C8: Make decisions based on
exploring the performances

C8: Decision-making “The simulation metrics give
me an indicator about the proposed
system to make decisions."

C9: Simulate IoT with Blockchain C9: Multi-Discipline simulation “... having a multi-discipline
simulator..."

C10: Test from diverse aspects C10: Evaluation from multiple
aspects

“... assess the system from
different viewpoints..."

C11: Facilitate the evaluation
process

C11: Facilitate the evaluation
process

“Blockchain simulator with
IoT features that can track every
transaction and system throughput
will ease my tasks."

C12: Ability to customize IoT and
Blockchain configurations

C12: Configuration flexibility “... configure the number of
IoT devices and protocols used
while at the same time determining
the size of transactions, either for
blockchain or the IoT (end to end)."

C13: Transaction latency C13: Performance metrics and
statistics

“ Simulator supports more than
one measure, such as latency,
throughput, total time, along with
the number of blocks created... ."

“...like the number of generated
transactions, number of blocks and
time of confirmation for block and
transaction."

C14: Throughput

C15: Number of transactions

C16: Number of blocks

C17: Confirmation times for transac-
tion and block

RQ2

C18: Secure management of data C14: Handling of sensitive and
important Data

“Healthcare data is of high
importance and needs to be securely
handled. "

“Not all IoT data are of high
importance, but there is still a need
to secure sensitive data and enhance
privacy. "

C19: Data privacy without third
party

C15: Data privacy without third
party involvement

“.........the danger of break-
ing data privacy and poli-
cies.....blockchain’s traceability
can help in these situations."

C20: No third-party involved C16: Elimination of Third-Party
management

“Blockchain is a strong fit...
because of its features (for example,
decentralization) that dispense a
third party to manage data."

C21: Single Points of Failure C17: Preventing Single Points of
Failure

“ Decentralization... can pre-
vent a single point of failure and
bottlenecks from occurring."

C22: Immutability and Authenticity C18: Immutability and Authenticity “IoT data can be immutable
and distributed... ensure the data’s
authenticity and that it will never be
tampered with. "

C23: Data transfer C19: Reliable data transfer “Blockchain benefits the IoT by
ensuring reliable data transfer."

C24:Data storage C20: Selective data storage “Data storage is a crucial
metric... I prefer storing only the
most important data."

Continued on next page
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Table 4.3 – continued from previous page

C25: Processing C21: Limited processing capabili-
ties

“ Due to the limited processing
capabilities of IoT devices, third-
party service providers are generally
used to process additional data."

C26:Traceability C22: Traceability “Blockchain’s traceability can
help in these situations."

RQ3

C27: Device management and
access control of IoT components

C23: Identity management and
access control

“ .....large number of devices
expected to be connected....
blockchain would alleviate secu-
rity issues...identity management
and access to the IoT ..."

“....Due to the limited processing
capabilities of IoT devices, third-
party service providers are generally
used to process additional data.."

C28:Privacy C24: Privacy concerns “ ....IoT issues related to pri-
vacy."

C29: Data generated by the trusted
device in Blockchain

C25: Enhanced data integrity and
privacy

“..every single device can be
identified using a permissioned
blockchain network... ensuring
immutability... data is generated by
an identified device (trusted). "

“..blockchain is a promising
choice when it comes to ensuring
privacy. "

C30: Improved IoT security and
trust

C26: Enhanced security and trust “...blockchain would alleviate
security issues... identity manage-
ment and access to the IoT should
be more secure and trusted. "

“...blockchain would provide the
IoT developers with more secure
solutions due to its features."

C31: Optimized IoT access policies
and control mechanisms

C27: Enhanced access control and
policy definition

“..blockchain can define a set of
policies needed to control IoT data
access."

“..using a reliable tool for
controlling data access."

C32: Traceability and transparency C28: Enhanced traceability and
transparency

“...blockchain allows for the
traceability of all recorded data
stored...transparency in supply
chains.. shared with ...stakeholders"

3. Searching for Themes

Following the coding process, the next step was to search for themes. A theme captures

something important about the data in relation to the research question and represents

a patterned response or meaning within the data set. In this study, related codes were

grouped together to form broader themes, as presented in Table 4.4. For example,

codes related to "Scalability Issues" and "Data Management Challenges" were grouped

under the theme "Challenges in Blockchain-IoT Integration."
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Table 4.4 Summary of Themes Categorization.

RQ Code Theme
Category

RQ1

C1: Costly real-world per-
formance measurement

Challenges

C2: System monitoring dif-
ficulty

C3: System heterogeneity
and mobility

C4: Difficulty obtaining
performance statistics

C5: Complexity measuring
performance

C6: Single-focus simula-
tors Simulators’

LimitsC7: Lack of feature cover-
age

C8: Decision-making

Need for
a Simulator

C9: Multi-Discipline simu-
lation

C10: Evaluation from mul-
tiple aspects

C11: Facilitate the evalua-
tion process

C12: Configuration flexi-
bility Features

NeededC13: Performance metrics
and statistics

RQ Code Theme
Category

RQ2

C14: Handling of Sensitive
and Important Data Security

and
Privacy

C15: Data privacy without
third party involvement

C16: Elimination of Third-
Party Management Decentra-

lizationC17: Preventing Single
Points of Failure

C18: Immutability and Au-
thenticity

Data
Integrity

and
Reliability

C19: Reliable Data Trans-
fer

C20: Selective Data Stor-
age Scalability

and
Efficiency

C21: Limited Processing
Capabilities

C22: Traceability Traceability
and

Transparency

RQ Code Theme
Category

RQ3

C23: Identity manage-
ment and access control IoT Security

ChallengesC24: Privacy concerns

C25: Enhanced data
integrity and privacy Blockchain

Anticipated
Outcomes

as a
Mitigation

C26: Enhanced security
and trust

C27: Enhanced access
control and policy defini-
tion

C28: Enhanced traceabil-
ity and transparency

4. Reviewing Themes

Once the initial themes were identified, they were reviewed to ensure they accurately

represented the data. This step involved two levels of review: the first level focused
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on the coherence of data within each theme, and the second level involved assessing

the validity of the themes in relation to the entire data set. Some themes were merged,

refined, or discarded based on their relevance and clarity.

5. Defining and Naming Themes

After reviewing the themes, the next step was to define and name them. Each theme

was clearly defined to articulate its essence and scope. The themes were also given

descriptive names that succinctly captured their core meaning, as shown in Table 4.5.

For example, the theme "Challenges of Evaluating Blockchain-based IoT " was defined

as encompassing all discussions related to the difficulties of evaluating blockchain with

IoT, including system monitoring difficulty and complexity measuring performance.

Table 4.5 Summary of Defining Themes.

Code Theme
Category Theme Theme

Description

C1: Costly real-world performance
measurement

Challenges Challenges of Evaluating
Blockchain-based IoT

This theme explores partic-
ipants’ perspectives on the
challenges and limitations of
evaluating the performance of
blockchain-based IoT.

C2: System monitoring difficulty

C3: System heterogeneity and
mobility

C4: Difficulty obtaining perfor-
mance statistics

C5: Complexity measuring perfor-
mance

C6: Single-focus simulators Simulators’
LimitsC7: Lack of feature coverage

C8: Decision-making

Need for
a Simulator

Need and Core Features
of a Simulator for

Blockchain-based IoT
Performance Evaluation

This theme explores whether
participants are interested in
a simulator capable of eval-
uating Blockchain-based IoT
performance and identifies the
key features and capabilities
that such a simulator should
encompass.

C9: Multi-Discipline simulation

C10: Evaluation from multiple
aspects

C11: Facilitate the evaluation
process

C12: Configuration flexibility
Features
NeededC13: Performance metrics and

statistics

Continued on next page
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Table 4.5 – continued from previous page

C14: Handling of sensitive and
important data Security

and
Privacy

Key Features Enhancing
Blockchain Integration

with IoT

This theme explores the spe-
cific features of blockchain
that make it particularly well-
suited for integration with IoT
systems.

C15: Data privacy without third
party involvement

C16: Elimination of Third-Party
management Decentra-

lizationC17: Preventing Single Points of
Failure

C18: Immutability and authenticity Data
Integrity

and
Reliability

C19: Reliable data transfer

C20: Selective data storage
Scalability

and
Efficiency

C21: Limited processing capabili-
ties

C22: Traceability
Traceability

and
Transparency

C23: Identity management and
access control IoT Security

Challenges
Feasibility of Blockchain
Integration with IoT for

Addressing Security
Challenges and Mitigating

Potential Risks

This theme explores the prac-
ticality and viability of using
blockchain to address security
challenges within IoT systems.

C24: Privacy concerns

C25: Enhanced data integrity and
privacy

Blockchain
Anticipated
Outcomes as
a Mitigation

C26: Enhanced security and trust

C27: Enhanced access control and
policy definition

C28: Enhanced traceability and
transparency

6. Producing the Report

The final step in the thematic analysis was writing the report. The report presented the

themes in a structure supported by relevant data extracts. Each theme was discussed in

detail, with a focus on how it addressed the research questions and what it revealed

about the challenges, benefits, and anticipated outcomes of integrating blockchain

and IoT technologies, such as the mitigation of IoT security issues, as illustrated in

section 4.5.2.
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4.5 Findings

The study’s findings are organized as follows: Section 4.5.1 presents the questionnaire results,

and Section 4.5.2 presents the interview results.

4.5.1 Questionnaire

The questionnaire for this study was designed following the structured procedures outlined in

Section 4.4.2.1. Moreover, we crafted the questions based on the study’s objectives 4.3, with

each question clearly aligned with a predefined objective, as shown in Table 4.6. This resulted

in a questionnaire with nine closed-ended questions formatted on a Likert scale. A total of

25 selected participants initially responded to the questionnaire, which was distributed to

the selected during the analysis using the approach described in Section 4.4.1. However,

we found that seven out of the 25 participants had low or moderately low familiarity with

blockchain and IoT technology during the analysis of participants’ responses. Given the

study’s focus on participants with relevant experience, we excluded these individuals from

the final analysis. Consequently, the final analysis focuses on the responses of 18 participants

who demonstrated moderate to high familiarity with both IoT and blockchain.

Table 4.6 Matching the questionnaire questions to the predefined objectives.

Question Objective 1 Objective 2 Objective 3
a b c d e f a b

Q1 ✓

Q2 ✓

Q3 ✓ ✓

Q4 ✓ ✓

Q5 ✓ ✓

Q6 ✓ ✓

Q7 ✓ ✓

Q8 ✓ ✓

Q9 ✓ ✓

The questionnaire begins by asking questions to determine the participants’ familiarity

with the IoT. Specifically, the participants were asked, “To what extent are you familiar



86 Investigating the Requirement of Building Blockchain-based IoT Simulation

with IoT?" In this case, 18 answers presented in Figure 4.1 were received from participants

regarding their familiarity. The figure shows that the majority (eight participants, 44%) are

moderately aware of the IoT, while five participants (28%) have moderately high familiarity

with the IoT. Moreover, five participants (28%) are highly aware of the IoT. Accordingly, the

selected participants are a good fit because the majority (moderate and higher) are aware of

the IoT.
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Q1: To what extent are you familiar with IoT?

Fig. 4.1 Participants’ familiarity with the IoT.

As we are discussing two technologies, we also examined their familiarity with blockchain

to feel more confident about the participants’ answers. Thus, the participants were asked,

“To what extent are you familiar with blockchain?" In this instance, 18 responses, presented in

Figure 4.2, were received from the respective participants regarding their familiarity. The

figure suggests that the majority (six participants, 33%) possess moderately high awareness

of blockchain, while seven participants (39%) are very familiar with blockchain. Moreover,

five participants (28%) are moderately aware of blockchain.
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Q2: To what extent are you familiar with blockchain?

Fig. 4.2 Participants’ familiarity with Blockchain.

Similar to the participants’ familiarity with the IoT, the selected participants are a good

fit, given that the majority are aware of blockchain. Subsequently, the participants were

asked “if they believe that there will be an expansion of blockchain with IoT in the future."

All 18 participants responded to this question, with their responses presented in Figure 4.3.

It was established that the majority (eight participants, 45%) highly agreed with this point.

Moreover, six participants (33%) expressed moderately high agreement with the idea. A

minority (four, 22%) either moderately or completely disagreed.
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Q3: From my perspective, there may be an expansion

of blockchain technology along with IoT in the future.

Fig. 4.3 Participants’ thoughts about the IoT’s integration with blockchain.

Following this, participants were asked, “What are your thoughts regarding the need

to have an IoT blockchain simulator for helping developers with adjusting the system’s

configurations?” All 18 participants provided their responses, summarised in Figure 4.4.

As is apparent from this figure, nine participants (50%) strongly agreed with this notion,

while eight participants (44%) agreed with this concept. Only one participant (6%) expressed

neutrality, and none disagreed.
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Q4: Do you think there is a need for an IoT blockchain simulator that

helps developers to systematically adjust the system’s configurations?

Fig. 4.4 Participants’ thoughts about having an integrated IoT blockchain simulator.

Given that the participants are domain experts, we took the opportunity to gather their

perspectives on storing IoT data in blockchain. The participants were asked, “Do you agree

that all IoT data should be stored in the blockchain?” The responses, as shown in Figure 4.5,

reveal that the majority disagreed with this statement, with 13 (72%) participants either

disagreeing or strongly disagreeing. This outcome may reflect the varying scenarios in which

IoT and blockchain are utilized. Additionally, three participants (17%) expressed neutrality,

while two participants (11%) agreed or strongly agreed with the statement.
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Q5: Do you agree that all IoT data should be stored in the blockchain?

Fig. 4.5 Participants’ thoughts about storing all of the IoT data in the blockchain.

Consensus algorithms are of considerable importance in blockchain because they are

used to reach a common agreement (consensus) on the current state of the ledger data. They

also enable unknown peers to be trusted in a distributed computing environment. Thus, there

is a need to establish participants’ needs relating to this. Accordingly, the participants were

asked, “What are your thoughts on having multiple consensus algorithms in the simulator?"

The participants’ responses to this question are summarised in Figure 4.6. Considering the

data more closely, it is apparent that the majority (eight participants, 44%) agreed with this

notion. Furthermore, five participants (28%) strongly agreed with the idea. Meanwhile, two

participants (11%) were moderately supportive, and three participants (17%) either disagreed

or strongly disagreed.



4.5 Findings 91

Strongly disagree Disagree Neutral Agree Strongly agree
0

2

4

6

8

10

1

2 2

8

5

Agreeing level

Fr
eq

ue
nc

y
Q6: Do you agree having an IoT blockchain simulator

that makes use of different types of consensus algorithm?

Fig. 4.6 Participants’ thoughts about having multiple consensus algorithms in the simulator.

Considering blockchain in greater depth, it is essential to determine the participants’

perspectives regarding investigating the log. This is crucial because it provides the opportunity

to compute system latency and throughput. Accordingly, the participants were asked for their

opinions concerning investigating the log file. The participants’ responses to this question

are presented in Figure 4.7. The significant point is that the majority (12 participants) either

strongly agreed (22%) or agreed (44%) with this idea. Additionally, four participants (23%)

remained neutral on the statement. Meanwhile, two participants (11.11%) expressed varying

levels of disagreement.
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Q7: Do you prefer having the flexibility to investi-

gate the detailed log information for every transaction?

Fig. 4.7 Participants’ thoughts about the ability to investigate the log.

Subsequently, the participants were asked about using IoT devices as blockchain nodes.

Their responses, as shown in Figure 4.8, reflect an overall positive attitude toward this idea.

Ultimately, most participants either strongly agreed (seven participants, 39%) or agreed (six,

33%) with the statement. In contrast, four participants (22%) either strongly disagreed or

disagreed with this notion. Finally, one participant (6%) expressed neutrality regarding this

notion.
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Q8: Do you agree using IoT edge devices like Raspberry pi as the blockchain nodes?

Fig. 4.8 Participants’ thoughts about using IoT edge devices as blockchain nodes.

Finally, given that there are numerous types of blockchain, there is a need to comprehend

if it is essential to have a simulator that can model the diverse types. Accordingly, the

participants were asked about this, and their responses to this question are presented in

Figure 4.9. According to the participants’ perspectives, the majority (nine participants, 50%)

are neutral towards this. However, three participants (17%) agreed, while two participants

(11%) strongly agreed. Meanwhile, four participants (22%) either strongly disagreed or

disagreed with this notion.
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Q9: Do you prefer having a simulator capable of modelling every type of blockchain?

Fig. 4.9 Participants’ thoughts about modelling different blockchain types in the simulator.

4.5.2 Interviews

The interviews were structured using Oates’s 6Ps framework to ensure consistency and

quality in data collection. The framework’s elements(e.g. Purpose, Paradigm, Process,

Participants, Product, and Presentation) guide the study, as outlined in Section 4.4.2.2. We

analysed the data collected using a structured thematic analysis approach, which involved

familiarisation with the data, coding, theme identification, and thematic refinement, as

detailed in Section 4.4.2.3.

Overview of Themes

The thematic analysis revealed four primary themes that encapsulate the core challenges,

needs, and opportunities within the domain of blockchain-based IoT systems and their

feasibility, as depicted in Figure 4.10.

The first theme, Challenges of Evaluating Blockchain-based IoT, explores the various

obstacles practitioners face when assessing the performance of these integrated systems,
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including cost, complexity, difficulties in monitoring and collecting data for evaluation pur-

poses and the shortcomings of current simulators, mainly their narrow focus and lack of

features necessary for evaluating both blockchain and IoT together. The second theme, Need

and Core Features of a Simulator for Blockchain-based IoT Performance Evaluation, empha-

sizes the necessity of advanced simulation tools to support multi-disciplinary evaluations,

facilitate decision-making, and provide flexible configurations and detailed performance

metrics. The third theme, Key Features Enhancing Blockchain Integration with IoT, delves

into the essential characteristics required for successful integration, such as security, pri-

vacy, decentralization, data integrity, and scalability. Finally, the fifth theme, Feasibility of

Blockchain Integration with IoT for Addressing Security Challenges and Mitigating Potential

Risks, assesses how blockchain can address IoT security challenges, improve efficiency, and

mitigate risks through features like enhanced data integrity, decentralized management, and

transparent traceability.
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Fig. 4.10 Overview of Key Themes Identified in the Analysis.

4.5.2.1 Theme 1: Challenges of Evaluating Blockchain-based IoT

This theme captures participants’ views on the complexities and difficulties in evaluating the

performance of blockchain-based IoT systems and the limitations of existing simulators.
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• Challenges

This sub-theme delves into the various challenges associated with assessing the perfor-

mance of integrating blockchain technology with IoT. The challenges are categorized

according to system architectural challenges and operational performance challenges.

– System Architecture Challenges: Participants highlighted the difficulty of

monitoring blockchain-based IoT systems due to their decentralized and dis-

tributed nature. Data is generated and processed across numerous devices, often

in real-time, complicating data collection and performance evaluation. As one

participant noted,“The difficulty lies in monitoring systems’ performance due to

decentralization”.

The heterogeneity and mobility of IoT devices add another layer of complexity.

The diverse range of devices, each with varying capabilities and interconnectivity

across different networks makes performance evaluation even more challenging.

A participant remarked,“Evaluating system performance is difficult because of

the heterogeneity and mobility of IoT devices”.

– Operational and Performance Challenges: Participants frequently cited the

high costs associated with real-world performance measurements. Setting up and

maintaining a blockchain-based IoT system is resource-intensive, both financially

and in terms of the specialized hardware and software required. As one participant

explained,“The challenge lies in investigating the performance and cost of these

technologies”.

Another challenge is obtaining performance statistics. The decentralized nature

of blockchain-based IoT systems complicates data collection, making it diffi-

cult to gather the necessary statistics for thorough evaluations. One participant

stated,“The challenge is obtaining various statistics about the system”.

The inherent complexity of measuring performance in these systems was also

emphasized. The interactions between blockchain protocols and IoT devices
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involve multiple factors that influence system performance, making the evaluation

process difficult. A participant explained,“It’s difficult to measure performance

due to the complexity of both technologies”.

• Simulators’ Limits

This sub-theme highlights participants’ perspectives on the limitations of current simu-

lators in evaluating blockchain and IoT integration. These limitations are categorized

according to the simulator’s objective (a.k.a. focus) and the range of supporting features.

– Focus of Simulators: Participants noted that many current simulators are de-

signed with a narrow focus, either on blockchain or IoT, but not both. This

limitation prevents a holistic evaluation of integrated systems, as these simulators

cannot fully capture the interactions between the two technologies. One partici-

pant commented,“Many simulators focus on either IoT or blockchain, but not

both”.

– Coverage of Features: Participants also pointed out that existing simulators often

lack the necessary features to evaluate all aspects of blockchain-IoT integration

effectively. As one participant suggested,“A simulator with both blockchain and

IoT features is needed to evaluate the system comprehensively”.

4.5.2.2 Theme 2: Need and Core Features of a Simulator for Blockchain-based IoT

Performance Evaluation

Given the substantial challenges in evaluating blockchain-IoT systems, as discussed in

Theme 1 4.5.2.1, this theme explores whether needed for a simulator is capable of addressing

the challenges identified in the previous theme and also identifies the key features and

capabilities that such a simulator should encompass.
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• Need for a Simulator

This sub-theme highlights participants’ perspectives on the importance of utilizing sim-

ulators during the evaluation phase, particularly in the context of Blockchain and IoT.

These insights are categorized according to system evaluation and system-wide decision

support.

– System Evaluation: Participants underscored the challenge of evaluating sys-

tem performance across different scenarios, emphasizing that a simulator could

provide valuable insights by allowing for evaluations from multiple perspectives.

One participant explained,“A simulator helps assess the system from different

viewpoints, which is essential for understanding its performance”.

Additionally, evaluating Blockchain-based IoT applications in the real world is

often resource-intensive and time-consuming. Thus, simulators can overcome

challenges by facilitating the evaluation process through modelling and simulating

Blockchain-based IoT. As noted by one participant,“Blockchain simulator with

IoT features that can track every transaction and system throughput will ease my

tasks”.

– System-Wide Decision Support: Participants also highlighted the limitations

of existing tools in capturing the complex dynamics of blockchain-IoT systems.

They emphasized the need for a simulator that can model and simulate these

integrations, facilitating more informed decision-making. One participant re-

marked,“The simulation metrics give me an indicator about the proposed system

to make decisions”.

The participants also pointed out that current simulators are often limited in scope,

focusing on either blockchain or IoT, but not both. As one participant noted,“there

are many proposed simulators for Blockchain and IoT in the literature; however,

each simulator either focuses on IoT or blockchain” and another participant

remarked,“having a multi-discipline simulator”.
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• Features Needed

This sub-theme delves into the specific features and requirements that participants believe

are essential for a simulator. These features and requirements are categorized according to

configurability and customization in the simulator and features supported by the simulator.

– Configurability and Customization: Participants emphasized the necessity of

having a flexible and configurable simulator. This flexibility allows for the simu-

lation of specific scenarios, making performance evaluations more accurate and

meaningful. As one participant mentioned,“configure the number of IoT devices

and protocols used while at the same time determining the size of transactions,

either for blockchain or the IoT (end to end)”.

– Features supported by the simulator: Participants highlighted the importance

of a simulator that can generate performance metrics for understanding system

behaviour under various conditions. As one participant explained,“The simulator

should support multiple measures, such as latency, throughput, total time, and

the number of blocks created” and another participant noted,“like the number of

generated transactions, number of blocks and time of confirmation for block and

transaction”.

4.5.2.3 Theme 3: Key Features Enhancing Blockchain Integration with IoT

This theme explores the specific features of blockchain that make it particularly well-suited

for integration with IoT systems.
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• Features

This sub-theme highlights the primary attributes of blockchain that facilitate its integration

with IoT, such as security through cryptography, decentralization to eliminate single points

of failure, and immutable data to ensure integrity and trust.

– Security and Privacy : Participants consistently highlighted security and privacy

as key reasons for integrating blockchain with IoT. Blockchain’s decentralized

structure enables secure management of sensitive IoT data without relying on

third parties. As one participant noted, "Healthcare data is of high importance

and needs to be securely handled", and another participant remarked,“Blockchain

is a strong fit for IoT because of its features (for example, decentralization) that

dispense a third party to manage data”.

– Decentralization: Participants also emphasized decentralization, noting that it

reduces reliance on centralized entities and prevents potential vulnerabilities. One

participant remarked,“Decentralization can prevent a single point of failure and

bottlenecks from occurring”.

– Data Integrity and Reliability: Blockchain’s immutability ensures that data

recorded cannot be altered, which is important for maintaining data integrity

within IoT systems. One participant shared,“IoT data can be immutable and

distributed to ensure the data’s authenticity and that it will never be tampered

with” and a participant noted,“Blockchain benefits the IoT by ensuring reliable

data transfer”.

– Traceability: The traceability offered by blockchain provides a transparent

record of all transactions within an IoT system, which participants saw as a

significant advantage. “Blockchain’s traceability can help monitor and verify

data exchanges”, one participant mentioned.

– Scalability and Efficiency: Participants also discussed blockchain’s scalability

concerns, particularly with IoT’s massive data generation. It was noted that
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blockchain’s capability to handle large numbers of IoT data must be considered.

As one participant stated,“Data storage is critical; only the most important data

should be stored”.

4.5.2.4 Theme 4: Feasibility of Blockchain Integration with IoT for Addressing Secu-

rity Challenges and Mitigating Potential Risks

This theme explores the practicality and viability of using blockchain to address security

challenges within IoT systems.

• IoT Security Challenges

This sub-theme highlights the key security concerns within IoT systems, as identified

by participants. These concerns include identity management, access control, and data

privacy issues, which are crucial due to the vast number of connected devices and the

limitations of IoT technology.

– Identity Management and Access Control Concerns: Participants emphasized

the difficulties in managing identities and access controls in IoT ecosystems,

where a large number of connected devices create significant vulnerabilities. One

participant noted,“A large number of devices are expected to be connected that

may cause security issues like managing identity and access to the IoT”.

– Privacy Concerns: Privacy is another major issue in IoT systems, primarily

due to the vast amounts of data generated and the frequent need to outsource

data processing due to the limited capabilities of IoT devices. One participant

stated,“Due to the limited processing capabilities of IoT devices, third-party

service providers are used to process additional data, which may cause privacy

issues”.
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• Blockchain Anticipated Outcomes as a Mitigation

While the previous sub-theme illustrated participants’ concerns about IoT security chal-

lenges, this sub-them focuses on the anticipated impacts of blockchain technology as

mitigation by enhancing data integrity and privacy, strengthening security and trust,

improving access control and policy definition, and increasing traceability and trans-

parency.

– Enhanced data integrity and privacy: Participants anticipated that blockchain

could significantly enhance data integrity and privacy within IoT systems by pro-

viding a trusted and immutable data record. As one participant mentioned,“Every

single device can be identified management in a permissioned blockchain network

for ensuring data generated by an identified device (trusted)”.

– Enhanced security and trust: Blockchain’s decentralized nature is expected

to bolster security and trust in IoT systems by addressing common vulnera-

bilities, such as unauthorized access and data breaches. One participant re-

marked,“Blockchain would alleviate security issues of identity management and

access control for making it more secure and trusted”.

– Enhanced access control and policy definition: Participants emphasized the

ability of blockchain to define and enforce access control policies to address

identification management and privacy issues in IoT systems, which often in-

volve multiple stakeholders with varying access needs. As one participant ex-

plained,“Blockchain can define a set of policies needed to control IoT data

access”.

– Enhanced traceability and transparency: Participants also emphasized the

importance of blockchain’s traceability and transparency features in enhancing

IoT security. Blockchain’s ability to provide a transparent and traceable record

of all data transactions within an IoT system is seen as a significant advantage.

For example, one participant noted in the context of supply chains,“Blockchain
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allows for the traceability of all recorded data stored, ensuring transparency in

supply chains as it is shared with various stakeholders”.

4.6 Discussion

4.6.1 Questionnaire

As previously stated, we analyzed the responses of 18 participants who completed the

questionnaire and demonstrated moderate to high familiarity with both IoT and blockchain,

as indicated by their answers to Questions 4.1 and 4.2, respectively. To begin with, the

participants generally view blockchain as a solution to mitigate the challenges facing IoT,

as reflected in Question 4.3. This belief is consistent with the responses to the first two

questions, which underscore the increasing importance of IoT applications for individuals

and organizations in the coming years despite current challenges such as trust, reliability,

security, and performance.

In light of these challenges, blockchain technology offers several features, particularly in

the realm of security, that can address these concerns. Furthermore, the participants expressed

a positive attitude toward the idea of an integrated simulator to mimic the behaviour of IoT

and blockchain technologies, as illustrated in Question 4.4. There is a clear indication that a

simulation tool is needed to support the modelling of applications that integrate blockchain

with IoT. However, most participants opposed this idea when considering the storage of

sensed or gathered data on the blockchain, as shown by their responses to Question 4.5.

This opposition is primarily due to IoT’s vast amount of data per second and blockchain’s

acknowledged scalability issues. As a result, specialists may reject this approach to avoid

potential blockchain failures.

On the other hand, most participants agreed on having multiple consensus algorithms

that are supported by the simulator, as depicted in Question 4.6. This agreement arises from

the need for developers to evaluate their design proposals under different configurations,

especially considering how various consensus algorithms address scalability issues. As

design proposals evolve, the consensus algorithm requirements may shift, necessitating
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lightweight algorithms, which explains the need for different consensus algorithms in the

simulator.

Another significant finding is that most participants prefer capabilities for in-depth investi-

gation of blockchain logs, as reflected in Question 4.7. This preference highlights the need for

deep transaction tracking to identify potential delays and other performance issues. Addition-

ally, there is substantial agreement on using IoT devices as blockchain nodes, as established

by Question 4.8. However, it is impractical for IoT devices to participate as blockchain

nodes due to their limited computational power and energy constraints. Blockchain nodes

are required to perform complex cryptographic operations, such as mining and transaction

validation, which demand substantial processing capabilities and energy resources.

Lastly, in Question 4.9, participants did not favour having a simulator that includes

various blockchain types. The main reason is that each blockchain type has distinct features,

and implementing all of these features in a single simulator could increase complexity,

thereby limiting its applicability.

4.6.2 Interview

The thematic analysis provided valuable insights into the challenges and opportunities

surrounding blockchain-IoT integration. A recurring theme was the significant challenge

of assessing system performance. Participants expressed concerns about the difficulty of

evaluating blockchain-based IoT systems before real-world deployment, largely due to

the limitations of current simulators. These tools often focus on isolated aspects of the

system, failing to provide a comprehensive evaluation. This gap highlights the need for

more advanced simulation tools that can analyze blockchain-IoT systems from multiple

perspectives, a requirement that remains underexplored in existing literature.

Despite these challenges, participants were optimistic about blockchain’s potential to

address critical IoT issues, particularly in data security and privacy. Blockchain’s tamper-

proof nature emerged as a significant advantage, ensuring that IoT data remains secure and

unaltered. Additionally, blockchain’s decentralized architecture reduces the reliance on third-

party servers, aligning well with the distributed nature of IoT systems. This decentralization
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offers a robust solution for managing and securing the vast amounts of data generated by IoT

devices.

However, concerns about blockchain’s scalability persisted. The massive data generation

typical of IoT systems could overwhelm blockchain networks, making it impractical to store

all data on-chain. Some participants suggested a selective approach, where only the most

critical data is stored on the blockchain, while less essential information is handled through

other means. While this strategy could mitigate scalability issues, it raises new questions

about determining the value of data for blockchain storage.

4.7 Recommendations

The results presented in the previous sections have highlighted the significant challenges and

opportunities surrounding integrating blockchain with IoT systems. A recurring theme in the

discussions was the need for more advanced simulation tools to evaluate blockchain-based

IoT systems. Participants emphasized that current simulators often fall short by focusing on

only limited aspects, leaving critical perspectives unexplored. On this basis, we recommend

greater research and exploration into the design and development of a blockchain-based IoT

simulator. These simulators should be capable of analyzing systems from multiple angles,

including performance, security, and scalability. Given the lack of such advanced tools in the

literature, this presents a crucial opportunity for researchers to address this gap and enhance

the evaluation process for blockchain-IoT integration.

Additionally, while participants recognized blockchain’s potential to enhance IoT security

and privacy, concerns were raised about its scalability in handling the massive data generated

by IoT devices. To address this, we recommend further investigation into selective data

storage strategies that prioritize the most critical information for blockchain storage while

managing less essential data through alternative methods.
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4.7.1 Requirements Specification

In response to the challenges and opportunities identified in integrating blockchain with

IoT systems, particularly the need for more advanced simulation tools, we propose a set

of essential features that should be incorporated into a blockchain-based IoT simulation

framework. These features, derived from this study and Chapter 3, are for building a

simulation framework for evaluating the performance of Blockchain and IoT to address the

complexities of system performance evaluation.

The following Table 4.7 provides a breakdown of these features. These features are

categorized into two main sections: Configuration Parameters (Inputs) and Performance

Metrics (Outputs). These categories address specific areas, including network configuration,

transaction configuration, block configuration, consensus mechanisms, IoT configurations,

block metrics, and transaction metrics. Each feature is accompanied by a description outlining

its function in the simulation, along with its role and the rationale behind its inclusion. This

table provides a requirements specification guide utilised in Chapter 5 for designing and

building a simulation tool to evaluate blockchain-based IoT.

Table 4.7 Requirements Specification for Blockchain-based IoT Simulation.
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F1: Node Defines the total number
of nodes that function as
blockchain nodes.

To store the ledger and validate
all transactions and blocks.

These parameters facilitate the
simulation of a blockchain-
based IoT network and the
analysis of its performance un-
der various conditions.F2: Miner Node Defines the total number of

miner nodes that function as
blockchain miner nodes.

To perform the mining pro-
cess to validate transactions
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F3: Transaction
Delay

Specify the average transac-
tion propagation time.

To control how long a transac-
tion takes to propagate across
the network.

This parameter allows users to
evaluate how delay levels af-
fect the blockchain’s ability to
process transactions.

F4: Max
Transaction
Size

Specify the maximum size of
a transaction.

To specify both maximum and
minimum transaction sizes for
flexibility in evaluating differ-
ent transaction scenarios.

These parameters allow users
to evaluate how transaction
size impacts key aspects of
blockchain network perfor-
mance, such as block prop-
agation time and processing
speed.

F5: Min Trans-
action Size

Specify the minimum size of a
transaction.

Continued on next page
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Table 4.7 – continued from previous page

Feature Description Role Rational
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F6: Block
Interval

Defining the time interval be-
tween the creation of consecu-
tive blocks.

To control the timing of new
block creation.

This parameter enables users
to analyze how varying the in-
terval between blocks impacts
blockchain performance, par-
ticularly regarding transaction
execution speed, block cre-
ation timing, and overall net-
work stability under different
conditions.

F7: Max Block
Size

Specify the maximum size of
a block.

To control the number of trans-
actions that can be included in
a single block.

This parameter allows users to
investigate how block size is
able to include the number of
transactions and its subsequent
impact on network through-
put, transaction processing ef-
ficiency, and overall latency.

C
on

se
ns

us
C

on
fig

ur
at

io
n F8: Consensus

Type
Select the consensus mecha-
nism (e.g., Proof of Work, Raft
etc.) implemented in the pro-
posed simulator.

This parameter controls the
method by which blockchain
nodes reach agreement on the
validity of transactions and the
creation of new blocks.

This parameter allows users
to simulate different consen-
sus mechanisms to evaluate
their impact on network per-
formance, security, and energy
consumption.

Io
T

C
on

fig
ur

at
io

ns

F9: IoT Specifi-
cations

Define the properties of IoT,
including devices, edge, net-
work, and cloud components.

To model the entire IoT ecosys-
tem with different configura-
tions

This parameter allows users
to model IoT environments
where data is generated, pro-
cessed at the edge, transmitted
over networks, and processed
in the cloud.

F10: Data
Generation Rate

Specify the rate at which IoT
devices generate data.

To simulate the load on the
blockchain network.

This parameter allows users to
evaluate the system’s scalabil-
ity and ability to handle vari-
ous loads of IoT data.

Pe
rf

or
m

an
ce

M
et
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cs

(O
ut

pu
ts

)
B
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ck

M
et
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M1: Total
Blocks

The total number of blocks cre-
ated during the simulation.

During the simulation, miner
nodes create blocks at inter-
vals determined by the block
interval. The total number of
blocks is calculated by divid-
ing the total simulation time by
the block interval.

To provide a baseline mea-
sure of the number of blocks
created during the simulation,
which helps in evaluating the
blockchain’s performance and
scalability.

M2: Blocks
with Txs

The number of blocks that
include one or more transac-
tions.

During the simulation, blocks
are filled with transactions
based on the transaction gener-
ation rate and block size. The
metric is calculated by count-
ing the number of blocks that
include one or more transac-
tions.

To measure the network’s abil-
ity to fill blocks with transac-
tions, which indicates the net-
work’s transaction processing
capability.

M3: Blocks
without Txs

The number of blocks that do
not contain any transactions.

During the simulation, blocks
that do not contain any transac-
tions are identified. The met-
ric is calculated by subtracting
blocks with transactions from
the total number of blocks.

To identify blocks that were
created without transactions,
highlighting inefficiencies in
block utilization.

M4: Avg.
Block Size

The average size of the blocks
generated during the simula-
tion.

During the simulation, each
block takes a certain amount
of time to propagate across
the network. The average
block propagation time is cal-
culated by averaging the time
it takes for blocks to propagate
through the network.

To determine how well trans-
actions are packed into blocks,
which affects network through-
put and efficiency.

Continued on next page
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Table 4.7 – continued from previous page

Feature Description Role Rational

M5: Avg.
Block Propaga-
tion Time

The average time it takes for a
block to propagate across the
network

During the simulation, each
block takes a certain amount
of time to propagate across
the network. The average
block propagation time is cal-
culated by averaging the time
it takes for blocks to propagate
through the network.

To assess the time it takes for
blocks to propagate through
the network, which indicates
synchronization and perfor-
mance across nodes.

Tr
an
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ct

io
n

M
et

ri
cs

M6: Total Txs The total number of transac-
tions generated and processed
during the simulation.

During the simulation, each
transaction is tracked to deter-
mine if it has been processed.
The total number of transac-
tions is calculated by summing
all processed transactions.

To measure the total number of
transactions processed by the
network, providing insights
into overall system capacity
and efficiency.

M7: Pending
Txs

The number of unconfirmed or
unprocessed transactions at the
end of the simulation.

During the simulation, trans-
actions that are not processed
into blocks are tracked. The
metric is calculated by sub-
tracting processed transactions
from the total generated trans-
actions.

To track the number of un-
processed transactions at the
end of the simulation, identify-
ing potential bottlenecks in the
transaction processing.

M8: Avg. Txs
per Block

The average number of trans-
actions included in each block.

During the simulation, block
size and transaction size dic-
tate how many transactions
can fit into each block. The av-
erage number of transactions
per block is calculated by di-
viding the total transactions
by the number of blocks with
transactions.

To measure the average num-
ber of transactions included in
each block, which helps evalu-
ate the efficiency of block uti-
lization.

M9: Avg Txs
Size

The average size of the transac-
tions processed during the sim-
ulation.

During the simulation, transac-
tions are generated within the
specified size range. The av-
erage transaction size is calcu-
lated by summing all transac-
tion sizes and dividing by the
total number of transactions.

To determine the average size
of transactions, which influ-
ences network performance
and the number of transactions
that can fit into each block.

M10: Txs
Latency

The average time it takes for
a transaction to be confirmed
after it is created.

During the simulation, the
time from transaction creation
to confirmation is measured.
The average transaction la-
tency is calculated by averag-
ing the latencies of all transac-
tions.

To measure the time it takes
for a transaction to be con-
firmed to evaluate the speed
and responsiveness of the
blockchain system.

M11: Txs
Throughput

The rate at which transactions
are processed by the network

During the simulation, the rate
at which transactions are pro-
cessed is determined. Trans-
action throughput is calculated
by dividing the total number of
transactions by the total simu-
lation time.

To assess the network’s abil-
ity to process transactions over
time, providing a key mea-
sure of system performance
and scalability.

4.8 Conclusion

IoT systems are becoming increasingly widespread, but current centralized architectures face

inherent limitations and challenges. Blockchain technology has the potential to address these

issues and unlock new opportunities for IoT applications. However, the lack of a credible
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simulator for evaluating the effectiveness of blockchain as a solution to IoT problems hinders

the ability to assess and validate such integrated systems. Two studies were conducted to

understand the requirements for a blockchain-based IoT simulator: a questionnaire and

interviews with experienced participants in the domain of Blockchain and IoT. The results

demonstrated the participants’ familiarity with both technologies and their strong belief that

blockchain can mitigate several key issues faced by IoT systems and performance evaluation.

Importantly, the findings highlighted the necessity for a simulator software capable of

replicating the behaviour of IoT applications combined with blockchain technology. This

chapter’s requirements gathering and analysis outcomes play a vital role in the next chapter.

These outcomes are considered for designing, implementing, and validating the simulation

framework for evaluating the performance of Blockchain-based IoT ecosystems, proposed in

Chapter 5.



Chapter 5

Blockchain-based IoT Simulation

Framework

Summary

Simulation can offer an opportunity to develop a cost-effective approach for evaluating the

performance of blockchain-based IoT solutions. The findings of the literature study reveal

simulators that independently target either IoT or Blockchain (refer to Section 2.4.2.1 and

Chapter 3; respectively). However, none provides comprehensive support for modelling

blockchain-enabled IoT systems for performance evaluation. To cover this gap, this chapter

complements the effort conducted in the previous chapter, Chapter 4, for proposing a

novel simulation architecture. It is mainly based on the outcome of the previous chapter

with regard to simulation framework requirements gathering and analysis. This chapter

provides a conceptual design that realises a blockchain-based IoT simulation framework

for performance evaluation. To provide a reference implementation, it extends a well-

established IoT simulator (namely: IoTSim-Osmosis [16]) to support blockchain simulation

and performance evaluation functionalities. The conceptual design and the implementation of

the proposed simulator architecture are rigorously evaluated through three types of evaluation:

1) the validity of the conceptual model is assessed through experts’ feedback via questioners

and a focus group session; 2) the implemented simulator accuracy is validated against a
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real-world blockchain platform (namely: Quorum blockchain platform); 3) the quality of

the implementation is evaluated by IoT, blockchain, and simulation experts using the goal

question metrics (GQM) approach. The results demonstrate that the proposed simulator is

able to reflect realistic blockchain-based IoT applications reasonably and provides a useful

tool for performance evaluation purposes.

The rest of this chapter is organised as follows: Section 5.1 provides a brief introduction

to this chapter and highlights the challenges it seeks to address. The Research Question (RQ),

the contributions of this chapter, and its relevance to the published paper are explained in

Section 5.2. The proposed conceptual simulation architecture is given in Section 5.3. The

implementation of the simulator is highlighted in section 5.3.3 and technically described

in Appendix A. Evaluation and analysis tasks for validating the proposed simulator design

and implementation are presented in Section 5.4. Finally, Section 5.5 concludes the chapter,

summarising the key contributions, findings, and areas of future improvement.

5.1 Introduction

The Internet of Things (IoT) has revolutionized various industries by connecting billions

of devices, leading to innovations in healthcare, transportation, manufacturing, and smart

cities. However, the centralized architectures typical of IoT systems introduce significant

challenges, including security vulnerabilities, inefficiencies, and the risk of single points of

failure [3]. These issues, discussed in Section 2.3, necessitate new solutions to ensure the

continued growth and reliability of IoT applications.

Blockchain technology has emerged as a promising solution to these challenges by

enhancing security, transparency, and efficiency across IoT applications [5]. As outlined in

Section 2.3.1, blockchain’s decentralized nature addresses the limitations of traditional IoT

systems, offering benefits that have already been demonstrated in domains such as healthcare

[153], supply chain management [154], and logistics [155].

The integration of IoT and blockchain technologies holds transformative potential across

multiple sectors. For example, in the energy sector, IoT devices like smart meters optimize
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energy distribution within smart grids. However, centralized control systems can be vulnera-

ble to attacks and inefficiencies. Blockchain mitigates these risks by enabling decentralized

energy markets, where transactions are securely recorded on an immutable ledger, reducing

the need for intermediaries and enhancing trust among participants.

Similarly, in agriculture, IoT monitors crop health, soil conditions, and weather patterns,

but ensuring the traceability and authenticity of products remains challenging. Blockchain

addresses this by securely recording the journey of agricultural products, enhancing food

safety and reducing fraud. This ensures that data collected by IoT sensors is reliable and

tamper-proof, ultimately improving trust in agricultural supply chains.

In smart cities, IoT devices manage urban infrastructure, from traffic lights to waste

management systems. However, centralized management can lead to inefficiencies and

security risks. Blockchain’s decentralized approach ensures that data collected by IoT devices

is securely recorded and shared, leading to more efficient and secure city management.

While integrating IoT and blockchain enhances security, transparency, and efficiency, it

also introduces performance challenges. Evaluating the performance of blockchain-based

IoT applications is crucial in the early stages of development to assess the feasibility and

identify potential risks [14]. However, real-world evaluations are often impractical due to

the complexity and scale of IoT systems [15]. Simulation tools offer a cost-effective and

flexible alternative, enabling researchers to model and analyze these systems under various

conditions [14].

Existing IoT simulators, such as IoTSim-Osmosis [16], and blockchain simulators,

like BlockSim [128] and SimBlock [137], provide valuable insights but do not focus on

the performance evaluation of blockchain-based IoT systems. To address this gap, this

chapter proposes a novel simulation architecture that extends IoTSim-Osmosis to include

blockchain simulation functionalities, focusing on performance evaluation. The design and

implementation of this architecture are rigorously evaluated, demonstrating its viability as a

tool for advancing blockchain-IoT integration.
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5.2 Research Questions, Contributions, and Relevance to

Published Work

Section 5.2.1 provides a detailed explanation of the Research Question (RQ) and highlights

the contributions associated with this chapter. Section 5.2.2 clarifies the relevance of this

chapter to the published paper, as outlined by the publications listed in Section 1.4.

5.2.1 Research Question and Contribution

Research Question 2 (RQ2): Given the lack of existing simulation frameworks for evalu-

ating the performance of Blockchain-based IoT ecosystems, what is required to bridge the

gap? To answer this question, this thesis contributes a simulation framework for evaluating

the performance of blockchain-based IoT ecosystems. The contribution of the simulation

framework is the first in the literature to combine IoT and Blockchain in a unified simulation

tool for performance evaluation purposes. The previous chapter, Chapter 4, took the first step

for realising the simulation framework by gathering and analysing relevant requirements.

This chapter specifically complements the efforts of the previous chapter by designing and im-

plementing a novel simulation framework that underwent rigorous evaluation and validation

procedure for its conceptual design and implementation, as visualised in Figure 1.1.

5.2.2 Relevance of the Chapter to the Published Paper

This chapter aligns with the relevant publication [15], which expands on the work discussed

in Chapter 4. It encompasses the same essential subjects, presents similar information and

data, and arrives at comparable conclusions as the publication. However, certain sections of

this chapter, including the Reference Implementation, Implementation Accuracy Evaluation,

and Code Quality Evaluation, have not been published.
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5.3 Conceptual Architecture

5.3.1 Research Problem

Assessing the viability and effectiveness of a blockchain-based IoT application on a large

scale poses considerable challenges. Consider a scenario of a blockchain-based IoT ecosys-

tem as presented by Alzubaidi et al. [156], where a firefighting station outsources the

deployment and operation of its IoT infrastructure to a specialised IoT service provider

(IoTSP). In this scenario, the IoTSP is responsible for immediately reporting fire alerts to the

firefighting station. However, trust issues may arise if a fire occurs without being reported,

either due to the IoTSP’s failure to report the incident or the unavailability of the firefight-

ing station’s system. To resolve potential disputes, Blockchain employed communicating

fire alerts through a shared ledger (see Figure 5.1). Evaluating such a system using real

deployment settings faces several hurdles, as follows:

Fig. 5.1 Motivating Blockchain-based IoT Scenario: A firefighting station and IoT service
provider (IoTSP) engage in an SLA where the conformance of the IoTSP is measured based
on monitoring logs stored on a shared blockchain ledger.

1. Complexity: Setting up a large-scale IoT infrastructure solely for experimental pur-

poses is highly complex and requires extensive planning, coordination and technical

expertise.

2. Resource limitations: The lack of sufficient IoT devices and resources can hinder the

ability to perform comprehensive tests and experiments, limiting the scope and validity

of the results.
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3. Personnel shortages: The shortage of technical personnel to manage the deployment

process can lead to delays, errors, and inconsistencies in the experimental setup,

affecting the reliability of the findings.

4. High costs: Real-world testing of large-scale blockchain-based IoT deployments can

be expensive, considering the costs associated with hardware, platforms, underlying

infrastructure, and workforce.

Simulation plays an important role in the early assessment of new technologies such

as blockchain and IoT. In particular, simulation helps pinpoint strengths and weaknesses

and determines the necessary steps to reach performance goals. Despite the importance of

simulation for blockchain-based IoT solutions, there is currently a lack of flexible simulation

frameworks specifically designed for evaluating the performance of blockchain-based IoT so-

lutions [13]. Existing simulation tools often focus on either IoT or blockchain independently

and lack the necessary integration and extensibility to capture the unique characteristics

and requirements of blockchain-based IoT systems [14]. Moreover, many simulation frame-

works are limited in their ability to model various IoT scenarios, blockchain architectures,

and consensus algorithms, hindering the exploration of novel solutions and comparative

analysis [14, 11].

5.3.2 Proposed Architecture

This section delineates the conceptual framework of the proposed simulator that integrates

Blockchain technology within the Internet of Things (IoT) environments, as illustrated in Fig-

ure 5.2. This conceptual architecture aims to provide a comprehensive and modular approach

to simulating Blockchain-based IoT ecosystems, allowing customisation and evaluation of

various scenarios. The architecture is segmented into four main components: the Configura-

tor 5.3.2.1, the Generator 5.3.2.2, the Simulation Core 5.3.2.3 and the Reporter 5.3.2.4.
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5.3.2.1 Configurator

The Configurator module is responsible for establishing the simulation parameters from both

the IoT and Blockchain perspectives. It serves as the starting point for specifying various

simulation parameters as follows:

1. Blockchain: Table 5.1 summarises most important Blockchain configuration parame-

ters.

2. IoT: Typical IoT configuration parameters already provided by IoTsim-Osmosis [16]

such as the specifications of devices, edge, network, and cloud components.

3. Simulation Settings: Examples of which are the duration of simulation and the number

of simulation runs.

Table 5.1 Summary of Configuration parameters.

Type Parameter Description

Participating Nodes Nn Total number of nodes

Mn Total number of miners

Transaction
T xdelay Average transaction propagation delay in seconds

T xmaxSize Maximum transaction size in megabytes (MB)

T xminSize Minimum transaction size in megabytes (MB)

Block
Binterval Average of the time interval between the creation of

consecutive blocks

BmaxSize Maximum block size in megabytes (MB)

Consensus Ctype The consensus algorithm used in the simulation (e.g.,
"raft" or "PoW")

IoT specifications IoT Properties of IoTsim-Osmosis [16] such as devices,
edge, network, and cloud components

Simulation
SsimTime Simulation time in seconds

SrunTime The number of times the simulation is run

On the IoT side, the module leverages IoTSim-Osmosis [16], a sophisticated extension

of the CloudSim [86] framework that facilitates the customisation of the IoT environment.

IoTSim-Osmosis allows the specification of various components of the IoT architecture in

detail, including sensors, actuators, devices, edge computing units, network topology, data

centres, and computing resources.
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In terms of the Blockchain dimension, the Configurator module provides tools for setting

up the Blockchain network. This includes defining essential network parameters such as the

number of nodes (miners or validators, based on the simulated IoT topology), block size,

block generation difficulty, transaction size, transaction delay, and the choice of consensus

mechanism (e.g., Proof of Work, Raft, etc.). Additionally, the module allows for customi-

sation of simulation-specific parameters, such as the number of simulators to be deployed

concurrently.

5.3.2.2 Generator

Based on the specified settings outlined in Section 5.3.2.1, the generator module within the

proposed framework is tasked with establishing the essential infrastructure for both the IoT

application and the blockchain network. Utilizing the parameters established by the configu-

rator module, the generator module generates the requisite components and links for the IoT

architecture and the blockchain network. For instance, it can generate the essential sensor

nodes and edge units for the IoT structure, along with the data transmission and reception

protocols. Additionally, it can establish the participating nodes in the blockchain network,

such as miners or validators, and configure parameters (e.g. block settings, transaction

settings, and the chosen consensus algorithm).

5.3.2.3 Simulation Core

The simulation core in the proposed conceptual model typically consists of several main

components that work together to simulate the operation of the system. These components

include:

1. The transaction factory and workload feeder: are components in a simulation

environment for a blockchain-based IoT system. The transaction factory is responsible

for generating transactions based on the data collected from the workload feeder,

while the workload feeder manages the flow of transactions and ensures that they are

processed efficiently and accurately. The transaction factory follows a specific process

to create and broadcast transactions, including:
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(a) Construct a Transactions Structure: The transaction factory prepares the

format of the transactions to match the structure required by the blockchain

network. This includes defining the data structure, the required fields for the

transactions, and any other requirements or constraints.

(b) Broadcast transactions to miner nodes: Once a transaction structure is con-

structed, it then broadcasts the prepared transactions to all network nodes to

inform them of the new transactions.

(c) Appending the transactions to the transaction pool: A collection of pending

transactions that are waiting to be added to the blockchain.

The process of generating and managing transactions is typically repeated until the

workload feeder no longer feeds transactions into the system.

In a blockchain network, the miner nodes are responsible for creating and adding blocks

of transactions to the blockchain. When a miner receives transactions in its transaction

pool, it typically tries to create a block by selecting a subset of the transactions from

the pool and adding them to a new block. The process of creating a block is often

referred to as an “event" because it represents a significant event in the operation of

the blockchain network. To create a block, a miner typically must perform a consensus

algorithm, such as a proof of work, which involves using cryptographic algorithms to

demonstrate the work that has been done to validate and include the transactions in the

block. In a simulation environment, the aim may be to simulate the process of creating

blocks and adding them to the blockchain to test and evaluate the performance of the

network and the mining nodes. In the conceptual model, we create a Block Factory

component.

2. The block factory: is a component of a simulation environment for a blockchain-based

IoT system. It is responsible for simulating the process of creating blocks and adding

them to the blockchain. The block factory follows a specific process to create and

execute transactions, including:
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(a) Invoking and Executing Transactions: The miner selects a subset of pending

transactions from the transaction pool based on certain criteria, such as the time

the transactions were created, the gas price associated with them or the order in

which they were received.

(b) Append Transactions to Next Block: When a miner node receives transactions

in its transaction pool, it will typically try to create a block by selecting a subset

of the transactions from the pool and adding them to a new block. This process

is known as “appending" the transactions to the block, as it involves adding the

transactions to the block and preparing them for inclusion in the blockchain.

(c) Constructing block and append it to the local blockchain: The block has been

created with its set of transactions.

(d) Append Block to local Blockchain: Once the block has been constructed, it is

ready to be appended to the local copy of the blockchain. This involves adding

the block to the end of the local copy of the blockchain and updating the local

copy to reflect the new block.

(e) Broadcast the block to other nodes: The miner broadcasts the newly added

block to all other nodes in the network in order to inform them of the new block

and update their copies of the blockchain.

Once a block has been broadcast to the blockchain network, it becomes the responsibil-

ity of the block receivers to validate the block and decide whether to accept it and add

it to their copy of the blockchain. The process of validating a block involves verifying

that the block meets all the requirements and standards of the blockchain network.

This may include checking the block header to ensure that it includes a valid reference

to the previous block in the blockchain and verifying the transactions contained in the

block to ensure that they are valid and properly formatted. In the conceptual model,

we create the Received Blocks component.

3. Received Blocks: A component of a simulation environment for a blockchain-based

IoT system. It is responsible for receiving blocks that have been broadcasted to the
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network and deciding whether to accept them and add them to the local copy of the

blockchain. The received blocks component typically follows a specific process when

receiving a new block, which may include the following steps:

(a) Check Validity of Received Block: When receiving a new block, one of the key

tasks of the Received Blocks component is to check the validity of the received

block.

(b) Updating and Append it to the Local Blockchain: If the received block is

deemed valid, the next step in the process is to update the local copy of the

blockchain and add the received block to it. This involves adding the received

block to the end of the local copy of the blockchain and updating the local copy

to reflect the new block.

(c) Updating the transaction pool: Once the new block has been added to the

local blockchain, the node will update the transaction pool by removing the

transactions that were included in the block. This leaves the transaction pool

with only the transactions that have not yet been included in a block, allowing

the node to continue the process of verifying and adding new transactions to the

blockchain.

5.3.2.4 Reporter

The benchmark report is an important part of the simulation process, as it provides detailed

information about the performance and viability of a blockchain-based IoT system. In our

proposed conceptual model, once the simulation is finished, the simulator will prepare the

benchmark report as an Excel file, which consists of several sheets, each of which provides

specific information about different aspects of the system, as shown below

1. Configuration: This provides information on the parameters used to carry out the

experiment, such as the type and number of nodes, the blockchain protocol used, and

any other relevant system parameters.
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2. Overall result: A benchmark report provides a summary of the overall performance

of a blockchain-based IoT. This includes a range of statistics that can be useful for

understanding the system’s performance and identifying any issues or opportunities for

improvement. Some examples of the types of statistics that be included in the "Overall

result" section include:

(a) Total number of blocks: This is the total number of blocks that were added to

the blockchain during the simulation.

(b) Total number of blocks, including transactions: This is the total number of

blocks that contain at least one transaction.

(c) Total number of blocks without transactions: This is the total number of blocks

that did not contain any transactions.

(d) Average block size: This is the average size of the blocks on the blockchain.

(e) Total number of transactions: This is the total number of transactions that were

processed during the simulation.

(f) Average number of transactions per block: This is the average number of

transactions included in each block.

(g) Average transaction inclusion time: This is the average time it took for a

transaction to be included in a block.

(h) Average transaction size: This is the average size of the transactions processed

during the simulation.

(i) Total number of pending transactions: This is the total number of transactions

that were waiting to be processed at the end of the simulation.

(j) Average block propagation time: This is the average time it takes for a block to

propagate to all nodes on the network.

(k) Average transaction latency: This is the average time it takes for a transaction

to be processed and added to the blockchain.
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(l) Transaction execution: This is the percentage of transactions that were success-

fully processed during the simulation.

(m) Transaction throughput: This is the number of transactions that were processed

per second.

3. Blocks overview: A benchmark report provides details about the individual blocks

that were added to the blockchain during the simulation. This includes information

such as block ID, previous block ID, block depth, block timestamp, block size, number

of transactions, and minter.

4. Transactions latency overview: A benchmark report provides details on the latency

for each transaction in a blockchain-based IoT, including the transaction ID, the

creation time, the confirmation time, and the transaction latency.

5. Pending Transactions overview: A benchmark report documents transactions not

executed during the simulation, if any at all.

6. Statistic: A benchmark report provides statistical information about the performance of

a blockchain-based IoT system. Specifically, it provides details about the distribution of

block time and block latency, including the minimum, maximum, mean, and standard

deviation of these metrics.
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Fig. 5.2 An overview of the Conceptual Model for Simulating Blockchain-based IoT Ecosys-
tems.

5.3.3 Reference Implementation

This thesis provides a Java-based reference implementation for the proposed Blockchain-

based IoT simulator, which materialises the conceptual design explained above in section

5.3.2. Appendix A delves further into the technical details of the implementation, which

can also be accessed at a public GitHub repository 1. For clarity, the code of reference

implementation is annotated with self-explanatory comments and follows the best practice of

utilising naming conventions. Appendix B also provides a user manual to facilitate the usage

of the simulator. Java is the main programming language used to implement the simulation

architecture. The selection of Java is to align with the programming language used for

implementing IoTsim-Osmosis. The reference implementation extends the IoTsim-Osmosis

simulator [16] and builds upon it to support blockchain-specific parameters, functionalities,

and performance metrics.

1https://github.com/AlbshriAdel/BlockSimOsmosis
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Noteworthy mentions that the simulation supports two consensus mechanism alternatives:

Raft and PoW (Proof-of-Work). The implementation also involves the components necessary

for the integration between IoT and Blockchain, as well as monitoring and performance

evaluation measurements. The implementation also employs a library named ExcelWriter

for producing and reporting a benchmark report in Excel format, organising data into distinct

sheets for the configuration parameters and overall evaluation outcomes (throughput, latency,

etc.), as discussed in Section 5.3.2.4. Appendix A.2.5 further illustrates this library. The

generated reports also provide details of the most important simulation events to help explain

phenomena and recognise patterns, such as a view of the blockchain ledger, transaction

contents, transaction pool, and other statistical findings. This library also assists in preparing

the generated from both the simulator and a real blockchain performance benchmark process

to conduct a comparative analysis to ensure the simulator’s accuracy. Section 5.4.2 describes

the comparative analysis, and Appendix C.2.6 provides a visual illustration of the process.

5.4 Evaluation

The proposed simulator architecture underwent a rigorous evaluation process to assess the

following:

1. The validity of the architecture conceptual design, as presented in Section 5.4.1.

2. The precision of the simulator implementation against a real blockchain platform, as

presented in Section 5.4.2.

3. The quality of the simulator implementation, as presented in Section 5.4.3.

5.4.1 Conceptual Design Evaluation

The proposed simulator conceptual design was evaluated through a combination of ques-

tionnaire responses and a focus group interview with subject-matter experts. The following

describes the evaluation process of the simulator conceptual design.
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5.4.1.1 Participant Recruitment and Selection

This section outlines how participants were recruited and selected for the study, including

identifying potential participants, selection criteria, and the approach adopted. It also provides

participant demographics based on academic levels, professional backgrounds, and research

interests.

1. Identifying Potential Participants: Potential participants were identified through

professional academic networks (e.g., ResearchGate), research groups specializing in

Blockchain and IoT both within and outside my educational institution, and scholarly

publications in IoT and Blockchain.

2. Selection Criteria: To ensure the suitability of participants for this study, we estab-

lished selection criteria based on the following factors:

(a) Knowledge and experience in blockchain and IoT technologies.

(b) Publications or projects related to blockchain and IoT.

(c) Willingness and availability to take part in the focus group discussion.

3. Recruitment Approach: A targeted sampling approach was implemented to recruit

participants for the study. Initially, 15 potential candidates were sent invitations via

email, outlining the study’s purpose, the importance of their expertise, and the expected

time commitment. Follow-up emails were then sent to address any queries and confirm

participation. Ultimately, 10 out of the 15 invited individuals agreed to participate.

4. Participant Demographics: The study gathered demographic information from partic-

ipants, including their academic level, professional background, and research interests,

summarized in Table 5.2. The focus group comprised 10 participants with diverse

academic and professional backgrounds. Most participants held doctoral degrees (8),

while the remaining 2 had master’s degrees. Nine participants were affiliated with

academic institutions, and one was from the industry sector. The participants’ research

interests included blockchain technology and its varied applications across different

domains in the Internet of Things (IoT).
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Table 5.2 Participant Demographics.

Participant Academic
Level

Professional
Background

Research
Interest

1 PhD Academia Blockchain technology and IoT applications

2 PhD Academia Blockchain performance

3 PhD Academia Blockchain-based SLA in the context of IoT

4 PhD Academia Data privacy in the context of IoT via blockchain

5 Master’s Academia Allocating Cloud resources & blockchain

6 PhD Academia Optimisation blockchain with the Internet of Vehicles (IoV)

7 PhD Academia IoT and Blockchain

8 PhD Academia Research related to IoT, Cloud and Blockchain

9 PhD Academia IoT data management and blockchain

10 Master’s Industry emote health monitoring using IoT and blockchain

5.4.1.2 Procedure

A focus group session was held involving subject-matter experts to identify and examine

the challenges of implementing and evaluating the conceptual model. The session began

with a presentation on the challenges of merging Blockchain with IoT, including issues

related to scalability, security, and interoperability, as well as the limitations of existing

simulators for Blockchain and IoT. An overview of the IoTSim-Osmosis simulator [16] was

provided to give insight into the simulator planned for extending blockchain features. A

real-world scenario involving a fire station 5.1 was shared to depict potential integration and

deployment challenges. Subsequently, the conceptual model was presented, and participants

were asked to complete a questionnaire to evaluate its clarity, relevance, and practicability.

The questionnaire featured four closed-ended questions, answered via a five-point Likert

scale, aimed at collating participants’ perspectives on implementing and evaluating the

conceptual model. Additionally, two open-ended questions were included to allow for

feedback and suggestions on improving the conceptual design.

1. Questionnaire

(a) To what extent are you satisfied with the conceptual model?

(b) To what extent are you satisfied with the conceptual model’s generality?
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(c) Assuming that IoTsim-Osmosis is the base IoT simulator for the conceptual

model, to what extent do you agree that it covers your requirements?

i. ease of use

ii. configurability

iii. extensibility

iv. maintainability

v. network topology

(d) To what extent does the blockchain part cover your requirements?

2. Focus Group

(a) What are your overall thoughts on the conceptual model for the blockchain

simulator?

(b) Do you believe the conceptual model for the blockchain simulator is compre-

hensive and well-designed, or are there any areas that you feel need further

improvement or refinement?

These questions aim to achieve these predefined goals as follows:

1. To evaluate the inclusiveness and quality of the conceptual model.

2. Determine to what extent the IoTsim-Osmosis simulator meets the requirements of the

participants.

3. Assess the effectiveness of the conceptual model’s blockchain component in meeting

the participants’ needs.

4. Identify areas of the conceptual model that may need improvement.

5.4.1.3 Experimental Results

Questionnaire
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To validate the proposed conceptual model, we distributed a questionnaire to 10 partici-

pants. The questionnaire began by asking about their satisfaction with the conceptual model

and its applicability. Specifically, we asked the participants: “To what extent are you satisfied

with the conceptual model?" The results shown in Figure 5.3 indicate that the majority of the

participants were satisfied, with 60% expressing satisfaction and 30% expressing complete

satisfaction. 10% were neutral with regard to the model.

Fig. 5.3 Participant satisfaction with the conceptual model.

Next, the participants were asked about their thoughts on the applicability of the concep-

tual model. The results of this question are shown in Figure 5.4. It’s worth noting that there

is complete agreement about the model, with 40% of participants indicating that they were

completely satisfied and 60% indicating that they were satisfied. Based on these results, we

can confirm that the proposed conceptual model is a good fit.
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Fig. 5.4 Participant satisfaction with the conceptual model’s generality.

Four questions were asked to evaluate the usability, configurability, maintainability,

and available network topology of the IoTsim-Osmosis simulator, which is at the core of

the proposed conceptual model. Specifically, participants were asked about their level of

agreement with the ease of use of the simulator (“To what extent do you agree with its ease of

use?"). The results, shown in Figure 5.5, indicate that 30% completely confirms the usability

of the simulator, while 40% agrees with its ease of use. 20% were neutral about the simulator,

and 10% disagreed with its ease of use.

Fig. 5.5 Participant agreement with the ease of use of the IoTsim-Osmosis simulator.
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Furthermore, participants were asked about the configurability of the IoTsim-Osmosis

simulator (“To what extent do you agree with its configurability?"). The results shown in

Figure 5.6 show that 60% of the participants (10% completely agree and 50% agree) are

satisfied with the configurability of the simulator. 20% had neutral or disagreeing opinions.

The participants were also asked about the maintainability of the simulator ("To what extent

do you agree with its maintainability?"). The results shown in Figure 5.7 indicate a clear

agreement with 70% of the participants (20% strongly agree and 50% agree), indicating

satisfaction. 20% disagreed with the ease of maintainability, while 10% were neutral. A final

question about the IoTsim-Osmosis simulator was, "To what extent do you agree with the

network topology?" The results are shown in Figure 5.8.

Fig. 5.6 Participant agreement with the configurability of the IoTsim-Osmosis simulator.
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Fig. 5.7 Participant agreement with the maintainability of the IoTsim-Osmosis simulator.

Fig. 5.8 Participant agreement with the effectiveness of the blockchain part in meeting their
requirements.

Finally, the questionnaire concluded by asking participants their thoughts on the ability

of blockchain to meet their requirements. The results are shown in Figure 5.9. A closer look

at the figure reveals a high level of agreement (30% strongly agree and 50% agree) on the

usefulness of blockchain. There were an equal number of neutral (10%) and disagreeing

(10%) opinions.
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Fig. 5.9 Participant agreement with the effectiveness of the blockchain part in meeting their
requirements.

Overall, a questionnaire was distributed to a total of 10 participants to validate the de-

sign of the proposed conceptual model. The questionnaire asked the participants about

their satisfaction with the conceptual model and its applicability in an IoTSim-Osmosis

simulator. It also enquired about the usability, configurability, maintainability, and network

topology of the IoTSim-Osmosis simulator, which is integrated into the proposed model.

Additionally, participants were asked about the effectiveness of blockchain in meeting their

requirements. The results showed that 40% of the respondents were completely satisfied,

while 60% were satisfied with the conceptual model and its applicability. Furthermore, most

of the participants expressed satisfaction with the IoTSim-Osmosis simulator in terms of

usability, configurability, maintainability, and network topology. Regarding the usefulness of

the blockchain part for meeting participants’ requirements, 30% strongly agreed, and 50%

agreed.

Focus Group

P1 stated that “In my opinion, the conceptual model is well designed and complete.

It looks like it consists of a set of features and functionalities needed to enable effective
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simulation and evaluation of blockchain-based IoT systems. I think these capabilities will be

important for understanding and optimising the performance of blockchain-based IoT systems

and for identifying any potential issues or challenges that may arise during deployment".

P2 stated that “Overall, the primary model is valuable and thoroughly considered. It

covers every one of the key parts and capacities that we hope to find in a test system of this

kind, and it gives off an impression of being generally evident when executing the plan that

has been displayed. There are a couple of places where I figure the model could be extended.

For example, it may be helpful to have more control over the different parameters and settings

of the test system, such as the ability to specify the type of consensus algorithm or the block

size".

P3 stated that “In my opinion, the conceptual model is a promising idea. The conceptual

model includes a large variety of features and capabilities, which is quite amazing. Moreover,

the simulation core is well-structured. It seems that the major components of the simulation

core, like the transaction factory and workload feeder, consensus component and monitoring

components, are designed carefully. However, for the developer who wants to customize the

simulation, it would be better if there were more opportunities to make changes in parameters

such as transaction types and the workload feeder".

P4 stated that “As a beginner in the fields of blockchain and IoT, the conceptual model of

the simulator felt very easy to understand and well structured for me. It includes various

components and their functions and gives a nice overview of how they work together. One

thing that can be beneficial is to have an explanation about the specific consensus algorithms

that are implemented in the implementation phase".

P5 stated that “ The concept model of the simulator seems very promising because it

encompasses a number of metrics that let users see how it will perform in the real world. On

the other hand, it could be useful to make the model more flexible to allow it to be deployed

to different layers, which would give users more flexibility to deploy the blockchain network

where and how they want and make it much easier to fit different use cases and environments".
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P6 stated that “The simulator’s conceptual model is well-thought-out for providing a way

for users to evaluate the performance of different blockchain and IoT solutions, as well as

present users with a methodology to recognise hurdles and concerns in these solutions".

P7 stated that “In my opinion, the simulator architecture is well-architected and compre-

hensive and includes most of the essential features to evaluate blockchain-based IoT systems.

However, there may be potential to improve its capability in simulating enterprise blockchain

environments and its integration with other simulators rather than IoTSim-Osmosis. Improv-

ing these features would make the simulator more versatile and highly valuable for diverse

applications".

P8 stated that “I think that the conceptual model appears to be good, as it includes

multiple aspects. One aspect of the model that I particularly like is the generator component,

as it allows the model to be used with different generating simulators".

P9 stated that “I think the model is a solid foundation for further research and develop-

ment. It includes a wide range of important features and abilities, and I feel that it could

be valuable for many different uses. However, I think there are a few areas that could be

improved on or expanded. For example, simulation abilities can be used to evaluate a variety

of scenarios. Additionally, more options to generate and analyse results would be helpful.

Being able to compare different simulation scenarios or run the simulations for a longer

amount of time".

P10 stated that “I think that the proposed conceptual model is good, and I really like the

idea of adding the configurator component. The configurator allows users to customise the

simulation parameters to meet their specific needs. However, I think it will help to have more

options to configure the blockchain network. It would be nice if we could allow the user to

choose different types of consensus algorithms or customise the block settings".

By analysing the responses of the participants as shown in Table5.3, the result of the

evaluation of the conceptual model showed that it is generally well-regarded. The reason

underpinning this attitude is the inclusion of a wide range of key features and capabilities

that make it a suitable foundation for creating a simulation environment for blockchain-

based IoT applications. However, there are also a few areas where the model could be
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improved or expanded upon. Some participants have suggested adding more granular control

over the various parameters and settings of the simulator. Others have suggested including

more information about the specific consensus algorithms that will be implemented in the

implementation phase and making the model more flexible by allowing it to be deployed in

different layers.

Table 5.3 Summary of feedback on the conceptual model for the blockchain simulator
from participants in the evaluation process.

Participant Overall Thoughts Areas for Improvement

P1 Well-designed and comprehensive

P2 Solid and well-thought-out More granular control over parameters and settings

P3 Promising concept More options for customizing the simulation

P4 Easy to understand and well-organized Consensus algorithms

P5 Very promising Flexibility to deploy BC in different IoT layers

P6 Well-designed

P7 Comprehensive and well-designed Ability to simulate enterprise blockchain and support
different IoT simulators

P8 Good

P9 Strong foundation Configuring the blockchain network

P10 Good

5.4.2 Implementation Accuracy Evaluation

An important assessment objective is to evaluate and validate whether the performance

report produced by the implemented simulation architecture can accurately represent the

performance of a real blockchain platform. Evaluating this aspect is the key to determining

the practical utility of the developed simulator. Transaction latency and throughput are

representative performance metrics to conduct a comparative analysis between the imple-

mented simulator and a real blockchain platform (namely, the Quorum blockchain platform).

To achieve this, the assumed firefighting station scenario 5.1 is implemented using a real

blockchain platform. Hyperledger Caliper [71], a well-recognised blockchain benchmark

tool, is used to gauge the performance of real blockchain platforms and produce throughput

and latency metrics. The same firefighting scenario is then modelled using the implemented

simulator for replication purposes to reproduce the throughput and latency metrics.
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The remainder of this section describes the data collection method used in this study and

compares the results of the implemented simulator with the real-world blockchain.

5.4.2.1 Experimental Setup

There are four main steps for obtaining the latency and throughput performance metrics from

the real-world blockchain platform and the implemented simulator.

1. The Real Blockchain Platform: Table 5.4 lists important facts about the launch of

the real blockchain platform (Quorum blockchain platform). Refer to Appendix C.1.2

for technical details. The Blockchain network is deployed to a rented cloud-based

infrastructure composed of 32 virtual CPUs (vCPUs) from an Intel(R) Xeon(R) Gold

6140 processor, clocked at 2.30GHz, along with 64GB of RAM. These resources are

equally distributed to the blockchain network components.

2. Hyperledger Caliper: Hyperledger Caliper is used to benchmark the performance

of the deployed real blockchain platform (See Appendix C.2). Three pivotal files

are prepared for executing the performance benchmarking process: The business

Logic file, the benchmark properties file, and the network interface file. On the one

hand, the benchmark file is a YAML-based formatted manifesto set, which defines the

workload for stressing the performance of the real blockchain platform. For the purpose

of this thesis, it is customised to employ a single client (designated as one worker)

tasked with delivering transactions at variable rates to the validating nodes within the

Quorum network, as defined in Table 5.5. On the other hand, the network interface

file is another YAML-based formatted manifesto that is instrumental in facilitating

connectivity to and communication with the deployed blockchain network. It also

defines the parameters needed to interact with the blockchain network, such as sender

and smart contract addresses associated with a cryptographic wallet account. Finally,

the business logic file is used for expressing and encoding the behaviour of the assumed

IoT-based firefighting scenario as in 5.1. The code was written using the programming

language adopted by Hyperledger Caliper, which is JavaScript.
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3. Python script: A Python script is programmed for automating the execution of

the performance benchmark process as defined in the configurations of Hyperledger

Caliper (See Appendix C.2.4). It automates the benchmarking process across several

iterations for each experimental run to accumulate a sufficient representative data set

and ensure the calculation precision of the average throughput and latency metrics.

The script orchestrates several critical operations. The script parses the results from

each benchmark iteration into a DataFrame, with the aid of Pandas library, which

standardises the data format to prepare for further analysis.

4. Simulation: The same IoT-based firefighting scenario as in 5.1 is also implemented in

the simulator. Moreover, the configuration properties of the real blockchain platform

are also applied to the simulator configuration whenever applicable. The simulator’s

IoT configuration aspects also consider the JavaScript implementation of the IoT

scenario in Hyperledger Caliper.



5.4 Evaluation 139

Table 5.4 Configuration Parameters for Blockchain.

Parameter Description Specifications

B
lo

ck
ch

ai
n

C
on

fig
ur

at
io

n

Blockchain Plat-
form

The chosen blockchain technology for the
study

Quorum Version 22.7.5

Consensus Algo-
rithm

The algorithm employed for achieving con-
sensus in the network

RAFT

Node Count The total number of active nodes within the
blockchain network

4

Block Time The set block time for RAFT consensus in
milliseconds

300

D
ep

lo
ym

en
t

R
es

ou
rc

es

Resources Alloca-
tion

Details of resources allocation OS Ubuntu Linux
20.04.2 (64-
bit)

CPUs 4

RAM 64GB

Bandwidth 100 Mbps

Storage 200 GB

D
ep

en
de

nc
ie

s Docker Use of Docker in the deployment and man-
agement of network nodes

20.10.21

NPM Node Package Manager used 8.18.0

Table 5.5 Configuration Parameters for Caliper.

Parameter Specifications

Benchmark Tool Hyperledger Caliper V0.5.0

Workers 1 worker

Total transactions per iteration 25 to 3200 transactions

Send rate type Fixed

Send rate control 1 transaction per second (tx/sec)

5.4.2.2 Comparative Analysis and Validation

As mentioned above, the IoT-based firefighting station scenario is implemented in both the

real blockchain platform and the proposed simulator. The performance metrics (namely,



140 Blockchain-based IoT Simulation Framework

throughput and latency) are obtained from both to conduct a comparative analysis and

validate the accuracy of the implemented simulator.

Regarding the latency performance metric, as shown in Figure 5.10, the transaction

latency from the real blockchain platform appears to be correlated with the transaction

throughput, which increases progressively from approximately 1 second for processing a

send rate of 25 transactions per second (TPS) to approximately 4.5 seconds for process-

ing a send rate of 3200 TPS. Similarly, the simulation demonstrates a parallel ascendancy

in latency, yet the latency values are consistently modestly lower, thereby suggesting the

simulation’s relative precision with a tendency towards optimistic projections. This com-

parative assessment affirms the credible capacity of the simulator to reasonably emulate the

transaction latency of the corresponding real blockchain system.

Fig. 5.10 Comparison of Real and Simulated Latency

Regarding the throughput performance metric, as shown in Figure 5.11. a consistent

upward trajectory is observed in the transaction processing rate. That is, a trend is apparent

in both the empirical environment and the simulation framework. The transaction throughput

of the real blockchain platform demonstrates the ability to process nearly 13 TPS at a send

rate of 25 TPS, ascending to approximately 165 TPS at a send rate of 3200 TPS. On the other

hand, the simulator forecasts a marginally elevated throughput, from being able to process

approximately 13 TPS up to nearly 176 TPS for identical send rates as the above. This

finding also confirms the simulator’s ability to accurately emulate the transaction throughput

of a corresponding real-world blockchain platform.
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Fig. 5.11 Comparison of Real and Simulated Throughput (TPS)

To provide further statistical validation, consider a significance level (α) at 0.05, and the

null hypothesis posited a difference between the simulator’s performance and that observed

in actual operation. The calculated p-values for latency and throughput were 0.269 and

0.428, respectively. Given that both values exceed the threshold of α , the null hypothesis is

rejected. Statistically, this outcome suggests that there is no significant difference between

the simulator’s performance and the real-world scenario.

Moreover, the collected data from the real blockchain platform helped in deriving two

mathematical models that can be useful in predicting Blockchain latency and throughput.

These models can be utilised to estimate performance parameters prior to system deployment,

as described below.

For latency:

y =−2×10−7x2 +0.0018x+0.8003 (5.1)

with a coefficient of determination, R2, valued at 0.9589, indicating a high level of explanatory

power.

For throughput:

y = 33.554ln(x)−94.886 (5.2)

with a coefficient of determination, R2, valued at 0.9527, also indicating a strong linear

relationship between the variables.
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5.4.3 Code Quality Evaluation

This section outlines the evaluation strategy used to assess the effectiveness of the simulator’s

implementation, as viewed by experts in IoT and blockchain, through the Goal Question

Metric (GQM) approach. The GQM method provides a systematic framework for reaching

specified goals using measurable data [157] and has been applied in various research domains

[158]. This approach is chosen instead of the requirements-gathering method used in Chapter

4 because, at this stage, the focus shifts from understanding needs and challenges to validating

the practical implementation of the simulator. The GQM approach ensures evaluation of the

simulator’s performance and accuracy and confirms that it meets the defined objectives. This

approach is structured into three principal levels, depicted in Figure 5.12, as follows:

Fig. 5.12 Goal Question Metric (GQM) Hierarchy

1. Goal Setting: At the highest level, specific goals are defined for the process or product

within a particular context from multiple perspectives for various objectives.

2. Question development: A set of questions is derived for each goal to characterise the

degree to which the goal is achieved.

3. Metric Identification: At the lowest level, metrics (quantitative data) are identified

for each question to provide a basis for answering them.
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5.4.3.1 Defining the Goals

Our focus is on evaluating various facets of the Blockchain-based IoT simulator proposal, as

viewed by experts in IoT/blockchain. These objectives are aligned with specific questions,

as presented in Section 5.4.3.2 and metrics, as presented in Section 5.4.3.3 to quantitatively

evaluate the proposed simulation. To define objectives, Solingen et al.[159] present a

structured goal definition template that encapsulates essential elements, specific purposes,

perspectives, and context characteristics. Consequently, we have established five objectives

methodically, as outlined in Table 5.6.
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Table 5.6 Goals Summary.

(a) User Experience Evaluation of the
Configurator Component

Goal 1 Evaluate the User Experience of the
Configurator Component

Purpose Assess

Issue Usability and coverage

Object Of the Configurator component

Viewpoint From the IoT/Blockchain perspective

(b) Accuracy Assessment of the Genera-
tor Component

Goal 2 Assess the Accuracy of the Generator
Component

Purpose Determine

Issue Accuracy

Object Of the configurations generated by
the Generator component

Viewpoint From the IoT/Blockchain perspective

(c) Efficiency Analysis of the Simulation
Core

Goal 3 Analyze the Efficiency of the Simula-
tion Core

Purpose Assess

Issue Performance and throughput

Object Of the Simulation Transaction, Block
Factory and Workload Feeder

Viewpoint From the IoT/Blockchain perspective

(d) Examination of the Reporter Compo-
nent Outputs

Goal 4 Examine the Reporter Component
Outputs

Purpose Examine

Issue Comprehensibility and detail

Object Of the reports generated by the
Reporter component

Viewpoint From the IoT/Blockchain perspective

(e) Overall Evaluation of the Blockchain-
based IoT Simulator

Goal 5 Overall Evaluation of the Blockchain-
based IoT Simulator

Purpose Assess

Issue The overall effectiveness and user
satisfaction

Object Of the Blockchain-based IoT simula-
tor

Viewpoint From the IoT/Blockchain perspective

5.4.3.2 Defining the Questions

For each predefined goal, we have prepared a series of questions aimed at examining different

aspects of the proposed blockchain-based IoT simulator through the lens of IoT, blockchain

and simulation experts. These questions are concerned with the following:

1. The usability and scope of the configurator component.

2. The precision of the Generator component.
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3. The effectiveness of the Simulation Core.

4. The clarity and thoroughness of the Reporter component’s outputs.

5. Overall satisfaction with the simulator experience.

Each group of questions are directly linked to a specific goal. The responses to these questions

are quantified to measure the success of reaching each goal. The questions are as follows:

1. Goal 1

(a) How easy is it to set various parameters for the IoT infrastructure and the

blockchain network using the Configurator component?

(b) Were the provided options and settings in the Configurator sufficient for your

needs?

2. Goal 2

(a) Does the Generator component accurately reflect the configurations specified in

the Configurator?

(b) How would you rate the realism and functionality of the model generated by the

Generator component?

3. Goal 3

(a) How efficient do you believe the Transaction Factory and Workload Feeder

components are in managing transaction flows?

(b) How would you rate the sufficiency of the Blocks’ data representation and struc-

ture?

4. Goal 4

(a) Is the generated benchmark report comprehensive and clear?

(b) How useful are the details provided in the "Overall result" section of the bench-

mark report?
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5. Goal 5

(a) In general, how would you rate the overall usability of the Blockchain-based IoT

simulator?

(b) How effective do you believe the Blockchain-based IoT simulator is in achieving

its intended purpose?

5.4.3.3 Defining the Metric

The participant responses are quantified and analysed to measure the overall satisfaction

with the Simulator. To determine the satisfaction percentage for each predefined goal, the

following steps are applied:

Step 1: Assess Participant Feedback: analyse participants’ feedback regarding various

aspects of the simulator’s components for each of the 10 questions.

Step 2: Calculate Individual Question Metrics: For each question Qi, where i ranges from

1 to 10, the metric Mi% is determined by computing the total score given by all participants

Pn
1 and converting it into a percentage of the maximum possible score, as illustrated in

Equation 5.3:

Mi% =
∑

p
j=1 ScoreQi, j

p×Max Score
(5.3)

Here, ScoreQi, j represents the score of the participant ith for the question jth and Max Score

is the highest possible score for the question. For the binary question, Max Score is typically

1 but may vary based on the scale used.

Step 3: Aggregate Metric Score for Each Goal: To compute the satisfaction percentage

for each goal Gk, where k ranges from 1 to 5, the average metric score for each associated

questions is calculated accordingly 5.4:

M̄Gk =
1
nk

nk

∑
i=1

Mi (5.4)

where nk is the number of questions related to a goal Gk.
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Step 4:Compile Overall Satisfaction and Dissatisfaction: To determine the satisfaction

percentage for each predefined goal, the following steps are applied 5.5 and 5.6:

SatisfactionGk = M̄Gk×100 (5.5)

DissatisfactionGk = (100−SatisfactionGk)×100 (5.6)

By systematically applying these equations, participant feedback is transformed into

quantifiable metrics, allowing for a clear evaluation of the simulator against the predefined

goals. This process ensures a more comprehensive and uniform assessment across all

questions and goals.

5.4.3.4 Goal Question Metric (GQM) Conduct and Outcomes

Procedure

The following procedure was followed to execute the Goal Question Metric (GQM).

First, a focus group session was held, during which the IoT-based firefighting scenario was

presented to motivate the topic. Then, the participants were introduced to the Blockchain-

based IoT simulation architecture and its implementation. Then, they were asked to attempt

to simulate the IoT-based firefighting scenario using the simulator. Afterwards, a discussion

took place to observe their views and impressions. Lastly, participants were asked to complete

a survey related to the predefined goals outlined in Section 5.4.3.1.

Participants

The study involved 10 participants, including researchers, PhD students, and professionals

in the domain of IoT, Blockchain and simulation topics.

5.4.3.5 Experiment Results

Table 5.7 presents the scores given by the 10 participants pi for each question Qi related to

the five evaluation goals Gk. The headers of the columns indicate each question identifier
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and the maximum possible score for it. For example, Q1/5 signifies that Question 1 has a

maximum score of 5.

To illustrate the process for calculating the satisfaction and dissatisfaction rates as pre-

sented in Table 5.7, consider Goal 1 (G1), which encompasses two questions pertaining to

the Configurator Component’s assessment. The score of each metric M1 and M2 for the first

and second questions, respectively, are determined utilising Equation 5.3:

M1 =

(
5+4+5+3+4+4+5+3+5+4

10×5

)
= 0.84

M2 =

(
1+1+1+1+0+1+1+1+1+1

10×1

)
= 0.9

Upon calculating M1 and M2, the metric score for Goal 1 (G1) is aggregated by applying

equation 5.4:

MG1 =
M1 +M2

2
=

0.84+0.9
2

= 0.87

The satisfaction and dissatisfaction percentages for G1 are then computed using the

satisfaction equation 5.5 and the dissatisfaction equation 5.6:

SatisfactionG1 = 0̄.87×100 = 87%

DissatisfactionG1 = (100−87)×100 = 13%
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Table 5.7 Participant scores for each question related to the evaluation goals

pi
G1 G2 G3 G4 G5

Q1/5 Q2/1 Q3/5 Q4/5 Q5/5 Q6/5 Q7/5 Q8/5 Q9/5 Q10/5

1 5 1 5 4 5 5 4 3 5 4
2 4 1 4 4 4 4 5 4 4 5
3 5 1 5 3 5 5 4 5 5 4
4 3 1 3 4 4 3 4 3 4 4
5 4 0 4 5 3 2 4 4 3 4
6 4 1 4 4 4 4 3 4 5 3
7 5 1 5 3 5 5 4 4 4 5
8 3 1 3 3 4 3 5 4 3 4
9 5 1 5 4 4 5 4 5 4 4
10 4 1 4 5 4 5 4 3 5 4

Mi 0.84 0.9 0.84 0.78 0.86 0.8 0.82 0.78 0.84 0.82
DissatisfactionGk% 13% 19% 17% 20% 17%

SatisfactionGk% 87% 81% 83% 80% 83%

Following these calculations for G1, similar steps are taken for each of the remaining

goals, as presented in Table 5.7. Table 5.7 presents the satisfaction percentages for the

five evaluation goals outlined in Section 5.4.3.1. In particular, the Configurator component

(G1 5.6a) received the highest satisfaction rate at 87%, indicating its user-friendliness and

coverage of set settings and available options to simulate Blockchain-based IoT. Similarly,

the accuracy of the Generator component (G2 5.6b) and the efficiency of the Simulation

Core (G3 5.6c) achieved satisfaction rates of 81% and 83%, respectively. This indicates the

simulator’s ability to sufficiently apply the defined configurations, execute transactions, and

handle workloads as expected. However, the Reporter component (G4 5.6d) had the lowest

satisfaction percentage at 80%, suggesting that the generated reports could be improved

compared to other aspects of the simulator. Despite this, the Blockchain-based IoT simulator

(G5 5.6e) achieved an overall satisfaction rate of 83%, demonstrating its potential to meet

user requirements.
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5.5 Conclusion

This chapter presents a novel simulation framework for modelling and evaluating the per-

formance of blockchain-enabled IoT systems. The proposed architecture extends an IoT

simulation tool, specifically IoTSim-Osmosis, to support blockchain capabilities. It enables

the configuration of IoT environments and blockchain networks while achieving a seamless

integration. The evaluation of the proposed simulator consists of three main parts. First,

the validity of the conceptual design of the proposed simulator was revised and confirmed

following experts’ feedback using a focus group and a questionnaire. Second, a compar-

ative analysis is conducted by comparing the performance metrics generated from a real

blockchain platform (Quorum Blockchain platform) against their counterparts produced by

the simulator. More specifically, the comparative study statistically compares the simulator

and the real blockchain platform regarding two performance metrics: latency and throughput.

The simulator demonstrates its ability to model and simulate realistic Blockchain-based

IoT scenarios while producing reasonable performance evaluation reports. Third, IoT and

blockchain experts evaluated the quality of implementation using the goal question metric

approach, resulting in satisfaction rates of 80-87% across various aspects of the simulator.

Overall, while the simulator demonstrates its potential, there can be areas of improvement to

support extra features such as extra consensus mechanisms (e.g. Proof-of-Stake PoS) and

more configuration parameters such as extended transaction payload, gossip protocols, and

others. While challenging, the simulator can also be extended to support expressing and

executing the IoT business logic as smart contracts to be deployed to simulated virtual ma-

chines for each blockchain node. Moreover, it is challenging for simulators to cope with the

advancement pace of Blockchain technologies. For instance, Ethereum has transformed from

dependency on PoW as a consensus protocol to PoS. Therefore, the next chapter proposes a

middleware that facilitates the usage of the simulator for evaluating the performance of real

blockchain platforms, where all missing features in the simulator can exist and be accessed,

such as smart contracts.



Chapter 6

IoT Simulation for Evaluating Blockchain

Performance: A Middleware Architecture

Summary

Recently, there has been an increasing interest in exploring the potential of Blockchain for

serving several IoT-based domains. While it can be easy to access several open-source

Blockchain platforms (like Hyperledger Fabric), this is not always the case with large-scale

IoT infrastructure. To compensate for this shortcoming, IoT simulation can be a viable option

in many cases. The previous chapter, Chapter 5, proposed a simulator approach for evaluating

modelled blockchain-based IoT scenarios. As outlined by the conclusion of the previous

chapter, simulation cannot keep rapid pace with the advancement of blockchain technology.

In theory, utilising IoT simulators with real blockchain platforms makes it possible to remedy

simulation shortcomings such as access to smart contracts. However, the question remains

of how to address the disparity between the distinctive environments of IoT simulators and

blockchain platforms.

This chapter introduces a novel middleware architecture that overcomes challenges

associated with the interaction between blockchain platforms and IoT simulators. The

middleware is tailored to meet the distinct operational facets of blockchain platforms and IoT

simulators, enabling thorough evaluations of real blockchain-based solutions in simulated
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IoT scenarios. We present a case study where the middleware connects IoTsim-Osmosis, an

IoT simulation tool, with the Hyperledger Fabric blockchain platform. This chapter assumes

a hypothetical scenario that requires evaluating the viability of employing blockchain for an

IoT-based firefighting system at a large scale, which uses the middleware to enable interaction

between real blockchain deployment and a simulated IoT model.

The remainder of this chapter is structured as follows: Section 6.1 provides a brief

introduction to this chapter and highlights the challenges it seeks to address. Section 6.2

explains the Research Question (RQ), the contributions of this chapter, and its relevance to the

published paper. Section 6.3 presents the proposed middleware architecture while detailing

its key components. Section 6.4 evaluates the middleware by validating the correctness

of the concurrent storage mechanism and demonstrating the integration with Hyperledger

Fabric and IoTsim-Osmosis through a use case evaluation. Finally, Section 6.5 concludes the

chapter and outlines future research directions

6.1 Introduction

Blockchain and the Internet of Things (IoT) are emerging technologies that each can promise

to reshape today’s business problems and available solutions in an unprecedented manner.

One can envision all sorts of opportunities and benefits of merging IoT and Blockchain across

various domains, including healthcare [153], supply chain [154], and logistics[155]. For

instance, this chapter is based on a scenario depicted in Figure 6.1, where a fire station utilizes

IoT technology to enhance response times to fires and reduce their severity. Smart homes

are equipped with relevant sensors that can detect fire incidents and autonomously transmit

alerts to fire stations over the Internet. Given the Blockchain features listed in section 2.1.2,

the fire station authority opts for Blockchain as a trusted messaging infrastructure between

the fire station and thousands of connected homes.
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Fig. 6.1 Motivating scenario

Considering the criticality and complexity of the system, as well as the heterogeneity

of the underlying technologies, it is vital to assess the viability and technology readiness

level (TRL) before the production stage and actual operation [160]. From an evaluation

perspective, experimenting with such a complex and heterogeneous system needs access to a

blockchain platform and an IoT infrastructure. As with blockchain, the open nature of most

blockchain platforms and simulators enables experimenting with virtually any blockchain-

based scenario.

From the IoT side, however, implementing an IoT scenario (e.g. the firefighting sce-

nario 6.1) can be difficult due to the restricted availability of IoT infrastructure. To appreciate

the accessibility challenge, consider an evaluation goal where an experiment aims to assess

the blockchain performance under severe conditions in which all the connected houses si-

multaneously emit fire alerts to the fire station. However, limited access to a sufficient IoT

infrastructure will likely hinder the accomplishment of reliable and effective research conduct.

To compensate for this shortcoming, IoT simulators, such as those listed in Table 2.2, can

serve as a suitable alternative for modelling IoT systems, including physical devices, edge

computing, networks, data centres, and cloud services [161]. Nevertheless, none of the

existing IoT simulators is equipped with the capability to connect and interact with real

blockchain platforms. While there can be great value in utilising simulated IoT environments

with real blockchain platforms, we also recognise the challenges associated. Therefore, this

chapter investigates these challenges and proposes a middleware architecture that closes the

gap between the distinctive environment of IoT simulation and real blockchain runtime.
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This chapter aims to enable IoT simulators to model IoT infrastructure and generate

the workload necessary to benchmark essential blockchain performance metrics such as

throughput, latency, and transaction success/failure rates. For demonstration purposes, this

chapter selects IoTSim-Osmosis [16] for the IoT simulation side, whereas Hypereledger

Fabric (HLF) is selected as a real-world blockchain platform. This selection is because of the

support for Java programming language by both, which aids in demonstrating the proposed

middleware approach. Formally put, this chapter proposes a middleware architecture to

achieve seamless integration and enable communication and transactions between both

ends. It demonstrates the middleware for using a modelled IoT infrastructure to benchmark

the blockchain-based scenario performance presented in Figure 6.1. Given the distinctive

execution environments between IoT simulators and real-world blockchain platforms, this

chapter verifies the middleware’s correct behaviour and its capability to handle related

challenges, such as concurrency and race conditions.

6.2 Research Questions, Contributions, and Relevance to

Published Work

Section 6.2.1 provides a detailed explanation of the Research Question (RQ) and highlights

the contributions associated with this chapter. Section 6.2.2 clarifies the relevance of this

chapter to the published paper, as outlined by the publications listed in Section 1.4.

6.2.1 Research Question and Contribution

Research Question 3 (RQ3): For performance evaluation purposes, not all blockchain

features (i.e. smart contracts) can be perfectly simulated for every scenario. A set of

real Blockchain platforms exists that are open source, accessible, and can be deployed to

scalable cloud computing resources. However, large-scale IoT infrastructures are not easily

accessible for research and development purposes. Accordingly, how feasible is it to utilise
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IoT simulators as workload generators for benchmarking the performance of real blockchain

platforms?

To answer this question, this thesis contributes a simulation framework for evaluating

the performance of blockchain-based IoT ecosystems. This chapter contains a middleware

architecture that enables an IoT simulator (IoTsim-Osmosis) to evaluate the performance of

a real blockchain platform (namely, Hyperledger Fabric). The proposed middleware architec-

ture attempts to resolve major challenges associated with the distinction between simulated

execution environments (IoT simulators) and real execution environments (Blockchain plat-

forms). Therefore, it enables connectivity and communication between both ends to enable

utilising IoT simulators (i.e. IoTsim-Osmosis [16]) as workload generators to benchmark the

performance of a real blockchain platform (i.e. Hyperledger Fabric [17]).

6.2.2 Relevance of the Chapter to the Published Paper

This chapter has been submitted to the Blockchain: Research and Applications journal and

contains the main content presented in this chapter.

6.3 Middleware Architecture

6.3.1 Research Problem

Assume that IoT simulation is considered for evaluating and benchmarking the performance

of a real blockchain platform. Therefore, as Figure 6.2 illustrates, this chapter suggests the

utilisation of a middleware solution for integrating between two distinctive environments,

which are a real blockchain platform (namely Hyperledger Fabric [17]) and an IoT simulator

(namely IoTsim-Osmosis[16]). See section 2.4.3 for the rationale behind this selection.
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Fig. 6.2 Middleware to integrate an IoT simulation with a real blockchain platform

The aim is to utilise IoT simulators as workload generators for evaluating real-world

blockchain platforms based on simulated IoT models. However, the difficulty of bridging

distributed environments (like Hyperledger Fabric) with simulated environments in IoT sim-

ulators (such as IoTsim-Osmosis) remains a persistent challenge. The integration challenges

are not limited to the IoT simulator’s ability to communicate and interact with the blockchain

platform but also extend to the distinctive nature of both sides. Several IoT simulators are

concerned with a discrete event representation throughout a virtually short time. These

simulators rely on predefined calculations and execution duration to generate their output.

Consequently, a naive integration between these two disparate and heterogeneous ex-

ecution environments fails to align IoT simulators with the real blockchain platform. An

example of a naive integration is the tight coupling of the IoT simulator with the blockchain

platform, which will negatively influence the execution run-time of IoTsim-Osmosis. Con-

sider that the IoT simulator must be stopped whenever it interacts with the blockchain. As a

result, the IoT simulator, being a discrete event simulator, will demonstrate miscalculations,

resulting in unrealistic outputs. Thus, the middleware must take into account the distinctive
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nature between IoT simulation and real blockchain platforms to ensure accurate performance

evaluation and benchmarking.

6.3.2 Proposed Architecture

The primary focus of this chapter lies in presenting a middleware architecture along with

a reference implementation that aims to bridge IoT simulations with actual blockchain

platforms. As illustrated in Figure 6.3, IoTsim-osmosis is selected as an IoT simulator, while

Hyperledger Fabric is selected as a real blockchain platform. The main functionality of the

middleware is to provide IoT simulators with the ability to do the following:

1. Acts as a workload generator to benchmark and evaluate the responsive blockchain

platform.

2. Transact with the respective blockchain platform, which requires authentication, con-

nectivity, communication, and transaction fail-safe mechanism.

Fig. 6.3 A Middleware for Leveraging IoT Simulators to Evaluate Blockchain Performance.

The middleware architecture adopts the separation of concerns principle to address

the distinction between the IoT simulator and the blockchain platform. The middleware
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architecture demonstrates that by designating two separate but collaborative entities: agents

and works. While each interfaces with a distinctive environment, they interact with each

other through concurrent storage. On the one hand, agents are designed to consider the nature

of the simulated environment. Hence, they interface with the simulator to gather data from

the simulated IoT environment and store them in concurrent storage. The behaviour of these

agents, such as how frequently and periodic data are gathered, is not specifically mandated

and can be instructed as required by the middleware manager. workers, on the other hand,

are designed to handle the nature of the blockchain platform. Hence, their primary role

involves consolidating the information collected by agents from the simultaneous storage and

sending it as transactions to the blockchain. Therefore, the middleware provides a set of APIs

(application programming interfaces) that the workers can leverage when transacting with

blockchain. For example, workers must be authenticated and connected to the blockchain

platform to be able to submit transactions. The following sections provide a deeper look at

key aspects of the proposed middleware architecture.

6.3.3 Smart Contracts and State Storage

From the blockchain side, middleware interfaces with various smart contracts that fall into

two main categories: the IoT Asset Manager and the business logic under test. The former

is dedicated to representing, defining and managing IoT assets and their properties. For

example, within the context of firefighting using IoT technology, an asset could refer to a

residence containing attributes like homeowner details, physical address, and geographical

coordinates. The middleware utilises the IoT Asset Manager to execute Create, Read, Update,

and Delete operations (CRUD) methods at the Blockchain state storage to manage IoT assets.

The second category of smart contracts represents the business logic under test. For instance,

the scenario presented in Figure 6.1 assumes fire alerts are submitted from IoT sensors

through monitoring agents to the blockchain platform for processing and further actions.

Therefore, the middleware interfaces with associated smart contracts and stresses them with

the required workload from the IoT simulator in the form of submitted transactions.
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6.3.4 Identity Management

Hyperledger Fabric operates as a blockchain platform with permissioned access. Thus, a

cryptographic wallet is instrumental in connecting and facilitating communication between

the middleware manager, workers, and the blockchain network. For instance, it allows

workers to use their specific identities to compose and endorse transactions during smart

contract executions. As depicted in Figure 6.4, the wallet creation requires registration and

enrollment to the blockchain platform. The initial step involves registering a middleware’s

admin identity, which produces an ID and a secret key. Subsequently, the middleware

submits these credentials to a Certificate Authority (CA) within the blockchain segment

for self-enrollment. The CA assesses these credentials and assigns an admin identity to

the middleware, which features administrative capabilities that facilitate the registration

and enrollment of workers onto the blockchain network. The Identity within this context

combines public/private key pairs encapsulated within a digitally signed X.509 certificate.

The admin can then use their identity to generate another identity sufficient for workers’

purposes.

Fig. 6.4 Authenticating Workers to the Blockchain Platform

6.3.5 Transactions Fail-safe Mechanism

To ensure the integrity of the evaluation results, the middleware incorporates a fail-safe

mechanism for handling possible transaction failures. As illustrated in Figure 6.5, the
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middleware assigns a maximum number of attempts (e.g., trialsmax← 5). This is particularly

useful in scenarios where, despite multiple attempts, a transaction fails to be accurately

processed due to external factors such as network or blockchain environment. The middleware

closely monitors transaction events on the blockchain for every smart contract call. It verifies

whether a transaction is successfully executed and recorded on the ledger. If a transaction

fails, the middleware attempts resubmission until the maximum number of attempts is

reached. This aids in making informed decisions regarding the validity of the experiment

and thus avoiding possible deviations from the anticipated behaviour.

Fig. 6.5 A fail-safe mechanism for handling possible transaction failures

6.3.6 Thresholds Specifier

The middleware considers a specifier that enables defining a set of thresholds against metrics

generated by the IoT simulator. The threshold specifier supports basic comparative operators

against a specific value such as greater than, less than, equal to, not equal to, and not.

For example, assume a threshold requirement υi to be f ireAlert ̸= f alse. Therefore, the

Thresholds Specifier enables flirting the generated metrics accordingly. Such a threshold

requirement can be used for several reasons. For example, agents can instruct them to capture

metrics only when a fire event occurs. Additionally, agents can be instructed to classify

generated metrics as positive or negative based on this threshold. As shown in Algorithm 1,
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the middleware sets a specific threshold requirement υi. It also decides whether υi must be

stored on both ends, the simulator and the blockchain, when the flag is set to true (ρ = true);

otherwise, υi is only stored locally. Storing υi on the blockchain’s state storage involves

activating the IoT assets manager smart contract. If the transaction for creating it is successful,

the middleware creates a copy of the threshold requirement υ ′i in the local storage; otherwise,

it halts the entire process.
Algorithm 1: Threshold Specifier Creation.

Input :υi //Threshold level

ρ //whether υi is required in both sides

maxRetry //Max number to submit transactions

Output :whether υi and υ ′i are successfully created.

1 η := 0 //attempts count to submit transactions

2 if (ρ) then
// Blockchain transaction is required

3 α := f alse //Initially, set the transaction status flag to false.

4 while (¬α ) and (η ≤ maxRetry) do

5 Submit υi to the blockchain level.

6 η := η + 1

7 if υi then
//successfully created

8 α := true

9 end

10 end

11 end

12 if α or ¬ρ then
//Successful Blockchain transaction or not required

13 Create υ ′i at the simulator level.

14 end
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6.3.7 Agents

As mentioned in section 6.3.2, the middleware provides agents that interface with the IoT

simulator. Agents can be deployed wherever metrics {m1, ...,mn ∈M} are generated from

the underlying simulator. For instance, a generated metric mi can be the status of an alarm

sensor, which can be positive (fire event) or negative (no fire event). Agents are aware of

specified thresholds, which are the ones created by Algorithm 1. Each agent is assigned a

set of generated metrics {mi ∈M}. Multiple agents can be deployed at the IoT simulator

level to capture their assigned metrics once produced by the IoT simulator. Agents instantly

evaluate captured metrics against a specified threshold {υi ∈ ϒ}. Agents provide feedback

on the evaluation by reporting the outcomes and determining whether a specific metric is

labelled as a breach B or compliant (C). Algorithm 2 illustrates the process of examining

generated metrics. For simplicity, the algorithm conveniently uses the increment notion

(C++ or B++) to express the ability of agents to classify generated metrics and store them

accordingly.

The middleware recognises that processing Blockchain transactions introduces an un-

necessary delay to the simulator’s execution runtime. Hence, it considers preventing the

negative impact of the blockchain transaction life cycle on the performance and dependability

of the IoT simulator underneath. While agents are loosely coupled to the IoT simulator, they

are completely decoupled from the blockchain platform. Consequently, agents interface

with the local concurrent storage instead of establishing direct communication with the

associated blockchain platform. The concurrent storage maintains a set of specified threshold

requirements {υi ∈ ϒ} along with their indicators sets, which are B set for breach instances

to υi or C set for compliance instances with υi. See Figure 6.6 for a visual elaboration.
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Algorithm 2: Agents’ Evaluation Behaviour
Input :υi //Threshold requirement

mi //Generated metric

Output :C or B //compliance or Breach

1 l := υi(level) //Threshold level (e.g. GraterThan, LessThan, Equals, Not)

2 v := υi(threshold) //threshold value

3 if (l = GraterT han and mi < v) or (l = LessT han and mi > v) or (l = Equals and

mi ̸= v) or (l = Not and mi = v) then

4 B := B+1

5 end

6 else

7 C :=C+1

8 end

Fig. 6.6 The locking mechanism on the concurrent storage for agents or workers
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6.3.8 Workers

The middleware schedules a pool of concurrent entities called workers for blockchain

benchmark and evaluation purposes. These workers engage with and conduct transactions

on the blockchain side. The primary responsibility of the main worker is to apply stress to

the smart contract being tested. Recall that the local storage is concurrently shared between

agents and workers (See Figure 6.6). Therefore, workers repeatedly examine the local storage

to check whether there is an update by agents on the C and B sets associated with every

threshold requirement {υi ∈ ϒ}. If any employees try to submit the most recent update to

the relevant smart contract, they will update the status of both the C and B sets in the state

storage. This update reflects the difference between the workers’ most recent values and their

reported values.

Algorithm 3 offers a detailed insight into the operational dynamics of workers. Initially,

the middleware sets up a worker with specific attributes: (i) the designation of a smart contract

under test, (ii) a particular method (or function) within that smart contract designated for

transaction execution, such as "report fire event," and (iii) a set of threshold criteria {υi ∈ ϒ}.

Workers refrain from transacting with the blockchain unless there is a status change concur-

rent storage concerning their assigned υi. This is important to mitigate the unnecessary load

on the blockchain infrastructure that might cause undesired miscalculations. As stipulated

in Algorithm 3 Line 4, workers proceed with submitting B or C data to the blockchain is

contingent upon the condition that B > 0 or C > 0. When the transaction is successful, the

worker reflects that on the B and C values at the concurrent storage.
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Algorithm 3: Workers Behaviour
Input :A set {contract,method,Q}

Output :Updated B and C sets for each υi ∈ ϒ

1 for all υi in ϒ do

2 Binitial := B //Initial Breach Set state

3 Cinitial :=C //Initial Compliance Set state

4 if Binitial > 0 OR Cinitial > 0 then

5 Execute Transaction (contract, method, υi, Binitial , Cinitial) //Dispatch metrics

to the Blockchain

6 if transaction_success = true then
Transaction Executed Successfully

7 B f inal := B //Updated Breach Set state

8 C f inal :=C //Updated Compliance Set state

9 ∆B := B f inal−Binitial //Compute Breach Set state change

10 ∆C :=C f inal−Cinitial //Compute Compliance Set state change

11 if ∆B≥ 0 then

12 B := ∆B //Adjust and renew Breach Set

13 end

14 else

15 B := 0 //Reset Breach Set

16 end

17 if ∆C ≥ 0 then

18 C := ∆C //Adjust and renew Compliance Set

19 end

20 else

21 C := 0 //Reset Compliance Set

22 end

23 end

24 end

25 end
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6.3.9 Storage Concurrent Locking Mechanism

Workers reflect successful transactions by updating B or C sets, which is not trivial due to the

operations overlap between agents and workers on these shared sets. Agents continuously

update these datasets with new metrics collected from the IoT simulator, while workers aim

to denote submitted datasets as being successfully submitted to the blockchain. Specifically, a

significant delay occurs when a worker evaluates B or C sets from t1 to the point it concludes

a transaction with the blockchain at t2. During this interval, it’s probable that agents or other

workers have altered the state of B or C datasets. To mitigate potential race conditions and

ensure data integrity, the middleware employs a concurrent locking mechanism designed to

handle concurrent modifications effectively:

1. Only one entity, whether an agent or worker, is granted the authority to modify (update)

any C or B dataset at any given time.

2. During the period ∆t = t2− t1, agents are allowed to update B or C datasets with new

metrics.

3. A worker, after finalizing a transaction on the blockchain, is restricted from updating

the datasets associated with {υi ∈ ϒ} until ensuring no other entity currently possesses

the lock. Once the lock is available, the worker can secure it to incorporate the changes

∆B and ∆C, thus marking them as reported and avoiding redundant submissions.

4. To maintain accuracy and prevent errors, workers refrain from making changes ∆B

and ∆C to the storage if the values are negative. This indicates that there are no actual

differences to record.

The middleware organises concurrent storage as key-value pairs, the key representing

a specific threshold requirement {υi ∈ ϒ} and the value encompassing the related metric

datasets B and C. This storage system incorporates a locking mechanism that selectively

authorises write operations (including insertions, deletions, and updates) to a single entity

at a time while permitting unrestricted read access to any entity. To optimise performance,

the storage is divided into segments to enable write locks to be implemented for each
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segment individually rather than for the entire storage space. This segmentation facilitates

simultaneous write operations by multiple entities on different parts of the storage to enhance

throughput and overall system efficiency. Figure 6.6 demonstrates how storage segmentation

and locking mechanisms work and present the interactions between agents and workers.

1. In Segment 1, agent 1 secures a lock to input data related to breaches (B) and compli-

ances (C) for metrics compared against υ0. Worker 1, on the other hand, can examine

the most recent data for υ0 without any obstacles since the lock doesn’t limit reading

operations.

2. Segment 2 is locked by worker 2 following a successful metric transaction concerning

a group of threshold requirements {υ1,υ2,υ3,υ4}, intending to update ∆B and ∆C

accordingly. Agents 2 and 3 can still access data within this segment for query purposes,

avoiding operational conflict.

3. Should a worker or agent need to perform a write operation on a specific segment, it

must wait for the existing lock to be released before acquiring the lock for its use.

6.3.10 Smart Contract Benchmarking Functionality

The middleware incorporates a built-in benchmarking tool for capturing critical data for

assessing blockchain performance. It monitors fundamental performance indicators for

each worker’s transaction, including throughput, latency, success, and failure rates. The

benchmarking mechanism follows the performance metrics assessment guidelines proposed

by the Hyperledger Performance Working Group [64]. The subsequent sections delineate the

processes involved in the indicators instrumentation, data collection, exportation, analytical

evaluation, and graphical presentation.

6.3.10.1 Composing and Exporting Performance Instruments

Figure 6.7 depicts assembling and exporting performance metrics for each smart contract

method invoked by workers. A dedicated module, termed Instrument Exporter, leverages
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Micrometer1—an open-source, vendor-neutral tool that integrates with a broad spectrum of

monitoring solutions. The Instrument Exporter creates a series of metrics that the middleware

utilizes to evaluate the smart contract’s performance during testing. These metrics encompass

successful transactions (Ts), unsuccessful transactions (Tf ), and transaction delay (Td).

Fig. 6.7 Process of assembling and exporting metrics

As outlined in Algorithm 4, the middleware avoids repeated instrumentation by verifying

whether the smart contract has been instrumented. If not, the Instrument Exporter initiates

a fresh set of metrics, including Ts for successes, Tf for failures, and Td for latency mea-

surements. For each transaction a worker initiates, the middleware updates either Ts or Tf

accordingly. The transaction latency Td is determined by the elapsed time, calculated 6.1

Td = timerend− timerstart (6.1)

where txstart marks the transaction’s submission to the blockchain and txend the moment

the transaction completion. It’s important to note that the calculation of Td intentionally

omits unsuccessful transactions due to the irrelevance to the latency indicator.

1https://micrometer.io
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Algorithm 4: Instruments Composition
Input :{contract}

Output :Count of successful transactions Tsuccess,

Count of failed transactions Tf ail ,

Duration of transactions Tduration

1 Initialize Methods := {methodi|i ∈ N} //Enumerate all methods within the smart

contract

2 for every invocation of the smart contract do

3 if method /∈Methods then

4 Assemble monitoring tools {Tsuccess,Tf ail,Tduration} ∈ method

5 Integrate contract into Methods

6 end

7 Start Timer

8 Initiate Transaction to method

9 if Transaction executes successfully then

10 Stop Timer

11 Tduration = Timerstop−Timerstart

12 Tsuccess := Tsuccess +1

13 end

14 else

15 Tf ail := Tf ail +1

16 end

17 Dispatch {Tsuccess,Tf ail,Tduration} to HTTP server

18 end

6.3.11 Instruments Gathering, Calculation, and Visualisation

The middleware orchestrates the integration of three key components to collect and visualize

the performance indicators {Ts,Tf ,Td}, which are: (i) An HTTP server tasked with the export
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of metrics for each smart contract’s method, (ii) Prometheus2 for periodic collection of

the indicators from the HTTP server, and (iii) Grafana3 to compile the benchmarking data

and facilitate their visualization. Accordingly, a series of benchmarking parameters can

be established to evaluate the smart contract’s performance as delineated in the following

equations:

Avgt ps =
∑

n
i Ts

σ
(6.2)

Avglatency =
∑

n
i Td

∑
n
i Ts

(6.3)

srate =
Ts

Ts +Tf
×100 (6.4)

frate =
Tf

Ts +Tf
×100 (6.5)

Avgt ps quantifies the transaction throughput, defined as the sum of successful transactions

over σ . σ is defined as lct − f st, where f st is the timestamp of the first transaction that was

successfully processed, and lct is the timestamp of the final transaction that was committed

to the blockchain ledger. s_rate and f _rate indicate the proportions of successful and

unsuccessful transactions, respectively, among the total number of transactions. The average

latency Avglatency is determined by aggregating the total time to execute each transaction and

dividing this by the number of successful transactions.

2https://prometheus.io
3https://grafana.com
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6.4 Evaluation

6.4.1 Validating the Concurrent Storage

The correctness of the concurrent storage mechanism is crucial for the overall performance

and reliability of the proposed middleware. Therefore, we designed a controlled experiment,

as detailed in Algorithm 5, to validate its functionality and correctness. Table 6.1 illustrates

the configuration settings for conducting the controlled experiment. Given the concurrent

nature of the shared storage and the overlapped operations between agents and workers, the

experiment focuses on the storage’s ability to store generated metrics correctly. These metrics

refer to the data points (e.g. values) that are measurable performance indicators generated

by the IoT simulator during the experiment run. These generated metrics in our scenario

categorize fire alerts as either compliant or in breach based on their relation to the threshold

(υ) and store them in the concurrent storage.

To validate the correctness of the concurrent storage, we experiment with several iter-

ations. For each iteration, agents (ai) evaluate a set of metrics with increasing size from

|M|= 102 to |M|= 106 (x ranges from 2 to 6). In each iteration, we increase the number of

metrics produced to validate and evaluate the concurrent storage mechanism’s scalability to

ensure it maintains performance and reliability under varying load conditions. Therefore,

agents update the concurrent storage accordingly as defined in Algorithm 2. Workers (wi)

process existing data in sets B and C and apply necessary updates. Note that there are delays

introduced to control the experiment with regard to agents and workers. Agents initially

wait 1 second before commencing their tasks. Then, they gather metrics from the simula-

tor whenever generated. On the other hand, workers initially wait for 2 seconds and then

periodically wait for 3 seconds to emulate the delay caused by the blockchain transaction

processing. During the waiting period of a worker, agents are expected to gather as many

generated metrics and store them in the concurrent storage.
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Table 6.1 Test-bed Configuration for Concurrent Storage Validation

Parameter Quantity Initial Delay (x=2 only) Periodic Delay

Agents 1 1 second 0 seconds

Workers 3 2 seconds 3 seconds

Generated Metrics 10x (x ∈ {2,3,4,5,6}) N/A N/A

Compliance Rate 50% 50% 50%

Breach Rate 50% 50% 50%
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Algorithm 5: Controlled Experiment on Core Functionalities
Input :A collection of metrics M, where each m j ∈M is a rational number,

Agent ai,

Worker wi,

Threshold υ ,

Initial total metrics assessed by agent ai set to tma = 0,

Initial total metrics handled by worker wi set to tmw = 0

Output :Guaranteed integrity of parallel storage and accurate functionalities

1 Establish threshold υ as Latency≤ 1

2 Initialize breach and compliance counts, b = 0 and c = 0 respectively

3 Apply threshold υ to worker wi

4 Set counter x = 100

5 while x < 1000000 do

6 Initialize metric counter j = 0

7 while j < x do

8 if x≤ 100 then
Pause for visual clarity

9 Wait for 1 second

10 end

11 if ( j mod 2) = 0 then

12 Generate m j randomly from Q with m j ≤ Latency //indicating compliance.

13 end

14 else

15 Generate m j randomly from Q with m j > Latency //indicating breach.

16 end

17 Delegate metric m j to agent ai Increment j by 1

18 end

19 Calculate difference α := tma− tmw

20 Calculate sum β := tma+ tmw if α = 0 AND β = 2x then

21 Condition met for the pass.

22 end

23 else

24 Condition met for failure.

25 end

26 if b ̸= tma
2 OR c ̸= tma

2 then

27 Misclassification results in failure

28 end

29 else

30 Accurate classification results in success

31 end

32 Update x by multiplying by 10

33 end
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The experiment’s success relies on several criteria:

1. Agent Evaluation: Each agent (ai) must evaluate all metrics (tma = 10x) and correctly

update sets B and C in the storage.

2. Worker Processing: Workers (wi) must process all generated metrics (tmw = 10x)

without redundancy.

3. Classification Accuracy: The number of "compliance" C and "breach" B entries in

the storage should reflect the actual metric distribution (50% each).

4. Synchronization: The difference between agent-processed metrics (tma) and worker-

processed metrics (tmw) should be zero (α = 0) upon completion of each iteration,

indicating proper synchronization.

Figure 6.8 showcases the validation for the first iteration (where x= 2) with 100 generated

metrics. The experiment successfully demonstrates the middleware’s ability to handle the

workload properly. While subsequent iterations (where x > 2) are not visualized here, the

open-source code allows for replication and verification (link to GitHub repository 4).

4https://github.com/aakzubaidi/BMBmid-Middleware

https://github.com/aakzubaidi/BMBmid-Middleware
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Fig. 6.8 Illustrating the proper execution of operations on concurrent storage through the
utilization of 100 generated metrics

6.4.2 Use Case Evaluation

As visualised in Figure 6.1, assume a large number (i.e. 30,000) of smart homes are connected

to a blockchain platform and report their fire status (fire or no fire) to the respective smart

contract. The large scale of the IoT infrastructure is challenging to access for research and

development purposes. IoT simulators such as IoTSim-Osmosis can be a viable option given

that the middleware can connect it to a real blockchain platform and synchronise between a

simulated model and a real blockchain platform. The following details the incorporation of

the middleware with the IoTSim-Osmosis simulator to evaluate the performance of the real

blockchain platforms.

6.4.2.1 Blockchain Platform

For this evaluation, we leveraged the Hyperledger Fabric v2.3.2 blockchain platform. The

deployment utilized a cloud-based infrastructure provisioned with 32 vCPUs (Intel Xeon
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Gold 6140 processors clocked at 2.30 GHz) and 64 GB of RAM. These resources are equally

distributed to 4 validating nodes and 5 orderer nodes. The consensus mechanism employed

is Raft, a crash-fault tolerant mechanism recommended by the Hyperledger Community. A

copy of a smart contract under test is deployed to each validating node. The smart contract

mainly persists υi as outlined in Algorithm 1, and receives transactions about the fire status

of each home from an authenticated and authorised client.

6.4.2.2 Simulated IoT Model

We employ the IoTSim-Osmosis simulator [16] to model the IoT-based firefighting architec-

ture, as illustrated in Figure 6.1. The modelled IoT architecture is organised into two primary

layers: (i) three geographically distinct edge data centres, each serving different areas, and

(ii) a network consisting of 30,000 smart houses organised into groups of 10,000 houses,

with each group being connected to a designated edge data centre. Table 6.2 highlights the

identical specification of each IoT edge centre. Each house has sensors that generate random

fire status (positive or negative).
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Table 6.2 Configurations and Expectations

Description Configuration

Generated Fire Statuses 30,000, such that one fire status per smart home

Edge data centres 3 edge centres, each has:

CPUs: 4

Bandwith: 100 Mbps

RAM: 4 GB

MIPS/CPU: 250

Storage: 200 GB

Agents Allocated per Edge Data Center 1

Fire Status Reporting Frequency 1 per 100ms for each smart home

Agent Execution Frequency 100ms

Worker Execution Frequency (no initial delay) 1s

Expected Throughput (TPS) 1

Fire Statuses Updated per Transaction ≈ 30

Expected Total Transaction Number ≈ 1000

6.4.2.3 Middleware Configurations

The middleware is treated as a library imported into the simulator’s framework to connect

the IoT simulator to the blockchain platform. The configuration of the middleware involves

key elements as follows:

1. The address (URI) of the certificate authority and its corresponding TLS certificate for

secure communication.

2. Unique identification details (ID and secret) issued by the certificate authority for the

simulator.

3. A specified location for storing generated identities within the simulator.

4. A connection profile for the blockchain network, allowing the simulator to discover

and connect to relevant peers.
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5. The name of the designated channel within the blockchain.

6. The name of the smart contract is used for the test.

7. A threshold requirement υi, which is set to f ireAlert ̸= f alse.

For preset expectations, Table 6.2 controls the experiment environment. Figure 6.9

visualise the workload flow from smart homes to the respective smart contract. An agent

is deployed for each of the three data centres, which are concerned with intercepting the

fire status of their associated smart homes. As in Algorithms 2, Agent are responsible

for classifying the intercepted fire status based on the defined threshold υi, and storing

the outcome into the local concurrent storage. For consistency and predictability, The

frequency of creating a fire status for each smart home is limited to one transaction every 100

milliseconds. On average, each agent injects into the concurrent storage a fire status collection

of 10 smart homes per 1 second. Since there are three agents working simultaneously, there

should be 30 records per second stored on the concurrent storage. As Algorithm 3 dictates,

workers periodically examine the concurrent storage to observe whether there are new entries

to submit to the blockchain platform. In this controlled experiment, the worker is configured

to periodically inspect the concurrent storage every second. In light of the above, the worker

should be able to submit approximately 1000 transactions in total to the blockchain platform

with a send rate of 1 transaction per second, such that each transaction should report a

collection of fire status for 30 smart homes. Shall the inspection of the blockchain ledger

match this expectation, we can generalise the outcomes to more transactions per second with

different configurations.
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Fig. 6.9 Benchmarking Workload Flow from Simulated Edge Centres to The Smart Contract

6.4.2.4 Validation and Analysis

The experiment utilised Grafana to visualize the results of the key performance measurements

defined by Equations 6.2, 6.3, 6.4, and 6.5. The experiment produced a total of 1,030

transactions by running the simulator, surpassing the expected value of 1,000 transactions as

indicated in Table 6.2. The expected number of transactions is calculated as follows:

1. Fire Status Generation: Simulate 30,000 smart homes, each generating a fire status

(either "fire" or "no fire") every 100 milliseconds. These homes are divided into three

geographic regions, each connected to an edge data center.

2. Status Aggregation: One agent was deployed per edge data center, and each agent

collected fire status from 10,000 homes. Agents gathered approximately 10 fire statuses

per second.

3. Transaction Bundling: Each worker is responsible for examining the concurrent

storage and bundling the collected fire statuses into a single transaction. Workers are

configured to examine the concurrent storage every 1 second. Under normal conditions,
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we expect the worker to find approximately 30 fire statuses (10 fire statuses per agent

× 3 agents) every second and submit them as a single transaction to the blockchain.

4. Expected Transactions Calculation: The expected transactions is calculated as

follows:

• Total of expected transactions =
Generated Fire Statuses

Fire Statuses per transaction

=
30,000

30

= 1000 transactions

Figure 6.10 shows a visualised output by SimBlockLink about the essential performance

measurement of the blockchain platform. Nevertheless, an investigation of the blockchain

ledger revealed that each transaction reported approximately ±30 metrics, resulting in a

slight but acceptable deviation from the anticipated total number of transactions needed for

reporting all 30,000 metrics. While the experiment anticipated precisely 1000 transactions, it

actually required 1,030 transactions. We observed that a few transactions did not utilise their

maximum capacity to contain metrics in their payloads. Thus, an additional 30 transactions

are required to satisfy the total number of metrics (30,000). To help explain the deviation from

the anticipated number of transactions, a future study will consider a further investigation to

determine what led to this phenomenon by examining internal blockchain components and

their interconnection, underlying infrastructure and resource allocation, connectivity between

the middleware and the blockchain environment, or possibly other causes beyond immediate

control.
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(a) Success Rate (b) Faill Rate

(c) Latency (d) Throughput

Fig. 6.10 Key Blockchain performance indicators produced by the middleware

Regardless of the number of total transactions, we verify all generated metrics are

submitted to the blockchain platform. For that, we applied Equation 6.6 to the state storage,

which checks whether all reported B and C sets are identical to the simulator-generated

metrics |M|, which should be 30,000 in total. This calculation confirmed that all metrics

were indeed reported. The observed marginal deviation in the total number of transactions

likely represents a minor artefact, which we plan to investigate in a future study.

(
n−1

∑
0

B+
n−1

∑
0

C

)
?
= |M| (6.6)

We hypothesize two potential causes for the observed discrepancy in total transactions.

First, as discussed in Sukhwani et al. (2018) [162], Hyperledger Fabric’s inherent transaction

flow might influence the observed behaviour. The worker component might be forced to

wait until the resolution of its current transaction before initiating the next round. Secondly,

the concurrent storage locking mechanism may cause the worker to wait for the lock to be

released by the agent, which leads to unexpected delays.
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6.5 Conclusion

This chapter presented a middleware architecture that facilitates the usage of IoT simulators

to evaluate the performance of real blockchain platforms. This allows for the assessment

and comparison of blockchain performance in simulated IoT environments. The middleware

incorporates agents for interfacing with the IoT simulator, workers for transacting with the

blockchain, and a concurrent storage mechanism for data synchronisation. A case study

about a hypothetical IoT-based firefighting scenario was implemented to demonstrate the

utility of the middleware in integrating Hyperledger Fabric (a real blockchain platform) with

IoTsim-Osmosis (an IoT simulator) and in evaluating the performance of the real blockchain.

Subsequent efforts will concentrate on supporting additional blockchain platforms, like

Ethereum and other non-Java simulators. So far, simulation proves viability for evaluating

the performance of a Blockchain-based IoT ecosystem, whether in a full or partial simula-

tion environment. Nonetheless, it can be difficult to calibrate all blockchain configuration

parameters to achieve the best possible performance, whether in simulation or real settings.

Therefore, the next chapter employs machine learning techniques to address this challenge.



Chapter 7

A Model-Based Machine Learning

Approach for Assessing the Performance

of Blockchain Applications

Summary

Blockchain technology offers significant potential for various applications, but evaluating

the performance of blockchain solutions remains challenging due to the complex and decen-

tralized nature of the underlying infrastructure. While previous research has often utilized

simulation-based approaches, machine learning (ML) techniques are under-explored in this

context. In previous chapters, this thesis has presented a simulation framework and a middle-

ware architecture for evaluating blockchain performance in the IoT context. The experience

so far with simulation proved challenging in fine-tuning and calibrating the plethora of

blockchain configuration parameters to achieve the optimal performance possible. Accord-

ingly, this chapter aims to address this gap by proposing two novel ML-based models. The

First ML model is trained based on k nearest neighbour (kNN) and Support Vector Machine

(SVM) algorithms to help estimate the blockchain performance based on predefined configu-

ration parameters. The second model is based on an improved salp swarm optimization (ISO)

algorithm that leverages rough set theory to identify optimal blockchain configurations for
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achieving desired performance levels, even under uncertainty. To evaluate our models, we

conduct experiments using a dataset generated and obtained from the proposed simulation

framework in Chapter 5. The data sets contain several scenarios where different configuration

parameter values are associated with certain performance levels. The results demonstrate

that the kNN model outperforms SVM by 5% in classification accuracy. Furthermore, the

ISO algorithm exhibits a 4% reduction in the accuracy deviation compared to standard salp

optimization.

The remainder of this chapter is structured as follows: Section 7.1 provides a brief

introduction to this chapter and highlights the challenges it seeks to address. Section 7.2

explains the Research Question (RQ), the contributions of this chapter, and its relevance to the

published paper. Section 7.3 proposes our two models for predicting the overall blockchain

performance and estimating the optimal configuration parameters, respectively. Section 7.4

conducts several experiments to validate the proposed models. Finally, Section 7.5 concludes

the chapter.

7.1 Introduction

Fine-tuning optimal blockchain configurations can pose challenges as applications’ require-

ments vary significantly. Factors influencing these requirements include the nature of stored

data, the frequency and concurrency of transactions, the number of validating nodes, and

infrastructure specifications such as CPU, memory, network bandwidth, and Input/Output

speed. The constraints that these applications must account for can further complicate

the development process, thus affecting the overall performance of the blockchain-based

application in terms of throughput, latency, and the rate of successful/failed transactions

[117].

This study draws inspiration from a hypothetical scenario where a healthcare organization

considers integrating blockchain technology into its operations. Certain performance metrics,

such as transaction volume, average transaction time, and transaction success rate, amongst
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others, can be utilized to gauge the feasibility and potential success of the proposed project.

These metrics can be leveraged for one of the specific purposes outlined subsequently:

1. Predicting how the blockchain-based application will perform under certain conditions

and preset configuration parameters, given the limitation of the available resources.

2. Vice versa, given a target performance level, the task is to estimate the right configu-

ration parameters. This is to answer questions like what configurations should be in

place to enable an IoT-enabled hospital to achieve a blockchain throughput of at least

1000 transactions per second.

To approach the selection and implementation of blockchain-based applications systemat-

ically, it is necessary to conduct a comprehensive evaluation of the application’s requirements.

Numerous simulation frameworks for this purpose have been proposed [13]. However, it is

challenging to provide a comprehensive and accurate representation of a specific blockchain

application’s performance due to blockchain systems’ complexity. A blockchain system’s

interdependence and wide range of parameters make achieving an accurate performance

evaluation a significant challenge.

Machine learning (ML), a subfield of artificial intelligence, uses historical data to develop

algorithms and statistical models that aim for optimal performance [163]. This chapter mainly

focuses on the supervised learning approach, specifically on classification and optimization

algorithms. In the realm of machine learning, classification is concerned with understanding

and sorting data into predetermined groups or “sub-populations". Classification algorithms

use labelled training data to determine whether an object belongs to a predefined category.

They identify recurring patterns and common features, thereby enabling "pattern recognition".

The efficiency of these algorithms is evaluated based on their ability to classify objects

correctly. In this study, we focus on two well-known classification algorithms: the k nearest

neighbour (kNN) algorithm [164] [165], and the support vector machine (SVM) algorithm

[166].

Swarm optimization, a machine learning technique, is gaining attention due to its ability

to efficiently find near-optimal solutions for complex problems, even with limited resources,
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such as processing power or time, and incomplete or imprecise knowledge about the problem

[167] [168]. To overcome the limitations of traditional optimization methods, several ML

algorithms have been proposed, such as Harris Hawk Optimization (HHO) [169], Grey Wolf

Optimization (GWO) [170], Artificial Bee Colony (ABC) [171], Ant Colony Optimization

(ACO) [172], Particle Swarm Optimization (PSO) [173], and Salp Optimization (SO) [174].

These algorithms provide robust optimization capabilities.

Another interesting machine learning algorithm is the Rough Set Theory (RST) [175],

which provides a formal approach to approximate conventional or crisp sets using lower and

upper approximations. If the lower and upper approximations are identical, RST provides a

crisp set. If the approximations are different, variations of RST may result in rough sets.

7.2 Research Questions, Contributions, and Relevance to

Published Work

Section 7.2.1 provides a detailed explanation of the Research Question (RQ) and highlights

the contributions associated with this chapter. Section 7.2.2 clarifies the relevance of this

chapter to the published paper, as outlined by the publications listed in Section 1.4.

7.2.1 Research Question and Contribution

Research Question 4 (RQ4): Blockchain infrastructure is heterogeneous and complex.

Numerous factors influencing the overall blockchain performance must be considered before

an organisation investigates blockchain viability before production. While simulation can

help investigate the performance of blockchain-based IoT applications, there would be

multiple trial and error processes until the right configuration parameters are determined

for optimal blockchain performance. Therefore, the question is how machine learning

techniques would assist in predicting blockchain performance metrics and identifying optimal

configuration parameters.
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To answer this question, this chapter utilises the simulation framework proposed and

implemented by Chapter 5 to implement various scenarios to generate datasets of random

configuration parameters and associated performance metrics. The generated datasets are

used for training Machine Learning models for two purposes considered in the context of

evaluating the performance of blockchain-based IoT as follows:

1. Employing the k-nearest neighbours (kNN) method and Support Vector Machine

(SVM) algorithms for predicting the overall blockchain performance based on various

configuration parameters such as the number of nodes, miners, and transactions.

2. Providing an enhanced version of the Salp Optimization (ISO) algorithm that in-

corporates rough set theory to handle performance uncertainty and identify optimal

configuration parameters for achieving a target blockchain performance.

7.2.2 Relevance of the Chapter to the Published Paper

This chapter corresponds to the relevant publication [18] by introducing two machine learning

models to predict and optimize blockchain performance. The chapter and the publication

cover key topics, including using kNN, SVM, and ISO algorithms and presenting similar

information and data. However, this chapter further distinguishes itself by comparing the

kNN and SVM classifiers regarding precision, accuracy, and recall.

7.3 Proposed Models

7.3.1 Preliminaries

Assume a number of configuration parameters (input) and performance metrics (output) of a

blockchain-based solution as follows:

1. Configuration Parameters, P: The set of l parameters P = {p1, p2, . . . , pl} represents

the input configuration of the blockchain network such as the quantity of participating
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nodes, transactions frequency, payload size, selected consensus mechanism, and so

forth.

2. Performance Metrics, M: The set of n metrics M = {m1,m2, . . . ,mn} represent the

conditional outputs with respect to the given parameters P such as network throughput

and latency.

Hypothetically, there is a strong correlation between configuration parameters and produced

metrics. Therefore, we investigate the following:

1. Employing kNN algorithm as a regression tool for predicting the overall performance

in terms of each metric m ∈M of a blockchain-based application based on a given set

of configuration parameters P.

2. Employing the Salp Swarm Optimization (SO) algorithm to determine the optimal

configuration parameters P based on a target level for each performance metric m ∈M

7.3.2 kNN Regression Algorithms for Performance Predication

To identify commonalities, kNN algorithms compare a given set of parameters (P0) with

unknown values of performance metrics to their k neighbours. The commonalities are usually

computed using a distance measure. The idea is that the set of parameters P0 will be closer

to the set of parameters Pi of similar characteristics. kNN trains vectors with class labels

in a multidimensional feature space. Each training data row has its parameters setup and

decision values. Here, measurements are decision-conditional features. Only the algorithm’s

training samples’ feature vectors and class labels are stored. Averaging the metric values

of k nearby objects should yield the anticipated value. Given a dataset D with l features

(configuration parameters) and m performance metric, we refer to the parameter value j of

object i as vi, j. For example, v2,5 = 6 means that parameter number 2 of object number 2 has

value 6. Moreover, the decision value mk of object i is referred to as vi,d .

kNN depends heavily on a distance measure. Euclidean distance is a typical distance

metric for continuous values (parameters). The Euclidean distance l (u0,ui) between two
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different objects, u0 and ui is given by

l (u0,ui) =

√(
V′u0
−V′ui

)T (V′u0
−V′ui

)
, (7.1)

where

V′uk
=< vui,a′1

,vui,a′2, . . . ,vui,a′m > ,

The proposed algorithm employing the previous steps is shown in Algorithm 6.
Algorithm 6: kNN regression algorithm for blockchain metircs prediction

Input :D //Training data

u0 //Unknown query object

k //Number of nearest neighbour

Output :M //Set of predicted metrics

1 L := /0

2 for each object ui ∈ D do

3 Compute the Euclidean distance between u0 and ui as per Eq. (7.1) and add it to L[i]

4 end

5 Sort L in ascending order.

6 Find the first k objects in L[i] with the least distance value

7 for each metric mi ∈M do

8 Compute the value of mi for the unknown object u0 by averaging the corresponding metric values of the k neighbouring

objects.

m j := 1
k ∑

k
j=1 v j,d , where v j,d is the decision value of object u j in the first k objects in L

9 end

7.3.3 Improved Salp Optimization (ISO) Algorithm

Each salp has a number i, where i = 1,2, . . . ,P and an identifier indicating whether it is a

leader or not. The numerals are permanent, but the identifiers may vary between iterations.

In the initial iteration, the P salps occupy arbitrary “positions" in the chain, i.e., they simply

adhere to the chain. A “position" is a location vector that describes a set of parameter values.

The algorithm finalizes the iteration by identifying the m salps with the greatest performance

as leaders, moving them to the front of the chain, and allowing them to share their position

data (location vectors) with the non-leaders. In other words, the algorithm accomplishes the

parameter values identification assignment in two successive steps: the exploration step and

the exploitation step, each of which is described in greater detail below.
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ISO Exploration Step

Salp i ≥ 1 has in iteration k ≥ 1 a location vector Sik = [s1,s2, . . . ,sn], the values of y j

has different ranges. Therefore, we feed the algorithm by the separate range of each s j. In

subsequent cycles, this s j is constantly updated. The parameter vector defines the parameters’

values. The s j specifically reflects the value of parameter j.For example, S32 = [4,2,1,0.064]

means that salp 3 in iteration 2 is representing parameter configuration for four parameters

with values 4,2,1,0.064, respectively.

At iteration 1, each salp is started by an randomly generated parameter vector of the l

original parameters, acquiring an initial parameter vector. Remember that the random values

are chosen with the s j bounds in mind. This parameter vector is changed on each cycle. The

dependence function evaluates the fitness of the parameter and vectors and also acts as an

ambiguity-relaxing tool.

Specifically, the dependency value γ is computed by the end of each iteration k ≥ 1, for

the parameter vectors of all P salps in the chain is calculated. The salps with the greatest

γ values are then designated as leaders. Those in charge are said to be closer to the ideal

parameter setting than the others.

ISO Exploitation Steps

Let the set of p leaders in iteration k ≥ 1 be Pk . A non-leader salp i gets its updated

parameter vector Sik+1 in two stages in the subsequent iteration k+1 of the algorithm. Each

leader salp modifies its parameter vector in the first phase in the manner described below.

Sik = Sik−1 + r2(ub− lb)+ rlb (7.2)

Similarly, each non-leader salp i, i /∈ Pk , will calculate mean difference of p vectors (one

for each j ∈ Pk) as follows.

Di, j =
1
m

[
∑r1Sik−S jk , j ∈ Pk

]
, (7.3)

where r is given by

r = 2e−(
4m
L ).
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To this end, given a set of p salps Si j at iteration j, some of the salps parameter vectors

may have ambiguous values. The ambiguous values are those that do not lead to promising

solutions. Therefore, it will be a hard task to update such vectors. This problem may worsen

by getting trapped in the local minima. Consequently, we introduce a goodness function γ

depending on the well-known mathematical theory: rough set theory (RST), to solve such an

issue. RST is known for its promising abilities in dealing with ambiguity through computing

the approximation space, which is a set of approximations referred to as lower and upper.

The former represents the set of objects with no ambiguity, while the latter represents the set

of ambiguous objects. Assume we are optimizing the metric value mk; i.e. mk is the input

value. First, we compute the fitness value fSi j
of each salp Si j by computing the regression

value using kNN algorithm as per Section 7.3.2. Second, let τ be a user-defined value that

serves as a threshold. The set of salps S+j at iteration j having fSi j
> τ are considered good;

otherwise; the set S−j are considered ambiguous.

Definition 1 (Goodness function, γ): Given finite set of n salps Si j , we compute the

equivalence relation E of each salp as follows.

ESi j
= {Sk j |l(Si j ,Sk j)<

1
2
(|Di, j−Dk, j|)} (7.4)

The lower, upper and boundary approximations are given as follows.

Apr(S+j ) = {ESi j
| : ESi j

⊆ S+j } (7.5)

Apr(S+j ) = {ESi j
| : ESi j

|
⋂

S+j ̸= /0} (7.6)

BND(S+j ) = Apr(S+j )−Apr(S+j ) (7.7)

Finally, the goodness of the upper approximation is given by

γ =
|Apr(S+j )|

n
. (7.8)

■
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Having said this, to improve ISO algorithm convergence and to avoid getting trapped in

the local optima, the set of salps in the boundary region BND(S+j ) is completely deleted are

regenerated concerning the salps having high goodness values.

The processes mentioned above are used by the ISO pseudocode displayed in Algorithm

7. Only the first iteration, where k = 1, uses the algorithm’s initialization process. Then it

executes a loop where a different method is used for every k > 1 iteration. The computational

cost of ISO may be calculated by using Algorithm 6 and noting that P is the number of salps

and R is the number of iterations. The exploration step involves ISO spanning P parameter

vectors. With N salps in hands, computing the fitness function for each vector costs O(N).

The exploration phase thus costs O(MN). Second, the ISO method changes each parameter

vector R twice at most during the exploitation stage. As a result, this step’s cost is O(RMN2).

The entire computing cost of the ISO method is O(RMN2) since the exploitation step is the

most important one.
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Algorithm 7: Improved Salp Optimization Algorithm (ISO)
Input :m //Metric value to be optimized

P //Number of salps

R //Number of iterations (R≥ 2)

Output :P //Set of l parameters

//Initialization step:

1 k = 1

2 Γ = [ ] //An empty list to save the dependency of all salps

3 for i = 1 to P do

4 Construct parameter vector Sik = [s1,s2, ...,sn], where y j is set randomly according to the parameter constraints.

5 Calculate the fitness fSik
using kNN model as per Algorithm 6

6 end

7 Compute the goodness of the P salps as per Definition 1

8 Delete the salps appearing in BND(S+j ) computed using Eq. (7.7)

9 Construct set Lk = {i1, i2, , ..., im}, where the i j are the indices of the highest p values in Γ. //Tag top performing salps as

leaders.

10 Regenerate the deleted salps with respect to the leaders

//Iteration steps:

11 do

12 k = k+1

13 Γ = [ ]

14 for i = 1 to P do

15 if i ∈ Lk−1 then
//If salp i is tagged as leader

16 Calculate fSik
, using kNN and append it to Γ.

17 else
//If salp i is not tagged as leader

18 Calculate parameter vector Sik from Sik−1 , as per (7.3). //Update parameter vector.

19 Compute the goodness of the P salps as per Definition 1

20 Delete the salps appearing in BND(S+j ) computed using Eq. (7.7)

21 end

22 end

23 Construct set Lk = {i1, i2, ..., im}, where the i j are the indices of the highest p values in Γ. //Tag top performing salps as

leaders.

24 Assign the highest fSik
to H f it.

25 Set P to the best salp

26 while (k < R);

7.4 Experimental Work

The proposed models were implemented using Python and executed on a system equipped

with CentOS 7, a 2.4 GHz Intel Core i7 processor, and 16 GB of RAM. The code is available



194
A Model-Based Machine Learning Approach for Assessing the Performance of Blockchain

Applications

on GitHub1. We conducted several experiments using the collected data with two main

objectives in mind. First, we aimed to test the kNN model’s ability to predict blockchain

performance accurately. Second, we aimed to test the ISO algorithm’s ability to identify the

best parameter configurations required to achieve a user-defined value for a specific metric,

such as throughput.

7.4.1 Data Collection

There is currently no readily accessible public dataset tailored to the tasks outlined in this

work. Furthermore, considering our objective to validate the proposed concepts, we elected

to utilize a dataset derived from a simulation environment. This approach allows us to control

the parameters involved and generate a diverse array of performance data.

In the simulation scenario used for our study, we employed the Raft consensus algorithm.

As per the operational constraints imposed by Raft, we were compelled to operate with a

single miner node. This constraint is inherent to the design of the Raft consensus protocol

and is not a limitation of our study.

It is important to note that the training of machine learning models necessitates a substan-

tial volume of historical data. Therefore, we generated the requisite data using a blockchain

simulator. The specifics of the parameters (Pi) that we manipulated to alter the blockchain’s

characteristics are described in Table 7.1. Our data generation approach provided us with the

flexibility to adjust these parameters and collect a comprehensive dataset for our machine

learning models.

1https://github.com/AlbshriAdel/BlockchainPerformanceML

https://github.com/AlbshriAdel/BlockchainPerformanceML
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Table 7.1 The description of the nine used parameters with their abbreviation, lower L and
upper U bound of each.

Parameter Abb. Desc. Format L U

Number of nodes P1 The number of nodes participating in
the blockchain network

Integer 3 15

Number of miners P2 The number of miners participating in
the blockchain network

Integer 1 1

Consensus algorithm P3 Consensus Algorithm “Raft" String - -

#transactions/ second P4 The total number of transactions gener-
ated

Integer 9 1650

Max block size P5 The maximum amount of block size Decimal 1 1

Max transaction size P6 The maximum transaction data size Decimal 0.064 0.064

Min transaction size P7 The minimum transaction data size Decimal 0.001 0.001

Block interval P8 Block processing time Decimal 0.05 0.0099

Simulation time P9 The time taken for executing Decimal 1 1

The simulated blockchain model is executed several times using different configuration

values for the parameters described in Table 7.1. During these runs, we thoroughly examined

the data. Having identified the set of conditional features, we now turn our attention to

the decision features, which include the set of performance metrics M. These features are

computed based on conditional features and can be used to evaluate the performance of the

blockchain. Table 7.2 provides details about the metrics we have used.

Note that computing the decision characteristics presented in Table 7.2 in simulation

mode requires computing the prior features, as shown in Table 7.1. To count these features,

we need to have access to the details of each block, which can be a time-consuming process.

Therefore, we can define the issue as follows: we will use the ML method (kNN) and

conditional features to forecast metric choice feature values directly. In the following

sections, we will train the ML model to predict decision feature values using conditional

features.
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Table 7.2 The description of the thirteen used metrics with their abbreviation.

Metric Abb. Desc. Format

Total number of blocks M1 The number of blocks generated Integer

Total number of blocks including trans-
actions

M2 The number of blocks that contains
transactions

Integer

Total number of transactions M3 The number of transactions generated Integer

Total number of pending transactions M4 The number of transactions not pro-
cessed

Integer

Total number of blocks without transac-
tions

M5 The number of empty blocks Integer

Average block size M6 The average blocks size Decimal

Average number of transactions per
block

M7 Average transactions per block Decimal

Average transaction inclusion time M8 Average transaction time Decimal

Average transaction size M9 The average size of the transactions Decimal

Average block propagation M10 Average block time Decimal

Average transaction latency M11 The average time between transaction
submission and confirmation

Decimal

Transactions execution M12 Average number of transactions per
block

Decimal

Transaction Throughput M13 The rate of transactions throughput Decimal

It is crucial to examine the statistical properties of the collected data to ensure the

reliability of the subsequent ML results. Upon reviewing Table 7.1, we observe that there are

six numerical features (P5, P6, . . .P9) present in the dataset.

Prompted by this observation, we sought to gain insights into the dispersion and distribu-

tion of these numerical features. We specifically calculated the mean and standard deviation

for these features to evaluate the skewness, or asymmetry, of the distribution in the dataset.

Additionally, we conducted an examination for any missing values that might affect the

analysis.

The results of this comprehensive statistical analysis are detailed in Table 7.3. These

preliminary findings will aid us in understanding the inherent characteristics of our dataset,
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thereby assisting in the formulation of more accurate machine learning models and predic-

tions.

In the context of a substantial dataset, it proves beneficial to ascertain its central tendency,

often represented by a single value such as the mean, median, or mode. This central tendency

provides an approximate average value, facilitating an understanding of the dataset’s general

characteristics. Referring to Table 7.3, it is evident that all numerical features exhibit a

notably small standard deviation. This indicates that the data points for each feature are

closely distributed around the mean, a sign of well-organized and reliable data. Additionally,

to complement the numerical evaluation, we conducted a visual examination of the dataset.

For instance, we inspected the distribution of one of the numerical features, namely the

block interval feature (P8). This analysis revealed a normal, or Gaussian, distribution, further

validating the quality of the dataset. Furthermore, a meticulous inspection of the collected

data did not identify any missing values. This absence of missing data implies that our dataset

is complete and further contributes to the robustness of our subsequent ML analysis.

Table 7.3 Statistical analysis (mean, standard deviation, std, minimum and maximum values)
for numerical features (5 parameters and 8 metrics).

Feature Mean Std Min Max

PPP555 1 0 1 1

PPP666 6.40E-02 1.40E-17 6.40E-02 6.40E-02

PPP777 1.00E-03 2.20E-19 1.00E-03 1.00E-03

PPP888 0.075 0.014 0.05 0.1

PPP999 1 0.0145 0.05 0.09

MMM6 0.585 0.287 0.0302 0.971

MMM7 18.044 8.887 1 30.846

MMM8 0.484 0.0275 0.421 0.585

MMM9 0.0325 0.0012 0.027 0.0373

MMM10 0.0381 0.009 0.0209 0.089

MMM11 0.0525 0.0521 0.016 0.266

MMM12 0.9303 0.0332 0.8047 0.999

MMM13 508.306 268.197 11.184 1248.655
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The correlation matrix between parameter-conditional features is helpful for understand-

ing the data and examining feature relationships. This information can be used to verify

projected performance. Table 7.4 presents the results of this analysis. We have found that the

total number of blocks without transactions (M5) is unrelated to the other features and can

therefore be overlooked. However, the average block size (M6) and the average number of

transactions per block (M7) have a strong positive association, demonstrating the power of

the decision features.

Table 7.4 Correlation matrix for the 22 features (9 parameters and 13 metrics) used in the
experiments.

MMM111 MMM222 MMM333 MMM444 MMM555 MMM666 MMM777 MMM888 MMM999 MMM10 MMM11 MMM12 MMM13

MMM1 1 1 0.579 -0.099 0 0.25 0.25 -0.098 0.074 -0.93 -0.16 0.13 0.59

MMM2 1 1 0.57 -0.09 0 0.25 0.25 -0.09 0.074 -0.93 -0.16 0.13 0.59

MMM3 0.57 0.57 1 0.30 0 0.90 0.9 0.38 -0.10 -0.50 0.42 0.58 0.99

MMM4 -0.09 -0.09 0.30 1 0 0.42 0.43 0.41 -0.07 0.12 0.89 0.36 0.28

MMM5 0 0 0 0 0 0 0 0 0 0 0 0 0

MMM6 0.25 0.25 0.90 0.42 0 1 0.99 0.49 -0.08 -0.24 0.61 0.66 0.9

MMM7 0.25 0.25 0.90 0.43 0 0.99 1 0.50 -0.12 -0.24 0.61 0.65 0.9

MMM8 -0.09 -0.09 0.38 0.41 0 0.49 0.50 1 -0.012 0.13 0.65 0.57 0.35

MMM9 0.07 0.07 -0.10 -0.07 0 -0.08 -0.12 -0.01 1 -0.12 -0.08 0.03 -0.1

MMM10 -0.93 -0.93 -0.50 0.12 0 -0.24 -0.24 0.13 -0.12 1 0.18 -0.10 -0.52

MMM11 -0.16 -0.16 0.426 0.89 0 0.61 0.61 0.65 -0.08 0.18 1 0.55 0.39

MMM12 0.13 0.13 0.58 0.36 0 0.66 0.65 0.57 0.03 -0.10 0.55 1 0.53

MMM13 0.59 0.59 0.99 0.28 0 0.90 0.90 0.35 -0.10 -0.52 0.39 0.53 1

PPP111 PPP222 PPP333 PPP444 PPP555 PPP666 PPP777 PPP888 PPP999

PPP111 1 0 0 -0.03 0 0 0 -0.062 0

PPP222 0 0 0 0 0 0 0 0 0

PPP333 0 0 0 0 0 0 0 0 0

PPP444 -0.027 0 0 1 0 0 0 -0.11 0

PPP555 0 0 0 0 0 0 0 0 0

PPP666 0 0 0 0 0 0 0 0 0

PPP777 0 0 0 0 0 0 0 0 0

PPP888 -0.062 0 0 -0.11 0 0 0 1 0

PPP999 0 0 0 0 0 0 0 0 0
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7.4.2 Prediction Results

To prevent the issue of feature dominance, all numerical features are normalized. A normal-

ized feature value v̂ui,a j is obtained from its raw value vui,a j by the equation 7.9:

v̂ui,a j =
vui,a j −min

k

(
vuk,a j

)
max

k

(
vuk,a j

)
−min

k

(
vuk,a j

) , (7.9)

where min
k

(
vuk,a j

)
and max

k

(
vuk,a j

)
are the minimum and maximum values of feature a j,

considering all objects, respectively. This formula guarantees that v̂ui,a j ∈ [0,1] for all i and

all j.

Our first test involves finding the best k value for the kNN algorithm. To do so, we ran

the model multiple times while changing the k value and computing the root mean square

error (RMSE). We then selected the k value with the best RMSE. The RMSE is calculated

as the standard deviation of the residuals, which represent the prediction errors. Residuals

indicate how far data points are from the regression line, while RMSE indicates how spread

out these residuals are. In other words, it shows how closely the data is clustered around the

line of best fit. Root mean square error is often used to evaluate the results of experiments in

climatology, forecasting, and regression analysis. RMSE is given by the equation 7.10:

RMSE =

√
∑

N
i=1 ||y(i)− ŷ(i)||2

N
, (7.10)

where N represents the total count of data points, y(i) denotes the i-th measurement in the

dataset, and ŷ(i) signifies the corresponding predictive estimation for the i-th observation.

The result of this experiment is shown in Figure 7.1. It is evident that a choice of k = 1 leads

to a very high RMSE. When k is set to 5, the RMSE reduces significantly, approximating a

value of 67.06. Any further increment in the value of k results in a drastic drop in the RMSE.

Consequently, it can be confidently inferred that k = 5 is the optimal choice for this particular

scenario, yielding the most favourable results.
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Fig. 7.1 RMSE as a function of the value of k. The figure shows that the optimal value of k is
5, where the lowest RMSE is achieved.

10-fold cross-validation ensures solid results. Nine sub-datasets are for training and one

for testing. Each object appears once in a test set and nine times in training sets. Results are

averaged after 10 separate tests. To further support our findings and evaluate the models, we

considered additional metrics such as Accuracy (Equation 7.11), Precision (Equation 7.12),

and Recall (Equation 7.13). The initial analysis suggests that the kNN model outperforms

the SVM model, especially in terms of precision and recall, indicating its suitability for

accurately identifying the minority class in our dataset. The comprehensive results of this

extended analysis are provided in Table 7.5 and further supported by the comparison in

Table 7.6.

Accuracy =
T P+T N

T P+T N +FP+FN
(7.11)

Precision =
T P

T P+FP
(7.12)

Recall =
T P

T P+FN
(7.13)
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Table 7.5 Performance Metrics for kNN and SVM

Metric kNN SVM

Accuracy 92% 89%

Precision 95% 90%

Recall 93% 88%

Now, to test the model for an instance level, we feed the model with specific conditional

features and predict some of the decision features. The prediction is made concerning both

kNN and SVM. The results of this experiment are shown in Table 7.6. The conditional

feature values are copied from the first ten rows of the data. The interesting point is that the

kNN prediction values are much closer to the target result than those of SVM. This ensures

its correctness concerning blockchain performance prediction.

Table 7.6 The classification accuracy of kNN and SVM for three different metrics over 10
different parameter configurations.

Parameters (PPP) Metrics (MMM)

P1P1P1 P2P2P2 P3P3P3 P4P4P4 P5P5P5 P6P6P6 P7P7P7 P8P8P8 P9P9P9
M11M11M11 M12M12M12 M13M13M13

kNN SVM kNN SVM kNN SVM

13 1 raft 519 1 0.064 0.001 0.083 1 0.033 0.024 0.912 0.99 569.026 559.99
6 1 raft 682 1 0.064 0.001 0.069 1 0.035 0.045 0.92 0.89 737.72 744.66
9 1 raft 66 1 0.064 0.001 0.070 1 0.022 0.055 0.91 0.84 72.35 72.44
9 1 raft 450 1 0.064 0.001 0.058 1 0.020 0.029 0.93 0.83 480.88 489.81
15 1 raft 893 1 0.064 0.001 0.072 1 0.12 0.19 0.99 0.74 754.931 759.899
9 1 raft 440 1 0.064 0.001 0.069 1 0.026 0.031 0.940 0.830 467.88 476.35
6 1 raft 965 1 0.064 0.001 0.065 1 0.1077 0.098 0.98 0.98 982.21 977.23
7 1 raft 17 1 0.064 0.001 0.095 1 0.033 0.055 0.91 0.97 18.68 19.67

We used non-parametric approaches such as the Friedman methodology since the dis-

tribution of these data was uncertain. For both its single and repeated testing options, this

statistical investigation used MATLAB’s Friedman’s single and repeated test procedures. A

Friedman function would construct a structure for the entire circumstance. This structure

and a suitable post-hoc procedure will be used as input for a multi-comparison function.

First, the Friedman test was performed with the null hypothesis of kNN and SVM. Friedman
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values for kNN and SVM are 0.0015 and 0.0027, respectively. Because a significance level

of alpha=0.05 was assumed, the null hypothesis is rejected in each case based on the p-values.

As a result, we can now confirm that the accuracy of the two algorithms is different. In other

words, SVM is statistically different from kNN.

We proceeded to the second step, which was dubbed “post hoc," once we realized that

the accuracy of the two algorithms was not the same. During this phase, we conducted four

Friedman tests for each of the four different situations. Because repeated testing leads to an

increased risk of making a Type I error—that is, incorrectly concluding that a null hypothesis

should be rejected when, in fact, it should be accepted—we were forced to use one of the post

hoc methods at our disposal in order to find a solution to this issue. We used two: Fisher’s

least significant difference approach and Tukey’s honest significant difference criteria. Table

7.7 provides a view of the adjusted p-values, reflecting significant statistical testing following

the Friedman tests. Specifically, the p-values under the columns for Fisher’s and Tukey’s

corrections indicate whether the differences observed between the kNN and SVM algorithms

under various parameter settings are statistically significant. Notably, p-values less than 0.05

demonstrate a statistically significant difference, affirming that kNN typically outperforms

SVM under these settings. This detailed validation is crucial for substantiating the choice of

one algorithm over the other in practical applications.

Table 7.7 Post hoc p-values resulting from Friedman tests of KNN for four parameters.

Correction PPP555 PPP666 PPP777 PPP888 PPP999

Features Fisher 0.0001 0.0007 0.0575 0.1372 0.0166

Turkey 0.0028 0.0126 0.4808 0.7532 0.2007

7.4.3 ISO Validation Results

This section looks at how well the ISO algorithm works to find parameters in a blockchain.

To make the investigation meaningful, we compare ISO’s performance to that of five other

competitor algorithms: PSO, HHO, GWO, ABC, ACO, and SO. The five algorithms we

compare are very recent.
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Each algorithm searches for the ideal configuration based on a metric input value. To

verify, the kNN regressor receives the parameter vector. The method is more reliable the

closer the original value is to the anticipated one. We used 20 salps for 50 iterations in this

experiment with three leaders. Table 7.8 shows that ISO (last row) won this experiment. In

the last row, M13 = 1100, ISO produced parameter vector has 83% accuracy, while the best

competitor, the classic salp technique, has 81 accuracy.

Table 7.8 The fitness value achieved by ISO and six competitors. Clearly, ISO (the last
row) comes out as a clear winner.

Algo. Metrics (MMM)

MMM111
= 33

MMM222
= 29

MMM333
= 1102

MMM444
= 50

MMM555
= 0.5

MMM666
= 0.7

MMM777
= 25

MMM888
= 0.2

MMM999
= 0.02

MMM111000
= 0.07

MMM111111
= 0.25

MMM111222
= 0.8

MMM111333
= 1100

PSO 21 25 559 22 0.4 0.5 21 0.2 0.018 0.06 0.15 0.4 752

HHO 25 21 687 29 0.5 0.6 21 0.18 0.011 0.05 0.19 0.5 897

GWO 26 20 714 25 0.4 0.7 22 0.15 0.019 0.06 0.18 0.5 774

ABC 26 27 752 26 0.3 0.5 24 0.2 0.025 0.06 0.19 0.8 687

ACO 26 28 777 29 0.4 0.5 20 0.19 0.23 0.05 0.19 0.7 744

SO 29 26 798 29 0.4 0.7 22 0.2 0.03 0.05 0.22 0.8 899

ISO 31 29 912 43 0.5 0.7 24 0.2 0.021 0.07 0.23 0.8 915

The development of the fitness value across iterations serves as another comparison test.

Figure 7.2 shows this trend. The ISO curve is generally superior to all other curves. This

suggests that ISO consistently outperforms other standards, regardless of the statistics. As a

result, the evolution paints a clear picture of the algorithm’s conduct from the beginning to

the finish of the assignment.
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Fig. 7.2 Fitness value compared to the number of iterations: A higher fitness value indicates
quicker convergence of the algorithm.

One final experiment is to look at the predicted parameter vector by ISO and its five

competitors. In this experiment, we are attempting to identify the parameter vector that will

result in M13 = 1100. The results of this experiment are shown in Table 7.9. Noting that

the last column (achieved value) corresponds to the value of M13 in the resulting parameter

vector, we can notice that ISO has the best-achieved value, which is much closer to 1100

than any other competitor.

Table 7.9 The predicted parameters form the 6 algorithm for m13 = 1100. Clearly, ISO
reached a parameter vector, achieving the closest value.

Algo. Parameters (PPP) Achieved value
PPP111 PPP222 PPP333 PPP444 PPP555 PPP666 PPP777 PPP888 PPP999

PSO 6 1 1 654.670 1 0.368 0.557 0.0796 1 681.390

HHO 6 1 1 1087.262 1 0.264 0.509 0.0752 1 806.143

GWO 6 1 1 733.183 1 0.428 0.441 0.0787 1 777.512

ABC 8 1 1 796.841 1 0.393 0.501 0.068 1 739.642

SO 6 1 1 750.958 1 0.347 0.401 0.059 1 766.865

ISO 6 1 1 919.76 1 0.297 0.567 0.064 1 823.940
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7.5 Conclusion

The advent of blockchain technology has initiated a paradigm shift across numerous sec-

tors due to its inherent potential and advanced capabilities. Nevertheless, the intricate and

decentralized characteristics of blockchain’s underlying infrastructure introduce challenges

in assessing the performance of blockchain-based applications. Thus, the necessity for

a dependable modelling methodology becomes paramount to aid the creation and perfor-

mance evaluation of such applications. Historically, research has predominantly focused

on simulation-based solutions to evaluate blockchain application performance, while the

exploration of machine learning (ML) model-based techniques remains comparatively scant

in this context. This study sought to bridge this gap by proposing two innovative ML-based

techniques.

The first approach integrated a k nearest neighbour (kNN) and a support vector machine

(SVM) to predict blockchain performance by leveraging predefined configuration parameters.

The second method utilized salp swarm optimization (SO), an ML model, to identify the most

advantageous blockchain configurations for achieving the desired performance benchmarks.

To further refine the efficacy of SO, we incorporated rough set theory, thus formulating an

Improved Swarm Optimization (ISO) model. The ISO model displayed superior capabili-

ties in generating accurate recommendations for optimal parameter configurations amidst

uncertainties. Upon comparative statistical evaluation, our proposed models exhibited a

competitive advantage. Specifically, the kNN model outperformed the SVM by a margin

of 5%, while the ISO model demonstrated a 4% reduction in accuracy deviation relative to

the standard SO model. These results are considered encouraging because they not only

validate the effectiveness of our models in accurately predicting blockchain performance

under diverse and uncertain conditions but also demonstrate tangible improvements over

traditional methods. The ability of the ISO model to refine parameter selection processes

and reduce inaccuracies in predictions significantly contributes to the field of blockchain

performance evaluation, highlighting the practical implications of our research in real-world

applications.
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While the proposed ML models in this chapter were trained using data generated from

the simulation framework, their results can also be applicable to real blockchain platforms

(namely, the Quorum Blockchain platform). The applicability is justified because the compar-

ative analysis in section 5.4.2 demonstrates a high degree of similarity between the simulated

scenario and the real-world implementation of the scenario. However, even in the case of

non-applicability, the models proposed in this chapter can be retained to use newly generated

datasets from new versions of the Quorum blockchain platform or other blockchain plat-

forms. Future studies will consider employing and experimenting with generative artificial

intelligence (AI) to compose the best possible Blockchain configuration parameters.



Chapter 8

Conclusion and Future Work

Summary

This chapter begins with highlighting the main contributions of this research 8.1. It then

provides a discussion of the research questions and how the contributions of this thesis

address each research question 8.2. Additionally, it discusses the limitations of the current

work and explores potential directions for future research 8.3. Finally, Section 8.4 explores

the advantages and limitations of using simulations for blockchain-based IoT and concludes

whether they are valuable for researchers and developers.

8.1 Thesis Contribution

This thesis has made several significant contributions to the field of Blockchain and IoT as

follows:

1. The first contribution is a systematic mapping study of current blockchain simulation

research, including an analysis of each existing simulator’s features, capabilities, and

limitations, as discussed in Chapter 3.
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2. The second contribution proposes a novel framework for evaluating blockchain-based

IoT performance, developed through requirements gathering, analysis, design, imple-

mentation and validation, as discussed in Chapters 4 and 5.

3. The third contribution introduces a middleware architecture that bridges IoT simulators

and real blockchain platforms to evaluate the performance of Blockchain-based IoT

applications, as discussed in Chapter 6.

4. The fourth contribution designs and implements Machine learning models to predict

blockchain performance using k-nearest neighbours (kNN) and optimize configurations

with an improved Salp Optimization (ISO) algorithm incorporating rough set theory,

as discussed in Chapter 7.

8.2 Thesis Summary

This thesis has made several significant contributions to the field of blockchain and IoT. It

includes a systematic mapping study of blockchain simulators, developing and implementing

a blockchain-based IoT simulation framework, creating a novel middleware architecture, and

applying machine learning models to predict blockchain performance. These contributions

are critically tied to the research questions outlined at the beginning of this thesis 1.2, and

the following sections will reflect on how each contribution addresses these questions.

RQ1: What techniques and configurations are used in current blockchain

simulators?

Research Question 1 (RQ1) aimed to achieve an understanding of blockchain simulation

by systematically categorizing existing blockchain simulators based on their modeling

approaches, the blockchain platforms they simulate, and the specific features they support.

Additionally, it aimed to evaluate the effectiveness of these simulators in performance

assessment and to identify critical research gaps that need to be addressed to advance the

field further.
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To address the research question, we adopted a systematic mapping methodology involv-

ing structured steps: defining the research questions, conducting a comprehensive literature

search, screening relevant studies, keywording abstracts, and performing detailed data ex-

traction and mapping. Initially, we searched for all papers using the keyword in different

scientific databases, yielding 259 papers, of which 20 were deemed relevant after thorough

screening. These papers provided the foundation for this study and offered an overview of

various blockchain simulators, comparing them based on their available open-source imple-

mentations, supported configuration parameters (inputs), and generated metrics (outputs).

Additionally, the source code quality of the simulators was assessed using tools such as

SonarQube and CLOC.

The findings revealed that no current simulator fully encompasses the wide range of

features and capabilities inherent to existing blockchain technologies. While there are

several promising efforts in blockchain simulation, offering interesting and useful features,

these simulators still lack the ability to integrate with emerging technologies such as cloud

computing or IoT. This limitation restricts their applicability within broader technological

ecosystems.

The first contribution answers Research Question 1 (RQ1) by systematically compar-

ing and evaluating blockchain simulators, thereby providing in-depth insights into their

capabilities and limitations. Through this process, it identified significant disparities in the

suitability of these simulators for various use cases and, in particular, highlighted gaps in

their applicability to emerging technologies such as cloud computing and the Internet of

Things (IoT). Consequently, these findings underscore the need to develop more versatile

simulators that can integrate with these technologies, thereby expanding blockchain’s ap-

plicability within broader technological ecosystems. Moreover, the research lays a solid

foundation for understanding and comparing blockchain simulators while also suggesting

avenues for further exploration, such as empirical studies under varying conditions, to gain

deeper insights into their strengths and limitations. Ultimately, this contribution advances

the understanding of blockchain simulation and aligns the research outcomes with the initial

goals set out by RQ1.
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RQ2: Given the lack of existing simulation frameworks for evaluating

the performance of Blockchain-based IoT ecosystems, what is required

to bridge the gap?

Research Question 2 (RQ2) aimed to identify key requirements by systematically gathering

and analyzing the essential factors necessary for integrating blockchain with IoT platforms.

Furthermore, it aimed to design a simulation framework that accurately mimics the behavior

of a real blockchain-based IoT system, validate the framework through expert feedback, refine

it to meet design goals, and address identified weaknesses. Finally, it sought to implement

the framework, test it using a real-world use case, and benchmark its performance against

real blockchain platforms to ensure its effectiveness.

To address the research question, we adopted a collaborative methodology involving struc-

tured steps. We began with a mixed-method approach to gather and analyze simulation tool

requirements based on feedback from subject-matter experts. This two-part study included

a questionnaire to validate the benefits of a simulator for evaluating IoT integrated with

blockchain and interviews to identify key challenges, necessary features, and how blockchain

can enhance IoT performance. The insights informed the design of a conceptual framework

comprising four components: Configurator, Generator, Simulation Core, and Reporter. The

design was reviewed through a focus group, and the framework was implemented using Java

and the IoTsim-Osmosis simulation framework.

The initial phase of gathering requirements identified significant challenges and op-

portunities in integrating blockchain technology with IoT systems, emphasizing the need

for advanced simulation tools. In response, we developed a conceptual model featuring

extensive, tailored functionalities to meet these needs. This conceptual model was rigorously

assessed and received high praise for its comprehensive capabilities, establishing it as a solid

foundation for simulating blockchain-based IoT applications. Following its development, the

simulator underwent thorough testing, with results indicating that transaction latency and

overall performance closely mirrored those of real-world blockchain systems, confirming the
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model’s practical effectiveness. Furthermore, the quality of implementation results revealed

high satisfaction, with an 80-87% approval rate across various aspects of the simulator.

The second contribution answers Research Question 2 (RQ2) by systematically de-

veloping and validating a novel simulation framework tailored for blockchain-based IoT

ecosystems. First, the research identified key requirements through a mixed-method ap-

proach, incorporating expert feedback to address significant challenges and opportunities in

integrating blockchain with IoT systems. Consequently, this led to the design of a conceptual

framework with comprehensive functionalities to accurately mimic real blockchain-based IoT

behaviors. Furthermore, the framework underwent rigorous evaluation, including thorough

testing and validation against real-world blockchain platforms, thereby demonstrating its

effectiveness in replicating transaction latency and overall performance in alignment with

real-world systems. However, while the study provides a robust simulation, there remains

potential for future enhancements, as discussed in Section . Ultimately, this contribution

advances knowledge in the evaluation of blockchain-based IoT performance approaches and

aligns the research outcomes with the objectives set out by RQ2

RQ3: How feasible is it to utilize IoT simulators as workload generators

to benchmark the performance of real blockchain platforms?

Research Question 3 (RQ3) aimed to design middleware that bridges the gap between

IoT simulators and real blockchain platforms, ensuring seamless interoperability and data

synchronization for performance benchmarking purposes. It sought to implement the mid-

dleware and validate it by benchmarking the performance of an IoT simulator with a real

blockchain platform.

To address the research question, we designed and implemented the middleware using

the Java programming language, integrating it with the IoTSim-Osmosis simulator on the

IoT simulation side while selecting Hyperledger Fabric (HLF) as the real-world blockchain

platform. The architecture included agents for gathering and evaluating metrics, workers for

submitting transactions, concurrent storage for data synchronization, and a transaction fail-
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safe mechanism for reliability. It also incorporated smart contracts for IoT asset management,

identity management for secure transactions, and a benchmarking tool for performance

metrics.

The findings revealed that the concurrent storage mechanism effectively managed data

synchronization between the IoT simulator and the blockchain platform, ensuring correctness

and reliability under varying workloads. This directly addressed the critical need for reliable

data handling in mixed environments. Additionally, the results confirmed the middleware’s

capability to evaluate key blockchain performance metrics, including throughput, latency,

and transaction success/failure rates. This demonstrates the middleware’s ability to handle

the generation and processing of IoT workloads for accurate performance benchmarking.

The third contribution answers Research Question 3 (RQ3) by systematically designing

and implementing a middleware solution that bridges the gap between IoT simulators and

real blockchain platforms. First, the research aimed to ensure seamless interoperability and

data synchronization by integrating the middleware with the IoTSim-Osmosis simulator and

Hyperledger Fabric (HLF). Consequently, the middleware architecture was developed with

key components such as metrics gathering agents, transaction submission workers, concurrent

data synchronization storage, and a transaction fail-safe mechanism to enhance reliability.

Furthermore, the middleware was evaluated through testing and validation, demonstrating

its capability to manage data synchronization and evaluate key blockchain performance

metrics like throughput, latency, and transaction success/failure rates. However, while the

middleware effectively bridges the gap between IoT simulators and real blockchain platforms

for performance evaluation, there remains potential for further development, as discussed in

Section . Ultimately, this contribution provides a valuable tool for overcoming challenges

between two distinctive natures of IoT simulation and real blockchain for performance

optimization, aligning the research outcomes with the objectives set out by RQ3.
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RQ4: How do machine learning techniques assist in predicting blockchain

performance metrics and identifying optimal configuration parameters?

Research Question 4 (RQ4) aimed to develop and deploy machine learning (ML) models to

predict key blockchain performance metrics, such as throughput and latency. Additionally, it

sought to develop ML models that could recommend optimal configuration parameters to

achieve desired blockchain performance outcomes, ensuring efficiency and effectiveness in

blockchain operations.

To address this research question, and given the lack of a readily accessible public

dataset specifically tailored to the tasks outlined in this work, we used a dataset derived

from a simulation environment to validate the proposed concepts. In the first model, we

employed k-nearest neighbor (kNN) and Support Vector Machine (SVM) algorithms to

predict blockchain performance based on predefined configuration parameters. In the second

model, we enhanced the Salp Swarm Optimization (SSO) algorithm by incorporating rough

set theory to identify optimal blockchain configurations that align with desired performance

levels.

The findings revealed that the kNN model outperformed the SVM model by 5% in

predicting blockchain performance. This indicated that kNN was a more effective algorithm

for this specific application, providing a reliable performance prediction method. Addition-

ally, the improved SSO model exhibited a 4% decrease in accuracy deviation compared to

the standard SSO model, demonstrating its enhanced stability and reliability in identifying

optimal blockchain configurations.

The fourth contribution answers Research Question 4 (RQ4) by developing ML models

for predicting and optimizing blockchain performance. Initially, the research focused on

developing robust ML models to predict blockchain performance metrics, such as throughput

and latency, using algorithms like kNN and SVM. Subsequently, the kNN model demon-

strated superior performance, providing a reliable method for predicting blockchain outcomes

and enabling more informed decision-making regarding configurations. Additionally, the

second model, which enhanced the SSO algorithm with rough set theory, was evaluated
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for its ability to identify optimal blockchain configurations. The enhanced SSO model

exhibited improved stability and reliability, offering precise recommendations for configuring

blockchain systems to achieve optimal performance. Despite these advancements, there is

potential for further refinement and development, as discussed in Section . Ultimately, this

contribution enriches the field by developing ML models for optimizing blockchain-based

IoT performance, aligning with the objectives outlined in RQ4.

8.3 Limitations and Future Work

This section discusses the limitations of our current studies and proposes several potential

avenues for future research to enhance and expand upon the contributions made in this thesis.

Blockchain-based IoT Simulation Framework (Chapter 5)

Although the simulator demonstrates its potential, there are limitations and potential future

work to enhance the research, as follows:

• The current implementation of the simulator focuses on integration with IoTsim-

Osmosis, which is a representative IoT simulator; there are other IoT simulators

available, such as iFogSim [85] and CloudSim [86]. Future work will extend the

simulator’s compatibility with these and other popular IoT simulators.

• The current simulator implementation focuses on modelling the Raft and Proof-of-Work

(PoW) consensus algorithms. Future work will extend the simulator’s capabilities

to model and evaluate the performance of blockchain-IoT ecosystems using other

consensus algorithms, such as Proof-of-Stake (PoS) and more configuration parameters,

such as extended transaction payload and gossip protocols.

• There is room for improvement in terms of user-friendliness by developing a user-

friendly interface such as a graphical user interface (GUI).
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IoT Simulation for Evaluating Blockchain Performance: A Middleware

Architecture (Chapter 6)

While the proposed middleware has shown viability for evaluating the performance of a

Blockchain-based IoT ecosystem, there are limitations and potential future work to enhance

the work, as follows:

• The current implementation of the middleware focuses on the integration of IoTsim-

Osmosis with Hyperledger Fabric. Future work will explore the compatibility of the

middleware with other IoT simulators (e.g. Cloudsim [86], iFogSim [85] etc.) and

other blockchain platforms (e.g. Quorum [22]).

• There is another significant aspect to consider, which is the user experience and usabil-

ity of the middleware. The current implementation provided a functional integration

between IoTsim-Osmosis and Hyperledger Fabric. However, there is room for im-

provement in terms of user-friendliness and ease of use. In future work, it would be

interesting to develop an interactive user interface that would allow developers and

researchers to easily configure and monitor the middleware’s operations. Additionally,

providing detailed documentation and code examples that facilitate the adoption and

utilisation of middleware by the IoT and blockchain community.

A Model-Based Machine Learning Approach for Assessing the Perfor-

mance of Blockchain Applications (Chapter 7)

Despite the advancements presented in this chapter through the development of machine

learning models for evaluating blockchain-based IoT performance, there are limitations and

potential future work to enhance the research, as follows:

• The current study relied on a dataset generated using a blockchain-based IoT simulator,

which allowed controlled parameter manipulation and the generation of various perfor-

mance data. Although beneficial for initial model training and testing, the simulated

data may not fully capture the complexities and unpredictable dynamics of real-world
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blockchain-based IoT applications. Future work focuses on collecting data from real-

world blockchain platforms to assess the applicability and performance of the proposed

models in practical scenarios.

• The study focused mainly on employing the k-nearest neighbour (kNN) and SVM

algorithms for performance prediction and the salp swarm optimisation algorithm for

parameter optimization. While the kNN model demonstrated perfect performance

compared to the Support Vector Machine (SVM) in the tests, its performance may vary

with different blockchain configurations or under different operating conditions not

covered by simulation. Similarly, despite its accuracy in parameter optimisation, the

improved Salp Optimisation (ISO) algorithm still faces challenges related to scalability

and computational efficiency, particularly with larger datasets. Future work could

investigate the applicability and performance of other state-of-the-art machine learning

algorithms, such as deep learning models, in the context of blockchain-based IoT

performance prediction and optimisation.

8.4 Why Use Simulation for Blockchain and IoT

This section explores the advantages and limitations of using simulations to evaluate blockchain

and Internet of Things (IoT) systems, highlighting their value to researchers and developers.

1. Advantages: Simulation offers key advantages in blockchain and IoT for design,

testing, and optimization. These advantages include:

(a) Creating a Controlled Testing Environment: One of the most notable ben-

efits of simulation is its ability to create a controlled environment for testing

Blockchain and IoT scenarios. This controlled setting allows users to explore var-

ious conditions without the risks associated with real-world implementation. By

employing simulations, developers can identify and address potential issues early

in the development process, thereby enhancing the efficiency and effectiveness of

system design.
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(b) Facilitating Detailed Performance Analysis: Simulations also offer the oppor-

tunity for in-depth performance analysis under diverse conditions. This capability

is crucial for blockchain and IoT systems. It enables researchers to fine-tune

parameters and optimize system configurations in ways that theoretical analysis

alone might not reveal. This detailed examination helps researchers gain insights

essential for refining and improving their systems.

(c) Promoting Cost-Effective: Another significant advantage is the cost-effectiveness

of simulations. For Blockchain-based IoT systems, simulations provide a method

to experiment with new ideas and technologies without the need for expensive

physical prototypes or testbeds. This approach allows developers to explore vari-

ous design options and configurations, significantly reducing financial barriers to

innovation.

(d) Enabling Extensive Testing Under Extreme Conditions: Simulations also

facilitate extensive testing under extreme or rare conditions, which is essential

for ensuring the robustness and resilience of Blockchain-based IoT systems. By

exposing systems to a broad spectrum of potential challenges, researchers can

identify and address vulnerabilities, thereby contributing to the development of

more reliable and resilient technologies.

2. Limitations: While simulations offer numerous advantages in blockchain and IoT

domains, their effectiveness hinges on the quality of underlying assumptions and

data models. Real-world complexities can be challenging to replicate accurately,

potentially limiting the applicability of simulation results. To mitigate these limitations,

simulations should be complemented with real-world testing. This combined approach

grounds insights in practical reality, enhancing the reliability and relevance of findings

for blockchain and IoT systems.
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8.4.1 Evaluating Simulation’s Contribution to Blockchain and IoT Ad-

vancement

Considering the numerous advantages and acknowledging the limitations, it is evident that

using simulations for Blockchain and IoT is worth investing time and resources. The ability

to conduct risk-free experiments, perform detailed analyses, innovate cost-effectively, and

test under extreme conditions provides immense value to researchers and developers in this

field. While simulations should not be viewed as a complete substitute for real-world testing,

they serve as an invaluable tool in developing and optimising Blockchain and IoT systems.

The insights gained from simulations can significantly accelerate development cycles,

reduce costs, and enhance the overall quality of the final systems. By allowing for rapid

iteration and experimentation, simulations enable developers to explore a wider range of

possibilities and innovative solutions that might be impractical or too risky to attempt in

real-world scenarios. This capability is particularly crucial in the fast-evolving landscapes

of Blockchain and IoT, where staying ahead of technological curves can be a significant

competitive advantage. Moreover, simulations foster a more comprehensive understanding

of complex system behaviours, interactions, and potential vulnerabilities. This deeper

insight is instrumental in developing more robust, efficient, and secure Blockchain and IoT

solutions. As these technologies continue to integrate into various sectors of the economy and

society, the role of simulations in ensuring their reliability, scalability, and security becomes

increasingly vital.

Using simulations in the context of Blockchain and IoT is beneficial and often essential

for advancing the field and creating robust, efficient, and innovative solutions. As these

technologies continue to evolve and expand their applications, the importance of simulation

as a tool for development, testing, and optimization is likely to grow, further cementing its

role as a cornerstone in the advancement of Blockchain and IoT technologies.
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Appendix A

Reference Implementation of the

Blockchain-based IoT Simulation

Framework

This appendix demonstrates the implementation of the proposed blockchain-based IoT

simulation architecture, presented in Chapter 5. It is noteworthy that the simulator is designed

to provide the ability to model and evaluate the performance of scenarios where blockchain is

integrated with IoT. To prevent reinventing the wheel, encouraged by feedback received from

relevant experts, the implementation extends a recognised IoT simulator, namely: IoTsim-

Osmosis [16], which happens to also extend on a well-established simulation framework

called CloudSim [86]. Therefore, the implementation uses the same programming language

as used in the underlying simulators to support blockchain aspects and performance evaluation

features. Eclipse is the main IDE (Integrated Development Environment) used for developing,

testing, and deploying the implementation of the simulator architecture. The implementation

is publicly available on a GitHub repository to provide a reference implementation for the

conceptualised simulation design proposed by this thesis and to encourage the research

community to introduce further enhancement and contribution based on it. The following

highlights the implementation in further detail.
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A.1 Simulation Project Hierarchy

Figure A.1 provides a structured overview of blockchain-based IoT within the IDE that

illustrates the packages and classes developed to simulate integrated IoT and blockchain

environments, as presented in Sections A.2.1, A.2.4, and A.2.5.

Fig. A.1 Simulation Project Hierarchy
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A.2 Implementation Code

This section lists major Java classes of the implementations which play vital roles in operating

the simulator. For clarity and self-explanation, the listed code of each class follows the best

practice of naming convention to indicate the purposes of its elements such as constructors,

functions, arrays, variables, and others (e.g. Nodes, Blocks, transactions, consensus, perfor-

mance, events, etc.). Moreover, the majority of the listed codes are annotated with relevant

comments that are intended to help the reader comprehend their purposes. The following

distributes relevant implementation Java class to each of the primary components of the

proposed simulator conceptual design, which are Configurator, Simulation Core, Generator,

and Report. The underlying IoTsim-Osmosis simulator role is also highlighted wherever

applicable.

A.2.1 Configurator

This section is divided into two main subsections, namely Blockchain Configurations and

IoT Configurations, as follows.

A.2.1.1 Blockchain Configurations

The InputConfig class is a configuration class designed to set up and customise the parameters

of a blockchain network simulator. It focusses primarily on initialising various simulation

parameters, such as the number of nodes and miners in the network, transaction characteristics

(including the number and size of transactions), block parameters (e.g., block size ), the

consensus algorithm used, and overall simulation settings (such as simulation time).

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.lang.reflect.Array;

4 import java.util.ArrayList;

5 import java.util.Random;

6 import java.util.concurrent.ThreadLocalRandom;
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7

8 public class InputConfig {

9

10 /**

11 * @param numberOfNodes

12 * @param numberOfMiner

13 *

14 * Miner is part of total number of nodes e.g. No.nodes

5 and Miner 2

15 * (total number of nodes and miner is 5)

16 */

17 /* *************** To Create Node Parameters **************** */

18 private static int numberOfNodes = 4;

19 private static int numberOfMiner = 1;

20

21 /**

22 *

23 * @param transactionNumber : Maximum number of transactions

created during

24 * running simulator.

25 * @param maxTXsize : Maximum Transaction size in MB.

26 * @param minTXsize : Minimum Transaction size in MB.

27 * @param TransactionGasLimit : maximum amount of gas units

the transaction

28 * can used.

29 *

30 */

31 /* ************ To Create Transaction Parameters *********** */

32 private static final double transactionDelay

33 = 0.05; // average transaction propagation delay in

34 // seconds
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35 private static final double maxTXsize

36 = 0.064; // Maximum Transaction size in MB (64KB quorum)

37 private static final double minTXsize

38 = 0.001; // Minimum Transaction size in MB (1 KB)

39

40 /**

41 *

42 * @param maxBlockSize

43 * @param blockGasLimit

44 * @param blockInterval

45 *

46 */

47 /* ************ To Create Block Parameters *********** */

48 private static final long maxBlockSize = 1; //

4194304;//4194304;

49 private static final double blockGasLimit = 1000000; //

30000000;//30000000;

50 private static double Binterval = 12; // 12.41 raft (50ms)

51

52 /**

53 * @param consensusAlgorithm : PoW and raft

54 */

55 /* ************ To configure consensus Algorithm *********** */

56 private static final String consensusAlgorithm = "raft"; //

raft or PoW

57

58 /**

59 *

60 * @param simTime

61 * @param simulatorRun

62 */



242 Reference Implementation of the Blockchain-based IoT Simulation Framework

63 /* ************ To configure simulator *********** */

64 static int simTime = 500;

65 private static final int simulatorRun = 1;

66

67 public static int getSimulatorRun () { return simulatorRun; }

68

69 public static double getBlockInterval () { return Binterval; }

70

71 /**

72 * Return the Number of nodes that created

73 *

74 * @return numberOfNodes

75 */

76 public static int getNumberOfNodes () { return numberOfNodes; }

77

78 /**

79 * Return the number of Miner is created

80 *

81 * @return

82 */

83 public static int getNumberOfMiner () { return numberOfMiner; }

84

85 /**

86 * Return the maximum block gas limit

87 *

88 * @return

89 */

90 public static double getBlockGasLimit () { return blockGasLimit

; }

91

92 /**
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93 * Return the maximum of block size

94 *

95 * @return maxBlockSize

96 */

97 public static long getMaxBlockSize () { return maxBlockSize; }

98

99 /**

100 * Return the minimum of transaction size

101 *

102 * @return minTXsize

103 */

104 public static double getMinTransactionSize () { return

minTXsize; }

105

106 /**

107 * Return the maximum of transaction size

108 *

109 * @return maxTXsize

110 */

111 public static double getMaxTransactionSize () { return

maxTXsize; }

112

113 /**

114 * Return the simulation time that is configured

115 *

116 * @return simTime

117 */

118 public static int getSimulationTime () { return simTime; }

119

120 /**

121 * Return the consensus algorithm that used in the simulator
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122 *

123 * @return consensusAlgorithm

124 */

125 public static String getConsensusalgorithm () { return

consensusAlgorithm; }

126

127 public static double getTransactiondelay () { return

transactionDelay; }

128

129 public static void setSimulationTime(int simTime)

130 {

131 InputConfig.simTime = simTime;

132 }

133

134 public static void setNumberOfNodes(int numberOfNodes)

135 {

136 InputConfig.numberOfNodes = numberOfNodes;

137 }

138

139 public static void setNumberOfMiner(int numberOfMiner)

140 {

141 InputConfig.numberOfMiner = numberOfMiner;

142 }

143

144 public static void setBinterval(double binterval) { Binterval

= binterval; }

145 }
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A.2.1.2 IoT Configurations

The IoT Configurations is designed to set up parameters for an IoT environment. It includes

the identification and functions of IoT devices, data transmission rates, duration of data

generation activities, and data processing capacities of different layers.

Fig. A.2 IoT-based Firefighting Configurations

A.2.2 IoTsim-Osmosis

The generateIoTData method is designed for the generation of data from an IoT environment

and its subsequent processing and recording on a blockchain, achieved by invoking the

BlockchainController A.2.3.

1 static int count = 0;

2 private void generateIoTData(SimEvent ev)

3 {

4 OsmesisAppDescription app = (OsmesisAppDescription)ev.getData

();

5 count ++;

6 if (CloudSim.clock() <= app.getStopDataGenerationTime ()

7 && !app.getIsIoTDeviceDied ()) {

8 sendNow(app.getIoTDeviceId (), OsmosisTags.SENSING , app);

9 double dealy = app.getDataRate ();

10 send(this.getId(), dealy , OsmosisTags.GENERATE_OSMESIS , app)

;

11 BlockchainController.createOsmosisTransaction(ev.eventTime ()

);

12

13 } else {

14 }
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15 }

A.2.3 Generator

The BlockchainController class is designed for the IoTSim-Osmosis framework to orchestrate

the dynamic aspects of the blockchain simulation, including the generation of nodes and

transactions and managing the state of the blockchain network during simulations.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import IoTSimOsmosis.cloudsim.core.SimEvent;

4 import IoTSimOsmosis.osmosis.core.Infrastructure.EdgeDatacenters

;

5 import IoTSimOsmosis.osmosis.core.OsmosisBuilder;

6 import java.text.DateFormat;

7 import java.text.SimpleDateFormat;

8 import java.util.Calendar;

9 import java.util.Random;

10 import java.util.concurrent.ThreadLocalRandom;

11

12 public class BlockchainController {

13 static Random rand = new Random ();

14 static Calendar now = Calendar.getInstance ();

15 static DateFormat df = new SimpleDateFormat("dd-MM -yyy -HH:mm")

;

16

17 /**

18 * This method is responsible for generate light node

19 */

20 public static void generateNodes ()

21 {

22
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23 if (InputConfig.getConsensusalgorithm ().equals("raft")) {

24 if (InputConfig.getNumberOfNodes () >= 3

25 && InputConfig.getNumberOfNodes () > InputConfig.

getNumberOfMiner ()) {

26

27 for (int i = 0; i < InputConfig.getNumberOfNodes (); i++)

{

28 String time = df.format(now.getTime ());

29 Node.getNodes ().add(new Node(i, "follower", time));

30 }

31 }

32 } else if (InputConfig.getConsensusalgorithm ().equals("PoW")

) {

33 for (int i = 0; i < InputConfig.getNumberOfNodes (); i++) {

34 String time = df.format(now.getTime ());

35 Node.getNodes ().add(new Node(i, "node", time));

36 }

37 }

38 Consensus.consensus(InputConfig.getConsensusalgorithm ());

39 }

40

41 /**

42 * This method is responsible for generate light node

43 */

44 public static void generateOsmosisNodes(OsmosisBuilder

topologyBuilder)

45 {

46

47 int dgeNodes = topologyBuilder.getEdgeDatacentres ().size();

48 Calendar now = Calendar.getInstance ();

49 DateFormat df = new SimpleDateFormat("dd -MM-yyy -HH:mm");
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50

51 for (int i = 0; i < dgeNodes; i++) {

52 String time = df.format(now.getTime ());

53 Node.getNodes ().add(new Node(i, "follower", time));

54 }

55 Consensus.consensus(InputConfig.getConsensusalgorithm ());

56 }

57

58 /**

59 * This method is responsible for generate transactions

without an integrated

60 */

61

62 public static void createOsmosisTransaction(double

osmosisTransactionTime)

63 {

64

65 for (int i = 0; i < InputConfig.getTransactionNumber (); i++)

{

66 double creationTime = osmosisTransactionTime;

67 double transactionSize

68 = ThreadLocalRandom.current ().nextDouble (100, 1000);

69 Transaction tx = new Transaction(osmosisTransactionTime);

70 Node.getNodes ().get(0).getTransactionsPool ().add(tx);

71

72 for (Node n : Node.getNodes ()) {

73 if (n.getNodeType ().equals("leader")

74 || n.getNodeType ().equals("miner")) {

75 n.getTransactionsPool ().add(tx);

76 }

77 }
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78 Statistics.noTransactionsConfig += 1;

79 }

80

81 public static void creatTransactions ()

82 {

83 int countTransaction = 0; // to count number of

transaction per second

84 double maxTxTime = 0.89;

85 double minTxTime = 0;

86 int Psize = InputConfig.getSimulationTime ()

87 * InputConfig.getTransactionNumber ();

88 int i = 0;

89 while (i < Psize) {

90 if (countTransaction < InputConfig.getTransactionNumber

()) {

91 double transactionCreatingTime

92 = ThreadLocalRandom.current ().nextDouble (0,

maxTxTime);

93 Transaction tx = new Transaction(

transactionCreatingTime);

94 for (Node n : Node.getNodes ()) {

95 if (n.getNodeType ().equals("leader")

96 || n.getNodeType ().equals("miner")) {

97 n.getTransactionsPool ().add(tx);

98 }

99 }

100 countTransaction += 1;

101 i += 1;

102 } else {

103 countTransaction = 0;

104 maxTxTime += 1;
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105 minTxTime += 1;

106 }

107 }

108 }

109

110 /**

111 * This method is responsible for generate transactions

without an

112 * integrated

113 */

114

115 public static void creatTransactionsWithoutIntegrated ()

116 {

117

118 for (int i = 0; i < InputConfig.getTransactionNumber (); i

++) {

119 double creationTime = ThreadLocalRandom.current ().

nextDouble(

120 0, InputConfig.getTransactionNumber () - 1);

121 Transaction tx = new Transaction(creationTime);

122

123 for (Node n : Node.getNodes ()) {

124 if (n.getNodeType ().equals("leader")

125 || n.getNodeType ().equals("miner")) {

126 n.getTransactionsPool ().add(tx);

127 }

128 }

129 }

130 }

131

132 /**
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133 * This method is responsible for generate transactions with

IoT simulator

134 */

135

136 public static void creatTransactionsWithIntegrated(

137 double transactionTime , int fromAddress , int toAddress)

138 {

139

140 double creationTime = transactionTime;

141 double transactionSize = ThreadLocalRandom.current ().

nextDouble(

142 InputConfig.getMinTransactionSize (),

143 InputConfig.getMaxTransactionSize ());

144 Transaction tx = new Transaction(creationTime);

145 }

146

147 /**

148 *

149 */

150 public static void restState () { Node.getNodes ().clear(); }

151 }

A.2.4 Simulation Core

The Simulation Core includes a collection of classes designed to simulate blockchain-based

IoT environments. The following subsections present these classes and their operations.

A.2.4.1 Block Class

Block class defines the structure and behaviour of a blockchain-based IoT block by a set of

attributes such as block ID, previous block ID, miner node, transaction list and block size.
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1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4 import java.util.List;

5

6 public class Block {

7 // Block ID for each block created

8 private long blockID;

9 // The previous block ID

10 private long previousBlockID;

11 // the index of block in the local BCL

12 private int blockDepth;

13 // the time when the block is created

14 private double blockTimestamp;

15 // Miner node who mined (created) the block

16 private Node miner;

17 // list of transaction that included in the block

18 private ArrayList <Transaction > transactions;

19 // The block size

20 private double blockSize;

21 // The block gas limit

22 private double blockGas;

23 // The block used gas limit

24 // private double blockUsedGas;

25 // is block include Tx?

26 private boolean hasTx;

27

28 /**

29 * A constructor method for block class

30 */
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31 public Block()

32 {

33 this.blockID = 0;

34 this.previousBlockID = -1;

35 this.blockDepth = 0;

36 this.blockTimestamp = 0.0;

37 this.miner = null; // need to change just for test

38 this.transactions = new ArrayList <>();

39 }

40

41 /**

42 * Return block ID

43 *

44 * @return depth

45 */

46 public long getBlockID () { return blockID; }

47

48 /**

49 * Return Previous BlocK ID

50 *

51 * @return previousBlocKID

52 */

53 public long getPreviousBlockID () { return previousBlockID; }

54

55 /**

56 * Return block depth which pointer the index of block in the

local BCL

57 *

58 * @return depth

59 */

60 public int getBlockDepth () { return blockDepth; }
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61

62 /**

63 * Return block Timestamp

64 *

65 * @return blockTimestamp

66 */

67 public double getBlockTimestamp () { return blockTimestamp; }

68

69 /**

70 * Return miner who created the block

71 *

72 * @return miner

73 */

74 public Node getMiner () { return miner; }

75

76 /**

77 * Return transactions that included in the block

78 *

79 * @return transactions

80 */

81 public ArrayList <Transaction > getTransactions () { return

transactions; }

82

83 /**

84 * Return block size

85 *

86 * @return blockSize

87 */

88 public double getBlockSize () { return blockSize; }

89

90 /**
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91 * Return block gas

92 *

93 * @return blockGas

94 */

95 public double getBlockGas () { return blockGas; }

96

97 /**

98 * is the block include Tx

99 *

100 * @return boolean hasTx

101 */

102 public boolean getHasTx () { return hasTx; }

103

104 /**

105 * Set block ID

106 *

107 * @param id

108 */

109 public void setBlockID(long id) { this.blockID = id; }

110

111 /**

112 * Set Previous Block ID

113 *

114 * @param previous

115 */

116 public void setPreviousBlockID(long previousID)

117 {

118 this.previousBlockID = previousID;

119 }

120

121 /**
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122 * Set block depth

123 *

124 * @param depth

125 */

126 public void setBlockDepth(int depth) { this.blockDepth = depth

; }

127

128 /**

129 * set the miner who created the block

130 *

131 * @param miner

132 */

133 public void setMiner(Node miner) { this.miner = miner; }

134

135 /**

136 * set the transactions that included to the block

137 *

138 * @param transactions

139 */

140 public void setTransactions(ArrayList <Transaction >

transactions)

141 {

142 this.transactions = transactions;

143 }

144

145 /**

146 * set block size

147 *

148 * @param size

149 */
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150 public void setBlockSize(double size) { this.blockSize = size;

}

151

152 /**

153 * set block gas

154 *

155 * @param blockgas

156 */

157 public void setBlockGas(double blockGas) { this.blockGas =

blockGas; }

158

159 /**

160 * set block Timestamp

161 *

162 * @param timestamp

163 */

164 public void setBlockTimestamp(double timestamp)

165 {

166 this.blockTimestamp = timestamp;

167 }

168

169 /**

170 * set the funcation if block includes Tx (true)

171 *

172 * @param hasTx

173 */

174 public void setHasTx(boolean hasTx) { this.hasTx = hasTx; }

175 }



258 Reference Implementation of the Blockchain-based IoT Simulation Framework

A.2.4.2 Block Commit Class

The Block Commit class is used to handle the generation of new blocks, committing them to

the blockchain, and propagating them across the network. Therefore, it includes methods

for processing blocks based on the current consensus algorithm, updating node ledgers, and

managing transaction pools.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 /**

4 *

5 * @author adelalbshri

6 *

7 */

8

9 public class BlockCommit {

10

11 /**

12 *

13 * @param event

14 */

15 static void generateNewBlock(Event event)

16 {

17 Node miner = event.getBlock ().getMiner ();

18 double eventTime = event.getTime ();

19 long blockPrevious = event.getBlock ().getPreviousBlockID ();

20

21 if (blockPrevious == miner.getLastBlock ().getBlockID ()) {

22 if (InputConfig.getConsensusalgorithm () == "PoW") {

23 event.getBlock ().setTransactions(Transaction.

executeTranscationsPoW(

24 miner , event.getBlock (), eventTime));
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25 event.getBlock ().setBlockGas(Transaction.blockGaslimit);

26 } else if (InputConfig.getConsensusalgorithm () == "raft")

{

27 event.getBlock ().setTransactions(Transaction.

executeTranscationsRaft(

28 miner , event.getBlock (), eventTime));

29 event.getBlock ().setBlockSize(Transaction.

getBlockSizeLimit ());

30 }

31

32 if (event.getBlock ().getTransactions ().size() > 0) {

33 event.getBlock ().setHasTx(true);

34

35 miner.getBlockchainLedger ().add(event.getBlock ());

36 propagateBlock(event.getBlock ());

37 }

38 }

39 generateNextBlock(miner , eventTime);

40 }

41

42 /**

43 *

44 * @param newBlock

45 */

46 private static void propagateBlock(Block newBlock)

47 {

48 for (Node miner : Node.getNodes ()) {

49 if (newBlock.getMiner ().getNodeId () != miner.getNodeId ())

{

50

51 Scheduler.receiveBlockEvent(miner , newBlock);
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52 }

53 }

54 }

55

56 /**

57 *

58 * @param event

59 */

60 private static void receiveBlock(Event event)

61 {

62 Node miner = event.getBlock ().getMiner ();

63 double eventTime = event.getTime ();

64 long blockPrevious = event.getBlock ().getPreviousBlockID ();

65 Node node = event.getMiner ();

66 long lastBlockID = node.getLastBlock ().getBlockID ();

67 if (blockPrevious == lastBlockID) {

68 node.getBlockchainLedger ().add(event.getBlock ());

69 updateTransactionsPool(miner , event.getBlock ());

70 generateNextBlock(node , eventTime);

71 } else {

72 int depth = event.getBlock ().getBlockDepth () + 1;

73 if (depth > node.getBlockchainLedger ().size()) {

74 updateLocalBlockchainLedger(node , miner , depth);

75 generateNextBlock(node , eventTime);

76 }

77 }

78 }

79

80 /**

81 *

82 * @param node
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83 * @param miner

84 * @param depth

85 */

86 private static void updateLocalBlockchainLedger(

87 Node node , Node miner , int depth)

88 {

89

90 for (int i = 0; i < depth; i++) {

91

92 if (i < node.getBlockchainLedger ().size()) {

93 if (node.getBlockchainLedger ().get(i).getBlockID ()

94 != miner.getBlockchainLedger ().get(i).getBlockID ())

{

95 Block newBlock = miner.getBlockchainLedger ().get(i);

96 node.getBlockchainLedger ().add(newBlock);

97 updateTransactionsPool(miner , newBlock); // ********

98 }

99 } else {

100 Block block = miner.getBlockchainLedger ().get(i);

101 node.getBlockchainLedger ().add(block);

102 updateTransactionsPool(miner , block); // **********

103 }

104 }

105 }

106

107 /**

108 *

109 * @param node

110 * @param block

111 */
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112 private static void updateTransactionsPool(Node node , Block

block)

113 {

114 int i = 0;

115 while (i < (block.getTransactions ().size())) {

116 for (int count = 0; count < node.getTransactionsPool ().

size(); count ++) {

117 if (block.getTransactions ().get(i).getTransactionID ()

118 == node.getTransactionsPool ().get(count).

getTransactionID ()) {

119 node.getTransactionsPool ().remove(count);

120 }

121 }

122 i += 1;

123 }

124 }

125

126 /**

127 *

128 *

129 */

130 public static void generateInitialEvents ()

131 {

132 int currentTime = 0;

133

134 for (Node miner : Node.getNodes ()) {

135 if (miner.getNodeType ().equals("leader")

136 || miner.getNodeType ().equals("miner")) {

137 generateNextBlock(miner , currentTime);

138 }

139 }
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140 }

141

142 /**

143 *

144 *

145 */

146 private static void generateNextBlock(Node miner , double

currentTime)

147 {

148 if (miner.getNodeType ().equals("leader")) {

149 double blockTime = currentTime

150 + Consensus.protocal ();

151 Scheduler.createBlockEvent(miner , blockTime);

152 } else if (miner.getNodeType ().equals(

153 "miner") /* && miner.getHashPower () >0 */) {

154 double blockTime

155 = currentTime + Consensus.protocalPoW(miner);

156 Scheduler.createBlockEvent(miner , blockTime);

157 }

158 }

159

160 /**

161 *

162 *

163 */

164 public static void handleEvent(Event event)

165 {

166 if (event.getType () == "create_block") {

167 generateNewBlock(event);

168

169 } else if (event.getType () == "receive_block") {
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170 receiveBlock(event);

171 }

172 }

173 }

A.2.4.3 Node Class

Nodes class is used to simulate participants’ nodes for blockchain-based IoT by a set of

properties and behaviours of nodes such as their ID, type (e.g., leader, miner, follower), and

their interaction with the blockchain (e.g., maintaining a local copy of the blockchain ledger,

managing a pool of transactions).

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4

5 public class Node {

6

7 // node ID

8 private final int nodeID;

9 // Node type

10 private String nodeType;

11

12 private String joinTime;

13

14 private double hashPower;

15

16 // Blockchain Ledger

17 private final ArrayList <Block > blockchainLedger;

18 // transactions Pool

19 private final ArrayList <Transaction > transactionsPool;

20 // Node list
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21 private final static ArrayList <Node > NodesList = new ArrayList

<>();

22

23 /**

24 *

25 * @param nodeID

26 * @param nodeType

27 * @param joinTime

28 */

29 public Node(int nodeID , String nodeType , String joinTime)

30 {

31

32 this.nodeID = nodeID;

33 this.nodeType = nodeType;

34 this.joinTime = joinTime;

35 this.blockchainLedger = new ArrayList <>();

36 this.transactionsPool = new ArrayList <>();

37 }

38

39 /**

40 * a method to generate genesis Block for all miner in the

network

41 */

42 public static void generateGenesisBlock ()

43 {

44 for (Node node : Node.getNodes ()) {

45 node.getBlockchainLedger ().add(new Block());

46 }

47 }

48

49 /**
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50 * Return the node ID

51 *

52 * @return nodeID

53 */

54 public int getNodeId () { return nodeID; }

55

56 /**

57 * Return the node type (e.g. light node and miner)

58 *

59 * @return nodeType

60 */

61 public String getNodeType () { return nodeType; }

62

63 /**

64 * Return the the time that node join to blockchain network

65 *

66 * @return joinTime

67 */

68 public String getJoinTime () { return joinTime; }

69

70 public double getHashPower () { return hashPower; }

71

72 public void setHashPower(double hashPower) { this.hashPower =

hashPower; }

73

74 /**

75 * Return the local blockchain ledger

76 *

77 * @return ArrayList <Block >

78 */
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79 public ArrayList <Block > getBlockchainLedger () { return

blockchainLedger; }

80

81 /**

82 * Return array of transactions pool

83 *

84 * @return ArrayList <Transaction >

85 */

86 public ArrayList <Transaction > getTransactionsPool ()

87 {

88 return transactionsPool;

89 }

90

91 /**

92 * set node type

93 *

94 * @param nodeType

95 */

96 public void setNodeType(String nodeType) { this.nodeType =

nodeType; }

97

98 /**

99 * Return the last block at the nodes local blockchain

100 *

101 * @return block

102 */

103 public Block getLastBlock ()

104 {

105 return this.getBlockchainLedger ().get(blockchainLedger.size

() - 1);

106 }
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107

108 /**

109 * Return an arrayList of node

110 *

111 * @return

112 */

113 public static ArrayList <Node > getNodes () { return NodesList; }

114 }

A.2.4.4 Consensus Class

Consensus Class is to implement the different consensus algorithms within the simulation to

facilitate the simulation of how consensus is achieved in the network for block validation and

addition.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4 import java.util.Random;

5 import java.util.concurrent.ThreadLocalRandom;

6

7 /**

8 *

9 * @author adelalbshri

10 *

11 */

12 public class Consensus {

13

14 private static ArrayList <Block > globalBlockchain = new

ArrayList <>();

15 private static ArrayList <Object[]> nodesLog = new ArrayList

<>();
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16 static Random rand = new Random ();

17

18 /**

19 *

20 * @param ConcensusAlgorithm

21 */

22 public static void consensus(String ConcensusAlgorithm)

23 {

24

25 if (ConcensusAlgorithm.equals("raft")) {

26 statusNodeLog ();

27 } else {

28 AssignPoWMiner ();

29 }

30 }

31

32 /**

33 *

34 * @return

35 */

36 public static ArrayList <Block > getGlobalBlockchain ()

37 {

38 return globalBlockchain;

39 }

40

41 /**

42 *

43 * @return

44 */

45 public static ArrayList <Object[]> getNodesLog () { return

nodesLog; }
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46

47 /**

48 * Choice random node to become candidate

49 *

50 * @return int node index

51 */

52 private static void becomeCandidateNode ()

53 {

54 int countCandidate = 0;

55 int i = 0;

56 while (countCandidate < InputConfig.getNumberOfMiner ()) {

57 int NodeID = rand.nextInt(Node.getNodes ().size());

58 if (!Node.getNodes ().get(NodeID).getNodeType ().equals("

candidate")

59 && !Node.getNodes ().get(NodeID).getNodeType ().equals("

leader")) {

60 Node.getNodes ().get(NodeID).setNodeType("candidate");

61 nodesLog.add(new Object [] { "become Candidate",

62 Node.getNodes ().get(NodeID).getNodeId (),

63 Node.getNodes ().get(NodeID).getNodeType (),

64 Node.getNodes ().get(NodeID).getJoinTime () });

65 votingFor(Node.getNodes ().get(NodeID));

66 countCandidate += 1;

67 }

68 }

69 }

70

71 /**

72 * this to method to vote to candidate node

73 *

74 * @param nodeID
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75 *

76 */

77 public static void votingFor(Node candidate)

78 {

79 boolean nodeVote;

80 int countNodeLeader = 0;

81 int countVotingCandidate = 0;

82 int round = 0;

83 for (round = 0; round < Node.getNodes ().size(); round ++) {

84 for (int i = 0; i < Node.getNodes ().size(); i++) {

85 // int select = rand.nextInt(randomVoting.length);

86 if (candidate.getNodeId () != Node.getNodes ().get(i).

getNodeId ()) {

87 nodeVote = rand.nextBoolean ();

88 if (nodeVote == true) {

89 countVotingCandidate += 1;

90 }

91 }

92 }

93 if (countVotingCandidate >= Node.getNodes ().size() / 2) {

94 candidate.setNodeType("leader");

95 round = Node.getNodes ().size();

96 }

97 countVotingCandidate = 0;

98 }

99 }

100

101 /**

102 * this to method to return miner node

103 *

104 * @return miner Node
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105 *

106 */

107 public static Node getAassignLeader ()

108 {

109 Node miner = null;

110

111 if (InputConfig.getConsensusalgorithm ().equals("raft")) {

112 for (Node node : Node.getNodes ()) {

113 if (node.getNodeType ().equals("leader")) {

114 miner = node;

115 }

116 }

117 } else {

118 for (Node node : Node.getNodes ()) {

119 if (node.getNodeType ().equals("miner")) {

120 miner = node;

121 }

122 }

123 }

124 return miner;

125 }

126

127 /**

128 * this to method to keep tracking node status logs

129 *

130 *

131 */

132 public static void statusNodeLog ()

133 {

134

135 for (Node node : Node.getNodes ()) {
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136 nodesLog.add(new Object [] { "Initial Nodes", node.

getNodeId (),

137 node.getNodeType (), node.getJoinTime () });

138 }

139

140 becomeCandidateNode ();

141

142 for (Node node : Node.getNodes ()) {

143 nodesLog.add(new Object [] { "become leader", node.

getNodeId (),

144 node.getNodeType (), node.getJoinTime () });

145 }

146 }

147

148 public static void AssignPoWMiner ()

149 {

150 int countMiner = 0;

151 int i = 0;

152 for (i = 0; i < Node.getNodes ().size(); i++) {

153 int NodeID = rand.nextInt(Node.getNodes ().size());

154 if (!Node.getNodes ().get(NodeID).getNodeType ().equals("

miner")

155 && countMiner < InputConfig.getNumberOfMiner ()) {

156 Node.getNodes ().get(NodeID).setHashPower(

157 70 /* rand.nextInt ((100 -10) + 10) */);

158 Node.getNodes ().get(NodeID).setNodeType("miner");

159 countMiner += 1;

160 }

161 if (countMiner < InputConfig.getNumberOfMiner ()) {

162 i = 0;

163 }
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164 }

165 }

166

167 public static double protocalPoW(Node miner)

168 {

169 double totalHash = 0;

170

171 for (Node node : Node.getNodes ()) {

172 if (node.getNodeType ().equals("miner")) {

173 totalHash += node.getHashPower ();

174 }

175 }

176

177 double hash = miner.getHashPower () / totalHash;

178

179 return ThreadLocalRandom.current ().nextDouble(

180 hash , InputConfig.getBlockInterval ());

181 }

182

183 public static void fork()

184 {

185

186 ArrayList <Integer > a = new ArrayList <>();

187 ArrayList <Integer > b = new ArrayList <>();

188 ArrayList <Node > c = new ArrayList <>();

189 int Z = 0;

190 int Max = 0;

191

192 for (Node node : Node.getNodes ()) {

193 if (node.getNodeType ().equals("miner")) {

194 a.add(node.getBlockchainLedger ().size());
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195 }

196 }

197

198 for (int i = 1; i < a.size(); i++) {

199 if (a.get(i) > Max) {

200 Max = a.get(i);

201 }

202 }

203

204 for (Node node : Node.getNodes ()) {

205 if (node.getNodeType ().equals("miner")) {

206 if (node.getBlockchainLedger ().size() == Max) {

207 b.add(node.getNodeId ());

208 Z = node.getNodeId ();

209 }

210 }

211 }

212 for (Node node : Node.getNodes ()) {

213 if (node.getNodeType ().equals("miner")) {

214 if (node.getBlockchainLedger ().size() == Max

215 && node.getLastBlock ().getMiner ().getNodeId () == Z)

{

216 for (Block block : node.getBlockchainLedger ()) {

217 globalBlockchain.add(block);

218 }

219 }

220 }

221 }

222 }

223

224 /**
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225 * The time it takes the miner to generate next block

226 *

227 * @return double

228 */

229

230 public static double protocal ()

231 {

232 return ThreadLocalRandom.current ().nextDouble(

233 0, InputConfig.getBlockInterval ());

234 }

235 }

A.2.4.5 Transaction Class

The transaction class models the characteristics and behaviours of transactions within the

blockchain network in the IoTSim-Osmosis framework.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4 import java.util.Random;

5 import java.util.concurrent.ThreadLocalRandom;

6

7 /**

8 *

9 * @author adelalbshri

10 *

11 */

12 public class Transaction {

13 static Random rand = new Random ();

14 // transaction id

15 private long transactionID = 0;
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16 // timestamp of transaction send from the IoT side

17 private double creationTime;

18 // timestamp of transaction inclusion in a confirmed block

19 private double confirmationTime;

20 // transaction sender address

21 private int fromAddress;

22 // transaction receiver address

23 private int toAddress;

24 // transaction size

25 private double transactionSize;

26 // the amount of gas used by the transaction

27 private double usedGas;

28 // the maximum amount of gas units the transaction can use

29 private double transactionGasLimit;

30 // A variable to calculate (count) the remaining limit of

Block gas used

31 static double blockGaslimit = 0;

32 // A variable to calculate (count) the remaining limit of

Block size used

33 static double blockSizelimit = 0;

34

35 /**

36 * A constructor method for transaction class

37 *

38 * @param creationTime

39 * @param txSize

40 * @param gasLimit

41 * @param usedGas

42 * @param fromAddress

43 * @param toAddress

44 */
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45 public Transaction(double creationTime)

46 {

47 this.transactionID = ThreadLocalRandom.current ().nextLong

(10000000000L);

48 this.creationTime = creationTime;

49 this.transactionGasLimit

50 = InputConfig.getTransactionGaslimit (); // 100;//50;

//8000000;

51 this.usedGas = getRandomNumber (0, (int)transactionGasLimit);

52 this.transactionSize = InputConfig.getMinTransactionSize ()

53 + rand.nextDouble ()

54 * (InputConfig.getMaxTransactionSize ()

55 - InputConfig.getMinTransactionSize ());

56 ;

57 }

58

59 /**

60 * Return the transaction ID

61 *

62 * @return transactionID

63 */

64 public long getTransactionID () { return transactionID; }

65

66 /**

67 * Return creation time for each transaction

68 *

69 * @return creationTime

70 */

71 public double getCreationTime () { return creationTime; }

72

73 // check if we need it
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74 public static int getRandomNumber(int min , int max)

75 {

76 return (int)((Math.random () * (max - min)) + min);

77 }

78

79 /**

80 * Return transaction size for each transaction

81 *

82 * @return transactionSize

83 */

84 public double getTransactionSize () { return transactionSize; }

85

86 /**

87 * Return transaction confirmation Time when adding to a block

88 *

89 * @return transactionSize

90 */

91 public double getConfirmationTime () { return confirmationTime;

}

92

93 /**

94 * Return the amount of gas used by the transaction after its

execution on the

95 * EVM

96 *

97 * @return usedGas

98 */

99 public double getUsedGas () { return usedGas; }

100

101 /**



280 Reference Implementation of the Blockchain-based IoT Simulation Framework

102 * Return the maximum amount of gas units the transaction can

use.

103 *

104 * @return gasLimit

105 */

106 public double getTransactionGasLimit () { return

transactionGasLimit; }

107

108 public int getFromAddress () { return fromAddress; }

109

110 public int getToAddress () { return toAddress; }

111

112 /**

113 * To set creation time for each transaction

114 *

115 * @param creationTime

116 */

117 public void setCreationTime(double creationTime)

118 {

119 this.creationTime = creationTime;

120 }

121

122 /**

123 * To set the amount of gas units that can use.

124 *

125 * @param usedGas

126 */

127 public void setUsedGas(double usedGas) { this.usedGas =

usedGas; }

128

129 /**
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130 * To set confirmation Time of transaction.

131 *

132 * @param confirmationTime

133 */

134 public void setConfirmationTime(double confirmationTime)

135 {

136 this.confirmationTime = confirmationTime;

137 }

138

139 /*

140 * Remaining limit of Block gas used

141 */

142

143 public static double getLimit () { return blockGaslimit; }

144

145 /*

146 * Remaining limit of Block gas used

147 */

148

149 public static double getBlockSizeLimit () { return

blockSizelimit; }

150

151 /**

152 * 1- blockGaslimit subtract transaction used gas. 2- Block

size subtract

153 * transaction size

154 *

155 * @param miner

156 * @param eventTime

157 * @return

158 */
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159 public static ArrayList <Transaction > executeTranscationsPoW(

160 Node miner , Block block , double eventTime)

161 {

162 ArrayList <Transaction > transactions = new ArrayList <>();

163

164 double blockGas = InputConfig.getBlockGasLimit ();

165 blockGaslimit = 0;

166 int count = 0;

167

168 miner.getTransactionsPool ().sort(

169 (t1, t2) -> Double.compare(t2.getUsedGas (), t1.

getUsedGas ()));

170

171 while (count < miner.getTransactionsPool ().size()) {

172

173 if (blockGas >= miner.getTransactionsPool ().get(count).

getUsedGas ()

174 && miner.getTransactionsPool ().get(count).

getCreationTime ()

175 <= eventTime) {

176 blockGas -= miner.getTransactionsPool ().get(count).

getUsedGas ();

177 transactions.add(miner.getTransactionsPool ().get(count))

;

178 miner.getTransactionsPool ().get(count).

setConfirmationTime(eventTime);

179 blockGaslimit += miner.getTransactionsPool ().get(count).

getUsedGas ();

180 }

181 count += 1;

182 }
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183

184 return transactions;

185 }

186

187 public static ArrayList <Transaction > executeTranscationsRaft(

188 Node miner , Block block , double eventTime)

189 {

190 ArrayList <Transaction > transactions = new ArrayList <>();

191

192 double blockSize = InputConfig.getMaxBlockSize ();

193 blockSizelimit = 0;

194 int count = 0;

195

196 miner.getTransactionsPool ().sort(

197 (t1, t2) -> Double.compare(t1.getCreationTime (), t2.

getCreationTime ()));

198

199 while (count < miner.getTransactionsPool ().size()) {

200 if (blockSize

201 >= miner.getTransactionsPool ().get(count).

getTransactionSize ()

202 && miner.getTransactionsPool ().get(count).

getCreationTime ()

203 <= eventTime) {

204 blockSize

205 -= miner.getTransactionsPool ().get(count).

getTransactionSize ();

206 transactions.add(miner.getTransactionsPool ().get(count))

;

207 miner.getTransactionsPool ().get(count).

setConfirmationTime(eventTime);
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208 blockSizelimit

209 += miner.getTransactionsPool ().get(count).

getTransactionSize ();

210 }

211 count += 1;

212 }

213

214 return transactions;

215 }

216 }

A.2.4.6 Event Class

The Event class encapsulates events within the blockchain simulation in the IoTSim-Osmosis

framework to represent various actions and changes within the simulation.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4

5 /**

6 *

7 * @author adelalbshri

8 *

9 */

10

11 public class Event {

12

13 private String type;

14 private Node minerNode;

15 private double time;

16 private Block block;
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17

18 public Event(String type , Node minerNode , double time , Block

block)

19 {

20 super();

21 this.type = type;

22 this.minerNode = minerNode;

23 this.time = time;

24 this.block = block;

25 }

26

27 /**

28 * @return the block

29 */

30 public Block getBlock () { return block; }

31

32 /**

33 * @return the type

34 */

35 public String getType () { return type; }

36

37 /**

38 * @return the node

39 */

40 public Node getMiner () { return minerNode; }

41

42 /**

43 * @return the time

44 */

45 public double getTime () { return time; }

46 }
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A.2.4.7 Queue Class

The Queue class is to manage the scheduling and processing of events within the blockchain-

based IoT simulation by acting as an organised buffer for events awaiting execution.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4

5 public class Queue {

6

7 private static ArrayList <Event > eventList = new ArrayList <>();

8

9 public static void addEvent(Event e) { getEventList ().add(e);

}

10

11 public static void removeEvent(Event e)

12 {

13 getEventList ().remove(getEventList ().indexOf(e));

14 }

15

16 public static Event getNextEvent ()

17 {

18 getEventList ().sort((t1, t2) -> Double.compare(t1.getTime (),

t2.getTime ()));

19 return getEventList ().get(0);

20 }

21

22 public static int size() { return getEventList ().size(); }

23

24 public static boolean isEmpty () { return getEventList ().size()

== 0; }



A.2 Implementation Code 287

25

26 public static ArrayList <Event > getEventList () { return

eventList; }

27

28 public static void setEventList(ArrayList <Event > eventList)

29 {

30 Queue.eventList = eventList;

31 }

32 }

A.2.4.8 Scheduler Class

The Scheduler class orchestrates the timing and execution of events within the blockchain

simulation by acting as a central controller for initiating actions such as block creation,

transaction processing, and block propagation across the network.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.util.ArrayList;

4 import java.util.concurrent.ThreadLocalRandom;

5

6 /**

7 *

8 * @author adelalbshri

9 *

10 */

11 public class Scheduler {

12

13 static ArrayList <Block > countGenerateBlockByMiner = new

ArrayList <>();

14

15 /**
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16 *

17 * @param miner

18 * @param eventTime

19 */

20 public static void createBlockEvent(Node miner , double

eventTime)

21 {

22 String eventType = "create_block";

23 if (eventTime <= InputConfig.getSimulationTime ()) {

24 Block block = new Block();

25 block.setBlockID(ThreadLocalRandom.current ().nextLong

(100000000000L));

26 block.setBlockDepth(miner.getBlockchainLedger ().size());

27 block.setBlockTimestamp(eventTime);

28 block.setMiner(miner);

29 block.setPreviousBlockID(miner.getLastBlock ().getBlockID ()

);

30 Event event = new Event(

31 eventType , block.getMiner (), eventTime , block); //

change here

32 Queue.addEvent(event);

33 }

34 }

35

36 /**

37 *

38 * @param node

39 * @param newBlock

40 * @param blockDelay

41 */
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42 public static void receiveBlockEvent(Node node , Block newBlock

)

43 {

44 String eventType = "receive_block";

45 double receiveBlockTime = newBlock.getBlockTimestamp ();

46 if (receiveBlockTime <= InputConfig.getSimulationTime ()) {

47 updateTx(newBlock);

48 Event event = new Event(eventType , node , receiveBlockTime ,

newBlock);

49 Queue.addEvent(event);

50 }

51 }

52

53 public static void updateTx(Block block)

54 {

55

56 int count = 0;

57 for (count = 0; count < block.getTransactions ().size();

count ++) {

58 for (Node node : Node.getNodes ()) {

59 if ((node.getNodeType ().equals("leader")

60 || node.getNodeType ().equals("miner"))

61 && node != block.getMiner ()) {

62 for (int i = 0; i < node.getTransactionsPool ().size();

i++) {

63 if (block.getTransactions ().get(count)

64 == node.getTransactionsPool ().get(i)) {

65 node.getTransactionsPool ().remove(i);

66 }

67 }

68 }
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69 }

70 }

71 }

72 }

A.2.5 Reporter

The Simulation Core encompasses a collection of classes designed for analysis and report-

ing of simulation experiments. The following subsections present these classes and their

operations.

A.2.5.1 Excel Class

The Excel class is designed to handle basic Excel operations, including creating workbooks,

writing data to sheets, and formatting cells.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import com.google.common.collect.Table.Cell;

4 import java.awt.Desktop;

5 import java.io.File;

6 import java.io.FileNotFoundException;

7 import java.io.FileOutputStream;

8 import java.io.IOException;

9 import java.time.LocalDateTime;

10 import java.time.format.DateTimeFormatter;

11 import java.util.ArrayList;

12 import org.apache.poi.ss.usermodel.FillPatternType;

13 import org.apache.poi.ss.usermodel.IndexedColors;

14 import org.apache.poi.ss.usermodel.Row;

15 import org.apache.poi.xssf.usermodel.XSSFCell;

16 import org.apache.poi.xssf.usermodel.XSSFCellStyle;
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17 import org.apache.poi.xssf.usermodel.XSSFFont;

18 import org.apache.poi.xssf.usermodel.XSSFRow;

19 import org.apache.poi.xssf.usermodel.XSSFSheet;

20 import org.apache.poi.xssf.usermodel.XSSFWorkbook;

21

22 public class Excel {

23 static ArrayList <Object[]> df3 = new ArrayList <>();

24

25 public static ArrayList <Object[]> getDf3 () { return df3; }

26

27 public static void printToExcel(int simulationRunNumber)

28 {

29 XSSFWorkbook workbook = new XSSFWorkbook ();

30

31 ArrayList <Object[]> df4 = new ArrayList <>();

32

33 df4.add(new Object [] {

34 "Run simulator",

35 "Node ID",

36 "Node Type",

37 });

38

39 for (Object [] chain : getDf3 ()) {

40 df4.add(chain);

41 }

42 writeData(df4 , workbook , "tes");

43

44 String fname = "Statistics.xlsx";

45

46 try (FileOutputStream outputStream

47 = new FileOutputStream("output/Statistics.xls")) {
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48 workbook.write(outputStream);

49 } catch (FileNotFoundException e) {

50 e.printStackTrace ();

51 } catch (IOException e) {

52 e.printStackTrace ();

53 }

54 }

55

56 private static void writeData(

57 ArrayList <Object[]> DataFrame , XSSFWorkbook workbook ,

String sheetName)

58 {

59

60 XSSFSheet sheet = workbook.createSheet(sheetName);

61

62 int rowCount = 0;

63

64 for (Object [] rowData : DataFrame) {

65 XSSFRow row = sheet.createRow (++ rowCount);

66

67 int columnCount = 0;

68 for (Object field : rowData) {

69 XSSFCell cell = row.createCell (++ columnCount);

70 if (field instanceof String) {

71 cell.setCellValue (( String)field);

72 } else if (field instanceof Integer) {

73 cell.setCellValue (( Integer)field);

74 } else if (field instanceof Double) {

75 cell.setCellValue (( Double)field);

76 } else if (field instanceof Long) {

77 cell.setCellValue ((Long)field);
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78 }

79 }

80 }

81

82 formatExcelSheet(DataFrame.get(0).length , sheet , workbook);

83 }

84

85 private static void formatExcelSheet(

86 int columns , XSSFSheet sheet , XSSFWorkbook workbook)

87 {

88

89 XSSFFont font = workbook.createFont ();

90 font.setFontHeightInPoints ((short)11);

91 font.setBold(true);

92 font.setColor(IndexedColors.WHITE.getIndex ());

93 XSSFCellStyle style = workbook.createCellStyle ();

94 style.setFont(font);

95 style.setFillBackgroundColor(IndexedColors.BLACK.getIndex ())

;

96 style.setFillPattern(FillPatternType.SOLID_FOREGROUND);

97 XSSFRow header = sheet.getRow ((short)1);

98 for (int i = 1; i < header.getLastCellNum (); i++) {

99 header.getCell(i).setCellStyle(style);

100 }

101

102 for (int i = 1; i < columns + 1; i++) {

103 sheet.autoSizeColumn(i);

104 }

105 }

106 }
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A.2.5.2 ExcelWriter Class

The ExcelWriter class expands on the functionality of the Excel class A.2.5.1 by offering

more specialized and methods for reporting simulation results.

1 package IoTSimOsmosis.blockchainNetwork;

2

3 import java.awt.Desktop;

4 import java.io.File;

5 import java.io.FileNotFoundException;

6 import java.io.FileOutputStream;

7 import java.io.IOException;

8 import java.time.LocalDateTime;

9 import java.time.format.DateTimeFormatter;

10 import java.util.ArrayList;

11 import org.apache.poi.ss.usermodel.FillPatternType;

12 import org.apache.poi.ss.usermodel.IndexedColors;

13 import org.apache.poi.xssf.usermodel.XSSFCell;

14 import org.apache.poi.xssf.usermodel.XSSFCellStyle;

15 import org.apache.poi.xssf.usermodel.XSSFFont;

16 import org.apache.poi.xssf.usermodel.XSSFRow;

17 import org.apache.poi.xssf.usermodel.XSSFSheet;

18 import org.apache.poi.xssf.usermodel.XSSFWorkbook;

19

20 public class ExcelWriter {

21 static XSSFWorkbook workbook = new XSSFWorkbook ();

22 public static int runNumber;

23

24 public static void printToExcel(int simulationRunNumber)

25 {

26 runNumber = simulationRunNumber;

27 if (InputConfig.getConsensusalgorithm () == "PoW") {
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28 configPoW ();

29 resultPoW ();

30 blockchainLedgerPoW ();

31 blockchainTranscations ();

32 transcationPool ();

33 transcationLatency ();

34 statisticResult ();

35 } else if (InputConfig.getConsensusalgorithm () == "raft") {

36 configRaft ();

37 resultRaft ();

38 blockchainLedgerRaft ();

39 blockchainTranscations ();

40 transcationLatency ();

41 transcationPool ();

42 statisticResult ();

43 nodeLog ();

44 }

45

46 String fname = "Blockchain -" + (simulationRunNumber) + ".

xlsx";

47

48 try (FileOutputStream outputStream

49 = new FileOutputStream("output/" + fname)) {

50 workbook.write(outputStream);

51 outputStream.close();

52

53 Desktop.getDesktop ().open(new File("output/" + fname));

54

55 } catch (FileNotFoundException e) {

56 e.printStackTrace ();

57 } catch (IOException e) {
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58 e.printStackTrace ();

59 }

60 }

61

62 /**

63 * to print simulator configuration for PoW

64 */

65

66 public static void configPoW ()

67 {

68 ArrayList <Object[]> df1 = new ArrayList <>();

69

70 df1.add(new Object [] { "Simulator No. Run", "No. of Node", "

No. of Miner",

71 "consensus Algorithm", "No. of Transactions", "Block Gas

Limit",

72 "Transaction Gas Limit", "Block Interval", "Simulation

Time" });

73

74 df1.add(new Object [] {

75 runNumber ,

76 Node.getNodes ().size(),

77 InputConfig.getNumberOfMiner (),

78 InputConfig.getConsensusalgorithm (),

79 InputConfig.getTransactionNumber (),

80 InputConfig.getBlockGasLimit (),

81 InputConfig.getTransactionGaslimit (),

82 InputConfig.getBlockInterval (),

83 InputConfig.getSimulationTime (),

84 });

85
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86 // writing data frames to workbook

87 writeData(df1 , workbook , "config");

88 }

89

90 /**

91 * to print simulator configuration for Raft

92 */

93

94 public static void configRaft ()

95 {

96 ArrayList <Object[]> configRaft = new ArrayList <>();

97

98 configRaft.add(new Object [] {

99 "Simulator No. Run",

100 "No. of Node",

101 "No. of Miner",

102 "consensus Algorithm",

103 "Total No of Transactions Per Sec",

104 "Max Block Size",

105 "Max Tx Size",

106 "Min Tx Size",

107 "Block Interval",

108 "Simulation Time",

109 });

110

111 configRaft.add(new Object [] {

112 runNumber ,

113 Node.getNodes ().size(),

114 InputConfig.getNumberOfMiner (),

115 InputConfig.getConsensusalgorithm (),

116 InputConfig.getTransactionNumber (),
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117 InputConfig.getMaxBlockSize (),

118 InputConfig.getMaxTransactionSize (),

119 InputConfig.getMinTransactionSize (),

120 InputConfig.getBlockInterval (),

121 InputConfig.getSimulationTime (),

122 });

123

124 // writing data frames to workbook

125 writeData(configRaft , workbook , "config");

126 }

127

128 /**

129 * to print simulator result PoW

130 */

131

132 public static void resultPoW ()

133 {

134 ArrayList <Object[]> df2 = new ArrayList <>();

135

136 df2.add(new Object [] {

137 "Simulator No. Run",

138 "Total No. of Blocks",

139 "Total No. of Blocks include Tx",

140 "Total No. of Blocks without Tx",

141 "Total No of Transactions Per Sec",

142 "Avg. No. of Tx per block",

143 "Avg. of Tx Inclusion Time (secs)",

144 "Avg. Tx Used Gas",

145 "Total No. of Pending Tx",

146 "Avg. Block Propagation (secs)",

147 "Avg. Transaction Latency (secs)",
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148 "Transactions execution (secs)",

149 "Transaction Throughput (Tx/secs)",

150 });

151

152 df2.add(new Object [] {

153 runNumber ,

154 Statistics.totalNumberOfBlock ,

155 Statistics.blockIncludeTx ,

156 Statistics.blockWithoutTx ,

157 Statistics.totalNumberOfTx ,

158 Statistics.TxPerBlock ,

159 Statistics.TxInclusionTime ,

160 Statistics.TxUsedGas ,

161 Statistics.pendingTx ,

162 Statistics.blockPropagationTime ,

163 Statistics.averageLatency ,

164 Statistics.totalTransactionsTime ,

165 Statistics.transactionsThroughput ,

166 });

167

168 // writing data frames to workbook

169 writeData(df2 , workbook , "Results");

170 }

171

172 /**

173 * to print simulator result for Raft

174 */

175

176 public static void resultRaft ()

177 {

178 ArrayList <Object[]> df2 = new ArrayList <>();
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179

180 df2.add(new Object [] {

181 "Simulator No. Run",

182 "Total No. of Blocks",

183 "Total No. of Blocks include Tx",

184 "Total No. of Blocks without Tx",

185 "Avg. Block Size (MB)",

186 "Total No of Transactions",

187 "Avg. No. of Tx per block",

188 "Avg. of Tx Inclusion Time (secs)",

189 "Avg. Tx Size (MB)",

190 "Total No. of Pending Tx",

191 "Avg. Block Propagation (secs)",

192 "Avg. Transaction Latency (secs)",

193 "Transactions execution (secs)",

194 "Transaction Throughput (Tx/secs)",

195 });

196

197 df2.add(new Object [] {

198 runNumber ,

199 Statistics.totalNumberOfBlock ,

200 Statistics.blockIncludeTx ,

201 Statistics.blockWithoutTx ,

202 Statistics.blockSize ,

203 Statistics.totalNumberOfTx ,

204 Statistics.TxPerBlock ,

205 Statistics.TxInclusionTime ,

206 Statistics.TxSize ,

207 Statistics.pendingTx ,

208 Statistics.blockPropagationTime ,

209 Statistics.averageLatency ,
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210 Statistics.totalTransactionsTime ,

211 Statistics.transactionsThroughput ,

212 });

213

214 // writing data frames to workbook

215 writeData(df2 , workbook , "Results");

216 }

217

218 /**

219 * to print blockchain blocks PoW

220 */

221

222 public static void blockchainLedgerPoW ()

223 {

224

225 ArrayList <Object[]> df3 = new ArrayList <>();

226

227 df3.add(new Object [] { "Simulator No. Run", "Block ID", "

Previous Block ID",

228 "Block Depth", "Block Timestamp", "Block Used Gas",

229 "No. of Transactions", "Mined by", "hash power" });

230

231 for (Object [] chain : Statistics.getChains ()) {

232 df3.add(chain);

233 }

234

235 writeData(df3 , workbook , "block");

236 }

237

238 /**

239 * to print blockchain blocks Raft
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240 */

241

242 public static void blockchainLedgerRaft ()

243 {

244

245 ArrayList <Object[]> df3 = new ArrayList <>();

246

247 df3.add(new Object [] { "Simulator No. Run", "Block ID", "

Previous Block ID",

248 "Block Depth", "Block Timestamp", "Block Size", "No. of

Transactions",

249 "Mined by" });

250

251 for (Object [] chain : Statistics.getChains ()) {

252 df3.add(chain);

253 }

254

255 writeData(df3 , workbook , "block");

256 }

257

258 /**

259 * to print global blockchain

260 */

261

262 public static void globalBlockchain ()

263 {

264

265 ArrayList <Object[]> df4 = new ArrayList <>();

266

267 df4.add(new Object [] { "Simulator No. Run", "Block ID", "

Previous Block ID",
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268 "Block Depth", "Block Timestamp", "Block Received Time",

"Block Size",

269 "No. of Transactions" });

270

271 for (Object [] globalBlockchain : Statistics.

getGlobalBlockchain ()) {

272 df4.add(globalBlockchain);

273 }

274

275 writeData(df4 , workbook , "globalBlockchain");

276 }

277

278 /**

279 * to print transcations

280 */

281

282 public static void blockchainTranscations ()

283 {

284

285 ArrayList <Object[]> df5 = new ArrayList <>();

286 if (InputConfig.getConsensusalgorithm () == "PoW") {

287 df5.add(new Object [] { "Simulator No. Run", "Transaction

ID",

288 "Creation time ", "Confirmation time", "Transaction

size",

289 "Transaction Used Gas", "Block ID" });

290 for (Object [] transaction : Statistics.getTransactions ())

{

291 df5.add(transaction);

292 }

293 } else if (InputConfig.getConsensusalgorithm () == "raft") {
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294 df5.add(new Object [] { "Simulator No. Run", "Transaction

ID",

295 "Creation time ", "Confirmation time", "Transaction

size",

296 "Block ID" });

297 for (Object [] transaction : Statistics.getTransactions ())

{

298 df5.add(transaction);

299 }

300 }

301

302 writeData(df5 , workbook , "Transcations");

303 }

304

305 /**

306 * to print transcations latency

307 */

308

309 public static void transcationLatency ()

310 {

311

312 ArrayList <Object[]> df6 = new ArrayList <>();

313 df6.add(new Object [] { "Simulator No. Run", "Transaction ID"

,

314 "Creation time ", "Confirmation time", "Transaction

Latency" });

315

316 for (Object [] transactionLatency : Statistics.

getTransactionLatencies ()) {

317 df6.add(transactionLatency);

318 }
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319

320 writeData(df6 , workbook , "TransactionLatency");

321 }

322

323 /**

324 * to print transcations pool

325 */

326

327 public static void transcationPool ()

328 {

329 ArrayList <Object[]> df7 = new ArrayList <>();

330

331 if (InputConfig.getConsensusalgorithm () == "PoW") {

332 df7.add(new Object [] { "Simulator No. Run", "Transaction

ID",

333 "Creation time ", "Tx Used Gas ", "Status" });

334 for (Object [] transactionLatency : Statistics.

getTransactionsPool ()) {

335 df7.add(transactionLatency);

336 }

337 } else if (InputConfig.getConsensusalgorithm () == "raft") {

338 df7.add(new Object [] { "Simulator No. Run", "Transaction

ID",

339 "Creation time ", "Transaction Size", "Status" });

340 for (Object [] transactionLatency : Statistics.

getTransactionsPool ()) {

341 df7.add(transactionLatency);

342 }

343 }

344

345 writeData(df7 , workbook , "TransactionPool");
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346 }

347

348 /**

349 * to print nodes log for raft

350 */

351 public static void nodeLog ()

352 {

353 ArrayList <Object[]> df8 = new ArrayList <>();

354

355 df8.add(new Object [] { "Stage", "Node ID", "Node Type", "

Joining Time" });

356

357 for (Object [] NodesLog : Consensus.getNodesLog ()) {

358 df8.add(NodesLog);

359 }

360

361 writeData(df8 , workbook , "NodesLog");

362 }

363

364 /**

365 * to print statistic Result

366 */

367

368 public static void statisticResult ()

369 {

370 ArrayList <Object[]> df9 = new ArrayList <>();

371

372 df9.add(new Object [] {

373 "Item", "Minimum", "Maximum", "Mean", "Standard

Deviation" });

374
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375 df9.add(new Object [] { "Block Time", Statistics.minBlockTime

,

376 Statistics.maxBlockTime , Statistics.meanBlockTime ,

377 Statistics.SDBlockTime });

378

379 writeData(df9 , workbook , "statistic");

380 }

381

382 /**

383 * Writes each Array within Data frame as a Row in the excel

sheet.

384 *

385 * @param DataFrame

386 * @param workbook

387 * @param sheetName

388 */

389 private static void writeData(

390 ArrayList <Object[]> DataFrame , XSSFWorkbook workbook ,

String sheetName)

391 {

392

393 XSSFSheet sheet = workbook.getSheet(sheetName);

394 if (sheet == null) {

395 sheet = workbook.createSheet(sheetName);

396 }

397

398 int rowCount = 0;

399

400 for (Object [] rowData : DataFrame) {

401 XSSFRow row = sheet.createRow (++ rowCount);

402
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403 int columnCount = 0;

404 for (Object field : rowData) {

405 XSSFCell cell = row.createCell (++ columnCount);

406 if (field instanceof String) {

407 cell.setCellValue (( String)field);

408 } else if (field instanceof Integer) {

409 cell.setCellValue (( Integer)field);

410 } else if (field instanceof Double) {

411 cell.setCellValue (( Double)field);

412 } else if (field instanceof Long) {

413 cell.setCellValue ((Long)field);

414 }

415 }

416 }

417

418 // Basic aesthetic formating of Excel Sheet

419 formatExcelSheet(DataFrame.get(0).length , sheet , workbook);

420 }

421

422 /**

423 * Aesthetic formating of excel sheet

424 *

425 * @param columns

426 * @param sheet

427 * @param workbook

428 */

429 private static void formatExcelSheet(

430 int columns , XSSFSheet sheet , XSSFWorkbook workbook)

431 {

432

433 // Creating header font.
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434 XSSFFont font = workbook.createFont ();

435 font.setFontHeightInPoints ((short)11);

436 font.setBold(true);

437 font.setColor(IndexedColors.WHITE.getIndex ());

438

439 // Setting header font and header filling.

440 XSSFCellStyle style = workbook.createCellStyle ();

441 style.setFont(font);

442 style.setFillBackgroundColor(IndexedColors.BLACK.getIndex ())

;

443 style.setFillPattern(FillPatternType.SOLID_FOREGROUND);

444

445 XSSFRow header = sheet.getRow ((short)1);

446 // Setting style for each cell in the header row.

447 for (int i = 1; i < header.getLastCellNum (); i++) {

448 header.getCell(i).setCellStyle(style);

449 }

450

451 // Resize column widths

452 for (int i = 1; i < columns + 1; i++) {

453 sheet.autoSizeColumn(i);

454 }

455 }

456 }

A.2.5.3 Statistics Class

The Statistics class is designed for collecting, calculating, and reporting statistical data from

blockchain-based IoT simulation.

1 package IoTSimOsmosis.blockchainNetwork;

2
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3 import java.util.ArrayList;

4 import java.util.HashMap;

5 import java.util.Iterator;

6

7 public class Statistics {

8

9 private static ArrayList <Object[]> chains = new ArrayList <>();

10 private static ArrayList <Object[]> globalBlockchain = new

ArrayList <>();

11 private static ArrayList <Object[]> transactions = new

ArrayList <>();

12 private static ArrayList <Object[]> transactionLatencies = new

ArrayList <>();

13 private static ArrayList <Object[]> transactionsPool = new

ArrayList <>();

14 private static ArrayList <Object[]> Result = new ArrayList <>();

15 //

16 public static int totalNumberOfBlock = 0;

17 public static int totalNumberOfTx = 0;

18 public static double blockPropagationTime = 0;

19 public static double averageLatency = 0;

20 public static double transactionsThroughput = 0;

21 public static double firstCreationTime = 0;

22 public static double lastConfirmiationTime = 0;

23 public static double totalTransactionsTime = 0;

24 public static double blockIncludeTx = 0;

25 public static double blockWithoutTx = 0;

26 public static double TxPerBlock = 0;

27 public static double TxInclusionTime = 0;

28 public static double TxUsedGas = 0;

29 public static double TxSize = 0;
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30 public static double pendingTx = 0;

31 public static double blockSize = 0;

32 public static int runNumber = 0;

33 public static int blockTim = 0;

34 public static double SDBlockTime = 0;

35 public static double minBlockTime = 0;

36 public static double maxBlockTime = 0;

37 public static double meanBlockTime = 0;

38 public static double medBlockTime = 0;

39 public static double numberRun;

40

41 public static void calculate(int simulationRunNumber)

42 {

43 numberRun = simulationRunNumber;

44 blockchainLedger ();

45 globalBlockchain ();

46 transaction ();

47 transactionLatency ();

48 calculateLatency ();

49

50 transactionsPool ();

51 statisticResultBlockTime ();

52 overallResults ();

53 ExcelWriter.printToExcel(simulationRunNumber);

54 rest();

55 }

56

57 public static void calculateLatency ()

58 {

59

60 Node miner = null;
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61 for (Node m : Node.getNodes ()) {

62 if (m.getNodeType ().equals("leader") || m.getNodeType ().

equals("miner")) {

63 miner = m;

64 }

65 }

66 int blockchainSize = miner.getBlockchainLedger ().size();

67 int transactionListSize = miner.getBlockchainLedger ()

68 .get(blockchainSize - 1)

69 .getTransactions ()

70 .size();

71 if (blockchainSize > 0) {

72 if (miner.getBlockchainLedger ().get(0).getTransactions ().

size() > 0) {

73 firstCreationTime = miner.getBlockchainLedger ()

74 .get(1)

75 .getTransactions ()

76 .get(0)

77 .getCreationTime ();

78 }

79 if (miner.getBlockchainLedger ()

80 .get(blockchainSize - 1)

81 .getTransactions ()

82 .size()

83 > 0) {

84 lastConfirmiationTime = miner.getBlockchainLedger ()

85 .get(blockchainSize - 1)

86 .getTransactions ()

87 .get(transactionListSize -

1)

88 .getConfirmationTime ();
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89 }

90 totalTransactionsTime = lastConfirmiationTime -

firstCreationTime;

91 }

92

93 if (totalTransactionsTime > 0) {

94 transactionsThroughput = totalNumberOfTx /

totalTransactionsTime;

95 }

96 }

97

98 private static void blockchainLedger ()

99 {

100

101 Node miner = null;

102 for (Node node : Node.getNodes ()) {

103 if (node.getNodeType ().equals("leader")) {

104 miner = node;

105 }

106 }

107

108 Iterator <Block > iterator = miner.getBlockchainLedger ().

iterator ();

109 while (iterator.hasNext ()) {

110

111 Block b = iterator.next();

112 if (InputConfig.getConsensusalgorithm () == "PoW") {

113 if (b.getBlockID () == 0) {

114 totalNumberOfBlock += 1;

115 Object [] info = { numberRun , b.getBlockID (), b.

getPreviousBlockID (),
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116 b.getBlockDepth (), b.getBlockTimestamp (), 0, 0, "

Null", 0 };

117 getChains ().add(info);

118 } else {

119 totalNumberOfBlock += 1;

120

121 Object [] info = { numberRun , b.getBlockID (), b.

getPreviousBlockID (),

122 b.getBlockDepth (), b.getBlockTimestamp (), b.

getBlockGas (),

123 b.getTransactions ().size(), b.getMiner ().getNodeId ()

,

124 b.getMiner ().getHashPower () };

125 getChains ().add(info);

126 }

127 } else if (InputConfig.getConsensusalgorithm () == "raft")

{

128 if (b.getBlockID () == 0) {

129 totalNumberOfBlock += 1;

130 Object [] info = { numberRun , b.getBlockID (), b.

getPreviousBlockID (),

131 b.getBlockDepth (), b.getBlockTimestamp (), 0, 0, "

Null" };

132 getChains ().add(info);

133 } else {

134

135 totalNumberOfBlock += 1;

136 Object [] info = { numberRun , b.getBlockID (), b.

getPreviousBlockID (),

137 b.getBlockDepth (), b.getBlockTimestamp (), b.

getBlockSize (),
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138 b.getTransactions ().size(), b.getMiner ().getNodeId ()

};

139 getChains ().add(info);

140 }

141 }

142 }

143 blockPropagationTime = miner.getBlockchainLedger ()

144 .get(totalNumberOfBlock - 1)

145 .getBlockTimestamp ()

146 / totalNumberOfBlock;

147 }

148

149 private static void globalBlockchain ()

150 {

151

152 Node miner = Consensus.getAassignLeader ();

153 Iterator <Block > iterator = miner.getBlockchainLedger ().

iterator ();

154 while (iterator.hasNext ()) {

155

156 Block b = iterator.next();

157

158 if (b.getBlockID () == 0) {

159 Object [] info = { numberRun , b.getBlockID (), b.

getPreviousBlockID (),

160 b.getBlockDepth (), b.getBlockTimestamp (), b.

getBlockSize (),

161 b.getTransactions ().size(), 0, 0 };

162 getGlobalBlockchain ().add(info);

163 } else {
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164 Object [] info = { numberRun , b.getBlockID (), b.

getPreviousBlockID (),

165 b.getBlockDepth (), b.getBlockTimestamp (), b.

getBlockSize (),

166 b.getTransactions ().size(), b.getMiner ().getNodeId (),

167 b.getMiner ().getHashPower () };

168 getGlobalBlockchain ().add(info);

169 }

170 }

171 }

172

173 private static void transaction ()

174 {

175

176 Node miner = Consensus.getAassignLeader ();

177

178 for (Block b : miner.getBlockchainLedger ()) {

179 for (Transaction transaction : b.getTransactions ()) {

180 if (InputConfig.getConsensusalgorithm () == "PoW") {

181 Object [] info = { numberRun , transaction.

getTransactionID (),

182 transaction.getCreationTime (), transaction.

getConfirmationTime (),

183 transaction.getTransactionSize (), transaction.

getUsedGas (),

184 b.getBlockID () };

185 getTransactions ().add(info);

186 } else if (InputConfig.getConsensusalgorithm () == "raft"

) {

187 Object [] info = { numberRun , transaction.

getTransactionID (),
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188 transaction.getCreationTime (), transaction.

getConfirmationTime (),

189 transaction.getTransactionSize (), b.getBlockID () };

190 getTransactions ().add(info);

191 }

192 }

193 }

194

195 totalNumberOfTx = getTransactions ().size();

196 }

197

198 private static void transactionLatency ()

199 {

200 double TransactionLatency;

201 double totalTxLatency = 0;

202

203 Node Miner = Consensus.getAassignLeader ();

204

205 for (Block b : Miner.getBlockchainLedger ()) {

206 for (Transaction transaction : b.getTransactions ()) {

207 Object [] info = { numberRun , transaction.

getTransactionID (),

208 transaction.getCreationTime (), transaction.

getConfirmationTime (),

209 TransactionLatency

210 = transaction.getConfirmationTime () - transaction.

getCreationTime () };

211 getTransactionLatencies ().add(info);

212 totalTxLatency += TransactionLatency;

213 }

214 }
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215

216 averageLatency = totalTxLatency / totalNumberOfTx;

217 }

218

219 private static void overallResults ()

220 {

221 Node Miner = Consensus.getAassignLeader ();

222 for (Block b : Miner.getBlockchainLedger ()) {

223 blockSize += b.getBlockSize ();

224

225 if (b.getHasTx () == false) {

226 blockWithoutTx += 1;

227

228 } else if (b.getHasTx () == true) {

229 blockIncludeTx += 1;

230 TxPerBlock += b.getTransactions ().size();

231 }

232

233 for (Transaction t : b.getTransactions ()) {

234 TxInclusionTime += t.getConfirmationTime ();

235 TxUsedGas += t.getUsedGas ();

236 TxSize += t.getTransactionSize ();

237 }

238 }

239

240 blockSize = blockSize / totalNumberOfBlock;

241 TxPerBlock = TxPerBlock / totalNumberOfBlock;

242 TxInclusionTime = TxInclusionTime / totalNumberOfTx;

243 TxUsedGas = TxUsedGas / totalNumberOfTx;

244 TxSize = TxSize / totalNumberOfTx;

245 }
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246

247 private static void transactionsPool ()

248 {

249 Node node = Consensus.getAassignLeader ();

250 if (InputConfig.getConsensusalgorithm () == "PoW") {

251 node.getTransactionsPool ().sort(

252 (t1, t2) -> Double.compare(t2.getUsedGas (), t1.

getUsedGas ()));

253 for (Transaction transaction : node.getTransactionsPool ())

{

254 pendingTx += 1;

255 Object [] info = { numberRun , transaction.

getTransactionID (),

256 transaction.getCreationTime (), transaction.getUsedGas

(), "Pending" };

257 getTransactionsPool ().add(info);

258 }

259 } else if (InputConfig.getConsensusalgorithm () == "raft") {

260 node.getTransactionsPool ().sort(

261 (t1, t2)

262 -> Double.compare(t1.getCreationTime (), t2.

getCreationTime ()));

263 for (Transaction transaction : node.getTransactionsPool ())

{

264 pendingTx += 1;

265 Object [] info = { numberRun , transaction.

getTransactionID (),

266 transaction.getCreationTime (), transaction.

getTransactionSize (),

267 "Pending" };

268 getTransactionsPool ().add(info);
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269 }

270 }

271 }

272

273 public static void statisticResultBlockTime ()

274 {

275 double sumBlockTime = 0;

276

277 Node miner = Consensus.getAassignLeader ();

278 for (int i = 0; i < miner.getBlockchainLedger ().size(); i++)

{

279 sumBlockTime += miner.getBlockchainLedger ().get(i).

getBlockTimestamp ();

280 if (miner.getBlockchainLedger ().get(i).getBlockTimestamp ()

281 < minBlockTime) {

282 minBlockTime = miner.getBlockchainLedger ().get(i).

getBlockTimestamp ();

283 }

284 if (miner.getBlockchainLedger ().get(i).getBlockTimestamp ()

285 > maxBlockTime) {

286 maxBlockTime = miner.getBlockchainLedger ().get(i).

getBlockTimestamp ();

287 }

288 }

289 meanBlockTime = sumBlockTime / (totalNumberOfBlock - 1);

290

291 for (Block block : miner.getBlockchainLedger ()) {

292 SDBlockTime += Math.pow(block.getBlockTimestamp () -

meanBlockTime , 2);

293 }
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294 SDBlockTime = Math.sqrt(SDBlockTime / (totalNumberOfBlock -

1));

295 }

296

297 public static void rest()

298 {

299

300 totalNumberOfBlock = 0;

301 totalNumberOfTx = 0;

302 blockPropagationTime = 0;

303 averageLatency = 0;

304 transactionsThroughput = 0;

305 firstCreationTime = 0;

306 lastConfirmiationTime = 0;

307 totalTransactionsTime = 0;

308 blockIncludeTx = 0;

309 blockWithoutTx = 0;

310 TxPerBlock = 0;

311 TxInclusionTime = 0;

312 TxUsedGas = 0;

313 TxSize = 0;

314 pendingTx = 0;

315 blockSize = 0;

316 runNumber = 0;

317 blockTim = 0;

318 SDBlockTime = 0;

319 minBlockTime = 0;

320 maxBlockTime = 0;

321 meanBlockTime = 0;

322 medBlockTime = 0;

323 numberRun = 0;
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324

325 getChains ().clear();

326 getTransactions ().clear();

327 getTransactionLatencies ().clear();

328 getTransactionsPool ().clear ();

329 getResult ().clear();

330 getGlobalBlockchain ().clear ();

331 }

332

333 public static ArrayList <Object[]> getChains () { return chains;

}

334

335 public static ArrayList <Object[]> getTransactions () { return

transactions; }

336

337 public static ArrayList <Object[]> getTransactionLatencies ()

338 {

339 return transactionLatencies;

340 }

341

342 public static ArrayList <Object[]> getTransactionsPool ()

343 {

344 return transactionsPool;

345 }

346

347 public static ArrayList <Object[]> getResult () { return Result;

}

348

349 public static ArrayList <Object[]> getGlobalBlockchain ()

350 {

351 return globalBlockchain;
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352 }

353

354 public static int getRunNumber () { return runNumber; }

355 }





Appendix B

Simulator User Manual

B.1 Getting Started

B.1.1 Lifecycle of Blockchain-based IoT simulation

The overall architecture of Blockchain-based IoT simulation is divided into four main layers:

Configurator, Generator, Simulation Core, and Reporter, as discussed in the appendix A. The

simulation requires to configure both blockchain and IoTSim-Osmosis, as shown in Section

B.2.

B.1.2 System and Software Requirements

Table B.1 System and Software Requirements

Operating System Windows, Linux or Mac OS
CPU 1-GHz processor or equivalent (Minimum)
RAM 2GB (Minimum))
Java JDK version 11+
IDE Any IDE for Java programming language (e.g. Eclipse or NetBeans)
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B.1.3 Download Blockchain-based IoT simulation

Blockchain-based IoT simulation can be downloaded directly from the GitHub repository 1,

as shown in Figure B.1.

Fig. B.1 Download form GitHub

B.1.4 Directory Structure of Blockchain-based IoT simulation

The figure B.2 shows the structure of the Blockchain-based IoT simulation framework, which

is defined as follows.
1https://github.com/AlbshriAdel/BlockSimOsmosis

https://github.com/AlbshriAdel/BlockSimOsmosis
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Fig. B.2 Directory Structure of Blockchain-based IoT simulation

• BlockSimOsmosis: The root directory of the Blockchain-based IoT simulation frame-

work.

– examples:This directory contains examples of Blockchain-based IoT simulations,

as shown in Figure B.3.
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Fig. B.3 Examples Directory

– sources:contains the source code of Blockchain-based IoT simulation along with

any input files that are necessary to run the simulation, as shown in Figure B.4.

Fig. B.4 Blockchain-based IoT Sources

– inputFiles:Contains the required files for IoTSim-Osmosis. This directory is

important for simulations that integrate IoT simulations with the blockchain, as

shown in Figure B.5.
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Fig. B.5 inputFiles for IoTSim-Osmosis

– output: Contains all output results in Excel file format, as shown in Figure B.5.
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Fig. B.6 Output File for Blockchain-based IoT Simulation

B.1.5 Setup Blockchain-based IoT simulation

Before utilising Blockchain-based IoT Simulation, it is essential to correctly import and

configure the project within your development environment. Therefore, this user manual

provides step-by-step instructions for importing the blockchain-based IoT Simulation project

using Eclipse. This simulation is based on Maven for dependency management. The primary

steps include the following.

Step 1:
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• Install the Eclipse IDE using the following link2.

• Then, install Maven on Eclipse by following the steps explained in the following link3.

Step 2:

To import a blockchain-based IoT simulation into Eclipse as a Maven project, open Eclipse,

select the File menu and choose Import, as illustrated in Figure B.7.

Fig. B.7 Import the Blockchain-based IoT simulation

Step 3:

Choose Maven and then Existing Maven Projects, as illustrated in Figure B.8.

2https://www.eclipse.org/downloads/
3https://www.eclipse.org/m2e/

https://www.eclipse.org/downloads/
https://www.eclipse.org/m2e/
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Fig. B.8 Existing Maven for Block-based IoT Project

Step 4:

Navigate to and select the Blockchain-based IoT project folder. Then, click Finish, as

illustrated in Figure B.9 .

Fig. B.9 Navigate to and select the Blockchain-based IoT project
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Step 5:

Right-click on the Blockchain-based IoT project, choose Maven, and then select Update

Project, as illustrated in Figure B.10.

Fig. B.10 Maven Updating

Upon a successful Maven build of the blockchain-based IoT project in Eclipse, you will

observe a BUILD SUCCESS message, as depicted in Figure B.11.

Fig. B.11 A message of build success for importing the Blockchain-based IoT Project

Step 6:

The Blockchain simulation is based on IoTSim-Osmosis which utilises the Lombok library



334 Simulator User Manual

for entity configuration. Navigate to the Maven Dependencies directory, right-click on the

Lombok*.jar file, and select Run As followed by Java Application, as illustrated in Figure

B.12.

Fig. B.12 Lombok library

B.2 Simulation configuration

Before initiating the actual simulation, you must configure both the blockchain and the IoT

components, as illustrated in Figures B.13 and B.14.

Fig. B.13 Blockchain configuration
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Fig. B.14 IoT configuration

B.3 Simulation example

There is an example of running blockchain-based IoT simulation, as shown in Figures B.15

and B.16.

Fig. B.15 Example



336 Simulator User Manual

Fig. B.16 The main example to run the Blockchain-based IoT simulation

B.4 Output results

Once the blockchain-based IoT simulation finishes running, it would produce results in Excel

format. The results are structured as follows:

Configuration:

This provides information on the parameters used to carry out the experiment, as shown in

Figure B.17.
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Fig. B.17 Configuration

Overall result:

A benchmark report provides a summary of the overall performance of a blockchain-based

IoT, as shown in Figure B.18.

Fig. B.18 Overall result

Blocks overview:

A benchmark report provides details about the individual blocks that were added to the

blockchain during the simulation, as shown in Figure B.19.
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Fig. B.19 Blocks overview

Transactions latency overview:

A benchmark report provides details on the latency for each transaction in a blockchain-based

IoT, as shown in Figure B.20.
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Fig. B.20 Transactions latency overview





Appendix C

Real Blockchain Implementation and

Performance Benchmarks

This Appendix demonstrates the practical application of a real blockchain (e.g., quorum

Blockchain) setup and deployment into a cloud infrastructure. It also illustrates the process

of utilising Hyperledger Caliper (a well-established blockchain performance framework)

to evaluate the performance of the real blockchain application and obtain its performance

metrics.

C.1 Environment Setup

This section describes the infrastructure and software requirements for deploying a real-world

blockchain system over a cloud infrastructure.

C.1.1 Cloud Infrastructure Deployment

In our experiment, we utilised a cloud-based infrastructure leased for the experiment purposes.

It consists of 32 virtual CPUs (vCPUs) derived from an Intel(R) Xeon(R) Gold 6140 processor,

operating at a frequency of 2.30GHz, complemented by 64GB of RAM, as discussed in

Section 5.4.2.
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C.1.1.1 Dependency Resources

1. The operating system used for the experiments Linux Ubuntu (server version).

2. Docker and Docker Compose are mainly used for installing and building the blockchain

network. The following commands ensure their installation:

1 # Update the package lists.

2 sudo apt -get update

3 # Install Docker.

4 sudo apt -get install docker.io

5 # Install Docker Compose.

6 sudo apt -get install docker -compose

Figures C.1a and C.1b delineate the versions of Docker and Docker Compose that we

utilize in our experiment.

(a) Docker Version (b) Docker-compose Version

Fig. C.1 Docker

3. The following command is to install Node.js and npm, which are critical for running

JavaScript server-side and managing project dependencies, respectively. They are
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especially important for managing the deployment of smart contracts and providing

an interface that enables IoT clients and other software to interact with the deployed

smart contract. Figure C.2a and C.2b show the Nodejs and npm installed versions.

1 # Install Node.js.

2 apt install nodejs

3 # Install npm.

4 apt install npm

(a) Nodejs Version (b) NPM Version

Fig. C.2 Nodejs and NPM

C.1.2 Deployment of the Real Blockchain Platform

Quorum blockchain is the real blockchain platform used for the purposes of evaluating

the accuracy of the proposed simulation in chapter 5. The deployment of the blockchain

took place on the rented cloud infrastructure, as previously mentioned in Section C.1.1, by

leveraging the development quick start guide provided by Quorum, as presented below.

1 npx quorum -dev -quickstart

Figure C.3a delineates the procedural steps undertaken for deploying the Quorum

blockchain network. Subsequently, Figure C.3b illustrates the operational state of the

blockchain nodes. The functionality and status of these nodes were examined through the

inspection of Docker containers, with each node operating within its respective container.

Additionally, Figure C.3c offers an overview of operational blockchain nodes within the

network.
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(a) The deployment of the Quorum blockchain

(b) Active blockchain nodes

(c) An overview of active nodes

Fig. C.3 Quorum blockchain
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C.2 Hyperledger Caliper

Hyperledger Caliper is a well-established blockchain performance evaluation framework

that can adapt to various blockchain platforms such as Quorum, Hyperledger Fabric and

Ethereum. This thesis utilises it to benchmark the performance of the deployed blockchain

network to obtain real performance metrics. These metrics are intended to be compared with

ones produced by the proposed simulator in chapter 5. Following are the configuration details,

the benchmark configurations, the network interface specifications, and the IoT behaviour

logic for each benchmark worker.

C.2.1 Benchmark Configuration of IoT-based Firefighting Scenario

Listing C.2.1 illustrates an example of configuring Hyperledger Caliper to benchmark the

real blockchain platform. It defines the IoT device and its functionality. It also sets the total

number of transactions (i.e. 3200), The number of transactions to be sent per second (i.e.

3200 indicating all at once), and the logic the benchmark worker should follow. For instance,

this thesis encoded an IoT-based logic to express the process of sensing a fire alert based

on a positive alert emitted from a flame sensor. The benchmark listing here shows that this

logic is defined in a JavaScript file named (sendFireAlerts.js). As shown in Figure C.6, the

benchmark undertook several rounds where the send rate changes for each round from 25

transactions per second to 3200 transactions per second. Therefore, this file changes with

this respect for every benchmark round to reflect the intended number of sent transactions

per second.

1 simpleArgs: &simple -args

2 IoTDevice: ’flameSensor ’

3 fireAlert: true

4 test:

5 name: simple

6 description: >-

7 This is an example benchmark for Caliper , to test the

backend DLT ’s
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8 performance with IoT -based firefighting system and fire

alert transactions.

9 workers:

10 type: local

11 number: 1

12 rounds:

13 - label: Fire Alerts

14 description: >-

15 Test description for the sending of fire alert to smart

contract.

16 txNumber: 3200

17 rateControl:

18 type: fixed -rate

19 opts:

20 tps: 3200

21 workload:

22 module: /root/benchmark/sendFireAlerts.js

23 arguments: *simple -args

C.2.2 Network Configuration of IoT-based Firefighting Scenario and

Smart Contract Deployment

The Hyperledger Caliper has to interface with the blockchain system under test to conduct

the performance evaluation. Listing C.2.2 illustrates a network interface file for connecting

and communicating with the corresponding blockchain platform. First, a smart contract is

encoded to represent the logic of responding to fire alerts emitted from false sensors through

benchmark workers. The smart contract is then compiled and deployed to each validating

blockchain node in the network to execute received transactions (fire alerts). A special

property called contracts indicates how to access the smart contract (through a file named

IoTEmergencySystem.json). Also, this file defines the types of the blockchain network under
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test. Here, it indicates Ethereum because Qoroum is essentially a consortium blockchain

version extended from Ethereum. The network interface file also defines which URL address

to route transactions to and what account to pay the transaction fees for transactions and

contract deployment. The experiment uses dummy coins for conducting the test to be

consumed by the benchmark workers.

1 {

2 "caliper": {

3 "blockchain": "ethereum",

4 "command" : {

5 "start": "echo start benchmark",

6 "end": "echo finish benchmark"

7 }

8 },

9 "ethereum": {

10 "url": "ws://127.0.0.1:8546",

11 "fromAddress": "0xc9c913c8c3c1cd416d80a0abf475db2062f

161f6",

12 "contractDeployerAddress": "0xc9c913c8c3c1cd416d80a0

abf475db2062f161f6",

13 "transactionConfirmationBlocks": 12,

14 "contracts": {

15 "IoTEmergencySystem": {

16 "path": "/root/benchmark/IoT/

IoTEmergencySystem.json",

17 "gas": {

18 "sendFireAlerts": 45000

19 }

20 }

21 }
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22 }

23 }

C.2.3 Worker Behaviour: Fire Alerts

Each worker participates in benchmarking the blockchain performance by sending transac-

tions as defined in the benchmark configurations and the network interface files. Listing C.2.3

express the IoT logic to be followed by each worker when sending transactions (fire alerts)

to the respective smart contract over the blockchain network. It also captures the duration of

when a transaction begins and ends for measuring the throughput and latency. All capture

values are recorded into an Excel file for later evaluation.

1 ’use strict ’;

2

3 const fs = require(’fs’);

4 const OperationBase = require(’/root/benchmark/utils/operation -

base’);

5 const SimpleState = require(’/root/benchmark/utils/simple -state’

);

6

7 /**

8 * Workload module for initializing the SUT with various

accounts.

9 */

10 class IoTLogic extends OperationBase {

11 /**

12 * Initializes the parameters of the workload.

13 */

14 constructor () {

15 super();
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16 this.csvFile = ’/root/benchmark/transaction_details.csv’

; // Path to the CSV file

17 this.counter = 0; // Counter for transactions

18 }

19

20 /**

21 * Create an empty state representation.

22 * @return {SimpleState} The state instance.

23 */

24 createSimpleState () {

25 return new SimpleState(this.workerIndex , this.IoTDevice ,

this.fireAlert);

26 }

27

28 /**

29 * Assemble TXs for IoTLogicing new accounts.

30 */

31 async submitTransaction () {

32 let createArgs = this.simpleState.

getIoTLogicAccountArguments ();

33 const startTime = Date.now();

34 try {

35 await this.sutAdapter.sendRequests(this.

createConnectorRequest(’IoTLogic ’, createArgs));

36 } catch (error) {

37 console.error(’Error submitting transaction:’, error

);

38 return;

39 }

40 const endTime = Date.now();

41 const latency = endTime - startTime;
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42 const csvData = ‘${this.counter},${startTime},${endTime

},${latency }\n‘;

43 try {

44 fs.appendFileSync(this.csvFile , csvData);

45 } catch (error) {

46 console.error(’Error saving transaction details:’,

error);

47 }

48 this.counter ++;

49 }

50 }

51

52 /**

53 * Create a new instance of the workload module.

54 * @return {WorkloadModuleInterface}

55 */

56 function createWorkloadModule () {

57 return new IoTLogic ();

58 }

59 module.exports.createWorkloadModule = createWorkloadModule;

C.2.4 Python Script to Automate Deployment and Performance bench-

mark

Given the multiple rounds required for obtaining sufficient performance data, all commands

related to executing the above-mentioned configurations and specifications are automated

by encoding into Python script, as per Listing C.2.4. The generated performance reports

by Hyperledger Caliper are captured by this script and recorded into an Excel file for later

statistical analysis and pattern observation (such as changes in average throughput and latency

and their correlation). Figure C.4 shows the outcome of the Script.
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1 import subprocess

2 import pandas as pd

3 from bs4 import BeautifulSoup

4 import re

5 import time

6

7 # Define the number of times to run the benchmark

8 num_runs = 1

9

10 # Generate the shell command for running the benchmark.

11 shell_command = f"npx caliper launch manager \

12 --caliper -networkconfig quorum -test -network/

networkconfig.json \

13 --caliper -benchconfig benchmark/benchconfig.yaml"

14

15 # Define the CSV file name

16 csv_file = "benchmark_results.csv"

17

18 # Run the benchmark multiple times

19 for i in range(num_runs):

20 print(f"Running benchmark iteration {i + 1}")

21 subprocess.run(shell_command , shell=True)

22

23 # Read data from the report.html file

24 report_file = f"report.html"

25

26 # Extract the table content using BeautifulSoup

27 with open(report_file , "r") as f:

28 html_content = f.read()

29

30 soup = BeautifulSoup(html_content , "html.parser")
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31 tables = soup.find_all("table")

32

33 if tables:

34 # Parse the first table HTML into a DataFrame

35 report_data = pd.read_html(str(tables [0]))[0]

36

37 # Rename the columns to match the desired format

38 column_names = ["Name", "Succ", "Fail", "Send Rate (TPS)

", "Max Latency (s)", "Min Latency (s)", "Avg Latency

(s)", "Throughput (TPS)"]

39 report_data.columns = column_names

40

41 # Modify the "Name" column values

42 report_data["Name"] = report_data["Name"].str.replace("

_R", f"_{i+1}")

43

44 # Append data to the CSV file

45 report_data.to_csv(csv_file , mode="a", index=False ,

header=not i)

46 else:

47 print(f"No performance metrics table found in {

report_file }.")

48

49 # Add a 1-second delay before the next iteration

50 time.sleep (120)
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Fig. C.4 Reformatting and Organising the Collected Data from HyperLedger Caliper into
Excel Format

C.2.5 Blockchain Performance Report Generated by Hyperledger Caliper

By executing each benchmark round, a performance report is generated and preserved as in

Figure C.5.

Fig. C.5 Example Blockchain Performance Report for One of the Benchmark Rounds
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C.2.6 Comparative Analysis

Figure C.6 depicts the process of accumulating data about the performance evaluation from

the simulator and the real-world blockchain platform, as explained above. Two performance

metrics are considered: throughput and latency, which are used for the comparative analysis

between the simulator and the real blockchain platform.

Fig. C.6 Comparative Analysis between the Real Blockchain Platform and the Simulator in
Terms of Latency and Throughput
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