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Abstract 

Reducing Antimicrobial Resistance (AMR) in the environment requires adopting a 

One Health approach. However, most current river catchment monitoring is limited to 

focused rather than holistic research work, often in more contaminated river 

catchments. The sources and drivers of AMR in less-impacted rural catchments are 

not as well defined. Further, studying such catchments can be problematic because 

wide scale environmental monitoring is expensive, time consuming and currently not 

standardised. To address such problems, a comprehensive spatial assessment was 

conducted on AMR in two rural river catchments in the North of England. The work 

included the Coquet River in Northumberland and the Eden in Cumbria, which both 

have rural land-use, but different hydrometeorological characteristics. A subsequent 

focused study was performed on the Coquet catchment that used Fast-Expectation 

Maximization for Microbial Source Tracking (FEAST), a relatively new approach, for 

whole community microbial source tracking. The catchment comparison revealed 

that elevated river flows, rainfall and runoff in the Eden catchment led to a higher 

abundance and higher diversity of resistance genes (Kruskal Wallis, p<0.05) and 

clinically relevant ARGs such as blaKPC. The FEAST analysis also revealed the influx 

of ARGs from wastewater effluent were not sustained down the course of the Coquet 

river. Microbial communities and resistance genes in these catchments were driven 

primarily by environmental factors, such as catchment hydrology and nutrient 

limitation (described through N:P ratios), rather than point sources. These studies 

highlighted the need for increased monitoring to support these findings, and to inform 

routine monitoring. Models can be important public health decision tools to support 

such surveillance. The Soil and Water Assessment Tool (SWAT) was used to 

simulate E. coli and ESBL E. coli for the Coquet catchment, demonstrating the 

potential of SWAT to predict E. coli and ESBL E. coli to support on-site monitoring of 

AMR.  
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Chapter 1 Introduction 

The effect of the recent COVID-19 pandemic on human health and global economies 

provided a stark insight into the potential impacts of antimicrobial resistance (AMR), 

should the problem continue to proliferate. Antibiotics are essential for modern 

healthcare, treating enumerable infections such as pneumonia, bacteraemia and 

surgical site infections. Due to increased antibiotic use, secondary infections and the 

development of drug-resistant nosocomial infections, the pandemic has only 

enhanced the existing problem of AMR (Ukuhor 2021). Additional external factors are 

also reported to influence the development of resistance, such as population density 

and local temperature, meaning the burden of AMR could be further enhanced with 

global population increase and climate change (MacFadden et al. 2018). 

The introduction of numerous types of antibiotics for human and animal healthcare 

during the 20th century, resulted in a significant advancement of healthcare and 

agricultural practices. However, with limited novel antibiotics being discovered (Fair 

and Tor 2014), and novel forms of resistance emerging, we are running out of 

options to treat emerging forms of resistance and resistant infections. In addition, 

some of the resistance mechanisms are so complex, that our current antimicrobials 

cannot overcome them (Ventola 2015). Whilst alternative treatments to bacterial 

infections exist, including phage therapy and nanoparticles, these are still in their 

infancy (Alaoui Mdarhri et al. 2022).  

Globally, significant economic and health costs related to AMR have been projected 

and estimates for 2050 predict that AMR will incur costs of around US$100 trillion as 

well as ~10 million deaths, a figure which exceeds that of cancer (O’Neill 2016). 

Therefore, AMR has become a global priority, particularly in the response to the 

World Health Organisation (WHO) action plan on AMR (WHO 2016). Part of this plan 

includes an increase in surveillance and research, and has led to initiatives such as 

the WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS). 

Launched in 2015 GLASS aims to standardise the approach for monitoring and 

surveillance of AMR across countries (WHO 2020, 2021a).  

AMR is naturally occurring, with antibiotic resistance genes (ARGs) found in ~30,000 

yr-old glacial sediments (Dcosta et al. 2011). However, the naturally present 

resistance in the environment has been enhanced and expanded by human activity. 
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Antibiotics are extensively used in animal, environmental as well as human settings. 

In agriculture, antibiotics are supplied to animals for therapeutic purposes, but in 

some countries and settings, also for growth promotion or to compensate for poor 

hygiene practices (Wegener 2003). Resistance can enter the environment through 

faecal contamination, or through spreading of farm slurry on to agricultural land. In 

the UK, around 50% of antibiotics are used for agricultural processes, and this is 

predicted to rise to 67% in 2030 (Manyi-Loh et al. 2018). Whilst the UK government 

are introducing measures to limit agricultural antibiotic use, resistance to commonly 

used antibiotics remains high in livestock (Hennessey et al. 2020). Due to the 

potential intersection of human, animal and environmental antimicrobial resistance, 

there is a need to understand the potential transmission pathways. Therefore, AMR 

should be studied within the context of ‘One Health’, which concerns the 

interconnection of human, animal and environmental health.  

Assessing the anthropogenic impact on AMR within an environment can be 

determined through analysis of a river system at catchment scale, as rivers act as a 

conduit for environmental contamination. Most studies to date have focused on 

evidently “contaminated” catchments (particularly in the United Kingdom) and studies 

investigating rural AMR are lacking. In addition, studies investigating environmental 

AMR primarily focus on isolated and single river catchments. Due to the lack of 

standardisation of techniques for investigating AMR and microbial communities, 

comparison across different studies is often impossible. Therefore, external drivers 

for AMR, such as hydrology and climate cannot easily be identified or distinguished. 

Factors like precipitation and runoff are likely to be important for the dissemination of 

AMR in a river catchment (Almakki et al. 2019), particularly in environments where 

there is agricultural contamination.  

In rural river catchments, there are many potential sources which can enhance the 

natural resistome, including small wastewater treatment works, septic tanks, 

agricultural contamination, and-or co-selective agents, such as metals and biocides 

(Stepanauskas et al. 2006; Seiler and Berendonk 2012; Robins et al. 2022). 

Recently, Fast Expectation Maximization Microbial Source Tracking- or ‘FEAST’, was 

developed as an approach for source tracking using whole microbial communities 

and resistance genes from sources and sinks (Shenhav et al. 2019). Whilst methods 

such as these can be used to estimate the sources contributing to the microbial 
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communities and resistance genes in a sample, the factors which control the survival 

need to be understood. Nutrient availability could be an important factor in 

influencing this (Hibbing et al. 2010), but has yet to be investigated in the context of 

AMR within rural river systems.  

Environmental surveillance for the purposes of AMR risk assessment is still not 

common practice, and prioritising the locations and tools to conduct this surveillance 

is still ongoing (Bengtsson-Palme et al. 2023). For a more targeted surveillance 

approach, there is a need to determine where areas of interest may be (e.g., AMR 

hotspots), where in-depth analysis may be conducted (e.g. genomic and 

metagenomic analysis). For this, predictive models, such as AMR models in river 

systems may help to identify AMR hotspots and have received increased research 

interest over the last decade (Hellweger et al. 2011; Hellweger 2013; Gothwal and 

Thatikonda 2018, 2020; Van Heijnsbergen et al. 2022; Jampani et al. 2023; Niebaum 

et al. 2023) and those which enable the use of Geographical Information Systems 

(GIS) can incorporate spatial information into the AMR model. This includes the Soil 

and Water Assessment tool (SWAT), which is open source, and has been applied to 

many disciplines, including predicting pathogen concentrations in a river catchment 

(Coffey et al. 2010a, 2013; Frey et al. 2013; Niazi et al. 2015), but has yet to be used 

for AMR prediction.  

1.1 Thesis aims and objectives 

This PhD thesis aims to understand the importance of various drivers and sources of 

rural AMR in Northern England and to suggest the best tools and approaches for 

continued surveillance. This aim will be met through addressing the following 

objectives: 

1. Perform a thorough spatial assessment of AMR and microbial communities in 

the Coquet (Northumberland) and Eden (Cumbria) Rivers.  

2. Compare the microbial and hydrological signatures of the Coquet and Eden 

River catchments.  

3. Focusing on the Coquet catchment, use FEAST as an approach for 

community source tracking and determine the most important sources in the 

catchment.  

4. Identify the sources and drivers for AMR in rural river catchments in the UK  
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5. Demonstrate the ability of the open-source SWAT modelling tool to predict 

AMR hotspots in a river catchment.  

6. Suggest tools and approaches to continue monitoring environmental AMR in 

rural river catchments 

1.2 Thesis outline  

This thesis consists of six chapters: 

Chapter 1 introduces the thesis, the aims and tasks, and the structure. 

Chapter 2 reviews the literature on the sources and drivers of environmental AMR 

and modelling AMR in the environment.   

Chapter 3 compares the Coquet and Eden River catchments, which both have 

similar land-uses but different hydrometeorological characteristics. Through 

comparison of catchment hydrology and microbial signatures, drivers for elevated 

AMR could be identified and interpreted. 

Chapter 4 focuses on the Coquet River catchment and assesses the contribution of 

‘source’ samples to the downstream river composition. Microbial communities and 

resistance genes from point source samples and river samples were used in 

combination with the FEAST approach for microbial source tracking. This study also 

investigates the impact of nutrient availability on the persistence of resistance genes.  

Chapter 5: develops a SWAT hydrological model for the Coquet catchment and 

integrates modelling of E. coli and extended spectrum beta-lactamase (ESBL) E. coli 

as indicators for AMR.  

Chapter 6 summarises the findings from the studies, the application of the research 

findings to evaluate and map AMR risk in river catchments and recommends 

directions for future research. 
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Chapter 2 Literature review 

2.1 Origin and dissemination of antimicrobial resistance 

The discovery of antibiotics in 1928 has transformed our modern healthcare system, 

making previously life-threatening infections easily treatable, as well as allowing for 

major surgeries and organ transplantation. Alexander Fleming’s discovery of 

penicillin, triggered the ‘golden age of antibiotic discovery’ in the 1930s and 1960s 

(Dantas and Sommer 2011), with the development of broad-spectrum streptomycin, 

tetracyclines, chloramphenicol, erythromycin and other life-saving antibiotics (Keen 

and Montforts 2011). However, as stated by Alexander Fleming in his Nobel Prize 

acceptance speech in 1945: “It is not difficult to make microbes resistant to penicillin 

in the laboratory by exposing them to concentrations not sufficient to kill them, and 

the same thing has occasionally happened in the body” (Fleming 1945). This effect 

was observed with the discovery of novel antimicrobials, quickly followed by the 

development of resistance (Dantas and Sommer 2011) (Figure 2-1). 

 

Figure 2-1 The clinical deployment of antibiotics (blue bars) was quickly followed by resistant 
bacteria (red bars) from (Dantas and Sommer, 2014) 

In the 1970s and 80s, multidrug resistant (MDR) infectious organisms were 

emerging, and the problem of resistance had extended beyond clinical settings (Keen 

and Montforts 2011). The widespread use of antimicrobials in agriculture changed the 

course of livestock production, towards intensive industrialised production (Caneschi 

et al. 2023). Antimicrobials in agriculture were used for therapeutic use, but also 

intensively for growth promotion purposes (Davies and Davies 2010). The long-term 
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development of resistance in agriculture is evident from archival soils, which showed 

an increase in resistance from 1940 to 2010 (Knapp et al. 2010).  

Whilst resistance to antibiotics aligns with widespread antibiotic consumption (Dantas 

and Sommer 2014), the evolution and acquisition of antibiotic resistance genes 

(ARGs) is a natural phenomenon and occurs in the absence of antibiotic use. It has 

been suggested that the role of natural (or ‘intrinsic’) resistance, is to resist antibiotic 

compounds produced by a microorganism to inhibit the growth for other members of 

the microbial community and reduce competition for resources (Kümmerer 2009). 

ARGs have been recovered from DNA extracted from ancient Beringian permafrost 

sediments (Dcosta et al. 2011) and multiresistant Springomonas sp. was isolated 

from an Antarctic hypolith (Gunnigle et al. 2015). Chen et al., (2019a) compared the 

metagenomics profiling of the Chaobai river in China and two pristine environments: 

Antarctic soils and deep-sea sediments. In pristine environments, it was found that 

ARGs encoding resistance to the antibiotic bacitracin were the most dominant in 

abundance. Additional studies have also shown that the gene bacA is intrinsic (Hu et 

al. 2013). Overall, the concentration of intrinsic resistance has been estimated to be 

very low (Kümmerer 2009; Dcosta et al. 2011). 

Due to the low concentration of intrinsic environmental AMR, most of the discussion 

related to antibiotic resistance in environmental settings focuses on acquired 

resistance, where stressors from human activity exacerbate and select resistance in 

strains, including pathogens, which were not originally resistant. For acquired 

resistance, there are four ways in which bacteria can resist antibiotics: (1) exporting 

substance from cells using the upregulation of efflux pumps (2) modifying the 

antibiotic through genetic mutation or hydrolysis, (3) expressing degradation 

enzymes which make the antibiotic ineffective, and (4) protecting the molecular target 

of the antibiotic (e.g. such as the ribosome) (Arzanlou et al. 2017; Abushaheen et al. 

2020). Mechanisms which are characteristics of intrinsic resistance include modifying 

the permeability of the outer membrane, which can influence the ability of an 

antibiotic to enter the bacteria cells (Cox and Wright 2013). Efflux pumps can also be 

an intrinsic mechanism of resistance, as they have been shown to have evolved for 

purposes other than resisting antibiotics (Cox and Wright 2013). Resistance can be 

transferred between bacteria through horizontal (HGT) and vertical gene transfer 

(VGT) (Arnold et al. 2022). VGT occurs through progeny of original hosts (Lawrence 

2005). However, compared to VGT, HGT has more diverse methods of acquiring 
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resistance, including (1) natural transformation, where a cell assimilates DNA from its 

natural environment (2) transduction, where a virus moves DNA from one bacterial 

cell to another, and (3) conjugation, where one bacterium transfers genetic material 

to another bacterium through physical connection (von Wintersdorff et al. 2016).  

Acquired resistance can also be facilitated by mobile genetic elements (MGEs). 

MGEs, including (1) plasmids, small circular double stranded extrachromosomal DNA 

found within a bacteria and capable of self-replication (Bennett 2008), (2) 

transposons, genetic elements referred to as ‘jumping genes’ due to their ability to 

‘jump’ to different locations in the genome (Pray 2008) and (3) bacteriophages, 

viruses that infect bacteria and facilitate the exchange of genetic material (Calero-

Cáceres et al. 2019; Strange et al. 2021). Prior to the development of antibiotics, 

ARGs were located on the chromosome of non-pathogenic bacteria: however, since 

the antibiotic era, ARGs have been increasingly found on MGEs in pathogenic and 

faecal bacteria (Datta and Hughes 1983).  

Integrons have been particularly associated with the dissemination of AMR, as they 

are genetic elements with the ability to integrate and express ARGs. Class 1 

integrons (intl1) were proposed as a proxy for anthropogenic pollution (Gillings et al. 

2015). Integrons facilitate the integration of ARGs, typically as part of gene cassettes, 

which are inserted into the integron structure by recombination between the attC of 

the cassette and attl site of an integron (Figure 2-2) (Gillings 2014). Through 

repeated recombination events, integrons can collect as well as disperse gene 

cassettes as free circular DNA elements (Hocquet et al. 2012; Quintela-Baluja et al. 

2021).  

2.2 Ecology of antimicrobial resistance in the environment 

With the use of antibiotics in human, animal and environmental settings, AMR has 

been acknowledged as a One Health issue, which recognises the interconnection of 

the human, animal and environmental health sectors (Figure 2-3) (Robinson et al. 

2016; Walsh 2018; Léger et al. 2021; Larsson et al. 2023). Through anthropogenic 

activity, bacteria from different origins move across sectors and exchange genetic 

information between compartments. The environment is a source for numerous non-
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human and opportunistic pathogens, which have the potential to be transferred 

resistance (Bengtsson-Palme et al. 2018).  

 

Figure 2-2 Integron gene acquisition process (Figure from Gillings, 2014). 

Usually, the transfer of genetic material occurs when the bacteria are phylogenetically 

related and the species are in contact, as in, they are at least temporarily sharing the 

same habitat (Smillie et al. 2011; Wiedenbeck and Cohan 2011). Additionally, transfer 

of genetic material in the environment is usually induced by external stressors, such 

as a high concentration of antibiotics, metals or biocides (Baker-Austin et al. 2006; 

Wiedenbeck and Cohan 2011). High concentrations of metals and metalloids have 

been shown to increase ARG selection (Knapp et al. 2010, 2011; Robins et al. 2022), 

due to co-selection and co-resistance (Pal et al. 2015).  

Selective pressure due to external factors in the environment has been found to be 

important for the persistence of AMR in environmental settings. ARG transfer has an 

associated fitness cost, therefore ARGs kept by bacteria in the absence of selection 

pressure are typically low fitness cost and high fitness cost ARGs are typically lost 

when there is no selection pressure (Bengtsson-Palme et al. 2018). Even if an ARG 

is lost in the absence of selective pressure, it can be quickly regained if the selection 

pressure returns (Levin et al. 1997). Successfully mobilised ARGs either begin with a 

low fitness cost or evolve to have a low fitness cost on an MGE (Gonzalez et al. 

2013). The role of the environment as a source, recipient and sometimes amplifier of 

resistance is evident in the clinically relevant ARGs which have been shown to have 

environmental origin, including beta-lactam resistance genes blaTEM and blaSHV 

(Wright 2010). 
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Figure 2-3 Potential transmission pathways between human, environmental and agricultural 
reservoirs of AMR, illustrating that AMR is a One Health issue (from Walsh 2018). 

2.3 Monitoring microbial communities and AMR in the environment  

Routine and targeted environmental monitoring is required to tackle AMR through a 

One Health approach (Bengtsson-Palme et al. 2023). Despite this, whilst AMR is 

monitored in clinical settings for humans and livestock, there is no standardised 

approach for AMR monitoring for the environment (Anjum et al. 2021). There have 

been numerous approaches to assess AMR in the environment, where the 

application depends on the surveillance area of interest.  

One can gain insight into microbial communities from microbial culturing, where such 

methods can characterise viable and culturable target bacteria (Acharya et al. 2019). 

However, culturing alone cannot provide a complete picture of the microbial species 

in the sample, as most of the microbial species present cannot be cultured, either 

due to our incomplete knowledge of the conditions in which to culture the bacteria 

and/or culturing requiring more complex laboratory techniques (Stewart 2012). 

Understanding microbial ecology and diversity through culture independent 

approaches is therefore necessary to obtain a full representation of the communities 
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present in the sample (Michan et al. 2021) and the potential host communities of 

ARGs and MGEs. Since the Human Genome Project, our capability to characterise 

microbial communities through nucleotide sequencing has advanced significantly and 

is cheaper, more accurate and can provide results rapidly (Mardis 2011). DNA 

sequencing is frequently used in environmental AMR studies, offering a more efficient 

approach to capturing all genotypes and taxa in microbial communities (Slatko et al. 

2018).  

Techniques for sequencing include next-generation sequencing (NGS) (e.g., Illumina 

sequencing), shotgun sequencing (Chen and Pachter 2005) and MinION sequencing 

(Oxford Nanopore Technologies Ltd.). The 16S rRNA gene is usually used to 

distinguish taxonomic species, as it is highly conserved amongst organisms and the 

hypervariable region is distinguishable at individual taxonomic levels (Janda and 

Abbott 2007). Typically, the hypervariable region is amplified through polymerase 

chain reaction (PCR) and the amplified product is sequenced, where taxonomy is 

determined through comparison to a reference database (Mohsen et al. 2019).  

Our understanding of natural microbiomes and their interactions with human health 

has been greatly improved through projects such as the ‘Earth microbiome project’ 

(EMP), a project which applied mass spectrometry and DNA sequencing of crowd-

sourced samples to understand microbiomes across the globe in various 

environments (Thompson et al. 2017).  

Microbial communities can be influential on AMR in the environment (Forsberg et al. 

2014; Yu et al. 2020). For instance, identifying potential host species of key ARGs 

can be important to limit their dissemination in the environment. Currently, the most 

effective method for identifying host species is through microbial culturing and 

sequencing of isolates or through statistical analysis of co-occurrence patterns 

amongst ARGs and microbial taxa, as similar abundances indicate microbial taxa are 

carrying these ARGs (Forsberg et al. 2014; Li et al. 2015).  However, identification of 

host-species through co-occurrence analysis requires a correct understanding and 

interpretation of sequencing data, which has been the source of much debate.  

Datasets from sequencing are compositional, therefore the extent of information from 

a sample is dependent on the read depth (i.e., the extent to which a sample is 

sequenced; (Gloor et al. 2017)). Statistical measurements such as ANOVA or Kruskal 

Wallis on compositional datasets can lead to false discovery rates (Mandal et al. 
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2015; Weiss et al. 2017). In environmental studies, rarefaction has been frequently 

used to correct this problem, where samples are corrected to a common read depth 

(often the minimum read depth) (McMurdie and Holmes 2014; Gloor et al. 2017). 

However, this approach means data from samples can be omitted, and samples with 

different read depths can no longer be compared (McMurdie and Holmes 2014). 

Quantitative Microbial Profiling (QMP) was introduced as an effective approach to 

overcome the weaknesses of rarefaction, whilst also allowing to estimate quantitative 

abundance of microbial communities (Vandeputte et al. 2017; Ott et al. 2021b) 

(Figure 2-4). First introduced by Vandeputte et al. (2017), this approach rarefies to 

the lowest sampling depth (i.e., sequencing depth divided by cell counts). The QMP 

approach was recently applied to environmental microbiomes and was found to be 

more effective than traditional rarefaction approaches (Ott et al. 2021b). Ott et al. 

(2021b) compared the traditional rarefaction approach (relative microbial profiling 

(RMP)) to QMP analysis on river water samples collected in Malaysia. They found 

the correction to QMP made it possible to observe the differences in diversity of the 

microbiomes in the samples, as well as compare the absolute taxa abundance more 

accurately.  

One limitation introduced through the QMP approach is through estimating cell 

counts, which is frequently completed through qPCR of the 16S rRNA gene and 

converted using an estimate of 4.1 16S rRNA per bacterial cell (Klappenbach 2001). 

This method for cell estimation can lead to variable results between studies, where 

the qPCR result may deviate slightly depending on the method of DNA extraction, as 

well as the choice of primers (Morton et al. 2019). An alternative method to determine 

cell counts is through flow cytometry, which is more expensive and has lower 

throughput compared to qPCR (Morton et al. 2019). Despite the limitations, overall, 

the QMP approach proved to be more accurate to microbial community assessment 

in comparison to traditional rarefaction approaches (Ott et al. 2021b).  

Like microbial community assessment, there are a wide range of culture dependent 

and culture independent approaches for monitoring AMR. Culture-based approaches 

include culturing indicator organisms on plates or filters, which identifies phenotypic 

resistance. For example, the World Health Organisation (WHO) Tricycle Protocol for 

monitoring AMR in the environment recommend culturing extended spectrum beta-

lactamase producing Escherichia coli (ESBL E. coli) which are resistant to third and 
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fourth generation beta-lactam antibiotics (WHO 2021b). Resistance and susceptibility 

to antimicrobials can also be determined through antimicrobial susceptibility testing, 

which indicates the strength of resistance, and is well standardised (Reller et al. 

2009). Culturing has the benefit of being cost-effective, easy to implement and can 

provide replicable results with low-error levels (McLain et al. 2016). However, culture 

dependent techniques only describe the phenotypic resistance of organisms, and 

information on the full genetic diversity of resistomes (i.e., all ARGs and MGEs of the 

microbial communities) are not captured.  

 

Figure 2-4 Schematic explaining the difference between relative and quantitative microbial 
profiling (RMP and QMP respectively). The RMP approach rarefies to the lowest sequencing 
depth per sample, whilst the QMP approach corrects for sampling intensity by rarefying to the 
minimum sampling depth and obtains the absolute abundances (per mL of river water) by 
multiplying by the estimated cell count. Figure from Ott et al, 2021b.  
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Genotypic methods have been applied either on their own, or to complement 

phenotypic data. This includes qPCR of target resistance genes, such as those which 

are indicative of anthropogenic resistance (e.g. intl1 (Gillings et al. 2015), 

“anthropogenic” class 1 integrons (Quintela-Baluja et al. 2021) or sul1 (Pruden et al. 

2012a). These approaches can be used to indicate “hotspots” of AMR, where further 

phenotypic and genotype analysis could be done (Pruden et al. 2012a). 

Comprehensive assessment of resistomes necessitates high-throughput approaches, 

including, metagenomic sequencing, shotgun sequencing and high-throughput qPCR 

(HT-qPCR). Sequencing based approaches can identify metagenomes, which can be 

compared against databases such as the Comprehensive Antibiotic Resistance 

Database (CARD) (Alcock et al. 2020). From a sequencing approach, novel 

ARGs/MGEs can be identified, whilst HT-qPCR uses known sequences and 

therefore cannot identify novel genes. (Pruden et al. 2012; Waseem et al. 2019). HT-

qPCR however has lower detection limits compared to metagenomic sequencing and 

can identify very low relative abundances of target genes (Waseem et al. 2019; 

Pruden et al. 2021). HT-qPCR also only requires DNA at the nanolitre scale to 

perform a reaction, whereas metagenomic analysis requires a higher volume of 

sample (Waseem et al. 2019). Commercial services such as Resistomap Oy 

(Helsïnki, Finland), offer a customisable service, allowing the customer to select the 

genes to analyse, from a minimum of 12 to maximum of 384 genes. The 

disadvantages of HT-qPCR is that all assays within a run experience the sample 

qPCR cycle, which runs cycles and annealing temperatures which are not optimal for 

most genes (Sipos et al. 2007). In addition, both metagenomics and HT-qPCR can 

be costly, which is a barrier for implementation in AMR monitoring and research, 

particularly for developing countries (Waseem et al. 2019).  

A recent review relating to AMR monitoring highlighted the inconsistency between 

methodologies and the need to establish a clear purpose, methodology, target 

environments, end-users, and integration across the One Health lens (Bengtsson-

Palme et al. 2023). Further research utilising phenotypic and genotypic 

measurements for microbial communities and resistomes are required to better 

understand typical AMR levels across various environments and ensure more 

targeted and cost-effective routine AMR monitoring can take place (Bengtsson-Palme 

et al. 2023).  
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2.4 Uncovering the drivers for AMR in the environment 

2.4.1 Anthropogenic drivers 

The water cycle consists of rainfall, surface runoff, soil infiltration, retention in soil and 

plants, evaporation, and infiltration across the environment. Disruption to the natural 

water cycle and allochthonous inputs of bacteria and ARGs primarily occurs in urban, 

industrial, and agricultural settings (Almakki et al. 2019). The aquatic environment 

plays an important role as a pathway for the transmission and spread of ARGs and 

bacteria (Hooban et al. 2020). The majority of AMR research in the aquatic 

environment focuses on rivers, likely due to the essential role they play in aquatic 

ecosystems. Rivers can act as conduits in which AMR may be spread and stored 

(Figure 2-5) (Vaz-Moreira et al. 2014), link habitats and promote nutrient cycling, 

aeration, and the assemblage of microbial communities (Doretto et al. 2020). As well  

 

Figure 2-5 Sources of environmental antimicrobial resistance (AMR) and pathways into the 
environment (modified from Almakki et al. 2019) 

as impacting surface water, high abundances of ARGs and resistant bacteria found in 

groundwater has been previously associated with high faecal contamination from 

humans and animals on the surface (Szekeres et al. 2018), which is particularly 
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problematic as groundwater is commonly used as a source of drinking water (Zainab 

et al. 2020). 

Anthropogenic activity has the potential to expand the resistance present in 

environmental reservoirs (i.e., the resistome). Ingested antibiotics are incompletely 

metabolised (Serwecińska 2020), meaning after excretion, ARGs and resistant 

bacteria are released into the sewer network and then into the aquatic environment if 

inadequate wastewater treatment is provided. Due to the potentially high 

contamination from wastewater effluent, especially when not adequately treated, 

usually AMR in river catchments has been studied in “contaminated” environments 

(Chen et al. 2013; Amos et al. 2015; Koczura et al. 2016; Karkman et al. 2019; 

Roberto et al. 2019). It was even suggested that the level of anthropogenic activity 

and urbanisation in a catchment is a more important driver for environmental AMR 

than bacterial community interactions (Peng et al. 2020). 

In terms of antibiotic selection driving ARG expansion and dissemination, it was 

found rivers in Asian countries had the highest antibiotic load in rivers (Singh et al. 

2019). This was found to be due to higher antimicrobial use in Asian countries, less 

effective wastewater treatment and contamination from the pharmaceutical industry 

(Singh et al. 2019). While European and Australian rivers were found to have 

relatively low antibiotic loads compared to other continents (Singh et al. 2019), 

clinically important antibiotic resistant bacteria (ARBs) have been reported in highly 

urbanised areas in Europe, including fluoroquinolone resistant E. coli of O25b:H4-

St131 lineage in the Thames River, UK (Dhanji et al. 2011), clinically relevant ARGs 

in a wastewater effluent contaminated lake in Switzerland (Devarajan et al. 2015) and 

CTX-M producing bacteria isolated from a river polluted by multiple wastewater 

treatment plants in Portugal (Tacão et al. 2022). In the Netherlands, which is a 

country with low antibiotic use, contamination with wastewater has been shown to 

significantly enhance the level of antibiotics and ARGs in the receiving rivers, 

sometimes persisting as far as 20 km downstream from the point of release (Sabri et 

al. 2020). 

With antibiotic load in environments linked to antibiotic use, reducing the problem of 

AMR in the environment requires effective wastewater treatment as well as 

antimicrobial stewardship. In clinical settings, the UK government are aiming to 

improve surveillance efforts to improve antimicrobial stewardship and use. This 
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includes the formation of the English Surveillance of Antimicrobial Utilisation and 

Resistance (ESPAUR) group (Ashiru-Oredope et al. 2015). The ninth annual report of 

ESPAUR, demonstrated that the number of severe antibiotic resistant infections, 

including bloodstream infections, surgical site infections, urinary tract infections and 

skin/soft tissue infections had increased in England from 2014-2021, with only a 

temporary decrease in 2020 due to the impact of the COVID-19 pandemic (Ashiru-

Oredope et al. 2023). 

Reducing antibiotic and ARG load in rivers necessitates ensuring effective antibiotic 

stewardship in livestock as well as humans. Antibiotics are used in livestock-based 

agriculture for therapeutic use, metaphylatic use (i.e., the presence of clinical illness 

in one animal necessitates treatment for the whole herd/flock), and in some cases 

prophylactically for disease prevention or growth promotion (Woolhouse et al. 2015). 

Due to the food chain and interaction with humans, the use of antimicrobials in 

agriculture can have direct human health impacts. For example, the ban of the 

antibiotic avoparcin (an antibiotic in the same family as vancomycin) in animal feed in 

European countries in the 1990s triggered the reduction of vancomycin-resistant 

Enterococci in food and humans (Klare et al. 1999). In addition, the carriage of the 

ARG mcr-1 in humans, which confers resistance to the antibiotic colistin (which is 

typically referred to as a ‘last resort antibiotic’ (Watkins et al. 2016)), has been shown 

to have probably originated from colistin use in agriculture (Liu et al. 2016).  

Specifically in the UK, the use of antibiotics in agriculture has decreased by 55% 

between 2014 and 2021 (VMD 2022). In January 2022, regular use of antibiotics was 

banned in the European Union (EU), where use is now only permitted in the case of 

individual animal treatment (Coe et al. 2023). In addition, antimicrobials can no 

longer be used in agriculture to compensate for low quality animal husbandry 

practices and hygiene (Coe et al. 2023). Whilst this ban does not apply to the UK, the 

UK has previously stated it would align with EU regulations in the UK government’s 

2019 5-year national action plan for AMR (GovUK 2019), but this was updated to 

state they would be following ‘similar’ provisions (GovUK 2022). Despite these 

reductions, an investigation of AMR in cows and sheep found that whilst antibiotic 

use was decreasing, resistance remained high against commonly used antibiotics 

(Hennessey et al. 2020). 
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AMR from livestock can spread through faecal contamination on fields, where faeces 

from livestock have been shown to contain an abundance of ARGs and MGEs (Xiao 

et al. 2016; Wepking et al. 2017; He et al. 2019; Wang et al. 2023). In addition, farm 

slurry is spread onto agricultural land, with the intention of maintaining soil quality 

and nutrient levels; however, this has been shown to result in an increase of ARGs to 

the local environment through soil runoff (Xiang et al. 2018; Swift et al. 2019). Other 

on-farm practices, such as rearing in pens versus open range animal management, 

also impact environmental AMR (Wang et al. 2023).  

2.4.2 Environmental drivers 

The previous section demonstrated that environmental AMR is often studied in the 

context of viewing ARGs as emerging environmental contaminants from wastewater 

and agriculture (Pruden et al. 2006). Such assessments must be considered relative 

to what the ‘background’ resistance looks like, but pristine rivers (i.e., those with little 

to no anthropogenic impact), are very rare. Even environments which have been 

previously considered pristine, such as Antarctica, have since been contaminated 

through anthropogenic activity, due to local wastewater releases (Hwengwere et al. 

2022). This is also the case for the High Arctic, which showed signals of 

anthropogenic resistance, likely carried by migratory birds and humans visiting the 

region (McCann et al. 2019). 

For truly understanding AMR in the environment, there is a need to characterise 

intrinsic resistance, such that ‘background’ resistance can be differentiated from 

resistance due to specific anthropogenic pressures, which extend resistance levels 

above background. This has been attempted through monitoring of single/isolated 

river catchments with various land-uses, including capturing a site devoid of human 

activities to inform on background AMR (usually the site further upstream of the 

catchment) (Pruden et al. 2012; Ott et al. 2021a). Anthropogenic AMR can also be 

distinguished through contrasting environments with different levels of anthropogenic 

exposure, such as comparing an Indian lake subjected to industrial pollution and 

fluoroquinolone antibiotics, with a less contaminated lake in Sweden (Bengtsson-

Palme et al. 2014), or quantifying changes in AMR at remote pilgrimage sites along 

the Ganges where outside visitors are only seasonally present (Ahammad et al. 

2014). 
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Studies have attempted to assess the environmental and climatic drivers for 

environmental AMR. Seasonality for example has been frequently assessed for the 

effect on environmental AMR (Keen et al. 2018; Son et al. 2018; Harnisz et al. 2020; 

Yang et al. 2022), with mixed results. Higher summer temperatures and more 

sunlight have been frequently associated with the proliferation of total bacteria and 

ARGs (Luo et al. 2010). In addition, increased organic matter has the potential to 

enhance the presence of ARGs in rivers (Zhang et al. 2021). However, seasons with 

high rainfall have also been associated with higher levels of resistance, due to the 

impact of surface runoff (Di Cesare et al. 2017) and storm drain outfalls or combined 

sewer overflows (CSOs) (Baral et al. 2018b; Honda et al. 2020). In addition, 

increased antibiotic consumption in winter months and resulting wastewater effluent 

contribution, has resulted in a greater environmental contamination in winter (Yan et 

al. 2013). 

Seasonality in a catchment indirectly impacts the level of organic matter in the 

aquatic environment, where enhanced nutrients from organic matter has been 

previously associated with increased resistance in rivers (Zhang et al. 2021; Wu et al. 

2023) and soils (McCann et al. 2019). The nutrients phosphorous (P), carbon (C) and 

nitrogen (N), coupled with light conditions, are essential in driving microbial ecology 

and interactions (Sterner and Elser 2017; Jarvie et al. 2018, 2020). The availability 

and scarcity of these nutrients is typically described through a stoichiometric ratio (i.e. 

C:N:P ratios) (Sterner and Elser 2017; Jarvie et al. 2018).  

Previous studies have demonstrated the role anthropogenic disturbance plays in 

C:N:P ratios in rivers in the United Kingdom, where high nutrient contributions were 

associated with increased agriculture and land-use, whilst nutrient limitation is 

associated with less disturbed sites (Jarvie et al. 2018). In bacterial population 

studies, it has been demonstrated that the demand and rate of consumption of a 

nutrient will influence the predominant taxa in an environment, and the limitation of 

this nutrient will enhance competition (Tilman 1977; Ghoul and Mitri 2016). Whilst it 

has been recognised the essential role rivers play in transporting and cycling 

nutrients in the terrestrial and aquatic environment, the role nutrient availability plays 

in influencing the microbial community and persistence of resistance genes has not 

been previously explored, particularly at less impacted rural sites.  
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Whilst there is lack of research in rural sites in the United Kingdom, there is research 

into the environmental drivers of AMR in the Thames River, which partly goes through 

the city of London. This assessed class 1 integron and beta-lactam resistance and 

generated a predictive model attributing the likely sources of resistance (Amos et al. 

2015). The model revealed the impact of wastewater treatment accounted for 49.5% 

of the variance in resistance levels, whilst heather and grassland land-uses had a 

strong negative effect on resistance levels, except in winter months. Precipitation was 

found to be a strongly influencing factor on AMR, depending on the land-cover.  

Additional studies into AMR in aquatic environments in the United Kingdom, focus on 

bathing waters, due to the likely exposure pathways to humans. For example, an 

epidemiological survey of people who frequently used bathing water recreationally in 

the UK, indicated people who take part in water sports sessions are likely to be 

exposed to E. coli harbouring ESBL genes such as blaCTX-M (Leonard et al. 2018). An 

assessment of E. coli isolates of coastal bathing waters in Ireland similarly found 

isolates harbouring carbapenemase genes, including blaNDM-1 and blaOXA-48 (Hooban 

et al. 2021). Freshwater samples assessed through this study also found a high 

percentage of tetracycline resistant isolates. There has however been limited work 

assessing environmental drivers of AMR in riverine environments in the United 

Kingdom, especially those primarily impacted by rural runoff and waste exposures. 

2.5 Identifying sources of AMR through microbial source tracking 

2.5.1 Indicator organisms 

Understanding the movement of faecal organisms in the environment is of utmost 

importance, where poorly treated or untreated sewage in the environment puts 

humans at great risk of exposure to pathogenic organisms. In addition, faecal 

pollution has been frequently associated with increased levels of AMR (Derx et al., 

2023; Yu et al., 2020a).  

Microbial indicators are habitually used for the identification of faecal pollution in 

water quality studies. Measurement of faecal indicator bacteria (FIB), can 

characterise the extent of faecal pollution, but doesn’t provide information on the 

potential origin (Hagedorn et al, 2011). Faecal pollution from human origin has been 

associated with higher health risks than that from animal or agricultural operations 

(Hagedorn et al., 2011). In addition, preventing further contamination necessitates 

identifying the source of pollution, so remediation action can be taken. 
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Microbial Source Tracking (MST) is an emerging discipline of biology which has 

several use cases, including but not limited to discriminating the sources of pollution 

in beaches (Jardé et al. 2018; González-Fernández et al. 2021), public health 

monitoring (Stewart et al. 2006) and for river catchment studies (Stapleton et al. 

2007; Ballesté et al. 2020). MST first began through the identification of potential 

indicators which could be used to discriminate sources. For example, studies have 

applied faecal markers which can distinguish between two or more sources of faecal 

pollution. Organisms which have been applied for MST include Bacteroidetes spp. 

and E. coli (Bernhard and Field 2000b, a). Bacteroidetes has been a particularly 

effective MST marker due to their longer survival time in the environment and ease of 

detection (Bernhard and Field 2000b). 

As previously discussed, development of sequencing technologies means it is 

possible to gain an insight into composition of whole microbial communities. 

Therefore, using whole microbial communities from sources, as well as sinks has 

been previously found to be an effective method for source apportionment. Previous 

work into this uses naïve Bayes, which estimates the likelihood that one community 

came from one source as opposed to another (Greenberg et al. 2010). This was 

however found to be inaccurate when there were unknown sources in the sample, 

inflating the apportionment of the specific sampled sources (Knights et al. 2011). 

Estimations based on Random Forest provided a more reasonable estimate (Knights 

et al. 2011).  

2.5.2 SourceTracker for microbial source tracking  

A commonly used method for whole community source tracking is the programme 

SourceTracker, a computational tool which estimates the relative contributions of 

mixed sources into a mixed sink environment (Knights et al. 2011). SourceTracker 

uses Markov chain Monte Carlo (MCMC) methods to explore the assignments of 

species to source environments within a given sink sample. This tool uses Gibb’s 

sampling (MCMC algorithm) to estimate the source proportions and allocates the 

unexplained OTUs into sinks as from an ‘unknown source’. In some studies, this 

method has been used in conjunction with a Bray Curtis dissimilarity index to 

determine the sources/sink similarity (Quintela-Baluja et al. 2019). SourceTracker is 

capable of sensitivity adjustment through parameter tuning and Gibbs sampling. 

However, these features add to running times and can be difficult to operate with 

large datasets (Carter et al. 2019).  
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Within the context of AMR, SourceTracker has been used to determine the sources 

of ARGs in river catchments. The application of SourceTracker in an urban river 

catchment in Lincoln (Nebraska, US) was demonstrated, where it was found that 

storm drain outfalls were found to contribute highly to microbiomes and ARGs in the 

environment, at around 54-57% (Baral et al. 2018a). This was later expanded to 

investigate wet and dry flows in the same catchment, revealing wet weather resulted 

in higher E. coli levels, and an increased contribution of stormwater, which was 

primarily derived of street sweepings (Baral et al. 2018b). SourceTracker was also 

applied to rural environments, where it was used to apportion ARGs in river 

sediments from sources such as chicken manures, pig manures and wastewater 

effluent (Chen et al. 2019b). The results were then compared with the human faecal 

marker crAssphage and indicated human faecal pollution contributed highly to 

microbes and resistomes, whilst animal manure had negligible contribution (Chen et 

al. 2019b). 

2.5.3 Fast Expectation-Maximisation (FEAST) for microbial source tracking 

In 2019, the Fast Expectation Maximization for Microbial Source Tracking (FEAST) 

was proposed as a method for whole community source tracking (Shenhav et al. 

2019). This uses the expectation-maximisation algorithm which is a method for 

estimation in models where observed data is incomplete, which can hinder the 

accuracy of probabilistic methods such as MCMC (i.e., the approach used by 

SourceTracker) (Moon 1996; Do and Batzoglou 2008). Similarly to SourceTracker, it 

takes the sink microbial community and a separate group of source environments 

and estimates the fraction of the sink community that can be attributed to the source 

environments (Shenhav et al. 2019). It also can apportion sink communities into their 

source components 30-300 fold faster than SourceTracker and it has been found to 

be more accurate than SourceTracker and Random Forest approaches (Shenhav et 

al. 2019).  

In some cases, SourceTracker has been shown to underestimate the proportion of 

unknown sources, when it is difficult to distinguish between source and sink 

communities (Shenhav et al. 2019; Yu et al. 2020). FEAST on the other hand, 

regards an unknown relative abundance for each source and adjusts its estimates to 

increase the contribution of the unknown sources to reduce the variability (Shenhav 

et al. 2019). FEAST also considers the uncertainty of sources, as opposed to directly 
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transforming them to relative abundance, and models species and genes together 

instead of treating them as separate entities (Shenhav et al. 2019) 

There have been numerous environmental studies which have used FEAST analysis. 

Within the context of AMR, metagenomic analysis and determination of a wide depth 

and range of ARGs in environmental settings has permitted the application of FEAST 

to determine the origin of ARGs. For example, FEAST was used to apportion sources 

of ARGs and MGEs in the sediments of Lake Baiyang from the Fuhre River (Northern 

China) (Yu et al. 2020). Another study utilised FEAST to determine the sources of 

microbes, resistomes and virulence factors on microplastics in the environment (Li et 

al. 2022a). Rural land-uses were found to contribute highly, with the influence of 

urban land-uses increasing further downstream the river (Li et al. 2022a). FEAST has 

also been used to show the impact of environmental processes other than faecal 

contamination on ARG distribution in a river system. For example, a study 

investigating wastewater effluent on the receiving river found most of the downstream 

river was sourced from the upstream river (88% contribution), not wastewater effluent 

(Zhang et al. 2022). The low contribution of wastewater effluent to the river resistome 

was interpreted to be a result of rapid mixing and rapid advection of the wastewater 

effluent, making HGT of ARGs across taxa impossible (Zhang et al. 2022).  

A limitation to SourceTracker and FEAST is the input requirement for sources 

sampled in a specific study. The use of microbiome data repositories such as EMP 

for source allocation has previously been limited by the wide geographic variability of 

sequencing data for source samples (Scott et al. 2002). Where specific study source 

samples are not available, a recently published scalable microbial source tracking 

tool STENSL (Microbial Source Tracking with Environment Selection) may be applied 

(An et al. 2022). STENSL was introduced to extend MST analysis through an 

unsupervised exploration of multiple sources available on publicly available 

microbiome data repositories (An et al. 2022). This approach has however yet to be 

utilised to the same extent as FEAST analysis, and has not yet been used in river 

studies.  

Whilst both SourceTracker and FEAST have been regularly used in environmental 

studies, there are a lack of studies using these approaches in environments which 

are not frequently exposed to anthropogenic contamination (Hooban et al. 2020). 

Such studies would provide insight into the drivers of AMR in more natural 
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environments where the sources of AMR are more nebulous and less distinct, as 

opposed to urban environments with abundant point sources.  

2.6 Modelling AMR 

2.6.1 Modelling AMR for health protection 

The use of mathematical models for predicting AMR patterns and spread is a rapidly 

developing field and has become highly useful for supporting decisions to inform 

public health (Opatowski et al. 2011; Spicknall et al. 2013). Models have been used 

to identify where further data and research is required, as well as to predict and 

manage risk (van Leeuwen and Vermeire 2007).  

A previous systematic review found most AMR modelling studies were in relation to 

human health, modelling the development and dissemination of AMR (Birkegård et 

al. 2018). Modelling AMR development has several useful health protection 

applications, such as exploring the development of secondary infections of 

tuberculosis bacteria with immunocompromised individuals and modelling the likely 

outcome of antibiotic treatment (Alavez-Ramírez et al. 2007). Models which can 

predict the spread of AMR have applications in nosocomial settings, where AMR 

spread is likely. Research relating to application of models in clinical care have 

modelled the outcome of persistent antibiotic treatment of antibiotic wild-type and 

resistant strains, which can be used to assess whether additional treatment options 

are required (Wang et al. 2017). Additional clinical AMR modelling studies have used 

hospital size and length of stay as confounding variables to predict the emergence of 

AMR, where larger hospitals were found to strongly correlate with sensitive and 

resistant infections (Kouyos et al. 2011). This model also demonstrated the 

importance of environmental reservoirs, because the result showed that 

environmental AMR is particularly important in communities with small hospitals 

(Kouyos et al. 2011). 

2.6.2 Modelling AMR in river systems 

Despite the importance of environmental AMR, there have been relatively few models 

developed that model AMR pathogen fates in the environment, i.e., a systematic 

review found over 89% of AMR modelling research was related to human hosts 

(Niewiadomska et al. 2019). However, modelling AMR in river systems has recently 

received a lot of research interest (Hellweger et al. 2011; Hellweger 2013; Gothwal 

and Thatikonda 2018, 2020; Van Heijnsbergen et al. 2022; Jampani et al. 2023; 
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Niebaum et al. 2023). Modelling AMR in river systems is complex and requires 

incorporation of several factors (Figure 2-6). One of the first AMR modelling studies in 

river environments aimed to explore tetracycline resistance in a river using a simple 

mechanistic model (Hellweger et al. 2011). The model predicted river concentrations 

of tetracycline antibiotics in the Poudre River (Colorado), and considered particulate 

and dissolved organic matter, as well as the water and stream bed compartments. 

The model was later expanded to incorporate the influence of metal co-selection, 

where it was found that copper (Cu) and zinc (Zn) could explain the presence of 

resistant bacteria (Hellweger 2013).  

A mathematical AMR model to predict the concentration of fluroquinolone resistant 

bacteria in the Musi River, a tributary to the Krisna River in India has been developed 

(Gothwal and Thatikonda 2018). The development of this model was motivated by 

the heavy contamination of the tributary and considered variables for organic matter, 

fluoroquinolones, heavy metals, and susceptible and resistant bacteria both in the 

water column and in the sediments. The model was used to simulate different 

pollution scenarios and found that antibiotics and organic matter were strong drivers 

for the presence of resistant bacteria. Both this model and the model from Hellweger 

(2013) incorporated natural stream transport processes, such as advection, 

dispersion, adsorption, degradation, settling, resuspension, and diffusion, as well as 

biological processes such as bacterial growth and plasmid HGT.  

 

Figure 2-6 Complexity of modelling antimicrobial resistance in environmental settings (from 
Jampani et al, 2023) 

In a later study Gothwal and Thatikonda (2020) incorporated stochastic differential 

equations into the model to account for random variability of anthropogenic and 



Chapter 2 

 

25 
 

environmental factors. The authors found that stochasticity in the environment had no 

impact on the presence of resistant bacteria in river sediment (Gothwal and 

Thatikonda 2020).  

Models that combine Geographic Information Systems (GIS) can be useful for 

investigating the spatial and temporal variability of any natural system (Feijtel et al. 

1997). For example, the GREAT-ER (Geo-Referenced Regional Exposure 

Assessment Tool for European Rivers) model, a GIS based chemical exposure 

prediction tool, was built as an Add-In to ArcGIS and has been used as a prediction 

tool at the catchment scale. This model has been widely applied in European studies 

of pollutants in river systems, such as cleaning agents (Schulze and Matthies 2001; 

Sabaliunas et al. 2003), heavy metals (Fox et al. 2000; Hüffmeyer et al. 2009), 

pharmaceuticals (Schowanek and Webb 2002; Burns et al. 2018) and antibiotics 

(Archundia et al. 2018; Zhang et al. 2020).  

Adaptions of GREAT-ER have been used to predict the fate of antibiotic resistant E. 

coli (Van Heijnsbergen et al. 2022; Niebaum et al. 2023). This study applied the 

GREAT-ER model as a case study in the Dutch-German catchment of the Vecht 

River, representing dry summer simulations and typical flow conditions (Van 

Heijnsbergen et al. 2022). A later improvement of the model incorporated uncertainty 

and variability using Monte-Carlo simulations (Niebaum et al. 2023). This latter model 

considered emissions from WWTPs as well as diffuse emissions from runoff, soil, 

wildlife and resuspension and mobilisation of E. coli from the bottom sediments 

(Niebaum et al. 2023). Overall, it was found that the GREAT-ER model predicted E. 

coli concentrations with a slightly higher range of concentrations than observed 

values (Niebaum et al. 2023). Environmental parameters which were highly influential 

on E. coli concentration in the catchment included flow rate and E. coli removal 

efficiency in WWTPs.  

2.6.3 The Soil and Water Assessment Tool  

Despite the successful application of GREAT-ER to model antibiotic resistant E. coli, 

this adaptation of the model is not yet open source, therefore it is not readily 

available to end-users, such as policy makers or river catchment scientists. Open-

source GIS-based models, such as the Soil and Water Assessment Tool (SWAT), 

developed by the United States Department of Agriculture (USDA), have an 

integrated bacteria sub-module. SWAT was initially developed for the purpose of 
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predicting the temporal impact of land-management practices on water (Neitsch et al. 

2011) and is a useful tool that can be applied to numerous disciplines, with its 

successful and diverse applications evident from the specialised SWAT international 

conferences (Abbaspour et al. 2017).  

The SWAT model was initially developed as a response to the Clean Water Act in 

1972, which aimed to protect natural waterbodies from chemical and biological 

pollution and urbanisation (Saleh and Du 2004). The Hydrological Simulation 

Programme Fortran (HSPF) model developed by the Environmental Protection 

Agency (EPA) has similar capabilities, but research has found its calibration process 

to be difficult and time consuming, requiring numerous input parameters (Saleh and 

Du 2004; Xie and Lian 2013). In addition, the SWAT tool has been suggested as a 

more appropriate method (compared with the HSPF model) where observed 

information required for calibration purposes is scarce (Xie and Lian 2013). 

SWAT models have been applied in numerous settings, including to assess the 

climatic and human induced changes on water resources and streamflow (Milewski et 

al. 2019; Oo et al. 2020), agricultural and human pollution (Taylor et al. 2016) and to 

inform management practices. Oo et al. (2020) used different climate change 

scenarios to predict the impact on flow rate using a SWAT tool in a catchment in 

Myanmar. The model demonstrated the potential for flooding and low stream flow 

with increasing seasonal extremes (i.e., wetter winters and dryer summers). 

Application of the SWAT model to investigate nitrogen and phosphorous diffuse 

pollution has been completed in studies in the UK where Taylor et al. (2016) modelled 

the impact of mitigation measures on agricultural pollution, such as introducing red 

clover to crop rotations. This study demonstrated introducing red clover reduced 

phosphorous loss by 19.6%, whilst buffer strips resulted in a reduction of 12.2-16.9% 

(Taylor et al. 2016). 

The SWAT model has been implemented for the purposes of simulating microbial 

concentrations in river systems, using the bacteria sub-module (Sadeghi and Arnold 

2002). Using a SWAT model can be an inexpensive approach to estimating microbial 

loads and hotpots, and can be used to support in situ monitoring, and due to the 

integration of non-point sources such as agriculture and wildlife, it’s use is well suited 

to agricultural catchments (Jeong et al. 2019). An advantage of SWAT over HSPF for 

this use case is the simulation of persistent and less persistent pools of bacteria in 
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the same model run. For example, a SWAT model was developed for the Upper 

Salem River Watershed in New Jersey which simulated persistent bacteria (E. coli) 

and less persistent bacteria (faecal coliforms) in one model run (Niazi et al. 2015).  

SWAT has been used to model bacteria in remote locations such as the Athabasca 

River Basin in Alberta, Canada, where there are only a few in situ monitoring stations 

(Meshesha et al. 2020). The model was used to identify the influence of pH on E. coli 

concentrations, which was found to be substantial (Meshesha et al. 2020). 

Management or remediation strategies on microbial water quality can also be 

simulated using the SWAT model, for example, the influence of best management 

practices on E. coli levels in an agricultural catchment (Hernandez-Suarez et al. 

2020). In this case, management practices such as septic tank restoration was found 

to be successful in achieving target reductions in E. coli concentrations (Hernandez-

Suarez et al. 2020). Therefore, identifying the most effective remediation strategies 

through a SWAT modelling approach, can save cost and be used to provide 

estimates on the potential environmental impact.  

Whilst the SWAT model was developed and designed to be used in river catchments 

in the United States, the model has been applied to river catchments internationally. 

For example, the SWAT model was applied to an agricultural catchment in West 

Ireland, where E. coli was modelled through simulating inputs from cattle and sheep 

manure and wastewater effluent (Coffey et al. 2010a, 2013). Whilst this model 

yielded acceptable estimates of E. coli concentrations in the river, the authors 

suggested more reliable input information could be used to improve the model 

accuracy (Coffey et al. 2010a), particularly for predicting daily loads (Coffey et al. 

2013). An additional study in the same catchment applied the SWAT model to predict 

the parasite Cryptosporidium, demonstrating the adaptability of this model to different 

organisms of interest (Coffey et al. 2010b). 

Whilst there has been substantive research in the application of SWAT models to 

predict bacteria concentrations, there is scant work on the modelling of AMR bacteria 

or genes in river catchments using SWAT models. A SWAT-ARB (Antibiotic 

Resistance Bacteria) model was developed in Virginia Tech University as part of a 

doctoral thesis, which was based on ARG data (Thilakarathne 2020). Whilst SWAT 

was able to model resistance, it’s accuracy could not be determined due to the lack 

of observed data. This was later expanded on for a Masters thesis, also in Virginia 
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Tech University, which explored the application of the SWAT-ARB model to 

catchments in the US (House 2020). However more sampling is needed to validate 

its predictions (House 2020). The SWAT-ARB model is also not yet open source, 

which means it is not readily available for end-users such as policy makers, 

researchers or other scientists. The lack of availability of SWAT-ARB also limits the 

capability to improve the model.  

2.7 Conclusions and key knowledge gaps 

The discovery of antibiotics transformed healthcare. However, the emergence of 

resistance is a significant problem, which would require addressing clinical, animal 

and environmental exposures. AMR should therefore be monitored and researched 

through a One Health Lens, especially when studying AMR within systems with 

overlapping sources and sinks, such as rural river catchments without dominant 

sources.  

In the United Kingdom, specifically there have been few studies investigating AMR 

transmission and spread in such rural systems. Therefore, there is need for work on 

AMR in rural catchments with different types of land-use to gain an understanding of 

what drives AMR in typical UK rivers without acute pollutant sources. In addition, 

analysis of rural catchments may reveal the local and regional drivers of AMR, such 

as climate or hydrology.  

Microbial Source Tracking technologies have developed into useful tools for 

estimating point source contribution of microbial communities and AMR in river 

catchments. Whole community microbial source tracking technologies such as 

SourceTracker and FEAST have been useful to estimate source contribution using 

whole community data from sequencing. Understanding the primary sources of AMR 

in rural river catchments could provide some insight into where mitigation is best 

targeted. In addition, the factors that influence the persistence of non-native microbes 

and associated resistance genes, such as nutrient availability are not well 

understood. 

The use of mathematical models for AMR is developing rapidly. For environmental 

studies, models which combine Geographical Information Systems (GIS) can be 

useful for considering spatial variability. The Soil and Water Assessment tool is widely 

used for simulating non-point sources, but there is little research on its application for 
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predicting AMR. Using a SWAT model to model AMR bacteria can be used to help 

guide monitoring and identify AMR hotspots.  

Chapters 3-5 will attempt to address the research gaps presented: 

Chapter 3 will aim to compare two rural river catchments in the UK (the Coquet 

(Northumberland) and the Eden (Cumbria) with similar land-uses and different 

regional characteristics to interpret the impact of hydrometeorological characteristics 

on driving microbial communities and AMR in a river system. 

Chapter 4 focuses on the Coquet catchment to assess the contribution of point 

source samples at different sites along the river using the FEAST approach. This also 

looks at nutrient limitation, through nitrogen phosphorous (N:P) ratios, as an 

environmental factor that has potential to influence the persistence of AMR along the 

course of the river.  

Chapter 5 describes the development of a SWAT hydrological model for the Coquet 

catchment, which simultaneously models the concentration of E. coli and ESBL E. 

coli in the river.  
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Chapter 3 Antimicrobial Resistance in Rural Rivers: Comparative 

Study of the Coquet (Northumberland) and Eden (Cumbria) river 

catchments 

3.1 Introduction  

Antimicrobial resistance (AMR) is recognised as a global health and societal issue. 

In 2019, it was estimated that 4.95 million deaths could be associated or directly 

attributed to AMR (Murray et al. 2022) and it has been conservatively projected that 

up to 10 million additional deaths per year might be expected by 2050 (O’Neil, 2014). 

As a response to growing concerns, the United Nations, led by the World Health 

Organisation, is developing an integrated surveillance programme for AMR and 

antimicrobial use (AMU), which was recently highlighted in the G20 Summit Leaders’ 

Declaration aimed at "strengthening global health and implementing a One health 

approach” (UN, 2023). However, AMR prevails across human, animal, and 

environmental sectors, and surveillance must be inclusive, even in places where the 

consequences of AMU are less directly evident (UNEP, 2023).       

AMR is intrinsic in the environment with antibiotic resistance genes (ARGs) that 

encode antibiotic resistance being found in ~30,000 yr-old glacial sediments (Dcosta 

et al. 2011). However, with intensive antibiotic use in clinical and agricultural settings 

and pollution, resistance has expanded across the biosphere via mutations and 

horizontal gene transfer (HGT), often on mobile genetic elements (MGEs), and 

microbial selection (Bengtsson-Palme et al. 2018). Anthropogenic activity, such as 

agricultural AMU (Xiang et al. 2018; Neher et al. 2020; Burch et al. 2022) and 

wastewater discharges (Zhang et al. 2022), has altered resistance across the natural 

environment, including the intrinsic resistome (all ARGs and MGEs present in nature 

prior to anthropogenic impacts) expanding across nature. The problem, however, is 

how to characterise such expansion. Most environmental studies focus on resistance 

“hot spots”, which says very little about how we are changing nature. 

One way of assessing intrinsic AMR is to study locations without extensive AMU or 

waste sources, such as rural river catchments that include different types of land 

use. River catchment studies can contrast potentially subtle effects of different inputs 

and land uses, with the river itself acting as a “biomarker” for natural AMR 

transmission and spread (Vaz-Moreira et al. 2014). Within this context, the United 
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Kingdom (UK) five-year National AMR Action Plan includes environmental AMR 

surveillance of rivers at the catchment scale, partly for better understanding of what 

intrinsic resistance looks like in the UK.  

As noted, while ARGs and their microbial hosts in river settings have been well 

studied, focus is almost always on contaminated environments, including those 

impacted by wastewater releases (Dhanji et al. 2011; Amos et al. 2014; Devarajan et 

al. 2015; Tacão et al. 2022), agricultural activity (Seiler and Berendonk 2012), 

pharmaceuticals (Šimatović and Udiković-Kolić 2020; Wilkinson et al. 2022) and 

heavy metals that can drive co-selection for ARGs (Gupta et al. 2022; Zhang et al. 

2023a). Also, most studies tend to focus on urban catchments and there is less data 

on rural and-or less impacted landscapes. Data in less impacted landscapes is 

critical to providing context for more impacted catchments, helping baseline the 

extent of anthropogenic impacts. 

Finally, there is a lack of work that compares catchments with similar land-use to 

reveal underlying drivers of environmental AMR. Such comparisons are difficult, 

often due to inconsistency in sampling methods and analytical techniques between 

different environmental AMR research studies (Hassoun-Kheir et al. 2021). 

Investigations have been conducted in large catchments through comparing AMR in 

sub-catchments with land-use varying from pristine to highly cultivated (Mukherjee et 

al. 2020; Neher et al. 2020). These studies can provide a valuable perspective on 

the impact of anthropogenic AMR contamination with the context of more pristine 

land-use. However, comparisons of multiple river catchments with predominantly 

rural land-use, but different hydrometeorological characteristics, can be used to 

interpret the potential impact of local hydrology and climate as AMR drivers. 

Differences in rainfall and run-off will likely impact the microbiome and resistome in 

the receiving rivers, due to the influence of differential runoff (Almakki et al. 2019). 

The temporal distribution and intensity of precipitation within catchments and linking 

to hydrologic characteristics have not been reported in most studies (Hamilton et al. 

2020).  

In addition to understanding the distribution and abundance of ARGs in a catchment, 

analysis of the microbial taxa in resistome studies is important to reveal potential 

host species. Recent analysis of next-generation sequencing (NGS) data using 
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quantitative microbial profiling (QMP) showed that this was an effective approach to 

overcome the weaknesses of traditional normalisation techniques for NGS data, 

such as rarefaction (McMurdie and Holmes 2014), whilst also allowing quantitative 

abundance estimates of microbial communities to be made (Ott et al. 2021b). This 

approach, first introduced by Vandeputte et al. (2017) rarefies NGS reads to the 

lowest sampling depth (i.e. sequencing depth divided by cell counts), instead of the 

traditional minimum read depth (Gloor et al. 2017), which can lead to data from 

samples being omitted (McMurdie and Holmes 2014) and false discovery rates from 

subsequent statistical testing (Mandal et al. 2015; Weiss et al. 2017). 

The objectives of this study were to compare the hydrology, microbiomes (using 

QMP approaches), and resistomes in two rural river catchments in the UK, using the 

Coquet and Eden Rivers as case studies (Figure 3-1). The differences between 

catchments were then assessed to identify drivers of rural AMR within UK 

catchments. Overall, this study demonstrates the benefit of using multiple case-

studies in the assessment of environmental AMR and shows how this could inform 

AMR surveillance. 

3.2 Materials and methods 

3.2.1 Site Description and catchment sampling 

The Coquet River catchment is in NE England (Northumberland) and spans from the 

Cheviot Hills to the seaside town of Amble (Figure 3-1B). It has numerous small 

towns, including Shillmoor, Sharperton, Thropton, Rothbury, Warkworth and Amble. 

The total Coquet catchment area is 606 km2 and the length of the river is 60 km. In 

contrast, the Eden River catchment is in NW England (Cumbria) and it is larger than 

Coquet catchment, being 2324 km2 in area (Figure 3-1B). The Eden is split into six 

sub-catchments, of which the Upper Eden (670 km2) and Lower Eden (461 km2) 

were selected for work here due to their similar size as the Coquet. In the Eden sub-

catchments, there are several small towns, such as Kirkby Stephen, Appleby in 

Westmorland, and Temple Sowerby as well as the city of Carlisle near the Irish Sea. 

For practical purposes, these catchments were chosen due to their close geographic 

proximity and to assess catchments spanning the west-east precipitation gradient in 

the Northern UK (due to eastern tracking weather systems and orographic effects), 

which significantly impacts western vs eastern hydrology. 
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The Coquet and Eden catchment areas were extracted using ArcMap (Attal 2017; 

ESRI 2018), and land-use was classified using Land Cover Map (LCM) 2015 

(Rowland et al. 2017) (Figure 3-1). Land-use types were grouped in ‘urban’, ‘rural’ 

and ‘pristine’ as shown in Appendix Table A-1. The percentage of land-use within a 2 

km buffer around each sampling site was calculated as per Amos et al. (2015) 

(Figure 3-1C). Sample sites were selected to capture a variety of land-uses along the 

river, whilst also allowing sampling to be safe and logistically suitable. For example, 

most samples were collected at mid-stream from bridges. 

 

Figure 3-1 A) the Eden catchment map with sample locations and land-use B) The Coquet 
catchment map with sample locations and land-use C) Percentage of Pristine, Rural and 
Urban land-use within a 2 km buffer in sampling locations. Measurement sites include 
sample sites for this study, National River Flow Archive (NRFA) Gauge Site (see Section 
2.7) and DEFRA Hydrology Database Explorer (HDE) Rainfall measurement sites (see 
Section 2.7). Land-use classifications according to Land Cover Map 2015 (Rowland et al, 
2017) were grouped into Pristine, Rural and Urban according to Appendix Table A-1 

Exact locations of sample sites are shown in Figure 3-1. Twelve and ten sampling 

sites were chosen for the Coquet and Eden, respectively, where Site A was sampled 
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farthest upstream, and Sites L and J were sampled farthest downstream. Sampling 

always was performed from up to downstream, over three separate days in each 

catchment on the specified dates in 2020 and 2021 (Appendix Table A-3). Sampling 

had been planned to take place over a shorter time, but sampling trips needed to be 

rearranged due to numerous disruptive lockdowns during the COVID-19 pandemic. 

The extended time between sampling campaigns may have introduced differences in 

microbial community and resistomes arising from seasonality.  

When onsite, river water quality was assessed for temperature, dissolved oxygen 

(DO) and conductivity using an HQ40 portable multimeter (HACH) and pH using a 

500 series portable pH meter (Jenway). River water samples were collected in 

triplicate, using a bucket cleaned with 70% ethanol solution between uses. Five litres 

were collected in total, with three litres being used for DNA extraction and two litres 

used for all other analyses. River volumetric flow rate was estimated in situ during 

two of the three sampling trips for each catchment (September and 

October/November), where river velocity was estimated using the float method 

(Jowett 1997; Michaud and Wierenga 2005).  

The cross-sectional area of the river at each site was calculated using the measured 

river width and depth, which was multiplied by the surface velocity. A correction 

factor of 0.85 was applied to surface velocity data (Michaud and Wierenga 2005; Ott 

et al. 2021a). Flow rate in the March sampling trip was not performed due to 

including microbial plate colony culturing (Section 2.6), which required extra field- 

and lab-processing time.  

3.2.2 DNA extraction and quantification of 16SrRNA, ARGs, MGEs and 

Microbial Source Tracking (MST) probes 

For each site visit, three litres of river water (3 x 1 litre composite samples) were 

filtered through 0.22 µm cellulose filter paper (Merck Millipore), before subsequent 

processing. DNA was extracted from microbial cells trapped on the filter paper using 

the FastDNA Spin kit for soil (MP Biomedicals, UK). Following extraction, samples 

were assessed for purity using a NanoDrop 1000 Spectrometer (Thermoscientific, 

UK) and DNA concentration was measured using the Qubit® dsDNA High Sensitivity 

(HS) Assay Kits (Invitrogen, UK). The extracted DNA was diluted to 5 ng/µL for 

quantitative polymerase chain reaction (qPCR) analysis to minimise inhibition.  
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Human and ruminant Bacteroidetes MST quantification (HuBac and RuBac 

respectively) was performed using primers and probes supplied by the Environment 

Agency (EA) (Environment Agency 2008). For the MST probes, and 16S rRNA (total 

bacteria), Taqman qPCR reactions were conducted using SSoAdvanced™ Universal 

Probes Supermix (BioRad) (Appendix Table A-4). Faecal coliforms (Appendix Table 

A-4) were quantified using the qPCR SYBR green-based method assay. SYBR-

green reactions were conducted using SSoAdvanced Universal SYBR® Green 

Supermix (Bio-Rad). Assays were completed in duplicate using the Bio-Rad CFX 

c1000 System (Bio-Rad), with a negative control.  

3.2.3 Next-generation sequencing  

Amplification of the 16S rRNA gene was confirmed through PCR and qPCR. The 

Illumina MiSeq platform at NU-OMICS, Northumbria University (UK) was used to 

sequence the hypervariable V4 region 515F-806R of the 16S rRNA gene with V2 

500 cycle chemistry. Sample preparation and sequencing was conducted using the 

Schloss MiSeq Wet Lab SOP (Kozich et al. 2013), including a positive control (mock 

community, ZymoBIOMICS Microbial Community DNA Standard, Zymo Research) 

and negative control (H2O).  

Raw sequences were available as FASTQ files and were processed using QIIME2 

(v. 2021. 4) (Estaki et al. 2020). Reads were denoised into Amplicon Sequence 

Variants (ASVs) with DADA2 (Callahan et al. 2016, 2017). Then Naïve Bayes 

classifiers pre-trained on SILVA 138 99% OTUs full-length sequences were used for 

taxonomic assigned to genus level. ASVs of <0.1% of the mean sample depth were 

removed to account for MiSeq bleed (Comeau et al. 2017). The taxonomy and ASV 

table biom file were produced for downstream analysis in R Studio (v.4.2.2), with the 

phyloseq (v.1.42.0) and vegan (v.2.6-4) packages. ASVs not classified to phylum 

level, mean value <1 and maximum value <10 were removed. This resulted in a total 

of 2991 taxa for 66 samples (compared to 4197 taxa pre-quality filtering), with a 

minimum of 4280, median of 26212 and maximum of 119457 reads.  

3.2.4 Quantitative Microbial Profiling and Hill diversity analysis  

Quantitative Microbial Profiling (QMP) was used to rarefy ASVs as described 

previously (Vandeputte et al. 2017; Ott et al. 2021b), using R programming from 

http://www.raeslab.org/software/QMP (Vandeputte et al. 2017). Samples were 

http://www.raeslab.org/software/QMP
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rarefied to an equal sampling depth (i.e., sequencing depth divided by cell counts), 

using the R function rarefy_even_sampling_depth (seed=711). Following rarefaction, 

abundances were multiplied with an estimated cell concentration/mL of river water, 

which was calculated by dividing the 16S rRNA concentration/mL by 4.1, which is the 

estimated 16S rRNA gene copy numbers per bacterial cell (Klappenbach 2001).  

Hill numbers were used to measure the species diversity. These have been used 

more frequently in macroecology as an improved method of determining species 

diversity and address the problem of rare taxa in diversity influences (Boeken and 

Shachak 2006; Chao et al. 2014; Alberdi and Gilbert 2019a). The influence of rare 

and abundant taxa are assessed through changing the order of diversity (q) where at 

q=1 relative abundances of ASVs are assessed according to their original values, at 

q<1 rare ASVs are overweighed and at q>1 highly abundant ASVs are overweighed 

(Alberdi and Gilbert 2019b). Hill numbers for QMP abundances were calculated 

using the hilldiv R package (v.1.5.1) (Alberdi and Gilbert 2019b) and diversity profiles 

were visualised using ggplot2 (v.3.4.2). As described in Ott et al. (2021b), the 

Sørenson-type over-lap dissimilarity measure at q=1 was plotted on a Non-metric 

Multi-dimensional Scaling (NMDS) plot, to visualise the proportion of nonshared 

ASVs between sample sites and between different sampling months.   

3.2.5 Relative abundance of ARGs and MGEs using high-throughput qPCR 

Resistomes were characterised through high-throughput qPCR (HT-qPCR), using 

the Resistomap Oy (Helsinki, Finland) SmartChip Real-time PCR system. DNA from 

58 unique samples were analysed. Thirty-two representative samples were analysed 

for the full array of 384 ARG and MGEs offered by Resistomap (Appendix Table A-6). 

Based on these analyses, 96 genes were selected for analysis of the remaining 

samples (Appendix Table A-7). DNA samples were first diluted to 10 ng/µL based on 

concentrations measured with the NanoDrop 1000 Spectrometer (Thermoscientific, 

UK). DNA samples, qPCR reagents and primer sets were mixed in 100 nL reaction 

SmartChip™ wells, using the SmartChip™ Multisample Nanodispenser (TakaraBio). 

It should be noted that there were originally 66 collected samples, but eight had 

insufficient DNA for HT-qPCR analysis (Appendix Table A-5), including all the 

samples from Coquet Site A.  

Data processing was performed through R programming. The threshold cycle (CT) of 
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28 was used as previously suggested (Stedtfeld et al. 2018). DNA were analysed in 

three qPCR reactions. Genes which were only present in one technical replicate (i.e. 

one out of three qPCR reactions) were excluded as false positives. For notable 

detections, quality control was assessed by checking for issues flagged by 

Resistomap, such as multiple melt curves. The abundance of each gene was 

calculated as the relative abundance in proportion to the 16S rRNA gene as 

previously described (Muurinen et al. 2017). ARGs and MGEs were transformed into 

absolute copy numbers by multiplying with 16S rRNA concentration for each sample.  

3.2.6 Physiochemical analysis and microbial colony counts   

Water samples were filtered through 0.22 µm polyethersulfone (PES) syringe filters 

within 24 hours of collection and then analysed for soluble chemistry within 48 hours. 

Assessment of water chemistry was conducted using HACH LANGE kits of Chemical 

Oxygen Demand (COD) (LCK 314: 15-150 mg/L), ammonium-nitrogen (NH4-N) (LCK 

304: 0.015-2 mg/L), orthophosphate as phosphorous (PO4-P) (LCK 349: 0.05-1.5 

mg/L) and Total Nitrogen (TN) (LCK 138: 1-16 mg/L) analysis.  

Microbial plating and colony counts were conducted for the third sampling trip for 

both catchments (March 2021), focusing on non-resistant and resistant Escherichia 

coli (E. coli) isolation. River water was filtered onto 0.45 µm cellulose membrane 

filters (Sartorius™), which were placed on ChromoSelect agar for E. coli (Sigma-

Aldrich), and incubated for 38 hours at 37 °C. This process was repeated, except 

filters were placed on Chromoselect Agar with extended beta-lactamase (ESBL) 

supplements (Sigma-Aldrich) (i.e., 1.5 mg of Ceftazidime and Cefotaxime, 1 mg of 

Ceftriazone and Aztreoname, and 5 mg of Fluconazole) to quantify E. coli resistance 

to ESBL antibiotics. The amount of water filtered was 2-20 mL for non-ESBL plates 

and 200-500 mL for ESBL plates. Each site was plated in triplicate.  

3.2.7 Catchment hydrology   

Three river gauging sites within the Coquet catchment and four sites within the Eden 

were identified (Appendix Table A-8) from the National River Flow Archive (NRFA; 

https://nrfa.ceh.ac.uk). For each site, the flowrate on each sampling day, various 

river flow indices, and catchment descriptors were obtained from the NRFA (Table 3-

1). The flow indices were normalised by upstream contributing area to allow 

comparisons between sites. Daily rainfall data was downloaded for the seven 

https://nrfa.ceh.ac.uk/
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gauging sites from the DEFRA Hydrology Data Explorer 

(https://environment.data.gov.uk/hydrology/explore) (Appendix Table A-8).  The 

Antecedent Precipitation Index over the previous five days (API5) was calculated 

according to (CEH 2023). This provides a measure of catchment wetness. 

Table 3-1 Definitions of Hydrological Parameters (from NRFA, 2023) 

3.2.8 Statistical analysis  

Data processing and statistical analysis was performed in the R environment (R 

Core Team 2018). Graphics were developed with ggplot2 and finalised with Inkscape 

Parameter Definition 

Catchment area (km2) Area of the catchment upstream 

contributing to the site 

PROPWET The fraction of the year that soils can be 

expected to be quite wet, where 

saturated soils are more likely to 

contribute to flooding 

BFI Baseflow Index: Proportion of the total 

flow that comes from groundwater 

SAAR (mm) Average annual rainfall in the standard 

period (1961-1990) in millimetres 

Mean Flow (m3/s) Record mean-gauged flow at gauging 

stations 

Mean annual runoff (mm/year) Long-term mean annual flow as 

measured at the gauging station 

normalised by catchment area 

95% Exceedance (Q95) (mm/day) Low flow parameter: flow which was 

equaled or exceeded 95% of the flow 

record 

5% Exceedance (Q5) (mm/day) High flow parameter: flow which equaled 

or exceeded for 5% of the flow record 

Flow rate on the day of sampling (m3/s) Gauged flow rate on the day of sampling 

(From NRFA) 

https://environment.data.gov.uk/hydrology/explore
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(v.09.4). The Kruskal-Wallis test was performed to analyse differences between the 

Coquet and Eden catchments and sampling months for MST probe, colony count, 

and ARG abundance data. The Wilcoxon test was used to find significantly different 

abundances of taxa at Phylum level between the Coquet and Eden catchments 

(p<0.01). Otherwise, significance was defined as p<0.05. 

The log2fold change between ARG and MGE concentrations between the rivers 

Coquet and Eden was computed using the DESeq2 package, which utilised the Wald 

test, and p value were adjusted according to the Benjamini Hocherg method 

(Benjamini and Hochberg 1995). The log2fold change was then plotted against 

statistical significance with a volcano plot using ggplot2.  

Quantile-Quantile plots (Q-Q plots) were used for the microbiome and resistome 

data to identify outlier samples. Two datapoints were excluded from the analysis 

which is discussed further in Section 3.3.2 and 3.3.3. Co-occurrence analysis was 

also conducted with the ARG and MGE genes, and abundance of ASVs by order 

level, to determine possible hosts for ARGs. This was conducted through an initial 

Spearman correlation, where significance values were adjusted according to 

Benjamini Hochberg (Benjamini and Hochberg 1995). Strongly positive correlations 

(rs>0.8, p<0.01) were further visualised using network analysis based on the igraph 

R package and Gephi software (Bastian et al. 2009). Spearman correlations, with 

significance values adjusted according to the Benjamini Hochberg method 

(Benjamini and Hochberg 1995), were used to assess relationships between water 

quality, microbial, AMR, and hydrological indicators which were visualised using the 

corrplot (v. 0.92) package. 

3.3 Results 

3.3.1 Differences in hydrological conditions in the Coquet and Eden 

To provide some context of the precipitation and hydrology of both catchments, flow 

data and FEH catchment descriptors were extracted from the UK Centre for Ecology 

& Hydrology Flow Archive (Table 3-2). As background, the Standard Average Annual 

Rainfall (SAAR) reflects altitude and the influence of the Atlantic Ocean, with the 

highest values in the Eden catchment, particularly in the Eamount at Udford and 

Kirkby Stephen sites.  
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Table 3-2 Catchment descriptors in the Eden and Coquet at relevant sites from the National 
Flow Archive (NRFA). Definitions of Hydrological Parameters are in Table 3-1 

High SAAR is associated with long periods of soil saturation (PROPWET), 

enhancing the generation of saturation excess surface runoff and higher annual 

runoff. The ratio of Q5 and Q95 is a measure of flashiness, with high values 

indicating a flashier flow regime. In each catchment, SAAR, mean annual runoff, and 

flashiness decrease with decreasing elevation towards the catchment outfall. BFI 

values, the ratio of baseflow to total streamflow, are similar in the two catchments, 

except for Kirkby Stephen. This may be due to the hydrological influence of the 

 Eden (Upstream-Downstream) 
Coquet (Upstream-

Downstream) 

 

Eden at 

Kirkby 

Stephen 

Eden at 

Temple 

Sowerb

y 

Eamount 

at Udford 

Eden 

at 

Sheep

mount 

Usway 

Burn at 

Shillmoor 

Coquet at 

Rothbury 

Coquet 

at 

Morwic

k 

Catchment Area 

(km2) 
69.4 616.4 396.2 2286.5 21.4 346 569.8 

SAAR (mm) 1492 1142 1768 1182 1056 905 850 

PROPWET 0.65 0.66 0.66 0.64 0.45 0.45 0.44 

BFI 0.25 0.37 0.51 0.48 0.38 0.47 0.44 

Mean Annual 

Runoff (mm/year) 
1195 786 1258 752 824 534 486 

Mean Flow 

(mm/day) 
3.27 2.15 3.45 2.06 2.26 1.46 1.33 

95% Exceedance 

(Q95) 

(mm/day) 

0.21 0.28 0.53 0.38 0.32 0.22 0.20 

5% (Exceedance 

(Q5) 

(mmm/day) 

13.07 7.68 10.60 6.45 7.91 4.45 4.52 

Flashiness Q5:95 

(-) 
62.24 27.43 20.00 16.97 24.72 20.23 22.60 

NRFA 

Flow Rate 

(m3/s) on 

day of 

sampling 

Sep 1.497 10.79 NA 55.7 0.621 2.47 2.72 

Oct/ 

Nov 
5.168 40.89 NA 96.94 3.145 4.457 6.28 

Mar 1.221 13.31 NA 65.86 1.486 6.066 9.32 
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extensive peat soils, which enhance the flashiness of that sub-catchment. The 

Eamont flow regime is affected by the Haweswater and Wet Sleddale Reservoirs and 

Ullswater, which may impact on low and high flow values (characterised by Q5 and 

Q95) and BFI.  

The calculated API5 for both catchments at different rainfall gauges on the day of 

sampling is summarised in Appendix Table A-9, i.e., 1.52 ± 0.321 mm in the Coquet 

and 1.94 ± 1.26 mm in the Eden. Although the API5 was similar for both catchments, 

there is higher variability in the Eden, primarily due to high API5 during the October 

sampling trip (Appendix Table A-9).  

3.3.2 Coquet and Eden catchment microbial communities - quantification and 

diversity 

Estimated bacterial cell concentrations in the Coquet (based on 16S rRNA data) 

varied from 6.37 x103 ± 1.37x103 to 1.87 x105 ± 7.97 x104 cells/mL and in the Eden 

from 1.6 x103 ± 7.48 x103 to 8.79 x104 ± 3.17 x104 cells/mL (Appendix Table A-10). 

The lowest cell abundances were recorded in the upstream sites (Site A) in both the 

Coquet and the Eden, whilst highest abundances were recorded at Site J in the 

Coquet downstream of Felton and Site J in the Eden within Carlisle city (Figure 3-1). 

Overall, when broadly comparing the sampled sites in the catchments, there were no 

significant differences in cell count numbers between the Coquet and Eden based on 

16S rRNA data (Kruskal Wallis test p=0.55). There were also no significant 

differences in cell counts when comparing sampling months (Kruskal Wallis Coquet: 

p=0.85, Eden: p=0.95) (Appendix Table A-11), however in general lower cell counts 

were observed in colder months (March/November). 

Microbiomes were assessed by 16S rRNA sequencing with Illumina MiSeq. 

Following QMP normalisation, there were 2975 taxa amongst samples. Sampling 

depth was highest in the Eden samples, especially in colder months such as 

November and March (Appendix Figure A-1). Conversely, lower sampling depth is 

seen in the October and September Eden samples, as well as March/November 

samples at downstream sampling points in the catchment. Lower sampling depth in 

general was observed in the Coquet samples. 

The microbial abundance was plotted for each site in both catchments (Figure 3-2), 

showing the top 25 ASVs in each. Both catchments showed low levels of abundance 
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in upstream sites and an increase in the midstream. The Coquet shows a particularly 

high abundance at site J, such as a high abundance of Flavobacteriaceae in 

September. Outlier analysis revealed the levels were substantially higher than the 

typical ASV abundance across all sites and these data were removed from further 

analysis (Appendix Figure A-2).  

 

Figure 3-2 Bar plots showing Quantitative Microbial Profiling (QMP) abundance of the 25 most 
abundant amplicon sequencing variants (ASVs) grouped into Families, with the remaining 
grouped into 'Others'. The error bars show the deviation between sampling months. 

Analysis of microbial abundances using the QMP approach permits the analysis of 

significantly more abundant taxa between catchments to enable comparisons. Taxa 

that had significantly different abundance across all samples in both catchments at 

Phylum level are presented in Figure 3-3. Overall, eight taxa were significantly 

different between catchments (Wilcoxon test, p<0.01).  

In the Coquet, Bdellovirbionota and Pastescibacteria are significantly more abundant 

compared to the Eden (Wilcoxon test, p<0.01). In the Eden, Gemmatimonadota and 

Synergistota are more significantly abundant compared to the Coquet (Wilcoxon test 

p<0.01).  

The order of diversity (q) was plotted against microbial diversity represented through 

Hill numbers (Appendix Figure A-3) Decreasing richness of species was evident from 

up to downstream in the Coquet and decreasing evenness of species. The same 

pattern was seen in the Eden, except in September when communities were less 

rich and more uneven along the river.  

Beta diversities in each catchment were visualised using a Sørenson-type overlap 
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dissimilarity measure at q=1 (Appendix Figure A-4). There were differences in 

microbial community structure in the upstream and downstream sites in both 

catchments, except for some upstream sites in the Eden, which sometimes clustered 

with downstream sites. Microbial community diversities in both rivers varied across 

sampling months, which was particularly apparent in the Eden catchment.  

 

Figure 3-3 Significantly different abundant Phylum in the Coquet and Eden catchments. 
Abundance was assessed through quantitative microbial profiling (QMP) and significant 
differences were determined through a Wilcoxon test, where the significance threshold was 
set at p<0.01. 

3.3.3 Comparing the resistomes and mobilomes in the Coquet and Eden 

catchments.  

Relative and absolute abundance of ARGs sorted by antibiotic group are shown in 

Figure 3-4 and Appendix Table A-15. Outlier analysis indicated that Coquet Site D in 

September had particularly high relative and absolute abundance of ARGs and 

MGEs compared to sites in the same catchment, and in the Eden, Site A had 

particularly high relative abundance of ARGs and MGEs (Appendix Figure A-5). As 

Site D in the Coquet was based on a single sample and it was a statistical outlier, it 

was removed from further analysis, although data from the site are included in 
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Appendix Table A-15. For Eden Site A in March, outlier analysis indicated the 

sample data were in the normal range for the catchment once data were converted 

to absolute abundances (i.e., ARG and MGE copies/mL). Therefore, Site A in the 

Eden in March was included in further analysis. 

 

Figure 3-4 A) Relative abundance of ARGs/16S rRNA grouped by antibiotic class in the 
Coquet and Eden B) ARG copies/mL for the Coquet and Eden, c) Diversity of ARGs, D) 
percentage of absolute abundance (ARG copies/mL) in each catchment. 

The Coquet had an average total relative abundance of 0.09 ± 0.13 ARG copies/16S 

rRNA (mean ± standard deviation) and absolute abundance of 1.6 x104 ± 1.7 x104 

ARG copies/mL. The average relative abundance in the Eden sites was 0.2 ± 0.31 

copies/16S rRNA and the absolute abundance was 5.2 x104 ± 7.83 x104 copies/mL. 

The Eden had on average higher relative and absolute abundance of ARGs 

compared to the Coquet, but this was not significant (Kruskal Wallis, p>0.05). 

However, the Eden catchment had significantly higher ARG diversity, based on the 

96 gene assay (Kruskal Wallis, p=0.0207), with 45.6 ± 20 genes detected out of 85 

potential ARGs, compared to the Coquet’s average of 32.5 ± 16.3 genes (Appendix 

Table A-16).  

In both catchments, MGEs (including integrons; see Appendix Table A-16) were 

detected at all sites (Figure 3-5), with an average relative abundance of 0.21 ± 0.22 
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MGE copies/16S rRNA in the Coquet and 0.34 ± 0.69 MGE copies/16S rRNA in the 

Eden catchment. In the Coquet, the average absolute abundance of MGEs was 3.98 

x104 ± 3.6 x104 MGE copies/mL and 5.8 x104 ± 6.4 x104 MGE copies/mL in the 

Eden. The MGE abundance was not significantly different between the catchments 

(Kruskal Wallis, p=0.46) (Appendix Table A-16). 

The extent of shared ARGs and MGEs in the Coquet and Eden catchments is 

provided in Appendix Figure A-6. Overall, within the 96 ARG/MGE gene assay, the 

catchments had similar resistomes, where the Coquet had no unique genes and the 

Eden had four unique genes, two conferring resistances to Beta-Lactams (blaKPC and 

blaGES), one tetracycline gene (tetPB_1) and one MLSB gene (IsaC). In terms of 

abundance, the blaKPC gene and tetM gene were found to be significantly more 

abundant in the Eden catchment (Appendix Figure A-7).  

 

Figure 3-5 A) Relative abundance of MGEs/16S rRNA B) MGE/copies/mL C) Diversity of 
MGEs, D) Percentage of Absolute abundance (MGE copies/mL) in each catchment. 

3.3.4 Possible drivers for microbial community and resistomes in catchments 

Microbial source tracking probes (MST probes) for human and ruminant faecal 

derived Bacteroidetes (HuBac and RuBac, respectively) were used to determine 
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potential contributing faecal sources in both catchments. Concentrations of HuBac 

and RuBac derived Bacteriodetes were significantly higher in the Eden compared to 

the Coquet (HuBac: Kruskal Wallis, p=6.83x10
-5, RuBac: Kruskal Wallis, p=0.00257) 

(Appendix Table A-11). HuBac and RuBac concentrations in both catchments 

increased as one moved downstream, maximising at mid-catchment, but then 

decreased downstream (Appendix Figure A-8). This pattern was especially evident in 

the Eden, where upstream RuBac concentrations steadily increase from upstream 

sites to the Site F, before decreasing towards the bottom of the catchment. On 

average, RuBac was about 10-fold more abundant than HuBac concentrations, likely 

due to the high levels of agricultural land-use in both catchments (Figure 3-1). 

Microbiomes and resistomes in both catchments were assessed using network 

analysis (Figure 3-6; Appendix Table A-17). When both catchments were analysed 

together, there were 22 nodes, where the highest correlating taxa was Bacteroidales 

(3 degrees). The highest correlating ARGs were blaTEM (three degrees) and cfXA, 

blaVIM and tetO_2 (two degrees). The MST marker RuBac, also correlated 

significantly with blaVIM and sul4 (Spearman, r>0.8, p<0.01).  

Analysed separately, the Eden and Coquet both had a similar number of nodes in 

their networks, with 64 and 67 nodes respectively. In the Eden catchment, the 

highest correlated ARG included strB (12 degrees), tetQ (10 degrees), tetW (8 

degrees), and the highest correlating MGEs were tnpA_5_ (5 degrees), tnpA_1 (4 

degrees) and ISAba3 (3 degrees). The highest correlating taxa were Bacteroidales 

(7 degrees), Acideaminococcales, Campylobacterales and Peptostreptococcales-

Tissierellales (6 degrees). Both HuBac and RuBac also significantly correlated with 

noteworthy clinically relevant ARGs in the Eden catchment (e.g., mcr1 and carB, 

respectively) (Spearman, r>0.8, p<0.01).  

In the Coquet, the highest correlating ARGs were tetM (16 degrees), aacC4 (5 

degrees), eerm36 and mcr1 (4 degrees). The highest correlating taxa were 

Aeromonadales, Bacteriodales, Candidatus Azambacteria and Pirellulales (all 3 

degrees). Interestingly, no MGEs were strongly correlated with taxa in this 

catchment, although this is probably because the number of MGEs quantified were 

small (only 10 MGEs).  

The data from the two catchments were pooled to identify additional factors driving 
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AMR. A correlation matrix was developed comparing parameters measured in this 

study, grouped into categories called water quality indicators, microbial indicators, 

and AMR indicators (see Figure 3-7 for specific indicators). AMR indicators, whilst 

not significantly correlated in most cases, are positively correlated with water quality 

(e.g., conductivity and pH) and the microbial indicators. For example, MGE 

abundance is significantly positively correlated with 16S rRNA (Spearman, p<0.05).  

 

Figure 3-6 Network Analysis for both catchments, and individual catchments revealing co-
occurrence patterns amongst taxa at order level (assessed through quantitative microbial 
profiling (QMP), ARGs/mL, MGEs/mL and MST markers (ruminant and human Bacteroidetes 
(RuBac and HuBac). A connection indicates a strong spearman correlation (rs>0.8) and 
significant (p<0.01), which is adjusted with a Benjamini Hochberg correction. 
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Interestingly, whilst microbial indicators are negatively correlated with DO (i.e., as DO 

declines, microbial indicators increase), AMR indicators have a weak, but positive 

correlation with DO. Although the hydrology indicators are not significantly correlated 

with water quality, microbial or AMR indicators, they do positively correlate with 

HuBac and RuBac, and negatively correlate with COD. The Antecedent Precipitation 

Index over the previous 5 days (API5) negatively correlated with temperature, pH, 

DO, conductivity, COD and NH4. There is also a negative correlation with the flow 

rate and ESBL coliforms. 

 

Figure 3-7 Correlation matrix for water quality parameters, microbial indicators, AMR 
indicators and Hydrology parameters. The Hydrology parameters include the measured flow 
rate (i.e., the flow rate measured for this study) and the National River Flow Archive (NRFA) 
Flow rate (i.e., flow rate on the day of sampling measured through river gauges) (Table 3-2). 
Correlations are Spearman correlations, where white stars indicate a significant correlation 
(p<0.05) with a Benjamini Hochberg correction. 

3.4 Discussion 

3.4.1 Impact of hydrological factors on microbial communities in the Coquet 

and Eden catchments 
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The hydrology of both catchments was characterised, and the Eden generally had 

more extreme differences in flow rates, rainfall and runoff compared to the Coquet 

catchment. Due to the connections of the Eden River with reservoirs such as 

Haweswater, Wet Sleddale and Ullswater, more extreme precipitation will impact 

river flows, especially in the middle of the catchment (NRFA, 2023). More extreme 

flows will clearly influence flow rates but will also ‘flush’ upstream and on-land 

contaminants downstream, impacting river water quality lower in the catchment as 

seen previously (Chung et al. 2008; Zhang et al. 2014). This effect is most evident in 

the Eden through the human and ruminant Bacteroidetes levels, which increase 

towards the middle of the catchment before decreasing in concentrations farther 

downstream. Decreases farther downstream are probably due to greater 

urbanisation and land-management in those reaches, where there are interventions 

such as fencing or riparian buffers that can protect stream water quality from cattle-

related runoff and pollution (Grudzinski et al. 2020).  

In general, the Coquet has higher numbers of the Bdellovibrionota and 

Patescibacteria phylum, which are often prevalent in less polluted surface water or 

groundwater environments (Brown et al. 2015; Herrmann et al. 2019; Im et al. 2019; 

Chaudhari et al. 2021; Li et al. 2021). In particular, the Patescibacteria phylum is 

often present in nutrient limited conditions (Tian et al. 2020). Bdellovibrionota, is a 

phylum that preys on other bacteria (Sockett and Lambert 2004). This has been 

previously associated with low abundance of microalgae (Yang et al. 2023), and 

maintenance of a healthy and diverse ecosystem through removing dominant 

bacterial groups (Zhang et al. 2023b). Higher numbers of such strains are consistent 

with nutritional conditions and evidence of low pollutant inputs in the Coquet, where 

the Coquet River microbial communities reflect less impacted conditions than the 

Eden, which is consistent in all the genetic and microbial data for the catchment. 

Conversely, the Eden catchment had broadly greater abundances of microbes 

associated with soils, limnic environments and sediments, such as the phylum 

Gemmatimonadiota (Mujakić et al. 2022) and Synergistota, which is often present 

under conditions impacted by animal faeces, surface soils, and wastewater releases 

(Bhandari and Gupta 2012). Longer periods of high soil wetness (PROPWET) and 

greater soil saturation in the Eden catchment appears to result in greater runoff that 

contains phylum commonly present in the soils entering the river. This speculation is 



3.4 Discussion

 

50 
 

supported by significantly higher ruminant Bacteroidetes abundances in the Eden 

compared to the Coquet catchment.  

3.4.2 Drivers of AMR in the Eden and Coquet catchments 

The river water resistomes in the two catchments were similar, although the 

diversity, and absolute and relative abundances of ARGs and MGEs were slightly 

higher in the Eden compared to the Coquet catchment, with the diversity of ARGs in 

the Eden being significantly higher.  

Comparison of the catchments revealed that from the 96 gene assay used in the 

study, the Eden catchment had four unique genes compared to the Coquet. This 

included the beta-lactam genes, blaKPC and blaGES that encode resistance to 

carbapenem antimicrobials, which were significantly more abundant in the Eden 

catchment compared to the Coquet. Both these are plasmid-mediated genes that are 

genetically mobile and can be shared through horizontal gene transfer (HGT) 

(Queenan and Bush 2007; Bennett 2008; Mengistu et al. 2022). The high prevalence 

of tetM was previously found to be a consequence of environmental pollution caused 

by livestock (Munck et al. 2015).  

Carbapenemase genes have been more frequently studied in the context of 

agricultural and wastewater related contamination of natural waterbodies (Mills and 

Lee 2019). In particular, blaKPC represents carbapenem resistance in 

Enterobacterales, which is a problem in hospital settings, especially in the NW 

England (Stoesser et al. 2020). In this study, the blaKPC gene was detected once in 

Site G, and twice in two sites, Site B and E. All sites have a high percentage of 

agricultural land-use, but also have small settlements nearby. Therefore, the 

presence of blaKPC could be a result of community wastewater, septic tanks, or 

agricultural contamination. Interestingly, blaKPC was not found in the Coquet, which is 

in NE England. More sampling is needed to determine the source of this gene, 

especially what it might suggest relative to the spread of hospital-associated AMR in 

the environment through waste releases. This should also utilise more targeted 

qPCR approaches to confirm detections.  

Our network analysis revealed that the ARGs in the Coquet and Eden have multiple 

potential hosts. In both catchments Bacteroidales was highly correlated with ARGs, 

consistent with previous studies finding that Bacteroidales often carry abundant 
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ARGs including tetracycline and beta-lactam genes (Li et al. 2022c). 

Aeromonadales, known to harbour clinically relevant drug resistance (Kneis et al. 

2022), also significantly correlated with ARGs. The network analysis further 

highlighted differences in microbial, resistome and mobileome interactions between 

the catchments. There were multiple MGEs strongly correlating with ARGs in the 

Eden, whereas no strong correlations were seen between ARGs and MGEs in the 

Coquet. This further indicates greater anthropogenic impact in the Eden, where the 

presence of MGEs is indicative of acquired resistance (Datta and Hughes 1983) and 

greater human and animal waste inputs to the river.  

In addition, human and ruminant Bacteroidetes had strong and significant 

correlations with ARGs in the Eden, whilst there were no correlations with these 

markers in the Coquet, indicating the increased likelihood of human and/or 

agricultural related resistance in the Eden catchment compared to the Coquet. 

However due to the complexity of the microbial interactions in the environment, this 

is speculation at best, although it is broadly consistent with qualitative differences 

between the two catchments and might be useful for considering the effects of 

differences between river catchments in general terms (Carr et al. 2019). 

To understand ecological drivers, correlation matrices were developed to investigate 

the links between water quality, microbial indicators, resistance indicators and 

hydrology. Interestingly, unlike previous studies in more contaminated catchments 

(Ho et al. 2021; Ott et al. 2021a), there were few strong statistically significant 

positive correlations. There is a positive correlation between AMR indicators, such as 

ESBL E. coli abundance and conductivity (a good indicator for dissolved solids in a 

river; Abdulsattar et al. 2020). Conductivity may thus be linked to inorganic and 

organic pollution from fertilisers, or runoff from roads (particularly as most sites were 

sampled close to roads), which may contain heavy metals that can increase 

resistance through co-selection (Knapp et al. 2017; Robins et al. 2022). However, 

this cannot be verified with available data. 

Unlike previous studies in heavily contaminated catchments, DO was only a weak 

indicator for AMR, whereas previous studies have found a strong, significant 

negative correlation (Ho et al. 2021; Ott et al. 2021a). This could be due to the 

difference in AMR sources, where resistance may be primarily derived from diffuse 
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agricultural sources (here) as opposed to point source contamination from 

wastewater (Ho et al. 2021; Ott et al. 2021a). This observation highlights the 

importance of studying less contaminated sites to understand the drivers for AMR in 

“background” environments. In a heavily contaminated site, DO may be an effective 

indicator for resistance and be used as a marker for AMR (Ott et al. 2021a). 

However, in less contaminated sites, which are primarily influenced by diffuse rural 

activity, alternative markers for AMR need to be considered for monitoring.  

3.4.3 The need for further environmental surveillance 

The comparison of the Coquet and the Eden catchments illustrates the importance of 

increased integrated AMR surveillance and insights it can bring relative to different 

catchment dynamics and AMR. The quantitative approach used here lends further 

support to recent recommendations by the UN Environment Programme (UNEP, 

2023). Moreover, this study has indicated that the local geography of the Eden 

catchment, elevated river flows, rainfall and runoff are associated with greater 

agricultural contamination and increased resistance, a connection that would not 

have been clear without parallel data from the Coquet catchment.  

This study exemplifies the importance of integrated sampling and analysis and 

method standardisation, which allowed us to better compare and understand the 

drivers of resistance in “typical” UK rivers. With higher flow rates apparently 

increasing rural in situ resistance, the expected more dynamic rainfall events due to 

climate change (Watts et al. 2015) may increase resistance in rivers due to surface 

runoff. Whilst rivers in contaminated environments in the UK have been well studied, 

understanding of regional catchments like the work here will provide insights into the 

temporal and spatial variation of AMR.  

Increased spatial surveillance could further inform environmental risk assessments 

through understanding of how catchments differ in terms of AMR relative to each 

other (Burch et al. 2022). Furthermore, this study demonstrates the need for 

monitoring in different environments, where ultimately the data can be used to inform 

large scale routine monitoring for AMR in environments (Bengtsson-Palme et al. 

2023; Hart et al. 2023). However, there is a need for metadata as well as AMR data, 

such as water quality and nutrient conditions, to explain drivers of AMR within 

environmental studies.  
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3.5 Conclusions 

This study aimed to compare the microbiome and resistome of two rural catchments 

in the United Kingdom. Through comparison of the Coquet and Eden catchments, this 

study demonstrated that the geography and hydrology of the Eden catchment led to 

slightly elevated resistance across sites, which may not have been clear through 

isolated catchment studies. Standardised methodologies for microbiome and 

resistome measurement are necessary to enable comparison between studies and 

catchments. In addition, increased surveillance for AMR in non-contaminated areas, 

as well as contaminated areas are important to understand the different drivers 

associated with environmental AMR. However, the study overall shows that even rural 

catchments can have noteworthy levels of resistance potential, but in such locations, 

the sources are more nebulous and may be dominated by non-point source runoff. 

Further work is needed on similar rural catchments to corroborate and more generalise 

the results herein.   
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Chapter 4 Defining the sources of AMR in a rural catchment: A case 

study on the Coquet River (Northumberland) 

4.1 Introduction  

The natural and developed environment have been increasingly recognised as a 

source, driver and sink for antimicrobial resistance (AMR) (Graham et al. 2019) and 

the development and spread of AMR in the environment is now established as a 

public health concern (Ahmad et al. 2021). However, identifying the dominant 

pathways of spread that lead to exposures is often difficult, which is particularly true 

in settings that have a wide range of sources and sinks, where none of which are 

blatantly obvious.  

The sources of environmental AMR are complex due to a variety of point and diffuse 

sources in environmental settings, and the coalescence of intrinsic and acquired 

antibiotic resistance genes (ARGs) in a continually changing environment (Li et al. 

2018). Knowledge of the sources of AMR in the environment may therefore improve 

the capacity to initiate appropriate mitigation strategies (Chen et al. 2023). 

Existing methods of detecting AMR in river environments and identifying AMR 

hotspots include monitoring the occurrence of antibiotic resistant bacterial 

phenotypes, such as extended spectrum beta-lactamase (ESBL) producing 

Escherichia coli (E. coli) (Anjum et al. 2021). Whilst this is an effective, easy to 

implement and inexpensive method of monitoring, in mixed environments, such as 

rivers, it is difficult to distinguish sources of resistance. ESBL E. coli phenotypes 

“look” functionally the same regardless of their source. Additional methods for source 

tracking are needed, including culture independent, genetic microbial source tracking 

(MST) methods. These include the UK Environment Agency ruminant and human 

Bacteroidetes markers previously discussed in Chapter 3, which are markers that 

are broadly associated with the gut of original hosts (Environment Agency 2008). 

MST markers including Cattellicoccus marimammalium and human associated 

Bacteriodetes and Lachnospiraceae not only identified signals faster than culture 

dependent methodologies, but also detected sources of faecal pollution after sewer 

overflow events, which was not possible through E. coli-based detection (Cloutier 

and McLellan 2017). The disadvantages of using MST markers are they are not 
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geographically consistent (Mayer et al. 2018), and that there is also a risk of cross-

reactivity (Boehm et al. 2013). 

Community source tracking meets these limitations by using information derived 

from whole microbial communities detected in source samples, as well as the sinks, 

and approximating the percentage contribution of the source samples (McGhee et al. 

2019). Methods such as the SourceTracker approach (Knights et al. 2011) have 

been used to detect contamination from multiple sources and account for potentially 

unknown sources (Mathai et al. 2020). This method uses a Bayesian algorithm 

based on the Markov chain Monte Carlo (MCMC) method to calculate the probability 

that taxa belong to specific source categories (Mathai et al. 2020). Overall, 

SourceTracker specificity has been found to be greater than existing qPCR MST 

assays for animals (Harwood et al. 2014). An assessment by Staley et al. (2018) 

showed that the method was 91% accurate when using libraries from local sources, 

highlighting the importance of using geographically specific source samples.  

Despite its benefits, the approach used by SourceTracker is computationally 

expensive, and only fits a limited number of sources (Shenhav et al. 2019). An 

alternative method, called Fast Expectation Maximization for Microbial Source 

Tracking - termed ‘FEAST’- was recently developed based on a multinomial model 

distribution, reducing computational running time from days to hours (Shenhav et al. 

2019). In addition, FEAST appears to be more accurate than earlier approaches. For 

example, SourceTracker sometimes had difficulty in distinguishing between sources 

with similar bacterial communities (Brown et al. 2018). Comparing SourceTracker 

and FEAST directly, FEAST was identified as a more suitable approach for 

environmental water bodies where there is low faecal input (Xu et al. 2022). 

Sourcetracker further has been found to underestimate the impact of unknown 

sources, leading to false positives (Chen et al. 2023; Wen et al. 2023).  

SourceTracker and FEAST have both been frequently employed for environmental 

studies in aquatic environments (Zhang et al. 2022), but also in soil studies (Yang et 

al. 2021) and even forensic investigations (Carter et al. 2019). The FEAST model 

has been applied to microbiomes (Shenhav et al. 2019), but also resistomes (usually 

determined through metagenomic sequencing) (Chen et al. 2020) and even 

microplastic distributions (Li et al. 2022a). However, previous river studies have 
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focused on settings which have received extensive urban contamination, which are 

more likely to have “impacted" allochthonous microbiomes and resistomes due to 

dominant originating point sources (Chen et al. 2019a, 2023; Wang et al. 2020; Li et 

al. 2022a; Zhang et al. 2022). There is a recognised lack of studies in environments 

which are less exposed to anthropogenic contamination (Hooban et al. 2020). One 

such environment may be the rural UK, where rivers receive inputs from small 

wastewater treatment works and agricultural runoff, which both have the potential to 

enhance the natural resistome but are often relatively small or are diffuse sources in 

themselves.  

Following inputs of diffuse and local point sources into natural river systems, the 

factors which dictate the survival of non-native bacteria and ARGs are not well 

understood (Mahaney and Franklin 2022). Previous studies in microcosms have 

shown that following the release of untreated waste into river systems, populations 

rapidly die off (Mahaney and Franklin 2022). Factors such as nutrient availability may 

be important in influencing the microbial composition, where the microbial community 

in river systems are more capable of surviving the nutrient limited conditions 

compared to non-native bacteria (Hibbing et al. 2010). The impact of nutrient 

availability can be determined through the stoichiometric nitrogen- phosphorous 

(N:P) ratio, where an unbalanced ratio (i.e., a phosphorous or nitrogen limited ratio 

relative to each other or relative to carbon supply) may impact ecological functions 

(Ibekwe et al. 2016).  

The aim of this Chapter is to (1) identify the primary contributing sources of the 

microbial community and AMR in the rural Coquet catchment (Northumberland, UK) 

using the FEAST approach and (2) determine the environmental factors influencing 

the persistence of non-native ARGs in this river system, including the role of nutrient 

limitation as a defining factor in community composition (Tilman 1982). Here different 

rural sites were sampled from upstream to downstream of the river catchment to test 

the hypothesis that as a river receives sources, such as a wastewater effluent point 

sources, the local limiting-nutrient conditions change, which alters the microbial 

community and AMR that is further carried down the river. Specifically, N:P ratio 
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conditions were used to investigate whether nutrient availability was a driving factor 

for the survival of non-native bacteria.  

4.2 Materials and Methods 

4.2.1 Site description   

The sampling campaign was designed to capture the influence of four types of “land-

use:” (i.e., input sources to the river), pseudo-pristine land, a rural area with a small 

wastewater treatment plant, and two small towns with medium size wastewater 

treatment plants. To capture the different land-uses, the samples were collected in 

‘Clusters’, where a cluster comprised of a distinct land-use and captured upstream 

and downstream river and source sites. Clusters and associated sample sites are 

described in Table 4-1 and shown in Figure 4-1. Each cluster (except Site A, which 

was used in additional analysis to account for ‘background’ resistance) included 

samples from a specific wastewater effluent source, riverbank soil samples, 

upstream river samples as ‘source’ sites, and a downstream river water site as ‘the 

sink’.  

Sample collection was between March 2022 and August 2022 (Appendix Table B-2). 

Clusters A and B were sampled on separate days to Clusters C and D to allow time 

for lab processing. Clusters were all sampled in the same week, except for the 

second sampling campaign, which had a short delay due to a positive COVID-19 

test. An extra sample was collected directly downstream of the wastewater effluent in 

Cluster B (i.e., B3); however, it was not possible to collect from this site in other 

sampling campaigns due to problems with site access. Site access issues also 

prohibited collection of summer soils samples at Site D (i.e., summer D2_SOIL) as 

well as associated wastewater samples (i.e., DS2) in the final sampling campaign.  

4.2.2 Catchment sampling 

River water from the midstream was collected as grab samples by suspending a 

sampler by a rope from a bridge or using a telescopic sampler, if sampling had to be 

performed from the riverbank. Wastewater effluent samples were collected directly 

from the wastewater treatment plant (WWTP) site. A riverbank soil sample was 

obtained 100 m and 200 m upstream of the river samples where possible, using a 50 

cm centrifuge tube to obtain a core of ~12 cm below the root (Baral et al. 2018a). 
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Table 4-1: Sampling Clusters, the sample sites within the clusters and the description of the 
cluster. All river water samples are sampled along the main Coquet River unless otherwise 
specified. Sample site location coordinates can be found in Appendix Table B-1 

 

 

Cluster Sampled sites Description 

A A (river water) 

A_SOIL (100m & 

200m) (soil samples) 

Purpose for sampling 

• Control site at the top of the Coquet catchment.  

Land use/point source input 

• None 

Samples collected 

• Samples were collected in the river and the riverbank 

soil.  

B B1 (river water) 

B2 (river water: 

tributary) 

B3 (river water: 

tributary) 

B4 (river water) 

BS1 (wastewater 

effluent) 

B1_SOIL (100m & 

200m) (soil samples) 

B4_SOIL (100m & 

200m) (soil samples) 

Purpose for sampling 

• Capture a predominantly rural location including 

sheep and cow farms, with a wastewater treatment 

plant in the upstream tributary.  

Land use/point source input 

• Wastewater treatment effluent in an upstream 

tributary (contributing population ~882).  

Samples collected 

• Samples were collected from wastewater effluent in 

the tributary, downstream of the tributary, and along 

the main Coquet River (upstream and downstream of 

the tributary). Soil samples were also taken upstream 

of the main river sites. 

C C1 (river water) 

C2 (river water)  

CS1 (wastewater 

effluent) 

C2_SOIL (100m & 

200m) (soil samples) 

Purpose for sampling 

• Capture downstream river site from a small town 

Land use/point source input 

• Wastewater effluent (contributing population ~2107). 

Samples collected 

• Samples were collected from the wastewater effluent, 

upstream of the wastewater effluent discharge, and 

immediately downstream.  

• Soil samples were also taken upstream of the 

downstream site.  

D D1 (river water) 

D2 (river water)  

DS2 (wastewater 

effluent) 

D2_SOIL (100m & 

200m) (soil samples) 

Purpose of sampling 

• Capture downstream river site from a small town 

further downstream the Coquet 

Land use/point source input 

• Wastewater effluent (contributing population 

~1090). 

Samples collected 

• Samples were collected from the wastewater 

effluent, upstream of the wastewater effluent 

discharge, and immediately downstream.  

• Soil samples were also taken upstream of the 

downstream site. 
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Figure 4-1 Map of Sampling sites and location of different sampling sites and land-use 

For river water and wastewater effluent samples, temperature, dissolved oxygen (DO), 

pH and conductivity were measured on-site as previously described (Chapter  
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3.2.1). River volumetric flowrate was approximated using the float method as 

described previously (Michaud and Wierenga 2005). The cross-sectional area of the 

river was estimated using measured river widths and depths which were multiplied 

by the surface velocity. A correction factor of 0.85 was applied to the surface velocity 

data (Michaud and Wierenga 2005; Ott et al. 2021a). In cases where the sample was 

collected at the riverbank, the width could sometimes not be measured, the velocity 

was recorded.  

Microbial plating and colony counting of E. coli and ESBL E. coli for wastewater 

effluent and river water samples was conducted within 24 hours of sampling as 

previously described in Chapter 3.2.6. The amount of river water filtered for plating 

ranged from 10 to 20 mL for non-ESBL plates and 100 to 300 mL for ESBL plates, 

whilst for wastewater effluent, the filtered volume was 50 µL for non-ESBL plates and 

2 mL for ESBL plates. Physiochemical analysis for ammonium nitrogen (NH4-N), 

orthophosphate as phosphorous (PO4-P), chemical oxygen demand (COD) and Total 

Nitrogen (TN) was conducted within 48 hours of sampling, as described in Chapter 

3.2.6.  

4.2.3 DNA extraction and quantification of 16SrRNA, ARGs, MGEs and MST 

probes 

River water and wastewater effluent were filtered as described in Chapter 3.2.2. DNA 

was extracted as described in Chapter 3.2.2 using FASTDNA Spin Kit for soil (MP 

Biomedicals, UK), with the exception that 1 litre of composite wastewater effluent 

sample was used for DNA extraction, compared to 3 litres composite river water 

sample. Riverbank soil samples were pooled into a composite sample, where a total 

of 1.5 g of soil (3 x 0.5 g) was used for DNA extraction. DNA concentration and purity 

were assessed as described in Chapter 3.2.2 and diluted to 5 ng/µL for downstream 

analysis to prevent inhibition.  

Human and ruminant Bacteroidetes MST probes (HuBac and RuBac), faecal 

coliforms and 16S rRNA (total bacteria) were quantified using quantitative 

polymerase chain reaction (qPCR) as previously described in Chapter 3.2.2.  
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4.2.4 Next-generation sequencing  

The Illumina MiSeq platform at NU-OMICs, Northumbria University, UK was used to 

sequence the hypervariable V4 region 515F-806R of the 16S rRNA gene with V2 

500 cycle chemistry using the Schloss MiSeq Wet Lab SOP (Kozich et al. 2013), as 

previously described in Chapter 3.2.3. 

Raw sequencing data were available as FASTQ files and were processed and 

denoised into Amplicon Sequence Variants (ASVs) with DADA2, using R 

programming (Callahan et al. 2016). Naïve Bayes classifiers were used for 

taxonomic assignment to genus level. ASVs of <0.1% of the mean sample depth 

were removed to account for MiSeq bleed (Comeau et al. 2017). The taxonomy and 

ASV table biom file were produced for downstream analysis in R Studio (v. 4.2.2), 

where phylum level data with mean value <1 and maximum value <10 were 

removed. This resulted in a total of 4431 taxa for 77 samples, with minimum reads of 

4280, a median of 2612 and a maximum of 119457 reads.  

Quantitative Microbial Profiling (QMP) analysis was conducted to rarefy ASVs to 

sampling depth and provide quantitative data of the present taxa as previously 

described (Chapter 3.2.4) (Vandeputte et al. 2017; Ott et al. 2021b). This was 

completed independently for river water, wastewater effluent and soil samples.  

4.2.5 Relative abundance of ARGs and MGEs using High-throughput qPCR 

The relative abundance of 96 ARGs and mobile genetic elements (MGEs) was 

characterised using high-throughput qPCR (HT-qPCR) performed by Resistomap Oy 

(Helsinki, Finland) as described in Chapter 3.2.5. Relative ARG and MGE data (i.e., 

gene copies normalised to 16S rRNA copy numbers) provided by Resistomap were 

transformed into absolute copy numbers by multiplying with the 16S rRNA 

abundance/mL for each sample that were independently determined using qPCR.  

4.2.6 Microbial Source Tracking with FEAST 

Community-based microbial source tracking analysis was performed using FEAST in 

R Studio using the package FEAST, with the maximum number of iterations set to 

1,000 (Shenhav et al. 2019). The FEAST source/sink model for this study is 

described in Figure 4-2. FEAST analysis was only completed for Clusters B-D in the 

Coquet catchment because Cluster A had too few point source samples. The FEAST 
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model was run for each sampling trip and repeated five times to reduce false 

positives as previously described (Chen et al. 2023). Microbial abundance measured 

through QMP analysis (i.e., microbiome data) was used to assess the percentage 

contribution of upstream wastewater effluent, soil samples and unknown 

contributions in each cluster. Separately, using the FEAST model, absolute ARG and 

MGE abundances (copies/mL) (See Section 2.5), were employed to determine the 

relative percentage contributions of source sites to resistomes in each sink.  

 

Figure 4-2 FEAST model for SourceTracker analysis (left) and specific sources and sinks 
used for the FEAST model in this study. 
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4.2.7 Statistical analysis  

Statistical analysis and data processing were performed using R Studio. Graphics 

were developed with ggplot2 and finalised with Inkscape (v.0.92.4). A Kruskal Wallis 

test was used to assess confirm the five repeated FEAST model runs were not 

significantly different. A paired t-test was used to assess the significant differences 

between the estimated FEAST percentage contribution in microbiome/resistome 

estimates and in summer/winter samples. The significance threshold was set as 

p<0.05 unless otherwise stated.  

The impact of nutrient limitation through the catchment was explored using the 

stoichiometric total nitrogen (TN) and orthophosphate (PO4
3) ratio (N:P ratio). The 

TN was directly measured in this study for each site, whereas PO4
3 was converted 

from measured values of orthophosphate as phosphorus P (PO4-P) (HACH 2022). 

The Mantel test was carried out using the package vegan (v2.6.4) using Spearman 

correlations (p<0.05). The log2fold change of ARG and MGE river water 

concentrations between the control site (i.e., background resistance), and the 

clusters (A vs B, C, D) were computed using the DESeq2 package, which utilised the 

Wald test, where p values were adjusted according to the Benjamini Hochberg 

method (Benjamini and Hochberg 1995).  

The percentage contribution of wastewater effluent flow to the river water flow in 

sites C2 and D2 was approximated using calculated wastewater daily flow data from 

Chapter 5.2.4 (Table 5-2) and the simulated average daily river flow rate (measured 

over 2019-2022) from the SWAT model developed in Chapter 5. The average daily 

river flow rate was estimated to be 5.62 x10
5 m3/day and 7.41 x10

5 m3/day for site C2 

and D2 respectively.  

4.3 Results 

4.3.1 Microbial taxa and resistome 

Microbiomes were characterised using 16S rRNA sequencing data with Illumina 

MiSeq. Following QMP normalisation, there were 3,245 taxa amongst river water 

samples, 2,289 taxa in wastewater effluent samples, and 231 taxa within soil 

samples. In river water samples, the most abundant ASVs were Flavobacterium 

(Genus level), Acinetobacter (Genus level) and Simplicispira (Genus level) 

(Appendix Table B-3). In wastewater effluent samples, the most abundant ASVs were 
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also Flavobacterium (Genus level), Comamonadaceae (Family level) and 

Limnohabitans (Genus level) (Appendix Table B-4), and in soil samples, the most 

abundant ASVs were Candidatus Udaeobacter (Genus level), Pseudarthrobacter 

(Genus level) and Hyphomicrobium (Genus level) (Appendix Table B-5).  

Figure 4-3 shows quantitative microbial abundances (QMP) for each site in each 

cluster, showing the top 25 ASVs and labelled point sources in the river. For the most 

part, except for Cluster B, there is an increase in absolute microbial abundances 

downstream of point sources, and QMP abundances were generally greater in 

summer compared to winter.  

 

Figure 4-3 Bar plots showing the 25 most abundant ASVs grouped in families, with remaining 
pooled as 'Other'. Point sources including wastewater effluent (WWTP) and tributary sites are 
indicated in the bar plot, sites B2 and B3 are part of the tributary. The two left-hand side plots 
have different y-axis scales. 

Despite having less unique taxa in the wastewater effluent and soil samples, the 

abundance of taxa per mL of wastewater and per gram of soil samples was greater 

than in river water samples (Appendix Figure B-1). 

Figure 4-4 shows a bar plot summary of the absolute abundance of ARGs per site 

and Cluster, grouped by antibiotic type. Looking at Cluster C, C2, which is 

downstream of wastewater effluent (CS1), has the highest abundance of ARGs in 

summer and winter months. In winter, there are overall lower abundances of ARGs. 

There are higher abundances of ARGs in site B1 and site B2, whereas D1 and D2 

have lower ARG abundances. Aminoglycoside, multidrug resistance (MDR, which 
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primarily codes for non-specific resistance mechanisms, such as efflux pumps) and 

quinolones are the dominant antibiotic classes of ARGs. Site C2 has a higher 

percentage of tetracycline ARGs than other sites.  

In wastewater effluent samples, MLSB and tetracycline ARGs have a higher 

percentage of the total abundance (Appendix Figure B-1) and in soil samples 

aminoglycoside and quinolone ARGs predominate (Appendix Figure B-2).  

 

Figure 4-4 Bar plots showing the absolute ARG abundance for river water. Point sources 
including wastewater effluent (WWTP) and tributary sites are indicated in the bar plot, sites 
B2 and B3 are part of the tributary. 

4.3.2 Source Contributions of AMR along the Coquet catchment 

The FEAST model was used for source attribution with Clusters B to D in the Coquet 

catchment. Cluster A had limited point source samples and was not subject to 

FEAST analysis. Five independent runs of the model were completed to reduce false 

predictions. The results for the five model runs were functionally the same (Figure 4-

5) and the predicted percentage contribution across runs for both microbiome and 

resistome based predictions were not significantly different (Kruskal Wallis, p<0.05). 

Therefore, the percentage contributions were averaged for model runs.  

The average and standard error for contribution of sources across the sampling 

campaigns are shown in Figure 4-6 and summarised in Appendix Table B-6 for both 

estimations based on the microbial community (estimated through QMP), and the 
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resistome (based on HT-qPCR) data, as well as t-tests for seasonality and 

microbiome/resistome. Overall, there were no significant differences between source 

contributions in summer and winter (t-test, p<0.05). The following section will outline 

the estimated contributions amongst sampling Clusters, B, C and D using FEAST 

analysis. This section has been divided to discuss each sampling cluster separately 

with Cluster B being examined first.  

 

Figure 4-5 Results of FEAST analysis using  (A) microbial community and (B) the resistome, 
showing the relative contribution of various sources in Clusters B, C and D. The results from 
five runs of FEAST showed there was no significant difference between percentage 
contribution in different runs (microbiome: Kruskal Wallis p=0.9999, resistome, Kruskal Wallis: 
p=0.9997) 

Cluster B 

Based on the microbiome data, the FEAST analysis revealed a high percentage 

contribution of upstream river water microbiomes, particularly in summer, where B1 
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and B2 contributed an estimate of 38 ± 19% and 36 ± 19% (mean ± standard error), 

compared to winter, where the site B1 contributed an estimate of 4.9 ± 3.3% and B2 

had an estimate contribution of 30 ± 29%. There was also a higher amount of 

unknown source contribution in winter months compared to summer (39 ± 16% and 

21 ± 10% respectively). The wastewater effluent (BS1), which was discharging into a 

tributary upstream of site B4, was found to have a higher percentage contributing to 

the downstream microbiome in the winter compared to the summer at 25 ± 16% and 

6 ± 3% respectively. Soil samples had very low contributions throughout.   

Based on the FEAST source contributions using the resistome data, there was a 

notably higher percentage of the source ARGs attributed to the upstream river when 

compared with microbiome-based estimates. This was particularly the case for site 

B1, which was estimated to contribute 72 ± 6% in summer and 44 ± 30% in winter. 

There was also a lower estimated contribution of the wastewater effluent BS1, which 

was estimated to contribute around 1% in both summer and winter. The percentage 

of unknown sources for resistance genes were also predicted to be almost zero, 

which was found to be significantly different from microbiome-based estimates (t-

test, p<0.05)  

Cluster C 

Based on the microbiome data, the wastewater effluent source (CS1) was found to 

contribute highly to site C2 at 44 ± 23% in summer and 47 ± 35% in winter. The 

sampled upstream river site (C1) was also found to contribute highly to the 

downstream microbiome in summer, although with large variability (32 ± 29%), 

whereas in winter, the upstream river was contributing less to downstream 

microbiomes (14 ± 4%). Unknown sample contributions were higher in winter 

compared to summer (Winter: 40 ± 31%, Summer: 24 ± 18%) and soil contributions 

were found to be negligible in summer and winter.  

Overall contributions of sources were not found to be significantly different based on 

microbiome and resistance gene data. However, based on resistance gene data, 

CS1 was estimated to contribute more highly to ARGs at the downstream site, at 69 

± 5% in summer and 72 ± 3.6% in winter. Like Cluster B, the unknown contribution 

for resistance gene data was estimated to be very low, i.e., <1% in the summer and 

5 ± 5% in the winter.  
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Figure 4-6 Estimated source contributions from the FEAST analysis for sink B4 (top), sink C2 
(middle) and sink D2 (bottom) 

Cluster D 

Unlike Cluster C, based on microbiome data, the estimated source contribution to 

microbial community at the wastewater effluent site (DS2) was low (6 ± 6% in 
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summer and 3 ± 2% in winter) and most of the contributing microbial community was 

from unknown sources (67 ± 5% in summer and 66 ± 15% in winter).  

When considering the resistance gene data, the predicted contribution of sources 

differs from that based on microbiome data. The contribution of ARGs in the 

upstream river was significantly higher compared to the microbiome estimations (t-

test, p<0.01) (69 ± 9% in summer and 83 ± 4% in winter), and the wastewater 

effluent contribution to in-situ ARGs was higher (42 ± 10% in summer and 16 ± 4% in 

winter). In contrast, the unknown contribution was significantly lower based on 

resistance gene data compared to microbiome data (t-test, p<0.001) at 4 ± 4% in 

summer and <1% in winter.  

4.3.3 Environmental drivers of microbial community and ARG persistence  

Changes in the resistome in river samples in the Clusters were assessed through 

volcano plots (Figure 4-7), showing the log2fold change of the absolute abundance of 

ARGs and MGEs (copies/mL) plotted against statistical significance (Wald test, 

p<0.05).  

 

Figure 4-7 Volcano plots displaying Log2fold change against the statistical significance 
(Walds test, p<0.05), applying Benjamin Hochberg adjustment. Volcano plots represent the 
log2fold change of genes in river water sites in Cluster A, B, C and D 

In Cluster B, only the MDR gene mdtA significantly increased relative to Cluster A 

(Wald test, p<0.05). Further downstream in Cluster C, there was an increase in 

resistance genes relative to Cluster B, with two ARGs and one MGE increasing 

significantly, the tetracycline ARG tet39, the aminoglycoside ARG aac(‘6’)-lb_1 and 

the MGE ISI247_1) (Wald test, p<0.05). From Cluster C to Cluster D, there was a 

decrease of ARGs, with no significant increase of ARGs. There is, therefore, not a 
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consistent increase (or decrease) of ARGs and MGEs from upstream to downstream 

in the Coquet. 

To understand the potential drivers for microbial community in different sampling 

clusters, Mantel tests were conducted to assess the correlation of the weighted 

Unifrac distance metric of the microbial community, with the Bray Curtis dissimilarity 

coefficient for water quality parameters, flow rate and microbial source tracking 

markers (human and ruminant Bacteroidetes: HuBac and RuBac) (Figure 4-8).  

 

Figure 4-8 Mantel test results showing Spearman correlation between weighted UniFrac 
distance for microbial community (QMP) and Bray-Curtis dissimilarity coefficient for water 
quality parameters. The fill colour and size of the box indicates the correlation coefficient, and 
a black outline indicates the correlation is significant (p<0.05), which is adjusted with a 
Benjamini Hochberg correction. 

In Cluster A, PO4-P was strongly and significantly positively correlated with the 

microbial community (r>0.8, p<0.05). In Cluster B, conductivity was moderately 

significantly positively correlated with the microbial community (r>0.25, p<0.05) as 

well as PO4-P.  

In Cluster C and D, the flowrate was positively correlated with the microbial 

community (r<0.5, p<0.05). Both Cluster C and D had negative correlations with 
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water quality parameters, such as conductivity and DO, and positive correlations with 

RuBac.  

The impact of nutrient limitation through the sites sampled in this study is 

summarised using N:P ratio data in Figure 4-9 and Appendix Table B-10. There was 

a wide range of observed N:P ratios, however most of the sites in the catchment are 

P-limited (i.e., higher N:P ratios); following previous studies finding an N:P value >16 

is indicative of P limitation to the microbial community (Koerselman and Meuleman 

1996). The exception is sites immediately downstream of wastewater effluent (B3, 

C2 and D2), which have N:P ratios below 16, indicating an increased supply of 

phosphorous and limitation of another nutrient, such as nitrogen or carbon. However, 

further downstream from the wastewater release point, the river appears to return to 

being P-limited again.  

 

Figure 4-9 Box plots showing N:P ratio for river water sites down the Coquet catchment Point 
sources including wastewater effluent (WWTP) and tributary sites are indicated in the bar plot. 
The threshold for P-limitation at N:P=16 is indicated on the plot 

4.4 Discussion  

4.4.1 Importance of point sources in the Coquet catchment 

This analysis of the Coquet catchment permitted the investigation of the sources and 

drivers influencing the river microbial communities and resistomes. FEAST analysis 

was applied and revealed that for the majority of sites along the catchment, point 

sources such as wastewater-like sources or specific soils, were less important for the 
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makeup of the microbial community. The high percentage of unknown source 

contribution at the sink site in Cluster B (B4), suggested large contributions of diffuse 

sources (e.g., non-point source runoff), that then become the driver of microbial 

community composition at downstream river sites. Therefore, in this rural 

environment, it is likely that the microbial community is not driven by defined 

sources, but by unknown diffuse sources that alter nutrient conditions that, in turn 

influence microbial selection in the river. Whilst this particular study investigated the 

sources of AMR and microbial communities in sites along the Coquet river, there is 

further opportunity for sub-analyses to focus on the impact of the wastewater effluent 

within the tributary site, through investigating site BS1 as a source for downstream 

site B2.  

When the FEAST analysis was employed on the resistome data obtained through 

HT-qPCR (quantifying 96 genes), unknown sources had a substantially lower 

contribution and wastewater effluent was estimated to have a higher contribution to 

downstream resistomes, compared to microbiomes. Typically, in the context of AMR, 

the FEAST approach is used on metagenomics data, which has the capability of 

identifying a wide range, as well as novel ARGs (Waseem et al. 2019). The apparent 

low contribution of unknown sources could indicate that unknown or diffuse sources 

do not contribute to the resistome in the sink sites and contributing sources are 

mostly the upstream river and in the case for the sink site in Cluster C (C2), 

wastewater effluent. However, as the HT-qPCR in this study only identified 96 genes, 

interpretations such as this should be treated with caution. Shenhav et al. (2019) 

previously found the accuracy of FEAST decreased with sequencing depth, 

indicating that near-complete information is required for this model. In addition, a 

recent review which included 41 studies from 19 countries, demonstrated aquatic 

environments have abundant native ARGs and contaminant sources are not the sole 

contributor (Hooban et al. 2020). Due to the high contribution from unknown sources 

to the downstream microbial community, unknown sources will likely additionally 

shape the natural resistome. However the resistance genes from these unknown 

sources may extend beyond the 96 gene assay. Therefore, further work should use 

FEAST analysis with a wider array of resistance genes obtained through HT-qPCR 

to identify additional contributing sources that may be contributing to the natural 

resistome.  
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Whilst most of the sites along the Coquet had a low contribution from point sources, 

Cluster C was a notable exception. At the sink site C2, there was an increase of 

ARGs, MGEs and microbes associated with wastewater effluent input, overriding 

more diffuse sources at a local level. C2 contained a high abundance of ARGs, 

especially tetracycline ARGs, which have been typically identified in rivers heavily 

influenced by urbanisation and anthropogenic activity (Chen et al. 2013; Ling et al. 

2013). 

Whilst the sink sites in Cluster C and D (C2 and D2 respectively) had similar 

sampling conditions, where a wastewater effluent release was immediately upstream 

of the site, only C2 exhibited an influx of ARGs and MGEs. The difference between 

the downstream ARG abundance in C2 and D2 could be due to the differences 

between the ratio of river flowrate and wastewater effluent flowrate, which would 

impact the dilution of ARGs in the receiving river (Sabri et al. 2020). Whilst the 

flowrates were not measured at these sites, the percentage of wastewater flow 

contributing to the river flow was approximated using simulated data from Chapter 5, 

and was estimated to be 0.06% for site C2 and 0.02% for site D2. Therefore, there is 

likely less dilution of the receiving wastewater effluent at site C2, leading to a local 

increase in resistance. The impact of advection dispersion processes could also be 

impacting the level of dilution. Whilst downstream river sampling was taken at a 

sufficient distance from the point source input to allow the river to be sufficiently 

mixed, factors such as river flow rate and turbulence would have influenced how 

efficiently wastewater effluent is mixed with the river water. Further analysis should 

consider several sites at different distances downstream of the point source site, 

sampling at different seasons to capture the impact of seasonality and flow rate.  

Another possibility for the difference between C2 and D2 could be the location of the 

discharge pipe in the rivers. At site C2, the upstream wastewater effluent discharge 

pipe was located in close proximity to the riverbank, whilst at site D2, the pipe was 

located in the centre of the river. Due to shear stress, the velocity of the river is faster 

in the middle than along the banks (Han et al. 2015). The downstream transport and 

advection of the wastewater effluent would likely be more efficient in the centre of the 

river, which could be what is observed in site D2 (Haberstroh et al. 2021). This would 

likely reduce the coalescence of native and non-native taxa and make the exchange 

of ARGs challenging (Zhang et al. 2022), where conjugation processes require direct 
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cell to cell contact (Michaelis and Grohmann 2023) and transfer of genetic material 

can take several minutes to hours (Raleigh and Low 2013). The impact of location of 

the discharge pipe is to the authors knowledge not an area previously explored, and 

it could be a contributing factor in the rapid dissemination of non-native microbes and 

ARGs, and an area for further research.  

4.4.2 Persistence of non-native microbes and ARGs along the Coquet 

catchment  

Environmental drivers that contribute to the survival of specific ARGs and microbes 

are not well understood (Mahaney and Franklin 2022). The volcano plot analysis 

revealed between Clusters along the river, there was no long-term accumulation of 

ARGs/MGEs from up to downstream. Previous studies have similarly observed a 

local increase in antibiotic resistant bacteria downstream combined sewer overflows 

(CSOs), which have rapidly declined further downstream (Mahaney and Franklin 

2022). This work investigates the environmental drivers from an ecological 

perspective which influenced the persistence of non-native microbes and resistance 

genes in the Coquet catchment.  

An assessment of environmental factors on the microbial community through the 

Mantel test revealed correlations with PO4-P concentration in upstream locations, 

something which was not apparent in downstream sites. Physiochemical parameters 

driving microbial community and resistome structures have been previously 

observed (McCann et al. 2019; Zhou et al. 2020; Wu et al. 2023). The link with 

phosphorous builds on previous work, investigating ARG abundance in the pristine 

and naturally P-limited Arctic soils (McCann et al. 2019). The findings of the Arctic 

soil studies indicated ARG abundance was closely linked to increased P-availability, 

driven through the input from other sources, such as migrating wildlife (McCann et al. 

2019). Differences in environmental conditions including nutrient availability and 

flowrate have previously been shown to have a substantial impact on microbial 

communities (Xu et al. 2020; Wu et al. 2023). Our results suggest that microbial 

communities at less human-impacted sites are controlled by nutrient supply, with P 

as the limiting nutrient in the upper Coquet. This means that ecological conditions 

select for resident bacteria. Therefore, ARGs found at such non-impacted sites are 

ARGs associated with strains selected by nutrient conditions (Wu et al. 2023). 
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Moreover, flow rate was positively correlated with microbial community composition 

in downstream (i.e., Cluster C and D) sites, which has previously been observed in 

assessments from other studies (Baral et al. 2018b). As the measured flow rate was 

consistently higher in winter compared to summer, this correlation could reflect the 

seasonality in the catchment influencing the microbial community (Staley et al. 

2015). Flow rate as an environmental driver for microbial community composition 

may indirectly explain changes in the limiting nutrient condition, possibly due to 

increased source inputs under high flow conditions. Further, as flow rates increase, 

local resident times within parcels of water become shorter and provide selective 

conditions for faster growing strains in such reaches. This interpretation could be 

assessed through further studies.  

The stoichiometric N:P ratio was measured along the Coquet River in order to 

investigate the influence of nutrient limitation on microbial communities and 

resistomes. The results indicated the Coquet is primarily a P-limited environment, 

except for immediately downstream of wastewater effluent discharges. Assessment 

of the stoichiometric ratios in UK rivers have found that most headwater streams and 

rivers are P-limited, and a high concentration of nutrients are often associated with 

heavily urbanised catchments, or those with intensive agriculture (Jarvie et al. 2018). 

Interestingly, the stoichiometric ratio mirrors the pattern observed with the resistance 

genes in the volcano plots, where in between clusters, the river ‘recovered’ to natural 

P-limited conditions. In this river system, the nutrient limited conditions may impact 

the survival of non-native bacteria, where the native bacteria have better adapted to 

the nutrient limited conditions than those introduced from the wastewater effluent 

(Hibbing et al. 2010). The findings of this study indicate that in the absence of 

selective pressure and nutrient availability, the temporary influx of faecal 

contamination and non-native ARGs are generally not maintained down the course 

of the river. Further research could investigate the impact of light exposure, which 

has previously been found to impact microbial communities (Ensz et al. 2003), and 

measure carbon (C) to investigate carbon availability/limitation on microbial 

communities and resistomes persistence in rural rivers.  

Overall, maintaining healthy water quality, effective wastewater management and 

reducing runoff from agricultural sites is important to reduce the potential for 

selective pressure and maintenance of novel ARGs (Singh et al. 2019). Further 
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exploration of less impacted rural rivers are required to corroborate the findings of 

this study.  

4.5 Conclusions 

This study aimed to identify the contributing sources of the microbial community and 

AMR, as well as the factors influencing the persistence of these sources in the 

Coquet catchment. The FEAST approach was used to quantify the contributions of 

the microbial community and resistome. In general, most of the contributing taxa 

were either from diffuse sources or native taxa except for Cluster C, which had a 

high faecal input. It was theorised this could be due to either differences in 

wastewater/river flow rate ratio, or the placement of the discharge pipe within the 

river, which warrants further exploration, and possible selection for strains based on 

ambient nutrient conditions in the river. It was observed that novel ARG 

dissemination was not maintained in downstream sites, likely due to an absence of 

selective pressure. In addition, the nutrient limiting environment may impact the 

survival of non-native taxa, where they are not adapted to the nutrient limited 

conditions, which in turn, suggests that the presence of specific ARGs is resulting 

from host selection of other reasons. Therefore, mitigation strategies should focus on 

maintaining adequate water quality and wastewater management, which reduces the 

potential for selective pressure and maintenance of novel and more clinically 

relevant ARGs. Further evidence from clean river water sites is needed to support 

these findings, as well as additional research on the impact of nutrient availability 

and light conditions on the persistence of AMR.  
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Chapter 5 Application of the Soil and Water Assessment Tool 

(SWAT) to inform environmental AMR monitoring: A case study in 

the Coquet River catchment 

5.1 Introduction 

Performing antimicrobial resistance (AMR) monitoring in the environment is 

important because it provides an indication of how and where anthropogenic activity 

is impacting the wider resistome (UNEP 2023), including evolution of new AMR in 

environmental reservoirs (Bengtsson-Palme et al. 2023). Within a river catchment, 

monitoring can be used to assess the local environmental impacts of direct AMR and 

related releases from point versus diffuse sources, whilst determining differences 

between catchments related to hydrologic factors and land use (Bengtsson-Palme et 

al. 2023a).  

Catchment scale studies such as the studies in this thesis, can provide a useful 

insight into environmental drivers of AMR. This is crucial for assessing AMR from a 

One Health perspective, where environmental AMR exposures can potentially impact 

human, animal, and crop health (UNEP 2023). However, AMR monitoring in the 

environment is currently not standardised, is expensive and resource- and time-

consuming (Meshesha et al. 2020). Particularly when the seasonality and 

stochasticity of environmental settings are concerned, designing a monitoring 

approach through catchment sampling may be challenging in terms of knowing what, 

where and when to monitor (Bengtsson-Palme et al. 2023). 

The main multinational environmental AMR monitoring programme is the World 

Health Organisation’s (WHO) Tricycle Protocol, where extended-spectrum beta 

lactamase-producing Escherichia coli (ESBL E. coli) is plate-cultured to enumerate 

isolates as an indicator of AMR. ESBL E. coli are generally resistant to third and 

fourth generation beta-lactam antibiotics and enumeration through colony counting is 

an effective and low-cost method to quickly estimate AMR in the environment. ESBL 

E. coli abundances are not a perfect indicator, but their concentration is often 

correlated with other AMR determinants (Bengtsson-Palme et al. 2023), and can be 

used as an indicator to identify and triage areas of interest (e.g., AMR “hot spots"), 

and where deeper analysis might be conducted (e.g. genomic and metagenomic 

analysis). Monitoring E. coli is also part of human and livestock AMR surveillance 
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programmes (Anjum et al. 2021), such as the WHO Global Antimicrobial Resistance 

and Use Surveillance System (GLASS) programme (WHO 2020).  

In river catchments, such as the ones studied in this thesis, waterborne 

contamination from agricultural areas can be important sources of AMR. However, 

diffuse inputs of AMR may not have been precisely captured and identified because 

sampling sites tended to focus on sites immediately following known point sources 

(i.e., wastewater treatment effluent release). In addition, diffuse contamination may 

vary and potentially become heightened during periods of higher rainfall and river 

flowrates, due to increased runoff (see Chapter 3) (Ahmed et al. 2018; Almakki et al. 

2019). There is, therefore, a need for tools to understand and then approximate 

locations where there may be heighted environmental AMR and greater exposures to 

humans, animals, and crops along the river. This requires a numerical model. 

The research into models that describe the spread of AMR in river systems has been 

increasing (Van Heijnsbergen et al. 2022) and whilst the field is still in its infancy, 

they have the potential to be used as important decision-making tools (Opatowski et 

al. 2011). Unfortunately, systematic reviews on AMR models demonstrate the vast 

majority have focused on human health (Birkegård et al. 2018; Niewiadomska et al. 

2019), most not even considering extending models to environmental settings. 

However, models that use Geographic Information Systems (GIS) can use spatial 

data analysis to explain the diffuse and point sources in aquatic environments and 

have potential use for AMR. This includes models such as the GREAT-ER (Geo-

referenced Regional environmental Exposure Assessment Tool for European 

Rivers), which has previously been adapted to assess the loadings of E. coli and 

ESBL E. coli in the Dutch-German Vecht River catchment (Van Heijnsbergen et al. 

2022; Niebaum et al. 2023). While GREAT-ER was found to be successful for 

predicting E. coli and ESBL E. coli concentrations, adaptation of the GREAT-ER 

model to simulate bacteria concentrations is not yet open-source. An open-source 

AMR model for simulating ESBL E. coli concentrations in river catchments would be 

a large step forward, where its use could widely inform AMR monitoring.  

The Soil and Water Assessment Tool (SWAT) is an open-source physical-based 

watershed-scale model developed by the United States Department of Agriculture, 

which had an initial purpose of predicting the temporal impact of land-management 
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practices on water (Saleh and Du 2004). SWAT has had a variety of applications, 

including simulating microbial concentrations, through editing bacterial inputs from 

both point and diffuse sources (Sadeghi and Arnold 2002). SWAT models have been 

used for predicting faecal coliforms (Niazi et al. 2015), E. coli (Coffey et al. 2010a) 

and even the parasite Cryptosporidium (Coffey et al. 2010b). However, there is 

currently little research into the application of such models on AMR transport and 

fate. A SWAT-based model was used on ARGs in the environment in a Doctoral and 

Masters thesis from Virginia Tech University (House 2020; Thilakarathne 2020). This 

work centred on the development of a SWAT-ARB model for various catchments in 

the US. However, determining the accuracy of predictions from the model has been 

challenging due to the lack of observed data, and this model adaptation is also not 

yet open-source.  

The aims of this chapter are to build a SWAT model to simulate the spatiotemporal 

distribution and dynamics of E. coli and ESBL E. coli in the Coquet river catchment. 

This chapter uses data from the sampling campaign described in Chapter 4 to model 

E. coli and ESBL E. coli levels in the river, through inputting the wastewater effluent 

and agricultural inputs along the river and comparing output concentrations to the 

observed data at the sample site locations. In addition, the sources of the bacteria at 

different sites in the SWAT model are calculated and compared to the source 

estimations from the FEAST analysis from Chapter 4.   

5.2 Materials and Methods 

5.2.1 SWAT model 

The SWAT model is a semi-distributed watershed based hydrological model, which 

has the purpose of simulating the impact of land management practices on flow and 

water quality. The key components include climate, hydrology, erosion, 

sedimentation, plant growth, nutrients and the impact of point sources (i.e, 

wastewater), as well as runoff of pesticides and manure from agricultural processes. 

The SWAT model operates through dividing a watershed into sub-basins, and then 

further into hydrological response units (HRUs). An individual HRU is a combination 

of homogenous land-use, soil type and slope in a sub-basin. The concept of HRUs 

are so hydrological models can simulate the response of different land surfaces to 

precipitation, runoff and other hydrological processes. For user accessibility, the 

SWAT model operates through the ArcGIS extension software ArcSWAT, which 
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automates entry of data, transforms raw data into input files that can be read by the 

SWAT model and allows Geographic Information System (GIS) data (e.g., location of 

point sources, land-use distribution, slope etc.) to be easily integrated into the 

hydrological model. 

5.2.2 Sub-basin delineation  

The study area is the Coquet River catchment in Northumberland (NE England), 

which spans from the Cheviot Hills to the town of Amble at the North Sea coast. The 

total catchment area is 606 km2 and the elevation of the catchment ranges from 

825m in the hills, to 48m towards the bottom of the catchment. The wastewater 

effluent discharge sites and monitoring sites for the model were the same as Chapter 

4, where sampling was conducted in ‘Clusters’ as one moves downstream the river 

catchment (Figure 5-1; Chapter 4.2.2). 

The catchment model was constructed using ArcSWAT (version 2012.10.25) on the 

ArcGIS interface (ArcMap v.10.8.2). Model set-up was also conducted according to 

Figure 5-2 with the aid of instructional videos (Frankenberger and Daneshvar 2019). 

The data sources for the main model inputs are shown in Appendix Table C-1, 

including ALOS PALSAR, CORINE, and other sources. A digital elevation model 

(DEM) was used to calculate the topography, flow direction, slope and extract the 

boundaries of the catchment. The stream network was delineated, and the 

monitoring points were both estimated automatically by the watershed delineation 

process (based on the tributary streams) and monitoring sites from Chapter 4 were 

manually input to enable comparisons with observed data. The catchment was then 

divided into 41 sub-basins for the purpose of modelling.  

5.2.3 Input hydrologic, land-use and climate data 

Six soil types were identified from the European Soil Data Base (ESDB 2006). The 

SWAT model requires input of soil hydrological properties, which were determined 

through further investigation of various literature relating to the soil geological series 

(Avis and Harrop 1983). The final properties input into the model are shown in 

Appendix Table C-2. Land cover data was based on information from the CORINE 

Land Cover Data set 2018 (CLC, 2018), as this had the closest similarity with SWAT 

land-use categories (Appendix Table C-3). Hydrological Response Units (HRUs) 

(see Section 5.2.1 for description) were designed for the model, based on thresholds 
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of 5% for Land-use, 20% for soil class and 20% for slope class according to 

Frankenberger and Daneshvar (2019) (i.e., the land-use which occupies less than 

5% of the sub-basin in eliminated). Each basin contained multiple HRUs, and there 

were 195 HRUs in total.  

 

Figure 5-1 Coquet catchment with the monitoring sites selected for model comparison with 
observed data, including point source inputs from wastewater effluent (ww effluent) and land-
use categories, AGRL (Non-irrigated agricultural land), FRSD (Broad-leaved forest), FRSE 
(Coniferous forest), FRST (Mixed forest), PAST (Pastures), RNGE (Natural Grasslands), 
URBN (Discontinous urban fabric), URLD (Sport and leisure facilities), WATR (Water bodies), 
WETL (Inland marshes/Peat bogs) 
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Figure 5-2 Schematic showing SWAT model process 

Daily observed climatic data was used for preparing the weather input files for the 

SWAT simulation. Climatic data included daily precipitation and daily maximum and 

minimum temperature data over 10 years (01/01/2013-31/12/2022). Daily 

precipitation data (mm) was accessed from the DEFRA Hydrology Data Explorer 

from three gauging sites (Appendix Table C-4; 

(https://environment.data.gov.uk/hydrology/explore). Due to a lack of historical daily 

temperature data (°C) available, daily maximum and minimum temperatures were 

estimated using the function rnorm in the R environment, based on monthly 

maximum and minimum temperature accessed from the Met Office Historic Station 

Data (Met Office, 2023), where Durham was the closest station to the Coquet River 

https://environment.data.gov.uk/hydrology/explore
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(Appendix Table C-4). As this weather station is located outside the Coquet 

catchment, there are likely to be minor differences between daily temperature 

between Durham and sites in the Coquet catchment, however the site was deemed 

geographically close enough that the temperatures would be similar and acceptable 

for hydrology simulations. 

5.2.4 Bacteria characterisation for SWAT model 

SWAT models bacteria transport through source loadings from a range of inputs, 

including wildlife, livestock, point sources and septic systems. Aiming to replicate the 

source inputs from Chapter 4, livestock (i.e., sheep and cattle) and wastewater 

effluent were considered as E. coli and ESBL E. coli sources for the SWAT model. 

SWAT models the transport of bacteria through the land through surface runoff or as 

part of the sediment transported in the river, with the assumption that only bacteria in 

the top 10mm of the soil can be transported through runoff (Sowah et al. 2020). 

SWAT has the advantage of simultaneously modelling two types of bacteria, referred 

to as ‘persistent’ and ‘less-persistent’ bacteria, which are purely descriptive terms 

and used to differentiate between the two types of bacteria. For the purposes of 

simulating E. coli and ESBL E. coli simultaneously, E. coli was input as a ‘persistent’ 

bacterium and ESBL E. coli was input as a ‘less-persistent’ bacterium and their 

persistence parameters were set to identical values. All bacteria concentrations were 

expressed as colony forming units/100mL (CFU/100mL) unless otherwise specified.  

Livestock (diffuse discharges) 

The influence of livestock on E. coli and ESBL E. coli in the Coquet River was 

approximated through inputting (1) the approximate E. coli and ESBL E. coli 

concentration in sheep and cattle manure and (2) approximating the daily mass of 

manure generated from cattle and sheep in each sub-basin.  

Firstly, the E. coli concentration in sheep and cattle manure (in colony forming 

units/gram: CFU/g) was input into the model using values from literature (Table 5-1) 

through editing the SWAT fertiliser database. Whilst the ESBL E. coli concentration 

of cattle manure could be determined through literature values, the ESBL E. coli 

concentration in sheep manure could not be found in the literature. Therefore, the 

ESBL E. coli concentration in sheep manure was assumed to be the same as cattle 

manure.  



5.2 Materials and Methods

 

84 
 

The daily mass of manure generated from cattle and sheep in each sub-basin was 

approximated and input into the model as follows. Livestock density (i.e., number of 

cattle and sheep) in each sub-basin was first approximated using agricultural census 

maps (AgCensus 2020). Based on the kg of manure produced by one livestock unit 

per day (3.5kg for sheep and 27.5kg for cattle; Coffey et al. 2010a), the number of 

livestock units in the subbasin and the area of the subbasin (hectares), this was used 

to approximate the kg/hectare/day in each subbasin of both sheep and cattle 

(Appendix Table C-5). These values were input into the model through editing land 

management operations, where in this instance the approximated daily deposition of 

manure in each sub-basin was fixed for 365 days a year, however further iterations 

of this model should investigate the annual variability of livestock operations.   

Table 5-1 Assumed values of E. coli and ESBL E. coli in sheep and cattle faeces as model 
inputs. 

Type  E. coli 

(CFU/g) 

ESBL E. coli 

(CFU/g) 

References 

Sheep manure 1.6x107 103 (Coffey et al. 2010a) 

Cattle manure 7.5x105 103 (Coffey et al. 2010a; 

Heuvelink et al. 2019; 

Gonggrijp et al. 2023) 

 

Wastewater effluent (point source discharges) 

The influence of wastewater effluent on E. coli and ESBL E. coli in the Coquet River 

was approximated through inputting (1) wastewater effluent sites as a point source 

input through the ArcSWAT interface and (2) editing the point source input to include 

concentrations of E. coli and ESBL E. coli and daily input flow.  

Wastewater effluent was input into the model as a point source input, which are 

loadings into the stream network from sources other than those associated with the 

land-use. The point sources selected were the measured wastewater effluent sites in 

Chapter 4 (i.e., BS1, CS1 and DS2; see Figure 5-1). The output of E. coli and ESBL 

E. coli from point sources in the river catchment, was approximated using average 

measured values from Chapter 4 in CFU/100mL (Table 5-2). The daily flow (m3/day) 

for each treatment site was calculated based on the approximate water consumption 
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in England of 150L/per day/per capita (Table 5-2) (DEFRA 2008) and the estimated 

contributing population (CITY POPULATION 2023).  

Table 5-2 Approximate daily flow based on population size (2023), and an average per 
capita daily flow of 150L/day. 

 Population Approximate Daily 

Flow (m3/day) 

Average E. coli 

concentration 

(CFU/100mL) 

Average ESBL E. 

coli concentration 

(CFU/100mL) 

BS1 882 132.3 38267 263 

CS1 2107 316.05 80533 2733 

DS2 1090 163.5 40000 1125 

 

5.2.5 Calibration and sensitivity analysis 

Model simulations were conducted to capture conditions in the catchment between 

01/01/2017 to the 31/12/2022. A two-year “warmup period” (i.e., 01/01/2015-

31/12/2016) was included to allow the hydrology to reach an optimal state. When the 

SWAT model is first run, internal stores and reservoirs are assumed to be empty, 

therefore a warmup period can allow these to stabilise and reach optimal values 

(Kim et al. 2018).    

The sensitivity analysis and calibration of the hydrological flux and storage 

parameters was conducted using R-SWAT (Nguyen et al. 2022). Sensitivity analysis 

was performed using the Latin hypercube (LH) technique, where nine parameters 

were selected for calibrating daily flow (Table 5-3). Flow calibration was performed 

using the dynamically dimensioned search algorithm (Tolson and Shoemaker 2007). 

This method has been deemed suitable for calibrating complex watershed models 

and is initiated through a broad search for optimal parameter values, transitioning to 

a more localised search, whilst dynamically editing the number of parameters being 

adjusted and automatically calibrating model parameters (Tolson and Shoemaker 

2007).  

A graphical method that tested ±10% changes of basin parameters and source 

bacteria concentrations was used for the sensitivity analysis of bacterial outputs. 

Percentage increases and decreases of output bacteria concentrations were 

calculated following a parameter adjustment (i.e., ±10% adjustment of the initial 

basin parameter) to assess the sensitivity of bacteria outputs to that parameter. This 
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procedure has been used previously in bacterial modelling with SWAT models 

(Coffey et al. 2010a; Niazi et al. 2015).  

5.2.6 Statistical analysis  

Model outputs were analysed through R Studio. Graphics were developed with 

ggplot2 and finalised with Inkscape (v.0.92.4). Statistics were used to determine the 

relative accuracy of the model predictions against observed data. Observed daily 

flow rates were obtained from the national river flow archive (NRFA; 

https://nrfa.ceh.ac.uk/) in Rothbury and Morwick (see Appendix Table C-6). Observed 

bacterial concentrations of E. coli and ESBL E. coli from Chapter 3 and 4 were used 

to compare with simulated values (Section 4.2.2 and Appendix Table C-7). The 

coefficient of determination (R2) was used to assess how consistently the observed 

and predicted values aligned, where a value of 0 indicates no relationship, and 1.0 

indicates a perfect relationship. Generally, R2 values greater than 0.5 are considered 

acceptable (Santhi et al. 2001; Van Liew et al. 2007; Coffey et al. 2010a).  

The Nash Sutcliffe model efficiency (E) was used to assess the predictive power of 

the modelled flow rate, where a value closer to 1 is indicative of an accurate model 

(Nash and Sutcliffe 1970). Classifications of model efficiencies specify 0.75 > E < 1.0 

as very good, 0.65 > E < 0.75 as good, 0.50 < E < 0.65 as satisfactory, and E < 0.5 

as unsatisfactory (Moriasi et al. 2007). To measure the agreement between 

observed and simulated bacteria, a Wilcoxon Rank test was used to determine if 

there was a significant difference between outputs.  

The contribution of different sources was estimated following the approach of Iqbal 

and Hofstra (2019), where sources were simulated separately, and each source 

contribution was then calculated as a percentage of the total E. coli and ESBL E. coli 

concentration. This was then graphically compared to the source estimation through 

FEAST analysis from Chapter 4.3.2.  

5.3 Results 

5.3.1 Sensitivity analysis and calibration  

Flow Rate  

The performance of the SWAT model to simulate monthly average flow rates was 

assessed. Using default parameters prior to calibration, at the sites of Rothbury 

(midstream) and Morwick (downstream), the SWAT model yielded a good NSE value 
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of E=0.65 and E=0.65 and coefficient of determination value of R2=0.61 and 

R2=0.63, respectively. Sensitivity analysis indicated the most sensitive parameters in 

the analysis were (1) CN2 (the initial runoff curve number, which is related to factors 

such as the soils permeability and land-use), (2) the SURLAG value (i.e., the surface 

runoff lag coefficient) and (3) GW_DELAY (i.e., the groundwater delay time in days). 

The final parameter values are shown in Table 5-3.  

Following the automatic calibration process through R-SWAT, the estimated monthly 

average flow rate at Rothbury and Morwick had very good/good NSE values of 

E=0.76 and E=0.74 and improved R2 values at R2=0.69 and R2=0.75 respectively 

(Figure 5-3). 

Table 5-3 Parameters used for calibrating the modelled flow rates 

 

 

Parameter Description 
Lower 

bound 

Upper 

bound 

Initial 

Value 
Method 

Value 

chosen 

SURLAG.hru 
Surface runoff factor 

(days) (per HRU) 
0 5 2.0 Replace 0.1 

CH_K2 

Effective Hydraulic 

conductivity in main 

channel alluvium 

0 0.5 0 Replace 0.1 

CN2 

Initial SCS runoff curve 

number of moisture 

condition II 

-0.2 1 73 Relative -0.2 

ALPHA_BF Base flow factor 0 3 0.048 Replace 0.01 

SURLAG 
Surface runoff factor (for 

the Basin) 
0 5 4 Replace 0.05 

GW_DELAY 
Ground water delay time 

(days) 
50 500 31 Absolute 81 

ESCO 
Soil evaporation 

compensation factor 
0.5 0.99 0.95 Replace 0.5 

SOL_K 
Saturated Hydraulic 

Conductivity 
-0.25 0.5 5 Relative -0.25 

SOL_Z 
Depth of soil surface to 

bottom of layer (mm) 
-1 10 Default Relative -1 
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Modelling E. coli and ESBL E. coli  

A sensitivity analysis was conducted on E. coli and ESBL E. coli to identify the most 

sensitive basin parameters that impact model outputs relative to source bacteria 

concentrations. Figure 5-4 shows the impact on the model output of modifying these 

parameters by ±10% from their selected values (see Table 5-4) and the associated 

percentage increase/decrease of simulated bacterial estimates.  

 

Figure 5-3 Comparison of observed and simulated streamflow in Rothbury (midstream) and 
Morwick (downstream) in the Coquet 

The sensitivity analysis indicated that changing the basin parameters only resulted in 

a 5-10% increase or decrease in simulated E. coli and ESBL E. coli levels. From the 

basin parameters, THBACT (Temperature Adjustment Factor) was found to be 

particularly sensitive, where a 10% reduction in the parameter resulted in >20% 

reduction in bacteria concentrations. This particularly impacted E. coli outputs. 

Additional sensitive basin parameters identified included WDPQ and WDLPQ (Die 

off factor for persistent/less persistent bacteria in soil solution at 20°C) and WGPQ 

and WGLPQ (Growth factor for persistent/less persistent bacteria in soil solution at 

20°C). Altering the source bacteria inputs generally resulted in a 5 to 10% increase 

or decrease in estimates. For E. coli, altering the initial manure concentration by -

10% had a greater impact on model outputs compared to +10%. The wastewater 

effluent bacteria concentration was found to have a near direct 10% increase or 
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decrease in bacteria outputs when the model inputs were modified. For ESBL E. coli, 

sheep bacteria concentration was found to be the least sensitive and wastewater 

effluent the most sensitive model inputs. 

 

Figure 5-4 Sensitivity of E. coli and ESBL E. coli outputs to basin parameters and source 
bacteria concentrations (see Table 5-4 for definitions). Source bacteria concentrations 
(cfu/100mL), include the concentration of E. coli and ESBL E. coli in Cattle/cows, sheep, and 
wastewater effluent (WW) 

5.3.2 Comparison of bacteria data with observed values 

The similarity of simulated values and observed bacteria values were determined 

through the coefficient of determination (R2) and graphically. The R2 values (Table 5-

5) indicated there was a good relationship between observed and simulated values, 

achieving an especially good relationship with some sites for E. coli in site B1 

(R2=0.6), site B2 (R2=0.54) and C2 (R2=0.81). Site B1 achieved a strong relationship 

with observed values of ESBL E. coli (R2=0.83) however, for most sites R2 values for 

ESBL E. coli were <0.5. However, the spatial trends are apparent, especially given 

the limited field data.   
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Table 5-4 Selected values for basin parameters relevant to modelling bacterial fate 

 

The results of the SWAT model were viewed graphically and a Wilcoxon Rank test 

was used to identify if there were significant differences between observed and 

simulated E. coli and ESBL E. coli concentrations (Figure 5-5). Results were 

normalised to log10 values for ease of comparison. 

In general, E. coli and ESBL E. coli observed and simulated values have similar 

median, means and spread at sampling points particularly in sites B4, C1 and C2. 

The model also captures spatial trends along the Coquet River, including low E. coli 

concentrations upstream and the increases in the midstream and downstream. 

However, the Wilcoxon Rank test shows significant differences at site D1 for both E. 

coli and ESBL E. coli, at site D2 for E. coli and surprisingly at site B1 for ESBL E. coli 

(despite the strong R2 value) (Wilcoxon test, p<0.05). The simulated values at B1, 

although well correlated to the observed values, were significantly lower than the 

observed values. The other significant differences at sites were due to the simulated 

values being higher than the observed values.  

Basin Parameter Definition Selected 

value 

WDPQ/WDLPQ Die off factor for persistent/less persistent bacteria 0.125 

WGPQ/WGLPQ Growth factor for persistent/less persistent 

bacteria 

0.1 

WDPS/WDLPS Die-off factor for persistent/less persistent bacteria 

adsorbed to soil particles at 20°C 

0.2 

WGPS/WGLPS Growth factor for persistent/less persistent 

bacteria adsorbed to soil particles at 20°C 

0.15 

BACTKDQ Bacteria soil partitioning coefficient (m3/Mg) 175 

THBACT Temperature Adjustment Factor 1.07 

WOF_P/ WOF_LP Wash-off fraction for persistent/less persistent 

bacteria 

0.5 

BACT_SWF Fraction of manure applied to land areas that has 

active colony forming units 

0.75 

BACTMIX Bacteria percolation coefficient (10 m3/Mg) 10 
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Table 5-5 Coefficient of determination values (R2) at each site. The n values indicate the 
number of observations and simulations under comparison (see Appendix Table C-7). 

 

5.3.3 E. coli and ESBL E. coli source allocations 

The estimated contributions of the different sources in the model (i.e., sheep, cattle, 

and wastewater effluent) at different sites along the river are shown in Figure 5-6. 

The model outputs suggest the input of E. coli into the system in the upstream river 

(i.e., Site A and B1) is primarily due to sheep and cattle faecal matter in agricultural 

runoff. However, upon inputs of wastewater effluent to the river, wastewater effluent  

 

Figure 5-5 General comparison between Observed and Simulated E. coli (top panel) and 
ESBL E. coli (bottom panel). *A significant difference between observed and simulated values 
(Wilcoxon test, *p<0.05, **p<0.01) 

 E. coli  ESBL E. coli 

Site R2 R2 

A (n=6) 0.007 0.04 

B1 (n=5) 0.60 0.83 

B2 (n=5) 0.53 0.18 

B4 (n=6) 0.0002 0.074 

C1 (n=6) 0.20 0.01 

C2 (n=6) 0.81 0.38 

D1 (n=6) 0.02 4.5x10-5 

D2 (n=5) 0.57 0.03 
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becomes the dominant source of E. coli and ESBL E. coli in the system. The 

concentrations of E. coli and ESBL E. coli (CFU/100mL) originating from sheep, 

cattle, and wastewater effluent along the Coquet River are shown in Figure 5-7.  

 

Figure 5-6 Simulated percentage breakdown of sources contributing to downstream 
concentrations of E. coli and ESBL E. coli. Panels show Autumn (September-November), 
Spring (March-May), Summer (June-August) and Winter (December-February) over 2019-
2022.  

Source contributions at downstream sink sites in Clusters B, C and D (site B4, C2 

and D2) were estimated through the FEAST approach (see Chapter 4.3.2) and 

compared to source contributions estimated through the SWAT model over the 

observed sampling timeframe (Figure 5-8). When comparing the ‘unknown’ source 

contributions for the FEAST model estimations (i.e, the diffuse input), with the SWAT 

model’s estimated source contributions for sheep and cattle for E. coli (i.e., 

equivalent of diffuse input), both models reported similar findings. This indicates that 

when modelling E. coli, the SWAT model can estimate diffuse contributions to a sink 

site. However, the SWAT model estimated point source contribution, (i.e., 

wastewater contribution) for E. coli and ESBL E. coli is higher than the FEAST model 

estimations. It should be considered, however, that the SWAT model cannot 

separate the impact of the upstream river water in source estimations. It is likely that 

in the SWAT model, the bacteria input from upstream river water is contributing to 
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the high percentage of wastewater effluent downstream. The FEAST model shows a 

high percentage contribution of upstream river water, and it is likely that this is true 

for the SWAT model as well.  

 

Figure 5-7 Simulated concentrations of E. coli and ESBL E. coli (left and right panel 
respectively) and their derived sources. Panels show Autumn (September-November), Spring 
(March-May), Summer (June-August) and Winter (December-February) over 2019-2022. 

5.4 Discussion 

5.4.1 Use of SWAT model to predict daily concentrations and source loadings 

This study shows that the SWAT model can be used to simultaneously estimate E. 

coli and ESBL E. coli concentrations in a river system. Through comparing observed 

and simulated measurements of E. coli and ESBL E. coli at individual sites 

graphically, consistency was seen despite the R2 values sometimes being <0.5. A 

visual alignment between observed and simulated bacteria data has been observed 

in previous SWAT studies, where typical indices such as the NSE, which are used to 

assess model predictive ability against daily observed values, generally show a low 

ability for the model to match observed data (Baffaut and Sadeghi 2010; Coffey et al. 

2013; Frey et al. 2013). Part of the reason for lower quality model performance (i.e., 

measured through NSE) to predict daily E. coli and ESBL E. coli is due to the high 
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temporal variability in observed bacteria measurements, where observations were 

based on grab samples that will not reflect daily fluctuations (Traister and Anisfeld 

2006). In addition, there are likely other processes in the environment that are not 

being represented in the model which may impact bacteria concentrations in this 

area, such as the underlying ecological processes that take place when wastewater 

effluent microbial communities are introduced to the native bacteria instream, co-

resistance from metals, or the role of nutrient availability, where the latter could be 

explored in further iterations (Makarewicz et al. 2015). Whilst river water residence 

times can be very short, the response of bacteria to stressors such as nutrient 

limitation can be significant, such as reduced growth rates and selection of faster 

growing species (Findlay 2010; Romero et al. 2019). Exposure to metals can also 

quickly result in co-selection, where studies have indicated this could occur in around 

6 hours and be maintained for a further 20 hours in absence of selective pressure 

(Zhang et al. 2018). This could particularly be a factor for river biofilms, which have a 

longer exposure period (Romero et al. 2019).  

 

Figure 5-8 Percentage breakdown of sources contributing to E. coli and ESBL E. coli 
concentrations at sink sites B4, C2 and D2 using the FEAST model from Chapter 4.3.2 (top 
panel) and the SWAT model predictions (bottom panel), over the observed sampling 
timeframe 
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The model was also assessed relative to its ability to determine whether it can 

predict source loadings. The loadings of E. coli and ESBL E. coli in the catchment on 

average mostly aligned with observations from Chapter 4, where diffuse input was 

dominant in upstream sites, and bacteria sourced from humans was found 

immediately downstream of wastewater effluent. This and previous studies have also 

found bacteria concentrations predicted by SWAT directly increased or decreased 

relative to a change in point source input loads (Parajuli 2007; Frey et al. 2013). 

Whilst diffuse input of E. coli was observed, ESBL E. coli was found to be 

predominantly from wastewater effluents. This is likely due to the low starting 

concentration of ESBL E. coli in manure, and a lack of direct input into the river 

system. Further, there is no direct defecation from animals included in the model, 

which would likely lead to different concentrations compared to runoff. Future work 

could also better characterise the ESBL E. coli concentration per gram of sheep and 

cattle manure with complementary field studies, to allow more accurate estimations.  

As this modelling study primarily aimed to test specific source-inputs characterised 

from Chapter 4, there is a lack of other source inputs in the model, which include 

wildlife, on-site septic tank systems, birds and other farm or domestic animals. A 

study in Colorado showed wildlife contributed nearly 50% of bacterial inputs (Jeong 

et al. 2019). This may occur in the upstream part of the Coquet River, where the 

Cheviot hills have wild animals such as Roe Deer or Goats. On-site septic systems 

are also common in rural areas and have been shown to have high concentrations of 

faecal coliforms and E. coli (Richards et al. 2016). In addition, the role of sediment 

resuspension is not explored in this model. Previous AMR studies have found the 

role of sediment resuspension in a river to be important in the dissemination of AMR 

(Knapp et al. 2012; Abia et al. 2016; Heß et al. 2018) and this has previously been 

modelled with SWAT on E. coli concentrations (Kim et al. 2009, 2010). Reducing the 

error and improving the predictive ability of future model iterations can be achieved 

through combined laboratory/field experiments to understand overland, sediment 

and groundwater transport of bacteria (Cho et al. 2016).  

5.4.2 Application to assist in AMR monitoring and further work 

There is an increased interest in environmental AMR surveillance, but a lack of 

direction related to the aim of the monitoring (Bengtsson-Palme et al. 2023). While 

the information derived from the model cannot replace the wealth of information 
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gained from on-site analysis or be able to replicate the complexity of the river 

catchment system, modelling can be used to identify relevant AMR settings for 

monitoring, understand temporal variability and conduct scenario experiments 

(Jampani et al. 2023). Following improvement of source characterisation and further 

calibration with observed data, this model could be used to guide further targeted 

environmental monitoring. 

One of the main advantages of using a SWAT model is that it is an open-source tool 

and has a wide range of studies, tutorials, and information readily available. When 

designing a model to be used to guide further monitoring of AMR, many factors need 

to be considered, including the user-friendliness of the model, as this tends to be 

what the end-users of the model (i.e., policy makers, scientists, river catchment 

scientists) prefer (Cho et al. 2016). The SWAT model has been shown to be much 

more user friendly compared to similar software such as HSPF (Gebremariam et al. 

2014; Iqbal and Hofstra 2019).  

Further, there is an opportunity for this type of modelling to be integrated into current 

standardised monitoring programmes, where ESBL E. coli is already monitored as 

part of the WHO Tricycle surveillance (WHO 2021b). This would also improve and 

calibrate this SWAT model, as previous SWAT AMR models, including the one in this 

study, have been limited by lack of observed data (House 2020; Thilakarathne 2020). 

E. coli is also inexpensive and technically easy to monitor and can be used as an 

indicator for monitoring environmental AMR (Anjum et al. 2021), which could be an 

alternative approach in less-contaminated areas such as the Coquet River, where 

ESBL E. coli levels are low in abundance and, therefore, more challenging to detect.  

Overall, to improve the model’s ability to measure daily/monthly/yearly E. coli and 

ESBL E. coli, further observed data is essential. Further, field data is essential to 

reduce uncertainty in the model, which may improve the accuracy of models so 

applications can extend to scenario testing, for the purposes of planning mitigation or 

management approaches (Knight et al. 2019; Bengtsson-Palme et al. 2021; Jampani 

et al. 2023). For example, combined sewer overflows (CSOs) have recently gained 

media and public attention and can be harmful to water users (Giakoumis and 

Voulvoulis 2023). Using modelling tools can enable further understanding of bacteria 

dissemination as well as AMR and would be used to identify areas which would be at 



Chapter 5 

 

97 
 

risk of exposure. SWAT can also be used to test different climate change scenarios 

(Zhang et al. 2007; Ficklin et al. 2009; Githui et al. 2009) and its application may be 

useful to address the increased interest in understanding the link between climate 

change and AMR (Magnano San Lio et al. 2023). There is also the potential to 

extend this modelling to other AMR bacteria of interest. For example, the 

carbapenemase-producing E. coli has received research interest and has been 

previously represented in environmental AMR modelling studies (Niebaum et al. 

2023). 

Whilst SWAT is a promising tool for application to inform in situ monitoring for less 

experienced end users, it should be noted that environmental AMR modelling is as a 

field still in its infancy, and depending on the application alternative modelling 

approaches should continue to be explored. For example, a distributed modelling 

approach, such as GREAT-ER (Van Heijnsbergen et al. 2022; Niebaum et al. 2023), 

may be more appropriate when capturing fine spatial resolution and complexity is 

important (Petrucci and Bonhomme 2014).  

5.5 Conclusions 

This study successfully developed a SWAT model to simulate the spatiotemporal 

distribution and dynamics of E. coli and ESBL E. coli in the Coquet River. Overall, the 

study found alignment between the simulated and observed E. coli and ESBL E. coli 

generated from the model. However, improvements are required in the model’s 

ability to predict daily loadings, which require collecting more observed data and 

incorporating more bacteria sources into the model. With SWAT being a user-friendly 

and open-source tool, there is potential for this work to be expanded and the model 

to be used widely. However as environmental AMR modelling is a field still in its 

infancy, a variety of modelling approaches should continue to be explored depending 

on the application. 
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Chapter 6 Conclusions and Recommendations 

6.1 Conclusions  

The recent COVID-19 pandemic and the global economic and health cost provided 

an insight into the potential consequences of AMR. Environmental settings are 

recognised as a source, sink and driver for AMR and tackling the problem 

necessitates adopting a One Health approach. River catchment studies have been 

frequently employed as a method to monitor environmental AMR, as rivers act as 

conduits for anthropogenic contamination. Current river catchment monitoring is 

limited to local research studies, often in more contaminated catchments. This 

includes the UK, where environmental AMR is studied within the context of bathing 

waters, or contaminated catchments such as the Thames catchment. Analysis of 

rural catchments may be particularly important for the UK, where there is a 

substantial level of agricultural activity, and where half of antimicrobials consumed 

are from livestock in agricultural settings (Manyi-Loh et al. 2018). Analysis of these 

areas in the UK offers the opportunity to identify the more nebulous drivers of AMR, 

in rural settings without clear sources. Enhanced surveillance and AMR 

characterisation can also help to inform tools for monitoring resistance, including 

predictive models. 

This thesis aimed to understand the importance of various drivers and sources of 

rural AMR in the UK, and the best tools and approaches for surveillance. Firstly, two 

catchments in the UK with distinct hydrometeorological conditions were used to 

increase understanding of how external drivers impacted AMR. The FEAST 

community sourcetracking model was then applied to a more focused study in the 

Coquet catchment to determine the prevalence and persistence of AMR through 

point source inputs. Finally, a SWAT model was developed for the Coquet catchment 

to simulate E. coli and ESBL E. coli to determine whether this could be used to 

complement on-site monitoring.  

The work presented in Chapters 3-5 fulfilled the following tasks.  

1. Perform a thorough spatial assessment of AMR and microbial 

communities in the Coquet (Northumberland) and Eden (Cumbria) 

Rivers.  
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River catchment surveillance provides the opportunity to analyse environments 

surrounding and within the river environment, where rivers act as conduits for 

anthropogenic contamination. There is a lack of comprehensive studies assessing 

AMR and microbial communities in environments where the sources of AMR are 

more nebulous. Such studies may be crucial in uncovering the drivers of AMR 

dissemination, reveal areas that require on-site monitoring, and may be used to 

better understand environmental AMR in more natural, less impacted environments 

(Bengtsson-Palme et al. 2023).  

To address this research gap, a comprehensive spatial assessment was conducted 

in river water in the Coquet and Eden River catchments, as well as a more focused 

and thorough spatial and seasonal assessment of the Coquet catchment, river water, 

soil and wastewater effluent. This spatial assessment included sampling in different 

locations along the course of the river, as well as assessing microbial communities, 

96 ARGs and MGEs, water quality indicators (i.e. pH, dissolved oxygen and 

physiochemical parameters) and microbial source tracking markers for human and 

ruminant Bacteroidetes. Both the Coquet and Eden were characterised by a high 

input of ruminant Bacteroidetes and a lower input of human Bacteroidetes. Further 

assessment and community source tracking analysis of the Coquet catchment 

revealed most inputs were from unknown sources, indicating that these agricultural 

catchments have microbial communities and resistomes, which are primarily 

comprised from diffuse input.  

Generally, in both the Coquet and Eden catchments, there was not a consistent 

upstream to downstream trend in decreasing water quality, and increase in AMR, 

which has been observed in previous studies in more contaminated catchments (Ho 

et al. 2021; Ott et al. 2021a). Throughout the river in general, AMR was not 

correlated with water quality parameters, indicating AMR in these sites was less 

associated with the decrease in water quality associated with anthropogenic input. 

However, comparison of the Coquet and Eden catchments demonstrated noteworthy 

resistance in rural catchments, including clinically relevant blaKPC in the Eden 

catchment, likely due to faecal inputs.  

This comprehensive spatial assessment of these catchments demonstrates the 

potential insights from increased surveillance in less-contaminated sites. In addition, 
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the development of an AMR model using open-source software can be used to help 

guide this further monitoring work and identify sites of potential interest.  

2. Compare the microbial and hydrological signatures of the Coquet and 

Eden River catchments  

Previous studies which incorporate river catchment analysis as the approach for 

monitoring environmental AMR are limited to one river catchment. This means 

external drivers for environmental AMR such as local climate and hydrology are 

difficult to identify, without the context of additional sites. Comparison across different 

studies is also challenging due to the differences in methodology for characterising 

microbiomes and resistomes. This problem was addressed through a comparison of 

the Coquet and Eden catchments, which both had similar land-uses but different 

hydrometeorological characteristics.  

A comparison of the hydrology showed the Eden was a flashier catchment, with 

more extensive periods of soil saturation. This enhances the runoff in this catchment. 

Further analysis of the microbiome showed the Eden had significantly more 

abundant microbes associated with soils, animal faeces and wastewater, whilst the 

Coquet had microbes associated with less impacted environments (Wilcoxon test, 

p<0.01). Analysis of the resistome also showed a higher abundance of antibiotic 

resistance genes (ARGs) in the Eden, as well as significantly higher diversity 

(Kruskal Wallis, p<0.05). ARGs that were unique to the Eden catchment included 

blaKPC, which is clinically significant, particularly in NW England. ARGs, such as tetM 

which is indicative of pollution caused by livestock were also found to be significantly 

more abundant in the Eden catchment.  

Network analysis also revealed that the order Bacteroidales highly correlated with 

ARGs, however only the Eden catchment showed a strong association with human 

and ruminant Bacteroidetes microbial source tracking markers, indicating an 

increased association with human/agricultural pollution related resistance.  

The results from this comparison revealed the Eden had higher AMR abundance and 

diversity compared to the Coquet, likely due to the elevated river flows, rainfall and 

runoff. This association between resistance and local climate would not have been 

as apparent without the context gained from comparing the two catchments together. 

With increased runoff and flashiness associated with increased resistance, this must 
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be considered where more dynamic rainfall events are expected with climate 

change. The findings from this study emphasise the need for understanding AMR in 

different environments to provide insight into typical abundance ranges, which could 

be used to inform on the relative risk to human and animal health (Bengtsson-Palme 

et al. 2023). 

3. Focusing on the Coquet catchment, use FEAST as an approach for 

community source tracking and determine the most important sources 

in the catchment.  

In environments such as the rural UK, rivers are less likely to receive contamination 

from urbanisation, and more likely to receive inputs from small wastewater treatment 

works and runoff from agriculture, which both have the potential to enhance the 

resistome. The results from Chapter 3 indicated the potential influence of non-point 

source inputs in rural catchments, however to what extent point sources in rural 

environments is influencing the microbiome and resistome was unclear. Community 

source tracking is a useful tool to determine the contribution of point source samples 

into the structure of the microbial community. Recently, the FEAST method has been 

found to be a good approach for environmental water bodies where the faecal input 

is low (Xu et al. 2022).  

For the Coquet River, generally point source contribution such as wastewater 

treatment plant effluent had a low influence on the microbial community structure 

and resistome of downstream sites (e.g., Cluster B and D). Therefore, it is likely that 

for the most part, resistance in this environment is driven from the input of diffuse 

sources or the native microbial communities. The exception to this was one site 

immediately downstream wastewater effluent input from the point source site CS1 

(Cluster C: C2), where diffuse sources and native microbial communities were 

overridden by the communities of the wastewater effluent. Interestingly, whilst this 

site had identical sampling conditions to another site further down the catchment 

(Cluster D: D2), there was only an increase in resistance genes associated with 

faecal contamination in C2. Higher flow rate further down the catchment could result 

in reducing the coalescence duration and reduce the potential for horizontal gene 

transfer, where conjugation processes require direct cell to cell contact (Michaelis 

and Grohmann 2023) and the transfer of genetic material can take several minutes 
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to hours (Raleigh and Low 2013). In addition, the placement of the wastewater 

effluent pipe in the centre of the river as oppose the side of the river, may result in 

temporary input of faecal contamination being attenuated more quickly, where the 

river flow is faster and more laminar. Whilst the FEAST model showed that cluster C 

was uniquely characterised by a high contribution of human sources which impacted 

the downstream resistome, the SWAT model simulations indicated a greater impact 

of wastewater effluent on downstream resistomes in cluster B and D as well. It 

should be considered however that the SWAT model does not separate bacteria 

input from upstream river water, therefore it is likely that the bacteria input from 

upstream sources is contributing to the high percentage of wastewater effluent 

source contribution downstream.  

The FEAST analysis was also completed for resistance gene data, which was 

obtained through HT-qPCR. Previous studies have only used FEAST with resistance 

gene data obtained through metagenomics (Zhang et al. 2022; Chen et al. 2023). 

Metagenomics requires more computational knowledge and has a lower detection 

limit than HT-qPCR (Waseem et al. 2019). In addition, HT-qPCR can be completed 

from the extraction to analysis phase commercially, through companies like 

Resistomap Oy. Whilst there are benefits to obtaining resistome data through HT-

qPCR, this study indicated a large discrepancy between the unknown source 

contribution for microbiome data compared to resistome data. The unknown source 

contribution for resistome data was measured as very low, giving the appearance of 

a low contribution of unknown or diffuse sources to the downstream resistome. 

However, it is more likely that measured sources (i.e. wastewater) contributed highly 

to the abundance of the measured 96 ARGs in this study, whilst the unknown or 

diffuse sources were contributing to other ARGs that were not measured in the HT-

qPCR assay. Further studies should repeat FEAST analysis for a greater number of 

ARGs/MGEs to obtain a richer number of contributing sources.  

4. Identify the sources and drivers for AMR in rural river catchments in the 

UK. 

The environmental AMR in the Eden and Coquet catchments was interpreted to be 

primarily derived from diffuse agricultural sources. In Chapter 3, the comparison 

between physiochemical markers such as dissolved oxygen and AMR indicators 
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such as ARG abundance, showed there were no significant correlations, which is 

contradictory to previous studies in more contaminated catchments (Ho et al. 2021; 

Ott et al. 2021a). This indicates that in rural environments which are less impacted 

by anthropogenic activity and direct point sources, diffuse sources may be more 

important drivers of environmental AMR. This was supported through the work in 

Chapter 4, where the FEAST approach and volcano plot analysis showed that in 

general the point sources in the Coquet catchment did not shape the downstream 

resistome.  

Whilst understanding the sources of AMR in a river system is important, 

understanding the factors which dictate the survival of non-native bacteria and ARGs 

is highly important to best implement approaches for mitigation. In Chapter 3, it was 

found that difference in hydrometeorological conditions in the Eden and the Coquet 

led to differences in the abundance and diversity of river resistomes. In Chapter 4, 

the impact of water quality on microbial composition and AMR was explored through 

investigating nutrient limitation, represented through N:P ratios. The N:P ratios were 

calculated at each river site, which indicated the Coquet was a predominately 

phosphorous limited environment, except for immediately downstream wastewater 

effluent discharges, but then returned to phosphorous limited conditions. Mirroring 

this pattern, following the temporary influx of ARGs into a river system, resistance 

was generally not maintained down the course of the river, possibly due to the host 

microbes of non-native bacteria being not well adapted to the nutrient limited system. 

The nutrient limited conditions and lack of selective pressure therefore meant that 

point-source input of wastewater effluent was not maintained down the course of the 

river. The diffuse input of AMR from the Coquet River was attempted to be 

characterised through a SWAT model, however this showed the diffuse input of 

ESBL E. coli (which was selected to model AMR in the river system), was quite low. 

Further improvements and iterations of this model could be used to understand the 

diffuse inputs of AMR into a river system and assess how different drivers can dictate 

persistence. The results of this work indicate that maintaining natural water quality, 

effective wastewater management and reducing runoff from agricultural sites is 

important to reduce ARG dissemination and persistence in a rural catchment.  

5. Demonstrate the ability of the open-source SWAT modelling tool to 

predict AMR hotspots in a river catchment.  
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The catchment scale analysis in Chapters 3 and 4 provided an insight into AMR in 

rural environments in the UK. However continued monitoring of this scale and in 

different environments is challenging, due to the cost and time involved. In addition, 

due to the wide range of methodologies to measure AMR, as well as the various 

sampling locations, knowing what and where to monitor is difficult (Bengtsson-Palme 

et al. 2023). Watershed models such as the Soil and Water Assessment tool (SWAT) 

can be used to simulate the point and diffuse inputs of bacteria into the river system, 

and Chapter 5 demonstrates the first attempt at using this tool to simulate both E. 

coli and ESBL E. coli simultaneously. When compared to observed data, the SWAT 

model simulated E. coli and ESBL E. coli values which visually aligned with observed 

data. In terms of predicting daily loadings, the coefficient of determination values (R2) 

were mostly <0.5, indicating the model could not be used to reliably predict daily 

loadings. However, this is likely due to the variability of the observed values, which 

were based on grab samples. When predicting source loadings of E. coli, the model 

could characterise diffuse and point source inputs, that align with FEAST predictions 

from Chapter 4. However, when source loadings of ESBL E. coli were characterised, 

this was mostly found to be sourced from wastewater, likely due to the low input 

values in sheep and cows. Further characterisation of sources of bacteria, including 

wildlife could improve these estimations. In addition, further on-site sampling and 

quantification of E. coli and ESBL E. coli could be used to calibrate the model, where 

in this study, the lack of observed bacterial data made robust calibration and 

validation methods challenging and a longer term bacterial data set would allow for 

more rigorous calibration and validation techniques to be employed. Ideally, daily 

concentrations of E. coli and ESBL E. coli would be gathered over 2-3 sites over 1-2 

years, which could capture seasonal variations, daily fluctuations, reveal long term 

trends and reduce uncertainty.  

One of the main advantages of using the SWAT model is it is an open-source tool 

which is user friendly, and has a wide range of studies, tutorials and information 

readily available. Therefore, the user-friendliness of SWAT makes it an attractive 

option for less experienced end-users to inform on-site monitoring. The results from 

this thesis will hopefully initiate further work on refining the SWAT model to be used 

in the field of environmental AMR surveillance.  
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6. Suggest tools and approaches to continue monitoring environmental 

AMR in rural river catchments 

Surveillance of environmental AMR in rural settings is not common and identifying 

the tools, locations and techniques to conduct such surveillance is ongoing. Part of 

this thesis aimed to utilise the information gathered from the studies to suggest 

approaches for continued monitoring of AMR in rural settings, which have been 

highly understudied in the UK.  

From the results in Chapter 3, understanding the spatial variability of AMR is 

important to provide context for the scale of the problem and identify alternative 

drivers for AMR, including heavy rainfall and runoff. Therefore, the first suggestion 

(1) is to conduct surveillance across a wider spatial scale rather than isolated 

catchment studies. The thesis also utilised more accurate and quantitative 

approaches for analysing community sequencing data (i.e. Quantitative Microbial 

Profiling (QMP); Vandeputte et al. 2017; Ott et al. 2021b), which provided more 

insight into the different environmental conditions in the Eden and Coquet 

catchments through the different taxa abundances. In line with recommendations by 

Ott et al. (2021b), this thesis also suggests (2) that the QMP approach is employed 

for analysing sequencing data in further environmental studies.  

The findings from Chapter 4 suggested that the temporary influx of AMR from a point 

source dissipates through the river, likely due to the environmental conditions such 

as the natural nutrient limited conditions. Within the context of AMR monitoring this 

thesis suggests (3) this work would be expanded to other catchments to identify the 

extent to which nutrient availability impacts the persistence of AMR. Such findings 

would be impactful for informing monitoring approaches, where the stoichiometric 

ratio of nutrients could potentially be used as a ‘proxy marker’ for environmental 

AMR in rural settings and/or provide insight into the environmental factors dictating 

the survival of AMR in a river.  

The final suggestion (4) is that continued surveillance in rural settings should 

harmonise with existing surveillance approaches to enable comparison between 

environments. As there are currently no standardised approaches for genomic 

monitoring, initiating rural environmental AMR monitoring in-line with the WHO 

GLASS or the WHO Tricycle Protocol (WHO 2021b, a) would ensure comparability 
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amongst studies and allow identification of areas where more in depth monitoring 

may be required. Regular collection of this data is also necessary to calibrate AMR 

models, such as the model developed in Chapter 5, where there is often insufficient 

observed data to complete this step.  

6.2 Application of findings to map AMR risk in river catchments 

The findings of this thesis addressed research questions related to the 

characterisation of AMR in rural river catchments and provided tools which could be 

utilised in routine monitoring. The wider impact of this work is how the findings and 

tools proposed in this research could be used to inform environmental AMR risk 

within a One Health context.  

Based on the findings of this study, for an understanding of environmental AMR, we 

require a large spatial distribution of surveillance to target river catchments of 

different sizes, hydrometeorological conditions and climates. The results of this 

thesis indicated catchments with high levels of rainfall and run-off contributed to 

enhanced environmental AMR, which could have implications for AMR risk in such 

locations. AMR risk in the environment would also be likely elevated during and after 

hydrological events, including storms and floods. Understanding external drivers 

would be crucial for estimating the risk associated with climate change and 

environmental AMR.  

Despite the focus on rural sites in this thesis, the importance of highly urbanised 

catchments for enhancing environmental AMR cannot be discounted. Urbanised 

sites are particularly linked to high levels of clinically relevant environmental AMR, 

due to the various anthropogenic inputs. Therefore, as a priority for surveillance, we 

should aim to capture different land-uses, including less impacted/pseudo-pristine 

sites, rural sites and urbanised catchments. This would also help in mapping the 

levels of AMR in contaminated sites, against the context of the pristine/less impacted 

sites, thereby separating intrinsic resistance from anthropogenic resistance, as well 

as the types of resistance found in rural and urban sites.  

This thesis also demonstrated the importance of the application of modelling tools to 

support on-site sampling. Whilst modelling data cannot replace on-site data, the 

development of robust models can permit simulations of scenarios including 



Chapter 6 

 

107 
 

changing climate, land-use and weather events to be tested. This could help to map 

AMR risk in catchments and reduce the need for expensive on-site monitoring.  

Finally, to fully assess environmental AMR risk within a One Health context, we 

should look to identify areas of potential human and animal exposure. The includes 

agricultural sites, human and animal drinking sites, fisheries and official and unofficial 

bathing water sites. This could be further linked to clinical data and allow for an 

assessment of environmental AMR risk. Exposure routes may also differ in rural and 

urbanised catchments, further supporting the requirement for monitoring of AMR in 

both land-uses.  

6.3 Recommendations for future work 

1. Further AMR surveillance of rural catchments: Rural catchments which are not 

influenced by urban contamination are highly understudied. This study shows 

the importance of non-point sources and nutrient availability as drivers for 

AMR in rural locations. Further work should continue to measure AMR in rural 

catchments, targeting agricultural catchments and pristine catchments to 

understand background AMR and the influence of animals and crop 

production. Understanding environmental AMR in these land-uses can also 

provide useful context when assessing highly urbanised catchments. 

Therefore, future research should aim to diversify the types and land-uses of 

river catchments that are targeted for AMR surveillance.  

2. Improving the temporal accuracy of this study: Due to the impact of the 

COVID-19 pandemic, this study was unable to capture the temporal accuracy 

that may have been captured if field studies were less restricted. Future work 

should aim to sample more frequently (e.g. daily or weekly) over a longer 

sampling duration (e.g. several months to a year), in order to limit any 

temporal variability and to gather an accurate impression of AMR in the river 

system.  

3. Impact of sediment resuspension: The impact of sediment resuspension (i.e. 

where sediment from the river-bed gets resuspended and entrained into the 

river at high flow), in the river system could be an important source of AMR, 

particularly downstream of point sources where sediment is subject to more 

contamination. Sediment resuspension however could not be investigated in 
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this study, as it was not possible to incorporate the extra time to access the 

river safely to sample the bottom sediment into the sampling timeframe. This 

could however be achieved through a more focused study of one site.  

4. Regular E. coli and ESBL E. coli data is needed to calibrate models: The long-

term daily flow data from the Coquet River made it possible to easily validate 

and calibrate the SWAT model for estimating flow rate. Regular determination 

of E. coli and ESBL E. coli at a site on a daily/semi-daily basis over a long 

duration in the Coquet would make it possible to improve the accuracy of the 

SWAT model. Determination of E. coli and ESBL E. coli is technically easy to 

do, and validation of this model against observed data would allow further 

experiments to be conducted.  

5. Further work on characterising the SWAT sources: The SWAT model in this 

study ran simulations based on a few point sources in the catchment, and 

diffuse sources from cattle and sheep. However further characterisation of 

different AMR sources, including wildlife and septic tank systems could 

improve the accuracy of the model, and allow further investigation of the 

impact of different sources into instream AMR. As well as this, further field 

monitoring data and determination of E. coli and ESBL E. coli concentrations 

in sheep and cattle manure would improve model predictions.  
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Appendix A  

 

Appendix Figure A-1 Read depth amongst samples from lowest read depth to highest. X-
axis shows the Catchment Code (C/E), the Site Code (A:L) and the sampling month. For 
example, Coquet Site A sampled in September would be C/A: September 

 

 

Appendix Figure A-2 QQ plot to identify outlier samples based on ASV abundance using 
QMP analysis. 
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Appendix Figure A-3 A) Example diversity profile adapted from Alberdi et al, 2019 and Ott et 
al, 2021b used to provide context to how profiles can show differences in community evenness 
and richness. Example 1 and Example 4 show equal amplicon sequence variants (ASVs), 
therefore they are both completely even, however as example 4 has half the number of ASVs 
in a sample, the hill numbers are also half. Their evenness is reflected with their straight 
diversity profiles. Example 2 and 3 show examples of less evenly distributed systems, which 
are reflected in the shape of the profile plots. B) Diversity profiles for the Coquet and the Eden 
for sampling sites up to downstream during different sampling months, based on the 
quantitative microbial profiling (QMP) analysis. 
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Appendix Figure A-4 NMDS plot displaying the Sorenson Overlap dissimilarity measure at 
q=1, divided by catchment and coloured according to (A) Sample code, where upstream site 
and downstream site groups are highlighted, and (B) sampling month. The stress value refers 
to the ‘goodness of fit’ of the NMDS ordination.  
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Appendix Figure A-5 QQ-plot to identify outlier samples based on absolute (copies/mL) (left 
column) and relative abundance (copies/16S rRNA) (right column) of ARGs and MGEs per 
sample. 
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Appendix Figure A-6 Number of shared ARGs/MGEs between the Coquet and Eden and 
sampling months. Based on HT-qPCR data, the catchments had similar resistomes, where 
the Eden had four unique genes. The different in sampling months can also be observed, 
where the Coquet had at least one unique gene in all sampling months, as well as six unique 
genes observed in the winter months of March and November, conferring resistance to 
Aminoglycoside, Tetracyclines, MLSB, quinolone and other types of antibiotics. In the Eden, 
the months of October and September had two and one unique gene, respectively. Two 
tetracycline ARGs were also observed in March and October, but not September. 
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Appendix Figure A-7 Volcano plot showing the log2FoldChange in ARGs and MGEs between 
catchments (Wald test). The p-value is adjusted according to Benjamini Hochbery (p<0.05). 
Whilst most genes had similar absolute abundance between catchments, there were higher 
abundances of some genes in the Eden catchment, with two genes being significantly more 
abundant in the Eden catchment, the tetracycline gene tetM and the beta-lactam gene blaKPC. 

 

 

 

Appendix Figure A-8 Scatter plot with fitted line showing the abundance (copies/mL) of 
human Bacteriodetes (HuBac) MST marker and Ruminant Bacteroidetes (RuBac) MST 
marker from upstream to downstream. Line colour indicates the abundance in the Coquet and 
Eden catchments. 
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Appendix Table A-1 Grouping of LCM 2015 land-use classifications into 'urban', 'rural, and 
'pristine'. 

Urban Rural Pristine 

Suburban 

Urban 

Improved grassland,  

Arable and horticulture 

Acid grassland,  

Bog, 

 Broadleaved woodland, 

Calcareous grassland, 

Coniferous woodland,  

Fen  

Marsh Swamp,  

Heather, 

Heather Grassland, 

Inland rock,  

Littorial Rock,  

Littorial sediment,  

Saltmarsh,  

Supra-littorial sediment 

 

Appendix Table A-2 Coordinates of Sampling Sites for this study. 

Catchment Code Sample Site Coordinates  

Coquet A Ullswater 55.36368,-2.18461 

B Sharperton 55.32703, -2.07515 

C Hepple 55.29616,-2.03117 

D Rothbury U/S 55.30531-1.93459 

E Rothbury D/S 55.30839,-1.9086 

F Rothbury STP D/S 55.30347,-1.88921 

G Pauperhaugh U/S 55.28955-1.84313 

H Todstead Farm STW D/S 55.2805-1.78434 

I Felton U/S 55.296727, -1.709756 
 

J Felton STW D/S 55.3207,-1.67626 

K Coquet U/S Warkworth 55.33836,-1.63139 

L Warkworth Medieval 

Bridge 

55.3496,-1.60958 
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Eden A Tommy Road 54.420143, -2.338734 

B Home St-Appleby 54.576459, -2.494481, 

C Bolton 54.605556, -2.556082, 

D Farmland near 

Temple_Sowerby 54.621344, -2.599331 

E Temple Sowerby_Park 

D/S 54.647181, -2.615354 

F Langwathby D/S 54.694876, -2.674814 

G Lazonby D/S 54.756359, -2.699388 

H Armathwaite 54.806792, -2.768275 

I Warwick Bridge_D/S 

Wetheral STP 54.902496, -2.829087 

J Carlisle U/S 54.899173, -2.920526 

 

Appendix Table A-3: Sampling Dates for the Coquet and the Eden 

Coquet Eden 

7th of September 2020 2nd of September 2020 

19th of November 2020 8th of October 2020 

15th of March 2021 1st of March 2021 

 

Appendix Table A-4: Information on primers/probes using in qPCR reactions. HuBac and 
RuBac primer and probe sequences are considered intellectual property of the Environment 
Agency therefore could not be provided.  

 Primer  Ampli

con 

Size 

Anne

aling 

(°C) 

Referenc

e 

16S rRNA F F (1055f) ATGGYTGTCGTCAGC

T  

 60 (Dionisi et 

al. 2003) 

R R (1392r)  ACGGGCGGTGTGTAC

  

probe Probe 

(Total_bac) 

TxRed-

CAACGAGCGCAACCC

[BHQ-2]  
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Faecal 

Coliforms 

F Eco1457F CATTGACGTTACCCG

CAGAAGAAGC 

190 58 (Bartosch 

et al. 

2004) R Eco1652R CTCTACGAGACTCAA

GCTTGC 

 

Appendix Table A-5 Samples not sent for HT-qPCR. 

Catchment Sampling Month Site Code 

Eden September 2020  A 

September 2020 B 

October 2020  H 

March 2021 D 

Coquet September 2020  A 

November 2020 A 

November 2020 D 

March 2021 A 
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Appendix Table A-6 Representative samples sent for HT-qPCR for analysis of 384 ARGs 
and MGEs, before narrowing to 96 genes. Samples were chosen from the present study, as 
well as a later sampling campaign which is unpublished. 

Catchment Sampling Month Site Code 

Samples from this study 

Eden September 2020 E 

Eden September 2020 G 

Eden September 2020 J 

Coquet September 2020 C 

Coquet September 2020 D 

Coquet September 2020 H 

Coquet September 2020 J 

Coquet September 2020 L 

Eden October 2020 A 

Eden October 2020 B 

Eden October 2020 E 

Eden October 2020 G 

Eden October 2020 J 

Coquet November 2020 B 

Coquet November 2020 H 

Coquet November 2020 J 

Coquet November 2020 L 

Eden March 2021 B 

Eden March 2021 E 

Coquet March 2021 B 

Coquet March 2021 D 

Coquet March 2021 F 

Coquet March 2021 J 

Coquet March 2021 L 

Samples from separate sampling campaign (unpublished) 

Coquet March 2022 BS1 (wastewater 

effluent) 
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Coquet April 2022 DS2 (wastewater 

effluent) 

Coquet July 2022 CS1 (wastewater 

effluent) 

Coquet August 2022 BS1 (wastewater 

effluent) 

Coquet March 2022 A  soil 

Coquet April 2022 D2 soil 

Coquet July 2022 C2 soil 

Coquet August 2022 B4 soil 

 

Appendix Table A-7 Ninety-six assays used for HT-qPCR. 

Ass

ay 

Gene Target 

antibiotics 

(major) 

Forward Primer Reverse Primer 

AY1 16S 

rRNA 

16S rRNA GGGTTGCGCTCGTTGC ATGGYTGTCGTCAGCTCGTG 

AY8 aac(6')-

Ib_1 

Aminoglyc

oside 

CGTCGCCGAGCAACTTG CGGTACCTTGCCTCTCAAAC

C 

AY3

96 

aac(6)-ig Aminoglyc

oside 

GCGATGTTAGAAGCCTCAAT

TCG 

CACACTTCGGCCTGTCGAA 

AY3

97 

aac(6)-

iic 

Aminoglyc

oside 

CAGTCTTTGGCTAATCCATCA

CAG 

AACGAACCCGGCCTTCTC 

AY4

04 

aac(6)-iz Aminoglyc

oside 

TGCGCCATGACTACGTGAAC GACTGTCCGAAGCCAGTTCG 

AY3 aacC4 Aminoglyc

oside 

CGGCGTGGGACACGAT AGGGAACCTTTGCCATCAAC

T 

AY1

0 

aadA_1 Aminoglyc

oside 

GTTGTGCACGACGACATCAT

T 

GGCTCGAAGATACCTGCAAG

AA 

AY4

08 

aadA10 Aminoglyc

oside 

ACAGGCACTCAACGTCATCG CGCGGAGAACTCTGCTTTGA 

AY4

11 

aadA6 Aminoglyc

oside 

CCATCGAGCGTCATCTGGAA CCCGTCTGGCCGGATAAC 

AY4

12 

aadA7 Aminoglyc

oside 

CACTCCGCGCCTTGGA TGTGGCGGGCTCGAAG 
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AY4

14 

ant4-ib Aminoglyc

oside 

GATGGCCGCTGACACATG TCAACATTGCGCCATAGTGG 

AY2

4 

strB Aminoglyc

oside 

GCTCGGTCGTGAGAACAATC

T 

CAATTTCGGTCGCCTGGTAG

T 

AY4

44 

blaACT Beta 

Lactam 

AAGCCGCTCAAGCTGGA GCCATATCCTGCACGTTGG 

AY4

46 

blaCAR

B 

Beta 

Lactam 

TGATTTGAGGGATACGACAA

CTCC 

CTGTAATACTCCGAGCACCAA 

AY3

39 

blaCMY

_2 

Beta 

Lactam 

AAAGCCTCAT 

GGGTGCATAAA 

ATAGCTTTTGTTTGCCAGCAT

CA 

AY4

32 

blaCTX-

M 

Beta 

Lactam 

CGTACCGAGCCGACGTTAA CAACCCAGGAAGCAGGCA 

AY1

25 

blaGES Beta 

Lactam 

GCAATGTGCTCAACGTTCAA

G 

GTGCCTGAGTCAATTCTTTCA

AAG 

AY4

47 

blaGOB Beta 

Lactam 

CTTGGGCTTGAATGCTCAGG

TA 

TGTATGGTCGTAGTGAGCCT

GA 

AY4

40 

blaKPC Beta 

Lactam 

GCCGCCAATTTGTTGCTGAA GCCGGTCGTGTTTCCCTTT 

AY4

52 

blaMIR Beta 

Lactam 

CGGTCTGCCGTTACAGGTG AAAGACCCGCGTCGTCATG 

AY1

52 

blaNDM Beta 

Lactam 

GGCCACACCAGTGACAATAT

CA 

CAGGCAGCCACCAAAAGC 

AY6

01 

blaOXA

48 

Beta 

Lactam 

TGTTTTTGGTGGCATCGAT GTAAMRATGCTTGGTTCGC 

AY1

08 

blaOXY Beta 

Lactam 

CGTTCAGGCGGCAGGTT GCCGCGATATAAGATTTGAGA

ATT 

AY1

26 

blaSFO Beta 

Lactam 

CCGCCGCCATCCAGTA GGGCCGCCAAGATGCT 

AY4

38 

blaSHV1

1 

Beta 

Lactam 

TTGACCGCTGGGAAACGG TCCGGTCTTATCGGCGATAAA

C 

AY4

39 

blaTEM Beta 

Lactam 

CGCCGCATACACTATTCTCA

G 

GCTTCATTCAGCTCCGGTTC 

AY1

29 

blaVIM Beta 

Lactam 

GCACTTCTCGCGGAGATTG CGACGGTGATGCGTACGTT 

AY1

14 

cfxA Beta 

Lactam 

TCATTCCTCGTTCAAGTTTTC

AGA 

TGCAGCACCAAGAGGAGATG

T 

AY1

11 

cphA_1 Beta 

Lactam 

GCGAGCTGCACAAGCTGAT CGGCCCAGTCGCTCTTC 
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AY1

38 

penA Beta 

Lactam 

AGACGGTAACGTATAACTTTT

TGAAAGA 

GCGTGTAGCCGGCAATG 

AY2

93 

intI1_1 Integrons CGAACGAGTGGCGGAGGGT

G 

TACCCGAGAGCTTGGCACCC

A 

AY4

93 

czcA MDR GCCTTGTTCATCGGCGAAC GGCAATGTCGCCTTCGTTC 

AY4

85 

mdtA MDR ACAAGCCCAGGGCCAAC CCTTAATGGTGCCTTCGGTTT

C 

AY4

86 

mdtH MDR ATGCTGGCTGTACAAGTGAT

G 

CACTCCAGCGGGCGATA 

AY2

27 

mepA MDR ATCGGTCGCTCTTCGTTCAC ATAAATAGGATCGAGCTGCTG

GAT 

AY2

24 

oprD MDR ATGAAGTGGAGCGCCATTG GGCCACGGCGAACTGA 

AY4

89 

qacF/H MDR CTGAAGTCTAGCCATGGATT

CACTAG 

CAAGCAATAGCTGCCACAAG

C 

AY3

16 

IncN_re

p 

MGE AGTTCACCACCTACTCGCTC

CG 

CAAGTTCTTCTGTTGGGATTC

CG 

AY3

18 

IncP_ori

T 

MGE CAGCCTCGCAGAGCAGGAT CAGCCGGGCAGGATAGGTGA

AGT 

AY5

06 

IS1247_

1 

MGE CGGCCGTCACTGACCAA TCGGCAGGTTGGTGACG 

AY5

14 

IS5/IS11

82 

MGE TTCTCGAAGAATCGCCATGG

C 

GCTTTGGATCGCTCCAATCG

A 

AY3

11 

ISAba3 MGE TCAGAGGCAGCGGTATACGA GGTTGATTCAGTTAAAGTACG

TAAAACTTT 

AY3

09 

ISPps MGE CACACTGCAAAAACGCATCC

T 

TGTCTTTGGCGTCACAGTTCT

C 

AY5

24 

Tn5403 MGE AAGCGAATGGCGCGAAC CGCGCAGGGTAAACTGC 

AY2

99 

tnpA_1 MGE GCCGCACTGTCGATTTTTATC GCGGGATCTGCCACTTCTT 

AY3

02 

tnpA_4 MGE CATCATCGGACGGACAGAAT

T 

GTCGGAGATGTGGGTGTAGA

AAGT 

AY3

03 

tnpA_5 MGE GAAACCGATGCTACAATATCC

AATTT 

CAGCACCGTTTGCAGTGTAA

G 

AY9

2 

carB MLSB GGAGTGAGGCTGACCGTAG

AAG 

ATCGGCGAAACGCACAAA 
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AY5

31 

erm35 MLSB CCTTCAGTCAGAACCGGCAA GCTGATTTGACAGTTGGTGG

TG 

AY5

4 

erm36 MLSB GGCGGACCGACTTGCAT TCTGCGTTGACGACGGTTAC 

AY5

47 

ermB_3 MLSB TGAAAGCCATGCGTCTGAC TTCAGCTGGCAGCTTAAGC 

AY5

46 

ermX_2 MLSB TGATGACGGCTCAGTGG GTGCACCAGCGCCTGA 

AY5

37 

lnuC MLSB GGGTGTAGATGCTCTTCTTG

GA 

CTTTACCCGAAAGAGTTTCTA

CCG 

AY5

50 

lsaC MLSB AAACGGCGTGAAAGTATCAG

G 

TTGTGGTGATGTAACGGATG

C 

AY5

38 

mefA MLSB TAATTATCGCAGCAGCTGGTT

C 

GTTCCCAAACGGAGTATAAGA

GTG 

AY5

39 

mphA MLSB TCAGCGGGATGATCGACTG GAGGGCGTAGAGGGCGTA 

AY5

53 

msrE MLSB CGGCAGATGGTCTGAGCTTA

AA 

CGCACTCTTCCTGCATAAAG

GA 

AY9

1 

oleC MLSB CCCGGAGTCGATGTTCGA GCCGAAGACGTACACGAACA

G 

AY5

54 

vat(A) MLSB ATGAACGGAGCGAATCATCG

G 

CCATACCGATCCAAACGTCAT

TTC 

AY4

70 

arr3 Other GATCGTCTTCGAACGGTCCT

G 

TTTGGCGATTGGTGACTTGC

T 

AY4

65 

bacA Other ATCCGCGGCACCCTGA CCTGCTTGATGGACTTGATGA

AGA 

AY1

98 

crAss64 Other TGTATAGATGCTGCTGCAACT

GTACTC 

CGTTGTTTTCATCTTTATCTTG

TCCAT 

AY4

66 

mcr1 Other CACATCGACGGCGTATTCTG CAACGAGCATACCGACATCG 

AY1

91 

merA Other GTGCCGTCCAAGATCATG GGTGGAAGTCCAGTAGGGTG

A 

AY5

58 

catA3 Phenicol CTGATTGCTCAGGCCGTGAA ATGAGTATGGGCAACTCAGT

GC 

AY5

63 

cmlV Phenicol GCCCTCATCACCGTCTTCG GGACGTTGGCGATGGAGAG 

AY3

7 

cmxA Phenicol GCGATCGCCATCCTCTGT TCGACACGGAGCCTTGGT 
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AY3

2 

floR_1 Phenicol ATTGTCTTCACGGTGTCCGT

TA 

CCGCGATGTCGTCGAACT 

AY4

56 

qepA Quinolone GGGCATCGCGCTGTTC GCGCATCGGTGAAGCC 

AY9

6 

qnrB Quinolone GCGACGTTCAGTGGTTCAGA GCTGCTCGCCAGTCGAA 

AY4

57 

qnrB4 Quinolone TCACCACCCGCACCTG GGATATCTAAATCGCCCAGTT

CC 

AY4

61 

qnrS2 Quinolone TCCCGAGCAAACTTTGCCAA GGTGAGTCCCTATCCAGCGA 

AY2

45 

sul1_2 Sulfonamid

e 

GCCGATGAGATCAGACGTAT

TG 

CGCATAGCGCTGGGTTTC 

AY3

65 

sul2_2 Sulfonamid

e 

TCATCTGCCAAACTCGTCGT

TA 

GTCAAAGAACGCCGCAATGT 

AY2

44 

sul3_1 Sulfonamid

e 

TCCGTTCAGCGAATTGGTGC

AG 

TTCGTTCACGCCTTACACCA

GC 

AY2

41 

sul4 Sulfonamid

e 

TCAACGTCACTCCAGACAGC TGGAAATAACGACGTCCACA 

AY4

73 

A. 

bauman

nii 

Taxonomic TCTTGGTGGTCACTTGAAGC ACTCTTGTGGTTGTGGAGCA 

AY4

76 

Enteroc

occi 

Taxonomic AGAAATTCCAAACGAACTTG CAGTGCTCTACCTCCATCATT 

AY4

78 

K. 

pneumo

niae 

Taxonomic ACGGCCGAATATGACGAATT

C 

AGAGTGATCTGCTCATGAA 

AY4

79 

P. 

aerugino

sa 

Taxonomic AGCGTTCGTCCTGCACAAGT TCCACCATGCTCAGGGAGAT 

AY5

68 

tet39 Tetracyclin

e 

TATAGCGGGTCCGGTAATAG

GTG 

CCATAACGATCCTGCCCATAG

ATAAC 

AY2

54 

tetA_2 Tetracyclin

e 

CTCACCAGCCTGACCTCGAT CACGTTGTTATAGAAGCCGCA

TAG 

AY5

72 

tetG Tetracyclin

e 

TCGCGTTCCTGCTTGCC CCGCGAGCGACAAACCA 

AY5

74 

tetM Tetracyclin

e 

GGAGCGATTACAGAATTAGG

AAGC 

TCCATATGTCCTGGCGTGTC 

AY2

64 

tetO_2 Tetracyclin

e 

CAACATTAACGGAAAGTTTAT

TGTATACCA 

TTGACGCTCCAAATTCATTGT

ATC 
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AY2

74 

tetPB_1 Tetracyclin

e 

TGGGCGACAGTAGGCTTAGA

A 

TGACCCTACTGAAACATTAGA

AATATACCT 

AY2

59 

tetQ Tetracyclin

e 

CGCCTCAGAAGTAAGTTCAT

ACACTAAG 

TCGTTCATGCGGATATTATCA

GAAT 

AY5

77 

tetR Tetracyclin

e 

CCGTCAATGCGCTGATGAC GCCAATCCATCGACAATCACC 

AY2

63 

tetW Tetracyclin

e 

ATGAACATTCCCACCGTTATC

TTT 

ATATCGGCGGAGAGCTTATCC 

AY5

85 

dfrA25 Trimethopri

m 

TCAAACTGGACAGCGGCTA GTCGATTGTCGACACATGCA 

AY5

86 

dfrA27 Trimethopri

m 

GCCGCTCAGGATCGGTA GTCGAGATATGTAGCGTGTC

G 

AY5

95 

vanA Vancomyci

n 

GGGCTGTGAGGTCGGTTG TTCAGTACAATGCGGCCGTTA 

AY1

59 

vanB_1 Vancomyci

n 

TTGTCGGCGAAGTGGATCA AGCCTTTTTCCGGCTCGTT 

AY1

63 

vanHB Vancomyci

n 

GAGGTTTCCGAGGCGACAA CTCTCGGCGGCAGTCGTAT 

AY3

81 

vanTC_

2 

Vancomyci

n 

ACAGTTGCCGCTGGTGAAG CGTGGCTGGTCGATCAAAA 

AY1

83 

vanYD_

1 

Vancomyci

n 

AAGGCGATACCCTGACTGTC

A 

ATTGCCGGACGGAAGCA 
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Appendix Table A-8 Sites from the UK National River Flow Archive (NRFA) used to access 
catchment descriptor data and from the DEFRA Hydrology Data Explorer used to measure 
rainfall. 

 Catchment  Coordinates 

Catchment 

Descriptor 

Sites (National 

River Flow 

Archive) 

Coquet Coquet at Usway Burn at 

Shillmoor 

55.363168 , -2.1813847 

 

Coquet at Morwick 55.333099 , -1.6326910 

Coquet at Rothbury 55.308447 , -1.8959997 

Eden Eden at Kirkby Stephen 54.481233 , -2.3534001 

Eden at Temple Sowerby 54.648240 , -2.6152002 

Eamount at Udford 54.666874, -2.660445 

Eden at Sheepmount 54.904876 , -2.9528598 

Rainfall Guage 

Sites (DEFRA 

Hydrology 

Data Explorer) 

Coquet Linbriggs 55.350245 , -2.1703339 

Rothbury 55.308447 , -1.8959052 

Warkworth 55.346569 , -1.6298228 

Eden Barras 54.504210 , -2.2413626 

Brackenber 54.569779 , -2.4315335 

Harsceugh Castle 54.779356 , -2.6082029 

Willow Holme 54.899425 , -2.9535108 

Linbriggs 55.350245 , -2.1703339 
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Appendix Table A-9 Downloaded Rainfall data from DEFRA Hydrology Data Explorer and 
calculated API5. 

Catchmen

t 

Site Date Measured Rainfall (mm) at Days 1 to 5 

before the time of sampling (Day of 

sampling =Pd) 

Calculate

d API5 

(mm) 

Pd-1 Pd-2 Pd-3 Pd-4 Pd-5 

Coquet DEFRA 

(Linbriggs) 

07/09/202

0 

3.4 0.4 3.8 0.4 9 1.860779 

19/11/202

0 

1 2.4 0.8 2.6 3.4 1.561249 

15/03/202

0 

0.2 0.2 8.2 2.8 11.2 1.81659 

DEFRA 

(Rothbury) 

07/09/202

0 

4.2 1.2 0.4 0 7.2 1.802776 

19/11/202

0 

2 0.2 0.4 3.8 5.4 1.418626 

15/03/202

0 

0 0 7.6 3 15 1.792345 

DEFRA 

(Warkworth) 

07/09/202

0 

1.6 0.4 0.8 0 5 1.229837 

19/11/202

0 

1.4 0 0.2 2 1.4 1.042833 

15/03/202

0 

0 0 3.4 1 5.2 1.140175 

Eden DEFRA 

(Barras) 

02/09/202

0 

0 0 0 0 0.2 0.111803 

08/10/202

0 

11.8 1.2 0.8 1.8 41 3.080179 

01/03/202

1 

0.2 0 0 0 5.2 0.65192 

DEFRA 

(Brackenber) 

02/09/202

0 

0 0 0 0 0.2 0.111803 

08/10/202

0 

11.2 1.8 2 2.2 29.6 3.020761 

01/03/202

1 

0 0 0.2 0 6 0.65192 

02/09/202

0 

0.09 0 0.28 0 0.41 0.375 
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DEFRA 

(Haresceugh 

Castle) 

08/10/202

0 

8.71 0.12 1.67 2.4 35.74 2.714084 

01/03/202

1 

0 0 0 0 3.89 0.493077 

DEFRA 

(Willow 

Holme) 

02/09/202

0 

0 0 0 0 0.2 0.111803 

08/10/202

0 

7.6 0 1.8 1.2 43.8 2.67161 

01/03/202

1 

0 0 0 0 1.8 0.33541 

 

Appendix Table A-10: Summary concentrations of bacteria cells (based on 16SrRNA data), 
faecal coliforms, human and ruminant derived bacteriodetes (HuBac and RuBac, 
respectively) (mean+/- standard deviation). 

 Coquet Eden 

 Cells 
Faecal 

Coliforms 
HuBac RuBac Cells 

Faecal 

Coliforms 

Human 

Bacteria 

Rumina

nt 

Bacteria 

 Copies/mL Copies/mL 

A 
6.37e+03± 

1.37e+03 

0.000299± 

0.000175 
0± 0 

12.3± 

4.62 

1.60e+04± 

7.48e+03 

0.0686± 

0.0225 
20± 17.1 0± 0 

B 
2.27e+04± 

3.30e+03 

0.0394± 

0.0216 

8.69± 

8.69 

5.96± 

2.98 

4.41e+04± 

2.20e+04 

0.133± 

0.0389 

100± 

13.9 

641± 

604 

C 
3.27e+04± 

6.81e+03 

0.0231± 

0.00759 
0± 0 

8.58± 

8.58 

8.21e+04± 

1.38e+04 

0.1± 

0.0368 

37.6± 

22.4 

563± 

293 

D 
5.89e+04± 

1.57e+04 

0.615± 

0.511 

32.2± 

15.8 

233± 

118 

5.88e+04± 

1.17e+04 

0.14± 

0.0494 

72.6± 

7.95 

817± 

462 

E 
5.54e+04± 

1.91e+04 

0.121± 

0.0672 

16.5± 

3.35 

23.8± 

9.52 

8.79e+04± 

1.46e+04 

0.138± 

0.0381 

71.6± 

15.9 

1300± 

906 

F 
4.69e+04± 

1.35e+04 

0.13± 

0.056 

170± 

144 

125± 

64.6 

7.26e+04± 

1.47e+04 

0.125± 

0.0483 

71.8± 

23.9 

1040± 

664 

G 
4.87e+04± 

1.11e+04 

0.22± 

0.102 

98.4± 

70.2 

163± 

47.4 

6.73e+04± 

2.77e+03 

0.126± 

0.0443 
98± 46.7 

1260± 

710 

H 
7.20e+04± 

9.06e+03 

0.209± 

0.0765 

34.9± 

8.55 

232± 

110 

6.51e+04± 

2.01e+04 

0.119± 

0.0734 
144± 118 

595± 

275 

I 
5.71e+04± 

2.00e+04 

0.0817± 

0.0372 

19.2± 

12.4 

110± 

95.5 

3.75e+04± 

4.35e+03 

0.0865± 

0.034 
50± 18.6 

233± 

108 

J 
1.87e+05± 

7.97e+04 

0.128± 

0.0213 

49.2± 

24.6 

84.6± 

43.4 

8.79e+04± 

3.17e+04 

0.197± 

0.126 

40.2± 

12.5 

147± 

76.2 
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K 
1.05e+05± 

3.19e+04 

0.114± 

0.00619 

11.1± 

11.1 

225± 

186 
    

L 
9.65e+04± 

4.63e+04 

0.0901± 

0.0475 

12.1± 

12.1 

35.9± 

35.9 
    

 

Appendix Table A-11 Bacteria cells/mL, MST markers human derived bacteriodetes 
(HuBac), and ruminant derived bacteriodetes (RuBac) and Faecal coliforms. Statistically 
significant differences between sampling month/between catchment are highlighted green. 

 Coquet Eden Eden 

vs. 

Coquet 

 March Septem

ber 

Novem

ber 

p-

value 

March Septem

ber 

October p-

val

ue 

p-value 

Cells/

mL 

55400±

10500 

 

88000±

7700 

 

54000 

±10700 

 

0.847

3 

60700± 

9450 

 

62200± 

9740 

 

62900 

±12700 

 

0.9

524 

0.5493  

HuBac/

mL 

13.9±15

.3 

76.1±1

3.8 

23.0±22

.4 

0.537 45.9±35

.2 

50.2±28

.8 

115.9±1

04.3 

0.0

356 

6.83x10-5 

RuBac/

mL 

13.8±24 155±19

7 

146.2±1

22.4 

0.003

19 

598.3±5

25.3 

435±94

2 

944±98

8 

0.1

755 

0.00257 

Faecal 

colifor

ms/mL 

0.05320

±    0.00

9740 

0.125±

0.039 

  0.0654

0±    0.0

10100 

0.027

47 

  0.0654

0±    0.0

10100 

0.0928±

0.009 

0.21200

±    0.03

3100 

0.0

005

818 

0.02939 

 

Appendix Table A-12 Measured Onsite parameters for the Coquet and Eden (mean +/- 
standard deviation) 

 Coquet Eden 

 Flow 

Rate 

(m3/s) 

n=2 

Temper

ature 

(°C) 

n=3 

pH 

n=3 

DO 

(mg/L

) 

N=3 

Con

ducti

vity 

(n=3) 

Flow 

Rate 

(m3/s) 

n=2 

Temper

ature 

(°C) 

n=3 

pH 

n=3 

DO 

(mg/L

) 

N=3 

Conduc

tivity 

(n=3) 

A 3.70± 

0.77 

8.37± 

2.07 

7.5± 

0.312 

11.7± 

0.496 

112± 

13.9 3.1± 2.7 

10.7± 

1.5 

7.75± 

0.174 

11.4± 

0.491 

117± 

30.7 

B 8.35± 

3.05 

8.3± 

2.29 

7.64± 

0.272 

12± 

0.574 

121± 

13.4 

37.9± 

32.1 

10.5± 

1.88 

7.98± 

0.0603 

10.9± 

0.507 390± 56 

C 6.25± 

2.08 

8.83± 

1.93 

7.33± 

0.12 

11.2± 

0.717 

139± 

15 

27.1± 

18.6 

11.2± 

1.83 

8.24± 

0.0722 

11.1± 

0.559 

408± 

42.5 
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D 

5.42± 

1.87 

8.7± 

2.15 

7.54± 

0.058

1 

11± 

0.693 

194± 

10.9 

92.9± 

84.1 11± 1.96 

8.15± 

0.0289 

11.1± 

0.5 

413± 

51.7 

E 

7.21± 

1.72 

9.23± 

2.13 

7.65± 

0.017

3 

11.1± 

0.626 

198± 

11.6 

73.6± 

43.9 

10.7± 

1.71 

8.1± 

0.0578 

11.1± 

0.552 

434± 

57.5 

F 

NA 

9.6± 

2.25 

7.78± 

0.014

5 

11.7± 

0.928 

203± 

11.1 

124.4± 

47.9 

11.4± 

1.86 

8.02± 

0.102 

11.1± 

0.686 

296± 

36.8 

G 

4.79± 

1.59 

9.77± 

1.94 

7.77± 

0.062

4 

11.6± 

0.722 

204± 

12.6 

109.7± 

40.9 

11.4± 

2.07 

8± 

0.0872 

11± 

0.554 

273± 

15.5 

H 

18.69

± 8.87 

9.57± 

2.22 

7.84± 

0.063

5 

11.3± 

0.588 

210± 

10.6 

87.1± 

45.4 

11.5± 

1.99 

7.93± 

0.0867 

11.1± 

0.589 

261± 

18.7 

I 

5.92± 

0.17 

10.2± 

2.25 

8± 

0.032

1 

11.5± 

0.522 

212± 

6.92 

121.4± 

45.4 

11.4± 

2.22 

7.96± 

0.0555 

11± 

0.714 

266± 

16.9 

J 

19.76

± 8.57 

9.77± 

2.47 

7.98± 

0.057

7 

11.4± 

0.646 

239± 

4.58 

119.4± 

41.9 

11.8± 

1.96 

7.91± 

0.0567 

11± 

0.595 

268± 

20.9 

K 

13.37

± 2.61 

10.1± 

2.42 

8.04± 

0.058

1 

11± 

0.897 

236± 

8.54      

L 

17.44

± 0.47 

10.2± 

2.78 

7.94± 

0.074

2 

11.4± 

0.891 

502± 

126      

 

Appendix Table A-13 Measured physiochemical parameters for the Coquet and Eden 
(mean +/- standard deviation). 

 Coquet Eden 

 COD 

(n=3) 

 

NH4 

(n=3) 

PO3
4 

(n=3) 

TN 

(n=3) 

COD 

(n=2-3) 

NH4-N 

(n=3) 

PO4-P 

(n=3) 

TN 

(n=3) 

 Mg/l Mg/l 

A 18.4± 

4.75 

0.0125± 

0.00647 

0.037± 

0.0161 

2.16± 

0.506 22.8± 7.62 

0.0409± 

0.0221 

0.021± 

0.0101 

1.27± 

0.179 

B 23± 

4.85 

0.0121± 

0.00665 

0.0293± 

0.0171 

2.9± 

0.024 20.1± 7.29 

0.0521± 

0.0135 

0.01± 

0.00755 

2.59± 

0.0764 
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C 22.8± 

3.95 

0.0102± 

0.00818 

0.000667± 

0.000333 

1.82± 

0.377 17.9± 8 

0.138± 

0.0978 

0.025± 

0.0155 

2.2± 

0.143 

D 19.4± 

3.25 

0.0153± 

0.00896 

0.01± 

0.0052 

1.62± 

0.388 20.7± 6.53 

0.098± 

0.0645 

0.0503± 

0.0338 

2.35± 

0.0953 

E 18.8± 

4.35 

0.0159± 

0.00858 

0.007± 

0.00208 

1.93± 

0.683 20.2± 6.68 

0.0648± 

0.0249 

0.0297± 

0.0186 

2.89± 

0.43 

F 18.5± 

2.15 

0.017± 

0.00951 

0.002± 

0.001 

1.1± 

0.122 14.9± 7.26 

0.06± 

0.038 

0.004± 

0.00173 

2.43± 

0.409 

G 19.9± 

2.16 

0.0116± 

0.00431 

0.0193± 

0.0154 

2.43± 

0.493 13.4± 7.83 

0.162± 

0.138 

0.057± 

0.0417 

2.48± 

0.284 

H 19.5± 

0.404 

0.0121± 

0.00521 

0.0467± 

0.0235 

1.39± 

0.383 12.7± 7.93 

0.228± 

0.211 

0.0307± 

0.0172 

2.14± 

0.462 

I 19.4± 

3.91 

0.0103± 

0.0041 

0.016± 

0.00839 

2.1± 

0.514 13.4± 9.42 

0.0478± 

0.0301 

0.0278± 

0.0129 

2.41± 

0.395 

J 21.6± 

1.21 

0.0164± 

0.00348 

0.042± 

0.0161 

1.59± 

0.03 14.4± 5.98 

0.0762± 

0.0591 

0.026± 

0.0182 

2.57± 

0.607 

K 21.1± 

2.36 

0.0169± 

0.00748 

0.071± 

0.0323 

1.35± 

0.143     

L 21.2± 

2.68 

0.0145± 

0.00559 

0.0117± 

0.00606 

1.5± 

0.163     

 

Appendix Table A-14 Most common ASV families assessed through quantitative microbial 
profiling (QMP). 

Phylum Class Order Family Genus 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(1) 

Bacteroidota Bacteroidia Cytophagales Spirosomaceae Pseudarcicella 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e NA (1) 

Bacteroidota Bacteroidia Flavobacteriales Crocinitomicaceae Fluviicola 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e NA (2) 

Proteobacteria 

Gammaproteobacte

ria 

Pseudomonadal

es Moraxellaceae 

Acinetobacter 

(1) 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(2) 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e Rhodoferax 
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Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(3) 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e Rhodoferax 

Actinobacteriota Actinobacteria Frankiales Sporichthyaceae hgcI_clade 

Proteobacteria 

Gammaproteobacte

ria 

Pseudomonadal

es Moraxellaceae Acinetobacter(2) 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e NA (3) 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(4) 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(5) 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(6) 

Proteobacteria 

Gammaproteobacte

ria 

Pseudomonadal

es Moraxellaceae 

Acinetobacter 

(3) 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e Limnohabitans 

Actinobacteriota Actinobacteria Frankiales Sporichthyaceae hgcI_clade 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales Burkholderiaceae 

Polynucleobacte

r 

Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae 

Sediminibacteriu

m 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(7) 

Proteobacteria 

Gammaproteobacte

ria Burkholderiales 

Comamonadacea

e NA (4) 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae 

Flavobacterium 

(8) 

Verrucomicrobio

ta Verrucomicrobiae 

Verrucomicrobial

es 

Verrucomicrobiace

ae uncultured 

 



 

175 
 

Appendix Table A-15 Summary absolute abundance (copies/mL), relative abundance (copies/16S rRNA) and diversity of genes (number of 
genes) in each antibiotic class for each site. 

 

Coquet Eden 

C/B C/C C/D C/E C/F C/G C/H C/I C/J C/K C/L E/A E/B E/C E/D E/E E/F E/G E/H E/I E/J 

A
m

in
o

g
ly

c
o

s
id

e
 

copies/mL 3320± 

5400 

4030± 

5880 

79600± 

NA 

2650± 

3990 

1240± 

562 

1210± 

727 

6460± 

7610 

872± 

850 

3080± 

3250 

2190± 

578 

7750± 

5830 

134± 

87.8 

22900± 

14700 

5800± 

7290 

1240± 

89.1 

18100± 

13000 

2830± 

1530 

18100± 

20400 

2100± 

2020 

1050± 

800 

7340± 

4080 

copies/16SrR

NA 

0.0282

± 

0.0446 

0.0272± 

0.0406 

0.339± 

NA 

0.00788

± 

0.00972 

0.0104± 

0.0105 

0.00625

± 

0.00412 

0.019± 

0.0202 

0.00419

± 

0.00517 

0.00665

± 0.0067 

0.00592

± 

0.00247 

0.0322± 

0.0233 

0.0138± 

0.0186 

0.125± 

0.0455 

0.0145± 

0.0152 

0.00658

± 

0.00329 

0.0576± 

0.0538 

0.0105± 

0.00762 

0.0694

± 

0.0818 

0.0093± 

0.0109 

0.00756

± 0.007 

0.0209± 

0.00829 

number of 

genes 

5.33± 

4.04 

3.67± 

3.79 

11± NA 4± 0 3.5± 

0.707 

5.33± 

3.21 

3± 1.41 2.33± 

1.53 

5± 0 3.33± 

0.577 

4.67± 

0.577 

2± 1.41 10± 1.41 4.33± 

2.08 

5.5± 

0.707 

10.3± 

0.577 

4± 2 8± 2.65 7± 2.83 3.67± 

0.577 

5.67± 

2.08 

B
e
ta

 L
a
c

ta
m

 

copies/mL 12100± 

4800 

10600± 

14600 

116000

± NA 

577± 

927 

326± 

53.9 

695± 

259 

2970± 

4020 

193± 

159 

8880± 

1910 

442± 

290 

11500± 

5670 

4990± 

6670 

52500± 

47300 

515± 

705 

100± 

4.09 

64400± 

23500 

531± 

384 

19400± 

30500 

2290± 

2350 

250± 

333 

3760± 

2400 

copies/16SrR

NA 

0.117± 

0.0165 

0.0724± 

0.1 

0.493± 

NA 

0.00162

± 

0.00236 

0.00248

± 

0.00207 

0.00469

± 0.0025 

0.00847

± 0.0112 

0.0011± 

0.00098

7 

0.02± 

0.00234 

0.00156

± 0.0018 

0.121± 

0.169 

0.0626± 

0.0351 

0.238± 

2.45e-05 

0.00126

± 0.0015 

0.00053

± 

0.00025 

0.181± 

0.0482 

0.0022± 

0.00225 

0.0759

± 0.121 

0.00611

± 

0.00435 

0.0019± 

0.00271 

0.0165± 

0.0191 

number of 

genes 

11± 

2.83 

8.5± 

6.36 

15± NA 3.67± 

4.62 

3.5± 

0.707 

9± 2.83 4± 4.24 3± 2 7± 0 4.33± 

2.31 

12.3± 

2.52 

4.5± 

4.95 

16± 0 2.67± 

2.08 

2± 1.41 15.3± 

1.15 

6± 2.65 11± 

4.36 

9.5± 

4.95 

4± 3.46 9± 4.36 

In
te

g
ro

n
s

 

copies/mL 35400± 

8970 

32700± 

39400 

NA 17000± 

18300 

48700± 

54300 

15400± 

6500 

93400± 

96300 

20000± 

7460 

54500± 

9440 

26700± 

9050 

52500± 

38600 

21600± 

5870 

82400± 

79200 

33600± 

24000 

11900± 

13700 

149000± 

71500 

19100± 

2010 

60600± 

41500 

32500± 

17900 

12100± 

7010 

51500± 

47100 

copies/16SrR

NA 

0.381± 

0.0189 

0.227± 

0.265 

NA 0.0654± 

0.0389 

0.49± 

0.642 

0.0812± 

0.0385 

0.283± 

0.243 

0.0952± 

0.0369 

0.123± 

0.00915 

0.0678± 

0.02 

0.236± 

0.19 

1.84± 

2.39 

0.357± 

0.0373 

0.0917± 

0.0493 

0.0466± 

0.0447 

0.411± 

0.123 

0.0712± 

0.0306 

0.228± 

0.173 

0.1± 

0.00639 

0.0832± 

0.0596 

0.177± 

0.156 

number of 

genes 

1± 0 1± 0 NA 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 1± 0 

M
D

R
 

copies/mL 1430± 

1390 

1550± 

2120 

26400± 

NA 

581± 

767 

935± 

901 

775± 

184 

2060± 

2150 

549± 

197 

1930± 

12.2 

890± 

192 

2670± 

2050 

809± 

583 

14100± 

12600 

1320± 

1130 

434± 

371 

17400± 

6000 

1190± 

614 

11000± 

15600 

3660± 

3130 

570± 

518 

2860± 

1160 

copies/16SrR

NA 

0.0137

± 

0.0101 

0.0107± 

0.0144 

0.112± 

NA 

0.002± 

0.00175 

0.00904

± 0.0113 

0.0045± 

0.00254 

0.00625

± 

0.00546 

0.0027± 

0.00127 

0.00439

± 

0.00040

8 

0.00267

± 

0.00173 

0.0147± 

0.0142 

0.0328± 

0.0308 

0.0645± 

0.00114 

0.0035± 

0.00222 

0.00185

± 

0.00095

1 

0.0478± 

0.00317 

0.00485

± 

0.00396 

0.0428

± 

0.0621 

0.0103± 

0.00472 

0.00409

± 

0.00436 

0.00978

± 

0.00507 

number of 

genes 

3.33± 

1.53 

3± 2 5± NA 2.67± 

2.08 

3± 0 4.33± 

1.53 

3± 0 3.67± 

1.15 

4.5± 

0.707 

3.67± 

0.577 

4.67± 

0.577 

2.5± 

0.707 

6± 0 3.67± 

1.53 

3.5± 

0.707 

6± 0 4.33± 

1.53 

5± 1 5± 0 4± 1.73 5.33± 

0.577 

M
G E
 copies/mL 2470± 

2080 

2190± 

2870 

51800± 

NA 

1520± 

1630 

3410± 

2900 

5990± 

3090 

4400± 

2360 

1610± 

684 

5150± 

177 

2780± 

1170 

2990± 

2090 

369± 

211 

23300± 

18900 

8960± 

5340 

2990± 

1570 

22400± 

7570 

4540± 

2510 

11900± 

11100 

5530± 

3840 

1590± 

447 

4980± 

1840 
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copies/16SrR

NA 

0.0242

± 

0.0163 

0.0148± 

0.0197 

0.22± 

NA 

0.00549

± 

0.00304 

0.032± 

0.0385 

0.0292± 

0.00943 

0.0146± 

0.00358 

0.00803

± 

0.00456 

0.0118± 

0.00157 

0.00776

± 

0.00412 

0.018± 

0.0194 

0.0366± 

0.0489 

0.113± 

0.0156 

0.0251± 

0.00775 

0.0139± 

0.00141 

0.0617± 

0.00923 

0.0152± 

0.00578 

0.0451

± 

0.0451 

0.0164± 

0.00393 

0.0105± 

0.00284 

0.0158± 

0.00582 

number of 

genes 

6± 2.65 5.33± 

2.08 

9± NA 6.33± 

0.577 

7± 0 7.67± 

0.577 

6.5± 

2.12 

6.67± 

0.577 

8± 1.41 7.33± 

1.15 

6.67± 

0.577 

3± 0 10± 0 8± 1 7.5± 

2.12 

9.67± 

0.577 

8.33± 

1.15 

9± 1 8± 0 8± 1 8± 1 

M
L

S
B

 

copies/mL 1840± 

1690 

1870± 

2930 

52300± 

NA 

1180± 

745 

1800± 

2240 

2850± 

1790 

2320± 

846 

532± 

272 

2580± 

275 

1360± 

417 

5110± 

4570 

732± 

626 

18800± 

14200 

1990± 

1520 

557± 

212 

24600± 

10900 

1100± 

546 

13500± 

18700 

1660± 

956 

702± 

554 

3400± 

1260 

copies/16SrR

NA 

0.0179

± 

0.0139 

0.0129± 

0.02 

0.222± 

NA 

0.00514

± 

0.00035

1 

0.0187± 

0.0254 

0.0134± 

0.00433 

0.00789

± 

0.00045

6 

0.00256

± 

0.00161 

0.00591

± 

0.00121 

0.00348

± 

0.00101 

0.0194± 

0.0128 

0.0252± 

0.0206 

0.0944± 

0.0206 

0.0054± 

0.00266 

0.00268

± 

0.00016 

0.0665± 

0.0113 

0.00389

± 

0.00215 

0.0525

± 

0.0744 

0.00508

± 

0.00048

8 

0.00485

± 

0.00382 

0.0107± 

0.00322 

number of 

genes 

5± 3.61 3.67± 

3.06 

10± NA 2.33± 

2.31 

3.5± 

2.12 

5.33± 

3.51 

2± 1.41 2.67± 

1.53 

5± 0 4± 1 6.33± 

0.577 

3.5± 

2.12 

9.5± 

0.707 

5± 2 5± 2.83 10± 0 6.33± 

1.15 

7.67± 

0.577 

7.5± 

0.707 

3.33± 

1.15 

7± 1 

O
th

e
r 

copies/mL 1070± 

1290 

1020± 

1140 

8680± 

NA 

491± 

196 

475± 

584 

1310± 

1490 

1180± 

738 

344± 

149 

1270± 

139 

626± 

346 

580± 

567 

75.1± 

14.6 

2310± 

1570 

878± 

526 

291± 

190 

3900± 

1560 

767± 

504 

1570± 

1790 

748± 

352 

383± 

276 

1540± 

1000 

copies/16SrR

NA 

0.0131

± 

0.0173 

0.00687

± 

0.00797 

0.0369

± NA 

0.00234

± 

0.00048

9 

0.00492

± 

0.00665 

0.00543

± 0.0044 

0.00383

± 

0.00135 

0.00167

± 

0.00088

7 

0.0029± 

0.00060

3 

0.00142

± 

0.00024

2 

0.00303

± 

0.00304 

0.00616

± 

0.00788 

0.0123± 

0.00396 

0.00245

± 

0.00094

5 

0.00174

± 

0.00166 

0.0106± 

0.00137 

0.00239

± 

0.00050

6 

0.0060

2± 

0.0071

9 

0.00237

± 6.71e-

05 

0.00264

± 

0.00193 

0.00447

± 

0.00294 

number of 

genes 

2.33± 

1.15 

2.5± 

0.707 

5± NA 1.67± 

0.577 

1.5± 

0.707 

3± 1 3± 0 2± 1 4± 0 1.67± 

0.577 

3± 2 1.5± 

0.707 

5± 0 2.33± 

1.53 

2± 0 4.33± 

0.577 

2± 0 3.33± 

1.15 

4± 1.41 2± 0 
 

P
h

e
n

ic
o

l 

copies/mL 148± 

49 

168± 

155 

4340± 

NA 

133± 

188 

38.2± 

NA 

166± 

79.3 

630± 

807 

81.2± 

28.4 

154± 

5.37 

123± 

84.5 

277± 

168 

125± NA 1870± 

1370 

540± 

259 

300± NA 2440± 

543 

184± 

117 

1440± 

1620 

411± 

86.4 

102± 

143 

395± 

333 

copies/16SrR

NA 

0.0014

5± 

0.0001

02 

0.00112

± 

0.00111 

0.0184

± NA 

0.00041

3± 

0.00044 

0.00013

5± NA 

0.00102

± 

0.00074

3 

0.00182

± 

0.00221 

0.00052

2± 

8.45e-05 

0.00035

1± 

4.71e-05 

0.00044

7± 

0.00050

6 

0.0018± 

0.00202 

0.00113

± NA 

0.00959

± 

0.00242 

0.00152

± 

0.00015

3 

0.00206

± NA 

0.00688

± 

0.00093

7 

0.00065

6± 

0.00046

4 

0.0055

3± 

0.0065

3 

0.00139

± 

0.00041

8 

0.00078

6± 

0.00116 

0.00128

± 

0.00111 

number of 

genes 

2± 0 1.5± 

0.707 

4± NA 2± 1 1± NA 2.67± 

1.53 

2± 1.41 1.5± 

0.707 

2± 0 1.67± 

1.15 

2.33± 

0.577 

1± NA 4± 0 2.5± 

0.707 

2± NA 3.33± 

0.577 

2.33± 

0.577 

3.33± 

0.577 

3± 0 1.67± 

1.15 

3± 0 

Q
u

in
o

lo
n

e
 

copies/mL 2100± 

2080 

3620± 

3980 

43900± 

NA 

1610± 

2550 

570± 

105 

1220± 

809 

4710± 

5850 

818± 

690 

3040± 

1220 

1130± 

407 

4530± 

3240 

817± 

854 

17400± 

13000 

2500± 

3510 

312± 

223 

24700± 

5190 

1690± 

1030 

12400± 

14700 

4470± 

3360 

765± 

774 

4080± 

1570 

copies/16SrR

NA 

0.0201

± 

0.0167 

0.0243± 

0.0279 

0.187± 

NA 

0.00467

± 

0.00636 

0.00436

± 

0.00369 

0.00773

± 0.0063 

0.0137± 

0.0158 

0.00443

± 

0.00428 

0.00679

± 

0.00208 

0.00365

± 

0.00301 

0.0214± 

0.0182 

0.0211± 

0.0117 

0.0883± 

0.0204 

0.00605

± 

0.00755 

0.00138

± 

0.00045

5 

0.07± 

0.00972 

0.00695

± 

0.00634 

0.0476

± 

0.0589 

0.013± 

0.00411 

0.00554

± 

0.00643 

0.0142± 

0.00762 
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number of 

genes 

3± 1.73 2.5± 

0.707 

4± NA 1.33± 

0.577 

1± 0 2± 1 1± 0 1.67± 

0.577 

2.5± 

0.707 

1.67± 

0.577 

3± 1 2.5± 

0.707 

3.5± 

0.707 

1.33± 

0.577 

2± 0 3.67± 

0.577 

2± 1 3.33± 

0.577 

3± 0 1.67± 

0.577 

3± 1 
S

u
lf

o
n

a
m

id
e

 

copies/mL 143± 

126 

90.1± 

42.7 

4310± 

NA 

224± 

84.2 

185± 

171 

444± 

312 

310± 

13.4 

179± 

69.1 

401± 

34.6 

311± 

117 

325± 

246 

46± NA 1850± 

2040 

508± 

180 

393± 

92.5 

2760± 

1260 

399± 

448 

1650± 

1970 

407± 

497 

136± 

135 

381± 

289 

copies/16SrR

NA 

0.0016

3± 

0.0016

8 

0.00054

9± 

0.00019

6 

0.0183

± NA 

0.00108

± 

0.00025

3 

0.00177

± 

0.00218 

0.00214

± 

0.00091

1 

0.00111

± 3e-04 

0.00092

1± 

0.00052 

0.00091

± 1.21e-

05 

0.00081

± 

0.00031

5 

0.00135

± 

0.00097

1 

0.00041

5± NA 

0.00709

± 

0.00287 

0.00152

± 

0.00039

3 

0.00195

± 

0.00041

2 

0.00748

± 

0.00147 

0.00113

± 

0.00095

6 

0.0063

4± 

0.0078

8 

0.00102

± 

0.00106 

0.00094

8± 

0.00091

3 

0.00104

± 

0.00025

5 

number of 

genes 

2± 1.41 1.5± 

0.707 

3± NA 2.33± 

0.577 

1± 0 2.67± 

0.577 

1.5± 

0.707 

2.33± 

0.577 

3± 0 2± 1 3± 0 2± NA 4± 0 2.33± 

0.577 

2± 0 4± 0 2± 0 3± 0 2± 1.41 1.67± 

0.577 

2.33± 

1.15 

T
a
x

o
n

o
m

ic
 

copies/mL NA 129± NA 262± 

NA 

15.2± 

NA 

NA 20.7± 

NA 

37.1± 

NA 

NA NA 48.8± 

34.5 

42.1± 

NA 

30.7± 

NA 

97.1± 

42.9 

228± NA 28.8± 

NA 

230± 

121 

NA 234± 

168 

82.35± 

38.65 

20.8± 

NA 

52.8± 

NA 

copies/16SrR

NA 

NA 0.00088

5± NA 

0.0011

2± NA 

0.00012

5± NA 

NA 0.00015

2± NA 

0.00016

3± NA 

NA NA 0.00014

5± 

4.27e-05 

6.57e-

05± NA 

0.00422

± NA 

0.00059

5± 

0.00034

2 

0.00090

1± NA 

0.00019

7± NA 

0.00060

5± 

0.00016

6 

NA 0.0008

9± 

0.0007

01 

0.00024

6± 

0.00003

5 

0.00011

1± NA 

8.68e-

05± NA 

number of 

genes 

NA 2± NA 1± NA 1± NA NA 1± NA 1± NA NA NA 1± 0 1± NA 1± NA 2± 0 1± NA 1± NA 2.67± 

0.577 

NA 2.5± 

2.12 

1± NA 1± NA 1± NA 

T
e
tr

a
c
y

c
li

n
e

 

copies/mL 664± 

653 

646± 

774 

15600± 

NA 

528± 

577 

1590± 

1870 

2470± 

1690 

1210± 

616 

450± 

233 

1930± 

373 

714± 

538 

1400± 

1180 

273± 

161 

6210± 

5880 

1200± 

655 

651± 

64.1 

6350± 

1670 

770± 

389 

3270± 

3000 

1530± 

1080 

312± 

119 

1470± 

469 

copies/16SrR

NA 

0.0063

6± 

0.0052

3 

0.00435

± 0.0053 

0.0664

± NA 

0.00189

± 0.0011 

0.0162± 

0.0216 

0.0114± 

0.00563 

0.00402

± 

0.00086

9 

0.00221

± 

0.00145 

0.00436

± 

0.00041

2 

0.00189

± 

0.00129 

0.00649

± 0.0056 

0.0127± 

0.013 

0.0273± 

0.00208 

0.00339

± 

0.00089 

0.00333

± 

0.00115 

0.0178± 

0.00127 

0.00267

± 

0.00126 

0.0124

± 

0.0122 

0.00454

± 

0.00113 

0.00218

± 

0.00112 

0.00471

± 

0.00169 

number of 

genes 

3.67± 

2.52 

2.33± 

1.15 

7± NA 3.67± 

1.53 

3.5± 

0.707 

6.67± 

1.53 

2± 0 2.67± 

0.577 

6± 1.41 4± 3 5± 2 2.5± 

2.12 

7.5± 

0.707 

4.67± 

0.577 

6.5± 

2.12 

8± 1 4.67± 

0.577 

6.33± 

0.577 

5.5± 

0.707 

4.67± 

1.15 

5.33± 

3.06 

T
ri

m
e
th

o
p

ri
m

 

copies/mL 156± 

124 

290± NA 1740± 

NA 

NA NA 13.4± 

NA 

NA NA NA NA 129± 

125 

28.1± 

NA 

879± 

613 

NA NA 1440± 

479 

NA 2320± 

3180 

262± NA NA 97.2± 

22.9 

copies/16SrR

NA 

0.0014

3± 

0.0008

48 

0.00198

± NA 

0.0074

1± NA 

NA NA 9.86e-

05± NA 

NA NA NA NA 0.00051

9± 

0.00038

9 

0.00025

3± NA 

0.0046± 

0.00137 

NA NA 0.00422

± 

0.00163 

NA 0.0091

1± 

0.0125 

0.00060

9± NA 

NA 0.00033

4± 

0.00020

9 

number of 

genes 

2± 0 2± NA 2± NA NA NA 1± NA NA NA NA NA 1.67± 

0.577 

1± NA 2± 0 NA NA 1.67± 

0.577 

NA 1.5± 

0.707 

2± NA NA 2± 0 

V
a

n

c
o

m
y

c
in

 copies/mL 1570± 

1000 

1630± 

2250 

22400± 

NA 

476± 

627 

82.8± 

NA 

383± 

131 

1170± 

1560 

88.1± 

79.5 

1160± 

413 

164± 

38.2 

2210± 

1760 

787± NA 11000± 

8470 

1210± 

NA 

41.9± 

NA 

13300± 

3240 

265± 

276 

8290± 

12900 

1590± 

1780 

187± 

96.5 

912± 

405 
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copies/16SrR

NA 

0.0148

± 

0.0060

2 

0.0112± 

0.0154 

0.0952

± NA 

0.00135

± 

0.00152 

0.00029

3± NA 

0.00258

± 0.0013 

0.00334

± 

0.00433 

0.00046

± 

0.00048

9 

0.00259

± 

0.00067

9 

0.00051

1± 

0.00041

2 

0.00898

± 

0.00638 

0.00709

± NA 

0.0547± 

0.0109 

0.00273

± NA 

0.00015

2± NA 

0.0374± 

0.00409 

0.00118

± 

0.00147 

0.0324

± 

0.0511 

0.00411

± 

0.00355 

0.00133

± 

0.00098

3 

0.00366

± 

0.00273 

number of 

genes 

4.5± 

0.707 

3± 2.83 5± NA 3± 2.83 2± NA 4.5± 

0.707 

2± 1.41 1.33± 

0.577 

4± 0 1.33± 

0.577 

4.33± 

0.577 

5± NA 5± 0 3± NA 1± NA 5± 0 2± 0 4± 1 3± 1.41 2.5± 

0.707 

3.67± 

1.53 
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Appendix Table A-16 average relative abundance (copies/16S rRNA), absolute abundance (copies/mL), diversity (number of genes) of 
ARGs/MGEs per month per catchment and Kruskal Wallis significance tests (p<0.05). Green cells indicate statistically significant values.  

 Coquet Eden Coquet vs 

Eden  

P-value 

March Septe

mber 

Novembe

r 

Sampling 

Month P-

value 

Mean ± 

sd 

March Septemb

er 

Octobe

r 

Sampling 

Month P-value 

Mean 

± sd 

A
R

G
 

Relative 

abundance 

(copies/16SrRNA) 

(mean ± sd) 

0.132± 

0.178 

0.084± 

0.116 

0.0539± 

0.0551 

0.69 0.090±

0.13 

0.213± 

0.243 

0.212± 

0.336 

0.172± 

0.264 

0.34 0.198

±0.27

0 

0.075 

Absolute 

abundance 

(copies/mL) (mean 

± sd) 

17200± 

14600 

18100± 

22400 

12700± 

13200 

0.62 15989 

±16699 

56500± 

81600 

67400± 

105000 

33200± 

47000 

0.76 5177

1 ± 

7831

6 

0.16 

Diversity (number 

of genes) (mean ± 

sd) 

40.7± 

16.2 

24.3± 

15.6 

32.6± 

14.5 

0.06 32.5 

±16.3 

45.3± 

20.4 

46.8± 

22.7 

44.9± 

19.6 

0.91 45.6 

+/ -

20 

0.0207 

M
G

E
 

Relative 

abundance 

(copies/16SrRNA) 

(mean ± sd) 

0.221± 

0.183 

0.28± 

0.325 

0.132± 

0.108 

0.61 0.211±

0.224 

0.631± 

1.12 

0.22± 

0.202 

0.147± 

0.152 

0.05 0.337

±0.68

7 

0.499 

Absolute 

abundance 

(copies/mL) (mean 

± sd) 

44600± 

49200 

46300± 

32500 

28800± 

23200 

0.51 39892±

36060 

69700± 

56500 

72000± 

84100 

33100± 

37400 

0.17 5774

9± 

6151

9 

0.4549 
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Appendix Table A-17 Network Analysis: Most highly correlating ARGs, MGEs (absolute 
abundance (copies/mL), taxa (by order level) (quantitative microbial abundance (QMP)/mL) and 
MST markers (Ruminant Bacteroidetes and Human Bacteroidetes; RuBac and HuBac) by degree of 
connectivity (calculated by Gephi) for both catchments, the Coquet and Eden.  

 ARGs/MGEs degrees Order/MST Degrees 

B
o
th

 C
a
tc

h
m

e
n

ts
 

blaTEM 3 Bacteroidales 3 

cfxA 2 Acidaminococcales 1 

blaVIM 2 Aeromonadales 1 

tetO_2 2 Azospirillales 1 

qnrS2 1 Babeliales 1 

tetQ 1 Cyanobacteriales 1 

tetW 1 Cytophagales 1 

blaCMY_2 1 Fibrobacterales 1 

tetPB_1 1 Methanomassiliicoccales 1 

sul4 1 Nitrosopumilales 1 

  Silvanigrellales 1 

C
o
q
u

e
t 
c
a
tc

h
m

e
n
t 

tetM 16 Aeromonadales 3 

aacC4 5 Bacteroidales 3 

erm36 4 Candidatus_Azambacteria 3 

mcr1 4 Pirellulales 3 

blaOXA48 3 Babeliales 2 

cfxA 3 Cellvibrionales 2 

cmxA 3 Chthoniobacterales 2 

arr3 3 Frankiales 2 

oleC 2 KD4-96 2 

blaNDM 2 Lactobacillales 2 

vanYD_1 2 Phycisphaerales 2 

ermB_3 2 Planctomycetales 2 

mdtH 2 Sphingomonadales 2 

qacF/H 1 Acetobacterales 1 

tet39 1 Acidaminococcales 1 

lnuC 1 Bathyarchaeia 1 

aadA_1 1 Blastocatellales 1 

tetW 1 Campylobacterales 1 

aac(6)-iic 1 Candidatus_Nomurabacteria 1 

sul3_1 1 Candidatus_Zambryskibacteria 1 

msrE 1 Chitinophagales 1 

blaTEM 1 Chlamydiales 1 

qnrB 1 Cyanobacteriales 1 
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  Desulfitobacteriales 1 

  Diplorickettsiales 1 

  Flavobacteriales 1 

  Geobacterales 1 

  Gracilibacteria 1 

  Lachnospirales 1 

  Methanobacteriales 1 

  Micrococcales 1 

  Nannocystales 1 

  Nitrososphaerales 1 

  Paracaedibacterales 1 

  Propionibacteriales 1 

  Pseudomonadales 1 

  Rhizobiales 1 

  Rokubacteriales 1 

  Silvanigrellales 1 

  Sphingobacteriales 1 

  Spirochaetales 1 

  Steroidobacterales 1 

  Verrucomicrobiales 1 

  Xanthomonadales 1 

E
d
e

n
 C

a
tc

h
m

e
n
t 

strB 12 HuBac_mL 1 

tetQ 10 RuBac_mL 1 

tetW 8 Bacteroidales 7 

aadA_1 4 Acidaminococcales 6 

tetPB_1 4 Campylobacterales 6 

blaSHV11 3 Peptostreptococcales-Tissierellales 6 

cfxA 3 Clostridiales 5 

lnuC 3 Pseudomonadales 5 

oleC 3 Aeromonadales 4 

vat(A) 3 Rhodobacterales 4 

aacC4 2 Burkholderiales 3 

blaCMY_2 2 Erysipelotrichales 3 

sul2_2 2 Flavobacteriales 3 

sul4 2 Lachnospirales 3 

aadA10 1 Azospirillales 2 

ant4-ib 1 Christensenellales 2 

blaKPC 1 Micrococcales 2 

carB 1 Oscillospirales 2 
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dfrA25 1 R7C24 2 

mcr1 1 Spirochaetales 2 

msrE 1 Bacillales 1 

qnrS2 1 Candidatus_Nomurabacteria 1 

tetM 1 Cellvibrionales 1 

tnpA_5 5 Chitinophagales 1 

tnpA_1 4 Cytophagales 1 

ISAba3 3 Deinococcales 1 

ISPps 2 Gammaproteobacteria_Incertae_Sedis 1 

IncP_oriT 1 Lactobacillales 1 

  Methanobacteriales 1 

  Methanomassiliicoccales 1 

  Nitrosopumilales 1 

  Nitrososphaerales 1 

  Omnitrophales 1 

  Verrucomicrobiales 1 

  Vicinamibacterales 1 

  Xanthomonadales 1 
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Appendix B  

 

Appendix Figure B-1 Bar plots showing the 25 most abundant ASVs grouped by families, with 
remaining pooled as 'other'. Figures show the wastewater effluent samples (top row), and the soil 
samples (bottom row) 

 

Appendix Figure B-2 Bar plots showing the absolute ARG abudnance for wastewater effluent (top 
row) and soil (bottom row). 
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Appendix Table B-1 Location of sample sites 

Cluster Site  Northing Easting 

Control (clean 

site) 

A 55.363683,  -2.184614 

A soil 100m 55.363979,  

 

-2.186750 

200m 55.364001,  

 

-2.188026 

Cluster B B1 55.312831,  

 

-1.958716 

B2 55.313780,  

 

-1.953614 

BS1 55.320595,  

 

-1.955053 

B3 55.318928,  

 

-1.958282 

B4 soil 100m 55.306640,  

 

-1.936820 

200m 55.311646,  

 

-1.961147 

B4 55.305222,  

 

-1.934570 

Cluster C C1 55.309135,  

 

-1.891346 

CS1 55.304616,  

 

-1.890016 

C2 soil 100m 55.302656,  -1.889995 

200m 55.303891, 

 

-1.888699 

C2 55.302344,  

 

-1.886153 

Cluster D D1 55.296581,  -1.709643 

 

DS2 55.299476,  

 

-1.700201 

D2 soil 100m 55.298408,  

 

-1.699770 

200m 55.298155,  -1.705259 

D2 55.298785,  

 

-1.696386 



 

185 
 

Appendix Table B-2 Summary of samples collected 

Sample 

Code 

Sample Type March 

7/03/2022 

10/03/2022 

March/Apri

l 

21/0/2022 

14/4/2022 

July 

11/07/2022 

14/07/2022 

July 

25/07/2022 

28/07/2022 

 

August 

08/08/2022 

11/08/2022 

A River water ✓ ✓ ✓ ✓ ✓ 

A soil Soil ✓ ✓ ✓ ✓ ✓ 

B1 River water 

 

✓ ✓ ✓ ✓ ✓ 

B1 soil Soil 

 

✓ ✓ ✓ ✓ ✓ 

B2 River water 

 

✓ ✓ ✓ ✓ ✓ 

B3 River water 

 

 ✓    

B4 River water 

 

✓ ✓ ✓ ✓ ✓ 

B4 soil Soil 

 

✓ ✓ ✓ ✓ ✓ 

BS1 Sewage 

effluent 

✓ ✓ ✓ ✓ ✓ 

C1 River water 

 

✓ ✓ ✓ ✓ ✓ 

CS1 Sewage 

effluent 

✓ ✓ ✓ ✓ ✓ 

C2 River water 

 

✓ ✓ ✓ ✓ ✓ 

C2 soil Soil 

 

✓ ✓ ✓ ✓ ✓ 

D1 River water 

 

✓ ✓ ✓ ✓ ✓ 

DS1 Sewage 

effluent 

✓ ✓ ✓ ✓  

D2 River water ✓ ✓ ✓ ✓ ✓ 

D2 soil Soil 

 

✓ ✓    
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Appendix Table B-3 Top 25 Taxa River Water Samples  

Phylum Class Order Family Genus 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Proteobacteria Gammaproteobacteri

a 

Pseudomonadales Moraxellaceae Acinetobacter 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Simplicispira 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Limnohabitans 

Bacteroidota Bacteroidia Cytophagales Spirosomaceae Pseudarcicella 

Proteobacteria Gammaproteobacteri

a 

Pseudomonadales Moraxellaceae Acinetobacter 

Cyanobacteria Cyanobacteriia Cyanobacteriales Phormidiaceae Tychonema 

CCAP 1459-11B 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae NA 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Bacteroidota Bacteroidia Flavobacteriales Crocinitomicaceae Fluviicola 

Bacteroidota Bacteroidia Sphingobacteriale

s 

env.OPS 17 NA 

Proteobacteria Gammaproteobacteri

a 

Pseudomonadales Moraxellaceae Acinetobacter 

Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae Sediminibacteriu

m 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Actinobacteriota Actinobacteria Frankiales Sporichthyaceae NA 

Proteobacteria Alphaproteobacteria Sphingomonadale

s 

Sphingomonadacea

e 

Sphingorhabdus 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Actinobacteriota Actinobacteria Micrococcales Microbacteriaceae Rhodoluna 

Bacteroidota Bacteroidia Flavobacteriales Crocinitomicaceae Fluviicola 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Limnohabitans 

Proteobacteria Gammaproteobacteri

a 

Pseudomonadales Pseudomonadaceae Pseudomonas 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacterale

s 

Chthoniobacteracea

e 

Candidatus 

Udaeobacter 
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Actinobacteriota Actinobacteria Frankiales Sporichthyaceae Candidatus 

Planktophila 

Proteobacteria Gammaproteobacteri

a 

Methylococcales Methylomonadacea

e 

Crenothrix 

 

Appendix Table B-4 Top 25 Taxa Sewage Effluent samples 

Phylum Class Order Family Genus 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae NA 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Limnohabitans 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacterale

s 

Chthoniobacteracea

e 

Candidatus 

Udaeobacter 

Proteobacteria Gammaproteobacteri

a 

Pseudomonadales Moraxellaceae Acinetobacter 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Bradyrhizobium 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacterale

s 

Chthoniobacteracea

e 

Candidatus 

Udaeobacter 

Proteobacteria Gammaproteobacteri

a 

Pseudomonadales Moraxellaceae Acinetobacter 

Bacteroidota Bacteroidia Cytophagales Spirosomaceae Pseudarcicella 

Actinobacteriota Actinobacteria Frankiales Sporichthyaceae NA 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

Proteobacteria Alphaproteobacteria Sphingomonadale

s 

Sphingomonadacea

e 

Sphingorhabdus 

Bacteroidota Bacteroidia Cytophagales Cyclobacteriaceae Algoriphagus 

Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae Sediminibacteriu

m 

Actinobacteriota Actinobacteria Frankiales Sporichthyaceae Candidatus 

Planktophila 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Simplicispira 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Limnohabitans 

Bacteroidota Bacteroidia Flavobacteriales Crocinitomicaceae Fluviicola 
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Acidobacteriota Blastocatellia Blastocatellales Blastocatellaceae JGI 0001001-H03 

Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae NA 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacterale

s 

Chthoniobacteracea

e 

Candidatus 

Udaeobacter 

Actinobacteriota Actinobacteria Frankiales Sporichthyaceae hgcI clade 

Proteobacteria Gammaproteobacteri

a 

Burkholderiales Comamonadaceae Aquabacterium 

 

Appendix Table B-5 Top 25 Taxa soil samples 

Phylum Class Order Family Genus 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacteral

es 

Chthoniobacteraceae Candidatus 

Udaeobacter 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacteral

es 

Chthoniobacteraceae Candidatus 

Udaeobacter 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacteral

es 

Xiphinematobacterace

ae 

Candidatus 

Xiphinematobact

er 

Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Pseudolabrys 

Actinobacteriota Actinobacteria Micrococcales Micrococcaceae Pseudarthrobact

er 

Actinobacteriota Thermoleophilia Solirubrobacteral

es 

67-14 NA 

Actinobacteriota Thermoleophilia Gaiellales Gaiellaceae Gaiella 

Actinobacteriota Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 

Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Pedomicrobium 

Proteobacteria Gammaproteobacter

ia 

Burkholderiales Comamonadaceae Piscinibacter 

Planctomycetota Phycisphaerae Tepidisphaerales WD2101 soil group NA 

Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Hyphomicrobium 

Acidobacteriota Vicinamibacteria Vicinamibacterale

s 

Vicinamibacteraceae Vicinamibacter 

Myxococcota Polyangia Nannocystales Nannocystaceae Enhygromyxa 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacteral

es 

Xiphinematobacterace

ae 

Candidatus 

Xiphinematobact

er 

Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae NA 

Actinobacteriota Actinobacteria Micrococcales Intrasporangiaceae NA 
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Actinobacteriota Actinobacteria Propionibacteriale

s 

Nocardioidaceae Nocardioides 

Acidobacteriota Vicinamibacteria Vicinamibacterale

s 

Vicinamibacteraceae NA 

Actinobacteriota Thermoleophilia Gaiellales Gaiellaceae Gaiella 

Verrucomicrobiot

a 

Verrucomicrobiae Pedosphaerales Pedosphaeraceae NA 

Proteobacteria Gammaproteobacter

ia 

Burkholderiales Nitrosomonadaceae Ellin6067 

Proteobacteria Alphaproteobacteria Sphingomonadale

s 

Sphingomonadaceae Sphingomonas 

Verrucomicrobiot

a 

Verrucomicrobiae Chthoniobacteral

es 

Chthoniobacteraceae Chthoniobacter 

Acidobacteriota Blastocatellia Blastocatellales Blastocatellaceae JGI 0001001-

H03 
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Appendix Table B-6 Results of the FEAST analysis for each sink including paired t-test to idenitfy differences in the percentage contribution 
seasonally (summer v winter) and between the estimates based on the microbiome and resistome. The significance threshold was set at p<0.05 

 Site  Summer/Winter Microbiome Resistome T Test Microbiome vs 

Resistome Percentage contribution T test (p value) Summer vs. Winter T test (p value) 

Sink 

B4 

B1 
 

RW Summer 37.8 ± 19 0.221 72.1 ± 5.96 0.5118 0.07967 

RW Winter 4.88 ± 3.32 43.6 ± 29.8 

B1_SOIL SOIL Summer 0.0298 ± 0.0298 0.3 7.42 ± 5.52 0.423 0.2133 

SOIL Winter 0.73 ± 0.359 1.9 ± 0.325 

B2 RW Summer 35.5 ± 19.3 0.8798 13.7 ± 4.38 0.4264 0.8364 

RW Winter 29.5 ± 29 51.7 ± 30.4 

B3 RW Winter 0.0391 ± NA  0.693 ± NA   

B4_SOIL SOIL Summer 0.0354 ± 0.0118 0.1761 5.84 ± 5.78 0.5149 0.3223 

SOIL Winter 0.551 ± 0.15 1.31 ± 0.181 

BS1 SE Summer 5.89 ± 3.05 0.4442 0.946 ± 0.781 0.9311 0.1562 

SE Winter 25.3 ± 16.2 1.08 ± 1.08 

Unknown  Summer 20.7 ± 9.76 0.4363 2.16e-67 ± 2.16e-

67 

0.4226 

 

0.03061 

 Winter 39 ± 15.7 2.19e-235 ± 0 

Sink 

C2 

C1 RW Summer 31.6 ± 28.6 0.5954 31 ± 5.46 0.2157 0.8925 

RW Winter 13.7 ± 4.11 20.7 ± 3.67 

C2_SOIL SOIL Summer 0.134 ± 0.107 0.3376 0.0975 ± 0.0567 0.5142 0.3786 

SOIL Winter 0 ± 0 2.23 ± 2.23 

CS1 SE Summer 44.1 ± 23 0.9559 68.9 ± 5.4 0.6763 0.2116 

SE Winter 46.7 ± 34.8 71.9 ± 3.59 

Unknown  Summer 24.2 ± 17.9 0.7125 7.97e-30 ± 7.97e-

30 

0.4909 0.1193 
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 Winter 39.6 ± 30.7 5.18 ± 5.03 

Sink 

D2 

D1 RW Summer 28.9 ± 1.67 0.929 68.7 ± 11.8 0.3576 0.001652 

RW Winter 30.9 ± 17.7 82.7 ± 3.74 

D2_SOIL SOIL Winter 0.793 ± 0.793  1.44 ± 0.111  0.5651 

DS2 SE Summer 5.57 ± 5.57 0.6814 41.6 ± 9.54 0.1933 0.05758 

SE Winter 2.5 ± 2.21 15.8 ± 3.63 

Unknown  Summer 67.3 ± 5.06 0.9337 3.54 ± 3.5  

0.4175 

8.28e-05 

 Winter 65.8 ± 14.7 6.29e-51 ± 6.28e-

51 
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Appendix Table B-7 Measured on site parameters 

Cluster Site 
 

Calculated 

flow rate 

Temp pH Conductivity DO 

A A Summer 1.68± 0.6 19.5± 2.05 8.66± 

0.00577 

221± 9 9.76± 0.397 

Winter 7.38± 5.11 8.45± 0.495 8.94± 0.134 136± 24.7 12.9± 0.0566 

B B1 Summer 4.78± 1.19 18.9± 1.91 8.54± 

0.0889 

269± 7.51 9.11± 0.455 

Winter 42.5± 28.3 7.65± 3.04 8.56± 0.276 184± 33.3 12.7± 1.11 

B2 Summer 1.67± 0.79 17± 1.65 8.32± 0.11 432± 5.51 9.24± 0.411 

Winter 2.45± 1.53 7.15± 1.34 8.48± 0.106 416± 40.3 13.1± 0.424 

B3 Winter 
 

8.2± NA 8.43± NA 441± NA 12.6± NA 

B4 Summer 3.08± 1.32 20.7± 3.3 8.32± 

0.0755 

296± 2.31 9.61± 0.291 

Winter 5.62± 1.28 6.75± 0.354 8.38± 0.148 238± 41.2 13± 1.1 

BS1 Summer  18.5± 1.15 7.64± 0.117 607± 37.6 6.87± 0.184 

Winter  7.7± 0.283 7.99± 0.325 746± 142 8.97± NA 

C C1 Summer 1.4± 0.164 16.9± 0.737 8.34± 0.169 306± 7.02 9.06± 0.225 

Winter 5.89± 

0.631 

10.6± 0.212 8.5± 0.247 238± 20.5 11± 0.24 

C2 Summer 0± 0 17.5± 1.5 8.04± 0.278 336± 7.37 9.24± 0.344 

Winter 0± 0 9.8± 0.283 8.27± 0.332 254± 28.3 11.3± 0.184 

CS1 Summer  17.8± 2.06 28.8± 37.3 597± 5.51 5.03± 0.446 

Winter  10.3± 0.141 7.42± 0.262 700± 189 7.12± 1.72 

D D1 Summer 2.38± 0.23 19.1± 1.74 8.63± 

0.0265 

332± 9.45 10.2± 0.723 

Winter 9.93± 1.03 10.6± 0.0707 8.52± 

0.0707 

251± 1.41 11.8± 0.0849 

D2 Summer NA 18.6± 0.778 8.3± 0.0141 332± 10.6 9.71± 0.0849 

Winter 0± 0 11.9± 0.778 8.38± 0.141 260± 2.12 11.7± 0.0778 

DS2 Summer  18.2± 0.636 7.32± 

0.0212 

820± 4.95 5.27± 0.509 

Winter  11.4± 0.778 7.48± 0.389 711± 5.66 7.5± 0.962 
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Appendix Table B-8 Physiochemical characteristics of each site 

Cluster Site Winter_Summer COD NH4-N TN PO4-P 

A A Summer 62.1± 16.3 0.0133± 0.00577 1.14± 0.626 0.00667± 

0.00577 

Winter 57.2± 2.45 0.005± 0.00707 0.935± 

0.106 

0.01± 0.0141 

B B1 Summer 64.3± 9.62 0.01± 0 1.22± 0.537 0.00333± 

0.00577 

Winter 71.3± 6.54 0.005± 0.00707 1.37± 0.41 0.03± 0.0283 

B2 Summer 83.3± 20.8 0.0267± 0.00577 2.26± 0.38 0.0367± 

0.00577 

Winter 65.7± 12.3 0.005± 0.00707 3.14± 0.983 0.025± 0.00707 

B3 Winter 59.6± NA 0.01± NA 2.81± NA 0.09± NA 

B4 Summer 61.8± 17.6 0.0167± 0.00577 1.42± 0.812 0.00333± 

0.00577 

Winter 62.1± 1.45 0.03± 0.0283 1.62± 

0.0354 

0.005± 0.00707 

BS1 Summer 86.8± 7.14 0.273± 0.0551 40.6± 3.93 2.5± 0.286 

Winter 127± 56.7 0.21± 0.0424 24.4± 1.91 2.01± 0.226 

C C1 Summer 61.6± 15.6 0.02± 0.01 1.12± 0.249 0.00667± 

0.00577 

Winter 76.5± 8.77 0.005± 0.00707 1.28± 0.495 0.01± 0.0141 

C2 Summer 61.3± 7.95 0.0867± 0.0577 2.36± 0.882 0.223± 0.15 

Winter 68.2± 1.84 0.055± 0.0495 2.14± 1.12 0.11± 0.0849 

CS1 Summer 143± 2.47 1.42± 0.452 28.8± 5.74 2.66± 0.548 

Winter 162± 24.4 1.32± 0.53 22.4± 0.212 2.09± 0.0354 

D D1 Summer 59.2± NA 0.0133± 0.00577 1.04± 0.343 0.01± 0.01 

Winter 74.6± 21.6 0.01± 0 1.37± 0.537 0.005± 0.00707 

D2 Summer 57± 17.5 0.02± 0.01 0.967± 

0.154 

0.03± 0.02 

Winter 71.1± 2.26 0.01± 0 1.38± 0.431 0.03± 0.0283 

DS2 Summer 178± NA 0.775± 0.488 34.4± 6.47 2.74± 0.403 

Winter 170± 10.6 0.5± 0.099 26.6± 4.6 2.27± 0.269 
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Appendix Table B-9 E. coli, total coliforms, ESBL E. coli and ESBL coliforms (colony forming  

units (CFU)/mL) 

 

 

 

   E. coli 

(CFU/mL) 

Coliforms  

(CFU/mL) 

ESBL E. coli  

(CFU/mL) 

ESBL coliforms 

(CFU/mL) 

A A Summer 1.26± 0.678 6.14± 1 0± 0 0.04± NA 

Winter 0.63± 0.849 3.3± 3.08 0± 0 0.43± 0.453 

B B1 Summer 7.75± 2.54 15.5± 1.5 12.7± 11 7.31± 11.6 

Winter 1.3± 0.424 3.15± 1.34 0.025± 0.00707 0.26± 0.0849 

B2 Summer 11.7± 5.45 17.6± 7.32 24.2± 13.5 16.6± 13.5 

Winter 3.6± 1.03 6.73± 2.4 0.055± 0.00707 0.78± 0.099 

B3 Winter 27.1± NA 39.9± NA 0.19± NA 1.56± NA 

B4 Summer 3.23± 0.466 13.3± 4.53 40.6± 42.1 0.42± 0.0424 

Winter 2.08± 

0.0707 

3.82± 0.495 0.06± 0.0424 0.385± 0.106 

BS1 Summer 347± 281 1150± 742 7.53± 7.27 8.51± 4.43 

Winter 437± 269 1140± 636 2.24± 2.73 38.2± 49.7 

C C1 Summer 3.63± 1.61 13.6± 4.45 76.6± 55.2 0.807± 0.862 

Winter 1.74± 0.615 3.78± 0.87 0.035± 0.0212 0.235± 0.0495 

C2 Summer 52.7± 7.79 164± 50.3 2.51± 1.3 1.09± 0.0929 

Winter 6.16± 8.72 16.5± 23.3 0.15± NA 0.64± NA 

CS1 Summer 787± 407 3260± 1780 2.03± 0.376 23.7± 14.6 

Winter 833± 603 2000± 863 13.7± 9.43 41.3± 21 

D D1 Summer 3.99± 3.36 11.4± 1.49 10.7± NA 0.12± NA 

Winter 3.45± 1.63 8.12± 1.2 0.05± 0.0566 0.705± 0.417 

D2 Summer 5.73± 1.82 24.2± 11 21.6± 23.3 0.713± 0.232 

Winter 3.58± 1.25 9.55± 1.34 0.045± 0.0354 0.705± 0.417 

DS2 Summer 340± 9.43 1390± 311 7.31± 3.54 20.4± 6.18 

Winter 460± 283 1640± 99 10.9± 1.77 33.2± 11.4 
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Appendix Table B-10 N:P ratios in the Coquet sites (mean ± standard deviation) 

Cluster Site N:P Ratios 

A A 32.1 ± 24.8 

B 

B1 28 ± 14.9 

B2 28.6 ± 11.6 

B3 10.2  

B4 43.7 ± 14.3 

C 
C1 35.2 ± 9.68 

C2 5.83 ± 2.86 

D 
D1 34.6 ± 19.4 

D2 19.2 ± 14.4 
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Appendix C  

Appendix Table C-1 Sources of the data input into the model 

Data type Resolution Source 

Digital Elevation 

Model 

12.5m   ALOS PALSAR  

Soil 1km Various (see Appendix Table 

C-2) 

Land-use 100m CORINE land cover (2018) 

Climate Rainfall (3 locations, see Appendix 

Table C-4) 

Temperature (1 location, see Appendix 

Table C-4) 

DEFRA Hydrology Data 

Explorer 

Met Office Historic Station 

Data (Met Office 2023) 
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Appendix Table C-2 Soil types identified in the catchment. 

 Dystric 

Gleysols 

Humic Gleysols Dystric 

Cambisols 

Gleyic Luvisol Placic Podzol Dystric Histosol Reference 

Type of Soil  Clay Loam Clay loam/Sandy 

Clay Loam/Clay 

Loam 

Clay Loam Clay loam/Clay Clay Sandy Loam USDA soil texture 

triangle 

Geological Series Brickfield Series Wilcocks Series Belmont Series Dunkeswick 

Series 

Winter Hill 

Series 

Malvern Series (ESDB 2006) 

Soil Hydraulic Group C C C C D C Estimated 

porosity 55 45 52 44 52 88 (Batjes 1997) 

Depth from soil surface 

layer (L1/L2/L3) 

200/500/1000 200/500/1000 200/500 200/600/1000 200/700/1200 200/600/1150 (LandIS 2023) 

Available water capacity at 

surface (L1/L2/L3) 

118 125 132 95 114 480 (Batjes 1997) 

Saturated Hydraulic 

Conductivity 

5/5/5 5/5.5/5 5/5 5/5/0.55 0.55/0.55/0.55 

 

50/50/50 (Maidment 1993) 

Organic carbon content (%) 

(L1/L2/L3) 

1.5/0.34/0.34 3.04/0.6/06 1.94/0.4 0.64/0.2/0.2 6.67/1.3/1.3 35/37.4/37.4 (Batjes 1997) 

Clay Content (L1/L2/L3) 35/35/35 35/25/35 33/33 35/35/60 60/60/60 10/10/10 (LandIS 2023) 

Silt content (L1/L2/L3) 35/35/35 35/15/35 33/33 35/35/20 20/20/20 20/20/25 (LandIS 2023) 

Sand content (L1/L2/L3) 30/30/30 30/60/30 33/33 30/30/20 20/20/20 70/70/65 (LandIS 2023) 

Rock fragment content 

(L1/L2/L3) 

0 0/5 0 0 0 0 (Batjes 1997; LandIS 

2023) 

Moist soil albedo ratio 

(L1/L2/L3) 

0.05/0.05/0.5 0.05/0.08/0.05 0.05/0.05 0.05/0.05/0.02 0.02/0.02/0.02 0.09/0.09/0.09 (Van Wijk and Scholte 

Ubing 1963) 

USLE equation soil 

eroadability (K) factor m3 

metric ton cm 

0.26/0.26/0.26 0.26/0.32/0.26 0.26/0.26 0.26/0.26/0.26 0.19/0.19/0.26 0.27/0.27/0.27 (David 1988) 
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Appendix Table C-3 land-use categories for SWAT and CORINE land-cover database 

SWAT  CORINE land-cover 

SWAT category SWAT label Label1  Label2 Label3 

Residential 

URBN Artificial surfaces Urban fabric 

Discontinuous urban 

fabric 

Residential-Low 

Density URLD Artificial surfaces 

Artificial, non-agricultural 

vegetated areas 

Sport and leisure 

facilities 

Agricultural 

Land-Generic AGRL Agricultural areas Arable land 

Non-irrigated arable 

land 

Pasture PAST Agricultural areas Pastures Pastures 

Agricultural 

Land-Generic 

AGRL Agricultural areas 

Heterogeneous 

agricultural areas 

Land principally 

occupied by 

agriculture, with 

significant areas of 

natural vegetation 

Forest-

Deciduous FRSD 

Forest and semi 

natural areas Forests Broad-leaved forest 

Forest-

Evergreen FRSE 

Forest and semi 

natural areas Forests Coniferous forest 

Forest-Mixed 

FRST 

Forest and semi 

natural areas Forests Mixed forest 

Range Grasses 

RNGE 

Forest and semi 

natural areas 

Scrub and/or herbaceous 

vegetation associations Natural grasslands 

Forest-Mixed 

FRST 

Forest and semi 

natural areas 

Scrub and/or herbaceous 

vegetation associations 

Moors and 

heathland 

Forest-Mixed 

FRST 

Forest and semi 

natural areas 

Scrub and/or herbaceous 

vegetation associations 

Transitional 

woodland-shrub 

Range Grasses 

RNGE 

Forest and semi 

natural areas 

Open spaces with little or 

no vegetation 

Sparsely vegetated 

areas 

Wetlands-Mixed WETL Wetlands Inland wetlands Inland marshes 

Wetlands-Mixed WETL Wetlands Inland wetlands Peat bogs 

Water WATR Water bodies Inland waters Water bodies 

Water WATR Water bodies Marine waters Estuaries 
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Appendix Table C-4 Sources for Climatic data for the model 

Data Source Site Name Coordinates 

Daily 

precipitation 

(mm) 

Rainfall Guage Sites 

(DEFRA Hydrology Data 

Explorer; 

https://environment.data. 

gov.uk/hydrology/landing) 

Linbriggs 55.350245 , 

-2.1703339 

Rothbury 55.308447 , 

-1.8959052 

Warkworth 55.346569 , 

-1.6298228 

Monthly 

maximum 

and 

minimum 

temperature 

(°C) 

Met Office Historic 

Station Data (Met Office, 

2023) 

Durham 54.76786, -

1.58455 
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Appendix Table C-5 Approximation of the kg of manure applied in each subbasin per 
hectare per day. Calculations assume 3.5kg of manure produced per sheep per day and 
27.5 kg of manure produced from one cattle per day 

  
  

Number of animals 
per subbasin 

Number of 
animals/hectare 

Kg of manure per 
hectare per day 

Subbasin Area 
(hectares) 

Sheep Cattle Sheep Cattle Sheep Cattle 

1 6173 17037 0 2.76 0.00 9.66 0.00 

2 13 47 0 3.59 0.00 12.56 0.00 

3 2158 5956 0 2.76 0.00 9.66 0.00 

4 1188 4246 515 3.57 0.43 12.50 11.92 

5 1467 5105 111 3.48 0.08 12.18 2.08 

6 1241 3731 649 3.01 0.52 10.52 14.39 

7 516 1850 0 3.59 0.00 12.56 0.00 

8 2074 7441 0 3.59 0.00 12.56 0.00 

9 338 1212 53 3.59 0.16 12.56 4.35 

10 358 1185 57 3.31 0.16 11.59 4.35 

11 3023 8596 478 2.84 0.16 9.95 4.35 

12 567 1707 288 3.01 0.51 10.54 13.99 

13 1246 4167 541 3.34 0.43 11.70 11.94 

14 882 3150 383 3.57 0.43 12.50 11.94 

15 2317 7748 8 3.34 0.00 11.70 0.10 

16 1699 5116 864 3.01 0.51 10.54 13.99 

17 2044 6406 1219 3.13 0.60 10.97 16.40 

18 1359 3306 41 2.43 0.03 8.51 0.83 

19 1341 3263 5 2.43 0.00 8.51 0.10 

20 491 1513 213 3.08 0.43 10.78 11.94 

21 2234 6880 970 3.08 0.43 10.78 11.94 

22 1 4 0 3.08 0.43 10.78 11.94 

23 538 1266 233 2.36 0.43 8.24 11.94 

24 11 33 5 3.08 0.43 10.78 11.94 

25 144 443 62 3.08 0.43 10.78 11.94 

26 1829 3656 114 2.00 0.06 7.00 1.72 

27 1001 2558 447 2.56 0.45 8.95 12.28 

28 703 1797 16 2.56 0.02 8.95 0.62 

29 9 23 4 2.56 0.45 8.95 12.28 

30 56 144 25 2.56 0.45 8.95 12.28 

31 2758 8188 1150 2.97 0.42 10.39 11.46 

32 655 1676 293 2.56 0.45 8.95 12.28 

33 833 2770 362 3.33 0.43 11.64 11.94 

34 1747 5083 758 2.91 0.43 10.19 11.94 

35 1706 3410 704 2.00 0.41 7.00 11.35 

36 1575 3955 650 2.51 0.41 8.79 11.35 

37 1242 3120 513 2.51 0.41 8.79 11.35 

38 1993 5005 823 2.51 0.41 8.79 11.35 

39 2868 8345 278 2.91 0.10 10.19 2.66 

40 2628 7096 288 2.70 0.11 9.45 3.01 

41 4297 12655 1984 2.94 0.46 10.31 12.69 
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Appendix Table C-6 National River Flow Archive (NRFA; https://nrfa.ceh.ac.uk/) Sites and 
Coordinates 

NRFA Site Coordinates 

Coquet at Morwick 55.333099 , -1.6326910 

Coquet at Rothbury 55.308447 , -1.8959997 

 

Appendix Table C-7 List of Sites with Observed E. coli and ESBL E. coli data. All sites were 
sampled as part of the sampling campaign for Chapter 4 unless otherwise specified. 

Site Coordinates Observed Dates 

A 55.363683, -2.184614 15/03/2021 (Site A, Chapter 3) 

07/03/2022 

21/03/2022 

11/07/2022 

25/07/2022 

08/08/2022 

B1 55.312831, -1.958716 

 

07/03/2022 

21/03/2022 

11/07/2022 

25/07/2022 

08/08/2022 

B2 55.313780, -1.953614 

 

07/03/2022 

21/03/2022 

11/07/2022 

25/07/2022 

08/08/2022 

B4 55.305222, -1.934570 

 

15/03/2021 (Site D, Chapter 3) 

07/03/2022 

21/03/2022 

11/07/2022 

25/07/2022 

08/08/2022 

C1 55.309135, -1.891346 

 

15/03/2021 (Site E, Chapter 3) 

10/03/2022 
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14/04/2022 

14/07/2022 

28/07/2022 

11/08/2022 

C2 55.302344, -1.886153 

 

15/03/2021 (Site F, Chapter 3) 

10/03/2022 

14/04/2022 

14/07/2022 

28/07/2022 

11/08/2022 

D1 55.296581, -1.709643 15/03/2021 (Site I, Chapter 3) 

10/03/2022 

14/04/2022 

14/07/2022 

28/07/2022 

11/08/2022 

D2 55.298785, -1.696386 

 

10/03/2022 

14/04/2022 

14/07/2022 

28/07/2022 

11/08/2022 

 


