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Abstract

A complex evolving system (CE-system) is composed of a large number of (sub-)systems

concurrently interacting among themselves and with the system’s environment. A CE-system

is subject to modifications by other systems. Typical examples of CE-systems are large

distributed systems whose software is continually updated, or dynamically evolving (cy-

ber)crime investigations. Time simulation is a powerful tool used in many fields to model and

analyse the behaviour of CE-systems, such as crimes and accidents. In crime investigations,

time simulation may be an effective technique since it enables investigators to piece together

the sequence of events that led to a crime. Investigators may better grasp the circumstances

leading up to a crime by simulating crucial events happening in time, which can be useful in

identifying suspects and acquiring evidence.

A typical notation for recording the behaviour of a CE-system is some form of a directed

acyclic graph. The framework of structured occurrence nets (SO-nets) can play an important

role in the representation of CE-system behaviours. In general, SO-nets are sets of related

acyclic Petri nets, employing different types of formally defined relationships and supporting

various types of hierarchy and abstraction, which represent the details of concurrency and

causality relations between executed events.

This thesis focuses on two objectives. First, it seeks to develop theoretical underpinnings,

new algorithms, and implemented prototype software tools for hierarchical and abstraction-

based analyses and simulations of timed behaviours within CE-systems represented using

SO-nets. Second, it aims to analyse scenarios in which different time granularities are utilized

at different levels of abstraction. This involves developing theoretical frameworks, algorithms,

and prototype software tools tailored to aforementioned specific requirements. The discussion
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is carried out using behavioural structured acyclic nets (BSA-nets) that are part of the SO-nets

framework. The overall research question to be addressed is whether the resulting framework

can provide effective support for incident investigators.
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Chapter 1

Introduction

This chapter provides an introduction to the thesis, outlining its aims, objectives, and overall

structure. Additionally, it includes an outline of the thesis and a list of relevant publications.

1.1 Motivation

A complex evolving system (CE-system) is composed of a large number of concurrently-

acting (sub)systems, interacting with each other and with the system’s environment, and that

is subject to modification by other systems. Typical examples are large distributed systems

whose software is continually updated, and dynamically evolving crime investigations. Such

very diverse ‘event-based’ systems all suffer from a very high complexity of both design

and behaviour due to the need to cope with a vast number of recordable events or facts

and the resulting explosion of combinatorial state space, complex relationships between

the state information representation and the dynamic evolution and reconfiguration of the

system. Structure plays a crucial role in assisting designers in managing design complexity,

particularly in the fields of software engineering and hardware design domains [47]. The

effective use of structuring notations greatly reduces the cognitive complexity of designs and

the resources involved in their representation and manipulation. The purpose of a system

design is to define how a system will behave. Notations for recording actual or potential

system behaviour have not been attracted levels of interest comparable to those for system
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design notations [16]. This is probably because detailed records of the behaviour of complex

systems are mainly used out of sight within tools for system visualisation, verification,

synthesis, and failure analysis rather than in documents and user interfaces. Three key areas

that need to be understood and supported to manage the cognitive complexity of CE-system

behaviours are: (i) the choice of an appropriate notation, (ii) the range of tasks and activities

involved in the system design process in which this notation would have an instrumental role,

and (iii) the appropriate tool support [47].

The typical notation for recording the behaviour of an asynchronous system is some form

of directed acyclic graph. The most developed of such notations is that of an occurrence

net (O-net). An occurrence net is an acyclic net that provides a complete and unambiguous

record of all the causal dependencies among the events involved, including both backward

(more than one arrow incoming to a place) and forward non-determinism (more than one

arrow outgoing from a place). It represents a singular ‘causal history’ and has a single final

marking [20]. The formalism of structured occurrence nets (SO-nets) can play a similarly

important role regarding the representation of CE-system behaviours. SO-nets are sets of

related O-nets that capture causality and concurrency information about a single execution of

a system, employing different types of formally defined relations and supporting various types

of abstraction, including (behavioural structured occurrence net (BSO-nets), communication

structured occurrence nets (CSO-nets)) and alternative occurrence net (ALTO-nets) [49, 46].

Further, previous research on SO-nets has created a system for timed behaviours [23, 5].

In [11], a SAT-based model checking for communication structured acyclic nets was proposed,

and adding probabilistic analysis to communication structured acyclic nets was first discussed

in [10].

Time is an important and basic entity that affects every part of our lives. It tells us how

long something lasts, how far something goes, and how much it changes. It affects almost

every part of our lives. Time forms our experiences, how we see the world, and how we

interact with it. It does this through the cycles of day and night and the constant forward

motion of seconds, minutes, and hours. Therefore, representing (date-time) information

about such systems is important. Timed SO-nets are based on groups of associated timed
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occurrence nets and are designed for reasoning about related events and causality with time

information that is uncertain or missing in evolving systems. When modelling a system based

on time, such as accidents or crimes, it is important to identify the order in which events have

happened and to identify the duration of the events. Time is a crucial measure for studying

and understanding how complex systems behave. It allows for the analysis of changes that

occur over time and discover the patterns that exist under the surface.

Therefore, the development of time simulation has become essential in contemporary

study, providing a powerful method for understanding complex systems and predicting

their behaviour under different conditions. By simulating the flow of time, researchers and

practitioners can gain insights into how systems might behave in the future and develop

strategies for optimising their performance. Time simulation is used in many fields to model

and analyse the behaviour of complex systems over time, such as crimes and accidents.

In criminal investigations, time simulation may be an effective technique, as it enables

investigators to piece together the sequence of events that led to a crime. Investigators may

better grasp the circumstances leading up to a crime by simulating time, which can be useful

in acquiring evidence and identifying suspects [16]. In a real-time simulation, the simulation

is run in discrete time with constant steps, also known as fixed step simulation, as time moves

forward in equal duration of time. Discrete time simulation is used in time Petri net (Petri

nets are a mathematical model used to describe and analyse the behaviour of concurrent

systems). In [13] the simulations of dynamic discrete event systems are represented using

a timed transition Petri net model. Also time simulation for Petri nets were introduced

in [68, 52, 19, 26, 40].

In this thesis, we develop the theoretical underpinning and tool support for time and time

simulation based on BSO-nets, CSO-nets, and ALTO-net. These abstractions are derived from

the underlying framework of SO-nets, which were introduced in [49].

In addition, analyses and simulations of timed behaviours of CE-systems in the case when

different time granularity is used at different levels of abstraction. Time granularity is the

degree of accuracy or precision with which we measure time. In this thesis, we extend the

work to include the time granularity in behavioural structured acyclic net (BSA-nets), which
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is a part of structured occurrence net framework. The level of accuracy or precision with

which we calculate the passage of time is referred to as time granularity. To conduct efficient

assessments of complex systems, it is especially important to have the ability to divide

time into smaller chunks. For instance, in studying the behaviour of a system, measuring

time in seconds may be the most acceptable method for analysing low-level (detailed)

system behaviour, but measuring time in minutes may be the most appropriate method for

analysing high-level (abstracted) system behaviour[80]. Nevertheless, it is of the utmost

significance that the information regarding time that is gathered through the utilisation of

various granularity time scales be maintained consistently throughout the various levels of

abstraction.

Behavioural structured acyclic nets (BSA-nets) model activities of evolving systems [4].

An execution history is represented on two different levels: the lower-level, which is used

to indicate behavioural details, and the upper-level, which is used to represent the stages

(phases) of system evolution. Figure 1.1 shows an example of BSA-net [4]. To keep the

technical discussion in this thesis simpler, we do not consider the general BSA-nets. Instead,

we consider the case in which the upper-level comprises one acyclic net, and the lower-level

comprises one acyclic net.

This thesis will extend the SO-nets model theory and its tool support to provide novel

algorithms and implementations to allow the simulation of timed behaviours of CE-system in

meaningful ways. The work will deliver an extension of WORKCRAFT plug-in, which is a

tool that provides a flexible common underpinning for graph based models, and its plug-in

SONCRAFT provides some initial facilities for entering, editing, validating, and simulating

SO-nets. We also extend the concept of behavioural abstraction of BSA-nets to support a

various time unit of multiple levels.
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Figure 1.1 BSA-net with one lower-level acyclic net and one upper-level acyclic net.

1.2 Aims and objectives

1.2.1 Research aim

This thesis aims to present theoretical underpinnings, new algorithms, and prototype software

implementation for hierarchical and abstraction-based analyses and simulations of timed

behaviours of complex evolving systems using SO-nets. Additionally, it aims to develop

theoretical underpinnings, new algorithms, and prototype software tools for similar analyses

and simulations, considering scenarios in which different time granularities are utilized

across various levels of abstraction, using the behavioural structured acyclic nets, which is a

part of the framework of structured occurrence nets.
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1.2.2 Research objectives

Developing the time property information for SO-nets. We extend the existing basic SO-

net model and ALTO-net to include (date-time) intervals. We present a formal descrip-

tion of how to verify the consistency of timing information provided in a SO-net and

how to determine the time information estimation of a specific node or the entire

SO-net by utilising causal relations. Time-based algorithms for time estimation and

consistency checking are introduced.

Extending the concept of (date-time) property information. We introduce a time simu-

lation algorithm to simulate the time behaviour of the model using SO-nets. New

execution time semantics are introduced for variants of SO-net in order to a step-by-

step time simulation. We also provide a new algorithm for maximal firing steps with

time semantics for SO-nets. The evaluation of the proposed solution and validation of

its effectiveness will be carried out using carefully designed small size example, the

existing medium size case study constructed by an MSc student [38].

Designing and implementing new tool in SONCRAFT plug-ins. The prototype tools will

be implemented as SONCRAFT plug-ins, implementing the ideas and algorithms

developed in the formal methods part of Chapters 3 and 4. The prototype tool imple-

mentation and evaluation will combine and implement the time property for SO-nets

and ALTO-net, specific time simulation algorithms developed in theoretical investiga-

tion with suitably adapted selected simulation algorithms found in the commercial

software tools. Further, algorithms checking the consistency and correctness of the

new abstraction methods will be incorporated in the prototype tool.

Extending the concept of behavioural abstraction to support time granularity. We inves-

tigate the time granularity to develop theoretical underpinnings and new algorithms for

hierarchical and abstraction-based analyses and simulations of timed behaviours for

cases in which different time granularity is used at different levels of abstraction using

BSA-nets that are part of the SO-nets framework.
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Designing and implementing a tool for the concept of time granularity. We provide the

implementation of the prototype software tool for BSA-nets by adding different time

granularity (minute and second) and simulations of timed behaviours using the algo-

rithms developed in the theoretical investigation.

1.3 Outline of the thesis

The structure of the thesis is as follows:

Chapter 2 presents the background about SO-net and their abstractions (BSO-net, CSO-net

and ALTO-net). The chapter also gives an overview of the time simulation and its

techniques found in the commercial software tools that are useful to simulate the time

behaviours. A background on time granularity is also provided.

Chapter 3 describes SO-nets with time property notations and algorithms for time estimation

and for checking consistency for all SO-nets abstractions and ALTO-net. The chapter

also outlines the related works of time property in Petri net.

Chapter 4 describes time simulation for SO-nets and their abstractions BSO-net, CSO-net,

and ALTO-net. Further, the chapter gives the time semantics theory and algorithm and

the design of a small case study. It also outlines the related works on time simulation.

Chapter 5 introduces the SONCRAFT plug-ins framework and implementation by providing

additional tools for time-based functionality and time simulation.

Chapter 6 presents the background about BSA-nets. Additionally the chapter presents the

time granularity in BSA-nets model with multiple time unit (minute and second)

representations. The chapter also discusses the time granularity theory, algorithm and

time simulation steps using different levels of time unit. It provides a prototype tool

time granularity and time granularity simulation for BSA-nets. It outlines the related

works on time granularity.
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Figure 1.2 Overall conceptual structure of the thesis

Chapter 7 concludes and summarises the work and provides recommendations for future

studies.

This thesis addresses the study subjects outlined above. The research methodology that

will be employed to achieve the aims and objectives of this thesis is based on theoretical

investigation and prototype tool implementation and evaluation. Figure 1.2 is a graphical

depiction of the fundamental conceptual framework of this thesis.

1.4 List of publications

Publications listed below provide documentation of this thesis’s objectives:

1. Alharbi, S. (2023). Hierarchical simulation of timed behaviours of structured occur-

rence nets. In Proceedings of the 2023 International Workshop on Petri Nets and
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Software Engineering (PNSE 2023) co-located with the 44th International Conference

on Application and Theory of Petri Nets and Concurrency (PETRI NETS 2023)

2. Alahmadi, M., Alharbi, S., Alharbi, T., Almutairi, N., Alshammari, T., Bhattacharyya,

A., Koutny, M., Li, B. and Randell, B. (2024) Structured Acyclic Nets. arXiv preprint

arXiv:2401.07308

3. Alharbi, S. (2024). Time granularity in behavioural structured acyclic nets. In 2024

IEEE 27th International Symposium on Real-Time Distributed Computing (ISORC),

pages 1–12. IEEE.



Chapter 2

Background

This chapter outlines the background of structured occurrence nets (in short SO-net) and all

their abstractions CSO-nets, BSO-nets and ALTO-net. In addition, we provide an overview of

time simulations and their techniques. Finally, we outline the background of time granularity.

2.1 Introduction

A complex evolving system (CE-system) is composed of a large number of concurrently-

acting (sub)systems interacting with each other and with the system environment, and that

is subject to modification by other systems. Typical examples are large distributed systems

whose software is continually updated, or dynamically evolving crime investigations. Such

diverse event-based systems all suffer from a very high complexity of both design and

behaviour due to the need to cope with a vast number of recordable events or facts and the

resulting explosion of combinatorial state space, complex relationships between the state

information representation and the dynamic evolution and reconfiguration of the system.

Structure plays a crucial role in assisting designers in managing design complexity,

particularly in the fields of software engineering and hardware design domains. The effective

use of structuring notations greatly reduces the cognitive complexity of designs, and the

resources involved in their representation and manipulation. The purpose of a system design

is to define how a system will behave. Notations for recording actual or potential system
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behaviour have not attracted levels of interest comparable to those for system design notations.

This is probably because detailed records of the behaviour of complex systems are mainly

used out of sight within tools for system visualisation, verification, synthesis and failure

analysis, rather than in documents and user interfaces.

The background of SO-nets and all their abstractions are in Section 2.2. In addition,

we give an overview of time simulations and their techniques in Section 2.3. Finally, in

Section 2.4 we provide a background of time granularity and their properties of layers.

2.2 Structured occurrence nets

2.2.1 Occurrence nets (O-nets)

Initially, occurrence nets (O-nets) were presented as representations of the execution processes

in Petri nets [22]. Each process clearly and explicitly defines the relationships of concurrency

and causality between performed events. Specifically, causally dependent occurrences of

events are ordered, whereas their simultaneous occurrences are unordered. An O-net is a

direct representation of the execution history of a system [21]. In addition to computer

components, this system may also comprise systems and components that involve physical

processes and individuals, such as those utilised in criminal and accident investigations.

O-nets represent single executions of computing systems and the detail of the concurrency

and causality relations between executed events [46].

An extension of the O-net formalism, the structured occurrence net (also known as SO-

net) formalism was created to describe the behaviour of complex evolving systems, and is

useful in sophisticated investigations. SO-nets are sets of related O-nets, utilising various

types of clearly defined relationships and allowing different types of abstraction. Through

these relationships, SO-nets can explicitly illustrate how systems evolve through different

forms of communication, upgrades, reconfigurations, and replacements, and how one might

take advantage from a complicated evolving system’s behavioural knowledge [46]. The

purpose of SO-nets is to express dependencies between interacting and evolving systems by
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combining multiple related O-nets through the use of various formal relationships (specifically

abstractions). The following sections presents all the abstractions within structured O-nets.

In [49] an O-net is a triple onet = (C,E,F), where C and E are finite disjoint sets of

conditions and events, respectively (referred to as the nodes), and F ⊆ (C×E)∪ (E ×C) is

the flow relation. The inputs and outputs of a node x are •x = {y | (y,x) ∈ F} and x• = {y |

(x,y) ∈ F}. For X ⊆C∪E, •X and X• are the sets of all inputs and outputs of the nodes in

X . Also, we have:

• For all c ∈C: |•c| ≤ 1 and |c•| ≤ 1, and,

• For all e ∈ E: |•e| ≥ 1 and |e•| ≥ 1.

• The causality relation ≺ over E is acyclic, where e ≺ f if e•∩ • f ̸=∅.

In an O-net onet, a marking is any set of conditions. The initial and final markings are

Monet
0 = {c ∈C | •c =∅} and Monet

fin = {c ∈C | c• =∅}.

A step of onet is a set of transitions U .

A cut of onet is a maximal set of conditions D such that (c,d) /∈ F+, for all distinct

conditions c,d ∈ D.

An O-net can be executed by firing sets of events; this execution follows the rules of Petri

net step semantics.

Definition 2.2.1 (O-net firing rule [49]) Let onet = (C,E,F) be an O-net, M be a marking,

and U be a step.

1. U is (O-net)-enabled at M if •U ⊆ M.

2. If U is (O-net)-enabled at M, then U can be fired and create a new marking M′ given

by

M′ = (M \ •U)∪U•.

This is indicated by M[U⟩onet M′.
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3. A step sequence of onet is a sequence λ = U1 . . .Un(n ⩾ 0) of steps such that marking

M1 . . .Mn exists, satisfying:

Monet
0 [U1⟩onet M1 . . .Mn−1[Un⟩onet Mn.

Figure 2.1 displays an O-net onet where circles indicate conditions and boxes represent

events. The initial marking, {c0}, is represented by the presence of a token within the starting

condition. A possible step sequence is λ = {e0}{e1,e2}{e3}. The corresponding sequence

of markings begins with Monet
0 = {c0} and ends with Monet

fin = {c5}. There are five cuts in the

O-net of Figure 2.1: {c0}, {c1,c2}, {c1,c4}, {c3,c4}, {c2,c3}, and {c5}.

As defined in [49], a phase of O-net is a non-empty set of conditions, and each phase is a

fragment of an O-net beginning with a cut and ending with a cut (a maximal set of causally

unrelated conditions) that follows it in the causal sense, including all the conditions occurring

between these cuts. A phase decomposition is a sequence of phases from the initial state

to the final state, and whenever one phase ends, its maximal cut is the starting point of the

successive one (minimal cut).

Formally, a phase of an O-net onet is a non-empty set of conditions π ⊆ C such that the

set Minπ ⊆ π of the minimal conditions of π w.r.t. F+ is a cut; the set Maxπ ⊆ π of the

maximal conditions of π w.r.t. F+ is a cut; and π comprises all conditions c ∈C for which

there are b ∈ Minπ and d ∈ Maxπ satisfying (b,c) ∈ F∗ and (c,d) ∈ F∗. Furthermore, a

phase decomposition of onet is a sequence π1 . . .πm of phases such that Monet
0 = Minπ1 ,

Maxπi = Minπi+1 (for i ≤ m−1), and Maxπm = Monet
fin .

We also say that an O-net onet is line-like if C = {c1, . . . ,cl}, E = {e1, . . . ,el−1}, and

F = {(c1,e1),(e1,c2), . . . ,(cl−1,el−1),(el−1,cl)}. Such an O-net can be represented by the

sequence ξonet = c1e1 . . .el−1cl .

2.2.2 Communication structured occurrence nets (CSO-nets)

In [49], a communication structured occurrence net (or CSO-net) was introduced to represent

communication between different subsystems. A CSO-net is a set of O-nets that is commu-
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c0 e0
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c4
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Figure 2.1 An occurrence net (O-net).

c0 e0 c1 e1 c2

c3 e2

q0Asynchronous

c4 e3

q1 q2
Synchronous

c5

Figure 2.2 CSO-net with two interacting O-nets.

nicate synchronously or asynchronously, connected by special nodes called channel places

(represented visually by bold circles). CSO-net can represent various types of communication

among distinct systems. If an occurrence net is used to depict the collective behaviour of

several interacting systems, it is useful to divide the model into individual component O-nets

and design dedicated devices to symbolise communication among these subsystems. Fig-

ure 2.2 shows a CSO-net with two O-nets communicating synchronously (events e1 and e3

are always executed simultaneously) and asynchronously (events e0 and e2 can be executed

simultaneously, or e2 can be executed after e0).

Definition 2.2.2 (CSO-net [49]) A CSO-net is a tuple cson = (onet1, . . . ,onetk,Q,W ), where

each oneti = (Ci,Ei,Fi) is an O-net (we denote C =
⋃k

i=1Ci, E =
⋃k

i=1 Ei and F =
⋃k

i=1 Fi),

Q is a set of channel places, and W ⊆ (Q×E)∪ (E×Q) are the arcs between the events and

channel places. It is assumed that:

1. The oneti’s and Q are mutually disjointed.

2. For every q ∈ Q, the inputs and outputs belong to distinct component oneti’s, |•q|= 1,

and |q•| ≤ 1, where •q = {e ∈ E | (e,q) ∈W} and q• = {e ∈ E | (q,e) ∈W}.

3. The relation (< ∪ ≺)∗◦ ≺ ◦ (≺ ∪<)∗ over E is irreflexive, where:

• e ≺ f if there is c ∈ C with c ∈ e•∩ • f ;
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• e < f if there is q ∈ Q with q ∈ e•∩ • f . ♢

Intuitively, the original causality relation ≺ signifies the temporal order of events as

"earlier than", while < indicates the relationship of events as "not later than". The inputs and

outputs of a node in a CSO-net have been extended to include channel places.

A marking of cson is a set of conditions and channel places. The initial marking of a

CSO-net is Mcson
0 = Monet1

0 ∪·· ·∪Monetk
0 , and the final marking is Mcson

fin = Monet1
fin ∪·· ·∪Monetk

fin .

In CSO-net, a step is a set of events that may come from one of more component O-nets.

Definition 2.2.3 (CSO-net firing rule [49]) Let CSO-net be as in Definition 2.2.2, M be a

marking, and U be a step of the CSO-net.

1. U is (CSO-net)-enabled at M if (•U \ (U•∩Q))⊆ M.

2. If U is (CSO-net)-enabled at M, then U can be fired and create a new marking M′ =

(M∪U•)\ •U. This is indicated by M[U⟩cson M′. ♢

The step sequences and reachable markings of CSO-net are then described in a similar

way as for an O-net.

The firing rule in Definition 2.2.3 a step U involving synchronous behaviour is permitted

to utilise both the tokens that are currently present in "channel places" at marking M and the

tokens placed there by actions taken in step U when U was being executed. Consequently,

elements originating from step U are capable of mutually assisting one another individually

and moving resources (tokens) synchronously. Therefore, unlike the step sequence in O-

net, where each step is composed of multiple enabled events, the execution of a step in

CSO-net (i.e. M[U⟩M′.) might involve synchronous communications, which refer to the

behaviour of events executing concurrently and behave as a single transaction. This mode of

execution permits the simultaneous execution of multiple events, rendering it more expressive

in comparison to the one employed in O-nets.



16 Background

2.2.3 Behavioural structured occurrence nets (BSO-nets)

Behavioural structured occurrence nets (or BSO-nets) model activities of evolving sys-

tems [49]. An execution history is represented on two different levels: the lower level, which

is used to indicate behavioural details, and the upper level, which is used to represent the

stages (phases) of system evolution. Thus, a BSO-net provides details about the evolution of

a system.

Definition 2.2.4 (BSO-net [49]) Let CSO-net be a communication structured occurrence net

as in Definition 2.2.2, and cson↑ = (onet↑1, . . . ,onet↑m,Q↑,W ↑) be a disjoint CSO-net such that

onet↑i = (C↑
i ,E

↑
i ,F

↑
i ) is line-like, for i ≤ m. In addition, let C↑ =

⋃m
i=1C↑

i ,E
↑ =

⋃m
i=1 E↑

i , and

F↑ =
⋃m

i=1 F↑
i .

A behavioural structured occurrence net (or BSO-net) is a tuple

bson = (cson,cson↑,β ).

such that β ⊆ C×C↑.

It is assumed that the following hold:

1. For every oneti, there exists exactly one onet↑j satisfying β (Ci)∩C↑
j ̸=∅.

2. For every onet↑j represented by a chain ξonet↑j
= c1e1 . . .el−1cl , the sequence π1π2 . . .πl =

β−1(c1)β
−1(c2) . . .β

−1(cl) is a concatenation of phase decompositions of different

O-nets in cson. For all c j and e j occurring in the chain ξonet↑i
, we denote π(c j) = π j,

and causal(e j) = (pre(Maxβ−1(pre(e j)))×{e j})∪ ({e j}× post(Minβ−1(post(e j)))).

3. The relation

(< ∪ ≺ ∪◁)∗ ◦ (≺ ∪�)◦ (≺ ∪< ∪�)∗

over E∪E↑ is irreflexive, where:

• e ≺ f if there is c ∈ C∪C↑ with c ∈ e•∩ • f ;

• e < f if there is q ∈ Q∪Q↑ with q ∈ e•∩ • f ; and
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• e◁ f if (e, f ) ∈
⋃

e′∈E↑
causal(e′).

The initial marking Mbson
0 of BSO-net is the initial marking of cson↑ together with the initial

markings of all the oneti’s such that β (Moneti
0 )∩Mcson↑

0 ̸=∅. The final marking Mbson
fin of the

BSO-net is the final marking of cson↑ together with the final markings of all the oneti’s such

that β (Moneti
fin )∩Mcson↑

fin ̸=∅. ♢

A BSO-net consists of two CSO-nets linked by a behavioural relation β . Definition 2.2.4(1)

states that each phase corresponds to one condition of the upper level O-net, whereas Defini-

tion 2.2.4(2) indicates that each upper-level condition is linked to a single phase of a lower

level O-net. The sequence of the upper-level conditions must match to the phase decomposi-

tions of the lower-level O-net. Definition 2.2.4(3) specifies that the new dependencies, along

with the existing communication (<) and causal relations (≺) in the model, must be acyclic.

Figure 2.3 shows an example of BSO-net representing a system update. The model

illustrates a version change brought on by an update event represented at the higher level.

The lower level reveals the behaviour of the system before and after the update. The dashed

lines utilised in this context serve to depict the pertinent connections between the two levels

of behaviours [49].

Definition 2.2.5 (BSO-net firing rule [49]) Let BSO-net be as in Definition 2.2.4, M ⊆ C∪

C↑ be a marking and U ⊆ E∪E↑ be a step of BSO-net.

1. U is (BSO-net)-enabled at M if

• (•U \U•) ⊆ M;

• Maxπ(•e) ⊆ M, for each e ∈ E↑∩U;

• β (•e′)∩β (e′•) ∈ M, for each e′ ∈ E∩U.

2. If U is (BSO-net)-enabled at M, then U can be fired and create a marking M′ given by:

M′ = (M \ (•U ∪Maxπ(•U)))∪U•∪Minπ(U•)
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Ver1.0

a0 g0
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c0 e0 c1 e1 c2

ON1

Figure 2.3 BSO-net portraying a system update

where Maxπ(•U) =
⋃

e∈U
Maxπ(•e) and Minπ(U•) =

⋃
e∈U

Minπ(e•).

This is denoted by M[U⟩bson M′. ♢

The firing rule mentioned above manages the marking movement between different

phases. To determine if a step is (BSO-net)-enabled based on a marking, three requirements

must be met: (i) the system is enabled by (CSO-net) (Definition 2.2.3); (ii) The maximal

conditions in the phase of the input condition for each higher-level event in U are present

in the current marking. (iii) Similarly, for each lower-level event in U , the corresponding

higher-level condition is present in the current marking.

For the BSO-net in Figure 2.3, {e0}{g0}{e1} is a possible step sequence. The only step

U1 enabled at the initial marking {a0,c0} is U1 = {e0}. The firing of U1 changes the marking

to {a0,c1} which enables the step U2 = {g0}. The firing of U2 produces {a1,c1} and also

enables U3 = {e1} which produces the final marking {a1,c2}.

2.2.4 Alternative occurrence nets (ALTO-nets)

In [49], an extension of SO-nets called alternative structured occurrence nets (ALTO-nets)

was introduced to facilitate the modelling of alternative behaviours. It can be used to sim-

ulate and analyse increasingly complicated dynamic systems, including (cyber) crimes or

accidents. The concept of incorporating alternatives to SO-nets initially formed from [47] in

order to analyse and simulate increasingly more complex evolving systems.

Definition 2.2.6 (TAGO-net [49]) Let AS = {A1, . . . ,Aϕ} be a set (of alternative scenarios).

A tagged O-net (or TAGO-net) is a tuple tagon = (C,E,F,ϑ), where: C and E are disjoint

sets of conditions and events (collectively referred to as the nodes), respectively; F ⊆



2.2 Structured occurrence nets 19

(C×E)∪ (E ×C) is the flow relation; and ϑ : C∪E ∪F → 2AS \{∅} is a mapping, such

that, for each A ∈ AS,

tagon(A) = (C(A),E(A),F(A))

is an O-net, where for X ∈ {C,E,F},X(A) is the set of all x ∈ X with A appearing in ϑ(x).

The initial marking Mtagon
0 , final marking Mtagon

fin , input and output of node x (i.e., •x and

x•), in tagon are defined in the same way as for O-nets. It is further assumed that for all

A ∈ AS, Mtagon
0 = Mtagon(A)

0 and Mtagon
fin = Mtagon(A)

fin . ♢

Two nodes, denoted as x and y, are considered to be alternatively related (or conflicting)

if there exist separate events, e and f , such that •e∩ • f ̸=∅ and (e,x) ∈ F∗ and ( f ,y) ∈ F∗

(denoted by x#y). They are causally related if (x,y) ∈ F+ or (y,x) ∈ F+. A block of tagon is

a non-empty set B ⊆ (C∪E) such that B∩C = •(B∩E)∩ (B∩E)•, (•B\B)× (B• \B)⊆≺,

and for all e, f ∈ (B∩E), ¬(e# f ).

Definition 2.2.6 encapsulates the fundamental concept of illustrating the different be-

haviours of the system. A tagon can be seen as a combination of several O-nets, every labelled

with a symbol A in AS that represents a distinct scenario (or world). This is determined by the

mapping ϑ . Therefore, to identify which scenarios an element belongs to, each element in a

tagon is labelled by one or more tags. The tagging is not random; items with the same tag

create a valid O-nets (i.e. tagon(A)). The behaviour report of what has occurred is presented,

and it is viewed from the perspective of one of the possible scenarios A ∈ AS.

The example shows in Figure 2.4 that, by applying the concept proposed by the SO-net

in Figure 2.4(a), it would be necessary to depict the various routes taken by an individual

while travelling to a specific location on distinct ones (a and b), with each one symbolising a

distinct scenario. This method of modelling generates numerous duplicate states, as these

London Take train Edinburgh
A

London Take f light Edinburgh
B

(a) (b)

AB

London
A

Take train

Take f light

B

A

B

A

B

AB

Edinburgh

Figure 2.4 (a) Scenarios modelled by two O-nets; and (b) ALTO-net
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two ones describe the exact same system. As illustrated in Figure 2.4(b), ALTO-nets are

enhanced to account for this circumstance. By ’glueing’ together common states (conditions),

the ones in (a) are essentially integrated into a single structure as in (b).

Definition 2.2.7 (ALTO-net [49]) Let tagon↓ = (C↓,E↓,F↓,ϑ ↓) be a TAGO-net as in Defini-

tion 2.2.6, and tagon = (C,E,F,ϑ) be a sequential TAGO-net (this means that |Mtagon
0 |= 1

and |•e|= |e•|= 1, for every e ∈ E).

An alternative O-net (or ALTO-net) is a pair

alton = (tagon↓,τ)

such that τ : C↓∪E↓ →C∪E is a mapping from the nodes of tagon↓ to the nodes of tagon.

Assumptions are made regarding the following:

1. τ(C↓∪E↓) =C∪E,τ−1(C)⊆C↓, and τ−1(E) = E↓.

2. For all e ∈ E,τ−1(e) are disjoint blocks of tagon↓.

3. For all c ∈C, |τ(c)|= 1.

4. F = {(x,y) ∈ (C×E)∪ (E ×C)|(τ−1(x)× τ−1(y))∩F↓ ̸=∅}.

5. For all x ∈ (C↓∪E↓∪F↓),ϑ(x) = ϑ(τ(x)). ♢

Definition 2.2.8 (ALTO-nets firing rule [49]) Let alton be an ALTO-net, M be a marking

and U be a step of alton, and A ∈ AS.

1. U is (ALTO-net)-enabled at M and A if the following hold:

• M(c)≥ ∑e∈c• U(e), for every condition c ∈C; and

• A ∈ ϑ(e), for every event e ∈U.

2. If U is (ALTO-net)-enabled at M and A, then U can be fired and create a new marking

M′ = (M \ •U)∪U•. This is denoted by M[U⟩A
altonM′.
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A step sequence of alton (w.r.t. scenario A) is a sequence U1 . . .Un(n ≥ 0) of steps, such that

there exist markings M1, . . . ,Mn satisfying:

Malton
0 [U1⟩A

altonM1, . . . ,Mn−1[Un⟩A
altonMn.

Thus a step sequence portrays a valid system execution with respect to a particular scenario.

The Definision 2.2.8 above describes the ALTO-net firing rule. Using different scenarios,

it shows how the states of a system change. Specifically, if a marked situation leads to more

than one event, only one of them can be selected to fire. Note that in the ALTO-net, a step is a

set of events.

2.2.5 Time in SO-nets

In [23], timed SO-nets are based on groups of associated timed occurrence nets and are

designed for reasoning about related events and causality with time information that is

uncertain or missing. When modelling a system based on time, such as accidents or crimes,

it is important to identify/estimate the order in which events have happened and to identify

the duration of the events. In [23] each node in the SO-net (condition, event, and channel

place) has a start time (Ts), finish time (Tf ) and duration (D). As shown in Figure 2.5, all

time values have bounded uncertainty represented via specified times intervals ([Ts,e,Ts,l])

which mean (start lower and upper respectively) and ([Tf ,e,Tf ,l]) which mean (finish lower

and upper respectively). In addition, the duration has bounded uncertainty represented via a

duration interval ([De,Dl]) (duration lower and upper).

As shown in Figure 2.6, the time interval information is specified on each arc (prefixed

by ‘T :’). The time information represents the finish time of the source of the node in addition

to the start time of the destination node. The duration interval (is prefixed by ‘D :’) [49].

To summarise, in this section we introduced several kinds of nets which can be used to

represent behaviours of concurrent systems:

• Occurrence nets provide basic behaviour representations of concurrent system be-

haviours. Each occurrence net is an acyclic net representing in an explicit way the
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Figure 2.5 Relationships between unknown and known time values and duration of a node on a global
timeline

c1 e1

D:10-20
T:0900-1000

c2

T:1030-1100

Figure 2.6 Time information of O-nets

concurrency and causality relationships between events in a single run of a concurrent

system.

• Communication structured occurrence nets (CSO-nets) provide behaviour representa-

tions of execution runs involving several communicating concurrent systems. These

communications can be synchronous or asynchronous, and they are made possible by

special channel places. Each CSO-net represents a single execution run of a system.

• Behavioural structured occurrence nets (BSO-nets) provide a means of capturing

abstraction in behavioural descriptions expressed using CSO-nets. Each BSO-nets

relates two such descriptions: one specifying the detailed behaviour, and the other

specifying the same behaviour using, for example, single events instead of sequences

of executed events.

• Alternative occurrence nets (ALTO-nets) differ from the previous three kinds of nets by

allowing one to specify several alternative (related) behaviours – captured by CSO-nets

- within a single structure.

We have also indicated how to annotate the above nets in order to provide timing information

related to the events involved in a behavioural description.
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2.3 Time simulation

In this section, we concentrate on the history of time simulation as well as its significance. In

addition, we examine the methodologies and techniques of time simulation.

Since the middle of the twentieth century, simulation tools have been widely used for

the design and development of electrical systems [18]. Time simulation is also a powerful

tool used in many fields to model and analyse the behaviour of complex systems over time,

such as crimes and accidents. It can be used in a wide range of fields, including engineering,

physics, economics, and biology. For example, engineers might use time simulation to model

the behaviour of a complex mechanical system, such as an airplane or a car, to test its

performance under different conditions. Similarly, physicists might use time simulation to

study the behaviour of particles in a particular environment, while economists might use

it to model the behaviour of financial markets over time. In [16], simulation is a crucial

problem-solving methodology that plays an integral role in addressing a wide range of

real-world situations. Simulation employed to explain and evaluate the dynamics of a given

system, enabling the formulation of hypothetical scenarios and facilitating the development

of real systems, and it can be used to model both existent and conceptual systems. A

simulation makes a model come to life and demonstrates the behaviour of a certain object

or phenomenon. A simulation also can be helpful for teaching, analysis, or testing when

real-world systems or concepts can be modelled [33]. In the section that follows, we briefly

explain the importance and techniques of time simulation.

2.3.1 Relevance of time simulation

Shannon (1975) defined simulation as

‘the process of designing a model of a real system and conducting experiments

with this model for the purpose of either understanding the behaviour of the

system or evaluating various strategies (within the limits imposed by a criterion

or set of criteria) for the operation of the system’ [42].
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Simulations of time can be beneficial for researchers in a variety of disciplines, allowing

them to comprehend the sequence of events, reconstruct scenarios, and analyse the dynamics

of a situation over time. Simulation models can be used to study how complicated processes

behave [24]. They can aid in clarifying assumptions, also known as mental models, regarding

the operation of a process [64]. Time simulation is an effective technique for estimating

the performance of novel systems prior to their construction, and can be used to enhance

the efficacy of the existing system. Simulating a modelled system can aid in the design of

future systems and the enhancement of extant ones. Additionally, time simulation enables the

exploration of a real system by modifying policies, operations, and methods at a relatively

low-cost, without causing interference with the actual system; and speed up or slow down an

interesting event so that it can be studied in more detail [41].

2.3.2 Time simulation techniques

In recent decades, various time simulation techniques have been elaborated. As a result,

the functionality of a simulation model is contingent on the chosen modelling technique.

There are numerous event-driven simulation techniques available, and the manner in which a

simulation model operates is contingent upon the modelling methodology selected. There

are, in general, four significant differentiations that can be drawn between various simula-

tion methodologies. There are many time simulation techniques, but the most commonly

employed is discrete event simulation. In the section that follows, we briefly explain time

simulation techniques.

2.3.2.1 Discrete event simulation

In this section, we discuss the discrete event simulation models that have been widely

employed in academia and industry to address a wide range of industrial issues [13]. Discrete

event simulation is considered to be one of the most significant types of simulation; it

represents the system as a sequential progression of discrete events that occur over time,

and aims to represent the actions that the entities take to furnish insight into the dynamic

behaviour of the system [73]. Discrete event simulation is a useful approach for addressing
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challenges characterised by variables that undergo changes at specific points in time and

in discrete increments [61]. Moreover, a discrete event simulation is executed (or ‘run’)

over time by a mechanism that advances simulated time. At each event, the system state is

updated, along with any resources that may be captured or released [15].

2.3.2.2 Deterministic and stochastic simulation

Deterministic computer models are used in numerous different areas of science, engineering,

and policy making. Usually, they are complicated models that try to capture the underlying

processes in great detail, and they have many of inputs that the user specifies [66]. For a

given set of input parameter values in a deterministic simulation model, the output parameter

values produced during simulation runs will always be the same [64]. To run deterministic

simulations, we need to have accurate models and an in-depth knowledge of the dynamics

and interactions of the system. Stochastic simulation models have elements of probability. In

a stochastic simulation model, the values of the output parameters can change based on how

the values of the input parameters or intermediate (internal) model factors change. Since

the changes in input and intermediate variables are caused by random picking from known

statistical distributions, it is important to run the stochastic simulation enough times to see

the statistical distribution of the values of the output parameters [64].

2.3.2.3 Static and dynamic simulation

Static simulation models are designed to represent the variability of model parameters at a

specific point in time. It is a useful method for examining data, systems, and processes at

a particular moment in time, providing insights into their composition, characteristics, and

possible problems. It is especially helpful in situations where the analysis’s main focus is

not on the system’s dynamic evolution [64]. Dynamic simulation models are able to capture

the behaviour of model parameters over a predetermined amount of time [64]. As a result,

for predicting the behaviour of a system under the influence of different policies of interest,

dynamic simulation models are particularly valuable. By providing a consistent foundation
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for the predictions, dynamic simulation models offer substantial benefits when employed in

this capacity[74].

2.3.2.4 Continuous simulation

Continuous simulation is an appropriate approach for systems characterised by continuous

changes in variables [61]. It is distinguished from discrete event simulation by the occurrence

of changes at specific, separate time intervals. Moreover, continuous simulation models

involve the iterative modification of model variables, which describe the state of the model,

at regular intervals of time. This process is guided by a predetermined set of well-specified

model equations. In continuous simulation models, the model equations serve to build a

system of time-dependent linear differential equations, which might be of first or higher-

order [64].

2.3.2.5 Quantitative and qualitative simulation

In this part, we provide an overview of quantitative and qualitative simulation. To conduct

quantitative simulation, it is necessary to define the values of model parameters as either

real or integer numbers. Therefore, one of the most important requirements for quantitative

simulation is the availability of either a sufficient quantity and quality of empirical data or

the availability of specialists who are ready to estimate model parameters quantitatively. It

is helpful to use qualitative simulations when trying to understand how dynamic systems

usually act or when there is not enough data to draw specific conclusions. [64].

2.3.2.6 Hybrid simulation

Hybrid simulation is an approach that combines different simulation techniques to analyse

and understand complex systems or processes [76]. Hybrid simulation models are dynamical

planning tools that combine parts of being continuous with event-driven or deterministic with

stochastic elements. One advantage of hybrid techniques is in their potential to integrate the

benefits offered by stochastic, continuous, and event-driven models. As a result, it provides a
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more accurate representation of the real-world behaviour of complex systems by combining

the strengths of simulation modelling techniques [64].

2.4 Time granularity

In this section, we concentrate on the history of time granularity. A fundamental issue in

every computer system that involves representing the world is the representation of time.

Applications including databases, simulation, expert systems, and general applications of

artificial intelligence fall under this category [9].

Time granularity refers to the level of detail or precision at which time is measured

or represented in various contexts, such as data analysis, measurement, scheduling, and

technology. It is an essential concept in fields like computer science, physics, data science,

and everyday life. Time granularity can vary widely depending on the specific application or

requirements. It is important for a wide range of scientific and industrial processes; therefore,

time granularity is an important part of knowing how actions that happen at coarse levels

of time interact with others that happen with more details at finer levels. In addition, in

temporal reasoning systems, time is typically viewed as a linear sequence of discrete points

or linear intervals. Intervals are grouped into what are known as convex intervals to reflect

various levels of time granularity. The granularity is crucial when examining the world from

various levels of abstraction, and when transitioning between these levels, it is essential for

understanding the phenomena under observation [58]. In the present section we give an

overview of the properties of layers for the time granularity.

In [32] a temporal scenario can be described using various levels of abstraction, which hinges

on the needed precision or the extent of available knowledge. Time granularity, in this context,

represents the ability to specify the temporal details of a statement. The introduction of a

formal framework incorporating the notion of time granularity facilitates the modelling of

temporal information across various levels of temporal precision.
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2.4.1 Relevance of time granularity

The level of time granularity is critical when simulating complex systems, as it enables

precise and adaptable representation of the dynamics of these intricate systems. Complex

systems frequently comprise a multitude of interdependent elements functioning at varying

temporal dimensions [63]. Through the manipulation of time granularity, modellers are

able to concentrate on particular facets or expand their attention to examine the overall

behaviour of the system [32]. Coarse-grained time granularity can be perceived as a limited

number of components, that perform high-level actions or represent complex elements,

whereas fine-grained time granularity facilitates the capture of local interactions and rapid

fluctuations. Modellers are able to create more realistic and effective representations of

complex systems through the ability to toggle between these levels of temporal detail. This

capability promotes improved decision-making and problem-solving [31]. Choosing the

appropriate time granularity levels ensures that the model captures the relevant temporal

aspects, leading to more reliable predictions and a deeper understanding of how complex

systems function and evolve over time.

2.4.2 Properties of Layers

Layers in time granularity are defined by their hierarchical structure, whether they overlap or

are disjoint, and the amount of detail they provide when showing time intervals. Thus, layers

might overlap, such as Days and Working Days, where every working day is a day, or be

disjoint, like Days and Weeks. Understanding this distinction is essential for grasping the

hierarchical structure of time intervals and their relationships within a temporal framework

[32].

Take into consideration the scenario in which a situation is defined concerning the

completely ordered collection of granularities, which includes years, months, weeks, and

days. The relationships that exist between these levels are different. The following concepts

can be used to describe the distinctions:



2.5 Conclusion 29

Homogeneity: It means that the temporal of entities in the higher layer is equal to the

number of entities in the lower layer;

Alignment: when only one of the entities in the coarser layer maps to entities in the

lower layer.

The above two concepts enable us to identify the following distinct cases:

Year-Month: Each year comprises an identical number of months (homogeneity), and

each month is linked to a single year (alignment); thus, the relationship between years and

months is quite straightforward.

Year-Week: A year might have a varying number of weeks (non-homogeneity), and a

week can be associated with more than one year (non-alignment).

Month-Day: Each day is precisely linked to a single month (alignment), and the number

of days within a month can change (non-homogeneity).

2.5 Conclusion

In this chapter, we have examined and discussed various background areas. An overview of

SO-nets and their features has been provided, along with their definitions. We provided an

overview of CSO-nets and offered examples illustrating how these communications occur,

along with an overview of BSO-nets, which are employed to model the activities of evolving

systems. These nets are represented in two different models.

Additionally, we have discussed ALTO-nets, introduced to facilitate the modelling of

alternative behaviours. We have provided a background of time simulation and reviewed

its techniques to show how to simulate the behaviour of the system using time. Several

studies have explored the comparison between continuous simulation and discrete event

simulation, with detailed discussions available in the time simulation Section 4.4 (Chapter 4).

We also provided an overview of time granularity and its significance in simulating complex

systems across various levels of time units. Also, we have discussed the properties layers of

hierarchical structure of time granularity. We analysed the hierarchical structure of temporal
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granularity, emphasising its different levels and characteristics. We also discussed these

layers at various scales.



Chapter 3

Consistency of Time Information

This chapter outlines our approach for dealing with timed SO-nets. In particular, we introduce

algorithms for computing the missing time information and checking consistency.

3.1 Introduction

Time imparts valuable insights into behaviour and data. The notion of time is essential to

our comprehension of events and processes. By including time-related characteristics in

system models, they gain the ability to recognise and exploit the sequential progression of

events, thereby facilitating a more appropriate comprehension of evolving phenomena. The

incorporation of temporal data into models spanning multiple domains has emerged as a

critical component in the progression of predictive analytics.

This chapter provides an introduction to the (date-time) property in relation to the

fundamental concepts of SO-net and ALTO-net. Time representation is an appealing feature

of modelling complex evolving systems. Many information systems designed in software

engineering must deal with time data; for instance, the time sequence of events is an important

part of many applications.

In a criminal investigation, putting together a timeline of a crime for each suspect helps

the organisation of evidence into a coherent showing for a court of law. In extensively

instances, however, the available temporal information regarding an event or condition is
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imprecise or insufficient. For example, it might not be feasible to specify the precise time

information at which a robbery occurred, but it might be feasible to specify intervals of times

during which the robbery occurred.

Therefore, the contribution of this chapter is a novel tool-supported formalism (timed

SO-nets) for modelling and reasoning about concurrent events with uncertain or missing time

information in developing systems. It is built on collections of connected timed occurrence

nets.

This chapter is divided into six main sections, Section 3.2 provides the notation for

timed SO-nets, which are based on discrete time intervals. The conditions for verifying the

consistency of (date-time) intervals are provided in Section 3.3. In Section 3.4, algorithms are

given for estimating and enhancing the accuracy of (date-time) intervals. These algorithms

utilise default duration intervals and redundant time information. The algorithm for estimating

and improving the accuracy of (date-time) intervals for alternative occurrence nets is defined

in Section 3.5. Algorithms for checking consistency in SO-nets and ALTO-net are given in

Section 3.6, and the conclusion of the chapter is in Section 3.8.

3.2 Time model of SO-nets

A time model is an abstract structure or graphical representation that is specifically engineered

to analyse the temporal characteristics of a given system. Computer science is one of the

many disciplines that employs time models to comprehend and analyse the progression of

events over time. In a time-based system, it is critical to establish the order in which events

have fired and the duration of intervals between them to determine, e.g., eliminate improbable

hypothesised scenarios.

The way in which time is represented (using dates, etc.) is much more practical for sup-

porting, for example, crime investigations than number-based attempts in [23]. Representing

(date-time) information about such systems is important. Timed SO-nets are based on groups

of associated timed O-nets and are designed for reasoning about related events and causality

with time information that is uncertain or missing in evolving systems. When modelling a
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system based on time, such as accidents or crimes, it is important to identify the order in

which events have happened and the duration of the events. However, the temporal informa-

tion that is known about an occurrence is often inaccurate or lacking. For instance, although it

may not be possible to pinpoint a certain date-time (such as [2022/11/04 05:05:05]) at which

a robbery happened, it could be possible to provide temporal boundaries such as (earliest

start and latest start). The notations and definitions in this chapter are adapted from [23].

We assume that each node (condition, event) in SO-nets has a start (date-time) (Ts) and

finish (date-time) (Tf ), and that each (date-time) event has a bounded uncertainty that is

represented by a specified earliest and latest (date-time) interval ([Ts,e,Ts,l]) and ([Tf ,e,Tf ,l]

respectively). Furthermore, each node has a duration (D) with a bounded uncertainty rep-

resented by a specified early and late duration interval ([De,Dl]), and a calculated earliest

(shortest) and latest (longest) duration between the start and end (date-time) of each node

([De,Dl]).

We now introduce formally some notations for time information related to the SO-nets

framework. Let n be a node in a SO-nets. The early and late start (date-time) interval of n is

denoted by:

In
s = [T n

s,e,T
n

s,l]

where T n
s,e and T n

s,l are the earliest and latest start (date-time), respectively. In
s is considered

well-defined only if the following inequality is met:

T n
s,e ≤ T n

s,l (3.1)

The early and late finish (date-time) interval of n is denoted by:

In
f = [T n

f ,e,T
n
f ,l]

where T n
f ,e and T n

f ,l are the earliest and latest finish (date-time), respectively. In
f is considered

well-defined only if the following inequality is met:

T n
f ,e ≤ T n

f ,l (3.2)
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The constraint (T n
s )≤ (T n

f ) states that the start time of n must be at or earlier than the finish

time of n. The start and finish time intervals of n should satisfy the following conditions in

order to assure consistency with this constraint.

T n
s,e ≤ T n

f ,e ∧T n
s,l ≤ T n

f ,l (3.3)

The early and late duration interval of n are denoted by:

In
d = [Dn

e ,D
n
l ]

where Dn
e and Dn

l are the earliest and latest duration intervals. In
d is considered well-defined

only if the following inequality is met:

0 ≤ Dn
e ≤ Dn

l (3.4)

3.3 Time consistency

3.3.1 Time consistency in line-like O-nets

Time consistency in line-like O-nets, each event has exactly one input condition and one

output condition, and each condition has at most one input and output event. Then, for any

two directly connected nodes (i.e., a condition that ends in an event or an event that starts

a condition), we assume that the finish (date-time) of the source node is equal to the start

(date-time) of the destination node. Consequently, we have:

In1
f = In2

s , for every (n1,n2) ∈ F (3.5)

Let n be a node in O-net. The information regarding the start, finish (date-time), and

duration of n is defined to be node consistent only if the following inequalities are satisfied:
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[Ts,e +De,Ts,l +Dl]∩ [Tf ,e,Tf ,l] ̸= ∅ (3.6)

[Tf ,e −Dl,Tf ,l −De]∩ [Ts,e,Ts,l] ̸= ∅ (3.7)

[max(0,Tf ,e −Ts,l),Tf ,l −Ts,e]∩ [De,Dl] ̸= ∅ (3.8)

For example, the Eq.(3.6) verifies the bounds are consistent (i.e., overlap) with the specified

finish (date-time) interval of n. Eq.(3.7) validates that the bounds are in accordance with the

node’s specified start (date-time) interval n. Eq.(3.8) verifies that the specified start and end

(date-time) intervals of n are used to compute the bounds on uncertainty for the duration

interval of n. A line-like O-net is time consistent if and only if every node n, in the O-net is

node consistent and the flow relation F of the O-net satisfies Eq.(3.5).

For example, consider the line-like O-nets shown in Figure 3.1. The (date-time) intervals

are shown above each node (with the prefixes Estart and Lstart representing the early and

late start (date-time) intervals, respectively), and the early, late finish (date-time) intervals

(with the prefixes Efinish and Lfinish (date-time) intervals). In addition, the duration interval

of the event node is prefixed by Eduration and Lduration in the format

(Y :Year,M:Month,D:Day,H:Hour,Min:Minute,S:Second).

Using Eq.(3.6) above, it can be observed that the time information in event e0 Figure 3.1 (a)

is inconsistent. Its estimated finish time-interval is

[Ts,e +De,Ts,l +Dl] = [Efinish:2022/10/02 12:00:00,Lfinish:2022/10/02 14:00:00],

and its specified finish time-interval is

[Efinish:2022/10/02 13:00:00,Lfinish:2022/10/02 14:00:00].

In contrast, event e0 in Figure 3.1 (b) is node consistent.
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Figure 3.1 Line-like O-net with date and time interval.

3.3.2 Time consistency in CSO-nets

In [49], a communication structured occurrence net (CSO-net) captures communication be-

tween different subsystems. Communication between events is represented using a special

nodes called channel place that behave similarly to conditions. In asynchronous communica-

tion, the sending event e, executes either before, or simultaneously with, the receiving event

e′, an asynchronous channel place connects the two events and uses a condition to record

information about the communication. In synchronous communication involves the simul-

taneous execution of two communicating events, which are connected by two synchronous

channel places. These channels record the communication information using conditions and

have the same temporal characteristics as the events.

Formally, let q denote a channel place, and let e and e′ represent the input and output

events of q, respectively. The temporal information of q is considered a/synchronously

consistent only if the following conditions are met:

Ie
f = Iq

s (3.9)

Ie′
s = Iq

f (3.10)

q is node consistent (3.11)
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Intuitively, Eq.(3.9) can be seen as stating that the start time interval of q equals to the

end time interval of its input event. Eq.(3.10) asserts that the end time interval of q equals

to the start time interval of its output event. According to Eq.(3.11), q must satisfy node

consistency in relation to its three time and duration intervals. The consistency checking of

an asynchronous channel place, denoted by q, involves verifying a condition that can persist

for a non-zero duration. If q is a synchronous channel place, its duration is zero because of

the cyclic representation of synchronous communication.

Figure 3.2 shows how (date-time) information in a CSO-nets can reveal the behaviour

of events during asynchronous communication. In Figure 3.2 (a) events e0 and e1 have the

same start and finish (date-time) intervals, which indicates that the two events are executed

simultaneously. In Figure 3.2 (b) the (date-time) intervals are different which indicates that

e0 executes earlier than e1.

Figure 3.3 illustrates synchronous communication characterizes events e1 and e3, indicat-

ing their simultaneous execution. Notably, there is inconsistency in the time information for

events e1 and e3 as the specified start and finish (date-time) intervals differ.

3.3.3 Time consistency in BSO-nets

The verification of date and time consistency in (BSO-nets) involves verifying time consis-

tency between O-nets at various levels of abstraction using the behavioural β and causal

relationships. The assumption made, for the sake of simplicity, is that all abstraction levels

have the same (date-time) origin and granularity.

Given a BSO-net, let causalU be the binary relation consisting of the causally related

pairs of events that are specified as follows:

causalU =
⋃
{causal(e) | e ∈ E} (3.12)
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Figure 3.2 Two CSO-nets with different runs of e0 and e1.

where E is the set of events in the O-nets of the BSO-net. The time information of causalU

is date and time consistent if and only if the following condition is satisfied:

∀(g,h) ∈ causalU :(T g
s,e ≤ T h

s,e ∧T g
s,l ≤ T h

s,l) (3.13)

For all conditions ci,c′i ∈ C (C means the set of conditions in the O-nets of the BSO-net)

with (ci,c′i) ∈ β and ci belonging to the initial condition of the lower level O-net of the

BSO-net, which means that the following equation must be true:

Ici
s = Ic′i

s (3.14)
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Figure 3.3 CSO-net with time inconsistency.

In addition, for all conditions ct ,c′t with (ct ,c′t)∈ β and ct belonging to the final condition

of the lower level O-net of the BSO-net, the following equation must hold:

Ict
f = Ic′t

f (3.15)

Eq.(3.13) states that there are two events, g and h; the start (date-time) of event g must be the

same as, or precede, the start (date-time) of event h. The initial and end states of the BSO-net

are constrained by conditions 3.14 and 3.15: the start and finish (date-time) of a lower level

O-net must coincide with the start and finish (date-time) of its corresponding upper level

condition.

Figure 3.4 shows that the start time interval of post-modified system’s (c4) and the

completion time interval of pre-modified system’s (c3) are the same as their respective higher

level conditions.

Figure 3.5 illustrates the behaviour of the system update, which reveals inconsistencies

in time information. This inconsistency is caused by a difference between the upper-level

start time intervals for c0 and the lower-level start time intervals for c2.
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Figure 3.4 BSO-net portraying system update.

Figure 3.5 BSO-net with time inconsistency.
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3.3.4 Time consistency in ALTO-nets

In ALTO-nets, each event has at least one input condition and at least one output condition,

and each condition has zero or more input and output events. A condition in ALTO-nets

can have multiple input and output events that are in different scenarios. The verification of

consistency of the ALTO-nets. Let c be a condition in ALTO-nets the alternative consistency of

the temporal information of c is determined by the satisfaction of the following constraints:

∃e ∈ •c(Ie
f = Ic

s ) (3.16)

∃e′ ∈ c•(Ic
f = Ie′

s ) (3.17)

c is node consistent (3.18)

Eq.(3.16) states that the start (date-time) interval of c is the same as the finish (date-time)

interval of an input event, and the second Eq.(3.17), asserts that the finish (date-time) period

of c is equivalent to the start (date-time) interval of an output event. The third Eq.(3.18)

asserts that the intervals of start, finish (date-time), and duration of c are satisfied by the

equations Eq.(3.6), Eq(3.7), Eq(3.8).

The Figure 3.6 depicts two ALTO-net fragments that possess identical structure and

(date-time) but exhibit varying duration intervals. The intervals of c0 in Figure (a) exhibit

alternative consistency with regard to e0 and e1, while displaying alternative inconsistent

with respect to e0 and e2. Hence, it can be concluded that there exists a singular valid

scenario in which c0 is applicable, taking into account the (date-time) information. This is

because the execution of e2 cannot occur after the execution of e0 due to the presence of time

inconsistency. Additionally, in (b), there is no valid scenario for c1 as it is inconsistent with

both its finish (date-time) interval.
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Figure 3.6 Two ALTO-nets with time consistent in (a), and inconsistent in (b).

3.4 Estimation of (date-time) and duration intervals

Investigations of crimes and accidents typically encounter situations where time information

is missing, unavailable, or is unknown. In such cases, it is often required to estimate the time

information that would have filled the gaps. A missing interval of the node can therefore be

estimated by given the specifications of the other two intervals, as illustrated below:

[Ts,e,Ts,l] = [Tf ,e −Dl,Tf ,l −De] (3.19)

[Tf ,e,Tf ,l] = [Ts,e +De,Ts,l +Dl] (3.20)

[De,Dl] = [max(0,Tf ,e −Ts,l),Tf ,l −Ts,e] (3.21)
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where [Ts,e ,Ts,l ] are the earliest and latest start (date-time) intervals, [Tf ,e ,Tf ,l ] are the

earliest and latest finish (date-time) intervals, and [De,Dl] are the earliest and latest duration

intervals.

When comprehensive time information is available for a node, the precision of the

information can be enhanced by employing the following equations:

[Ts,e,Ts,l] = [Tf ,e −Dl,Tf ,l −De]∩ [Ts,e,Ts,l] (3.22)

[Tf ,e,Tf ,l] = [Ts,e +De,Ts,l +Dl]∩ [Tf ,e,Tf ,l] (3.23)

[De,Dl] = [max(0,Tf ,e −Ts,l),Tf ,l −Ts,e]∩ [De,Dl] (3.24)

In situations where both date and time intervals of a node are missing, it is necessary to

use a specified time interval from another node. The next section describes algorithms that

were adapted from [23] for estimating the missing time intervals of the nodes in SO-net using

the following two approaches: the first approach is to estimate the intervals of an individual

node, and the second approach is to estimate the intervals of all the nodes of the SO-net.

3.4.1 Estimation of finish (date-time) intervals of a node

Algorithms 1, 2 adapted from [23] describe the structure of the procedure estimateFinish,

which computes the finish time interval of a node n using the causal functions and are

outlined below.

• In Algorithm 1 given a node n with an unspecified early and late finish (date-time)

intervals perform forward breadth first search (BFS) using the f indRightBoundary

procedure to identify the nodes with a specified early and late finish (date-time) interval

that are nearest to n, Figure 3.7.

• In Algorithm 2 using the identified nodes, perform the backwardBFSDates (BFS)

procedure to calculate the unspecified early and late (date-time), and duration intervals

of the nodes causally-related to n, we assume that a default duration interval can be
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used as an estimation based on statistics of durations of similar transitions that have

occurred in the past (Lines 6-7, 11-14). To increase the node precision, recalculate the

intervals (Lines 15-17), until node n is reached.

In Figure 3.7, the early finish (date-time) information and late duration are defined for

e2. The subsequent depiction reveals the calculated results for the unspecified early start

(date-time) of nodes causally related to e2 using Eq.(3.19) .

Algorithm 1 Estimation finish time interval of a node using causal relation
1: procedure estimateFinish(Node n)
2: RBoundary := /0 ▷ nearest right nodes of n with specified early, late finish date and

time intervals
3: RSector := {n} ▷ nodes on paths from n to RBoundary nodes
4: f indRightBoundary(n,RBoundary,RSector)
5: backwardBFSDates(n,RBoundary,RSector)
6: procedure f indRightBoundary(Node n,Set Boundary,RSector)
7: Working := {n} ▷ nodes used for forward boundary searching
8: while Working ̸= /0 do
9: NextWorking := /0 ▷ Nodes with unspecified early and late finish time intervals

10: for all m ∈Working do
11: if causalPostset(m) = /0 then
12: add m to Boundary
13: else
14: for all nd ∈ causalPostset(m) do
15: add nd to Sector
16: if nd.E f inish.speci f ied ∧nd.L f inish.speci f ied then
17: add nd to Boundary
18: else
19: add nd to NextWorking
20: remove m from Working
21: Working := NextWorking

3.5 Estimation of finish time interval for ALTO-nets

In ALTO-net, each condition has zero or more input and output events. A condition in ALTO-

net can have multiple input and output events that are different in different scenarios [46].

The Algorithm 3 outlines the structure of the process estimateFinish for an ALTO-net. This
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Algorithm 2 Estimation finish time interval of a node using causal relation
1: procedure backwardBFSDates(Node n, Set Boundary, SetSector)
2: Working := Boundary ▷ nodes used for backward estimation of time intervals
3: while Working ̸= {n} do
4: NextWorking := /0 ▷ nodes with unspecified date, time and duration intervals
5: for all m ∈Working do
6: if ¬m.Eduration.speci f ied ∧¬m.Lduration.speci f ied then
7: m.Eduration,m.Lduration := de f aultDuration
8: for all nd ∈ causalPreset(m)∩Sector do
9: add nd to NextWorking

10: nd.visits := nd.visits+1
11: if ¬nd.E f inish.speci f ied ∧m.E f inish.speci f ied then
12: nd.E f inish := m.E f inish−m.Lduration
13: if ¬nd.L f inish.speci f ied ∧m.L f inish.speci f ied then
14: nd.L f inish := m.L f inish−m.Eduration
15: else if m.E f inish.speci f ied ∧m.L f inish.speci f ied then
16: nd.E f inish := nd.E f inish∩ (m.E f inish−m.Lduration)
17: nd.L f inish := nd.L f inish∩ (m.L f inish−m.Eduration) ▷ Eq.(3.22)
18: for all nd ∈ NextWorking do
19: if nd.visits = causalPostset(nd) then
20: for all ndout ∈ causalPostset(nd) do
21: if ¬ndout.Estart.speci f ied ∧ndout.E f inish.speci f ied then
22: ndout.Estart := nd.E f inish
23: ndout.Eduration := ndout.Eduration∩ndout.E f inish−
24: ndout.Lstart
25: if ¬ndout.Lstart.speci f ied ∧ndout.L f inish.speci f ied then
26: ndout.Lstart := nd.L f inish
27: ndout.Lduration := ndout.Lduration∩ndout.L f inish−
28: ndout.Estart ▷ Eq.(3.24)
29: else
30: remove nd from NextWorking
31: Working := NextWorking
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Figure 3.7 Estimation of early start.

procedure calculates the start (date-time) interval of a node n using causal relations. The

procedure is described as follows:

• Conduct a forward depth-first search (DFS) for a node n with an undetermined early

start (date-time) interval to find all paths that start at n and end to the closest node with

a specified early finish (date-time) interval.

• For each path in ALTO-net apply Eq.(3.19), Eq.(3.20), Eq.(3.21), to compute a possible

early start (date-time) interval of n, where In
f ,e is the specified early finish (date-time)

of the last node in each path and In
Dl

is the late duration of the last node in each path

(default late duration interval is used for nodes with unspecified late duration).

Figure 3.8 shows that a forward DFS is used to find all paths from e0 to the nearest node

with a specified early finish (date-time). More specifically, the first path (c0,e0,c1,e1,c2,e3)

and the second path (c0,e0,c1,e2,c4,e4), the ALTO-net contains two specified early finish

(date-time) interval:

• The early finish (date-time) interval of the node e3 in the first scenario is: Ie3
f ,e =

[2022/11/04 05:05:05] and the late duration interval of the node e3 in the first scenario

is Ie3
Dl

= [Lduration: Y1M1D1H1Min1S1], which is subtracted from the specified early

finish (date-time) interval of e3 using Eq.(3.19), Eq.(3.20), and Eq.(3.21).
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• Another possible early finish (date-time) interval is calculated using the second scenario.

The early finish (date-time) interval of the node e4 in the second scenario is: Ie4
f ,e =

[2022/11/23 06:06:06] and the late duration interval of the node e4 in the second

scenario is Ie4
Dl

= [Lduration: Y1M1D1H1Min1S1]. Figure 3.8 shows the table for

possible times estimations of the early finish (date-time) interval for e0 using the first

and second scenarios. On the other hand, Figure 3.9 shows the table for possible times

estimations result for each scenario separately.

Algorithm 3 Estimation finish date interval of a node with alternative using causal relation
1: procedure estimateFinish(Node n)
2: Input:AlternativeON (ALTO−net)
3: Output:AlternativeON (ALTO−net) with estimated finish date-time interval

of all nodes in each scenario
4: PossibleTimes :=∅ ▷ possible finish date-time intervals from forward search
5: visited :=<>
6: add n to visited
7: f orwardDFSDate(visited)
8: procedure FORWARDDFSDATE(List visited)
9: for all n ∈ causalPostset(visited.last) do

10: I := null ▷ possible finish date intervals
11: if In

f ,e.speci f ied ∧ In
f ,l.speci f ied then

12: I :=In
f ,e − In

Dl , In
f ,l − In

De ▷ start date pair of values in Eq.(3.19)
13: add I to PossibleTimes
14: else if n /∈ visited then
15: add n to visited
16: forwardDFSDates(visited)
17: remove visited.last
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Figure 3.8 Estimation of ALTO-net early start.

Figure 3.9 Estimation of ALTO-net early start for each scenario.

3.6 Algorithms for checking consistency

This part will examine algorithms used for basic and casual time consistency verification.

These algorithms are designed to encode the equations and conditions described in this

chapter for the SO-nets and ALTO-net models. To facilitate the readability of the algorithms,
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we will denote the start (date-time) with n.start of a node n (In
s ); n.finish to denote the finish

(date-time) of n (In
f ); and n.duration to denote the duration of n (In

d ).

The Algorithm 4 is the fundamental function responsible for implementing Equations

Eq.(3.6), Eq.(3.7), and Eq.(3.8) in order to validate the consistency of a given node with

respect to the specified start, end, and duration intervals. The function’s structure is specified

by the Algorithm 4. The interval and its estimate is computed on lines 3, 6, and 9, which

return FALSE if the intersection is void. As a result, in the absence of a condition being met

by the provided time information, the function will produce a FALSE output; in all other

cases, it will return TRUE.

Algorithm 4 (Node consistency)
1: function Boolean nodeConsistency (Node n)
2: In

f := n.start +n.duration ▷ Eq.(3.20)
3: if In

f < n. f inish then ▷ Eq.(3.6)
4: return FALSE
5: In

s := n. f inish−n.duration ▷ Eq.(3.19)
6: if In

s > n.start then ▷ Eq.(3.7)
7: return FALSE
8: In

d := n. f inish−n.start ▷ Eq.(3.21)
9: if In

d < n.duration then ▷ Eq.(3.8)
10: return FALSE
11: return T RUE

Algorithm 5 first verifies Concurrent Consistency with respect to the late finish (date-

time) interval of the input places of the given event, then with respect to the early start

(date-time) intervals of the output places of the event, then invokes nodeConsistency for the

basic consistency checking of the event itself.

In Algorithm 6 asynchronous consistency function is invoked only if a SO-net con-

tains a communication relation. The function applies two conditions for asynchronous and

synchronous-based checking.

Formally, let q be a channel place and let e,e′ be the input and output events of q respectively.

The date information of q is defined to be a/synchronously consistent if and only if the

following conditions are satisfied:

Ie
f ,l = Iq

s,e and Ie′
s,e = Iq

f ,l .
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Algorithm 5 Concurrent consistency
1: function Boolean concurConsistency (Event e)
2: for c ∈ •e do
3: if c.L f inish ̸= e.Estart then
4: return FALSE
5: for c ∈ e• do
6: if c.Estart ̸= e.L f inish then
7: return FALSE
8: return nodeConsistency(e)

Algorithm 6 A/Synchronous consistency
1: function:Boolean a/synchronous consistency(Channel place q)
2: if q.input. f inish ̸= q.start ∨ q.out put.start ̸= q. f inish then ▷ Eq.(3.9), (3.10)
3: return FALSE
4: return nodeConsistency(q) ▷ Eq.(3.11)

In Algorithm 7 the behavioural consistency function in line 4 verifies the consistency

of all binary relations in causalU , lines 7 and 9 verify the restrictions on the initial and

final places of the BSO-net. The return value of the function is all the nodes which are

behaviourally inconsistency in the BSO-net.

Algorithm 7 behavioural consistency
1: function Boolean bhvConsistency (Relation causalU)
2: Result :=∅ ▷ behaviourally inconsistent nodes
3: for (e1,e2)∈ causalU do
4: if e1.start.early > e2.start.early ∨ e1.start.late > e2.start.late then ▷ Eq.(3.13)
5: add e1,e2 to Result
6: for c ∈ C do
7: if •c =∅∧ c.start ̸= β (c).start then ▷ Eq.(3.14)
8: add c to Result
9: else if c• =∅∧ c. f inish ̸= β (c). f inish then ▷ Eq.(3.15)

10: add c to Result
11: return Result

Algorithm 8 displays the alternativeConsistency function in line 2. It states that the early

start (date-time) interval of c is the same as the late finish (date-time) interval of an input

event (e), line 4 states that the late finish (date-time) intervals of c the same as the early start

(date-time) intervals of an output event which denoted as (e′).
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Algorithm 8 Alternative consistency
1: function:Boolean alternative consistency (Condition c)
2: if e.input.L f inish ̸= c.Estart then
3: return FALSE
4: if e.out put.Estart ̸= c.L f inish then
5: return FALSE

3.7 Related work

The existing research on Petri nets, namely in the areas of uncertainty, consistency checking,

and time information estimation, is currently constrained. In the study conducted by the

authors in [52], Petri nets are expanded by include temporal intervals that are linked to

transitions and defining the ranges of firing delays for these transitions; the first indicates the

shortest period of time that must pass after all of a transition’s input conditions have been met

before the transition can fire, and the other time indicates the longest period of time during

which the input conditions can be enabled and the transition does not fire. In [78], the interval

timed coloured Petri net (ITCPN) model employs a timing mechanism in which transitions

determine a delay specified by an interval, and time is connected with tokens. In [36], time

Petri nets are a classical formalism that extend Petri nets with transition-related temporal

intervals. They gain from real-time system properties like synchronisation, parallelism, etc.

being represented simply. This chapter has extended the work in [23] by incorporating

dates into our model SO-nets, which is much more practical for supporting, e.g., crime

investigations than the previous number-based attempts. Nevertheless, none of the research

incorporate models communication abstraction of events, states, or the use of dates in the

models.

3.8 Conclusion

To summarise, time is an important and basic aspect of real-life systems. It tells us, for

example, how long something lasts, or how quickly it changes. Therefore, representing

(date-time) information about system behaviours is important to answer vital behavioural
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question and ensure that the resulting framework can provide effective support for incident

investigators. the incorporation of temporal information using dates into SO-nets and ALTO-

net provide a noteworthy improvement in the modelling and analysis of dynamic systems.

We make it possible to depict processes that change over time more accurately by adding

temporal features to SO-nets. This temporal dimension offers a potent analytical tool for

examining the order and timing of events, providing information about system behaviour.

Moreover, in situations requiring adherence to a specific temporal sequence of events, such

as concurrent systems, the incorporation of time into SO-nets is of immense value. A

more adequate comprehension of system dynamics is enhanced by the capability to model

time-dependent processes within the SO-nets framework.

When modelling a system based on time, such as accidents or crimes, it is important to

identify the order in which events have happened and to identify the duration of the events.

The concept of a timed SO-nets has been introduced in this chapter to represent and analyse

causally connected events and concurrent occurrences in developing systems with ambiguous

or lacking temporal information. The notation of timed SO-nets (based on discrete time

intervals), and algorithms for estimating and increasing the precision of (date-time) intervals

using default duration intervals and redundant time information have been provided in this

chapter. In addition, we have discussed algorithms to verify consistency for basic SO-nets

and ALTO-net. In this chapter, the challenge was to adapt algorithms and notations from [23]

for handling dates and ensure that the model accurately captures the subtleties of time-based

information, which is crucial for applications such as criminal investigations. Future work

could be done to improve the model’s ability to analyse spatio-temporal patterns by adding

spatial information to nodes that already have time information. Looking at both where

events happen and when they happen, could help us make more accurate guesses and learn

more about how space and time relate to each other over time for the crime or incident.

Finally, using the time property that was covered in this chapter, we will examine the

time simulation to simulate the behaviour of SO-nets and ALTO-net in the following chapter

(Chapter 4).



Chapter 4

Time Simulation in SO-Nets

This chapter outlines the timed simulation behaviours of basic SO-nets and ALTO-net. In

addition, we introduce the maximal enabled events (Firing Steps) of multiple O-nets.

4.1 Introduction

In Chapter 3, a time property framework was introduced for the basic SO-net and ALTO-

net concepts. The objective of this chapter is to present the time simulation for SO-net

and its abstraction using the timed structured occurrence nets introduced in the previous

chapter. A CE-system is composed of a large number of concurrently acting (sub)systems

interacting with each other and with the system environment. Therefore, the simulation of

timed behaviours of CE-systems occurs in meaningful ways so that, for example, an incident

(crime) investigator can use them effectively. In [16], simulation is a crucial problem-solving

methodology that plays an integral role in addressing a wide range of real-world situations.

Simulation is a method employed to explain and evaluate the dynamics of a given system,

enabling the formulation of hypothetical scenarios and facilitating the development of real

systems. It can be used to model both existent and conceptual systems. A key problem

of handling complexity when large datasets are involved will be addressed by developing

hierarchical approach to simulation based on behavioural abstractions. Time simulation is a

powerful tool used in many fields to model and analyse the behaviour of complex systems
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over time, such as crimes and accidents. In criminal investigations, time simulation may be

an effective technique since it enables investigators to piece together the sequence of events

that led to a crime. Investigators may better grasp the circumstances leading up to a crime by

simulating time, which can be useful in identifying suspects and acquiring evidence.

This chapter explores the theoretical foundations, which will be expounded upon in four

main sections. Section 4.2 defines the firing sequence, notation, and algorithm of timed-

interval simulation SO-nets, building on the discrete time interval discussed in Chapter 3. The

timed simulation behaviours for maximal enabled events (Firing Steps) of multiple (O-nets)

are detailed in Section 4.3, and Section 4.4 provides an overview of related studies that

explore the simulation of timed behaviours. The concluding remarks are in Section 4.5.

4.2 Hierarchical simulation of timed behaviours

Simulation is a crucial problem-solving technique for tackling a variety of real-world prob-

lems and can be used to analyse and explain the behaviour of a system. In a real-time

simulation, the simulation is run in discrete time with constant steps, also known as fixed step

simulation, as time moves forward in an equal duration. In this part, we introduce the idea of

firing sequence and behaviour graph to characterise the action of structured occurrence nets.

4.2.1 Time simulation of SO-nets

Every activity in a system has a time duration interval which is different from zero, and

we make the added assumption that all activities complete in a finite amount of time. We

will assume that every transition takes a bounded, non-zero amount of time to fire. In

the semantics of non-timed O-nets, transitions can fire at any time after they are enabled,

removing input token and creating output token. A marking in a timed O-net is insufficient

information to fully characterise the system’s state. Timing details must also be provided for

the transition. This is provided as a clock function that indicates the amount of time that has

elapsed since the enabling of each enabled transition. When firing durations are included, the

O-net semantic is changed. Each transition has a time associated with it. When a transition
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becomes enabled, it removes the input token immediately but does not create the output

token until the firing duration has finished

4.2.1.1 Time transition firing in SO-nets

The primary characteristic of timed SO-nets is that transitions are enabled must start their

firing immediately; and the firing lasts some time within an interval. In timed SO-nets, an

enabled transition is fired in three ‘conceptual’ steps: the first (immediate) step removes

tokens from the input places, the second (temporal) step holds the tokens for the duration

of the firing time, and the third (immediate) step moves tokens to all of the transition’s

output places. For example, as shown in Figure 4.1 early duration interval is displayed

in e0 as ED: Y10M1D1H1Min1S1 which represent Year,Month,Day,Hour,Minute,Second

respectively. When e0 is fired, the token is held for a countdown duration before being

subsequently moved to the output place.

(A)
c0

c1 e0

ED:Y 10M1D1H1Min1S1

c2

(B)
c0

c1 e0

ED:Y 10M1D1H1Min1S1

c2

(C)
c0

c1 e0 c2

Figure 4.1 Time transition firing in SO-nets.

4.2.1.2 Time transition firing in CSO-nets

This subsection seeks to explain the time simulation of synchronous communication. Fig-

ure 4.2 shows a CSO-net that consists of two O-nets interacting with synchronous commu-

nication. It shows that in Figure 4.2(A), e0 and e1 are enabled and have the same duration

intervals, which indicates that the two events are executed simultaneously. Therefore, after

firing e0 or e1, the transitions will hold the tokens for the duration of the firing time, as shown

in Figure 4.2(B), and then moves tokens to all of the transitions’ output places, c2 and c5, as

shown in Figure 4.2(C).
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(A)c0

c1

e0

ED:Y 10M1D1H1Min1S1

c2

c3

c4

e1

ED:Y 10M1D1H1Min1S1

c5

q1

(B)c0

c1

e0

ED:Y 10M1D1H1Min1S1

c2

c3

c4

e1

ED:Y 10M1D1H1Min1S1

c5

q1

(C)c0

c1

e0

ED:Y 10M1D1H1Min1S1

c2

c3

c4

e1

ED:Y 10M1D1H1Min1S1

c5

q1

Figure 4.2 Time transition firing in synchronous CSO-nets.

4.2.1.3 Time transition firing in BSO-nets

This section presents the time simulation for BSO-nets, and offers information on the system’s

development. The representation of the execution history in BSO-nets is divided into two

different levels.

Figure 4.3 shows the time simulation firing steps for BSO-nets, and {e0}{g0} is a possible

step sequence. As shown in Figure 4.3(A), the only step U1 enabled at the initial marking

{a0,c0} is U1 = {e0}. In the firing of U1, the transition holds the token for the duration

of the firing time (ED: Y1M5D1H1Min1S1), as shown in Figure 4.3(B), and then changes

the marking to {a0,c1}, which enables the step U2 = {g0}, as shown in Figure 4.3(C).

In the firing of U2 the transition holds the token for the duration of the firing time (ED:

Y5M5D1H1Min1S1), as shown in Figure 4.3(D), and produces {a1,c1} as in Figure 4.3(E).
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a0
g0

ED:Y 5M5D1H1Min1S1

a1

ON↑1
(A)

c0 e0

ED:Y 1M5D1H1Min1S1

c1

ON1

a0
g0

ED:Y 5M5D1H1Min1S1

a1

ON↑1
(B)

c0 e0

ED:Y 1M5D1H1Min1S1

c1

ON1

a0
g0

ED:Y 5M5D1H1Min1S1

a1

ON↑1
(C)

c0 e0 c1

ON1

a0
g0

ED:Y 5M5D1H1Min1S1

a1

ON↑1
(D)

c0 e0 c1

ON1

a0
g0

a1

ON↑1
(E)

c0 e0 c1

ON1

Figure 4.3 Time transition firing in BSO-net.

4.2.1.4 Time transition firing in ALTO-nets

In this section, we introduce the time simulation for ALTO-nets. Each condition contains

zero or more input and output transitions, and each transition has at least one input condition

and one output condition [46]. Figure 4.4 shows two scenarios for the time simulation for

ALTO-nets, first scenario is (c0,e0,c1,e1,c2), and the second scenario is (c0,e0,c1,e2,c3).

The two scenarios are enabled and each one has a different duration interval. As shown in

Figure 4.4(A), e1 and e2 are enabled and have different duration intervals. When a marked

condition generates numerous transitions, just one of these transitions can be selected to fire

to simulate the behaviour using time. It should be noted that a step in the ALTO-nets consists

of a set of events.

• The shortest duration interval defined for the enabled transitions e1 is [ED: Y15M2D1H1Min1S1],

and e2 is [ED: Y20M5D1H1Min1S1].



58 Time Simulation in SO-Nets

• In Figure 4.4(B), after firing e1, the token moves and holds in the transition for the

duration of the firing time, and then moves tokens to the transition’s output place c2, as

shown in Figure 4.4(C).

(A)

c0 e0

c1 e1

ED:Y 15M2D1H1Min1S1

c2

e2

ED:Y 20M5D1H1Min1S1

c3

(B)

c0 e0

c1 e1

ED:Y 15M2D1H1Min1S1

c2

e2

ED:Y 20M5D1H1Min1S1

c3

(C)

c0 e0

c1 e1 c2

e2

ED:Y 20M5D1H1Min1S1

c3

Figure 4.4 Time transition firing in ALTO-net multiple scenarios.

4.2.2 Interval-timed acyclic nets

Timed simulation is a modelling and analytical technique that considers time as a crucial

element in simulating dynamic systems. The main feature of interval-timed acyclic nets

(described below), which are used for simulation after working out the timings of transitions,

is that transitions which are enabled need to start their enabling immediately, and the firing

lasts some time within an interval. Thus, the startfiring and the endfiring of a transition are

considered as two distinct events [62].

The firing of an enabled transition in timed simulation is composed of two ‘conceptual’

steps; the first calculates duration of the firing time, and the second starts to countdown the

time units of the duration for the enabled transition [62].

4.2.3 Time semantics

Below N is the set of non-negative integers, and N+ = N\{0}.

Definition 4.2.1 (interval-timed acyclic net) An interval-timed acyclic net (or ITA-net) is

a quadruple itanet = (P,T,F, I) such that (P,T,F) is a well-formed acyclic net, and I:T →

{[n,m] | n,m ∈ N+∧n ≤ m} is its interval function.
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For every t ∈ T , we denote I(t) = [sfd(t), lfd(t)], calling sfd(t) and lfd(t) the shortest

firing duration and the longest firing duration of t, respectively.

Definition 4.2.2 (state of ITA-net) A state of an ITA-net itanet = (P,T,F, I) is a pair S =

(M,h) such that M ⊆ P and h ⊆ T ×N is the clock relation. The initial state of itanet is

Minit
itanet = (Minit

(P,T,F),∅). All states of itanet are denoted by states(itanet).

The pair (t,0) ∈ h means that t has just finished its activity, and (t,k) ∈ h with k > 0

means that t has still k time units to finish. Moreover, if there is no k such that (t,k) ∈ h, then

t is inactive. There are three types of events are distinguished : startfire, endfire and tick

events. The effect of each of these events on the state of an ITPN is given below.

Definition 4.2.3 (state change rules) Let S=(M,h) be a state of an ITA-net itanet=(P,T,F, I).

The following are possible state-changing events startfire, endfire, tick events and global events:

• Startfire events: S U−→
+

(M\•U,h∪{(t,kt) | t ∈U}), where U is a maximal step enabled

at M, and sfd(t)≤ kt(t)≤ lfd(t), for every t ∈U.

• Endfire events: S V−→
−

(M∪V •,h\{(t,0) | t ∈V}), where V = {t | (t,0) ∈ h}.

• Tick events: S ✓−→ (M,{(t,k−1) | (t,k) ∈ h}).

• Global events: S U :V−−→
±

S′, provided that: S V−→
−

S′′ U−→
+

S′′′ ✓−→ S′, for some states S′′ and

S′′′.

A global event S U :V−−→
±

S′ may be such that U =V =∅, in which case only the tick event has

an effect. If, in addition, S = (M,∅), then also the tick event has no effect and S = S′ and M

is a terminal marking of acnet.

Definition 4.2.4 (time semantics) The time step sequence semantics of itanet is defined

through sequences of global events:

(Minit
itanet =)S0

U1:V1−−−→
±

S1
U2:V2−−−→
±

. . .
Un−1:Vn−1−−−−−−→

±
Sn.
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Algorithm 9 allows to simulate the timed behaviours for O-net. Lines 6 and 7 check if

the intervals late start and early finish are specified for the transition node and then calculate

the early duration interval for the event. Line 8 displays the duration above the event with

colours for each time unit (Year: red, Month: magenta, Day: blue, Hour: green, Minute:

purple, Second: cyan). Lines 11 and 12 start firing using the duration interval. The timed

simulation steps is specified below. It describes how the transition behaviour change in a

system.

1. Check if latest start (date-time) and earliest finish (date-time) of t are specified.

2. Calculate the shortest firing duration then display the time units of (t), Eduration: Y,

M, D, H, Min, S denoted by Year, Month, Day, Hour, Minute and Second respectively.

3. Remove the token from the pre-place to enabled transition (t) to holds the token for

the duration of the firing time, then the timer will start by decrementing the time unit.

4. If the time units are finished then the token moves automatically to the transition

post-place

4.2.4 Case study

In this section, we analyse an example of a timed information and simulation structured

occurrence net, using the method proposed above. The evaluation of the proposed solution

and validation of its effectiveness is carried out using small size example, the existing medium

size case study constructed by MSc student [38].

Scenario 1:

The scenario in Figure 4.5 was interesting because it combines a behavioural abstraction

and a synchronous channel place between Oswald and an individual called Donovan. It

demonstrates that both Donovan and Oswald are in the US Marines at the same time, they

communicate, Oswald gets dishonourably discharged and is then unemployed. Donovan

stays in the marines a little longer and then moves on.
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Algorithm 9 Timed simulation of O-net
1: Inputs:

onet - O-net with time intervals
M - current marking

2: Output:
onet with a step enabled and time units
t := enabled transition of onet

3: U := a step of onet
4: for all t ∈ T do
5: if •t ⊆ M then ▷ t is enabled
6: if It

l,s.specified∧ It
e, f .specified then

7: It
e,d := It

e, f − It
l,s

8: display duration in t
9: add t to U

10: for all t ∈U do
11: if t ∈U has time units then
12: t − f iring according to its time units
13: if t its time units = 0 then
14: t− executed
15: t−calculate new transition

Figure 4.5 Case study
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Figure 4.6 illustrates the case study depicted in Figure 4.5, emphasising the temporal

aspects. The sequence of firing steps unfolds as follows: initially, events {e1} and {e3} engage

in synchronous communication, implying simultaneous firing with identical duration intervals.

Subsequently, events {e2} and {e4} become enabled to fire, leading to the subsequent firing

of {e5}.

Figure 4.6 Case study with time information
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4.3 Maximal events (firing steps)

The term maximal events or firing steps refers to the sequences sets of transitions that can be

executed simultaneously, leading to a state change with no further enabled transitions. The

time simulation for a maximal enabled events of multiple O-nets. More precisely the maximal

sets of firable transitions are selected so that the enabled transitions in those sets must all

fire simultaneously, and the firing of each transition takes a specific amount of time [62].

Understanding maximal events is essential for ensuring the correctness, performance, and

reliability of concurrent systems represented by SO-nets. This understanding is essential for

comprehending how a system evolves over time, especially in scenarios involving concurrent

processes.

Algorithm 10 is for implementing maximal events (firing steps), in lines (6-8) checks if

the late start and early finish intervals are specified in the enabled transitions, then calculates

the early duration interval and associates it with each transition. Lines (12-14) start firing

simultaneously all the enabled transitions using the early duration interval.

In Figure 4.7, we have three different scenarios (A, B and C) with a set of enabled

transitions that have different early duration interval for each transition. The early duration

interval ED is associated with each transition t, the firing of the transition t takes exactly ED

time units ED: Y, M, D, H, Min, S. When a transition starts to fire then its time units start to

countdown I(t). If there is a conflict between several enabled maximal sets, the choice is

arbitrarily solved. The three different scenarios are generated by different systems and we

show how they go through four initial stages of simulation in the same diagram. (We use (st)

to indicate the start of firing and ( f in) the finish of firing of a transition). In the first step of

Figure 4.7 ast , cst , and gst are executed. After that g of the third scenario (C) finishes firing

using g f in and h can start firing using hst . Another possibility is to start by firing ast , cst , and

est . After that a of the first scenario (A) finishes firing using a f in and b starts firing using bst .

Figure 4.8 shows a simulation example with synchronous communication in two different

scenarios (A and B) with a set of enabled transitions that have different duration intervals

for each transition. In synchronous communication, the enabled transitions take the same

duration intervals and the two fire simultaneously. Thus, as illustrated in Figure 4.8 , we have



64 Time Simulation in SO-Nets

Algorithm 10 Timed simulation maximal sets of enabled transitions
1: procedure SIMULATIONmaximalSets

Inputs:
ON− set of scenarios (ONs) with time intervals
M - current marking

2: Output:
ON set of maximal steps (ONs) and time units
t := enabled transition of onet

3: array set of maxenabledU := []
4: for all t ∈ T do
5: if •t ⊆ M then ▷ t is enabled
6: if It

l,s.specified∧ It
e, f .specified then

7: It
e,d := It

e, f − It
l,s

8: display duration in t
9: add t to set of maxenabledU

10: for all t ∈ set of maxenabledU do
11: if t ∈ set of maxenabledU has time units then
12: t − start f iring according to its time units
13: if t its time units = 0 then
14: t−executed
15: t−calculate new transition

Figure 4.7 Maximal enabled events (firing steps)
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Figure 4.8 Maximal enabled events (firing steps) with synchronous CSO-nets
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ast and cst fired simultaneously first, and then a f in and c f in fired simultaneously in scenario

(A). After that b and d are enabled to start firing.

4.4 Related Work

We focus in this thesis on the hierarchical simulation of timed behaviours of how a system

will behave. In this section, we review several of the related works of time simulation in Petri

net models using time, highlighting the key findings and contributions from existing studies,

and revealing the current state of the field in which this thesis is situated.

In Timed Petri nets are introduced in [68], the time was associated with transition. For

system modelling, where each transition requires a finite, non-zero duration to execute [68]

proposed to simulate the speeds of processes or of individual steps in a process. The paper

specified a duration dt to each transition t. If a transition t in a timed Petri net is enabled, it

must fire immediately. Thus, the maximal-step rule ensures that a maximum number of (just)

enabled transitions are always fired. A transition firing cannot be stopped and lasts for dt

time units. The timing of transitions firing events is documented in a tabular format referred

to as a firing schedule. A firing schedule for a timed Petri net is a series of initiation and

termination periods for net transitions. The firing of a transition is possible if the transition

was enabled at the time of the firing. The firing schedule is feasible if every firing in it is

feasible. A firing schedule is not feasible if it requires the start or end of an activity earlier

than allowed by the end of other activities. A timed Petri net’s firing schedule may not be

feasible, since some transitions are scheduled to fire even when they are disabled.

In [52], the time attributes were assigned to transitions where each transition has two

times specified. The initial value represents the minimum amount of time that must pass since

all input conditions of a transition are enabled for that transition to become operational. The

other time specified is the maximum amount of time during which the input conditions may

be enabled without the transition activating. The transition must fire thereafter. In general,

these two periods provide an approximation of the minimum and maximum execution times

of the transitions. This paper uses the timed Petri net model to study the recoverability of
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communication protocols. It shows that if some a priori knowledge of the events’ execution

time is not provided, then there are no feasible asynchronous recoverable communication

protocols.

In [19], the analysis of concurrent systems is presented in which time appears as a

measurable and continuous parameter. Communication protocols are considered as one of

the various systems in existence. This study presents an enumerative analysis technique

for nets, which involves the computing of a set of state classes and the establishment of

a reachability relation on this set. The utilisation of an enumerative technique enables the

derivation of a finite representation of the behaviour shown by a broad range of time Petri

nets. In the domain of time Petri nets, a common practice involves assigning two distinct

time values to each transition. These two values are referred to as the ‘static earliest firing

time (EFT )’ and ‘static latest firing time (LFT ),’ denoting the smallest and largest firing

times, respectively, for any given transition. The transition’s static firing interval consists of

the closed left-bounded interval of times between its static (EFT ) and (LFT ). As a result,

when the net is executed, these intervals are referred to as (dynamic) firing intervals, and their

boundaries are referred to as (dynamic) EFTs and LFTs. A temporal Petri net’s behaviour is

characterised by the set of states it can reach from its beginning state or, conversely, by the

set of firing schedules that are possible starting from that initial state.

In the research presented in [26], the preconditions of transition contain more than one

token (indicating multiple enabledness of transitions), and then transition remains enabled

following its own firing or a firing of a conflicting transition. This scenario is interpreted

by assuming that a firing of transition causes a disabling of transition followed by a new

enabling, and then the time constraints associated with transition must be applied again after

the firing, starting from the firing time. The time Petri net’s global state is described in [26]

as a pair consisting of a marking as the first component and a set of clocks as the second,

one for each enabled transition. The clock of a transition starts at zero when it is enabled

and increases while time passes. When the clock’s value approaches the timing constraint’s

lower bound, the transition becomes fireable, and is forced to fire when the value of the clock

reaches the higher bound of the timing constraint.
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The paper [40] introduces timed Petri net simulator software (TiPeNeSS). It can be used

to simulate timed Petri nets that include transitions with firing delays that are generally

distributed. The functionalities of TiPeNeSS are: investigation of stability in each place

and each transition, and steady state simulation. First, transient simulation function is

mostly used to check the estimated number of tokens after a determined period of time. The

replication/deletion strategy is required for transient simulations to guarantee the simulation’s

accuracy. Steady state simulation function is employed to determine the steady state behaviour

of specific parameters. Finally, stability analysis serves the purpose of ascertaining weather

a system parameter has a steady state distribution. Given that stability is a fundamental

requirement for conducting steady-state simulation, it becomes imperative to confirm the

system’s stability. The TiPeNeSS system incorporates a statistical module that ensures the

precision of the simulation by enabling the determination of simulation termination based on

precision criteria, namely (maximal relative error and confidence level).

The paper [54] presents a discrete-time stochastic Petri net model. The discrete-time

SPNs fill the gap between timed Petri nets and normal SPNs. Nonetheless, the introduction

of discrete time introduces complexity to the SPN model by allowing the possibility of

multiple transitions firing simultaneously within a single time step. This particular type of

stochastic Petri net (SPN) is useful in the context of simulating systems that have underlying

synchronisation, such as those using a system clock.

The studies conducted by [37, 43, 78] illustrate a high-level Petri net model that incor-

porates interval timing. A coloured Petri net that is extended with time is referred to as an

interval-timed coloured Petri net (ITCPN). Time is represented in tokens, and transitions

determine a specific delay for each generated token. The delay is determined by a range of

values, consisting of an upper limit and a lower limit, sometimes referred to as an interval. The

ITCPN model facilitates the depiction of the dynamic characteristics exhibited by extensive

and intricate systems, while also preserving the capability for formal analysis. In the ITCPN

model, a timestamp (non-negative integers) is assigned to each token. The timestamp denotes

the specific time at which a token becomes available. The natural choice for high-level Petri

nets is to associate time with tokens, as this aligns with the existing association of colour
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with tokens. The enabling time of a transition refers to the highest timestamp among the

tokens that are to be consumed. In addition, the ITCPN model’s execution is controlled by

the global clock. The model will continue to stay at a specific model time as long as there

exist binding components that are both colour-enabled and ready. Several scholarly articles

have put forth a Petri net model that incorporates explicit quantitative time (e.g. [2, 82]).

4.4.1 Evaluation

In real-world systems, the execution of activities does not occur instantaneously. Although

extensive research has been carried out on time simulation, to the best of our knowledge

no single study exists using date-time intervals to simulate the behaviour of the system. In

addition, while there are various tools available for simulating Petri nets, we were unable

to locate a tool capable of simulating Petri nets using (date-time) intervals. We aimed

in this thesis to implement a novel tool-supported formalism (timed SO-nets and timed

simulation) for modelling and reasoning about concurrent events with uncertain or missing

time information in systems. It is built on collections of connected timed occurrence nets.

Timed simulation tools for criminal investigations can help investigators reconstruct the

timeline of events related to a crime. The way in which time is represented in our model (using

date-time intervals) is much more practical for supporting, for example, crime investigations

than previously proposed extensions to deal with time simulation in the literature.

4.5 Conclusion

In conclusion, time simulation has emerged as a powerful tool utilised in several domains to

model and analyse the behavior of CE-systems, encompassing applications in the research

of crime and accidents. In criminal investigations, in particular, time simulation proves to

be effective, empowering investigators to reconstruct the chronological sequence of events

that culminated in a crime. By simulating time, investigators gain valuable insights into the

circumstances preceding a crime, aiding the identification of suspects and the collection of

crucial evidence.
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In this chapter, a major contribution was the proposed approach of presenting a timed

simulation behaviour for basic SO-nets and ALTO-net. We have introduced the idea of

firing sequences and behaviour graphs to characterise the action of SO-nets. The concept of

timed simulation behaviour has been introduced to analyse systems, for example, criminal

investigations to assist investigators in reassembling the sequence of events and analysing

system behaviour. Ensuring that the new execution approach does not disturb the existing

notations and definitions developed for the SO-nets was the primary challenge when working

with novel execution time semantics to simulate time step-by-step. The coherence and

accuracy of the model’s original framework has been preserved by carefully integrating the

new time semantics.

We defined the firing sequence, notation and algorithm of timed-interval simulation

SO-nets. Two ‘conceptual’ stages comprise the firing of an enabled transition in timed

simulation: the first calculates the duration of the firing time, and the second begins to

countdown the time units of the enabled transition’s duration interval. In addition, the second

major development was the algorithm and definition of time simulation for maximal enabled

events of multiple O-nets. This development is critical to understand how a system changes

over time, particularly in situations when multiple processes are running simultaneously.

In the future, more work should be done to improve the time simulation for asynchronous

communication in SO-nets. Adding a filter simulation could also be helpful for simulating

behaviour using time data, which would allow for a more detailed study of certain events that

happened in specific time. It would then be easier to understand how over time, and these

improvements could allow the analysis of more complex models.

Checking of time consistency and estimation for timed SO-nets and ALTO-nets, and

the development of timed simulation for SO-nets, are discussed in Chapters 3 and 4. The

implementation is described in Chapter 5.



Chapter 5

SONCraft: Tool for SO-Nets with Time

This chapter discusses implementations supporting the concept of (date-time) information

and time simulation behaviours in the SONCRAFT toolkit.

5.1 Introduction

In Chapters 3 and 4, we described the concept of a time property framework and time

simulation in the basic SO-nets and ALTO-net. This chapter provides an account of the

practical applications that support these notions. The SONCRAFT toolkit supports the visual

editing of timed SO-net models, as well as their verification, temporal simulation, and

analysis.

WORKCRAFT [81] is a framework that provides a flexible common underpinning for

graph-based models such as Petri nets. SONCRAFT is an open source Java plug-in tool that

is integrated into the WORKCRAFT platform. It offers various functionalities that facilitate

the creation of SO-net based models as well as their animation and verification. An intuitive

user interface that promotes efficient use is made possible by a number of implemented

algorithms. Also, by employing these tools, users can create SO-net models for various

scenarios. Complex behaviours, such as the failure behaviours of CE-systems, can be easily

portrayed and analysed. In addition, SONCRAFT provides some initial facilities for entering,

editing, validating and simulating three types of SO-nets, namely, CSO-nets, BSO-nets and
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ALTO-net. We implemented (date-time) intervals for events and conditions and analysed

them in SONCRAFT. We also implemented time simulation using the (date-time) intervals.

In this section, we present the implementation of the date-based tools and the time simulation

tool.

In this chapter, Section 5.1 presents an overview of the open-source SONCRAFT’s plug-in

functionality, which helps users to automatically load large amounts of data. Section 5.2

presents the implementation of a time-based SO-net tool and the related analysis to estimate

the missing time and check the time consistency. Section 5.3 describes the time simulation

tool and the simulation steps. Section 5.4 provides concluding remarks for the chapter.

5.2 Time-based functionality

We implemented a time-based tool for SO-nets and their abstractions, which is described in

the following sections.

5.2.1 Time setting tool

The time setting tool shown in Figures 5.1 and 5.2 is an interface for specifying date-time

and duration intervals of the event and condition nodes in an SO-net model. The early and

late duration were specified as follows:

(Y :Year,M:Month, D:Day, H:Hour, Min:Minute, S:Second).

Users can manually set the date information for a selected event in the date panel. For each

manually input date, the tool verifies whether or not the date or time is well-defined for each

event in the SO-net model. Moreover, for each node, the date is checked.

In addition, the tool provides a calendar for the user to easily set the date of the nodes in

the model and the time (hour, minute and second). Moreover, the duration of the node can

be set manually or calculated as shown in Figure 5.1.
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Figure 5.1 The time property setter.

Figure 5.2 Calendar to set date.
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5.2.1.1 Time Visualisation

The time mode inside the SONCRAFT tool the presentation of temporal information for every

event within a SO-net model. Figure 5.3 shows the time representation of an event node

displayed with (date-time) intervals (i.e. start, end and duration). Thus, the time information

displayed on each event indicates the Estart, Lstart time and Efinish, Lfinish time of the event.

Thus, each event shows its Eduration and Lduration value, which the tool calculates from

the start and end time intervals of the event.

Figure 5.3 Time visualisation using the time setting tool.

5.2.2 Time estimator tool

We implemented a time estimator tool designed to handle uncertain time information. In

addition, the tool improves the precision of any temporal details provided by the user to

the model. Figure 5.4 illustrates an O-net model featuring specified Efinish (date-time)

information for a chosen node e1 within the context of the estimator setting window. This

window allows users to add an early or late default duration interval for an unspecified

duration interval, and then run the estimation for the nodes in the model

5.2.3 Date consistency checking tool

The date consistency checking tool provides consistency checking for the time information

specified for events in the SO-net model. Figure 5.5 shows the tool performing a consistency
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Figure 5.4 Estimator tool for SO-nets.

check for O-net models. The result displays the time information checking task when a node

has complete, partial or empty (date-time) information, as in Figure 5.6. Moreover, nodes

with a date information and inconsistency errors from any O-net are shown. Figure 5.6 shows

one event with a date inconsistency error. For example, the error message involves event

e0 and shows that its start date (Estart: 2022/10/04 06:20:02, Lstart: 2022/10/04 06:20:02)

is later than its end date (Efinish: 2022/10/03 00:00:00, Lfinish: 2022/10/03 00:00:00); in

addition, the consistency verification also checks the consistency for CSO-net and BSO-net

models.

Figure 5.5 Date consistency tool.

Figure 5.7 presents an instance that contains a BSO-net and CSO-net demonstrating

inconsistencies in their time information. The depicted scenario highlights the initial error

message concerning the behaviour model between O-nets g0 and g1. Specifically, it indicates

a discrepancy in the (date-time) values of c0 and c2, revealing that the commencement date

of c0 (Estart: 2022/10/22 10:15:00, Lstart: 2022/10/22 10:15:00) does not match the start

date of c2 (Estart: 2022/10/25 00:00:00, Lstart: 2022/10/25 00:00:00).

Figure 5.7 shows that the second error message involves a synchronous communication

inconsistency model between g1 and g2. It indicates that the (date-time) of e1 and e2 and
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Figure 5.6 Line-like O-net with date consistency checking.

the date of (g2.e2) (Estart: 2022/11/22 12:30:00) is not equal to (g1.e1) (Estart: 2022/10/02

12:30:00). Also, the date of (g2.e2) (Lfinish: 2022/11/25 07:00:00) is not equal to (g1.e1)

(Lfinish: 2022/10/02 14:30:00).

5.3 Time simulation tool

5.3.1 Time simulation in SO-nets

We designed a time simulation tool to simulate the behaviour of complex evolving systems

using SO-net. Each event in the SO-net has an early and late duration interval, which were

used to simulate the time of the event. In the time simulation tool, we implemented two

buttons to simulate the duration of the event; the early time simulation button was defined as

ETimeSimulation, and the late time simulation button was defined as LTimeSimulation, as

shown in Figure 5.8.

The time simulation function in the SO-net plug-in can be activated by clicking on

either the early or late time simulation buttons in the editor tools panel. If the (date-time)

and duration intervals are specified, then the initial marking is automatically set, and all

enabled events are highlighted, as shown in Figure 5.9. The time simulation is then conducted

manually by clicking the enabled event, after which the calculation for the event duration



5.3 Time simulation tool 77

Figure 5.7 BSO-net and CSO-net with date consistency checking.

starts, displaying the result above each event. As shown in Figure 5.10, a countdown of the

duration time unit then begins; the durations interval have different colours for each time unit

(Year:red,Month:magenta,Day:blue,Hour:green,Minute:purple,Second:cyan).

Figure 5.8 Time simulation buttons.

5.3.2 Time simulation in BSO-nets

In this section as shown in Figure 5.11 illustrates another example of time simulation using a

BSO-net model. Figure 5.12 shows the time simulation steps. The only step {e1} enabled at

the initial marking (c0,c2) and the (date-time) intervals are defined as Lstart: 2024/02/02
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Figure 5.9 Event enabled to simulate the time.

Figure 5.10 Year, Month, Day, Hour, Minute and Second.
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00:00:00 and Efinish: 2025/03/02 00:00:00. The duration between the late start and early

end is early duration Eduration: Y1M1D0H0Min0S0, and the firing steps are shown in

Figure 5.12a.

Figure 5.11 The initial event enabled in BSO-net.

The time firing of {e1} changes the marking to (c0,c3), which enables {e0}. The intervals

are delineated as follows: Lstart is set at 2025/03/02 06:00:00 and Efinish at 2025/03/03

07:00:00. The duration is denoted as Eduration: Y0M0D1H1Min0S0, and the firing steps

are shown in Figure 5.12b.

In Figure 5.12c, the time firing of {e0} produces (c1,c3) and also enables {e2}. The

intervals are specified as follows: Lstart 2025/03/03 07:01:01 and Efinish 2025/03/03

08:02:02. The duration is denoted as Eduration: Y0M0D0H1Min1S1, which produces

the final marking (c1,c4).
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(a) e1 enabled to fire.

(b) e0 enabled to fire.

(c) e2 enabled to fire Figure 5.12 Time simulation step by step.
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5.4 Conclusion

This chapter introduced SONCRAFT, which is a freely available platform utilised for the

purpose of modelling, analysing and visualising SO-nets. It is also employed in the process

of validating models. The functionalities of SO-nets and their characteristics in SONCRAFT

are currently being expanded to encompass new applications, which were introduced in this

chapter.

The concept of a timed SO-net tool was implemented in order to represent and analyse

causally connected events and concurrent occurrences in developing systems with ambiguous

or incomplete temporal information. Moreover, the tool provides efficient date estimation

for events with unspecified date information (estimator setting) and a tool to check the

consistency of the date information for the entire SO-net, which was introduced in Chapter 3.

In addition, we presented a time simulation tool to simulate the behaviour of the model for,

e.g., criminal investigations to help investigators reconstruct the timeline of events and analyse

system behaviour. The time simulator tool implements the firing steps described in Chapter 4

for simulating models using on SO-nets. Incorporating time information and time simulation

into the existing SONCRAFT was the primary obstacle of the work reported in this chapter.

In order to ensure that time-based data and time simulations could be accurately represented

without disrupting the existing functionalities of the tool, the platform’s fundamental structure

had to be carefully adapted to incorporate temporal elements.

In the next chapter, we discuss the time granularity for behavioural structured acyclic

nets.



Chapter 6

Time Granularity in BSA-Nets

The present chapter discusses the temporal granularity of the two-level behavioural structured

acyclic nets (BSA-net). To simulate the behaviour at different levels of time granularity

– minutes and seconds – we consider sequences of phases. Time estimation notation and

consistency checks at the two levels are then addressed.

6.1 Introduction

Granularity is crucial when examining real-life systems at various levels of abstraction, as

it may be necessary to transition from one level to another to comprehend the observed

phenomena [59]. Time granularity, which refers to the degree of accuracy with which

temporal intervals are delineated and quantified, is an essential element in a wide range of

disciplines, including computer science, physics, finance, and simulation research. Time

granularity is the degree of accuracy or precision with which we measure time. The ability to

break down time into smaller chunks is crucial, for effective analyses of complex systems. For

instance, measuring time in seconds can be most appropriate for analysing low-level (detailed)

system behaviour, whereas measuring time in minutes can be most appropriate for analysing

high-level (abstracted) system behaviour [55]. Having said that, it is of paramount importance

that time information captured using different granularity time scales is kept consistent across

the different levels of abstraction. Granularity simulations of timed behaviours is a powerful
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tool for analysing complex evolving systems in the case when different time granularity is

used at different levels of abstraction.

Time information and simulation were discussed within the SO-net framework in Chap-

ters 3 and 4. These chapters used unstructured time values (positive integers), without

considering practical aspects of representing time-related aspects of system such as human

comprehension. Chapter 3 proposed representing time using dates as a much more practical

way to support crime and incident investigations than the number-based approach. In such

cases, it is important to identify the order in which events have happened as well as their

duration. Chapter 4 described time simulation tools to help investigators reconstruct the

timeline of recorded events.

In this chapter, we discuss theoretical underpinnings, new algorithms, and an implemented

prototype software tool for hierarchical and abstraction-based analyses and simulations of

timed behaviours of complex evolving systems when different time granularity is used at

different levels of abstraction. The discussion is carried out using behavioural structured

acyclic nets (BSA-net), which are part of the SO-nets framework. As a result, an incident

(crime) investigator could use seconds to analyse the fine details of individual events involved

in an incident, and minutes to analyse causal links between these events.

This chapter is subdivided into seven sections. Section 6.2 gives a background about

Petri nets and behavioural structured acyclic net. The formalism that is used to support the

concept of time granularity in order to model time information in various temporal domains

with different levels of detail is defined in Section 6.3. In Section 6.4, we discuss a time

granularity model for the two-level BSA-net called TGBSA-net. In Section 6.5, we detail the

steps involved in simulating a time granularity behavior of TGBSA-nets. The notation of

time estimation for TGBSA-nets and algorithms for estimating and increasing the precision

of time in the lower-level granularity using default duration are presented in Section 6.6.

Conditions and algorithms for checking the consistency in the presence of different levels

of time granularity are given in Section 6.7. A prototype implementation tool support for

TGBSA-net with time unit for each level minute for the upper level and second for the lower
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level, and the time simulation behaviour is defined in Section 6.8. An overview of prior

literature concerning time granularity is given in Section 6.9.

6.2 Acyclic nets and BSA-nets

In this section, we recall a model based on acyclic nets which generalise occurrence nets.

Some of the notations and terminology are the same as in the previous chapters, but one

should bear in mind that they can sometimes be formulated differently (or have somewhat

different intuitions).

6.2.1 Acyclic nets

Intuitively, acyclic nets are Petri nets that do not use iterative execution. They provide a

clear depiction of causality, concurrency and conflict, which are fundamental attributes of

concurrent systems [51].

Definition 6.2.1 (acyclic net [4]) An acyclic net is a triple acnet = (P,T,F), where P and

T are disjoint finite sets of places and transitions respectively, and F ⊆ (P×T )∪ (T ×P) is

the flow relation such that: (i) P is nonempty and F is acyclic; and for every t ∈ T , there are

p,q ∈ P such that pFt and tFq. ♢

Graphically, places are represented by circles, transitions by boxes, and arcs between the

nodes (i.e., places and transitions) represent the flow relation. If it is important to indicate

explicitly acnet, we denote P, T , F by Pacnet, Tacnet, Facnet, respectively.

Similarly as for O-nets, to indicate relationships between different nodes, for all x ∈ P∪T ,

we denote the directly preceding and directly following nodes, as follows:

•x = {z | zFx} and x• = {z | xFz}.

The above notations extend in the usual way to sets of nodes.
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The markings of an acyclic net acnet are defined as sets of places. Moreover, the default

initial and final markings are respectively given by:

Pinit
acnet = {p ∈ P | •p =∅} and Pfin

acnet = {p ∈ P | p• =∅}.

Markings are indicated by drawing black tokens inside the corresponding places.

The execution of acyclic nets follows the standard definition Petri net step semantics.

A set of transitions U (a step) is enabled at a marking M if •t ⊆ M and •t ∩ •v =∅, for all

t,v ∈U (t ̸= v). This is denoted by M[U⟩acnet M′, where M′ = (M \ •U)∪U•. Moreover, a

marking M′ is reachable from marking M if there is a sequence of steps U1, . . . ,Un (n ≥ 0)

and a sequence of markings M0(= M),M1, . . . ,Mn(= M′) such that Mi−1[Ui⟩acnet Mi, for

i = 1, . . . ,n. We also denote

M[U1 . . .Un⟩acnet M′ and M′[⟩acnet M ,

calling U1 . . .Un a step sequence from M to M′. Moreover, all markings reachable from

Minit
acnet are simply called reachable.

An acyclic net is considered to be well-formed if, for any step sequence that begins from

Minit
acnet it is the case that: (i) no transition is executed more than once; and (ii) no place

‘receives’ a token more than once.

Note that an O-net is an acyclic net such that |•p| ≤ 1 and |p•| ≤ 1, for every place p.

Moreover, all O-nets are well-formed.

p1
a

p2

b
p4

p3

c

d

p5

Figure 6.1 Acyclic net
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6.2.2 BSA-nets

Behavioural structured acyclic nets (or BSA-nets) can model activities of evolving systems [4].

An execution history is represented on two different levels: the lower-level, which is used

to indicate behavioural details, and the upper-level, which is used to represent the stages

(phases) of system evolution. Figure 6.2 shows an example of BSA-net [4]. To keep the

technical discussion simpler, we do not consider the general BSA-nets. Instead, we consider

the case when the upper-level comprises one acyclic net, and the lower-level also comprises

one acyclic net.

Definition 6.2.2 (BSA-net [4]) A (simple) behavioural structured acyclic net (or BSA-net) is

a triple bsan = (lanet,hanet,β ), where lanet and hanet are well-formed acyclic nets with

disjoint nodes and β ⊆ Planet ×Phanet.

Moreover, the following are satisfied (below βp = {r | rβ p}, for every place p in hanet):

• Minit
hanet = {p0} and βp0 = Minit

lanet.

• For every t ∈ Thanet, there are places p and q such that •t = {p}, t• = {q}, and

βp[⟩lanet βq. ♢

Intuitively, lanet provides a ‘lower-level’ view and hanet provides a ‘upper-level’ of

alternative records of system behaviour (and if hanet is a line-like O-net, then only one

such record is represented). The role of β is to identify in the lower-level view the divisions

of behaviours into ‘phases’, and each βp indicates a ‘boundary’ between two consecutive

phases.

A marking of a BSA-net bsan is a set of places M ⊆ Planet ∪Phanet, such that M ∩Planet

is a reachable marking of lanet and M∩Phanet is a reachable marking of hanet. (The latter

means that M∩Phanet = {p}, for some place p.) In particular, Minit
bsan = Minit

lanet ∪Minit
hanet is the

initial marking of bsan.

The phase of a place p in hanet is a set of places in lanet given by:

phase(p) = βp ∪{M | ∃t ∈ p•:t• = {q}∧βp[⟩lanet βq},
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and a marking M is phase-consistent if M∩Planet ∈ phase(p), where M∩Phanet = {p}.

Definition 6.2.3 (BSA-net firing rule [4]) Let bsan=(lanet,hanet,β ) be BSA-net as in Def-

inition 6.2.2.

1. A step in bsan is a set of transitions U ⊆ Tlanet ∪ Thanet. It is enabled at a phase-

consistent marking M if there is a phase-consistent marking M′ such that

M∩Planet [U ∩Tlanet⟩lanet M′∩Planet

M∩Phanet [U ∩Thanet⟩hanet M′∩Phanet.

We denote this by M[U⟩bsan M′.

2. A marking M′ of bsan is reachable from marking M of bsan if there is a sequence of

steps U1, . . . ,Un (n ≥ 0) of bsan and a sequence of markings of bsan

M0(= M),M1, . . . ,Mn(= M′)

such that Mi−1[Ui⟩bsan Mi, for i = 1, . . . ,n. We also denote

M[U1 . . .Un⟩bsan M′ and M′[⟩bsan M ,

calling U1 . . .Un a step sequence of bsan from M to M′. Moreover, all markings

reachable from Minit
bsan are simply called reachable. ♢

Figure 6.2 shows a behavioural structured acyclic net (BSA-net) model of activities of an

evolving system [4]. An execution history is represented on two different levels: the lower-

level lanet, which is used to indicate behavioural details, and the upper-level hanet, which is

used to represent the stages (phases) of system evolution. The function of β is to delineate

the lower-level divisions of behaviours into "phases," and each βp denotes a "boundary"

between two consecutive phases.
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Figure 6.2 Simple BSA-net.

For example, in Figure 6.2, transition c identifies a phase in which transitions g,h,k, l are

executed. Moreover, we have:

{r1,r2, p1} [{g,k}⟩bsan0
{r4,r5, p1} [{h, l,c}⟩bsan0

{r7,r8, p3} [{ j,m,d}⟩bsan0
{r10,r11, p5}.

Hence, {g,k}{h, l,c}{ j,m,d} is a step sequence from the initial marking of bsan0 [4].

6.3 Time granularity

The granularity of time is crucial, in particular, for comprehending the operations carried

out at coarse levels of time (e.g., abstracted actions) interact with each other [69]. The

description of temporal information might vary in terms of abstraction, depending on the

desired level of precision and the existing knowledge. The concept of time granularity refers
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to the level of detail and precision in the temporal annotation of statements pertaining to

executed actions [55]. Moreover, since different levels of abstractions can support different

levels of time granularity, it is imperative that the time scales associated with different levels

of abstractions are properly related and the behaviours expressed in them are consistent.

6.3.1 Formalising time granularity

Presenting a formal framework that supports the idea of time granularity enables the mod-

elling of time information in relation to temporal domains that have different levels of detail.

As in [32], such a formalism can be represented by the temporal structure:

F = ((T,≺,⊂),CONT,↕) ,

where T is a temporal universe consisting of a number of disjoint linear temporal layers T

which are totally ordered by the granularity relation ≺. Moreover, for all T ∈ T and x,y ∈ T ,

x ≪ y means that x strictly precedes y.

For example, we can have T = {Minutes,Seconds} with Seconds ≺ Minutes. A finer

characterisation of the layers is provided by the disjointedness relation ⊂. As an instance,

given T = {Years,Months,Weeks,Days} we have that

Months ⊂ Years Days ⊂ Months Days ⊂ Weeks

This implies that Years are pairwise disjoint when considered as sets of Months, and Months

are pairwise disjoint when viewed as sets of Days. However, we do not have Weeks ⊂ Months.

The relation CONT links each time point to its belongs layer, and the projection relation ↕

establishes a connection between each point and its direct or indirect descendants (downward

projection) as well as ancestors (upward projection).
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6.3.2 Properties of layers in time granularity

In this section, we recall the properties of layers that are important for describing intricate

real-time systems. Understanding the properties of layers in time granularity is vital for

enhancing processes, simulations, and analyses within various systems.

Different kinds of temporal structures for time granularity can be characterised through

additional conditions on the projection relation. Some of such properties are as follows

(below T,T ′ ∈ T): [32]

• Uniqueness. The projection relation does not establish a connection between separate

points that are part of the same layer:

∀x ̸= y ∈ T :¬ ↕ (x,y). (6.1)

• Separation. If T ′ ⊂ T then the decomposition intervals of different points of T are

disjoint:

∀x ̸= y ∈ T,x′,y′ ∈ T ′: (T ′ ⊂ T∧ ↕ (x,x′)∧ ↕ (y,y′)) =⇒ x′ ̸= y′. (6.2)

• Order preservation. The projection relation maintains the linear orderings within

layers (in a weak sense, since the projection intervals are ordered, but they might meet):

∀x,y ∈ T,x′,y′ ∈ T ′:

(T ′ ⊂ T∧ ↕ (x,x′)∧ ↕ (y,y′)∧ x ≪ y) =⇒ (x′ ≪ y′∨ x′ = y′).
(6.3)

• Convexity. The decomposition relation transforms each point x ∈ T within a contigu-

ous set into a collection of adjacent points (referred to as the decomposition interval)

within the set T ′. This criterion eliminates the existence of "temporal gaps" inside

the collection of elements of a certain point, as is the case when business months are

linked on days.
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For any ordered pair of layers T,T ′ (either T ≺ T ′ or T ′ ≺ T ), the projection relation

links any point of T with an interval of contiguous points of T ′:

∀x ∈ T,y,z,w ∈ T ′: (y ≪ w ≪ z∧ ↕ (x,y)∧ ↕ (x,z)) =⇒↕ (x,w). (6.4)

• Total covering. For any ordered pair of layers T,T ′, the union of the intervals of T ′

mapped with the points of T covers T ′.

• Homogeneity.

The projection relation establishes that for each pair of distinct layers arranged in a

specific level of detail, T ′ ⊂ T , it links a number of points in the finer layer with each

point of the coarser one:

∀x,y ∈ T : |{x′ ∈ T ′ | ↕ (x,x′)}|= |{y′ ∈ T ′ | ↕ (y,y′)}|. (6.5)

6.4 Time granularity model for BSA-nets

The behavioural relation in a BSA-net is a way to capture how the behaviour at a lower-level

can be interpreted at a higher (abstract) level. In this section, we introduce a time granularity

model for the BSA-net

bsan = (lanet,hanet,β )

defined as in Section 6.2.2, and the time annotations model outlined in Section 3.2 (we

assume that these annotations are given in the definition of bsan). The idea is to use a suitable

temporal structure from Section 6.3 so that time is interpreted in lanet and hanet using

different time scales.

In our discussion, time granularity will be dealt with by the discrete temporal structure

Fmin-sec = (({Minutes,Seconds},≺,⊂),CONT,↕)
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where Seconds ≺ Minutes and Seconds ⊂ Minutes. Moreover, CONT and ↕ are defined as

usual. Following this, the model of time granularity in bsan is introduced as follows:

• Time in lanet is interpreted using the Seconds = {1s,2s,3s, . . .} time domain.

• Time in hanet is interpreted using the Minutes = {1m,2m,3m, . . .} time domain.

Note that Fmin-sec is a convex and homogeneous temporal structure.

The resulting time granularity BSA-net (or TGBSA-net) is then given as:

tgbsan = (lanet,hanet,β ,Fmin-sec).

In diagrams, time annotations use integers to denote both minutes and seconds (and the

calculations involving minutes and seconds are carried out using the corresponding integers).

However, their meaning depends on the level in which an annotated node appears: in lanet,

an integer i denotes the i-th second, whereas in hanet an integer i denotes the i-th minute.

Thus, for example, 371 in lanet (i.e., 371s) corresponds to 7 in hanet (i.e., 7m) and so we

have ↕ (371s,7m).

c0

S:1.E:1

e0

d1

c1

S:1.E:3

e1

d2

c2

c3

S:1.E:4

e2

d3

c4 e3

d5

S:4.E:9

c5 e4

d21
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Figure 6.3 TGBSA-net

Figure 6.3 shows a TGBSA-net. The time annotations in the upper-level acyclic net

represent minutes. The lower-level acyclic net shows the detailed behaviour of the system

using seconds as time units. The dashed arrows between the two levels are used to illustrate

the relationships between the lower-level and upper-level behaviours. The start and end

times are represented above transitions are denoted by (S and E), and the duration times are

represented in the middle for each transition denoted by (d). Note that transition e0 abstracts

three consecutive transitions in the lower-level: e2, e3, and e4. If we simulate the behaviour
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of transition e0 in the upper-level, it takes one minute to execute, whereas the execution of

e2, e3, and e4 takes twenty nine seconds in total.

6.5 Time simulation for TGBSA-nets

In this section we discuss time simulation for TGBSA-nets. Time simulation with granu-

larity refers to the representation of time in a simulation using different levels of detail or

precision. This concept is crucial in several disciplines, such as computer science, physics,

finance, and engineering [71]. In this section we outline the simulation steps for a TGBSA-net

tgbsan = (lanet,hanet,β ,Fmin-sec). The overall idea is to follow the rules of the operational

semantics of the underlying BSA-net (lanet,hanet,β ) making sure that the timing constraints

of tgbsan are adhered to, including time granularity.

For example, consider the TGBSA-net in Figure 6.3. One of its possible step sequences

which respects time granularity constraints is {e2}{e3}{e4,e0}{e5,e1}, and Figure 6.4 shows

graphically the execution of such a step sequence.

Recall that, in Figure 6.3, the upper-level shows minutes and the lower-level shows seconds.

The start and end times are shown above each transition, and the duration is shown in the

middle for each transition. Transition e0 abstracts a set of transitions in the lower-level:

e2,e3,e4. When simulating transitions on a second-by-second basis and reaching the last

event, the minute-scale transition will automatically move token to the output place. For

example, in Figure 6.4, when e4 is fired, e0 will execute automatically after it.

Note that the format of displaying dates for the two levels of a TGBSA-net is different as

they use different time granularity. More precisely, the lower-level dates use the format:

Y :Years,M:Months,D:Days,H:Hours,Min:Minutes,S:Seconds ,

whereas the upper-level dates use the format:

Y :Years,M:Months,D:Days,H:Hours,Min:Minutes
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Figure 6.4 Simulation steps for TGBSA-net

Note also that in order to improve the readability of diagrams we can specify, e.g., the seventy

fifth second both as [75] and [1:15].

Algorithm 11 describes the time simulation algorithm for behavioural structured acyclic

net with time units Minutes in the upper-level and Seconds in the lower-level. To simulate

the time unit we used duration calculated from the start and end time unit in each transition.

In lines 13-16 when simulating transitions on a second-by-second basis and reaching the last

event, the minutes-scale transition will automatically move token to the output place. Lines

15–16: the transition at the upper level minute, which abstracts a set of transitions at the

lower level second, executes automatically to the output place when the token reaches the

final transition at the lower level second. Then, the algorithm calculates the next transition to

be executed
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Algorithm 11 Simulation of TGBSA-net
1: Inputs:

tgbsan - TGBSA-net
M - current marking

2: Output:
tgbsan with a step enabled and time units

3: U :=∅ a step of tgbsan
4: for all t ∈ T do
5: if •t ⊆ M then
6: if It

hanet,m.specified∧ It
lanet,s.specified then

7: It
d := It

f − It
s

8: display duration in t
9: add t to U

10: for all t ∈ U do
11: if t ∈ U has time units then
12: t − f iring according to its time units
13: if t its time units = 0 then
14: t−executed
15: if tlanet.last then
16: thanet−executed
17: t−calculate new transition

6.6 Time estimation for TGBSA-nets

Estimating time granularity is crucial in temporal analysis, as it directly impacts the precision

and correctness of our comprehension of dynamic systems. As before, we assume that in the

upper-level acyclic net time unit are minutes, and in the lower-level acyclic net time units are

seconds. The lower-level granularity is used to compute the missing values in time intervals

and then mapping the lower-level seconds to the upper-level minutes. Default duration is

used for nodes with unspecified duration. For example, as shown in Figure 6.5, where in the

lower-level we compute the missing time interval of transitions.

In Figure 6.5(a), the missing time is the start and end of e1 and e2, the missing time in

e3 is the end, and in e4 the missing time is the start. Algorithms 12 and 13 presented below

compute the missing time information for Figure 6.5(a) using the causal relation and Eq.(6.6),

where the missing interval of a transition e is possible to estimate if the other two intervals

are provided, as follows:
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Algorithm 12 Estimation finish time interval of a node using causal relation
1: procedure estimateFinish(Node n)
2: RBoundary := /0 ▷ nearest right nodes of n with specified early, late finish date and

time intervals
3: RSector := {n} ▷ nodes on paths from n to RBoundary nodes
4: f indRightBoundary(n,RBoundary,RSector)
5: backwardBFSDates(n,RBoundary,RSector)
6: procedure f indRightBoundary(Node n,Set Boundary,RSector)
7: Working := {n} ▷ nodes used for forward boundary searching
8: while Working ̸= /0 do
9: NextWorking := /0 ▷ Nodes with unspecified early and late finish time intervals

10: for all m ∈Working do
11: if causalPostset(m) = /0 then
12: add m to Boundary
13: else
14: for all nd ∈ causalPostset(m) do
15: add nd to Sector
16: if nd.E f inish.speci f ied ∧nd.L f inish.speci f ied then
17: add nd to Boundary
18: else
19: add nd to NextWorking
20: remove m from Working
21: Working := NextWorking
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Algorithm 13 Estimation finish time interval of a node using causal relation
1: procedure backwardBFSDates(Node n, Set Boundary, SetSector)
2: Working := Boundary ▷ nodes used for backward estimation of time intervals
3: while Working ̸= {n} do
4: NextWorking := /0 ▷ nodes with unspecified date, time and duration intervals
5: for all m ∈Working do
6: if ¬m.Eduration.speci f ied ∧¬m.Lduration.speci f ied then
7: m.Eduration,m.Lduration := de f aultDuration
8: for all nd ∈ causalPreset(m)∩Sector do
9: add nd to NextWorking

10: nd.visits := nd.visits+1
11: if ¬nd.E f inish.speci f ied ∧m.E f inish.speci f ied then
12: nd.E f inish := m.E f inish−m.Lduration
13: if ¬nd.L f inish.speci f ied ∧m.L f inish.speci f ied then
14: nd.L f inish := m.L f inish−m.Eduration
15: else if m.E f inish.speci f ied ∧m.L f inish.speci f ied then
16: nd.E f inish := nd.E f inish∩ (m.E f inish−m.Lduration)
17: nd.L f inish := nd.L f inish∩ (m.L f inish−m.Eduration) ▷ Eq.(6.7)
18: for all nd ∈ NextWorking do
19: if nd.visits = causalPostset(nd) then
20: for all ndout ∈ causalPostset(nd) do
21: if ¬ndout.Estart.speci f ied ∧ndout.E f inish.speci f ied then
22: ndout.Estart := nd.E f inish
23: ndout.Eduration := ndout.Eduration∩ndout.E f inish−
24: ndout.Lstart
25: if ¬ndout.Lstart.speci f ied ∧ndout.L f inish.speci f ied then
26: ndout.Lstart := nd.L f inish
27: ndout.Lduration := ndout.Lduration∩ndout.L f inish−
28: ndout.Estart ▷ Eq.(6.7)
29: else
30: remove nd from NextWorking
31: Working := NextWorking
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[Ts,e,Ts,l] = [Tf ,e −Dl,Tf ,l −De]

[Tf ,e,Tf ,l] = [Ts,e +De,Ts,l +Dl]

[De,Dl] = [max(0,Tf ,e −Ts,l),Tf ,l −Ts,e].

(6.6)

When comprehensive time information is available for a node, the precision of the

information can be enhanced by employing the following equations:

[Ts,e,Ts,l] = [Tf ,e −Dl,Tf ,l −De]∩ [Ts,e,Ts,l]

[Tf ,e,Tf ,l] = [Ts,e +De,Ts,l +Dl]∩ [Tf ,e,Tf ,l]

[De,Dl] = [max(0,Tf ,e −Ts,l),Tf ,l −Ts,e]∩ [De,Dl]

(6.7)

In Figure 6.5(a), the missing is the start time of e4, and the end time and duration are specified

for the node. Therefore, we use the causal relation to estimate the missing start time, the

nearest node with specified time information is e4 the end time and duration are specified.

Therefore, the end time of node e4 is Ie4
e = [3:9] minute and second respectively and the

duration is Ie4
d = [d99] the computation of start time for e4 is as follows:

[3:9−99] = [1:30]

In Figure 6.5, the computation of the missing time information of e1 and e2 is carried out

using the identified nodes, and performing the forward DFS (DFS) procedure to calculate the

unspecified time and duration of the nodes causally related to e3.

The start time of the node e3 is Ie3
s = [1:29] minute and second respectively, and the

defualt duration is used for nodes with unspecified duration, Ie3
d = [d1], which is added from

the specified start time of e3 using Eq. (6.6), as shown in Figure 6.5(b).

6.7 Consistency checking for TGBSA-nets

The different abstraction levels of the models we consider have different time granularity.

Consistency in the contexts of time granularity refers to the uniformity and coherence of the

time information or increments used throughout your system or data. It means that the time
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Figure 6.5 Time granularity before and after estimation (minutes and seconds).

resolution or level of detail remains consistent and aligned across different components or

sources of time-related information.

Inconsistent time granularity can lead to confusion, errors, or inaccurate analysis when

working with time-based data. Therefore, ensuring consistency is important for accurate

interpretation and meaningful comparisons of time-related information.

• Uniformity of Time Intervals. It is crucial to verify the consistency of the time

intervals or increments employed in the dataset. In particular, this implies that temporal

granularity, measured in seconds or minutes, is consistently maintained at the same

level of abstraction.

• Verify Alignment. Ensure that the time aligns accurately across all levels of granularity.

If you have data at the second level, ensure that the time unit at the minute level

corresponds to the time unit at the second level.

• Validate Relationships. Verify the interconnections among various levels of granular-

ity. An illustration of this would be to verify whether the start and finish times of a

higher-level interval encapsulate the corresponding lower-level intervals without any

overlapping or gaps.
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Let ↕ the projection relation of the temporal structure Fmin-sec used in the definition of

tgbsan. The projection relation can be seen as a way of connection or alignment between

different levels of time granularity. In the time granularity model of Seconds and Minutes,

the projection relation ↕ signifies that there is a consistency between the occurrences of

transitions at the upper-level and the corresponding ones at the lower-level.

The consistency of time granularity can be assessed by ensuring the following:

• Let causal ⊆ Tlanet ×Thanet be a binary relation consisting of causally related pairs of

transitions of the TGBSA-net appearing in different levels. The time information of

causal at different level minute and seconds is consistent if the following is satisfied:

∀(g,h) ∈ causal ∃t ∈ Seconds: (T g
f ,l ≺ t)∧ ↕ (t,T h

s,e) (6.8)

Intuitively, T g
f ,l ≤ T h

s,e after a suitable conversion of T h
s,e from minutes to seconds. In

other words, Eq.(6.8) states that there two causally related transitions, g in the lower-

level and h in the upper-level, should have consistent time information (expressed in

seconds for transition g in the lower-level and in minutes for transition h).

Algorithm 14 TGBSA-net consistency
1: function:Boolean granularity consistency (Relation causal)
2: Result :=∅ ▷ inconsistent nodes
3: for (t1, t2) ∈ causal do
4: if t1.start.early > t2.start.late ∨ t1.finish.early > t2.finish.late then
5: add t1, t2 to Result ▷ Eq.(6.8)
6: for all transitions t do
7: if t =∅∧ t.start ̸⊂↕ (v).start then ▷ Eq.(6.9)
8: add t to Result
9: else if t =∅∧ t.finish ̸⊂↕ (v).finish then

10: add t to Result
11: for t ∈ T do
12: if •t.finish ≻ t•.start then ▷ Eq.(6.10)
13: add t to Result
14: return Result
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Figure 6.6 Time granularity models

• For all transitions t,v with (t,v) ∈ β and t belonging to the lower-level of the TGBSA-

net, the following must hold:

It ⊂ Iv , (6.9)

where subset the inclusion relation of the temporal structure Fmin-sec used in the defini-

tion of tgbsan.

• Let t be a transition of the TGBSA-net. After that the following verifies that the finish

time of •t is not greater than the start time of t•

∀t:(I
•t
f ,l ≺ It•

s,e) (6.10)

In Algorithm 14 presented above, line 4 verifies the consistency of all binary relations

in causal, lines 7 and 9 verify Eq.(6.9) of the TGBSA-net. The return value of the

function is all the nodes which are time granularity behaviourally inconsistent.
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Transition e0 in Figure 6.6(a) is node consistent with the transitions on the lower granularity.

However, transition e0 in Figure 6.6(b) is node inconsistent as the second-level time does not

match the minute-level time.

Time granularity enables the specification of the temporal behaviour and the necessary

properties of the entire system and its components in relation to various time scales. In the

literature, various methods for representing and reasoning about time granularity have been

proposed. We provide a comprehensive explanation of the main suggestions for the logical

framework.

6.8 Tool Support

In the previous sections we introduced theoretical underpinnings and simulation algorithm

of the time granularity model for the two-level TGBSA-net. The time annotations in the

upper-level acyclic net represent minutes. The lower-level acyclic net shows the detailed

behaviour of the system using seconds as time units. Subsequently, this section provides a

brief overview of the prototype tool support using Java that has been developed based on the

details that are presented in this chapter. We have developed a tool support prototype that

includes two levels (for time granularity of minutes and seconds), as well as time simulation

capabilities. In addition, adding a time simulation feature lets a user practice detailed temporal

behaviours and processes on the two different levels of minutes and seconds, which should

make the predictive modelling and scenario analysis easier. As shown in Figure 6.7, the tool

enables the entry and display of the start and end time units for each event in the lower-level

seconds sequence, along with the display on the middle of each transition of the calculated

duration. As illustrated in Figure 6.7, users can both generate and simulate the lower-level

seconds. In addition, as shown in Figure 6.8, by pressing the "Minutes" button users can

effortlessly switch to create the upper level minutes with the arrows between the two levels

which used to capture the relationships between lower-level and upper-level behaviours, and

also a calculated duration in the middle of each transition. Transition e0 in the upper level

abstracts three consecutive transitions in the lower level: e0, e1 and e2. This user-friendly
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feature provides users the freedom to investigate temporal dynamics and makes it simple for

them to switch between granularities according to their analytical requirements.

Figure 6.7 Second level.
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Figure 6.8 Minute level.

6.8.1 Time Granularity Simulation Tool

We developed a time simulation functionality for TGBSA-nets. As shown in Figure 6.9, if

the start, end and duration in the lower-level second sequence are specified, then the initial

marking is automatically set for the two levels, and all enabled transitions are highlighted. As

shown in Figure 6.9, the first enabled transition e0, has the duration of 1m and functions at the

minute level, which is the higher granularity level. In contrast, the other enabled transition,

functioning at the second level (which is the lower granularity level), is also represented as

e0 and has a duration of 1s. As shown in Figure 6.10, the simulation of TGBSA-nets steps is

then conducted automatically by counting down the calculated duration for each transition.

The durations for the two levels are represented by different colours: purple for minutes

(upper level) and cyan for seconds (lower level). If the token reaches the final event at the

lower-level of granularity within an abstracted minute, the system will automatically transfer

the token to the output place at the minute level. For example, in Figure 6.10, when e2 in the

lower level second is fired, e0 in the upper level minute will execute automatically after it.

This automated approach provides smooth coordination among the various levels of detail.
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Figure 6.9 Enabled event for simulation.

Figure 6.10 Time granularity simulation tool for a TGBSA-net .
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6.8.2 Time granularity Visualisation

The time granularity tool enables the display of time unit information for each transition of

a TGBSA-net model. Figure 6.11 shows the two levels of the time unit representation of an

transition node: the upper-level shows minutes and the lower level shows seconds displayed

with start, end and duration. Thus, the time unit information displayed for each transition

indicates the start and end times for that transition. In addition, each transition indicates its

duration in the middle of the transition node, which the tool calculates from the start and end

time unit intervals.

Figure 6.11 TGBSA-net visualisation.
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6.8.3 Case Study

In this section, we analyse a scenario of time granularity in two-level TGBSA-net using the

tool we have discussed above. The evaluation of the proposed solution and validation of its

effectiveness is carried out using a small scenario of a burglar entering a gold-selling shop.

The description of the scenario is given below.

"The burglar enters the gold-selling shop at 1:00 PM and for 30 seconds pretends to

browse around like a typical customer. He then acts as though he’s intrigued by the jewellery

displays for a further thirty seconds. He arrives with a gun at 1:01 PM and controls of the

shop, which he holds for five minutes. He works rapidly, and complete the task of turning

off the shop’s security system by 1:06 PM in under 5 minutes. He gives the employees five

minutes to gather as much gold and jewellery as they can before telling them to put it in

his bag at 1:11 PM. Then, at 1:16 PM, he takes three minutes to ensure that everyone is

safe before locking the employees and any customers in a storage area to prevent them from

interfering. Then, around 1:19 PM, he searches for a rear door for thirty seconds without

getting noticed. After finding the door, he takes an additional thirty seconds to silence any

associated alarms. He enters the back door softly at 1:20 PM, and spends the next thirty

seconds checking everything to make sure it’s secure before going back inside."

The table in Figure 6.12 shows the list of transitions in the scenario with (start, end and

duration) in real time information for each transition. Figure 6.13 shows the model of the

above scenario using the TGBSA-net tool the upper level shows the minutes and lower level

shows seconds. The sequence of fired steps unfolds as follows:

{e0,e1} {h0} {e2,h1} {e3,h2} {e4,h3} {e5,h4} {e6,e7} {h5} {e8,h6}.
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Figure 6.12 The time of the scenario.

Figure 6.13 The scenario in TGBSA-net with minutes and seconds.
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6.9 Related Work

Time granularity enables the specification of the temporal behaviour and the necessary

properties of the entire system and its components in relation to various time scales. Sev-

eral approaches have been suggested in the literature for representing and analysing time

granularity. We describe in some detail the main proposals for the logical framework.

6.9.1 Logical Framework

Temporal logic has been extensively used to deal with temporal knowledge in various domains

of computer science [60]. Time granularity has been the subject of extensive research among

the numerous papers published on this subject.

The time granularity systems proposed in [30, 56] are quite restrictive. In [30], the

author introduces a time granularity system and shows how it can be used to accelerate

processes on large temporal databases. The paper outlines a collection of techniques that

have been incorporated into a temporal database management system to attain satisfactory

performance in applications containing a substantial quantity of known or predictable events

and propositions that may endure for periods of time.

The time granularity logics has been implemented in the design of real-time monitoring

systems [29], mobile systems [34] and therapy plans in clinical medicine [28].

In [29], the paper focuses specifically on the concept of time granularity, which is one

of the most original achieved outcomes. The authors provide a method for describing and

managing various levels of temporal precision within a logical specification framework. The

research introduces a formal definition of temporal granularity in a logical language used to

describe real-time systems. In [28], a logical framework is presented for representing and

deducing information regarding various time granularity. A time granularity is defined as

a discrete linear time structure in which the beginning and end points of the corresponding

granules are appropriately denoted with proposition symbols.

Fuzzy cognitive maps (FCMs) are computational models used in artificial intelligence and

cognitive science to represent and simulate complex systems. In [57], an extension to FCMs



110 Time Granularity in BSA-Nets

is introduced by leveraging a formal language theory called timed automata. The theory of

timed automata allows FCMs to handle a double-layered time granularity more efficiently.

This extends the concept of B-time; "B-time is used to diversify the behavior of a given FCM

by changing the duration (in terms of seconds, minutes, days, etc.) of a single inference

iteration". It shows the iterative nature of a cognitive inference engine is exemplified by this

approach, which incorporates model checking tools to evaluate the cognitive and dynamic

behaviour of the built framework.

In [39], real-world systems are intricate entities that can be represented at different

varying levels of detail. In fact, the concept of a system can be defined recursively, since it is

a composition of interacting component systems. The paper demonstrates how a complex

system may be characterised at several levels of granularity and how descriptions based on

time and events can coexist.

Time granularity has already been the subject of extensive research. This research has

been developed using a variety of methods (e.g., set theory, temporal logic, and algebra of

relations) and in a number of fields (e.g., artificial intelligence (AI), databases and formal

specifications). To the best of our knowledge, all previous related works available in the

literature applied time granularity to databases and AI, and have not considered systems such

as crime investigation systems. Therefore, in this thesis, we developed a time granularity

framework for such systems using Petri nets.

6.10 Conclusion

Time granularity (i.e., the degree of accuracy or precision with which we measure time) is

crucial when dealing with systems at various levels of abstraction.

In this chapter, we considered time granularity for BSA-nets, using Minutes and Seconds.

We developed theoretical underpinnings, new algorithms, and implemented a prototype soft-

ware tool for hierarchical and abstraction-based analysis and simulations of timed behaviours

when different time granularity is used at different levels of abstraction. The discussion was

carried out using BSA-nets, which are part of the SO-nets framework. The estimation of
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missing time was examined in this chapter using the lower level (second) and assessing the

consistency between the two levels (minute and second). This chapter’s challenge was the

introduction of a time granularity model for the BSA-net and the management of multiple

levels of time granularity. The idea is to use a suitable temporal structure from Section 6.3 so

that time is interpreted in lanet and hanet using different time scales. A flexible and scalable

approach that could accurately represent time across various resolutions was necessary to

manage varying levels of granularity.

The implementation of time granularity model for the two-level BSA-nets has also been

discussed, we implemented a prototype tool that provides an intuitive exploration of temporal

patterns through its user-friendly interface for data visualisation and analysis. The application

permitted users to define the time granularity in two distinct levels using BSA-nets. The upper

level represented the minute and the lower level represented the second, where the second

level corresponded to the minute level. Furthermore, we implemented functionalities that

allowed for the simulation of the time granularity behaviour of TGBSA-nets. This facilitated a

thorough examination of temporal dynamics. Finally, the prototype tool we have implemented

provides a better knowledge of complex systems and how they behave over time.



Chapter 7

Concluding Remarks

7.1 Summary

In this thesis, we developed theoretical underpinnings, algorithms, and tool support for time

and time simulation based on SO-nets and their abstractions. These abstractions were derived

from the underlying framework of SO-nets, which were introduced in [49].

The development of time properties and time simulation have become essential in contem-

porary study, providing a powerful method for understanding complex systems and predicting

their behaviour under different conditions. By simulating the flow of time, researchers and

practitioners can gain insights into how systems might behave in the future and develop

strategies for optimising their performance.

A complex evolving system consists of several concurrently acting (sub)systems that

interact with the environment and each other, and it can be altered by other systems. Typical

examples are large distributed systems whose software is continually updated and dynamically

evolving criminal investigations. In this thesis, we developed theoretical underpinning and

tool support for time and time simulation based on BSO-nets, CSO-nets and ALTO-net. These

abstractions were derived from the underlying framework of SO-nets. In addition, we analysed

timed behaviours of CE-systems in the case of different time granularities being used at

various levels of abstraction. Furthermore, we extended the SO-nets tool by providing new

algorithms and implementations that allow the simulation of timed behaviours of a CE-
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systems in meaningful ways. The work delivered an extension of the WORKCRAFT platform,

which is a tool that provides a flexible common underpinning for graph based models, and its

plugin SONCRAFT which provides some initial facilities for entering, editing, validating and

simulating SO-nets. We also extended the concept of the behavioural abstraction of BSA-nets

to support various time units at multiple levels.

In Chapter 2, we presented the background about SO-net and their abstractions (be-

havioural structured occurrence nets, communication structured occurrence nets and alterna-

tive occurrence net). Furthermore, we have considered the background of time simulation

along with its techniques; there are many time simulation techniques, and we briefly ex-

plained them. In addition, a background on time granularity was provided. We discussed the

property layers of the hierarchical structure of time granularity, and we analysed the hierar-

chical structure of temporal granularity, emphasising its different levels and characteristics.

We also discussed these layers at various scales.

In Chapter 3, the concept of time property information was added to the basic models

based on SO-nets and the ALTO-net model to represent and analyse causally connected events

and concurrent occurrences in developing systems. We provided fundamental ideas and

notations to display time limits and duration interval for each node in the model. By utilising

intervals, this temporal information can be ambiguous or lacking temporal information.

Therefore, we discussed algorithms and how time data from a SO-net can be used to estimate

and increase the precision of (date-time) intervals using default duration intervals. We also

discussed algorithms to check consistency for the basic SO-nets and ALTO-net.

In Chapter 4, we presented timed simulation behaviour for the basic and alternative

SO-nets. We also provided a new novel execution time semantics for variants of SO-nets

in order to simulate time step-by-step. Timed simulation behaviour is a notion that has

been proposed in this chapter to examine systems, such as criminal investigations, to aid

investigators in reconstructing a sequence of events and analysing the behaviour of the system.

The firing sequences, notations and algorithms of timed-interval simulation SO-nets were

presented. The firing of an enabled transition in timed simulation involves two distinct stages:

the first stage calculates the duration of the firing time, while the second stage begins the
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countdown of the time units within the enabled transition’s duration interval. We provided a

new algorithm and definition for determining maximal firing steps with time semantics in

SO-nets. This development is crucial for comprehending the evolution of a system over time,

especially in scenarios where numerous processes are concurrently operating.

In Chapter 5, we presented the time property and timed simulation tools that could be

used, for example, in criminal investigations to help investigators reconstruct a timeline of

events and analyse the behaviour of the systems. The prototype tools were implemented

as SONCRAFT plugins, we introduced the ideas and algorithms developed in the formal

methods part of Chapters 3 and 4. First, we implemented the time property intervals for

each node in the SO-nets and ALTO-net. In addition, we developed time simulation tools

to simulate the time behaviours of the model. Further, algorithms checked the consistency

and correctness of the new abstraction methods developed in the prototype tools. The tool

provided efficient date estimation for events with unspecified date information (estimator

setting) and a tool to check the consistency of the (date-time) information for the entire

SO-net.

In Chapter 6, we investigated time granularity and developed theoretical underpinnings

and new algorithms for hierarchical and abstraction-based analyses and simulations of timed

behaviours for cases in which different time granularity was used at different levels of

abstraction. We used BSA-net that are part of the SO-nets framework. In this chapter, we

discussed algorithms and how time data from a TGBSA-net can be used to estimate and

increase the precision of time unit and using default duration. We also discussed algorithms

to check consistency for the two levels minutes and seconds of TGBSA-net.

Furthermore, we implemented a prototype software tool for two-level BSA-net and

added two time granularities: minutes for the upper level and seconds for the lower level.

Simulations of timed behaviours when different time granularities is used at different levels

of abstraction using the algorithms developed in the theoretical investigation were described.
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7.1.1 Research objectives

[Developing the time property information for SO-nets.] We extended the existing basic SO-

net model and ALTO-net to include time information. We presented a formal description

of how to verify the consistency of timing information provided in a SO-net and how

to determined the time information estimation of a specific node or the entire SO-net

by utilising causal relations.

Extending the concept of time property information. We introduced a time simulation to

simulate the time behaviour of the model using SO-nets. New execution time semantics

were introduced for variants of SO-net in order to achieve a step-by-step time simulation.

We also provided a new algorithm for maximal firing steps with time semantics for

SO-nets. We then evaluated the proposed solution and validated its effectiveness by

using a small case study constructed by an MSc student [38].

Designing and implementing new tool in SONCRAFT plug-ins. We developed SONCRAFT

plug-ins implementing the ideas and algorithms developed in the formal parts of

Chapters 3 and 4. The prototype tool implementation and evaluation combines and

implements the time property for SO-nets and ALTO-net using specific time simulation

algorithms developed in theoretical investigation with suitably adapted simulation algo-

rithms found in other software tools. Furthermore, algorithms checking the consistency

and correctness of the new abstraction methods were incorporated into the prototype

tool.

Extending the concept of behavioural abstraction to support time granularity. We inves-

tigated the time granularity and developed theoretical underpinnings and new algo-

rithms for hierarchical and abstraction-based analyses and simulations of timed be-

haviours for cases in which different time granularity is used at different levels of

abstraction (using BSA-nets that are part of the SO-nets framework). We provided

the implementation of the prototype software tool for BSA-nets by adding different

time granularities (minute and second) and simulations of timed behaviours using the

algorithms developed in the theoretical investigation.
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7.2 Challenges

Several intriguing challenges that emerged throughout the study described in this thesis are

as follows:

1. Developing (date-time) information

In Chapter 3, the challenge consisted of adapting algorithms and notations from the

work [23] for the purpose of handling dates. Additionally, it was necessary to guarantee

that the model appropriately reflects the nuances of time-based information, which is

essential for applications such as criminal investigations.

2. SONCraft: Tool for SO-nets with Time

Initially, comprehending the current codebase is essential to recognise possible in-

tegration points and dependencies. Analysing the tool’s structure, functionality and

design patterns thoroughly to ensure compatibility with the new code. Incorporating

a time property and time simulation tools into existing code involves more than just

linking new components with existing ones. It involves not only getting it to function

but also ensuring it keeps accurate time. This difficulty encompasses both technical

aspects, such as ensuring the new tool does not disrupt the existing code, and the task

of synchronising the simulation time with time information.

3. Dealing with Time Granularity in BSA-nets

Incorporating multi-level time granularity into BSA-nets poses significant challenges.

The intricate representation of several levels of abstraction in a BSA-nets structure

might result in heightened model complexity, which can make it more difficult to

understand and analyse. Furthermore, ensuring the consistency and coherence of

multi-level BSA-nets, especially when handling interactions between different levels

of abstraction, is challenging in terms of maintaining model integrity and accurately

representing system behaviour.
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7.3 Future Work

The following are some suggestions for future research:

1. Adding Spatial Information to the Nodes

Integrating spatial information into nodes that already include time information im-

proves the contextual understanding of temporal data. This integration enhances the

comprehension and analysis of the progression of events across both the temporal and

spatial dimensions.

2. Extending the Time Simulation by Adding a Filter Simulation

Filtering is of the utmost importance in simulation, particularly when dealing with

complicated models because it helps to streamline the data and concentrate on the

features of the system being replicated that are the most significant. For future work,

we can consider the addition of a filtering tool for time to simulate the behaviour of

the model within a range of time. We can improve the usefulness and dependability of

the simulation findings while gaining a deeper understanding of complicated systems

by utilising the proper filtering strategies. We can add a function that allows the

specification of the start and end (date-time) information in the simulation model prior

to its start.

3. Adding Multiple Levels to BSA-nets

The future work will add multi-level modelling of year, month, day and hour. A key

problem of handling complexity when large datasets are involved will be addressed by

developing a hierarchical approach to simulation based on behavioural abstractions. In

Chapter 6 regarding time granularity, we introduced two levels of time units: minutes

and seconds. For the work that will be done in the future, we might consider adding a

multi-level approach to time granularity that would include year, month, day and hour.

An examination of temporal data at different levels of detail would be required for

this. We can acquire a more comprehensive grasp of the temporal dynamics and better

capture the nuances that are present in the data if we incorporate numerous layers of
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time granularity into our analysis. This strategy has the potential to deepen the scope

of the analysis and offer insightful information regarding the temporal features of the

research topic that we are investigating.

Adding multiple levels to BSA-nets would significantly enhance the practical applicabil-

ity of the framework developed in this thesis. In particular, the multi-level aspects could

greatly improve the range of the models handled by the tool. First, the formal analyses

would be applicable to much larger cases, making the implemented tool applicable

to particularly suitable for areas such as software engineering project management

(e.g., using the PERT diagrams) or asynchronous circuit design (a primary application

area of the Workcraft toolset) Secondly, the visualisation and simulation of the models

investigated would be allow the resulting tool to communicate and demonstrate to the

users the behavioural information at progressively more abstract (succinct) levels. This

could, in particular, help in conducting criminal/accident investigations, as different

teams involved could access the information explained in terms of events matching in

the best possible way their expertise/interest.

4. Time Granularity Tool Support

In future work, the objective is to integrate the tool support created in Chapter 6 for

BSA-nets into the SONCRAFT architecture, while also expanding its functionalities.

Our objective is to evolve the tool such that it can handle both synchronous and asyn-

chronous communication structured acyclic nets over numerous hierarchical layers. By

incorporating these characteristics, we expect to facilitate a more thorough examination

of intricate systems, thereby helping investigators to efficiently simulate and analyse

complex network structures. This integration is an important milestone in developing

a more powerful and flexible collection of tools for analysing and designing systems in

a number of contexts, such as crime investigation.

Finally, it would be interesting to develop a generic tool-supported framework where

the user could instantiate their particular time model (including time granularity), and
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the tool would still be able to support consistency checking and simulation of the

models.
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