
 

 

Diatom Recording Using Metabarcoding  

 
Thesis submitted for the degree of Doctor of Philosophy by 

 

Mathieu Ramon 

 

School of Natural and Environmental Sciences 

Newcastle University, Newcastle-upon-Tyne 

United Kingdom 

October 2023 

 



i 

ABSTRACT 

Freshwater monitoring is crucial to preserve the ecological services these ecosystems 

provide. Diatoms are known to be reliable indicators of water quality, hence the historical 

analysis of their community for routine biomonitoring. 

This thesis aims to optimise the current diatom biomonitoring method based on the most 

recent metabarcoding tools, in order to assist freshwater environment surveillance. Light 

Microscopy (LM) coupled with morphological identification is the traditional approach for 

diatom surveys. The more recent alternative, metabarcoding, combines barcoding to identify 

species using DNA variations from short conservative sequences (barcodes) and High 

Throughput Sequencing (HTS), that allows the analysis of thousands of sequences 

simultaneously. 

Aspects of the methodology, including primers, were tested in a variety of environments, 

including rivers and mesocosms, enabling the optimisation of the whole process and 

confirmation of the reliability of the short barcode located in the rbcL gene. This 

experimentation showed the interchangeability of LM and metabarcoding approaches for 

most routine diatom biomonitoring surveys. 

Both Illumina and MinION HTS platforms were compared to the LM method and judged to be 

a success but no benefit was found using a longer rbcL barcode region with MinION. 

Bioinformatic pipelines were created for each sequencing technology, based on new 

bioinformatic tools and particularly the denoising/polishing algorithms which generated 

equal or better results than the current QIIME1 bioinformatic pipeline. As an appropriate 

reference library is crucial for taxonomic assignment of sequences, the current UK reference 

library was compared with and updated from the European reference library, diat.barcode. 

In addition, non-diatom phytoplankton taxa were added to the reference library, improving 

the species assignment. 

The evolutionary history of the barcode region, the rbcL gene, was investigated using a 

phylogenetic approach. This demonstrated the link between rbcL evolution and diatom 

morphology, and its suitability as a ‘barcode’ were discussed.  

This project succeeded in improving diatom biomonitoring via HTS, and further demonstrated 

the reliability of this approach.  
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CHAPTER 1 INTRODUCTION 

Biomonitoring is the routine sampling of an environment to analyze the composition of its 

biocenosis in order to evaluate its ecological status and assess the quality of the environment. 

The key ecosystems that comprise freshwater bodies are among the most monitored 

ecosystems due to their relative rarity (3% of the total water on Earth, of which only a quarter 

is in a liquid state) compared to the ecological niches they provide to both animal and plant 

species as well as the ecosystem services that they offer to civilization, such as filtration, water 

withdrawal for agriculture and human consumption, or fisheries. Hence, the monitoring of 

freshwater bodies is a necessity to protect them from pollution that threatens their ecological 

values and thereby the quality of the ecosystem services they provide. 

Diatoms are unicellular algae that are present in all aquatic ecosystems and responsible for 

around 20% of global primary production (Mann, 1999). Due to their ecological preferences 

and rapid growth diatoms are excellent bioindicators of water quality. Therefore, the 

biomonitoring of diatoms has been chosen as a part of the ecological assessment of UK rivers 

in the context of the water framework directive (Kallis and Butler, 2001) 

The traditional assessment method used in the UK relies on Light Microscopy observations of 

the biofilm samples found on river rocks to determine the community composition present in 

the rivers. Although this approach has a high reliability it is also very time consuming, 

expensive and requires highly skilled experts. Several studies have highlighted the potential 

of environmental DNA Metabarcoding approach to give fast and accurate composition of the 

diatom community (Duleba et al., 2021; Vasselon et al., 2017a, 2017c; Zimmermann et al., 

2015), and it has been trialed in the UK (Kelly et al., 2018). Notwithstanding the potential of 

this molecular approach, some improvements and evaluations are needed to allow the 

method to be used routinely. The aim of this study is to improve the diatom biomonitoring 

method in order to create a standard methodology for environmental managers, including 

steps from the sampling to the environment quality index calculation. The study of diatom 

DNA sequences allows me to reconstruct the evolutionary history of the rbcL gene used as a 

barcode in my method in order to quantify the positive selection effect on the rbcL gene, 

which enables me to evaluate its adequacy as barcode.  



15 

Diatom biomonitoring is fueled by the Water Framework Directive (WFD) that set mandatory 

surveys of the water quality of the rivers to identify the trophic state of each waterbody and 

the pressure affecting them. Eutrophication was described by European policy as a priority 

concern for water management (European Commission, 2021). 

EUTROPHICATION OF FRESHWATER ENVIRONMENT  

The monitoring of freshwater environments is motivated by the increase of water quality 

degradation originating frequently from eutrophication and pollution (e.g., heavy metals, 

pesticide, organic components, etc.). These degradations have impacts on water ecosystem 

services, hence the importance of their maintenance for human societies (Grizzetti et al., 

2016). 

Eutrophication is defined as the process by which nutrients accumulate in a habitat and 

change the state of the ecosystem to another higher trophic state (Figure 1). The nutrients of 

most concern are Nitrogen and Phosphorus as they limit the growth factor of plant and algae 

(Rabalais, 2002)Table 1). Eutrophication generates outcomes on both biocenosis and biotope. 

In aquatic ecosystems, eutrophication created by the high availability of nutrient leads to an 

excess growth of plant and algae (blooms) that block sunlight and affect the whole ecological 

Trophic state Total Nitrogen (mg.L-1) Total Phosphorus (mg.L-1) 

Lakes 

Oligotrophic <0.35 <0.01 

Mesotrophic 0.35 - 0.65 0.01 - 0.03 

Eutrophic 0.65 - 1.20 0.03 - 0.10 

Hypertrophic >1.20 >0.10 

Streams 

Oligotrophic <0.70 <0.025 

Mesotrophic 0.70 - 1.50 0.025 - 0.075 

Eutrophic >1.50 >0.075 

Table 1 Classification of the trophic state of bodies of water (Dodds et al., 1998; Nürnberg, 1996) 

Figure 1 Three different stages of eutrophication, from left to right. From Civilpedia 
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community. Due to the aerobic decomposition of algae that consumes large quantities of 

oxygen, hypoxia and anoxia can also be an outcome and lead to death of aquatic species 

including fish and amphibians. Environmental managers monitor the eutrophication of 

aquatic ecosystems due to its deleterious consequences on water quality for human use 

(turbidity, unpleasant odour, toxicity, etc.) and for the ecosystem itself (anoxia, unbalanced 

communities with overgrowth of hypercompetitive species). 

The eutrophication of waterbodies has been a major concern since the 1970s (Lund, 1972), 

from which arose the need to monitor the chemistry and the ecological states of both running 

and still water bodies. Although numerous ecosystem services are provided by waterbodies 

(Table 2) eutrophication can directly decrease the quality of the services provides by the 

waterbodies (Environment Agency, 2016) 

The trophic state of streams and lakes can be assessed directly by measuring nutrient water 

concentrations or by biomonitoring (e.g., algae, aquatic plants, fish)(Brooks et al., 2001; 

Danilov and Ekelund, 2001; Kelly et al., 2008; Muscutt and Withers, 1996; Schneider and 

Lindstrøm, 2011). The advantage of biomonitoring over measuring nutrient water 

concentration is that the composition of communities is an indicator of the trend of the 

concentration of the nutrient rather than a snapshot of a particular moment (Li et al., 2010). 

Waterbodies are very unstable environments due to weather (rain/drought events) and 

human activities (e.g., one-time point source pollution)(Riley et al., 2018). The biomonitoring 

approach, by assessing the quality indirectly via the community resulting from all the 

conditions affecting an ecosystem, provides a result less perturbed by the very short-term 

nutrient variation created by all the individual events affecting the environment (Moog et al., 

2018).  
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Although river biomonitoring is an efficient tool to detect eutrophication, the community that 

is monitored must be adapted to the aspect of the environment that is the subject of the 

study. For example, the fish communities analysis would not use the same techniques nor 

generate the same conclusion as the analysis of phytoplankton communities (Keck et al., 

2017). In river biomonitoring the principal communities studied are:  

1. Fish: Difficult to sample from the environment due to high mobility. The 

identification of their communities is rather straightforward due to their large 

body size and the fact that the fish diversity of a single environment is relatively 

low compared to other taxonomical groups. They are particularly good indicators 

of long-term pollution and hydromorphology of the waterbodies (Physical barriers 

such as waterfall or dams)(Cooper et al., 2016; Okwuosa et al., 2019). 

2. Macrophytes: Their absence of mobility can aid sample collection, but their 

possibly deep-water location can sometimes complicate this. Their identification 

is well documented and straightforward. They are good indicator of 

eutrophication, turbidity (caused by organic and inorganic material), riparian zone 

integrity and hydromorphology (Bresciani et al., 2012; Carbiener et al., 1990; 

Tarkowska-Kukuryk and Mieczan, 2017). 

3. Benthic macroinvertebrate (fixed to the bottom of the body of water): Their 

intermediate size facilitates their sampling and identification. They are considered 

Water Supply Supply of goods other than 
water 

Non-extractive or instream 
benefits 

Household uses 

including drinking, 

cooking, washing. 

Fish Flood control 

 

Industrial uses 

including 

manufacturing, 

thermoelectric power 

generation. 

Waterfowl Transportation 

 

Irrigation 

Clams and mussels Recreational swimming, boating, 

etc. 

Aquaculture 
 

Pollution dilution   
Bioremediation and 

phytoremediation   
Water quality protection   
Hydroelectric generation   
Wildlife habitat   
Soil fertilization   
Enhanced property values   
Non-user values 

Table 2 Ecosystem services provided by freshwater bodies and wetlands. Adapted from Daily, 1999. 
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as good indicator for both short- and long-term organic pollution as they have 

responses to both pollution accumulations and single pollution events. They can 

be an indicator of habitat loss or heterogeneity (Lepori et al., 2003; Maitland et al., 

2020; Mir et al., 2021).  

4. Benthic Diatoms (fixed to the bottom of the body of water): Their small size and 

their particular location, fixed to the sediment and rock of the shallow river 

margins, make sampling straightforward. Their size is a disadvantage for 

identification, as well as the high average diversity present in rivers. They are 

known to be excellent indicators of eutrophication, pollution and 

hydromorphology of the river. They are more sensitive to long and midterm 

condition than one-time pollution events (Kelly et al., 2008; M. G. Kelly et al., 1998; 

Prygiel et al., 2002).  

5. Phytoplankton: As this group can be sampled directly from the water it is 

convenient to collect. Nevertheless, the smallness of their size coupled with the 

high diversity of organisms to consider leads to arduous identification. However, 

they are good indicators of eutrophication (Danilov and Ekelund, 2001; Emiliani, 

1997; Jacquet et al., 2005). 

Thus, the taxonomic group of interest during a river biomonitoring study directly impacts the 

difficulty of the different steps (e.g., sampling, identification, etc.) and the possibility to assess 

particular ecological aspects. Due to their ease of collection and suitability as indicators, 

diatoms have been considered and used as indicators of choice for river biomonitoring to 

evaluate the pollution and eutrophication affecting aquatic environments (M. Kelly et al., 

1998; Pandey et al., 2017). Thence, numerous ecological indexes based on diatom 

communities have been developed and used for routine water quality assessment. In the UK 

the standard is the Trophic Diatom Index (TDI) (Kelly, 1998; Kelly and Whitton, 1995), other 

European indexes exist, including the “Diatom Biologic Index” (Indice Biologique Diatomée, 

IBD)(Prygiel and Coste, 2000).  

DIATOM CHARACTERISTICS 

Diatoms are a class of single cell algae and phytoplankton. They phylogenetically form the 

phylum Bacillariophyta which is part of the subkingdom Heterokont (Round et al., 1990). 

Diatoms are present in most (if not all) aquatic ecosystems of any size and salinity (Mann, 

1999). They are frequently described as ubiquitous due to this extremely large distribution 

(Mann and Vanormelingen, 2013). Although they are numerous, diatoms are among the more 

diversified groups with around 12 000 described species and an estimated 100 000 species in 

total (Guiry, 2012; Mann and Vanormelingen, 2013). Fossil traces of diatom silica envelopes 
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have been dated back to 185 million years ago (Gross, 2012). The diversity and ubiquity of 

diatoms are some of the reasons that make them biomonitoring indicators of choice for the 

water environment.  

As part of the single cell algae, diatoms are photosynthetic Eukaryota. As such, they contain 

organelles such as chloroplasts, vacuoles, Golgi complexes, nucleus and mitochondria (Figure 

2) (Herringer et al., 2019). Their chloroplasts originate from a secondary endosymbiosis with 

a red alga (Figure 3) (Nonoyama et al., 2019). 

Either the host or the endosymbionts may have possessed genes retained from a cryptic 

endosymbiont of green algal origin, although this remains debated (Moustafa et al., 2009). 

Overall, there is a hypothesis that chloroplast-targeted proteins from contemporary diatoms 

have a bacterial origin, either in the host or symbiont, and have evolved from the event of 

endosymbiosis (Prihoda et al., 2012). This particularity results in the genome of diatoms 

containing genes of two eukaryotic nuclei and two prokaryotic genomes, one from the 

mitochondria and the one from the chloroplast (Konur, 2020). Moreover, the chloroplasts 

present in diatoms, as well as in Stramenopiles, Haptophytes, and Cryptomonads, are 

surrounded by four membranes instead of the common two membranes. (Bedoshvili et al., 

2009).  

Figure 2 Schematic overview of internal and external structures of Diatom. From Herringer et 
al., 2019 
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Figure 3 Origins and structure of the diatom chloroplast. This schematic Figure shows two alternative 
hypotheses for the origins of the diatom chloroplast: (a) secondary endosymbiosis of a red alga by a common 
ancestor of photosynthetic stramenopiles or (b) tertiary endosymbiosis of a cryptomonad-like organism, itself 
harbouring a chloroplast of secondary, red algal endosymbiotic origin. (c) shows a schematic diagram of the 
four membranes surrounding the diatom chloroplast. Abbreviations are as follows: cERM; chloroplast 
endoplasmic reticular membrane; ER, endoplasmic reticulum; iEM, inner envelope membrane; IMS, 
intermembrane space; oEM, outer envelope membrane; PPC, periplastid compartment; PPM, periplastid 
membrane. From Nonoyama et al., 2019. 

 

Diatoms have an exoskeleton, called a frustule, made of hydrated silica that lets the light pass 

through this layer which enable the diatoms to perform photosynthesis and benefit from the 

protection of a shell (Figure 4) (Aguirre et al., 2018). Diatom species have a high variety of 

pigments; chlorophyll a and c (replacing the chlorophyll b from higher plants), fucoxanthin, 

carotenoids such as β-carotene, diadinoxanthin and diatoxanthin, violaxanthin, 

antheraxanthin, zeaxanthin or even marennine (Kuczynska et al., 2015). This mix of pigment 

is the cause of their golden-brown color which leads to frequently referring to them as brown 

microalgae. Moreover, their photosynthetic machinery is especially efficient at absorbing 

light, not only in the red and blue wavelengths but also in the green wavelengths, which is 
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notable among other photosynthetic groups(Goss et al., 2020). This efficiency contributes to 

making them one of the biggest contributors to global primary production. In fact, diatoms 

are part of phytoplankton, the latter representing as little as 1% of Earth's photosynthetic 

biomass but contributing to around 45% of the global primary production (Field et al., 1998). 

More specifically, marine diatoms contribute to half of the primary production of 

phytoplankton, which make them responsible of around 20% of the atmospheric oxygen 

production (Mann, 1999).  

Research suggests that the silica wall is among the reasons why diatoms have been so 

successful in term of their widespread distribution and high contribution to primary 

production (Vasselon et al., 2017c). Frustule production is energy efficient and the silica is an 

advantage over Carbonate biomineral shells (present in other phytoplankton group such as 

Coccolithophores) (Bach et al., 2015) of other taxa group as it is not sensitive to ocean pH 

(Cermeño et al., 2015). The diatom frustule is the basis of morphological identification and 

sometimes complemented with organelles observation for living diatoms (Aguirre et al., 2018; 

Jones et al., 2005; Meyer et al., 2012). The durability of the diatom after its death may take 

account for the mismatch between microscopy-based identification and diatom nucleic acid-

based identification (as discussed in Chapters 3, 4 and 5). 

The key enzyme of photosynthesis is Ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO), which catalyzes the Carbon fixation of Carbon dioxide to form glucose or other 

energy-rich molecules. RuBisCO is the most abundant protein on earth and studies (Kapralov 

and Filatov, 2007; Young et al., 2012) have found that algal RuBisCO gene evolution was under 

Darwinian selection. Nevertheless, diatom RuBisCO evolution has received very little 

Figure 4 Diagram of a Diatom frustule structure, Pinnularia sp. 
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attention even though the analysis of this gene could increase our understanding of the 

reason of the success of the diatom group in term of primary production (Chapter 4).  

Diatoms are divided in two distinct groups based on their shape (Figure 5): centric diatoms 

that present a radial symmetry and pennate diatom that are bilaterally symmetric. Pennate 

diatoms are further divided in groups according to the presence of a raphid, a slit within the 

silica cell wall, which can be axial, eccentric, circumferential or absent (Araphidae) (Lange-

Bertalot et al., 2017).  

DIATOM REPRODUCTION 

Diatom reproduction can be sexual and asexual.  

The primary form of reproduction is the asexual fission, a mitosis that generates two new 

smaller diatoms from the binary fission of one bigger diatom(Chepurnov et al., 2004). As at 

mitosis, it is preceded by a replication of the DNA which leads to the division of each 

Centric diatom – Radial 

symmetry  

Pennate diatom – Bilateral 

symmetry  

 

Centric diatom – Radial Pennate diatom – Bilateral 

Figure 5 Symmetry comparison of the two main groups of Diatom: Centric (left) and Pennate (right) 
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chromosome in two halves. The DNA is then separated in two, with one half of each 

chromosome present in each part. The formation of two frustules starts around these two 

parts, with each daughter cell receiving a theca (half of a frustule, see Figure 6; Montresor et 

al., 2016) from the initial frustule. Each daughter cell builds a new theca to complete the one 

given by the parent cell. The new theca is always smaller than the one given by the parent cell 

(the new one is always the Hypotheca and the old one the Epitheca). This kind of reproduction 

leads to the production of smaller and smaller cells, since each reproduction produces one 

smaller cell and one with the same dimension of the parent cell (Sánchez et al., 2019). This is 

not a viable long-term reproduction method and as such, the sexual reproduction is present 

in order to, but not exclusively to, manage the shrinkage in the size of cell generation after 

generation.  

As the diatom vegetative phase is in a diploid form, they need to undergo a meiosis phase to 

produce gametes(Chepurnov et al., 2004). Males produce flagellate sperms and female 

produce eggs that will form a zygote after they meet and fuse. In order to do that the female 

cell creates an opening in its cell wall. The fertilized egg creates an envelope with its own cell 

wall and nucleus. This will cause the new diatom to grow to its full size and to form with the 

parent diatom an auxospore which could be set to a dormant stage during which it is called a 

“resting spore” (Pelusi et al., 2020). This dormant cell type is able to survive under unfavorable 

conditions during extended periods of time and awaken when the conditions are more 

optimal.  

In all diatom life cycles there is an auxospore/resting spore phase (Tréguer et al., 2017). It is 

very noticeable that auxospore can be present in the environment whereas no mature diatom 

is present. In such cases the DNA of the diatom species would be present in the environment 

although the mature diatom frustule cannot be found in the environment (Sanyal et al., 2022). 

This mismatch may account for some of the differences between microscopy and 

Metabarcoding results, as discussed in Chapters 3 and 4. 
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As discussed before, diatoms present a silicate exoskeleton called a frustule that persists in 

the environment and are uncomplicated to isolate from biofilm or sediment. Therefore, 

diatom identification using Light Microscopy is reliable and does not require elaborate tools 

(Kelly, 1998). Hence the historical use of diatoms for biomonitoring due to the accessibility of 

the frustule and the identification based on the shape of the frustule (Round et al., 1990). 

Although the presence of the frustule is an advantage for the Light Microscopy approach, the 

frustule could be an obstacle for a DNA-based approach because this extra silicate layer 

makes the DNA less accessible compared to other algal taxa (Mora et al., 2019). Thus, it is 

sensible to measure the proportion of each diatom and non-diatom DNA obtained from a 

known sample and to compare the morphological count in order to reveal overrepresentation 

and underrepresentation of diatom and non-diatom taxon during Metabarcoding survey 

Figure 6 Schematic drawing of the life cycle of a centric and a pennate diatom. 
From Montresor et al. 2016. 
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(Vasselon et al., 2018). This is useful to apply potential correction factors before calculating 

ecological indexes. It is further discussed in the Chapter 3.  

METABARCODING  

DNA barcoding is a method of species discovery and identification based on a short sequence 

of DNA from a predetermined area of the genome. That DNA sequences, called a “barcode”, 

can be used to identify an organism to taxon. Specific regions in the genome have been found 

to be informative for distinguishing taxa from each other. The first of these “standardised 

regions” was the mitochondrial gene CO1 (Hebert et al., 2003).  

The increasing use of High Throughput Sequencing (HTS) (see next section) makes possible 

the combination of barcoding with HTS to identify simultaneously different taxa from a single 

sample, for example environment samples such as water, biofilm, or soil. This kind of samples 

contains environmental DNA (eDNA) composed of the DNA from individual organism present 

in the sample along with the DNA released and accumulated from the surrounding organisms 

or previously present organisms. This method is called Metabarcoding and permits the 

analysis of the whole community of the samples rather than target single species (Taberlet et 

al., 2012). 

Discovery of new species as well as identification of species in an environment can be 

performed by DNA Metabarcoding. Nevertheless, a preliminary database creation is the 

backbone of a good barcoding identification (Kelly et al., 2018). This is done by sequencing 

the standardised regions of morphologically verified voucher specimens to create a reliable 

database. In order to assign identities to DNA sequences a reference library is needed, the 

largest is the Barcode of Life Data Systems (BOLD) (Hebert and Ratnasingham, 2007). 

Alternatively, specified reference library can be created to be optimized to the organism and 

barcode targeted and provide a better taxonomic assignment.  

The traditional DNA Metabarcoding process is composed of an extraction of the DNA of an 

environmental sample, including DNA from living organism and/or DNA in the environment 

present in the sample, followed by a PCR amplification of a targeted barcode region. Then a 

sequencing run generates the DNA sequences of the whole community that can be identified 

bioinformatically using a reference library. Additional bioinformatic steps can be done to 
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correct errors generated during sequencing (incorrect or low-quality nucleotide reads) and 

PCR (chimeras). This results in an Operational Taxonomic Unit (OTU, grouping of individuals 

based on genetic similarities without relying on taxonomic rank) abundance table that are 

combined with the taxonomic assignment to generate a taxonomic list of the taxa present in 

each sample. Such abundance tables are the input needed for calculation of ecological 

indexes such as TDI.  

HTS PLATFORMS FOR DIATOM BIOMONITORING 

Different technologies of sequencing are available, but they are not all optimized for diatom 

biomonitoring. In the case of a Metabarcoding study both read length and quality are 

determining factors for good taxonomic assignment (Pearman et al., 2020). 

Many of the most recent diatom Metabarcoding studies use the MiSeq Illumina Sequencing 

by synthesis (SBS; Figure 7 & 8). An advantage of this platform is that the length of the diatom 

rbcL (coding for the large subunit of RuBisCO) amplicons mostly used (312 or 340 base pairs 

(bp)) matches the capacity of this technology to provide high quality reads up to this length 

(Kelly et al., 2018), and that the number of sequences reads generated by this technology is 

sizeable (several Gigabytes of data for a MiSeq run which represent up to 25 million reads) 

comparing to older technologies. This depth of read coverage allows reliable biomonitoring 

assessment because we can investigate abundant and rare species present in the ecosystem. 

Besides this method, the Ion Torrent™ PGM has also been used (Kermarrec et al., 2014; 

Vasselon et al., 2017b) but the higher errors rate and the lower coverage of sequences lead 

to a large proportion of discarded reads. The MiSeq was one of the platforms used in this 

study, for example in Chapters 3, 4, and 5. 

New sequencing platform can be interesting alternatives, such as the Oxford Nanopore 

Technology (ONT) sequencing platform which enables longer reads but with a relatively lower 

quality. This sequencing technology is based on identification of the nucleotide by analysing 

the change in the electric current voltage density induced across a nanopore when a fragment 

of DNA passes through this micropore (Figure 7). The MinION device is the most used ONT 

platform for biomonitoring as it presents a good compromise between price (both the device 

itself and reagents) and number of reads. Moreover, the small dimensions of the MinION 

device itself make it very portable. 
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However, any new platform should be tested against the existing widely used platform (in this 

case, the MiSeq) to assess its performance characteristics, cost and speed of deployment. The 

Nanopore technology (and especially the MinION device) produce an average of 5% to 20 % 

error rate (Weirather et al., 2017; Jain et al., 2018; Tedersoo et al., 2018). The error rate is 

quite constant but remains high for biomonitoring which prefers low error rates to ensure the 

reliability of the taxonomic assessment. Nanopore and Illumina technology were compared 

with simulated reads of a large range of length (Pearman et al., 2019), and it appeared that 

for markers longer than 1500 bps the ONT platform will be more accurate for identification 

than the Miseq platform because the long marker (thousands of kilobases produced by the 

MinION compare to 350bp for MiSeq) are more reliable even if the quality is low. Comparison 

of ONT MinION and Illumina MiSeq during diatom Metabarcoding studies have been made 

(Glover, 2019) and results are mitigated by the use of an incomplete reference library coupled 

with BLAST assignment which lead to numerous unassigned sequences. Hence my motivation 

to design the experiment in the Chapter 3, which compared between MinION and MiSeq 

result in artificially created algal communities, after curation of the reference library and test 

of different amplicon.  

Sequencing platforms still have limitations such as read length and read error rate. Therefore, 

the choice of the barcode region is crucial and must be optimised for the targeted organism(s) 

and the type of survey.  

 

Figure 8 Nanopore Oxford Nanopore Technology (ONT) sequencing. From Genome 
Research Limited. 
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TAXONOMIC REFERENCE LIBRARY  

DNA-based identification efficiency is directly dependent on the reference library created 

beforehand. This is due to identification being based on similarities between the reads from 

the environment and the sequences present in the reference library. A percentage similarity 

threshold is present, meaning that an error in the reference library read (erroneous bases, 

gaps, confused naming, etc) can directly lead to unassigned sequences or incorrectly assigned 

sequences. A reference library is composed of sequences from securely identified species, 

usually extracted from pure culture.  

A well curated and diverse reference library is the backbone of reliable studies based on 

diatom biomonitoring using Metabarcoding (Kelly et al., 2018). Although diatoms are among 

the most used bioindicator, the largest missing gaps in barcode reference libraries for 

freshwater biomonitoring are associated to diatoms and invertebrates (Weigand et al., 2019). 

The UK Diatoms reference library, created for in Kelly et al 2018, suffers from a low coverage 

of species: only 176 diatoms species have their sequences present in the “Gold-Standard” 

reference library, which is less than 10% of the species present in the UK and Ireland. A large 

proportion of the most abundant and most ecologically informative species are included.  

Figure 9 Principle of Illumina Sequencing (Sequencing by Synthesis). (a) flow cell overview; (b) incorporation of 
nucleotides results in release of fluorescence; (c) zoomed in the flow cell –different nucleotides with their 
specific fluorescents colour (modified by Untergasser after Genomics 2019). 
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A second library is available which derives from a European project called diat.barcode. It uses 

an open-source reference library within 1401 sequences of diatoms including the Kelly et al. 

(2018) reference library. Furthermore, the sequences are well curated because of a regular 

curation of the library before each release of a new version. This European project 

diat.barcode/Rsyst, initially based in the French laboratory INRA – CARRTEL Thonon-les-Bains 

(Rimet et al., 2019, 2016) also provides methodology from sampling to bioinformatic analysis. 

A second library is available which derives from a European project called diat.barcode. It uses 

an open-source reference library within 1401 sequences of diatoms including the Kelly et al. 

(2018) reference library. Furthermore, the sequences are well curated because of a regular 

curation of the library before each release of a new version. This European project 

diat.barcode/Rsyst, initially based in the French laboratory INRA – CARRTEL Thonon-les-Bains 

(Rimet et al., 2019, 2016) also provides methodology from sampling to bioinformatic analysis. 

The performances of the two diatom reference libraries are compared in Chapter 1 as well as 

an improvement of the diat.barcode reference library by adding non-diatom phytoplankton 

sequences in order reduce the proportion of unassigned sequences. Limitations of the library 

from Kelly et al. (2018) are discussed in Chapter 3. 

Assignment method 

In metabarcoding analysis, two assignment methods are most commonly used. Firstly, the 

naive Bayesian classifier method developed by Wang et al. (2007), which assigns taxonomy 

across multiple phylogenetic ranks (e.g. to phylum, genus, species, clone, etc.) and secondly,  

the BLAST assignment method (Altschul et al., 1990) which is an heuristic method based on a 

similarity matrix to assign the tested sequences to the closest reference sequence. The BLAST 

assignment cannot assign to a hierarchical taxonomic placement, which is why Naïve Bayesian 

assignment is implemented in some of the most recent bioinformatic pipelines (Bolyen et al., 

2019; Callahan et al., 2016; Schloss et al., 2009). Other alternative methods exist such as 

Kraken2 (Salzberg and Wood, 2014) with rely on exact k-mer matches in order to classify the 

sequences again a reference library.  

An alternative approach is ‘taxonomy-free’ biomonitoring. An example of this is a Swiss study 

which tested the approach for diatoms biomonitoring in rivers (Apothéloz-Perret-Gentil et al., 

2017). The OTUs were assigned directly to ecological preferences after training of the dataset 
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with some reference environments with a large range of ecological conditions. This method 

has the advantage of using more than 95% of the reads instead of 36% with their reference 

library. This proportion of assigned taxa seems low, potentially as this study uses a very small 

reference library and the 18S V4 region which is easier to amplify but the assignment is not 

as effective as the diatom assignments using the rbcL barcode. A disadvantage of this 

approach is that it ignores data on diatom ecological preferences that have been collected 

during the last century. Moreover, this method does not have any way to control for 

contamination of the samples, especially because the 18S V4 marker is also present in plants, 

animals, and fungi. This barcode is frequently used in eukaryote Metabarcoding studies which 

do not target a specific taxon present in a sample (Pawlowski et al., 2016).  

Therefore, within this thesis I decided to focus on comparing the BLAST and the Naïve 

Bayesian approach. I explore the different assignment methods in Chapter 3.  

Although the taxonomic assignment methods rely on well curated and complete reference 

libraries, sequence quality and integrity need to be as high as possible. As the sequencing 

steps induces errors in the sequences, new bioinformatic algorithms have been created to 

correct the sequences before the taxonomic assignment.  

NEW DENOISING ALGORITHM-BASED BIOINFORMATIC PIPELINE APPROACH  

The sequence reads generated by HTS need to be processed to give the composition of the 

community present in the environment. Different bioinformatic pipelines exist. Due to the 

large size of the sequencer output (Gigabytes of data = hundreds of thousands of reads), those 

processes are likely to require a considerable amount of computational power. The earliest 

method used to reduce this requirement was to cluster together very similar sequence reads 

in Operational Taxonomic Units (OTUs), which is also useful to reduce the sequencing errors 

that could generate erroneous taxonomic units. There are several clustering methods such as 

Opticlust (Westcott and Schloss, 2017), furthest neighborhood or near neighborhood (Chen 

et al., 2013), but all of them unavoidably cause a loss of genetic variation information 

(Callahan et al., 2016).  

Alternatively, a new method has been created based on denoising algorithms that oversees 

the correction of sequencing errors in order to obtain the genuine sequence variations with 
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a single nucleotide resolution, called amplicon sequence variants (ASVs). A recent paper 

(Nearing et al., 2018) described a benchmarking study of the principal algorithms used 

to denoise the raw sequences: Deblur, DADA2 and UNOISE3. It showed that very similar 

community compositions were obtained with each of the three methods. Only the alpha 

diversity, the number of different taxonomic units (OTUs when clustered, ASVs when 

corrected) in the community, seemed to diverge among the methods. This is not a problem 

for biomonitoring which focuses on the main dynamic of community change and is more 

tolerant to missing very rare taxa (unlike studies investigating the presence of invasive species 

species of conservation concern) (Lavoie et al., 2009). Although the results seemed quite 

similar for biomonitoring studies, the time required to run the different pipelines were 

significantly different, UNOISE3 (4.6 min) was ~1.3 times faster than DADA2 (5.8 min) and 15 

times faster than Deblur (69 min). The OTU clustering method required a large amount of 

computer memory because all the sequences clustered in a single OTU need to be stored in 

the computer memory before this cluster is identified against the reference library. Because 

denoising methods use ASVs instead of OTUs clustering, they can analyse each read 

independently, resulting in linear scaling with sample number and possible parallelization 

(multithreading) which reduces the time and computational power requirements (Nearing et 

al., 2018). Hence the amount of time required is not problematic for processed MiSeq 

sequencing (but it is not impossible in the future that the datasets will become bigger). 

Moreover, the DADA2 R pipeline has the advantage of handling everything from input to 

graphical representations with a lot of flexibility, an important consideration  when creating 

a straightforward method that aims to be routinely used by non-bioinformaticians for 

biomonitoring.  

As I explored the limitation of the technology, the barcode choice is important because it 

raises its own limitations and specificities. 

GENETIC REGIONS FOR DIATOMS BARCODING 

While the choice of technology used for Metabarcoding survey is essential, the choice of the 

genetic region is also essential as it is directly linked to the DNA that will serve as input in the 

sequencing platform.  
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Several markers have been used for diatoms Metabarcoding including the mitochondrial 

genes : 18S, 28S, 5.8S, SSU, cox1, ITS and chloroplast genes such as rbcL (Guo et al., 2015; 

Trobajo et al., 2010; Zimmermann et al., 2011). The cox1, ITS genes have been preferentially 

used during diatom taxonomic studies because of their high variability that allow 

differentiation even to subspecies level, which make them better for phylogenetic studies 

(Trobajo et al., 2010). For diatoms, the 18S and rbcL are more conserved regions because they 

are coding regions (the integrity and the efficiency of the resulting protein should be 

preserved among throughout evolution), hence they are the preferred markers for biological 

monitoring studies because it they enable us to distinguish at lower the taxonomic ranks used 

during most biomonitoring, and permits an adequate level of genetic similarity among 

individuals of the same species or genus.  

According to Kermarrec et al., 2013 the best region to use for diatom biomonitoring studies 

is the chloroplast gene rbcL (Figure 11). This marker was compared to SSU rDNA 18S and cox1 

and obtained the highest detection rate of taxa present in a mock community (all taxa were 

detected) along with only one false positive (reads that are misidentified to species that are 

not present in the mock community). Hence this marker seems to be the best to discriminate 

diatoms at species level without producing false positive results (species incorrectly identified 

as being present in the sample when they are absent) or false negative (species present in the 

mock community but not detected). Following this study Rimet et al., 2018 created a method 

for diatom monitoring using Metabarcoding with an open reference library ready to use along 

with a set of five primers for rbcL (referred to as the diat.barcode mix of primers). This marker 

has the advantage of being specific to photosynthetic organisms, moreover the mix of primers 

amplifies a region of 312 bp that is very specific to diatoms. The variability of this short region 

is high enough to provide a species-level assignment for the majority of the sequences 

obtained during sequencing. This gene region is the one used commonly in the UK (Kelly et 

al., 2018). However, the primers used routinely in the UK amplify a slightly longer region and 

bind closer to the 5’end of the rbcL gene (Kelly et al., 2018) (Figure 10). The principal 

advantage is to avoid the use of a mix of primers, unlike the three different forward primers 

and two different reverse primers of diat.barcode.  

Traditional ecological assessment based on diatoms relies predominantly on species 

determination because difference diatoms species within a genus could have very different 
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ecological preferences: e.g. the Nitzschia genus includes species that are very similar 

morphologically but with opposite environmental preferences, from oligotrophic to ultra-

eutrophic environments. As the intention is to use diatom Metabarcoding to replicate 

traditional methods, it is therefore important to resolve all taxa down to species. 

Nevertheless, in Rimet and Bouchez, 2012, taxonomic assignment resolution to the genus 

level was found to be sufficient for most ecological assessments based on diatom 

biomonitoring.  

Because using multiplexed markers (more than one barcoding gene on the same sample) 

increases the number of species detected (Zhang et al., 2018), the use of multiple markers 

(e.g. 18S ,SSU rDNA, rbcS) during diatoms biomonitoring could be used as they have been 

used during diatoms taxonomy study (Trobajo et al., 2010). Nevertheless, we must consider 

three important points:  

• This would complicate drastically the actual method (increased number of sequencing 

and PCR reactions,  and primers) and also increase the cost. 

• Several studies highlighted that ecological assessments based on genus rank 

identification are sufficiently accurate for biomonitoring (Rimet and Bouchez, 

2012Lane, 2007). 

• the rbcL marker is able to identify even down to subspecies level with a well curate 

taxonomic reference library (Rimet et al., 2019). 

• The number of species detected would be higher, but the relative abundance of each 

taxon may differ drastically between primers and it would be difficult to correct the 

abundancy for ecological assessment index calculation. 
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rbcL 

Figure 11 Position of the rbcL gene in the chloroplast genome of Nitzschia palea (Generated with Gview v1.7) 

Figure 10 Localisation of the different amplicons used on the rbcL gene.  Amplicon UK is from Kelly et al., 2018, 
Amplicon diat.barcode is from Rimet et al., 2019) 
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RELIABILITY OF DNA AND RNA METABARCODING COMPARED TO LIGHT MICROSCOPY 

Despite the potential cost and time saved by a Metabarcoding-based approach compared to 

Light Microscopy, the reliability still needs to be fully evaluated and the results obtained by 

HTS need to be corrected (notably correlated to cell counts/abundance) before being used 

with the traditional environment indexes tools such as the trophic diatoms index (TDI) (Kelly 

and Whitton, 1995). The current way to assess reliability is to compare results to Light 

Microscopy results (although note the biological reasons these results may differ, as 

mentioned in sections 1.5 above), as is done in Chapter 3 and 4, or to use mock communities 

(as used in Chapter 5).  

The association of read count with abundance is problematic; firstly, the traditional Light 

Microscopy method is based on count of single diatoms whereas the Metabarcoding method 

is based on reads of rbcL sequences, which are directly linked to the number of chloroplasts 

present in each cell. This is particularly problematic because this read number is correlated to 

different characteristics of the diatoms. For example, the biovolume of a diatom is positively 

correlated with the number of chloroplasts, subsequently a correction factor based on the 

biovolume of the diatoms was proposed (Vasselon et al., 2018). The corrected results are 

promising. Despite being a major driver of the number of chloroplasts, the biovolume alone 

does not seem to be the only driver, for instance centric diatoms are known to have tens of 

chloroplast whereas pennate diatoms commonly have less than ten chloroplasts (Bedoshvili 

et al., 2009). In the UK, the last version of DARLEQ, the official software used to calculate TDI 

(Juggins and Kelly, 2018) integrates a correction factor based on the average weighted 

proportion of each diatom. This is an empirical correction method but that seem to give good 

reliability with the Light Microscopy approach (Kelly et al., 2018).  

In order to test the reliability of the biomonitoring using diatoms Metabarcoding, a few 

studies compare ecological Index values given for the community obtained with Light 

Microscopy (LM) and with Metabarcoding. This robustly evaluates the correlation between 

the results, and to create correction factors based on this knowledge (Visco et al., 2015; 

Zimmermann et al., 2015). Although providing promising results these studies are not 

generalizable because of the very small and particular area of study (Switzerland) and the 
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relatively low correlation factor between index values obtain in the samples. Nevertheless, 

the results are statistically significant and demonstrate that HTS read counts and LM counts 

are strongly correlated, but with large standard deviations.  

In conclusion, the combination of diatom biomonitoring and HTS has the potential to provide 

a convenient and reliable method for water quality assessment. DNA Metabarcoding using 

the rbcL gene, rather than any other gene region, fits the ecological assessment requirements 

the best, but a direct comparison between the diat.barcode (Rimet et al., 2019) and the 

current (Kelly et al., 2018) rbcL barcode is needed. 

Although being sufficiently accurate to answer particular ecological questions the 

Metabarcoding approach needs several improvements to be used routinely for diatom 

biomonitoring. In this context, this PhD Thesis aim is to improve the diatom biomonitoring 

method using Metabarcoding via:  

1. Creating a DADA2 based bioinformatic pipeline and testing it against the traditional 

Light Microscopy method and the QIIME official bioinformatic pipeline. 

2. Comparing the effectiveness of Illumina MiSeq to the Oxford Nanopore technology 

MinION for diatom Metabarcoding (mock communities). 

3. Exploring the proportion of non-diatom to diatom reads generated and assign these 

with different rbcL barcodes and different reference libraries. 

4. Exploring and quantifying the positive selection that could have been present during 

the evolution of the diatom rbcL gene history. 
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CHAPTER 2 GENERAL MATERIALS AND METHODS 

This chapter aims to describe the methods that are shared between chapters in order to 

prevent redundancy. Detailed methods are presented in this section while chapters have 

briefer description of the methods and, if needed, details of the variations used in each 

chapter.  

Some of the river sample data from this thesis originate from the UK and France (Chapters 3) 

this was provided as raw sequence data, but the methods used to produce this data are 

described below. Diatom and phytoplankton samples were also collected and processed for 

this thesis (Chapter 4) and followed the method described for the UK below. The methods 

differ slightly at most steps and are detailed separately below. 

SAMPLE COLLECTION 

UK 

The biofilm samples from rivers were collected following the standard Environment Agency 

method (CEN, 2014; Kelly et al., 2018; M G Kelly et al., 1998) which involves the collection of 

5 cobbles at each sampling sites. The cobbles were placed in a tray with about 50mL of water 

taken from the stream. The cobbles were brushed and the biofilm gathered/collected 

conserved in 70% ethanol solution after sampling. The samples from UK were preserved by 

mixing 5 mL of the suspension of biofilm and water with 5mL nucleic acid preservative made 

of 3.5 M ammonium sulphate, 17 mM sodium citrate and 13 mM ethylenediaminetetraacetic 

acid (EDTA). This was done for the samples collected in Chapters 3 and 4. 

Alternatively, a pair of tiles was placed out at  each sampling site of the river Foss. Biofilm was 

collected a month after the tiles were placed out following the standard Environment Agency 

method, with the tiles instead of cobles. This was done to standardise the method instead of 

collecting biofilm from different surfaces (in terms of size and roughness).  

France 

The biofilm sampling followed NFT 90 354 (Prygiel et al., 2002) which is very similar to the UK 

method: 5 to 10 cobbles were collected from the stream, biofilm was then brushed with water 
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from the stream. The samples collected were only kept in ethanol (70-80 % in the final 

volume).  

Both samples from UK and France have been frozen at -30°C  prior to DNA extraction and 

Light Microscopy slide preparation. 

LIGHT MICROSCOPY IDENTIFICATIONS 

The Light Microscopy inventories were executed in different laboratories but all followed the 

European Standards described in BSI (2003): Water quality — Guidance standard for the 

routine sampling and pre-treatment of benthic diatoms from rivers. (BSI, 2003). 

The different steps included organic matter destruction with 30% hydroxide peroxide 

solution, Carbonate particles removal with 20 % HCl solution and mounting of diluted samples 

on slides with Naphrax (reflective index = 1.65). 

The diatoms frustule identifications were done following the standard method using Light 

Microscopy with oil immersion and x400 to x1000 magnification. In order to determine the 

community compositions, at least 400 frustules were counted and identified in each French 

sample and 300 in each UK sample. Only diatom frustules with more than 75 % of integrity 

are considered. 

The identifications were done with reference to “Freshwater Benthic Diatoms of Central 

Europe: Over 800 Common Species Used in Ecological Assessment” (Cantonati et al., 2017). 

DNA EXTRACTION FROM BIOFILM 

UK 

The DNA extraction method follows Kelly et al., 2018 which includes spinning down samples 

(3,000g for 15min) to create a pellet, removal of buffer and then use of the DNeasy Blood and 

Tissue kit (Qiagen, Germany) following a standard protocol, with proteinase K  incubation 

overnight .  

France  

The samples were extracted following the GenElute method (without the use of purification 

column, as described in Vasselon et al., 2017). This method involves a different sample lysis 

step, which was a thermal shock (-80C/15min followed by 55C/2min), sonification 
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(ultrasonic bath/20s) and enzymatic treatment (proteinase K); then the contaminant was 

removed by centrifugation and the supernatant collected. The DNA was then precipitated 

with GenElute TO-LPA (Sigma-Aldrich) followed by a step of centrifugation. The pellet was 

then resuspended in molecular water. 

All DNA samples were preserved in cold storage (-30C). 

PCR AMPLIFICATION: SHORT BARCODES AND FULL LENGTH RBCL 

UK 

The PCR amplification followed the method from Kelly et al., 2018.  

The volumes of amplification were 20μL and comprised of 0.3 μM of each primer (Forward 

primer rbcL-646F: ATGCGTTGGAGAGARCGTTTC, reverse primer rbcL-998R: 

GATCACCTTCTAATTTACCWACAACTG) including Illumina adapters, 4μl of HF buffer, 0.3 mM 

of dNTPs, 0.4 units Phusion high  -fidelity DNA polymerase (New England Biolabs, UK), made 

up to a total volume of 19.5 μL using Nuclease-free water.  0.5µl of a 1:10 dilution of extracted 

sample DNA Nuclease-free water was used to make the final reaction volume. 

The PCR reactions started with an initial denaturation at 98°C for 2 minutes  , followed by 35 

cycles of: denaturation at 98°C for 20 seconds, annealing by lowering temperature to 55°C  

for 45 seconds, extension at 72°C for 60 seconds, a final extension at 72°C for 5 minutes. 

Electrophoresis on 1% agarose gels were used to assess the quantity and the length of the 

PCR product, dyed with ethidium bromide and visualised/printed on an ultraviolet (UV) 

transilluminator (Kelly et al., 2018). 

France 

The samples were amplified following Vasselon et al., 2019. The forward primer comprised 

an equimolar mix of Diat_rbcL_708F_1 (AGGTGAAGTAAAAGGTTCWTACTTAAA), 

Diat_rbcL_708F_2 (AGGTGAAGTTAAAGGTTCWTAYTTAAA) and Diat_rbcL_708F_3 

(AGGTGAAACTAAAGGTTCWTACTTAAA); the reverse primer combined an equimolar mix of 

R3_1 (CCTTCTAATTTACCWACWACTG) and R3_2 (CCTTCTAATTTACCWACAACAG). For each 

DNA sample, PCR amplification was performed in triplicate in a final volume of 25 µL. Each 

PCR mix was composed of 1 μL of extracted DNA, 0.75 U of Takara LA Taq® polymerase, 2.5 

µL of 10X Buffer, 1.25 µL of 10 μM of primers Diat_rbcL_708F_1_2_3 and R3_1_2, 1.25 µL of 
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10 g/L BSA, 2 µL of 2.5 mM dNTP, and made up to the final volume with molecular biology 

grade water. The PCR reaction conditions were initiated by a denaturation step at 95°C for 15 

min followed by a total of 30 cycles of 95°c for 45s (denaturation), 55°C for 45s (annealing), 

and 72°C for 45s (final extension). 

While overlapping, the two barcodes differ by their length with the diat.barcode amplicon 

shorter with is 263 bps (after primers trimming) compared to the 331 bps for the Kelly et al. 

(2018) barcode (Figure 9).The quantity and quality of each PCR product was evaluated by 

electrophoresis on 1.5% agarose gel. 

SEQUENCING  

The PCR products from French samples sites were sequenced at the “Plateforme Génome et 

Transcriptome de Toulouse” (GeT-Plage) and those from the UK were sequenced at Fera 

Science Ltd. 

Both sets of PCR products followed the same process in the different laboratories. The PCR 

product was purified and the library preparation produced by adding specific tags and 

sequencing adaptors to each sample. The sequencing followed the paired-end multiplex 

method with Illumina MiSeq platform and V3 kit (2 x 250bp) for French samples and 2 x 300bp 

for UK samples.  

BIOINFORMATIC PIPELINES 

QIIME1 UK pipeline 

The QIIME1 based pipeline is divided in a quality control step and a taxonomic assignment 

step, a complete description of the different steps is present in Kelly et al. (2018a). 

The quality control part is divided into four steps:  

- removal of the PCR primers located on both strands by the use of Cutadapt v1.9.1 

(Martin, 2011); 

- trimming of the poor quality 3′ ends of sequences from both strands using Sickle 

v1.33 (Joshi and Fass, 2011);  

- merging the paired-end reads using PEAR v0.9.6 (Zhang et al., 2013); 

- removal of any sequences with a quality score lower than 30 and shorter than 250 

bp using Sickle v1.33.  
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The taxonomic assignment was  predominantly carried out by the QIIME platform 

(www.QIIME.org) and is divided into four steps following the in-house FERA bioinformatic 

pipeline:  

- OTU de novo clustering at 97% similarity threshold using UCLUST (QIIME) ( Edgar, 

2010),  

- selection of the most abundant sequence as representative sequence for each OTU 

(QIIME),  

- taxonomic assignment of each representative sequence using BLASTn (QIIME) with 

95% of sequence identity threshold, and  

- calculation of the relative read abundances for each taxon presents in each single 

sample without filtering rarest OTU according to a minimum abundance threshold 

value. 

DADA2 pipelines: QIIME2 and R 

I created two different scripts of a new pipeline for more user flexibility, one written in R 

language and the other in QIIME2 language (Chapter 3).  

Both QIIME2 and R script follow almost exactly the same steps, differing only in the graphical 

representations and in the quality filtering and trimming steps, which are run with other 

function, hence I consider them together hereafter.  

The first steps of the pipeline are trimming steps and begin with PCR primer trimming of each 

read. A truncation step keeps the highest quality part of each read which are the 250 first 

nucleotides of the forward read and the 210 first nucleotides of the reverse read. The reverse 

reads commonly present a lower quality than the forward reads during Illumina dye 

sequencing due to a lower reagent concentration. Every read is afterward truncated at the 

first instance of an Illumina quality score less than or equal to 2.  

A subsequent filtering step discards reads following these arguments:  

- Presence of at least one ambiguous nucleotide (N),  

- Reads with higher than 2 “expected errors” , which are calculated from the nominal 

definition of the quality score: EE = sum(10^(-Q/10)) (Edgar and Flyvbjerg, 2015). 

Thereafter the errors rate of every amplicon dataset is calculated by the use of a parametric 

error model. The method alternates estimation of the error rates and inference of sample 

composition until they reach a convergence with consistent solutions. 
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The dataset is then dereplicated prior to being denoised by using the core sample inference 

algorithm DADA2 (Callahan et al., 2016). This algorithm uses the error rates previously 

calculated to infer sample sequences (both forward and reverse) exactly and to distinguish 

sequences of as little as one nucleotide. This denoising process is an efficient alternative to 

an OTU clustering in order to deal with the common sequencing errors. The paired reads are 

then merged into contigs that are used to generate an amplicon sequence variant (ASV) table 

which has a similar structure to a traditional OTU table with the addition of a single nucleotide 

variant resolution. 

Subsequently a chimera removal step is operated using the function provide in the DADA2 

packages. The previous denoising step simplifies and shortens this process. The sequences 

are marked as chimeric (and so removed from the dataset) if there is an exact combination of 

a left-segment and a right segment from two different reads. 

To assign taxonomy to each ASV I used the DADA2 implemented naive Bayes classifier method 

(Wang et al., 2007). The classifier is created by training it on a reference library made of 

diatoms and in some cases non-diatoms rbcL sequences. This method gives a rapid taxonomic 

placement with bootstrap value for each assignment. The output is a ready-to-analyse 

community inventory for each sample.  

REFERENCE LIBRARIES  

See Chapter 3 for a complete discussion and comparison of the different taxonomic reference 

libraries. 

UK reference library (Kelly et al., 2018) 

This reference library (Kelly et al. 2018)  is based on 1483 sequences of 176 diatom species 

and available at https://github.com/rachelglover/diatom-analysis. Several sequences are 

from other phytoplankton taxa, but as the taxonomy of these algae is not specified, they 

appear as “NON-DIATOM” and “GREEN OR YELLOW ALGAE”. I used the latest corrected 

version which includes sequences file and taxonomy file to create a classifier useable by 

QIIME2 and another one useable with DADA2 (https://github.com/MathKarst/Diatom-izer). 
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Diat.barcode reference library 

The well-curated and updated reference library provided in open access by the INRAE 

(France), diat.barcode, has been selected as an efficient alternative to the library used in the 

UK (Kelly et al., 2018). It contains sequences from the UK and also from all over the world 

which could improve the versatility of the assignment in term of geographical origins. The 

complete taxonomic lineage of each sequence is present. 

RIVER QUALITY SCORE CALCULATION: THE TROPHIC DIATOM INDEX (TDI) VIA DARLEQ 

In order to compare the results generated by each pipeline I compare the Trophic Diatom 

Index (TDI) values of the different communities obtained as well as the TDI EQR (Ecological 

Quality Ratio) which represent an ecological status class of either High, Good, Moderate, Poor 

or Bad (Juggins and Kelly, 2018; Kelly et al., 2014) 

Both TDI and EQR is highly correlated to soluble P and nitrate-N which has been suggested to 

reflect the underlying inorganic nutrient pressure gradient (Kelly et al., 2008). 

Environmental variables included are phosphate-P (P-PO4), nitrate-N (N-NO3), ammonium-N 

(N-NH4), alkalinity, conductivity and pH. 

DARLEQ (version3) is used to calculate the TDI scores and EQR from each different river 

communities. I used the DARLEQ package with R software, including the interactive shiny app. 

Calculation of the TDI derived from the weighted average equation of Zelinka and Marvan 

(1961): 

𝐼𝑛𝑑𝑒𝑥 = ∑
𝑎𝑗. 𝑣𝑗. 𝑖𝑗

𝑎𝑗. 𝑣𝑗

𝑛

𝑗=1

 

with aj = abundance (proportion) of species j in sample, vj = indicator value (nutrient 

preferences, 1-3) and ij = nutrient level sensitivity (1-5) of species j. The value of TDI can range 

from 0 (low nutrient concentrations) to 100 (high nutrient concentrations).  

The expected reference values (eTDI) of each site was calculated using the annual mean 

alkalinity following this equation: 

eTDi =  9.933 ∗  eLog10(alkalinity)∗0.81 
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The TDI EQR (Ecological Quality Ratio) is then calculated based on observed data (TDI) and, 

resulting in an overall EQR:  

EQR 𝐷𝐴𝑅𝐸𝑆  =   
(100 –  observed value of river trophic diatom index )

 (100 –  reference value for river trophic diatom index)
 

The last version of this software, Darleq3, enables the calculation of the TDI 5 NGS which 

implement a correction of the values from NGS by a heuristic method (correction factor for 

the taxa quantification which usually differs between molecular and Light Microscopy data). 

Other bioinformatic pipelines successfully used other corrections of the NGS data to reduce 

the overrepresentation or underrepresentation of some taxon comparing to the LM method. 

For example, a correction based of the biovolume of each diatoms has been used successfully 

(Vasselon et al., 2018)  

I used the TDI5 version for the Light Microscopy data and the TDI4 and the NGS TDI5 version 

for Metabarcoding data.  

The correlation between TDI4 and TDI5LM is 0.99 and Lin’s concordance correlation 

coefficient is 0.99. (Kelly et al., 2020), as such they are very similar and I decided to only use 

the LM TDI5 version as it would not be informative to add the TDI4 in the studies. However, 

the TDI4 and the NGS TDI5 are not as similar.  

Nevertheless, the NGS TDI5 version is the recalibrated version using a larger dataset in term 

of environment data and species sequences. Only a small overall improvement was found by 

the creator and optimisers of the index, which is the Environment Agency (Kelly et al., 2020). 

The NGS TDI5 versions have been designed to be more suitable for NGS data than the 

traditional TDI4 as it has been calibrated with NGS data instead of LM data. 
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CHAPTER 3 DIATOM-IZER: A DADA2-BASED BIOINFORMATIC PIPELINE 
DESIGNED FOR DIATOM BIOMONITORING USING METABARCODING 

INTRODUCTION 

Diatoms are ubiquitous freshwater microalgae known to be reliable water quality indicators 

due to their environmental preferences and fast response to ecological changes. This had led 

the analysis of diatom communities to be routinely used to assess the ecological quality of 

rivers in many countries, including the EU and the UK (Kelly, 1998; Prygiel and Coste, 2000). 

The traditional identification method relies on the diatoms observations from river biofilm 

using microscopy which is time-consuming and requires highly skilled taxonomic experts. 

Alternatively, a molecular based method, Metabarcoding, has been developed that relies on 

the identification of multiple species from a single environmental sample using variations in 

conservative short sequences of DNA/RNA (called a barcode) and High-Throughput 

Sequencing (HTS; also referred to as Next Generation Sequencing, NGS) (Taberlet et al., 2012). 

The diatom Metabarcoding method developed in the UK (Kelly et al., 2018) uses a short 

barcode located in the chloroplast gene rbcL, which encodes the large subunit of the RuBisCO 

enzyme. The diat.barcode  ‘European’ method relies on a slightly smaller rbcL barcode which 

is located closer to the 3’ end (Frederic Rimet et al., 2018).  

There are known biases and errors associated with Metabarcoding, notably the formation of 

‘PCR chimera sequences’ (a single DNA strand originated from more than one transcript) 

(Smyth et al., 2010), primer biases and sequencing errors associated with the different 

sequencing platforms (Nearing et al., 2018). These artefacts can impact the results if they are 

not considered and corrected for. However, it is not always simple to distinguish artefact 

sequences from real biological sequences. The substantial amount of data generated by 

sequencing needs to be bioinformatically processed. Several bioinformatic pipelines have 

been created to deal with these issues by using algorithms that can handle chimera removal 

such as Uchime (Edgar et al., 2011) or  Vsearch (Rognes et al., 2016) and that can also deal 

with the sequencing errors by modelling and correcting amplicon errors to obtain amplicon 

sequence variants (ASVs) as an alternative to Operational Taxonomic Units (OTUs), which 

make similarity-related sequences clustering obsolete. This latest process, sometimes called 

denoising, is performed by the use of different sample inference algorithms, the most well-
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known of which are Deblur (Amir et al., 2017), DADA2 (Callahan et al., 2016) and Unoise 

(Edgar, 2016). 

The current bioinformatic pipeline created in the UK for diatom Metabarcoding is based on 

QIIME1 and relies on OTU clustering instead of ASV clustering-free approach. In order to 

update the method, I have created a bioinformatic pipeline that integrates a “denoising” step 

managed by DADA2. I have written two scripts, one in R and one for use with QIIME2 to 

provide greater flexibility of use and ease of integration. I compared this bioinformatic 

pipeline with the previously published UK QIIME-based bioinformatic pipeline in terms of 

speed of processing and accuracy of ecological assessment. I also compared these molecular 

approaches with the result given by the traditional Light Microscopy (LM) method which is 

the standard of comparison. The bioinformatic pipelines have been compared using two 

different datasets, one from the UK and one from France in order to evaluate whether the 

differences in the method have an influence on the outputs generated by the bioinformatic 

pipelines. 

The aims of this study are to create a new pipeline and to compare the results given by my 

new bioinformatic pipeline with the bioinformatic methods created for UK biomonitoring in 

the UK (Bailet et al., 2020; Kelly et al., 2018). The results cannot be used to compare each 

setting separately but gives a general comparison of the pipeline outputs by which I propose 

and compare my own pipeline by this means.  

MATERIALS & METHODS 

DATASET ORIGINS 

The study uses two diatom datasets, one from the UK and one from France. The UK dataset 

originated from 171 samples used during the 2016 analysis for the EU Water Framework 

Directive, collected following the standard Environment Agency method (CEN, 2014; Kelly et 

al., 2018; M G Kelly et al., 1998).  The French dataset is composed of 371 samples from the 

public dataset from INRAE/AFB (Rivera et al., 2020), collected following the NFT 90 354 

diatom collection protocol  (Prygiel et al., 2002) which is very similar to the UK method. Both 

datasets are composed of the LM inventory, the output from an Illumina MiSeq sequencing 
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run and the alkalinity of the sampling sites (necessary for the calculation of environment 

indexes).  

 

DNA EXTRACTION PCR AND SEQUENCING 

The molecular methods used for the UK data set are given in Kelly et al., 2018 and detailed in 

the Materials and Methods chapter (Chapter 2) above.    

For the French data, the samples were extracted following the GenElute method (without the 

use of purification column, as described in Vasselon et al., 2017).  

Both set of PCR products followed the same process in the different laboratories. The PCR 

product was purified, and the library preparation produced by adding specific tags and 

sequencing adaptors to each sample. The sequencing followed the paired-end method with 

Illumina MiSeq platform and V3 kit (2 x 250bp) for French samples and 2 x 300bp for UK 

samples).  

BIOINFORMATIC PIPELINES 

Three different pipelines were used during this experiment and are all described in the 

General Materials and Methods Chapter: QIIME1 (Kelly et al., 2018), DADA2 R and DADA2 

QIIME2. The DADA2 scripts are interchangeable and were created for this study. 

REFERENCE LIBRARIES  

Only the reference library from Kelly et al. 2018 was used on all samples. See the Materials 

and Methods Chapter 2 for more details.  

RESULTS 

TDI COMPARISON 

Linear regression models have been built to calculate the correlation between the river 

quality scores given by each method. The hypothetical situation in which no single sensitive 

species was present in the site results in a 0 for both LM and molecular method, which means  
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the intercept passes through 0, therefore, the intercept was forced to 0 during the linear 

regression models building. 

 The R-squared and the equation of the linear models were the main comparable index and 

showed a very strong overall correlation between the result calculated from LM data and 

Metabarcoding. The French dataset gave stronger correlations due to the larger number of 

samples in the dataset.  

 

 

  

Table 3 Correlation factors (y) and R-squared values for the linear regression between TDI (Trophic Diatom 
Index) or TDI Class (CLASS) generated by each method. Method: Q1=QIIME1, LM = Light Microscopy, DADA2: 
Diatom-izer.  Left-hand panel: UK dataset, right-hand panel: French dataset 

UK 

TDI NGS 

Linear regression  

y R2 

DADA2 / LM 0.941 0.93 

CLASS DADA2 / LM 1.01 0.95 

Q1 / LM 0.951 0.95 

CLASS Q1 / LM 0.996 0.96 

Q1 / DADA2 0.987 0.97 

CLASS Q1 / DADA2 0.972 0.97 

FR 

TDI NGS 

Linear regression  

y R2 

DADA2 / LM 0.989 0.97 

CLASS DADA2 / LM 1.02 0.97 

Q1 / LM 0.934 0.96 

CLASS Q1 / LM 0.995 0.97 

Q1 / DADA2 0.942 0.99 

CLASS Q1 / DADA2 1.02 0.99 
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UK Sites 

  

Figure 12. Linear regressions of the TDI values (left) and TDI classes (right) assigned by each method for the 
UK sites. The colours represent the different ecological classes: 1-BAD (red), 2-POOR (orange), 3-
MODERATE (yellow), 4-GOOD (Green), 5-HIGH (blue). On the TDI class graphs (right) the presence of a 
point in a coloured region means that both methods assigned the site to the same TDI class. Note: the 
alkalinity is integrated in the calculation of the TDI ecological class. Important Note: TDI is negatively 
correlated with the water quality, as such the highest TDI, the lowest the quality and vice versa.  
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France sites 

 

Figure 13 Linear regressions of the TDI values (left) and TDI classes (right) assigned by each method for the 
French sites. The colours represent the different ecological classes: BAD (red), POOR (orange), MODERATE 
(yellow), GOOD (Green), HIGH (blue). On the TDI class graphs (right) the presence of a point in a coloured 
region means that both methods assigned the site to the same TDI class. It is not exactly the case for the 
TDI plot because the alkalinity is integrated in the calculation of the TDI ecological class. 
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`  

The above graphs show the proportion of sites that were assigned to the same or different 

ecological (TDI) classes according to the method used.  

DADA2 and QIIME1 assigned the same class in 80.19% of the French sites and 64.71% of the 

UK sites, with less than 3% of the sites assigned to a class distant from more than one class to 

the other. 

 When compared to the LM generated TDI class results, both pipelines gave similar results 

with QIIME1, assigning 60.06% of the French sites and 56.47% of the UK sites to the same 

class as the LM method. DADA2 assigned 61.32% of the French sites and 54.12% of the UK 

sites to the same class as the LM method. Less than 5.5% of the sites were assigned to a class 

distant from more than one ecological class to the one assigned by the LM method.  

No class difference 

 1 class difference  

 2 classes difference  

 3 classes difference  

 4 classes difference 

Light Microscopy VS QIIME1 Light Microscopy VS DADA QIIME1 VS DADA 

Figure 14. Percentage of samples assigned to the same or different TDI classes by different methods. 
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For the UK dataset, the paired Wilcoxon tests show that the raw TDI values were not 

significantly different between LM and each bioinformatic pipeline, furthermore, the TDI 

values from each bioinformatic pipeline were not significantly different.  

The paired Wilcoxon tests on the French dataset gave different results: the TDI values from 

QIIME1 were significantly different from the TDI values of both LM and DADA2. Moreover, 

TDI values from DADA2 and LM were not significantly different. 

 

COMMUNITY STRUCTURE: MANTEL TEST AND EVENNESS INDEX 

Mantel test on dissimilarity matrices 

In order to compare the correlation between the communities created by the Metabarcoding 

pipelines and the LM identifications, Bray Curtis dissimilarity matrixes were built for each 

method. The matrixes were used to run Mantel testes (Pearson product-moment correlation 

with 10,000 permutations). 

The results showed a strong correlation between the community created from LM 

identifications and the ones created from the output of each bioinformatic pipelines. The 

results comparing the two bioinformatic pipelines (QIIME1 vs DADA2) presented the 

strongest correlation.  

This confirmed that each method gave comparable and correlated community structures, 

which is promising in the perspective of Metabarcoding replacing or being used alongside the 

LM method.  

 

LMvsQ1 LMvsDADA2 Q1vsDADA2 

TDI UK 0.493  0.282 0.707 

TDI FR 0.0241* 0.890 0.0258* 

Table 4 Paired Wilcoxon test p value result. * Values are significantly different with alpha = 0.05. LM=Light 
Microscopy, Q1=QIIME1 pipeline, DADA2 = DADA2 pipeline 
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Table 5 Mantel test result. The positive Mantel statistic values indicate a positive correlation beetween the 
matrixes of each method. 

Evenness 

The evenness index is one of the most used diversity indexes which has the advantage of 

including the abundance of each OTUs/ASVs in the community as well as the number of 

OTUs/ASVs/species (alpha diversity) in order to provide a metric that gives a clear and 

understandable evaluation of the dominances and uniformities among the studied 

community. This metric is frequently difficult to use with molecular data because the number 

of OTUs/species is easily overestimated with the errors during sequencing and PCR that 

creates singletons (or very rare sequences) during sequencing, and chimeras, during PCR, that 

are not representative of the true genetic diversity of the samples. Both pipelines include a 

rare sequences removal step that should remove the sequences created during sequencing, 

but only the DADA2 pipeline includes a PCR chimera removal step.  

I used the evenness index (Pielou, 1966):  

J =  H/ log 𝑆  

With J =Evenness index, H = Shannon diversity index, S= total number of OTUs/ASVs 

I decided to work on the biggest dataset which is the one containing sampling sites from 

France. The comparisons between the evenness values generated by LM and every method 

shows evident correlations. The QIIME1 and LM values were correlated with a coefficient 

factor of 0.81, but they were significantly different using the Wilcoxon signed-rank test. The 

  

UK FR 

Mantel statistic Significance Mantel statistic Significance 

Q1 vs DADA2 0.8563 >0.0001 0.8436 >0.0001 

Q1 vs LM 0.5144 >0.0001 0.6627 >0.0001 

LM vs DADA2 0.3931 >0.0001 0.6239 >0.0001 
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DADA2 and LM values were strongly correlated with a coefficient factor of 0.96, the 

Wilcoxon signed-rank test indicated that the values were not significantly different.  

The Wilcoxon paired test showed that QIIME1 TDI values were significantly different from 

both Light Microscopy and DADA2 TDI values while DADA2 TDI values were not significantly 

different from the LM TDI value. This is likely to be explained by the highest number of OTU 

given by QIIME because there was no chimera-removal step present.  The DADA2 pipeline 

seemed to give a better image of the community structures.  

 

Table 6 Wilcoxon-paired test with evenness values from different methods. As a Wilcoxon-paired tests, any 
value p-value greater than shows no significant difference between the two-paired dataset, lesser value 
shows significant differences between the two-paired dataset. 

Evenness values Wilcoxon paired 

test 

UK FR 

p-value 

Q1 vs DADA2 < 0.0001* < 0.0001* 

Q1 vs LM < 0.0001* < 0.0001* 

LM vs DADA2 0.4828 0.279 

Figure 15 Correlation between the evenness values generated with metabarcoding (vertical axis) and LM 
(horizontal axis) on the dataset from France. Left: DADA2 pipeline; right: QIIME1 pipeline 
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PROCESSING TIME  

The processing time for each bioinformatic pipeline was measured for the 171 samples from 

UK. Only the identification steps were considered here. For the microscopy I only considered 

the time taken to identify the slides, and for the molecular approach I focussed only on the 

bioinformatic pipeline time requirement with the raw sequences from the sequencing 

platform. As such, laboratory work is not considered, namely the chemical treatments and 

slides preparation for microscopy, and DNA extraction and sequencing for the Metabarcoding 

approach. Both of these usually require a few days of work for both approaches. 

The data was processed on the same server with 20 threads. It required 69 hours to process 

the 171 samples using QIIME1 (20 threads) from raw data output from the sequencing 

platform. It required 4 hours using DADA2_R pipeline (20 threads) from raw data output from 

the sequencing platform. This makes DADA2 more than 17.25 times quicker for this MiSeq 

output than for QIIME1, using this very typical diatom Metabarcoding dataset.  

 

 

 

 

DISCUSSION 

The two different Metabarcoding bioinformatic pipelines gave very similar results for TDI 

ecological assessment. Compared to the LM method the ecological status evaluated were the 

same in ~58% of the sample sites, which can seem low, but the assessments differed by more 

than one ecological class in only ~5% of the samples. The French dataset result analyses 

showed that the TDI generated with the DADA2 method were not significantly different from 

the one generated with the LM inventories whereas the TDI generated from the QIIME1 

method were significantly different from the LM outputs. This is a significant proof that 

Method Time requirement 

Light Microscopy  4-6 weeks 

QIIME1 69 hours 

DADA2 4 hours 

Table 7 Comparison of the time required to execute each of the three different methods: Light 
Microscopy, Metabarcoding with QIIME1 pipeline, Metabarcoding with DADA2 R pipeline. 



56 

DADA2 ecological assessments were more similar with LM ecological assessment than QIIME 

1 with LM. 

The community structure, in terms of evenness index, given by the DNA Metabarcoding with 

DADA2 pipeline were not significantly different from LM-based community structure data. On 

the contrary, the QIIME1 pipeline community structures were significantly different from the 

ones generated with DADA2 or LM. The lack of chimera removal step induced an 

overestimation of species diversity attributable to the presence of singletons and rare 

sequences originating from sequencing errors rather than true genetic diversity. 

Consequently, the DADA2 pipeline performed better than the QIIME pipeline for diatoms 

community structure analyses if I considered the LM results as the standard.  

In this study the two different Metabarcoding methods (for the dataset from France and from 

the UK) were close but not identical as the rbcL primers differed as well as the slightly 

difference during the PCR processes or the DNA extractions. These might have contributed to 

create different results between the two Metabarcoding methods, but this cannot be 

confirmed. Nevertheless, both methods provided quality output data that can be used as 

effectively as the LM identification for diatom biomonitoring studies and the gain in term of 

computational and time requirement was undoubtedly in favour of the Diatom-izer/DADA2 

bioinformatic pipeline. The difference in term of evenness values was logically explained by 

the difference in term on bioinformatic pipeline and there is no reason to attribute this 

difference to the slight differences during the PCR or DNA extraction steps or the minor 

changes of the rbcL location and length. 

The use of Metabarcoding for biomonitoring could be conjointly of the LM method. 

Potentially, DNA Metabarcoding is well suited to analyse numerous samples and LM can 

handle the most problematic samples (Kelly et al. 2018, Vasselon 2018). The complementarity 

of the two methods could potentially be efficient for the majority of river ecological 

assessments, thanks to the rapidity and cost effectiveness of Metabarcoding and the accuracy 

of LM identification. 

Notwithstanding the improvement that could be done in the future, this is very promising for 

the future of diatom biomonitoring. Moreover, the DADA2 pipeline performed at least as well 

as the QIIME1 pipeline while improving some of the most problematic issues that used to be 
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constraining and demotivating the routine use of DNA Metabarcoding. These improvements 

are the convenience of use, the low computational and time requirement as well as the naïve 

Bayesian classification outputs that are useable straightaway for several analysis such as 

community structures or phylogenetic analysis.  

DATA AVAILABILITY 

Dataset from INRAE (France): 

https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/9EG5Z4 

Diatom-izer repository (GitHub), including scripts and reference libraries: 

https://github.com/MathKarst 

Kelly et al. 2018 reference library https://github.com/rachelglover/diatom-analysis 

  

https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/9EG5Z4
https://github.com/MathKarst
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CHAPTER 4 COMPARING LIGHT MICROSCOPY AND MISEQ SEQUENCING 
FOR DIATOM METABARCODING IN BOTH CONTROLLED AND NATURAL 

FRESHWATER STREAMS. 

INTRODUCTION 

The increasing numbers of river ecological studies based on diatoms using Metabarcoding is 

fuelled by the latest studies that demonstrate that the Illumina HTS technology generates 

reliable data, suitable for water quality assessment (Bailet et al., 2020, 2019; Kelly et al., 2020, 

2018). In the UK, the measurement standard is the Trophic Diatom Index (TDI; Kelly, 1998) 

which is calculated by taking the mean of the ecological preferences, and especially the 

nutrient optimum, of each diatom taxon, weighted by the relative abundance of each taxon. 

The TDI was designed for natural waterbodies such as rivers, which raises the question of the 

versatility of this index: will the TDI be more suitable for natural environments rather than 

artificial waterways such as canals or mesocosms? Fera Science Ltd has created the largest 

flow-through mesocosm in Europe, offering the perfect experimental system for testing the 

effectiveness of the TDI for trophic level assessment in diverse controlled environments. 

Moreover, mesocosms are powerful tools to experiment association between diatoms and 

water quality. They can help to determine whether some factors affect the Light Microscopy 

identification more than biomolecular method, as some characteristics should influence 

differentially the preservation of frustules compared to DNA, and vice versa.  

In diatom community studies, the influence of upstream communities on the composition at 

a downstream site needs to be evaluated. The water quality assessment provides information 

about one precise location uncontaminated by cells from the upstream community that may 

be adapted to different conditions. As we are using DNA and frustules rather than RNA, there 

is a risk of “dead diatom” DNA or shells from the upstream community that could dilute our 

signal. In view of this, a study along rivers and using mesocosms is needed to reveal the 

influence of this upstream community on the downstream community and the effect of this 

on TDI calculation. The mesocosms offers us a very short “canal” that we can compare to two 

Yorkshire rivers: the Aire and the Foss.  

Here we use both MiSeq Metabarcoding and Light Microscopy to characterise the benthic 

diatom community in sites from two Yorkshire rivers, and from artificial streams in the Fera 
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Science Ltd Mesocosm site. The main goals were to determine if the TDI is suitable for both 

natural and controlled environments, if the Inter-site and Intra-site differences will group sites 

preferentially by origins (from the same river) and/or by conditions (same nutrient level). 

Moreover, a tile-based sampling method was used and tested during this study to determine 

if this methodology is suitable for diatom biomonitoring. This method is inspired by Kelly et 

al. (1998). Finally, the comparison of Metabarcoding and LM identification method can give 

us information regarding the most suitable method for surveying or characterising the 

waterbodies studied. 

MATERIALS AND METHODS 

STUDY AREA 

The chosen waterbodies for this study are both 

Yorkshire rivers that are tributaries of the River 

Ouse.  

The mesocosm location is also in Yorkshire.  

The relative proximity of the studies area (Figure 15 

& 18) implies a similar climate.  

Alkalinity and nutrient concentration used in this 

study was taken from the Environment Agency 

water quality data from the Water Quality Archive.  

River Aire 

The River Aire is located in North and West Yorkshire and starts its course at Malham Tarn 

(altitude 377 meters) in the Yorkshire Dales, but it alternates between surface and 

underground flow until downstream of Malham Cove. It is 148 km in length and reaches Leeds 

70 km from its source; this upper section of the river is the one of interest for this study. The 

total catchment area before Leeds is 690km2 and is composed of a succession of 

Carboniferous geologies, limestones series between Malham and Skipton, Millstone grit from 

Skipton to Bradford and then coal measures (siltstone, mudstone, and sandstone) 

downstream to Leeds (Vercruysse et al., 2020). Alluvial deposits are noticeably present in the 

Figure 16 Location of the selected river 
starts (Aire= Yellow, Foss = Red) and the 
Mesocosm (Blue) in the UK map 
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near river area geology from the area upstream of Skipton to downstream of Keighley and 

from Bradford until it joins the River Ouse (Figure 16)(Carter et al., 2006).  

Downstream from Keighley, the River has a history of heavy pollution as it flows through the 

former industrial landscape of West Yorkshire. Sewage still affects the ecology of the River 

Aire with 4,085 raw sewage events in 2021, nevertheless important investments have been 

made to modernise Wastewater Treatment Works, for example in Castleford and Esholt. 

These have improved the water quality and enabled the return of semi aquatic mammals such 

as Eurasian otters and European water voles.  

River Foss 

The River Foss runs through the Vale of York, from a small spring (altitude 160 m) flowing into 

Oulston Reservoir, to the River Ouse in the city centre of York, for a distance of 31 km (Fife 

and Walls, 1981). The geology is sandstone and alluvium (Figure 17). The history of regular 

flooding events drove the enaction of river modifications to prevent damage to cultivated 

land and urban areas around the river course. Additionally, wastewater treatment plants 

discharge into the stream. The upper section is mainly farmland and small villages, and the 

lower part is characterized by more urban area as it runs through York. 

Figure 17 Geological map of the River Aire Catchment ( from NRA, 1993) 
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The River Foss geology is mainly sandstone which is noticeably more consistent than the 

series of different geological sequences which characterize the River Aire watershed.  

 

  

Figure 18 Ouse Basin Geology Map. From https://www.coolgeography.co.uk/ 
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E-Flow Mesocosm  

Based in Fera Science Ltd (York, UK), this mesocosm is the largest research platform for totally 

controlled water bodies in Europe, with 60 artificial streams and ditches. Each independent 

runnel is 10m long and they are all supplied with water from the same highly monitored 

source, which is a class A sandstone aquifer. Water is aged for a minimum of five days in 

controlled lagoons before entering the mesocosm (Figure 19 & 21).  

In order to create diversity in the data I used  

In 2019:  

• two runnels with a single row of Juncus effuses plus soil (“M1” and “M2”); 

Figure 19 Location of sampling sites  on the River Aire (Yellow dots) and River Foss (Red 
dots). 
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• two runnels with a single row of Juncus effuses minus soil (“M3” and “M4”). 

In 2020:  

• two runnels with “slow” flowing water (“24S”,”40S”,”48S”) 0.2 litres per minute; 

• two runnels with “fast” flowing water(“29F”,”41F”,”43F”) five litres per minute. 

  

 

Figure 20 E-flow Fera Science Ltd Mesocosm experimental area detailed map.  
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Figure 21 E-flow Fera Science Ltd Mesocosm experimental area aerial photography 

SAMPLING METHOD 

As there are no cobbles or any other collectable mineral medium that I could brush to sample 

biofilms in the mesocosm, a standardised sampling method was designed and used in the 

mesocosm as well as in the River Foss in order to evaluate the versatility of the method. A 

pair of tiles (Terracotta, 15cmx15cm) were deposited at each sampling point: in the middle of 

the river channel (River Foss June 2020) or in the middle of the stream for the mesocosm. The 

tiles were set in place for a duration of at least one month (Summer 2019 and Summer 2020) 

in order to allow time for a biofilm to form on the surface of each tile. The biofilm was 

collected on site by brushing each tile with a toothbrush and ethanol. The biofilm 

preservation, DNA extraction and Illumina sequencing steps were carried out following the 

protocols described in the Materials & Methods Chapter.  

The sampling method for the River Aire was a more traditional method (European Committee 

for Standardization, 2003) which involved just collecting 5 cobbles in each site before brushing 

biofilm from them (Cf Chapter 2 : Materials and Methods).  
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 The list and details of each sample are present in the Table 1. 

   

SAMPLE ID ENVIRONMENT SITE FLOWING WATER 
BIOFILM 
MEDIUM 

POSITION 
IN 
CHANNEL 

STREAM 

24SB Mesocosm 2020 Slow Tiles Bottom 

24 24SM Mesocosm 2020 Slow Tiles Middle 

24ST Mesocosm 2020 Slow Tiles Top 

29FB Mesocosm 2020 Fast Tiles Bottom 

29 29FM Mesocosm 2020 Fast Tiles Middle 

29FT Mesocosm 2020 Fast Tiles Top 

40SB Mesocosm 2020 Slow Tiles Bottom 

40 40SM Mesocosm 2020 Slow Tiles Middle 

40ST Mesocosm 2020 Slow Tiles Top 

41FB Mesocosm 2020 Fast Tiles Bottom 

41 41FM Mesocosm 2020 Fast Tiles Middle 

41FT Mesocosm 2020 Fast Tiles Top 

43FB Mesocosm 2020 Fast Tiles Bottom 

43 43FM Mesocosm 2020 Fast Tiles Middle 

43FT Mesocosm 2020 Fast Tiles Top 

48SB Mesocosm 2020 Medium Tiles Bottom 
48 

48ST Mesocosm 2020 Medium Tiles Top 

LG Mesocosm 2019 Medium Tiles Average Lagoon 

M1 Mesocosm 2019 Medium Tiles Average Juncus effusus 
with soil M2 Mesocosm 2019 Medium Tiles Average 

M3 Mesocosm 2019 Medium Tiles Average Juncus effusus 
without soil M4 Mesocosm 2019 Medium Tiles Average 

A1_AR6 River 2019 Natural Cobbles Average 

Aire 

A2_AR7 River  2019 Natural Cobbles Average 

A3_AR8 River  2019 Natural Cobbles Average 

A4_AR1 River  2019 Natural Cobbles Average 

A5_AR2 River  2019 Natural Cobbles Average 

A6_AR3 River  2019 Natural Cobbles Average 

A7_AR4 River  2019 Natural Cobbles Average 

A8_AR5 River  2019 Natural Cobbles Average 

R1_RF2 River  2020 Natural Tiles Average 

Foss 

R2_RF3 River  2020 Natural Tiles Average 

R3_RF6 River  2020 Natural Tiles Average 

R4_RF1 River  2020 Natural Tiles Average 

R5_RF4 River  2020 Natural Tiles Average 

R6_RF5 River  2020 Natural Tiles Average 

Table 8 Detailed description of the river and mesocosm samples 
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BIOINFORMATIC METHOD 

The DADA2 pipeline was used (Callahan et al., 2016) with R (R Core Team, 2022) for the 

molecular data, for more details, see the Materials and Method Chapter and the Chapter 3  

“DIATOM-IZER: a DADA2 based bioinformatic pipeline designed for diatom biomonitoring 

using Metabarcoding.” In brief, it is composed of a filtering step (for both sequence length 

and quality), a trimming step, error rate estimation, sample inference using the estimated 

error rate, then merging of paired reads (forward and reverse), chimera removal, taxonomic 

assignment (diat.barcode custom, see results) and finally combines the OTU table and 

taxonomic assignment to create a diatom inventory table ready for ecological assessment 

indexes calculation. 

As detailed in the Materials and Methods Chapter I used the Trophic diatom index (TDI) and 

more specifically TDI5 for the LM data and both the TDI4 and NGS TDI5 for the Metabarcoding 

data. LM TDI5 and NGS TDI5 are recalibrated versions of TDI4, nevertheless the LM TDI5 

version generates extremely close results to the LM TDI4 (Kelly et al., 2018), so I decided to 

use the LM TDI4 as a “gold standard” for evaluation of recalibration of NGS TDI4 to TDI5. 

Direct comparison using linear regression was used. The origin was forced to pass through 0 

because an entire community composed of species without pollution sensitivity values would 

generate the same result of 0 for both NGS and LM method. 

R software was used to run the two-sided Wilcoxon rank sum test to evaluated whether 

paired samples (from the same site but with different method) TDI results were significantly 

different and Kruskal-Wallis rank-sum test (alternative to ANOVA -Analysis of Variance- as the 

data do not follow a normal distribution) to compare the means between groups (LM vs 

Metabarcoding). 

In order to find correlations between the species inventories generated by each method 

(microscopy and OTU table from MiSeq), Bray-Curtis dissimilarity matrices were calculated 

and a Mantel statistic test performed using R with the vegan package (Oksanen et al., 2022).  

Correlation tests were performed in R using Pearson’s product-moment Correlation test.  

Non-metric multidimensional scaling (NMDS) plots were built in R to ordinate the distance 

matrix mentioned previously and condense multidimensional data. NMDS have a long history 
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of successful uses for ecological studies (Kenkel and Orloci, 1986) and more specifically with 

phytoplankton (Salmaso, 1996) and diatom data (Lane, 2007). The ellipses of each group are 

95% confidence level for a multivariate t-distribution. This ease the visualisation of each group 

and see how each site is similar or different from the rest of its group. 

Reference library  

This study is an opportunity to compare the results from different taxonomic reference 

libraries. The descriptions of the different reference libraries are present in the Materials and 

Methods Chapter 2. 

I created a new custom reference library by adding 19 non-diatom taxa from GenBank to the 

diat.barcode reference library (Rimet et al., 2019) : Cryptomonas curvata, Chiloscyphus 

polyanthos, Vaucheria repens, Diplosphaera mucosa, Trebouxia sp, Chrysosporum 

ovalisporum, Pseudendoclonium akinetum, Heterococcus mainxii, Batrachospermum 

helminthosum, Heribaudiella fluviatilis, Oedocladium carolinianum, Interfilum paradoxum, 

Gonyostomum semen, Spirogyra fluviatilis, Ulvella repens, Planktothrix agardhii, Chlorella 

vulgaris, Chlamydomonas reinhardtii, Botryococcus braunii. The new reference library is 

accessible GitHub: https://github.com/MathKarst/diat.barcode_custom/ 

Both the library used in Kelly et al. (2018) and diat.barcode custom generate very close 

taxonomical assignments at genus and species levels. The UK reference library suffers from 

having all of its non-diatom sequences details as “GREEN OR YELLOW ALGAE” or “NOT 

DIATOM” without lineage details, which is significantly less informative than the complete 

lineage of each assigned reads given by the diat.barcode reference library. Moreover, the 

naïve Bayesian taxonomic assignment method (Wang et al., 2007) is particularly affected by 

this lack of lineage as it uses the full lineage to localise the read in the taxonomic tree rather 

than just seeking characteristic read patterns (the Basic Local Alignment Search Tool : BLAST). 

This will theoretically result in less robust assignment as the taxonomy built from the 

reference library will agglomerate each “GREEN OR YELLOW ALGAE” together rather than 

trying to find similar pattern for particular phylogenetic groups. This motivated the inclusion 

of non-diatom reads (with a wide range of genetic distances from diatoms) from trusted 

sources in the reference library update. 

https://github.com/MathKarst/diat.barcode_custom/
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It now has the potential to identify the origin of a read: from microalgae or from other 

photosynthetic organisms (from cyanobacteria to higher plants). Future surveys will probably 

consider other photosynthetic non-diatom taxa for biomonitoring and it is necessary to be 

able to discard DNA reads from photosynthetic organism that are not used for ecological 

assessment.  

I trialled two databases; the diat.barcode and the current reference library used in the UK.  

RESULTS 

REFERENCE LIBRARY CHOICE  

For this study the use of the diat.barcode reference library managed to identify 66 different 

genera whereas the current reference library identified 51 different genera.  

Hence the decision to use the diat.barcode custom reference library rather than the current 

UK reference library as the diat.barcode maximises the information available which make it 

more adequate to my naive Bayesian based bioinformatic pipeline (DADA2/ Diatom-izer, see 

Chapter 3). 

Therefore, for the later experiment I only used the diat.barcode custom reference library.  

The relative abundancy plots, for each reference library, are present below in Figures 21 & 

22. 

DIATOM ASSEMBLAGE  

An important part of the assemblage in the mesocosms was composed of the Epithemia genus 

for both Light Microscopy identification and MiSeq outputs. Moreover, the Light Microscopy 

identification showed an unusually high proportion of the taxon Mastogloia and Rhopalodia. 

They are all usually not dominant species and Epithemia and Rhopalodia are known to have 

endosymbiosis with cyanobacteria that are able to fix the atmospheric Hydrogen, and 

therefore these taxa are generally found in environment limited in Nitrogen.  Moreover, 

Epithelia, Rhopalodia and Mastogloia are typical of hard spring-fed standing waters in 

northern England. 
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UK Kelly et al. 2018 reference library

Figure 22 Taxonomy bar plot with the original reference library (without taxonomical lineage of non-diatom taxa) showing the abundancy of each 
genus identified in all the sites. Identified genera are displayed in a shade of grey and unassigned reads are in red.  
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Diat.barcode completed with non-diatom taxa reference library

Figure 23 Taxonomy bar plot with the custom diat.barcode reference library showing the abundancy of each genus identified in all the sites. Identified 
genera are displayed in a shade of grey and unassigned reads are in red. 
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Figure 24 Comparison of the TDI ecological classes from the different sites (2019 and 2020 mesocosm, the Aire and the Foss ) calculated with Light 
Microscopy TDI, MiSeq TDI with TDI5 correction and MiSeq raw TDI4 values. TDI ecological classes = ecological quality ratios: Bad (red), Poor 
(orange), Moderate (yellow), Good (green) and High (blue).  
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Figure 25 Comparison of the TDI values from the different sites (2019 and 2020 mesocosm, the Aire and the Foss ), calculated with Light 
Microscopy data , MiSeq data with TDI5 correction and MiSeq data with raw TDI4 values. 
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MESOCOSM : VARIABILITY ALONG THE SAME RUNNEL : INTRA-VARIABILITY 

Wilcoxon paired tests were performed in order to compare the TDI values of the sample from 

the top and the bottom section of each same runnel. There were no significant differences 

found during this test. Nevertheless, the Kruskal-Wallis rank sum test was not significant, and 

I cannot say that all group means were significantly different, which is not surprising 

considering the high number of groups (6 runnels) and the low number of duplicates per 

group (3).  

EFFECT OF WATER FLOWING SPECIFICITY ON THE TDI RESULTS 

The Wilcoxon ranked test was not able to find any significant differences between the TDI 

calculated for each group of flowing water, which tends to indicate that the water flowing 

rates of the runnels were not sufficiently impacting to create a significant effect on the TDI 

calculation. For better visualization, the average TDI value of each runnel can be seen in Figure 

25. 

M48S showed a noticeably high TDI value for the NGS TDI5 compared to the LM TDI4. Overall, 

the NGS TDI5 was higher than the LM TDI4 in five of the six runnels. Moreover, the LM TDI4 

was always closer to the NGS TDI4 than the NGS TDI5. 
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Method: 

Figure 26 TDI value comparison between samples from the fast-flowing runnels (left grid) and the slow-flowing 
runnels (right grid). Light Microscopy method in Red, TDI4 Miseq method in Green and TDI5 Miseq method in 
blue. 

LM TDI4 
NGS TDI5 
NGS TDI4 
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NITROGEN AND ORTHOPHOSPHATE SNAPSHOT COMPARED TO TDI IN RIVER 

The average 2021 orthophosphate (most readily bioavailable form) and Nitrogen 

concentrations were compared to the TDI value in the river sites (see Figure 26). The 

orthophosphate concentrations were more consistent than the Nitrogen values in both the 

River Aire (Orthophosphate mean = 1.23 mg.L-1, variance = 0.223; Nitrogen mean = 2.80 mg.L-

1, variance = 9.39) and the River Foss (Orthophosphate mean = 3.51, variance = 0.00839; 

Nitrogen mean = 9.13, variance = 19.2).  

There was a significant higher average nutrient level in the River Aire samples downstream 

Skipton (sample name: AR04) than in sites that are upstream. For both orthophosphate (2.4 

mg.L-1 >  0.022 mg.L-1) and Nitrogen (4.4 mg.L-1 > 0.87 mg.L-1) 

A significant correlation was not observed between TDI and nutrient concentration for either 

of the two small datasets.  

Figure 27 Nutrient level found in the River Aire (left) and the River Foss (right). Orthophosphate 
concentration: Top, red; Nitrogen: Bottom, Blue 
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EFFECT OF SOIL ADDITION IN THE RUNNELS 

Significant differences of TDI were not found between samples from the lagoon, the runnels 

with soil or the runnels without soil (Figure 27). The two MiSeq methods were closer together 

than with the LM method. Moreover, the LM method tended to generate lower TDI values 

than both MiSeq methods.  

MANTEL TEST 

A high significance and a positive Mantel statistic r were observed between the species 

inventories generated by Light Microscopy and Metabarcoding (Table 9), which means that 

both matrices were positively correlated and therefore the community structures given by 

both methods were similar. 

Mantel statistic based on Spearman's rank correlation rho 

Mantel statistic r 0.7851 

   Significance  1e-04 

Upper quantiles of permutations (null model): 

  90%    95% 97.5%   99% 

0.0676  0.0951 0.1277 0.1674 

Table 9 Mantel test results between Light Microscopy data and raw OTU table from HTS Illumina 
sequencing metabarcoding. Number of permutations: 9999 

 

Figure 28 TDI value comparison between samples from the Lagoon (Lagoon) and the Runnels with soil (centre) 
and without soil (right). Light Microscopy method in Red, TDI4 Miseq method in Green and TDI5 Miseq method 
in blue. 
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CORRELATION TEST TDI : NGS TDI4 OR NGS TDI5 FOR MISEQ DATA 

Both NGS TDI5 and NSG TDI4 calculated from MiSeq dataset were analysed to determine their 

correlation with the LM TDI5 data (Table 10 and Figures 28 & 29). Surprisingly the TDI4 MiSeq 

was more strongly correlated to the LM TDI4 values than the NGS TDI5 with a lower 

correlation test p-value (6.55E-12 < 1.73E-08) and a higher correlation coefficient 

(0.869>0.782). A strong positive correlation is necessary if the MiSeq approach is to be used 

interchangeably with the original TDI from Light Microscopy.  

Notwithstanding the strong correlation between NGS TDI5 MiSeq and LM TDI4, the result 

shows that NGS TDI4 was more strongly correlated to LM TDI4. Therefore, it seems that the 

recalibration of the TDI raw values from the MiSeq data is not beneficial with this particular 

dataset. Due to the limited size of the dataset, it is not possible to generalize this statement. 

The linear equation with NGS TDI4 and LM TDI4 values was y=1.17x and a R2 = 0.96 whereas 

that of NGS TDI5 and LM TDI4 is y=1.23x with a R2 =0.93. It appears that NGS TDI4 values with 

LM TDI4 had a coefficient of proportionality closer to 1 than the corrected TDI with LM TDI4. 

The coefficient of determination (R2) was higher when comparing raw TDI with LM TDI than 

corrected TDI with LM TDI. Even though the correction of TDI was created to make result from 

NGS and LM data more equivalent, it appears that in the context of my experiment the NGS 

TDI4 shows more similarities to the LM TDI5 outputs that the NS TDI5. 

NMDS 

Non-metric multidimensional scaling visualizes the differences and similarities of the overall 

community structure based on the communities identified with LM and from the raw (before 

taxonomic assignment) OTU tables.  

Table 10 Correlation test between Light Microscopy TDI result and each molecular TDI: TDI4 uncorrected, 
TDI5 corrected for molecular data. 

  
Sample estimated 
correlation factor 

p-value linear equation  
Coefficient of 

determination R2 

TDI4 LM / TDI5 
(corrected) MiSeq 0.782 1.73E-08 y=1.23x 0.93 

TDI4 LM / TDI4 
(raw) MiSeq 0.869 6.55E-12 y=1.17x 0.96 
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The NDMS spatial analysis showed the clustering of each individual data group (Mesocosm 

2019, Mesocosm 2020, River Aire 2019, or River Foss 2020; Figures 30 and 31).  

Two main clusters were present, and the key driver was whether it was a controlled 

environment or a natural environment (a controlled mesocosm environment and two 

Yorkshire rivers). In fact, the Foss and the Aire clusters were overlapping, as were the two 

mesocosm clusters (2019 and 2020). Therefore, factors such as climate or localisation (The 

Aire and the Foss are much more distant from each other than the Foss and the Mesocosm) 

does not seem to drive the community structures compared to the difference between the 

artificial and natural habitats.  

Figure 30 Correlation between TDI values calculated using the data provided by the MiSeq metabarcoding method or 
Light Microscopy identification. The metabarcoding date is corrected following TDI5 on the left and is raw TDI4 without 
correction on the right. TDI_LM is TDI4 version. Density is present as an indicator of the composition of the data. 

Figure 29 Comparison of the Trophic diatom index values in River Aire (left) and River Foss (right) regarding the 
TDI version : TDI4 with Light Microscopy data (top), TDI5 with Metabarcoding data ( centre) or TDI4 with 
metabarcoding (bottom) 

Method: 

LM TDI5 
NGS TDI5 
NGS TDI4 
 

TD
I 
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Figure 31 Non-metric multidimensional scaling (NMDS) analysis of the data from the metabarcoding 
method (OTU tables). Mesocosm sites in red (2019) and blue (2020), natural rivers in green (River Aire 
2019) and purple (River Foss 2020). The ellipses are 95% confidence level for a multivariate t-distribution. 

mesocosm 

mesocosm 

Figure 32 Non-metric multidimensional scaling (NMDS) analysis of the data from the Light Microscopy 
method (identification table). Mesocosm sites in red (2019) and blue (2020), natural rivers in green (River 
Aire 2019) and purple (River Foss 2020). The ellipses are 95% confidence level for a multivariate t-
distribution. 

mesocosm 

mesocosm 
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DISCUSSION 

SAMPLING METHODOLOGY 

The overall adequate quantity and quality of data obtained from the tiles method is 

encouraging. This method showed controlled exposure time coupled with a standardised 

surface for biofilm sampling, two characteristics that reduce errors and, thus, are highly 

sought after by environment managers. Moreover, the presence in my study of both 

controlled and natural environments with distinctive characteristics, highlights the versatility 

of the method in a wide variety of situations and environments. All these points confirm the 

suitability of this method for diatom biomonitoring studies: we could imagine setting the tiles 

in diverse waterbodies and environmental managers could simply brush them to collect the 

biofilm when they need to assess the diatom assemblage of a site. This can solve some 

problems present when the site does not have biofilm covered surface that can be collected 

(including, but not limited to, mesocosm runnels), and the standardisation of the surface is 

beneficial as the nature of the surface can influence the diatom composition present in the 

biofilm. It has been already tested for experiment with, for example, ropes, tiles, sandstone 

and stainless steel artificial substratum (M. Kelly et al., 1998; Ramachandra, 2010; Richard et 

al., 2017; Rimet et al., 2009). But they are not used widely for biomonitoring in the UK. 

INTRA AND INTER-VARIABILITY 

The comparison of samples along the same runnel (top-bottom samples) seems to show that 

the intra-variability is low but does not prove that inter-variability between runnels is strong 

in my experiment which is not surprising as there is a high number of groups, low number of 

replicates and environment with subtle differences rather than completely different (same 

location, same water input, etc.). This is reassuring as the current sampling methodology 

(CEN, 2014) is focused on collecting samples representative of the site by standardized 

bulking several samples in the site to avoid the effect of minor river structure on the whole 

site assessment. Thus, the samples are mainly representative of the site and the bulking of 

different samples adds an extra layer of confidence in representativity of the site. 
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APPLICABILITY TO NATURAL AND ARTIFICIAL WATERBODIES 

There is a wider range of communities within the natural environments because samples 

were taken along approximately 50km of river, featuring a great diversity of pressures (mainly 

nutrient inputs from agriculture and wastewater treatment plants), riverbanks, riverbeds and 

microclimates, whereas the mesocosms are all in the same field and share the same structure, 

climate and substratum, which leads to more similar communities because they are 

structurally and spatially very close. The assemblages found in the mesocosm include species 

which are typical of calcareous springs and ponds, which is a very different assemblage 

compared to the assemblages in the two Yorkshire rivers. 

The slow and fast flowing experiment seems to show that the TDI is not significantly affected 

by this range of flowing water. This tends to confirm that the focus on periphytic diatoms is 

an adequate method to evaluate the quality of a waterbody without being overly influenced 

by the discharge, of the stream (Stevenson, 2014). The soil experiment tends to show that the 

presence of soil on a 10-meters-long riverbed does not strongly impact the TDI results, which 

could imply that the TDI is more correlated to the overall stream environment and water 

quality, than the particular characteristics of the precise location of the samples. This suggests 

that while keeping good practice during sampling (bulking five samples, finding the spots with 

the strongest waterflow) is still important to obtain good quality samples, the TDI calculation 

is robust to the precise location of the sample within a reach. Additionally, it corroborates the 

fact that diatom community analysis is a tool-of-choice for freshwater environmental 

assessment (Bailet et al., 2020; Kelly et al., 2016; Mora et al., 2019; Pawlowski et al., 2018).  

The NMDS analysis of raw community data (Diatom inventories and OTU tables) shows a clear 

clustering related to the natural or artificial setting of the ecosystem. Neither the variation of 

flow velocity nor the addition of soil significantly affected the TDI values, it seems that these 

two factors are not the main drivers of the specificity of artificial ecosystems. 

LIGHT MICROSCOPY AND METABARCODING  

The main conclusions are that both molecular and Light Microscopy generates significantly 

similar results to be used interchangeably in most case.  
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Independently from the method used, the analysis of diatom communities along the two 

rivers highlights that the TDI results and the similarities amongst the communities from the 

same river are more related to the overall characteristics of the river rather than diatom 

communities from upstream. If it was not the case, we would have expected a significant 

difference between the results given by Light Microscopy (frustule from both living and dead 

diatoms) and by eDNA Metabarcoding as DNA should be less resistant in the environment. 

There is still a possibility than DNA trapped in dead diatoms and protected by the frustule 

would interfere with the eDNA Metabarcoding studies of downstream sites. An interesting 

test would be to try RNA Metabarcoding as RNA is more degradable in the environment and 

a majority should be from living organisms. Nevertheless, the RNA degradability is an 

important challenge and requires an advanced methodology especially for Metabarcoding, 

long-fragments and environmental samples (due to the presence of RNase, inhibitors, etc.) 

(Wood et al. 2019, Kagzy et al. 2022).  

TDI VERSIONS COMPARISON 

During this study the comparison of correlation suggests that it was not significantly better to 

use the recalibrated NGS TDI5 rather than the NGS TDI4.  

This conclusions is limited to my experiment which is only focussed on two rivers in Yorkshire 

and runnels in a mesocosm, the recalibration of TDI was made among 1,367 paired LM and 

NGS samples (Kelly et al., 2020) which is a substantially greater dataset. Nevertheless, the LM 

TDI5 and LM TDI4 were proven to be extremely similar in the recalibration paper (99% 

correlation between TDI4 and TDI5 LM, 99% Lin’s concordance correlation coefficient), so the 

recalibration is not significantly deleterious or advantageous in most cases. For the NGS TDI 

the recalibration still generates results with a tendency to slightly overestimate at low TDI 

values and underestimates high TDI values, and the conclusion of the recalibration paper 

(Kelly et al., 2020) indicates that while having a neater fit between NGS TDI and LM TDI after 

calibration, the overall improvement in correlation and concordance is small but give more 

linear fit than the original version. In this case the recalibration is slightly deleterious on the 

correlation between NGS TDI and LM TDI. 

In the mesocosm samples few species have been found in rather unusually high proportions 

(dominant in several mesocosm assemblages): Epithemia sorex, Mastogloia smithii and 
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Rhopalodia gibba. While Epithemia was found without problem with the MiSeq method, 

Mastogloia and Rhopalodia were difficult to detect and in rather low relative abundance 

compared to the assemblage made with LM method. The LM method seems to be more 

efficient to find unusual taxa such as these three taxa. The primer affinity to Mastogloia and 

Rhopalodia has not previously been recorded as problematic in the literature, instead the 

accessibility of their DNA (number of copies per cell and frustule fragility) could be a probable 

reason of the low number of reads counts, but the low number of these sequences in the 

reference library is an important source of low identification reads. Nevertheless, this does 

not influence the TDI calculation to a problematic extent.  Epithemia and Rhopalodia are 

found in poor Nitrogen environments such as the mesocosm and specifically in low N:P 

environments. They are known to be hosts of endosymbiosis with Nitrogen-fixing 

cyanobacteria. This uncommonly high abundance tends to indicate a low Nitrogen in the 

mesocosm, which corroborates the Nitrogen concentration measured in the mesocosm 

runnels. Epithelia, Rhopalodia and Mastogloia are also typical of spring-fed waterbodies, 

suggests that the water used in the mesocosm has kept groundwater characteristics even 

after the aging process in the lagoon.  

The Diatom assemblage in the River Foss was frequently dominated by Amphora pediculus 

which is a pollution tolerant species, associated with human activity along the stream 

(confirmed by the sewage and agriculture activity described previously).  

The upper River Aire sites were noticeably colonised by Achnanthidium minutissimum, a 

rather ubiquitous and mildly pollution sensitive species. Planothidium lanceolatum was 

dominant in the site downstream of Skipton. This taxon is tolerant to pollution and indicates 

pollution (Lange et al., 2011; Sbihi et al., 2014). This site is located downstream outputs of 

several sewages where very high orthophosphate concentration (4.7 mg.L-1) and Nitrogen 

concentration (9.6 mg.L-1) were found.  

The higher average nutrient level downstream of Skipton reflected the high impact of 

wastewater on the nutrient concentrations in the river. This is known to be linked to 

eutrophication and should be monitored. There is a clear shift in the Metabarcoding TDI class 

(EQR) between samples from upstream and downstream of Skipton. This was not the case 

with TDI classes generated from LM. As such, Metabarcoding seems to be more efficient to 
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detect shift change in the nutrient level of series of site in a stream. It is difficult to explain 

the reason with my study but one of the main concerns of LM is the potential contamination 

by dead diatom shells from upstream that can influence the TDI calculation, as mentioned 

before in this section (cf. Discussion- Light Microscopy and Metabarcoding).  

The value from the Water Quality Archive (Environment Agency) used to calculate the 

nutrient level average of the year of sampling was rather unstable and seems to have a high 

sensitivity to short-term events such as flooding and heavy rain because of the lixiviation of 

the soil, and irregular wastewater outlet (treatment plant or urban sewage; Eyre and Twigg, 

1997; Fasching et al., 2019). For example, the most upstream site of the Foss River had 

Nitrogen concentrations which ranged from less that the detection limit to 29.1 mg.L-1 during 

the same year. TDI was designed with the assumption that Phosphorus was generally the 

limiting nutrient (Kelly and Whitton, 1995). As TDI is derived from the diatom assemblage, 

which is affected mainly, but not only, by nutrient change, TDI is an indicator of the average 

recent nutrient level rather than the instant nutrient level. As such it is less sensitive to short-

term events than the isolated nutrient values.  

CONCLUSIONS 

In conclusion my experiments were adequate to answer my questions: for the biomonitoring 

experiment, the Metabarcoding method gave similar results to traditional Light Microscopy 

method regardless of the artificiality of the water stream. The limitations of Metabarcoding 

induced by the sequencing accuracy and PCR were not deleterious to the water quality 

assessments. In fact, diatom bioindication was mainly driven by the proportion of the main 

diatom species/genera and the small errors during sequencing did not have a major effect on 

the final assessment. Moreover, the LM and molecular methods generated quite similar 

taxonomic inventories, although the nutrient increase downstream of Skipton was not 

associated with a TDI shift with the LM method, whereas the TDI shift was present with the 

Metabarcoding method. Considering this I could hypothesise that the LM method based on 

preserved frustule was more influenced by the surrounding sites than the DNA-based 

method. This corroborates my hypothesis that frustules have a greater tendency to influence 

downstream TDI calculation than nucleic acids do, as frustules are more preserved than DNA 

and can originate from upstream (Whitton et al., 2009).  
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A larger scale experiment would be able to answer other questions and to have more robust 

conclusions. For example, increasing the number of runnels could increase the number of 

factors tested as well as the number of replicates. Moreover, experimenting on a greater 

number of rivers has the potential to generate a better understanding of the effect of the 

variability of condition in these natural waterbodies on TDI. This kind of experiment was done 

in the UK and Ireland in 2018 (Kelly et al., 2018) in order to calibrate the TDI5, and as such it 

is calibrated for samples from the UK and Ireland rather than more diverse rivers. The 

diat.barcode reference library (Rimet et al., 2019), created and curated by an European wide 

study group, sometimes use the TDI but different standards exist: the IPS (Specific 

Polluosensitivity Index; (CEMAGREF, 1982; Descy and Coste, 1991; Prygiel et al., 2002) and, in 

a less systematic way, the IBD (Biological Diatom Index;(Lenoir and Coste, 1996; Prygiel and 

Coste, 2000). In order to compare samples from either inside and outside of the UK, it would 

be interesting to calibrate the TDI with samples from outside the British Isles or to use a more 

widely used index. The last TDI recalibration is to be used carefully as it does not improve the 

correlation between LM TDI and NGS TDI in this experiment. 

My tiles-based methodology revealed a great potential for diatom sampling standardization 

which could ease the diatom biofilm sampling step in already monitored river sites, but also 

in deep rivers where cobbles are not accessible. In fact, the tile could be easily attached to a 

wire and enable benthic diatom biofilm to be sampled. The main downside of this method is 

that it requires tiles to be positioned beforehand, which is not problematic in the case of 

monitored sites but prevents the analysis of newly discovered sites of interest. Due to the 

similarities between the tile-based method and the traditional cobble-based method, it 

seems that using tiles on the monitored sites and cobbles as option for other sites is an 

interesting compromise. 

It appears that the characteristics of the diatom community are heavily impacted by the 

degree of artificiality of a water stream. Whilst mesocosms seems to be excellent for 

experiments, there is still room for improvement for them to mimic natural environment. For 

now, they are more similar to canals and other artificial waterways, which is exactly what they 

are.  
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Finally, the mesocosm is an effective way of testing the interaction of conditions on diatom 

communities. Overall, Metabarcoding generates very similar results to Light Microscopy for 

environment quality assessment but they should be used conjointly as Metabarcoding 

enables the simultaneous analysis of a large number of samples but Light Microscopy, as a 

standard, should be the tool of choice for the potential ambiguous samples with particular 

assemblage and sometimes morphological anomalies (such as pollution induced Teratological 

forms; (Falasco et al., 2021) that cannot be detected by a molecular approach.  
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CHAPTER 5 COMPARISON OF MICROALGAL MOCK COMMUNITY 
STRUCTURES GENERATED BY DIFFERENT METABARCODING PLATFORMS 

(MISEQ VS MINION) 

INTRODUCTION 

Diatom biomonitoring is a powerful tool for river quality assessment (Bailet et al., 2020; Kelly 

et al., 2008; Prygiel et al., 2002).The measurement standard for this kind of survey is 

morphological identification of diatoms via traditional Light Microscopy (LM). The 

identification and individual cell counts are coupled to calculate ecological indexes such as 

the Trophic Diatom Index, the “Indice Biologique Diatomées” (IBD, Biological Diatom Index) 

(Lenoir and Coste, 1996; Prygiel and Coste, 2000), or the “Indice de Polluosensibilité 

Spécifique” (IPS, Specific Pollution Sensitivity Index) (CEMAGREF, 1982; Descy and Coste, 

1991; Prygiel et al., 2002), designed to be calculated with LM data. 

PRESENCE OF NON-DIATOM TAXA: USE AND POTENTIAL BIASES 

Although being an important part of the phytoplankton community, diatoms often share their 

biotopes with other phytoplankton groups, such as yellow and green algae, Chrysophyceae, 

Dinoflagellate, Trebouxiophyceae, Cryptophyceae, and Cyanobacteria (Descy et al., 2012). 

Those taxa proved to be efficient bioindicators (Shams El-Din et al., 2022; Smol, 1985; 

Tsarenko et al., 2021) and yet are not routinely used in the standard biomonitoring. This is 

explained by the diatom exoskeleton that is historically easier to identify with Light 

Microscopy (LM). As molecular based biomonitoring methods are being used more 

frequently, it is valuable to integrate other phytoplankton/unicellular photosynthetic 

organisms in the ecological assessment because the limitations of the Light Microscopy are 

not shared with the Metabarcoding approach.  

Due to the diatom exoskeleton (called the frustule), diatom DNA is less accessible than that 

of the yellow and green algae DNA (Vasselon et al., 2017a). Intuitively, this is likely to 

underrepresent diatom DNA during the extraction process when the samples are not 

exclusively composed of diatoms, which is the most common case during natural 

environmental samples (Del Carmen Pérez et al., 2009). Due to the high number of factors 

that should affect the DNA ratio between diatoms and other species, within this experiment 
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I investigate the phytoplankton DNA ratio (via HTS read count) between species and the 

consequences on the use of molecular data for biomonitoring compared to the tradition light 

microscope counting. 

METABARCODING: LIMITATIONS TO ABUNDANCE ESTIMATES 

In recent years, the use of Metabarcoding for diatom biomonitoring has been of increasing 

interest as its capacity to generate accurate qualitative species composition data has been 

shown. Notwithstanding this ability, the accurate quantitative composition data for 

Metabarcoding has shown to be more difficult to obtain (Mora et al., 2019; Vasselon et al., 

2018). This is problematic as diatom biomonitoring relies on the abundance (and the 

ecological preferences) of each species identified in the samples (Kelly and Whitton, 1995; 

Prygiel et al., 2002), and therefore the proportion of each taxon must be accurate. While 

Metabarcoding is a powerful tool for biomonitoring, the difficulties in extracting DNA from 

some species relative to others, the nature of PCR amplification and the number of genes 

copy per specimen can result in inaccurate estimation of the relative abundancy of each 

species (Kelly et al., 2020). An additional consideration is the sequencing platform, where the 

characteristics of the platform (error rate, read length, read depth) affect the final sequencing 

data. The bioinformatics pipeline and reference database also create differences in the final 

data.  

EFFECT OF DIFFERENCES IN RBCL COPY NUMBER AND BIOVOLUME 

The amplicon region typically used in diatom Metabarcoding is the rbcL gene (Kelly et al., 

2018), contained within the chloroplast. As each chloroplast contains at least a copy of the 

rbcL gene and the number of chloroplasts per cell is depending of the phytoplankton species 

(Bendich, 1987; Rauwolf et al., 2010; Round et al., 1990), the quantification of rbcL copies 

during Metabarcoding could affect the community inventories. The biovolume has been 

proven to be correlated to the number of rbcL copies in diatom mock communities (Vasselon 

et al., 2018). Moreover, centric diatoms are known to contain multiple chloroplasts compared 

to the single to few chloroplasts present in pennate diatoms cytoplasm (Bedoshvili et al., 

2009).  
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Here I test how the rbcL number of copies in a DNA extract from communities made of both 

diatom and non-diatom phytoplankton species differ following the ratio of diatom/non-

diatom. I hypothesized that the accessibility of the DNA is different among the different 

phytoplankton taxonomic groups as the morphological structure is rather different.  

CHOICE OF PLATFORM: USE OF ONT MINION 

The Miseq platform is constrained by its short read length, allowing amplicons of less than 

400 base pairs (bp). Therefore, studies have focused on the use of short barcodes, such as 

sections of the rbcL region ,e.g. the “diat.barcode” (Rimet et al., 2019) or the barcode used in 

Kelly et al (2018), short sections of 18S gene, or COI gene (Kermarrec et al., 2014). 

Notwithstanding the high quality of data generate by MiSeq sequencing method, Oxford 

Nanopore Technology potentially offers a lower cost alternative to the Illumina platforms 

with its MinION platform (Lin et al., 2021). A drawback to the MinION platform is the 

reportedly lower accuracy relative to the MiSeq. As biomonitoring studies are more tolerant 

of lower read quality (due to the use of classifiers and identification similarities percentage) 

(Maitland et al., 2020) than rare species detection studies (in which read accuracy is 

key)(Hatzenbuhler et al., 2017), it might be that the MinION platform has the potential to be 

a suitable option for diatom monitoring using Metabarcoding. Differences between the two 

platforms are tested here. 

EFFECT OF LONGER AMPLICON LENGTH OF RBCL 

An advantage to the MinION platform is that it can give longer DNA reads (~10-60k bp) 

compared to the MiSeq platform (<400 bp)(Lin et al., 2021). In Pearman et al., 2020 , the 

comparison of MiSeq (Illumina) and MinION (ONT) output indicates that using a long low 

quality barcode instead of a short high quality on might be equivalent or even better if the 

barcode exceed 1500bps. As the most used diatom short barcode is located on the rbcL gene 

and the full length of this gene is ~1500bps (Valegård et al., 2018), the use of MinION 

sequencing with the full length rbcL could be a good alternative to the use of the short 

barcode with MiSeq. This amplicon is frequently used to obtain the diatom full rbcL sequences 

destined to reference library such as diat.barcode (Rimet et al., 2019) or the UK barcoding 

project (Kelly et al., 2018). This protocol was tested in the thesis PhD of Glover, 2019. 
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Nevertheless, in the context of biomonitoring, the use of ONT MinION technology with the 

short rbcL barcode, could provide reads of adequate quality for efficient taxonomic 

assignment. Within this chapter I also test the use of a longer rbcL fragment.  

USE OF MOCK COMMUNITIES TO TEST THESE BIASES 

Given the unsureness associated with morphological data (which uses cell count) and the two 

HTS platforms, in this chapter I undertake a direct comparison of the reported community 

composition between three Metabarcoding methods (Illumina MiSeq and MinION ONT 

Metabarcoding of short amplicons, ONT MinION Metabarcoding of long rbcL amplicon) on 

samples of known community composition (mock communities) to compare these different 

approaches.  

Using natural samples to compare methods is strongly limited uncertainties of the 

composition of the underlying community as well as whether the diatoms are alive or not. An 

additional issue is that true diatom ecological communities are often highly diverse and 

therefore can contain species not present in the reference library (Vasselon et al., 2017c). 

Thus, I use mock communities, to investigate this (Vasselon et al., 2018). This provided a 

controlled and homogenous dataset in which to assess the repeatability of the Metabarcoding 

methods.  

In this chapter, I created mock communities composed of pennate diatom, centric diatoms 

and non-diatom phytoplankton. These choices were driven by the known different number 

of chloroplasts between centric and pennate diatoms, the differing biovolumes of species 

(small and large), and the potential difference of DNA extractability between the shelled 

diatoms and the less protected phytoplankton taxa. The species were selected to include 

common species that are known to be easily detected by Metabarcoding studies (Kelly et al., 

2020, 2018; Vasselon et al., 2017c).  

I sequenced DNA extracts from each mock community with both Illumina MiSeq and ONT 

MinION in order to compare both sequencing platform for diatom biomonitoring. Finally, I 

tested two different rbcL amplicon barcodes (a full length and a short barcode) with the ONT 

MinION sequencer. 
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MATERIALS AND METHODS 

MOCK COMMUNITY 

Phytoplankton cultures from the Thonon Culture Collection (INRAE-CARRTEL Thonon-les-

Bains, https://www6.inrae.fr/carrtel-collection_eng/) were used to create seven different 

mock communities including one Centric diatom, eight Pennate diatoms, three non-diatom 

green phytoplankton (Chlorophyta) species and one cyanobacteria (Table 1). The conditions 

of culture are fully detailed in the Thonon Culture Collection website (Frédéric Rimet et al., 

2018). Diatoms (Bacillariophyta) are suspended in DV medium, Cyanobacteria in Z medium, 

and Chlorophyta in LC medium (details in Rimet et al 2018). They were conserved at 7°C, with 

an artificial daily photoperiod of 12 hours. 

The mixing of the cultures to create each mock community was based on the preliminary 

observations of each pure culture to estimate the cell concentration using a haemocytometer 

(Improved Neubauer – counting chamber). A fixed volume (10 μL) of each culture was 

counted in triplicate, and the average value used to calculate the volume of culture to add to 

each mock community. Due to the tendency of phytoplankton to form biofilms and in a lesser 

extend to conglomerate, this required careful mixing steps prior to transfer. This consisted to 

repetitive pipetting (~10 times) when sampling from each pure culture to disperse the 

conglomerate and homogenize the pure cultures.  

The concentration/proportion of each taxon is detailed below (Table1), as well as their 

attributes. The proportions and concentrations were based on the number of cells rather than 

biovolume, to make the communities equivalent to the individual cell counts used in the 

traditional light microscopic method. 

The mock communities comprised: 

- Mock Community 1 (MC1): A community composed of each species in the same 

proportion. (Species evenness)  

- Mock Community 2 (MC2): A community composed of the centric and each pennate 

diatom in the same proportion and each non-diatom 10 times less concentrated. 

- Mock Community 3 (MC3): A community with the centric diatom and each non-diatom 

in the same proportion and each pennate diatom 10 times less concentrated. 

https://www6.inrae.fr/carrtel-collection_eng/
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- Mock Community 4 (MC4): A community with each pennate diatom and non-diatom 

in the same proportion and the centric diatom 10 times less concentrated. 

- Mock Community 5 (MC5): A community with each species in the same proportion 

except one of the non-diatom species 100 times more concentrated.  

- Mock Community 6 (MC6): A community with each species in the same proportion 

except the centric diatom species 100 times more concentrated.  

- Mock Community 7 (MC7): A community with each species in the same proportion 

except a one pennate diatom species 100 times more concentrated. 

Each mock community was created in duplicate. 

The exact composition of each mock communities is presented in Table 1 below: 
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Table 11 Mock communities’ composition. Proportion of each culture added in each community: x1 is equivalent to the same number of cells regardless of the species, as 
such, x10 means there is 10 times more cells of this species compared to the species evenness and inversely x0.1 means there is ten time less cells of this species in this 
particular community compared to the species evenness community. 

 

Binomial name 
Chlamydo
monas 
intermedia 

Planktothrix 
rubescens 

Botryococcus 
protuberans 

Chlorella 
vulgaris 

Nitzschia 
palea 

Fragilaria 
cf. 
nanoides 

Gomphonema 
parvulum 

Achnanthidium 
minutissimum 

Sellaphora 
seminulum 

Staurosira 
venter 

Pinnularia 
viridiformis 

Cocconeis 
pediculus 

Cyclotella 
meneghiniana 

TCC number TCC003 TCC013 TCC123 TCC137 
TCC139-
1 

TCC870 TCC612 TCC679 TCC828 TCC691 TCC890 TCC931 TCC640 

Average Cell 
Biovolume 

50 400 68 65 391 470 331.2 76 69 315 13724 2281 1356 

C
o

m
p

o
si

ti
o

n
 o

f 
m

o
ck

 c
o

m
m

u
n

it
ie

s 

Species Evenness 
MC1 

x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 

Less non-diatom 
MC2 

x0.1 x0.1 x0.1 x0.1 x1 x1 x1 x1 x1 x1 x1 x1 x1 

Less pennates 
MC3 

x1 x1 x1 x1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x1 

Less centrics 

MC4 
x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x0.1 

One dominant 
non diatom 

MC5 

x0.1 x0.1 x0.1 x10 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 

One dominant 
centric 

MC6 

x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x10 

One dominant 
Pennate 

MC7 

x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x0.1 x10 x0.1 x0.1 x0.1 x0.1 x0.1 

 Group 
Non-Diatom microalgae Chlorophyta and 

Cyanobacteria (Planktothrix) 
Pennate Diatoms 

Centric 
Diatoms 
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MOLECULAR METHODS 

DNA Extractions 

DNA extraction was undertaken straight after the preparation of the mock communities in 

order to prevent effect of diatom population growth on the species ratio.  

I follow the protocol present in Kelly et al., 2018, detailed in the Materials & Methods Chapter 

and relies on DNeasy Blood & Tissue Kit which includes mini spin column and Protease K. 

Beforehand I prepared the samples by centrifugation of a 10 mL of each mock community 

(3,000g for 15 minutes) and resuspension of the pellet in 1mL of distilled water. 

To evaluate the repeatability of the DNA extraction the duplicate underwent two separated 

DNA extractions which end up in four DNA extracts per mock community. For example, 

MC1Aa and MC1Ab are the DNA extraction duplicates of the MC1A mock community, and 

MC1Ba and MC1Bb are the DNA extraction duplicates of the MC1B mock community. 

PCR amplification and amplicon choice 

Two different amplicons within the rbcL gene were used, the ‘long barcode’ of the full length 

rbcL (including the spacer between rbcS and rbcL) and a short rbcL barcode (referred to as 

‘Short barcode’) originally designed for diatom Metabarcoding survey in the UK using the 

MiSeq Illumina sequencing platform (Kelly et al., 2018). 

MiSeq and MinION Short barcode PCR and sequencing 

The short barcode amplicon is 331bps long, more fully described in the Materials & Methods 

chapter. The set of primer is from (Kelly et al., 2018), and is Forward primer rbcL-646F: 

ATGCGTTGGAGAGARCGTTTC, reverse primer rbcL-998R: 

GATCACCTTCTAATTTACCWACAACTG. The PCR conditions are as used in Chapters 3, 4 and 5 

and described in the Materials and Methods Chapter.  

Because of a lack of space in the MiSeq sequence run, no DNA extraction duplicate is present 

for MiSeq Illumina data. The methodological details for the MiSeq sequencing can be found 

in the Materials and Methods Chapter. Details of the MinION sequencing are given below. 
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Full length rbcL barcode  

The long barcode amplicon is approximately ~1450bps, covering the whole rbcL gene and the 

small spacer region between rbcL and rbcS (coding the small chain of the RuBisCO protein). 

The amplicon was targeted with a PCR using the set of primers DPrbcL1 (5’-

AAGGAGAAATHAATGTCT-3’) and DPrbcL7 (5’-AARCAACCTTGTGTAAGTCTC-3’) (Jones et al., 

2005). The PCR protocol starts with 94°C for 3 minutes, followed by 35 cycles at 94°C for 60 

seconds, 55°C for 60 seconds and 72°C for 90 seconds, followed by a final extension at 72°C 

for 5 minutes. 

MinION Sequencing. 

The protocol used for both short barcode and long barcode MinION sequencing was the 

official ONT PCR barcoding (96) amplicons (SQK-LSK110) protocol. The library preparation 

includes barcoding PCR (“tag”), DNA repairing, end preparation, adapter ligation, and beads 

purification between each previous step. The only notable difference is the concentration of 

Agencourt AMPure XP beads concentration related to the DNA length targeted during PCR 

purification step: ~ 350bps for the short amplicon and ~1450bps for the long amplicon. I used 

respectively x1 and x0.5 concentration.  

Controls 

Negative controls were implemented all along the process to assure the reliability of the 

results: a DNA extraction negative control (pure distilled water), a PCR negative control (no 

DNA extract added), and an index negative control during the Illumina Index PCR stage.  

Positive controls were implemented for the same reasons and include DNA extraction control 

(sample with DNA successfully extracted during another study), PCR positive control (DNA 

extract from previous study), and an artificial oligo with binding sites for primer pairs t during 

the Illumina sequencing step. 

BIOINFORMATIC ANALYSIS  

Illumina MiSeq Data  

The diatom-izer pipeline (see Materials & Methods Chapter and Chapter 3) was used to 

process the data from the MiSeq output. In brief, it comprises the following steps in a R script 

using the package DADA2(Callahan et al., 2016): 
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- quality and length filtering; 

- trimming to the right length;  

- error rate learning, dereplication;  

- denoising using the DADA2 algorithm and the learnt error rate;  

- merging of the paired reads (forward and reverse); 

- chimera removal; 

- Naïve Bayesian taxonomic assignment using the custom (supplemented with non-

diatom phytoplankton) diat.barcode reference library created in Chapter 3.  

ONT MinION data 

As I wanted to use the latest bioinformatic tools for ONT MinION sequences, I created a new 

script in order to process the raw data from the MinION output for both long and short 

barcodes (Appendix C).  

- The script was based on the NGSpecies script (Sahlin et al., 2021) with optimised 

parameters for diatom data, and added Naïve Bayesian taxonomic classification 

(Wang et al., 2007) to take advantage of the full lineage present in the diat.barcode 

reference library. The pipeline includes the steps below: Basecalling with Guppy (ONT) 

- Quality filtering with NGSpeciesID (Sahlin et al., 2021)  

- Length filtering with NGSpeciesID  

- Clustering/polishing with NGSpeciesID. 

- Taxonomic assignment: Naïve Bayesian classifier with the software Mothur (Schloss 

et al., 2009)  

A schematic of part of the pipeline is given in Figure 32. The NGSpeciesID (Sahlin et al., 2021) 

component of the pipeline is a python-based program containing a set of tools  to cluster the 

reads generated by the basecaller and “polish” (equivalent to the denoising step for Illumina 

sequencing) the relatively low-quality reads associated with ONT sequencing. The outputs are 

consensus sequences created from clusters of reads, that share high similarities of sequence, 

and merge reverse complement consensus sequences thereafter. This step is handled by 

medaka (https://github.com/nanoporetech/medaka) which is provided and developed by 

Oxford Nanopore Technologies. It relies on neural networks which correct the individual 
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sequences by comparison with a draft assembly. NGSpeciesID also include a primer-removal 

tool, length filtering and quality filtering based on Phred score. 

The taxonomic assignment for ONT reads is usually performed by Basic Local Alignment 

Search Tool (BLAST) but I integrated an alternative assignment based on a Naïve Bayesian 

approach (Wang et al., 2007) . This Naïve Bayesian approach use the sequence and the lineage 

related to each sequence of the reference library to assign each candidate sequences to 

different taxa level with a confidence provided for each rank. This has the advantage of 

assigning sequences that are not present in the reference library at a higher taxonomic rank, 

e.g.  a candidate read from a species not included in the reference library would be assigned 

by the Naïve Bayesian approach to a higher taxonomic such as Genus, provided reference 

library includes sufficient species from the same genus. Such functionality is not possible with 

Figure 33 Steps involved in DNA barcode consensus calling of long‐read data. The respective software tools 
used in the different steps are provided in brackets. For more details see  Sahlin et al., 2021 



97 

the BLAST. Nevertheless, Wang taxonomic classification needs the full taxonomy of each 

sequence whereas BLAST only requires species name.  

The Wang taxonomic assignment was performed using the software Mothur (Schloss et al., 

2009) on the galaxy server (Afgan et al., 2018) to run the assignment on each sample 

simultaneously. To preserve diversity information as much as possible, the abundancy ratio 

threshold was set very low: 0.0001, to take into account every read cluster that represents at 

least 0.01% of the total number of reads. A counterpart of this choice of parameter is the 

moderate extended processing time required.  

Reference library :  

A full length rbcL reference library was created, based on the sequences provide by the open 

data repository from diat.barcode (Rimet et al., 2019) with the addition of few sequences 

from GenBank of other phytoplankton and algae groups such as Trebouxiophyceae, 

Cryptophyceae or Chrysophyceae. 

The full lineage was built to nine taxonomic levels: Domain, Kingdom, infraKingdom, Phylum, 

Class, Order, Family, Genus and Species.  

Both short barcode analysis (MinION and MiSeq) used the same diat.barcode  (Rimet et al., 

2019) reference library used and detailed in Chapter 3 and the Materials and Methods 

Chapter 2.  

STATISTICAL ANALYSIS 

All outputs from the bioinformatic pipelines, which were OTU tables combined with the 

assigned taxonomy, were transferred to RStudio prior to analysis.  

Community structure analysis: Hierarchical Clustering on Correspondence 

Analysis  

The routinely used ecological index for diatom biomonitoring is the Trophic Diatom Index 

(TDI; Kelly, 1998) but this and other ecological indices do not seem like the suitable metric to 

compare samples in mock communities as their compositions differs greatly from the 

compositions in natural sites and the TDI was designed for natural environment communities. 

Moreover, the TDI relies on the alkalinity of the environment which is not applicable for in 
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vitro studies, especially with species culture in different culture medium. Hence, the use of 

community structure comparisons instead of ecological indexes such as TDI.  

As the OTU dataset is a substantial dataset, multivariate data analysis was used to efficiently 

compare the similarities and differences among the samples to find clusters.  

In Husson et al., 2010, the Hierarchical Clustering on Principal Component has been proven 

as an effective way to combine the three standard methods used in multivariate analyses : 

principal component method, hierarchical clustering and partitioning clustering. In this 

chapter I combined a correspondence analysis method, using the OTU table as a contingency 

table, with a hierarchical clustering using Ward’s criterion (Murtagh and Legendre, 2011; 

Ward, 1963), and finally a k-means clustering to optimise the partition created with the 

hierarchical clustering.  

The analyses were run on the R software using the FactoMineR Package (Lê et al., 2008) and 

the Manhattan distance. This was selected as the number of different species present makes 

the data have high numbers of dimensions. 

Community relative abundance graphics were created using phyloseq package (McMurdie 

and Holmes, 2013). 

RESULTS 

ADDITIONAL REFERENCE SEQUENCES FOR THE OPEN ACCESS REFERENCE LIBRARY RSYST 

This mock community experiment provides additional sequences for the diatom reference 

library, diat.barcode. Some of the phytoplankton taxa present did not have a sequence in the 

reference library but close related taxa sequences were present. The sequences assigned to 

the genus Chlamydomonas in the HTS data derives from the species Chlamydomonas 

intermedia which is the only Chlamydomonas present in the mock community. In a similar 

way sequences from Botryococcus protuberans were extracted. The sequences were sent to 

the study group of diat.barcode to be integrated in the next version of the open database. 
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DNA EXTRACTION AND AMPLIFICATION SUCCESS 

All samples and duplicates were successfully extracted with the exception of one duplicate 

from the mock community 4 (sample name: MC4Ba), which generated no amplification at the 

PCR stage and was not included in the ONT MinION sequencing run. DNA extraction controls 

demonstrated the right execution of the extraction, the negative control was blank and the 

positive control demonstrated that the DNA extractions had worked. 

PCR amplification was successful for all duplicates, and the negative controls (without DNA 

template) did not amplify DNA as intended.  

SEQUENCING : NUMBER AND QUALITY OF READS 

Both MiSeq Illumina and ONT MinION run were executed smoothly. Very few (<100) reads 

were obtained in the negative controls. The positive controls were all amplified which confirm 

that the different method sequencing steps were executed appropriately.  

For the short barcode:   

- Mean error rate for the MinION run, as estimated by the MinION platform as an 

output, was 8.13% which is in the expected range; this is the “raw” data before any 

processing. The average number of read per duplicates was 4,756. 

- The MiSeq average error rate, as estimated by the MiSeq platform as an output, was 

<1% with an average number of read per duplicates of 173,974. 

MinION method with the long amplicon (full rbcL + spacer ~1500 bps) produced a large 

number of reads (>100,000 in average). The mean error rate was 7.8% 

The difference of number of reads between the two MinION runs (~5,000 vs ~100,000) are 

partially explained by the long barcode run only having the samples of this study while the 

short barcode was integrated in another run with samples from other studies (non-

photosynthetic organism, to prevent contamination). The proportion of the flow cell allocated 

to each run was therefore different. 
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COMMUNITY INVENTORIES  

MinION long barcode 

For the long barcode, the community inventory obtained at the end of the bioinformatic 

pipeline was totally different from the original mock communities. It was impossible to detect 

and identify any non-diatom to species with the long amplicon. A significant proportion of 

unassigned sequences were present with less than 10 % of the total reads assigned to genus 

level.  

Only two diatoms from the original mock communities were identified to the species level, 

and only in very limited numbers of the mock communities: Sellaphora seminulum was found 

in four different samples but never in the replicate from the same original mock community; 

Nitzschia palea was only found in a replicate from the Mock Community 2 (Fewer non-

diatoms) and totally absent from the other replicate of the same community. 

Nevertheless, 10 out of the 13 Genera initially in the mock communities were detected. The 

proportion were very variable and the taxa were generally present in only few duplicates. 

With such an important proportion of unassigned sequences I decided not to run community 

structure analysis with the long reads data.  
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Short barcode sequencing: MinION and MiSeq 

Detection of the species  

The number of unassigned sequences at genus level was consistently lower than 5% in both 

the ONT MinION and MiSeq Illumina data. 

The Illumina MiSeq method detected 12 of the original mock communities of 13 species and 

the ONT MinION method detected 10 species. All undetected species were non-diatom: 

Chlamydomonas intermedia, Planktothrix rubescens, Botryococcus protuberans. Planktothrix 

rubescens was the only species undetected on both platforms and it is the only member of 

the Cyanobacteria clade (Figure 33).  

At Genus level both methods were able to detect 13 out of the 13 genera in the mock 

community.  

An important proportion of the reads are assigned to a Tetradesmus in both the MiSeq and 

MinION data, which is a genus not found in the mock community. However, Tetradesmus is 

within the Chlorophyta group.  

Figure 34 Venn Diagram of the proportion of species detected by the MinION and MiSeq short barcode 
sequencing, relative to the original mock community composition, with a relative abundance cut-off 
value of 1%. Bracketed figures indicate the proportion of the 13 species from the original community 
detected using the different method. Numbers present in the interface between several circles indicates 
the proportion of the 13 species detected by both method (or method and original community). The 
central area is the number of species detected by both platforms that were present in the original 
sample. 

Original mock 
community 
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RELATIVE ABUNDANCE 

The relative abundances for each mock community are given in Figures 34 & 35, with Figure 

34 giving the MiSeq data and Figure 34 the MinION data. 

Overall, the results for the MinION and MiSeq data gave similar results, with the same taxa 

over or underrepresented. The following results are seen in both MinION and MiSeq data. 

The compositions of repeats tend to be similar to the theoretical composition of the mock 

community (based on the ratio of cells added to each mock communities) in the community 

created with a dominant taxon (MC5, MC6 and MC7). In both the MinION and MiSeq data, 

the only centric diatom (Cyclotella) was overrepresented (24.6% of the Total MinION reads, 

51.4% of the total MiSeq reads) in the “even community” (MC1), and the non-diatoms were 

underrepresented, except Chlorella, which is especially overrepresented in the MinION data 

(34.5% of the total reads). The pennate diatoms are not perfectly evenly represented, with a 

notable prevalence of the Nitzschia genus compared to others. The mock communities MC4 

(built with fewer centric diatoms) present a surprising composition with the Sellaphora genus 

overrepresented, this particularity is present in all the duplicates of MC4 (34% of the MinION 

total reads, 62.1% of the MiSeq total reads). Sellaphora is also overrepresent in some 

duplicates from the MC5, MC6, and MC7. Nitzschia and Sellaphora are the most 

overrepresented pennate diatoms. Sellaphora seminulum and Nitzschia palea are both taxa 

with notably diverging proportions between the duplicates in the majority of mock 

communities.  
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MiSeq Illumina 

Figure 35 MiSeq Illumina data, showing the mock communities composition (measured by cell count) and metabarcoding (read count) 
relative abundance. The first bar for each mock community is the original community composition, two subsequent bars are the 
metabarcoding repeats for each MC. Centric diatom in red, pennate diatoms in blue, non-diatom phytoplankton in green.  
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ONT MinION 

 

 

Figure 36 MinIon data, showing the mock communities composition (measured by cell count) and metabarcoding (read count) relative 
abundance. The first bar for the mock community is the original species composition, the subsequent three bars are the metabarcoding data. 
Centric diatoms in red, pennate diatoms in blue, non-diatom phytoplankton in green. 
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REPEATABILITY OF METABARCODING  

The hierarchical clustering analysis results are presented in Figures 36 to 41. These figures are 

arranged to show the results of the Hierarchical clustering, used for identifying groups of 

similar observations in the contingency table (OTU table) of the mock community replicates 

as a site map (Figures 36 and 39), then the cluster dendrograms (hierarchical tree), presented 

to show the strength of the clustering relationships (Figures 37 and 40). These two sets of 

analysis are brought together in the final figures as a hierarchical tree superimposed on the 

site map with the final K-means clustering to improve the initial partition obtained from 

hierarchical clustering (Figures 38 and 41). 

While the mapping is not a statistical test as such, the proportion of variance on the axis 

(Dimension percentage, Dim 1 and Dim 2) was notably very high in both MiSeq (Figure 36) 

and MinION (Figure 39), which is a signal of meaningful mapping, therefore, samples mapped 

together are structurally close.  

For the MinION data, all the replicates from the same mock community were clustered 

together. The MC1 and MC2 formed a single large cluster of eight replicates (the four 

replicates of each mock communities) (Figures 39 to 41). 

MiSeq data showed systematic clustering of the replicates from the same mock community, 

with the exception of the duplicates from the MC6 that were not clustered together (Figures 

36 to 38) 

The combination of these multiple, different methods of analyses demonstrates the 

robustness of these findings.  

The results show that replicates (both DNA extraction and mock community mixing) from a 

same mock community are very close in term of community structure. Therefore, the 

repeatability of the method is high. 
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MiSeq Illumina

Figure 37 Site map of the Hierarchical clustering on the MiSeq Illumina data, where each Mock Community 
repeat is shown a single data point, and each K cluster is shown in a single colour. The proportion of variance 
explained by each dimension are present in the X (dimension 1) and Y (dimension 2) axis. The first two 
dimensions of the PCA express 89.48 % of the total dataset inertia.  
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Figure 38 Dendrogram generated by the hierarchical clustering of the replicates for the different 
mock communities from the MiSeq Illumina sequencing data. Colours are the same clusters found 
in Figure 5. 

Figure 39 Three-dimensional plot combining the hierarchical clustering (figure 37) and the 
factorial map (figure 36) of the site map of the replicates from the MiSeq short barcode 
sequencing data. Each replicate is a single point, with clusters shown in the same colour. 
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MinION ONT 

 

Figure 40 Site map of the Hierarchical clustering on the MinION data, where each Mock 
Community repeat is shown a single data point, and each K cluster is shown in a single colour. The 
proportion of variance explained by each Dimension are present in the X (dimension 1) and Y 
(dimension 2) axis. The first two dimensions of the PCA express 75.98 % of the total dataset inertia. 
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Figure 41 Dendrogram generated by the hierarchical clustering of the replicates for the different 
mock communities from the ONT MinION sequencing data. 

Figure 42 Three-dimensional plot combining the hierarchical clustering (Figure 40) and the factorial map 
(Figure 39) of the site map of the replicates from the MinION short barcode sequencing data. Each replicate is 
a single point, with clusters shown in the same colour.  
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DISCUSSION 

MOCK COMMUNITY AS EXPERIMENTAL TOOL 

The use of mock communities as a method to compare the two sequencing methodologies 

and to explore biases within these methodologies was confirmed. This study confirms the 

adequacy of mock communities as tools for experiment on phytoplankton. The experiments 

were simple to implement and provided sufficient control of the parameters tested. However, 

the design of the communities depends on the availability of pure culture collections, such as 

the Thonon culture collection, to provide high quality foundations for meaningful research. A 

relatively weakness in the current protocol was the mixing step as certain phytoplankton 

species tended to conglomerate. While the experiment went well, the use of a flow cytometer 

for sorting the cell could have been a great optimization to the method. 

FULL LENGTH RBCL BARCODE MINION SEQUENCING 

During this study I followed the method previously used in Glover, 2019, which used the 

primers from Jones et al., 2005, which produce the full length rbcL fragment. This has never 

been used with MinION sequencing in a published paper.  

The full-length amplificon generated enough reads to extract full length sequences for 

additions in the reference library, however the low number of reads was insufficient to run a 

proper analysis. However, with the long barcode 10 the 13 non-diatom phytoplankton genera 

were detected with the 0.1% abundance cut-off value. The very high number of filtered reads 

(length and quality filtering, removal of unassigned sequences, removal of sequences 

assigned to contaminant such as Solanum and Triticum) compared to the low number of 

successfully assigned reads appears to show that the specificity of the long barcode primers 

is low. 

The overall result with the long amplicon PCR primers shows that these were unsuitable for 

biomonitoring, although they were useful for extraction the full rbcL sequences of pure 

cultures. Better optimised primers for the long rbcL barcode may give more even and 

complete results. For example Valegård et al., 2018 designed a amplicon for diatoms that 

amplifies the whole rbcL gene as well as the rbcS gene and the spacer between the two genes. 
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In Hamsher et al., 2011 a 748bps long barcode of rbcL was designed, this  could be a good 

alternative utilising the ability of MinION sequencing to generate longer reads than Illumina.  

However, as demonstrated below, the shorter, more frequently used rbcL barcode region is 

sufficient for current river biomonitoring surveillance.  

SHORT BARCODE : COMMUNITY COMPOSITION GENERATED BY METABARCODING 

COMPARED TO THE ORIGINAL MOCK COMMUNITY COMPOSITION. 

Species detectability on the MinION and MiSeq 

With the exception of the Cyanobacterium Planktothrix, not detected by either platform, all 

genera from the original mock communities were detected with Illumina. It is plausible that 

the Cyanobacterium rbcL gene is not amplified by the short barcode PCR as the primers were 

designed to target diatoms; Cyanobacteria and diatoms are evolutionarily distant which may 

result in poor primer specificity to the Cyanobacteria. 

There is a consensus that the diatom evolution is marked by a first endosymbiosis (Figure 42), 

around 1.8 billion years ago, of a heterotrophic exosymbiont with a cyanobacterium 

endosymbiont (Falkowski and Knoll, 2007). The resultant proto algae was the common 

Figure 43 Schematic representation of the primary (upper panel) and secondary (lower panel) endosymbiont 
hypothesis of diatom evolution. From Falkowski & Knoll, 2007 
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ancestor of Glaucophyte, Red Algae, Green Algae and Land Plant. A second endosymbiosis 

apparently occurred 1.4 billion years ago (Yoon et al., 2002), when a Green Algae 

endosymbiont integrates another heterotrophic exosymbiont and a descendant of this 

evolutional event integrates, by another endosymbiosis, a Red Alga, which result in the 

common ancestor of diatom. This hypothesis, known as the secondary endosymbiont 

hypothesis (Moustafa et al., 2009), implies a more distant ancestor between 

Cyanobacterium(e.g. Planktothrix) and diatom than between Green Algae (e.g. Chlorella) and 

diatom.  

While detection was efficient at genus level (Figure 35), it appears that detection was more 

difficult to obtain with the MinION outputs at species level, likely due to the relatively higher 

error rate (8% versus <1%). Moreover, a notable proportion of the MinION reads (and a minor 

component of the MiSeq reads) were incorrectly assigned to Tetradesmus, a non-diatom 

genus within the Chlorophyta group which is not present in the mock community. The lack of 

non-diatom sequences in the reference library is probably the reason of the misassignment 

as the Naïve Bayesian taxonomic classifier method needs a diverse and curated reference 

library to perform robust taxonomic assignment.  

Overall, this is encouraging and shows that adding numerous common non-diatom reads (and 

their correct taxonomic lineage) is an easy improvement to diatom Metabarcoding results, 

especially if non-diatom phytoplankton are to be used for bioassessment.  

VARYING REPRESENTATION IN THE METABARCODING DATA ACCORDING TO SPECIES 

With the short barcode method (with both ONT and Illumina platform), the very large 

majority of the reads originated from the targeted amplified region, which means the PCR 

primers have a high specificity. Nevertheless, the read proportion of each taxon is still quite 

different to the proportion of cell of each taxon integrated in the mock communities.  This is 

clearly shown in Figures 36 and 37 for the MC1 community, where the community has equal 

proportions of each species, yet the read proportions are highly skewed.  

Overall, there is an overrepresentation of few genera for both platforms (Figures 36 & 37):  

- Chlorella for the non-diatom phytoplankton: for example in the evenness community (MC1) 

this is 34.5% of the total MinION reads instead of the theoretical 7.7%. 
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- Sellaphora and Nitzschia for the pennate diatoms, for example in the MC4 these are 34% of 

the total MinION reads instead of the theoretical 8.3%. 

- the centric diatom Cyclotella: for example in the evenness community (MC1), this is 24.6% 

of the total MinION reads instead of the theoretical 7.7%. 

The Chlorella vulgaris overrepresentation is interesting as this species is reported to have only 

one chloroplast per cell (Wakasugi et al., 1997), indicating that copy number per cell alone is 

not only the explanatory variable. The reason for the over representation of this taxon may 

be that the chloroplast DNA from Chlorella vulgaris is especially easy to extract and/or well 

preserved, but could also be a primer bias (this could have been investigated via in silico 

methods or qPCR if the time and resources were present at the moment). As such, and as it 

is a high abundance species in freshwater environment (Wirth et al., 2020), Chlorella vulgaris 

DNA is likely to be over-represented relative to diatom DNA during Metabarcoding-based 

diatom biomonitoring studies. The non-diatom taxa are, aside Chlorella, under-represented 

and as the barcode was designed to target diatom specifically it is an expected result. This 

could be an explanation of the community structure similarities between MC1 and MC2 as 

their only difference is the lower abundancy of non-diatom taxa in MC2, which composed the 

overall most under-represented group in the mock communities.  

While the overrepresentation of Cyclotella was predicted as centric diatom are known to have 

a large number of chloroplasts compared to pennate diatoms (Bedoshvili et al., 2009), this 

does not explain the overrepresentation of Sellaphora and Nitzschia. The  overrepresentation 

of these two taxa is unexpected as in other diatom mock communities studies they did not 

show overrepresentation, either when the primers were the same (Kelly et al., 2018) or the 

alternative diat.barcode primers (Vasselon et al., 2018). This experiment used mock 

communities composed of a mix of individual phytoplankton rather than mock communities 

made of a mix of extracted DNA, as in the other studies. This suggests that the 

overrepresentation originates from the DNA extraction step; it could be a structural specificity 

of Sellaphora and Nitzschia that makes their DNA easier to extract. Nitzschia is a long and 

frangible diatom, as such it is plausible that its DNA is easily released during DNA extraction. 

In Chapter 4, the diatom community results show the same an overrepresentation of 

Nitzschia genus in the Metabarcoding community compared to the LM identification 
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community, again suggesting that the overrepresentation of Nitzschia in is linked to the DNA 

extraction step. Sellaphora genus does not show the same tendency in the Chapter 1&3 data. 

The overrepresentation of Sellaphora is not explained by literature or my results.  

When comparing MinION data and MiSeq data, I can note that the groups that are dominant 

and overestimated are even more overestimated in the MinION data than in the MiSeq data. 

Some differences in the two method could explain this, for example a high number of PCR 

cycles are known to overestimate the larger groups and underestimate the minor groups and 

therefore lower the detected diversity of the community(Kelly et al., 2019). 

Overall, these data show that Metabarcoding does not accurately reflect community 

abundance generated by LM. This may have implications for water quality index calculation 

such as TDI. However, the new versions of the TDI take into account the difference of 

community abundance specific to the Metabarcoding method (see Chapter 4). 

REPEATABILITY OF PHYTOPLANKTON METABARCODING WITH SHORT READ MISEQ AND 

MINION PLATFORMS 

The MinION data (Figures 41, 42 and 43) show a clear clustering of replicates and, at the same 

time, separate samples from different mock communities. Only samples from the MC1 

(evenness/equity) and from MC2 (Less-non diatom) were not separated by the clustering and 

were too close structurally to be differentiated in different groups, despite the underlying 

differences in the original mock communities.  

For the MiSeq data, most replicates were grouped together while being efficiently separated 

from one mock community to the others. In this dataset, the samples from MC2 (Less non-

diatom) and MC4 (less centric) could not to be grouped separately, and the replicates from 

MC6 (One dominant centric) were both groups alone in a separate group.  

The conclusion of the comparison of both Hierarchical clustering indicates that the results 

generated by both sequencing technologies are very similar and the duplicates of each mock 

community generally share similarities in term of community structure. It is important to note 

that the MiSeq data would have more difficulties to group replicates together because they 

are composed of only two replicates per mock communities while MinION data is composed 

of twice the number of replicates per mock community.  
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The overall comparison shows a close similarity between each pair of duplicates, both DNA 

extraction duplicates and PCR duplicates. Only the PCR duplicates from MC6 with MiSeq 

platform were not clustered together, although being alone in their own cluster. Moreover, 

while abundancy of each taxon was slightly different among the replicates of each mock 

community, the detection of species was always the same (Figures 36 & 37). The precedent 

points show a great repeatability and corroborate with other studies comparing mock 

communities replicates (Vasselon et al., 2018) and PCR replicates from river samples (Kelly et 

al., 2018). 

However, few taxa proportions change significantly between the duplicates and the official 

biofilm sampling method (Kelly et al., 2018), which involves pooling at least 3 environment 

samples per sampling sites, should address this problem quite well. Pooling replicates of DNA 

extraction should be able to provide even better repeatability at the cost of extra sampling 

time (collecting three times more samples per sites). 

MINION SEQUENCING FOR DIATOM AND PHYTOPLANKTON BIOMONITORING  

This new bioinformatic pipeline for MinION data from diatom samples run efficiently for all 

samples and provide high quality data for biomonitoring. I have coupled MinION sequencing 

with read clustering and consensus forming (NGSpecies) and these bioinformatic tools are 

crucial to improve the quality of the output by “polishing” the reads. MiSeq sequences have 

also been processed in order to improve their quality with a “denoizer” (DADA2)(Callahan et 

al., 2016) which is a similar bioinformatic approach. 

Although sequencing quality was considered as the major factor of choice for Metabarcoding 

diatom biomonitoring, the bioinformatic tools, and especially sequences “denoiser” and 

“polisher”, are other significant factors to make both sequencing platform adequate for 

biomonitoring. Nevertheless, biomonitoring is a field of science that is rather tolerant to small 

sequencing errors or small nucleotide changes. For mutation analysis, subspecies 

identification, or even detection of very rare species, the use of high-fidelity sequencing is 

required, and as very specific low occurrence sequence patterns could be erased by the 

denoising/polishing approach.  
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Previous studies propose that MinION sequencing could be use with long reads ( >1500 bps) 

(Laver et al., 2015) but the new insights of this study indicate that even short reads (<400bps) 

generate similar outputs to MiSeq sequencing in term of community structure and 

biomonitoring usability. The ONT MinION platform has showed clear potential for diatom 

biomonitoring survey based on Metabarcoding. Moreover, the bioinformatic tools have a 

major impact on the suitability of the data. This new bioinformatic pipeline for ONT MinION 

reads for diatom biomonitoring worked smoothly and showed that there is alternative to the 

more costly Illumina sequencing platform. To confirm the utility of MinION data, further 

environmental studies that use ecological and water quality indexes calculation will need to 

be done. 
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CHAPTER 6 POSITIVE SELECTION IN DIATOMS ASSOCIATED WITH SPECIES 
MORPHOLOGY AND ECOLOGY 

INTRODUCTION 

Positive selection is the process that drives the increase in prevalence of advantageous 

genetic variants (traits) in a population (Anisimova et al., 2001). It is the natural selection that 

has been described by Darwin as the force promoting the spread of beneficial alleles. Its 

counterpart is the purifying/negative selection which purges the deleterious traits on the 

fitness of the individual in a population (Massingham and Goldman, 2005). The study of both 

positive and negative selection is necessary to estimate the contribution of natural selection 

to molecular evolution. These forms of selection influence the conservation or the removal 

of sequences patterns in accordance with the population history and interaction with the 

environment. Conversely, both phylogenetic and DNA barcoding at species level studies 

should ideally be run using DNA sequences that are selectively neutral, so that they reflect 

the population history and taxonomy of a particular organism, rather than the selective 

history of specific gene region (Deagle et al., 2014). A better understanding of the forces 

affecting the evolution of the genes used in phylogenetic studies will improve the 

understanding of the evolution history of the gene and, by extension, the evolution history of 

taxa. Moreover, the recent use of conservative regions for barcode identification of taxa relies 

upon the barcode region being selectively neutral, as positive or negative selection on the 

barcode region may affect whether it discriminates between species (for a counter example, 

see Percy et al 2014). A good understanding of the selective forces acting on a DNA barcode 

region is therefore necessary.  

The rbcL gene is a coding region that encodes the large subunit of the ribulose-1,5-

bisphosphate carboxylase-oxygenase (RuBisCo) which is arguably the most abundant protein 

on Earth (Erb and Zarzycki, 2018). This enzyme is responsible for practically all the Carbon 

fixation occurring on Earth as it is involved in photosynthetic CO2 assimilation and 

photorespiratory Carbon oxidation. Due to the conservative and universal nature of the rbcL 

gene, it has been widely used in phylogenetic studies from phytoplankton to land plant (Bailet 

et al., 2020). Nevertheless, molecular analysis found positive selection in rbcL of the majority 

of the land plants (Kapralov and Filatov, 2007).  
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Diatoms (Bacillariophyta) are known to be one of the most productive photosynthetic 

organisms with the marine diatoms responsible for 40% of the total marine productivity 

(Tréguer et al., 2017).  RuBisCO protein is formed of 8 long chains (coded by the rbcL gene), 

which contain the active site of the enzyme, and 8 small chains (coded by the rbcS gene). 

Diatoms produce a specific form of RuBisCO called form ID (see Figure 43). Studies have found 

that the diatom rbcL gene has evolved under a positive selection and especially followed the 

history of Carbon dioxide concentration fluctuations (Kapralov and Filatov, 2007; Young et al., 

2012).  

In this study, I explore the different characteristics (morphology and ecology), that potentially 

drove the evolution of the rbcL gene in the Bacillariophyta clade: salinity environment, 

morphological symmetry and pyrenoid structure. These variables are directly linked to the 

intracellular Carbon concentration as well as quantity and shape of chloroplasts, which are all 

limiting factor of the diatoms primary production.  

Figure 44 3D view of the overall structure of Rubisco (form I D diatom) from 
Thalassiosira hyalina. The large subunits are in red and the small subunits in 
white. 
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CENTRIC VS PENNATE  

The most evident difference in structure within the diatom clade is between the centric and 

the pennate diatoms (Figure 44). The centric diatoms present a radial symmetry while most 

of the pennate diatoms present a bilateral symmetry. Moreover, the centric diatoms are more 

primitive and integrate multiple small chloroplasts compared to the few (if not single) larger 

chloroplasts specific to pennate diatoms morphology.  

Due to these important differences of structure that also affect the chloroplasts, I hypothesize 

that the evolution of the rbcL gene has potentially been under a different positive selection 

during the evolution of these clades.  

 

  

Figure 45 Optical microscopy photographs of a centric diatom (Roperia tesselata) (left) and a pennate diatom 
(Nitzchia sigmoides) (right). The several small chloroplasts in centric diatom are opposed to the few large 
chloroplast in the pennate diatom. Plankton*Net Data Provider at the Alfred Wegener Institute for Polar and 
Marine Research hdl: 10013/de.awi.planktonnet 

MARINE VS FRESHWATER 

As a widespread clade, diatoms are present in all waterbodies including a large range of 

salinity. Marine diatoms are known to be responsible for around 40% of the total ocean 

oxygen production which directly originates from the activity of the RuBisCO protein. 

Despite global ocean acidification that is currently occurring (Hönisch et al., 2012), the last 

100 million years  have presented an increase in the pH of the ocean, and the ocean remains 

alkaline with an average pH of 8.2 (Marion et al., 2011; Tyrrell and Zeebe, 2004). The pH in 
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the majority of fresh water bodies lies between 6 and 8, and the average pH of UK rivers is 

7.44 (River Water Quality Monitoring 1990 to 2018 - PH - Data.Gov.UK, n.d.). In a high 

alkalinity environment such as an ocean, the main form of Carbon is HCO3
- which leaves a low 

concentration of free CO2 in the water available to diatoms.  

In addition to this limited access to Carbon, the nutrient limitation in the ocean, especially of 

Nitrogen and Phosphorus,  leads marine species to have selected larger species among the 

diatom evolution compare to freshwater species (Litchman et al., 2009). This is mainly driven 

by the need for a wider exchange surface with the environment to compensate the low 

availability of both Carbon and nutrient. 

Hence the reason for selecting the comparison between saline and freshwater diatoms as my 

hypothesise is there is a different evolutionary signature affecting their rbcL genes according 

to the salinity of their environment. 

CLADE COMPARISON: PYRENOID STRUCTURE  

The pyrenoid is a single or multiple microcompartment present in the chloroplast and 

composed of condensed RuBisCO. It is the main centre of Carbon dioxide fixation for most 

algae clades (Badger et al., 1998; Raven, 2010). The dense accumulation of RuBisCO combined 

with the effect of inorganic Carbon pumps and Carbonic anhydrases lead to Carbon dioxide 

concentration near the pyrenoid. The diversity of shapes and numbers of pyrenoids are 

specific to each diatom species and might be the result of a long evolutionary process to adapt 

to the environment of each diatom, and especially of the Carbon dioxide bioavailability.   

I decided to focus on the effect of three different pyrenoids shapes within clades of diatoms 

on the rbcL gene evolution.  My hypothesis is there would be an evolutionary signature 

related to pyrenoid structure due to the link between pyrenoid structure and its ability to 

concentrate CO2. 

Clade models for phylogenetical studies allow differences in site‐specific selective constraints 

among clades in the tree (Bielawski & Yang, 2004; Forsberg & Christiansen, 2003). 

The diatom species have been grouped in three clades regarding their particular pyrenoid 

structure described in Mann, 1989:  
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- Navicula and its allies (Seminavis, Hippodonta, Trachyneis, Pleurosigma, Gyrosigma) 

which have one or more bar-like pyrenoids (appears strictly rectangular in face view) 

that is not invaginated. 

- Placoneis, Cymbella, Gomphonema and other genera with pyrenoids that form a 

bridge between the two halves of a chloroplast: in this case the pyrenoid seems 

'exposed' rather than embedded inside the chloroplast.   

- Pinnularia and Caloneis: all have invaginated pyrenoids: the body of the pyrenoid is 

penetrated by tubular invagination lines of cytoplasm. 

The overall objectives of this study are to determine if positive selection occurred during 

evolutionary diatom history and to identify the drivers of these hypothetical positive 

selections.  

MATERIALS & METHODS   

PAML DESCRIPTION (MAXIMUM LIKELIHOOD) 

Historically two methods have been created and used to detect positive selection in 

homologous protein coding sequences:  a parsimony method from SuzUKi & Gojobori (1999), 

and a likelihood method based on the work of Nielsen & Yang (1998). Here I use a  Maximum 

Likelihood (PAML, Yang, 2007) phylogenetic analysis to reveal specific evolutionary signatures 

within diatom clades, a modified version of the methods used by Nielsen & Yang (1998). It 

enabled me to compare distinct diatom groups and search for difference among taxonomic 

groups attributable to positive selection. The assessment of positive selection is based on an 

analysis of the ratio of the number of non-synonymous substitutions (amino acid altering 

substitutions) to the number of synonymous substitutions (dN/dS or ω ratio) to estimate the 

balance between negative or purifying selection (ω < 1), neutral selection (ω = 1) and positive 

selection (ω > 1). In general, when positive selection has been significantly detected in a 

protein, the adaptative evolution is driven by only a few amino acid sites (Hughes and Nei, 

1988; Yang, 2007) 

I used the software EasycodeML (Gao et al., 2019) to run the different codon-based models 

as it is an updated version of the original PAML program that integrates a graphical user 

interface, multi-threading,  and performs the likelihood ratio test.  
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In a multiple sequence alignment, the site model assumes that the ratio of nonsynonymous 

to synonymous substitution rates (ω ratio) is constant between the branches of the 

phylogenetic tree but different among sites in the aligned sequences. There are several codon 

substitutions models as the 4 different nucleotides allow 64 (=43) possible codons and the 

non-synonymous/amino acid-altering substitutions are under a more restrictive selective 

pressure. I used some of the codon-substitution models M0-13 from the work of Yang et al., 

2000:  

- M0 (one-ratio)   

- M1a (nearly neutral) 

- M2a (positive selection) 

- M3 (discrete) 

- M7 (beta) 

- M8 (beta and ω > 1) 

- M8a (beta and ω = 1) 

The complete list of codon substitutions and the description of their parameters are present 

in the annex section.  

I used a likelihood-ratio test to compare the fit of the different models to the sequence data. 

Evidence of positive selection can be revealed by a better fit with M2a over M1a, or with M8 

over M7 or M8a. (Anisimova et al., 2001; Swanson et al., 2003; Wong et al., 2004; Yang and 

Nielsen, 2002).  

In the M8vsM8a test, a new LRT is implemented to determine if the d(N)/d(S) ratio is 

significantly greater than one. This is a more refined test of positive selection than the 

previous LRTs which only identified if there was a class of sites with a d(N)/d(S) ratio >1 but 

did not test if that ratio was significantly greater than one. 

Consequently, the M8vsM8a is considered as the gold standard test. Nevertheless, the 

M8vsM7 test and, to a lesser extent, the M2avsM1a test are still consider as robust tests. 

As mentioned earlier, the diatoms have been grouped using the following 3 criteria: 

- Diatom primary shape (centric or pennate)  

- Salinity preferences  
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- Pyrenoid structure/morphology 

In order to perform the analysis, datasets were created from the full rbcL sequences provided 

in the diat.barcode open access database (created and curated by INRAE-CARRTEL Thonon 

(Rimet et al., 2019)).  

RESULTS 

CENTRIC VS PENNATE  

A dataset composed of 46 centric diatom species and 78 pennate diatom species, 124 

sequences in total from the open dataset DIAT.BARCODE (INRAE- UMR CARTEL Thonon-les-

Bains- France; Rimet et al., 2019) was used to generate the phylogenetical tree (Maximum 

Likelihood with 100 replications, Figure 45). The dataset and the phylogenetical tree were 

used conjointly to run the site model in EasyCodeML. 
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Figure 46 Phylogenetic tree used for the site model comparing centric (orange branched labelled #1) 
and pennate diatoms. 
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The likelihood test used to compare the models shows a better fit of the M2a model over 

M1a and a better fit of the M8 model over the M7 model (Table 12). This is strong evidence 

of the presence of positive selection driven by the primary structure of the diatoms (centric 

vs pennate diatom) during the evolution of the rbcL gene. This supports my hypothesis that 

the chloroplast structural differences of these two clades (small multiple chloroplasts for 

centric diatoms and single up to a few large chloroplasts for pennate diatoms) has been 

specifically selected according to their specification/function and are not neutral mutations 

that persist in the genotype. Moreover, the better fit of M8 and M7 over M2a and M1a tend 

to show that there is a beta distribution of dN/dS classes. The M8-M8a test has non-significant 

value and it is the more robust test for positive selection as it determines if the dN/dS ratio is 

significantly greater than 1 instead of just identifying if there is a class of site with dN/dS ratio 

greater than 1. Therefore, we cannot say that the dN/dS ratio is significantly greater than 1 

even though the M7 and M8 model comparison seems to show the presence of positive sites. 

The relatively small dataset could be the reason why the M8-M8a did not generate significant 

likelihood-ratio test values as this kind of test is more likely to be significant with large size 

datasets. 

  

 

Table 12. Site Model results for centric vs pennate diatoms 

 

Site model (SM)   Comparison of models   

Model   log‐likelihood Estimates of 
parameters 

      Model compared likelihood ratio test 
P-value 

Positive sites 

M3   -30372.5 p: 0.82 0.17 0.01 M0 vs. M3 <0.001* 
 

      ω: 0.0040 0.33 7.1       

M0   -32351.393816 ω0: 0.055         
 

M2a   -31473.903427 p: 0.48 0.38 0.14 M1a vs. M2a <0.001* 
 

      ω: 0.014 1.0 2.3       

M1a   -30776.737900 p: 0.89 0.12       
 

      ω: 0.014 1.0         

M8   -30254.264803 p0=0.96920 p=0.14 q=1.1   M7 vs.M8 <0.001* 282 I 0.960* 

      (p1= 0.03080) ω= 1.0           

M7   -30330.073347 p= 0.20 q=0.95 
 

    
 

M8a   -30254.262330 p0=0.96908 p=0.14 q=1.1   M8a vs.M8 0.94 
 

        (p1= 0.030) ω= 1.0      
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The site model comparisons show a strong positive selection signal with significant model 

fitting differences between: M0 vs. M3, M7 vs.M8 and M8a vs. M8. One site (282), located at 

the interface of the RbcL dimer (Iida et al., 2009), has been shown to be under positive 

selection by the Bayes Empirical Bayes (BEB) analysis implemented in PAML (Table 12). These 

results are clear evidence of selective pressure driven by the primary shape of the diatom and 

confirms my assumption of different adaptation of the rbcL gene between those two diatom 

morphologies. 

MARINE VS FRESHWATER 

27 sequences from the open dataset DIAT.BARCODE (INRAE- UMR CARTEL Thonon-les-Bains- 

France) have been selected to create a dataset. The relatively small size of the dataset is due 

to the fact that only centric diatoms were selected to prevent confounding effects of the 

positive selection influence of the primary shape of the diatoms (pennate vs centric) on the 

result. As a matter of fact, the vast majority of saline diatoms are centric.  

The dataset as been used to create the phylogenetical tree (Maximum Likelihood with 100 

replications, Figure 47). The dataset and the phylogenetical tree have been conjointly used to 

run the Clade Model in EasyCodeML. 
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Figure 48 Phylogenetical tree used for the site model between saline and freshwater diatoms 
(yellow branch labelled #1). 
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In this analysis, the M7-M8 and the M8-M8a comparison (Table 2) both shows a significant 

sign of positive selection. Furthermore, two sites (437,442) have been significantly detected 

as positive sites and seven other sites (34, 254, 262, 284, 353, 362, 375) have been predicted 

as potential positive sites with the M7-M8 comparison test. We can confidently say that the 

dN/dS ratio is following a beta distribution and the ratio is significantly greater than 1 which 

is a strong proof of significant positive selection occurrence in the rbcL gene. These significant 

tests result give strong support of a different evolutionary signature in the rbcL gene between 

Marine and Freshwater diatoms.  

  

CLADE COMPARISON: PYRENOID STRUCTURE 

285 full length sequences from the open dataset DIAT.BARCODE were used to create a diatom 

phylogenetical tree (Maximum Likelihood with 100 replications). 

The clade model C (CmC) on EasyCodeML was generated in order to test if the rbcL gene of 

those three clades has evolved differently. As other clade models, site-specific selective 

constraint differences are possible among clades in the phylogenetical tree. It started by 

Table 13. Site model results for the saline vs freshwater analysis 

Site model (SM)  Comparison of models 

Model log‐likelihood Estimates 
of 
parameters 

      Model 
compared 

 likelihood 
ratio test P-
value 

Positive sites 

M3 -6717.3 p: 0.85725 0.14275 0.00000 M0 vs. M3 <0.001* 
 

    ω: 0.00543 0.40423 39.45386       
M0 -6947.709058 ω0: 0.05292         

 

M2a -6758.829158 p: 0.90686 0.09314 0.00000 M1a vs. M2a 0.999 
 

    ω: 0.01542 1.00000 93.27602       
M1a -6758.828892 p: 0.90686 0.09314       

 

    ω: 0.01542 1.00000         
M8 -6727.293208 p0=0.96898 p=0.0342

3 
q=0.23717   M7 vs.M8 <0.001* 34 A 0.515, 

254 I 0.808, 
262 E 0.702, 
284 I 0.933, 
353 A 0.518, 
362 Y 0.693, 
375 K 0.529, 
437 A 0.963*, 
442 N 0.974* 

    (p1= 
0.03102) 

ω= 
1.00000 

          

M7 -6747.267661 p= 0.03622 q= 0.21430     
 

M8a -6707.534978 p0=0.97786 p=0.0766
3 

q=1.47137   M8a vs.M8 <0.001* 
 

    (p1= 
0.02214) 

ω= 
1.00000 
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estimating a different ω ratio for each clade (three in this experiment) and then the model 

has been compared against a null model (M2a_rel) that estimates a unique fixed ω ratio 

among clades (Weadick & Chang, 2012).  

The results show a significant difference between the ω ratio of each clade, indicating a 

different evolutionary signature linked to the pyrenoid structure. The trees generated in the 

analysis are shown in Figure 48.  As we can see the three clades are phylogenetically close, 

and also share some morphological features such as shape and size, and the pyrenoid 

structure is one of their greatest differences (Mann, 1989). Due to the involvement of the 

pyrenoid in the Carbon dioxide fixing, the pyrenoid structure is directly linked to the 

adaptation of a diatom to the Carbon content of its environment. It is then unsurprising to 

find that the pyrenoid structure seems to be an evolutionary driver of the rbcL gene by 

applying a selection force of the diatoms that I linked to the Carbon dioxide concentration in 

the environment.  

 

 

 

Model 
Number of 
parameters 

log‐likelihood Model compared 
Likelihood ratio test 
P-value 

CmC 575 -48812 
M2a_rel vs CmC 0.000017332* 

M2a_rel 572 -48824 

Table 14 Clade model (CmC) result for the pyrenoid structure analysis. The likelihood-ratio test p value is 
significant with α=0.05 
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Figure 49 Phylogenetical tree used in the clade model comparison. Yellow: bar -like pyrenoid, Blue: pyrenoids penetrated 
by tubular invagination, Red: Pyrenoid that forms a bridge 
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SELECTIVE SITES MAPPING ON THE 3D RBCL PROTEIN 

Mapping the positively selected residues on the RuBisCO tertiary structure revealed that they 

are located in important regions for dimer-dimer, intradimer, large subunit-small subunit and 

RuBisCO-RuBisCO activase interactions, and that some of the positively selected residues are 

close to the active site (Figures 50 & 51). Within the positively selected residues I can highlight 

the one located at position 282, which is as mentioned before the interface of the RbcL dimer 

Figure 52 3-dimensions view of a single Rubisco long chain from Thalassiosira 
antarctica. Blue = Active sites, Red = significant positive sites for saline vs 
freshwater diatom model. Green= potential sites 

Figure 51 3-dimensions view of a single Rubisco long chain from Thalassiosira 
antarctica. Blue = Active sites, Red = significant positive sites for centric vs pennate 
diatom model. 
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(Iida et al., 2009). This gives support to the fact that this residue is positively selected as a 

mutation at this locus is likely to change the interaction link between the dimer which is a 

main driver of the overall protein structure.  

DISCUSSION 

The comparison of the different codon models between the diatom clades confirmed the 

initial hypothesis that the evolution of the large subunit of RuBisCO has been driven by the 

structure and the environment of the species during their history. In this case I focused on 

the characteristics that influence the availability of Carbon dioxide as the RuBisCO protein is 

directly involved in the first step of Carbon fixation and, therefore, CO2 concentration is a 

main limiting factor of the RuBisCO activity.  

The model fitting comparison between the different clades enabled us to reveal significant 

drivers of the evolution of RuBisCO: morphological symmetry (pennate/centric), salinity of 

the environment and pyrenoid shape. Moreover, the 282 codon (at the interface of the RbcL 

dimer (Iida et al., 2009)) has been detected as a positive site for the morphological symmetry 

and the 437 and 442 codons are significantly positive sites for the salinity preferences.  

The rbcL gene from diatoms seems to have evidence of positive selection, as opposed to the 

low rates present in higher plants (Yao et al., 2019) . Since the CO2 diffuses through biological 

membranes, diatoms and other microalgae are facing an additional challenging problem as 

the diffusion of CO2 is enhanced by the single-to-few cell organization that increases the 

exchange surface with the environment (Moroney and Somanchi, 1999). This could explain 

the greater influence of characteristics related to CO2 concentration on the evolution of the 

diatoms rbcL gene. Rather than RuBisCO positive selection, higher plants are known to evolve 

in specialisation of cells to manage separately the different steps of the fixation, such as C4 

plants, which concentrate PEP carboxylase in leaf mesophyll cells and concentrate RuBisCO in 

bundle-sheath cells (Gao et al., 2014). Unicellular organisms such as microalgae are indeed 

not able to specialise like multicellular entities and this is coherent with the higher rates of 

positive selection of the rbcL gene of diatoms.  

Previous work has shown that the kinetic diversity of diatom form ID RuBisCO is greater than 

the one from plant form I RuBisCO (Young et al., 2016). Furthermore, the Bacillariophyta clade 
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present a high diversity in strength of the Carbon concentrating mechanisms (CCM) compared 

to plant groups. The diatom CCM are also noticeably more efficient (Young et al., 2016).  This 

is also logical with the higher dependency of RuBisCO evolution with diatom while superior 

plants can rather organize and specialized cells to divide the different steps of carboxylation. 

Young et al.,2012 suggested that within the Bacillariophyta clade, positive selection showed 

a constant occurrence during period of falling Phanerozoic CO2 and seems to show the 

development of Carbon-concentrating mechanisms. Consequently, the declines in 

atmospheric CO2 fuelled the positive selection in RuBisCO for a sizeable proportion of diatom 

species. 

In the era of Metabarcoding-based ecological assessment, a better understanding of the 

forces influencing the evolution of rbcL should help to create adequate short barcodes within 

the rbcL gene as several sites has been identified as positive sites and can therefore be used 

to distinguish specific clades confidently. However, a barcode is required to be present in a 

conserved region to provide robust taxonomic assignment (Deagle et al., 2014). This short 

barcode located on the rbcL gene seems to be a good compromised with few positive sites 

along a conserved coding region. 

An extension to this study would be to analyse the positive selection present in the rbcS gene 

as it codes for the small subunit of the RuBisCO protein and has been shown to be involved in 

the control of the Pyrenoid structure in the green algae genus Chlamydomonas (Meyer et al., 

2012). This would require a substantial task to create the dataset as rbcS has been less studied 

that rbcL and imply, therefore, a lower availability of sequences for molecular analysis.  

In conclusion the analyses show that the three criteria chosen (Diatom primary shape, Salinity 

preferences and Pyrenoid structure) all reveal proof of positive selection on the rbcL gene. 

This corroborates the insights of the recent studies that consider the rbcL gene as a site under 

positive selection in the diatom genome, this corroborate with Kapralov and Filatov, 2007b 

and Young et al., 2012. Notwithstanding the relatively evolutionary activeness of this locus, 

recent studies have showed the effectiveness of barcode in the rbcL to distinguish even at 

species level diatoms during Metabarcoding analysis (Vasselon et al., 2017a). Finally, we can 

say that my study validates that environment preferences such as salinity, and morphology of 

both chloroplast and frustule drove the evolution of the rbcL gene in the diatom clade. 
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CHAPTER 7 GENERAL DISCUSSION AND PERSPECTIVES 

SUMMARY 

This thesis project is part of ongoing research into improvement of diatom Metabarcoding 

tools with the goal of integrating them in the routine diatom biomonitoring survey for 

freshwater quality surveillance. 

It follows and completes the work initiated by Kelly et al. (2018) and Glover (2019) in the UK, 

and Zimmermann et al. (2015), Kermarrec (2012) and Vasselon (2018) in the rest of Europe. 

These different projects set the basis of the method across each methodological step: 

sampling, nucleic acid extraction, PCR, sequencing, but also bioinformatic processing and 

ecological index calculation.  

In particular, these studies highlighted the choice of the rbcL gene, among others, as a suitable 

barcode region and pushed forward the development of reference libraries based on this 

barcode region. Furthermore they investigated the suitability of the sequencing technologies 

available at the time : 454 Pyrosequencing (Kermarrec, 2012; Zimmermann et al., 2015), PGM 

Ion torrent (Vasselon, 2018) and MiSeq Illumina (Kelly et al., 2018; Vasselon, 2018). 

The aim of this thesis was to confirm and expand upon these proposed approaches and to 

optimize the most limiting points to make Metabarcoding a viable alternative to the LM 

traditional method. 

Firstly, I updated the bioinformatic pipelines with a particular focus on the latest denoising 

and polishing algorithms that drastically reduce the time and computational power 

requirements (Chapter 1 for Illumina pipeline and 3 for Illumina and ONT Pipeline). This 

moved from the current QIIME1-based bioinformatic pipeline to DADA2 (Illumina) and 

NGSpecies (ONT) based scripts, which simplifies the use of bioinformatic pipelines without 

compromising on the latest bioinformatic tools used.  

A section of the project deals with the benchmark of the reference libraries, especially on the 

current reference library from Kelly et al. (2018) and the diat.barcode European reference 

library (Chapter 4). The addition of non-diatom sequences improved the taxonomic 

assignment result in terms of reducing unassigned sequences and increasing the reliability of 
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the detection (Chapter 2 and 3). In this study, the Illumina MiSeq, which is the sequencing 

platform of choice of the last decade, was directly compared to the more recent lower cost 

and more portable MinION device from ONT in order to test this technology (Chapter 3). The 

rbcL barcodes reliability for diatom biomonitoring survey was also analysed by comparing 

different length of rbcL barcode sequences with the two different technologies: short barcode 

for Miseq and MinION and full length rbcL with MinION (Chapter 3). Moreover, evolution of 

the rbcL gene was studied to identify the main drivers of its evolution, and especially identify 

the different positive selection event to confirm that the rbcL gene is a rather conserved 

region as it is a requirement for a good barcode region (Chapter 6). 

This study has the interest to integrate comparisons and experimentations that were 

operated in a variety of environments, samples from the UK and from France (Chapter 1), 

Yorkshire rivers and mesocosm runnels and even in vitro mock communities. This enabled a 

better understanding of the limitation of Metabarcoding and LM bioindication. 

The following discussion aims to summarize the findings of this thesis and to integrate these 

results in the current context of diatom biomonitoring for water quality surveillance.  

OPTIMISATION OF THE METABARCODING METHOD 

SAMPLING 

The absence of natural stone in the mesocosm motivated the test of the tile-based sampling 

approach, adapted from Kelly et al. (1998). My experiments clearly show its efficiency in 

different environments, from rivers to mesocosms (Chapter 4), and with an interesting 

addition of standardization by using the same material and size. The communities identified 

from this method are similar to the ones originating from cobble-based sampling (Yorkshire 

river in Chapter 4). It appears to be an improved method for benthic biofilm sampling. 

Nevertheless, tile-based sampling can be more difficult to implement as it requires 

preliminary work to place out the tiles and then collect them. There is also a possibility of the 

tiles being lost, either as they become covered with mud, taken away by the stream or moved 

by passers-by. A large-scale experiment would clarify the ratio of collected to lost tiles and 

better quantify the feasibility of this method for river survey. For mesocosm and other 

artificial shallow water bodies it appears to be the most convenient method. 
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BARCODE / PCR  

The use of both rbcL short-barcode (Chapter 3) has been shown to be reliable and efficient 

for TDI calculation. The UK short-barcode (Kelly et al., 2018) has been successfully used with 

both Illumina and ONT technology with a noticeable suitability for taxonomic assignment for 

biomonitoring. The phylogenetic study of the rbcL gene (Chapter 6) highlights the link 

between the evolution of the rbcL gene and the particular structure and ecological 

preferences of diatom groups. While these evolution patterns have been highlighted, the 

overall gene region is conserved enough to be a suitable barcode and enable a robust 

identification of taxa and distinction at species and genus level. 

As the suitability interchangeability of diat.barcode primers and the current UK rbcL barcode 

primers has been proven for at least UK samples, this study confirms the possibility to use the 

diat.barcode reference library as standard because the generated EQR (TDI ecological classes) 

are significantly the same and the diat.barcode is a more curated and well reference database 

(see Chapter 3). Another main benefit would be the better flexibility in terms of sample 

location as the diat.barcode was built with diatom and microalgae from all over the world, 

enabling comparison of results from different continents.  

Although my experiment did not find any benefit to use the longer and full length rbcL 

barcode we can only conclude on the unsuitability of this particular set of primers for 

biomonitoring (Chapter 4). Nevertheless, the issues occurred clearly before the sequencing 

steps, and very likely during the PCR step, which lead to the low sequencing depth. Longer 

amplicons still have the potential to improve the taxonomic resolution but my experiment of 

the full rbcL barcode from Glover (2019) method suggests that an amplification efficiency is a 

must, in both specificity to the targeted group and quantity of DNA amplified. I conclude that 

the use of this full length rbcL barcode method is suitable for pure culture that needs to be 

referenced in a taxonomic library but not for Metabarcoding studies. There is a need for 

comparison of long rbcL barcodes for diatom survey, for example the 748 bp from Hamsher 

et al. (2011) that could be coupled with long read sequencing from ONT and has the potential 

to generate more accurate taxonomic assignments without using the MiSeq platform.  
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SEQUENCING PLATFORM ONT SEQUENCING 

This project is the first to investigate the potential of the MinION platform for diatom 

biomonitoring using the rbcL short (and potentially long) barcodes with a direct comparison 

with the Illumina technology (Chapter 4). The need for such an experiment was evident as 

attention on this new portable and lower cost sequencing device has recently risen 

(Krehenwinkel et al., 2019). This device and technology has the potential to create a shift in 

Metabarcoding studies by enabling a more accessible and affordable method for sequencing. 

MinION device price (~1000$) is much more affordable/accessible than MiSeq device 

(~30000$) which can enable more laboratories to access HTS and therefore to integrate 

Metabarcoding in their standardized survey method. 

The study demonstrated the usability of the MinION platform (Mock Community Chapter 5) 

and I removed the biases of the use of different primers that could be difficult to interpret. 

ONT technology offers a variety of platforms and the MinION experiment opens up the 

possibility of using other ONT platforms that run multiple flowcells simultaneously (five 

flowcells with the GridION and 48 with the PromethION; 

(https://nanoporetech.com/products) to upscale delivery, or even smaller flowcells (Flongle) 

for lower cost, smaller surveys that require less sequencing dept. My bioinformatic pipeline 

is usable for experiments of virtually any size and the low computational power requirement 

makes it manageable to any research group.  

BIOINFORMATIC PIPELINE 

The greatest improvement in the diatom Metabarcoding method is the new adapted 

bioinformatic pipelines for both MiSeq and MinION data, which generated fit for purpose 

results while being run on a traditional research laptop for less than a day (Chapters 3, 4, 5). 

This contrasts to the previous commonly used MiSeq bioinformatic pipeline (Kelly et al., 2018) 

which was based on QIIME1 that took several days to run on servers yet produced less 

suitable results (i.e. it produced results less similar to the LM method in both community 

structure and TDI values; Chapter 3). This confirms the necessity of an efficient and reliable 

bioinformatic pipeline for every Metabarcoding study because of the substantial amount of 

data these generate and the accuracy needed for reliable taxonomic assignments.  
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A high variability of river ecological conditions were present in the river and mesocosm 

sampling locations in this project (Chapter 4), confirming the robustness of these newly 

adapted bioinformatic pipelines (based on DADA2 for MiSeq and NGSpecies for ONT) for 

routine water quality surveys. 

Read Denoiser / Polisher  

The optimisation generated by denoiser and polisher deal successfully with the problem 

caused by the sizeable number of reads generated by each sequencing run, as well as the low, 

but present, sequencing errors (deletions, insertions and substitutions) that are difficult to 

distinguish from real genetic variation.  

Increasingly, bioinformatic pipelines are moving from traditional OTU clustering to 

denoising/polisher algorithms (e.g. in Barnes et al., 2020; Liu et al., 2023) and the experiments 

done here further confirmed the adequacy of these new tools to, firstly, generate reads 

useable for diatom biomonitoring and secondly, reduce the time and computational power 

required to process the data of a whole sequencing run (Chapter 3). 

Chimera filtering 

The use of DADA2 coupled with an efficient chimera removal step successfully processed the 

MiSeq sequencing outputs from all the samples, regardless of the river and mesocosm locality 

and the rbcL barcode used (barcode from Kelly et. al 2018 or diat.barcode; Chapter 3). 

While chimeras represent only a minor proportion of the reads (<2%) and, therefore, cannot 

affect the TDI calculation in a major way, the community evenness index was clearly more 

similar to the LM data with the use of a pipeline that integrates a chimeral removal step. 

Therefore, the presence of chimeras artificially inflates the calculated diversity by generating 

sequences that have no biological origin and are artifacts from PCR barcode amplification 

(Chapter 3). The integration of chimera filtering in the routine bioinformatic pipeline has the 

benefit of producing a better estimation of the community structure without adding 

significant complexity to the bioinformatic process.  

Naive Bayesian classifier  

This study is one of the first to integrate Naive Bayesian taxonomic assignment (Wang et al., 

2007) to a ONT bioinformatic pipeline. The integration of the Naive Bayesian classifier in both 

ONT and Illumina bioinformatic pipelines was successful and increased the taxonomic 
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resolution as well as having the advantage of locating the unassigned reads to higher 

taxonomic ranks (Chapter 3 & 5), which is useful to discard obvious contaminants (e.g. both 

potatoes and banana sequences were commonly found in samples; Chapters 3 & 4 ) or to 

integrate them in the index calculator if a genus-level ecological preference is present (as is 

the case for some Diatom genera; diat.barcode Rimet 2019).  

A drawback of the Naive Bayesian classifier is the need to have the taxonomic hierarchy 

associated with each read in the reference library (Callahan et al., 2016; Wang et al., 2007). 

This was done by adapting the Kelly 2018 reference library, which was time consuming but 

manageable (Chapter 4). 

The integration of Naive Bayesian taxonomic assignment instead of the traditional BLAST 

method in the majority of the new Metabarcoding bioinformatic pipeline seems a logical 

evolution due to the obvious advantages. Notwithstanding the importance of the taxonomic 

assignment method, it relies on the presence of a reliable reference library to reveal its 

potential. Moreover, the bioinformatic tools are not yet perfectly adapted to Naive Bayesian 

classifiers, hence the use of Mothur and the galaxy server to handle the multithread Wang 

assignment step in my ONT bioinformatic pipeline. 

Taxonomy Reference library 

During this study I corrected the reference library from Kelly et al. (2018), which had a 14 bp 

deletion across all reference sequences, affecting results that used this library. Other 

stakeholders (e.g. EA) were informed as providing them with the corrected library. This 14bp 

represented more than 4% of the total barcode region, creating a significant issue for the 

taxonomic assignment, especially with the use of BLAST with 95% similarity threshold 

combined with OUT clustering at 97% similarity threshold.  

This project is the first to compare the corrected reference library with the diat.barcode 

reference library (Rimet 2019f) and to show their interchangeability (Chapter 3 & 4). 

Moreover, the addition of non-diatom microalgae to the reference library has been proven 

to improve the taxonomic resolution (Chapter 4). This shows it is crucial to have access to a 

taxonomic reference made of diverse taxonomic groups with an important number of 

sequences and taxa, especially in the context of the increasing use of Naive Bayesian 

classifiers that rely on this type of data more than the BLAST assignment.  
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INTERCHANGEABILITY OF LM AND METABARCODING 
This study enabled a large-scale comparison of the Metabarcoding latest updates to the 

traditional LM by executing the two approaches simultaneously on the same samples. This 

was done particularly in Chapter 1 and 2.  

RELATIVE ABUNDANCE 

There is a clear correlation between the number of rbcL copies, which are directly linked to 

the number of chloroplasts per cell, and the read abundance in Metabarcoding generated 

communities (Chapter 5). The mock community experiments (Chapter 5) show that centric 

diatoms are over represented, as is expected from their natural high number of chloroplasts 

and I only corrected the number of each diatom added in each community with the biovolume 

average of each species (close to the biovolume-based correction factor used in Vasselon et 

al., 2018). A correction factor based on the average number of chloroplasts of each organism 

seems like a better choice and would be an interesting tool for the future of diatom 

biomonitoring using Metabarcoding, as ecological indices (e.g. TDI, IPS and IBD) rely on 

relative abundance of each taxon. In the Chapter 5, uncommon taxa were more abundant 

when the LM method was used and confirm the possibility of using LM to deal with the rare 

ambiguous samples that contains uncommon taxa. 

The mock communities experiment (Chapter 5) was the first to use non-diatoms in the 

assemblage, and to use living organisms instead of DNA extracts. This is closer to natural 

conditions, as it integrates the different accessibility of DNA of each organism as well as the 

interaction of the different groups. The mock community approach permitted to create an 

unprecedented experiment with direct comparison of the community that I composed and 

the associated HTS community. I did not compare two measurements (LM counts vs HTS 

reads) or index calculation, instead focussed on the Metabarcoding method independently 

from the LM method and TDI calculation biases.  

UPDATE OF TROPHIC DIATOM INDEX : NGS TDI5  

The new version of TDI adapted for NGS data (TDI5) was tested in a limited number of the 

experiments (see Chapter 4). From the results of the small-scale experiment, the new TDI5 

version performed worse compared to the previous TDI4 version. However, during the update 
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of the TDI5 (Kelly et al., 2020), the authors identified that there was little improvement in 

terms of LM correlation, but that the recalibrated TDI5 version gave a better linear fit 

than  the original TDI4  with Metabarcoding data where the relationship was clearly curved. 

The larger data used in Kelly et al. 2020 to analyse the recalibrated TDI5 provides higher 

confidence in their conclusions rather than my more limited experiments, but further 

assessment of this may be necessary. 

COMMUNITY STRUCTURE ANALYSIS : MANTEL TEST, SPECIES EVENNESS, NMDS 

Diatom Metabarcoding methods use thousands of DNA sequence reads instead of hundreds 

of visual counts from the LM method,  which tends to overestimate the diversity of the 

surveyed site compared to the LM method (Bailet et al., 2020). Aspects of this may be due to 

artifacts introduced by the sequencing methods. The data in Chapter 3 proved that adding 

the chimera filtering step to the bioinformatic pipeline reduces some of the overestimation 

of diversity. In particular, the measured species evenness became similar between LM and 

Metabarcoding communities (Chapter 3). Similarly, the denoiser/polisher algorithms, by 

correcting each read to ASV, also decrease the number of singletons ASVs and the 

overestimation of the diversity.  

Similarities of structure between LM and Metabarcoding community have been highlighted 

during this study with the use of Mantel tests (Chapters 3 and 4). Moreover, the NMDS 

analysis of the communities from the Yorkshire rivers and the mesocosm sites (Chapter 4) 

drew the same conclusion in terms of clustering regardless of the method used.  

This thesis clearly shows an interchangeability between LM and Metabarcoding for 

community structure analysis, and this has been possible thanks to the new bioinformatic 

tools.  

CONVENIENCE OF USE  

Light Microscopy identification is specialist, time-consuming and relies on the analysis of one 

sample at a time, Metabarcoding enables the simultaneous analysis of large numbers of 

samples, limited by the number of indexing tags in the sequencing step and by the number of 

reads generated per sequencing run. The time requirement is also reduced (Chapter 3) and 

does not need extended diatom identification training. As such it confirms that the 
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Metabarcoding method, when optimized, is more accessible and convenient to environment 

managers than diatom LM identification. Nevertheless, the price per sample is only lower 

with Metabarcoding when at least tens of samples are analysed together. However,  the price 

of both sequencing run reagent and instrument has decreased year after year while the 

number of reads per run increased (Stefan et al., 2022; Stevens et al., 2023). At the same time 

LM cost is more constant as the method and the instrument are not being improved 

significantly.  

FUTURE PERSPECTIVES 
There is an active community researching the implementation and optimisation of 

Metabarcoding in ecological surveys. New ideas are emerging and the optimisation shown in 

my thesis project can decrease the technical limitations and enable the experimentation of 

this new idea for more complete, accurate and manageable water quality assessments. Below 

I discuss further options to improve or better utilise phytoplankton Metabarcoding data.  

WHOLE PHYTOPLANKTON COMMUNITY BIOMONITORING 

Metabarcoding is free from some of limitations of LM, and in particular has the potential to 

target any organism in the community as long as the DNA is available and a reference barcode 

sequence is available for it, whereas LM is limited to observed living organism or residue that 

persists (such as frustule or Chrysophycean cysts). Hence the new trend to  use the whole 

phytoplankton community with Metabarcoding in order to create more complete ecological 

assessments that are not limited to diatoms (Hering et al., 2018; Huo et al., 2020). This creates 

new challenges that were investigated primarily in the mock communities experiment 

(Chapter 3) but also in the reference library update (Chapter 2) by quantifying the part of the 

non-diatom phytoplankton targeted by the rbcL short-barcode.  

Moving away from diatom-only surveys needs the integration of non-diatom phytoplankton 

taxa ecological preferences in the Trophic Indices based on the whole phytoplankton 

community. This may be time consuming but numerous of these common organisms have 

been studied for centuries and their ecological preferences are well documented (CEMAGREF, 

1982; Descy and Coste, 1991; Kelly and Whitton, 1995). 
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RNA METABARCODING 

While eDNA Metabarcoding is now widely used for biomonitoring and other species detection 

surveys (Rishan et al., 2023; Schenekar, 2023), studies into eRNA Metabarcoding have started 

to get attention (e.g. Veilleux et al., 2021). The use of RNA is thought to be limited, mainly 

due to its higher degradation in the environment linked to its single‐stranded structure (Kagzi 

et al., 2022). However, targeting eRNA rather than eDNA could avoid some pitfalls, for 

example by avoiding upstream contamination as it was hypothesized a eRNA higher 

degradation rate (Pochon et al., 2017; Yates et al., 2021) may prevent nucleic material from 

dispersing too far from its place of synthesis. 

River algae and arthropods eRNA Metabarcoding has been tested against eDNA 

Metabarcoding for ecological surveys and water in Miyata et al., 2022, which targets river 

algae and arthropods. This shows high potential with a very low false positive ratio but also 

presents the limitations such as the low sensitivity. There is room for improvement but this 

study is a very robust proof of concept. Diatom Metabarcoding can directly benefit from this 

approach with the updates in sampling, PCR barcode, Sequencing platform and bioinformatic 

that I benchmarked.  

As RNA is a marker of the expression of a gene, when the barcode is the rbcL gene it can be 

an estimator of the primary production of each organism. As such it could enable us to 

measure the part each organism plays in  the overall primary production of an ecosystem. The 

use of RNA may also exclude dead organisms and the dormant cells that are present but not 

active in the ecosystem. If eDNA Metabarcoding is an indicator of the presence of an 

organism, then eRNA can be an indicator of which organism is active and how much is active 

(Pochon et al., 2017). It could hypothetically reveal e.g. that major taxa are not the most 

primary producers. 

TAXONOMY-FREE APPROACH 

A taxonomy-free approach aims to classify OTUs/ASVs in environmental samples without 

relying on predefined taxonomic databases. It presents an interesting alternative that does 

not require the extensive work of investigating the ecological optimum of each phytoplankton 

taxa (Descy and Coste, 1990; Kelly, 1998), but instead could use machine learning to train on 

sequencing output from previous environmental and sequencing records. This would ensure 
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the continuity of the work of Feio et al., 2020 which is a diatom only taxonomy free approach, 

and we can imagine to extend this approach to all the phytoplankton community. The use of 

a less diatom-specific PCR primer for the rbcL barcode such as the UK barcode (Kelly et al., 

2018) instead of the diat.barcode primers (Rimet et al., 2019) would be interesting and can 

use the previous sequencing run from the UK river water quality survey. The limitation of this 

technique is the difficulty to correct, identify and discard artifacts or contaminant, from other 

samples but also from any other possible sources, because of the lack of identification step.  

MACHINE LEARNING  

The current ecological indices such as the TDI have been designed to only focus on nutrient 

preferences (Nitrogen and Phosphorus) because of the extensive preliminary work required 

to analyse each taxon and understand its nutrient concentration preferences. Therefore, it 

would be difficult to integrate several pollution and environmental characteristics inside an 

easy to interpret metric such as the TDI and the IPS. Nevertheless, new machine learning 

technology coupled with metadata on water chemistry and microalgae communities from 

numerous sites could be used to create new and more informative indices.  

Machine learning could also be used to improve the LM method by creating more advanced 

automatic identification tools coupled with flow cytometry, already studied with algae and 

the use of the Artificial neural network model in Balfoort et al., 1992 . These new machine 

learning tools and the technical progress in computational power have the potential to follow 

this experimentation and conceive a bioinformatic tool for biomonitoring. This would form an 

interesting combination of tools with the Metabarcoding. 
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GENERAL CONCLUSION 

This PhD thesis provides important optimisation of the Diatom biomonitoring survey with the 

use of Metabarcoding. Almost every aspect of the method, from sampling to ecological 

assessment, has been tested and most of the time improved. The project outputs can directly 

be used and enable better results and facilitate the process, making the Diatom 

Metabarcoding more accessible. Moreover, the adaptability and versatility of the method, 

using different primers for the rbcL barcode and sequencing platforms, open the possibilities 

of moving away from a diatom-only biomonitoring method and to integrate other microalgal 

taxa into the ecological assessment to provide a better understanding of the variables 

conditions of the water bodies.  

The use of Metabarcoding is unfortunately often associated with the end of the 

morphological identification approach, which is not the case. Metabarcoding, due to its 

capability for rapid assessment of several samples can facilitate the routine biomonitoring 

process, but the LM approach is an interesting approach to handle the rare, unusual sites, and 

should be used jointly to Metabarcoding to have the best of both worlds. It seems logical to 

imagine a water quality assessment team composed of molecular ecologists, 

bioinformaticians and diatom identification experts.  

In conclusion, this PhD thesis project proved the adequacy of using Metabarcoding for diatom 

biomonitoring routine survey. The optimisation of the Method was able to confirm the 

complementarity of this method with the traditional Light Microscopy approach.  
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 APPENDIX 

CHAPTER 3 DADA2 R SCRIPT 
 

##### Packages activation ##### 
library("DADA2") 
library("stringr") 
##### Setting of the fastq path directory ##### 
path<-"FASTQ_DIRECTORY" 
 
list.files(path) 
 
 
# Forward and reverse fastq filenames have format: SAMPLENAME_R1_001.fastq.gz and 
SAMPLENAME_R2_001.fastq.gz 
 
 
fnFs <- sort(list.files(path, pattern="_R1_001.fastq.gz", full.names = TRUE)) 
fnRs <- sort(list.files(path, pattern="_R2_001.fastq.gz", full.names = TRUE)) 
 
##Alternative formats 
 
fnFs <- sort(list.files(path, pattern="_L001_R1.fastq.gz", full.names = TRUE)) 
fnRs <- sort(list.files(path, pattern="_L001_R2.fastq.gz", full.names = TRUE)) 
 
fnFs <- sort(list.files(path, pattern="_L001_R1_001.fastq.gz", full.names = TRUE)) 
fnRs <- sort(list.files(path, pattern="_L001_R2_001.fastq.gz", full.names = TRUE)) 
 
fnFs <- sort(list.files(path, pattern=".R1.fastq.gz", full.names = TRUE)) 
fnRs <- sort(list.files(path, pattern=".R2.fastq.gz", full.names = TRUE)) 
 
 
# Extract sample names, assuming filenames have format: SAMPLENAME_XXX.fastq 
sample.names <- sapply(strsplit(basename(fnFs), "_"), `[`, 1) 
 
 
##### Plot quality ##### 
 
plotQualityProfile(fnRs[1:8]) 
plotQualityProfile(fnFs[1:8]) 
 
#this plot may be useful to check the quality of your reads, the quality of the reverse read usually decline sooner 
than the forward quality   
 
# Place filtered files in filtered/ subdirectory 
filtFs <- file.path(path, "filtered", paste0(sample.names, "_F_filt.fastq.gz")) 
filtRs <- file.path(path, "filtered", paste0(sample.names, "_R_filt.fastq.gz")) 
 
##### Trimming & Filtering ##### 
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(240,200),trimLeft =c(21,27),   ##c(27,22) for 
European(diat.barcode) Primers and c(21,27) for UK primers 
                     maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE, #These argument values should work for most 
MiSeq Runs but can be changed , for more info check the DADA2 website 
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                     compress=TRUE, multithread=16, verbose=TRUE) # On Windows set multithread=FALSE 
 
#ratio of filtered seq 
out<-as.data.frame(out) 
 
out$ratio<-(out[,2]/out[,1])*100 
 
head(out) 
mean(out$ratio) 
 
##### Errors rate learning ##### 
 
errF <- learnErrors(filtFs, multithread= T, verbose=TRUE, randomize = TRUE) 
 
errR <- learnErrors(filtRs, multithread=F,  verbose=TRUE, randomize = TRUE) 
 
plotErrors(errF, nominalQ=TRUE) 
 
plotErrors(errR, nominalQ=TRUE) 
 
##### Dereplication ##### 
derepFs <- derepFastq(filtFs, verbose=TRUE) 
derepRs <- derepFastq(filtRs, verbose=TRUE) 
 
# Name the derep-class objects by the sample names 
names(derepFs) <- sample.names 
names(derepRs) <- sample.names 
 
##### Denoising using the DADA2 algorythm #####  
dadaFs <- dada(derepFs, err=errF, multithread=F,verbose=TRUE) 
dadaRs <- dada(derepRs, err=errR, multithread=FALSE,verbose = TRUE) 
 
dadaFs[[1]] 
 
##### Merging paired reads  #### 
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=TRUE) 
# Inspect the merger data.frame from the first sample 
head(mergers[[1]]) 
 
 
seqtab <- makeSequenceTable(mergers) # ASV table  
dim(seqtab) 
 
# Inspect distribution of sequence lengths 
table(nchar(getSequences(seqtab))) 
 
##### Chimera removal ##### 
 
seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=F, verbose=TRUE) # If not 
using windows Multithreading could be used but might crash 
 
dim(seqtab.nochim) 
 
sum(seqtab.nochim)/sum(seqtab) 
 
write.csv(seqtab.nochim,file=str_glue("ASV_table_nochime_{basename(path)}.csv"))# export ASV table 
cleaned of chimera 
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#write.csv(seqtab.nochim,file="ASV_table_nochim_INRA_Run2.csv")# export ASV table cleaned of chimera 
#write.csv(seqtab.nochim,file="ASV_table_nochim_B2B6R_check.csv") # export ASV table cleaned of chimera 
#write.csv(seqtab.nochim,file="ASV_table_nochim_INRA_both_runs.csv") # export ASV table cleaned of 
chimera 
#write.csv(seqtab.nochim,file="ASV_table_nochime_RiverMeso.csv") 
 
###### Tracking file ##### 
 
getN <- function(x) sum(getUniques(x)) 
track <- cbind(out[1:2], sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), 
rowSums(seqtab.nochim)) 
# If processing a single sample, remove the sapply calls: e.g., replace sapply(dadaFs, getN) with getN(dadaFs) 
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim") 
rownames(track) <- sample.names 
head(track) 
write.csv2(track,file=str_glue("TrackFile_{basename(path)}.csv")) 
 
##### Taxonomic assignment ##### 
 
## There we use 3 different classifiers : One created with the UK GoldStandard (corrected), one  from 
diat.barcode (rsyst) and one custom one based on diat.barcode with the addition of non-diatom taxa. 
 
#taxa_GS_corrected <- assignTaxonomy(seqtab.nochim, "GoldStandard_UK_diatoms_rbcL_DADA2.fasta",  
taxLevels = c("Class","Genus", "Species","ID","clone"),outputBootstraps = FALSE, verbose = TRUE, 
multithread=FALSE, minBoot=60) 
#write.csv(taxa_GS_corrected ,file=str_glue("taxa_{basename(path)}_GS_corrected_2019.csv")) 
 
 
 
taxa_diatbarcode <- assignTaxonomy(seqtab.nochim, 
"Rsyst__1401seqs_312bp_taxonomy_CLASSIFIER_DADA2.fasta", taxLevels = c("Domain", 
"Kingdom","infraKingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species","Clone"), 
multithread=F,outputBootstraps = FALSE, verbose = TRUE, minBoot=60) 
write.csv(taxa_diatbarcode ,file=str_glue("taxa_{basename(path)}_diatbarcode.csv")) 
 
 
 
taxa_custom <- 
assignTaxonomy(seqtab.nochim,"Diat.barcode_CLASSIFIER_DADA2_08_03_2022_version.fasta", taxLevels = 
c("Domain", "Kingdom","infraKingdom", "Phylum", "Class", "Order", "Family", "Genus", 
"Species","Clone"),outputBootstraps = FALSE, verbose = TRUE, multithread=F, minBoot=60) 
write.csv(taxa_custom2021 ,file=str_glue("taxa_{basename(path)}_custom.csv")) 
 
 
taxa.print <- taxa_XXXXX # Removing sequence rownames for display only, change taxa_XXXX by the name of 
the taxa file you want to display. 
 
rownames(taxa.print) <- NULL 
head(taxa.print) 
 
write.csv(taxa.print,file="taxa_{basename(path)}.csv") 
 
 
##alternatively : Without chimera removing, facultative step in order to see the effect of chimera removal on 
the assignment   
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#taxa1 <- assignTaxonomy(seqtab, "GoldStandard_UK_diatoms_rbcL_DADA2.fasta", taxLevels = c("Domain", 
"Kingdom","infraKingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species","Clone"), multithread=16) 
 
#taxa.print1 <- taxa1 # Removing sequence rownames for display only 
#rownames(taxa.print1) <- NULL 
#head(taxa.print1) 
 
##### Graphical representations using Phyloseq ##### 
 
library(phyloseq); packageVersion("phyloseq") 
library(ggplot2); packageVersion("ggplot2") 
 
 
##### Phyloseq object creation ##### 
 
#sample file made of sample names, facultative for most phyloseq object but needed for Krona plot later 
s_data<-data.frame(row.names=sample.names,SampleID=sample.names,Pool="1")  
 
##choose one of them 
taxtable<-taxa_GS_corrected_dash 
taxtable<-taxa_diatbarcode 
taxtable<-taxa_custom 
basename(taxa_custom) 
 
ps <- phyloseq(sample_data(s_data),otu_table(seqtab.nochim, 
taxa_are_rows=FALSE),tax_table(taxa_custom2022)) #change taxa with the taxonomic assignment you prefer 
 
ps 
 
#rarefying step (facultative) 
ps.rare<-rarefy_even_depth(ps, sample.size = 6000) 
write.csv(tax_table(ps.rare),str_glue("{basename(path)}fragi_rare_taxa.csv")) 
 
# Extract abundance matrix from the phyloseq object 
OTU1 = as(otu_table(ps.rare), "matrix") 
# transpose if necessary 
if(taxa_are_rows(ps.rare)){OTU1 <- t(OTU1)} 
# Coerce to data.frame 
OTUdf = as.data.frame(OTU1) 
 
write.csv(OTU1,file=str_glue("{basename(path)}OTU1.csv")) 
write.csv(OTUdf,file=str_glue("{basename(path)}OTUdf.csv")) 
 
 
 
# Transform data to proportions as appropriate for Bray-Curtis distances 
ps.prop <- transform_sample_counts(ps, function(otu) otu/sum(otu)) 
ord.nmds.bray <- ordinate(ps.prop, method="NMDS", distance="bray") 
plot_ordination(ps.prop, ord.nmds.bray, title="Bray NMDS") 
 
top50 <- names(sort(taxa_sums(ps), decreasing=TRUE))[1:50] 
 
allnames <- names(sort(taxa_sums(ps), decreasing=TRUE)) 
sort(taxa_sums(ps)) 
 
ps.top50 <- transform_sample_counts(ps, function(OTU) OTU/sum(OTU)) 
ps.top50 <- prune_taxa(top50, ps.top50) 
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ps.all <- transform_sample_counts(ps, function(OTU) OTU/sum(OTU)) 
ps.all <- prune_taxa(allnames, ps.all) 
 
 
 
## Assigned taxa : greyscale, Unassigned taxa : red  
plot_bar(ps.all,fill="Species")+scale_fill_grey()+scale_color_grey()+  
  geom_bar(aes(color= Species,fill=Species), stat="identity", position="stack") + 
  theme(legend.position ="bottom")## Species 
 
 
ggsave(str_glue("{basename(path)}_Species_custom2022.jpeg"),width=60,height=60,units="cm") #export jpeg 
ggsave(str_glue("{basename(path)}_Species_custom2022.pdf"),width=60,height=60,units="cm") #export pdf 
 
 
 
plot_bar(ps.all,fill="Genus")+scale_fill_grey()+scale_color_grey()+  
  geom_bar(aes(color= Genus,fill=Genus), stat="identity", position="stack") + 
  theme(legend.position ="bottom")+ 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))## Genus 
 
 
ggsave(str_glue("{basename(path)}_Genus_custom2022.jpeg"),width=60,height=60,units="cm") #export jpeg 
ggsave(str_glue("{basename(path)}_Genus_custom2022.pdf"),width=60,height=60,units="cm") #export pdf 
 
 
plot_bar(ps.all,fill="Class")+scale_fill_grey()+scale_color_grey()+  
  geom_bar(aes(color= Class,fill=Class), stat="identity", position="stack") + 
  theme(legend.position ="bottom")## Class 
 
ggsave(str_glue("{basename(path)}_Genus_custom2022.jpeg"),width=60,height=60,units="cm") #export jpeg 
ggsave(str_glue("{basename(path)}_Genus_custom2022.pdf"),width=60,height=60,units="cm") #export pdf 
 
 
##alternative palette 
plot_bar(ps.all,fill = "Genus")+scale_fill_manual(values=getPalette(XXXXXXXX)) ## change the get_palette() 
value to the number of genera in your data 
## you can change "Genus" for "Species" or "Phylum", or any other taxonomic rank present in your taxa file. 
 
plot_bar(ps.top50,fill = "Genus")+scale_fill_manual(values=getPalette(40)) 
 
 
#####Species richness 
 
phylorichness<-plot_richness(ps, measures=c("Shannon", "Simpson"),shape = "bar") 
write.csv(phylorichness$data,str_glue("{basename(path)}_richness.jpeg")) 
 
 
###### KRONA graphs ##### 
 
library("psadd") 
 
plot_krona(ps.all,output=str_glue("krona_{basename(path)}_taxa_custom2022_pool"),variable="Pool") 
 
 
plot_krona(ps.all,output=str_glue("krona_{basename(path)}_taxacustom2022_all"),variable="SampleID") 
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plot_bar(ps.all,fill="Genus")+scale_fill_manual(values = palette_diatom)+scale_color_manual(values = 
palette_diatom)+  
  geom_bar(aes(color= Genus,fill=Genus), stat="identity", position="stack") + 
  theme(legend.position ="bottom")## Genus 
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QIIME2 PIPELINE USING DADA2 : DIATOM-IZER 
 
######## Sequences must be stored in a file called "A" inside the working directory; the metadata is called 
"meta-diatoms.tsv" It could ##### 
######## just made of a column with the name of each sequence.##### 
 
QIIME2 VERSION 2018.8 
source activate QIIME2-2018.8 
 
### TRAIN THE CLASSIFIER 
QIIME tools import \ 
  --type 'FeatureData[Sequence]' \ 
  --input-path Rsyst_230218_align_1401seqs_312bp.fasta \ 
  --output-path ref-seqs.qza 
 
QIIME tools import \ 
  --type 'FeatureData[Taxonomy]' \ 
  --input-format HeaderlessTSVTaxonomyFormat \ 
  --input-path Rsyst_230218_align_1401seqs_312bp_vf.txt \ 
  --output-path ref-taxonomy.qza 
 
QIIME feature-classifier fit-classifier-naive-bayes \ 
  --i-reference-reads ref-seqs.qza \ 
  --i-reference-taxonomy ref-taxonomy.qza \ 
  --o-classifier diatoms_classifier_classic.qza 
 
##Custom 
 
QIIME tools import \ 
  --type 'FeatureData[Sequence]' \ 
  --input-path custom_QIIME2.fasta \ 
  --output-path ref-seqs-custom.qza 
 
QIIME tools import \ 
  --type 'FeatureData[Taxonomy]' \ 
  --input-format HeaderlessTSVTaxonomyFormat \ 
  --input-path custom_june.txt \ 
  --output-path ref-taxonomy-custom.qza 
 
QIIME feature-classifier fit-classifier-naive-bayes \ 
  --i-reference-reads ref-seqs-custom.qza \ 
  --i-reference-taxonomy ref-taxonomy-custom.qza \ 
  --o-classifier diatoms-classifier-custom.qza 
 
##Gold Standard 
 
QIIME tools import \ 
  --type 'FeatureData[Sequence]' \ 
  --input-path GOLD_standard_UK_mothur.fasta \ 
  --output-path ref-seqs-goldstandard.qza 
 
QIIME tools import \ 
  --type 'FeatureData[Taxonomy]' \ 
  --input-format HeaderlessTSVTaxonomyFormat \ 
  --input-path GOLD_standard_UK_mothur.txt \ 
  --output-path ref-taxonomy-goldstandard.qza 
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QIIME feature-classifier fit-classifier-naive-bayes \ 
  --i-reference-reads ref-seqs-goldstandard.qza \ 
  --i-reference-taxonomy ref-taxonomy-goldstandard.qza \ 
  --o-classifier diatoms-classifier-goldstandard.qza  
 
##Hybrid 
 
QIIME tools import \ 
  --type 'FeatureData[Sequence]' \ 
  --input-path custom_QIIME2.fasta \ 
  --output-path ref-seqs-custom.qza 
 
QIIME tools import \ 
  --type 'FeatureData[Taxonomy]' \ 
  --input-format HeaderlessTSVTaxonomyFormat \ 
  --input-path custom_june.txt \ 
  --output-path ref-taxonomy-custom.qza 
 
QIIME feature-classifier classify-hybrid-vsearch-sklearn\ 
  --i-reference-reads ref-seqs-custom.qza \ 
  --i-reference-taxonomy ref-taxonomy-custom.qza \ 
  --i-classifier diatoms-classifier-custom.qza \ 
  --o-classification diatoms-classifier-hybrid.qza 
 
################  IMPORT FROM ILLUMINA ####################  
 
QIIME tools import \ 
  --type 'SampleData[PairedEndSequencesWithQuality]' \ 
  --input-path both_run \ 
  --input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
  --output-path demux.qza 
 
QIIME demux summarize \ 
  --i-data demux.qza \ 
  --o-visualization demux.qzv 
 
#################### DENOISING DADA2 WITH TRIMMING OF THE RSYST/DIAT.BARCODE PRIMERS 
#################### 
 
QIIME DADA2 denoise-paired \ 
 --i-demultiplexed-seqs demux.qza \ 
 --p-trim-left-f 21 \ 
 --p-trim-left-r 27 \ 
 --p-trunc-len-f 240 \ 
 --p-trunc-len-r 200 \ 
 --p-chimera-method consensus \ 
 --p-max-ee 2 \ 
 --p-trunc-q 2 \ 
 --o-representative-sequences rep-seqs-DADA2.qza \ 
 --o-table table-DADA2.qza \ 
 --o-denoising-stats stats-DADA2.qza \ 
 --p-n-threads 15 \ 
 --verbose 
  
# you can adapt the settings with your primers, for example  --p-trim-left-f 27 -p-trim-left-r 22 \ if you are using 
the diat.barcode primer instead of the UK set of primers 
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QIIME metadata tabulate \ 
  --m-input-file stats-DADA2.qza \ 
  --o-visualization stats-DADA2.qzv 
 
 
QIIME feature-table summarize \ 
  --i-table table-DADA2.qza \ 
  --o-visualization table-DADA2.qzv \ 
  --m-sample-metadata-file metadata_INRA.tsv 
 
 
QIIME feature-table tabulate-seqs \ 
  --i-data rep-seqs-DADA2.qza \ 
  --o-visualization rep-seqs-DADA2.qzv 
 
 
###############Chimera################ 
 
QIIME vsearch uchime-denovo \ 
 --i-table table-DADA2.qza \ 
 --i-sequences rep-seqs-DADA2.qza \ 
 --output-dir uchime-dn-out 
 
QIIME metadata tabulate \ 
  --m-input-file uchime-dn-out/stats.qza \ 
  --o-visualization uchime-dn-out/stats.qzv 
 
QIIME feature-table filter-features \ 
  --i-table table-DADA2.qza \ 
  --m-metadata-file uchime-dn-out/nonchimeras.qza \ 
  --o-filtered-table uchime-dn-out/table-nonchimeric-wo-borderline.qza 
QIIME feature-table filter-seqs \ 
  --i-data rep-seqs-DADA2.qza \ 
  --m-metadata-file uchime-dn-out/nonchimeras.qza \ 
  --o-filtered-data uchime-dn-out/rep-seqs-nonchimeric-wo-borderline.qza 
QIIME feature-table summarize \ 
  --i-table uchime-dn-out/table-nonchimeric-wo-borderline.qza \ 
  --o-visualization uchime-dn-out/table-nonchimeric-wo-borderline.qzv 
 
QIIME feature-table filter-features \ 
  --i-table table-DADA2.qza \ 
  --m-metadata-file uchime-dn-out/chimeras.qza \ 
  --p-exclude-ids \ 
  --o-filtered-table uchime-dn-out/table-nonchimeric-w-borderline.qza 
QIIME feature-table filter-seqs \ 
  --i-data rep-seqs-DADA2.qza \ 
  --m-metadata-file uchime-dn-out/chimeras.qza \ 
  --p-exclude-ids \ 
  --o-filtered-data uchime-dn-out/rep-seqs-nonchimeric-w-borderline.qza 
QIIME feature-table summarize \ 
  --i-table uchime-dn-out/table-nonchimeric-w-borderline.qza \ 
  --o-visualization uchime-dn-out/table-nonchimeric-w-borderline.qzv 
 
####### TAXONOMIC ASSIGNMENT ######### 
 
#without the removal of the chimera 
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QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms-classifier-custom.qza \ 
  --i-reads rep-seqs-DADA2.qza \ 
  --o-classification taxonomy-custom.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-custom.qza \ 
  --o-visualization taxonomy-custom.qzv 
 
QIIME taxa barplot \ 
  --i-table table-DADA2.qza \ 
  --i-taxonomy taxonomy-custom.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-custom.qzv 
 
#Chimera with borderlines# 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms-classifier-custom.qza \ 
  --i-reads uchime-dn-out/rep-seqs-nonchimeric-w-borderline.qza \ 
  --o-classification taxonomy-nochimera-WB-custom.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-nochimera-WB-custom.qza \ 
  --o-visualization taxonomy-nochimera-WB-custom.qza 
 
QIIME taxa barplot \ 
  --i-table uchime-dn-out/table-nonchimeric-w-borderline.qza \ 
  --i-taxonomy taxonomy-nochimera-WB-custom.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-nochimera-WB-custom.qzv 
 
#Chimera without borderline# 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms-classifier-custom.qza \ 
  --i-reads uchime-dn-out/rep-seqs-nonchimeric-wo-borderline.qza \ 
  --o-classification taxonomy-nochimera-WoB-custom.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-nochimera-WoB-custom.qza \ 
  --o-visualization taxonomy-nochimera-WoB-custom.qza 
 
QIIME taxa barplot \ 
  --i-table uchime-dn-out/table-nonchimeric-wo-borderline.qza \ 
  --i-taxonomy taxonomy-nochimera-WoB-custom.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-nochimera-WoB-custom.qzv 
 
##GOLD_standard (Kelly  et al. 2018) 
 
#Chimera with borderlines# 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms_classifier_GS_aligned.qza \ 
  --i-reads uchime-dn-out/rep-seqs-nonchimeric-w-borderline.qza \ 
  --o-classification taxonomy-nochimera-WB-GS-aligned.qza 
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QIIME metadata tabulate \ 
  --m-input-file taxonomy-nochimera-WB-GS-aligned.qza \ 
  --o-visualization taxonomy-nochimera-WB-GS-aligned.qza 
 
QIIME taxa barplot \ 
  --i-table uchime-dn-out/table-nonchimeric-w-borderline.qza \ 
  --i-taxonomy taxonomy-nochimera-WB-GS-aligned.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-nochimera-WB-GS-aligned.qzv 
 
#Chimera without borderline# 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms_classifier_GS_aligned.qza \ 
  --i-reads uchime-dn-out/rep-seqs-nonchimeric-wo-borderline.qza \ 
  --o-classification taxonomy-nochimera-WoB-GS-aligned.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-nochimera-WoB-GS-aligned.qza \ 
  --o-visualization taxonomy-nochimera-WoB-GS-aligned.qza 
 
QIIME taxa barplot \ 
  --i-table uchime-dn-out/table-nonchimeric-wo-borderline.qza \ 
  --i-taxonomy taxonomy-nochimera-WoB-GS-aligned.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-nochimera-WoB-GS-aligned.qzv 
 
##Rsyst_Classic 
 
#Chimera with borderlines# 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms_classifier_classic.qza \ 
  --i-reads uchime-dn-out/rep-seqs-nonchimeric-w-borderline.qza \ 
  --o-classification taxonomy-nochimera-WB-classic.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-nochimera-WB-classic.qza \ 
  --o-visualization taxonomy-nochimera-WB-classic.qza 
 
QIIME taxa barplot \ 
  --i-table uchime-dn-out/table-nonchimeric-w-borderline.qza \ 
  --i-taxonomy taxonomy-nochimera-WB-classic.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-nochimera-WB-classic.qzv 
 
#Chimera without borderline# 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms_classifier_classic.qza \ 
  --i-reads uchime-dn-out/rep-seqs-nonchimeric-wo-borderline.qza \ 
  --o-classification taxonomy-nochimera-WoB-classic.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-nochimera-WoB-classic.qza \ 
  --o-visualization taxonomy-nochimera-WoB-classic.qza 
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QIIME taxa barplot \ 
  --i-table uchime-dn-out/table-nonchimeric-wo-borderline.qza \ 
  --i-taxonomy taxonomy-nochimera-WoB-classic.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-nochimera-WoB-classic.qzv 
 
QIIME feature-classifier classify-sklearn \ 
  --i-classifier diatoms-classifier-custom.qza \ 
  --i-reads rep-seqs-DADA2.qza \ 
  --o-classification taxonomy.qza 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy.qza \ 
  --o-visualization taxonomy.qzv 
 
QIIME taxa barplot \ 
  --i-table table-DADA2.qza \ 
  --i-taxonomy taxonomy.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots.qzv 
 
QIIME metadata tabulate \ 
  --m-input-file taxonomy-custom.qza \ 
  --o-visualization taxonomy-custom.qzv 
 
QIIME taxa barplot \ 
  --i-table table-DADA2.qza \ 
  --i-taxonomy taxonomy-custom.qza \ 
  --m-metadata-file metadata_INRA.tsv \ 
  --o-visualization taxa-bar-plots-custom.qzv 
 
 
############# ALTERNATIVE STEP ##################################### 
 
########## REMOVING ADAPTER ################# 
 
QIIME DADA2 denoise-paired \ 
 --i-demultiplexed-seqs demux_nobarcode.qza \ 
 --p-trunc-len-f 240 \ 
 --p-trunc-len-r 180 \ 
 --p-adapter-f [ForwardPrimer] \ 
 --p-adapter-r [ReversePrimer] \ 
 --p-chimera-method consensus \ 
 --p-max-ee 2 \ 
 --p-trunc-q 2 \ 
 --o-representative-sequences rep-seqs-DADA2.qza \ 
 --o-table table-DADA2.qza \ 
 --o-denoising-stats stats-DADA2.qza \ 
 --p-n-threads 25 \ 
 --verbose  
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NGSPECIESID SCRIPT 
 

Bioinformatic pipeline script for MinION ONT using NGSpeciesID(Sahlin et al., 2021) polisher, 

and Mothur(Schloss et al., 2009) script naïve Bayesian classifier assignment (Wang et al., 

2007).  

#####Basecalling##### 
 
Guppy_basecaller -I fast5/ -s basecalled/ -r --device auto -q 0 --disable_qscore_filtering -c 
DNA_r10.4.1_400bps_sup.cfg --compress_fastq 
 
####Demultiplexing##### 
 
guppy_barcoder -t 10 --device auto -i basecalled/ -s barcoded/ -r -q 0 --compress_fastq  
 
 
##### Long barcode ##### 
 
for file in *.fastq; do 
bn=`basename $file .fastq` 
NGSpeciesID --ont --consensus --sample_size 500 --m 800 --s 100 --medaka --primer_file primers.txt --fastq $file 
--outfolder ${bn} 
 
##### Short barcode ##### 
 
for file in *.fastq; do 
bn=`basename $file .fastq` 
do NGSpeciesID --ont --m 331 --s 100 --abundance_ratio 0.001 --fastq $file --outfolder ${bn} --primer_file 
Primer_UK_rbcLshort.fa --consensus –medaka 
 
Resulting sequences were classified using Mothur and the diat.barcode reference library (custom version with 
added non-diatom sequences) on the Galaxy server in order to parallelize the process on each fasta file :  
##### Long barcode ##### 
classify.seqs(fasta=*.fasta, reference=full_length_diatbarcode_custom.fasta, taxonomy= full_length 
_diatbarcode_custom.tax) 
##### Short barcode ##### 
 classify.seqs(fasta=*.fasta, reference=short_diatbarcode_custom.fasta, taxonomy= 
short_diatbarcode_custom.tax) 
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MODELS OF VARIABLE Ω RATIOS AMONG SITES 

(Yang and Nielsen, 2002) 

Model code p Parameters Notes   

M0 (one-ratio)  1  ω  One ω ratio for all sites  
 

M1 (neutral)  1  p0  p1 = 1 − p0, ω0 = 0, ω1 = 1  
 

M2 (selection)  3  p0, p1, ω2  p2 = 1 - p0 - Pl, ω0 = 0, ω1 = 1  

 
M3 (discrete)  2K − 1  p0, pl, … , pK-2,  pK–1 = 1 – p0 – pl – … – pK–2  

 
  (K = 3)  ω0, ω1, . . ωK–1    

 
M4 (freqs)  K–1 

(K = 5)  

p0, pl, … , pK–2  The ωk are fixed at 0, ⅓>, ⅔, 1, and 3  

 
M5 (gamma)  2  α, β  From G (α, β)  

 
M6 (2gamma)  4  p0, α0, β0, α1  p0 from G (α0, β0) and p1 = 1 – p0 from G (α1, α1)  

 
M7 (beta)  2  p, q  From B (p, q)  

 
M8 (beta&ω)  4  p0, p, q, ω  p0 from B (p, q) and 1 – p0 with ω  

 
M9 (beta&gamma)  5  p0, p, q, α, β  p0 from B (p, q) and 1 – p0 from G (α, β)  

 
M10 (beta&gamma + 

1)  

5  p0, p, q, α, β  p0 from B (p, q) and 1 – p0 from 1 + G (α, β)  

 
M11 (beta&normal>1)  5  p0, p, q, μ σ  p0 from B (p, q) and 1 – p0 from N (μ σ2), 

truncated to ω > 1  
 

M12 (0&2normal>1)  5  p0, pl, μ2, σl, σ2  p0 with ω0 = 0 and 1 – p0 from the mixture: 

p1 from N (1, σ12), and 1 – p1 from N (μ, σ22), 

both normals truncated to ω > 1  
 

M13 (3normal>0)  6  p0, pl, μ2, σ0, σl, σ2  p0 from N (0, σ02), p1 from N (1, σ12), and P2 = 

1 – p0 - Pl from N (μ2, σ22), all normals 

truncated to ω > 1  
 

p, number of 

parameters in the ω 

distribution. 
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