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Abstract

Magnetic buoyancy is a phenomenon by which regions of strong magnetic field in a plasma

can rise. In the Sun, magnetic buoyancy transports field from the deep interior to the sur-

face, where it produces sunspots. This field is believed to originate in the solar tachocline,

a thin layer of rotational shear beneath the convective envelope, wherein field lines are

stretched azimuthally to produce a layer of strong horizontal field. A description of mag-

netic buoyancy and its role in the solar interior is provided in Chapters 1 - 2.

To model the magnetic buoyancy phenomenon, one typically solves the fully compress-

ible fluid equations of magneto-hydrodynamics (MHD). This is because the presence of

strong magnetic field affects both the density and the pressure of the fluid. However, the

presence of fast acoustic waves in the fully compressible equations can present difficulties

for analytical and numerical analyses. Therefore, several methods have been developed to

filter out these waves, leading to various “sound-proof” models, including the Boussinesq,

anelastic and pseudo-incompressible models. These sound-proof models are presented in

Chapter 3, along with the assumptions under which they are derived. In Chapter 4 we

assess the validity of each of these approximate models for describing magnetic buoyancy

in the context of the solar interior. A general sound-proof model is introduced and com-

pared to the fully compressible system in a number of asymptotic regimes, including both

non-rotating and rotating cases. We obtain specific constraints that must be satisfied in

order that the model captures the leading-order behaviour of the fully compressible sys-

tem. We then discuss which of the existing sound-proof models satisfy these constraints,

and in what parameter regimes. We find that the pseudo-incompressible model and a

formulation of the anelastic model both reproduce the leading order behaviour of the fully

compressible system in the most general parameter regimes we consider.

An alternative, and complementary, way to assess the validity of any model is to

consider its mathematical properties, particularly conservation laws. An ideal magneto-

hydrodynamic fluid is a Hamiltonian system, and conserves energy, momentum, and mag-

netic flux. However, sound-proof models are derived using approximations that may vio-

late the Hamiltonian structure of the system. In Chapter 5, we compare the sound-proof

models to the compressible system by considering the mathematical properties of the lin-

earised equations. For a Hamiltonian system, the equations describing perturbations to

any static state are guaranteed to be self-adjoint, a fact that is useful in obtaining stabil-

ity criteria. We derive constraints under which our general linearised sound-proof system

is self-adjoint. We show that there is a unique set of self-adjoint sound-proof equations,

namely the pseudo-incompressible equations, that conserves the same energy as the fully

compressible system.



The results presented in Chapters 4 and 5 neglect the effects of viscosity and magnetic

diffusion. However, the presence of these diffusivities, as well as thermal diffusion, can lead

to so-called double-diffusive instability, even in situations where the thermal and magnetic

stratifications are individually stable. To date, this instability has only been extensively

studied in the magneto-Boussinesq regime, which assumes very small vertical scales. In

Chapter 6 we determine the behaviour of the double-diffusive instability outside of the

Boussinesq regime by numerically solving the linearised fully compressible equations.

We conclude in Chapter 7 by summarising the key results as well as detailing some

potential avenues for future work.
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Chapter 1

The Sun

The Sun formed approximately 4.5 billion years ago and now exists in its main sequence

phase, during which hydrogen is fused to helium in the core. The Sun has been an object

of fascination and study for thousands of years. Records of solar observations date back

to about 2000 BC when the Chinese recorded incidents of eclipses. Just under 2000 years

later (approximately 300BC), the Chinese made the first recorded observations of sunspots

— dark spots that appear on the surface of the Sun. The study of sunspots remains an

active area of research to this day.

1.1 The solar structure

In order to discuss sunspots (and other phenomena) we first introduce the solar structure.

The Sun is the largest body in the solar system, containing about 99.85% of the mass

of the solar system, and is held together by its own gravity. It has a radius, R⊙, of

approximately 695.5Mm. We can divide the Sun into two parts; the solar interior and the

solar atmosphere. The interface between these regions is the solar surface (or photosphere).

Unlike with the surface of the Earth, it is not immediately obvious how the photosphere

should be defined. In fact, we define the photosphere to be the outermost region that

is fully opaque. This means that, by definition, the solar interior cannot be directly

observed. However, the interior can still be studied by helioseismology — the study of

the solar interior by observing oscillations at the surface. The solar atmosphere refers to

layers of the Sun outside the photosphere. This project is primarily concerned with the

solar interior.

The solar structure, with typical temperatures and densities in each region, is shown in

Figure 1.1. At the centre of the Sun is the core, which extends to approximately 0.25R⊙.

This is where nuclear fusion takes place and is the hottest part of the Sun. Outside the

core is a radiative zone, so-called for the primary source of heat transfer — radiation — in

1



Chapter 1. The Sun

Figure 1.1: The structure of both the interior and exterior of the Sun. Temperatures (T ) and
densities (ρ) are given in K and kg m−3 respectively. Note that R⊙ denotes the radius of the Sun.
Figure from Priest (2014).

this region. The radiative zone extends out to approximately 0.7R⊙ and rotates almost

uniformly as a solid body; see Figure 1.2. The convective zone extends from about 0.7R⊙
to the surface. In this region, intense fluid turbulence allows heat to be transferred from

the base of the region to the photosphere by convection. This turbulence also redistributes

angular momentum and therefore allows the convective zone to rotate differentially — with

regions at the equator rotating faster than polar regions (Schou et al., 1998) — see Figure

1.2. Spiegel & Zahn (1992) introduced the tachocline, from the Ancient Greek ”tacho-”

meaning speed or fast and ”-cline” meaning slope or gradient, to define the transition

region from uniform to differential rotation. This region is therefore located between the

radiative and convective zones at approximately 0.7R⊙. This region is extremely thin (less

than 0.04R⊙). Despite significant efforts (Hughes et al., 2007), the tachocline is still not

fully understood. However, some of its features are well-established by observations. For

example, as a result of the transition from the solid-body rotation of the radiative zone to

2



Chapter 1. The Sun

Figure 1.2: Colour map showing rotation rate in a slice of the solar interior. Both axes show
distance from the centre of the Sun, measured in solar radii (R⊙), such that the horizontal axis
is the equator and the vertical axis is the pole. Red and blue colouring represents fast and slow
rotation respectively. The dashed line at approximately 0.7R⊙ shows the location of the tachocline.
Figure from Schou et al. (1998).

the differential rotation of the convective zone, the tachocline exhibits significant rotational

shear. This rotational shear acts to generate and amplify magnetic field in this region and

plays a crucial role in maintaining the large-scale solar magnetic field (see Section 1.3).

1.2 The solar cycle

1.2.1 Sunspots

Sunspots are darker regions of the Sun’s surface of approximately 10–20 Mm in diameter.

The first records of sunspots exist from approximately 300BC when they were seen by

the naked eye through a thin cloud. The invention of the telescope in the 1600s led to

more observations and in 1769 Alexander Wilson was able to deduce that a sunspot is a

depression (of about 500 km) in the Sun’s surface (Priest, 2014). Hale’s paper in 1908

first determined that sunspots were magnetic in origin (Hale, 1908).

Sunspots are regions where strong magnetic field passes through the photosphere, hence

3



Chapter 1. The Sun

Figure 1.3: Image of a number of sunspots from the Swedish Solar Telescope (SST) on La Palma.
Figure credit to Göran Scharmer from Priest (2014).

they appear in pairs — one where the field enters the atmosphere and another where the

field returns to the solar interior. Sunspots appear darker than their surroundings because

the strong magnetic field partially prevents normal energy transport. Sunspots have a

darker central region known as the umbra with an almost entirely vertical magnetic field

and a penumbra on the outside made of bright and dark filaments with a more-horizontal

magnetic field (see Figures 1.3 and 1.4). The umbra of the sunspot is typically about

1000–2000 K cooler than the typical surface temperature, whereas the penumbra is about

200–400 K cooler. This is indicative of the fact that vertical magnetic field will inhibit

convective heat transport. Sunspots’ lifetimes are proportional to their area, so a sunspot

of diameter 10Mm has an average lifetime of about 2–3 days whereas sunspots of diameter

60Mm last about 80–90 days (Priest, 2014).
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Chapter 1. The Sun

Figure 1.4: Illustration demonstrating the structure of a sunspot. Brown tubes represent magnetic
flux tubes escaping the solar photosphere. We see that some flux tubes extend vertically out of the
spot to form the umbra. On the other hand, some flux tubes immediately return to the interior
and are near horizontal at the surface — these form the penumbra. Figure from Thomas et al.
(2002).

1.2.2 The sunspot cycle

It is now well established that the emergence of sunspots follows a systematic pattern,

known as the sunspot cycle. The sunspot cycle was first discovered by German astronomer

Samuel Heinrich Schwabe through extended observations of sunspots. He first documented

his discovery in his 1843 paper “Sonnenbeobachtungen im Jahre 1843” (which translates as

“Observations of the sun in the year 1843”) where one can find the extract “Vergleicht man

nun die Zahl der Gruppen und der flecken-freien Tage mit einander, so findet man, dass

die Sonnenflecken eine Periode von ungefähr 10 Jahren hatten . . . ” which approximately

translates as “If one compares the number of groups [of sunspots] and the sunspot-free

days with one another, then one finds that the sunspots had a period of about 10 years

. . . ” (Schwabe, 1843). While Schwabe is credited with discovering the sunspot cycle —

which is now accepted to be an 11 year cycle — a more vague statement about periodicity

of the Sun’s appearance was made by Danish astronomer Christian Horrebow almost 70

years earlier in 1776 (Hathaway, 2010).

Following Schwabe’s discovery, Swiss astronomer Rudolf Wolf began more extensive

study of sunspot numbers. He introduced a metric by which to record the number of

sunspots which emphasises sunspot groups as opposed to individual sunspots. The Wolf

5



Chapter 1. The Sun

Figure 1.5: The “butterfly diagram” showing sunspot coverage, at each solar latitude, over time.
Figure from Solar Cycle Science — http://www.solarcyclescience. com/solarcycle.html .

Sunspot Number, R, (also called Zurich or International Sunspot Number) is defined by

R = k(10g + n), (1.1)

where g is the number of identified sunspot groups, n is the number of individual sunspots

and k is a correction factor for the observer. The correction factor was a necessary part

of the definition since different astronomers would have more/less stringent definitions of

what constitutes a sunspot. The Wolf Sunspot Number has been obtained daily since

1849. In more recent times, R is calculated from a number of observers using averages

weighted by k.

Figure 1.5 is the butterfly diagram which shows the distribution of sunspots over time.

The diagram was first created by Annie and Walter Maunder in 1904. The diagram shows

clearly the regularity of the 11-year cycle as well as an equator-ward shift in the sunspots

as the cycle progresses.

1.2.3 Magnetic observations of the solar cycle

The sunspot cycle is often conflated with the related, yet distinct, solar cycle. The sunspot

cycle is the 11-year cycle in which the number of sunspots rises and falls. However, the

solar cycle refers to the 22-year period which covers two sunspot cycles. After the first

sunspot cycle the magnetic field, which is responsible for the sunspots, reverses polarity,

so it only after 22-years that we have truly completed a full cycle.

6



Chapter 1. The Sun

Figure 1.6: A “magnetic butterfly diagram” for the Sun’s magnetic field; obtained by averaging
radial magnetic field longitudinally. Data obtained from Kitt Peak National Observatory (Arizona,
US) and the Solar and Heliospheric Observatory (SOHO) spacecraft. Figure from Hathaway (2010).

Clearly, magnetic field is intrinsically tied to the solar cycle. Hale et al. (1919) describe

“Hale’s polarity laws” which note that (a) the magnetic polarity of neighbouring sunspots

are most commonly of opposing signs, (b) corresponding pairs of spots on the Northern

hemisphere would be of opposite polarity to that of the Southern hemisphere, and (c) the

polarity of leading spots in the current cycle are opposite to those of the previous cycle.

As well as Hale’s polarity laws, Hale et al. (1919) also states Joy’s Law as “The following

spot of the pair tends to appear farther from the equator than the preceding spot, and the

higher the latitude, the greater is the inclination of the axis to the equator”. It was also

noticed by Babcock (1959) that the polarity of the Sun’s polar field appears to reverse

every 11 years; in fact the reversal seems to occur approximately at the cycle maximum.

Figure 1.6 demonstrates much of the fundamental behaviour associated with the solar

cycle. From Figure 1.6 we can see evidence of at least two of Hale’s polarity laws; namely, it

is evident that from one cycle to the next, regions of spots appearing to have predominantly

positive magnetic field have switched to negative magnetic field and vice versa. Also, we

see some approximate anti-symmetry about the equator where what we see in the northern

hemisphere is roughly mirrored by what we see in the southern hemisphere but with a

change in the polarity of the magnetic field. Finally, it is seen in Figure 1.6 that the fields

of high latitude get transported to the poles, appearing to cause the switch in the polar

field at around sunspot maximum.

1.3 The large-scale solar magnetic field

When discussing the large-scale magnetic field of the Sun, it is often useful to decompose

the field into poloidal and toroidal components. We can decompose any divergence-free

7



Chapter 1. The Sun

vector field, say B, into toroidal and poloidal components, Bt and Bp, by

B = Bt +Bp, (1.2)

where both Bt and Bp are solenoidal. In spherical coordinates, we decompose as follows:

Bt = ∇× (J r̂) (1.3)

and

Bp = ∇×∇× (Br̂), (1.4)

where B and J are scalar fields and r̂ is the unit vector in the radial direction (Glatzmaier,

1984). It can be seen that, in this decomposition, Bt has no radial component. If we were

to assume an axisymmetric system, then the latitudinal component ofBt would also vanish

and hence Bt would only have a component in the longitudinal direction, ϕ. Conversely, in

an axisymmetric system, it can be seen that Bp has no ϕ component. In this axisymmetric

geometry, toroidal field is oriented in an azimuthal sense, i.e. parallel, or anti-parallel, to

the equator, and poloidal field is perpendicular to the toroidal field, i.e. in meridional

planes.

The observations outlined in Section 1.2.3 point to the source of the sunspots being

a large scale toroidal magnetic field. In order to explain Hale’s Laws (see Section 1.2.3),

the toroidal magnetic field must be antisymmetric about the equator — i.e. of the same

strength but of opposite polarity, and must reverse every 11 years.

In order for there to be a self-sustaining solar dynamo, there will need to be a poloidal

field that can generate the toroidal field (and vice versa). There is evidence of a weaker

poloidal field in solar observations. This poloidal field can be established from observations

of the corona where the weak field can result in large-scale magnetic structure.

The differential rotation profile of the Sun has a significant impact on magnetic fields.

In the tachocline, where there is a velocity shear caused by the differential rotation profile

(see Figure 1.2), poloidal field will be azimuthally stretched. This is because, as per

Alfvén’s theorem (Priest & Forbes, 2000), magnetic field in highly-conducting fluids will

move with the flow. Hence the velocity shear will also shear out the magnetic field. In

this way, in the tachocline, there is a mechanism for toroidal field to be generated from

poloidal field. We call this mechanism the ω-effect (omega effect), as per Steenbeck &

Krause (1969).

In order for the large-scale field of the Sun to be self-sustaining, there must also be a

mechanism by which poloidal field can be generated from toroidal field. However, Cowl-

ing’s theorem states that An axisymmetric flow cannot sustain an axisymmetric magnetic

field against resistive decay (Cowling, 1933). This rules out the possibility of an axisym-

8



Chapter 1. The Sun

Figure 1.7: The “rise and twist” of toroidal field due to cyclonic convective motion. Figure from
Parker (1955b).

metric dynamo and means that we cannot have a mechanism for generating poloidal field

from toroidal field in an axisymmetric system. Parker (1955b) proposed a solution to this

problem as a “rise and twist” of toroidal field; see Figure 1.7. Parker suggests that this

would be due to the action of cyclonic convective upwellings on a toroidal field. Parker’s

proposal was later formalised mathematically by Steenbeck et al. (1966) and developed

into what is now known as “mean field electrodynamics”. Using mean field electrodynam-

ics, where flow velocity and magnetic field are split into “mean field” and “small-scale

fluctuation” parts, it can be shown that the mean magnetic field can depend on the mean

electromotive force which only depends on small-scale fluctuation terms; i.e. small-scale

effects contribute to the mean magnetic field, specifically poloidal field can be generated

from toroidal field in the presence of small-scale turbulence (see, for example, Davidson

(2001); Charbonneau (2010); Moffatt & Dormy (2019)). This mechanism of generating

poloidal field from toroidal field is called the α-effect (alpha effect), as per Steenbeck &

Krause (1969). Whilst small-scale turbulence is not the only process that could give rise

to an alpha-effect (and there is still much debate in the literature regarding the details of

the process), it is generally accepted that the large scale magnetic field of the Sun is the

result of an αω-dynamo whereby the poloidal field is regenerated by an α-effect and the

toroidal field is regenerated by an ω-effect.

There are a number of different dynamo models, here we will briefly discuss only

two, the flux-transport model and the interface model. Whilst there are many different

dynamo models, no one model has been universally accepted (see Charbonneau (2010)).

9



Chapter 1. The Sun

One such model is the flux-transport model originally proposed by Babcock (1961) and

further developed by Leighton (1964, 1969). Flux-transport is a model that arose as a

potential explanation for surface observations of the Sun (for details one is referred to the

review by Charbonneau (2010)). In this model, the ω-effect produces ropes of toroidal

magnetic field. This magnetic field is transported through the convective zone to the

surface (by magnetic buoyancy; see Chapter 2). As it traverses this region the ropes are

twisted by the Coriolis force. This twist is reflected in the surface distribution of active

regions (Joy’s law), whereby the leading spot in a pair tends to be at a lower latitude

(closer to the equator) than the proceeding one. The extent of the spreading is directly

correlated with latitude, meaning that at higher latitudes an imaginary line connecting

one spot to its pair is closer to vertical than at lower latitudes. The α-effect (in surface

regions) is coupled to the ω-effect (in the tachocline) by a meridional flow, the details of

which are still not well understood.

An alternative dynamo model is the interface model, which was proposed by Parker

(1993). This model relies on the assumption that the solar dynamo is located at the

tachocline — which we expect to be true for several reasons. The strength of active

regions on the solar surface, coupled with the expected rise-times of magnetic field of

the strength that is observed at the surface, determine that the magnetic field must be

originating deep in the interior rather than the near the surface. Secondly, weak field in

the convection zone will be preferentially pumped down by turbulence to gather at the

tachocline (Tobias et al., 2001). Then the strong shear, caused by differential rotation,

in the tachocline can produce an ω-effect. In this context, Parker (1993) introduced

a two-layer interface dynamo whereby there is an α-effect in the top layer, caused by

cyclonic convection, and in the lower layer there is an ω-effect, caused by velocity shear.

The separation of the alpha and omega regions gets round the so-called alpha-quenching

problem, where strong magnetic fields inhibit the rise and twist of field required for an α-

effect. In this setup, you get surface waves at the interface between the two layers. Now,

turbulent diffusion allows for transfer of poloidal/toroidal field between the two layers.

It has been shown (Parker, 1993; Tobias, 1996) that, under certain conditions, this can

produce a solar-like dynamo.

While the precise dynamo mechanism is not widely agreed, a common thread of both

the flux-transport and interface models is their reliance on a strong toroidal field at the

tachocline. Observations of the Sun also confirm the presence of strong magnetic field,

forming sunspots, at the surface. What is not yet fully understood is the process by

which magnetic field is transported radially from the tachocline to the surface; we call this

process magnetic buoyancy.

Parker (1955a) (see also Jensen, 1955) first argued that sunspots arise as strands of

toroidal magnetic field which have been transported to the surface by magnetic buoyancy.

10



Chapter 1. The Sun

Once this origin of the sunspot is established, many properties of the solar cycle follow.

Firstly, the fact that spots tend only to appear in at most middle latitudes corresponds

to the fact that the toroidal field is not intensely amplified at higher altitudes. Secondly,

the fact that we see this equatorial shift over time corresponds to the migration of the

toroidal field towards the equator. Thirdly, the fact that the polarity appears to reverse

every half-cycle corresponds to the alternation in sign of successive bands of toroidal field.

1.4 Thesis overview

This thesis will be concerned with dynamics of the solar interior. More specifically, we will

be concerned with mathematical models approximating the dynamics, especially magnetic

buoyancy, in the Sun. Magnetic buoyancy, and other processes and instabilities of interest,

rely on changes in density. In the fully compressible system, these density perturbations

produce sound (or acoustic) waves — fast density waves. For several reasons, includ-

ing computational expense, it is often desirable to filter out sound waves. Therefore,

a set of equations between the fully compressible and incompressible equations, where

density perturbations cannot exist and therefore buoyancy and convection cannot take

effect, are required. A number of such models already exist, namely Boussinesq, anelas-

tic and pseudo-incompressible models, which we call sound-proof models. These models

are derived to systematically filter out sound waves from the governing equations. These

sound-proof models, and their applicability to magnetic buoyancy in the Sun, will be

discussed and studied in this thesis.

The magneto-hydrodynamics of the Sun, discussed above, forms the physical moti-

vation for our study. Specifically, we will be concerned with the dynamics of the solar

interior. Chapter 2 describes magnetic buoyancy and introduces the underlying mathe-

matics. Chapter 3 introduces sound-proof models. It is these sound-proof models which

we shall be assessing against the fully compressible equations in Chapters 4 and 5. Chap-

ter 4 compares these sound-proof models to the compressible equations by considering a

number of asymptotic regimes and deriving leading-order dispersion relations. The major-

ity of Chapter 4 comes from a paper co-written by myself, Toby Wood and Paul Bushby

published in Physical Review Fluids (Moss et al., 2022). Sections of this paper also appear

in other areas of this thesis; specifically, Chapter 3 contains a derivation of a magnetic

version of the pseudo-incompressible model which appears as an appendix in (Moss et al.,

2022). Chapter 5 compares sound-proof models to the fully compressible system by con-

sidering the energy conservation properties of the governing equations. The majority of

this chapter also comes from a published paper co-written by myself, Toby Wood and Paul

Bushby (Moss et al., 2023). Chapter 6 discusses the double-diffusive instability which had

been neglected to this point in the thesis. The final chapter contains a summary of the

11



Chapter 1. The Sun

key findings and discussion of potential future work.
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Chapter 2

Magnetic Buoyancy

In this chapter we will introduce the concept of magnetic buoyancy by considering a parcel

argument. We will then formally introduce the fully compressible equations of magnetohy-

drodynamics (MHD), which will allow us to more rigorously derive conditions for magnetic

buoyancy instability. For an introductory overview of MHD and magnetoconvection one is

referred to Weiss & Proctor (2014). We will then consider the effects of thermal diffusion

and rotation on magnetic buoyancy.

2.1 Basic concepts

As noted in Chapter 1, magnetic buoyancy is a phenomenon that was first described by

Parker (1955a) and Jensen (1955). The term “magnetic buoyancy” in fact refers to mul-

tiple related, but distinct, processes. Firstly, as initially described by Parker (1955a) and

Jensen (1955), “magnetic buoyancy” is used to describe a non-equilibrium phenomenon

where an isolated flux tube will rise. To describe this process we begin by considering a

horizontal magnetic flux tube in thermal equilibrium with its non-magnetic surroundings.

The total pressure (i.e. gas plus magnetic pressure ; see equation (2.17) and surrounding

text for the definition of magnetic pressure) within the tube must be in pressure balance

with the non-magnetic fluid surrounding it, therefore the gas pressure within the tube

must be lower than that of its surroundings and hence the tube will tend to be buoyant.

Secondly, “magnetic buoyancy” is also used to refer to an instability mechanism whereby

regions of strong magnetic field become unstable and rise. To demonstrate this instability

we consider a fluid parcel argument (Acheson, 1979; Wilczyński et al., 2022). Consider

an ideal fluid in magneto-static equilibrium, in the absence of diffusion, with a horizontal

magnetic field that only depends on height (z-direction) with fluid properties that also are

only functions of height. We write this equilibrium as a balance between the gradient of

13



Chapter 2. Magnetic Buoyancy

Figure 2.1: Schematic of a magnetic flux tube before and after displacement.

the total pressure and the gravity,

d

dz
(p+ 1

2µ
−1
0 B2) = −ρg , (2.1)

where B represents the horizontal magnetic field (in the x-direction), ρ the fluid density, p

the fluid pressure, µ0 the constant magnetic permeability and g is a uniform gravitational

acceleration (directed downwards). Note that here, and throughout, we will be using SI

units.

We consider a magnetic flux tube which we displace from vertical position z to z+dz,

without bending the field lines (note that here, and throughout most of the thesis, we

adopt a co-ordinate system with z to be positive upwards; i.e. in the opposite direction to

gravity). If we denote the initial cross sectional area of the flux tube (at position z) to be

∆, then we can write the mass per unit length as ρ∆ and the magnetic flux as B∆. For

any property of the flux tube at z, say ϕ, we denote the value in the tube at z + dz by

ϕ+ δϕ, whereas we will denote the local value at z + dz by ϕ+ dϕ (see Figure 2.1).

We can utilise the conservation of magnetic flux to write

B∆ = (B + δB)(∆+ δ∆) =⇒ B + δB

B
=

∆

∆+ δ∆
, (2.2)

and similarly, by conservation of mass per unit length of the flux tube we have

ρ∆ = (ρ+ δρ)(∆+ δ∆) =⇒ ρ+ δρ

ρ
=

∆

∆+ δ∆
. (2.3)
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We can now eliminate ∆/(∆+ δ∆) to yield the result

B + δB

B
=

ρ+ δρ

ρ
=⇒ δB

B
=

δρ

ρ
. (2.4)

Note that this demonstrates that the quantity B/ρ is conserved.

Since we have assumed that there is no diffusion, specific entropy, s, is conserved and

we have s = s + δs. See the next section for brief discussion of the thermodynamics

assumed throughout this thesis. For an ideal gas we have

s = cv ln(pρ
−γ) , (2.5)

where γ =
cp
cv

is the ratio of specific heats and cp and cv are the specific heat capacity at

constant pressure and volume respectively. Therefore,

cv[ln(p)− γ ln(ρ)] = cv[ln(p+ δp)− γ ln(ρ+ δρ)]

=⇒ pρ−γ = (p+ δp)(ρ+ δρ)−γ

=⇒ 1 +
δp

p
=

(
1 +

δρ

ρ

)γ

=⇒ δp

p
≈ γ

δρ

ρ
, (2.6)

where we have used the binomial expansion to approximate(
1 +

δρ

ρ

)γ

≈ 1 + γ
δρ

ρ
. (2.7)

Under the assumption that the tube moves sufficiently slowly that the total pressure

(gas pressure plus magnetic pressure ) equilibrium between the inside and outside of the

tube is preserved then we can write

p+ δp+
1

2µ0
(B + δB)2 = p+ dp+

1

2µ0
(B + dB)2 ,

where µ0 is the magnetic permeability. This, at first order, reduces to

δp+
1

µ0
BδB = dp+

1

µ0
BdB . (2.8)

We can use equations (2.4) and (2.6) to write equation (2.8) as

(
v2 + c2

)
δρ = dp+

1

µ0
BdB . (2.9)

where c2 = γp/ρ and v2 = B2/(µ0ρ) are the square of the adiabatic sound speed and the
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Alfvén speed respectively. Now, if we have δρ < dρ, i.e. the density of the fluid within the

displaced tube is less than the density of the surrounding fluid, then the tube will continue

to rise and hence we have instability. By equation (2.9), we have instability if

dp+
1

µ0
BdB < (v2 + c2)dρ . (2.10)

To manipulate this instability criterion into a more familiar form, we divide through by

dz (positive by construction) and rearrange as follows;

dp

dz
+

B

µ0

dB

dz
< (v2 + c2)

dρ

dz

=⇒ 1

p

dp

dz
+

B2

µ0p

1

B

dB

dz
<

(
γ +

B2

µ0p

)
1

ρ

dρ

dz

=⇒ B2

µ0p

(
1

B

dB

dz
− 1

ρ

dρ

dz

)
< −

(
1

p

dp

dz
− γ

1

ρ

dρ

dz

)
=⇒ B2

µ0p

d

dz
ln

(
B

ρ

)
< − d

dz
ln

(
p

ργ

)
. (2.11)

This instability condition was first derived by Newcomb (1961) by considering energy

arguments, which we present in Section 2.3. Inequality (2.11) can be viewed as a mod-

ified Schwarzchild criterion — the stability condition for convection. In this derivation

we have considered so-called interchange modes — that is, where the magnetic flux tube

is displaced without bending — i.e. the field lines are interchanged. Inequality (2.11)

demonstrates that the destabilising gradient in B/ρ (the left hand side of (2.11)) must

overcome the stabilising effect of the entropy gradient (the right hand side of (2.11)) in

order to get an instability. Note that in our co-ordinate system, with z positive vertically

upwards, or radially outwards of a star for example, a destabilising field gradient would

be negative — with stronger field at the bottom of the domain.

Above, we considered 2D-interchange modes. However, if we were to consider 3D

effects — so-called undular modes, where we account for the bending of the magnetic field

lines — then we get a different stability criterion. In the same notation as above, we find

that a necessary condition for instability in the 3D case is

B2

µ0p

d

dz
ln (B) < − d

dz
ln

(
p

ργ

)
, (2.12)

where we have looked for the preferred mode of instability that has a long wavelength in

the direction parallel to the field; i.e. kx → 0 where kx represents the wavenumber in the

x-direction. This was originally derived by Newcomb (1961) and Thomas & Nye (1975),

and is derived in Section 2.3 by considering energy conservation arguments; in fact, by
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considering energy conservation, it is shown that (2.12) is a necessary and sufficient condi-

tion. We notice that in this case instability requires a sufficient gradient in B, rather than

in B/ρ. It is perhaps surprising that, despite now having to do work against magnetic

tension, undular modes are more easily destabilised than interchange modes. The reason-

ing for this is explained in Hughes & Cattaneo (1987) and Hughes (2007). Essentially,

in the interchange case, density perturbations are created by doing work against pressure

— this includes both gas pressure and magnetic pressure. However, in the 3D case, it is

possible — by having a long wavelength in the direction of the field — to minimise the

work done against magnetic pressure. Therefore undular modes can be destabilised more

easily than the interchange modes.

2.2 Fully compressible equations

Before pursuing a more rigorous discussion of magnetic buoyancy in the next section,

we first introduce the fully compressible equations of magnetohydrodynamics (MHD). In

writing these equations, we are making some thermodynamic assumptions. Whilst the Sun

consists of several different elements (primarily Hydrogen and Helium), here we neglect

variations in composition and assume a fluid of fully ionised Hydrogen. We also assume

that collisions within the fluid conserve energy and momentum, and hence we can treat the

fluid as a continuum and the hydrodynamic equations apply (see, for example, Choudhuri

(1998).) With uniform angular velocity Ω, these equations are

ρ
Du

Dt
+ 2ρΩ× u = −∇p− gρ ẑ+

1

µ0
(∇×B)×B+ µ∇ · τ , (2.13)

∂B

∂t
= ∇× (u×B) + η∇2B , (2.14)

Dρ

Dt
+ ρ∇ · u = 0 , (2.15)

ρT
Ds

Dt
= Q , (2.16)

where ∇ · τ is the divergence of the symmetric deviatoric rate-of-strain tensor (the effects

of which will be ignored for the majority of this thesis). Many of these quantities have

already been defined but for ease of reference we will repeat these definitions now. The

fluid velocity is given by u = (ux, uy, uz), B = (Bx, By, Bz) represents the magnetic field,

ρ is the fluid density, p is the pressure, s is the specific entropy, T is the temperature,

Q represents the sum of all diabatic heating processes, such as thermal diffusion, µ is

the dynamic viscosity, η is the magnetic diffusivity, D/Dt ≡ ∂/∂t+ u ·∇ is the material

derivative, µ0 is the magnetic permeability, and −gẑ is the gravitational acceleration,

assumed to be uniform. The equations are closed using an equation of state. Since we

assume a single-species fluid, we can express specific entropy, s, as a function of any two
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independent thermodynamic variables, e.g. density, ρ, and pressure, p. Specifically for

an ideal gas, the equation of state is simple (and also a reasonable approximation for the

solar interior) and we have p = RρT and s = cv ln (pρ
−γ), where γ is the ratio of specific

heats and the gas constant, R, and the heat capacity at constant volume, cv, are related

by R = (γ − 1)cv. Note that the Lorentz force can be decomposed as

1

µ0
(∇×B)×B = − 1

2µ0
∇|B|2 + 1

µ0
(B ·∇)B. (2.17)

Notice that the first term on the right-hand side acts on the fluid in the same way as the

pressure term (−∇p), and hence is referred to as the magnetic pressure. We can then

define the total pressure, π, to be the sum of the gas pressure and the magnetic pressure,

i.e. π ≡ p + |B|2/(2µ0). The final term in (2.17) represents the magnetic tension. Then,

in the absence of viscosity, equation (2.13) becomes

ρ
Du

Dt
+ 2ρΩ× u = −∇π − gρ ẑ+

1

µ0
(B ·∇)B . (2.18)

Throughout much of this thesis we will neglect viscosity and magnetic diffusion; in

general these are expected to play only a minor role in magnetic buoyancy under solar

conditions (although they can result in double-diffusive-type instabilities, e.g., Hughes &

Weiss (1995)). We will include viscosity and magnetic diffusion, and consider their effect,

in Chapter 6. In the tachocline, the magnitudes of the three diffusivities are as follows:

magnetic diffusivity η ≈ 4.1×102 cm2s−1, kinematic viscosity ν = 2.7×101 cm2s−1 (related

to dynamic viscosity by µ = νρ), thermal diffusivity κ = 1.4× 107 cm2s−1 (Hughes et al.,

2007). As such, the dominant diabatic process is usually thermal diffusion, which will

therefore be retained in much of the subsequent analysis.

Within the tachocline, beneath the solar convection zone, there is strong rotational

shear that is expected to generate strong toroidal magnetic field. Into our local Cartesian

model we will therefore introduce a layer of magnetic field oriented in the x-direction,

representing azimuth, whose strength varies with altitude, z. We will consider linear per-

turbations to a background state in magneto-hydrostatic balance in order to determine the

conditions under which this magnetic layer becomes buoyantly unstable. From previous

studies (e.g., Gilman, 1970; Acheson, 1979; Hughes, 2007) we expect the growth rate of

the instability to be of the order of weeks or longer, whereas the acoustic timescale in the

solar interior is of the order of minutes. Moreover, the Alfvén speed, v ≡ |B|/√µ0ρ, is

expected to be only a very small fraction of the sound speed, c, given by c2 ≡ (∂p/∂ρ)s,

which suggests that the instability ought to be captured to high accuracy by some form

of sound-proof model (which we will introduce and discuss in Chapter 3). This suggestion

forms the motivation for the present study.
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2.2.1 Linearised compressible equations

We begin by taking the fully compressible equations (2.13)–(2.16), where we neglect viscos-

ity and magnetic diffusion, and consider linear perturbations to a static background state

containing a horizontal layer of magnetic field oriented in the x-direction, B = B0(z)x̂.

Each quantity, say f , is expanded as f = f0(z) + f1(x, y, z, t), where f0 is the background

value and f1 is the linear perturbation. As noted previously, in Section 2.1, the background

state is in magneto-hydrostatic balance, i.e.

dπ0
dz

=
d

dz

(
p0 +

B2
0

2µ0

)
= −gρ0 . (2.19)

This implies a relation between the scale heights of density, entropy and magnetic field,

g = c2H−1
ρ − c2H−1

s + v2H−1
B , (2.20)

where (as before) c is the adiabatic sound speed and v is the Alfvén speed, both defined

in terms of the background state. For a general equation of state, the scale heights in

equation (2.20) are defined as:

H−1
ρ ≡ − d

dz
ln ρ0 , (2.21)

H−1
s ≡ −

(
∂ ln ρ

∂s

)
p

ds0
dz

, (2.22)

H−1
B ≡ − d

dz
lnB0 , (2.23)

where the partial derivative is evaluated in the background state. These scale heights pro-

vide a measure of the distance over which the background variables vary; i.e. can provide

a measure of stratification. In future chapters we will introduce scaling assumptions that

will relate these distances to that of the perturbed quantities. Note that, for an ideal gas,

the entropy scale height (2.22) reduces to H−1
s = −d/dz

(
ln(ρ/p1/γ)

)
, which is clearly a

combination of pressure and density scale heights. Note that in many studies of magnetic

buoyancy, the Brunt-Väisälä frequency, N , is defined as

N2 = −g

(
∂ ln ρ

∂s

)
p

ds0
dz

= gH−1
s . (2.24)

The Brunt-Väisälä frequency is the frequency at which a displaced parcel will oscillate

(in a stably-stratified system). However, in the presence of a magnetic field this physical

interpretation of N would no longer hold, so to avoid mis-interpretation we prefer to work

with Hs instead. Note that, provided that pressure, density and magnetic field strength

increases with depth, the scale heights defined above will be positive quantities.
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Having taken account of the background state, the linearised fully compressible equa-

tions are

ρ0
∂

∂t
u+ 2ρ0Ω× u = −gρ1ẑ−∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 , (2.25)

∂

∂t
B1 = ∇× (u×B0) , (2.26)

∂

∂t
ρ1 = −∇ · (ρ0u) , (2.27)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (2.28)

π1 = p1 +
1

µ0
B0 ·B1 , (2.29)(

∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 , (2.30)

ρ1 =

(
∂ρ

∂s

)
p

s1 +
1

c2
p1 , (2.31)

where γ is the adiabatic index and π1 is the perturbation to the total (i.e. gas plus mag-

netic) pressure. In equation (2.28), Q1 represents perturbations to the diabatic heating.

Ordinarily, for thermal diffusion, this would take the form of a Laplacian acting on T1 (with

diffusivity κ). Here, we simplify things by replacing diffusion with Newtonian cooling and

setting

Q1 = −ρ0cpαT1 (2.32)

where α is a specified constant. This simplification assumes that temperature perturba-

tions will decay linearly to the background state, with rate α. While, in general, Newtonian

cooling will not closely approximate thermal diffusion, in the limits of very fast or slow/no

diffusion we can choose α to be such that Newtonian cooling is a sufficient approximation,

i.e. will not alter the leading-order dynamics. Note that these equations are valid for

an arbitrary equation of state. The form of equations (2.30)–(2.31) has been chosen so

that the temperature and entropy perturbations, T1 and s1, have the same prefactors as

in equation (2.28), which simplifies the subsequent algebra. Equations (2.28), (2.30), and

(2.31) are derived in Appendix A.

2.3 Energy considerations

The parcel argument outlined in Section 2.1 can be made more rigorous by considering

an energy argument. Newcomb (1961) utilised Bernstein’s energy principle to derive the

stability criteria of the previous section. One consequence of the Bernstein et al. (1958)
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energy principle is that one can derive stability properties by considering the total potential

energy of a system. It has been shown (Bernstein et al., 1958) that the linearised MHD

equations of motion (2.25 – 2.31), in the absence of diffusion and rotation, can be written

in terms of Lagrangian displacement ξ, given by r = r0 + ξ where r is a position vector

and r0 is the initial position vector, to yield

ρ0
∂2ξ

∂t2
= F[ξ] , (2.33)

where F is a self-adjoint operator given by (Bernstein et al., 1958)

F[ξ] = ∇
(
ρ0(c

2 + v2)∇ · ξ − ρ0v
2∂ξx
∂x

− gρ0ξz

)
+ ρ0v

2 ∂
2ξ

∂x2
− ρ0v

2 ∂

∂x
(∇ · ξ)x̂+ g∇ · (ρ0ξ) ẑ , (2.34)

where we assume a static background that varies only with height z subject to a horizontal

magnetic field, i.e. p0 = p0(z), B0 = B0(z)x̂ etc. With this formulation we can calculate

the potential energy, W, given by

W = −1

2

∫
ξ · F[ξ] d3x (2.35)

(Bernstein et al., 1958). By conservation of energy, stability criteria can be inferred from

W. Specifically, if W is positive, for all ξ, then the system is stable — since the associated

kinetic energy cannot increase. We now calculate W as

W = −1

2

∫
V

[
2gρ0ξz(∇ · ξ) + 2ρ0v

2∂ξx
∂x

(∇ · ξ) + g
dρ0
dz

ξ2z

− ρ0(c
2 + v2)(∇ · ξ)2 − ρ0v

2

(
∂ξ

∂x

)2 ]
d3x . (2.36)

If we now consider interchange modes — 2D modes without bending of the field lines —

we can make the simplification that ∂ξ/∂x = 0. The integrand, which we now denote by

w, hence becomes

w = 2gρ0ξz

(
∂ξy
∂y

+
∂ξz
∂z

)
+ g

dρ0
dz

ξ2z − ρ0(c
2 + v2)

(
∂ξy
∂y

+
∂ξz
∂z

)2

. (2.37)

Following Hughes & Cattaneo (1987), without loss of generality we assume that the per-

turbations have the form

ξy = ξ̂y(z) sin (kyy) and ξz = ξ̂z(z) cos (kyy) (2.38)
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(recall we have already assumed there is no dependence on x). Equation (2.37) can then

be written as

w =

2gρ0ξ̂z (ξ̂yky + ∂ξ̂z
∂z

)
+ g

dρ0
dz

ξ̂2z − ρ0(c
2 + v2)

(
ξ̂yky +

∂ξ̂z
∂z

)2
 cos2 (kyy) . (2.39)

We have now split our integrand into a y-dependent part (the cos2 (kyy) term) and a z-

dependent part. If we integrate over y, then we are left with the large bracketed term,

with a multiplicative constant, which we will minimise with respect to ξ̂y. We differentiate

w, ignoring the cos2 (kyy) term, and set this to zero to get

∂w

∂ξ̂y
= −2gρ0ξ̂zky + ρ0(c

2 + v2)

(
2ky ξ̂y + 2

∂ξ̂z
∂z

)
ky = 0 (2.40)

=⇒ ky ξ̂y =
gξ̂z

(c2 + v2)
− ∂ξ̂z

∂z
. (2.41)

We can now substitute this minimum value of ξ̂y into equation (2.36) (recall we have also

assumed that ∂ξ/∂x = 0) to determine if there can be a situation where W is negative.

When we make this substitution we arrive at

W = −1

2

∫
cos2 (kyy) dy

∫
g

[
ρ0g

(c2 + v2)
+

dρ0
dz

]
ξ̂2z dz

= −A

2

∫
g

[
ρ0g

(c2 + v2)
+

dρ0
dz

]
ξ̂2z dz , (2.42)

where A =
∫
cos2 (kyy) dy is a (positive) constant. Clearly, W can be negative if the

integrand is positive. We claim that, in general, if W is negative at any point then we

will necessarily have stability. Clearly, this is a necessary condition for instability — if

W is positive everywhere, then the system is stable since the associated kinetic energy

cannot increase. To show that W being negative somewhere is a sufficient condition for

instability is less obvious. If we suppose we had such a point where W can be negative,

then we can choose ξ to be zero everywhere except in the vicinity of this point. We will

then necessarily have instability (Newcomb, 1961). Therefore, in this example, we will

have instability if

ρ0g

(c2 + v2)
+

dρ0
dz

> 0 (2.43)
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is satisfied anywhere in the domain. We rearrange this, using the magneto-hydrostatic

condition (2.20) to eliminate g, to get

B2
0

µ0p0

d

dz
ln

(
B0

ρ0

)
< − d

dz
ln

(
p0
ργ0

)
(2.44)

which is exactly equation (2.11) from the previous section.

Following similar methodology, one can formally derive equation (2.12) for undular

modes. For undular modes we no longer assume that ξ has no x-dependence. We begin

with expression (2.36), where we let

ξx = ξ̂x(z) cos (kxx) cos (kyy) , (2.45)

ξy = ξ̂y(z) sin (kxx) sin (kyy) , (2.46)

ξz = ξ̂z(z) sin (kxx) cos (kyy) (2.47)

(Hughes & Cattaneo, 1987). The result is

W =
1

2

∫ [
µ−1
0 B2

0

k2x(ξ̂2y + ξ̂2z ) +

(
ky ξ̂y +

dξ̂z
dz

)2
+ γp0

(
−kxξ̂x + ky ξ̂y +

dξ̂z
dz

)2

−2gρ0ξ̂z

(
−kxξ̂x + ky ξ̂y +

dξ̂z
dz

)
− g

dρ0
dz

ξ̂2z

]
dz ,

(2.48)

where, since they will have no effect for this stability analysis, we have neglected the

integral over x and y.

Whereas for interchange modes we minimised the integrand with respect to ξ̂y, we

now minimise with respect to both ξ̂x and ξ̂y. We’ll begin with ξ̂x. Differentiating the

integrand in (2.48), which again we’ll call w, with respect to ξ̂x and setting this to 0 we

get

∂w

∂ξ̂x
= −2γp0kx

(
−kxξ̂x + ky ξ̂y +

dξ̂z
dz

)
+ 2gρ0kxξ̂z = 0 , (2.49)

=⇒ ξ̂x =
1

kx

(
−gρ0
γp0

ξ̂z + ky ξ̂y +
dξ̂z
dz

)
. (2.50)

We substitute this minimal value of ξ̂x back in to the integrand to get an expression for
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w in terms of only ξ̂y and ξ̂z,

w = µ−1
0 B2

0

[
k2x(ξ̂

2
y + ξ̂2z ) +

(
ky ξ̂y +

dξ̂z
dz

)2 ]
− g2ρ20

γp0
ξ̂2z − g

dρ0
dz

ξ̂2z . (2.51)

We now repeat the same procedure again but for ξ̂y

∂w

∂ξ̂y
= µ−1

0 B2
0

[
2k2xξ̂y + 2ky

(
ky ξ̂y +

dξ̂z
dz

)]
= 0 , (2.52)

=⇒ ξ̂y = − ky
(k2x + k2y)

dξ̂z
dz

, (2.53)

which, when we substitute back in, gives us

W =
1

2

∫ (k2xB2
0

µ0
− g

dρ0
dz

− g2ρ20
γp0

)
ξ̂2z +

B2
0

µ0

k2x
(k2x + k2y)

(
dξ̂z
dz

)2
 dz . (2.54)

This result agrees with the equivalent result in Hughes & Cattaneo (1987). Clearly, (2.54)

will become negative most easily in the limit where kx → 0 and ky → ∞. In this limit,

(2.54) becomes

W =
1

2

∫ [(
−g

dρ0
dz

− g2ρ20
γp0

)
ξ̂2z

]
dz . (2.55)

Therefore we will have instability when

−g
dρ0
dz

− g2ρ20
γp0

< 0 (2.56)

is satisfied somewhere in the domain. We recall our magneto-hydrostatic condition (2.20)

and that, for an ideal gas,

H−1
s =

1

γ

d

dz
ln

(
p0
ργ0

)
. (2.57)

We can then write

B2
0

µ0p0

d

dz
lnB0 < − d

dz
ln

(
p0
ργ0

)
(2.58)

which is exactly (2.12).
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2.4 Effect of thermal diffusion

In the previous section we have (by necessity) only considered a diffusionless setup. Here,

we will investigate the effect of a fast thermal diffusion, i.e. with large thermal diffusivity,

κ. One would intuitively assume that magnetic buoyancy instability would prefer large

thermal diffusion, to erode the stabilising entropy gradient. We will follow the methodology

of Gilman (1970) to consider the large κ limit. We begin with the full linearised magneto-

hydrodynamic (MHD) equations (2.25 – 2.31), where we once again ignore rotation. For

the sake of easy comparison with Gilman (1970) we will assume a perfect gas, i.e. an

equation of state of

p = RρT (2.59)

where R is the gas constant per unit mass. Hence we arrive at equations (2.25 – 2.27) and

the energy equation and equation of state become

∂

∂t
s1 + u ·∇s0 = − 1

T0
κ∇2T1 , (2.60)

p1
p0

=
T1

T0
+

ρ1
ρ0

, (2.61)

where we have substituted Q1 = −ρ0κ∇2T1.

We now assume we have perturbations of the form f1 = f̃1(z) exp (ikxx+ ikyy + σt).

For ease of notation the tildes will subsequently be ignored. We will now also take the large

diffusion limit, i.e. κ → ∞. This will have the effect that all temperature perturbations

will vanish and hence equation (2.60) will become redundant. The governing equations

then reduce to

σux = − ikx
ρ0

π1 + v2ikx
B1x

B0
− v2H−1

B

B1z

B0
, (2.62)

σuy = − iky
ρ0

π1 + v2ikx
B1y

B0
, (2.63)

σuz = − 1

ρ0

∂π1
∂z

− g

ρ0
ρ1 + v2ikx

B1z

B0
, (2.64)

σB1x = −B0ikyuy −B0
∂uz
∂z

+B0H
−1
B uz , (2.65)

σB1y = B0ikxuy , (2.66)

σB1z = B0ikxuz , (2.67)

σ
ρ1
ρ0

= −ikxux − ikyuy −
∂uz
∂z

+H−1
ρ uz , (2.68)

p1
p0

=
ρ1
ρ0

, (2.69)
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where B1 = (B1x, B1y, B1z) and we recall

H−1
ρ = − 1

ρ0

dρ0
dz

, H−1
B = − 1

B0

dB0

dz
, v2 =

B2
0

µ0ρ0
. (2.70)

Following Gilman (1970), we now only consider perturbations which are extremely narrow

in the y-direction, i.e. we take the limit ky → ∞. Under this limit, upon review of equation

(2.63), we determine that we must have

π1 = p1 +
B0

µ0
B1x = 0. (2.71)

The reduced set of equations can now be written as

σux = v2ikx
B1x

B0
− v2H−1

B

B1z

B0
, (2.72)

σuz = − g

ρ0
ρ1 + v2ikx

B1z

B0
, (2.73)

σB1z = B0ikxuz , (2.74)
p1
p0

=
ρ1
ρ0

, (2.75)

p1 +
B0

µ0
B1x = 0 , (2.76)

σ

(
B1x

B0
− ρ1

ρ0

)
= ikxux + (H−1

B −H−1
ρ )uz , (2.77)

where equation (2.77) comes from combining equations (2.65) and (2.68) by eliminating

ky. We see that the derivative terms from these equations also cancel, and hence we are

left with purely algebraic expressions; i.e. our set of equations contains no derivatives.

Since we have algebraic expressions it is simple enough to eliminate ux, uz, B1x, B1z, ρ1,

p1 to derive the following dispersion relation,

(
s2 + v2

)
σ4 + v2

((
2s2 + v2

)
k2x − g(H−1

B −H−1
ρ )
)
σ2 + v4k2x

(
s2k2x − gH−1

B

)
= 0 , (2.78)

where s2 = p0/ρ0 is the square of the isothermal sound speed; note this differs by a factor of

γ from the adiabiatic sound speed which we commonly use, denoted by c. This dispersion

relation was first derived by Gilman (1970). Note that Gilman’s notation for the growth

rate, ω, differs from our σ by a factor of −i and hence there is a minus sign difference in

the σ2 term of equation (2.78). Note that equation (2.78) is a depth-dependent dispersion

relation. In a physical system, this cannot be true since you can’t have a different growth

rate at each depth since any unstable eigenmode will necessarily have a finite size in z.

Mizerski et al. (2013) discusses Gilman’s depth-dependent dispersion relation and provides

a mathematical explanation by reconciling with the two-point boundary value problem of
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the Gilman system.

One can examine this dispersion relation to determine stability conditions. Note that

in the absence of a magnetic field we have v = 0, and hence the only solution of (2.78)

is σ = 0 and therefore there cannot be instability; i.e. all instabilities must be caused by

the magnetic field. It is easy to see that the stability boundary for direct (non-oscillatory)

instability, which occurs when σ = 0, is given by

k2x =
g

s2
H−1

B = −g
ρ0
p0

d

dz
lnB0 . (2.79)

i.e. there will be instability if k2x < gH−1
B /s2. This means that, for any magnetic field

which decreases with height — and hence H−1
B is positive — there is a wavenumber kx such

that direct instability will take effect, provided that you are in such a situation whereby

the assumption of ky → ∞ is valid.

The inclusion of magnetic diffusion and viscosity can, in certain circumstances, lead

to some unexpected behaviour. Specifically, in the presence of magnetic diffusion and

viscosity, certain regimes which otherwise would be stable to both magnetic buoyancy and

convection can produce a new instability (so-called double-diffusive instability). This is

discussed in Chapter 6.

2.5 Rotation

Another important element that has thus far been neglected is rotation. The solar rotation

period is approximately 30 days (depending on precisely where you measure). An estimate

of the growth time of magnetic buoyancy instability (from the tachocline to the surface) is

also approximately 30 days (Hughes, 2007). Since these two timescales are comparable, we

would expect rotation to have a significant effect on magnetic buoyancy instability in the

solar interior. When rotation is included the system can become far more complicated.

Firstly, if we consider a rapidly rotating fluid in the presence of a magnetic field, but

ignore any effects of stratification, we will get magneto-Coriolis (MC) waves. Generally

MC waves can be divided into two distinct branches, fast MC waves and slow MC waves.

Lehnert (1954) considered the situation where the magnetic field and axis of rotation are

aligned. This situation makes description of the physical processes easier and while in

general the axis of rotation will not be parallel to the magnetic field — this is certainly

not the case in much of the Sun — the physical picture remains useful. Simply put, fast

MC waves occur when the Lorentz force and Coriolis force act together, whereas slow

MC waves occurs when Lorentz force acts against the Coriolis force. This is most easily

understood by studying the dispersion relation.

We will derive the MC wave equation for an incompressible fluid at constant angular
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frequency Ω and magnetic field B = B0+B1 for background B0 in the absence of gravity

and diffusion. Whilst the majority of this thesis is concerned with magnetic buoyancy,

and therefore compressible fluids, we consider an incompressible fluid here to provide

the mathematically simplest example to illustrate how MC waves emerge in the presence

of rotation. The background is assumed to be uniform and static, and therefore B0 is

constant. We do not make any assumption about the directions of these vectors at this

stage. The linearised momentum and induction equations (2.25 – 2.26) in this case can be

written as

ρ0
∂u

∂t
+ 2ρ0(Ω× u) = −∇π1 +

1

µ0
(B0 ·∇)B1 , (2.80)

∂B1

∂t
= (B0 ·∇)u . (2.81)

We take the curl of these equations and define the vorticity to be ω = ∇× u to yield,

ρ0
∂ω

∂t
− 2ρ0(Ω ·∇)u =

1

µ0
(B0 ·∇)(∇×B1) , (2.82)

∂

∂t
(∇×B1) = (B0 ·∇)ω . (2.83)

We combine these two, by taking the time derivative of equation (2.82) and eliminating

∂/∂t(∇×B1) to get

ρ0
∂2ω

∂t2
− 2ρ0(Ω ·∇)

∂u

∂t
=

1

µ0
(B0 ·∇)2ω . (2.84)

We take the curl of this equation to yield

−2(Ω ·∇)
∂ω

∂t
=

(
∂2

∂t2
− 1

µ0ρ0
(B0 ·∇)2

)
∇2u , (2.85)

where we have recognised that, since u is incompressible and hence ∇ · u = 0, we can

write ∇×ω = ∇× (∇×u) = −∇2u. To eliminate ω from this equation we can take the

time-derivative of equation (2.84) to derive an equation written entirely in terms of u,

−4(Ω ·∇)2
∂2u

∂t2
=

(
∂2

∂t2
− 1

µ0ρ0
(B0 ·∇)2

)2

∇2u . (2.86)

This equation is known as the MC wave equation (Lehnert, 1954; Acheson & Hide, 1973).

To derive a dispersion relation we consider perturbations of the form u = ũ exp (ik · r+ iωt)
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(note that ω here is unrelated to the vorticity ω used earlier), which yields(
−ω2 +

1

µ0ρ0
(B0 · k)2

)2

|k|2 − 4ω2(Ω · k)2 = 0 . (2.87)

This is a 4th-order polynomial in ω, so we will get four solutions for ω. However, since it

is a biquadratic we can easily solve for ω2. Rearranging (2.87) for ω2 we get

−ω2 +
1

µ0ρ0
(B0 · k)2 = ±2ω

(Ω · k)
|k|

. (2.88)

We now have two quadratics in ω (one for each sign of the ±) which we can solve with

the quadratic formula to get

ω = ±(Ω · k)
|k|

±

√
(Ω · k)2
|k|2

+
(B0 · k)2
µ0ρ0

. (2.89)

Note that the two ± signs are independent and hence the equation represents four solu-

tions. If we were to consider a situation where the Coriolis effect is much greater than

that induced by the magnetic field then we should expect that the result is inertial waves.

If we take this limit in equation (2.89) we get

ω = ±(Ω · k)
|k|

± (Ω · k)
|k|

, (2.90)

which is exactly our expected frequency (when we have same-signs in the ±) for inertial

waves (Davidson, 2001). We will denote half this quantity by ωC , i.e.

ω2
C = (Ω · k)2/|k|2. (2.91)

Conversely, in a magnetic-dominant situation we would expect (2.89) to recover the Alfvén

wave solution. Indeed, in that limit we would get

ω = ± 1
√
µ0ρ0

(B0 · k) . (2.92)

which is exactly the solution of the Alfvén wave dispersion relation (Davidson, 2001). We

will denote this frequency by ωM , defined by

ω2
M =

(B0 · k)2

µ0ρ0
. (2.93)

Reassuringly, we have seen that in the limits where one of the Coriolis or Lorentz

force dominates the other, equation (2.89) recovers the expected solutions. It is in the
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intermediate regime where neither force is completely dominant that MC waves occur. If

we assume that we are in a sufficiently rapidly rotating system, such that ω2
C ≫ ω2

M , then

we can perform a Taylor expansion on the square root term in equation (2.89). Expanding

this term and keeping only the first terms we get

ω = ±(Ω · k)
|k|

± (Ω · k)
|k|

√
1 +

|k|2(B0 · k)2
µ0ρ0(Ω · k)2

(2.94)

≈ ±(Ω · k)
|k|

± (Ω · k)
|k|

(
1 +

|k|2(B0 · k)2

2µ0ρ0(Ω · k)2

)
. (2.95)

It can now be seen how the distinct fast and slow modes come about. If we take the

opposing signs in each of the ± we get slow MC waves with frequency ωslow, given by

ωslow = ± |k|(B0 · k)2

2µ0ρ0(Ω · k)
. (2.96)

Otherwise, where each ± takes the same sign we get fast MC waves with frequency ωfast,

given by

ωfast = ±2(Ω · k)
|k|

(
1− |k|2(B0 · k)2

4µ0ρ0(Ω · k)2

)
. (2.97)

It can be seen from this expression for ωfast that, at least in this rapid rotation regime, we

can think of fast MC waves as magnetic-affected inertial waves where the magnetic effect

is to slightly alter the frequency of the wave. Slow MC waves are entirely different to both

inertial and Alfvén waves — they are slower than both — and only occur in the prescence

of both rotation and magnetic field. Slow MC waves have been significantly studied in the

field of geophysical fluid dynamics.

In the description outlined above, the effects of density stratification are ignored. When

these effects are included the resulting waves are called magnetic Archimedes Coriolis

(MAC) waves. Even in the simplest example possible we now have three conflicting sources

for waves; we have waves caused by pressure/density gradient (sound/acoustic waves),

waves caused by magnetic tension (Alfvén waves), and waves caused by the Coriolis force

from rotation (inertial waves). The nature of the resulting MAC waves will vary depending

on the particular setup and the relative magnitudes and directions of the three effects.
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Sound-proof models

Throughout fluid dynamics, especially astrophysical fluid dynamics, study of instability

is abundant. Many of these instabilities, including convection and magnetic buoyancy,

rely on changes in density. For this reason, incompressible equations are unsuitable for

study of these instabilities — incompressible equations do not allow for any changes in

density. On the other hand, using the compressible equations, those which do allow

density perturbations, can also be unsuitable. An unavoidable consequence of using the

fully compressible equations is sound waves (or acoustic waves). Sound waves are density

waves (so do not appear in incompressible systems).

As a result, several sound-proof models have been developed to study these systems

by removing the sound waves. Specifically, a sound-proof model is one that removes the

systems ability to oscillate acoustically. It does this by recognising that sound waves

operate on a timescale that is much faster to the dynamics of interest (i.e. convection,

magnetic buoyancy, etc.). In practice, there cannot be a model that does this perfectly

since there will always be some regime where the assumption that the sound waves are

much faster than all dynamics of interest somewhat breaks down. Mathematically, sound-

proof models are generally derived by some asymptotic assumptions that justify the neglect

of terms in the governing (MHD) equations. This is done in such a way that sound-waves

cannot exist. That is that, even in a very simple set-up (no gravity, uniform density and

uniform pressure) with the fluid initially at rest, solutions with pressure perturbations

oscillating with high frequency do not emerge.

3.1 Sound waves in compressible fluids

To illustrate the problem we will now consider the simplest possible setting in which it

is possible to derive sound waves. We start with the fully compressible equations (2.25-

2.31), but without any diffusivities (i.e. Q1 = 0), rotation (Ω = 0), magnetic field (B = 0),
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gravity (g = 0), or density stratification (H−1
s → 0). Hence, all background quantities are

constant. We are left with

ρ0
∂

∂t
u = −∇p1 , (3.1)

∂

∂t
ρ1 = −ρ0∇ · u , (3.2)

ρ1 =
1

c2
p1 . (3.3)

Let each variable, say f1, have the form f1 = f̃1(x, y, z) exp (iωt), then we have

ρ0iωu = −∇p1 , (3.4)

iωρ1 = −ρ0∇ · u (3.5)

ρ1 =
1

c2
p1 , (3.6)

where we have immediately omitted tildes. Finally, we eliminate u and p1 to get

−ω2ρ1 = c2∇ · (∇ρ1) = c2∇2ρ1 , (3.7)

which is precisely the wave equation, whose solution will be waves of speed c.

For many astrophysically relevant regimes, including the solar interior which we are

interested in here, sound-waves are significantly faster than the dynamics of interest — e.g.

convection, magnetic buoyancy etc. We expect that the expected rise-time for a magnetic

flux tube to traverse the convection zone by magnetic buoyancy is approximately 30 days,

i.e. an average speed of approximately 8 × 103cm s−1, whereas we expect a sound wave

to travel at approximately 2 × 107cm s−1 (in the tachocline) (Gough, 2007). These fast

waves cause issues for computational analysis. Any numerical scheme would track the

propagation of sound waves through each cell in the computational grid. Therefore, if the

sound speed is faster than other characteristic velocities then a lot of computational work

will be spent on resolving waves that likely will not affect the resulting dynamics.

Therefore, a number of so-called sound-proof models have been developed. That is,

mathematical models that do not allow sound waves to exist. We will discuss and derive a

number of these such models, namely the Boussinesq, anelastic and pseudo-incompressible

models, in the coming sections.

In general, these models are derived by making some asymptotic assumption about

the regime of interest and determining that some terms in the governing equations are

negligible. These simplified equations can then be used to study situations where the fully

compressible or incompressible equations are unsuitable. However, since each model is

derived under strict asymptotic assumptions, they are only strictly valid in that asymptotic
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limit. For example, anelastic models are derived by assuming that the background state

has almost uniform entropy. Hence, one can only expect anelastic models to be accurate

provided they are being used in regimes with almost uniform entropy. However, we often

need to be able to describe fluid flows in situations where these asymptotic conditions are

not satisfied. This begs the question, when can one actually use these models and when do

they produce the “correct” answer — i.e. the same solution as the compressible system.

This key question is the primary motivator for this work, applied to the magnetic buoyancy

instability in the solar interior. It was previously not known how well these sound-proof

models reproduced the linear behaviour of the compressible system for magnetic buoyancy.

We now briefly review the most commonly-used sound-proof models for astrophysical

applications: the Boussinesq, anelastic, and pseudo-incompressible models. (We do not

consider the family of quasi-hydrostatic models often used to model shallow atmospheres

(e.g., Miller & White, 1984; Arakawa & Konor, 2009; Dubos & Voitus, 2014), because

these are not suited to describing buoyancy processes with a small horizontal scale, which

are the motivation for the present study). We will restrict our discussion to the linear

regime and will be neglecting viscosity and magnetic diffusion in all cases. Here, we will

present each of these models in the form that they are usually found in the literature; in

Section 4.2 we will introduce a very general, linearised sound-proof model for which each

of these models arises as a special or limiting case. Throughout this chapter we will be

assuming a depth-dependent horizontal background magnetic field, i.e. B0 = B0(z)x̂.

3.2 Boussinesq approximation

The Boussinesq model was first introduced by Oberbeck (1879) and Boussinesq (1903),

and later formalised by Jeffreys (1930). The approximation amounts to assuming that, on

small length-scales, pressure variations do not produce significant changes in density. This

allows pressure perturbations to be neglected in the relations between other thermody-

namic variables, and density variations are neglected everywhere except in the buoyancy

force (Spiegel & Veronis, 1960; Mihaljan, 1962; Gray & Giorgini, 1976). As a result,

the pressure perturbation effectively acts as a Lagrange multiplier that enforces a zero-

divergence constraint on the fluid velocity, i.e. incompressibility. The simplest way to

extend the Boussinesq model to include a magnetic field is simply to add the Lorentz force

to the momentum equation, and simultaneously solve the magnetic induction equation

in its usual MHD form, i.e. equation (2.14). However, this alone does not capture the

effects of magnetic buoyancy since, in this formulation, density perturbations can only be

brought about by change in temperature. Spiegel & Weiss (1982) extended the Boussinesq

model to include magnetic buoyancy by (a) assuming small variations to the total (i.e. gas

plus magnetic) pressure, and (b) allowing for density variations in the induction equation.
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This magneto-Boussinesq approximation was later re-derived more rigorously by Corfield

(1984). Crucially, the magneto-Boussinesq model allows for magnetic pressure to play a

significant role. In the original magnetic Boussinesq model (or, Boussinesq equations of

magneto-convection) both the gas pressure and magnetic pressure are individually negli-

gible. In the magneto-Boussinesq equations however, gas pressure and magnetic pressure

are not individually small but are of similar size such that their sum is small; i.e. they

cancel at leading order.

We will now derive the magneto-Boussinesq equations, starting from the linearised

equations (2.25 – 2.31). We follow Corfield’s derivation by introducing two small param-

eters, ϵ1 and ϵ2, and assuming the following hierarchy of length-scales,

ϵ1∇⊥ ∼ kx ∼ H−1
ρ ∼ H−1

B ∼ ϵ1
ϵ2
H−1

s , (3.8)

where the subscript ⊥ refers to the components perpendicular to the magnetic field B0 =

B0(z)x̂ and kx represents the wavenumber in the x-direction. We also assume that the

timescale is set by the buoyancy frequency, i.e.

∂

∂t
∼ N =

√
gH−1

s , (3.9)

and that the ratio of Alfvén speed to sound speed satisfies

v2

c2
∼ ϵ2

ϵ1
. (3.10)

The magneto-Boussinesq model is obtained by adopting the ordering ϵ2 ≪ ϵ1 ≪ 1, which

implies that v2 ≪ c2. With these scalings in mind we can re-write the continuity equa-

tion (2.27) as

∂ρ1
∂t

= −∇ · (ρ0u)

=⇒ − 1

ρ0

∂ρ1
∂t

= ∇ · u+
1

ρ0

dρ0
dz

uz

=⇒ ∇⊥ · u⊥︸ ︷︷ ︸
O(1)

= H−1
ρ uz − ikxux︸ ︷︷ ︸

O(ϵ1)

− 1

ρ0

∂ρ1
∂t︸ ︷︷ ︸

O(ϵ2)

, (3.11)
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and the induction equation (2.26) as

∂

∂t
B1 = ∇× (u×B0)

=⇒ ∂

∂t
B1 = (B0 ·∇)u− (∇ · u)B0 −

dB0

dz
uzx̂

=⇒ (∇⊥ · u⊥)B0︸ ︷︷ ︸
O(1)

= (B0 ·∇)u+ (H−1
B uz − ikxux)B0 −

∂B1

∂t︸ ︷︷ ︸
O(ϵ1)

, (3.12)

where the relative magnitudes of u, ρ1 and B1 are inferred from the momentum equa-

tion (2.25). At leading order, these two equations contain the same information, and so it

is necessary to consider the terms of order ϵ1. This can be done by eliminating the O(1)

terms, resulting in

∇⊥ · u⊥ = 0, (3.13)

∂B1

∂t
= (B0 ·∇)u+ (H−1

B −H−1
ρ )uzB0. (3.14)

Therefore the fields u⊥ and B1⊥ are solenoidal under this approximation, but not the full

fields u and B1. If we compare the relative magnitudes of, for example, gρ1ẑ with ∇p1,

in equation (2.25), then we determine that gρ1ẑ ∼ ϵ1∇p1 (where the relative magnitudes

of ρ1 and p1 are determined by equation (2.31)). By similar comparisons with the other

terms in equation (2.25) we determine that both ∇p1 and ∇(1/µ0)B0 · B1 are a factor

of ϵ1 larger than the other terms. Therefore, in order for the pressure term, ∇π, not

to dominate over the other terms in (2.25), the total pressure perturbation, π1, must be

smaller than both the individual perturbations of gas pressure, p1, and magnetic pressure,

(1/µ0)B0 · B1, by a factor of ϵ1. In other words, these two contributions to the total

pressure must cancel at leading order, with

p1 +
1

µ0
B0 ·B1 = 0. (3.15)

This means that π1 simply becomes a Lagrange multiplier in the magneto-Boussinesq

model, and is mathematically independent of the other perturbed quantities.
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The resulting equations can then be written as

ρ0
∂

∂t
u+ 2ρ0Ω× u = −gρ1ẑ−∇⊥π1 +

1

µ0
B0 ·∇B1 −

1

µ0
H−1

B B1zB0 , (3.16)

∂

∂t
B1 = (B0 ·∇)u+ (H−1

B −H−1
ρ )uzB0 , (3.17)

∇⊥ · u = 0 , (3.18)

∂

∂t
s1 + u ·∇s0 =

Q1

ρ0T0
, (3.19)

p1 +
1

µ0
B0 ·B1 = 0 , (3.20)

in addition to the thermodynamic relations (2.30)–(2.31) — except that the coefficients

in these equations are usually taken to be constant. Here, ρ0, T0 and B0 are taken to

be constant, and where the subscript ⊥ represents components that are perpendicular to

B0. The ⊥ subscript is required in equation (3.16) since, as per our scaling assumption

(see equation 3.8), the x-derivative is significantly smaller than the other components and

therefore is neglected. The usual solenoidality condition for the magnetic field is replaced

by ∇⊥ · B1 = 0. Here, despite π1 cancelling at leading order, as per equation (3.20),

it is retained in the momentum equation as a Lagrange multiplier (which is independent

of other quantities) and enforces the zero-divergence constraint on the velocity. The fact

that the orientation of the magnetic field must be known a priori makes the magneto-

Boussinesq model unsuitable for numerical simulations with complex field geometries.

For later convenience we present an alternative formulation of equations (3.16 – 3.20)

now:

ρ0
∂

∂t
u+ 2ρ0Ω× u = −

[
1

c2
p1 +

(
∂ρ

∂s

)
p

s1

]
gẑ−∇⊥π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 ,

(3.21)

∂

∂t
B1 = ∇× (u×B0) , (3.22)

∇ · u = H−1
ρ uz , (3.23)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (3.24)

p1 +
1

µ0
B0 ·B1 = 0 , (3.25)(
∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 . (3.26)

Equation (3.16) is easily recovered from (3.21) by re-introducing ρ1 by ρ1 = (1/c2)p1 +

(∂ρ/∂s)p s1 (equation 2.31) and by recalling the definition of H−1
B — equation (2.23).
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Equation (3.17) is recovered from (3.22) by expanding ∇ × (u × B0) = (B0 · ∇)u −
(∇ · u)B0 − (dB0/dz)uzx̂, eliminating ∇ · u by (3.23), and introducing H−1

B by (2.23).

Equation (3.24) is a re-scaling of (3.19) where we have also introduced H−1
s by (2.22).

Recall that the fields u⊥ and B1⊥ are solenoidal under this approximation, but not the full

fields u and B1. This inherent anisotropy makes the magneto-Boussinesq approximation

unsuitable for many practical applications, and here we have retained all components of

u and B1 in the velocity constraint and induction equation.

3.3 Anelastic models

The anelastic model was first introduced by Ogura & Phillips (1962), extending earlier

work by Batchelor (1954). They showed that the small length-scale assumption, which

allows density perturbations to be neglected everywhere except in the buoyancy term

in the Boussinesq model, can be dropped provided that the fluid has almost uniform

specific entropy. Their model formally assumes small (though nonlinear) perturbations

to a background state with exactly uniform entropy, i.e. adiabatic stratification. Such a

state is rarely achieved in any physical system, however, and many subsequent works have

therefore adapted the anelastic model to allow the specific entropy to be a slowly varying

function of altitude (e.g. Gough, 1969; Gilman & Glatzmaier, 1981; Lipps & Hemler,

1982). These different formulations are equivalent only in the asymptotic limit of adiabatic

stratification. Generally, the term “anelastic” is used to refer to any fluid model in which

the continuity equation (2.15) is replaced with a velocity constraint

∇ · (ρ0u) = 0, (3.27)

where ρ0(z) represents the density of the background state (Braginsky & Roberts, 2007).

While anelastic models were first derived in the absence of magnetic fields, they can be

easily extended to include a magnetic field, provided that v ≪ c; the only change is

that the Lorentz force now appears in the momentum equation (Glatzmaier, 1984). The

induction equation retains its flux-conservative form (2.14), so ∇ ·B remains exactly zero.

Here, we will consider two particular formulations of the anelastic model. Following

Wood & Bushby (2016), we refer to these as GGG (after Gough (1969); Gilman & Glatz-

maier (1981)) and LBR (after Lantz (1992); Braginsky & Roberts (1995)). These two

versions of the anelastic model will be derived in the following subsections.

In the coming chapters we will study how accurately the anelastic approximation cap-

tures magnetic buoyancy. Fan (2001) verified that the anelastic model has the correct

stability properties in the asymptotic limit in which it is formally valid, i.e. for v ≪ c

and adiabatic stratification. However, since Fan’s analysis only considered the ideal equa-

tions it does not differentiate between the GGG and LBR implementations. Berkoff et al.
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(2010) have compared these two formulations of the anelastic approximation, finding that

while both produce consistent results for a background state of nearly uniform entropy,

they differ under more general conditions. Wilczyński et al. (2022) studied, amongst oth-

ers, a similar question to one that we consider in this thesis — under what constraints

does the anelastic model accurately capture the effects of magnetic buoyancy instability?

They found that the anelastic model agrees well with the fully compressible result under

the theoretical conditions for the anelastic model — i.e. nearly adiabatic stratification

and magnetic pressure is small. If these conditions are violated then Wilczyński et al.

found that agreement breaks down and then anelastic model no longer captures the fully

compressible result well.

3.3.1 Gough, Gilman & Glatzmaier anelastic

As with the Boussinesq model, we begin with the linearised fully compressible equations

(2.25 – 2.31). For the GGG anelastic model, all (non-magnetic) terms are retained apart

from the left-hand side of the continuity equation (2.27), which therefore reduces to the

“anelastic equation”,

∇ · (ρ0u) = 0 . (3.28)

This approximation can be justified by assuming that the perturbations have a length-

scale that is comparable to the density scale height, Hρ, and a timescale, τ , that is much

longer than the acoustic timescale, Hρ/c. Under these assumptions, and assuming that

the buoyancy force is of the same order as the fluid acceleration in equation (2.25), the

left-hand side of equation (2.27) is found to be of orderM2, whereM ≡ Hρ/(cτ) ≪ 1 is the

Mach number. However, in order for both terms on the left-hand side of equation (2.28)

to be of the same order, the timescale must be of order τ ∼
√
Hs/g ≡ 1/N , where N is

the buoyancy frequency. For consistency, we therefore require that Hs ∼ Hρ/M
2 ≫ Hρ,

i.e. the background state must have nearly uniform entropy. Moreover, in the anelastic

approximation the background state is usually taken to be non-magnetic, with the entire

magnetic field regarded as a small perturbation. This requires that the total magnetic

pressure force is negligible in comparison with gravity, i.e. that g ≫ v2/HB. Therefore, at

leading order, equation (2.20) becomes simply

g = c2/Hρ . (3.29)

Although the anelastic approximation is formally valid only when Hs ≫ Hρ, it is quite

often used in situations where this condition does not apply (which partly motivates the

present study).
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For later convenience, we present a formulation of the GGG anelastic equations as

ρ0
∂

∂t
u+ 2ρ0Ω× u = −

[
1

c2
p1 +

(
∂ρ

∂s

)
p

s1

]
gẑ−∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 ,

(3.30)

∂

∂t
B1 = ∇× (u×B0) , (3.31)

∇ · u = H−1
ρ uz , (3.32)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (3.33)

π1 = p1 +
1

µ0
B0 ·B1 , (3.34)(

∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 , (3.35)

where we have eliminated ρ1 by ρ1 = (∂ρ/∂s)p s1 + (1/c2)p1, and replaced the full conti-

nuity equation by the anelastic equation (3.28).

3.3.2 Lantz, Braginsky & Roberts anelastic

The LBR model makes an additional approximation, to that of GGG anelastic, by replac-

ing temperature diffusion with entropy diffusion. Without approximation, the pressure

and gravity terms in the momentum equation (2.25) can be re-written as

−ρ1gẑ−∇p1 = ρ0

(
−∇

(
p1
ρ0

)
+

1

ρ0

[
H−1

ρ − g

c2

]
p1ẑ−

1

ρ0

(
∂ρ

∂s

)
p

s1gẑ

)
. (3.36)

Under the conditions inherent in the anelastic approximation, i.e. equation (3.29), the term

involving
[
H−1

ρ − g/c2
]
is negligible. With this term neglected, the equations have a very

similar mathematical form to the Boussinesq equations, except that ρ0 is not constant. In

particular, in the absence of diabatic processes (i.e. with Q1 = 0) the pressure perturbation

p1 appears only in the gradient term in the momentum equation, meaning that it does not

need to be calculated explicitly. However, this analogy with the Boussinesq approximation

breaks down when thermal relaxation is included (i.e. with Q1 ̸= 0), because the tempera-

ture perturbation, T1, depends on p1 via equation (2.30). If the p1 term in equation (2.30)

is neglected, the analogy with the Boussinesq equations is restored. This point was in-

dependently discovered by Lantz (1992) and Braginsky & Roberts (1995), so we refer to

the resulting equations as the LBR approximation. Whereas Lantz considered this merely

as a mathematical convenience, Braginsky & Roberts justified it by arguing that, in a

convective system, it is entropy gradients rather than temperature gradients that drive
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the flow of heat; in this sense, omitting the p1 term in equation (2.30), and thus replacing

temperature diffusion with entropy diffusion, can be regarded as a mean-field prescription

for the heat transport by small-scale convection. More recently, Pauluis (2008) has shown

that this approximation is also necessary for “thermodynamic consistency”, i.e. to make

the anelastic equations consistent with the laws of thermodynamics.

In fact, a system of equations mathematically identical to the LBR model was ear-

lier obtained by Lipps & Hemler (1982) under slightly different assumptions. Lipps &

Hemler (1982) carried out a scale analysis in the context of deep moist convection in the

atmosphere. They assumed that the timescale is set by the buoyancy frequency (as in

the Boussinesq approximation) and assumed that the background potential temperature

was a slowly varying function of height/depth. They considered perturbations with a

length-scale ≪ Hρ ∼ Hs, but retained some next-to-leading-order terms in the resulting

equations. Under these conditions it can be shown that the p1 term in equation (2.30) is

negligible, much as in the Boussinesq approximation.

If the anelastic approximation is used in circumstances where the background state is

not close to adiabatic, then the neglect of the
[
H−1

ρ − g/c2
]
term in equation (3.36) makes

a material difference to the results.

The LBR equations have the benefit that they can be solved without explicitly calcu-

lating either pressure or temperature, and for this reason the LBR model has become the

standard implementation in astrophysical applications (Jones et al., 2011).

We will present the LBR equations here for future reference,

ρ0
∂

∂t
u+ 2ρ0Ω× u = −

[
H−1

ρ

g
p1 +

(
∂ρ

∂s

)
p

s1

]
gẑ−∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 ,

(3.37)

∂

∂t
B1 = ∇× (u×B0) , (3.38)

∇ · u = H−1
ρ uz , (3.39)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (3.40)

π1 = p1 +
1

µ0
B0 ·B1 , (3.41)(

∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 , (3.42)

where we have made use of equation (3.36) in the momentum equation and neglected the[
H−1

ρ − g/c2
]
term. We have also replaced the full continuity equation by the anelastic

equation (3.28), and neglected the p1 term in the T1 equation (3.42) — for reasons ex-

plained in the text following equation (3.36). Recall that Q1 represents perturbations to
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the diabatic heating, which would ordinarily include temperature diffusion. Given our

form of equation (3.42) this could be re-written as entropy diffusion.

3.4 Pseudo-incompressible model

The pseudo-incompressible model was originally derived by Durran (1989) as an improve-

ment upon the anelastic model, although it can also be viewed as a generalisation of earlier

“low Mach number” models to include stratification (Rehm & Baum, 1978). Anelas-

tic models do not allow density perturbations to effect the mass-balance. However, the

pseudo-incompressible model accounts for density perturbations, arising from changes in

temperature, to effect the mass-balance. This means that the fluid expands in response to

heating. (In the anelastic model, by contrast, the expansion of fluid elements is dictated

by the density of their surroundings, ρ0.) The pseudo-incompressible approximation was

derived, in the absence of magnetic field, with atmospheric flows in mind. Specifically,

Durran (1989) advocates for using the pseudo-incompressible model in strongly stable

regions where the pseudo-incompressible is more accurate than the anelastic model. Sim-

ilar to the anelastic model, the pseudo-incompressible model is asymptotically valid in the

limit where the background state is adiabatically stratified, but it retains terms that are

formally negligible in this limit. A detailed discussion on the asymptotic validity of the

anelastic and pseudo-incompressible models can be found in Klein et al. (2010). A key

feature of the pseudo-incompressible model is that the velocity satisfies an inhomogeneous

constraint of the form

∇ · u =
g

c2
uz −

(
∂ρ

∂T

)
p

Q

ρ2cp
, (3.43)

where we have used the same notation as in Section 2.2.1.

A generalisation of the pseudo-incompressible model that exactly obeys the laws of

thermodynamics was presented by Klein & Pauluis (2012). Subsequently, Vasil et al.

(2013) showed that the pseudo-incompressible approximation can be derived very effi-

ciently using Lagrangian dynamics, either by imposing a constraint on the fluid pressure

or, equivalently, by linearising the fluid action in the pressure variable. This derivation

can be generalised to include non-ideal physics (Gay-Balmaz, 2019) and a time-dependent

background state (Snodin & Wood, 2022). Vasil et al. also obtained an MHD extension

of the pseudo-incompressible model, by imposing a constraint on the total (i.e. gas plus

magnetic) pressure. The resulting momentum equation has the form

ρ
Du

Dt
+ 2ρΩ× u = −∇(π0 + π1)− gρẑ+B ·∇H+

π1∇π0
ρ(c2 + v2)

, (3.44)
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where π0(x) is the total background pressure and where

H ≡
(
1 +

π1
ρ(c2 + v2)

)
B

µ0
. (3.45)

The form of equation (3.44) can be derived by considering a variational derivation of the

governing equations subject to the constraint that total pressure is small; see Vasil et al.

(2013). This must be solved together with a complicated velocity constraint. In the

absence of diabatic terms (i.e. for Q = 0), this constraint is

ρ(c2 + v2)∇ · u+ u ·∇π0 =
1

µ0
(B ·∇u) ·B . (3.46)

In the absence of magnetic field (i.e. with B = 0, v = 0 and π = p) these equations reduce

to the pseudo-incompressible model of Klein & Pauluis (2012).

The main advantage of this model is that, owing to its variational derivation, it is

guaranteed to conserve energy. However, the complexity of the equations makes solving

them difficult, and the asymmetric form of the Lorentz force in equation (3.44) has no

simple physical explanation.

The derivation performed by Vasil et al. does not make any assumption about the

relative magnitudes of the sound speed, c, and the Alfvén speed, v, but in the solar interior

we expect that v ≪ c. In the following subsection, we show that this extra condition can

be explicitly incorporated into the variational derivation, ultimately leading to a pseudo-

incompressible MHD model in which the Lorentz force retains its usual form, i.e. we have

the momentum equation,

ρ
Du

Dt
+ 2ρΩ× u = −∇(p0 + p1)− gρẑ+

1

µ0
(∇×B)×B+

p1
ρc2

∇p0 , (3.47)

and the velocity constraint takes the same form as equation (3.43). It is this version of

the pseudo-incompressible equations that we will consider in our study.

3.4.1 Variational derivation of MHD pseudo-incompressible Model

To our knowledge, there has not been a formal (i.e. rigorous asymptotic) derivation of the

pseudo-incompressible model that includes magnetic fields. An MHD version has been

derived by Vasil et al. (2013) using variational methods, but this resulted in a non-standard

form of the Lorentz force. The derivation of Vasil et al. (2013) assumed that perturbations

to the total magnetic pressure remain small, but made no explicit assumption about the

magnitude of the Alfvén speed, v, relative to the sound speed, c. Here we will present

a variational derivation of the MHD pseudo-incompressible model in which the smallness

of v/c is used to further simplify the action. By making use of variational methods we
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necessarily neglect any diabatic processes, such as diffusion. For simplicity we will also

neglect rotation.

We begin by deriving the governing equations describing a fully compressible fluid

under the MHD approximation by considering the action

S =
x [

1
2ρ|u|

2 − ρΦ− |B|2

2µ0
− ρU(ρ, s)

]
d3xdt , (3.48)

where Φ(x) is the gravitational potential, which we take to be fixed, and U is the specific

internal energy, expressed in terms of its natural variables, ρ and s. To derive the equations

of motion we apply Hamilton’s principle of stationary action, expressing the variations in

ρ, s, u and B in terms of the Lagrangian displacement, ξ:

δρ = −∇·(ρξ) , δs = −ξ·∇s , δu =
∂ξ

∂t
+ u·∇ξ − ξ·∇u , δB = ∇× (ξ ×B) (3.49)

(Newcomb, 1962; Lundgren, 1963). After integrating by parts, and neglecting surface

contributions, the first variation of the action S is found to be

δS =
x [

− ∂

∂t
(ρu)−∇·(ρu⊗ u)−∇p− ρ∇Φ+

1

µ0
(∇×B)×B

]
·ξ d3xdt , (3.50)

where p ≡ ρ2∂U/∂ρ is the fluid pressure, and where ⊗ represents the tensor product.

Hamilton’s principle requires that δS = 0 for all possible displacements ξ, and hence we

deduce the momentum equation for the fluid. Moreover, the form of expressions (3.49)

builds in the conservation of mass, entropy and magnetic flux in their usual forms. (Be-

cause the relations (3.49) do not contain any explicit time dependence, we can simply

replace δ → ∂/∂t and ξ → u.) We thus arrive at the fully compressible MHD equations:

ρ
Du

Dt
= −∇p− ρ∇Φ+

1

µ0
(∇×B)×B , (3.51)

∂B

∂t
= ∇× (u×B) , (3.52)

Dρ

Dt
+ ρ∇·u = 0 , (3.53)

Ds

Dt
= 0 , (3.54)

where D/Dt ≡ ∂/∂t+ u·∇ is the material derivative.

Vasil et al. (2013) showed that, in the non-magnetic case, the pseudo-incompressible

model can be derived by first making a Legendre transformation (that is, a mathemat-

ical transformation on a convex function, which here amounts to transforming from one

variable to a conjugate variable — for the mathematical theory underpinning Legendre

transforms see, for example, Rockafellar (1970)) from specific internal energy, U(ρ, s),
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to enthalpy, H(p, s) ≡ U + p/ρ, while introducing the pressure, p ≡ ρ2 ∂U/∂ρ, as an

additional independent variable, and then linearising the action about a fixed reference

pressure, p0(x). To generalise this argument to a magnetised fluid, we must first recog-

nise that it is perturbations to the total pressure, π, that are expected to be small. We

therefore begin by introducing π as an additional variable in the action, by making an

appropriate Legendre transformation. Generalising the thermodynamic definition of p, we

can write

π ≡ ρ2
∂Ũ

∂ρ
, (3.55)

where Ũ(ρ, s, sB) is the effective internal energy,

Ũ(ρ, s, sB) = U(ρ, s) + ρ sB , (3.56)

and

sB ≡ |B|2

2µ0ρ2
(3.57)

is the “magnetic entropy”, note that sB has different units from specific entropy — sB

has units of (specific) energy per unit denisty rather than the usual (specific) energy per

unit temperature. The second derivative of Ũ with respect to 1/ρ is readily found to

be ρ2(c2 + v2), which is strictly positive, and so Ũ is a convex function of 1/ρ. We can

therefore define the effective enthalpy via the Legendre transformation

H̃(π, s, sB) ≡ Ũ(ρ, s, sB) + π/ρ , (3.58)

by analogy with the non-magnetic case. We note that, in general, it is not possible to

express the function H̃(π, s, sB) analytically, even when the equation of state U(ρ, s) is

known, but nonetheless this function is well-defined. With these definitions, we can now

write the Lagrangian density as

L = 1
2ρ|u|

2 − ρΦ− ρH̃(π, s, sB) + π . (3.59)

We emphasize that, up to this point, no approximation has been made; if we apply Hamil-

ton’s principle to this action, regarding π as an independent variable, then we eventually

obtain the fully compressible equation of motion as well as the equation of state,

1

ρ
=

∂H̃

∂π
. (3.60)

We can now reproduce the pseudo-incompressible MHD model of Vasil et al. (2013) by

writing the total pressure in equation (3.59) as π = π0(x) + π1, where π0(x) is a fixed

reference pressure, and neglecting terms that are nonlinear in π1. However, with this
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approach the contributions to the pressure from the fluid and from the magnetic field

are treated on an equal footing, whereas in reality we expect the magnetic pressure to

be only a small perturbation to a non-magnetic reference state; this is equivalent to the

assumption that v ≪ c. We will therefore make a double approximation in which we write

π = p0(x) + π1 and then neglect terms that are nonlinear in π1 or sB. The Lagrangian

density then becomes

L = 1
2ρ|u|

2 − ρΦ− ρH̃(p0, s, 0)− π1ρ
∂H̃

∂π
(p0, s, 0)− sBρ

∂H̃

∂sB
(p0, s, 0) + p0 + π1 . (3.61)

Using the definitions given above, this can be rewritten in the form

L = 1
2ρ|u|

2 − ρΦ− ρH(p0, s) + p0 −
ρ⋆

ρ

|B|2

2µ0
+ π1(1− ρ/ρ⋆) , (3.62)

where

ρ⋆(p0, s) ≡ 1

/
∂H

∂p
(p0, s) (3.63)

is the density given by the usual equation of state, but with p replaced by p0. When

we apply Hamilton’s principle to this action, the pressure perturbation π1 serves as a

Lagrange multiplier that enforces the approximate equation of state ρ = ρ⋆(p0, s). The

equation of motion is eventually found to be

ρ
Du

Dt
= −ρ∇Φ−∇p0 +

1

µ0
(∇×B)×B−∇p1 +

p1
ρc2

∇p0 , (3.64)

where p1 ≡ π1−|B|2/2µ0 and 1/c2 = ∂ρ⋆(p0, s)/∂p. Thus we finally arrive at the same set

of pseudo-incompressible equations as in the non-magnetic case, except that the Lorentz

force is now included in the momentum equation in its usual form, and the induction

equation also appears in its usual form (as guaranteed by the definition of δB in equa-

tion (3.49)). From the action given by equation (3.62), we deduce that this system con-

serves the same energy, ∫ [
1
2ρ|u|

2 + ρΦ+ ρU(ρ, s) +
|B|2

2µ0

]
d3x, (3.65)

as the fully compressible system. The fact that the equations can be obtained from an

action also implies that the linearised equations are self-adjoint (in the absence of rotation).

In order to include diabatic processes in the model, it is necessary to relate the tem-

perature to the other thermodynamic variables. However, since the density is now given

by the approximate equation of state (3.63), the correct definition of temperature is not

obvious. In fact, there is a unique definition that preserves the laws of thermodynamics
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(Klein & Pauluis, 2012):

T = T ⋆(p0, s) + p1
∂T ⋆

∂p
(p0, s) , (3.66)

where T ⋆(p, s) ≡ ∂H

∂s
(p, s) is the usual equation of state. This is the definition that we

have used in our results; in its linearised form, it is identical to the fully compressible

relation (2.30).

For future convenience, we will present the linearised pseudo-incompressible equations

here,

ρ0
∂

∂t
u+ 2ρ0Ω× u = −

[
1

c2
p1 +

(
∂ρ

∂s

)
p

s1

]
gẑ−∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 ,

(3.67)

∂

∂t
B1 = ∇× (u×B0) , (3.68)

∇ · u = H−1
ρ uz −

(
∂ρ

∂T

)
p

Q1

ρ20cp
, (3.69)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (3.70)

π1 = p1 +
1

µ0
B0 ·B1 , (3.71)(

∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 , (3.72)

where we have replaced the full continuity equation by equation (3.43).
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Chapter 4

Asymptotic approach to linear

problem

The majority of this chapter comes from a paper published in Physical Review Fluids,

co-written by myself, Toby Wood and Paul Bushby (Moss et al., 2022).

4.1 Introduction

To model buoyancy-driven flows, in many astrophysical and geophysical contexts it is

essential to include effects of compressibility and stratification. However, in many cases the

dynamics of interest occur on a timescale that is much longer than the acoustic timescale,

i.e. the time taken for a sound wave to traverse the fluid. Most models, whether theoretical

or numerical, therefore make some kind of sound-proof approximation (e.g., Boussinesq

or anelastic) in which sound waves are filtered out of the governing equations. However,

each of these approximations is derived under certain assumptions that may not hold in

the system of interest. In particular, the Boussinesq approximation is derived under the

assumption of small length-scales, and the anelastic approximation is derived assuming

small perturbations to a state with uniform entropy.

Magnetic buoyancy — the tendency for regions of strong magnetic flux to be less dense

than their surroundings — potentially provides a stringent test problem for any sound-

proof model, because it involves significant perturbations to the fluid pressure and density,

on length-scales that are typically long in the direction of the magnetic field but short in

the other directions. Yet there has been relatively little work done to compare how ac-

curately different sound-proof models describe the magnetic buoyancy instability, outside

of specific asymptotic regimes. The main scientific interest in the magnetic buoyancy in-

stability comes from the solar interior, where buoyant magnetic structures rise through

the Sun’s convective envelope and emerge at the surface. These buoyant structures are
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believed to originate in the tachocline below the convection zone, where strong magnetic

fields are generated by differential rotation. In the lower part of the tachocline the tem-

perature gradient is strongly subadiabatic, inhibiting the magnetic buoyancy instability

until the field becomes sufficiently strong. Most global numerical studies of the solar in-

terior have employed the anelastic approximation. However, it is unclear how accurately

the anelastic approximation captures the onset of instability in the presence of such large

entropy variations. Indeed, under these conditions the meaning of the anelastic approxi-

mation becomes somewhat ambiguous, because there are different formulations that only

become equivalent in the asymptotic limit of adiabatic stratification (e.g., Berkoff et al.,

2010).

Our goal in this chapter is to determine which sound-proof models accurately describe

the magnetic buoyancy instability, and in precisely which parameter regimes. Our ap-

proach is similar to that of Berkoff et al. (2010), who numerically solved the linearised

equations describing perturbations to specific background states, and compared the growth

rates they obtained using the anelastic and fully compressible models. However, here we

consider several asymptotic parameter regimes in order to obtain analytical solutions for

more general background states. This allows us to identify more precisely the conditions

under which different sound-proof approximations reproduce the fully compressible re-

sults. Note that we will only be considering sound-proof models — that is, models in

which sound waves are removed from the governing equations — rather than alternative

models that slow down sound waves (Iijima et al., 2019) or damp them using implicit

timestepping (Goffrey et al., 2017).

Whilst the relative merits of the different sound-proof approximations have been exten-

sively studied in the context of various hydrodynamic problems (Bannon, 1995; Lilly, 1996;

Davies et al., 2003; Brown et al., 2012; Wood & Bushby, 2016), there are still a number of

important open questions regarding the applicability of such approximations in the con-

text of magnetohydrodynamics. It is one of these open questions (i.e. the extent to which

such approximations can be used to describe magnetic buoyancy) that provides the moti-

vation for this chapter. Recent work by Wilczyński et al. (2022) presents a similar analysis

focused on the analestic model, and restricted to nearly-adiabatic parameter regimes, for

which the anelastic model is asymptotically valid. Recent work by Wilczyński et al. (2022)

addressed some questions in this area. Firstly, they show that both the Boussinesq and

anelastic approximations can be generalised to include magnetic fields in such a way that

magnetic buoyancy is included. Secondly, Wilczyński et al. (2022) consider a linear sta-

bility analysis to show that, under the asymptotic conditions of the anelastic model, the

anelastic model can accurately describe the magnetic buoyancy instability. Here, we will

take a similar approach to the latter, and will carry out a linear stability analysis which

will consider each of the models discussed in Chapter 3 under wide parameter ranges.
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We will be making use of the linearised equations presented in Section 2.2, which also

defines the geometry and essential notation for the problem. Section 4.2 introduces a

general linearised sound-proof model that includes several adjustable coefficients. This

general model includes each of the sound-proof models discussed in Chapter 3 as special

cases. In Section 4.3 we compare the linear stability properties of our sound-proof model

with the fully compressible system in the absence of rotation; Section 4.4 presents a similar

analysis for the rotating fluid. In each case we consider several asymptotic regimes and

identify the leading-order dynamics, i.e. the dynamics governed by the dominant terms,

in both the fully compressible system and our general sound-proof model, both with and

without thermal relaxation. Comparison between these two systems yields constraints on

the coefficients in our model which in turn tell us which models are applicable in which

regimes. A summary and discussion of these results is presented in Section 4.5.

4.1.1 Fully compressible linearised equations

In Chapter 3 we discussed how each of the sound proof models we will be considering can

be derived and written in the form that they appear in our general sound proof model

(introduced in the next section).

For ease of reference we paste the linearised compresssible equations (2.25)–(2.31) here

ρ0
∂

∂t
u+ 2ρ0Ω× u = −gρ1ẑ−∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 , (4.1)

∂

∂t
B1 = ∇× (u×B0) , (4.2)

∂

∂t
ρ1 = −∇ · (ρ0u) , (4.3)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (4.4)

π1 = p1 +
1

µ0
B0 ·B1 , (4.5)(

∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 , (4.6)

ρ1 =

(
∂ρ

∂s

)
p

s1 +
1

c2
p1 , (4.7)

where in the background we have

g = c2H−1
ρ − c2H−1

s + v2H−1
B . (4.8)

A more thorough description and derivation of these equations is provided in Section 2.2.1.

When comparing results from the fully compressible equations with results from any

sound-proof model, care must be taken in the interpretation of the background state. In
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particular, most sound-proof models first introduce a non-magnetic background state in

hydrostatic balance, and regard the entire magnetic field as a perturbation to this. For

consistency, we will therefore only consider background states that are weakly magnetised,

in the sense that the magnetic pressure force is negligible in comparison with gravity. This

means that the final term in equation (4.8) can be neglected, at least in a leading-order

analysis.

In much of what follows we will introduce Newtonian cooling, with Q1 = ρcpα(T0 −
T ) (where T0(z) is the equilibrium temperature profile and α is the cooling rate) as an

alternative to thermal diffusion. This simplifies the analysis by reducing the number of

vertical derivatives in the linearised equations. In what follows, we are mostly concerned

with the limits α → 0 and α → ∞, the latter of which reproduces the “fast thermal

relaxation” regime considered by Gilman (1970), in which temperature perturbations are

vanishingly small. In both of these limits, the exact mechanism of thermal relaxation

becomes irrelevant.

4.2 General sound-proof model

To ascertain how well each of the sound-proof models discussed in Chapter 3 describes

magnetic buoyancy, we consider a general linearised sound-proof model that includes

each of the sound-proof models, namely the magneto-Boussinesq, anelastic and pseudo-

incompressible models, as special cases. This is a more efficient approach than simply

analysing each individual model in turn.

Our general sound-proof model is given by the following set of linearised equations:

ρ0
∂

∂t
u+ 2ρ0Ω× u = −

[
D

c2
p1 +

(
∂ρ

∂s

)
p

s1

]
gẑ−∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 ,

(4.9)

∂

∂t
B1 = ∇× (u×B0) , (4.10)(

∂ρ

∂s

)
p

∂

∂t
s1 − ρ0H

−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (4.11)

∇ · u = C
g

c2
uz − F

(
∂ρ

∂T

)
p

Q1

ρ20cp
, (4.12)

Jπ1 = p1 +
B0

µ0
B1x , (4.13)(

∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −G
γ − 1

c2
p1 , (4.14)

where we have used the same notation as for the fully compressible equations (4.1)–(4.7).

The coefficients C, D, F , G, J are assumed to be known functions of altitude, z; different
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choices for these coefficients correspond to different sound-proof approximations. For

example, in the pseudo-incompressible approximation all of these coefficients are equal to

1. We will therefore assume that all the coefficients are of order unity. Table 4.1 shows

the values of these coefficients for each of the models discussed in Chapter 3. This general

model is constructed to be as general as possible and, in theory, contain every sound-proof

model as a special case. The sound-proof models that we will be considering, and are

present in Table 4.1, are first introduced and discussed in Chapter 3. Each subsection

of Chapter 3 ends by presenting the linearised equations for the relevant model. By

comparing these equations, i.e. (3.16)–(3.26), (3.30)–(3.35), (3.37)–(3.42), (3.67)–(3.72),

to equations (4.9)–(4.14) the values for each of the coefficients C, D, F , G, J for each model

will be clear. However, there are other models, which we do not consider here, for which

it would be unclear whether or not they fit within our framework; e.g. Quasi-hydrostatic

model (e.g., Miller & White, 1984). The Quasi-hydrostatic model, for example, is written

in pressure coordinates (i.e. pressure in place of a vertical, z, coordinate), as such it would

not be obvious how one could easily add magnetic fields to such a model. Furthermore,

given that it is in written in terms of pressure coordinates, it is unclear whether or not it

would fit into our framework; that is not to say that it doesn’t, but just that significant

manipulation of the equations would be required to find out.

Note that in our sound-proof model we have deliberately not included a density per-

turbation, ρ1. This is because there is often ambiguity in how density should be defined

in a sound-proof system. For example, Durran (1989) defined two quantities called ρ and

ρ∗, one that satisfies the equation of state and one that satisfies the continuity equation.

Note that in many implementations of the anelastic approximation (e.g., Ogura & Phillips,

1962; Lipps & Hemler, 1982; Lantz, 1992; Braginsky & Roberts, 1995) an expression for

density is not explicitly needed because the equations are written in terms of pressure and

entropy. Combining equations (4.11) and (4.12), we find that

∂

∂t
F

(
∂ρ

∂s

)
p

s1 =
[
FH−1

s + C
g

c2
−H−1

ρ

]
ρ0uz −∇ · (ρ0u) , (4.15)

which has the same form as the continuity equation (4.3) if we define

ρ1 ≡ F

(
∂ρ

∂s

)
p

s1 (4.16)

and if the coefficients C and F are chosen such that

FH−1
s + C

g

c2
= H−1

ρ . (4.17)

However, this definition of ρ1 does not satisfy the equation of state (4.7), and nor, in
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Coefficient
Model LBR

anelastic
GGG

anelastic
Pseudo-

incompressible
Magneto-
Boussinesq

C c2

g H
−1
ρ

c2

g H
−1
ρ 1 c2

g H
−1
ρ

D c2

g H
−1
ρ 1 1 1

F 0 0 1 0
G 0 1 1 1
J 1 1 1 0

Table 4.1: Values for each of the coefficients in our sound-proof model needed to reproduce the
models summarised in Chapter 3.

general, is it the same quantity that appears in the buoyancy term of equation (4.9). For

this reason, we will later refer to the quantity

ρk ≡ F

(
∂ρ

∂s

)
p

s1 (4.18)

as the “kinematic density”.

4.3 Non-rotating case

Our goal now is to solve the linearised equations arising from the fully compressible and

sound-proof models. In both cases, since the background state depends only on altitude,

z, we can seek solutions in the form f1 = f̃1(z) exp(σt+ ikxx+ ikyy), where f represents

any of the perturbed variables. The linearised equations then reduce to a second-order

system of linear ordinary differential equations (ODEs) in z. In general this system cannot

be solved analytically, so to make progress we will consider several asymptotic limits

of relevance to the interior of the Sun and other stars. Throughout the remainder of

this chapter we will approximate thermal diffusion by introducing Newtonian cooling, i.e.

Q1 = ρcpα(T0(z)− T ).

4.3.1 Fast thermal relaxation

We first consider the case with no rotation and α → ∞. In this limit, the temperature

perturbation vanishes (Gilman, 1970). The specific asymptotic regime we consider is given
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by

v ≪ c , (4.19)

HB ∼ Hρ ∼ Hs , (4.20)

ky,
d
dz ≳ kx, H

−1
ρ , (4.21)

α → ∞ , (4.22)

σ ∼ v/Hρ . (4.23)

By adopting the scalings ky,d/dz ≳ kx, H
−1
ρ we can initially assume that all length-scales

are equal, before subsequently assuming smaller length-scales in the directions perpendic-

ular to the magnetic field, if desired. The scaling for the growth rate, σ, is justified by the

results, and is the expected timescale for magnetic buoyancy instability based on previ-

ous studies. We apply this scaling regime to our fully compressible equations (4.1)–(4.7)

and retain only the leading-order terms. The equations can then be reduced to a pair of

coupled ODEs:(
d

dz
+

γg

c2
σ2

q

)
π1 = − 1

σ

(
q + γg

v2

c2

(
σ2

q
H−1

ρ −H−1
B

))
ρ0uz , (4.24)(

d

dz
−H−1

ρ

σ2

q

)
uz = −σ

q
(k2x + k2y)

π1
ρ0

, (4.25)

where we have defined

q ≡ σ2 + v2k2x . (4.26)

Since we have neglected viscosity and magnetic diffusion, the most unstable modes are

found in the limit ky → ∞. In this limit the total pressure perturbation, π1, and hence the

left-hand side of equation (4.24), becomes negligible, and we are left with a local dispersion

relation:

(σ2 + v2k2x)
2 + γg

v2

c2
H−1

B

(
σ2

(
HB

Hρ
− 1

)
− v2k2x

)
= 0 , (4.27)

which exactly matches the result of Gilman (1970). In the case of interchange motions

(i.e. for kx = 0) we have instability if and only ifH−1
B > H−1

ρ . If instead we have k2x > 0, i.e.

undular modes, we can maximise with respect to k2x. When we do this, by differentiating

(4.27) and setting to zero, we find that the fastest growing mode occurs with

k2x =
γg

2c2HB

(
1− Hρ

2HB

)
(4.28)

at a growth rate given by

σ2 =
γg

4

v2

c2
Hρ

H2
B

. (4.29)
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Note that, since we require k2x > 0 we must have 0 < H−1
B < 2H−1

ρ .

If we apply the same analysis to the general sound-proof model (4.9)–(4.14), we again

eventually obtain a pair of coupled ODEs:(
d

dz
+ (D +G(γ − 1))

g

c2

(
J − v2k2x

q

))
π1 =

− 1

σ

(
q + (D +G(γ − 1))

gv2σ2

qc2

(
C

g

c2
+ FH−1

s − q

σ2
H−1

B

))
ρ0uz , (4.30)(

d

dz
−
(
C

g

c2
+ FH−1

s

) σ2

q

)
uz = −σ

q
(k2x + k2y)

π1
ρ0

. (4.31)

Hence we can reproduce the fully compressible result (4.24)–(4.25) provided that

J ≃ 1 , (4.32)

D +G(γ − 1) ≃ γ , (4.33)

C
g

c2
+ FH−1

s ≃ H−1
ρ . (4.34)

Note that we use “≃” here because we require these results to hold only at leading order,

for the particular asymptotic regime we have considered. It is perhaps surprising that

the sound-proof model can perfectly reproduce (at leading-order) the results of a fully

compressible system. This demonstrates that the terms neglected in the sound-proof

model, including sound waves, have no impact on the leading-order dynamics.

Referring to the particular sound-proof models listed in Table 4.1, we see immediately

that the GGG anelastic model satisfies all of these constraints. The same is true of

the pseudo-incompressible model, when we recall that the final term in equation (4.8)

is negligible under our scaling assumptions. However, the LBR anelastic model does

not satisfy these constraints, and therefore does not correctly describe the wavelength or

growth rate of the magnetic buoyancy instability in this regime. It is perhaps surprising

that GGG satisfies all the constraints when LBR doesn’t considering they are derived

under the same assumptions; certainly this wouldn’t have been predicted beforehand. The

reason for this will be that, in GGG anelastic, the assumptions amount to neglecting just

one term, the time-derivative term in the continuity equation, whereas, in LBR anelastic,

additional approximations are made. Given that the GGG equations have reproduced

the result of the fully compressible equations, it must be the case that the neglect of

the time-derivative term in the continuity equation is justified — but just not for the

reasons that are used to justify its neglect in the anelastic approximation. LBR on the

other hand makes additional approximations which are no longer valid in the regime we

consider here; which should not be surprising since we are not in the regime of validity of

the anelastic model. The magneto-Boussinesq approximation has J = 0, and therefore
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does not satisfy constraint (4.32). However, on smaller scales in y and/or z (which was the

regime considered by Spiegel & Weiss (1982)) the term involving J on the left-hand side

of equation (4.30) is negligible. This is because, for small scales in z, the z-derivative term

dominates the left-hand side of equation (4.30). For small scales in y, the perturbation π1

becomes vanishingly small, and so the entire left-hand side of equation (4.30) is negligible.

In particular, the condition J ≃ 1 is not required in order to correctly reproduce the

fastest growing mode (which, in the absence of viscosity and resistivity, has ky → ∞).

Interestingly, equation (4.34) is exactly the result (4.17) required to achieve a form of

mass conservation in the sound-proof model. Here we have arrived at the same result on

purely dynamical grounds, without any explicit reference to mass conservation.

4.3.2 No thermal relaxation

We now consider the ideal limit, with α = 0. We also reduce the strength of the (sta-

bilising) thermal stratification, which otherwise overwhelms the destabilising effect of

magnetic buoyancy in the absence of thermal relaxation. Specifically, we now assume

that H−1
s ∼ (v2/c2)H−1

ρ ≪ H−1
ρ . Note that this means the background state now has

g ≃ c2/Hρ , since both the Hs and HB terms are negligible in the magneto-hydrostatic

equation (4.8). The complete regime is given by

v ≪ c , (4.35)

HB ∼ Hρ ∼ (v2/c2)Hs , (4.36)

ky,
d
dz ≳ kx , H

−1
ρ , (4.37)

σ ∼ v/Hρ , (4.38)

α = 0 . (4.39)

Again, we apply this scaling regime to the fully compressible equations (4.1)–(4.7) and

retain only the leading-order terms. This leads to(
d

dz
+H−1

ρ

σ2

q

)
π1 = − 1

σ

(
q + c2H−1

ρ H−1
s + v2H−1

ρ

(
σ2

q
H−1

ρ −H−1
B

))
ρ0uz , (4.40)(

d

dz
−H−1

ρ

σ2

q

)
uz = −σ

q

(
k2x + k2y

) π1
ρ0

. (4.41)

The fastest growing mode is again found in the limit ky → ∞, for which π1 → 0, resulting

in a local dispersion relation similar to (4.27):

(σ2 + v2k2x)
2 + v2H−1

ρ

(
σ2

(
H−1

ρ −H−1
B +

c2

v2
H−1

s

)
+ v2k2x

(
c2

v2
H−1

s −H−1
B

))
= 0 .

(4.42)
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We can directly translate the results from the previous section by replacing c2/γ → c2 =

gHρ and then replacing H−1
B → H−1

B −(c2/v2)H−1
s . This shows that, in the absence of fast

thermal relaxation, the isothermal sound speed c/
√
γ is replaced by the adiabatic sound

speed c, and the entropy gradient opposes the destabilising field gradient.

When we apply the same analysis to our sound-proof model (4.9)–(4.14), we obtain(
d

dz
+DH−1

ρ

(
J − v2k2x

q

))
π1 = − 1

σ

(
q + c2H−1

ρ H−1
s +Dv2H−1

ρ

(
C
σ2

q
H−1

ρ −H−1
B

))
ρ0uz ,

(4.43)(
d

dz
− CH−1

ρ

σ2

q

)
uz = −σ

q
(k2x + k2y)

π1
ρ0

. (4.44)

Hence we can reproduce the fully compressible result (4.40)–(4.41) provided that

J ≃ 1 , (4.45)

D ≃ 1 , (4.46)

C ≃ 1 . (4.47)

The last of these constraints seems at first to be incompatible with what we found pre-

viously, i.e. equation (4.34), but in the current asymptotic regime we have Hs ≫ Hρ

and g ≃ c2/Hρ. Therefore (4.47) is actually just a weaker version of the earlier con-

straint (4.34).

4.3.3 Finite thermal relaxation

We now consider an intermediate case with finite Newtonian Cooling. With a finite value

of α, there is no longer a straightforward analogy with thermal diffusion. However, it is

still valuable to consider this regime to check that there are no important effects that only

take effect in the intermediate α regime. We will assume α ∼ v/Hρ and, as we did in the

previous section, we let (c2/v2)H−1
s ∼ H−1

ρ in order to retain as many terms as possible at

leading order. The complete regime is identical to the no thermal relaxation case except

our Newtonian cooling coefficient, α is now a comparable size to our growth rate, σ.

v ≪ c , (4.48)

HB ∼ Hρ ∼ (v2/c2)Hs , (4.49)

ky,
d
dz ≳ kx , H

−1
ρ , (4.50)

σ ∼ α ∼ v/Hρ , (4.51)

As we have done in the previous subsections, we apply this scaling regime to the fully

compressible equations (4.1 – 4.7) and keep only the leading order terms. These equations
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then reduce to(
d

dz
+

(
σ + γα

σ + α

)
g

c2
σ2

q

)
π1 =

− 1

σ

(
q+

(
σ + γα

σ + α

)
g
v2

c2

(
σ2

q
H−1

ρ −H−1
B +

σ

σ + γα

c2

v2
H−1

s

))
ρ0uz,

(4.52)(
d

dz
− σ2

q
H−1

ρ

)
uz = −σ

q
(k2x + k2y)

π1
ρ0

, (4.53)

where we have defined q = σ2 + v2k2x. When we apply the same scaling regime to our

sound-proof model (4.9 – 4.14), keeping leading order terms only we arrive at the following

coupled differential equations:(
d

dz
+

(
σ + γα

σ + α

)
g

c2

(
J − v2k2x

q

))
π1 =

− 1

σ

(
q +

(
σ + γα

σ + α

)
g
v2

c2

(
C
σ2

q
H−1

ρ −H−1
B + E

σ

σ + γα

c2

v2
H−1

s

))
ρ0uz ,

(4.54)(
d

dz
− C

σ2

q
H−1

ρ

)
uz = −σ

q
(k2x + k2y)

π1
ρ0

. (4.55)

Comparing these equations with (4.52 – 4.53), we find equivalence provided that

J ≃ 1 , (4.56)

D ≃ 1 , (4.57)

G ≃ 1 , (4.58)

C
g

c2
≃ H−1

ρ . (4.59)

These are stronger constraints on D and G than in each of the previous regimes. It should

be noted that the previous constraints, for infinite and zero α, are a subset of this set

of constraints. We note that the last constraint is in fact compatible with what we saw

in Section 4.3.1, but recognising that our background state has Hs ≫ Hρ. Note that F

does not appear in these constraints since terms involving F vanish due to the scaling

assumptions.

So any model that satisfies the constraints

J ≃ D ≃ G ≃ 1 and C
g

c2
+ FH−1

s ≃ H−1
ρ (4.60)

will be able to capture the same leading order behaviour as the fully compressible equa-

tions in any of the non-rotating regimes discussed so far.
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4.4 Rotating case

The growth rate of the magnetic buoyancy instability, for parameters typical of the solar

interior, is comparable to or slower than the Sun’s rotation rate. We therefore expect the

instability to be significantly affected by this rotation. The main interest in this instability

is to explain the appearance of active regions in the Sun at low latitudes, where the rotation

axis is roughly perpendicular to the direction of gravity, and so in the following we will take

Ω = Ωŷ. We do not present it here, but we have also carried out an identical analysis for

a more general axis of rotation; i.e. appropriate for regions at the equator, mid-latitudes,

or polar regions. We found that our conclusions, regarding the accuracy of our sound-

proof model and the constraints derived upon it, are unchanged. For this reason, we only

present this one case which is most appropriate for the Sun. The presence of rotation

generally acts to reduce the growth rate of the instability, and to separate the roots of the

dispersion relation into “fast” and “slow” modes. In the absence of magnetic diffusion,

we expect that the slow (i.e. magnetostrophic) branch is most easily destabilised, so we

will only consider that branch here. We focus on the limits of infinite and zero thermal

relaxation.

4.4.1 Fast thermal relaxation

As with the non-rotating case, we first consider the limit α → ∞. Where we recall that

Q = ρcpα(T0(z)− T ). Our complete asymptotic regime is given by

Ω ∼
( c
v

)1/2
vH−1

ρ , (4.61)

v ≪ c , (4.62)

HB ∼ Hρ ∼ Hs , (4.63)

ky ,
d
dz ≳ kx , H

−1
ρ , (4.64)

σ ∼
(v
c

)1/2
vH−1

ρ , (4.65)

α → ∞ . (4.66)

Note that the growth rate is slower than in the non-rotating case, and is of order σ ∼
v2k2x/Ω, characteristic of magnetostrophic dynamics.

We apply these scalings to the fully compressible equations (4.1)–(4.7) and keep only
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the leading-order terms, finding that(
d

dz
− 2Ωσ

iv2kx

)
π1 = − 1

σ

(
v2k2x − gγ

v2

c2

(
H−1

B +
2Ωσ

iv2kx

)
− 2Ωσ

ikx

(
H−1

ρ +
2Ωσ

iv2kx

))
ρ0uz ,

(4.67)(
d

dz
+

2Ωσ

iv2kx

)
uz = − σ

v2

(
1 +

k2y
k2x

)
π1
ρ0

. (4.68)

The most unstable modes occur in the limit ky → ∞, for which we have the local dispersion

relation

4Ω2σ2

v2k2x
− 2Ωσ

ikx

(
H−1

ρ + γ
g

c2

)
− gγ

v2

c2
H−1

B + v2k2x = 0 . (4.69)

We have an (oscillatory) instability if

H−1
B >

c2

4γg

(
γ
g

c2
+H−1

ρ

)2
, (4.70)

and the fastest growing mode then has

k2x =
γ

2

g

c2
H−1

B − 1

8

(
γ
g

c2
+H−1

ρ

)2
. (4.71)

Applying the same scaling regime to our sound-proof model (4.9)–(4.14), we obtain(
d

dz
+
(
D +G(γ − 1)

) g
c2
(J − 1)− 2Ωσ

iv2kx

)
π1 +

1

σ

(
−
(
D +G(γ − 1)

) g
c2
v2
(
H−1

B +
2Ωσ

iv2kx

)
+ v2k2x −

2Ωσ

ikx

(
2Ωσ

iv2kx
+ C

g

c2
+ FH−1

s

))
ρ0uz = 0 , (4.72)(

d

dz
+

2Ωσ

iv2kx

)
uz = − σ

v2

(
1 +

k2y
k2x

)
π1
ρ0

. (4.73)

Comparing this with the fully compressible result, we recover the same constraints as in

the non-rotating case, i.e. equations (4.32)–(4.34), with the same conclusions regarding

the applicability of the various sound-proof models in this regime.
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4.4.2 No thermal relaxation

As for the non-rotating case, we now consider the ideal limit α = 0 and we simultaneously

change the scaling of H−1
s accordingly. The regime considered here is given by

Ω ∼
( c
v

)1/2
vH−1

ρ , (4.74)

v ≪ c , (4.75)

HB ∼ Hρ ∼ (v2/c2)Hs , (4.76)

ky ,
d
dz ≳ kx , H

−1
ρ , (4.77)

σ ∼
(v
c

)1/2
vH−1

ρ , (4.78)

α = 0 . (4.79)

In this regime the fully compressible equations (4.1)–(4.7) reduce to the following pair of

ODEs, where we have only kept the leading-order terms:(
d

dz
− 2Ωσ

iv2kx

)
π1 = − 1

σ

(
v2k2x + c2H−1

ρ H−1
s − 2Ωσ

ikx

(
H−1

ρ +
2Ωσ

iv2kx

)

− v2H−1
ρ

(
H−1

B +
2Ωσ

iv2kx

))
ρ0uz , (4.80)

(
d

dz
+

2Ωσ

iv2kx

)
uz = − σ

v2

(
1 +

k2y
k2x

)
π1
ρ0

. (4.81)

Again, the most unstable mode arises in the limit ky → ∞. In this limit π1 → 0, and we

obtain the local dispersion relation

4Ω2σ2

v2k2x
− 4Ωσ

ikx
H−1

ρ − v2H−1
ρ H−1

B + c2H−1
ρ H−1

s + v2k2x = 0 . (4.82)

As in the non-rotating case, we can directly translate the results from the previous section,

equation (4.69), by replacing (c2/γ) → c2 = gHρ, and then replacing H−1
B → H−1

B −
(c2/v2)H−1

s .
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Applying the same analysis to our sound-proof model (4.9)–(4.14), we obtain

(
d

dz
+DH−1

ρ (J − 1)− 2Ωσ

iv2kx

)
π1 = − 1

σ

(
c2H−1

ρ H−1
s − 2Ωσ

ikx

(
2Ωσ

iv2kx
+ CH−1

ρ

)

−DH−1
ρ v2

(
H−1

B +
2Ωσ

iv2kx

)
+ v2k2x

)
ρ0uz , (4.83)

(
d

dz
+

2Ωσ

iv2kx

)
uz = − σ

v2

(
1 +

k2y
k2x

)
π1
ρ0

. (4.84)

Comparing this with the fully compressible result we once again recover the same con-

straints as in the non-rotating case, i.e. equations (4.45)–(4.47).

4.5 Conclusions

We have introduced a very general sound-proof MHD model, and constrained the co-

efficients in the model by considering the linear onset of magnetic buoyancy instability

under a range of physical conditions. The most general model that satisfies all of these

constraints has the form

ρ0
∂

∂t
u+ 2ρ0Ω× u = ρdg −∇π1 +

1

µ0
B0 ·∇B1 +

1

µ0
B1 ·∇B0 , (4.85)

∂

∂t
B1 = ∇× (u×B0) , (4.86)

∂

∂t
ρk = −∇ · (ρ0u) , (4.87)

∂

∂t
s1 + u ·∇s0 =

Q1

ρ0T0
, (4.88)

π1 = p1 +
1

µ0
B0 ·B1 , (4.89)

where ρd ≡ (1/c2)p1+(∂ρ/∂s)p s1 and ρk ∝ s1. We call ρd the “dynamic density” because

it determines the buoyancy force in equation (4.85); it is related to p1 and s1 by the usual

equation of state. We call ρk the “kinematic density” because it satisfies the continuity

equation (4.87); it is simply proportional to s1, with a coefficient that is essentially arbi-

trary — using the notation introduced in Section 4.2 we have ρk = F (∂ρ/∂s)p s1 where

F remains unconstrained. Since ρk is proportional to s1, equations (4.87) and (4.88) are

not independent, and in order for them to both be satisfied we must have

∇ · u = [H−1
ρ − FH−1

s ]uz − F

(
∂ρ

∂T

)
p

Q1

ρ20cp
, (4.90)
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which precisely corresponds to our model’s velocity constraint (4.12) under the condition

that C(g/c2) + FH−1
s = H−1

ρ .

Beyond the specific parameter regimes presented here, a tilted rotation axis, and the

fast branch of the rotating dispersion relation have also been considered. In all of these

cases, we find that the model given by (4.85)–(4.89) captures the correct leading-order

behaviour.

We emphasise that some of the parameter regimes we have considered lie outside the

asymptotic regimes in which sound-proof models are usually derived. In particular, the

magneto-Boussinesq, anelastic and pseudo-incompressible models are usually derived un-

der the assumption that the fluid has nearly uniform entropy (in the sense that Hs ≫ Hρ).

As expected, the anelastic and pseudo-incompressible models correctly describe the linear

onset of the instability when Hs ≫ Hρ, and the magneto-Boussinesq approximation is

applicable on small scales (in the directions perpendicular to the magnetic field). These

results are consistent with those of Wilczyński et al. (2022), who performed a similar anal-

ysis of the anelastic model, but restricted attention to regimes in which it is asymptotically

valid. Only the GGG anelastic and pseudo-incompressible approximations predict the in-

stability onset correctly in all of the regimes that we have considered, because both can be

written in exactly the form of equations (4.85)–(4.89), with F = 0 and F = 1, respectively.

In this study we have assessed different linearised sound-proof models entirely on the

basis of whether they accurately describe the magnetic buoyancy instability. However,

there are other important considerations when choosing between the various models. For

example, it is known that some (non-magnetic) sound-proof models have a Hamiltonian

structure, implying that both the nonlinear and linearized equations conserve a form of

energy (Bernardet, 1995; Bannon, 1996; Brown et al., 2012; Vasil et al., 2013). We saw

in Section 3.4.1 that the MHD pseudo-incompressible model has a Hamiltonian structure,

and therefore also conserves energy. This is a beneficial property for any model, because

it can be used to establish stability criteria (Bernstein et al., 1958) and to rule out certain

unphysical behaviours (e.g. Jones et al., 2009). A more thorough examination of energy

conservation in MHD sound-proof models is presented in Chapter 5.

Another important consideration when comparing numerical models is their compu-

tational complexity. The main motivation for using a sound-proof model is the reduced

computational burden in comparison with a fully compressible mode. However, within

the set of sound-proof models, some are more computationally expensive than others. In

particular, as described in Chapter 3, a significant advantage of the LBR anelastic model is

that the pressure and temperature perturbations do not need to be calculated explicitly.

In the GGG and pseudo-incompressible models, by contrast, the pressure perturbation

needs to be calculated explicitly by solving an elliptic equation (Bernardet, 1995; Bannon

et al., 2006). Moreover, in the pseudo-incompressible model the velocity field satisfies an
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inhomogeneous constraint that must be solved in tandem with the pressure perturbation

(Snodin & Wood, 2022). Interestingly, our results show that the models that best repro-

duce the linear behaviour of the fully compressible system are also the models that are

more computationally expensive to solve.

Although we have here only considered the linear instability problem, magnetic buoy-

ancy in the Sun is certainly a nonlinear process, and so full understanding of the formation

of active regions can only come from a nonlinear model. However, it seems likely that a

necessary condition for accurately describing the full, nonlinear problem would be to ac-

curately describe the linear regime. Hence, the work presented here is a necessary first

step towards a nonlinear sound-proof model of magnetic buoyancy. In nonlinear modelling

energy budgets are of central importance, and will be considered in subsequent work.
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Chapter 5

Self-adjointness of sound-proof

models

The majority of this chapter comes from a paper published in Geophysical and Astro-

physical Fluid Dynamics, co-written by myself, Toby Wood and Paul Bushby (Moss et al.,

2023).

5.1 Introduction

It is well known that the equations of magneto-hydrodynamics (MHD) for an ideal fluid

form a Hamiltonian system, i.e. that they are the Euler–Lagrange equations of a suitable

action (Newcomb, 1962; Lundgren, 1963). This applies both in the fully compressible

and incompressible cases. The existence of such an action implies that the linearised

equations, describing perturbations to any nonlinear solution, are themselves the Euler–

Lagrange equations of an action that is quadratic in the perturbations, which can be readily

obtained from the fully nonlinear action. In particular, if we consider perturbations to a

background state that is steady and at rest (in an inertial frame of reference) then the

linearised equations are guaranteed to be self-adjoint and to conserve a quadratic quantity

that can be called the “external energy” (Eckart & Ferris, 1956). These facts are often

useful in proving stability results (e.g. Bernstein et al., 1958), and can rule out certain

unphysical behaviours (e.g. Brown et al., 2012).

In astrophysical fluids, it is frequently the case that the dynamics of interest are slow

in comparison with acoustic waves, and yet some effects of compressibility (particularly

buoyancy and stratification) cannot be neglected. In such situations, it is common to use a

“sound-proof” model, such as the Boussinesq, anelastic and pseudo-incompressible models,

in which acoustic waves are filtered from the governing equations. As well as simplifying

the dynamics, such models are usually also more efficient to solve numerically, because the
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timestep is not constrained by the speed of sound. Such sound-proof approximations are

usually derived via formal asymptotics, by first assuming a particular set of scalings for

all physical quantities. However, this does not guarantee that the Hamiltonian structure

of the fully compressible equations will be preserved in the final model. An alternative

approach is to make any approximations at the level of the action, in order to ensure that

the model retains a Hamiltonian structure (Salmon, 1983, 1988; Morrison, 2005). Indeed,

Vasil et al. (2013) have shown that a wide family of non-magnetic, sound-proof models —

intermediate between the incompressible and fully-compressible models — can be obtained

from a suitable action. It is straightforward to generalise their action to include magnetic

fields under the MHD approximation. However, this does not guarantee that the resulting

equations will closely approximate the solution of the fully compressible MHD equations.

In Chapter 4 we have shown that there is one particular sound-proof MHD model —

the pseudo-incompressible model — that can be obtained by making physically-motivated

approximations to the fully compressible action. The derivation assumes only that the

Alfvén speed is much smaller than the sound speed, and that perturbations to the total

pressure are small. This result does not, however, rule out the existence of other sound-

proof MHD actions derivable under similar approximations.

In the present work we take a complementary approach to that of Chapter 4, and deter-

mine which sound-proof model provides the closest approximation to the energy of the fully

compressible system under the widest set of physical conditions. Motivated by conditions

in the solar tachocline, we consider the linearised equations describing perturbations to a

horizontal layer of magnetic field in the presence of gravitational stratification. We intro-

duce a very general sound-proof model, and show that the requirement of self-adjointness

greatly constrains the mathematical form of the linearised sound-proof equations. Of

all possible self-adjoint and sound-proof models, only the pseudo-incompressible model

conserves the same external energy as the fully compressible system.

The plan for this chapter is as follows. In Section 5.2 we present the action for a fully

compressible MHD fluid, and derive the equations of motion via Hamilton’s principle. We

also present the general sound-proof action obtained by Vasil et al. (2013). In Section 5.3

we prove that, for any Hamiltonian system, the linearised equations are self-adjoint, and

hence have a conserved “external energy”. Section 5.4 presents the same general linear

sound-proof model introduced in Chapter 4, and derives conditions under which it is self-

adjoint. We show that the pseudo-incompressible model is unique in that it conserves the

same external energy as the fully compressible system. In Section 5.6 we argue on the

basis of this result, and the results of Chapter 4, that this model provides the most reliable

sound-proof approximation for magnetic buoyancy.
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5.2 Action principles for magneto-hydrodynamics

The governing equations describing a fully compressible fluid under the MHD approxima-

tion can be obtained from the action

S =
x [

1
2ρ|u|

2 − ρΦ− |B|2

2µ0
− ρU(ρ, s)

]
d3xdt , (5.1)

where u is the fluid velocity, ρ is the density, s is the specific entropy, µ0 is the magnetic

permeability, Φ(x) is the gravitational potential, which we take to be fixed, B is the

magnetic field, and U is the specific internal energy, expressed in terms of its natural

variables, ρ and s. We saw in Section 3.4.1 that from this action we can derive the fully

compressible equations of motion. For convenience, we will reproduce these equations

(3.51 – 3.54) here,

ρ
Du

Dt
= −∇p− ρ∇Φ+

1

µ0
(∇×B)×B , (5.2)

∂B

∂t
= ∇× (u×B) , (5.3)

Dρ

Dt
+ ρ∇·u = 0 , (5.4)

Ds

Dt
= 0 , (5.5)

where D/Dt ≡ ∂/∂t+ u·∇ is the material derivative.

As described by Vasil et al. (2013) (see also Durran, 2008), in the absence of magnetic

fields a wide family of “sound-proof” models can be derived from an action of the form

S =
x [

1
2ρ|u|

2 − ρΦ− ρH(p0, s) + p0 + p1
(
1− ρ/ρ⋆(p0, s)

)]
d3x dt , (5.6)

where H(p, s) is the specific enthalpy (introduced by U = H − p/ρ), p0(x) is a fixed

“background” pressure field, and p1 is a Lagrange multiplier that enforces the constraint

ρ = ρ⋆(p0, s), where ρ⋆ is any desired function of p0 and s. The effect of this constraint is

to ensure that fluid elements expand or contract instantaneously, rather than oscillating

around an equilibrium size and radiating sound waves. This approximation can be justified

by assuming an infinitely fast sound speed; i.e. pressure perturbations are instantly carried

away by an infinitely fast sound wave. However, we do not make any precise assumption

about the sound speed here. Rather, we make the more general, less precise, assumption

that pressure perturbations are small without specifying why that may be. If we take

p0 and s to be constant in equation (5.6), so that H and ρ⋆ are also constant, then

we obtain the action for an incompressible fluid. But allowing for non-constant p0 and s

retains many of the effects of stratification and buoyancy, while still removing sound waves
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from the equations. There is considerable freedom in the choice of the function ρ⋆, and

several well-known sound-proof models can be obtained as special cases. In particular,

the anelastic model of Lantz (1992) and Braginsky & Roberts (1995) is recovered by

neglecting the dependence of ρ⋆ on s, and thus regarding it as a fixed background field, and

a pseudo-incompressible model similar to Durran (1989) is recovered by using the equation

of state 1/ρ⋆(p0, s) = ∂H(p0, s)/∂p. We can easily extend this action to include magnetic

fields under the MHD approximation, simply by adding −|B|2/2µ0 to the integrand in

equation (5.6). This is equivalent to simply adding the Lorentz force into the momentum

equation, and solving the induction equation in its usual form (5.3). However, in general

there is no reason to expect that the equations derived from such an action would provide a

close approximation to the dynamics of the fully compressible MHD system. For example,

it is well known that the Boussinesq MHD equations do not describe magnetic buoyancy,

unless they are modified to take account of changes in gas pressure produced by the

magnetic pressure (Spiegel & Weiss, 1982; Corfield, 1984). Moreover there could be other

sound-proof models with a different functional form to equation (5.6). Because there is

no way to systematically study all possible nonlinear sound-proof models, in what follows

we will confine our attention to the linearised sound-proof equations, describing small

perturbations to a prescribed equilibrium state. In place of the functional degrees of

freedom present in the nonlinear sound-proof model (5.6), the linearised equations contain

only algebraic degrees of freedom, in the form of adjustable coefficients. This allows us

to consider all possible linear sound-proof models simultaneously. For reasons described

in the next section, the adjointness and energy conserving properties of the linearised

equations provide an important test of their fidelity to the fully compressible system.

5.3 Properties of the linearised equations

A convenient property of a Hamiltonian system is that, when we consider linear perturba-

tions to any particular solution, the linearised equations themselves have a Hamiltonian

structure. In this section we will prove some important properties of the linearised equa-

tions, and for illustration we will consider a particular physical system. Motivated by the

solar tachocline, we will consider a steady, static background state with uniform gravity,

∇Φ = −gẑ, containing a horizontal magnetic field whose strength varies with height,

B0 = B0(z)x̂. We express each physical quantity, f say, as f = f0(z)+f1(x, y, z, t), where

f0 represents the background state and f1 is a linear perturbation. The linearised fully
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compressible equations are

ρ0
∂

∂t
u = −gρ1ẑ−∇π1 +

1

µ0
B0·∇B1 +

1

µ0
B1·∇B0, (5.7)

∂

∂t
B1 = ∇× (u×B0), (5.8)

∂

∂t
ρ1 = −∇·(ρ0u), (5.9)

∂

∂t
s1 = −u·∇s0 , (5.10)

π1 = p1 +
1

µ0
B0·B1, (5.11)

ρ1 =

(
∂ρ

∂s

)
p

s1 +

(
∂ρ

∂p

)
s

p1, (5.12)

where π1 is the perturbation to the total (i.e. gas plus magnetic) pressure, and where

the partial derivatives in equation (5.12) are evaluated in the background state. (Note

that we have not assumed a specific equation of state.) The background state must be in

magneto-hydrostatic balance, i.e.

dπ0
dz

≡ d

dz

(
p0 +

B2
0

2µ0

)
= −gρ0 . (5.13)

Because we are considering perturbations to a static background, the resulting linearised

equations are guaranteed to be self-adjoint, as we shall now prove.

5.3.1 Self-adjointness of the fully compressible system

The self-adjointness of equations (5.7)–(5.12) was demonstrated by Bernstein et al. (1958),

and is discussed in further detail by Goedbloed et al. (2019), so here we will only summarise

the main results. It is convenient to first express all of the perturbations in terms of the

(linearised) Lagrangian displacement, ξ. This can be achieved using the linearised version

of equation (3.49):

ρ1 = −∇·(ρ0ξ) , s1 = −ξ·∇s0 , u =
∂ξ

∂t
, B1 = ∇× (ξ ×B0) . (5.14)

With some straightforward but lengthy algebra, the linear system can be written in the

form of a single vector equation,

ρ0
∂2ξ

∂t2
= F[ξ], (5.15)
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where F is a linear differential operator, given by (Bernstein et al., 1958)

F[ξ] = ∇
(
ρ0(c

2 + v2)∇·ξ − ρ0v
2∂ξx
∂x

− gρ0ξz

)
+ ρ0v

2 ∂
2ξ

∂x2
− ρ0v

2 ∂

∂x
(∇·ξ)x̂+ g∇· (ρ0ξ) ẑ . (5.16)

Here, c is the sound speed and v is the Alfvén speed in the background state; these are

defined as

c2 ≡
(
∂p

∂ρ

)
s

and v2 ≡ B2
0

µ0ρ0
. (5.17)

The operator F[ξ] is self-adjoint with respect to the usual inner product ⟨·, ·⟩ defined as

⟨ξ1, ξ2⟩ ≡
∫

ξ1·ξ2 d3x , (5.18)

i.e. we have that

⟨ξ1,F[ξ2]⟩ = ⟨F[ξ1], ξ2⟩ (5.19)

for arbitrary vectors ξ1 and ξ2. In order to derive this result we use integration by parts.

That is, we evoke the divergence theorem on a product of an arbitrary scalar, A, and

vector, ξ, in a volume V bounded by surface S;∫
V
∇ · (Aξ) dV =

∫
S
Aξ · n̂dS (5.20)

where n̂ is the normal unit vector to S. We recognise that the left hand side can be

re-written as ∫
V
∇ · (Aξ) dV =

∫
V
A (∇ · ξ) dV +

∫
V
ξ ·∇AdV . (5.21)

If we were in such a system with boundary conditions such that the right hand-side of

(5.20) were zero, i.e. ξ · n̂ = 0 on S, then we can use∫
V
A (∇ · ξ) dV = −

∫
V
ξ ·∇AdV . (5.22)

Since we are concerned here with buoyancy instability — rather than any surface insta-

bilities, such as the Kruskal-Schwarzchild instability — that develop within the body of

the fluid we choose boundary conditions that satisfy ξ · n̂ = 0, i.e. displacements that do

not move the boundary (Newcomb, 1961). Using this method, neglecting surface terms,

we can write ⟨ξ1,F[ξ2]⟩ in the symmetric form

⟨ξ1,F[ξ2]⟩ = −
∫

W [ξ1, ξ2] d
3x, (5.23)
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where W [ξ1, ξ2] is the symmetric bilinear operator

W [ξ1, ξ2] ≡ −gρ0ξ1z(∇·ξ2)− gρ0ξ2z(∇·ξ1)− ρ0v
2∂ξ2x
∂x

(∇·ξ1)− ρ0v
2∂ξ1x
∂x

(∇·ξ2)

− g
dρ0
dz

ξ2zξ1z + ρ0(c
2 + v2)(∇·ξ2)(∇·ξ1) + ρ0v

2∂ξ1
∂x

·∂ξ2
∂x

. (5.24)

From this symmetry, and the definition (5.18), we see immediately that

⟨ξ1,F[ξ2]⟩ = −
∫

W [ξ1, ξ2] d
3x = −

∫
W [ξ2, ξ1] d

3x = ⟨F[ξ1], ξ2⟩ , (5.25)

as required.

The proof just presented adopted a relatively simple background state, with a unidi-

rectional magnetic field, B0 = B0(z)x̂, but with effort it can be generalised to an arbitrary

background state, provided only that it is a steady solution of the governing equations in

an inertial frame. However, this general result can be arrived at with less effort by con-

sidering the action (3.48). Because the nonlinear equations of motion (5.2)–(5.5) are the

Euler–Lagrange equations for the functional (3.48), it follows that the linearised equations

of motion (5.7)–(5.12) are the Euler–Lagrange equations for an action that can be obtained

by taking the second variation of (3.48), i.e. by expanding each variable as f = f0 + f1

and isolating the terms that are of second order in the perturbations (Newcomb, 1962).

The linearised Euler–Lagrange equations are sometimes referred to as Jacobi equations, by

analogy with the equations defining Jacobi fields in Riemannian geometry (Taub, 1969).

Given that the action (3.48) only depends on the square of the velocity, when we consider

perturbations to a background state at rest, it is clear that the second variation, expressed

in terms of ξ, will have the form

δ(2)S =
x
[
1
2ρ0

∣∣∣∣∂ξ∂t
∣∣∣∣2 − 1

2W [ξ, ξ]

]
d3xdt, (5.26)

where W [ξ, ξ] is a bilinear operator, which can be taken to be symmetric without loss

of generality. If we work in a rotating frame, or if the Hall effect is present, then the

action contains terms that are linear in the velocity. In that case the argument pre-

sented here fails, and the linearised equations are generally not self-adjoint. This lack

of self-adjointness can also be interpreted as a lack of time-reversibility of the governing

equations. With a rotating system, it would be possible only to derive necessary con-

ditions for stability — proof of sufficiency relies on self-adjointness. For this reason, we

choose to neglect rotation for the entirety of this chapter. While this may seem like a

major restriction, especially given that our intended application is to the Sun, or other

rotating astrophysical bodies, it is no more of a limitation than the necessary neglect of

non-Hamiltonian processes like diffusion or viscosity (which, of course, would be present
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in the Sun).

Regarding δ(2)S as the action for the perturbations, and applying Hamilton’s principle,

we find the equation of motion to be precisely (5.15), where the operator F is defined so

that

−
∫

W [ξ, δξ] d3x =

∫
F[ξ]·δξ d3x . (5.27)

In other words, the operator F is defined by the functional derivative

F[ξ] = −δW
δξ

, (5.28)

where W is the functional

W =

∫
1
2W [ξ, ξ] d3x. (5.29)

Equation (5.27) applies for arbitrary vectors ξ and δξ (indeed the arbitrariness of δξ,

and its independence from ξ, is built into the definition of the functional derivative in

equation (5.28)), demonstrating that the operator F is self-adjoint with respect to the

inner product defined in equation (5.18). The earlier results for the fully compressible

MHD system can now be seen as a particular case of this general result, and the operators

F and W defined in equations (5.16) and (5.24) are particular cases of the operators

appearing in equations (5.26) and (5.28).

From the above results, it is easily shown that the quantity (1/2)ρ0 |∂ξ/∂t|2+(1/2)W [ξ, ξ]

is conserved in the linearised equations; following Eckart & Ferris (1956) we will refer to

this as the “external energy” density of the perturbed system, and following Bernstein

et al. (1958) we refer to W as the “potential energy” of the perturbations. (In fact, con-

servation of external energy is just an example of Noether’s theorem applied to the action

δ(2)S.) Bernstein et al. (1958) proved that the converse is also true, i.e. any system of

linear equations that have a conserved external energy in this form, and an equation of

motion of the form (5.15), must also have an action of the form (5.26), and must therefore

be self-adjoint.

The self-adjointness of the linearised equations allows necessary and sufficient stability

conditions to be derived in many cases without explicitly solving the equations, simply

by considering the potential energy, W. Indeed, the system is linearly unstable if and

only if there exists a displacement, ξ, that makes the potential energy negative (Laval

et al., 1965); this is known as the energy principle (Bernstein et al., 1958). The energy

principle has previously been used to determine the stability of magnetostatic states in

many physical systems, including stellar magnetic fields (Tayler, 1973) and interstellar

clouds (Zweibel & Kulsrud, 1975), and theoretical systems, such as the system considered

by (Hughes & Cattaneo, 1987) to study the stability of a vertically stratified horizontal

magnetic field.
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In the above derivation, the Lagrangian displacement ξ was regarded as an arbitrary

vector field, since there is no restriction on the allowed displacements in a fully compressible

fluid. In what follows, however, we will consider sound-proof models in which the velocity

(and therefore ξ) is subject to a constraint. In that context, self-adjointness can be

established only over the space of vectors that satisfy this constraint; these ideas are, of

course, familiar from studies of incompressible fluids (e.g. Newcomb, 1962).

5.4 Sound-proof models

As described in the introduction, and in Chapter 3, there are many situations in astro-

physical (and geophysical) fluid dynamics in which it is advantageous to use a sound-proof

model. The choice of which model to use generally comes down to a trade-off between

simplicity and accuracy. For reasons already mentioned, energy conservation of the non-

linear equations, and self-adjointness of the linearised equations, are desirable properties

for any model. In particular, self-adjointness can be used to rule out certain unphysical

behaviours (e.g. Jones et al., 2009; Brown et al., 2012) associated with violations of energy

conservation or wave-action conservation. Our goal here is first to find the most general

sound-proof MHD model that is also self-adjoint, and then compare its conserved energy

with that of the fully compressible system to assess the accuracy of the approximation.

As we did in Chapter 4 (and Moss et al. (2022)), we start by introducing the following

general linearised sound-proof model:

ρ0
∂

∂t
u = −

[
D

c2
p1 +

(
∂ρ

∂s

)
p

s1

]
gẑ−∇π1 +

1

µ0
B0·∇B1 +

1

µ0
B1·∇B0 , (5.30)

∂

∂t
B1 = ∇× (u×B0) , (5.31)

∂

∂t
s1 = −ds0

dz
uz , (5.32)

∇·u = C
g

c2
uz , (5.33)

Jπ1 = p1 +
B0

µ0
B1x . (5.34)

(In contrast to Chapter 4, we only consider here the ideal equations, without any dissipa-

tive terms.) As previously, we will consider perturbations to a static state that depends

only on z, and has B0 = B0(z)x̂. The coefficients C, D, J are assumed to be known

functions of z; different choices for these coefficients correspond to different sound-proof

approximations. Table 5.1 lists the values of these coefficients that reproduce several

commonly-used sound-proof models, where for brevity we have introduced the density

scale height, Hρ ≡ − (d ln ρ0/dz)
−1. The values listed in Table 5.1 were explained in de-
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Coefficient
Model LBR

anelastic
GGG

anelastic
Pseudo-

incompressible
Magneto-
Boussinesq

C c2

g H
−1
ρ

c2

g H
−1
ρ 1 c2

g H
−1
ρ

D c2

g H
−1
ρ 1 1 1

J 1 1 1 0

Table 5.1: Values for each of the coefficients in our sound-proof model needed to reproduce the
models summarised in Section 3. Note that this is a subset of Table 4.1 which is reproduced here
for convenience.

tail in Chapters 3 and 4. Each of these models can be rigorously derived under certain

assumptions, including that the background state has nearly uniform entropy, and that

the sound speed far exceeds the Alfvén speed. It should be acknowledged that, in the solar

tachocline — which forms the motivation for this work — the first of these assumptions is

not strictly valid. In particular, in the lower, stably stratified part of the tachocline, the

entropy scale height (defined as Hs ≡ g/N2, where N is the buoyancy frequency) exceeds

the density scale height by only one order of magnitude (e.g. Gough, 2007), whereas each

of the sound-proof models listed in Table 5.1 formally assumes that Hs ≫ Hρ. On the

other hand, the assumption that v ≪ c is certainly satisfied in the tachocline, provided

that the field is much weaker than 107 gauss. A detailed discussion of the assumptions un-

der which different sound-proof models can be rigorously derived can be found in Chapter

3. In what follows, we will make no assumptions about the relative magnitudes of Hs and

Hρ, and we will appeal to energy conservation rather than formal asymptotics to obtain

constraints on the values of C, D and J . In this way we will generalise previous results by

Fan (2001) and Wilczyński et al. (2022), who showed that the linearised anelastic equa-

tions are self-adjoint in the asymptotic limit Hs/Hρ → ∞ for which they are formally

valid.

5.4.1 Self-adjointness as a constraint

As mentioned in Section 5.2, there is a wide family of sound-proof MHD models that

can be obtained from an action. In Chapter 4 we showed that one such model — the

pseudo-incompressible model — captures the linear behaviour of the magnetic buoyancy

instability in several asymptotic regimes relevant to the solar tachocline. This leads us to

ask if there might exist other sound-proof models, also obtainable from an action, that

describe magnetic buoyancy equally well. If such an action did exist then the resulting

set of linearised equations would necessarily be self-adjoint, with respect to some choice

of inner product. We will therefore determine the conditions under which our general

sound-proof model (5.30)–(5.34) is self-adjoint. We define the inner product in the most
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general way possible:

⟨ξ1, ξ2⟩ ≡
∫

w ξ1·ξ2 d3x, (5.35)

where w represents a weight function, which must be positive but is otherwise arbitrary

at this stage.

We now follow the same method as in Section 5.3.1, i.e. we reduce equations (5.30)–

(5.34) to a single equation describing the acceleration of a linear displacement, ξ. However,

an important difference here is that, for any sound-proof model, the velocity (and hence

ξ) is subject to a constraint, given in our case by equation (5.33). The equations must

therefore also include a variable that is independent of ξ, which in our case we can take

to be π1, that serves to impose this constraint. Hence we arrive at an equation of motion

of the form ρ0(∂
2ξ/∂t2) = F[ξ, π1], where the operator F in our case is given by

F[ξ, π1] = −
(
∇+DJ

g

c2
ẑ
)
π1 +D

g

c2
ρ0v

2

(
∂ξx
∂x

+
1

HB
ξz −∇·ξ

)
ẑ

+ ρ0v
2 ∂

2ξ

∂x2
− ρ0v

2 ∂

∂x
(∇·ξ)x̂− ρ0

g

Hs
ξzẑ , (5.36)

and where ξ must satisfy the constraint

∇·ξ = C
g

c2
ξz . (5.37)

For brevity, in equation (5.36) we have introduced scale heights for the magnetic field,

HB, and specific entropy, Hs, defined as

H−1
B = − 1

B0

dB0

dz
, (5.38)

H−1
s = − 1

ρ0

(
∂ρ

∂s

)
p

ds0
dz

. (5.39)

(Equation (5.39) is equivalent to the definition Hs = g/N2 given earlier.) Given that the

background state must satisfy magneto-hydrostatic balance, equation (5.13), these can be

related to the density scale height, Hρ, as follows:

g = c2H−1
ρ − c2H−1

s + v2H−1
B . (5.40)

Now, in order for F to be self-adjoint, with respect to our general inner product (5.35), the

terms involving π1 in the integral
∫
w ξ2·F[ξ1, π1] d3x must vanish for all possible functions
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π1, and all functions ξ2 that satisfy the constraint (5.37). We therefore require that

0 = −
∫

w
[
ξ2·∇π1 +DJ

g

c2
ξ2zπ1

]
d3x

=

∫
π1

[
ξ2·∇w + w(C −DJ)

g

c2
ξ2z

]
d3x , (5.41)

where we have used integration by parts, as well as equation (5.37). As before, in using

integration by parts we are neglecting surface terms, this is justified by choosing boundary

conditions for which ξ · n̂ = 0 on the boundary, where n̂ is the normal to the boundary

surface. We therefore require that the weight function w depends only on z, and satisfies

1

w

dw

dz
= (DJ − C)

g

c2
. (5.42)

Provided that this is the case, we then find that

⟨ξ2,F[ξ1, π1]⟩ =
∫

w

[
ρ0

g

c2

(
Dv2

(
1

HB
− Cg

c2

)
− c2

Hs

)
ξ2zξ1z − ρ0v

2∂ξ2
∂x

·∂ξ1
∂x

+
g

c2
ρ0v

2

(
Dξ2z

∂ξ1x
∂x

+ C
∂ξ2x
∂x

ξ1z

)]
d3x . (5.43)

We conclude that our sound-proof model is self-adjoint if and only if C = D, because only

in that case is equation (5.43) symmetric with respect to ξ1 and ξ2.

Comparing with Table 5.1, we see that the LBR anelastic and pseudo-incompressible

models satisfy this condition. We emphasise that this condition only arises in the pres-

ence of a magnetic field; in the non-magnetic case (v = 0) the sound-proof equations can

always be made self-adjoint by judiciously choosing the weight function w to satisfy equa-

tion (5.42). This implies that the linearised non-magnetic equations have the following

conserved quantity:

∫
1
2w

(
ρ0

∣∣∣∣∂ξ∂t
∣∣∣∣2 − ξ·F[ξ, π]

)
d3x =

∫
1
2wρ0

(∣∣∣∣∂ξ∂t
∣∣∣∣2 + g

Hs
ξ2z

)
d3x , (5.44)

which Brown et al. (2012) have called the “pseudo energy”.

In the more general case, including a magnetic field, self-adjointness requires C = D,

and therefore the weight function w must satisfy

1

w

dw

dz
= C(J − 1)

g

c2
. (5.45)
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In that case, the model conserves the following pseudo energy:

∫
1
2wρ0

(∣∣∣∣∂ξ∂t
∣∣∣∣2 + g

(
1

Hs
+ C

v2

c2

(
C

g

c2
− 1

HB

))
ξ2z + v2

∣∣∣∣∂ξ∂x
∣∣∣∣2 − 2Cg

v2

c2
ξz
∂ξx
∂x

)
d3x .

(5.46)

To determine the optimal choice for the remaining parameters C and J we can directly

compare this pseudo energy to the true external energy of the fully compressible system;

we do this in the following section.

5.4.2 Comparison with fully compressible external energy

We have shown in Section 5.3.1 that the linearised, fully compressible system conserves

the following external energy

∫ (
1
2ρ0

∣∣∣∣∂ξ∂t
∣∣∣∣2 + 1

2W [ξ, ξ]

)
d3x =

∫
1
2ρ0

(∣∣∣∣∂ξ∂t
∣∣∣∣2 + g

Hρ
ξ2z − 2gξz(∇·ξ) + (c2 + v2)(∇·ξ)2 + v2

∣∣∣∣∂ξ∂x
∣∣∣∣2 − 2v2

∂ξx
∂x

(∇·ξ)

)
d3x ,

(5.47)

where W is given by equation (5.24). On first inspection, this appears quite different

to the conserved quantity (5.46) of the sound-proof system. However, if we only consider

displacements ξ that satisfy the divergence constraint (5.37) then the compressible external

energy reduces to

∫
1
2ρ0

(∣∣∣∣∂ξ∂t
∣∣∣∣2 + g

(
1

Hρ
− 2C

g

c2
+ (c2 + v2)C2 g

c4

)
ξ2z + v2

∣∣∣∣∂ξ∂x
∣∣∣∣2 − 2Cg

v2

c2
ξz
∂ξx
∂x

)
d3x ,

(5.48)

which can now be directly compared with equation (5.46). We first note that, for these

two conserved quantities to be comparable, the weight function in equation (5.46) must

be constant, and therefore we must have either J = 1 or C = 0. The latter option is easily

ruled out by considering the rest of the integrands. Indeed, requiring the ξ2z terms to be

identical yields a quadratic equation for the remaining coefficient C, implying that there

are two values for which the two conserved quantities match. Using the relation (5.40),

these are found to be

C = 1 and C = 1− v2

gHB
=

dp0/dz

dπ0/dz
. (5.49)

The latter choice would not be practical in any computational model, since it would imply

a divergence constraint on the velocity that also depends on the magnetic field, whose
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strength and geometry would generally not be known in advance. Furthermore, in most

sound-proof MHD models the background state is assumed to be essentially non-magnetic,

in the sense that dπ0
dz ≃ dp0

dz , and so the only sensible choice for the parameter C is C = 1.

In summary, in order for the sound-proof model to conserve the same external energy

as the fully compressible model, under the widest range of conditions, we must take the

coefficients in equations (5.30)–(5.34) to be C = D = J = 1. This singles out the pseudo-

incompressible model.

However, we note that, if the background state is assumed to be both non-magnetic

and close to isentropic, so that both the HB and Hs terms in equation (2.20) are negligible,

then we have g ≃ c2/Hρ. This is the regime in which the LBR anelastic model is formally

valid, and we see from Table 5.1 that in this regime that model has C = D ≃ 1. Therefore

the LBR model is self-adjoint in all parameter regimes, but only conserves the correct

external energy when the background state is essentially non-magnetic and isentropic.

This is consistent with the results of Fan (2001) and Wilczyński et al. (2022).

5.5 Energy stability method

Above, in Section 5.4.2, we have shown that the pseudo-incompressible model conserves the

same energy as the fully compressible equations. However, this does not guarantee that the

two systems have identical stability properties, but rather that the pseudo-incompressible

is “at least as stable” as the fully compressible system in the sense that any perturbation

that grows in the pseudo-incompressible model must also grow in the fully compressible

system. The converse, however, is not true since there could be an unstable solution of the

fully compressible equations that violates the pseudo-incompressible velocity constraint.

In this section we will use the energy stability method (Bernstein et al., 1958) to derive

an instability criteria for our general sound-proof model and determine the constraints on

the model such that the stability properties match that of the fully compressible system.

We have shown that our sound-proof equations (5.30)–(5.34) are self-adjoint if C = D

and if the weight function is chosen to satisfy equation (5.45). In that case, they have the

following potential energy:

W =

∫
1
2wρ0

(
g

(
1

Hs
+ C

v2

c2
(C

g

c2
− 1

HB
)

)
ξ2z + v2

∣∣∣∣∂ξ∂x
∣∣∣∣2 − 2Cg

v2

c2
ξz
∂ξx
∂x

)
d3x . (5.50)

The system is then stable if and only if W is positive for all displacements ξ that satisfy

the constraint

∇·ξ = C
g

c2
ξz . (5.51)

We first consider interchange modes, i.e. displacements with ∂ξ/∂x = 0. For such modes,
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we see immediately from equation (5.50) that the condition for instability is

C
v2

HB
>

c2

Hs
+ C2g

v2

c2
. (5.52)

If this condition is satisfied for any range of z, then there are displacements for which W
is negative, and therefore the system is unstable.

For the more general case of undular modes, that is modes with ∂/∂x ̸= 0, we can first

eliminate ξx from the potential energy using the constraint (5.51). The potential energy

then becomes

W =

∫
1
2wρ0

(
g

(
1

Hs
− v2

c2
C

HB

)
ξ2z + v2

((
∂ξy
∂x

)2

+

(
∂ξz
∂x

)2

+

(
∂ξy
∂y

+
∂ξz
∂z

)2
))

d3x .

(5.53)

As per Hughes & Cattaneo (1987) (see also; Section 2.3), without loss of generality we

can consider displacements with ξy = ξ̂y(z) sin(lx) sin(my) and ξz = ξ̂z(z) sin(lx) cos(my).

These forms are chosen to simplify the algebra as best we can; here, we ensure that the

final terms have common factors; i.e. ∂ξy/∂y and ∂ξz/∂z will have the same x and y

dependence. When you carry out the integration over d3x, the factors of sin and cos

integrate to a constant; and so do not effect the stability criteria that we are interested in

here. Minimising with respect to ξ̂y, we find that

ξ̂y = − mξ̂′z
l2 +m2

, (5.54)

and then the potential energy becomes

W =

∫
1
8wρ0

(
g

(
1

Hs
− v2

c2
C

HB

)
ξ̂2z + v2l2

(
ξ̂2z +

ξ̂′2z
l2 +m2

))
dz . (5.55)

Instability is then most easily achieved in the limit of small l, and so we have the instability

condition

C
v2

HB
>

c2

Hs
. (5.56)

Equations (5.52) and (5.56) match the instability criteria for the fully compressible system

if and only if C = 1.

5.6 Discussion

We have shown that the (linearised) LBR anelastic and pseudo-incompressible models

are both self-adjoint, with respect to the same inner product as the fully compressible

equations. This is consistent with the fact, mentioned in Section 5.2, that both of these
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models can be derived from an action. However, only the pseudo-incompressible model

conserves the same energy as the fully compressible system when the background state

has a significant entropy gradient.

Not only is energy conservation a desirable property for any model, it can also be used

to establish stability results. The fact that the pseudo-incompressible model conserves

the same energy as the fully compressible model guarantees that it is “at least as stable”.

However, there could still be unstable solutions of the fully compressible system that are

not permitted by the pseudo-incompressible velocity constraint. To rule out this possibil-

ity, in Section 5.5 we used the energy stability method to obtain an instability criterion

for our general sound-proof model, demonstrating that the pseudo-incompressible model

has the same stability criteria as the fully compressible system. This is consistent with

the results of Chapter 4, where we showed that this model also correctly reproduces the

growth rate of the instability under a range of parameter conditions, provided that the

Alfvén speed, v, is much smaller than the sound speed, c. This is a condition that is

assumed in the rigorous derivation of all of the sound-proof models mentioned in Sec-

tion 5.4. However, it should be emphasized that the results of the present chapter were

obtained without making any explicit scaling assumptions. It is perhaps remarkable that

we have arrived at a single sound-proof model simply by requiring conservation of the

correct external energy, without any additional physical assumptions about length scales

(of the perturbations and scale heights), time scales, or the magnitude of v/c. On the one

hand, this gives us confidence that the accuracy of the pseudo-incompressible model is

not limited to some specific asymptotic parameter regime. On the other hand, we cannot

provide an exhaustive set of conditions under which this model is rigorously valid. Nev-

ertheless, the results in Chapter 4 demonstrate that this model is indeed asymptotically

valid in a number of regimes of relevance to magnetic buoyancy in the solar interior.

The conclusions here, coupled with those of Chapter 4, demonstrate that the pseudo-

incompressible model describes magnetic buoyancy instability for the widest parameter

range, and is therefore the “best” sound-proof approximation in this sense. However, as

noted in Chapter 4, its numerical implementation is non-trivial when compared with other

sound-proof models and so it may not always be the most practical choice. In particular,

for atmospheres that are nearly adiabatically stratified, it may be preferable to use an

anelastic model. Such a choice may be less appropriate for the lower part of the solar

tachocline, where the departure from adiabatic stratification becomes more significant.

However, we demonstrated in Chapter 4 that the GGG anelastic model (despite its lack of

self-adjointness) describes magnetic buoyancy instability just as accurately as the pseudo-

incompressible model in this regime. If one is prepared to sacrifice energy conservation in

order to achieve a more numerically tractable model, then this may be the logical choice.

We must acknowledge that all of the analysis presented here (and in Chapter 4) con-
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siders only the linear regime of magnetic buoyancy. We would argue that an accurate

description of the linear dynamics is essential for any model. However, the extent to which

any of these sound-proof models accurately describes the nonlinear dynamics remains an

important and open question.
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Chapter 6

Double-diffusive instability

Throughout the majority of the thesis thus far the effects of diffusion have been neglected.

In Chapter 2.4 we discussed the effect of thermal diffusion, as considered by Gilman

(1970), in the limit of extremely fast diffusion. We also considered the limit of fast thermal

diffusion in Chapter 4. However, we have yet to consider the effects of including viscosity

and magnetic diffusivity. In this chapter we will include thermal diffusivity, κ, but will not

necessarily assume that κ is fast. We will also include magnetic diffusivity, η, and viscosity,

ν. When these diffusivities are included a new instability emerges, a so-called double-

diffusive instability. We explore this instability analytically and numerically, initially

in the magneto-Boussinesq regime and then extending to parameters which no longer

approximate the magneto-Boussinesq case. We begin in the magneto-Boussinesq regime

to enable comparison with previous analyses, which allows us to verify our results, before

then exploring further in parameter space. Throughout this chapter we omit rotation.

With this in mind, this chapter is not entirely intended to accurately model the Sun (or

other astrophysical bodies), but rather allow us to study the double-diffusive instability

in a simplified system. Whilst it is beyond the scope of the current analysis, comparisons

of the results of this chapter with similar obtained from a general sound-proof model

could derive further constraints on the general sound-proof model and would be a logical

next-step.

6.1 Double-diffusive instability in the magneto-Boussinesq

approximation

Following the work of Schubert (1968), Acheson (1979) and Hughes (1985), we will derive

conditions for instability under the magneto-Boussinesq approximation. As such, we begin

with the linearised magneto-Boussinesq equations (equations (3.16)– 3.20)). When we add
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in the appropriate diffusivities, and neglect rotation, we arrive at

ρ0
∂

∂t
u = −gρ1ẑ−∇⊥π1 +

1

µ0
B0 ·∇B1 −

1

µ0
H−1

B B1zB0 + ρ0ν∇2u , (6.1)

∂

∂t
B1 = (B0 ·∇)u+ (H−1

B −H−1
ρ )uzB0 + η∇2B1 , (6.2)

∇⊥ · u = 0 , (6.3)

∂

∂t
s1 + u ·∇s0 =

Q1

ρ0T0
, (6.4)

p1 +
1

µ0
B0 ·B1 = 0 , (6.5)

(Spiegel & Weiss, 1982) where, as before, the subscript ⊥ indicates only the components

perpendicular to the background field, B0. We take Q1 = ρ0cpκ̄∇2T1 where T1 is given by

equation (2.30), cp = T0 (∂s/∂T )p is the specific heat capacity at constant pressure and

κ̄ is the thermal diffusivity (the bar here is used to differentiate from a similar quantity

defined later). We then can replace equation (6.4) with(
∂ρ

∂s

)
p

∂

∂t
s1 = ρ0H

−1
s uz +

(
∂ρ

∂T

)
p

κ̄∇2T1 , (6.6)(
∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 , (6.7)

where the latter is exactly equation (2.30) which we reproduce here for ease of reference.

We recall that under the magneto-Boussinesq assumptions, ρ0, T0, B0 and ∇s0 are taken

to be constant. As we did in Chapter 4, we have assumed our background has a horizontal

magnetic field i.e. B0 = B0x̂. We will assume that each perturbation variable, say f ,

varies as f(x, t) = f̃ exp (σt+ ikxx+ ikyy + ikzz), where f̃ is constant. Note that we

will routinely omit tildes in our notation. In accordance with the magneto-Boussinesq

approximation, we assume that we are a regime such that H−1
ρ ∼ kx ≪ ky ∼ kz. Under
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these approximations, all components of equations (6.1 – 6.5) become,

ρ0σ
(ν)ux =

B0

µ0
ikxB1x −

1

µ0
H−1

B B0B1z , (6.8)

ρ0σ
(ν)uy = −ikyπ1 +

B0

µ0
ikxB1y , (6.9)

ρ0σ
(ν)uz = −g

[(
∂ρ

∂s

)
p

s1 +
1

c2
p1

]
− ikzπ1 +

B0

µ0
ikxB1z , (6.10)

σ(η)B1x = B0ikxux + (H−1
B −H−1

ρ )B0uz , (6.11)

σ(η)B1y = B0ikxuy , (6.12)

σ(η)B1z = B0ikxuz , (6.13)

ikyuy + ikzuz = 0 , (6.14)

p1 +
1

µ0
B0B1x = 0 , (6.15)(

∂ρ

∂s

)
p

σs1 − ρ0H
−1
s uz = −

(
∂ρ

∂T

)
p

κ̄k2T1 , (6.16)(
∂ρ

∂T

)
p

T1 =

(
∂ρ

∂s

)
p

s1 −
γ − 1

c2
p1 , (6.17)

where we have already eliminated ρ1 by ρ1 = (∂ρ/∂s)p s1 + (1/c2)p1 and introduced

notation σ(a) = σ + ak2 for any a where k2 = k2x + k2y + k2z .

After some simple but lengthy algebra we can arrive at

ρ0σ
(ν)ux =

B0

µ0
ikxB1x −

B2
0

µ0
H−1

B

ikx

σ(η)
uz , (6.18)

−ρ0

(
σ(ν) + v2

k2x
σ(η)

)
kz
ky

uz = −ikyπ1 , (6.19)

ρ0

(
σ(ν) + g

H−1
s

σ(κ̄)
+ v2

k2x
σ(η)

)
uz = g

B0

µ0

(γ − 1)

c2σ(κ̄)
κ̄k2B1x + g

1

c2
B0

µ0
B1x − ikzπ1 , (6.20)

σ(η)B1x = B0ikxux + (H−1
B −H−1

ρ )B0uz , (6.21)

where we recall v2 = B2
0/(µ0ρ0). One could eliminate π1 from equations (6.19) and (6.20),

but since this would not greatly simplify the equations we have chosen not to here. We

now restrict our focus to interchange modes, in which case we let kx = 0. With a little

more algebra we can now arrive at the dispersion relation,

σ(ν)σ(η)σ(κ̄)

(
1 +

k2z
k2y

)
+ gH−1

s σ(η) = v2
g

c2
σ(γκ̄)(H−1

B −H−1
ρ ) . (6.22)

Initially we restrict our focus to the onset of purely direct modes of instability, and set
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σ = 0. We can now derive the following instability condition:

−v2H−1
ρ

d

dz
ln

(
B0

ρ0

)
>

νη

γ

k6

k2y
+

η

κ̄γ
c2H−1

ρ H−1
s , (6.23)

where now k2 = k2y + k2z and we recall that, in this regime, g ≈ c2H−1
ρ . Inequality (6.23)

is consistent with results found in Hughes (1985) (see also, Hughes & Proctor (1988);

Hughes & Weiss (1995)) . Similarly, we can look for the stability boundary for oscillatory

instability by letting σ = iσi (where σi ∈ R), to yield a complex equation (equivalently,

two real equations) for σi,

k2

k2y
(iσi + νk2)(iσi + ηk2)(iσi + κ̄k2) + gH−1

s (iσi + ηk2) =

v2
g

c2
(
iσi + γκ̄k2

)
(H−1

B −H−1
ρ ) . (6.24)

Taking the real part only, we get the following expression for the frequency, σi,

σ2
i (ν + η + κ̄)

k4

k2y
= gH−1

s ηk2 + νηκ̄
k8

k2y
− gv2γκ̄k2

c2
(H−1

B −H−1
ρ ) . (6.25)

It is simple enough to take the real and imaginary parts of equation (6.24) separately,

combine to eliminate σi and derive the following marginal stability criterion

−(ν + η − κ̄(γ − 1))
v2

c2
d

dz
ln

(
B0

ρ0

)
= (ν + κ̄)H−1

s +
1

g
(κ̄+ ν) (κ̄+ η) (ν + η)

k6

k2y
. (6.26)

This matches the result of Hughes (1985) (see also, Hughes & Weiss (1995)) for oscillatory

instability. Equation (6.26) tells us there are two distinct regions of instability depending

on the sign of η+ν−κ̄(γ−1). If η+ν−κ̄(γ−1) < 0; then there is instability for sufficiently

positive gradient in B/ρ, on the other hand, if η + ν − κ̄(γ − 1) > 0; then there is insta-

bility for sufficiently negative gradient in B/ρ. The former circumstance is particularly

interesting. For stellar interiors, it would not be uncommon for η+ ν− κ̄(γ− 1) < 0 to be

satisfied. Then we can have a situation whereby both the magnetic field gradient and ther-

modynamic gradient have a stabilising effect (in equation 6.23), but contrive to produce

a system that produces oscillatory instability (in equation 6.26). This instability is often

referred to as a double-diffusive instability since the instability requires disparate rates of

diffusion of two different quantities that affect the density — here they are the diffusion

of magnetic field and temperature field. It is most easily understood by comparison to a

more well known double-diffusive instability, namely the thermohaline instability whereby

density of water is affected by diffusion of both heat and salt. Hughes & Weiss (1995)

(see also, Spiegel & Weiss (1982); Hughes & Proctor (1988); Hughes & Brummell (2021))
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demonstrated that, with careful translation, the mathematical system of thermohaline in-

stability can be made equivalent to the magnetohydrodynamic system we are considering

here. However, this analogy only holds for 2D modes and cannot be extended to 3D. The

reason for this is that while both thermohaline and MHD systems have two properties

affecting density, the magnetic field in the MHD system is not a scalar and hence its effect

is anisotropic. Indeed, in the salt-water system there cannot be instability when both the

heat and solute (salt) gradients are stabilising. In the MHD setup we have seen above

that this is possible. The reason lies in the compressibility of fluid by the magnetic field.

In this situation, of stabilising gradients of both magnetic field and temperature, Hughes

(1985) and Hughes & Proctor (1988) describe how double-diffusive magnetic buoyancy

oscillatory instability can occur. Consider a flux tube vertically displaced upwards, since

both stratifications are stabilising, it will naturally return back to its original position.

The instability arises in the action of the thermal diffusivity which acts to remove heat

from the risen tube to its cooler surroundings. Therefore, when the tube returns to its

original position it will be cooler than it was originally and will continue to fall. Magnetic

diffusion on the other hand has a stabilising effect. The stronger external field acts to

squash, and hence heat, the tube. Magnetic diffusion somewhat erodes this effect. Indeed,

as per η+ν− κ̄(γ−1) < 0, sufficiently large magnetic diffusion will not allow overstability

in this stable-stable regime. Hughes & Brummell (2021) study magnetic buoyancy double-

diffusive instability, through analogy with thermosolutal convection, to demonstrate how

magnetic layering can occur in regimes relevant to the solar interior.

There has not been extensive research on the double-diffusive instability outside of the

magneto-Boussinesq limit. In this chapter we will extend our previous investigations to

include all three diffusivities and the double-diffusive instability.

6.2 Double-diffusive instability with fully compressible equa-

tions

There has been limited work done to explore the double-diffusive instability outside the

magneto-Boussinesq regime. Here we will numerically solve the linearised fully compress-

ible equations with all three diffusivities present and a uniform horizontal background

magnetic field. Initially, we do this in a parameter regime that approximates the Boussi-

nesq regime. This will allow us to compare our results to that of Hughes (1985). We will

then explore how the onset of this instability changes as we leave the Boussinesq regime.

We solve the equations using a Newton-Raphson-Kantorovich method. More information

on the numerical method is provided in Section 6.2.2.
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6.2.1 Geometry and governing equations

First, we will spend some time deriving the governing equations. We begin with the fully

compressible equations (2.13 – 2.15), but we omit rotation and replace equation (2.16)

with the temperature equation,

ρ
Du

Dt
= −∇p+ gρ ẑ+

1

µ0
(∇×B)×B+ µ∇ · τ , (6.27)

∂B

∂t
= ∇× (u×B) + η∇2B , (6.28)

Dρ

Dt
+ ρ∇ · u = 0 , (6.29)

ρcV
∂T

∂t
+ ρcV (u ·∇)T = −p∇ · u+∇ · (K∇T ) +

η

µ0
|∇×B|2 + µ

2
∥τ∥2 , (6.30)

where τ is the symmetric deviatoric rate-of-strain tensor, given by

τij = (∂ui/∂xj) + (∂uj/∂xi)− (2/3)δij∇ · u (6.31)

and K = ρ0cpκ̄. The final two terms in equation (6.30) represent ohmic and viscous

heating respectively, but will not play a significant role in the linear analysis to come. We

assume a constant dynamic viscosity µ given by µ = νρ where ν is the kinematic viscosity.

Note that the sign in front of g has changed here due to a change in geometry — our

z-direction is now oriented downwards, in the same direction as gravity (see Figure 6.1).

This change in geometry has been adopted for later numerical convenience

As per Figure 6.1, we will consider a box of depth d, which is heated from below and

cooled from above, with a uniform horizontal magnetic field (in the x-direction).

We make the following substitutions to non-dimensionalise the equations, where tildes

denote the dimensionless-version of the variable:

B = B0B̃ , t ∼ d√
RT0

t̃ , x = dx̃ =⇒ ∇ =
1

d
∇̃ , u =

√
RT0ũ ,

ρ = ρ0ρ̃ , T = T0T̃ , p = RT0ρ0p̃ , τ =

√
RT0

d
τ̃ . (6.32)

Here, d is the depth of our domain and our characteristic velocity is the isothermal sound

speed,
√
RT0 (see (Matthews et al., 1995)).
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Figure 6.1: Sketch of the geometry of our problem. We consider a box of depth d which is heated
from below and cooled from above with a horizontal, uniform magnetic field.

Substituting into our equations, we get

ρ0ρ̃
RT0

d

(
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

)
= −RT0ρ0

d
∇̃p̃+ gρ0ρ̃ ẑ+

B2
0

dµ0
(∇̃× B̃)× B̃+

1

d

√
RT0

d
ρ0ν∇̃ · τ̃ ,

(6.33)

B0

√
RT0

d

∂B̃

∂t̃
=

√
RT0B0

d
∇̃× (ũ× B̃) +

B0

d2
η∇̃2B̃ , (6.34)

√
RT0ρ0
d

∂ρ̃

∂t̃
+

√
RT0ρ0
d

(ũ · ∇̃)ρ̃+

√
RT0ρ0
d

ρ̃∇̃ · ũ = 0 , (6.35)

ρ̃cV

√
RT0ρ0T0

d

∂T̃

∂t̃
+

√
RT0ρ0T0

d
ρ̃cV (ũ · ∇̃)T̃ +

√
RT0

d
RT0ρ0p̃∇̃ · ũ

=
T0

d2
∇̃ · (K∇̃T̃ ) +

ηB2
0

µ0d2
|∇̃× B̃|2 + RT0ρ0

d2
ρ̃ν

2
τ̃2 . (6.36)
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This can be simplified to get

ρ̃

(
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

)
= −∇̃p̃+

gd

RT0
ρ̃ ẑ+

B2
0

RT0ρ0µ0
(∇̃× B̃)× B̃+

ν

d
√
RT0

∇̃ · τ̃ ,

(6.37)

∂B̃

∂t̃
= ∇̃× (ũ× B̃) +

η

d
√
RT0

∇̃2B̃ , (6.38)

∂ρ̃

∂t̃
+ (ũ · ∇̃)ρ̃+ ρ̃∇̃ · ũ = 0 , (6.39)

ρ̃cV
∂T̃

∂t̃
+ ρ̃cV (ũ · ∇̃)T̃ = −Rp̃∇̃ · ũ+

1

d
√
RT0ρ0

∇̃ · (K∇̃T̃ )

+
B2

0

µ0ρ0

η

d
√
RT0T0

|∇̃× B̃|2 + Rν

d
√
RT0

ρ̃

2
τ̃2 . (6.40)

We then introduce the following parameters (see Matthews et al. (1995))

ζ0 =
ηcPρ0
K

, κ =
K

dρ0cP
√
RT0

, σ =
ρ0νcP
K

, θ =
∆T

T0
,

m =
gd

R∆T
− 1 =⇒ m+ 1 =

gd

RT0θ
, F =

B2
0

µ0ρ0RT0
. (6.41)

Here, θ measures the stratification of our background state which, in order to closely

approximate the magneto-Boussinesq regime, will need to be small (i.e. θ ≪ 1). F is

proportional to v2/c2 so, as per previous chapters, will need to be small if we expect a

sound-proof model to be applicable to the regime. The Prandtl number is given by σ, ζ0

is the ratio of magnetic to thermal diffusivity, κ is a dimensionless thermal diffusivity, and

m is the polytropic index.

When we substitute for parameters (6.41), and use R = cP − cV = (γ − 1)cV , we get

ρ̃
Dũ

Dt̃
=− ∇̃p̃+ θ(m+ 1)ρ̃ ẑ+ F (∇̃× B̃)× B̃+ σκ∇̃ · τ̃ , (6.42)

∂B̃

∂t̃
=∇̃× (ũ× B̃) + ζ0κ∇̃2B̃ , (6.43)

Dρ̃

Dt̃
=− ρ̃∇̃ · ũ , (6.44)

ρ̃
DT̃

Dt̃
=− (γ − 1)p̃∇̃ · ũ+ ∇̃ · (γκ∇̃T̃ ) + F (γ − 1)ζ0κ|∇̃× B̃|2 + (γ − 1)σκ

ρ̃

2
τ̃2 . (6.45)

6.2.2 Numerical method, boundary conditions and initial conditions

Our numerical method will utilise a Newton-Raphson-Kantorovich (NRK) algorithm. This

is a relaxation method using an eighth-order finite difference scheme. Our code has been

amended from one originally written to study convective instability (Gough et al., 1976).
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Our NRK algorithm begins with finite difference equations; that is, equations in the form

of
∂

∂z
A = B , (6.46)

for each variable A, where B is some expression of the other variables. Roughly speaking,

our NRK method then works to produce a matrix equation to be solved, but one involving

an easily-invertible matrix in block-diagonal form. The implementation works over a grid

of N points, and couples points together to allow incrementation from one solution to

the next. An initial guess is provided, from which successive iterations refine the trial

“solution” to an improved “solution”. This process is repeated until the trial solution

is within a specified threshold of the true solution; i.e. the solution has converged. For

more general discussion about the principles of NRK methods see, for example, Garaud

& Garaud (2008) who use a similar (though not identical) approach.

Our background state is chosen to be a static polytrope — which is an equilibrium

solution of the governing equations. That is, we have

ρ̃0 = (1 + θz̃)m , (6.47)

T̃0 = 1 + θz̃ , (6.48)

p̃0 = T̃0ρ̃0 = (1 + θz̃)m+1 , (6.49)

ũ = 0 , (6.50)

and a horizontal uniform background magnetic field in the x-direction, i.e. B̃0 = x̂. By

assuming the background magnetic field is uniform we eliminate ohmic heating which

enables a simple linear temperature gradient that is independent of F . With this set-up

the only possible instability is an oscillatory doubly diffusive instability. The value of m

can determine the convective stability of the system. Specifically, for an ideal gas, i.e.

γ = 5/3, a value of m > 1.5 implies convective stability, in the absence of other effects.

This can be easily proved by applying the Schwarzchild criterion here (and translating

into our notation).

We consider simple boundary conditions, which allow for comparisons with previous

work. All variables will be periodic over boundaries in the horizontal directions. We

will use fixed temperature boundary conditions at the top and bottom of the domain to

simulate constant heating from the deep solar interior. Also, at both the top and bottom

of the domain, we will be using stress-free and vertical field boundary conditions.

6.2.3 Linear theory

We linearise the equations by expressing each variable as f̃ = f̃0(z) + f̃1(z) exp[ik̃xx +

ik̃yy + st] with respect to the polytropic background described in the previous section.
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Note that, compared to previous chapters, our symbol for the growth rate has changed

from σ to s. The Prandtl number is now represented by σ. For this background, and

ignoring non-linear terms,

(∇̃× B̃)× B̃ =
(
ik̃xB̃y − ik̃yB̃x

)
ŷ −

(
∂B̃x

∂z̃
− ik̃xB̃z

)
ẑ (6.51)

and |∇̃× B̃|2 = 0. The resulting equations are then

ρ̃0sũx =− ik̃xp̃1 + σκ[∇̃ · τ̃ ]x , (6.52)

ρ̃0sũy =− ik̃yp̃1 + F
(
ik̃xB̃y − ik̃yB̃x

)
+ σκ[∇̃ · τ̃ ]y , (6.53)

ρ̃0sũz =− ∂p̃1
∂z̃

+ θ(m+ 1)ρ̃1 − F

(
∂B̃x

∂z̃
− ik̃xB̃z

)
+ σκ[∇̃ · τ̃ ]z , (6.54)

sB̃x =− ik̃yũy −
∂ũz
∂z̃

+ ζ0κ

(
−k̃2H +

∂2

∂z̃2

)
B̃x , (6.55)

sB̃y =ik̃xũy + ζ0κ

(
−k̃2H +

∂2

∂z̃2

)
B̃y , (6.56)

sB̃z =ik̃xũz + ζ0κ

(
−k̃2H +

∂2

∂z̃2

)
B̃z , (6.57)

sρ̃1 =− ũz
dρ̃0
dz̃

− ρ̃0

(
ik̃xũx + ik̃yũy +

∂ũz
∂z̃

)
, (6.58)

ρ̃0

(
sT̃1 + ũz

dT̃0

dz̃

)
=− (γ − 1)p̃0

(
ik̃xũx + ik̃yũy +

∂ũz
∂z̃

)
+ γκ

(
−k̃2H +

∂2

∂z̃2

)
T̃1 ,

(6.59)

where k̃2H = k̃2x + k̃2y.

We now evaluate the viscous terms,

σκ[∇ · τ ]i = σκ
∂

∂xj
τij

= σκ
∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

)
= σκ

(
∂2ui
∂x2j

+
∂uj

∂xj∂xi
− 2

3

∂

∂xi
∇ · u

)

= σκ

(
∂2ui
∂x2j

+
∂

∂xi

∂uj
∂xj

− 2

3

∂

∂xi
∇ · u

)

= σκ

[
∇2u+

1

3
∇(∇ · u)

]
i

, (6.60)

where we have omitted tildes. Our numerical solver uses a finite-difference scheme and

90



Chapter 6. Double-diffusive instability

therefore we require the equations to be in a format where each equation is written in

the form of equation (6.46). Therefore, we will now manipulate our equations to force

them into this form. We will now input the viscous terms above and rearrange the three

components of the momentum equation to get

∂2ux
∂z2

=
1

σκ

((
ρ0s+ σκk̃2H

)
ux + ik̃x(T0ρ1 + ρ0T1)−

σκik̃x
3

(
ik̃xux + ik̃yuy +

∂uz
∂z

))
,

(6.61)

∂2uy
∂z2

=
1

σκ

((
ρ0s+ σκk̃2H

)
uy + ik̃y(T0ρ1 + ρ0T1)− F

(
ik̃xBy − ik̃yBx

)
− σκik̃y

3

(
ik̃xux + ik̃yuy +

∂uz
∂z

))
, (6.62)

4

3

∂2uz
∂z2

=
1

σκ

(
∂

∂z
(T0ρ1 + ρ0T1)− θ(m+ 1)ρ1 − F

(
ik̃xBz −

∂Bx

∂z

)
+
(
ρ0s+ σκk̃2H

)
uz −

σκ

3

∂

∂z

(
ik̃xux + ik̃yuy

))
, (6.63)

where we have eliminated p1 by the linearised equation of state p1 = T0ρ1 + ρ0T1 and re-

moved tildes from all variables. The first two components can be input into our numerical

solver. However, the third (z) component we will instead use to combine with the conti-

nuity equation to derive an expression for ∂ρ1/∂z. To do this, we take the z-derivative of

the continuity equation (6.58) and rearrange as;

s
∂ρ1
∂z

=− ∂

∂z

(
uz

dρ0
dz

)
− ∂

∂z

(
ρ0

(
ik̃xux + ik̃yuy +

∂uz
∂z

))
,

=⇒ ∂2uz
∂z2

=− ik̃x
∂ux
∂z

− ik̃y
∂uy
∂z

− 1

ρ0

∂2ρ0
∂z2

uz −
1

ρ0

∂ρ0
∂z

∂uz
∂z

+
1

ρ20

(
∂ρ0
∂z

)2

uz

+
1

ρ20

∂ρ0
∂z

sρ1 −
1

ρ0
s
∂ρ1
∂z

. (6.64)

Combining equations (6.63) and (6.64) gives

(4sσκ+ 3ρ0T0)
∂ρ1
∂z

= 3ρ0

[
− (ρ0s+ σκk̃2H)uz − ρ0

∂T1

∂z
− ∂ρ0

∂z
T1 −

∂T0

∂z
ρ1

+ θ(m+ 1)ρ1 + F

(
ik̃xBz −

∂Bx

∂z

)
+ σκ

(
− ik̃x

∂ux
∂z

− ik̃y
∂uy
∂z

−
(
4
∂2ρ0
∂z2

uz + 4
∂ρ0
∂z

(
∂uz
∂z

− 1

ρ0

∂ρ0
∂z

uz −
1

ρ0
sρ1

))
/(3ρ0)

)]
,

(6.65)
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we now use the continuity equation (6.58) again to get

∂ρ1
∂z

= 3ρ0

[
− (ρ0s+ σκk̃2H)uz − ρ0

∂T1

∂z
− ∂ρ0

∂z
T1 −

∂T0

∂z
ρ1

+ θ(m+ 1)ρ1 + F

(
ik̃xBz −

∂Bx

∂z

)
+ σκ

(
− ik̃x

∂ux
∂z

− ik̃y
∂uy
∂z

−
(
4
∂2ρ0
∂z2

uz + 4
∂ρ0
∂z

(
ik̃xux + ik̃yuy + 2

∂uz
∂z

))
/(3ρ0)

)]
/ (4sσκ+ 3ρ0T0) . (6.66)

In our numerical system we will therefore input equations (6.61, 6.62, 6.66) as well as

∂2Bx

∂z2
=

1

ζ0κ

((
s+ ζ0κk̃

2
H

)
Bx + ik̃yuy +

∂uz
∂z

)
, (6.67)

∂2Bz

∂z2
=

1

ζ0κ

(
(s+ ζ0κk̃

2
H)Bz − ik̃xuz

)
, (6.68)

∂uz
∂z

=− ik̃xux − ik̃yuy −
1

ρ0

dρ0
dz

uz − s
ρ1
ρ0

, (6.69)

∂2T1

∂z2
=
ρ0
γκ

((
s+

γκk̃2H
ρ0

)
T1 + uz

dT0

dz
+ (γ − 1)T0

(
ik̃xux + ik̃yuy +

∂uz
∂z

))
(6.70)

which are rearrangements of (6.55, 6.57, 6.58, 6.59) respectively. Rather than input a

rearrangment of (6.56), we instead make use of the solenoidal condition on B and define

By as By = (1/ik̃y)(ik̃xBx + ∂Bz/∂z) and therefore will only consider non-zero values of

k̃y (as appropriate for wavelike disturbances to the background state).

6.3 Results

Equations (6.61, 6.62, 6.66 – 6.70) are solved numerically to find the onset of oscillatory

instability. The results from Section 6.1 will inform our search and initially we will look

for results with parameters approximating the magneto-Boussinesq regime (but with the

fully compressible equations) to verify our code and to ensure the solution does indeed

exist as expected. To do this, we need to translate condition (6.26) into the notation used

in our code.

Firstly, we note the change in geometry (with the z-direction oppositely oriented), so

we alter equation (6.26) by replacing z → −z (via d/dz → −d/dz), to get

(ν + η − κ̄(γ − 1))
v2

c2
d

dz
ln

(
B0

ρ0

)
= (ν + κ̄)H−1

s +
1

g
(κ̄+ ν) (κ̄+ η) (ν + η)

k6

k2y
. (6.71)

For our background state (see Section 6.2.2) we can evaluate, and non-dimensionalise by
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z → dz̃, the z-derivatives as

H−1
s =

−1

dγ

d

dz̃
ln

(
p̃0
ρ̃γ0

)
=

−θ

dγ(1 + θz̃)
[m+ 1−mγ] ≈ −θ

dγ
(m+ 1−mγ) , (6.72)

d

dz
ln

(
B0

ρ0

)
=

1

d

d

dz̃
ln

(
B̃0

ρ̃0

)
=

−mθ

d(1 + θz̃)
≈ −mθ

d
, (6.73)

where we have assumed θ ≪ 1 — since we are looking in the Boussinesq regime. Note

that we have introduced a minus sign into our definition of H−1
s to reflect our change in

orientation. We also non-dimensionalise, as we did before, by introducing the following

parameters

k2 =
k̃2

d2
, k2y =

k̃2y
d2

, g = (m+ 1)
RT0θ

d
,

η =
ζ0K

cpρ0
, ν =

σK

cpρ0
, κ =

K

dρ0cP
√
RT0

, F = γ
v2

c2
. (6.74)

where we recall K = ρ0cpκ̄, and have re-introduced k̃y and k̃ as the dimensionless equiv-

alents of ky and k =
√
k2y + k2z respectively. The other parameters were introduced in

equations (6.41). Substituting in these parameters, as well as equations (6.72) and (6.73),

gives

− (σ + ζ0 − (γ − 1))
F

γ
θ2m(m+ 1) = − (σ + 1)

θ2

γ
(m+ 1)(m+ 1−mγ)

+κ2 (1 + σ) (1 + ζ0) (σ + ζ0)
k̃6

k̃2y
. (6.75)

We can rearrange to give

θ2(m+ 1)

γκ2
(m+ 1−mγ) =

(σ + ζ0 − (γ − 1))

γ (1 + σ)

Fθ2m(m+ 1)

κ2
+ (1 + ζ0) (σ + ζ0)

k̃6

k̃2y
.

(6.76)

We can now introduce the Rayleigh and magnetic Rayleigh numbers

Ra = (1 + θz̃)m−1 θ
2(m+ 1)

γσκ2
(m+ 1−mγ) ≈ θ2(m+ 1)

γσκ2
[m+ 1−mγ] , (6.77)

Rb =
Fθ2m(m+ 1)

σκ2
, (6.78)

as per Matthews et al. (1995) and Hughes & Weiss (1995), where we have approximated
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1 + θz̃ ≈ 1 since we assume θ ≪ 1. Our stability criterion can then be written as

Ra =
(1 + σ + ζ0 − γ)

γ(1 + σ)
Rb +

(1 + ζ0) (σ + ζ0)

σ

k̃6

k̃2y
, (6.79)

which is precisely the result found in Hughes & Weiss (1995).

Maximising equation (6.79) with respect to k̃y, we find the optimum value of k̃y = π/
√
2

is for a value of k̃z = π. Hence, the critical value of Ra is given by

Racrit =
(1 + σ + ζ0 − γ)

γ(1 + σ)
Rb +

(1 + ζ0) (σ + ζ0)

σ

27π4

4
. (6.80)

or, replacing Rb by (6.78),

Racrit =
(1 + σ + ζ0 − γ)

γ(1 + σ)

Fθ2m(m+ 1)

σκ2
+

(1 + ζ0) (σ + ζ0)

σ

27π4

4
. (6.81)

Clearly the final term is positive, therefore in order to have an instability we must have

Ra = (1 + θz̃)m−1 θ
2(m+ 1)

γσκ2
[m+ 1−mγ] >

(1 + σ + ζ0 − γ)

γ(1 + σ)

Fθ2m(m+ 1)

σκ2

=⇒ (1 + θz̃)m−1[m+ 1−mγ] >
(1 + σ + ζ0 − γ)

(1 + σ)
Fm

=⇒
(1 + σ)(γ − 1)

[
m− 1

(γ−1)

]
m(γ − 1− σ − ζ0)

< F . (6.82)

We use this inequality to inform our choices of parameters for our numerical solver. Firstly,

F must be positive therefore the left hand side must also be positive. We are assuming

an ideal gas here, so we take γ = 5/3. Therefore we require m > 1/(γ − 1) = 3/2 whilst

also having σ + ζ0 < γ − 1 = 2/3. However, if we are expecting this to closely mimic the

Boussinesq results we will require F ≪ 1 (and also θ ≪ 1).

To derive an expression for the expected value of the frequency at the onset of oscilla-

tory instability, we can convert equation (6.25) into our numerical notation. We begin by

taking equation (6.25) which we reproduce here for convenience, where we recall that our

z-direction has changed,

σ2
i

k2

k2y
= −gH−1

s

η

(ν + η + κ̄)
+

νηκ̄

(ν + η + κ̄)

k6

k2y
+

gv2γκ̄

c2(ν + η + κ̄)
(H−1

B −H−1
ρ ) . (6.83)

We then non-dimensionalise by making the substitutions in (6.74), coupled with

σi = (
√
RT0/d)ω , (6.84)
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for the dimensionless frequency ω. We evaluate the scale heights as we did in equations

(6.72) and (6.73) to yield

H−1
s ≈ −θ

dγ
(m+ 1−mγ) , (6.85)

H−1
ρ ≈ mθ

d
, (6.86)

H−1
B = 0 . (6.87)

Making these substitutions and rearranging we get

ω2 k̃
2

k̃2y
= −Ra

σκ2ζ0
(σ + ζ0 + 1)

+
σζ0κ

2

(σ + ζ0 + 1)

k̃6

k̃2y
+

Fθ2m(m+ 1)

(σ + ζ0 + 1)
. (6.88)

where we have introduced Ra by equation (6.77). We now substitute k̃, k̃y and Ra for

their values at the onset of instability. That is, k̃2 = 3π2/2, k̃2y = π2/2, and Racrit given

by equation (6.81). Inputting these gives us

ω2 =
Fθ2m(m+ 1)

3(1 + σ)

(
1− ζ0

γ

)
− ζ20κ

2 9π
4

4
. (6.89)

We also need the value of κ, so we can rearrange (6.81) for κ2, where we use (6.77)

(and set (1 + θz) ≈ 1), to get

κ2 =
θ2(m+ 1)

γ

(
[m+ 1−mγ]− Fm(1 + σ + ζ0 − γ)

(1 + σ)

)
4

27π4(1 + ζ0)(σ + ζ0)
. (6.90)

We initially use the following parameters

F = σ = ζ0 = θ = 0.01 , m = 1.51 , γ = 5
3 . (6.91)

Our numerical solver will then run to find the critical Rayleigh number, and associated

frequency of the instability. We use an eighth-order finite difference method with an NRK

algorithm. Roughly speaking, the solver will find a solution to the equations (i.e. will

find the Rayleigh number where the real growth rate is 0 and non-zero imaginary growth

rate corresponding to oscillatory instability.) for given values of k̃x and k̃y. It will then

loop over both k̃x and k̃y (or, for the 2D case, only k̃y) to find the smallest value of the

Rayleigh number, keeping all other parameters constant. For the most part, we study the

2D instability (with k̃x = 0) and the increment between successive values of k̃y is 0.001.

When we move to 3D, we reduce the increment in k̃y to 0.01 and later to 0.1, at the same

time the increment in k̃x is 0.01 and 0.0005 respectively. In this way, it tells you, for

each value of k̃x, what the critical Rayleigh number is and the associated wavenumber k̃y
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where it occurs. Note that we describe our results in terms of the Rayleigh number, but

it does not appear in the governing equations. An initial guess for the Rayleigh number

is provided to the algorithm, which then translates it into a value for κ and effectively

iterates for a critical value of κ, before translating that back to give us a critical Rayleigh

number. The code will also output the imaginary growth rate and the frequency for each

critical Rayleigh number. When we are in the Boussinesq regime of parameter space

(i.e θ ≪ 1, F ≪ 1) we would expect good agreement with equation (6.81). Plugging

our parameter values (6.91) into (6.81), (6.89) and (6.90) tells us we would expect our

numerical solver to approximately give

Racrit ≈ −2950.2 , ω ≈ 0.0011 . (6.92)

Recall that these values are derived, using our parameters, from existing results with the

magneto-Boussinesq equations from Hughes (1985) and Hughes & Weiss (1995). Note

that we expect the Rayleigh number to be negative, since we are interested in a situation

where both thermal and magnetic stratifications are stable (i.e. the “stable-stable” fourth

quadrant, as per Hughes & Weiss (1995); see also Hughes (1985)).

When we run our Newton-Raphson-Kantorovich code, in the 2D case with k̃x = 0,

we find an oscillatory instability with a similar frequency and critical Rayleigh number to

these values. Specifically we find

Racrit = −3206.1 , ω = 0.0011 . (6.93)

Clearly the frequency is in good agreement, the critical Rayleigh number differs by about

10%. Some discrepancy is of course expected, seeing as we are using different equations

(and have neglected several factors of 1 + θz). Results of the next section (specifically

Figure 6.2) suggest that agreement would improve for smaller values of θ.

6.3.1 Results further from the magneto-Boussinesq limit

Above, we have restricted ourselves to the Boussinesq regime and found that our results

approximately match those of Hughes (1985) (and Hughes & Weiss (1995)). We will now

extend our analysis by considering non-Boussinesq regimes by increasing θ (recall that θ

measures the stratification of the system). As we repeat the run with increasing values

of θ the agreement breaks down (see Figures 6.2, 6.3, 6.4). In addition to the change in

critical Rayleigh number, the frequency of the oscillation also increases with θ. This is to

be expected: as θ is increased we move out of the Boussinesq regime and therefore cannot

expect the results to be maintained.

Figure 6.2 shows good agreement for the critical Rayleigh number with the Boussinesq

value for small θ, and even suggests that there would be even better agreement for θ < 0.01.
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Figure 6.2: Change in critical Rayleigh number as θ increases. Here we used the following parameter
values: F = ζ0 = σ = 0.01, m = 1.51, γ = 5/3.

If one were to plot a polynomial to fit the curve in Figure 6.2, and extrapolate to θ = 0,

then the curve would intercept at a critical Rayleigh number of approximately −3063

(depending slightly on the order of the fitted polynomial). This differs from the Boussinesq

prediction of −2950.2 by approximately 4%. Here, we were unable to explore the θ < 0.01

regime because of computational limitations. When θ is smaller, increased numerical

precision is required to adequately resolve the problem. As θ increases, as expected,

the critical Rayleigh number departs from the Boussinesq value. The decreasing critical

Rayleigh number shows that in non-Boussinesq regimes this double-diffusive instability is

less easily induced. It is not immediately obvious why this is the case — it would have

been difficult to predict beforehand whether increasing the temperature difference (θ)

would have made the instability more or less easily induced. It is worth noting however,

that our diffusivities of momentum and temperature are chosen such that they scale as

1/ρ. If instead, they had been chosen to be uniform then how the instability responds to

changes in θ could have been different.

Figure 6.3 shows that as θ is increased, the frequency of the oscillations, ω, increases

proportionally. From Figure 6.3, we see that there is good agreement between our fre-

quency with θ = 0.01 and the Boussinesq frequency. However, based on the trend pre-

sented in Figure 6.3, it looks as though for even smaller values of θ (i.e. θ < 0.01) our

frequency (from the fully compressible equations) would begin to diverge from the Boussi-

nesq approximation. Note that this is not necessarily what we would expect; we would
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Figure 6.3: Change in frequency as θ increases. Here we used the following parameter values:
F = ζ0 = σ = 0.01, m = 1.51, γ = 5/3.

expect the frequency to asymptote toward the Boussinesq value; much like the critical

Rayleigh number appears to asymptote toward the Boussinesq approximation for the crit-

ical Rayleigh number in Figure 6.2. It is not clear why Figure 6.3 seems to suggest that

the fully compressible frequency best approximates the Boussinesq value at a finite, rather

than zero, value of θ; this could be that there are hidden errors in the plot, or perhaps the

plot would change shape for smaller values of θ. Therefore, exploration of the θ < 0.01

regime is recommend. This exploration has not been carried out here due to computa-

tional limitations. The values of ω presented in Table 6.1 shows that, for our parameters

and non-dimensionalisation and with k̃x = 0, ω ≈ θ/10, i.e. we can approximate equation

(6.89) by ω2 ≈ Fθ2 (at least for this set of parameters).

The fact that the critical wavenumber, k̃y, stays roughly constant as you increase θ,

as shown in Figure 6.4, confirms that as we change θ we are indeed still seeing modes of

the same instability — i.e. our numerical solver hasn’t jumped onto a different instability

entirely. Note that in our runs that produced Figure 6.4 we are looping over k̃y with

an interval of 0.001, which explains the discrete jumps in wavenumber. Much like the

decrease in critical Rayleigh number with increasing θ, the increase in preferred k̃y with

θ would have been difficult to predict beforehand. We would, however, have expected to

see some departure from the Boussinesq prediction as we left the small θ regime.
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Figure 6.4: Change in critical wavenumber as θ increases. Here we used the following parameter
values: F = ζ0 = σ = 0.01, m = 1.51, γ = 5/3.

3D case

Thus far in this chapter we have only considered purely interchange modes (with k̃x = 0,

where k̃x is the dimensionless wavenumber in the x-direction). Here we will present results

for small but non-zero values of k̃x, i.e. for perturbations with very long wavelengths in the

direction of the field. The results are presented in Tables 6.1 and 6.2. In Table 6.1, we see

that for each value of θ, as kx is increased the critical Rayleigh number increases (becomes

less negative). This tells us that, for these cases, the 3D cases are more easily destabilised

— i.e. instability ensues for a smaller (in magnitude) Rayleigh number. Therefore, there

is not a regime where we have a 2D instability without a 3D one. Table 6.1 also clearly

shows the effects of increasing θ presented in Figures 6.2, 6.3, 6.4. Namely, as θ increases,

ω increases proportionally, Racrit decreases (the rate of this decrease increases with θ) and

ky slowly increases (again, the rate of this increase increases with θ).

In Table 6.2 we show the minimum values of the modulus of Racrit for each value of

θ and the wavenumber k̃x at which they occur. For each value of θ, the optimisation

proceeds in the following way. For each value of kx, we find Racrit and the value of

ky at which it occurs (by solving over a range of ky and selecting the smallest Rayleigh

number). We then increment over kx to find the value of kx at which Racrit is smallest, and

the corresponding value of ky. This process is repeated for each value of θ. That is to say

that the wavenumbers presented in Table 6.2 are the optimum values for this instability

(for our choice of parameters). Specifically, we see that the instability favours a small, but

non-zero, wavenumber in the x-direction — i.e. the direction of the background magnetic
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field. This means a very long lengthscale in the field parallel direction, compared to the

field perpendicular direction. Therefore, for these cases, the 2D case is not the dominant

mode as there will always be a faster-growing 3D mode. Table 6.2 also shows how the

instability prefers Boussinesq-like regimes (i.e. shallow temperature gradients and low

values of θ).

For studying the Sun, these results demonstrate that provided you are in a regime

where you anticipate a very shallow temperature gradient, the magneto-Boussinesq equa-

tions will produce a similar critical Rayleigh number as the fully compressible equations.

As you increase θ, or in the context of the solar interior, as you study regimes with steeper

temperature gradients, this correspondence breaks down as the instability becomes less

easily induced. This is not surprising given the assumptions of the magneto-Boussinesq

model. Furthermore, it is demonstrated that the preferred mode for this instability is

undular, but with very small wavenumber in the direction of the field; i.e. where the mag-

netic field lines bend slightly with a long wavelength. In fact, as demonstrated by Table

6.2, the preferred mode has increased wavenumber in the field direction as you increase

θ. That is to say that, a 2D analysis will more closely capture the dominant modes in

regimes closer to that of the magneto-Boussinesq approximation (with small θ). It should

however be noted that we have chosen our diffusivities of momentum and temperature

such that they scale as 1/ρ, rather than being uniform. This choice may have an impact

on how the instability responds to changes in θ.
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θ k̃x k̃y ω Racrit

0.02

0 2.22 0.0022 -3360.1
0.01 2.33 0.0026 -3123.2
0.02 2.44 0.0034 -2703.8
0.03 2.55 0.0043 -2384.6
0.04 2.66 0.0053 -2172.4
0.05 2.78 0.0063 -2035.3

0.04

0 2.22 0.0043 -3705.3
0.01 2.26 0.0045 -3610.6
0.02 2.33 0.0051 -3380.2
0.03 2.39 0.0059 -3118.8
0.04 2.44 0.0067 -2883.7
0.05 2.50 0.0076 -2688.7

0.06

0 2.22 0.0063 -4109.8
0.01 2.24 0.0065 -4046.1
0.02 2.28 0.0069 -3881.6
0.03 2.32 0.0076 -3671.1
0.04 2.37 0.0083 -3457.0
0.05 2.41 0.0091 -3259.8

0.08

0 2.22 0.0083 -4588.5
0.01 2.23 0.0084 -4535.4
0.02 2.26 0.0088 -4394.7
0.03 2.29 0.0093 -4205.4
0.04 2.32 0.0099 -4001.8
0.05 2.35 0.0107 -3804.3

0.10

0 2.23 0.0102 -5161.6
0.01 2.23 0.0103 -5112.0
0.02 2.24 0.0106 -4978.0
0.03 2.26 0.0110 -4792.0
0.04 2.29 0.0116 -4585.6
0.05 2.31 0.0122 -4379.5

Table 6.1: Critical wavenumber, frequency, and Rayleigh number for varying values of θ and k̃x.
Here we used the following parameter values: F = ζ0 = σ = 0.01, m = 1.51, γ = 5/3.

θ k̃x k̃y ω Racrit
0.02 0.0825 3.2 0.0095 -1883.4
0.04 0.1515 3.2 0.0175 -2045.4
0.06 0.2040 3.1 0.0237 -2251.7
0.08 0.2385 3.0 0.0281 -2499.0
0.10 0.2715 3.0 0.0324 -2783.4

Table 6.2: The minimum values of |Racrit| as a function of k̃x. Critical wavenumbers, frequencies,
and Rayleigh numbers for varying values of θ and k̃x are displayed. Note that here we have looped
over k̃y in increments of 0.1, where previously the increment was 0.01. Here we used the following
parameter values: F = ζ0 = σ = 0.01, m = 1.51, γ = 5/3.
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Chapter 7

Discussion

7.1 Summary

Our work was primarily motivated by magnetic buoyancy in the solar interior, specifi-

cally the solar tachocline. In this region, there is strong toroidal magnetic field, which

is transported to the solar surface where it appears to form sunspots and other surface

phenomena. The transportation process in this description is not well understood, but

it is believed that magnetic buoyancy will play a crucial role. When modelling the solar

tachocline, the presence of sound waves make using the fully compressible equations too

computationally expensive. However, properties of the tachocline mean that it falls out-

side the regime of validity for existing sound-proof models. Therefore, we have performed

analysis to determine which, if any, sound-proof models produce “accurate” results for

regimes applicable to magnetic buoyancy in the solar tachocline.

In Chapter 4, we introduced a general sound-proof model which can be used to assess

any sound-proof model which fits into the form of the model. Specifically, we compared

four existing models: magneto-Boussinesq, pseudo-incompressible and two formulations

of the anelastic model which we refer to as GGG and LBR, (after Gough (1969); Gilman

& Glatzmaier (1981) and Lantz (1992); Braginsky & Roberts (1995) respectively). By

comparing the dispersion relations garnered from the linearised equations and the general

model in a number of asymptotic regimes we were able to make conclusions about the

accuracy of these existing models. We looked at regimes with and without rotation and

thermal relaxation (a proxy for thermal diffusion), and found that the only models which

reproduce the same dispersion relation as the compressible equations, in the linear regime,

are the pseudo-incompressible model and GGG anelastic. Moreover, we showed that any

model of the form of equations (4.85)-(4.89) would satisfy all the constraints of each of

the regimes. This resulting set of equations contains one degree of freedom.

While it is certainly desirable that a sound-proof model reproduces the same dispersion
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relation as the fully compressible equations, it is not the only thing to consider when

selecting a sound-proof model. Other desirable properties are self-adjointness and energy

conservation. A model that is self-adjoint will necessarily conserve some energy. When

models do not have this conservation, they can produce some unphysical behaviour. In

the absence of diffusion, we derive constraints on our general sound proof model if it is

to be self-adjoint. We then go on to compare it to the compressible system to see under

what conditions it will conserve the same energy as the compressible system. We found

that both LBR anelastic and pseudo-incompressible models are self-adjoint — this is not

surprising since they can both be derived from an action. Furthermore, only the pseudo-

incompressible model conserves the same energy as the fully compressible system (for a

general background). Therefore, as shown in Section 5.5, the pseudo-incompressible model

will reproduce the same stability criteria. However, for a background state with nearly-

uniform entropy gradient — i.e. in the regime of validity of the anelastic approximation

— LBR anelastic also conserves the same energy as the fully compressible system.

The conclusions drawn in Chapters 4 and 5 recommend using the pseudo-incompressible

model for magnetic buoyancy simulations in the Sun. However, there are other factors than

just accuracy of a model that are worthy of consideration. Specifically, there are numerical

complexities associated with implementing the pseudo-incompressible model that are not

present in, for example, anelastic models. In the tachocline specifically, the motivation

for this study, Chapter 4 demonstrates that despite the anelastic approximation requir-

ing nearly uniform entropy, the GGG anelastic can reproduce the leading order results of

the fully compressible equations for asymptotic regimes relevant to the tachocline; i.e. in

regimes that violate the nearly uniform entropy assumption of the anelastic model. Chap-

ter 5 however, shows that only the pseudo-incompressible model conserves the same energy

as the fully compressible system when the background state has a significant entropy gra-

dient; which we would expect in the tachocline. With these conclusions in mind, our work

therefore recommends using pseudo-incompressible model for modelling the tachocline, or,

if you are willing to forego energy conservation, the GGG anelastic model may be suitable.

In the majority of this thesis we do not account for magnetic diffusion or viscosity;

we justify this by the fact that these are slow processes for parameters relevant to the

solar interior. However, the inclusion of these terms allows for a new type of instability

that does not appear in their absence. This instability is a double-diffusive instability.

Double-diffusive instability relies on the diffusion of two variables that both affect den-

sity at different rates. In Chapter 6, following Acheson (1979), we derive an instability

criterion for oscillatory double-diffusive instability in the magneto-Boussinesq regime. We

note that, for parameters relevant to the solar tachocline; i.e. with η + ν − κ(γ − 1) < 0,

one could find a situation where both magnetic and temperature gradients are stabilising
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but, in the presence of diffusion, allow for instability. Informed by the results obtained

analytically in the magneto-Boussinesq regime, we then numerically solve the fully com-

pressible equations to find the onset of instability for interchange modes for parameter

regimes relevant to solar tachocline. Initially, we do this in the Boussinesq regime, but

with the fully compressible equations, to enable comparison between our analytical and

numerical work. We then extend our numerical work to non-Boussinesq regimes by con-

sidering steeper background temperature gradients. We find that as you move outside of

the Boussinesq regime, the oscillatory doubly-diffusive instability is less easily induced.

The assumption of 2D perturbations is then dropped as we consider undular modes, with

long wavelengths in the direction of the background field. We find that the instability has

a preferred wavelength that is small, but finite. That is, that 3D modes are more easily

destabilised.

7.2 Future work

There is plenty of scope to extend the work of Chapter 6. In Chapter 6, we compare the

linear fully compressible result to that of the magneto-Boussinesq equations. We then

extend our analysis by considering non-Boussinesq regimes by increasing the stratification

(i.e. the temperature gradient). Firstly, it would be interesting to see if a decrease in

θ (the stratification — see Chapter 6) would produce even better agreement of the fully

compressible result with the Boussinesq — Figure 6.2 suggests it may. Secondly, we have

only considered a relatively narrow range of θ from 0.01 to 0.1. Further work could en-

compass a wider exploration for larger θ. For larger θ we would expect further departure

from the Boussinesq solution, plotting the solutions could be instructive to see the (ex-

pected) departures from the symmetric solutions of the Boussinesq equations (which will

be minimal for the cases considered here). Furthermore, a different way of violating the

Boussinesq assumptions would be to consider larger values of F (which is proportional to

v2/c2 — the ratio of Alfvén speed to sound speed).

In the spirit of Chapters 4 and 5, another avenue for potential future work would be to

assess how well our general sound-proof model captures the double-diffusive instability of

Chapter 6. This would involve repeating the numerical work in Chapter 6 but replacing

the linear fully compressible equations with our linear sound-proof model and comparing

the results. With this analysis, we could determine if there are any further constraints on

our general sound proof model such that it still captures the leading order behaviour of

the compressible equations.

All the results in this thesis have been derived from linear analysis. Clearly, a necessary

condition for a model to correctly describe the full non-linear problem would be that it

handles the linear problem accurately. With this in mind, we consider the work done here
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to be the first step to the larger problem of finding a sound-proof model to describe the

compressible system. Therefore, a potential avenue for future work would be to continue

this work into the non-linear regime. This would need to be numerical work — very little

progress can be made analytically in the non-linear regime.
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Appendix A

Derivation of linear temperature

and density equations

Here, we will briefly derive equations (2.28), (2.30), (2.31). These had been written in

a slightly non-standard form in order to simplify the subsequent analysis. We consider

density, ρ, as a function of pressure, p, and specific entropy, s, i.e. ρ = ρ(s, p). We can

then write

dρ =

(
∂ρ

∂s

)
p

ds+

(
∂ρ

∂p

)
s

dp

=

(
∂ρ

∂s

)
p

ds+
1

c2
dp , (A.1)

where, as before, c2 =
(
∂p
∂ρ

)
s
. Equation (A.1) justifies the form of equation (2.31).

Similarly, considering pressure as a function of density and temperature, T , i.e. p =

p(ρ, T ), and temperature as a function of specific entropy and density, i.e. T = T (s, ρ) we

can write

dp =

(
∂p

∂ρ

)
T

dρ+

(
∂p

∂T

)
ρ

dT ,

dT =

(
∂T

∂s

)
ρ

ds+

(
∂T

∂ρ

)
s

dρ .

Combining these equations by eliminating dT , we get

dp =

[(
∂p

∂ρ

)
T

+

(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
s

]
dρ+

(
∂p

∂T

)
ρ

(
∂T

∂s

)
ρ

ds .
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Therefore,

c2 =

(
∂p

∂ρ

)
s

=

(
∂p

∂ρ

)
T

+

(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
s

,

=⇒ c2(
∂p
∂ρ

)
T

= 1 +

(
∂ρ

∂p

)
T

(
∂p

∂T

)
ρ

(
∂T

∂ρ

)
s

,

= 1−
(
∂ρ

∂T

)
p

(
∂T

∂ρ

)
s

. (A.2)

We can do something similar to get an expression for
(
∂s
∂T

)
p
/
(
∂s
∂T

)
ρ
. Let s = s(ρ, T )

and ρ = ρ(T, p), hence

ds =

(
∂s

∂ρ

)
T

dρ+

(
∂s

∂T

)
ρ

dT ,

dρ =

(
∂ρ

∂T

)
p

dT +

(
∂ρ

∂p

)
T

dp . (A.3)

Combining these, we get

ds =

(
∂s

∂ρ

)
T

(
∂ρ

∂p

)
T

dp+

[(
∂s

∂ρ

)
T

(
∂ρ

∂T

)
p

+

(
∂s

∂T

)
ρ

]
dT .

Therefore, we can write (
∂s

∂T

)
p

=

(
∂s

∂ρ

)
T

(
∂ρ

∂T

)
p

+

(
∂s

∂T

)
ρ

,

=⇒

(
∂s
∂T

)
p(

∂s
∂T

)
ρ

=

(
∂T

∂s

)
ρ

(
∂s

∂ρ

)
T

(
∂ρ

∂T

)
p

+ 1 ,

= 1−
(
∂T

∂ρ

)
s

(
∂ρ

∂T

)
p

. (A.4)

Combining equations (A.2) and (A.4), we can determine

c2(
∂p
∂ρ

)
T

=

(
∂s
∂T

)
p(

∂s
∂T

)
ρ

=
cp
cv

= γ , (A.5)

where we have introduced the specific heat capacity at constant volume and pressure (cv

and cp respectively)

cv = T0

(
∂s

∂T

)
ρ

, cp = T0

(
∂s

∂T

)
p

. (A.6)
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Rearranging equation (A.5), we get(
∂p

∂ρ

)
T

=
c2

γ
=⇒

(
∂ρ

∂p

)
T

=
γ

c2
. (A.7)

We can input result (A.7) into equation (A.3) to get

dρ =

(
∂ρ

∂T

)
p

dT +
γ

c2
dp , (A.8)

which, when we combine with equation (A.1), by eliminating dρ, gives(
∂ρ

∂T

)
p

dT =

(
∂ρ

∂s

)
p

ds+
(1− γ)

c2
dp . (A.9)

This equation (A.9), justifies the form of equation (2.30).

Finally, we derive equation (2.28). Starting from equation (2.16), as we did in Chapter

2, we linearise about a static background (see Chapter 2 for more details and notation) to

get

ρ0T0

(
∂s1
∂t

+ u ·∇s0

)
= Q1 ,

=⇒ ∂s1
∂t

+ u ·∇s0 =
Q1

ρ0T0
.

We can now multiply through by
(
∂ρ
∂s

)
p
, and also eliminate T0 by our definition of cp (A.6)

to get (
∂ρ

∂s

)
p

∂s1
∂t

+

(
∂ρ

∂s

)
p

u ·∇s0 =

(
∂ρ

∂s

)
p

(
∂s

∂T

)
p

Q1

ρ0cp
.

which, when we recall from Chapter 2 that s0 depends only on z and

H−1
s = −

(
∂ ln ρ

∂s

)
p

ds0
dz

,

becomes (
∂ρ

∂s

)
p

∂s1
∂t

− ρ0H
−1
s uz =

(
∂ρ

∂T

)
p

Q1

ρ0cp
, (A.10)

which is precisely equation (2.16).
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