
School of Computing Science

Adaptive techniques for time-critical
data processing in IEC

Fawzy Mohammad Habeeb

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

April 2024

© 2024, Fawzy Mohammad Habeeb

- B -

Abstract

Time-critical data processing presents an essential issue in the IEC since real-time

decision-making and responsiveness are becoming more and more important in many

different IEC applications, specifically those involving vital infrastructure, transporta-

tion systems, industrial automation, and healthcare monitoring. These applications

require low latency, high bandwidth, the sustainability of devices, and ensuring data

integrity to work effectively and reliably.

Edge computing has become increasingly popular as an addition to cloud computing,

particularly for applications such as industrial control systems that demand guarantees

for timely communication. Although edge computing allows for the rapid analysis

of data streamed from the Internet of Things (IoT) devices, these devices often do

not have the computational power and bandwidth necessary to ensure satisfactory

performance for applications that are sensitive to timing. Therefore, developing a

dynamic, distributed approach to manage time-critical IoT data streams efficiently

across the IEC continuum is necessary.

Numerous scenarios, such as flood control and crisis management, employ thousands

of energy-aware sensors. These sensors continue monitoring their environment all the

time, gathering vital information that helps them make important decisions. However,

since they run on batteries, energy efficiency is critical to their long-term viability.

Finding adaptive, time-sensitive, cost-effective solutions that maximise their power

usage is essential to extending their lifespan.

IoT has quickly become a transformative model for linking devices to gather data,

share information, and process data efficiently. Faults within IoT systems can arise in

multiple scenarios and manifest differently. Understanding and handling these faults is

crucial for improving the integrity and reliability of real-time data for making informed

decisions and maintaining the effectiveness of IoT applications. Monitoring real-time

data streams on a constant basis for abnormalities, faults, or inconsistencies that can

be caused by environmental conditions, communication problems, or malfunctioning

- i -

sensors is necessary to manage data quality and failure.

To handle bandwidth optimisation, energy enhancement, data quality monitoring, and

healing, this thesis presents multilateral research towards adaptive techniques for the

optimisation of time-critical data processing in IEC.

The following are the thesis’s main contributions:

• A novel distributed and QoS-based multi-level queue traffic scheduling system

that can undertake semi-automatic bandwidth slicing to process time-critical

incoming traffic in IEC environments.

• A novel approach for optimising energy-efficient IoT devices for time-sensitive

data streams using Reinforcement Learning(RL), which optimises energy effi-

ciency while ensuring timely data delivery for critical applications.

• A dynamic framework based on multi-agent RL for detecting and handling faults

in an IoT-edge environment, which optimises the real-time data quality to ensure

its integrity to work effectively and reliably.

- ii -

Declaration

I declare that this thesis is my original work unless explicitly stated otherwise. None

of the material included in this thesis has been previously submitted for any degree or

qualification at Newcastle University or any other academic institution.

Fawzy Mohammad Habeeb

April 2024

- iii -

- iv -

Publications

Published

1. Alwasel, K., Jha, D.N., Habeeb, F., Demirbaga, U., Rana, O., Baker, T., Dust-

dar, S., Villari, M., James, P., Solaiman, E. and Ranjan, R., 2021. IoTSim-

Osmosis: A framework for modeling and simulating IoT applications over an

edge-cloud continuum. Journal of Systems Architecture, 116, p.101956.

2. Habeeb, F., Alwasel, K., Noor, A., Jha, D.N., Alqattan, D., Li, Y., Aujla,

G.S., Szydlo, T. and Ranjan, R., 2022. Dynamic Bandwidth Slicing for Time-

Critical IoT Data Streams in the Edge-Cloud Continuum. IEEE Transactions

on Industrial Informatics.

3. Szydlo, T., Szabala, A., Kordiumov, N., Siuzdak, K., Wolski, L., Alwasel, K.,

Habeeb, F. and Ranjan, R., 2022. IoTSim-Osmosis-RES: Towards autonomic

renewable energy-aware osmotic computing. Software: Practice and Experience.

4. Habeeb, F., Szydlo, T., Kowalski, L., Noor, A., Thakker, D., Morgan, G.

and Ranjan, R., 2022. Dynamic Data Streams for Time-Critical IoT Systems

in Energy-Aware IoT Devices Using Reinforcement Learning. Sensors, 22(6),

p.2375.

5. Alqattan, D., Ojha, V., Habib, F., Noor, A., Morgan, G. and Ranjan, R., 2024.

Modular neural network for Edge-based Detection of early-stage IoT Botnet.

High-Confidence Computing, p.100230.

- v -

- vi -

Acknowledgements

First and foremost, I express my gratitude to Allah for His blessings, which have

enabled me to complete this thesis. I am thankful for the good health and well-being

that were essential throughout this journey. I consider this work a form of worship to

Allah, and I praise Him for His guidance and support. All praise and thanks belong to

Allah, both at the beginning and end. As commanded in the Quran, saying “So hold

that which I have given you and be of the grateful.” Surah Al-A’raf:144. I am grateful

to Allah and express my thanks to people as well.

I extend my sincere appreciation to my thesis supervisor, Professor Rajiv Ranjan,

Chair Professor in Computing Science and Internet of Things at Newcastle University.

His door was always open for guidance and support whenever I faced challenges or had

questions about my research. Without his assistance, this work would not have been

possible.

I am grateful to my colleagues and lab mates for their support and collaboration,

Ayman Noor, Devki Nandan Jha, Duaa AlQattan, Sultan Altarrazi, Nipun Balan,

and Yinhao Li.

Special thanks to the government of Saudi Arabia, represented by the University of

Jeddah and the Royal Embassy of Saudi Arabia Cultural Bureau in London, for funding

my PhD. Their support was crucial for the completion of this journey.

I also acknowledge Professor Graham Morgan and Dr. Tomasz Szydlo as my sec-

ond and third supervisors, respectively. Their valuable comments and guidance were

instrumental in shaping this thesis.

My deepest gratitude goes to my parents. Firstly, my father (Mohammad Habeeb)

exemplified the essence of family care, dedicating himself to his children and wife

wholeheartedly. His support extended beyond financial assistance, nurturing strong

spiritual bonds within our family. My mother (Najlah Nabolsi) embodies beauty in

my eyes. She epitomises patience, kindness, generosity, and selflessness as a mother

who wholeheartedly believes in me.

- vii -

Also, thanks to my grandfather (Hassan Habeeb) and my grandmother (Fatmah Abual-

taher) they have been pivotal figures in shaping our family’s legacy. Their wisdom and

values were the bedrock upon which our family was built. Even as they passed away

during my PhD journey may Allah forgive them and have mercy on them. Their mem-

ory and teachings continue to inspire and guide me. Their lives were a testament to

resilience, love, and the profound impact one leaves on this world, engraving a legacy

that transcends time.

I am indebted to my wife, Walaa Abualtaher, for her unwavering support and encour-

agement throughout my studies and the process of researching and writing this thesis.

Her presence made this accomplishment possible.

Lastly, I am thankful to my dear brother, Abdullah Habeeb, whose love, companion-

ship, and cooperation have been invaluable to me. Thank you all.

- viii -

Contents

1 Introduction 1

1.1 Project Motivation . 4

1.1.1 Challenges . 6

1.2 Contributions . 7

1.3 Thesis Structure . 8

2 Literature review 11

2.1 IoT Edge Cloud (IEC) Continuum . 12

2.1.1 IoT . 13

2.1.1.1 IoT Applications . 15

2.1.2 Edge computing . 17

2.1.2.1 Architecture . 18

2.1.2.2 Characteristics . 19

2.1.3 Cloud computing . 19

2.2 Optimisation and Adaptation in IEC 21

2.3 Network management technique in the IEC environment 22

2.3.1 Software Defined Networking (SDN) 23

2.3.2 WAN and Software Defined Networking (SD-WAN) 23

2.3.3 Bandwidth slicing . 24

2.3.4 Scheduling algorithms . 24

2.3.5 Summary . 26

2.4 Adaptive techniques for fault management and data quality in the IEC
environment . 26

2.4.1 Q-learning . 29

2.4.2 State-Action-Reward-State-Action (SARSA) 30

2.4.3 Deep Q-Networks (DQN) . 31

2.4.4 Deep Deterministic Policy Gradient (DDPG) 31

2.5 Thesis scope in the context of adaptive time-critical data processing . . 33

2.5.1 Network optimisation in IEC 33

2.5.2 IEC devices sustainability . 40

2.5.3 Data quality monitoring and healing in IEC 45

- ix -

3 Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the IEC 55

3.1 Introduction . 56

3.2 Formal model . 59

3.2.1 System overview . 59

3.2.2 Problem definition . 63

3.2.3 Complexity analysis . 64

3.3 Proposed Framework . 65

3.3.1 Multi-Queues . 65

3.3.2 Bandwidth Slicing . 67

3.4 Evaluation . 70

3.4.1 Experiment Set-up . 70

3.4.1.1 Test Case . 70

3.4.1.2 Configuration . 72

3.4.2 Experiment results . 72

3.4.2.1 Scalability result . 72

3.4.3 Network Utilisation . 74

3.4.4 Auto-Adaptation . 75

3.5 Further Evaluation and Validation . 77

3.6 Related work . 79

3.7 Conclusions and future work . 80

4 Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT
Devices Using Reinforcement Learning 83

4.1 Introduction . 84

4.2 Related Work . 86

4.3 Motivation . 88

4.4 Formal Model . 89

4.4.1 System Description and Definition 89

4.4.2 Problem Definition . 91

4.5 Osmotic Agents with RL . 92

4.5.1 Q-Learning Algorithm . 94

4.5.2 State Discretization . 95

4.5.3 Reward Function . 95

4.6 Evaluation . 96

4.6.1 Constant Data Streams . 96

4.6.2 Dynamic Data Streams . 98

4.7 Summary and Future Work . 99

- x -

5 Optimising data processing and handling misconfiguration policy failures in
IoT systems using reinforcement learning 101

5.1 Introduction . 102

5.2 Related Work . 104

5.3 Fault Modelling . 107

5.3.1 Software Misconfiguration . 107

5.3.2 Cascaded faults . 108

5.4 System concept . 109

5.4.1 CPD . 109

5.4.2 System architecture . 112

5.4.3 Reinforcement learning algorithm 114

5.4.4 Reward Function . 115

5.4.5 Actions . 117

5.5 Evaluation . 117

5.5.1 Setup . 117

5.5.2 Fault Injecting Component . 119

5.5.3 Experiment results . 120

5.6 Summary and Future Work . 122

6 Conclusion 125

6.1 Thesis Summary . 126

6.2 Limitations and Future Research Directions 127

6.2.1 Enhancing the Bandwidth Allocation 128

6.2.2 Enhanced Multi-Agent Cooperation for Dynamic IoT Networks 128

6.2.3 Advanced Data Quality Assurance Mechanisms 129

References 131

- xi -

- xii -

List of Figures

1.1 Time-Critical applications . 4

1.2 Thesis outline. 10

2.1 An overview of the infrastructure of the IEC continuum. 12

2.2 Edge computing architecture . 14

2.3 Edge computing architecture . 19

2.4 Characteristic of IoT, edge, and cloud computing table 20

2.5 RL . 28

3.1 IoT-edge-cloud continuum modular architecture 58

3.2 Data transfer and processing in Self-driving cars 71

3.3 Scenario process in our IoT-edge-cloud environment 71

3.4 The experiment results . 73

3.5 Scalability results . 74

3.6 Comparing the network utilisation for the three policies 74

3.7 The Auto-Adaptation example . 76

3.8 Auto-Adaptation transmission time . 77

3.9 Validation results . 79

4.1 Levee monitoring system. 88

4.2 System architecture. 94

4.3 Battery levels of the device for various constant sensing rates. Colors
of the boxes are related to the mean value of battery level. 97

4.4 Battery levels and the selected sensing rates for the devices in RL
based data stream management. Blue area represents min and max
values of sensing rate, while the chart represent mean sensing rate
value for the particular month. 98

5.1 Improper calibration, incorrect sampling rate, or misdirected data
routing between the sensor and edge layers can lead to errors like
overloading, which may eventually cause a system failure. This
sequence of fault-error-failure shows the cascading effect of faults in
the system. 108

5.2 System concept . 110

- xiii -

5.3 CPD technique . 111

5.4 System architecture . 113

5.5 System flow in the experiment . 119

5.6 The average rewards of Baseline test 121

5.7 The average rewards of the IoT devices sending data to the edge
devices without RL agents handling the faults 122

5.8 The average rewards of the IoT devices sending data to the edge
devices with RL agents handling the faults 123

5.9 A comparison of the total number of messages processed between tests 124

- xiv -

List of Tables

2.1 Reinforcement Learning Algorithms . 33

2.2 An overview of the literature review, including the primary challenges
tackled in this thesis, is presented . 53

3.1 Symbol table . 60

3.2 Test case configuration . 72

3.3 Infrastructure device configuration . 72

3.4 A comparative table for the results . 73

3.5 Comparison of various scheduling systems with the one proposed 81

4.1 Notations . 91

4.2 Discretized states used in the RL algorithm. 95

4.3 IoT device specification used in the evaluation. 96

4.4 Data stream management profiles used in the evaluation. 99

5.1 Comparing several related works to our proposed framework 106

5.2 Detailed characteristics and facets of the fault. 107

5.3 Notations . 114

5.4 IoT devices specifications used in the evaluation. 116

5.5 The specifications of IoT devices used in the evaluation [1]. 118

5.6 The configuration of IoT devices used in the evaluation. 121

- xv -

- xvi -

1
Introduction

Contents
1.1 Project Motivation . 4

1.1.1 Challenges . 6

1.2 Contributions . 7

1.3 Thesis Structure . 8

- 1 -

Chapter 1: Introduction

Introduction

Time-critical data processing is a computing domain that concentrates on examining

and handling data within a specified time frame to fulfil the needs of particular applica-

tions or systems. This notion holds particular significance in situations where prompt

decision-making is crucial, and any delays in processing could result in substantial

repercussions, including system malfunctions, safety risks, or even threats to human

life. Several time-critical applications and services, including industrial control sys-

tems, energy management in smart home environments, automotive, flood monitoring

systems, and more, are using this concept [2], [3].

The revolution in computing architecture has been driven by the continuing expansion

of innovative sensing devices and computing methods and the ever-increasing need for

time-critical applications on the edge and in the cloud [4], [5]. Also in this context,

an enormous number of devices are capable of receiving, processing, and sending data

across the Internet or different types of networks to other systems and devices. Thanks

to the concept known as IoT, data can be gathered from various sources in the real

world [6].

Considering the edge cloud often handles the majority of computational data pro-

cessing, an adaptable link between all parties is essential to move the edge as near

to the cloud as feasible and the other way around. In collaboration with the cloud,

edge computing is stretching the limitations of conventional systems of cloud comput-

ing, providing capabilities such as storage, low-latency service execution, and effective

data processing. Therefore, this leads us to a term called the IEC continuum, a sys-

tem comprising both edge and cloud components, and IoT resources that are created

by the smooth, intelligent, and dynamic interaction of these components, leading to a

paradigm change in computing. The IEC continuum embodies a decentralised comput-

ing structure that seamlessly merges edge computing with cloud computing, providing

a scalable, adaptable, and effective framework for promptly processing time-sensitive

data across diverse applications. This continuum proves particularly advantageous

and pertinent in addressing the intricate challenges linked to various applications of

time-critical data processing [7], [8].

- 2 -

Chapter 1: Introduction

The fundamental elements of connecting devices together to share data are known as

network systems. Aligned with the IoT paradigm, applications based on IoT utilise

various integrated ecosystems, including edge and cloud computing, as well as software-

defined networking (SDN) and software-defined wide area networks (SD-WAN) [9].

These ecosystems provide extensive capabilities for processing and transmitting data

in accordance with the quality of service (QoS) requirements of IoT applications. With

its associated industrial ecosystems, the IoT paradigm represents a significant advance-

ment in technological development [10].

Network systems in IEC should be consistently improved and developed to achieve the

requirements of networking for modern applications and optimise data transmission.

Furthermore, IoT devices are integral to time-critical systems, where obtaining real-

time data processing results promptly is crucial. Examples of such systems include

various solutions utilised during natural disasters, such as fires and floods. The essen-

tial aspect of such systems is the processing of current, non-delayed data from sensors

installed in IoT devices. To accomplish this, devices need to be capable of transmit-

ting a real-time data stream with the required specifications. However, transferring a

substantial amount of data from sensors requires a significant amount of energy to per-

form the measurements and then send the data to the edge and clouds for processing

[11].

Furthermore, the IoT has rapidly emerged as a paradigm for connecting devices for

data collection, sharing, and effective processing. IoT faults can happen in various

forms and conditions. Faults can arise due to hardware malfunctions, software glitches,

environmental factors, network issues, or human errors. In the realm of IoT, these

faults can vary from minor inconveniences to major disruptions that affect the entire

system. They have the potential to negatively affect performance and compromise

data integrity [12]. Comprehending IoT faults aims to enhance IoT systems’ stabil-

ity, efficiency, data reliability, and integrity. It encourages us to conceive resilient

methodologies and solutions for detecting, and healing faults.

- 3 -

Chapter 1: Introduction

1.1 Project Motivation

The drive behind this study is to explore the core obstacles involved in enhancing the

efficiency of real-time data processing within IEC systems. Implementing, developing,

and managing optimisation techniques and strategies for processing the real-time data

in the IEC is this research’s main goal. The efficiency of real-time data processing relies

on the capability to adjust dynamically to evolving environmental conditions, data,

and device conditions while adhering to excellent performance standards. Obtaining

this goal, however, poses new challenges.

Smart Healthcare

Smart Airports

Smart Home

Smart Industry

Smart City

Smart Waste

Flood Monitoring

Automotive Vehicles

Figure 1.1: Time-Critical applications

Time-sensitive data processing is crucial across various sectors, each presenting dis-

tinct challenges that require innovative solutions. Figure 1.1 illustrates several time-

sensitive applications. In smart healthcare, real-time monitoring systems track patient

vital signs like blood oxygen levels and heart rate to promptly detect critical changes

in a patient’s condition. Wearable technology and IoT devices enable continuous data

collection, allowing healthcare professionals to intervene swiftly, particularly in emer-

gencies such as strokes or heart attacks. Nevertheless, this application encounters

- 4 -

Chapter 1: Introduction

hurdles such as guaranteeing the confidentiality and protection of sensitive health in-

formation, alongside the requirement for constant power availability and dependable

network connections to sustain ongoing monitoring and data transfer [13].

Automotive vehicles rely on time-sensitive data processing to interpret sensor data

from their surroundings, including other vehicles, road conditions, or pedestrians, mak-

ing instantaneous decisions to navigate the roads safely. These systems must handle

vast data volumes from cameras, radar sensors, and Light Detection and Ranging

(LiDAR) necessitating substantial advanced algorithms and computational power to

achieve real-time decision-making. Challenges in this context involve the necessity

for fault tolerance and redundancy to avert system breakdowns, as well as adapting

to fluctuating network conditions that may impact the vehicle’s communication with

other vehicles and external systems. [14].

Environmental monitoring applications, such as air pollution and flood monitoring,

deploy sensor networks to gather data on rainfall intensity, water levels, and air quality

parameters. This data facilitates predictive models to anticipate potential disasters

and alert the public and authorities in time to take preventive actions. In these

scenarios, the challenges encountered typically revolve around setting up and managing

sensor networks in remote or challenging environments, guaranteeing the durability

and dependability of the sensors, and creating algorithms that can effectively analyse

environmental data to issue timely alerts [15].

The essential role of time-sensitive data processing across these varied applications

underscores its significance in contemporary society. Whether enhancing patient out-

comes, ensuring the safety of mitigating environmental disasters, or autonomous vehi-

cles, the capability to respond and process data in real-time is paramount.

The IEC continuum is fundamentally reshaping the implementation of time-critical

data processing across diverse sectors. By capitalising on the advantages offered by

both edge and cloud computing approaches, the IEC continuum provides a solution

that tackles the latency, resource management, reliability, scalability, and security

issues inherent in time-critical applications. This distributed computing strategy not

only boosts the efficiency and efficacy of these applications but also introduces new

opportunities for innovation and advancement in time-sensitive data processing [16].

- 5 -

Chapter 1: Introduction

1.1.1 Challenges

Finding the appropriate solution to optimise real-time data processing in IEC systems

involves many challenges. Here are some of the main challenges addressed in this

thesis:

Heterogeneous network: The heterogeneity of communication components in the IEC

infrastructure makes it difficult to optimise data flow and bandwidth usage to mitigate

transmission mismatches in the network. It occurs when incoming data flows exceed

the transmission capabilities of the network. This lack of balance can arise from

unstable network connections and differences in data volume, which leads to high

latency, data loss, insufficient use of network resources, and deterioration in system

performance.

Heterogeneous computing: Variations in computing power, limits of resources, and

system configurations between different data-processing devices and systems make it

challenging to alleviate the processing inconsistency in the IEC heterogeneous architec-

ture. This situation happens when one or more edge or cloud computational resources

fail to react to incoming requests efficiently and quickly.

Battery consumption: Processing and transferring data between IoT, edge, and cloud,

especially in time-critical systems, consumes energy. Battery consumption can be af-

fected by several factors, including the volume of data generated, the duration and

speed of its generation, and the data transmission process. Also, its management is

complex, particularly for IoT and edge devices that operate on batteries of limited

capacity and, after a certain time, need to be recharged. These devices need to main-

tain the battery’s lifetime for as long as possible because, in some cases, it is difficult

to recharge the batteries. For example, sensors in the mountains or flood streams

and rivers. Therefore, improving and maintaining battery consumption on the IEC

continuum systems is a challenge.

Faults: The IEC environments are vulnerable to faults due to their complexity, i.e., the

large number, diversity, and heterogeneity of devices. Especially faults that occur in

the network when transmitting data between devices and in IoT and edge devices when

processing data. Due to hardware failures, environmental conditions, software bugs,

- 6 -

Chapter 1: Introduction

human mistakes, or network problems. This may lead to data loss, low response times,

and low throughput. Therefore, to optimise the data quality in the IEC, managing

failures adaptively, i.e., identifying, detecting, and handling faults, in this environment

remains a challenge.

This PhD project aims to find optimal real-time data processing solutions in the IEC

continuum field while considering the aforementioned challenges. Particularly, this

PhD thesis is led by the following research questions:

• What is the best way to satisfy the latency constraints along with accelerating

data transmissions for IoT safety-critical applications in the IEC Continuum

systems?

• How to do real-time data generation on the IoT while optimising the energy of

resource-constrained devices in time-critical systems on the IEC continuum?

• How can we identify, detect, and handle faults in IoT and edge devices on the

IEC continuum systems so the data quality is not compromised?

1.2 Contributions

Optimising real-time data processing in the IEC continuum field includes several areas

this thesis focuses on (a) network optimisation in IoT, edge, and cloud heterogeneous

environments; (b) battery optimisation in IoT and edge devices; and (c) data qual-

ity monitoring and healing in IoT and edge heterogeneous environments. The main

contributions of this thesis are summarised below:

• To address the first question, we introduce an innovative distributed IoT frame-

work. This framework is founded on multi-level network-host queuing mecha-

nisms, prioritisation, and SDN network traffic slicing. We propose a new heuris-

tic auto-adaptation algorithm to dynamically adjust bandwidth slicing based on

the observed network utilisation for each priority, as demonstrated in Chapter 3.

The system aims to optimise network and host resources within the edge-cloud

- 7 -

Chapter 1: Introduction

continuum, reducing queuing delays, and maximising QoS for IoT applications

sensitive to high latency as much as possible.

• To address the second question mentioned earlier, we introduce a solution based

on reinforcement learning (RL), called dynamic data streams, designed for energy-

conscious IoT devices in time-sensitive IoT systems. This proposed mechanism

can adapt the data transmission rate according to the availability of renewable

energy resources, ensuring consistent data collection while also considering the

lifespan of the sensor battery (illustrated in Chapter 4 later).

• To solve the third question aforementioned, we introduce a novel framework for

an adaptive multi-agent system for fault detection and handling in IoT-edge het-

erogeneous systems. We utilise Multi-Agent Reinforcement Learning (MARL),

where each agent observes and learns from the IoT device. Then, interaction

among the various agents is developed to improve each agent’s learning by taking

into account the knowledge of the agents at the different devices in the network.

The aforementioned method enables the detection of abnormalities throughout

the whole system architecture (demonstrated in Chapter 5 later on).

1.3 Thesis Structure

Figure 1.2 explains the thesis’s structure. The chapters were derived from some publi-

cations that I released while pursuing my PhD. The subsequent chapters of the thesis

are organised as follows:

• Chapter 2 illustrates the background of optimisation, adaptation, and the IoT

Edge Cloud (IEC) continuum field and discusses related work on different tech-

niques and methods for improving data processing and transition, battery con-

sumption optimisation, fault detection, and handling.

• Chapter 3 Introduces an innovative distributed and QoS oriented multi-level

queue traffic scheduling system capable of semi-automated bandwidth allocation

to handle time-critical incoming traffic within edge-cloud environments. This

chapter has been derived from:

- 8 -

Chapter 1: Introduction

− Habeeb, F., Alwasel, K., Noor, A., Jha, D.N., Alqattan, D., Li, Y., Au-

jla, G.S., Szydlo, T. and Ranjan, R., 2022. Dynamic Bandwidth Slicing

for Time-Critical IoT Data Streams in the Edge-Cloud Continuum. IEEE

Transactions on Industrial Informatics.

• Chapter 4 presents a dynamic data stream based on reinforcement learning (RL)

in energy-conscious IoT devices deployed for time-critical IoT systems. This

chapter has been derived from:

− Habeeb, F., Szydlo, T., Kowalski, L., Noor, A., Thakker, D., Morgan, G.

and Ranjan, R., 2022. Dynamic Data Streams for Time-Critical IoT Sys-

tems in Energy-Aware IoT Devices Using Reinforcement Learning. Sensors,

22(6), p.2375

• Chapter 5 presents a novel framework for detection, identification, handling

faults and failures, and optimising the data processing performance dynamically

based on a multi-agent system in an IoT system.

• Chapter 6 summarises all the work that was completed in this thesis and provides

some ideas for future work.

- 9 -

Chapter 1: Introduction

Chapter 1
Introduction

Chapter 2
Literature review

Chapter 3
Dynamic Bandwidth Slicing for

Time-Critical IoT Data Streams in
the Edge-Cloud Continuum

Chapter 6
Conclusion and Future Works

Chapter 4
Dynamic Data Streams for Time-

Critical IoT Systems in Energy-
Aware IoT Devices Using
Reinforcement Learning

Chapter 5
Optimizing data processing and handling misconfiguration failures in

IoT systems using reinforcement learning

Figure 1.2: Thesis outline.

- 10 -

2
Literature review

Contents
2.1 IoT Edge Cloud (IEC) Continuum . 12

2.1.1 IoT . 13

2.1.2 Edge computing . 17

2.1.3 Cloud computing . 19

2.2 Optimisation and Adaptation in IEC 21

2.3 Network management technique in the IEC environment 22

2.3.1 Software Defined Networking (SDN) 23

2.3.2 WAN and Software Defined Networking (SD-WAN) 23

2.3.3 Bandwidth slicing . 24

2.3.4 Scheduling algorithms . 24

2.3.5 Summary . 26

2.4 Adaptive techniques for fault management and data quality in the IEC
environment . 26

2.4.1 Q-learning . 29

2.4.2 State-Action-Reward-State-Action (SARSA) 30

2.4.3 Deep Q-Networks (DQN) . 31

2.4.4 Deep Deterministic Policy Gradient (DDPG) 31

2.5 Thesis scope in the context of adaptive time-critical data processing . 33

2.5.1 Network optimisation in IEC 33

2.5.2 IEC devices sustainability . 40

2.5.3 Data quality monitoring and healing in IEC 45

- 11 -

Chapter 2: Literature review

Summary

This chapter provides background information on several key topics relevant to the

overarching theme, including an overview of IEC, IoT, edge computing, and cloud

computing environments. Next, we discussed optimisation and adaptation in IEC.

Moreover, in the IEC continuum, we used network, energy optimisation, fault man-

agement, and data quality techniques. A central focus of this thesis is to tackle the

challenges associated with optimising IEC devices, servers, and data quality and man-

aging failures and anomalies in IEC infrastructure. At the end of this chapter, we

discussed the existing research gaps while briefly outlining how this thesis endeavours

to bridge these gaps.

2.1 IoT Edge Cloud (IEC) Continuum

The IEC Continuum describes a network framework that combines IoT, edge comput-

ing, and cloud computing into a cohesive and interconnected system. This model is

distinguished by the cooperative interaction among diverse components, for example,

IoT devices, edge computing devices, and centralised cloud servers, working together

to handle and monitor the data generated by connected devices [16].

Cloud

Edge

IoT

LAN

WAN

Figure 2.1: An overview of the infrastructure of the IEC continuum.

Figure 2.1 shows the components and data stream paths in the IEC infrastructure.

Starting with IoT, which consists of smart devices, sensors, etc., that collect data from

- 12 -

Chapter 2: Literature review

the surroundings and send it through an IoT gateway to edge devices via LAN network,

using multiple protocols such as Bluetooth, Zigbee, Wi-Fi, etc., which depends on

range, power consumption, and bandwidth [17]. Next, the edge, which consists of

Raspberry Pi, UDOO boards, switches, etc., is near to the IoT devices, providing

processing and storage for the data sent by the IoT quickly and with low latency

in the network [18]. Then it is sent through the edge gateways through the WAN

via the internet to the servers in the cloud. The cloud layer offers a broader range of

computing, analytical, and storage services compared to the edge. It provides resources

with varying characteristics at different costs, depending on their utilisation. There are

many providers of these services, such as Microsoft Azure, Amazon, Alibaba Cloud,

etc [19].

2.1.1 IoT

The IoT represents a pioneering concept that leverages sophisticated wireless commu-

nication technologies to link a wide array of entities. These include sensors, actuators,

mobile phones, and vehicles, all communicating with one another to fulfil specific ser-

vice objectives [20, 21]. The idea of IoT was initially introduced at the MIT Auto-ID

labs by Kevin Ashton in 1999[22]. The term ”IoT” encompasses a broad spectrum

of meanings, referring to a global network that connects various objects surrounded

by human environments through cutting-edge communication technologies. Addition-

ally, IoT signifies the concept of physical objects (”things”) that have the capability

to interact and cooperate with each other to accomplish shared aims [23]. The In-

ternational Telecommunication Union (ITU) in 2005, released a document regarding

the IoT, officially endorsing the IoT movement. This report highlighted the onset of

a ubiquitous era of IoT communications, where the active exchange of information

among all objects worldwide via networks became possible [24].

Based on the most recent data, there are around 17.08 billion interconnected IoT de-

vices in 2024. This number is projected to nearly double, reaching 29.42 billion by

the year 2030 IoT devices, a vast network demanding meticulous organisation while

taking into account critical aspects such as energy efficiency, mobility, reliability, net-

work coverage, link capacity, and the cost of devices[25, 26]. IoT can be described as

- 13 -

Chapter 2: Literature review

a pervasive system designed to bridge ”things” in the tangible, physical world with the

intangible, cyber, or virtual realm. In the context of IoT, the term ”things” refers to

a diverse array of physical objects with tangible forms, each capable of responding to

specific real-world conditions [27]. On the other hand, the cyber world encompasses

services, digital actions, and entities (such as applications), essentially representing

the digital functionalities that physical objects can offer to perform particular tasks.

Figure 2.2 illustrates the IoT network along with a selection of its applications, high-

lighting actuators and sensors as the primary physical components of an IoT setup.

Each of these elements is characterised by unique properties, as detailed further in the

discussion [28]:

Energy
Management

Agriculture
Apps

Home
Automation

Healthcare
Apps

Traffic
Management

Smart Supply
Chain

Management

Military Apps

Smart
Manufacturing

Personal Apps

1

CloudIoT

Edge Analyti
c

User Interface

Wireless
Network

Figure 2.2: Edge computing architecture

A- Sensors: a sensor serves as a device capable of detecting various inputs from its

physical environment around it. These inputs may include factors like smoke, humidity,

sound, light, heat, touch, motion, pressure, moisture, or numerous other environmental

phenomena. Typically, the output generated is a signal that can either be presented in

a human-readable format directly at the sensor location or transmitted electronically

through a network for further analysis or processing.

B- Actuators: actuators serve as essential components in automation and control sys-

tems, translating collected data into actionable commands to improve performance

- 14 -

Chapter 2: Literature review

in automotive applications. These actuators are typically mechanical or electronic de-

vices, such as switches, responsible for executing commands and directives by initiating

appropriate actions on physical objects within the surrounding environment.

Those IoT applications are integrated using several wireless communication technolo-

gies, such as, RFID, LoWPAN, Bluetooth, Wi-Fi, and ZigBee [29].

2.1.1.1 IoT Applications

IoT will influence numerous application domains, as depicted in Figure 2.2. This

section categorises IoT applications based on their respective domains as follows:

Automotive: Time-sensitive IoT applications are important in the automotive industry

for improving vehicle safety, efficiency, and user experience. Continuous monitoring

of vehicle performance and condition, including, for example, tyre pressure, engine

health, and fuel levels, enables immediate alerts and proactive maintenance measures.

Moreover, IoT-equipped vehicles communicate with each other to prevent accidents,

optimise traffic flow, and offer real-time navigation adjustments based on current traffic

conditions, thereby enhancing road safety and minimising congestion [30].

Environmental Monitoring: Time-critical IoT applications are transforming environ-

mental monitoring, this enables immediate monitoring, analysis, and response to di-

verse environmental conditions and potential hazards in real-time. These applications

leverage a network of interconnected sensors deployed across diverse ecosystems and

urban areas to collect data on water quality, air quality, wildlife activities, soil con-

ditions, and more. This real-time data collection and analysis facilitates immediate

actions and making well-informed decisions in reaction to alterations in the environ-

ment and unforeseen circumstances [31].

Flood Monitoring: IoT applications in flood monitoring utilise real-time data collection

from sensors distributed across rivers, dams, and flood-prone areas to detect early

signs of flooding. This immediate data analysis enables the rapid dissemination of

warnings to communities and emergency services, facilitating timely evacuations and

preparations. The integration of IoT in flood risk management transforms traditional

reactive approaches into proactive measures, significantly reducing the impact of floods

- 15 -

Chapter 2: Literature review

through early detection and swift response strategies [32].

Healthcare: In the healthcare domain, time-critical IoT applications are revolutionis-

ing patient care, emergency response, and overall medical services. Real-time health

monitoring systems, powered by IoT devices, continuously track vital signs and other

health indicators, enabling instant detection of anomalies or critical conditions. This

immediacy ensures that healthcare providers can respond to patients’ needs swiftly,

whether for routine monitoring or emergencies. For instance, wearable IoT devices such

as heart rate monitors, glucose monitors, and smart patches transmit health data in

real time to healthcare professionals, allowing for immediate analysis and intervention.

In emergencies, such as heart attacks or diabetic shocks, the devices can automatically

alert medical services, providing them with crucial information even before they arrive

on the scene [33].

Personal Appliances: In personal IoT applications, sensors closely associated with

individuals deliver real-time data for immediate action. These encompass wearable

health monitors and fitness devices, offering instant feedback and alerts. Smartphones

act as vital communication hubs, facilitating seamless data transmission for immediate

analysis or emergency response, catering to industries like healthcare, fitness, and

personal safety with a focus on low-latency solutions for wearable technology[34].

Home Automation: IoT integration in home automation systems enables real-time

monitoring and control over household devices via a private network. This instanta-

neity allows for critical applications such as emergency alerts, immediate temperature

adjustments for safety, and security breaches, ensuring swift action to maintain safety

and comfort [35].

Smart Manufacturing: IoT in manufacturing emphasises real-time monitoring and con-

trol, crucial for time-sensitive processes. Immediate data analysis and feedback allow

for rapid adjustments in manufacturing lines, enhancing efficiency, reducing downtime,

and ensuring quality control in critical production processes [36].

Smart Supply Chain Management: In logistics, IoT applications prioritise real-time

tracking and management, ensuring timely updates on shipment status and location.

This immediacy improves efficiency, reduces delays, and enhances the reliability of

- 16 -

Chapter 2: Literature review

supply chains by providing instant information for decision-making [37].

2.1.2 Edge computing

The concept of situating computer resources close to data origins is not a novel idea

[38]. The phrase ”edge computing”was first coined in 2002, indicating a business-driven

need to Move applications from cloud data centres to the network edge. By 2004, the

term had evolved to describe a framework where programme methods and related data

were distributed to the network’s edge, aiming to boost system performance [39].

Hence, edge computing arises as a model that enhances cloud computing architec-

tures by processing data close to its source, particularly at the network periphery.

This approach facilitates the deployment of computing and storage resources near the

data source, primarily at the network edge, resulting in improved efficiency and per-

formance. Edge computing has evolved to address various challenges encountered in

cloud computing by providing flexible resources directly to users at the network edge, a

capability not initially available with cloud computing, which centralised its resources

in data centres at the network core. The evolution of computing has transitioned from

individual computers managing various tasks to centralised services and applications

hosted in cloud data centres, marking a significant advancement over the past decade

[40].

Recent technological innovations, including advanced home connection devices, high-

capacity mobile devices, wireless networks, and growing concerns over reliability, pri-

vacy, and user autonomy, underscore the necessity of managing computing applica-

tions, data, and services at the internet’s outermost layer (the ”edge”) rather than its

central points (the ”core”) [41].

Driven by the IoT, the imminent landscape of digital connectivity anticipates the

integration of nearly all electrical devices into the IoT framework. These devices,

ranging from air quality sensors and LED lighting to streetlights and internet-enabled

microwave ovens, will simultaneously serve as generators and recipients of data. It’s

projected that, in the coming years, the proliferation of these edge devices will reach

the billions, collectively producing an astronomical volume of raw data that will over-

whelm the traditional capabilities of cloud computing infrastructures. Consequently,

- 17 -

Chapter 2: Literature review

a substantial portion of IoT-generated data is likely to be processed locally at the

network edge rather than being sent to centralised cloud data centres [42].

These driving forces collectively underscore the necessity for a paradigm shift towards

edge computing, where data is processed closer to its point of origin. This approach

not only alleviates the burden on cloud infrastructure but also addresses the unique

requirements of the burgeoning IoT landscape, oping the way for a more efficient,

secure system, reducing response times, alleviating network congestion, and enhancing

the efficiency of data processing.

2.1.2.1 Architecture

The fundamental concept of edge computing revolves around conducting computa-

tional operations at the network’s periphery, near the data’s source. These resources

extend from the network and computing assets shared among end-users to fog nodes

and cloud data centres. This ecosystem encompasses interconnected sensors and de-

vices within the IoT layer, communicating and sharing data through sophisticated

network infrastructures. Data processing takes place at various tiers depending on the

application’s specific requirements, Structured into three main layers: IoT, edge, and

cloud, as depicted in a typical edge computing architecture Figure 2.3 [43].

Within this architecture, the IoT layer encompasses millions of sensors and devices

continuously generating data, sharing vital information through sophisticated com-

munication networks, and overseeing essential functions within smart infrastructures.

These IoT devices and sensors are the primary consumers of edge computing services.

While IoT and edge are developing rapidly and independently, the integration of edge

can significantly enhance IoT by addressing several critical challenges and boosting

performance. Typically, IoT devices stand to gain from the substantial computational

power and storage capabilities available across the edge and cloud layers [44].

However, edge presents additional benefits for IoT beyond what cloud computing can

offer, despite having somewhat lesser capacity and storage. The primary requirement

for IoT applications is not immense computational power or extensive storage but

rather swift response times. Edge computing is capable of providing adequate com-

putational strength, sufficient storage, and the rapid response times needed by IoT

- 18 -

Chapter 2: Literature review

IoT layer

Edge layer

Cloud layer

Figure 2.3: Edge computing architecture

applications. Moreover, edge computing benefits from IoT through the expansion of

the edge infrastructure to manage distributed computing nodes, With IoT devices

functioning as edge nodes for service delivery, the integration between IoT and edge

computing is anticipated to expand, creating a growing interdependence between them

[45].

2.1.2.2 Characteristics

IoT and edge computing share several similarities, particularly in relation to the IoT

layer. The primary aim of edge computing is to extend the capabilities of cloud

computing to the edge of the network. This approach positions computational and

storage resources near end-users, aiming to minimise service latency and conserve

network bandwidth for applications sensitive to delays. Unlike the centralised structure

of cloud computing, the edge computing framework is characterised by its distributed,

hierarchical, and decentralised designs, with its services located closer to end users.

Compared to the vast resources available in cloud computing, the resources of edge

computing (including computing power, communication capabilities, and storage) are

relatively limited [46]. The characteristics of all layers is demonstrated in Table 2.4.

2.1.3 Cloud computing

Cloud computing, an internet-based model of computing, enables the sharing of pro-

- 19 -

Chapter 2: Literature review

Figure 2.4: Characteristic of IoT, edge, and cloud computing table

cessing power, storage resources, and data across various devices (for example, com-

puters, laptops, tablets and smartphones) on a demand basis. This model provides

extensive and Immediate access to various computing resources like networks, stor-

age, servers, and applications as required. It provides users and businesses with the

ability to process and store data in third-party data centres, significantly reducing

infrastructure costs for corporations. Cloud computing also enhances the speed of

application deployment, improves manageability, and requires less maintenance, while

allowing for the rapid and flexible adjustment of resources (software, hardware, net-

work, and services) to meet business demands [47]. The rise of cloud computing

has been driven by factors such as high-capacity networks, affordable storage devices

and computing power, along with a growing inclination towards hardware virtuali-

sation and autonomic computing. The advantages of adopting cloud computing are

numerous, including dynamic scaling, reduced capital expenditures, high availability,

ease of management, resource sharing, cost-effective services, superior performance,

accessibility, enhanced productivity, reliability, increased mobility, and environmental

friendliness. These benefits have made cloud computing a highly sought-after service

- 20 -

Chapter 2: Literature review

[48]. Examples of leading cloud service providers include Microsoft Azure [49], Google

Cloud [50], and Amazon AWS [51]).

2.2 Optimisation and Adaptation in IEC

In the realm of computing, optimisation involves altering a system to enhance its

performance or reduce its resource consumption, ranging from low-level tasks such

as circuit development and machine code customisation for specific architectures to

high-level activities including algorithm design and implementation. For example,

software may be optimised to increase its speed, lower its memory usage, or decrease

its energy consumption. Optimising applications within the IEC continuum addresses

the unique challenges and needs of the IEC’s heterogeneous and dispersed architec-

ture, which spans all computing resources, from IoT and edge to centralised cloud

infrastructures. Optimisation in this context aims to achieve equilibrium in data pro-

cessing, communication, energy, and data integrity needs between the IoT, edge, and

cloud components [52].

Adaptation, on the other hand, is a crucial concept that focuses on the ability of

systems, applications, or processes to dynamically adjust to changing conditions or

requirements. This adaptability is particularly important in today’s digital landscape,

where the variability of user demands, resource availability, and system conditions

can significantly impact performance, efficiency, and user satisfaction. The need for

adaptation arises from several key factors, such as dynamic environments, resource

optimisation, enhanced user experience, fault tolerance, resilience, as well as security

and compliance. Adaptive methods, which include a collection of practices or instru-

ments designed to allow applications to actively adjust to changing circumstances,

play a critical role in this optimisation process. These methods can include strategies

like the automatic adjustment of resource levels, the dynamic allocation of computing

resources, and mechanisms for self-handling [53].

In the context of the IEC framework, adaptive techniques refer to the methods and

strategies employed to enable IEC systems and devices to adjust to changing condi-

tions or requirements. These techniques are crucial for improving the efficiency, perfor-

- 21 -

Chapter 2: Literature review

mance, and reliability of IoT systems in various environments, making them especially

beneficial in unpredictable and changing circumstances. The relationship between op-

timisation and adaptation is inherently synergistic; while optimisation seeks to find

the best configuration for a given scenario, adaptation ensures that the system re-

mains optimal or near-optimal as the scenario changes. This dynamic optimisation

process involves continuously monitoring the environment, predicting future states,

and making preemptive adjustments to maintain or improve performance, efficiency,

and reliability. The benefits of integrating adaptation into optimisation strategies in-

clude continuous optimisation, proactive problem-solving, scalability and flexibility,

and sustainability [54].

In sections 2.3 and 2.4, we present several techniques for bandwidth and energy opti-

misation, fault management, and data quality, demonstrating how adaptive methods

enhance system robustness, and fault handling by proactively addressing new abnor-

malities. The shift towards adaptive techniques is motivated by the necessity for

systems to dynamically adjust to evolving situations and environments, ensuring that

systems are effective, adaptable, and quick to respond to changing conditions.

2.3 Network management technique in the IEC environ-

ment

Networks play a crucial role, serving as the backbone that connects various compo-

nents within the IEC continuum [55]. These networks facilitate smooth data trans-

mission among IoT devices situated at the network’s edge and the central cloud in-

frastructure, facilitating real-time data analysis, decision-making, and control and en-

suring the scalability, reliability, and efficiency of IEC systems. Starts by describing

SDN and its architecture as compared to traditional networks. Then, WAN and SD-

WAN. Next, bandwidth slicing and several scheduling algorithms, including multi-level

queues, FCFS, and SJN. Our focus is on optimising data flow and bandwidth utilisa-

tion.

- 22 -

Chapter 2: Literature review

2.3.1 Software Defined Networking (SDN)

SDN is an approach to networking that employs software-based controllers or appli-

cation programming interfaces (APIs) to manage traffic flow within the network and

communicate with the underlying hardware infrastructure [56, 57]. In contrast to tra-

ditional networking, where control (the system that decides where to send packets)

and data planes (the system that actually forwards packets to the selected destina-

tion) are integrated within networking devices like switches and routers, SDN relocates

network control logic from these devices to SDN controllers. This shift allows network

administrators to oversee network services by abstracting lower-level functionalities, es-

sentially programming the network to efficiently direct traffic. SDN strives to facilitate

the dynamic configuration of networks and surmount the constraints of traditional net-

work infrastructure [58]. By adopting this approach, networks become more resilient,

straightforward, and adaptable to changes, as network control is centralised instead of

relying on complex, distributed control mechanisms.

2.3.2 WAN and Software Defined Networking (SD-WAN)

Wide Area Networks (WANs) serve as the foundational communication infrastructures

linking geographically dispersed systems and devices into a unified network. While tra-

ditional WANs have facilitated the interconnection of distributed systems, they demon-

strate drawbacks like the absence of adaptable routing behaviour, uneven distribution

of loads, reliance on intricate network protocols, absence of prioritisation, and the ne-

cessity for specialised hardware are among the challenges. These constraints limit the

management and deployment of traditional WANs in environments with data-intensive

applications. For the realisation of fully distributed cloud data centres, ensuring op-

timal resource management and efficiency in contemporary data-driven applications

such as smart energy clouds, content delivery networks, and distributed gaming plat-

forms, it is imperative to incorporate the WAN into a comprehensive and adaptable

SDN solution. [59].

SD-WAN, originating from the SDN paradigm, utilises SDN mechanisms for operating,

managing, automating, and simplifying networks within the WAN environment. Con-

- 23 -

Chapter 2: Literature review

sequently, SD-WAN has emerged as a promising solution to overcome the limitations

of traditional WANs, with the objective of enhancing the performance and deploy-

ment of diverse data-driven applications [60]. The concept of separating the control

and data layers, which is intrinsic to SDN, is extended to the SD-WAN ecosystem,

along with the implementation of software-based centralised controllers. While SDN

primarily oversees the control and administration of internal network functions within

data centres (such as cloud and edge infrastructure), SD-WAN shifts its attention to

managing the connections between geographically dispersed applications, systems, and

data centres [61].

2.3.3 Bandwidth slicing

It is a strategy in network management that involves dividing the total network band-

width into smaller segments, or ”slices,”to distribute among various users, applications,

or services. This division is based on each entity’s priorities, needs, or specific policies.

The technique is especially beneficial in situations where equitable resource allocation,

traffic prioritisation, or adherence to certain quality of service (QoS) standards are

crucial.

By employing bandwidth slicing, networks can more effectively manage and allocate

their resources, thereby boosting both performance and reliability. This method is

particularly applicable in settings with a mix of applications requiring different levels

of bandwidth, such as corporate networks, service provider infrastructures, or cloud-

based platforms. Priority setting is a key feature of bandwidth slicing, where different

bandwidth slices can be prioritised differently. This ensures that critical or urgent

traffic is processed before less urgent or lower-priority data, optimising the network’s

overall efficiency and responsiveness [62].

2.3.4 Scheduling algorithms

Multi-level Queues is a sophisticated scheduling approach used in both operating sys-

tems and network management to efficiently handle tasks or data packets with diverse

requirements. This method organises tasks or packets into multiple queues, each rep-

resenting a different priority level or category of service. It’s particularly useful in

- 24 -

Chapter 2: Literature review

environments where processes or packets have varied characteristics and requirements,

allowing for more granular and differentiated handling based on predefined criteria

[63].

First Come, First Served (FCFS) this scheduling algorithm is employed by operating

systems and networks to oversee and execute tasks efficiently, processes, and requests

in the order they are received. This method is also known by other names, such as

first-in, first-out (FIFO) or first-come, first-choice (FCFC). The simplicity of the FCFS

algorithm makes it highly predictable and capable of handling various types of tasks

and requests without the need for complex prioritisation. It operates similarly to the

queue system seen in grocery store checkouts, where customers are attended to in the

order of their arrival, regardless of the transaction’s complexity.

FCFS stands out as one of the most straightforward and self-sufficient scheduling

algorithms, largely because it operates with minimal human or artificial intelligence

(AI) intervention. It eliminates the need for task prioritisation based on urgency or

complexity, thereby saving processing time. The central processing unit (CPU) itself

undertakes the task of scheduling, obviating the need for external software or more

sophisticated scheduling strategies [64].

Shortest Job Next (SJN), also known as Shortest Process Next (SPN) or Shortest Job

First (SJF), this scheduling method priorities the process with the shortest execution

time to run next. SJN operates as a non-preemptive algorithm, meaning it does not

interrupt a process once it starts. A preemptive version of SJN is known as Shortest

Remaining Time, which can interrupt processes to ensure the shortest one is being

executed [65].

The primary advantage of Shortest Job Next lies in its straightforwardness and its

effectiveness in decreasing the mean waiting duration for task execution. However,

this method can lead to process starvation, where longer processes may end up waiting

indefinitely if shorter processes keep coming in. A related strategy, Highest Response

Ratio Next (HRRN), addresses this issue by implementing an ageing technique, which

adjusts priority over time to prevent starvation [66].

- 25 -

Chapter 2: Literature review

2.3.5 Summary

In summary, traffic shaping is mainly concerned with managing data flow rates with-

out priority consideration, and priority queuing, prioritises certain traffic, but it does

not inherently guarantee resources for that traffic [67]. However, bandwidth slicing

presents a comprehensive strategy that encompasses both prioritisation and the ca-

pacity for dynamic modification thanks to its ability to adapt and be customised and

equity superior to that of conventional methods, ensuring that essential services have

the bandwidth they need while avoiding resource monopolisation by any single user

or application. For the scheduling methods, the multi-level queues method is flexible

and capable of handling a diverse set of tasks based on specific needs and priorities,

unlike FCFS, which processes tasks in sequential order, and SJN, which gives priority

to shorter tasks irrespective of their urgency, and are less adaptable to varying task

requirements and priorities [68].

In our efforts to improve the effectiveness and capabilities of the IEC continuum net-

work, we have adopted an innovative approach that integrates bandwidth slicing tech-

niques with a sophisticated multi-level queuing scheduling method. This method is

meticulously implemented within the SDN controller, serving as a solution for optimis-

ing bandwidth allocation across the network and maximising the utilisation of network

resources. More details have been discussed in Chapter 3.

2.4 Adaptive techniques for fault management and data

quality in the IEC environment

Various detection methods have been employed, including statistical analysis, adap-

tive strategies, and machine learning. A thorough comparison of these three main ap-

proaches is discussed in [69]. In this study, our focus is on identifying and addressing

faults as well as enhancing data quality through the use of machine learning. Ma-

chine learning has been extensively implemented across numerous research initiatives

due to its simplicity, efficiency, and precision in managing faults and maintaining the

integrity of data quality. Within machine learning, there are three main approaches:

unsupervised learning, supervised learning, and reinforcement learning.

- 26 -

Chapter 2: Literature review

Supervised learning is a technique where a model is trained on labelled data, enabling

the algorithm to understand the relationship between the inputs and their correspond-

ing outputs. This approach is particularly effective for tasks such as classification and

regression. One of the main benefits of supervised learning is its proficiency in making

precise forecasts when there is a plentiful supply of labelled data. However, a notable

drawback of this learning method is its reliance on having labelled data for training,

which can make it impractical in situations where acquiring such data is costly or

requires a lot of time [70].

Unsupervised learning operates with data that doesn’t come with predefined labels,

enabling algorithms to identify patterns or connections within the data themselves.

This type of learning is useful in applications like clustering and reducing the dimen-

sions of data. The strength of unsupervised learning lies in its ability to detect unseen

patterns within datasets that lack labels. However, it encounters difficulties in as-

sessing the value of the patterns it identifies, due to the absence of clear labels for

verification[71].

Reinforcement learning is centred around an agent that engages with an environment,

learning to make decisions in a sequence through feedback received as rewards or

penalties. This approach is ideal for situations that demand independent decision-

making (Figure 2.5). The effectiveness of reinforcement learning is particularly noted

in environments where learning from direct experience is necessary, though it demands

meticulous adjustments. Each methodology has its advantages and disadvantages,

with the selection based on the particular issue at hand and the data accessible. In our

thesis, we employed reinforcement learning techniques that are prominently recognised

in academic literature for their effectiveness in dynamic and interactive settings.[72].

Here are the key components and concepts of reinforcement learning [73]:

Agent: This refers to the learner or decision-maker that operates within an environ-

ment, performing actions based on its interactions.

Environment: The context or the external system the agent interacts with, which

reacts to the agent’s actions by providing rewards or penalties as feedback.

State: A snapshot of the environment’s current conditions, offering the agent infor-

- 27 -

Chapter 2: Literature review

Environment

action
A

state
S

reward
R

Agent

Figure 2.5: RL

mation to make informed decisions.

Action: The range of choices available to the agent in any given state, which can alter

the environment’s state.

Policy: The agent’s strategy, is essentially a guide that maps states to actions, aiming

to identify an optimal policy for maximising rewards over time.

Reward: The environment provides feedback to the agent’s actions in the form of

numerical values, representing rewards. The goal of the agent is to maximise the total

rewards it receives over time.

Model-based: Involves the agent possessing a detailed model of the environment,

including how actions transition between states and their rewards, to plan its actions.

Model-free: Here, the agent acquires optimal actions or value functions by directly

engaging with the environment, devoid of a predefined model.

Value-based: Centres on learning a value function (like Q-values) that predicts The

anticipated rewards for every pairing of state and action, with Q-learning as a prime

example.

Policy-based: Focuses directly on learning the policy that dictates actions for given

states, with methods like REINFORCE being key examples.

- 28 -

Chapter 2: Literature review

On-policy: Learning occurs based on the current policy in use, with SARSA being a

notable on-policy learning algorithm.

Off-policy: The learning is based on the outcomes of actions taken under a different

policy, with Q-learning exemplifying this approach.

Single-agent: Involves one agent engaging with the environment to learn the optimal

policy or value function.

Multi-agent: Features several agents interacting among themselves and the environ-

ment in cooperative or competitive settings, each learning its policy.

Exploration: The method by which an agent investigates new actions or states to

better understand the environment.

Exploitation: The agent’s method for selecting actions that are known to maximise

rewards according to its accumulated knowledge.

Continuous: Describes an action space with a continuous range, such as real numbers,

with DDPG tailored for such spaces.

Discrete: Refers to an action space made up of a finite set of choices, with algorithms

like Q-learning and SARSA designed for these spaces.

Batch Learning: The learning process from a pre-collected dataset of experiences.

Online Learning: The agent dynamically updates its policy or learning based on new

experiences acquired from ongoing interactions with the environment.

2.4.1 Q-learning

Q-learning stands as a widely utilised form of RL, distinguished by its off-policy and

model-free nature. Setting it apart from other reinforcement learning techniques, Q-

learning is characterised by its straightforward Q-functions, making it a cornerstone

upon which numerous other reinforcement learning algorithms are built [74].

It computes the execution value of a particular action within a given state. RL agents

employ the Q-learning algorithm to acquire optimal strategies for managing faults and

allocating resources within the IoT system. The Q-values (Qr) are updated for each

RL agent r ∈ R using the Bellman equation as a basic concept. To iteratively update

- 29 -

Chapter 2: Literature review

the Q-values, it takes the present reward, the highest anticipated future reward, and

the learning rate, according to the following equation:

Qr(s, a)← (1− α) ·Qr(s, a) + α · (r + γ ·max a′Qr(s
′, a′)) (2.1)

where:

• Qr(s, a) refers to the Q-value of agent r in state s and performing action a.

• r refers to the immediate reward received from the environment.

• α refers to the learning rate, which controls the weight of the new information

(0 < α ≤ 1).

• a’ refers to the action taken in the next state in accordance with the existing

policy.

• s’ refers to the next state.

• γ refers to the discount factor, which specifies the significance of future rewards

(0 < γ ≤ 1).

Moreover, the balance between the weights assigned to the new information and

the current information stored in the Q-values is determined by the α parameter.

It regulates how frequently the Q-values are modified in response to the RL

agent’s new experiences gained. The γ parameter illustrates how future benefits

are prioritised over present gains. It establishes how much consideration is given

to potential benefits while making decisions. Therefore, we assumed the α = 0.1

and the γ = 0.9.

2.4.2 State-Action-Reward-State-Action (SARSA)

SARSA is similar to Q-learning, but it operates as an on-policy algorithm, unlike

Q-learning. This means SARSA updates its Q-values based on actions taken by the

current policy, rather than choosing actions greedily based on the highest Q-value.

- 30 -

Chapter 2: Literature review

Unlike Q-learning, SARSA doesn’t always use the maximum reward for updating its

Q-values. Instead, it selects a new action and its corresponding reward using the same

policy that guided the initial action selection. The acronym SARSA derives from the

sequence used in the update formula: Q(s, a, r, s’, a’), where ’s’ and ’a’ represent

the initial state and action, ’r’ is the reward received afterwards, and ’s’, ’a’ are the

subsequent state and action pair. In contrast, Q-learning is not limited by the policy

for choosing the next action; it selects whichever action maximises the Q-value for the

following state. Hence, SARSA’s characteristic feature is its adherence to the on-policy

approach [75].

2.4.3 Deep Q-Networks (DQN)

The Deep Q-Network (DQN) It is a notable algorithm in the realm of RL, combining

deep neural networks with the Q-learning method. This amalgamation enables agents

to learn optimal strategies in complex environments. While Q-learning presents a

robust framework, its critical limitation lies in its narrow applicability. Conceptualising

Q-learning as a process of updating values within a two-dimensional grid (Action

Space x State Space) reveals dynamic programming, highlighting a significant shortfall:

the inability of Q-learning agents to make informed decisions regarding previously

unencountered states. In essence, Q-learning lacks the foresight for valuing unknown

states. DQN addresses this shortfall by replacing the conventional two-dimensional

array with a neural network, using this network to approximate the Q-value function

involves inputting the current state and generating estimated Q-values for all potential

actions as output. Nonetheless, DQN’s design is predominantly suited for offline batch

learning, and it struggles with adapting to online, continuous learning contexts, where

it’s required to learn from a stream of incoming data continuously [76].

2.4.4 Deep Deterministic Policy Gradient (DDPG)

The DDPG algorithm is a model-free, online, off-policy method within RL. It utilises an

actor-critic framework, where the agent, comprising both actor and critic components,

endeavours to determine the best policy for maximising anticipated long-term rewards.

While the DQN algorithm has seen significant success in complex, high-dimensional

- 31 -

Chapter 2: Literature review

environments like Atari games, it operates within a discrete action space. DDPG

differentiates itself by utilising the actor to adjust the policy function’s parameters,

effectively choosing the best action for a given state, and the critic to assess the policy’s

performance based on the temporal difference (TD) error [77].

This method is particularly relevant for tasks requiring continuous action spaces, such

as physical control tasks, where discrediting the action space too finely could result in

an impractically large number of actions. For example, dividing the action space of a

system with ten degrees of freedom into four parts each would result in over a million

possible actions, making convergence challenging. Additionally, DDPG typically lacks

in performing exploratory actions, which can be addressed by introducing noise into

either the parameter or action space to encourage exploration. A comparison of the

above reinforcement learning algorithms in Table 2.1

In conclusion, we choose Q-learning for our project, giving careful consideration to its

unique benefits compared to other reinforcement learning (RL) algorithms. The off-

policy characteristic of Q-learning is a key advantage, allowing the algorithm to learn

from an exploratory policy. This is particularly valuable in settings where thorough

exploration is crucial for identifying the best policies. In contrast to SARSA, which

operates on-policy and might adopt a more cautious exploration strategy, Q-learning’s

off-policy nature facilitates quicker convergence by utilising experiences from various

policies. Moreover, Q-learning is adept at managing infrequent rewards and efficiently

navigating through complex state-action spaces. When compared to deep reinforce-

ment learning algorithms like DQN and DDPG, Q-learning distinguishes itself with its

straightforwardness and ease of use, establishing it as a strong option for a wide range

of applications. Its appropriateness for scenarios with discrete actions and its efficient

use of resources render it the optimal choice for our particular endeavour, especially

in dynamic and challenging conditions.

- 32 -

Chapter 2: Literature review

Table 2.1: Reinforcement Learning Algorithms

AlgorithmType Objective Learning
Approach

Action
Space

Architecture

Q-
Learning

Model-
free,
Value-
based

Learning
the optimal
action-value
function
Q(s, a)

Off-policy Discrete Not deep
(traditional
RL)

SARSA Model-
free,
On-
policy

Learning
the optimal
action-value
function
Q(s, a)

On-policy Discrete Not deep
(traditional
RL)

DQN Model-
free,
Value-
based,
Deep
Learn-
ing

Expand Q-
learning to
manage state
spaces with
a high di-
mensionality
employing
neural net-
works

Off-policy,
Experience
Replay

Discrete Deep neu-
ral network
(CNN)

DDPG Model-
free,
Policy-
based,
Deep
Learn-
ing

Learn a de-
terministic
policy for
continuous
action spaces

Off-policy Continuous Actor-Critic
(Deep neural
networks)

2.5 Thesis scope in the context of adaptive time-critical

data processing

2.5.1 Network optimisation in IEC

Various published works have extensively examined subjects relevant to the bandwidth

dynamic management and resources in network systems, particularly for IoT applica-

tions. Diverse solutions and outcomes have been demonstrated on IoT devices, edge

devices, and cloud servers.

bwSlicer [78] presents a system crafted to improve bandwidth allocation for VMs in

- 33 -

Chapter 2: Literature review

cloud data centres, with the goal of boosting performance and energy efficiency. It in-

troduces three algorithms: Fair Bandwidth Reallocation (FBR), Required Bandwidth

Allocation (RBA), and Divide Bandwidth Reallocation (DBR). Each algorithm tackles

various facets of bandwidth management and allocation to cater to the changing re-

quirements of VMs, consequently diminishing execution time and energy usage. These

algorithms dynamically reallocate bandwidth among VMs based on their current de-

mands and execution status, aiming for a more efficient utilisation of resources. This

paper focuses on intra-datacenter bandwidth allocation among VMs without consid-

ering the broader network conditions and the potential for bandwidth optimisation

between the data centre and other network segments or across multiple data centres.

This thesis provides a comprehensive approach by extending the principles of dynamic

allocation to include wider network conditions, potentially improving overall network

efficiency and service quality beyond the scope of a single data centre.

In [62] the authors explore a distributed network slicing strategy for optimal allo-

cation of both bandwidth and computational resources in 5G systems. It focuses on

minimising latency by jointly allocating resources of base stations and fog nodes across

a network, using a distributed optimisation algorithm. This approach aims to enhance

service quality for end-users by efficiently managing communication and computational

demands. This paper focuses on static, predefined resource allocation without real-

time adaptability to fluctuating network conditions and demand. This thesis provides

real-time bandwidth allocation adjustments based on immediate network performance

and user demand, ensuring optimal resource utilisation and service quality across a

broader range of network scenarios.

In [79] the authors delve into optimising data flow control within Time-Sensitive Net-

works (TSN) to ensure efficient load balancing across network paths in industrial au-

tomation settings. It addresses the unique challenges of achieving reliable and deter-

ministic data transport in increasingly digitalis and connected industrial environments,

influenced by the Industry 4.0 revolution. The work explores various load distribution

strategies and the integration of TSN standards, emphasising dynamic control based

on real-time traffic load metrics. It proposes solutions to minimise local load maxima

and enhance network performance, considering the predictable nature of communi-

- 34 -

Chapter 2: Literature review

cation demands in automation applications. This paper focuses on optimising load

distribution within a predefined network framework without dynamically adjusting

network bandwidth allocations based on fluctuating demands and conditions. This

thesis provides a complementary approach by offering real-time, adaptive bandwidth

management, ensuring optimal network resource utilisation, thus potentially improv-

ing network performance and efficiency in dynamic industrial environments.

DART [80] presents a scheme to optimise traffic flow migration in Software-Defined

Networks (SDN) by reducing data plane load. It introduces a method that ensures effi-

cient migration of traffic flows without causing congestion or excessive rule-space usage

in SDN switches. The key contributions include a QoS-aware migration schedule, fea-

sible migration schedule generation, and rule-space management, aiming to minimise

the migration impact on network performance. This approach facilitates smooth traffic

flow migration, adhering to QoS demands and resource constraints. While DART aims

to optimise flow migration to reduce load and avoid congestion, it does not directly

manage the allocation of bandwidth across the network. This thesis provides a mech-

anism for real-time bandwidth management, ensuring optimal utilisation of network

resources during flow migrations.

In [81] the authors delve into optimising video analytics at the edge by adaptively

managing configuration settings and bandwidth allocation. It introduces an algorithm,

JCAB, which dynamically balances the trade-offs among analytics accuracy, energy

consumption, and system latency. While it shares the goal of efficient resource use

with our work, our approach broadens the scope to include dynamic bandwidth slicing

for a variety of IoT data streams, providing a more generalised solution that can adapt

to diverse application requirements beyond video analytics.

JANUS [82] introduces a traffic scheduling system that prioritises data streams based

on their latency requirements. The goal is to improve the performance of IoT applica-

tions within edge computing settings. It offers a nuanced approach to handling data

streams with varying priorities, focusing on reducing latency and improving through-

put. Janus dynamically manages traffic flow and bandwidth within the scope of edge

networks by prioritising traffic based on latency requirements. However, this thesis

contrasts Janus by managing and dynamically allocating bandwidth across the entire

- 35 -

Chapter 2: Literature review

network, i.e., IoT, edge, and cloud, offering a more holistic optimisation of network

traffic and bandwidth utilisation across the entire network infrastructure.

In [83] the authors explore the utilisation of network slicing within vehicular networks

to address diverse traffic demands and ensure efficient use of infrastructure for both

safety and infotainment services. It models a highway scenario, employing a network-

slicing approach to categorise vehicles into clusters for optimised communication. This

method significantly enhances V2X communication by achieving low latency and high

reliability, crucial for safety-critical applications in autonomous driving. This thesis

extends beyond vehicular communication to encompass a variety of IoT scenarios, of-

fering a more generalised framework for bandwidth management across the edge-cloud

continuum. A limitation of this approach is the potential for static pre-configuration

of slices, which might not optimally respond to the highly dynamic conditions of ve-

hicular networks, such as varying speeds, densities, and the urban environment. This

thesis offers more flexible and adaptive management of network resources, ensuring

that the allocation of bandwidth can adjust in real-time, thus enhancing the network’s

responsiveness and efficiency.

NebulaStream (NES) [84] introduces a novel data management system designed for the

IoT ecosystem. This system addresses the challenges of managing distributed, highly

heterogeneous, and dynamic environments typical of IoT applications. NES empha-

sises efficient data and application management across a unified sensor-fog-cloud archi-

tecture, leveraging the strengths of edge computing to enhance scalability, reliability,

and performance. It focuses on handling the unique characteristics of IoT data, such

as its volume, velocity, and variety, by implementing dynamic decisions, autonomous

processing, and incremental optimisations to manage data flows efficiently across the

continuum. While NES efficiently manages data flow across the heterogeneous and un-

reliable IoT environment, it does not explicitly address dynamic network bandwidth

allocation. This thesis offers adaptive network resource management, ensuring optimal

data transmission rates across the IoT-edge-cloud continuum, further reducing latency

and improving overall system performance under varying network conditions.

In [85] the authors present a novel data centre transport architecture, NDP (Network

Data Plane), designed to address the challenges of achieving low latency and high

- 36 -

Chapter 2: Literature review

performance in modern data centre networks. This work introduces a system that

sidesteps conventional transport protocol limitations by leveraging per-packet multi-

path routing and innovative packet trimming techniques to manage network conges-

tion and prioritise traffic effectively. The NDP project is centred on re-architectonic

datacenter networks to optimise latency and throughput within a more confined net-

work topology. While NDP efficiently manages data flow within datacenter networks,

it doesn’t dynamically adapt to changing network conditions or bandwidth demands

outside of these environments. In contrast, this thesis’s adaptability adjusts bandwidth

allocations in real-time based on the varying requirements of different applications or

services, enhancing performance in a wider range of network conditions and usage

scenarios.

QJUMP [86] introduces a novel approach for controlling network interference in data

centre networks, focusing on reducing queuing delays for latency-sensitive applications

by allowing their traffic to ”jump”over less sensitive traffic. This is achieved through a

simple, deployable Linux Traffic Control module. QJUMP specifically targets data cen-

tre network interference with a focus on prioritisation and latency reduction. QJUMP

addresses latency reduction through packet prioritisation within the more confined

environment of data centre networks. QJUMP’s reliance on static priority levels and

rate limits, which might not adapt well to changing network conditions or varying

application requirements. While QJUMP efficiently manages network queues to re-

duce latency for prioritised traffic, it does not dynamically adjust network bandwidth

allocation based on real-time traffic patterns. This thesis provides a more flexible

and adaptive mechanism for managing network resources, optimising not only latency

but also bandwidth utilisation and overall network performance under diverse and

fluctuating load conditions.

pHost [87] introduces a data centre transport design that combines the near-optimal

performance of specialised transport designs like pFabric with the generality of using

commodity network hardware akin to Fastpass. pHost achieves this by decentralis-

ing scheduling decisions to end-hosts, avoiding the need for specialised hardware or

centralised scheduling. pHost focuses on optimising data centre transport using ex-

isting network infrastructure to achieve low flow completion times and high through-

- 37 -

Chapter 2: Literature review

put. While pHost effectively utilises existing network infrastructure to optimise data

flow, it does not explicitly manage bandwidth allocation based on real-time network

conditions or application requirements. This thesis contrasts pHost by dynamically

adjusting network bandwidth allocation to meet the varying demands of IoT applica-

tions, potentially enhancing and maintaining performance under fluctuating network

conditions and diverse application workloads.

LEO [88] introduces an advanced scheduling system, LEO, designed for mobile sensor

applications. It efficiently manages sensor data processing across various computa-

tional units within smartphones, including CPUs, co-processors, GPUs, and cloud

resources. By exploiting the specific characteristics of sensor app workloads, LEO

significantly enhances energy efficiency and application performance without sacrific-

ing accuracy or responsiveness. The LEO optimises computational resource allocation

for mobile sensing applications. It focuses on computational offloading and schedul-

ing without directly managing network bandwidth. While LEO optimises local and

cloud processing to improve energy efficiency and latency, it may not fully account for

network conditions that can vary widely and impact the performance of sensor-based

applications. This thesis contrasts LEO by providing adaptive management of network

resources, ensuring optimal data transmission rates, and further reducing latency and

energy consumption in IoT sensing scenarios.

Homa [89] offers a novel transport protocol aimed at significantly lowering latency in

data centre networks, particularly for workloads dominated by short messages. By dy-

namically managing in-network priority queues and employing a receiver-driven flow

control mechanism, Homa achieves exceptionally low latencies and high network util-

isation. Homa provides a robust solution for maintaining low latency across a wide

range of network loads and message sizes. Homa’s focus is on optimising transport

protocol behaviour within the constraints of existing network infrastructure. While

Homa effectively manages packet priorities and receiver-driven flow control to reduce

latency, it does not directly address the dynamic allocation and optimisation of net-

work bandwidth based on varying application demands and network conditions. This

thesis contrasts Homa by providing a network layer solution to adaptively manage

bandwidth allocation in real-time, ensuring optimal utilisation of network resources.

- 38 -

Chapter 2: Literature review

Frontier [90] explores a distributed, data-parallel edge processing platform designed

for IoT applications. By utilising replicated dataflow graphs (RDGs) and backpres-

sure stream routing, Frontier aims to enhance throughput and resilience in the face

of intermittent network connectivity and dynamic wireless network conditions. This

method utilises varied network paths and selective network-aware replay mechanisms

to dynamically direct data, ensuring efficient processing even with varying network

bandwidth. Frontier focuses on distributed data processing at the edge, enhancing

resilience and adaptability to network changes. Frontier’s emphasis on leveraging mul-

tiple edge devices for parallel data processing and its novel strategies for overcoming

network volatility. Frontier’s reliance on network path diversity and local processing

strategies without explicitly managing network bandwidth. While Frontier efficiently

utilises the available network and computational resources of IoT devices, it may not

fully address scenarios where bandwidth constraints are a significant bottleneck. This

thesis provides a mechanism to dynamically allocate and optimise network bandwidth,

ensuring data streams are not only processed efficiently but also transmitted optimally

across the network.

ApproxIoT [91] the emphasis is on enhancing the effectiveness of data analytics in

IoT environments via approximate computing. This method involves processing a

representative subset instead of the complete dataset, providing a structured balance

between result precision and computational effectiveness. It employs an online hierar-

chical stratified reservoir sampling technique to generate approximate results with well-

defined error margins, prioritising speed and resource utilisation. ApproxIoT focuses

on reducing computational demands by processing subsets of data, which may lead

to scenarios where data transmission delays impact the timely analytics and decision-

making at the edge. This thesis with its ability to dynamically adjust network resources

based on priority and utilisation, could complement ApproxIoT by ensuring that data

packets critical for analytics are prioritised and transmitted efficiently, thus mitigating

potential network-related delays or congestion that could affect the analytics’ accuracy

and timeliness.

In [92] the author introduces a Software-Defined Networking (SDN)-based queuing

framework, SDQ, aimed at enhancing Quality of Service (QoS) in 5G networks. By

- 39 -

Chapter 2: Literature review

leveraging SDN’s capabilities, SDQ dynamically selects optimal queues and paths for

incoming flows to manage workload imbalances and ensure low latency. This approach

represents a significant advancement in traffic engineering for networks, focusing on

deterministic QoS support. The former concentrates on the application of SDN for

queue and path optimisation in 5G networks. While SDQ focuses on improving QoS

within the constraints of 5G networks, this thesis offers a more adaptable solution

across various network types and conditions, especially in heterogeneous environments

typical of IoT ecosystems. This adaptability could enhance QoS provisioning for a

wider range of applications, addressing limitations in fixed infrastructure and specific

network technologies.

2.5.2 IEC devices sustainability

Numerous published papers have thoroughly analysed topics related to energy optimi-

sation and resource-constrained environments, especially for IoT applications. Various

solutions and results have been shown on IoT devices, edge devices, and cloud servers.

In [93] the author proposes a novel cross-layer approach to optimise energy consump-

tion and avoid routing collisions in Wireless Sensor Networks (WSNs). This strategy

integrates information from the physical and MAC layers to make routing decisions,

aiming to extend network lifespan and improve data transmission quality. The method

involves using Link Diagnostic Values (LDV) and Energy Identification (EI) for routing

decisions, emphasising the efficiency of multi-hop communication paths. This paper

primarily focuses on network-level optimisations to reduce energy consumption and

avoid data collisions. This thesis, in contrast, delves into device-level optimisation

using reinforcement learning to dynamically adjust data transmission rates based on

energy availability, offering a more granular and adaptive approach to energy optimi-

sation.

In [94] the author utilises RL-driven adaptive fuzzy logic systems and genetic algo-

rithms to enhance energy efficiency in IoT devices. This approach focuses on balancing

energy usage and performance parameters, ensuring efficient operation and minimising

energy consumption. The core mechanism involves an Intelligent Agent that adapts

device behaviour based on environmental conditions to achieve energy conservation.

- 40 -

Chapter 2: Literature review

This system represents a comprehensive AI-based architecture for efficient energy man-

agement in IoT devices, aiming to enhance system performance and security without

compromising on energy efficiency. While both papers utilise RL, this thesis offers a

solution to the limitation of scalable and adaptive energy management in time-critical

situations, directly addressing the challenges of maintaining device operation in varying

environmental conditions and energy availability scenarios not covered by this paper.

It thus provides a more dynamic and context-aware energy management strategy for

IoT devices.

In [95] the author concentrates on a model for a green energy system aimed at im-

proving energy efficiency in smart cities across various domains such as street lighting,

buildings, signage, residential properties, and parking facilities. It utilises IoT-based

sensors and controllers to manage energy consumption dynamically, ensuring that

devices operate efficiently and only when needed. Unlike the static IoT-based con-

trol systems described, this thesis employs reinforcement learning, offering a more

adaptable approach to energy optimisation that can dynamically respond to changing

environmental conditions and device states. Also, it can cover limitations related to

the flexibility of energy management strategies in the face of unpredictable energy

availability, especially in scenarios not covered by traditional IoT frameworks.

In [96] the author introduces a hybrid model combining the Whale Optimisation Al-

gorithm (WOA) and Simulated Annealing (SA) to optimise Cluster Head (CH) to

optimise the energy consumption of wireless sensor network (WSN) sensors in IoT

systems. The objective is to prolong the lifespan of the IoT system and improve net-

work efficiency. The paper focuses on a specific metaheuristic combination for energy

optimisation, which might not dynamically adapt to changing network conditions or

device states as effectively as reinforcement learning approaches. This thesis, lever-

aging reinforcement learning, offers a more dynamic and adaptive solution capable of

real-time adjustments to energy consumption and operational parameters, potentially

covering limitations related to fixed algorithmic performance in varying conditions.

Q-EBIoT [97] it presents a quantum-inspired green computing framework aimed at

bolstering energy efficiency within IoT networks. This innovative approach introduces

energy-centric Q-bit representation and optimisation methods to prolong network lifes-

- 41 -

Chapter 2: Literature review

pan and enhance the effectiveness of sensor networks. This paper leverages quantum

computing concepts to address energy optimisation, offering a different methodological

perspective on achieving energy efficiency in IoT systems. The quantum framework

proposed is reliant on advancements in quantum computing, which may limit its imme-

diate applicability in current IoT systems. This thesis, on the other hand, is grounded

in current RL capabilities, making it more immediately deployable in existing IoT

infrastructures. It allows for dynamic adjustments based on energy availability and

operational context, potentially offering more granular energy optimisation compared

to the broader, quantum-based strategy outlined in the paper. This could result in

more efficient energy use in real-world scenarios, where conditions change rapidly and

unpredictably.

In [98] The author suggests an inventive energy management model to enhance the

efficiency of data dissemination in Wireless Sensor Networks (WSNs) within IoT sys-

tems. The model aims to optimise energy consumption during data transmission, thus

prolonging the network’s lifespan and enhancing its overall efficiency. The model in

the paper might be less adaptable to changing environmental conditions or operational

requirements due to its focus on pre-determined optimisation paths. While this thesis

leveraging reinforcement learning, inherently adjusts to new information and condi-

tions, potentially offering a more flexible solution for energy optimisation in diverse

IoT environments.

In [99] the author investigates energy efficiency in IoT systems via an energy harvesting

protocol. The emphasis is on crafting a framework that optimises energy usage among

interconnected devices within intricate and time-sensitive IoT setups. This approach

is aimed at enhancing the sustainability and lifetime of sensor networks within IoT

environments by addressing challenges in data delivery, quality of service optimisation,

and design of MAC protocols that consider energy consumption beyond data transmis-

sions. This research presents a distinct methodology concentrating on protocol design

and energy harvesting to improve network efficiency and device longevity. The paper’s

approach is limited in adaptability to real-time changes and diverse IoT applications.

This thesis can extend its impact by applying adaptive learning to a wider range of IoT

scenarios, ensuring optimal energy use across various operational contexts. The rein-

- 42 -

Chapter 2: Literature review

forcement learning approach could enhance the paper’s proposed energy optimisation

strategies by integrating predictive analytics and adaptive decision-making, offering

improvements in energy efficiency and network performance.

In [100] the author introduces an IoT-centred system engineered to manage energy

intelligently in buildings. They propose a semantic framework for standardised mod-

elling and a web-based tool for managing real-time energy data. This approach aims

at optimising energy consumption through actionable insights derived from real-time

and predicted data. This paper focuses on a specific application area of intelligent

building management, employing IoT technologies for data integration and analysis

to facilitate energy savings within the built environment. One of the limitations is

the system’s lack of capabilities for processing real-time data and automatically im-

plementing action plans without human intervention for more dynamic and efficient

energy management. This thesis, leveraging reinforcement learning, directly addresses

this limitation by providing a dynamic, adaptive framework for energy optimisation

in IoT devices. It offers real-time adaptability to changing energy availability and

operational demands, ensuring energy efficiency without compromising the system’s

responsiveness or performance.

In [101] the author introduces an energy-efficient protocol using fuzzy logic and an

immune-inspired algorithm for cluster head selection and routing in IoT networks. It

aims to enhance network lifetime and data delivery reliability by optimally selecting

cluster heads and routing paths, Integrating the Fuzzy Analytic Hierarchy Process

(FAHP) combined with the Technique for Order Preference by Similarity to an Ideal

Solution (TOPSIS) for decision-making. This paper’s limitation lies in its specific

focus on clustering and routing within WSNs. Comparatively, this thesis offers broader

applicability and adaptability across various IoT scenarios, not limited to WSNs, by

dynamically adjusting device operations in real-time based on energy availability and

operational demands.

In [102] the author outlines a distributed IoT platform designed to enhance energy

management across urban districts. It combines information sourced from System

Information Models (SIMs), Building Information Models (BIMs), and Geographic

Information Systems (GIS) with real-time data from IoT devices for thorough en-

- 43 -

Chapter 2: Literature review

ergy analysis and simulation. This approach aims to optimise energy distribution

and consumption, focusing on smart city services. This paper develops a platform

for integrating various data sources to manage and simulate energy in urban settings.

One limitation of the presented platform might be its focus on simulation and pol-

icy evaluation without explicitly detailing adaptive, real-time operational adjustments

at the device level, which is a gap this thesis addresses through RL-driven dynamic

management for energy optimisation.

In [103] The author proposes an offloading method using a Self-Adaptive Particle

Swarm Optimisation Algorithm combined with Genetic Algorithm operators (SPSO-

GA) to improve energy efficiency in cloud-edge computing environments. This strat-

egy aims to reduce energy consumption by efficiently offloading deep neural network

(DNN) layers between edge, cloud, and IoT devices, considering the computational

constraints and energy limitations of IoT devices. This paper presents a method to

manage computational offloading across cloud-edge architectures to minimise energy

usage. A significant limitation of this paper could be its focus on offloading strategies

without explicitly addressing the dynamic adaptability of these strategies to varying

operational contexts and energy conditions in real-time. This thesis, leveraging rein-

forcement learning, directly addresses this limitation by providing a dynamic, adaptive

framework for energy optimisation in IoT devices. It offers real-time adaptability to

changing energy availability and operational demands, ensuring energy efficiency with-

out compromising the system’s responsiveness or performance.

In [104] the author proposes a hierarchical structure to enhance the energy efficiency

of IoT systems, allowing sensors to enter sleep mode based on predefined conditions,

such as a low battery or when sensing is not required, aiming to extend resource

lifespan and improve system operation. While the paper provides a structured ap-

proach to managing sensor states for energy savings, it may lack the flexibility and

real-time adaptability of reinforcement learning techniques. This thesis potentially ad-

dresses these limitations by employing RL to continuously learn and optimise device

operations, offering improvements in energy efficiency that can dynamically adjust to

varying conditions and requirements in IoT systems.

In [105] the author proposes a cross-layer-based energy optimisation algorithm (CEOA)

- 44 -

Chapter 2: Literature review

for IoT systems. It aims to improve energy efficiency by integrating AI techniques

with IoT, focusing on massive data management and device operations optimisation.

This paper introduces a strategic framework combining AI and IoT at a systemic level,

emphasising cross-layer optimisation to enhance energy efficiency across IoT networks.

However, one limitation of this paper includes adaptability to rapidly changing network

conditions This thesis with dynamic reinforcement learning addresses such a potential

limitation by offering a flexible and adaptive approach to energy optimisation capable

of real-time adjustments to diverse and unpredictable IoT environments.

2.5.3 Data quality monitoring and healing in IEC

Many scholarly articles have extensively examined subjects of data quality monitoring

and healing, particularly in the context of IoT applications. Diverse solutions and

outcomes have been shown on IoT devices, edge devices, and cloud servers.

In [106] the author introduces a novel architecture that integrates fault detection, re-

covery mechanisms, and deployment automation across cloud and edge resources. The

framework focuses on optimising resource usage and reducing failure impact through

proactive and reactive measures, ensuring high availability and resilience of IoT ser-

vices. It employs a combination of offline optimisation and online adaptation to man-

age application deployment and fault recovery, leveraging cloud resources as backup to

meet end-to-end latency requirements. This thesis offers the ability to learn and adapt

from interactions within the IoT environment, which provides a dynamic and efficient

way to handle evolving system configurations and emerging faults, which may not

be explicitly addressed in the fault-tolerant workflow composition framework. Also,

emphasis on agent collaboration offers enhanced resilience and efficiency through dis-

tributed problem-solving, which might not be as central in the multi-cloud edge frame-

work’s approach.

In [107] the author explains a technique for detecting high-impedance faults using

transfer learning within a collaborative framework between cloud and edge comput-

ing. It introduces a system utilising power distribution IoT, divided into terminals,

edges, and cloud layers. This method focuses on efficiently detecting high impedance

faults (HIFs) by utilizing information from various distribution networks and employ-

- 45 -

Chapter 2: Literature review

ing convolutional neural networks (CNNs) for feature extraction and fault detection.

The system is designed to work in both online and offline modes, allowing for real-time

detection and model updating without the need for continuous data upload. A poten-

tial limitation of this approach is its adaptability and scalability to a wider range of IoT

applications beyond high-impedance fault detection in power distribution. This thesis

offers more flexible and comprehensive solutions for fault detection and system opti-

misation across various IoT scenarios, providing broader applicability and enhancing

system resilience more generally.

In [108] the author outlines an innovative approach focusing on fault tolerance within

IoT applications, specifically tailored for edge computing contexts. It emphasises the

balance between latency awareness and adaptive fault tolerance, leveraging check-

pointing and replication techniques to ensure the reliability and efficient execution of

IoT applications. The strategy is designed to minimise latency and network traffic,

effectively utilising available edge resources and improving system resilience against

node failures. A potential limitation of the adaptive fault-tolerant strategy might be

its reliance on the availability of idle edge nodes and the efficiency of checkpointing

and replication processes, which could be challenged by highly dynamic or resource-

constrained environments. This thesis covers this limitation by leveraging the dynamic

decision-making capability of MARL to adaptively respond to changing conditions

without predefined replication or checkpointing strategies.

In [109] the author introduces a comprehensive approach to enhancing IoT system

resilience through self-healing mechanisms. It outlines a series of patterns or best

practices designed to detect errors and recover from failures automatically, aiming

to minimise system downtime and maintain service availability. The patterns are

divided into two primary groups: error detection (probes) and restoration and upkeep

of health, encompassing diverse tactics ranging from action audits to redundancy and

dynamic adjustments for fault resilience. While the pattern language aims at general

applicability across IoT systems, offering straightforward implementation guidance,

it may lack the depth in handling complex, dynamic fault scenarios that this thesis

excels in, through its ability to learn and adapt from environmental feedback and agent

interactions.

- 46 -

Chapter 2: Literature review

In [110]The author explores an automated failure recovery framework designed for

container-based IoT edge applications, with an emphasis on minimising downtime by

swiftly identifying and restoring operations. It uses container deployment techniques

for efficient management and recovery from failures in IoT applications deployed on

edge nodes. While the paper may effectively address automatic failure recovery at

a technical and operational level, it might not cover the broader aspects of system

configuration and adaptation to prevent such failures. This thesis with MARL could

complement this by providing a proactive approach to detect and rectify potential

misconfigurations before they lead to failures, thus covering a limitation potentially

not addressed by the paper.

In [111] the author introduces an innovative Fast Fault Detection Manager (FFDM),

strategically enhancing fault detection and recovery in IoT services deployed in cloud

environments. This work meticulously integrates VM and container orchestration sys-

tems, notably OpenStack and Kubernetes, to significantly streamline fault detection

and recovery processes, aiming for minimal service disruption. The paper is distinct

in its approach, focusing on infrastructure and deployment optimisation to accelerate

fault management, a critical aspect for maintaining high availability in cloud-based IoT

applications. However, the paper’s limitation lies in its focus on the infrastructure and

deployment level, primarily enhancing the mechanical aspects of fault detection and

recovery without deeply integrating adaptive learning mechanisms or considering the

dynamic nature of IoT environments and the potential for misconfiguration-related is-

sues. In contrast, this thesis leveraging Multi-Agent Reinforcement Learning (MARL)

for optimising IoT systems addresses these limitations by introducing a method that

not only detects and handles faults but also learns from them to prevent future occur-

rences.

IoTEF [112] presents a novel architecture designed to enhance fault tolerance in IoT

applications through a federated management system that spans cloud and edge com-

puting environments. It emphasises the use of container-based virtualisation and mi-

croservices to facilitate seamless deployment and management across diverse comput-

ing resources. This architecture is particularly focused on achieving fault tolerance

through data replication, exactly-once data semantics, and a unified management in-

- 47 -

Chapter 2: Literature review

terface for orchestrating heterogeneous clusters. A potential limitation of IoTEF that

this thesis approach could address is the adaptability in rapidly changing environments

and learning from system interactions to improve fault management strategies dynam-

ically. While IoTEF offers a comprehensive framework for fault tolerance through

architectural means, this thesis approach could complement it by providing adaptive,

learning-based solutions to enhance system resilience further.

In [113] the author delves into the creation of a machine learning (ML) framework

aimed at the proactive monitoring and prediction of the ageing process in IoT de-

vices. Utilising cost-effective embedded tags, this framework facilitates operability

across both edge and cloud computing environments. The methodology encompasses

calculating device ageing factors and predicting future trends with optimised ML al-

gorithms, ensuring accurate lifetime predictions. This process involves intricate steps

like anomaly detection, utilising TensorFlow for deep neural network (DNN) train-

ing, and implementing edge ML to balance accuracy and privacy. Comparatively,

this thesis addresses a set of challenges, focusing on system-wide misconfiguration and

fault management rather than the individual device’s physical ageing process. The

MARL-based framework might extend the scope of the paper by offering a dynamic

system-level management solution that complements the device-level ageing predic-

tions. It covers the gap in dynamic adaptation to changing operational conditions and

configurations, potentially enhancing the overall resilience of IoT systems against both

physical ageing and configuration-related failures.

In [114] the author introduces an advanced system for optimising fault recovery in

IoT environments, utilising a self-healing mechanism that leverages efficient failure

detection (PE-FD) and energy-optimal task assignment. This system significantly en-

hances the resilience and energy efficiency of IoT applications by dynamically reallocat-

ing tasks across nodes in response to failures, ensuring minimal energy consumption

and operational disruption. The paper showcases a methodical approach to failure

detection, employing accrual failure detection augmented with adaptable policies for

varying application needs and an Integer Linear Programming (ILP) model for task

reallocation to achieve optimal energy usage. One limitation of the self-healing ap-

proach could be its reliance on predefined optimisation models and failure detection

- 48 -

Chapter 2: Literature review

policies, which may not adapt in real-time to unforeseen system dynamics or learn

from past interactions as effectively as MARL-based methods. In contrast, the MARL

approach covers this limitation by continuously learning from the environment and

agent interactions, potentially offering more flexible and adaptive solutions to fault

management and system optimisation in rapidly changing IoT scenarios.

SEDGE [115] introduces an advanced IoT system that efficiently adapts to new config-

urations and protocols while focusing on energy efficiency. It highlights novel contribu-

tions such as easy configurability, constant performance monitoring with self-healing

actions, and edge AI-based services for local data processing. It focuses on interoper-

ability and efficient service delivery at the edge, leveraging AI for real-time processing.

However, while this paper provides a structured approach to self-healing and inter-

operability, it may not fully explore the potential of adaptive, agent-based learning

for continuous system improvement and optimisation across varying conditions and

configurations. In contrast, this thesis’s MARL-based optimisation work might cover

the dynamic management of system configurations and faults through learning-based

strategies, thereby offering a more flexible and comprehensive solution to system op-

timisation and fault management in IoT systems.

In [116] the author presents a sophisticated model for diagnosing and visualising faults

in high-speed trains, leveraging edge and cloud computing alongside a deep neural net-

work (DNN) featuring Stacked Auto-Encoders (SAES-DNN). This innovative approach

enhances fault diagnosis by integrating visual analysis through knowledge graphs, sig-

nificantly improving the accuracy and speed of fault identification compared to tra-

ditional methods. The model effectively utilises cloud computing for heavy computa-

tional tasks and edge computing for real-time data processing. Contrasting with this

thesis, the train fault diagnosis study focuses on specific fault detection and visuali-

sation in high-speed trains. This thesis explores adaptive system management across

diverse IoT environments, leveraging the flexibility of MARL for broad applications.

In [117] the author elaborates on enhancing IoT fault detection through a novel integra-

tion of edge computing, blockchain technology, and an improved Random Forest (RF)

algorithm, dubbed the Data Set Accuracy Weighted Random Forest (DAWRF). This

approach is refined further by Particle Swarm Optimisation (PSO) to fine-tune the

- 49 -

Chapter 2: Literature review

algorithm’s parameters, aiming at higher fault detection accuracy and reliability. The

use of blockchain ensures data integrity and accuracy verification, while the DAWRF

algorithm leverages weighted voting based on out-of-pocket data and predictive test

data sets to improve fault detection performance.

One limitation of this paper is the static nature of the proposed DAWRF algorithm’s

parameters and its focus on a singular method of fault detection. While the DAWRF

algorithm provides an innovative solution for fault detection with improved accuracy,

it does not inherently adapt to evolving system dynamics or learn from new data

patterns over time. This thesis with MARL introduces a dynamic, adaptive approach

that continuously learns from the environment to optimise system performance and

fault management strategies. This learning-based approach not only covers the static

detection capabilities but also extends to proactively adjusting system parameters and

strategies in response to changing conditions, thereby offering a more flexible and

comprehensive solution for IoT system resilience.

In [118] the author proposes a novel approach to task allocation and fault tolerance

in IoT applications through decentralised edge computing. The methodology empha-

sises latency-aware distribution of tasks across a federation of edge nodes, enhancing

performance and reliability without the need for centralised control. It presents a new

algorithm designed to form groups and allocate tasks among edge nodes, consider-

ing their resource availability and latency needs, ensuring efficient execution of tasks

within their deadlines. One limitation of the decentralised latency-aware approach is

that it does not cover the dynamic adaptability in highly volatile environments where

system configurations and operational conditions frequently change. While the decen-

tralised approach efficiently handles task allocation and fault tolerance within a given

framework, this thesis can provide a more flexible adaptation mechanism by learn-

ing from and evolving with the system’s operational dynamics, potentially offering

enhanced optimisation in scenarios where rapid changes in the environment or task

requirements occur.

In [119] the author presents an innovative controller designed to enhance security

and reliability in IoT and containerised environments. Utilising Hierarchical Hidden

Markov Models (HHMMs) and Markov Decision Processes (MDPs), the controller

- 50 -

Chapter 2: Literature review

adeptly detects, identifies, and recovers from misconfigurations. While this work pro-

vides a structured, model-based approach for managing specific misconfiguration chal-

lenges, one limitation of the self-configuration controller might be its reliance on pre-

defined models, which could limit its adaptability to unforeseen misconfigurations or

novel system dynamics. In contrast, this thesis approach inherently adapts to new

challenges through continuous learning, potentially offering a more versatile solution

to the evolving landscape of IoT system management.

In [120] the author introduces an extensive cloud-based framework for IoT, specifi-

cally tailored for detecting and pinpointing faults in power distribution systems with

high efficiency. Making use of sparsely positioned current sensing devices (CSDs), the

system employs a context-aware strategy at the edge device (ED) level to smartly

filter and preprocess measurements. This ensures that only relevant data indicating

significant changes are transmitted to the cloud, reducing unnecessary data transfer

and enhancing fault detection accuracy. While the cloud-based IoT solution provides

a targeted approach for fault detection in power systems, emphasising data efficiency

and precise localisation, it may face limitations in adaptability and real-time learning

in diverse IoT environments. This thesis MARL-based approach covers these limi-

tations by enabling systems to learn from interactions and adapt to new challenges

dynamically, offering a more flexible solution for IoT system optimisation across vari-

ous applications.

In [121] the author thoroughly investigates the creation of an AI-driven Intrusion De-

tection System (IDS) tailored for IoT networks, particularly emphasising the Routing

Protocol for Low-Power and Lossy Networks (RPL). The approach involves generat-

ing large datasets through simulations to cover various attack scenarios on RPL-based

networks. Utilising Machine Learning (ML) techniques, the system is trained to detect

and classify different types of routing attacks effectively. The paper details the pro-

cess of feature selection, dataset generation, and the evaluation of different classifiers,

ultimately implementing a Random Forest (RF) classifier due to its high accuracy,

computational efficiency, and feature selection capability. While the IDS paper fo-

cuses on security aspects, specifically intrusion detection within IoT networks using

ML techniques, a limitation of the IDS approach is its focus on predefined threat mod-

- 51 -

Chapter 2: Literature review

els and reliance on static datasets for training, which may not fully account for novel or

evolving attack vectors. In contrast, this thesis’s MARL-based approach dynamically

adapts to new challenges and system conditions, potentially covering the adaptability

gap in static IDS models by learning from ongoing system interactions and adjusting

strategies in real time to enhance system resilience against a wider range of issues,

including those not initially anticipated.

In [122] the author explores an advanced fault diagnosis strategy for IIoT systems,

utilising edge computing and the Random Forest algorithm to enhance diagnostic

accuracy and efficiency. This method optimises the deployment of Programmable

Logic Controllers (PLCs) at the edge of the network, enabling rapid and reliable fault

detection within industrial settings. While this paper provides a precise, algorithm-

driven solution for fault diagnosis in industrial environments, focusing on minimising

hardware resources and computational overhead, it may not fully address the dynamic

adaptability and scalability challenges inherent in diverse IoT applications. This thesis

MARL-based approach seeks to cover these limitations by offering a flexible framework

for continuous learning and adaptation, ensuring system robustness and efficiency in

the face of evolving operational conditions and unforeseen system dynamics.

A summary table is provided, compiling the literature review alongside the current

challenges 2.2.

- 52 -

Chapter 2: Literature review

Table 2.2: An overview of the literature review, including the primary challenges
tackled in this thesis, is presented

Problem Related
Works

Challenges

Network optimisation in
IEC

[78], [62], [79],
[80], [81], [82],
[83], [84], [85],
[86], [87], [88],
[89], [90], [91],
[92]

• Some frameworks are specific only
for VMs on the cloud.

• Most frameworks are static and not
adaptable to changes in network
conditions.

• Most frameworks do not manage
bandwidth allocation across the
network i.e. IoT, edge, and cloud
networks.

• Some frameworks manage data flow
only not considering network band-
width allocation.

IEC devices sustainability [93], [94], [95],
[96], [97], [98],
[99], [100],
[101], [102],
[103], [104],
[105]

• Some frameworks focus on the net-
work level, not the device level.

• Some frameworks do not consider
time-critical applications.

• Some frameworks use static strate-
gies not adaptive strategies.

• Some frameworks are only focused
on IoT not considering edge and
cloud.

Data quality monitoring
and healing in IEC

[106], [107],
[108], [109],
[110], [111],
[112], [113],
[114], [115],
[116], [117],
[118], [119],
[120], [121],
[122]

• Most frameworks do not manage
data quality and healing across the
IoT and edge environment.

• Several frameworks rely on pre-
defined static optimisation models
and failure detection policies, lack-
ing real-time adaptation to environ-
mental changes.

• Most frameworks do not specify or
identify the faults that happen in
the system.

- 53 -

Chapter 2: Literature review

- 54 -

3
Dynamic Bandwidth Slicing for
Time-Critical IoT Data Streams

in the IEC

Contents
3.1 Introduction . 56

3.2 Formal model . 59

3.2.1 System overview . 59

3.2.2 Problem definition . 63

3.2.3 Complexity analysis . 64

3.3 Proposed Framework . 65

3.3.1 Multi-Queues . 65

3.3.2 Bandwidth Slicing . 67

3.4 Evaluation . 70

3.4.1 Experiment Set-up . 70

3.4.2 Experiment results . 72

3.4.3 Network Utilisation . 74

3.4.4 Auto-Adaptation . 75

3.5 Further Evaluation and Validation . 77

3.6 Related work . 79

3.7 Conclusions and future work . 80

- 55 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

Summary

In recent years, edge computing has emerged as an important complement to cloud

computing, especially for applications that demand Time-Critical communication guar-

antees, such as industrial control systems. Although edge computing enables real-time

analysis of data streaming from IoT devices, these devices often don’t have sufficient

computing power to ensure effective performance for Time-Critical applications. A

common solution to this challenge has been to transfer the data analytics tasks from

edge devices to the cloud. However, this approach is typically static and does not ad-

just to changes in workload and network conditions. To address these challenges, we

introduce an innovative distributed system with a Quality of Service (QoS)-oriented,

multi-level queue traffic scheduling mechanism that supports semi-automatic division

of bandwidth. This system is designed to efficiently manage urgent incoming traffic in

edge-cloud settings, resulting in significant improvements in latency and throughput,

along with a reduction in energy consumption for these environments.

3.1 Introduction

IoT is an emerging paradigm that shifts routine daily workloads into smart, auto-

mated mechanisms by gathering and processing an unprecedented amount of data in

a continuous manner [123]. It tracks and monitors surrounding activities (e.g., auto-

mated industrial setup) to make better decisions, increase efficiency, and improve the

quality of life. Coinciding with this paradigm, IoT-based applications adopt several

integrated ecosystems – from edge and cloud computing to SDN and SD-WAN [9, 10].

Each ecosystem offers rich features to process and transmit data according to the given

QoS of IoT applications.

The IoT paradigm with its associated industrial ecosystems delivers unprecedented

advances in technological developments. However, its heterogeneous computing and

network elements still encounter two fundamental problems, which can be defined as

(1) a transmission mismatch and (2) a processing mismatch [124, 125]. The former

problem occurs when incoming data streams at a given network arrive faster than the

network can handle and transmit. This is typically due to several reasons, such as

- 56 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

the spike and fluctuation of incoming data and the instability of network connectivity

between IoT ecosystem elements (senders and receivers)[126], [127], [128]. On the

other hand, the processing mismatch problem arises when a given computing resource

cannot process its incoming requests immediately or in a timely fashion due to the

sharing mechanisms of computing resources [129, 130]. These two problems must

be dealt with, especially in the context of real-time IoT applications where network

and/or processing delays could lead to catastrophic incidents.

The two problems mentioned above have been tackled in different ways. For example,

a data buffer technique is one typical solution that holds new arrival data for a period

of time before being processed [131, 132]. Another typical solution is the leverage of

classical congestion control mechanisms where new incoming data are dropped when

a given buffer is overloaded [133]. Such techniques suffer from non-negligible delays at

both transmission and processing levels, especially when IoT applications are latency-

sensitive. Also, dropping any part of data introduces a further problem that would

lead to data inconsistency with serious consequences in domains such as Industrial

IoT [134]. Moreover, such techniques ignore the power of priority mechanisms at both

network and host levels, which can hardly guarantee the quality of QoS for Time-

Critical IoT applications.

Several efforts have been made to address the problem of transmission and processing

mismatching. For example, [86] leverage computation offloading mechanisms where

data and tasks that require intensive computational resources are forwarded to an

external platform (e.g., cloud data centres). Another study [135] explores a con-

gestion control approach focusing on tuning data transmission rates based on QoS

requirements. However, the usefulness of these studies is limited to conventional en-

vironments (e.g., cloud data centres, edge computing) without considering the bigger

range of IoT ecosystems along with cutting-edge approaches, such as dynamic network

slicing, load-balancing, and prioritisation.

Overall, this chapter tries to solve the research question:

What is the best way to satisfy the latency constraints along with accelerating data

transmissions for IoT Safety-Critical applications?

- 57 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

To address the research question this chapter presents a novel distributed IoT frame-

work which is based on a multi-level network-host queuing mechanisms, prioritisation,

and SDN network traffic slicing. The system is designed to make the best utiliza-

tion of network and host resources in the edge-cloud Continuum (see Figure 3.1). It

diminishes queuing delays and increases the QoS assurance of IoT applications with

high-latency sensitivity as much as feasible. Given that the solutions presented are for

time-critical applications, the QoS parameter of time takes precedence over other pa-

rameters. Consequently, trade-offs are consistently made to ensure minimised latency,

prioritising rapid response times above other considerations.

To do so, our proposed system deploys global network agents in SDN and SD-WAN

controllers for data stream scheduling based on prioritisation along with slicing band-

width based on each IoT stream priority. The system also deploys IoT agents within

each node (e.g. edge nodes, cloud nodes) to schedule IoT task executions based on

multi-level queuing and prioritisation. Given these systems, we formulate two different

optimisation problems to find the best solution for every IoT application such that the

overall execution time is minimised while network bandwidth is utilised at maximum.

Processing

Edge CloudWAN NetworkSDN-SDWAN
Network

Exchange data

Exchange data

Exchange data

Exchange data

IoT

SDN-
SDWAN

Controller

SDN
Controller SD-WAN

Controller
SDN

Controller

Figure 3.1: IoT-edge-cloud continuum modular architecture

Solving the above question might lead to insufficient use of network resources. This

can be formalized in a question context as “How can we indicate the network slicing

percentage among several priority lists such that every slice is fully used by every

list?”. It is known that network bandwidth is a scarce resource where network slicing

percentage should be divided according to application priority ranks. One simple

solution is to use a static percentage value for each list (e.g., 50%, 30%, and 20% for

- 58 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

three lists of high, medium, and low respectively). However, sometimes a network

bandwidth slice is not fully used by a given priory list, which leads to insufficient use

of network resources. To solve this problem, we propose a heuristic auto-adaptation

algorithm to dynamically tune bandwidth slicing depending on the observed network

utilisation of every priority.

In summary, the contributions of this chapter are as follows:

• we formulate the transmission and processing mismatch problem in the edge-

cloud environment,

• we propose a novel distributed and QoS-based multi-level queues traffic schedul-

ing system,

• we evaluate the performance of our proposed approach using a self-driving car

test case scenario.

3.2 Formal model

In this section, we present the system description necessary to represent our research

problem (Section 3.2.1). Using these definitions, we formulate our problem (Section

3.2.2). Table 5.3 summarizes all notations used in the chapter.

3.2.1 System overview

Our infrastructure system X consists of four infrastructure elements and is represented

as a quadruple ⟨D, E, C,N⟩. D is a set of IoT devices Di and is denoted by Di =

{idi, δi}. Here, idi represents the identifier of the IoT device Di and δi represents the

data rate of IoT device Di. E is a set of edge devices Ee with each Ee = {ide, he}.

ide and he represents the identifier and the set of host machines he1, he2, ... for the

edge device Ee respectively. C represents a set of cloud datacenters Cc. Each Cc is

represented as Cc = {idc, hc} where idc is the identifier of the datacentre and hc is

the set of host machines hc1, hc2, Regardless of the host type i.e. cloud host hci or

edge host hei , each host hk has hardware h
H
k and software hS

k capabilities to satisfy the

- 59 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

Table 3.1: Symbol table

Symbol Description
X System infrastructure
Di An IoT device
δi The data rate of IoT device
E A set of edge devices
h A set of host machines
C A set of cloud datacenters
v Virtual environment
vm A virtual machine
cn A container
P Processing capabilities
N The network connection between D, E and C
S A set of switches
σ An SDN-controller
Ai An IoT application
S Software
H Hardware
Q Quality of service
R Requirements
Pi Priority
B The maximum bandwidth available

T d→σ The time taken to transfer the data from IoT device to SDN controller
Tσ→e The time taken to transfer the data from SDN controller to edge device
T e→e The time taken to transfer the data from edge device to edge device
T e→c The time taken to transfer the data from edge device to cloud

Bef Effective bandwidth
count The number of IoT devices using the communication channel of the controller

TE
Ai

The total transmission time for an application

V The velocity of propagation of any transmissions
D The distance between the sender and the receiver
Tp The propagation time
T
p
Ai

The total propagation time for an application

TPe The processing time of any application microservices
Q A Queue

T
Q
Ai

The queuing time of any application

TAi
The overall execution time for any application

SCi The final priority score
ratioi Compute size from MB to ratio
sizei The IoT application size in MB
λ The static deciding factor among Pi and sizei

path The channel inside the bandwidth
Fi A flow

PCT i The priority percentage for each path
pathSizei An amount of data inside the path

total An amount of data inside all paths
B Bandwidth

requirements of the application. Now, host hk consists of a set virtual environment

v1hk
, v2hk

, v3hk
, ... where, each vlhk

can be either a virtual machine vm or a container cn.

Similar to the host hk, each virtual environment vlhk
also has a hardware specification

vHlhk
and software specification vSlhk

defined such that
∑

l v
H
lhk

= hH
k and

∑
k v

S
lhk

= hS
k .

Abstracting the hardware and software processing capabilities as P , we can represent

the processing capability of an edge virtual environment as PEvl and for cloud virtual

environment as PCvl . Finally, N represents the network connection between D, E and

C and is a subset of (D × E) ∪ (D × C) ∪ (E × E) ∪ (E × C) ∪ (C × C). A set of

switches S = {S1,S2, ...} and SDN controllers σ = {σD, σE, σC} facilitates the network

- 60 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

connectivity in the existing system. An IoT application Ai is defined as a directed

acyclic graph (DAG) of microservice Ai = {Aµ1

i , Aµ2

i , ...} where each A
µj

i represents a

microservice to execute. Each A
µj

i has specific hardware (H), software (S) and quality

of service (Q) requirements. Equation 4.1 shows the combined requirements R(Aµj

i)

for a microservice.

R(Aµj

i) = Hµj + Sµj +Qµj (3.1)

The overall requirement of Ai is given by the sum of requirements of all the microser-

vices as given below.

R(Ai) =
∑
∀j

R(Aµj

i) (3.2)

At any point of time t, numerous applications A1, A2, ... need to be executed on the

given infrastructure X. Depending on the type of application Ai, some of them require

critical response while others can handle some delay. To allow a smooth execution

sequence, a priority Pi is associated with each application Ai. IoT devices are actively

generating data. We consider the IoT device Di as a passive entity i.e. it does not

process any data but transfers to the edge device. The data transfer happens on a

per-second basis, therefore, the total amount of data received by the edge device ei

will also be δi multiplied by time t. IoT devices are connected to a switch or an SDN-

controller σ which then forwards the data to the respective edge device. Consider the

maximum bandwidth available to the IoT device d is Bd The time taken to transfer

the data from the IoT device d to the switch/SDN controller σ can be computed as

given in equation 3.3.

T d→σ =
δd
Bd→σ

(3.3)

The controller then forwards the data to the respective edge e while consuming T σ→e

time. Given the bandwidth of the controller as Bσ, it is divided among different

communication flows based on how many IoT devices are connected to it. Only an

effective bandwidth Bef
σ→e is available for transferring one IoT device’s data as given

- 61 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

in equation 3.4.

Bef
σ→e =

Bσ→e

countt
(3.4)

Here countt is the number of IoT devices using the communication channel of the

controller at time t. The time consumed by transferring data from controller to edge

device for IoT device d is computed as given in equation 3.5.

T σ→e =
δi

Bef
σ→e

(3.5)

Similarly, the data transfer time between edge devices e and between edge and cloud

c is computed as given below.

T e→e =
δe

Bef
e→e

; T e→c =
δc

Bef
e→c

(3.6)

Effective bandwidth is computed at each step by the network switch or the SDN

controller thus, allowing the data to follow a defined path. For any application Ai, the

component microservice Aµi executes on numerous edge and/or cloud hosts, therefore,

the total transmission time for application Ai is given in equation 3.7.

TE
Ai

= T d→σ + Tσ→e +
∑

∀e1,e2∈E′
T e1→e2 +

∑
∀e∈E′,∀c∈C′

T e→c (3.7)

The propagation time p is computed at the start of all transmissions. Given the velocity

of propagation of any transmissions as V , and the distance between the sender and

the receiver as D, now, we can calculate the propagation time for the transfer time

between IoT device, switch/SDN controller, edge, and cloud as given in the following

equations.

Tpd→σ =
Dd→σ

V
;Tpσ→e =

Dσ→e

V
;Tpe→e =

De→e

V
;Tpe→c =

De→c

V
(3.8)

Following the processing happening as given in equation 3.7, the total propagation

time for Ai is given in equation 3.9.

T p
Ai

= Tpd→σ + Tpσ→e + Tpe→e + Tpe→c (3.9)

- 62 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

Depending on the application Ai, virtual environment Evlhk of edge device Ek processes

the data and sends the processed data to either another virtual environment E
v′lhk on

edge or out cloud datacentre. Give the processing capability of an edge and cloud

virtual environment, the processing time of any application microservice A
µj

i at both

edge and cloud host is computed as given below.

T Pe =
R(Aµj

i)

PEvl
;T Pc =

R(Aµj

i)

PCvl
(3.10)

Following the processing happening as given in equation 3.7, the total processing time

is computed as given in equation 3.11. Here, E ′ ⊆ E and C ′ ⊆ C are the edge and

cloud hosts executing the application microservice A
µj

i .

T P
Ai

=
∑
∀e∈E′

T Pe +
∑
∀c∈C′

T Pc (3.11)

Since, the processing capability of edge/cloud virtual environment vh is limited, a

queue Qvh is associated with each of them. Data is buffered intermittently while the

vh is busy with the execution. The waiting time for the application Ai in the queue is

considered to be the queuing time TQ
Ai
. The overall execution time for any application

Ai is given by the combination of execution, transmission and queuing time as given

in equation 3.12.

TAi
= T P

Ai
+ TE

Ai
+ TQ

Ai
+ T p

Ai
(3.12)

3.2.2 Problem definition

Definition: Given a set of IoT applications A = {A1, A2, ...} and the infrastructure

X = {D, E, C,N}, a suitable deployment solution ∆m is defined as a mapping for

Ai ∈ A to X (∆m : Ai → X∀Ai) if and only if:

1. ∀Aµj

i ∈ Ai, ∃(A
µj

i → vh) where, h ∈ {he ∪ hc}

2. ∀Aµj

i ∈ Ai , if A
µj

i → vh, then Hµj ⪯ vHh Sµj ⪯ vSh

3.
∑

µj
Hµj ≤ vHh and

∑
µj
Sµj ≤ vSh

- 63 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

The definition given above considers all the requirements to find a suitable deployment

solution. Requirement 1 states that for all the microservices belonging to the IoT

application Ai, a mapping must exist between A
µj

i and a virtual environment vh|h ∈

{he ∪ hc}. Requirement 2 confirms that if a microservice A
µj

i is deployed to a virtual

environment vh, the hardware and software requirements of the microservice must be

satisfied by vh. Finally, requirement 3 limits the number of microservices a virtual

environment can execute at any time.

The main aim of this research is to find the best solution for all the applications Ai

such that the overall execution time TAi
is minimum while the effective bandwidth

Bef is utilized at maximum. In addition to this, the queuing time TQ
Ai

for the highest

priority application AP should be as low as possible. Given these requirements, we

can represent our problem as given below.

minimize TAi
+maximize UBef (4.5)

subject to:

TAi
≤ TAj

if αAi
< αAj

and PAi
> PAj

(3.13a)

∀i ∈ Ai,∀j ∈ µj ∃(A
µj

i → vh) (3.13b)

Constraint 3.13a specifies that if application Ai arrives before application Aj i.e. αAi
≤

αAj
and the priority of application Ai, PAi

is higher than the priority of application

Aj, PAj
i.e. PAi

> PAj
, then the overall execution time for application Ai, TAi

must

be less than the execution time for application Aj, TAj
, i.e. TAi

> TAj
. Constraint

3.13b states that all the microservices of the application A
µj

i should be executed in

some virtual environment vh.

3.2.3 Complexity analysis

The knapsack problem can be used to prove other NP-hard problems by reduction.

The knapsack problem is an NP-hard problem that is not solvable in a polynomial

time [136]. It is defined as: given a maximum weight capacity W and a set of K items

(0, 1, . . . , K) each having a weight and value of wi and vi respectively, maximise the

- 64 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

sum of the values of the items (maximise
∑K

i=0 vi xi) while the overall sum of the

weights is less than or equal to the maximum weight capacity (
∑K

i=0 wi xi ≤ W) with

an item either selected or not (xi ∈ {0, 1}).

Proposition 1: Finding an optimal subset of applications Ai for a given set of appli-

cation A is an NP-hard problem.

Proof: The knapsack problem as per the previous definition can be transformed, i.e.,

reduced, into the simplest form of our problem in a polynomial time. The transforma-

tion is as follows.

Consider the problem with only single application component Ai ∈ A, change the

item’s value vi to qi = 1 and the weight wi to δi and maximum weight W to budget

Bi, with parameter xi remains unchanged. The knapsack problem is already strong

NP-hard, thus making our problem ∈ strong NP-hard.

Inherently, as given in Proposition 1, finding a solution to the knapsack problem in

polynomial time leads to finding a solution to our problem in polynomial time. As

no such algorithm exists for any NP-hard problem, therefore, we need a heuristic

algorithm to find a solution.

3.3 Proposed Framework

To solve the problem specified in section 3.2, we proposed a novel framework that uses

two greedy approaches Multi-queue and Bandwidth slicing. The details are provided

below.

3.3.1 Multi-Queues

To reduce the queuing time, we used the concept of multi-queues where the waiting

queue is divided into a set of priority queues. The principal objective of multi-queues

is to dynamically distribute and prioritise the incoming data streams according to a

fixed number of queues in the edge and cloud. Specifically, the key procedure involves

ensuring that the best queue for each IoT application is selected based on the priority

and size of the IoT application. Alg. 1 presents the procedure involved in the solution,

- 65 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

wherein data δ are transmitted from IoT devices and sent to edge devices at a specific

time (t).

Algorithm 1: Multi-Queues

1 Data δi coming from IoT devices that submitted to edge device Ei within the time interval t.
Calculate the Score SCi for each δi

2 SCi ← using Eq. 3.15
3 waitingList ← to δi //Buffering all δi to a waitingList
4 // Add each δi to their specific queue Qi

5 for (each Qi (Qls,Qnm,Qlt)) do
6 for (waitingList) do
7 if (δi.SCi = Qi.value) then
8 Qi ← δi
9 end

10 // now send the δi to the execution to be processed starting with Qls queue but first
check if the node has enough CPUs

11 if (δi.requireCPUs ≤ Ei.currentCPUs) then
12 execution ← δi waitingList ← remove δi
13 end

14 end

15 end

Subsequently, the first step is the computation of the Score SC for each IoT application

Ai, where the Score SC is the final priority score that will be used to divide the data

δ in the queues. Thus we need to find the ratioi for each δi using equation 3.14.

ratioPA =
sizePA∑j
i size

PA

(3.14)

Where ratioi is the process of converting the sizei that has been provided by the user

from MB to ratioi, where ratioi ϵ {0, 1}, and size is the IoT application A size in MB.

Next, to separate the data to the queues we need to find the Score SCi for each IoT

application A using equation 3.15:

SCi = Pi × λ+ (ratioi × (1− λ)) (3.15)

Where, λ is a static deciding factor among the priority Pi and δi size of the IoT

application Ai, where SCi and priority Pi ϵ {0, 1}, and λ = {0.8}. The Score SC results

comes in three types, low priority where the SC ϵ {0.1, 0.3}, normal priority where the

SC ϵ {0.4, 0.6}, and high priority where the SC ϵ {0.7, 0.9}. For example, if we have

Pi = 0.9, and ratioi = 0.5, then the Score SCi = 0.8, which means that it is a high

- 66 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

priority and should be forwarded to the latency-sensitive queue that we will discuss

next. Then, we buffered all the data δ and their Scores SC in the waitingList (Lines 2

- 6). In the second step, each δ is added to the appropriate queue Q depending on their

SC. Specially, we have three types of queues Q, latency-sensitive Qls, normal Qnm,

and latency-tolerant Qlt. Last step, we send the δ to the execution to be processed,

starting with Qls, Qnm, then Qlt, according to the currentCPUs in the edge device.

3.3.2 Bandwidth Slicing

Bandwidth slicing is primarily designed to slice the bandwidth statically between the

paths, where paths is the channels inside the bandwidth. The procedure aims to

determine the best slicing percentage for the bandwidth based on the priority and

data size of each application.

Algorithms 2 and 3, illustrated in this chapter, are key components of the bandwidth-

slicing framework. Algorithm 2 is used in the initial stage to classify and prioritise

data streams as they are received. It is responsible for receiving network flows, com-

puting a score for each flow, and sorting these flows into queues based on their scores.

This process ensures that flows are appropriately categorised according to their re-

spective priorities or characteristics. Algorithm 3, on the other hand, is applied later

to manage and allocate bandwidth dynamically based on these priorities. It oper-

ates at a subsequent stage where it manages the allocation of bandwidth among these

queues. Depending on the type of priority assigned to each queue, Algorithm 3 slices

the available bandwidth accordingly, ensuring that higher-priority queues receive the

bandwidth they require.

Moreover, Algorithm 2 is applied within the framework as part of the global network

agents deployed in SDN and SD-WAN controllers. These controllers are responsible for

data stream scheduling, where Algorithm 2 is used to classify and prioritise incoming

data flows based on their characteristics (such as size and priority). This classification

is crucial for determining how resources are allocated in the network. Algorithm 3 is

then applied within the same framework, specifically focusing on bandwidth slicing.

Once the data flows have been prioritised by Algorithm 2, Algorithm 3 is responsible

for dynamically slicing the available bandwidth among the different priority queues.

- 67 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

This ensures that each IoT stream is allocated the appropriate amount of bandwidth

according to its priority, thereby optimizing the use of network resources. Together,

these algorithms complement each other within the bandwidth-slicing framework.

In detail, the first stage is the receipt of flows F that is sent to either edge devices or the

cloud, where, each F contains a packet that includes one δi from one IoT application

Ai. After that, the SC for each F is computed using equation 3.15 and buffered in

the flowList (Lines 7-11). In order to slice the bandwidth, the number of paths must

be known. This is determined by checking the priorities of all the F stored in the

flowList and identifying the number of paths (Lines 13-22).

Algorithm 2: Bandwidth slicing
Input: ls, nm, lt: priority types, total: number of flows, availableBw: available bandwidth,

usedBw: used bandwidth, weightedAverage: compute the average between multiple
paths

1 Received flows F contains δ to be sent to node Ei.
2 Calculate the Score SC for each flow F
3 SCF ← using Eq. 3.15
4 flowList ← to F //Buffering all F to a flowList
5 // Count the types of paths
6 for (flowList) do
7 pathi ← Fi.SCi

8 switch path do
9 case 0 do
10 lt ← path
11 end
12 case 1 do
13 nm ← path
14 end
15 case 2 do
16 ls ← path
17 end

18 end

19 end
20 total=flowList.size
21 slicing()

In the next stage slicing() procedure is applied as per the details in Alg. 3, whereby

the slicing of the bandwidth is based on the number of available paths. There are two

types of slicing, the first takes place when there is only one type of path (e.g. lt, nm,

or ls), after which the entire bandwidth is given to that path (Lines 4-10). The second

type of slicing occurs where there is more than one type of path (e.g. lt and nm, or

lt and ls, or ls and nm, or lt, nm, and ls). Subsequently, the weightedAverage for

each path is calculated using equation 3.16 and multiplied by the availableBw. After

- 68 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

Algorithm 3: Slicing

1 if (total==0) then
2 usedBw = 0
3 end
4 else
5 switch (lt, nm, ls) do
6 case (lt ! = 0) do
7 usedBw = availableBw / lt
8 end
9 case (nm ! = 0) do
10 usedBw = availableBw / nm
11 end
12 case (ls ! = 0) do
13 usedBw = availableBw / ls
14 end
15 case (lt & nm ! = 0) do
16 weightedAveragelt,nm ← using Eq. 3.16
17 usedBw = availableBw * weightedAveragelt,nm
18 end
19 case (lt & ls ! = 0) do
20 usedBw = availableBw * weightedAveragelt,ls
21 end
22 case (ls & nm ! = 0) do
23 usedBw = availableBw * weightedAveragels,nm
24 end
25 case (lt & nm & ls ! = 0) do
26 usedBw = availableBw * weightedAveragelt,nm,ls

27 end

28 end

29 end

this, the bandwidth is divided among the paths in line with the weightedAverage for

each path, with the largest percentage of the bandwidth being allocated to the ls path,

followed by the nm path and the lt path (Lines 11-24).

weightedAverage =

j∑
i

PCT i ∗ pathSizei
total

(3.16)

equation 3.16, shows the weighted average for each path. Where i and j ϵ {ls, nm, lt},

and PCT i is the priority percentage for each path that will be defined by the user. Then

we have a path size that clarifies how many δi inside it is represented by pathSizei.

Lastly, we have total that represents the total number of δi inside all paths.

NU% =
sizei ∗ 100

availableBw ∗∆t
(3.17)

equation 3.17, shows the network utilisation for each path, where sizei in bits is mul-

- 69 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

tiplied by 100, and divided by availableBw multiplied by the ∆t time interval.

3.4 Evaluation

In this section, we evaluate our proposed work on a self-driving car test case.

3.4.1 Experiment Set-up

3.4.1.1 Test Case

Figure 3.2 illustrates the fundamental framework used in integrating autonomous ve-

hicles. Modern self-driving cars are equipped with a plethora of devices such as sen-

sors, cameras, radars, and mechanisms for managing speed. These devices share their

collected data with the SDN controller, which is positioned within the proximity of

low-latency 5G networks. The controller then assesses this information to manage

the data’s routing and prioritisation. Furthermore, SD-WAN plays a critical role in

ensuring the efficient flow of network traffic to and from autonomous vehicles, thereby

facilitating the evolution of these vehicles into entities that are both more intelligent

and safer [137]. Data centres, located in various parts of the city, both at the edge

and in the cloud, receive data from the vehicles for processing on their host machines.

For further analysis, this data is transmitted to other host machines across different

data centres via the controllers, which in turn, provide feedback for real-time decision-

making. Additionally, the network supports communication between different edge and

cloud data centres through the SD-WAN, while also ensuring that the application’s

response times and processing needs are adequately met.

In this scenario, the IoT devices in a car capture raw data and assign it a priority level.

Each piece of data is then ranked according to its priority and transmitted to an edge

data center. Upon arrival at the edge data centre, the data packets are organised and

placed into separate queues based on their priority and size before being forwarded to

edge devices for processing. Subsequently, the data is transmitted to cloud data centres

via SD-WAN on 5G towers for additional processing. The SD-WAN controller manages

the data by selecting the optimal and quickest path and adjusting the bandwidth to

accommodate the data size. Similar to the process at the edge data centre, the cloud

- 70 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

5G

CloudEdge

Figure 3.2: Data transfer and processing in Self-driving cars

data centre organises and queues the data according to its priority and size, preparing

it for processing by the VMs. Figure 3.3 shows a detailed illustration of the whole

process.

IoT

SDN/SDWAN-
enabled Network

SDN-enabled
Edges

SDN-enabled
Clouds

SDWAN-enabled
Network

SDN-Edge Controller

BS
Micro-
Services
i..j

Tasks
Dispatcher MQ

==
Bandwidth
Slicing= Queues

Manager
Multi-Queues
(LS, NM, LT)

SDN-Cloud Controller

BS
VMs
i..j

Tasks
Dispatcher MQ

Flow or Task
Dispatcher=Core=

SDN-5G Controller

SD-WAN Controller

BSTasks
Dispatcher MQ

Figure 3.3: Scenario process in our IoT-edge-cloud environment

- 71 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

3.4.1.2 Configuration

We model the scenario using the open source simulator IoTSim-Osmosis [138]. Table

3.2 shows the specific configuration details for the given test case. We vary the number

of IoT devices from 10 to 60 for the given test case. The details about the number

of devices are given in Table 3.3. We compared our results with two approaches: the

First Come, First Serve (FCFS) and Shortest Job First (SJF) methods.

Table 3.2: Test case configuration

IoT Device Edge Device Host(Edge) VM(Cloud)
IoT type car Edge type Raspberry Pi Storage 640 GB Storage 10 GB
Max BW 100 Mbps Max BW 100 Mbps Max BW 10000 Mbps Max BW 1000 Mbps

Required CPUs 10 Pes 10 Pes 4 Pes 4
Network 5G RAM size 10000 RAM size 32000 RAM size 512

Max battery cap 100 mAh MIPS 250 MIPS 1250 MIPS 250

3.4.2 Experiment results

This section presents the results of our proposed MQ-BS approach. Figure 3.4a shows

the average processing time of each test as compared to the FCFS and SJF. As shown

in the Figure, our proposed approach achieves an average gain of 71% as compared to

FCFS and 73% compared to SJF. The trend is also followed for the transmission time

with 49% savings as compared to the FCFS and 74% with SJF as shown in Figure

3.4b. The trend is also followed for the queue waiting time with 164% savings as

compared to the FCFS and 98% with SJF as shown in Figure 3.4c. Table 3.4 shows

a comparison of the results in detail between FCFS, SJF, and our proposed MQ-BS

policies.

3.4.2.1 Scalability result

Figure 3.5a shows the average simulation time of each test as compared to the FCFS

and SJF. As presented in the Figure, our approach achieves an average gain of 143%

Table 3.3: Infrastructure device configuration

Number of IoT Devices Number of Edge Devices Number of hosts Number of VMs
10-60 2 2 2

- 72 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

 0

 2

 4

 6

 8

 10

 12

 14

10 20 30 40 50 60

Pr
oc

es
si
ng

 t
im

e(
s)

IoT devices number

MQ-BS FCFS SJF

(a) Processing time

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50 60

T
ra

ns
m

is
si
on

 t
im

e(
s)

IoT devices number

MQ-BS FCFS SJF

(b) Transmission time

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 20 30 40 50 60

En
er

gy
 c

on
su

m
pt

io
n

(W
/h

)

IoT devices number

MQ-BS FCFS SJF

(c) Queue waiting time

Figure 3.4: The experiment results

Table 3.4: A comparative table for the results

Processing Time Transmission Time Queues Waiting Time
IoT Device MQ-BS FCFS SJF MQ-BS FCFS SJF MQ-BS FCFS SJF

10 1.9 2.21 1.93 73 748 749 36 105 710
20 2.05 3.06 2.46 160 1526 1527 88 474 1427
30 2.38 4.60 4.42 286 2308 2331 140 978 2140
40 2.45 7.36 8.17 375 3095 3401 192 1713 2858
50 2.52 9.43 8.43 475 3870 3996 240 2368 3571
60 2.58 12.11 12.01 571 4648 4842 292 3259 4284

as compared to the FCFS and 149% compared to SJF. Finally, Figure 3.5b shows

the average energy consumption of each test as compared to the FCFS and SJF. As

presented in the Figure, our approach achieves an average gain of 24% as compared

to the FCFS and similar 24% compared to SJF.

In summary, the system being proposed demonstrates substantial advancements over

FCFS and SJF methodologies in both edge and cloud computing environments. It

enhances processing efficiency by up to fourfold and reduces the data transmission

duration from IoT devices to the cloud through edge computing and SD-WAN by as

much as ninefold. Additionally, beyond the significant enhancements in data process-

- 73 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

ing and transmission speeds, it’s observed that the system’s innovative policies also

contribute to a threefold reduction in energy consumption. Notably, the benefits in

terms of both time and energy savings increase proportionally with the amount of data

processed.

 0

 1000

 2000

 3000

 4000

 5000

10 20 30 40 50 60

Si
m

ul
at

io
n

tim
e(

s)

IoT devices number

MQ-BS FCFS SJF

(a) Simulation time

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 20 30 40 50 60

En
er

gy
 c

on
su

m
pt

io
n

(W
/h

)

IoT devices number

MQ-BS FCFS SJF

(b) Energy consumption

Figure 3.5: Scalability results

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
et

w
or

k
U

til
iza

tio
n

(%
)

Time(s)

DBS FCFS SJF

Figure 3.6: Comparing the network utilisation for the three policies

3.4.3 Network Utilisation

This section describes the network utilisation measurement results for all systems from

the start to the end of the simulation using equation 3.17. Figure 3.6 shows the network

- 74 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

utilisation percentage for FCFS, SJF, and MQ-BS policies. It can be seen that at the

beginning, it started to use 100% of the network when it was sending data from IoT

devices to microservices. Then immediately after that, it drops to 0% because the

data had arrived at destination microservices and started the processing phase. Next,

100% was used from the network, because microservices started to send the data to the

cloud. Finally, it drops again to 0% because the data had arrived at the destination

VMs and started the processing phase. However, our proposed system shows the same

way of using the network as in the previous systems but it decreases the overall time

of network usage. So, this illustrates that our system improved the time of network

utilisation by up to 7 times and 7.5 times compared with the FCFS and SJF systems,

respectively.

3.4.4 Auto-Adaptation

Although the results so far show promising optimal performance, sometimes bandwidth

static slicing can lead to a degradation in the network utilisation. Figure 3.7a shows

an example of how such problem might arise. Note that set-up and configuration is

similar to the previous experiment but with only 10 IoT devices. The Figure 3.7a

has 100 MB of bandwidth where it is sliced/divided into three parts: 70% is assigned

to the latency-sensitive (ls) path, 20% is given to the normal (nm) path, and 10% is

assigned to the tolerant-sensitive (lt) path. Suppose that the ls path receives 30 MB of

data every second, nm path receives 70 MB of data every second, and lt path receives

100 MB of data every second (as shown in the Figure). If the ls path is only using

30 MB per second, then 40% of its sliced network would be wasted. As such, this

chapter contributes to solving this problem by proposing an auto-adaptive network

slicing algorithm. The algorithm is designed to dynamically tune the network slicing

percentage based on the network utilisation of each path, as shown in Figure 3.7b.

pathRatio =
pathF lowsi

total
(3.18)

equation 3.18, shows the pathRatio of each path. Where pathF lowsi is the F numbers

of qi, and qi is one of our proposed paths (ls, nm, lt), divided by the totali number of

- 75 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

flows in that path.

Every path receives multi flows every second, depending on the data coming from IoT

Devices. So, after computing the number of flows that are used in every path, we use it

in our Alg. 4 to calculate the new percentage for every path every time the bandwidth

is updated in the system.

10%

LS = 30 mb

NM = 70 mb
LT = 100 mb

Bandwidth= 100 MB

20% 100% bandwidth used
100% bandwidth used

43% bandwidth used

T = 0 s T = 100 supdateBW

70%

20%
10%

70%

(a) Without Auto-Adaptation

Bandwidth= 100 MB

10%

LS = 30 mb

NM = 70 mb
LT = 100 mb

20%

T = 0 s T = 100 supdateBW

100% bandwidth used

100% bandwidth used

100% bandwidth used30%
40%

30%

70%

(b) With Auto-Adaptation

Figure 3.7: The Auto-Adaptation example

Algorithm 4: Auto-Adaptation
Input: minPCT : The minimal percentage for Auto-Adaptation, newWeightedAveragei: The

weightedAveragei with the new PCT i, oldWeightedAveragei: The weightedAveragei
that computed in Alg.3

1 pathRatiolt,nm,ls ← using Eq. 3.18 // Measures the network utilization NU for all paths

2 if (pathRatioi ≥ minPCT) then
3 usedBw = availableBw * newWeightedAveragei
4 end
5 else
6 usedBw = availableBw * oldWeightedAveragei
7 end
8 return usedBw

The main goal of auto-adaptation is to dynamically allocate the percentage of paths

in the bandwidth slicing mechanism. Thus, the procedure seeks the optimal slicing

percentage for the bandwidth based on the network utilisation NU for each path.

Alg. 4 clarifies the auto-adaptation procedure, which starts by measuring the NU for

each path as per equation 3.17. Following this, the resulting percentage pathRatio

is compared with the minPCT defined by the user. If the pathRatio is equal to or

bigger than the minPCT , the new pathRatio is employed in the weightedAverage

- 76 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50 60

T
ra

ns
m

is
si
on

 t
im

e(
s)

IoT devices number

MQ-BS FCFS

Figure 3.8: Auto-Adaptation transmission time

using equation 3.16 to comprise an improved percentage that improves the bandwidth

slicing between the paths. If the pathRatio is smaller, the static percentage that

was previously employed to the path will be utilised. Figure 3.8 shows the results

of a comparison between the MQ-BS system and the MQ-BS system with the Auto-

Adaptive network slicing algorithm, which showed an improvement in the transmission

time of 46%.

3.5 Further Evaluation and Validation

Our research not only puts our proposed system to the test in a simulated setting

but also verifies its performance in a practical IoT-oriented SDN environment. For

real-world testing, we utilised actual edge computing devices, including three Rasp-

berry Pi units, an SDN-capable switch, and a laptop. To simulate IoT devices and

create IoT data, we employed sensor simulators. The setup involved running a sensor

simulator on one Raspberry Pi, an edge processing simulator on the second, and a

virtual machine (VM) on the third Raspberry Pi. Each Raspberry Pi was equipped

with a 1.4GHz quad-core processor and 1GB of RAM. In terms of networking, we

implemented an Open vSwitch (OvS) on a Linux-based switch powered by an Intel

N3700 Processor with 8GB RAM. Additionally, a Ryu controller, serving as the SDN

- 77 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

controller, was operated on the laptop, which featured an Intel i7-8565U quad-core

processor at 1.99GHz and 16GB of RAM.

Workload and Dataset: Our study employs a dataset from a real-world smart building

Urban Observatory, Newcastle University[139] to create a realistic workload scenario.

This dataset includes data samples collected from various sources such as temperature,

NO2, and gas sensors. To facilitate data exchange between devices, we utilised the

MQTT protocol. We also introduced a multi-queue policy on both the edge emulator

and the VM to prioritise data based on the sensor’s importance. Additionally, we

implemented a bandwidth slicing strategy within the SDN controller to efficiently

manage network bandwidth among the devices.

Methodology: We have developed three test applications, incorporating sets of 10,

20, and 30 sensors. Initiating with the sensor emulator, we configure it to generate an

input flow of 10 to 30 records per second, which are subsequently dispatched to the edge

layer. Upon arrival, the data goes through the organisation via a multi-queue policy

for processing at the edge. Following this phase, the processed data is transferred to

the VM through a network switch. This switch routes the data to the SDN controller,

which then allocates routing paths and bandwidth slices based on data priority before

forwarding the data to the VM for additional analysis. The VM undertakes the final

sorting and processing of the data.

Results: We calculated the average time it takes for data to be transmitted from the

sensor, through the switch, and finally to the VM for all three applications. This was

then compared with the average transmission times obtained from simulated experi-

ments. Furthermore, we assessed the average time required to process data at the edge

and within the VM for each application, comparing these figures against those derived

from simulation experiments. As depicted in Figure 3.9, there is a noticeable increase

in both processing and transmission times with the addition of more sensors. This

trend suggests a positive relationship, underscoring that the precision and reliability

of our simulation findings are in alignment with those observed in an actual IoT-based

SDN setup.

- 78 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

I MQ-BS M FCFS

350 ------------------

300

250

� 200

·- 150
1-

100 • I •

50

o------------------

10 20 30

Number of IoT devices

(a) Average transmission time

�
CJ)

�

■-

I MQ-BS M FCFS
3------------------,

2.5 -· ·: · ·:;�
..., ...,

. : .. · . ·-

1.5 -··�········· ···························-

1 -· :· ·-

0.5 -··:··-

o -----------·-----------

10 20 30

Number of IoT devices

(b) Average processing time

Figure 3.9: Validation results

3.6 Related work

There has been significant previous research in areas related to cloud task offload-

ing, IoT stream processing, bandwidth slicing, and congestion control. In mobile

computing, offloading tasks generally means transferring them to the cloud, and it’s

important to understand how different computing resources affect data transmission.

The LEO[88] system has made advancements in reducing energy usage by managing

various sensor processing tasks on mobile devices, yet it does not address the variabil-

ity in IoT networks. Similarly, MAUI[140] overlooks the latency introduced during

the transfer of data from the edge to the cloud, despite recognising the variability in

resources. Therefore, our system presents an opportunity to enhance these networks

by addressing these gaps.

Improvements in edge computing have shifted the processing of cloud-based data closer

to its source, significantly decreasing the delay in processing. The author in [90]

introduced a system designed for edge-based stream processing capable of handling

data from various IoT devices simultaneously. However, the primary focus of this

system is to improve adaptability to fluctuations in wireless network environments,

rather than solving problems related to bandwidth division. Additionally, [91] focuses

on improving the efficiency of analytical tasks, paying less attention to the queuing

delays that occur during stream data processing.

NebulaStream[84] is a system that channels data streams to various processing tasks

for specific data-flow programs through APIs. However, it lacks the capability to dis-

- 79 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

tinguish between the latency sensitivities of different IoT applications, thus failing to

handle queue delays effectively. In contrast, our suggested system offers an efficient

traffic scheduling solution, ideal for use across IoT-edge-cloud continuum environments,

particularly suitable for scenarios with diverse data record types and distinct QoS de-

mands. In networking, SDQ[92] introduces a method for selecting optimal queues and

routes for each incoming flow, aiming to reduce network workload disparities. Never-

theless, it does not account for the cloud network and bandwidth slicing considerations.

On a related note, NS[83] presents a communication solution based on network slicing,

yet it overlooks the aspects of bandwidth slicing, as well as edge and cloud processing.

Congestion management is a widespread approach within the network community,

typically implemented by controlling the rate of transmission and directing network

packets to their destinations. The QJUMP[86] framework, facilitates the routing of

messages to different queues based on their priority levels, a concept akin to our sys-

tem’s multi-level queue management functionality. Nonetheless, QJUMP lacks support

for applications that process streaming data. Other systems focused on receiver-driven

flow control, such as Homa[89], pHost[87], and NDP[85], have been shown to effectively

diminish the latency for small messages. These systems, however, rely on switch-based

solutions that presuppose equal ingress and egress throughputs a premise not valid

within the IoT-edge-cloud spectrum. Our system innovatively merges dynamic band-

width management with comprehensive traffic coordination at the application level,

offering the adaptability required for controlling throughput and adjusting bandwidth

in real time during streaming activities. The detailed properties of recent and our

proposed systems are compared in Table 5.1.

3.7 Conclusions and future work

This article introduces an innovative traffic scheduling system that operates on a dis-

tributed basis and prioritises QoS through multi-level queue management. The aim

of this system is to enhance overall throughput while reducing queue delays and im-

proving QoS for applications sensitive to latency. Our approach categorises incoming

traffic based on their latency requirements into multiple levels of queues and employs

- 80 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

Table 3.5: Comparison of various scheduling systems with the one proposed

Systems
Features

Cloud
processing

SDN
support

Auto
Adaptation

BW
slicing

Stream
processing

Queuing
delay

Edge
processing

IoT
devices

Latency

LEO [88] ✓ ✓ ✓
MAUI [140] ✓ ✓ ✓ ✓ ✓
Frontier [90] ✓ ✓ ✓ ✓ ✓ ✓
Approxiot [91] ✓ ✓ ✓ ✓ ✓

Nebulastream [84] ✓ ✓ ✓ ✓
Homa [89] ✓ ✓ ✓
pHost [87] ✓ ✓
NDP [85] ✓ ✓
SDQ [92] ✓ ✓ ✓ ✓
NS [83] ✓ ✓ ✓ ✓

QJUMP [86] ✓ ✓ ✓
Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

bandwidth slicing to allocate network bandwidth accordingly. This bandwidth alloca-

tion is dynamically adjusted in sync with real-time network usage analysis. Utilising

these techniques, our system significantly improves latency and throughput in edge-

cloud computing scenarios. Comparative results demonstrate that our system reduces

processing latency by up to four times and network latency by up to nine times, out-

performing traditional methods such as FCFS and SJF. Furthermore, it achieves a

threefold reduction in energy consumption for both edge and cloud computing envi-

ronments and the network. Future research will explore more sophisticated algorithms

to optimise bandwidth slicing for enhanced performance.

- 81 -

Chapter 3: Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the
IEC

- 82 -

4
Dynamic Data Streams for

Time-Critical IoT Systems in
Energy-Aware IoT Devices Using

Reinforcement Learning

Contents
4.1 Introduction . 84

4.2 Related Work . 86

4.3 Motivation . 88

4.4 Formal Model . 89

4.4.1 System Description and Definition 89

4.4.2 Problem Definition . 91

4.5 Osmotic Agents with RL . 92

4.5.1 Q-Learning Algorithm . 94

4.5.2 State Discretization . 95

4.5.3 Reward Function . 95

4.6 Evaluation . 96

4.6.1 Constant Data Streams . 96

4.6.2 Dynamic Data Streams . 98

4.7 Summary and Future Work . 99

- 83 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

Summary

This chapter discusses the deployment of thousands of sensors conscious of energy

usage across various environments like manufacturing, control mechanisms, disaster

relief, and flood prevention. These scenarios demand solutions that are not only timely

but also energy-efficient to prolong the lifespan of the sensors. It introduces a strat-

egy based on RL for dynamic data handling in time-sensitive IoT systems, specifically

focusing on energy-efficient IoT devices. Utilising the Q-Learning technique, this ap-

proach is capable of modulating the data transmission rate in accordance with the

availability of renewable energy sources. This ensures both the reliability of data

collection and the conservation of sensor battery life. An evaluation of this method

using past solar radiation data revealed that it could enhance data transmission by as

much as 23% over other profiles considered, guaranteeing the device’s uninterrupted

function.

4.1 Introduction

The IoT is a concept beginning to be a natural element of human development and

technological progress. IoT devices are used in many areas of everyday life, including

smart homes, factories and cities [123]. IoT devices are also used in time-critical

systems, i.e., where it is essential to obtain data processing results in the shortest

possible time [11]. Examples of such systems are various solutions used during natural

disasters, such as fires or floods. The key factor of such systems is the processing of

up-to-date, non-delayed data from sensors installed in IoT devices. To achieve this,

devices should be ready to transmit a data stream with necessary requirements.

Unfortunately, transferring a significant amount of data from sensors is associated with

a high demand for energy to make the measurements and then send the data to the

edge and computing clouds. However, this can be difficult to achieve for IoT devices

with limited computing and power resources. Especially when they are powered by

renewable energy sources such as solar energy. However, the device can respond to

changes in the availability of renewable energy by changing the frequency of collecting

- 84 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

and transmitting measurement data. The chapter proposes dynamic data streams,

which can be changed to consume the device’s available resources accordingly.

Nevertheless, dynamic data streams in time-critical systems are related to the intelli-

gent management of their parameters. Therefore, we propose to use the concept based

on autonomic computing [141] to manage their parameters through dedicated man-

agement agents that can monitor and plan adaptation actions. It is also important

that the purpose of device adaptation may depend on the system’s operating goal.

For example, in a flood risk situation, the system should work with the most up-to-

date data possible, paying less attention to maintaining the system’s lifetime. On the

other hand, during normal operation, the system should strive to maintain as long a

lifetime as possible to prepare for emergency situations. The implementation of the

autonomic computing concept in IoT devices is complex since they have very limited

resources. Therefore, we propose the usage of cooperating osmotic agents associated

with devices and the edge datacenters [142]. The agents operating on the devices send

data regarding the device operation, e.g., battery level, current configuration, while

the edge agent plans device reconfiguration actions, which are then sent in response

to be executed on the devices.

The agent’s logic could be implemented in the form of decision rules specifying actions

that will be performed in specific situations. However, it would require having a

particular model of the device and the environment in which it works. Therefore, in

the chapter we propose to implement the agent’s logic based on reinforcement learning.

It is used in systems where, based on the observation of the system operation and the

actions taken, their effectiveness in the form of a reward can be assessed.

Overall, this chapter tries to solve the research question:

How to do real-time data generation on the IoT while optimising the energy of

resource-constrained devices in time-critical systems on the IEC continuum?

To address the research question, this chapter introduces a solution based on RL, called

dynamic data streams, designed for energy-conscious IoT devices in time-sensitive IoT

systems. This proposed mechanism can adapt the data transmission rate according

to the availability of renewable energy resources, ensuring consistent data collection

- 85 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

while also considering the lifespan of the sensor battery.

In summary, the following are the chapter’s primary contributions:

• we formulated the limitation of the power resources problem in the IoT device,

• we proposed reinforcement learning-based dynamic data streams for time-critical

IoT systems in energy-aware IoT devices,

• we evaluated our proposed approach performance using a levee monitoring sys-

tem in river flood scenario.

The chapter is organised as follows. The second section deals with an overview of

state of the art. The third section discusses the motivation, while fourth describes

the formal model and problem definition. Section five presents the proposed concept

based on reinforcement learning, which is then evaluated in section six. Finally, the

chapter is summarized and future work is discussed.

4.2 Related Work

The extensive integration of RL with IoT devices is well-documented in scholarly ar-

ticles. A prime example is found in the work [143], which showcases various instances

where RL has been applied within IoT settings. IoT devices are capable of imple-

menting adaptation strategies across multiple system layers. For instance, within the

perception layer of a smart vehicle, decisions regarding speed, direction, and obsta-

cle avoidance can be made. At the application layer, particularly in edge or cloud

servers, it involves making choices on task scheduling, data caching, or allocation of

virtual machine resources. Moreover, RL algorithms play a crucial role in managing

the bandwidth or the data transmission rate in the network layer.

RL techniques can enhance the efficiency of tasks related to sensor coverage, as noted

in [144]. These methods allow a network of sensors to cover as vast an area as possible

while minimising energy usage. The premise is that extensive coverage by individual

sensors often leads to significant energy drain. However, in systems comprising mul-

tiple agents where devices interact with one another, RL can refine the operations of

- 86 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

these devices specifically for sensing tasks, thereby reducing total energy consumption.

One strategy involves adapting the Q-Learning algorithm, for instance, through the

implementation of a distributed value function as proposed by [145]. This adaptation

accelerates the learning process within distributed settings.

In the study by [146], three strategies for maximising data transfer from an IoT device

with limited battery life are examined. Two strategies involve online/offline optimisa-

tion, operating under the assumption of foreknowledge regarding future energy avail-

ability and environmental conditions. Conversely, the RL strategy, more applicable in

real-world scenarios, has only sporadic knowledge of energy levels and system states.

Over time, the RL strategy demonstrates performance on par with the optimisation

strategies. In a separate study by [147], RL is applied to manage data transmission

from battery-powered devices to a single base station over constrained channels. The

objective was to optimise data bandwidth to the base station without depleting the

device batteries. The base station selects devices, gathers their state information, and

then uses this data to determine an action based on a pre-learned policy, which is

then communicated back to the devices. Given the extensive action and state spaces

involved, Deep RL algorithms incorporating Long Short-Term Memory (LSTM) were

utilised for calculating Q-values.

In the context of Mobile Edge Computing (MEC), RL is employed to optimise proces-

sor frequency settings, as discussed by [148]. This approach involves the deployment

of an RL algorithm on an edge server, aiming to enhance the efficiency of process-

ing incoming requests. Upon receiving a request, the server evaluates the current

CPU load and battery condition to determine the feasibility of processing the request.

If the decision is affirmative, the CPU’s operational frequency is increased, which,

although consumes more energy, leads to improved processing times. Experimental

outcomes demonstrate that the server, through the application of RL, becomes adept

at managing various request sizes under different conditions, such as battery levels,

outperforming traditional rule-based methods like best/worst fit strategies or other

algorithmic solutions including sliding window techniques.

An integration between RL and LSTM neural networks is proposed for situations where

an RL agent needs to make a decision on activating sensors for real-time data collection

- 87 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

or relying on past data for predictions, as described in [149]. This method aims to

maintain an equilibrium between minimising energy use and ensuring the precision of

data collected. Both the RL agent and the LSTM network undergo pretraining, and

their performance is assessed through a comparison of model-free and model-based

RL strategies. The findings indicate that these algorithms are effective in deactivating

sensors without compromising data accuracy, thereby extending battery life.

4.3 Motivation

Consider the levee monitoring system installed beside the river, as depicted in Figure

5.1. This system is designed to identify potential conditions that could lead to the

levee’s failure during flooding events, thereby preventing extensive property damage

and loss of life.

River

Cloud

Levee Levee

Edge

Figure 4.1: Levee monitoring system.

IoT devices are positioned along the river to monitor the physical aspects of flood

barriers, such as temperature, humidity, and movement. The data collected by these

sensors is initially processed at an edge station situated nearby. The processed data is

subsequently transmitted to a cloud data center for in-depth analysis. The exchange

of information between the devices and the edge server is facilitated through a wireless

network.

The volume of data generated by sensors is influenced by the rate at which these devices

perform measurements. Nonetheless, as the quantity of data transmitted grows, so

- 88 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

does the requirement for energy [150]. These devices are capable of self-powering as

they come equipped with solar panels and rechargeable batteries.

For time-sensitive systems, it’s crucial to transmit data regularly, especially during

potential flood situations where real-time sensor information is essential, as noted by

[151] in a holistic analysis. However, this frequent data transmission can exhaust the

battery entirely, rendering the device non-operational until it can be recharged the

following day by solar panels. In scenarios without an immediate risk of damage, the

constant sending of sensor data can cause batteries to undergo deep discharge cycles.

This not only leads to a swift decrease in battery life but is also not recommended due

to its negative impact on battery health.

The research focuses on methods for adaptively managing data streams from sensors

within the discussed system types. It explores two specific scenarios. In the first,

the operation of the IoT system under standard conditions is examined, with the

goal of maximizing battery life and minimizing full discharge cycles. The second

scenario looks at the system’s functionality during extraordinary circumstances, which

necessitate continuous and frequent environmental monitoring and the transmission of

sensor data.

4.4 Formal Model

We begin by presenting the required definition and system description to represent our

research problem in Section 4.4.1. We formulate our problem using these definitions

(Section 4.4.2). Table 5.3 lists all of the notations that were used in the chapter.

4.4.1 System Description and Definition

The infrastructure system X, which is represented as a quintuple ⟨O,PV,D,E,C⟩. O

is a set of Osmotic Agents that respond to communication between the devices and

is denoted by Oo = {ido}, where ido represent the identifier of the Osmotic Agents

Oo. PV is a set of Photovoltaic panels located in each IoT device Di and is denoted

by PVp = {idp}, where idp represent the identifier of the Photovoltaic panels PVp.

D is a set of IoT devices Di and is denoted by Di = {idi, δi, bi, ri, oi}, idi represents

- 89 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

the identifier of the IoT device Di, δi represents the sensing rate of IoT device Di, so,

each IoT device observes its surroundings continuously over a given time interval, bi

represents the battery of IoT device Di, ri represents the renewable energy from the

Photovoltaic PV panels, oi represents the osmotic agent of the IoT device Di. E is

a set of edge devices Ee, each Ee is represented as Ee = {ide, he}. Where ide and he

represent the identifier and the set of host machines h1
e, h

2
e, ... for the edge device

Ee, respectively. C is a set of cloud data centres Cc, and is denoted by Cc = {idc, hc}

where idc is the identifier of the datacentre and hc is the set of host machines h1
c , h

2
c ,

... for the cloud data center Cc, respectively.

An IoT application Ai is defined as a directed acyclic graph (DAG) of microservice

Ai = {Aµ1

i ,Aµ2

i , ...} in which each Aµj

i represents a microservice to be executed. Each

Aµj

i has its own set of software (SW), hardware (HW), and quality of service (Q)

requirements. The combined requirements R(Aµj

i) for a microservices are shown in

Equation (4.1).

R(Aµj

i) = SW µj +HW µj +Qµj (4.1)

In Equation (4.2), the total requirements of any application Ai is given by the sum up

the requirements of all the microservices.

R(Ai) =
∑
∀j

R(Aµj

i) (4.2)

Data are generated by IoT devices Di on a regular basis. The IoT device is treated as

a passive entity, which means it does not handle data and instead sends it to the edge

device. Each IoT device Di have a battery bi and a Photovoltaic panel PVi that will

recharge the IoT device Di battery bi continuously. The total battery capacity Btotal

is computed as given in Equation (4.3).

Btotal = bavl + PVavl (4.3)

where bavl is the IoT device Di available battery capacity, and PVavl is the IoT device

Di available Photovoltaic panel charging capacity. When the IoT device generates the

- 90 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

data from the surrounding environment and sends it to the edge datacenter Ee, that

process will consume the battery. So, to calculate the overall battery consumption BC

for each IoT device using Equation (4.4).

BC = 1

sr
· tr (4.4)

where the sr is sensing rate of the environment and tr is the draining rate of sending

the data to the edge datacenter Ee.

Table 4.1: Notations

Symbol Description
X The system infrastructure
O A set of Osmotic Agents
PV A set of Photovoltaic panels
D set of IoT devices
E A set of Edge devices
C A set of Cloud data centers
h A set of host machines
v Virtual environment
δ The data rate of IoT device
b IoT device battery
r The renewable energy from the Photovoltaic panels P
A An IoT application
SW A software
HW A hardware
Q Quality of Service
R Requirements
Btotal The total battery capacity
bavl the IoT device Di available battery capacity
Pavl the IoT device Di available Photovoltaic panel P charging capacity.
BC The overall battery consumption
sr Sensing rate of the environment
tr A draining rate of sending the data to the edge datacenter E
Q Q function
A An actions
S A states
R A reward
α Learning rate
γ Discount factor
β The weight

4.4.2 Problem Definition

Given an infrastructure X = {O,PV,D,E,C} and a set of IoT applications A =

- 91 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

{A1,A2, ...}, a suitable deployment solution ∆m is defined as a mapping for Ai ∈ A

to X (∆m : Ai → X∀Ai) if and only if:

1. ∀Aµj

i ∈ Ai, ∃(A
µj

i → vh) where, h ∈ {he ∪ hc}

2. ∀Aµj

i ∈ Ai , if A
µj

i → vh, then HW µj ⪯ vHW
h and SW µj ⪯ vSWh

3.
∑

µj
HW µj ≤ vHW

h and
∑

µj
SW µj ≤ vSWh

All the requirements to find a suitable deployment solution are considered in the defi-

nition given above. Requirement 1 indicates that a mapping between Aµj

i and a virtual

environment vh|h ∈ {he ∪ hc} must exist for every microservice belonging to the IoT

application Ai. Requirement 2 confirms that the hardware and software requirements

of the microservice must be satisfied by vh if a microservice Aµj

i is deployed to a virtual

environment vh. Finally, requirement 3 limits the number of microservices a virtual

environment can execute at any time t.

The primary goal of this study is to find the best solution for all applications Ai such

that the overall battery consumption BCAi
is minimum. As given these requirements,

we can represent the problem as shown below.

minimize BCAi
+minimize sir

subject to:

∀i ∈ Ai,∀j ∈ µj ∃(A
µj

i → vh)

(4.5)

The constraint states that all of the application’s microservices Aµj

i must be executed

in a virtual environment (Equation (4.5)).

4.5 Osmotic Agents with RL

Modern IoT systems often employ a programming paradigm focused on data flows and

stream processing [152]. These systems consist of computational processes that anal-

yse data streams and transfer the results among themselves. They are implemented

across various hardware platforms, including computational clouds, edge data centres,

and the devices themselves. Osmotic computing [153], a concept that encapsulates this

- 92 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

methodology, offers flexibility by enabling these processes to shift between devices in a

manner akin to the movement of solvent molecules through an osmotic membrane to-

wards computational clouds or edge data centres. This adaptability allows the system

to meet specific operational requirements, such as processing time or energy efficiency,

based on the current operational context of the system.

In the proposed solution, we leverage the osmotic agents [138] concept. Each device

has an agent associated with it that manages the device’s resources.

In a traditional reinforcement learning approach, it is typically assumed that there is an

interaction between an agent and an environment, with a critic evaluating the actions

taken by the agent. However, the proposed solution deviates from this framework

by introducing two environments: an internal environment, which acts as a virtual

representation of the device, and an external environment, which represents the actual

device.

Initially, the state of the internal environment is updated based on observations from

the external device. Subsequently, the assessment of the actions taken on the external

device is conducted by considering the state of the internal environment.

Furthermore, we assume that in the case of a network of IoT devices forming a sensor

network, these devices are functionally similar and operate in a similar manner. Es-

sentially, they are independent but share similar state distributions. This implies that

the internal environment serves as a generic representation of an IoT device within

the system, and the knowledge update process may involve observations from multiple

devices.

In the solution depicted in Figure 4.2, agents from various devices can communicate,

forming a multi-agent system. To accommodate the limited computing and memory

resources of IoT devices, the adaptation logic of the device is managed by an agent

operating in the edge datacenter.

The edge agent’s internal environment can be enhanced by incorporating extra in-

formation from external sources. In this instance, we’re referring to weather forecast

data, including projected weather conditions and cloud cover for the current day and

the following day.

- 93 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

Environment
(IoT device state)

External Observations
(e.g. weather forecast)

State
Discretizer

Osmotic Agent

Edge

actionsdiscretized
state

IoT Device OAIoT Device OA

state

reward

MCU Battery

Sensors

PV Panel

IoT Device

Osmotic
Agent

Communication interface

MCU Battery

Sensors

PV Panel

IoT Device

Osmotic
Agent

Communication interface

IoT Device OAIoT Device OA

IoT Device OAIoT Device OA

micro
service

micro
service

micro
service

Processing

Management

data
stream

to cloud

observations

Figure 4.2: System architecture.

4.5.1 Q-Learning Algorithm

We chose to employ the traditional Q-Learning algorithm to develop the RL logic for

the agents controlling the sensing rate. This algorithm, which is model-free, learns

the value of an action taken in a specific state. In our approach, the available actions

for the device are equivalent to selecting the sensing rate, i.e., A = {sr}. Hence, the

function Q is defined as:

Q : S × A→ R (4.6)

Updating the value of the Q function is done using the Bellman function as an iterative

update using the weighted average of the old and new values:

Qnew(st, at) = Q(st, at) + α · [rt + γ · argmax
a

Q(st+1, a)−Q(st, at)] (4.7)

- 94 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

The α parameter is responsible for the learning rate, i.e., how much new values during

learning affect updating the current values. The γ parameter is responsible for the

discount factor, i.e., how important long-term rewards are compared to short-term

ones. Parameter values influence the learning process and are application dependent.

Typically α = 0.1 and γ = 0.8 are assumed.

4.5.2 State Discretization

A discussion is needed regarding the number of potential environment states. Prelim-

inary analysis suggests that DeepRL [154] methods can effectively solve RL problems

with a large state space. However, in our solution, we chose to discretize the state

space to reduce the resources required for algorithm training and implementation on

real IoT devices. The possible state values for the problem at hand are listed in Table

4.2.

Table 4.2: Discretized states used in the RL algorithm.

Observation Number of States State Discretization

Today Forecast 3 cloudy; partly cloudy;
sunny

Next Day Forecast 3 cloudy; partly cloudy;
sunny

Month 3 {1, 2, 11, 12}{3, 4, 9, 10}{5, 6, 7, 8}

4.5.3 Reward Function

The RL algorithm is based on the value of the reward obtained in response to the chosen

actions. In our system, the reward function is a weighted average of two factors, where

the β parameter determines the weight:

ri =

β · bi+(1− β) · min(sir)
sir

if bi ⩾ 0.05

0 if bi < 0.05
(4.8)

The first component concerns the device’s battery level and assumes values in the

range [0; 1]. The second component involves the sensing rate of the device. The more

- 95 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

often the device collects data, the higher the value is. The second component also

takes values in the range [0; 1].

In the case of the discussed systems, the amount of data transferred from the device

is important, but the more important issue is to prevent the situation of a complete

discharge of the batteries. Therefore, the reward function is 0 if the device has a

critical battery level of less than 5%, and the β parameter was set to 0.2 to include

battery level in the reward function.

We have set the critical battery level as 5% due to the possible inaccuracy of the battery

capacity measurement and the potential need for a safe device’s system shutdown.

Therefore, we assumed that the RL agent receives a penalty if the battery level reaches

the indicated value.

4.6 Evaluation

The solution was evaluated using the IoT-SimOsmosis [155] simulator, which was en-

hanced with a module for analysing renewable energy generated by photovoltaic panels.

We assumed that the IoT devices monitor the temperature of the dyke, and their spec-

ifications are outlined in Table 5.5. The simulation utilised historical solar radiation

data from 2016, sourced from the PVGIS database.

Table 4.3: IoT device specification used in the evaluation.

Device
Type

Battery
Capacity

Initial
Energy

Battery
Voltage

Solar Panel Charging
Current

Temperature
Sensor

3000 mAh 2000 mAh 3.7 V 10 W 500 mA

We have experimented with different device management profiles for sensor data

streams, which include both constant and adaptive profiles based on RL. The results

of these experiments will be discussed in the following sections.

4.6.1 Constant Data Streams

In the case of constant management profiles, it was assumed that the device had a

constant sensing rate value of 60 s, 90 s, 120 s, 150 s, 180 s and 210 s, respectively.

- 96 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

We observed changes in the device’s battery levels during the experiment. The results

grouped by months are presented in the Figure 4.3. We also counted during how

many days in a year the device completely discharged the batteries. The results are

presented in the Table 4.4. For measurements performed every 60 s, there were 166

days a year that the sensor stopped working due to a lack of energy, while the mean

battery level was 47%. Most often, such situations occur during winter and spring

seasons where solar radiation is lower than during summer periods. On the other

hand, with measurements taken every 210 s, the device ran all year round without

interruption having 89% of battery on average.

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Sensing rate=60

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Sensing rate=90

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Sensing rate=120

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Sensing rate=150

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Sensing rate=180

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Sensing rate=210

Figure 4.3: Battery levels of the device for various constant sensing rates. Colors of
the boxes are related to the mean value of battery level.

One way to ensure frequent sensing is to increase the size of the PV panels and battery

capacity. However, this approach is expensive and not very cost-effective. Instead, we

suggest implementing dynamic data stream management for IoT devices to address

this issue. The aim is to efficiently manage IoT devices to prevent them from stop

working due to energy depletion and to deliver the necessary sensor data for flood

predictions.

- 97 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

4.6.2 Dynamic Data Streams

When dealing with dynamic data streams, we expected the system to continuously

learn which actions yield the highest rewards during operation. However, excessive ex-

ploration could lead to unexpected device behaviour. For instance, in the scenario de-

picted in Figure 4.4, random management actions such as altering the sensing rate can

disrupt device operation. Consequently, there were 57 days when the device stopped

functioning due to battery depletion.

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

Random actions

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

RL first iteration

1 2 3 4 5 6 7 8 9 10 11 12
month

0.0

0.2

0.4

0.6

0.8

1.0

ba
tte

ry

RL second iteration

2 4 6 8 10 12
month

75

100

125

150

175

200 sensing_rate

2 4 6 8 10 12
month

75

100

125

150

175

200 sensing_rate

2 4 6 8 10 12
month

75

100

125

150

175

200

sensing_rate

Figure 4.4: Battery levels and the selected sensing rates for the devices in RL based
data stream management. Blue area represents min and max values of sensing rate,
while the chart represent mean sensing rate value for the particular month.

Therefore, the exploration process was limited to a random generation of the Q table

during system initialization. As a result, the initial adaptation actions taken by the

device were random, which allowed for state exploration. It is especially visible in

Figure 4.4 for the beginning months of the year (exploration resulting from a random

Q table) where the battery was discharged. During the ending months of the year,

the system has already developed an adaptation policy and thus preventing battery

discharge.

The assessment persisted using the same historical data while the system continued its

learning process. However, the actions taken only enhanced the previously employed

policy. Consequently, the device operated continuously throughout the year, with an

- 98 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

Table 4.4: Data stream management profiles used in the evaluation.

Method Mean Sensing
Rate

Low Batt Days Mean Batt Level

Constant 60 s 60 s 166 47%

Constant 90 s 90 s 105 62%

Constant 120 s 120 s 57 72%

Constant 150 s 150 s 26 79%

Constant 180 s 180 s 5 85%

Constant 210 s 210 s 0 89%

Random actions 135 s 57 72%

RL first iteration 162 s 8 83%

RL second
iteration

170 s 0 85%

average sensing rate of 170 seconds. Throughout this period, the device batteries

remained charged, and there was a 23% increase in the amount of data transmitted

compared to the constant 210-second profile, as shown in Table 4.4.

4.7 Summary and Future Work

In our study, we introduce a model for dynamic data streams, which adjusts the rate

of data transmission based on energy availability. This adjustment is made possible

through the application of reinforcement learning, optimising energy that is expected

to be generated by solar panels.

During our evaluation, we explored two distinct approaches to managing data flows

from IoT devices. For uniform data streams, users determine their own settings. When

minimising battery use is a priority, users can opt for the lowest possible data sensing

frequency, meaning data is transmitted as infrequently as possible. Conversely, for

those requiring comprehensive data on the environment being monitored, choosing

to send data more frequently is an option, though this may lead to the IoT device’s

battery running out.

In the second case, the introduced dynamic data streams balance the operational

- 99 -

Chapter 4: Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware
IoT Devices Using Reinforcement Learning

modes discussed. By utilising the Q-Learning algorithm, this method dynamically

adjusts the rate of data transmission based on the availability of renewable energy

sources. This approach ensures the efficient collection of data while also considering

the longevity of the sensor’s battery. The effectiveness of this solution was verified

using past solar radiation data, demonstrating that it can enhance data transmission

by up to 23% compared to other evaluated profiles, thus guaranteeing the device’s

uninterrupted functionality.

The operation modes of the discussed data streams, including the highest sensing rate,

minimal battery usage, and the reinforcement learning RL-based dynamic mode, can

be selected based on the user’s needs and the specific goals of the IoT system.

Future work introduced could progress in two main directions. Firstly, there’s the po-

tential for the devices to collaborate directly, enhancing their proficiency in managing

tasks as they accumulate experience and knowledge. In this scenario, RL agents could

autonomously control individual devices, sharing information about their actions and,

where applicable, the rewards received in particular system states. Secondly, the focus

could shift to a thorough examination of the environment observed by the sensor net-

work. This approach would allow for a strategic monitoring method where devices take

turns recording data, rather than doing so all at once, based on an in-depth analysis

of the surrounding environment.

- 100 -

5
Optimising data processing and

handling misconfiguration policy
failures in IoT systems using

reinforcement learning

Contents
5.1 Introduction . 102

5.2 Related Work . 104

5.3 Fault Modelling . 107

5.3.1 Software Misconfiguration . 107

5.3.2 Cascaded faults . 108

5.4 System concept . 109

5.4.1 CPD . 109

5.4.2 System architecture . 112

5.4.3 Reinforcement learning algorithm 114

5.4.4 Reward Function . 115

5.4.5 Actions . 117

5.5 Evaluation . 117

5.5.1 Setup . 117

5.5.2 Fault Injecting Component . 119

5.5.3 Experiment results . 120

5.6 Summary and Future Work . 122

- 101 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

Summary

IoT and edge devices are still undergoing fast development, making resource optimi-

sation and efficient failure management crucial. However, determining how to adapt

and reconfigure IoT system faults and failures more effectively is still a considerable

challenge. This chapter introduces a novel framework for an adaptive multi-agent sys-

tem for fault detection and handling in an IoT system. We utilise MARL, where each

agent observes and learns from the IoT device. Then, interaction among the various

agents is developed to improve each agent’s learning by taking into account the knowl-

edge of the agents at the different devices in the network. The aforementioned method

enables the detection of abnormalities throughout the whole system architecture. We

also conducted an extensive evaluation in real environments to demonstrate the ef-

ficiency of the proposed method and show that our proposed method outperformed

the existing techniques in detecting and handling misconfiguration faults, overcoming

cascaded failures, and enhancing the data processing in nodes effectively.

5.1 Introduction

The IoT has rapidly emerged as a new paradigm for connecting devices for data col-

lection, information sharing, and effective data processing. IoT faults can happen in

various forms and conditions. Comprehending IoT faults aims to enhance IoT sys-

tems’ stability and efficiency. It suggests the development of robust strategies and

remedies to prevent, identify, and handle malfunctions. Various terms like failures,

errors, anomalies, uncertainties, and defects are used interchangeably to denote IoT

faults [156–159]. These faults may stem from hardware malfunctions, software glitches,

environmental factors, network issues, or human errors. Moreover, in the IoT realm,

faults can vary widely in severity, from minor glitches to major disruptions impacting

the entire system. Furthermore, faults can be classified based on the nature of the

flaw. For instance, it is essential to highlight the importance of the sensor’s reliability,

such as the calibration. Faults can adversely impact performance and dependability,

according to the authors in [12].

Cascading failures pose a significant threat to IoT systems due to the interconnected

- 102 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

nature of various device functions and structures. These failures can trigger unan-

ticipated and often undesirable state changes in other IoT devices, leading to serious

cascading failures. Therefore, ensuring the robustness of an IoT system requires under-

standing the causes and physical mechanisms of cascading failures, considering their

consequences in system analysis and modelling, and developing adaptability against

such failures [160], [161]. Cascading failures occur when the failure of a single com-

ponent initiates a series of failures in other components, causing severe damage to

the entire system, as well as society and the environment. Such failures can occur in

various applications, including IoT devices worn on the human body, transportation

networks, and power grids.

A chain reaction of often unexpected and typically unwanted changes may be triggered

in other IoT devices, leading to or speeding up significant chain reactions of failures.

Thus, it’s essential to ensure an IoT system’s durability by comprehending the causes

and physical processes behind these chain reactions of failures. This includes consid-

ering their impact in system analysis and modelling, and also developing resilience

to such failures [160], [161]. Chain reactions of failures are particularly concerning

when the malfunction of one component causes a domino effect of failures across other

components, causing extensive damage to the entire system as well as to society and

the environment. This scenario can occur in various settings, including IoT devices

worn on the body, utilised in transportation networks, and integrated into power grids.

[162], [163]. One IoT device experiencing overload may cause malfunction and cascade

failures. Putting a device offline for an upgrade or maintenance might also cause cas-

cading failures. Redistributing the workload of a malfunctioning device across other

devices in the system might push these devices beyond their limitations, leading to

their eventual overload. This overload spreads through the system due to the intercon-

nected interactions among its various components, rather than through direct contact,

which would be the result of structural dependencies [164].

Overall, this chapter tries to solve the research question:

How can we identify, detect, and handle faults in IoT and edge devices on the IEC

continuum systems so the data quality is not compromised?

To address this research question, this chapter proposes a MARL-based adaptive sys-

- 103 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

tem which uses the collaboration of agents from their interactions in the shared en-

vironment to find the most flexible and effective fault-handling policy. As a result,

MARL is appropriate for dynamic and complicated fault scenarios. The proposed

method outperforms the static techniques with pre-established principles that are not

capable of reacting to changing fault patterns, changing system circumstances, and

the dynamic fault flow in the IoT system. To summarise, the main contributions of

the chapter are shown as follows:

• We discussed and clarified faults and cascaded failures in the IoT system.

• We proposed a Multi-Agents Reinforcement Learning-based dynamic method to

detect and handle faults in IoT systems.

• We evaluated our proposed approach’s performance using actual IoT devices and

real data.

The structure of the rest of the chapter is as follows: An overview of the related

work is covered in Section 5.2. The fault modelling is covered in Section 5.3, while the

system concept, system architecture, and the proposed concept based on reinforcement

learning are covered in Section 5.4. The evaluation and results are presented in Section

5.5. In Section 5.6 the chapter is summarised, and suggestions for further research are

made.

5.2 Related Work

Detecting and handling faults and failures using an adaptive method in IoT systems

is widely described in the literature. [106] proposed a self-adaptive system with a

technique for recovering resources in the event of node failure. The platform layer

is responsible for managing the resources used for infrastructure to run applications.

As a result, a Greedy Nominator Heuristic (GNH) was applied to the risk evaluation

of resources in order to prevent allocating them to unreliable nodes and to guarantee

higher service availability. An infrastructure that employs the replication strategy is

used to guarantee this service. In other words, GNH has been verified with a real-

- 104 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

world smart city application that uses a centralised resource controller to monitor and

manage data on surface water floods.

By identifying the optimal checkpoint interval values that impact the data recovery

process in the original Apache Kafka pipeline, [165] contributes to enhancing fault

tolerance within the structure of the Apache Kafka pipeline. Research demonstrates

that employing the optimal checkpoint interval time in the design substantially reduces

data loss.

IoTREPAIR [166] is an IoT fault management system that collaborates with fault

identification modules to oversee devices experiencing issues. It comprises a set of

fault-handling functions designed to tackle various types of faults. Additionally, it

integrates a fault handler, based on this set, to autonomously manage faults associated

with IoT. Observing the states of each sensor and how they relate to the states of their

neighbours makes diagnoses that are made easier by developer configuration files and

user preferences.

In a recent study, it was proposed that RV controllers use RL to recover from errors

and attacks [167]. To identify representative faults and attacks from normal operation,

this technique calls for training the policy with them. In practice, it can be challenging

to find such typical faults and attacks. Furthermore, because of gyroscope attacks, the

RL-based controller is unable to manage the altitude decline in both healthy and faulty

conditions, which would ultimately lead to a crash.

A unique framework called MASAD is introduced in the study [168]. This approach fo-

cuses on detecting anomalies within microservices in industrial settings by effortlessly

integrating a multi-agent system and RL techniques. It is designed to accurately

pinpoint anomalies at both the local and broader system levels. each agent is cus-

tomised through reinforcement learning, monitoring certain microservice behaviours,

and exchanging findings. While implementing deep learning and pure data mining in

specialised fields sometimes requires careful changes, MASAD is capable of identifying

abnormalities in microservices data.

[169] discusses the escalating issues with the reliability of IoT systems, particularly

those that are crucial to operations. Making sure of fault tolerance is essential due to

- 105 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

the complexity of the IoT, including the diversity of devices and the variety of com-

munication protocols. The study provides fault injection, a method for purposefully

causing system failures, to evaluate the robustness of these systems. They investigate

how systems react to these purposeful failures by adding a fault-injection module to

a well-known publish/subscribe broker, highlighting fault-injection’s function in pro-

moting fault tolerance in IoT environments.

The study [170] highlights the value of real-time fault detection for smart grids and

the difficulties with deep learning in cloud-based systems due to internet transmission

latency. The research presents a cloud-edge cooperative fault detection solution for

smart grids that addresses these issues and is enhanced by lightweight neural networks

on edge devices. The investigators suggest a deep reinforcement learning-based ap-

proach to optimise the allocation of communication and computation resources. This

technique increases system throughput and communication effectiveness while improv-

ing solution speeds and ensuring timely data transfer. Although promising, the newly

presented RL technique in this case provides a novel method of scheduling and allo-

cating resources.

Therefore, our system effectively combines detecting, identifying, and handling faults

and failures, as well as optimising the device throughput in the IoT system dynamically.

It is thus sufficiently flexible to deal with faults and failures during data streaming pro-

cesses. Table 5.1 summarises and compares the specific characteristics of the recently

developed and our suggested systems.

Systems Features
Fault

Detection
Fault

Handling
Fault

Identification
Dynamic
Faults

Real
Experiment

Reinforcement
Learning

Edge
processing

IoT
devices

Allocating
Resources

Almurshed [106] ✓ ✓ ✓ ✓ ✓
Aung [165] ✓ ✓ ✓
Norris [166] ✓ ✓ ✓ ✓ ✓ ✓
Fei [167] ✓ ✓ ✓

Belhadi [168] ✓ ✓ ✓ ✓
Duarte [169] ✓ ✓ ✓ ✓ ✓
Li [170] ✓ ✓ ✓ ✓
Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1: Comparing several related works to our proposed framework

- 106 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

5.3 Fault Modelling

It is crucial to comprehend the problem of misconfigured software policies, particularly

in IoT and edge devices that activate the routing of sensor data. The aforementioned

fault can occur due to several factors when data is transmitted between IoT com-

ponents, such as sensors to edge nodes. Typically, the data pipeline starts from the

sensing layer and ends at the processing layer (sensor data routing). The defect ap-

pears, potentially stemming from various components in the system, either hardware,

software, or network components. However, the hardware and network components

also can be significant sources of sensor data routing misconfiguration.

Fault Analysis
Fault Improper data route

Component Software
Cause Misconfiguration
Pitfall Overloading

Description Sensors process data on single edge node

Table 5.2: Detailed characteristics and facets of the fault.

To further elucidate, we are addressing a data routing problem that arose due to a fault

in the policy implementation. This is being rectified to ensure the system operates

dependably. An improper data route can place a substantial load on the edge layer,

spiking CPU usage. Additionally, a thorough delineation of the characteristics and

multifarious facets of the aforementioned fault is listed in Table 5.2.

5.3.1 Software Misconfiguration

The term software misconfiguration in the IoT application pertains to a status where

the system is improperly configured. It is causing unpredictable behaviour. Various

factors might induce it, including human error, software flaws, malfunctions, or exter-

nal factors. The software component can greatly contribute to fault indicators within

the system, including software bugs, stale updates, incorrect calibration, improper

sampling rates, or incorrect data routing [171]. However, a misconfiguration is not

necessarily to be raised as an initial erroneous in the system, but rather, the prior con-

figuration of the system might no longer be adequate to the current system state and

- 107 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

thus might result in the system misconfiguration. Therefore, the previous state of the

misconfiguration becomes invalid, and the system requires a reconfiguration to keep

functioning properly. Accordingly, the main objective of this chapter concentrates on

the latter pitfall, which is the need to reconfigure sensor data routing.

5.3.2 Cascaded faults

The potential consequences of a defect within an IoT system can range from negligible

to substantial effects. The defect pertains to a misconfiguration of policies, specifically

regarding imprecision in data routing. As depicted in Figure 5.1, in the event of

misconfiguration within the path of transmitted data, the system may experience

diverse errors. These errors may manifest as edge overloading, resource leakage, poor

response, limited throughput, or data loss.

Such occurrences can significantly impede the system’s efficiency and result in system

failure. We encountered errors manifesting with the processing at the edge, likely

caused by the sensor transmitting data in an incorrect direction. As a result, an

excessive amount of data is being processed, leading to data loss and CPU overheating,

ultimately resulting in system failure.

Calibration

Data routing

Sampling rate

M
isconfiguration

Sensor Edge

Overloading

Loss data

CPU usage

Memory usage

System

Fault Error Failure

Figure 5.1: Improper calibration, incorrect sampling rate, or misdirected data routing
between the sensor and edge layers can lead to errors like overloading, which may even-
tually cause a system failure. This sequence of fault-error-failure shows the cascading
effect of faults in the system.

- 108 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

5.4 System concept

In this section, we discuss the concept of our system as shown in Figure 5.2. Our

system has the ability to self-learn to know the point in time when it is necessary to

monitor the system, detect faults, or reconfigure it while processing sensor data.

In this system, we have two types of agents deployed across all IoT and edge devices,

and they communicate with each other to share information and collaborate. Agents

on IoT devices manage the data, the processing in edge devices, and the failures by

monitoring the state of the system, the changes that occur in the CPU of the edge

devices, and the amount of processed and unprocessed messages that are waiting in

the edge device processors queue. So, i.e., high CPU utilisation means an increasing

number of elements in the queue. An unusual increase in the queue will result in

CPU overload, causing the CPU to fail. The monitoring is done using Change Point

Detection (CPD) technology, which will be explained later in Section 5.4.1. Then, heal

the detected faults that may occur in the data routing or the edge device’s CPU using

MARL.

As for the edge device agents, their job is to collect the state of the device’s CPU and

the amount of processed and unprocessed data waiting in the edge CPU queue. Then

send this data to the agents on the IoT devices to be analysed.

Moreover, in this system, clients work in two phases the detection phase and the

handling phase. The state of the system is monitored by agents in the detection

phase, and if it detects some quality degradation or decline in quality metrics, the

system knows that something is wrong. Then the recovery phase will be activated

by starting a reinforcement learning algorithm to heal the system. After a period of

time and after returning the system state to normal, it switches back to the detection

phase.

5.4.1 CPD

When the characteristics of the time series change, the challenge of identifying the

unexpected shift in the data is known as CPD [172]. These discoveries, along with the

- 109 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

80%

IoT
agent

Edge
agent

IoT
sensor

Processing
queue

Message Edge
device % CPU

60%

30%100%

Figure 5.2: System concept

underlying structure, aid in the identification of time series change points in the event

that a shift in system behaviour takes place [173].

The objective of the initial CPD research, which dates back to the 1950s [174, 175],

was to identify a change in the meaning of Gaussian variables that were Independent

and Identically Distributed (IID) for the intent of industrial quality control [176].

In other definition, the technique of locating times when a system’s behaviour signif-

icantly changes is known as CPD. This change might be the result of the system’s

failure or an anomaly. Since a defect frequently results in a change in the result of the

system, CPD is frequently used to detect problems in systems.

CPD techniques are divided into two primary categories: online techniques that seek to

identify changes in the actual time immediately as they happen and offline techniques

that identify changes after all data has been received. The first phase is often known

as anomaly detection or event, whereas the last phase is occasionally referred to as

handling or healing [177, 178].

So, we are using the CPD technique to detect faults that happened in the system, as

described in the system concept shown in Figure 5.3. The rewards are monitored over

time using this method. When a certain period of time passes with lower rewards, the

system switches to the detection stage. The system tries to determine what caused

- 110 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

the reward to change. Then the system switches to the handling stage as soon as the

cause is identified. During the phase of handling, the system makes some changes to

the configuration of the system, trying to return the rewards to their initial value.

Change
point

Monitoring

Detecting

Handling

Figure 5.3: CPD technique

Rewards, faults, and CPD are related in the following ways:

• The system’s performance is measured by the rewards. Any significant alteration

in the system’s output may result in the rewards to be changed.

• CPD is for detecting changes in the system that are caused by anomalies or

failures.

• The output of the system could significantly alter as a result of failures.

Therefore, the system concept could potentially help ensure that rewards remain at a

high level by applying CPD to find failures in systems.

Imagine a system in a smart home that keeps track of the functionality of numerous

linked IoT devices, for example, smart lights, alarms, and cameras. Data about energy

usage, processing speeds, and error logs are continuously collected by the system. The

system goes to the detection phase if it notices a change point in any of those metrics,

suggesting a possible malfunction or performance problem.

- 111 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

To determine the precise device or component generating the anomaly, the system

examines the data gathered during the detection phase. Cross-referencing with other

linked devices, checking through error logs, and comparing efficiency to historical data

are some possible steps. The system shifts to the handling phase as soon as the primary

cause is determined.

In this phase, the system handles the detected problem by implementing the necessary

actions. The process may include notifying the user of impending dangers, remotely di-

agnosing the devices, arranging maintenance with the manufacturer, or automatically

modifying device configurations. The main objective is to ensure that the smart home

system is working smoothly and returning the device’s performance back to normal.

So, the previous example shows how CPD could be used to successfully discover and fix

problems proactively in an IoT system, guaranteeing the best possible user experience

and performance.

5.4.2 System architecture

Figure 5.4 presents the system architecture. It is composed of the following compo-

nents:

IoT devices: These devices are responsible for collecting data and sending it to edge

devices. Action agents are also placed on the IoT devices to oversee deciding how to

best allocate resources and deal with failures.

Edge devices: These devices are tasked with processing information received from IoT

devices. To gather metrics from the edge devices and relay environmental conditions

back to the IoT devices, monitoring agents are installed on the edge devices.

Collaboration channel: This network establishes connections between edge and IoT

devices.

The collaboration channel would be used by the MARL agents to share information

and work cooperatively. They might then coordinate their actions and communicate

information. Moreover, in our system, we have two types of agents, i.e., an action

agent and a monitor agent.

- 112 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

Observ

IoT Device Edge Device

Management

Action agent

Sensor Com
m

unication Interface

Collaboration
channel

Processing

Co
m

m
un

ic
at

io
n

In
te

rf
ac

e

Fault

IoT Device IoT Device

IoT Device

Edge Device

Edge Device

Edge Device

Edge Device Edge Device

action

states
Environment

(Edge devices states)

data stream
Monitor agent

Packets
number

CPU
usage

state

collect metrics

Figure 5.4: System architecture

An action agent on an IoT device, for instance, may notify other action agents of a

failure so they can respond appropriately.

On the other hand, metrics like the number of packets and CPU utilisation are gathered

by the edge device’s monitor agent. The action agent on the IoT device would then

get this information. After analysing this data, the action agent would decide how to

distribute resources and deal with faults.

By monitoring the rewards and penalties it receives, the action agent would be able

to detect any failures in the system. The action agent would need to act if it began to

receive several penalties, which would indicate that something was wrong.

The action agent may choose to handle fewer packets overall or handle more packets.

To lessen the consequences of a failure, the action agent may also choose to redirect

the data flow to another edge device.

- 113 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

5.4.3 Reinforcement learning algorithm

In our approach, we implemented a model-free, off-policy RL technique known as Q-

learning. This algorithm estimates the value of executing a particular action within a

given state. The RL agents employ the Q-learning method to acquire ideal strategies

for managing faults and allocating resources within the IoT framework [179]. Table

5.3 lists all the notations used in this chapter.

Table 5.3: Notations

Symbol Description
Q Q function
a An action
s A state
r A reward
α Learning rate
γ Discount factor
a’ The action taken in the next state
s’ The next state
SR The speedReward
UR The utilReward
σ The standard deviation

stateCR The sensor count
stateR The state rewards
QC The queue count
N Node id
F Fault type
T The duration of the fault
W The workload

The Q-values (Qr) are updated for each RL agent r ∈ R using the Bellman equation

as a basic concept. To iteratively update the Q-values, it takes the present reward, the

highest anticipated future reward, and the learning rate, according to the following

equation:

Qr(s, a)← (1− α) ·Qr(s, a) + α · (r + γ ·max a′Qr(s
′, a′)) (5.1)

where:

- 114 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

• Qr(s, a) refers to the Q-value of agent r in state s and performing action a.

• r refers to the immediate reward received from the environment.

• α refers to the learning rate, which controls the weight of the new information

(0 < α ≤ 1).

• a’ refers to the action taken in the next state in accordance with the existing

policy.

• s’ refers to the next state.

• γ refers to the discount factor, which specifies the significance of future rewards

(0 < γ ≤ 1).

Moreover, the balance between the weights assigned to the new information and

the current information stored in the Q-values is determined by the α parameter.

It regulates how frequently the Q-values are modified in response to the RL

agent’s new experiences gained. The γ parameter illustrates how future benefits

are prioritised over present gains. It establishes how much consideration is given

to potential benefits while making decisions. Therefore, we assumed the α = 0.1

and the γ = 0.9.

5.4.4 Reward Function

The value of the reward r received in response to the chosen actions is the basis of

the RL algorithm. The reward function in our system is a weighted average of four

factors:

ri =

SR+UR+stateR+stateCR
n

if stateCR > 0

0 if stateCR = 0
(5.2)

where SR refers to the speedReward which is the reward of the sensing rate of the

IoT device in the range [0; 1]. UR refers to utilReward, which is the reward of CPU

utilisation of all edge devices. To equalise the CPU usage across all edge devices, we

employed the standard deviation σ using the following formula:

- 115 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

States CPU Utilisation(%) Queue Count Rewards
State0 0 – 10 QC > 0 0.1
State1 11 – 20 QC > 0 0.2
State2 21 – 30 QC > 0 0.5
State3 31 – 40 QC > 0 0.6
State4 41 – 50 QC > 0 0.7
State5 51 – 60 QC > 0 0.8
State6 61 – 70 QC > 0 0.8
State7 71 – 80 QC > 0 0.9
State8 81 – 90 QC > 0 0.9
State9 91 – 100 QC > 0 0.8

faultState 100 – 100 QC = 0 0

Table 5.4: IoT devices specifications used in the evaluation.

σ =

√∑n
i=1(xi − µ)2

n
(5.3)

Next, stateCR, refers to the sensor count, i.e., how many sensors send their data to

a specific edge device. So, in order to create a load balance amongst the devices to

manage the failure, our goal is to equally distribute the sensors across the edge devices.

Next, stateR, refers to the state rewards. We assumed that there are eleven states,

and each state refers to a range of CPU utilisation. For instance, state0 means that

the CPU utilisation is between 0% and 10% and the reward is 0.1. The other states

work similarly, except for faultState, where the CPU utilisation is 100% constantly and

queueCount QC is zero, where the QC refers to the number of data in the edge device

processing queue. So, when there are too many messages received from IoT devices,

the queue will be excessively long, causing the CPU to be overloaded, which leads to

delaying message processing and increasing the CPU temperature. Then it eventually

causes the CPU to freeze, resulting in messages not being processed. So the reward

function will be 0 for faultState. As shown in Table 5.4.

This means there is a fault that occurred in one or more edge devices. The final

average reward r, is calculated by dividing the total rewards by four. So, in our case,

the amount of data sent from the sensors and processed by the edge devices is vital,

but it is more crucial to avoid the edge device’s CPU utilisation being completely

occupied and no data being processed.

- 116 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

5.4.5 Actions

Along the learning process, the agents perform actions, obtain rewards according to

their states and actions, and alter their policies to optimise their overall rewards over

time. We created appropriate actions in our solution to deal with the failures the

system found and optimised the data processing. Every agent has four actions:

• Increase rate: When data is processed quickly, the sensor will increase the rate

at which it senses data, i.e., sending more data to the edge device.

• Decrease rate: If the sensor detects that the data is being processed slowly, it

will reduce the data sensing rate or transmit less data to the edge device.

• Do nothing: When an agent receives a high reward, it may indicate that the

prior action was successful and there is no need to modify it for a while. In this

case, the agent should do nothing.

• Change edge: Where the sensor sends the data to a different edge device. This

action should be conducted in particular circumstances, such as when the edge

queue is excessively busy or there is a failure event, to let the edge device recover.

5.5 Evaluation

We are using MARL in this experiment to make our IoT system adaptively recover

from faults successfully, therefore, we can accomplish the main goal of this chapter.

Using a set of Raspberry Pis as an IoT device in the experiment to guarantee the

proposed approach’s feasibility on real devices. The experiment precisely imitates

actual operational scenarios by utilising physical IoT devices, such as sensors and edge

devices. Evaluating this solution on real devices offers a more precise assessment of

how well it handles cascading faults and optimises data processing.

5.5.1 Setup

In the experiment, we used eight Raspberry Pi’s, three of them as IoT sensors and

five as edge devices. A router to use as a collaboration channel. The component

- 117 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

specifications that we used in the experiment are shown in Table 5.5. We have obtained

a real sensor data set from Urban Observation at Newcastle University[139]. This

dataset consists of samples collected from three gases, i.e., CO, NO, and PM2.5. We

used the MQTT protocol to send and receive the data between the devices.

Device model Processor Memory Quantity
Raspberry Pi 4

Model B
Broadcom
BCM2711,
quad-core

Cortex-A72 (ARM
v8) 64-bit SoC @

1.5GHz

4GB 6

Raspberry Pi 3
Model B+

Broadcom
BCM2837B0,
Cortex-A53

(ARMv8) 64-bit
SoC @ 1.4GHz

1GB 3

Table 5.5: The specifications of IoT devices used in the evaluation [1].

Figure 5.5, shows the system data flow. We assumed that the sensors were collecting

and sending the data to the edge devices to be processed. At the same time, the

RL action agents that are implemented in the sensors observe the edge device’s CPU

utilisation and the number of packets in the processing queue and calculate the reward

by communicating with the monitor agents that are implemented in the edge devices.

Then the action agent will try to detect any faults by observing the rewards and

penalties and handling them by performing specific actions and analysing the states

and rewards. All Raspberry Pi’s use the MQTT protocol to communicate via the

collaboration channel.

The collaboration channels purpose is to facilitate communications between all devices.

The RL agents will collaborate by sharing the state of the environment. There were

two tests, the first without implementing the RL agents in the sensors. The second

one involves implementing the RL agents in the sensors and edge devices. We used

the same initial configuration file in both tests.

- 118 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

Channels Edge devicesIoT devices

Message_A

Message_B

Message_C

Action

State

Reward

Communication_Channels

Normal Reconfigure Communication Fault

Metrics (CPU utilizations & queue count)

Figure 5.5: System flow in the experiment

5.5.2 Fault Injecting Component

Chaos engineering technique has been used to intentionally inject faults into the system

to evaluate the reliability of computer system hardware or software [180]. Due to the

fact that software fault injection only calls for modifications at the software state level,

it is less expensive than hardware fault injection. Therefore, it is frequently simple

to use software fault injection to test and evaluate the higher-level mechanisms of

software systems.

Accordingly, we introduce a CPU fault injection component that injects faults into the

edge nodes. It is possible for the CPU to run out of resources due to a high volume of

activities. Application failures, such as slow response times and low throughput, may

be the result of this.

The pseudo-code of the fault injection execution controller is shown in Algorithm 5.

The edge node in which the fault will be injected (N), the fault F (CPU), the duration

of the fault (T), and the workload (W) are the inputs of Algorithm 5. This algorithm

first generates a workload based on the fault (Algorithm 5, Line 5). Then, the Injection

procedure is performed to assign the fault for injection duration (T) (Algorithm 5, Line

7). Finally, the fault is injected into the selected node (Algorithm 5, Line 9).

- 119 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

Algorithm 5: Fault injection execution controller.
Input: N - node id,
Nl - list of nodes,
F - fault type,
Fl - list of fault types,
T - injection duration,
W - workload.

1 // Start the fault injection process
2 for each N in Nl do
3 for each F in Fl do
4 // Generate W
5 GenerateWorkload(W)
6 //Run Injection method
7 inj ← Assing (F , T)
8 //Inject into the N
9 N ← Inject (inj)

10 end

11 end

5.5.3 Experiment results

The results of the experiment directly tackle the research problem of preventing cas-

cading failures brought on by incorrect configuration in the system, especially the

sensor data routing fault.

In the beginning, we ran the experiment with three tests. First, the baseline, which

means no fault was injected and no action was implemented except the Do nothing

action, i.e., the agents will not perform any action such as increasing or decreasing

the sensor rate or changing the edge. The sensor rate was set to 3 seconds, i.e., the

sensor sends data to edge devices every 3 seconds. The reason for choosing this rate is

that, after we did several initial tests, we assumed that at this rate, edge devices can

behave normally. Therefore, the goal of the first test is that we need to measure the

performance of the normal configuration by calculating the average rewards. In the

second test, we started to inject the fault into the edge devices, and we set the sensor

rate to 3 seconds but took no action except Do nothing, to check how the system would

behave. For the third test, we initiated the sensor rate with 3 seconds, injected the

faults into the devices, and then ran the RL to start handling the faults in the system,

as shown in Table 5.6.

Further, the sensors were configured randomly, i.e., with randomly located edge devices

to send the data to be processed. In Figure 5.6 the results of the first test (the baseline)

- 120 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

Table 5.6: The configuration of IoT devices used in the evaluation.

Tests Sensor rate(s) Action Fault
Baseline Constant 3 s No No
Second Constant 3 s No Yes
Third Variable 3 s Yes Yes

were provided. We can notice from the start to the end that the average reward is

stable between 0.4 and 0.8, which means that the system is working normally and

there is no drop in the reward.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

Re
w

ar
d

Time(s)

Figure 5.6: The average rewards of Baseline test

Next, Figure 5.7 shows the result of the second test. We can notice at the start that

the average reward is between 0.6 and 0.8 for a while, which is a good reward. Then

the reward drops to 0.0, which means there was a fault in the system, and unstable

rewards continue until the end of the test. So, this leads to low throughput and delayed

response times for the system.

Next, Figure 5.8 shows the result of the third test.

We suppose that when the system is running, it should learn online which actions

result in the highest rewards. In the beginning, the average rewards are stable, with a

good range. Then, the rewards started to drop to zero several times. As we mentioned

in the system concept section, we are using the CPD technique to detect the faults

that happen in the system. Thus, by monitoring the changing point in the rewards,

- 121 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

Re
w

ar
d

Time(s)

Figure 5.7: The average rewards of the IoT devices sending data to the edge devices
without RL agents handling the faults

we can notice there are two points where the agents detect some faults that occurred,

and then the agents will start handling those faults by analysing the metrics and

performing different actions.

So, agents finally figured out the best actions they could take to overcome the faults

and balance the rewards.

Finally, one of our goals in this chapter is to improve the performance of the data

processing of the messages sent by IoT devices to edge devices. Therefore, we cal-

culated the total number of messages processed in each test and compared them so

that we could see the improvement in processing performance, as shown in Figure 5.9.

Therefore, the improvement percentage in processing performance compared between

the traditional system and our proposed solution is 23%.

The experiments show a good performance of identifying faults, reducing fault propa-

gation, handling failures, and optimising data processing of our proposed solution.

5.6 Summary and Future Work

A novel framework for detection, identification, handling faults and failures, and op-

timising the data processing performance dynamically based on a multi-agent system

- 122 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

Re
w

ar
d

Time(s)

Detecting changes using CPD

Start handling faults

Figure 5.8: The average rewards of the IoT devices sending data to the edge devices
with RL agents handling the faults

in an IoT system is designed. This system is developed using a multi-agent rein-

forcement learning algorithm, where each agent receives and observes data from the

supplied node. Then, by incorporating the data of the agents of the various nodes

in the network, the interaction between the various agents is formed to enhance each

agent’s learning. We have identified and explained what are the symptoms and causes

of faults, especially misconfiguration data routing faults, and how they’re related to

cascaded failures. Using that information, our system can easily detect and han-

dle anomalies or faults in IoT systems. To show the effectiveness of the proposed

framework, we carried out an experimental investigation in real environments. Results

showed that our proposed framework is more successful than the conventional methods

at effectively detecting and addressing misconfiguration faults, overcoming cascaded

failures, and improving the data processing in nodes. In future work, we can further

extend this framework by applying more complex data routing, such as adding the

cloud environment. Also, we can focus on the data itself, and ensure that there are no

faults in it, to maintain the quality of the data.

- 123 -

Chapter 5: Optimising data processing and handling misconfiguration policy failures
in IoT systems using reinforcement learning

0.0

1000

2000

3000

4000

5000

6000

7000

8000

Baseline With Fault With Fault + RL

To
ta

l n
um

be
r o

f p
ro

ce
ss

ed
 m

es
sa

ge
s

Figure 5.9: A comparison of the total number of messages processed between tests

- 124 -

6
Conclusion

Contents
6.1 Thesis Summary . 126

6.2 Limitations and Future Research Directions 127

6.2.1 Enhancing the Bandwidth Allocation 128

6.2.2 Enhanced Multi-Agent Cooperation for Dynamic IoT Networks 128

6.2.3 Advanced Data Quality Assurance Mechanisms 129

- 125 -

Chapter 6: Conclusion

Summary

In this chapter, we provide a summary of the research conducted in this thesis. We

summarise the key findings and contributions and identify research challenges in the

domain that could serve as directions for future works.

6.1 Thesis Summary

This thesis delves into the optimisation of time-critical data processing within the IEC

continuum, highlighting the significance of low latency, device sustainability, and data

quality for applications demanding real-time decision-making, such as infrastructure

management, healthcare, and flood monitoring. Due to the limited computational

power, limited bandwidth, low energy, and data integrity and reliability of energy-

aware IoT devices and edge devices, optimising time-critical data processing is chal-

lenging as it requires an adaptive approach to efficiently tackle those limitations of the

devices in the IEC.

In this thesis, we investigated various challenges associated with the optimisation of

time-critical data processing within the IEC continuum and put forward solutions to

ease the optimisation process. Specifically, this thesis presents the following contribu-

tions:

Chapter 2 provides an overview of the IEC continuum and IoT, edge, and cloud

environments. Then it discusses the network management techniques in IEC. Next, it

discusses the adaptive techniques for fault management and data quality in the IEC.

It then discusses the challenges in time-critical data processing applications and how

adaptive solutions are important to handle those challenges. At the end, we discuss

the relevant literature reviews and identify the research gaps.

Chapter 3 We introduce a novel distributed traffic scheduling system that prioritises

QoS based on multiple levels of queuing. This system aims to maintain high system

throughput while reducing queuing delay and ensuring better QoS for latency-sensitive

applications. Our scheduling system utilises multi-level queues to allocate network

bandwidth, dividing it based on the latency sensitivity of incoming traffic. Addition-

- 126 -

Chapter 6: Conclusion

ally, the bandwidth allocation in our system is dynamically adjusted by analysing net-

work utilisation in real time. Through these methodologies, our system significantly

improves latency, throughput, and energy consumption in edge-cloud environments

compared to existing methods such as FCFS and SJF.

Chapter 4 The concept of dynamic data streams was introduced, which involves ad-

justing the data transfer rate based on the availability of energy resources. Utilising

RL, the system can adapt to the anticipated energy output from renewable sources

like photovoltaic panels. The implementation employs the Q-Learning algorithm to

regulate the data transport rate, considering the level of renewable energy resources

accessible, while also accounting for sensor battery life. This dynamic approach rep-

resents a compromise between various operational modes. The effectiveness of the

proposed solution was assessed using historical data on solar radiation levels, demon-

strating an increase in transmitted data compared to other evaluated profiles. This

enhancement ensures the continuous functionality of the device.

Chapter 5 introduces a new framework designed to detect, identify, manage faults and

failures, and optimise data processing performance dynamically within an IoT and

edge system. The framework relies on a multi-agent system developed using a multi-

agent reinforcement learning algorithm. Each agent within the system receives and

monitors data from its assigned node. By integrating data from agents across the net-

work, interactions between agents are established to enhance individual learning. We

have outlined the symptoms and causes of faults, particularly focusing on misconfigu-

ration data routing faults and their association with cascaded failures. To demonstrate

the efficacy of the proposed framework, real-world experiments were conducted. The

results indicate that our framework outperforms baseline methods in effectively detect-

ing and resolving misconfiguration faults, mitigating cascaded failures, and enhancing

node data processing.

6.2 Limitations and Future Research Directions

We offer inspiration for some directions of future research that the work in this PhD

thesis can lead to.

- 127 -

Chapter 6: Conclusion

6.2.1 Enhancing the Bandwidth Allocation

In Chapter 3, one of the limitations is its dependence on static bandwidth allocation,

which may not optimise resource usage effectively under varying network conditions.

Although the system features a heuristic semi-auto-adaptation algorithm for dynam-

ically adjusting bandwidth slicing, it initially relies on fixed static percentages. This

reliance can cause inefficiencies before the dynamic adjustments are implemented. To

address this limitation, future research could explore the development of a completely

dynamic bandwidth-slicing method that removes the need for static configurations.

Such a method could utilise real-time data analytics and machine learning techniques

to anticipate traffic patterns and allocate bandwidth. By continuously observing net-

work conditions and adapting in real-time, the system could improve its responsive-

ness, resulting in better latency, and throughput, maximising resource utilisation, and

overall network performance, particularly in more complex and large-scale IoT envi-

ronments.

6.2.2 Enhanced Multi-Agent Cooperation for Dynamic IoT
Networks

In Chapter 4, one of the limitations is the emphasis on individual IoT devices func-

tioning independently, without taking advantage of the collaborative potential between

devices. This approach limits the system’s ability to optimise device management by

utilising shared experiences and collective knowledge. In this chapter, we explored the

potential for device collaboration in which RL agents function autonomously on indi-

vidual IoT devices. These agents exchange messages containing actions and rewards

corresponding to specific environmental states. As a future direction, the development

of the discussed approaches can take two main paths. Firstly, there is the potential

for devices to cooperate among themselves, thereby enhancing their experience and

knowledge in device management. In this scenario, RL agents would operate inde-

pendently on each device, exchanging messages detailing the actions taken in specific

system states, along with the achieved rewards. Secondly, there is the possibility of do-

main analysis within the monitored environment where the devices, forming the sensor

network, are situated. This would allow for selective monitoring of the environment,

- 128 -

Chapter 6: Conclusion

enabling devices to take measurements alternately rather than simultaneously.

6.2.3 Advanced Data Quality Assurance Mechanisms

In Chapter 5, one of the limitations is that it primarily focuses on fault detection,

misconfiguration handling, and optimising data processing performance, without ade-

quately addressing the quality of the data being processed. This oversight can compro-

mise the reliability of IoT systems, as the accuracy of data analysis and decision-making

heavily depends on the integrity of the data collected. To address this limitation, future

research could focus on developing sophisticated data quality assurance mechanisms

that detect and correct anomalies in data collected from IoT devices before processing.

This could include the use of machine learning techniques for anomaly detection, data

cleansing algorithms to correct errors in real-time, and methodologies for identifying

and mitigating sources of data corruption. Implementing these mechanisms could im-

prove the accuracy of data analysis, decision-making processes, and overall system

reliability.

- 129 -

130

References

[1] S. KOCER, O. DUNDAR, and R. BUTUNER, “Programmable smart microcon-
troller cards,” 2021.

[2] M. N. Bhuiyan, M. M. Rahman, M. M. Billah, and D. Saha, “Internet of things
(iot): A review of its enabling technologies in healthcare applications, standards
protocols, security, and market opportunities,” IEEE Internet of Things Journal,
vol. 8, no. 13, pp. 10 474–10 498, 2021.

[3] G. Suciu, M. Anwar, A. Ganaside, and A. Scheianu, “Iot time critical applica-
tions for environmental early warning,” in 2017 9th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2017, pp.
1–4.

[4] X. Masip-Bruin, E. Maŕın-Tordera, G. Tashakor, A. Jukan, and G.-J. Ren,
“Foggy clouds and cloudy fogs: a real need for coordinated management of fog-
to-cloud computing systems,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 120–128, 2016.

[5] J. Pan and J. McElhannon, “Future edge cloud and edge computing for internet
of things applications,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 439–
449, 2017.

[6] I. Zhou, I. Makhdoom, N. Shariati, M. A. Raza, R. Keshavarz, J. Lipman,
M. Abolhasan, and A. Jamalipour, “Internet of things 2.0: Concepts, appli-
cations, and future directions,” IEEE Access, vol. 9, pp. 70 961–71 012, 2021.

[7] L. Belcastro, F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Edge-cloud con-
tinuum solutions for urban mobility prediction and planning,” IEEE Access,
2023.

[8] I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub, “Dynamic service
provisioning in the edge-cloud continuum with bounded resources,” IEEE/ACM
Transactions on Networking, 2023.

[9] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for internet
of things: A survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–
2008, 2017.

[10] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou, “Comple-
menting iot services through software defined networking and edge computing:
A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 3, pp. 1761–1804, 2020.

[11] R. Ranjan, J. Phengsuwan, P. James, S. Barr, and A. van Moorsel, “Urban risk
analytics in the cloud,” IT Professional, vol. 19, no. 2, pp. 4–9, 2017.

- 131 -

[12] J. Dugdale, M. T. Moghaddam, and H. Muccini, “Agent-based simulation for
iot facilitated building evacuation,” in 2019 International Conference on Infor-
mation and Communication Technologies for Disaster Management (ICT-DM).
IEEE, 2019, pp. 1–8.

[13] A.-T. Shumba, T. Montanaro, I. Sergi, L. Fachechi, M. De Vittorio, and L. Pa-
trono, “Leveraging iot-aware technologies and ai techniques for real-time critical
healthcare applications,” Sensors, vol. 22, no. 19, p. 7675, 2022.

[14] B. V. Philip, T. Alpcan, J. Jin, and M. Palaniswami, “Distributed real-time iot
for autonomous vehicles,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 2, pp. 1131–1140, 2018.

[15] S. Kitagami, V. T. Thanh, D. H. Bac, Y. Urano, Y. Miyanishi, and N. Shiratori,
“Proposal of a distributed cooperative iot system for flood disaster prevention
and its field trial evaluation,” International Journal of Internet of Things, vol. 5,
no. 1, pp. 9–16, 2016.

[16] P. Gkonis, A. Giannopoulos, P. Trakadas, X. Masip-Bruin, and F. D’Andria, “A
survey on iot-edge-cloud continuum systems: Status, challenges, use cases, and
open issues,” Future Internet, vol. 15, no. 12, p. 383, 2023.

[17] A. Verma, S. Prakash, V. Srivastava, A. Kumar, and S. C. Mukhopadhyay,
“Sensing, controlling, and iot infrastructure in smart building: A review,” IEEE
Sensors Journal, vol. 19, no. 20, pp. 9036–9046, 2019.

[18] I. Sittón-Candanedo, R. S. Alonso, S. Rodŕıguez-González, J. A. Garćıa Coria,
and F. De La Prieta, “Edge computing architectures in industry 4.0: A gen-
eral survey and comparison,” in 14th International Conference on Soft Comput-
ing Models in Industrial and Environmental Applications (SOCO 2019) Seville,
Spain, May 13–15, 2019, Proceedings 14. Springer, 2020, pp. 121–131.

[19] H. Tianfield, “Cloud computing architectures,” in 2011 IEEE International Con-
ference on Systems, Man, and Cybernetics. IEEE, 2011, pp. 1394–1399.

[20] L. Atzori, A. Iera, and G. Morabito,“The internet of things: A survey,”Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[21] A. Čolaković and M. Hadžialić, “Internet of things (iot): A review of enabling
technologies, challenges, and open research issues,”Computer networks, vol. 144,
pp. 17–39, 2018.

[22] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “Iot gateway: Bridgingwire-
less sensor networks into internet of things,” in 2010 IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing. Ieee, 2010, pp. 347–352.

[23] D. Giusto, A. Iera, G. Morabito, and L. Atzori, The internet of things: 20th
Tyrrhenian workshop on digital communications. Springer Science & Business
Media, 2010.

- 132 -

[24] K. Baras and L. M. Brito, “Introduction to the internet of things,” in Internet
of Things. Chapman and Hall/CRC, 2017, pp. 3–32.

[25] L. Ericsson, “More than 50 billion connected devices,” White Paper, vol. 14,
no. 1, p. 124, 2011.

[26] F. Duarte. (2024) Number of iot devices. [Online]. Available:
µhttps://explodingtopics.com/blog/number-of-iot-devices

[27] C. Wang, M. Daneshmand, M. Dohler, X. Mao, R. Q. Hu, and H. Wang, “Guest
editorial-special issue on internet of things (iot): Architecture, protocols and
services,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3505–3510, 2013.

[28] H. Ning, Unit and ubiquitous internet of things. CRC press, 2013.

[29] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “In-
ternet of things: A survey on enabling technologies, protocols, and applications,”
IEEE communications surveys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[30] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot: Applications,
challenges, and opportunities with china perspective,” IEEE Internet of Things
journal, vol. 1, no. 4, pp. 349–359, 2014.

[31] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community: an
internet of things application,” IEEE Communications magazine, vol. 49, no. 11,
pp. 68–75, 2011.

[32] S. B. Zahir, P. Ehkan, T. Sabapathy, M. Jusoh, M. N. Osman, M. N. Yasin, Y. A.
Wahab, N. Hambali, N. Ali, A. Bakhit et al., “Smart iot flood monitoring sys-
tem,” in journal of physics: conference series, vol. 1339, no. 1. IOP Publishing,
2019, p. 012043.

[33] J. Kim,“Energy-efficient dynamic packet downloading for medical iot platforms,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1653–1659, 2015.

[34] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,”Future generation computer
systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[35] A. Z. Alkar and U. Buhur, “An internet based wireless home automation sys-
tem for multifunctional devices,” IEEE transactions on Consumer Electronics,
vol. 51, no. 4, pp. 1169–1174, 2005.

[36] Z. Bi, L. Da Xu, and C. Wang, “Internet of things for enterprise systems of
modern manufacturing,” IEEE Transactions on industrial informatics, vol. 10,
no. 2, pp. 1537–1546, 2014.

[37] S. Yuvaraj and M. Sangeetha, “Smart supply chain management using internet
of things (iot) and low power wireless communication systems,” in 2016 interna-
tional conference on wireless communications, signal processing and networking
(WiSPNET). IEEE, 2016, pp. 555–558.

- 133 -

https://explodingtopics.com/blog/number-of-iot-devices

[38] S. S. Gill, “A manifesto for modern fog and edge computing: Vision, new
paradigms, opportunities, and future directions,” in Operationalizing Multi-
Cloud Environments: Technologies, Tools and Use Cases. Springer, 2021, pp.
237–253.

[39] H. Pang and K.-L. Tan, “Authenticating query results in edge computing,” in
Proceedings. 20th International Conference on Data Engineering. IEEE, 2004,
pp. 560–571.

[40] P. G. Lopez, A. Montresor, D. H. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. P. Barcellos, P. Felber, E. Riviere et al., “Edge-centric computing: Vision
and challenges.”Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42, 2015.

[41] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” pp. 37–42, 2015.

[42] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[43] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architectures for
internet of things applications: A survey,”Sensors, vol. 20, no. 22, p. 6441, 2020.

[44] C. M. Fernández, M. D. Rodŕıguez, and B. R. Muñoz, “An edge computing ar-
chitecture in the internet of things,” in 2018 IEEE 21st international symposium
on real-time distributed computing (ISORC). IEEE, 2018, pp. 99–102.

[45] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The role of edge
computing in internet of things,” IEEE communications magazine, vol. 56, no. 11,
pp. 110–115, 2018.

[46] S. U. Khan,“The curious case of distributed systems and continuous computing,”
IT Professional, vol. 18, no. 2, pp. 4–7, 2016.

[47] A. Sunyaev and A. Sunyaev, “Cloud computing,” Internet computing: Principles
of distributed systems and emerging internet-based technologies, pp. 195–236,
2020.

[48] T. Alam, “Cloud computing and its role in the information technology,” IAIC
Transactions on Sustainable Digital Innovation (ITSDI), vol. 1, no. 2, pp. 108–
115, 2020.

[49] M. Collier and R. Shahan, Microsoft azure essentials-fundamentals of azure.
Microsoft Press, 2015.

[50] E. Bisong and E. Bisong, “An overview of google cloud platform services,”Build-
ing Machine Learning and Deep Learning Models on Google Cloud Platform: A
Comprehensive Guide for Beginners, pp. 7–10, 2019.

[51] A. Wittig and M. Wittig, Amazon Web Services in Action: An in-depth guide
to AWS. Simon and Schuster, 2023.

- 134 -

[52] T. R. Kelley, “Optimization, an important stage of engineering design,” The
Technology Teacher, vol. 69, no. 5, p. 18, 2010.

[53] V. J. Shute and D. Zapata-Rivera,“Adaptive technologies,”ETS Research Report
Series, vol. 2007, no. 1, pp. i–34, 2007.

[54] A. B. Pittock and R. N. Jones, “Adaptation to what and why?” Environmental
monitoring and assessment, vol. 61, pp. 9–35, 2000.

[55] S. Tayeb, S. Latifi, and Y. Kim, “A survey on iot communication and computa-
tion frameworks: An industrial perspective,” in 2017 IEEE 7th annual Comput-
ing and Communication Workshop and Conference (CCWC). IEEE, 2017, pp.
1–6.

[56] M. Casado and N. McKeown, “The virtual network system,” in Proceedings of
the 36th SIGCSE technical symposium on Computer science education, 2005, pp.
76–80.

[57] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM computer communication review, vol. 38, no. 2, pp.
69–74, 2008.

[58] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,”Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[59] M. Wyle, “A wide area network information filter,” in Proceedings First Interna-
tional Conference on Artificial Intelligence Applications on Wall Street. IEEE
Computer Society, 1991, pp. 10–11.

[60] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed
software defined wan,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 3–14, 2013.

[61] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,” in Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013, pp.
15–26.

[62] A. Huang, Y. Li, Y. Xiao, X. Ge, S. Sun, and H.-C. Chao, “Distributed resource
allocation for network slicing of bandwidth and computational resource,” in ICC
2020-2020 IEEE International Conference on Communications (ICC). IEEE,
2020, pp. 1–6.

[63] I. Sattar, M. Shahid, and N. Yasir, “Multi-level queue with priority and time
sharing for real time scheduling,” International journal of multidisciplinary sci-
ences and engineering, vol. 5, no. 8, pp. 16–17, 2014.

- 135 -

[64] A. P. U. Siahaan, “Comparison analysis of cpu scheduling: Fcfs, sjf and round
robin,” International Journal of Engineering Development and Research, vol. 4,
no. 3, pp. 124–132, 2016.

[65] L. P. Damuut and P. B. Dung,“Comparative analysis of fcfs, sjn & rr job schedul-
ing algorithms,”AIRCC’s International Journal of Computer Science and Infor-
mation Technology, pp. 45–51, 2019.

[66] A. Tanenbaum, Modern operating systems. Pearson Education, Inc.
”
2009.

[67] H. Fu, M. Sun, B. He, J. Li, and X. Zhu, “A survey of traffic shaping technology
in internet of things,” IEEE Access, vol. 11, pp. 3794–3809, 2022.

[68] F. Habeeb, K. Alwasel, A. Noor, D. N. Jha, D. AlQattan, Y. Li, G. S. Au-
jla, T. Szydlo, and R. Ranjan, “Dynamic bandwidth slicing for time-critical iot
data streams in the edge-cloud continuum,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 11, pp. 8017–8026, 2022.

[69] A. Sari, “A review of anomaly detection systems in cloud networks and survey of
cloud security measures in cloud storage applications,” Journal of Information
Security, vol. 6, pp. 142–154, 04 2015.

[70] L. Junhuai, W. Yunwen, W. Huaijun, and X. Jiang, “Fault detection method
based on adversarial reinforcement learning,” Frontiers in Computer Science,
vol. 4, p. 1007665, 2023.

[71] A. A. Torres-Garćıa, C. A. R. Garcia, L. Villasenor-Pineda, and O. Mendoza-
Montoya, Biosignal Processing and Classification Using Computational Learning
and Intelligence: Principles, Algorithms, and Applications. Academic Press,
2021.

[72] J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. P. van Hasselt, S. Singh, and
D. Silver, “Discovering reinforcement learning algorithms,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1060–1070, 2020.

[73] C. Szepesvári, Algorithms for reinforcement learning. Springer Nature, 2022.

[74] R. Dearden, N. Friedman, and S. Russell, “Bayesian q-learning,”Aaai/iaai, vol.
1998, pp. 761–768, 1998.

[75] Z.-x. Xu, L. Cao, X.-l. Chen, C.-x. Li, Y.-l. Zhang, and J. Lai, “Deep reinforce-
ment learning with sarsa and q-learning: A hybrid approach,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 101, no. 9, pp. 2315–2322, 2018.

[76] M. Roderick, J. MacGlashan, and S. Tellex, “Implementing the deep q-network,”
arXiv preprint arXiv:1711.07478, 2017.

[77] T. Tiong, I. Saad, K. T. K. Teo, and H. bin Lago, “Deep reinforcement learn-
ing with robust deep deterministic policy gradient,” in 2020 2nd International
Conference on Electrical, Control and Instrumentation Engineering (ICECIE).
IEEE, 2020, pp. 1–5.

- 136 -

[78] A. Al-Dulaimy, W. Itani, J. Taheri, and M. Shamseddine, “bwslicer: A band-
width slicing framework for cloud data centers,” Future Generation Computer
Systems, vol. 112, pp. 767–784, 2020.

[79] T. Weichlein, S. Zhang, P. Li, and X. Zhang, “Data flow control for network load
balancing in ieee time sensitive networks for automation,” IEEE Access, vol. 11,
pp. 14 044–14 060, 2023.

[80] I. Maity, S. Misra, and C. Mandal, “Dart: Data plane load reduction for traffic
flow migration in sdn,” IEEE Transactions on Communications, vol. 69, no. 3,
pp. 1765–1774, 2020.

[81] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint configuration
adaptation and bandwidth allocation for edge-based real-time video analytics,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 257–266.

[82] Z. Wen, R. Yang, B. Qian, Y. Xuan, L. Lu, Z. Wang, H. Peng, J. Xu, A. Y.
Zomaya, and R. Ranjan, “Janus: Latency-aware traffic scheduling for iot data
streaming in edge environments,” IEEE Transactions on Services Computing,
2023.

[83] H. Khan, P. Luoto, S. Samarakoon, M. Bennis, and M. Latva-Aho, “Network
slicing for vehicular communication,” Transactions on Emerging Telecommuni-
cations Technologies, vol. 32, no. 1, p. e3652, 2021.

[84] S. Zeuch, A. Chaudhary, B. Del Monte, H. Gavriilidis, D. Giouroukis, P. M.
Grulich, S. Breß, J. Traub, and V. Markl, “The nebulastream platform:
Data and application management for the internet of things,” arXiv preprint
arXiv:1910.07867, 2019.

[85] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and
M. Wójcik, “Re-architecting datacenter networks and stacks for low latency and
high performance,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 29–42.

[86] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand,
and J. Crowcroft, “Queues don’t matter when you can {JUMP} them!” in
12th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 15), 2015, pp. 1–14.

[87] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker,
“phost: Distributed near-optimal datacenter transport over commodity network
fabric,” in Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, 2015, pp. 1–12.

[88] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Leo: Scheduling
sensor inference algorithms across heterogeneous mobile processors and network
resources,” in Proceedings of the 22nd Annual International Conference on Mo-
bile Computing and Networking, 2016, pp. 320–333.

- 137 -

[89] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-driven
low-latency transport protocol using network priorities,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 221–235.

[90] D. O’Keeffe, T. Salonidis, and P. Pietzuch, “Frontier: Resilient edge processing
for the internet of things,”Proceedings of the VLDB Endowment, vol. 11, no. 10,
pp. 1178–1191, 2018.

[91] Z. Wen, P. Bhatotia, R. Chen, M. Lee et al., “Approxiot: Approximate analytics
for edge computing,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 411–421.

[92] A. N. Abbou, T. Taleb, and J. Song, “A software-defined queuing framework
for qos provisioning in 5g and beyond mobile systems,” IEEE Network, vol. 35,
no. 2, pp. 168–173, 2021.

[93] K. Swaminathan, V. Ravindran, R. Ponraj, and R. Satheesh, “A smart energy
optimization and collision avoidance routing strategy for iot systems in the wsn
domain,” in International Conference on Computing in Engineering & Technol-
ogy. Springer, 2022, pp. 655–663.

[94] M. Raval, S. Bhardwaj, A. Aravelli, J. Dofe, and H. Gohel, “Smart energy opti-
mization for massive iot using artificial intelligence,” Internet of Things, vol. 13,
p. 100354, 2021.

[95] M. Humayun, M. S. Alsaqer, and N. Jhanjhi, “Energy optimization for smart
cities using iot,”Applied Artificial Intelligence, vol. 36, no. 1, p. 2037255, 2022.

[96] C. Iwendi, P. K. R. Maddikunta, T. R. Gadekallu, K. Lakshmanna, A. K. Bashir,
and M. J. Piran, “A metaheuristic optimization approach for energy efficiency
in the iot networks,” Software: Practice and Experience, vol. 51, no. 12, pp.
2558–2571, 2021.

[97] S. Kumar, O. Kaiwartya, M. Rathee, N. Kumar, and J. Lloret, “Toward energy-
oriented optimization for green communication in sensor enabled iot environ-
ments,” IEEE Systems Journal, vol. 14, no. 4, pp. 4663–4673, 2020.

[98] V. M. Kuthadi, R. Selvaraj, S. Baskar, P. M. Shakeel, and A. Ranjan,“Optimized
energy management model on data distributing framework of wireless sensor
network in iot system,”Wireless Personal Communications, vol. 127, no. 2, pp.
1377–1403, 2022.

[99] S. Shabana Anjum, R. Md Noor, I. Ahmedy, and M. Hossein Anisi, “Energy
optimization of sustainable internet of things (iot) systems using an energy har-
vesting medium access protocol,” in IOP Conference Series: Earth and Environ-
mental Science, vol. 268, no. 1. IOP Publishing, 2019, p. 012094.

[100] V. Marinakis and H. Doukas, “An advanced iot-based system for intelligent en-
ergy management in buildings,” Sensors, vol. 18, no. 2, p. 610, 2018.

- 138 -

[101] S. S. L. Preeth, R. Dhanalakshmi, R. Kumar, and P. M. Shakeel, “An adaptive
fuzzy rule based energy efficient clustering and immune-inspired routing protocol
for wsn-assisted iot system,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1–13, 2018.

[102] F. G. Brundu, E. Patti, A. Osello, M. Del Giudice, N. Rapetti, A. Krylovskiy,
M. Jahn, V. Verda, E. Guelpa, L. Rietto et al., “Iot software infrastructure
for energy management and simulation in smart cities,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 2, pp. 832–840, 2016.

[103] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-efficient
offloading for dnn-based smart iot systems in cloud-edge environments,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 683–697,
2021.

[104] N. Kaur and S. K. Sood, “An energy-efficient architecture for the internet of
things (iot),” IEEE Systems Journal, vol. 11, no. 2, pp. 796–805, 2015.

[105] A. H. Sodhro, M. S. Obaidat, S. Pirbhulal, G. H. Sodhro, N. Zahid, and
A. Rawat, “A novel energy optimization approach for artificial intelligence-
enabled massive internet of things,” in 2019 International symposium on per-
formance evaluation of computer and telecommunication systems (SPECTS).
IEEE, 2019, pp. 1–6.

[106] O. Almurshed, O. Rana, Y. Li, R. Ranjan, D. N. Jha, P. Patel, P. P. Jayara-
man, and S. Dustdar, “A fault-tolerant workflow composition and deployment
automation iot framework in a multicloud edge environment,” IEEE Internet
Computing, vol. 26, no. 4, pp. 45–52, 2021.

[107] Y. Zhang, X. Wang, J. He, Y. Xu, F. Zhang, and Y. Luo, “A transfer learning-
based high impedance fault detection method under a cloud-edge collaboration
framework,” IEEE Access, vol. 8, pp. 165 099–165 110, 2020.

[108] M. Mudassar, Y. Zhai, and L. Lejian, “Adaptive fault-tolerant strategy for
latency-aware iot application executing in edge computing environment,” IEEE
Internet of Things Journal, vol. 9, no. 15, pp. 13 250–13 262, 2022.

[109] J. P. Dias, T. B. Sousa, A. Restivo, and H. S. Ferreira, “A pattern-language for
self-healing internet-of-things systems,” in Proceedings of the European Confer-
ence on Pattern Languages of Programs 2020, 2020, pp. 1–17.

[110] K. Olorunnife, K. Lee, and J. Kua, “Automatic failure recovery for container-
based iot edge applications,” Electronics, vol. 10, no. 23, p. 3047, 2021.

[111] H. Yang and Y. Kim, “Design and implementation of fast fault detection in cloud
infrastructure for containerized iot services,” Sensors, vol. 20, no. 16, p. 4592,
2020.

[112] A. Javed, J. Robert, K. Heljanko, and K. Främling, “Iotef: A federated edge-
cloud architecture for fault-tolerant iot applications,” Journal of Grid Comput-
ing, vol. 18, pp. 57–80, 2020.

- 139 -

[113] A. R. Shamshiri, M. Ghaznavi-Ghoushchi, and A. R. Kariman, “Ml-based aging
monitoring and lifetime prediction of iot devices with cost-effective embedded
tags for edge and cloud operability,” IEEE Internet of Things Journal, vol. 9,
no. 10, pp. 7433–7445, 2021.

[114] J. Seeger, A. Bröring, and G. Carle, “Optimally self-healing iot choreographies,”
ACM Transactions on Internet Technology (TOIT), vol. 20, no. 3, pp. 1–20,
2020.

[115] A. Dimara, V.-G. Vasilopoulos, A. Papaioannou, S. Angelis, K. Kotis, C.-N.
Anagnostopoulos, S. Krinidis, D. Ioannidis, and D. Tzovaras, “Self-healing of
semantically interoperable smart and prescriptive edge devices in iot,” Applied
Sciences, vol. 12, no. 22, p. 11650, 2022.

[116] K. Zhang, W. Huang, X. Hou, J. Xu, R. Su, and H. Xu, “A fault diagnosis and
visualization method for high-speed train based on edge and cloud collaboration,”
Applied Sciences, vol. 11, no. 3, p. 1251, 2021.

[117] W. Zhang, J. Wang, G. Han, S. Huang, Y. Feng, and L. Shu, “A data set
accuracy weighted random forest algorithm for iot fault detection based on edge
computing and blockchain,” IEEE Internet of Things Journal, vol. 8, no. 4, pp.
2354–2363, 2020.

[118] M. Mudassar, Y. Zhai, L. Liao, and J. Shen, “A decentralized latency-aware task
allocation and group formation approach with fault tolerance for iot applica-
tions,” IEEE Access, vol. 8, pp. 49 212–49 223, 2020.

[119] A. Samir and H. D. Johansen, “A self-configuration controller to detect, iden-
tify, and recover misconfiguration at iot edge devices and containerized cluster
system.” in ICISSP, 2023, pp. 765–773.

[120] M. Ul Mehmood, A. Ulasyar, A. Khattak, K. Imran, H. Sheh Zad, and S. Nisar,
“Cloud based iot solution for fault detection and localization in power distribu-
tion systems,” Energies, vol. 13, no. 11, p. 2686, 2020.

[121] F. Medjek, D. Tandjaoui, N. Djedjig, and I. Romdhani, “Fault-tolerant ai-driven
intrusion detection system for the internet of things,” International Journal of
Critical Infrastructure Protection, vol. 34, p. 100436, 2021.

[122] P. Liu, Y. Zhang, H. Wu, and T. Fu, “Optimization of edge-plc-based fault
diagnosis with random forest in industrial internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 10, pp. 9664–9674, 2020.

[123] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud
computing and internet of things: a survey,”Future generation computer systems,
vol. 56, pp. 684–700, 2016.

[124] C.-L. Hu, L.-X. Kuo, Y.-H. Chen, T. Tantidham, and P. Mongkolwat, “Qos-
prioritised media delivery with adaptive data throughput in iot-based home net-
works,” International Journal of Web and Grid Services, vol. 17, no. 1, pp. 60–80,
2021.

- 140 -

[125] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya, P. Pillai,
and M. Satyanarayanan, “You can teach elephants to dance: Agile vm handoff
for edge computing,” in Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, 2017, pp. 1–14.

[126] T. Olsson, E. Lagerstam, T. Kärkkäinen, and K. Väänänen-Vainio-Mattila, “Ex-
pected user experience of mobile augmented reality services: a user study in the
context of shopping centres,”Personal and ubiquitous computing, vol. 17, no. 2,
pp. 287–304, 2013.

[127] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & information systems engineering, vol. 6, no. 4, pp. 239–242, 2014.

[128] A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. B. Gupta, “Efficient
iot-based sensor big data collection–processing and analysis in smart buildings,”
Future Generation Computer Systems, vol. 82, pp. 349–357, 2018.

[129] T. Buddhika and S. Pallickara, “Neptune: Real time stream processing for in-
ternet of things and sensing environments,” in 2016 IEEE international parallel
and distributed processing symposium (IPDPS). IEEE, 2016, pp. 1143–1152.

[130] P. Bonte, R. Tommasini, E. Della Valle, F. De Turck, and F. Ongenae, “Stream-
ing massif: cascading reasoning for efficient processing of iot data streams,”
Sensors, vol. 18, no. 11, p. 3832, 2018.

[131] M. Chowdhury and I. Stoica,“Coflow: A networking abstraction for cluster appli-
cations,” in Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
2012, pp. 31–36.

[132] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and is-
sues in data stream systems,” in Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, 2002, pp. 1–16.

[133] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “Coda: Congestion detec-
tion and avoidance in sensor networks,” in Proceedings of the 1st international
conference on Embedded networked sensor systems, 2003, pp. 266–279.

[134] A. A. Rabileh, K. A. A. Bakar, R. Mohamed, and M. Mohamad, “Enhanced
buffer management policy and packet prioritization for wireless sensor network,”
International Journal on Advanced Science, Engineering and Information Tech-
nology, vol. 8, no. 4, pp. 1770–1776, 2018.

[135] M. M. Hasan, S. Kwon, and J.-H. Na, “Adaptive mobility load balancing al-
gorithm for lte small-cell networks,” IEEE transactions on wireless communica-
tions, vol. 17, no. 4, pp. 2205–2217, 2018.

[136] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of
computer computations. Springer, 1972, pp. 85–103.

[137] J. Pisarov and G. Mester, “The impact of 5g technology on life in 21st century,”
IPSI BgD Transactions on Advanced Research (TAR), vol. 16, no. 2, pp. 11–14,
2020.

- 141 -

[138] K. Alwasel, D. N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dust-
dar, M. Villari, P. James, E. Solaiman et al., “Iotsim-osmosis: A framework for
modeling and simulating iot applications over an edge-cloud continuum,”Journal
of Systems Architecture, vol. 116, p. 101956, 2021.

[139] L. Smith and M. Turner, “Building the urban observatory: Engineering the
largest set of publicly available real-time environmental urban data in the uk.”
in Geophysical Research Abstracts, vol. 21, 2019.

[140] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “Maui: making smartphones last longer with code offload,” in
Proceedings of the 8th international conference on Mobile systems, applications,
and services, 2010, pp. 49–62.

[141] F. M. Brazier, J. O. Kephart, H. V. D. Parunak, and M. N. Huhns, “Agents and
service-oriented computing for autonomic computing: A research agenda,” IEEE
Internet Computing, vol. 13, no. 3, pp. 82–87, 2009.

[142] L. Carnevale, A. Celesti, A. Galletta, S. Dustdar, and M. Villari, “Osmotic com-
puting as a distributed multi-agent system: The body area network scenario,”
Internet of Things, vol. 5, pp. 130–139, 2019.

[143] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, “Deep reinforcement
learning for autonomous internet of things: Model, applications and challenges,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1722–1760, 2020.

[144] J. Hribar, M. Costa, N. Kaminski, and L. A. DaSilva, “Using correlated infor-
mation to extend device lifetime,” 2019.

[145] J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller, “Distributed value
functions,” 1999.

[146] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy
harvesting communication system optimization,” IEEE Transactions on Wireless
Communications, vol. 12, no. 4, pp. 1872–1882, 2013.

[147] M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning-based multiaccess
control and battery prediction with energy harvesting in iot systems,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 2009–2020, 2019.

[148] T. Huang, W. Lin, X. Hong, X. Wang, Q. Wu, R. Li, C.-H. Hsu, and A. Y.
Zomaya, “Adaptive processor frequency adjustment for mobile-edge computing
with intermittent energy supply,” IEEE Internet of Things Journal, vol. 9, no. 10,
pp. 7446–7462, 2021.

[149] R. Laidi, D. Djenouri, and I. Balasingham, “On predicting sensor readings with
sequence modeling and reinforcement learning for energy-efficient iot applica-
tions,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52,
no. 8, pp. 5140–5151, 2021.

- 142 -

[150] T. Szydlo, P. Nawrocki, R. Brzoza-Woch, and K. Zielinski, “Power aware mom
for telemetry-oriented applications using gprs-enabled embedded devices-levee
monitoring use case,” in 2014 Federated Conference on Computer Science and
Information Systems. IEEE, 2014, pp. 1059–1064.

[151] B. Balis, R. Brzoza-Woch, M. Bubak, M. Kasztelnik, B. Kwolek, P. Nawrocki,
P. Nowakowski, T. Szydlo, and K. Zielinski, “Holistic approach to management of
it infrastructure for environmental monitoring and decision support systems with
urgent computing capabilities,” Future Generation Computer Systems, vol. 79,
pp. 128–143, 2018.

[152] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C. Gniady, “Flow-
based programming for iot leveraging fog computing,” in 2017 IEEE 26th In-
ternational conference on enabling technologies: infrastructure for collaborative
enterprises (WETICE). IEEE, 2017, pp. 74–79.

[153] M. Villari, M. Fazio, S. Dustdar, O. Rana, D. N. Jha, and R. Ranjan, “Osmo-
sis: The osmotic computing platform for microelements in the cloud, edge, and
internet of things,”Computer, vol. 52, no. 8, pp. 14–26, 2019.

[154] M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning-based multiaccess
control and battery prediction with energy harvesting in iot systems,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 2009–2020, 2018.

[155] T. Szydlo, A. Szabala, N. Kordiumov, K. Siuzdak, L. Wolski, K. Alwasel,
F. Habeeb, and R. Ranjan, “Iotsim-osmosis-res: Towards autonomic renewable
energy-aware osmotic computing,” Software: Practice and Experience, vol. 52,
no. 7, pp. 1698–1716, 2022.

[156] A. Chatterjee and B. S. Ahmed, “Iot anomaly detection methods and applica-
tions: A survey,” Internet of Things, vol. 19, p. 100568, 2022.

[157] A. Alrajhi, K. Roy, L. Qingge, and J. Kribs, “Detection of road condition defects
using multiple sensors and iot technology: A review,” IEEE Open Journal of
Intelligent Transportation Systems, 2023.

[158] Y.-S. Jeong, “Blockchain processing technique based on multiple hash chains for
minimizing integrity errors of iot data in cloud environments,” Sensors, vol. 21,
no. 14, p. 4679, 2021.

[159] T. OConnor, W. Enck, and B. Reaves, “Blinded and confused: uncovering sys-
temic flaws in device telemetry for smart-home internet of things,” in Proceedings
of the 12th Conference on Security and Privacy in Wireless and Mobile Networks,
2019, pp. 140–150.

[160] J. Zhong, F. Zhang, S. Yang, and D. Li, “Restoration of interdependent net-
work against cascading overload failure,” Physica A: Statistical Mechanics and
its Applications, vol. 514, pp. 884–891, 2019.

- 143 -

[161] J. Wu, B. Fang, J. Fang, X. Chen, and K. T. Chi,“Sequential topology recovery of
complex power systems based on reinforcement learning,”Physica A: Statistical
Mechanics and its Applications, vol. 535, p. 122487, 2019.

[162] J. Ruhl, “Governing cascade failures in complex social-ecological-technological
systems: Framing context, strategies, and challenges,”Vand. J. Ent. & Tech. L.,
vol. 22, p. 407, 2019.

[163] L. Zhang, J. Lu, B.-b. Fu, and S.-b. Li, “A cascading failures model of weighted
bus transit route network under route failure perspective considering link pre-
diction effect,” Physica A: Statistical Mechanics and its Applications, vol. 523,
pp. 1315–1330, 2019.

[164] L. Xing, “Cascading failures in internet of things: review and perspectives on
reliability and resilience,” IEEE Internet of Things Journal, vol. 8, no. 1, pp.
44–64, 2020.

[165] T. Aung, H. Y. Min, and A. H. Maw, “Enhancement of fault tolerance in kafka
pipeline architecture,” in Proceedings of the 11th International Conference on
Advances in Information Technology, 2020, pp. 1–8.

[166] M. Norris, B. Celik, P. Venkatesh, S. Zhao, P. McDaniel, A. Sivasubramaniam,
and G. Tan, “Iotrepair: Systematically addressing device faults in commodity
iot,” in 2020 IEEE/ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE, 2020, pp. 142–148.

[167] F. Fei, Z. Tu, D. Xu, and X. Deng,“Learn-to-recover: Retrofitting uavs with rein-
forcement learning-assisted flight control under cyber-physical attacks,” in 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 7358–7364.

[168] A. Belhadi, Y. Djenouri, G. Srivastava, and J. C.-W. Lin, “Reinforcement learn-
ing multi-agent system for faults diagnosis of mircoservices in industrial settings,”
Computer Communications, vol. 177, pp. 213–219, 2021.

[169] M. Duarte, J. P. Dias, H. S. Ferreira, and A. Restivo, “Evaluation of iot self-
healing mechanisms using fault-injection in message brokers,” in Proceedings of
the 4th International Workshop on Software Engineering Research and Practice
for the IoT, 2022, pp. 9–16.

[170] Q. Li, Y. Zhu, J. Ding, W. Li, W. Sun, and L. Ding,“Deep reinforcement learning
based resource allocation for cloud edge collaboration fault detection in smart
grid,”CSEE Journal of Power and Energy Systems, 2022.

[171] R. Zhu, L. Liu, H. Song, and M. Ma, “Multi-access edge computing enabled
internet of things: advances and novel applications,” pp. 15 313–15 316, 2020.

[172] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change
point detection,”Knowledge and information systems, vol. 51, no. 2, pp. 339–367,
2017.

- 144 -

[173] M. Gupta, R. Wadhvani, and A. Rasool, “Real-time change-point detection: A
deep neural network-based adaptive approach for detecting changes in multi-
variate time series data,” Expert Systems with Applications, vol. 209, p. 118260,
2022.

[174] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2, pp.
100–115, 1954.

[175] E. Page, “A test for a change in a parameter occurring at an unknown point,”
Biometrika, vol. 42, no. 3/4, pp. 523–527, 1955.

[176] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change point
detection methods,” Signal Processing, vol. 167, p. 107299, 2020.

[177] M. Zameni, A. Sadri, Z. Ghafoori, M. Moshtaghi, F. D. Salim, C. Leckie,
and K. Ramamohanarao, “Unsupervised online change point detection in high-
dimensional time series,”Knowledge and Information Systems, vol. 62, pp. 719–
750, 2020.

[178] Y. Li, T. Bao, X. Shu, Z. Gao, J. Gong, and K. Zhang, “Data-driven crack behav-
ior anomaly identification method for concrete dams in long-term service using
offline and online change point detection,” Journal of Civil Structural Health
Monitoring, vol. 11, pp. 1449–1460, 2021.

[179] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms: A
comprehensive classification and applications,” IEEE access, vol. 7, pp. 133 653–
133 667, 2019.

[180] H. Ikeuchi, A. Watanabe, and Y. Takahashi, “Coverage based failure injection
toward efficient chaos engineering,” in ICC 2023-IEEE International Conference
on Communications. IEEE, 2023, pp. 4571–4577.

145

	Introduction
	Project Motivation
	Challenges

	Contributions
	Thesis Structure

	Literature review
	IoT Edge Cloud (IEC) Continuum
	IoT
	IoT Applications

	Edge computing
	Architecture
	Characteristics

	Cloud computing

	Optimisation and Adaptation in IEC
	Network management technique in the IEC environment
	Software Defined Networking (SDN)
	WAN and Software Defined Networking (SD-WAN)
	Bandwidth slicing
	Scheduling algorithms
	Summary

	Adaptive techniques for fault management and data quality in the IEC environment
	Q-learning
	State-Action-Reward-State-Action (SARSA)
	Deep Q-Networks (DQN)
	Deep Deterministic Policy Gradient (DDPG)

	Thesis scope in the context of adaptive time-critical data processing
	Network optimisation in IEC
	IEC devices sustainability
	Data quality monitoring and healing in IEC

	Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the IEC
	Introduction
	Formal model
	System overview
	Problem definition
	Complexity analysis

	Proposed Framework
	Multi-Queues
	Bandwidth Slicing

	Evaluation
	Experiment Set-up
	Test Case
	Configuration

	Experiment results
	Scalability result

	Network Utilisation
	Auto-Adaptation

	Further Evaluation and Validation
	Related work
	Conclusions and future work

	Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT Devices Using Reinforcement Learning
	Introduction
	Related Work
	Motivation
	Formal Model
	System Description and Definition
	Problem Definition

	Osmotic Agents with RL
	Q-Learning Algorithm
	State Discretization
	Reward Function

	Evaluation
	Constant Data Streams
	Dynamic Data Streams

	Summary and Future Work

	Optimising data processing and handling misconfiguration policy failures in IoT systems using reinforcement learning
	Introduction
	Related Work
	Fault Modelling
	Software Misconfiguration
	Cascaded faults

	System concept
	CPD
	System architecture
	Reinforcement learning algorithm
	Reward Function
	Actions

	Evaluation
	Setup
	Fault Injecting Component
	Experiment results

	Summary and Future Work

	Conclusion
	Thesis Summary
	Limitations and Future Research Directions
	Enhancing the Bandwidth Allocation
	Enhanced Multi-Agent Cooperation for Dynamic IoT Networks
	Advanced Data Quality Assurance Mechanisms

	References

