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Abstract 

Rays (Superorder Batoidea) are overfished through targeted and incidental catch in industrial 

and small-scale fisheries. Rays are important components of healthy marine ecosystems and as 

sources of income and protein for global fishing communities, particularly in small-scale 

fisheries. The interlinked need to conserve these species and support the livelihoods dependent 

on fisheries is a major global challenge. This thesis aims to investigate the intrinsic sensitivity 

of rays to fishing mortality to inform species status and fisheries stock assessments. The thesis 

first investigates the biological traits and indicators of fishing exposure that best predict species 

extinction risk in pelagic rays (Families Myliobatidae, Aetobatidae, Rhinopteridae, and 

Mobulidae, and Pteroplatytrygon violacea) using ordinal regression models. The analyses 

revealed that species with larger geographic ranges and greater exposure to small-scale fishing 

pressure in tropical, coastal waters were more likely to be threatened. Thereby, highlighting the 

need for coordinated, transnational management action, with focus on small-scale fisheries. 

Next, the thesis investigates global patterns in the intrinsic sensitivity of 85 ray species using a 

multi-model, information-theoretic approach. It was found that tropical rays (Orders 

Torpediniformes, Rhinopristiformes, and Myliobatiformes) were more intrinsically sensitive 

(lower maximum intrinsic rate of population increase, rmax) to overfishing compared to 

temperate skates (Order Rajiformes). This result contrasts the expectation from metabolic 

theory that species in warmer waters have faster metabolism and life histories (grow faster, 

mature earlier, have shorter generation times, and higher rmax) and therefore are more resilient 

to fishing. It was found that the larger absolute offspring size of live-bearing, tropical rays likely 

explained the lower rmax compared to egg-laying skates with relatively small but more numerous 

offspring. For many ray species, the life history data needed to inform demographic and stock 

assessment models are lacking. To fill this data gap for two Endangered devil rays, Mobula 

mobular and M. thurstoni, age estimates were generated using caudal vertebrae of individuals 

caught in small-scale fisheries in Indonesia and Pakistan. A Bayesian approach was used to 

calculate key life history parameters using the resulting age-at-length dataset. The results 

indicated that both species have relatively low somatic and population growth rates and that 

calculated fishing mortalities are likely unsustainable. In summary, the thesis provides an 

approach for assessment of data-poor species and presents new information highlighting the 

nuanced complexities of species vulnerability to fishing. The results inform much needed 

conservation and management actions to prevent further ray species extirpation and extinction. 
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Thesis overview 

Background and rationale 

Over one-third of rays (Class Chondrichthyes, Superorder Batoidea), along with their close 

cartilaginous relatives sharks, are threatened with extinction by overfishing (Dulvy et al., 2014, 

2021). Increased fishing mortality is the primary cause of declining ray and shark populations 

across marine ecosystems, including open ocean (Pacoureau et al., 2021), coral reefs (Sherman 

et al., 2023), and deep seas (Finucci et al., 2024). Rays, like sharks, play important roles in 

marine ecosystems as mesopredators (Navia et al., 2017; Vaudo & Heithaus, 2011; Dean et al., 

2017), bioturbators (O’Shea et al., 2011; Takeuchi & Tamaki, 2014; Kiszka et al., 2015), and 

by providing energetic links across trophic levels and habitats (Martins et al., 2018; Sheaves, 

2009; Ajemian & Powers, 2014). The decline of rays and sharks can therefore have complex 

ecosystem effects such as through predator-prey interactions and competition (Valinassab et 

al., 2006; Ward & Myers, 2005; Sherman et al., 2020). Rays are commercially valued as food 

and traditional medicines, primarily harvested for meat and fins (shark-like rays including 

wedgefishes, guitarfishes, and sawfishes) but are also utilised for other products such as gill 

plates (Mobula spp. used for traditional medicines in Asia), skin (used as leather), cartilage 

(medicinal), and liver oil (pharmaceutical) (Dulvy et al., 2017; O’Malley et al., 2017; Dent & 

Clarke, 2015). In addition to target fisheries (Sheaves, 2009; Ajemian & Powers, 2014; Martins 

et al., 2018), the commercial value means that rays are often retained as valuable bycatch in 

non-target fisheries (Gupta et al., 2020; Barrowclift et al., 2017; Haque et al., 2021). Therefore, 

declining ray populations also have implications for livelihood and food security, particularly 

where caught in small-scale fisheries (SSF) in developing countries (Catarci, 2004; Temple et 

al., 2024; Moore et al., 2019). 

SSF catch has typically been understudied relative to industrial fisheries (Zeller et al., 2006; 

Berkes et al., 2001). It is difficult to accurately determine SSF contribution to global catch from 

official statistics, with SSF landings aggregated with industrial fisheries in national reporting 

to the FAO (Chuenpagdee et al., 2006; Salas et al., 2007; Béné, 2006). However, reconstruction 

of SSF catch data have been estimated to contribute up to one third of global marine fisheries 

catch (Belhabib et al., 2018; Chuenpagdee et al., 2006; Alfaro-Shigueto et al., 2010), employ 

over 75% of the world’s fishers, and provide an important source of protein for millions of 

people, primarily in developing countries (Béné, 2006; Béné et al., 2012; Berkes et al., 2001; 

McGoodwin, 2001). Small-scale fishers have less capacity to adapt to declining catches, 
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exacerbating concerns for the consequences for income and food security (Cinner et al., 2009; 

Allison et al., 2009; Béné, 2009; Short et al., 2021). As well as underreporting of ray and shark 

catch in official statistics (Clarke, McAllister, et al., 2006; Worm et al., 2013), catch is often 

aggregated at a low taxonomic resolution (Catarci, 2004) and ray catch is particularly 

underestimated as shark-like rays are often grouped with sharks (Last et al., 2016), making it 

difficult to get a clear picture of species catch composition. Therefore, improved data collection, 

further research, and evidence-based management efforts need to be prioritised for SSF (Smith 

et al., 2021; Belhabib et al., 2018) to improve conservation and management of rays. 

Rays and sharks are particularly vulnerable to overfishing due to their typical life history 

strategies resulting in slow growth, late maturity, low fecundity, and long lifespans (Hutchings 

et al., 2012; Cortés, 2000). However, there is considerable diversity in their life history, both 

among (Conrath & Musick, 2012; Cortés, 2000) and within species (Trinnie et al., 2014; 

Jacobsen & Bennett, 2010; Lombardi-Carlson et al., 2003). Life history data, alongside fisheries 

exploitation data, are used in fisheries stock assessments (Cortés, Brooks and Gedamke, 2012), 

demographic modelling (Cortés, 2002; Smith et al., 2008), setting fishing limit reference points 

(Zhou et al., 2021), predicting rebound potential (Smith et al., 1998), and fisheries exploitation 

risk assessment (Hobday et al., 2011). Understanding species’ life history is therefore key to 

informing sustainable fisheries management and conservation actions (Kindsvater et al., 2016). 

Rays are capable of supporting sustainable fishing with enforced science-based limits (Dulvy 

et al., 2017; Simpfendorfer & Dulvy, 2017). Whilst some data gaps in ray biology and ecology 

have been filled, as demonstrated by a reduction in species listed as Data Deficient on the IUCN 

Red List (Dulvy et al., 2014; 2021), data paucity still limits status assessments for many species. 

Data-poor approaches using available understanding of life history traits (Cortés & Brooks, 

2018; Kindsvater et al., 2016) as well as generation of species- and population-specific life 

history data (Salvador et al., 2022) are therefore needed to facilitate management to prevent 

further species extirpation and extinction. 

Problem statement 

The interlinked ecological and socio-economic importance of rays presents a major global 

challenge of balancing the need for healthy marine ecosystems and food security. Rays are the 

most diverse group of chondrichthyans (Aschliman et al., 2012); therefore, understanding 

differences in species vulnerability to fishing is important for prioritising and tailoring global 

conservation and management efforts. Many rays are lacking basic life history information that 
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is crucial for assessing fisheries sustainability, setting fishing limits, and predicting rebound 

potentials.  

This thesis aims to investigate predictors of extinction risk and global patterns in intrinsic 

sensitivity of rays as well as address data gaps in life history parameters for some of the 

potentially least productive and highly threatened species: devil rays (Mobula spp.).  

Thesis outline 

The objective of Chapter 1 is to investigate which indicators of intrinsic sensitivity (species 

biological traits of body size and generation length) and extrinsic exposure to fishing (number 

of countries within a species’ geographic range, depth occurrence, small-scale and industrial 

fishing pressure) that best predict the threat of extinction (defined as IUCN Red List of 

Threatened Species statuses of Vulnerable, Endangered, and Critically Endangered) for rays 

with a pelagic lifestyle. 

In Chapter 2, the first objective is to calculate the maximum intrinsic rate of population increase 

(rmax) as an indicator of intrinsic sensitivity for ray species where sufficient life history data 

were available. The second objective of Chapter 2 is to examine how these rmax estimates vary 

with body mass, temperature, and depth whilst accounting for phylogenetic relationships to 

inform the understanding of geographic patterns in extinction risk and setting the foundations 

for predicting extinction risk for data-poor species. 

The objective of Chapter 3 is to further investigate observed differences in rmax between rays 

with different life history strategies (live-bearers and egg-layers) using offspring size to explore 

global patterns in life histories and implications for species vulnerabilities. 

In Chapter 4, the objectives are to determine key life history parameters, including age, growth, 

age at maturity, and rmax, and to estimate fishing mortality for two species of Endangered devil 

rays (Mobula mobular and M. thurstoni) to inform status assessment of the two species in the 

Indian Ocean. 

Finally, a reflection of the key findings of this thesis is provided in Chapter 5 along with 

recommendations for future international collaborative research efforts to inform conservation 

and management of rays. 
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Chapter 1. Species trait and threat indicators of extinction risk for pelagic 

rays 

1.1 Abstract 

Overfishing is the primary driver of ray (Superorder Batoidea) decline, with species facing a 

higher threat in tropical, coastal waters. This study uses ordinal logistic regression models to 

investigate which key indicators of intrinsic sensitivity (species biological traits of body size 

and generation length) and extrinsic exposure to fishing (number of countries within a species’ 

geographic range, depth occurrence, small-scale and industrial fishing pressure) best predict 

threat of extinction (defined as IUCN Red List of Threatened Species statuses Vulnerable, 

Endangered, and Critically Endangered) for 38 pelagic and bentho-pelagic rays (Families 

Myliobatidae, Aetobatidae, Rhinopteridae, and Mobulidae, and Pteroplatytrygon violacea). 

The top model is then used to predict the probability of extinction for two Data Deficient 

species. Species with larger geographic range, greater exposure to small-scale fishing pressure, 

and occurring at shallower depths had a higher probability of being threatened with extinction. 

Small-scale fishing pressure was more important in predicting extinction risk than industrial 

fishing pressure for pelagic rays. Indicators of species intrinsic sensitivity were less important 

than indicators of extrinsic exposure to fishing in determining extinction risk, in contrast to 

chondrichthyans more broadly. Many pelagic ray species are already threatened by overfishing; 

well-enforced, science-based fisheries management is needed across nations to prevent further 

decline, species extirpation and extinction, and to ensure sustainable fisheries. 

1.2 Introduction 

Approximately 35% of rays (Superorder Batoidea) are threatened with extinction (IUCN, 

2024). Fishing is the primary driver of extinction risk in rays, impacting 100% of threatened 

species (IUCN, 2024), which are caught in industrial and small-scale fisheries (SSF) 

worldwide. The vulnerability of a species to fishing and other threats depends on a combination 

of its intrinsic sensitivity (i.e. biological traits that determine resilience) and extrinsic exposure 

to the threat. In the case of fisheries, intrinsic sensitivity is the result of those biological traits 

that determine population growth rates (Dulvy & Kindsvater, 2017; Juan-Jordá et al., 2015; 

Cortés, 2016), and extrinsic exposure is primarily a combination of susceptibility to being 

caught (encounterability e.g. geographic range and depth overlap, and gear selectivity), fishing 

effort, and fishing power (gear coverage and efficiency) (Hobday et al., 2011; Gallagher et al., 

2012; Cortés et al., 2015). Extrinsic exposure may also be influenced by the social and 
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economic drivers of ray catch (Booth et al., 2019; Barrowclift et al., 2017; Temple, Berggren, 

et al., 2024), though these drivers are poorly quantified at larger geographic scales. 

Understanding both the traits that determine intrinsic sensitivity and predictors of exposure has 

been shown to provide useful insights for species’ extinction risk assessment, population trends, 

and management at broad taxonomic scales, including for sharks and rays (Sherman et al., 2023; 

Walls & Dulvy, 2020; Dulvy et al., 2021). Yet, these relationships may differ at higher 

taxonomic resolutions where differences in species’ biology and ecology may play a greater 

moderating role.  

Pelagic rays, defined here as rays exhibiting pelagic and bentho-pelagic lifestyles, that are 

considered aquilopelagic ecomorphotype based on their similar morphology, habitat, and 

behaviour (Compagno, 1990). These rays occupy both oceanic and inshore/shelf areas with 

wing-like, expanded pectoral fins for active propulsion (Last et al., 2016). The pelagic lifestyle 

of these rays may affect their susceptibility to being caught in fisheries, particularly those using 

drift gillnets. Some species are also wide-ranging (Notarbartolo di Sciara, 1988; DeGroot et al., 

2021; Ajemian & Powers, 2014), which increases their exposure to different management 

regimes or in many instances a lack of appropriately enforced management (Dulvy et al., 2017). 

Some pelagic ray species are also known to form large aggregations (Bassos-Hull et al., 2014; 

Couturier et al., 2018; Kelaher et al., 2023), which likely increases their fisheries susceptibility. 

Pelagic rays are some of the most threatened elasmobranchs (sharks and rays), with 80% of 

assessed species threatened with extinction (IUCN, 2024; Dulvy et al., 2021). This is much 

higher than the threat of extinction (around one-third) for rays and sharks (Class 

Chondrichthyes) more broadly (IUCN, 2024; Dulvy et al., 2021). Here, we include four families 

of rays within the Order Myliobatiformes (39 species assessed on the International Union for 

Conservation of Nature (IUCN) Red List of Threatened Species): eagle rays (Myliobatidae, 

n=18), pelagic eagle rays (Aetobatidae, n=5), cownose rays (Rhinopteridae, n=7) and Devil 

rays (Mobulidae, n=9). These rays are durophagous, feeding on hard-shelled prey, except for 

planktivorous devil rays (Aschliman, 2014). Additionally, the pelagic stingray 

(Pteroplatytrygon violacea) (Family Dasyatidae) was included as a truly pelagic species. Of 

these 40 species, 32 are threatened with extinction (IUCN Red List Categories of Vulnerable, 

Endangered, and Critically Endangered) and two species (Aetomylaeus asperrimus and 

Rhinoptera neglecta) are classed as Data Deficient. The majority of these species (n=34) show 

decreasing population trends according to the IUCN Red List. 
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Figure 1.1 Available annual total fisheries catch (tonnes) statistics from different sources: a) FAO 

landed catch FAO (2010-2021) by reporting country (countries reporting the highest catches shown in 

the legend); b) Sea Around Us (2010-2019) discarded and landed catch by country (countries reporting 

the highest catches shown in the legend); c) Sea Around Us total catch by species; and d) Sea Around 

Us total catch by fishing sector. FAO nominal catch data were obtained using FishStatJ software 

(Version 4.03.06) (FAO, 2023) from the ‘Global Capture Production’ dataset to record total retained 

catch (for all fishing sectors but excludes discards) reported for any relevant taxa. Downloaded global 

Sea Around Us catch reconstruction data for relevant taxa (reports by fishing sector and discard data) 

(Pauly & Zeller, 2015). 

 

 

Figure 1.2 Available annual total fisheries catch (tonnes) statistics from the Indian Ocean Tuna 

Commission RFMO (2010-2022) by reporting country, with the percentage of total catch reported as 

artisanal indicated (remainder reported as industrial). IOTC Nominal retained catch data for all species 

from the IOTC website (https://iotc.org/data/datasets) (reports by fishing sector).

https://iotc.org/data/datasets
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Available fisheries landings data reported in the Food and Agriculture Organisation of the 

United Nations (FAO) statistics indicates a mean total (retained) catch of approximately 14,000 

tonnes per annum from 18 countries for pelagic ray taxa (2013-2019) (Figure 1.1) (FAO, 2023). 

This excludes an aggregated grouping of ‘rays, stingrays, mantas’ of approximately 138,000 

tonnes from 71 countries, which likely also includes a substantial volume of relevant pelagic 

ray species. Available catch data from Regional Fisheries Management Organisation (RFMO) 

statistics are limited, mainly reported by the Indian Ocean Tuna Commission, which provides 

an additional indication of the breakdown by fishing sector (primarily small-scale, reported as 

artisanal) (Figure 1.2). These catch statistics are likely severely underreported (Mucientes et 

al., 2022; Clarke, McAllister, et al., 2006; Pauly & Zeller, 2016). Sea Around Us data, which 

aim to address underreporting by reconstructing catch data from additional sources, indicates 

a 35% higher mean total catch of approximately 19,000 tonnes per annum from 30 countries 

compared with the FAO statistics and provides a further indication of the breakdown by fishing 

sector and discarded catch (Figure 1.1) (Pauly & Zeller, 2015). Countries reporting the highest 

catches of pelagic rays include Indonesia, Sri Lanka, Mauritiana, Pakistan, and Iran, all of 

which have large industrial and/or small-scale gillnet fleets (Zeller et al., 2023). 

Only Mobulidae species are listed on Appendix II of the Convention on International Trade in 

Endangered Species of Wild Fauna and Flora (CITES) and Appendices I and II of the 

Convention on the Conservation of Migratory Species of Wild Animals (CMS). These listings 

were driven by the observed decline in fisheries catch, exacerbated by international trade of 

their gill plates, and the conservative life history of devil rays that produce a single pup every 

1-7 years (Couturier et al., 2012; O’Malley et al., 2017). Concern over fisheries sustainability 

has also led to the majority of RFMOs protecting devil rays and for some national protective 

legislation for these species. However, most pelagic ray species are largely unprotected and 

unmanaged in global fisheries. 

Here, indicators of species traits (maximum size and generation length as indices of intrinsic 

sensitivity), extrinsic fishing threat (small-scale and industrial fishing pressure), and threat of 

fishing exposure (median depth of occurrence and number of countries within a species’ 

geographic range) are explored to investigate which best predict extinction risk (IUCN Red 

List status) for pelagic rays. 
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1.3 Methods 

Sources of species trait data, threats and threat exposure indicators, including fisheries catch 

data are outlined, followed by the statistical approach used. 

1.3.1 Species trait data 

The IUCN Red List of Threatened Species, herein referred to as the IUCN Red List, is widely 

used to assess species extinction risk including for sharks and rays, which were recently 

globally reassessed (Dulvy et al., 2021). The IUCN Red List status of the 40 assessed pelagic 

ray species (as defined in the introduction) was assigned an ordinal value from 1-5 (1 being 

Least Concern, 5 being Critically Endangered), with two Data Deficient Species unassigned. 

Whilst there are potentially further species that could be considered bentho-pelagic, such as 

those considered to occupy ‘Marine Oceanic’ or ‘Marine Neritic – Pelagic’ habitat types on the 

IUCN Red List, species with similar morphology, habitat, and behaviour (aquilopelagic 

ecomorphotype) were chosen to see how biological traits and indicators of extrinsic exposure 

to fishing affected the threat of extinction. 

Maximum disc width data (straight line length measurement between the wing tips in cm), as 

the most appropriate length measurement for the body shape of Myliobatiformes, were sourced 

from Rays of the World (Last et al., 2016). Generation length (GL, years) data were sourced 

from IUCN Red List Assessments where available (n=6), which are calculated as the mid-point 

between female age at maturity (at which 50% of the female population are mature, αmat) and 

maximum age (αmax) (Dulvy et al., 2021) with GL = αmat + ([αmax – αmat]z). This is a simple 

measure of generation length based on a conservative mortality rate z of 0.5 to account for 

systematic underestimation in chondrichthyan ages (Harry, 2018; Dulvy et al., 2021). A lower 

mortality rate would result in a faster generation length and vice versa. Generation lengths for 

the majority of species (n=31) were inferred from similar species with a similar body shape and 

adjusted for maximum body size (as specified in the relevant IUCN Red List assessment) due 

to a lack of age data. Aetobatus spp., Rhinoptera spp., and Mobula spp. were inferred from 

species within the same genus (two species with age data in each genus) and Aetomylaeus and 

Myliobatis spp. were inferred from two eagle ray species (Family Myliobatidae) with age data 

(Bat Ray, Myliobatis californicus and Duckbill eagle ray, Aetomylaeus bovinus). 
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1.3.2 Indices of threats and threat exposure 

Median depth of occurrence was calculated as the median of the minimum and maximum depth 

(m) as reported in the IUCN Red List. Whilst this may mean that single deepwater records could 

bias the estimate, median depth was used to be representative of relative depth ranges of each 

species. Species geographic range was indexed by the number of countries’ Exclusive 

Economic Zones that overlapped with the species range, sourced from the IUCN Red List. 

Industrial and small-scale fisheries total annual catch data in tonnes were sourced from Sea 

Around Us for 2019 for available countries (Pauly & Zeller, 2015). These catch data were used 

to calculate a measure of relative fishing pressure for each country by dividing catch by the 

country’s coastline length, given that fishing pressure is exerted from the coastline outwards, 

particularly for SSF. This was done for both industrial and SSF catch. Then for each species, 

fisheries catch was totalled across countries for which species geographic range overlaps (i.e. 

the same countries that are totalled to provide an index of species geographic range) and was 

divided by the total length of those countries coastlines to get proxies for the industrial and SSF 

fishing pressures that each species are exposed to. This means that for the same fisheries catch 

biomass, a greater coastline length would result in lower relative fishing pressure, whilst for the 

same coastline length, higher catch biomass would result in higher relative fishing pressure.   

1.3.3 Ordinal regression models 

Ordinal logistic regression models were used to explore which species traits (maximum size 

and generation length), threats (industrial and small-scale fishing pressure), and threat exposure 

(median depth and number of countries) indicators best predict extinction risk (IUCN Red List 

status) for the 38 assessed pelagic ray species (excluding the two Data Deficient species), using 

the R package ordinal (Christensen, 2023). All explanatory variables were log-transformed and 

normalised (scaled and centred) prior to analyses. All variables were tested for correlation with 

no variables correlated above a threshold of 0.7 in which collinearity severely distorts model 

estimation included in the same models (Dormann et al., 2013). Industrial and small-scale 

fishing pressure were positively correlated >0.7 and therefore were not included in the same 

models. The 48 candidate models for how extinction risk may vary with different species trait 

and threat indices were fit. Variance-inflation factors (VIF) were estimated for all coefficients 

in the models using the car package (Fox & Weisberg, 2019), with no VIF value greater than 

two indicating that all models were robust to collinearity.  

https://newcastle-my.sharepoint.com/personal/b3023884_newcastle_ac_uk/Documents/PhD/Writing/Batoid%20rmax/Ray%20rmax%20manuscript_DRAFT%201.docx#_msocom_12
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Akaike Information Criterion (AIC) was used to compare candidate models, with the top model 

being the most parsimonious (fewest variables) with an AIC value within 2 units of the lowest 

AIC (Burnham & Anderson, 2002; Arnold, 2010). To account for model uncertainty, model 

averaging for models with ΔAIC <2 was used to calculate a weighted multi-model average of 

each explanatory variable. These Relative Variable Importance values were calculated from the 

sum of the AIC (Akaike) weights of models that included the explanatory variable. The top 

model was then used to predict the probability of being threatened (IUCN Red List statuses of 

Critically Endangered, Endangered, and Vulnerable) for the two Data Deficient species. All 

analyses were run in R version 4.1.2 (R Core Team, 2021) in RStudio (RStudio Team, 2021).  

Table 1.1 Comparison of 24 of 48 candidate models with ΔAIC <10 using Akaike Information Criteria 

(AIC), difference in AIC from the top model (ΔAIC), and Akaike weights. Models are ordered by 

ascending AIC, with the top model shown in bold and models with AIC <2 shown in grey.  

Model AIC ΔAIC Weights 

Species Range + SSF Pressure 99.97 0 0.128 

Median Depth + Species Range + SSF Pressure 100.1 0.13 0.120 

Median Depth + Species Range 100.91 0.94 0.080 

Generation Length + Median Depth + Species Range 101.02 1.05 0.076 

Generation Length + Median Depth + Species Range + SSF Pressure 101.22 1.25 0.069 

Maximum Size + Median Depth + Species Range 101.71 1.74 0.054 

Maximum Size + Median Depth + Species Range + SSF Pressure 101.72 1.75 0.053 

Generation Length + Species Range + SSF Pressure 101.82 1.85 0.051 

Maximum Size + Species Range + SSF Pressure 101.9 1.93 0.049 

Median Depth + Species Range + Industrial Pressure 102.21 2.24 0.042 

Species Range 102.71 2.74 0.033 

Generation Length + Median Depth + Species Range + Industrial 

Pressure 102.72 2.75 0.032 

Maximum Size + Generation Length + Median Depth + Species 

Range 102.91 2.94 0.029 

Species Range + Industrial Pressure 102.95 2.98 0.029 

Maximum Size + Generation Length + Median Depth + Species 

Range + SSF Pressure 103.21 3.24 0.025 

Maximum Size + Generation Length + Species Range + SSF Pressure 103.41 3.44 0.023 

Maximum Size + Median Depth + Species Range + Industrial 

Pressure 103.47 3.5 0.022 

Generation Length + Species Range 104.16 4.19 0.016 

Generation Length + Species Range + Industrial Pressure 104.59 4.62 0.013 

Maximum Size + Generation Length + Median Depth + Species 

Range + Industrial Pressure 104.68 4.71 0.012 

Maximum Size + Species Range 104.71 4.74 0.012 

Maximum Size + Species Range + Industrial Pressure 104.89 4.92 0.011 

Maximum Size + Generation Length + Species Range 105.66 5.69 0.007 

Maximum Size + Generation Length + Species Range + Industrial 

Pressure 105.95 5.98 0.006 
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1.4 Results 

Nine out of the 48 constructed models had ΔAIC <2, with two of these models consisting of 

two explanatory variables (most parsimonious), providing good support for best predicting 

extinction risk (IUCN Red List status) in pelagic rays (Table 1.1). The top model (ΔAIC=0) 

with the greatest amount of support (Akaike weights) included species geographic range 

(number of countries a species occurs in) and SSF pressure (Table 1.1). The third model 

(ΔAIC=0.94), which included species range and median depth received approximately 63% of 

the support of the top model (based on Akaike weights) (Table 1.1). Species range had the 

greatest Relative Variable Importance of the explanatory variables in models with ΔAIC <2,  

followed by SSF pressure, and median depth (Figure 1.3). Additional models with ΔAIC <2 

included additional variables (were more complex) without an improvement in ΔAIC and can 

therefore be considered uninformative (Burnham & Anderson, 2002; Arnold, 2010). Species 

trait data including maximum size and generation length were not in top-ranking models and 

had the lowest Relative Variable Importance (Figure 1.3). Industrial fishing pressure was not 

in any models with ΔAIC <2.  

The effect of species range was positive across models indicating that the probability of being 

threatened increased with the number of countries a species occurs in (Figure 1.3; Figure 1.4). 

The effect size of species range was considered significant as the 95% confidence intervals did 

not overlap zero (Figure 1.3). SSF pressure was also positive suggesting that species facing 

higher SSF pressure were also more likely to be threatened (Figure 1.3; Figure 1.4). Median 

depth was generally negative suggesting that the probability of a species being threatened 

increased for shallower water species (lower median depth) (Figure 1.3; Figure 1.4). 

Data Deficient pelagic ray species would therefore be expected to have a greater risk of being 

threatened with extinction if they had a greater species range and were exposed to higher fishing 

pressure across that range. Based on the top-ranked model, the two Data Deficient Species 

(Aetomylaeus asperrimus and Rhinoptera neglecta) have an approximately 10% probability of 

being threatened (IUCN Red List statuses of Critically Endangered, Endangered, and 

Vulnerable). Both species only occurred in three and two countries, respectively, and were 

exposed to relatively low SSF pressure despite occurring in relatively shallow waters (median 

depth of 25 metres). This is in line with IUCN Red List assessments of similar species including 

Aetomylaeus caeruleofasciatus, which is classified as Least Concern due to no reported decline 

across its main distribution in Australian waters (Figure 1.5). Similarly, Rhinoptera 
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steindachneri is classified as Near Threatened despite high fishing pressure across some of its 

range due the northern range population being considered stable. However, an estimated 10% 

probability of being threatened may be unrealistically low, given 70% of assessed species (n=7) 

within both the Aetomylaeus and Rhinoptera genera are classified as threatened on the IUCN 

Red List (n=5), due to high fisheries exploitation and likely low productivity limiting their 

resilience to this pressure.  

 

Figure 1.3 Mean effect (± 95% confidence intervals) of SSF pressure, species range (number of 

countries a species occurs in), median depth, maximum size, and generation length on threat status 

(IUCN Red List) for top 9 models with ΔAIC <2 (n=38). The Relative Variable Importance (RVI)  is 

shown for each variable included in the top models. Effect sizes can be considered significant when 

confidence intervals do not overlap zero.  

 

The performance of the top models may be limited by several exceptions to the general patterns 

discussed thus far. For example, the pelagic stingray (Pteroplatytrygon violacea), which has a 

global distribution occurring in 168 countries is classified as Least Concern, with the species 

facing relatively low SSF pressure despite its large geographic range (Figure 1.5). In contrast, 
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some species (Myliobatis chilensis and M. peruvianus) ranges only overlap with a couple of 

countries’ Exclusive Economic Zones but face relatively high small-scale fishing pressure 

across large coastlines (Chile and Peru) (Figure 1.5). Devil rays (Mobula spp.) had the greatest 

median depths (except shallower-water species M. thurstoni and M. munkiana) but amongst the 

largest geographic ranges and are all classified as Endangered except M. alfredi, which is 

Vulnerable. Therefore, there are likely additional explanatory variables explaining variation in 

the threat of extinction for pelagic rays, such as fecundity and whether species aggregate. 

 

Figure 1.4. The effect of a) species range (number of countries a species occurs in), b) SSF pressure, 

and c) median depth (m) on the probability a pelagic ray species (n=38) is listed as Critically Endangered 

(CR, red) Endangered (EN, orange), Vulnerable (VU, yellow), Near Threatened (NT, light green), or 

Least Concern (LC, dark green) from the top (a and b) and third (c) ordinal regression models. The 

percentage of species threatened (CR, EN, and VU) is indicated at the end of each bar. 
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Figure 1.5. a) Species geographic range (number of countries a species occurs in), b) small-scale fishing 

(SSF) pressure, and c) median depth (m) for threatened (IUCN Red List statuses of Critically 

Endangered, Endangered, and Vulnerable) (n=32) and not threatened (Near Threatened and Least 

Concern) (n=6) pelagic ray species with black dots showing the median (± standard error and outliers). 
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1.5 Discussion 

The extinction risk of pelagic rays was best predicted by species geographic range and SSF 

pressure, with higher probability of being threatened where a species occurs in a greater number 

of countries and is exposed to higher SSF pressure. Species with a greater depth range (greater 

median depth) also had a lower probability of being threatened, possibly because they have 

more refuge from fishing. The two Data Deficient pelagic ray species, Aetomylaeus asperrimus 

and Rhinoptera neglecta, were therefore predicted to have a low probability of being threatened 

because of their small geographic ranges and low exposure to small-scale fishing pressure. The 

majority of pelagic rays are threatened with extinction (32 out of 40 species) making them 

among the most threatened groups of sharks and rays. Science-based, transnational action is 

needed to conserve these species and ensure future sustainability of the fisheries catching them.  

It was found that pelagic rays that occur in a greater number of countries had a higher 

probability of being threatened. This has also been found in a study assessing the extinction risk 

of coral reef sharks and rays (Sherman et al., 2023). Species with a larger geographic range, 

overlapping with more countries’ national jurisdictions, will be subject to many different 

fisheries management regimes and more likely to encounter a lack of appropriate or enforced 

regulations (Dulvy et al., 2017). This is in contrast to marine mammals and terrestrial 

megafauna species where greater geographic range tends to predict lower extinction risk, likely 

due to more joined-up management regimes and increased availability of natural refuges from 

the threats (McClenachan et al., 2016; Davidson et al., 2012). For wide ranging marine species 

like some of the pelagic rays (Notarbartolo di Sciara, 1988; DeGroot et al., 2021; Ajemian & 

Powers, 2014), local protections may be ineffective, for example, they may not spend the 

majority of their time in any protected areas and be exposed to a lack of fishing management 

measures in other parts of their geographic range (Hilborn & Sinclair, 2021; Watson et al., 

2019; Conners et al., 2022; Handley et al., 2020). For pelagic rays, this is also complicated by 

some species forming large aggregations that may overlap spatially and temporally with areas 

of high fishing pressure or poor management. Consideration of species range and distribution 

is therefore needed for more effective spatial protection, for example of key migration corridors, 

aggregation sites, or critical habitats (Boerder et al., 2019; Chin et al., 2023). This becomes 

increasingly complicated for species distributed across a higher number of countries, therefore 

requiring transnational coordinated action (Lascelles et al., 2014; McClenachan et al., 2016). It 

also means a thorough understanding of species biology and ecology is needed to design 
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effective management actions to protect species and populations across life history stages (e.g. 

mating areas and nursery sites) and behaviours (e.g. foraging grounds and movement patterns). 

SSF pressure was more important than industrial fishing pressure in predicting the probability 

that a pelagic ray species was threatened. The role of SSF in driving the decline of sharks and 

rays, and marine megafauna more broadly, has typically been overlooked compared to 

industrial fisheries (Temple, Langner, et al., 2024). Yet, SSF contribution to global catch is 

significant, providing a livelihood and source of protein to millions of people, particularly in 

developing countries (Béné, 2006; Chuenpagdee et al., 2006; Zeller et al., 2006). There is a 

paucity of data in official statistics, with SSF and industrial catch reported together to FAO and 

often no information on fishing effort for many countries’ SSF (Salas et al., 2007; Chuenpagdee 

et al., 2006; Alfaro-Shigueto et al., 2010). Rays are known to be an important component in 

many SSF (Catarci, 2004; Alfaro-Shigueto et al., 2010; Temple et al., 2019; Svarachorn et al., 

2023) but catch composition from official statistics are typically reported at a lower taxonomic 

resolution, often aggregated with sharks (Catarci, 2004; FAO, 2021). Species-specific reporting 

and monitoring are needed but this is complicated by the morphological similarity of many 

pelagic ray species within the same family (Last et al., 2016) as well as the difficulty in species 

identification of traded products. Molecular approaches are increasingly used, particularly for 

trade, and will likely be more widely applicable in fisheries monitoring in the coming years 

(Prasetyo et al., 2023; Domingues et al., 2021; Cardeñosa et al., 2018). Ray species face a higher 

threat of extinction in tropical and sub-tropical, coastal waters where SSF are prevalent (Dulvy 

et al., 2021). The nature of SSF with remote and dispersed landing sites, poor enforcement 

capacity, and the complex socio-economic characteristics of the communities they support 

present a significant management challenge (Temple, Berggren, et al., 2024; Cinner et al., 2009; 

Booth et al., 2019). This is further complicated by their multi-gear, multi-species nature and 

utilisation (trade and subsistence) of non-target species.  

It is important to consider the vertical as well as the horizontal movement and distribution of 

pelagic rays and how these affect exposure to fisheries. Depth was also found to be important 

in predicting the extinction risk of pelagic rays, with species occupying greater median depths 

less likely to be threatened, which has been found for sharks and rays more broadly (Walls & 

Dulvy, 2020; Sherman et al., 2023; Dulvy et al., 2021). This is likely due to the refuge from 

fisheries exposure provided by occupying greater depths outside high fishing pressure in 

shallower waters. Some species of pelagic rays, particularly devil rays, are capable of diving to 

depths of greater than 200 meters (outside of the epipelagic zone) and even to greater than 1000 
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meters (bathypelagic zone) (Andrzejaczek et al., 2022). These species likely still spend most of 

their time in shallower depths as seen for tagged reef manta rays (Mobula alfredi) 

(Andrzejaczek et al., 2020). Indeed, devil rays are still highly threatened due to overfishing 

(Lawson et al., 2017; Dulvy et al., 2021). Nevertheless, understanding of deep-diving behaviour 

and the implications for fisheries interactions may be important, particularly as deep-water 

sharks and rays are increasingly under threat with the growing fishing pressure in deep waters 

(Finucci et al., 2024; Braun et al., 2022).  

Spatial overlap, both horizontal and vertical, of species distributions and fishing effort is only 

one component of susceptibility to being caught as part of ecological risk assessment (Hobday 

et al., 2011; Gallagher et al., 2012; Murua et al., 2021). Fishing gear selectivity and post-capture 

mortality (both at-vessel and post-release mortality) also need due consideration (Cortés et al., 

2015; Cortés et al., 2010; Ellis et al., 2017). Both gear selectivity and post-capture mortality 

have implications for management and bycatch mitigation strategies, such as gear modifications 

and retention bans (Lemke & Simpfendorfer, 2023; Gilman, Chaloupka, et al., 2022). For 

example, J-shaped hooks were found to be responsible for significantly higher at-vessel 

mortality compared to circle hooks for the giant manta ray (M. birostris) and pelagic stingray 

(Pteroplatytrygon violacea) (Gilman, Chaloupka, et al., 2022). It is also important to consider 

incentives for changes to fisher behaviours towards more sustainable approaches (Pascoe et al., 

2010; Gilman, Hall, et al., 2022). However, this is difficult where bycatch still has a value as 

with rays caught in many SSF. Whilst much of the fisheries catch of rays may be classed as 

unintentional (bycatch), the majority is utilised as food and other traded products (Dulvy et al., 

2021), complicating fisheries management including bycatch mitigation efforts, particularly for 

small-scale fisheries. Including social and economic factors in future trait-based analyses of 

extinction risk in rays could be an important avenue for future research and investigation of 

how it affects fisheries susceptibility and exposure. The socio-economic characteristics of a 

fishery will relate to species trait and threat indicators considered in this study, for example, 

larger-bodied individuals are often more economically valuable and therefore targeted 

(McClenachan et al., 2016). 

Maximum size and generation length, which were used as indicators of a species intrinsic 

sensitivity to fishing, were relatively uninformative in predicting the probability of pelagic rays’ 

extinction risk. This is surprising given body size and generation length are often key correlates 

of extinction risk for sharks and rays, with greater risk in larger species and those with longer 

generation lengths (Dulvy et al., 2021; Sherman et al., 2023; Hutchings et al., 2012). Larger 
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species tend to have lower intrinsic rates of population growth and therefore are less resilient 

to fishing mortality (Cortés, 2016; Denney et al., 2002). Similarly, species that mature later and 

live longer, leading to longer generation times, have lower population growth and rebound rates 

(Cortés, 2002; García et al., 2008; Juan-Jordá et al., 2015; Worm et al., 2013). Larger species 

also tend to have larger range sizes (Tamburello et al., 2015), which was found as an important 

predictor of extinction risk for pelagic rays. Maximum size ranged from 59cm (Aetomylaeus 

caeruleofasciatus) to seven meters (Mobula birostris) disc width and generation length from 

six (some eagle ray species and the pelagic stingray) to 29 years (manta rays). However, many 

of the pelagic rays are large-bodied, which may be why body size was not as important as a 

predictor of extinction risk for this group. Indeed, pelagic eagle rays and devil rays are amongst 

the most threatened chondrichthyan families (Dulvy et al., 2021). Interestingly, the pelagic 

stingray, which is a relatively smaller-bodied pelagic ray (maximum disc width of 96cm in 

captive individuals but 60-80cm in wild animals) (Mollet et al., 2002; Last et al., 2016) is 

classed as Least Concern despite having the largest geographic range of the pelagic rays, which 

was found to be a key predictor of extinction risk in this study. The pelagic stingray also has 

amongst the shortest generation lengths of pelagic rays, producing litters of 2-9 pups with a 

gestation period of 2-4 months (Last et al., 2016). At a lower taxonomic resolution, body size 

and generation length may be better predictors of extinction risk. However, when assessing 

extinction risk at a higher taxonomic resolution, a species’ biology and ecology, and how this 

affects exposure to fisheries may be more important in predicting risk. 

This study found that shallower water pelagic ray species with larger geographic ranges and 

greater exposure to small-scale fishing pressure were more likely to be threatened with 

extinction. Aetomylaeus asperrimus and Rhinoptera neglecta, currently classed as Data 

Deficient, had low probabilities of being threatened given their small geographic range and low 

exposure to small-scale fishing pressure. Body size and generation length were less important 

in explaining extinction risk for pelagic rays in contrast to previous studies for sharks and rays 

more broadly. It is therefore important to understand the intricacies of both the biological traits 

affecting a species resilience and indicators of fishing exposure. Trait-based modelling offers 

an opportunity to utilise available data, necessary for data-poor species and fisheries before they 

decline beyond recovery (Walls & Dulvy, 2020; Kindsvater et al., 2018; Horswill et al., 2019). 

Even for intrinsically sensitive species, well-enforced, science-based management can support 

fisheries and conserve species (Pacoureau et al., 2023; Simpfendorfer & Dulvy, 2017). 
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Chapter 2. Global patterns of intrinsic sensitivity to fishing in rays 

2.1 Abstract 

Overfishing, habitat loss, and climate change are driving population declines in many species. 

Understanding a species’ capacity to recover from these and other threats is necessary for 

prioritising management. The maximum intrinsic rate of population increase (rmax) can be used 

to compare which species or groups are particularly sensitive to ongoing threats. To investigate 

global patterns of intrinsic sensitivity of rays (Superorder Batoidea), we calculated rmax of 85 

species using a modified Euler-Lotka model that accounts for survival to maturity. We 

examined how rmax varies with body mass, temperature, and depth using an information-

theoretic approach through model selection, accounting for phylogenetic non-independence. 

Although we observed an overall positive relationship between rmax and temperature, we found 

that warm-shallow-water rays (Orders Torpediniformes, Rhinopristiformes, and 

Myliobatiformes) were more intrinsically sensitive to exploitation (lower rmax) than cold-deep-

water skates (Order Rajiformes). We hypothesise that this pattern is likely driven by their 

different reproductive strategies as live-bearing rays have fewer offspring compared to egg-

laying skates, and caution that future research should focus on understanding differences in the 

mortality schedule of juveniles and sub-adults to understand if survival to maturity is 

comparable. Our findings highlight the high vulnerability of warm-shallow-water ray species 

to overexploitation and other threats due to their intrinsically low maximum population growth 

rates. These differences in rmax have conservation implications for our understanding of the 

geographic patterns in extinction risk, suggesting that tropical rays are more intrinsically 

sensitive.  

2.2 Introduction 

Understanding population growth rate is central to understanding species’ responses to 

overfishing, habitat loss and degradation, and climate change (Yan et al., 2021; Webb et al., 

2011). Species’ vulnerability is a combination of intrinsic sensitivity and extrinsic exposure to 

fishing and other threats (Dulvy & Kindsvater, 2017; Juan-Jordá et al., 2015). Intrinsic 

sensitivity can be indexed by the maximum intrinsic rate of population increase (rmax), which 

in its simplest form, can be calculated from age at maturity, maximum age and annual 

reproductive output. rmax represents the theoretical maximum intrinsic population growth rate 

at low population sizes, i.e., in the absence of density-dependent processes (Pardo et al., 2018; 

Myers et al., 1999; Myers et al., 1997; Cortés et al., 2015) and is equal to the fishing mortality 
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that will cause a species or population to become extinct (Fextinct) (Gedamke et al., 2007; Dulvy 

et al., 2004). Understanding how rmax varies among species can therefore inform our 

understanding of sensitivity to exploitation, recovery potential, and can also be used as a 

Bayesian prior to help estimate catch limits in fisheries stock assessments (Martell & Froese, 

2013; Patrick et al., 2010).  

Chondrichthyans (shark, rays, and chimaeras; hereafter, referred to as ‘sharks and rays’) are a 

highly threatened taxon, with over one-third of species threatened with extinction (The 

International Union for the Conservation of Nature’s (IUCN) Red List of Threatened Species 

categories of Vulnerable, Endangered, or Critically Endangered) due to overfishing (Dulvy et 

al., 2021). Sharks and rays are important sources of income and protein in the fisheries that are 

causing their decline, particularly small-scale fisheries in developing countries that comprise 

over 95% of the world’s fishers (Pauly, 2006; Béné, 2006; Temple et al., 2019). Ensuring 

sustainability is crucial for both food security and healthy marine ecosystems (Simpfendorfer 

& Dulvy, 2017; Barrowclift et al., 2017). Sharks and rays typically have slow life histories 

including low somatic growth rates, late maturity, and low fecundity that result in relatively 

low rmax estimates (Cortés, 2000; García et al., 2008). Combined with limited density-dependent 

compensation in juvenile survival due to their narrow range of annual reproductive output, 

sharks and rays are extremely sensitive to elevated mortality from fisheries (Dulvy & Forrest, 

2010; Quetglas et al., 2016; Cortés, 2002). There is, however, wide variation in life histories 

among sharks and rays, and even within rays there may be a range of rmax estimates that indicate 

their differing resilience to exploitation (Quetglas et al., 2016; Hutchings et al., 2012; Ward-

Paige, 2017). Rays of the Superorder Batoidea are comprised of both live-bearing rays (Torpedo 

rays, Order Torpediniformes; Rhino rays, Rhinopristiformes; and stingrays, Myliobatiformes) 

and egg-laying skates (Rajiformes). Hereafter, we refer to these two lineages as ‘rays’ and 

‘skates’, respectively. Live-bearing rays have much lower fecundities than egg-laying skates 

(Goodwin et al., 2002), probably limited by maternal body size (Wourms & Lombardi, 1992; 

Musick & Ellis, 2005; Wourms, 1977), whilst egg-laying skates face increased mortality from 

predation on eggs (Lucifora & García, 2004; Powter & Gladstone, 2008). Low fecundity likely 

limits rmax estimates (Pardo et al., 2018) and represents differences in reproductive allocation 

that influences population growth rates and generation lengths (Cortés, 2002; Juan-Jordá et al., 

2013). 

Maximum body size is a widely available predictor of extinction risk, with larger-bodied 

species typically at greater risk of decline and extinction due to slow life histories and low rmax 
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estimates  (Jennings et al., 1998; Reynolds et al., 2005; Hutchings et al., 2012). However, where 

sufficient data allow, broader time-related life history traits including age at maturity, somatic 

growth rates, longevity, and mortality rates have been found to better explain life history 

variation and better correlate with extinction risk across different taxonomic groups (Chichorro 

et al., 2019; Anderson et al., 2011; Juan-Jordá et al., 2015). Theoretically and empirically, rmax 

has been shown to scale with body mass and temperature across taxa. This is likely due to rmax 

being closely tied to metabolic rate and trade-offs in energy allocated to survival, growth, and 

reproduction (Savage et al., 2004; Wong et al., 2021; White et al., 2022), such that rmax has been 

found to decrease with increasing body size in sharks and rays (Dulvy et al., 2014; Hutchings 

et al., 2012; Pardo & Dulvy, 2022). The expectation is that organisms with a higher metabolic 

rate in warmer waters (tropical, low latitudes) will tend towards ‘faster’ life histories, growing 

quickly to a smaller maximum body size (Healy et al., 2019; Reynolds, 2003), and 

consequently, have a higher rmax than those with slower metabolic rates and ‘slower’ life 

histories in cooler waters (temperate and polar, high latitudes) (Brown et al., 2004; Clarke & 

Johnston, 1999; Juan-Jordá et al., 2013). These temperature-related, latitudinal patterns may 

also be evident along depth gradients as temperatures generally decrease with increasing depth. 

Indeed, deep-water shark and ray species tend to have slower life histories and lower rmax 

estimates compared to continental shelf and pelagic species (Simpfendorfer & Kyne, 2009; 

García et al., 2008; Pardo & Dulvy, 2022). 

Contrary to metabolic scaling expectations, there are some warm-shallow-water tropical rays, 

notably the filter-feeding devil rays (Mobula spp.), that have extremely low rmax (Dulvy et al., 

2014; Pardo, Kindsvater, Cuevas-Zimbrón, et al., 2016). Pardo & Dulvy (2022) found that as 

body size increases, decreases in rmax were much steeper for warmer-water species, suggesting 

that a greater intrinsic sensitivity may also be playing a role in the higher extinction risk of 

tropical rays (Dulvy et al., 2021). Thus far, rmax estimates have been made for only a few ray 

and skate species (Dulvy et al., 2014; D’Alberto et al., 2019; Temple et al., 2020; Barbini et al., 

2021; Lucifora et al., 2022; Barnett et al., 2013; Pardo, Kindsvater, Reynolds, et al., 2016). 

Here, we calculate rmax for 85 ray and skate species where there were sufficient life history data 

available. We then use an information-theoretic approach, accounting for phylogenetic non-

independence of species, to investigate how body mass, temperature, and depth may explain 

variation in rmax estimates for rays and skates. 
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2.3 Methods 

First, we summarise data sources, including our literature search for life history data and 

methods used to estimate rmax. Second, we outline methods for obtaining body mass, depth, and 

temperature data. Third, we describe our analytical approach, including the metabolic scaling 

expectations and the statistical models associated with each hypothesis.  

2.3.1 Collation of life history trait data and estimation of rmax 

A database of published life history data for rays and skates was collated (Barrowclift & Dulvy, 

2023). The database was developed from the generation lengths used in the recent IUCN Red 

List reassessments (Dulvy et al., 2021). To collate life history traits, searches were conducted 

in Web of Science and Google Scholar using the following search terms: 

age/growth/maturity/fecundity/litter size/life history/maximum intrinsic rate of population 

increase/productivity/reproductive biology AND ray* (wild character to return ray and rays) 

‘AND chondrichthy*’ (wild character to return Chondrichthyes and chondrichthyan). The term 

‘ray*’ has additional non-relevant usages so ‘AND chondrichthy*’ was added to the search 

term. The IUCN Red List (www.iucnredlist.org/) was also used to check species-specific life 

history parameters using information available in the ‘Habitat and Ecology’ tab, with references 

checked from the ‘Bibliography’ tab. Data were also taken from the life history database 

Sharkipedia (https://www.sharkipedia.org/) (Mull, Pacoureau, et al., 2022). Taxonomy was 

checked against Eschmeyer's Catalog of Fishes 

(https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). We 

assigned life history data sourced from the literature to the most updated taxonomic 

nomenclature based on geographic distribution. 

In its simplest form, rmax can be calculated from age at maturity (female age at 50% maturity, 

years; αmat), maximum age (recorded for females where known, years; αmax), and annual 

reproductive output (number of female offspring assuming 1:1 sex ratio; b). These data were 

available for 85 ray (n=53) and skate (n=32) species. 

To estimate rmax, we used a modified Euler-Lotka model that accounts for survival to maturity 

with the following equation (Pardo, Kindsvater, Reynolds, et al., 2016; Pardo et al., 2018; 

Cortés, 2016): 

𝑙𝛼𝑚𝑎𝑡
𝑏 = 𝑒𝑟𝑚𝑎𝑥𝛼𝑚𝑎𝑡 − 𝑒−𝑀(𝑒𝑟𝑚𝑎𝑥)𝛼𝑚𝑎𝑡

−1
,   (1) 

where 𝑙𝛼𝑚𝑎𝑡
 is the proportion of individuals surviving to maturity, which is calculated with: 

https://www.sharkipedia.org/
https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
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 𝑙𝛼𝑚𝑎𝑡
=  (𝑒−𝑀)𝛼𝑚𝑎𝑡,      (2) 

b is annual fecundity, M is the species-specific instantaneous natural mortality rate and αmat is 

the age at maturity. We used a simple estimate of natural mortality (M) that is equivalent to the 

reciprocal of average lifespan, estimated with M = 1/𝜔 (Pardo, Kindsvater, Reynolds, et al., 

2016; Dulvy et al., 2004), where 𝜔 is an estimate of average lifespan in years. Average lifespan 

was assumed to be the midpoint between age at maturity (αmat) and maximum age (αmax) (Pardo, 

Kindsvater, Reynolds, et al., 2016), estimated with: 

𝜔 =
(𝛼𝑚𝑎𝑥+ 𝛼𝑚𝑎𝑡)

2
       (3) 

Life history traits can vary within species and thus result in uncertainty in rmax; therefore, we 

calculated 10,000 random deviates from a uniform distribution between minimum and 

maximum values of each life history parameter. We then estimated rmax with each of the life 

history values and took the median to generate a species-specific rmax value. Uncertainty in this 

rmax value was estimated as the 2.5% and 97.5% quantiles. If only point estimates were 

available, such as for αmax, then 10% was subtracted and added to get a minimum and maximum 

value, respectively. Where regional differences in life history trait data were described in the 

IUCN Red List assessments (n=7 species), rmax was calculated for each location and then a 

mean rmax for that species was used in further analyses.  

2.3.2 Body mass, depth, and temperature-at-depth data 

The maximum reported body mass (in grams) for each species was extracted from FishBase 

(Froese and Pauly, 2016) using the rfishbase package (Boettiger, Lang and Wainwright, 2012). 

Where maximum body mass data were unavailable, length-weight conversions available on 

FishBase were used to convert maximum length (cm) to weight (g). Data sourced from 

FishBase were manually checked from the original references and updated where necessary. 

Length-weight regression coefficient estimates were selected for females where possible and 

for the most appropriate length-measurement type (disc width or total length) depending on the 

species’ body shape. If a length-weight conversion was unavailable for a species, then a length-

weight conversion for a closely related species with a similar maximum size and body shape 

was used. Finally, there were two species where length-weight conversions were calculated 

from the Bayesian models available on FishBase (Froese et al., 2014). 

Median depth estimates for each species were taken as the midpoint of the minimum and 

maximum depth ranges reported in the IUCN Red List Assessment of Threatened Species as 
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reported in Dulvy et al. (2021). Temperature-at-depth was then determined using species 

geographic range shape files available as part of a global reassessment of shark and ray species 

(see Dulvy et al. (2021)  page e6 for details of distribution mapping and Data S3 for data sources 

available on the IUCN Red List of Threatened Species). Species distribution was overlaid with 

the International Pacific Research Center’s interpolated dataset of gridded mean annual ocean 

temperatures across 27 depth levels (0-2000 m below sea level), which is based on 

measurements from the Argo Project (data available at 

http://apdrc.soest.hawaii.edu/projects/Argo/data/statistics/On_standard_levels/Ensemble_mea

n/1x1/m00/index.html). The depth level that was closest to the species’ median depth was 

selected from the grid and the temperature grid points were extracted across the species’ 

distribution. Median temperature for each species was calculated from the distribution of 

temperature values. 

2.3.3 How does rmax vary with body mass, temperature, and depth? 

Across taxa, rmax has been shown to be related to body mass and temperature (Savage et al., 

2004). These metabolic scaling expectations can be estimated with a linear model in natural 

logarithm (ln): 

ln(𝑟𝑚𝑎𝑥) =  𝛽0  + 𝛽1  ∗  ln(𝑀) +  𝛽2  ∗ 1/𝑘𝐵𝑇 ,    (4) 

where 𝑟𝑚𝑎𝑥 is the maximum intrinsic rate of population increase (year-1), β0 is the intercept, β1 

is the mass-scaling coefficient, β2 is the activation energy E, T is the temperature (in Kelvin) 

and kB is the Boltzmann constant (8.617 × 10-5 eV).  

Here, 24 models representing alternative hypotheses of how rmax may vary with body mass, 

temperature, and depth were compared using an information-theoretic approach (Burnham & 

Anderson, 2002) (Table 2.1). The above equation is the expectation from metabolic scaling 

theory and is one of the 24 hypotheses compared. rmax and adult body mass data were ln-

transformed. Temperature and depth data were standardised (scaled and centred) prior to 

analyses.  
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Table 2.1 The 24 models examined with associated hypotheses for how maximum intrinsic rate of 

population increase (rmax) varies with body mass M, inverse temperature (1/kBT). depth and a composite 

temperature-depth index. The expected model from metabolic scaling theory is highlighted in grey. 

Note, Order was categorical for rays (Orders Myliobatiformes, Rhinopristiformes, and Torpediniformes) 

and skates (Order Rajiformes). 

 

Model: ln(rmax) ~ Hypothesis: rmax varies with 

1  rmax only 

ln (M) body mass only 

depth depth only 

1/𝑘𝐵𝑇 temperature only 

temperature-depth index temperature-depth index only 

ln(M) + depth body mass and depth 

ln(M) + 1/𝑘𝐵𝑇 body mass and temperature 

ln(M) + temperature-depth index body mass and temperature-depth index 

ln(M) * depth 
body mass and depth, and the effect of mass scaling 

coefficient varies with depth 

ln(M) * 1/𝑘𝐵𝑇 
body mass and temperature, and the effect of mass 

scaling coefficient varies with temperature 

ln(M) * temperature-depth index 

body mass and temperature-depth index, and the effect 

of mass scaling coefficient varies with the temperature-

depth index 

1 + Order Order 

ln(M) + Order body mass and Order 

depth + Order depth and Order 

1/𝑘𝐵𝑇 + Order temperature and Order 

temperature-depth index + order temperature-depth index and Order 

lln(M) + depth + Order body mass, depth, and Order 

ln(M) + 1/𝑘𝐵𝑇 + Order body mass, temperature, and Order 

ln(M) + temperature-depth index + 

Order 
body mass, temperature-depth index, and Order 

ln(M) * depth + Order 
body mass, depth, and Order, and the effect of mass 

scaling coefficient varies with depth 

ln(M) * 1/𝑘𝐵𝑇 + Order 
body mass, temperature, and Order, and the effect of 

mass scaling coefficient varies with temperature 

ln(M) * temperature-depth index + 

Order 

body mass, temperature-depth index, and Order, and the 

effect of mass scaling coefficient varies with the 

temperature-depth index 

ln(M) + 1/𝑘𝐵𝑇 + depth body mass, temperature, and depth 

ln(M) + 1/𝑘𝐵𝑇 * depth 
body mass and the effect of temperature varies with 

depth 
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Twenty, random phylogenetic trees from the possible distribution of trees from Stein, Mull et 

al. (2018), and available at Vertlife.org, were used in analyses to include a random effect of 

phylogeny in all models. Note, the phylogeny was updated to reflect current taxonomic 

nomenclature, for example Dasyatis americana and D. dipterura in the phylogeny from Stein, 

Mull et al., (2018) were updated to Hypanus americanus and H. diptererus, respectively. There 

were two instances where the phylogenetic position of a species (Aetobatus narutobiei and 

Maculabatis ambigua) were not known, so the position (i.e., branch length or divergence time) 

of a closely related species (A. flagellum and Maculabatis gerrardi, respectively) was used 

instead. Taxonomic placement was also included as a categorical fixed term in the model to 

investigate how rmax scales with body mass, temperature, and depth in skates (Order 

Rajiformes) and rays (Orders Myliobatiformes, Rhinopristiformes, and Torpediniformes) given 

their different life history strategies (particularly high and low annual reproductive output, 

respectively) and distributions (encompassing different environmental temperatures and 

depths).  

Phylogenetic generalised linear models were fitted to account for non-independence for closely 

related species using the pgls function in the caper package (Orme et al., 2018). In a pgls 

framework, the phylogeny is converted to a covariance matrix, which is included as a random 

effect and thus accounts for autocorrelation of the residuals due to species sharing various parts 

of evolutionary trajectories. The strength of the phylogenetic signal (i.e., how strong the 

residuals were correlated with the covariance matrix) is indicated by Pagel’s λ, with a value of 

1 meaning the residuals are perfectly correlated with the covariance matrix and a value of 0 

meaning no correlation (Revell, 2010).  

We assessed how sensitive our results were to the small variation in the random phylogenies 

used by re-fitting the models with a subset of 20 (randomly chosen) phylogenies available from 

Stein, Mull et al. (2018). The top model was always the same (Table 2.2) and we therefore only 

report results from using a single tree. We also assessed how sensitive our results were to the 

larger-bodied rays present in the dataset (body mass ≥ 290 kg, n=8) by re-fitting models without 

these eight data points. The top model was the same (Table 2.3) and we therefore only report 

results using the full dataset. 
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Table 2.2 Corrected Akaike Information Criteria (ΔAICc) for the 24 models tested for how rmax varies with inverse temperature (1/kBT), depth, adult body mass 

(M), the temperature-depth index, and Order, with 20 different phylogenetic trees obtained from Stein, Mull et al. (2018). The model with the lowest ΔAICc 

value in each iteration is highlighted in grey. 

ln(rmax) ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 10.3 10.6 8.1 9.9 10.4 10.7 9.3 11.9 8.1 8.9 9.9 9.5 7.6 8.5 8.4 9.6 8.9 11.8 10.3 11.4 

ln(M) 3 3.2 3.1 2.8 3.1 3.4 3.3 4.4 1.9 3.4 3.4 2 2.4 3.1 2.3 3.7 3.4 4.2 3.1 4 

depth 7.6 7.9 5.4 7.8 7.2 7.5 5.4 8.1 6.7 5.4 7.1 8 5.7 5.9 6.1 6.3 5.4 7.5 7.6 8.4 

1/𝑘𝐵𝑇 5.9 6.2 3.7 5.3 6.2 5.7 5.6 6.5 4.5 5.5 4.7 5 3.9 4.9 5 5.5 5.5 7.2 5.8 5.5 

ln(M) + depth 1.4 1.4 1.4 1.6 1.1 1.4 0.9 1.6 1.3 0.9 1.7 1.6 1.2 1.2 1.1 1.3 0.9 1 1.3 2 

ln(M) + 1/𝑘𝐵𝑇 1.3 1.4 1.2 0.7 1.8 1.4 2.2 1.7 0.6 2.1 0.9 0.1 1.1 1.5 1.2 1.7 2.1 2.4 1.3 1 

ln(M) * depth 3.6 3.3 3.6 3.6 3.3 3.6 3 3.6 3.2 2.9 3.9 3.7 3.4 3.1 3.2 3.4 2.9 2.9 3.5 3.7 

ln(M) * 1/𝑘𝐵𝑇 2.6 3.6 2.3 2.7 3.7 2.6 3.8 3.7 0.8 4.1 2.4 1.6 2.8 3.7 2.9 3.7 4.1 4.6 2.4 3.1 

1 + Order 12.2 12.6 9.9 11.9 12.4 12.7 11.3 13.9 10.1 10.8 11.8 11.5 9.6 10.4 10.3 11.5 10.8 13.7 12.3 13.4 

ln(M) + Order 5 5.2 5 4.8 5.2 5.4 5.4 6.4 3.9 5.3 5.4 4 4.4 5.1 4.3 5.7 5.3 6.2 5.1 6 

depth + Order 9.2 9.4 6.8 9.4 8.9 9.1 7.1 9.8 8.4 6.7 8.7 9.7 7.4 7.5 7.9 7.9 6.7 8.9 9.2 9.9 

1/𝑘𝐵𝑇 + Order 6.8 7 4.3 6.2 7.4 6.7 6.8 7.5 5.7 6 5.6 6 5.2 5.8 6.4 6.4 6 7.8 6.7 6.2 

ln(M) + depth + 

Order 
3 3 2.9 3.3 2.9 3.2 2.7 3.3 3 2.2 3.4 3.4 3 2.8 2.9 2.9 2.2 2.5 3 3.6 

ln(M) + 1/𝑘𝐵𝑇 + 

Order 
2.5 2.5 2.1 1.9 3.3 2.7 3.6 3 2 2.9 2.2 1.5 2.5 2.6 2.6 2.9 2.9 3.4 2.5 2 

ln(M) * depth + 

Order 
5.3 4.9 5.1 5.3 5.2 5.4 4.8 5.3 5.1 4.2 5.6 5.6 5.3 4.7 5.1 5.1 4.2 4.3 5.3 5.4 

ln(M) * 1/𝑘𝐵𝑇 + 

Order 
3.8 4.7 3.1 3.9 5.2 3.9 5.3 4.9 2.3 4.9 3.5 2.9 4.3 4.8 4.3 4.9 4.9 5.7 3.7 4.2 

ln(M) + 1/𝑘𝐵𝑇 + 

depth 
2.1 2.1 2.1 2 2.2 2.2 2.2 2.1 2 2.2 2 1.8 2.1 2.2 2.1 2.2 2.2 2.2 2.1 2 

ln(M) + 1/𝑘𝐵𝑇 * 

depth 
1.7 2 1.7 1.8 1.9 1.9 1.9 2 1.9 2.1 1.5 0.8 1.8 2.7 2.6 2.7 2.1 2.5 1.1 1.6 

temperature-depth 

index 
5.1 5.3 3 5.1 4.8 4.8 3.5 5.3 4.4 3.5 4.2 5.4 3.4 3.8 4.1 4 3.5 5.1 5.1 5.1 
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ln(M) + 

temperature-depth 

index 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ln(M) * 

temperature-depth 

index 

1.9 2.2 1.9 2.2 2 1.8 1.7 2.2 1.2 2.1 2.1 2.1 2 2.2 1.9 2.2 2.1 2.2 2 2.2 

temperature-depth 

index + Order 
6.1 6.2 3.7 6.1 6 5.9 4.8 6.4 5.7 4.1 5.4 6.7 4.7 4.8 5.5 5 4.1 5.8 6.2 6 

ln(M) + 

temperature-depth 

index + Order 

1.2 1.1 0.9 1.2 1.5 1.3 1.4 1.3 1.3 0.7 1.2 1.4 1.4 1.1 1.4 1.1 0.7 0.9 1.3 1.1 

ln(M) * 

temperature-depth 

index + Order 

3.2 3.3 2.9 3.4 3.5 3.2 3.2 3.6 2.8 2.9 3.4 3.6 3.5 3.3 3.4 3.4 2.9 3.1 3.4 3.3 
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Figure 2.1 Phylogeny, maximum intrinsic rate of population increase (rmax), female maximum age in 

years, female age at maturity in years and annual reproductive output (number of female offspring) for 

85 ray and skate species. Solid lines show median values for Myliobatiformes (n=32), Rhinopristiformes 

(n=16), Torpediniformes (n=5) and Rajiformes (n=32). Uncertainty in rmax estimate shown with 2.5% 

and 97.5% quantiles. A single phylogenetic tree from the possible distribution of trees from Stein, Mull, 

et al., (2018) is displayed. 

 

Depth and temperature were positively correlated (Pearson’s r = 0.75), with a value higher than 

a threshold of 0.70 in which collinearity severely distorts model estimation (Dormann et al., 

2013). We therefore used Principal Components Analysis (PCA) to collapse the temperature 

and depth variables into one Principal Component (PC), a composite temperature and depth 

index (PC1 axis; hereafter, temperature-depth index), that explained 87% of the variance. The 

temperature-depth index was included in place of temperature and depth in some models to 

examine whether a combined metric better explained rmax compared to these environmental 

variables alone (Table 2.1). We also estimated variance-inflation factors (VIF) to assess 

collinearity for all coefficients in the models using the car package (Fox & Weisberg, 2019). 

No VIF value was greater than two, except as expected when interactions were included, 

indicating that our models were robust to collinearity despite the strong correlation between 

temperature and depth. Models were compared using the corrected Akaike Information 

Criterion (AICc). If including a parameter improved the model’s AICc by less than two units 

(ΔAICc ≤ 2), it was considered relatively uninformative (Arnold, 2010; Burnham & Anderson, 

2002). All analyses were run in R version 4.1.2 (R Core Team, 2021) in RStudio (RStudio 

Team, 2021). 

2.4 Results 

Maximum population growth rate, rmax, was estimated using collated life history data (αmax, 

αmat, and b) for 85 ray and skate species and rmax estimates varied between 0.0213 yr-1 (in 

Mobula alfredi) and 1.28 yr-1 (in Raja miraletus) (Figure 2.1). It was evident that there were two 

groupings of data: warm, shallow-water rays (n=53) with relatively low annual reproductive 

output and cold, deep-water skates (n=32) with higher annual reproductive output (Figure 2.1; 

Figure 2.2). Generally, compared to rays, the skates had a later age at maturity (αmat: skates 

median = 9.20 ±1.09 SE; rays = 6.0 ±0.42 SE) and higher annual reproductive output (b: skates 

median = 29.10 ±2.17 SE; rays = 3.0 ±0.28 SE) but there was little difference in longevity (αmax: 
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skates median = 15.50 ±2.02 SE; rays = 16.0 ±1.28 SE). Consequently, skates had a higher 

median rmax (0.37 yr-1 ±0.05 SE) compared to rays (0.25 yr-1 ± 0.03 SE). 

 

Table 2.3 Comparison of ln(rmax) models re-ran with data points for eight larger-bodied rays (body mass 

M  ≥ 290 kg) removed, using corrected Akaike Information Criteria (AICc), number of parameters (n), 

negative log-likelihood (-LL), adjusted R2 (Adj. R2) and Akaike weights. The model with the lowest 

∆AICc value is marked in bold and models with ∆AICc ≤ 2 are highlighted in grey. Models are ordered 

by ascending AICc, with the top model first. 

 

 

 

ln(rmax) ~ n LL AICc Adj. R2 ΔAICc Weights 

ln(M) + temperature-depth index 3 -57 120.3 0.06 0 0.126 

temperature-depth index 2 -58.5 121.1 0.04 0.8 0.084 

ln(M) + depth 3 -57.4 121.2 0.05 0.9 0.080 

ln(M) + temperature-depth index + Order 4 -56.5 121.6 0.06 1.3 0.066 

ln (M) + 1/𝑘𝐵𝑇 3 -57.7 121.7 0.05 1.4 0.062 

ln(M)  2 -59 122.1 0.03 1.8 0.051 

depth  2 -59 122.2 0.02 1.9 0.049 

1/𝑘𝐵𝑇 2 -59 122.2 0.03 1.9 0.049 

temperature-depth index + Order 3 -58 122.3 0.04 2 0.046 

ln(M) * temperature-depth index 4 -56.9 122.4 0.06 2.1 0.044 

ln(M) + 1/𝑘𝐵𝑇 + depth 4 -57 122.5 0.05 2.2 0.042 

ln(M) + depth + Order 4 -57.2 122.9 0.05 2.6 0.034 

1 1 -60.5 123 0 2.7 0.033 

ln(M) + 1/𝑘𝐵𝑇 + Order  4 -57.2 123 0.05 2.7 0.033 

ln(M) * depth 4 -57.4 123.4 0.04 3.1 0.027 

1/𝑘𝐵𝑇 + Order 3 -58.5 123.4 0.02 3.1 0.027 

ln(M) + 1/𝑘𝐵𝑇 * depth 5 -56.3 123.5 0.06 3.2 0.025 

ln(M) * 1/𝑘𝐵𝑇 4 -57.5 123.6 0.04 3.3 0.024 

ln(M) * temperature-depth index + Order 5 -56.4 123.7 0.05 3.4 0.023 

depth + Order 3 -58.7 123.8 0.02 3.5 0.022 

ln(M) + Order 3 -58.9 124.1 0.02 3.8 0.019 

1 + Order 2 -60.4 124.9 -0.01 4.6 0.013 

ln(M) * 1/𝑘𝐵𝑇 + Order   5 -57 124.9 0.04 4.6 0.013 

ln(M) * depth + Order 5 -57.1 125.1 0.03 4.8 0.011 



33 

 

Table 2.4 Comparison of rmax models using corrected Akaike Information Criteria (AICc), number of 

parameters (n), negative log-likelihood (-LL), adjusted R2 (Adj. R2), and Akaike weights. Models are 

ordered by ascending AICc, with the top model highlighted in bold and models with ∆AICc < 2 

highlighted in grey. 

ln(rmax) ~ n LL AICc Adj. R2 ΔAICc Weights 

ln(M) + temperature-depth index 3 -65.4 137.2 0.14 0 0.177 

ln(M) + temperature-depth index + Order 4 -65 138.4 0.14 1.2 0.097 

ln(M) + 1/𝑘𝐵𝑇 3 -66.1 138.5 0.12 1.3 0.092 

ln(M) + depth 3 -66.1 138.6 0.12 1.4 0.088 

ln (M) + 1/𝑘𝐵𝑇 * depth 5 -64.1 138.9 0.14 1.7 0.076 

ln(M) * temperature-depth index 4 -65.3 139.1 0.13 1.9 0.068 

ln(M) + 1/𝑘𝐵𝑇 + depth 4 -65.4 139.3 0.13 2.1 0.062 

ln(M) + 1/𝑘𝐵𝑇 + Order 4 -65.6 139.7 0.12 2.5 0.051 

ln(M) * 1/𝑘𝐵𝑇 4 -65.7 139.8 0.13 2.6 0.048 

ln(M) 2 -68 140.2 0.09 3 0.039 

ln(M) + depth + Order 4 -65.9 140.2 0.12 3 0.039 

ln(M) * temperature-depth index + Order 5 -64.8 140.4 0.13 3.2 0.036 

ln(M) * depth 4 -66.1 140.8 0.11 3.6 0.029 

ln(M) * 1/𝑘𝐵𝑇 + Order 5 -65.1 141 0.13 3.8 0.026 

ln(M) + Order 3 -68 142.2 0.08 5 0.015 

temperature-depth index 2 -69.1 142.3 0.07 5.1 0.014 

ln(M) * depth + Order 5 -65.9 142.5 0.11 5.3 0.012 

1/𝑘𝐵𝑇 2 -69.5 143.1 0.06 5.9 0.009 

temperature-depth index + Order 3 -68.5 143.3 0.07 6.1 0.008 

1/𝑘𝐵𝑇  + Order 3 -68.8 144 0.06 6.8 0.006 

depth 2 -70.3 144.8 0.04 7.6 0.004 

depth + Order 3 -70.1 146.4 0.04 9.2 0.002 

1 1 -72.7 147.5 0 10.3 0.001 

1 + Order 2 -72.6 149.4 -0.01 12.2 0 
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Figure 2.2 Phylogeny, maximum intrinsic rate of population increase (rmax), maximum weight (kg), 

median depth (m) and median temperature (°C) in log10 space for 85 ray and skate species. Solid lines 

show median values for Myliobatiformes (n=32), Rhinopristiformes (n=16), Torpediniformes (n=5) 

and Rajiformes (n=32). A single phylogenetic tree from the possible distribution of trees from Stein, 

Mull et al., (2018) is displayed. 

 

Six of the 24 models examined had ΔAICc < 2, providing substantial support for describing 

variation in rmax across species (Burnham & Anderson, 2002) (Table 2.4). The top model with 

the greatest support (ΔAICc=0) was for rmax varying with body mass and the temperature-depth 

index (adjusted R2=0.14). Including taxonomic Order in the relationship between rmax and body 

mass and the temperature-depth index, received approximately 55% of the support of the top-

ranked model and resulted in no increase in adjusted R2 (adjusted R2=0.14). The 95% 

confidence intervals for the coefficient estimate for Order in this model also overlapped zero 

suggesting that the effect size was not significant (Table 2.3). Including an interaction between 

body mass and the temperature-depth index received 38% of the support of the top-ranked 

model and explained less variation (adjusted R2=0.13). Model results suggest that the 

temperature-depth index, temperature or depth can be used interchangeably. Models for rmax 

varying with body mass and temperature and body mass and depth received approximately 50% 

of the support of the top-ranked model and accounted for less variation (adjusted R2=0.12). 

Finally, a model for rmax varying with body mass, temperature, and depth, with an interaction 

term between temperature and depth, received less than half of the support of the top-ranked 

model (approximately 43%) and accounted for the same variation (adjusted R2  = 0.14). Eight 

other models had moderate support (< 2 ΔAICc ≥ 4), with marginal support for six other models 

(≤ 5 ΔAICc ≥ 7) (Table 2.4).  

The scaling of body mass in all models was shallower (-0.12 to -0.10) than expected from 

metabolic scaling theory (-0.33 to -0.25) (Table 2.5; Figure 2.3). Temperature had a positive 

effect on rmax as the coefficient of inverse temperature 1/𝑘𝐵𝑇 (activation energy E) was 

consistently negative, suggesting rmax is higher in species found in warmer waters (Table 2.3). 

The effect of depth was negative across all models suggesting rmax is lower in species found at 

greater depths (Table 2.3). An overall positive relationship between rmax and temperature was 

evident in both rays and skates (Figure 2.4a) and was mirrored by a negative relationship 

between rmax and depth (Figure 2.4b), as would be expected from metabolic scaling theory. 

Although a shallower relationship, there was a negative relationship between rmax and body 
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mass when controlling for a constant temperature (Figure 2.5a), depth (Figure 2.5b), and 

temperature-depth index (Figure 2.6). Whilst rmax was found to be lower at greater depths 

(Figure 2.5b) in line with metabolic scaling theory, rmax was also found to be lower at warmer 

temperatures (Figure 2.5a), contrary to metabolic scaling expectations. Further, when 

controlling for a constant temperature-depth index, warm, shallow-water rays showed lower 

rmax compared to cold, deep-water skates (Figure 2.6). There was a strong phylogenetic signal 

from the residuals of rmax in all models examined, with Pagel’s λ ≥ 0.87 (Table 2.4).  

 

 

Figure 2.3 Coefficient estimates for the six models of ln(rmax) with AICc values < 2. Error bars show 

95% confidence intervals. Effect sizes were considered significant when confidence intervals do not 

overlap zero. Shaded area shows the expected effect sizes for body mass (-0.33 to -0.25) and temperature 

(-1.0 to -0.6) based on metabolic theory. 
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Table 2.5 Coefficient estimates (95% confidence intervals estimated from standard errors shown in brackets) for all models of ln(rmax). The model with the lowest ∆AICc value 

is marked in bold and the models with ∆AIC < 2 are highlighted in grey. Pagel’s λ indicates the strength of the phylogenetic signal. 

ln(rmax) ~ intercept ln(M) depth 𝟏/𝒌𝑩𝑻 
ln(M): 

depth 

ln(M): 

𝟏/𝒌𝑩𝑻 
Order 

depth: 

𝟏/𝒌𝑩𝑻 

temperature 

-depth index 

ln(M): 

temperature 

-depth index 

Pagel’s λ 

1 
-1.17  

(-1.71 , -0.62)  - 

- - - - 

- 

- - - 0.88  

(0.69 , 0.96)  

1 + Order 
-1.23  

(-1.85 , -0.6)  

- - - - - 0.25  

(-1.05 , 1.55)  

- - - 0.88  

(0.68 , 0.96)  

depth 
-1.18  

(-1.71 , -0.65)  

- -0.32  

(-0.6 , -0.03)  

- - - 

- 

- - - 0.88  

(0.68 , 0.96)  

depth + Order 
-1.29  

(-1.9 , -0.69)  

- -0.33  

(-0.62 , -0.05)  

- - - 0.47  

(-0.8 , 1.73)  

- - - 0.87  

(0.65 , 0.96)  

1/𝑘𝐵𝑇 
-1.22  

(-1.76 , -0.68)  

- - -0.55 

(-0.96 , -0.13)  

- - 

- 

- - - 0.89  

(0.71 , 0.97)  

1/𝑘𝐵𝑇 + Order 
-1.4  

(-2.02 , -0.78)  

- - -0.61  

(-1.04 , -0.18)  

- - 0.74  

(-0.57 , 2.05)  

- - - 0.89  

(0.68 , 0.97)  

ln(M) 
-0.01  

(-0.91 , 0.89)  

-0.12  

(-0.2 , -0.05)  

- 

- 

- - - - - - 0.88  

(0.69 , 0.96)  

ln(M) * depth 
-0.1  

(-1 , 0.79)  

-0.12  

(-0.2 , -0.04)  

-0.30  

(-1.75 , 1.15)  - 

0  

(-0.15 , 0.16)  

- - - - - 0.88  

(0.63 , 0.96)  

ln(M) * depth + 

Order 

-0.21  

(-1.16 , 0.73)  

-0.12  

(-0.19 , -0.04)  

-0.29  

(-1.75 , 1.17)  - 

0  

(-0.16 , 0.16)  

- 0.43 

(-0.78 , 1.65)  

- - - 0.87  

(0.59 , 0.96)  

ln(M) * 1/𝑘𝐵𝑇 
-0.2  

(-1.13 , 0.73)  

-0.11  

(-0.19 , -0.03)  

- -1.16  

(-2.61 , 0.29)  - 

0.07  

(-0.06 , 0.21)  - 

- - - 0.92  

(0.72 , 0.98)  

ln(M) * 1/𝑘𝐵𝑇 + 

Order 

-0.39  

(-1.39 , 0.61)  

-0.11  

(-0.19 , -0.03)  

- -1.26  

(-2.73 , 0.21)  - 

0.08  

(-0.06 , 0.22)  

0.69  

(-0.64 , 2.01)  

- - - 0.91  

(0.69 , 0.98)  

ln(M) * 

temperature-depth 

index 

-0.18  

(-1.08 , 0.73)  

-0.11  

(-0.19 , -0.03)  

- - - - 

- 

- 

-0.31 

(-0.84 , 0.22)  

0.02  

(-0.04 , 0.07)  

0.90  

(0.67 , 0.97)  

ln(M) * 

temperature-depth 

index + Order 

-0.34  

(-1.3 , 0.62)  

-0.11  

(-0.19 , -0.03)  

- - - - 

0.61  

(-0.65 , 1.86)  

- 

-0.32  

(-0.85 , 0.21)  

0.02  

(-0.04 , 0.07)  

0.89  

(0.63 , 0.97)  

ln(M) + depth 
-0.11  

(-0.99 , 0.78)  

-0.12  

(-0.19 , -0.04)  

-0.27  

(-0.55 , 0)  

- - - 

- 

- - - 0.88  

(0.67 , 0.96)  

ln(M) + depth + 

Order 

-0.21  

(-1.15 , 0.72)  

-0.12  

(-0.19 , -0.04)  

-0.29  

(-0.57 , -0.01)  

- - - 0.43  
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Figure 2.4 Relationship between maximum intrinsic rate of population increase (rmax) and a) 

temperature (°C) and b) depth (m) in log10 space for 53 ray (Orders Myliobatiformes, 

Rhinopristiformes, and Torpediniformes) and 32 skate (Order Rajiformes) species. a) Median depth (m) 

is shown by the point size, with a linear model fitted to ray (red) and skate (blue) points. b) Median 

temperature (°C) and maximum weight (kg) is shown by the point colours and size, respectively, with a 

linear model fitted to ray (circular) and skate (triangular) data points. The grey band around the fitted 

models show the confidence intervals. 
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Figure 2.5 Relationship between maximum intrinsic rate of population increase (rmax) and body mass in 

log10 space for 85 ray species. Fitted lines show predicted relationships based on the top-ranked models: 

a) ln(rmax) ~ ln(M) + (1/kBT) and b) ln(rmax) ~ ln(M) + depth. Predicted allometric changes of rmax across 

a) median temperatures (6, 10, 20 °C) and b) median depths (10, 500, 1000 m). Median temperature and 

depth are shown by the point colour and size, respectively. 

 

2.5 Discussion 

We find empirical evidence for a positive relationship between the maximum intrinsic rate of 

population increase (rmax) and temperature. However, paradoxically, the live-bearing, tropical 

rays have a much lower rmax than egg-laying, temperate skates. Metabolic theory and empirical 

patterns suggest that, after controlling for body size, rmax should increase with temperature both 

among populations and across species (Bernhardt et al., 2018; Savage et al., 2004; Luhring & 

Delong, 2017). This positive relationship between temperature and rmax is consistent with the 

biogeographic pattern that deep-water species, including sharks, generally have lower rmax and 

are more prone to being overfished than their shallow-water relatives. We found good support 

for models that included temperature, depth, or a temperature-depth index in the relationship 

between rmax and body mass, such that depth may also be used as a proxy where temperature 
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data may not be available. Below we hypothesise that this paradoxical pattern arises because 

the cooler-deeper waters are dominated by skates, which are relatively fecund egg-layers, 

whereas the warmer-shallower waters are dominated by rays, which give birth to few, larger 

offspring. Next, we discuss (1) the temperature-related biogeography of rmax; (2) intrinsic 

sensitivity to overexploitation and extinction risk; (3) life history correlates of population 

responses; (4) whether reproductive strategies can explain the rmax paradox (that warm-shallow-

water tropical rays have lower rmax than cold-deep-water skates); (5) fisheries implications, and 

(6) future research directions. 

 

 

Figure 2.6 Relationship between maximum intrinsic rate of population increase (rmax) and body mass in 

log10 space for 53 ray species (Orders Myliobatiformes, Rhinopristiformes, and Torpediniformes) and 

32 skate species (Order Rajiformes). Fitted lines show predicted relationships based on the top-ranked 

model: ln(rmax) ~ ln(M) + temperature-depth index + Order. Predicted allometric changes of rmax across 

constant temperature-depth index (PC1 = 1) for ray (red) and skate (blue) data points. 
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There are a number of temperature-related, biogeographical patterns in rmax. Generally, 

biological processes are temperature-dependent, for example, metabolic rate increases 

exponentially with temperature above 15°C for ectotherms (Clarke & Johnston, 1999; Clarke, 

2017; Dillon et al., 2010). Individual metabolic rate is fundamental to physiological 

performance and has effects at the population, community, and ecosystem levels (Brown et al., 

2004; Pörtner, 2001). Consequently, experimental treatments of algal cultures exhibit increased 

population growth rates and lower carrying capacity at higher temperatures (Bernhardt et al., 

2018; Luhring & Delong, 2017) and comparative analyses reveal that species found at warmer 

temperatures tend to have higher rmax compared to those found at cooler temperatures (Savage 

et al., 2004; Angilletta et al., 2010). It is therefore not surprising that rmax was found to increase 

with increasing environmental temperature for rays and skates in this study nor that rmax 

decreased with increasing depth. This is in line with theoretical and empirical temperature-

related, latitudinal patterns that organisms with higher metabolic rates and ‘fast’ life histories 

in warmer waters (tropical, low latitudes) will have higher rmax, than those with slower 

metabolic rates and ‘slow’ life histories in cooler waters (temperate and polar, high latitudes) 

(Brown et al., 2004; Clarke & Johnston, 1999; Juan-Jordá et al., 2013). It follows that species 

with lower rmax at cooler, higher latitudes have been found to face greater population declines 

and therefore higher extinction risk than those with faster life histories at warmer, lower 

latitudes (Jennings et al., 1999; Juan-Jordá et al., 2015). Similarly, these temperature-related, 

latitudinal patterns may be evident over a depth gradient. This has been found in sharks, where 

cooler, deep-water species have a lower rmax (Pardo & Dulvy, 2022) and face higher extinction 

risk and lower population recovery rates (García et al., 2008; Simpfendorfer & Kyne, 2009). 

Generally, deep-water sharks have lower somatic growth rates, later maturity, and greater 

longevity, with many live-bearing, deep-water sharks having a smaller body size and lower 

annual reproductive output (Rigby & Simpfendorfer, 2015). Consequently, rmax has been found 

to be lower in deep-water sharks compared to continental shelf and oceanic pelagic species 

(García et al., 2008). A similar pattern has been found using intrinsic rebound potentials, which 

is another measure of population growth rate (Simpfendorfer & Kyne, 2009; Smith et al., 1998). 

Expanding beyond these analyses that focussed on three categorical habitat types, Pardo & 

Dulvy (2022) investigated the effects of environmental temperature, depth, and mass scaling 

on rmax for sharks and rays. They found that deep-water species have a lower rmax due to the 

combined effects of cooler temperatures and an independent depth effect that could be due to 

multiple physiological and ecological factors, for example, lower secondary production at 
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greater depths (Jahnke, 1996). To date, this literature has focussed on sharks in which the 

phylogenetic divergence between deep-water species (Superorder Squalomorphii) and shallow-

water species (Superorder Galeomorphii) is relatively distant, for example, deep-water 

Dogfishes (Order Squaliformes) compared to shallow-water Horn Sharks (Heterodontiformes) 

and Mackerel Sharks (Lamniformes). Indeed, the hypothesised sequence of evolution is that 

ancestral sharks were deep-water species with small brains and low reproductive investment 

that subsequently gave rise to shallow-water lineages with lower fecundity and larger more 

complex brains (Compagno, 1990; Mull et al., 2020). In our analysis of rays and skates, we also 

found that rmax decreased with increasing depth and that this was mirrored by the relationship 

with temperature but that shallow-water tropical rays still had a lower rmax relative to cold-deep-

water temperate skates. Compared to sharks, the divergence between skates (Order Rajiformes) 

and other rays (Orders Myliobatiformes, Rhinopristiformes, and Torpediniformes) is more 

recent and clearly geographically defined, with the skates arising and radiating mainly in the 

Arctic polar and North Atlantic and North Pacific temperate latitudes and having a distinct 

pattern of egg-laying and much greater fecundity than the tropical rays (McEachran & Miyake, 

1990; Frisk, 2010).  

Instead of low temperature, we hypothesise the reason for slow life histories and low rmax 

estimates in deep-water sharks, such as Gulper Sharks (Family Centrophoridae), is their very 

low fecundity, typically less than five female offspring per year (Graham & Daley, 2011; Cotton 

et al., 2015; Paiva et al., 2011). Such low fecundity limits rmax and results in a low capacity for 

density-dependent compensation (Pardo et al., 2018). Similarly, many tropical rays have very 

low fecundity, notably the largest radiation of tropical rays: the Myliobatiformes. This Order 

has some species that produce only one to two very large offspring, no more frequently than 

once per year. For example, Devil rays (Mobula spp.) produce a single, large pup (rarely twins) 

born every 1-7 years (Rambahiniarison et al., 2018a; White et al., 2006; Marshall & Bennett, 

2010). Consequently, they have amongst the lowest rmax found for sharks and rays, as found in 

this and previous studies (Pardo, Kindsvater, Cuevas-Zimbrón, et al., 2016; Dulvy, Pardo, et 

al., 2014; Rambahiniarison et al., 2018b). The fecundity of live-bearing shark and ray species 

more generally is lower when compared to egg-laying species of a similar body size, as they 

are limited by the size of the maternal body cavity given internal embryonic development 

(Wourms & Lombardi, 1992; Musick & Ellis, 2005). The study results suggest that skates may 

be different to deep-water sharks that live longer, mature later, and have a lower annual 

reproductive output, and consequently are more intrinsically sensitive (Rigby and 
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Simpfendorfer, 2015). This variation around expectations from metabolic theory is likely due 

to their egg-laying reproductive strategy, resulting in higher fecundity and higher rmax (Pardo et 

al., 2018). This is in line with previous studies that have found higher extinction risk and slower 

population recovery rates in live-bearing, less fecund species (García et al., 2008; 

Simpfendorfer & Kyne, 2009).  

Although our dataset includes species from all four Orders of rays and skates, including 18 of 

26 families, there were only sufficient life history data to calculate rmax for 13% of assessed 

species on the IUCN Red List. There were no representatives from some families and therefore 

there may be exceptions to the observed global patterns in rmax discussed thus far. For example, 

there are some deep-water stingrays (Order Mylibatiformes) including Hexatrygon bickelli and 

Plesiobatis daviesi that were not in our dataset because their biology is poorly known. The 

former is live-bearing producing litter sizes of two to three pups, whilst the latter is likely 

viviparous with small litter sizes and a long gestation period (Finucci & García, 2024; Kyne & 

García, 2023; Ebert et al., 2002). Consequently both species likely have slow life histories, 

which would be more consistent with other deep-water chondrichthyans and suggest that 

fecundity may help explain variation in rmax observed amongst rays and skates. Equally, there 

are examples of shallow-water egg-laying skates such as Zearaja maugeana and Okamejei 

schmidti, which likely have relatively high fecundity based on congeners (e.g. of species used 

in our analyses O. kenojei lays 42-103 egg cases per year and D. batis and D. laevis lays 40-47 

egg cases per year), although this remains unknown (Clark, 1922; Casey & Myers, 1998; 

Ishihara et al., 2002; Gedamke et al., 2005). Again, this would be more consistent with 

metabolic expectations for shallow-water chondrichthyans and suggest that differences in 

reproductive strategies are responsible for the deviation from metabolic theory for rays and 

skates in this study. 

Skates in this study had a later median age at maturity, similar maximum age, but higher annual 

reproductive output compared to the rays. Whilst age at maturity has been found to be a major 

negative correlate of rmax (Hutchings et al., 2012), it is likely that the higher reproductive output 

is leading to higher rmax estimates, which may translate to lower intrinsic sensitivity. There will 

be a trade-off in energy investment in life history traits, such that offspring size is inversely 

related to fecundity, with less fecund species having larger offspring (Cortés, 2000). Recent 

work suggests that offspring size may be an important determinant of rmax (Denéchère et al., 

2022). At the larger taxonomic scale, there are broadly two breeding strategies in marine 

organisms: well-provisioned offspring that are proportional in size compared to the maternal 
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body size, as seen generally in sharks and rays (Denéchère et al., 2022; Goodwin et al., 2002) 

and broadcast spawning in which offspring size (ovum diameter) is independent of maternal 

size and is typically 1-2 mm in diameter due to selection for pelagic dispersal in the plankton 

(as seen in teleosts; Duarte & Alcaraz, 1989). According to metabolic scaling theory, rmax scales 

with body mass with an exponent of -0.25 (Savage et al., 2004; Brown et al., 2004) but only 

when offspring size is proportional to adult size (Denéchère et al., 2022). Therefore, the paradox 

of lower rmax in warm-water rays could result from their larger offspring size (proportional to 

maternal body size) compared to the cooler-water skates, which lay pairs of eggs (mermaid’s 

purses) that tend to be more consistently smaller in size despite a wide range in maternal sizes. 

Further, it would be interesting to explore differences in somatic growth rates between rays and 

skates as Denéchère et al. (2022) also found that there was variation around the -0.25 metabolic 

scaling expectation where somatic growth rates were proportional as opposed to independent 

of adult body mass (Denéchère et al., 2022). 

Our finding that rmax is lower in the less fecund, tropical rays than the more fecund, cooler-

dwelling skates, has profound consequences for fisheries sustainability and extinction risk. 

First, our findings imply that warm-shallow-water rays are more intrinsically sensitive to 

exploitation than the skates. Yet, historically skates have been at greater risk of extinction, with 

the loss of the largest bodied skates from both sides of the North Atlantic (Brander, 1981; Dulvy 

& Reynolds, 2002; Walker & Heessen, 1996). However, these relatively fecund species 

disappeared due to the intense trawl fisheries and the lack of management for skates. Now with 

reduction in fishing mortality and skate quotas, we are seeing stabilisation and recovery of 

larger skates (McGeady et al., 2022; Bom et al., 2022; Moore, 2023). At that time, there was 

little comparative understanding of the state of tropical shark and ray fisheries. Over the past 

decade, it has become increasingly clear that tropical fisheries are particularly intense and 

relatively unregulated (Davidson et al., 2016; Booth et al., 2019; Sherman et al., 2023; Temple 

et al., 2019). The latest reassessment of all chondrichthyans has revealed greater threat in 

tropical coastal waters, with more than 75% of tropical and subtropical coastal species 

threatened. Our result suggests that while this is mainly due to intense, largely unregulated 

fisheries, the differential intrinsic sensitivity of rays may go a long way to explain why batoid 

species are particularly at risk in the tropics (Dulvy et al., 2021; Temple et al., 2019). These 

results underscore the need for effective fisheries management, through catch and effort control 

(Blaber et al., 2009; Yulianto et al., 2018). Our estimates are at the global species level, yet 

many species are widely distributed and there is considerable evidence for geographic trait 
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variation due to local adaptation (Cope, 2006). There might be temptation to wait until the data 

are gathered from the locale of interest before using these rmax estimates in risk analyses and 

other forms of management guidance. Instead, we remind that we estimated rmax based on 

10,000 random deviates from a uniform distribution between minimum and maximum values 

of each life history parameter (or 10% for αmax), hence, local population specific values are 

likely encompassed within the posterior distributions of the global species rmax. Hence, we 

recommend using the current values, as well as gathering more locale-specific life history data. 

Previous methods of estimating rmax for sharks and rays have assumed all juveniles survive to 

maturity at a similar rate of survivorship in the adult stage, independent of reproductive strategy 

(Pardo, Kindsvater, Reynolds, et al., 2016). However, juvenile survivorship likely varies with 

offspring size, in addition to lifespan, such that the survival to maturity may be greater in live-

bearing rays with few offspring compared to fecund, egg-laying skates with smaller offspring 

sizes. The proportion of offspring that survive to maturity is likely lower in highly fecund 

skates, for example, due to predation on egg cases (Lucifora & García, 2004; García et al., 

2008), compared to fewer, larger offspring in live-bearing rays that have higher maternal 

investment and a higher chance of survival (Frisk et al., 2001). The survival of eggs relative to 

the annual reproductive output (in the absence of density-dependence) is something that needs 

more investigation to further explore whether survival to maturity is truly comparable between 

these different reproductive strategies. 

In addition to offspring size and survival, and the influence of offspring size on rmax, future 

research could explore (1) somatic growth rates and the different dimensions of reproductive 

output, such as offspring size, and their relationship with rmax to better understand the reasons 

behind the higher intrinsic sensitivity (lower rmax) found for tropical rays; (2) consider alternate 

temperature data to improve the estimation of rmax; and (3) access more data through imputation. 

First, this could include investigation of size-dependent mortality rates to account for offspring 

size and its effect on juvenile survival to maturity in estimations of rmax in order to investigate 

whether survival to maturity is truly comparable across reproductive strategies, such as between 

the live-bearing rays and egg-laying skates in this study. Further understanding of the 

relationship between offspring size and environmental temperature, given how the latter likely 

affects maternal investment, is also needed (Pettersen et al., 2020). Similarly, investigation of 

the relationship between rmax and somatic growth rate (von Bertalanffy k) or growth 

performance (Φ) relative to maternal size is required (Denéchère et al., 2022). A growth effect 

is likely correlated with temperature, with tropical species typically exhibiting faster growth 
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rates and lower longevity. Variation in somatic growth has been found to be important alongside 

juvenile survival in population fluctuations of marine fishes (Stawitz & Essington, 2019). 

Second, we used a widely available temperature dataset to ensure that our approach was 

consistent with other recent papers and ongoing work (Pardo & Dulvy, 2022), however, in the 

future, it would be useful to explore the opportunity to average bottom temperatures for 

demersal species, for example, using Bio-Oracle or even using global climate models (Assis et 

al., 2018). The ability to use simple traits to understand rmax and subsequently, relative 

sensitivity to exploitation, recovery potential, and fishing limits, is crucial for data-poor species. 

This study provides the foundations for using body mass, environmental temperature, and depth 

to predict rmax for rays and skates and potentially for predicting future rmax estimates using 

global climate model projections. Future calculations will likely be able to utilise more data 

such as known occupied depth ranges and temperature profiles from tagged individuals. Third, 

with the rate of species and population decline and extinction, it is crucial that we use available 

trait information to predict extinction risk and guide conservation (Green et al., 2022). New 

Bayesian approaches can use the trait covariation on strength and variation of intercorrelations 

to impute missing trait values (Kindsvater et al., 2018). This has great potential to expand the 

range of species that can be considered in these analyses and has recently been used to estimate 

59 unobserved traits for 23 populations of tunas and billfishes (Horswill et al., 2019). 

Overall, the findings indicate that warm-shallow-water rays tend to be more intrinsically 

sensitive to exploitation than cold-deep-water skates; this is concerning given the greater 

extrinsic exposure to overfishing in shallow, tropical coastal waters. This may help explain why 

we are now finding that tropical and subtropical species are facing such a high threat of 

extinction and highlights the need for effective fisheries management. The use of simple life 

history traits, including maximum body size, environmental temperature, and depth range, in 

concert with phylogenetic imputation, may be a useful approach for estimating rmax for use in 

ecological risk assessments.  
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Chapter 3. Does offspring size resolve a latitudinal population growth rate 

paradox in rays and skates? 

3.1 Abstract 

The maximum population growth rate, rmax, is a key determinant of the limits for sustainable 

fishing and is increasingly used in risk assessments. Macroecological theory suggests that 

warm-water species and populations will have higher rmax and therefore, will be less 

intrinsically sensitive to exploitation. However, warm-shallow-water tropical rays (orders 

Torpediniformes, Rhinopristiformes, and Myliobatiformes) paradoxically have lower rmax than 

cold-deep-water temperate skates (Rajiformes). Here, we seek to understand why these two 

related lineages deviate from macroecological theory. We build from recent advancements that 

suggest that offspring size, and not adult size, may be key to understanding population growth 

rates. Specifically, we examine how adult size, offspring size, temperature, and depth explain 

variation in rmax across 85 species of rays and skates. Our results show that the negative effect 

of offspring size upon rmax is greater and more important than adult size. Indeed, tropical rays 

had, on average, larger offspring and lower rmax compared to the temperate skates, despite 

living in warmer and shallower waters. Thus, despite the expectation from theory that tropical 

rays should have faster life histories and be more resilient to exploitation and other threats 

compared to temperate skates and other elasmobranch species, our work explains why these 

species are actually less resilient. It remains unclear as to why tropical rays have such large 

offspring but we hypothesise that this is due to the increasing body of evidence for greater 

predation risk in shallow tropical waters. Our work highlights the complex relationships among 

life histories and the environment and may help explain global biogeographic patterns of 

intrinsic sensitivity to overexploitation. 

3.2 Introduction 

A key challenge is understanding global patterns of life histories, which can help us predict 

species sensitivity to overfishing and other perturbations, particularly for data-poor species. 

Biogeographic patterns in life histories appear to be mediated by temperature, for example, 

Bergmann’s rule states that terrestrial endotherms in cooler environments will be larger-bodied 

than their warmer relatives (Bergmann, 1847). Similarly, the Temperature-Size Rule (TSR) 

describes the observed pattern that ectothermic species and populations will generally grow 

faster to a smaller size at maturity (and presumably, smaller adult size) in warmer temperatures 
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(Atkinson, 1994; Atkinson & Sibly, 1997; Atkinson et al., 2006). Finally, metabolic theory 

suggests that species in warmer waters (e.g. in the tropics and shallow waters) with higher 

metabolic rates will tend to have ‘faster’ life histories than those in cooler waters (e.g. high 

latitude and deep waters) (Wong et al., 2021; Gravel et al., 2024; Juan-Jordá et al., 2013). 

Typically, species with faster life histories grow faster to a smaller maximum body size, mature 

earlier, and have shorter lifespans, resulting in higher maximum intrinsic rate of population 

increase, rmax (Denney et al., 2002; Hutchings et al., 2012). Collectively, Bergmann’s rule, the 

TSR, and metabolic theory would predict that as temperatures rise, species’ life histories would 

speed up, resulting in faster growth, smaller sizes at maturity, and ultimately, faster population 

growth rates. 

The maximum intrinsic rate of population increase (rmax) is the average annual number of 

female spawners produced per female spawner at low population density (i.e. in the absence of 

density-dependence), which can vary with temperature biogeographically. It represents the 

maximum rate at which a population can grow and is an essential component of fisheries 

management to determine fishing limits and species’ recovery potentials (Myers et al., 1997; 

Myers & Worm, 2005; Pardo, Kindsvater, Reynolds, et al., 2016). According to metabolic 

scaling expectations, rmax will scale with (adult) body mass (with an exponent of -0.25) and 

independently increases with temperature (Savage et al., 2004; Brown et al., 2004). This has 

been shown empirically both in experimentally manipulated populations as well as across 

species in the wild (Bernhardt et al., 2018; Luhring & Delong, 2017). For example, a positive 

relationship between rmax and temperature exists across Atlantic cod (Gadus morhua), which 

has greater rmax in warmer, more southerly populations (Myers et al., 1997; Savage et al., 2004). 

The biogeographic patterns of temperature (and food availability) were found to explain the 

life history patterns of tuna and mackerel (Scombridae) (Kindsvater et al., 2024). Further, 

cooler, temperate species with slower life histories experienced greater declines than tropical 

lower-latitude species with faster life histories, after controlling for fishing mortality (Juan-

Jordá et al., 2015, 2011). More generally, the ratio of production to biomass (P:B) changes 

systematically with latitude across the world’s fish communities. In the tropics, there is high 

production and low standing biomass compared to lower production and higher standing 

biomass in cooler temperate and polar latitudes (Jennings et al., 2008). Thus, understanding 

the metabolic basis for life histories such as somatic growth (Wong et al., 2021) and population 
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growth rate (Gravel et al., 2024) holds promise for understanding global change (Myers & 

Worm, 2005; Myers et al., 1997; Gravel et al., 2024).  

As well as temperature and adult size, recent work suggests that offspring size may be 

important in explaining the scaling of rmax (Denéchère et al., 2022; Neuheimer et al., 2015). 

This leads us to wonder whether offspring size can also explain the diversity of rmax within, as 

well as across lineages. Rays (Orders Torpediniformes, Rhinopristiformes, and 

Myliobatiformes) and skates (Rajiformes) of the Superorder Batoidea are widely distributed 

across the world’s oceans. Rays are generally found in shallow tropical and temperate waters 

(McEachran & Miyake, 1990; Frisk, 2010; Ebert & Compagno, 2007) but there are also deep-

water species (e.g. Plesiobatis daviesi and Hexatrygon bickelli). Skates are typically distributed 

in the cooler waters of polar and temperate seas, as well as deeper, cool waters in the tropics, 

although there are also some shallow-water species (e.g. Zearaja maugeana and Okamejei 

schmidti). Metabolic theory would suggest that warm-shallow-water tropical rays should have 

higher rmax, yet paradoxically, they have lower rmax than cold-deep-water temperate skates 

(Barrowclift et al., 2023). Most tropical rays are live-bearers with very low fecundity and larger 

offspring compared to cooler-water skates that lay numerous eggs with smaller offspring size 

(Goodwin et al., 2002; Mull, Pennell, et al., 2022). This could mean that for two species with 

the same adult body mass, one with larger offspring (and fewer of them) may have a lower rmax 

and therefore, offspring size could affect the scaling of rmax (Denéchère et al., 2022; Burger et 

al., 2019). As such, we propose that batoids are an ideal taxon to test how offspring size 

influences the body mass-scaling of rmax and further, that offspring size may resolve the 

latitudinal paradox of rmax in rays and skates.  

As well as being shaped by the intrinsic influence of temperature on metabolic rate (Gillooly 

et al., 2001), life histories are also shaped by extrinsic predation mortality (Sparholt, 1990; 

Gislason et al., 2010). The classic example is the experimental manipulation of predation on 

life history of the Guppy (Poecilla reticulata) (Reznick et al., 1990, 1996). Predation on larger 

individuals drove the evolution of greater metabolic rate and a fast-paced life history, including 

earlier maturation, reduced interbirth interval and greater reproductive allocation (Auer et al., 

2018). More broadly, one hypothesis for the evolution of parental care (including viviparity) 

and large offspring size is to reduce the risk of mortality either of the offspring or of individuals 

later in life (Clutton-Brock, 1991; Goodwin et al., 2002; Pettersen et al., 2022). In 

elasmobranchs specifically, live-bearing and additional investment in offspring through 
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matrotrophy is more prevalent in the tropics, which may be a response to greater predation risk 

(Mull, Pennell, et al., 2022). Since Darwin, it has long been hypothesised that biotic 

interactions, such as predation, are more prevalent in shaping species biology and diversity 

towards the equator (Sunday et al., 2012; Schemske et al., 2009). This includes a greater 

selective pressure of predation in the tropics (Freestone et al., 2011, 2020). Recent experimental 

evidence from caged and uncaged epifaunal communities suggests predation rates are greater 

in shallow, tropical waters than at higher latitudes (Freestone et al., 2011, 2020; Ashton et al., 

2022). Predation risk is emerging as a key determinant of tropical ray abundance; as sharks are 

fished down, ray abundance is increasing on coral reefs (Sherman et al., 2020; Simpfendorfer 

et al., 2023). 

Here, we investigate whether larger offspring size of tropical rays explains their lower rmax 

compared to skates, while accounting for adult body size, temperature, and depth for 85 batoid 

species. 

3.3 Methods 

Firstly, we describe the calculation of rmax, including the source of the life history data used in 

the calculations. Second, we describe the calculation of environmental temperature-at-depth. 

Third, we summarise our analytical approach, including the statistical models used to assess 

different hypotheses of how rmax may vary with adult and offspring body mass, temperature, 

and depth. 

3.3.1 Source of life history data and calculation of rmax 

rmax was calculated using a modified Euler-Lotka model, with a mortality estimator that 

accounts for survival to maturity (Pardo, Kindsvater, Reynolds, et al., 2016; Cortés, 2016) with 

the following equation: 

𝑙𝛼𝑚𝑎𝑡
𝑏 = 𝑒𝑟𝑚𝑎𝑥𝛼𝑚𝑎𝑡 − 𝑒−𝑀(𝑒𝑟𝑚𝑎𝑥)𝛼𝑚𝑎𝑡

−1
,   (1) 

 where 𝑙𝛼𝑚𝑎𝑡
 is the proportion of individuals surviving to maturity, which is calculated with: 

𝑙𝛼𝑚𝑎𝑡
=  (𝑒−𝑀)𝛼𝑚𝑎𝑡,      (2) 

b is annual fecundity, M is the species-specific instantaneous natural mortality rate, αmat is the 

age at maturity, and αmax is the maximum age. Natural mortality (M) was estimated as M = 1/𝜔 

(Dulvy et al., 2004) where 𝜔 is an estimate of average lifespan in years and was assumed to be 



52 

 

the midpoint between age at maturity (αmat) and maximum age (αmax) (Pardo, Kindsvater, 

Reynolds, et al., 2016) estimated with: 

𝜔 =
(𝛼𝑚𝑎𝑥+ 𝛼𝑚𝑎𝑡)

2
       (3). 

The modified Euler-Lotka model aims to improve the estimation of rmax by accounting for 

different juvenile survival rates due to different reproductive strategies in sharks and rays 

(Pardo, Kindsvater, Reynolds, et al., 2016; Cortés, 2016). However, it is important to note that 

juvenile survival is likely to be lower in egg-laying skates that are more fecund and higher in 

live-bearing rays that produce fewer offspring (Frisk, Miller and Fogarty, 2001; García, 

Lucifora and Myers, 2008). The following life history traits were sourced from a published 

global life history database (compiled in Chapter 2): female age at 50% maturity (years; αmat), 

maximum age (recorded for females where known, years; αmax), and annual reproductive output 

(number of female offspring assuming 1:1 sex ratio; b) for 85 ray (Torpedo rays, 

Torpediniformes; Rhino rays, Rhinopristiformes; and stingrays, Myliobatiformes) (n=53) and 

skate (Rajiformes) (n=32) species. 

Estimates of adult body mass (maximum weight in grams) for the 85 batoid species were also 

sourced from the published life history database (Barrowclift & Dulvy, 2023). Offspring body 

mass (in grams) was estimated from offspring length (total length or disc width in cm) (note, 

this is hatching size for skates) reported in Rays of the World (Last et al., 2016), Sharkipedia 

(Mull, Pacoureau, et al., 2022), and IUCN Red List Assessments (Dulvy et al., 2021). Where 

offspring length data were unavailable for a species (n=14), offspring length was estimated 

from a similar species with similar maximum length and body shape (Barrowclift & Dulvy, 

2023). The median offspring length was used where minimum and maximum offspring lengths 

were reported. The corresponding offspring body mass was then calculated using length-weight 

regression coefficients extracted from FishBase using the package rfishbase (Boettiger et al., 

2012; Froese & Pauly, 2022; Barrowclift & Dulvy, 2023). Length-weight regression 

coefficients were selected for females where possible. If length-weight regressions were 

unavailable, estimates for a closely related species with similar body shape and maximum size 

were used (Barrowclift & Dulvy, 2023). 

3.3.2 Calculation of environmental temperature-at-depth 

Median depth and environmental temperature for the 85 ray and skate species were also used 

from Barrowclift et al., 2023 (see Chapter 2) and their compilation is summarised next. Median 
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depth estimates for each species were taken from depth ranges of IUCN Red List assessments 

as compiled in Dulvy et al. (2021). Temperature-at-depth data were determined by overlaying 

a given species’ distribution, using species range data shape files that were sourced from 

https://www.iucnredlist.org/, with the International Pacific Research Center’s interpolated 

dataset of gridded mean annual ocean temperatures, which is based on measurements from the 

Argo Project (data available at: 

http://apdrc.soest.hawaii.edu/projects/Argo/data/statistics/On_standard_levels/Ensemble_mea

n/1x1/m00/index.html). Temperature grid points were extracted across the species’ distribution 

from the depth level that was closest to the species’ median depth and finally, the median 

temperature was calculated. 

3.3.3 Statistical analyses 

Metabolic scaling expectations for how rmax relates to body mass and temperature (Savage et 

al., 2004) can be estimated with the following linear model: 

ln(𝑟𝑚𝑎𝑥) =  𝛽0  + 𝛽1  ∗  ln(𝑀) +  𝛽2  ∗ 1/𝑘𝐵𝑇 ,    (4) 

where 𝑟𝑚𝑎𝑥 is the maximum intrinsic rate of population increase (year-1), β0 is the intercept, β1 

is the body mass-scaling coefficient, M is adult body mass in grams, β2 is the activation energy 

E, T is the temperature (in Kelvin), and kB is the Boltzmann constant (8.617 × 10-5 eV).  

Following Denéchère et al., (2022), we also consider absolute and relative offspring size 

calculated as adult body mass divided by offspring body mass and include a term for adult-to-

offspring size ratio (M/Moffspring) in some models. Hence, for the same adult body mass, larger 

offspring size would lead to a smaller adult-offspring size ratio. Using an information-theoretic 

approach, we include six additional models representing alternative hypotheses of how rmax 

may vary with (1) absolute offspring body mass Moffspring (2) Moffspring plus adult body mass M, 

and (3) adult-to-offspring size ratio (M/Moffspring), and compare these with 24 models 

representing hypotheses of how rmax may vary with adult body mass, temperature, and depth 

from Barrowclift et al., 2023 (see Chapter 2)  (Table 3.1) (Burnham & Anderson, 2002). The 

top models were the same and therefore we only present the 14 most relevant models in our 

results (Table 3.2). rmax, adult body mass, and offspring body mass data were natural log-

transformed and temperature and depth data were standardised (scaled and centred) prior to 

analyses. A random phylogenetic tree from the distribution of trees in Stein, Mull et al., (2018). 

(available at Vertlife.org) was included as a random effect of phylogeny in all models, with 

https://www.iucnredlist.org/
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binomial nomenclature updated to reflect current taxonomic nomenclature. Models were fitted 

with an additional ten random trees to test the sensitivity of results to slight variations in the 

phylogenies; the results were nearly identical with the same top model, and therefore, results 

were reported for a single tree (Table 3.3). The phylogenetic position of two species was not 

known (Aetobatus narutobiei and Maculabatis ambigua), and therefore, two closely related 

species (A. flagellum and M. gerrardi, respectively) were used instead. 

Phylogenetic generalised linear models were fitted using the pgls function in the caper package 

(Orme et al., 2018) to account for non-independence of closely related species. Models were 

also fitted without data (n=2) for two manta ray species (Mobula alfredi and M. birostris) with 

the largest offspring body masses to test sensitivity of results to their removal. The top models 

were the same and therefore results were presented for the full 85 species dataset (Table 3.4). 

Adult and offspring body mass were positively correlated (Pearson’s r = 0.75) above a 

threshold of 0.7 in which collinearity severely distorts model estimation (Dormann et al., 2013). 

Inverse temperature and depth were also positively correlated (Pearson’s r = 0.75). Variance-

Inflation Factors (VIF) were estimated to assess collinearity for all coefficients in the models 

using the car package (Fox & Weisberg, 2019). VIF values were less than 2, except as expected 

when interactions were included, indicating that our models were robust to collinearity. The 

corrected Akaike Information Criterion (AICc) were used to compare models. If including a 

parameter improved the model’s AICc by less than two units (ΔAICc ≤ 2), it was considered 

relatively uninformative (Arnold, 2010; Burnham & Anderson, 2002). All analyses were run 

in R version 4.1.2 (R Core Team, 2021) in RStudio (RStudio Team, 2021). 

3.4 Results 

The maximum population growth rate rmax of batoids (n=85) was lower in species with larger 

offspring sizes (Figure 3.1; Figure 3.2a). This pattern was consistent across all models with or 

without the inclusion of adult body mass (Figure 3.1; Figure 3.2b). Although adult and 

offspring body mass were positively correlated (Figure 3.3a), offspring size was generally 

larger for warm-shallow-water tropical rays, with little difference in adult size relative to cold-

deep-water temperate skates (Figure 3.4). Indeed, the effect of adult body mass on rmax was 

approximately half (-0.12) than expected from metabolic theory (-0.25; Figure 3.1; Table 3.5).  

Of the 14 models examined, the top model was for rmax varying with adult body mass, offspring 

body mass, and temperature (ΔAICc=0), describing the greatest amount of variation in rmax 
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across species (adjusted R2=0.18; Table 3.2). The second-ranked, more parsimonious model, 

which described rmax varying solely with offspring body mass was within 2 AICc units (ΔAICc 

= 0.6; Table 3.2) of the top model. This model had approximately 74% of the support of the 

top-ranked model (when compare the Akaike weights), accounted for slightly less variation 

(adjusted R2=0.16), and also had the lowest uncertainty (smallest confidence intervals) in how 

offspring body mass relates to rmax (Figure 3.1).  

Including adult body mass in the relationship between rmax and offspring body mass received 

moderate support but did not increase ΔAICc by more than two units (ΔAICc=2.5), with only 

29% of the support of the top-ranked model and accounting for slightly less variation (adjusted 

R2 = 0.15). Including an interaction term between adult and offspring body mass received less 

support (ΔAICc=3.8), with no increase in variation explained (adjusted R2=0.14) and only 15% 

of the support (Akaike weights) of the top model. Adult body mass explained more variation 

in rmax (larger effect size) when it was the sole mass predictor in the model (Table 3.5). 

However, once offspring body mass was included as a predictor, the variation in rmax explained 

by adult body mass shifts to offspring body mass, suggesting it is a better predictor of rmax.  

The effect of inverse temperature 1/𝑘𝐵𝑇 and depth were negative across models indicating 

rmax is higher in warmer-shallower water species as would be expected from metabolic theory 

(Figure 3.2a; Table 3.5). When comparing the same models for adult body mass or offspring 

body mass with and without temperature, the effect of temperature did improve the support of 

the model, but only by roughly 2 AIC units. The scaling of temperature with rmax overlapped 

with the expectation of approximately -0.6 from metabolic theory (Figure 3.1; Figure 3.5). 

However, rmax was found to be lower at warmer temperatures based on the fitted top-model 

(Figure 2a). Yet, despite a weak negative relationship between offspring body mass and 

temperature for rays and skates (Figure 3.5a), less fecund species with larger offspring body 

mass (Figure 3.3b) tended to have lower rmax (Figure 3.2b; Figure 3.5a).  

By comparison, the remaining models were not well supported (ΔAICc > 4) (Table 3.2). 

Although larger offspring body mass, relative to adult body mass, resulted in a smaller adult-

to-offspring size ratio (Figure 3.4; Figure 3.6), models including the adult-to-offspring size 

ratio were not well supported (Table 3.2). The effect sizes of offspring body mass and 

temperature were most strongly supported as the 95% confidence intervals did not overlap zero, 

compared to adult body mass (Figure 3.1). There was a strong phylogenetic signal from the 

residuals of rmax in all models (Pagel’s λ ≥ 0.8) (Table 3.5). 
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Table 3.1 All 30 models tested with associated hypotheses for how maximum intrinsic rate of population increase (rmax) varies with adult body mass M, 

offspring body mass Moffspring, inverse temperature 1/kBT, depth, and a temperature-depth index (PC1 axis from Principle Components Analysis of collapsed 

temperature and depth data in Barrowclift et al. (2023). Comparison of 30 ln(rmax) models using corrected Akaike Information Criteria (AICc), number of 

parameters (n), negative log-likelihood (-LL), R2, adjusted R2 (Adj. R2), difference in AICc from the top model (ΔAICc), and Akaike weights. Models are 

ordered by ascending AICc, with models with AICc < 2 shown in bold. Note, Order was categorical for rays (Orders Myliobatiformes, Rhinopristiformes, and 

Torpediniformes) and skates (Order Rajiformes). 

Hypothesis: rmax varies with Model: ln(rmax) ~ n -LL AICc R2 Adj. R2 ΔAICc Weights 

adult and offspring body mass and temperature ln(M) + ln(Moffspring) + 𝟏/𝒌𝑩𝑻 4 -63 134.4 0.21 0.18 0 0.279 

offspring body mass only ln(Moffspring) 2 -65.4 135 0.17 0.16 0.6 0.207 

adult and offspring body mass ln(M) + ln(Moffspring) 3 -65.3 136.9 0.17 0.15 2.5 0.08 

adult body mass and temperature-depth index ln(M) +  temperature-depth index 3 -65.4 137.2 0.16 0.14 2.8 0.069 

adult and offspring body mass, and the effect of mass 

scaling coefficient varies with offspring size 
ln(M) * ln(Moffspring) 

4 -64.9 138.2 0.17 0.14 3.8 0.042 

adult body mass, temperature-depth index, and Order ln(M) +  temperature-depth index + Order 4 -65 138.4 0.17 0.14 4 0.038 

adult body mass and temperature ln(M) + 1/𝑘𝐵𝑇 3 -66.1 138.5 0.14 0.12 4.1 0.036 

adult body mass and depth ln(M) + depth 3 -66.1 138.6 0.14 0.12 4.2 0.034 

adult body mass and the effect of temperature varies 

with depth 
ln(M) + 1/𝑘𝐵𝑇 * depth 

5 -64.1 138.9 0.18 0.14 4.5 0.029 

adult body mass and temperature-depth index, and 

the effect of mass scaling coefficient varies with the 

temperature-depth index 

ln(M) *  temperature-depth index 

4 -65.3 139.1 0.16 0.13 4.7 0.027 

adult body mass, temperature, and depth ln(M) + 1/𝑘𝐵𝑇 + depth 4 -65.4 139.3 0.16 0.13 4.9 0.024 

adult body mass, temperature, and Order ln(M) + 1/𝑘𝐵𝑇 + Order 4 -65.6 139.7 0.15 0.12 5.3 0.02 

adult body mass and temperature, and the effect of 

mass scaling coefficient varies with temperature 
ln(M) * 1/𝑘𝐵𝑇 

4 -65.7 139.8 0.16 0.13 5.4 0.019 

adult body mass only ln(M) 2 -68 140.2 0.1 0.09 5.8 0.015 
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adult body mass, depth, and Order ln(M) + depth + Order 4 -65.9 140.2 0.15 0.12 5.8 0.015 

adult body mass, temperature-depth index, and Order, 

and the effect of mass scaling coefficient varies with 

the temperature-depth index 

ln(M) * temperature-depth index + Order 

5 -64.8 140.4 0.17 0.13 6 0.014 

adult body mass and depth, and the effect of mass 

scaling coefficient varies with depth 
ln(M) * depth 

4 -66.1 140.8 0.14 0.11 6.4 0.011 

adult body mass, temperature, and Order, and the 

effect of mass scaling coefficient varies with 

temperature 

ln(M) * 1/𝑘𝐵𝑇 + Order 

5 -65.1 141 0.17 0.13 6.6 0.01 

adult body mass and Order ln(M) + Order 3 -68 142.2 0.11 0.08 7.8 0.006 

temperature-depth index only temperature-depth index 2 -69.1 142.3 0.08 0.07 7.9 0.005 

adult body mass, depth, and Order, and the effect of 

mass scaling coefficient varies with depth 
ln(M) * depth + Order 

5 -65.9 142.5 0.15 0.11 8.1 0.005 

temperature only 1/𝑘𝐵𝑇  2 -69.5 143.1 0.07 0.06 8.7 0.004 

temperature-depth index and Order temperature-depth index + Order 3 -68.5 143.3 0.09 0.07 8.9 0.003 

temperature and Order 1/𝑘𝐵𝑇 + Order 3 -68.8 144 0.09 0.06 9.6 0.002 

depth only depth 2 -70.3 144.8 0.05 0.04 10.4 0.002 

adult:offspring size ratio and temperature ln(M/Moffspring) + 1/𝑘𝐵𝑇 3 -69.2 144.8 0.08 0.06 10.4 0.002 

depth and Order depth + Order 3 -70.1 146.4 0.06 0.04 12 0.001 

average rmax (i.e. intercept-only model) 1 1 -72.7 147.5 0 0 13.1 0 

Order 1 + Order 2 -72.6 149.4 0 -0.01 15 0 

adult:offspring size ratio only ln(M/Moffspring) 2 -72.7 149.5 0 -0.01 15.1 0 
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Table 3.2 The 14 models examined with associated hypotheses for how maximum intrinsic rate of population increase (rmax) varies with adult body mass M, 

inverse temperature 1/kBT, depth. Comparison of models using corrected Akaike Information Criteria (AICc), number of parameters (n), negative log-likelihood 

(-LL), adjusted R2,  difference in AICc from the top model (ΔAICc), and Akaike weights. Models are ordered by ascending AICc, with models with AICc < 2 

shown in bold. 

 

 

Hypothesis:  rmax varies with Model: ln(rmax) ~ n -LL AICc R2 Adj. R2 ΔAICc Weights 

adult and offspring body mass and temperature ln(M) + ln(Moffspring) + 𝟏/𝒌𝑩𝑻 4 -63 134.4 0.21 0.18 0 0.357 

 offspring body mass only ln(Moffspring) 2 -65.4 135 0.17 0.16 0.6 0.264 

 adult and offspring body mass ln(M) + ln(Moffspring) 3 -65.3 136.9 0.17 0.15 2.5 0.102 

 adult and offspring body mass, and the effect of mass scaling 

coefficient varies with offspring size 
ln(M) * ln(Moffspring) 4 -64.9 138.2 0.17 0.14 3.8 0.053 

 adult body mass and temperature ln(M) + 1/𝑘𝐵𝑇 3 -66.1 138.5 0.14 0.12 4.1 0.046 

 adult body mass and depth ln(M) + depth 3 -66.1 138.6 0.14 0.12 4.2 0.044 

 adult body mass and the effect of temperature varies with depth ln(M) + 1/𝑘𝐵𝑇 * depth 5 -64.1 138.9 0.18 0.14 4.5 0.038 

 adult body mass, temperature, and depth ln(M) + 1/𝑘𝐵𝑇 + depth 4 -65.4 139.3 0.16 0.13 4.9 0.031 

 adult body mass and temperature, and the effect of mass scaling 

coefficient varies with temperature 
ln(M) * 1/𝑘𝐵𝑇 4 -65.7 139.8 0.16 0.13 5.4 0.024 

 adult body mass only ln(M) 2 -68 140.2 0.1 0.09 5.8 0.02 

 adult body mass and depth, and the effect of mass scaling 

coefficient varies with depth 
ln(M) * depth 4 -66.1 140.8 0.14 0.11 6.4 0.015 

 (inverse) temperature only 1/𝑘𝐵𝑇  2 -69.5 143.1 0.07 0.06 8.7 0.005 

 depth only depth 2 -70.3 144.8 0.05 0.04 10.4 0.002 

average rmax (i.e. intercept-only model) 1 1 -72.7 147.5 0 0 13.1 0.001 
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Table 3.3 Comparison of 14 ln(rmax) models fitted with 10 different phylogenetic trees obtained from 

Stein, Mull et al., (2018) (available on Vertlife.org) using corrected Akaike Information Criteria (AICc). 

The model with lowest AICc for each iteration is shown in bold. 

ln(rmax) ~ 1 2 3 4 5 6 7 8 9 10 

1 13.1 15.4 13.7 12.9 12.5 13 12.8 11.5 12.5 13.6 

ln(M) 5.8 10.1 6 6.1 6.5 6.4 5.5 5.6 6.5 6.8 

depth 10.4 13.6 10.8 9.9 9.2 10.9 9.6 10.1 9.2 12.8 

1/𝑘𝐵𝑇 8.7 12 9.7 7.8 7.3 9 8.6 7.8 7.3 8.8 

ln(M) + depth 4.2 9 4.6 4.6 4.8 4.9 3.5 5.1 4.8 6.6 

ln(M) + 1/𝑘𝐵𝑇 4.1 8.5 4.8 3.9 4.1 4.8 4.2 4.2 4.1 4.4 

ln(M) * depth 6.4 10.6 6.6 6.6 6.9 7.1 5.7 6.9 6.9 8 

ln(M) * 1/𝑘𝐵𝑇 5.4 10.7 5.8 4.6 5.3 6.6 6.1 4.6 5.3 6.5 

ln(M) + 1/𝑘𝐵𝑇 + depth 4.9 9.7 5.7 5 5.1 5.7 4.6 5.6 5.1 6.2 

ln(M) + 1/𝑘𝐵𝑇 * depth 4.5 9.8 5.5 4.9 5.4 6 4.3 5.6 5.4 4.1 

ln(Moffspring) 0.6 0.4 0.3 0.8 1.2 0.6 0.5 0.5 1.2 1 

ln(M) + ln(Moffspring) 2.5 2.6 2 2.7 3 2.3 2.1 2.3 3 2.9 

ln(M) * ln(Moffspring) 3.8 3.4 3.6 4.1 4.4 4 3.5 3.7 4.4 3.6 

ln(M) + ln(Moffspring) + 𝟏/𝒌𝑩𝑻 0 0 0 0 0 0 0 0 0 0 

 

Table 3.4 Comparison of 14 ln(rmax) models fitted without data for two manta ray species (Mobula 

alfredi and M. birostris) with largest offspring sizes using corrected Akaike Information Criteria 

(AICc), number of parameters (n), negative log-likelihood (-LL), R2, adjusted R2 (Adj. R2), difference 

in AICc from the top model (ΔAICc), and Akaike weights. Models are ordered by ascending AICc, 

with models with AICc < 2 shown in bold.   

ln(rmax) ~ n -LL AICc R2 Adj. R2 ΔAICc Weights 

ln(Moffspring) 2 -61.2 126.5 0.1 0.09 0 0.231 

ln(M) + ln(Moffspring) + 𝟏/𝒌𝑩𝑻 4 -59.3 127 0.14 0.11 0.5 0.18 

ln(M) + depth 3 -61 128.2 0.1 0.08 1.7 0.099 

ln(M) + 1/𝑘𝐵𝑇 3 -61.1 128.5 0.1 0.08 2 0.085 

ln(M) + ln(Moffspring) 3 -61.1 128.5 0.1 0.08 2 0.085 

ln(M) + 1/𝑘𝐵𝑇 + depth 4 -60.4 129.3 0.12 0.09 2.8 0.057 

ln(M) * ln(Moffspring) 4 -60.4 129.4 0.12 0.08 2.9 0.054 

ln(M) 2 -62.7 129.6 0.07 0.05 3.1 0.049 

ln(M) + 1/𝑘𝐵𝑇 * depth 5 -59.6 129.9 0.14 0.09 3.4 0.042 

ln(M) * depth 4 -61 130.4 0.11 0.07 3.9 0.033 

ln(M) * 1/𝑘𝐵𝑇 4 -60.9 130.4 0.11 0.08 3.9 0.033 

1/𝑘𝐵𝑇  2 -63.4 131 0.05 0.04 4.5 0.024 

depth 2 -63.6 131.4 0.04 0.03 4.9 0.02 

1 1 -65.5 133 0 0 6.5 0.009 
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Figure 3.1 Coefficient plot showing the effect sizes for offspring body mass (Moffspring), adult body mass 

(M), and inverse temperature (1/kBT) on rmax in the top three models. Error bars show the 95% 

confidence intervals and effect sizes are considered significant when confidence intervals do not overlap 

zero. The grey boxes show the expected effect size for adult body mass (-0.33 to -0.25) and temperature 

(-1.0 to -0.6) based on metabolic theory. 
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Figure 3.2 Relationship between maximum intrinsic rate of population increase (rmax) and a) offspring 

body mass (g) and b) adult body mass (g) in log10 space for 85 ray (n=53, red points) and skate (n=32, 

blue points) species. Fitted lines show the predicted relationships for the top model: ln(rmax) ~ ln(M) + 

ln(Moffspring) + 1/kBT, where M is adult body mass, Moffspring is offspring body mass, and 1/kBT is inverse 

temperature, across (a) three temperatures (6, 10, 20°C) with fixed median adult body mass and (b) 

three median offspring body masses (small, skates; medium, all species; large; rays) with fixed 

temperature (10°C). (a) Adult body mass (g) and (b) offspring body mass (g) are shown by the point 

size. Fitting the top model across different median adult weights (e.g. small, skates; medium, all species; 

large; rays) does not change the fitted relationship. 
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Figure 3.3 Relationship between offspring body mass (g) and a) adult body mass (g) and b) median 

annual fecundity in log10 space for 85 species of ray (n=53, red points) and skate (n=32, blue points). 

(a) Median annual fecundity and (b) adult body mass (g) are shown by the point size.  
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Table 3.5 Coefficient estimates (95% confidence intervals estimated from standard errors shown in brackets) for all models of ln(rmax). The model with the 

lowest ∆AICc value is marked in bold and models with ∆AICc < 2 are highlighted in grey. Pagel’s λ indicates the strength of the phylogenetic signal. 

ln(rmax) ~ intercept ln(M) depth 𝟏/𝒌𝑩𝑻 
ln(M): 
depth 

ln(M): 
𝟏/𝒌𝑩𝑻 

𝟏/𝒌𝑩𝑻: 
depth 

ln(Moffspring) 
ln(M): 

ln(Moffspring) 
Pagel's λ 

1 
-1.17  

(-1.71, -0.62)  - - - - - - - - 
0.88  

(0.69, 0.96)  

depth 
-1.18  

(-1.71, -0.65)  - 
-0.32  

(-0.6, -0.03)  - - - - - - 
0.88  

(0.68, 0.96)  

1/𝑘𝐵𝑇 
-1.22  

(-1.76, -0.68)  - - 
-0.55  

(-0.96, -0.13)  - - - - - 
0.89  

(0.71, 0.97)  

ln(M) 
-0.01  

(-0.91, 0.89)  
-0.12  

(-0.2, -0.05)  - - - - - - - 
0.88  

(0.69, 0.96)  

ln(M) * depth 
-0.1  

(-1, 0.79)  
-0.12  

(-0.2, -0.04)  
-0.3 

(-1.75, 1.15)  - 
0  

(-0.15, 0.16)  - - - - 
0.88  

(0.63, 0.96)  

ln(M) * 1/𝑘𝐵𝑇 
-0.2  

(-1.13, 0.73)  
-0.11  

(-0.19, -0.03)  - 
-1.16  

(-2.61, 0.29)  - 
0.07  

(-0.06, 0.21)  - - - 
0.92  

(0.72, 0.98)  

ln(M) * 
ln(Moffspring) 

-0.89  
(-2.39, 0.61)  

0.03  
(-0.14, 0.2)  - - - - - 

-0.02  
(-0.32, 0.28)  

-0.01  
(-0.04, 0.02)  

0.82 (0.51, 
0.94)  

ln(M) + depth 
-0.11  

(-0.99, 0.78)  
-0.12  

(-0.19, -0.04)  
-0.27  

(-0.55, 0)  - - - - - - 
0.88  

(0.67, 0.96)  

ln(M) + 1/𝑘𝐵𝑇 
-0.23  

(-1.13, 0.68)  
-0.11  

(-0.19, -0.03)  - 
-0.41 

(-0.83, 0)  - - - - - 
0.89  

(0.68, 0.96)  

ln(M) + 1/𝑘𝐵𝑇 * 
depth 

-0.39  
(-1.31, 0.54)  

-0.1  
(-0.18, -0.02)  

-0.67  
(-1.35, 0.01)  

-0.06  
(-0.6, 0.49)  - - 

0.65  
(-0.15, 1.45)  - - 

0.89  
(0.69, 0.97)  

ln(M) + 1/𝑘𝐵𝑇 + 
depth 

-0.22  
(-1.13, 0.68)  

-0.11 
(-0.19, -0.03)  

-0.18  
(-0.49, 0.13)  

-0.28  
(-0.75, 0.19)  - - - - - 

0.88  
(0.67, 0.96)  

ln(M) + 
ln(Moffspring) 

-0.34  
(-1.21, 0.54)  

-0.03  
(-0.14, 0.07)  - - - - - 

-0.15  
(-0.26, -0.03)  - 

0.82  
(0.53, 0.94)  

ln(M) + 
ln(Moffspring) +  
𝟏/𝒌𝑩𝑻  

-0.56  
(-1.44, 0.32)  

-0.01  
(-0.11, 0.09)  - 

-0.43  
(-0.82, -0.04)  - - - 

-0.15  
(-0.27 , -0.04)  - 

0.81  
(0.46, 0.94)  

ln(Moffspring) 
-0.54  

(-1.09, 0.01)  - - - - - - 
-0.17  

(-0.26, -0.09)  - 
0.80  

(0.52, 0.93)  
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Figure 3.4 Phylogeny, maximum intrinsic rate of population increase (rmax), adult and offspring body 

mass (g), and adult:offspring size ratio in log10 space for 85 ray (n=53, red points) and skate (n=32, 

blue points) species. Solid lines show median values. Uncertainty in rmax estimate shown with 2.5% and 

97.5% quantiles. Phylogenetic tree from Stein, Mull et al., (2018) (available on Vertlife.org) with 

binomial nomenclature updated to reflect current taxonomic nomenclature. 

 

Figure 3.5 Relationship between temperature (°C) and a) offspring body mass (g) and b) adult body 

mass (g) in log space for 85 ray (n=53, indicated by red points) and skate (n=32, indicated by blue 

points) species. Median depth of occurrence (m) is shown by the point size, with a linear model fitted 

to ray and skate data points. The grey bands around the fitted models show the confidence intervals. 
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Figure 3.6 Relationship between adult:offspring size ratio (g) and adult body mass (g) in log10 space 

for 85 ray (n=53, indicated by red points) and skate (n=32, indicated by blue points) species. The grey 

bands around the fitted models show the confidence intervals and grey dashed lines show adult:offspring 

size ratios of 1 to 4 where offspring size is 10 to 0.01% of adult body mass, respectively. 

3.5 Discussion 

We show evidence that offspring size modulated the well-studied relationship between rmax and 

temperature (and depth). Specifically, species with larger absolute offspring size have lower 

population growth rates. This finding helps to explain the paradox of why shallow-water 

tropical rays have lower population growth rates, compared to cold, deep-water temperate 

skates with smaller offspring size. This hypothesis has greater support than the metabolic 

expectation that faster life histories occur in warmer habitats. Instead, this is more consistent 

with recent work that suggests the metabolic scaling expectation of rmax with body mass is only 

found when offspring size is considered (Denéchère et al., 2022). Denéchère et al. (2022) found 

that the scaling of rmax varied across taxa and only matched metabolic expectations (-0.25) when 

offspring body mass is proportional to adult body mass (equal adult-to-offspring size ratio). For 

elasmobranchs specifically, the scaling of rmax with adult body mass matched metabolic 

expectations (Denéchère et al., 2022). However, we found that although the scaling of rmax for 

the group of elasmobranchs we examined - batoids - was around -0.25, this slope was for 
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offspring body mass and not adult body mass, which did not have a large effect size. Indeed, 

on average, the effect size of offspring body mass on rmax was twice as large as adult body mass. 

We also posit that the high predation risk in the tropics drives selection of larger adult and 

offspring body sizes of tropical rays. Next, we consider: (1) how our results differ from the 

typical temperature and latitudinal patterns in life histories; (2) the evolution of live-bearing 

and how selection in response to predation risk results in large offspring for tropical rays; and 

(3) future directions and caveats. 

We found that absolute offspring size disrupted the typical life-history patterns in batoids. 

Compared to the cold-habitat skates, warm-shallow-water tropical rays have recently been 

found to have lower rmax and therefore greater intrinsic sensitivity to anthropogenic threats such 

as overfishing (Barrowclift et al., 2023). This contrasts with typical metabolic scaling patterns 

of life histories in relation to temperature and depth. In warmer temperatures, organisms 

generally grow faster, mature earlier, and attain smaller maximum body sizes resulting in faster 

generation times and higher production to biomass ratios (Munch & Salinas, 2009; Beukhof et 

al., 2019; Jennings et al., 2008). This also leads to latitudinal and depth-related patterns of 

temperature and size whereby organisms in shallower, warmer, and/or lower latitude waters 

have higher metabolic rates and therefore ‘faster’ life histories compared to organisms in 

deeper, cooler, and/or higher latitude waters (Wong et al., 2021; Pardo & Dulvy, 2022; Juan-

Jordá et al., 2013). In sharp contrast however, we found that larger absolute offspring size in 

tropical rays disrupted these typical life-history patterns. Indeed, including offspring size in 

models had greater support and explained greater variation in rmax compared to adult body mass 

alone, or when including temperature and depth. When offspring size is proportional to adult 

size, excluding bet-hedging broadcast spawners, offspring size plays a larger role in 

determining rmax than temperature. While this has previously been shown across large 

taxonomic groups of mammals and sharks (Denéchère et al., 2022), the novelty here is that we 

have shown this effect within a lineage of contrasting offspring sizes. Specifically, the 

differences in rmax between warm, shallow-water rays and cold-habitat skates are likely due to 

their different reproductive strategies - as live-bearing rays have fewer, larger offspring 

compared to egg-laying skates with large numbers of smaller offspring - as hypothesised in 

Barrowclift et al. (2023). This pattern differs from the typical pattern in vertebrates and 

invertebrates. Generally, offspring size tends to have a negative relationship with temperature 

due to differences in maternal investment, with females producing larger, better-provisioned 

offspring in colder environments (Marshall, 2021; Pettersen et al., 2020). This large-offspring-
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in-the-cold pattern is supported by both a cross cohort experiment of bryozoans (Marshall, 

2021) and a metanalysis spanning 72 species from five ectotherm phyla (Pettersen et al., 2020). 

Similarly, we found a weak negative relationship between offspring size and temperature for 

rays and a near flat relationship for skates. However, tropical rays generally have larger 

offspring sizes than cooler-water-temperate skates. It may be that offspring size is largely 

independent of temperature for batoids, with both employing very different reproductive 

strategies, raising the question as to why large offspring sizes have evolved in shallow-water, 

tropical rays. 

Live-bearing has been hypothesised to have evolved from egg-laying in order to increase the 

survival of offspring through a controlled maternal environment and greater protection from 

predators (Wourms, 1994; Goodwin et al., 2002). In live-bearing species, offspring size is 

constrained by the size of the maternal body cavity but results in offspring with greater survival 

(Musick & Ellis, 2005; Wourms & Lombardi, 1992). Whereas in egg-laying species, size is 

limited by nutrients stored in the yolk sac (Conrath & Musick, 2012). The egg-laying 

reproductive strategy of skates is thought to be advantageous because it requires less energy 

and shorter reproductive cycles but there will be survival consequences for the offspring due to 

smaller size, and, thus, greater risk of predation (Goodwin et al., 2002). We found that offspring 

size had a negative relationship with annual fecundity, reflecting the trade-off between 

th(Cortés, 2000; Duarte & Alcaraz, 1989)s, 2000; Duarte & Alcaraz, 1989). We also confirmed 

the expectation that larger ray species tend to have larger and more offspring (Cortés, 2000). 

Offspring size will affect juvenile survival to maturity, which is important to consider, given 

the maternal trade-off between lifetime reproductive output, which likely varies between egg-

laying and live-bearing reproductive modes (Pardo, Kindsvater, Reynolds, et al., 2016). In the 

calculation of rmax for elasmobranchs, there is the pragmatic assumption that juvenile survival 

to maturity is the same as the survival rate of adult ages (a consistent mortality estimator). 

However, our key finding suggests the average mortality depends on offspring size, presumably 

with larger absolute offspring sizes (typical of tropical rays) having lower predation risk than 

smaller offspring (typical of colder-water skates). This then leads to the question as to why it 

might be advantageous for tropical, warm-water rays to have larger offspring than temperate, 

cold-habitat skates?  

The ancestral reproductive mode of sharks and rays is egg-laying with the subsequent evolution 

of live-bearing and a particularly high degree of maternal investment found in the shallow-

tropical elasmobranch species (Mull, Pennell, et al., 2022; Dulvy & Reynolds, 1997). The 
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diversification and radiation of elasmobranchs throughout shallow tropical shelf seas and the 

pelagic zone appears to be associated with the evolution of live-bearing and multiple 

mechanisms for providing additional maternal investment in offspring (Mull, Pennell, et al., 

2022). The question that remains is why live-bearing with additional maternal investment has 

evolved. Predation tends to be size-based in the marine realm (Barnes et al., 2010; Verity & 

Smetacek, 1996). We speculate that shallow-water, tropical rays have evolved larger offspring 

in response to selection pressure from greater predation risk in the tropics. Increased offspring 

size reduces the threat of predation i.e. has been selected for to reduce juvenile mortality (Sibly 

et al., 2018; Olsson et al., 2016; Cortés, 2000). We further speculate that this predation risk 

drove the evolution of live-bearing, and in particular the convergent evolution of multiple forms 

of matrotrophy (maternal supply of nutrients during gestation). Generally, offspring size is 

larger in chondrichthyans compared to teleost fishes in which live-bearing appears to have 

evolved in particularly small-bodied taxa, suggesting the drivers of viviparity are fundamentally 

different in chondrichthyans (Goodwin et al., 2002). Predation risk has generally been 

hypothesised to increase towards the tropics, with recent empirical work finding greater 

predation rates on epifaunal communities in shallow, tropical waters compared to high latitude 

waters (Ashton et al., 2022). This is relevant to potential greater predation on eggs and juveniles 

in tropical waters. Fisheries-driven decline in sharks, which predate on batoids, has led to 

increases in ray abundance, which would be consistent with predation driving community 

structure on tropical coral reefs (Sherman et al., 2020; Simpfendorfer et al., 2023).  

Given Bergmann’s rule and the Temperature-Size-Rule (TSR), adult body size of temperate 

skates in cooler waters would be expected to be larger than tropical rays in warmer waters. 

However, our results suggest there is wide variation in adult body size across batoids and, 

generally, the tropical rays are larger than cooler-water skates. We speculate above that the 

larger offspring sizes and live-bearing are a result of elevated predation in the tropics; given the 

body cavity constraint on offspring size of live-bearers we further speculate that large offspring 

size would require the evolution of larger adult body sizes in tropical rays that would allow 

greater maternal investment. This is consistent with the adult body size differences being the 

opposite of what might be expected under a TSR hypothesis, i.e. larger in tropical rays and 

smaller in cool-water skates, and may explain this exception to the TSR where tropical rays 

attain larger sizes at higher temperatures (Atkinson, 1995). Instead, our findings are more 

consistent with a mortality theory of life histories, and specifically the mortality arising from 

predation risk and offspring size (Auer et al., 2018; Glazier, 2023). 
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We found that offspring size explained good variation in rmax for rays and skates and is another 

simple life history trait alongside adult maximum body mass that could be used to estimate rmax. 

Simple variables that are widely available such as these life history traits, environmental 

temperature, and depth range have the potential to predict population growth rates and therefore 

extinction risk, fishing limits, and recovery potential, which is especially necessary for data-

poor species (Pardo & Dulvy, 2022; Barrowclift et al., 2023). Given the strong phylogenetic 

signal in the rmax residuals, it is likely maximum population growth rate is shaped by biological 

traits that are evolutionary conserved, which would allow for predictive modelling of rmax based 

on phylogenetic relationships (Pardo & Dulvy, 2022). Additional variation in rmax that was not 

explained by our models may be explained by further environmental and physiological 

variables such as dissolved oxygen or metabolic rate (Gravel et al., 2024; Pardo & Dulvy, 

2022). Empirical estimates of juvenile mortality for sharks and rays are still needed to better 

understand juvenile survival across species with different life history strategies (incorporating 

how growth and mortality varies with body size). Whilst the mortality estimator used in the 

modified Euler-Lotka model to calculate rmax accounts for juvenile survival to maturity, size-

dependent mortality rates could be explored to investigate differences across reproductive and 

offspring size strategies. Our results suggest that these differences may be key to understanding 

biogeographic patterns in extinction risk. We hypothesise that greater predation risk in the 

tropics has driven the evolution of larger offspring size to increase offspring survival in tropical 

rays, potentially through live-bearing reproductive mode, increased matrotrophy, and larger 

adult body sizes. Consequently, shallow-water tropical rays have lower population growth rates 

and are more intrinsically sensitive to overfishing than may be expected from metabolic 

ecology.
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Chapter 4. Age, growth, and intrinsic sensitivity of Endangered Spinetail 

(Mobula mobular) and Bentfin devil rays (M. thurstoni) in the Indian Ocean 

4.1 Abstract 

Devil rays (Mobula spp.) are caught in fisheries across the Indian Ocean, where there have been 

reports of significant recent declines. Globally, the few populations studied have extremely low 

population growth rates due to low fecundity and long reproductive cycles, making them highly 

vulnerable to overfishing. To allow for assessment of the current sustainability of devil ray 

catch in the Indian Ocean, we provide best first estimates of age using the caudal vertebrae; 

somatic growth rate using a Bayesian, multi-model approach; maximum intrinsic rate of 

population increase (rmax); and fishing mortality for Endangered Spinetail Devil Ray (Mobula 

mobular) and Bentfin Devil Ray (M. thurstoni) sampled from small-scale fisheries catch in 

Indonesia, Kenya, and Pakistan. The oldest individuals of M. mobular (n=79) and M. thurstoni 

(n=59) were 17.5 and six years, respectively. Both species had relatively low growth rates 

(k=0.05 and 0.19 year-1, respectively) and low rmax (0.094 and 0.092 year-1, respectively) 

indicating that they are highly sensitive to overexploitation. Fishing mortality F estimates (0.15 

and 0.17 year-1, respectively) were higher than rmax and exploitation ratio E (0.70 and 0.74, 

respectively) were higher than an optimum value of 0.5 for biological sustainability for both 

species, suggesting that the fisheries catches of the species are unsustainable. We demonstrate 

an approach to assess data-poor species and apply this to two Indian Ocean devil ray species. 

We caution that age estimates were based on the assumption of annual growth band pair 

deposition, which was unable to be validated. Nevertheless, the results present best first 

estimates of key life history parameters for these Endangered species in the Indian Ocean and 

highlight the urgent need for management actions to reduce catch of all devil rays to prevent 

species extirpation and aid in population recovery. 

4.2 Introduction 

Sharks and rays (Class Chondrichthyes, Subclass Elasmobranchii) generally exhibit slower 

growth, later sexual maturity, and lower fecundity than their teleost counterparts (Gravel et al., 

2024; Compagno, 1990; Cortés, 2000). These life history traits result in lower population 

growth rates that restrict recovery potential (Dulvy & Forrest, 2010; Cortés, 2002) and make 

many species intrinsically sensitive to fisheries exploitation (Quetglas et al., 2016; García et al., 

2008). Approximately 37% of chondrichthyans are threatened with extinction due to 

overfishing (Dulvy et al., 2021). Variations in life history among and within species, coupled 
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with differing exploitation rates, results in differences in fisheries resilience and localised 

extinction risk (Trinnie et al., 2014; Jacobsen & Bennett, 2010; Lombardi-Carlson et al., 2003). 

Data on species and population-specific life history traits are therefore critical in predicting 

extinction risk and rebound potential, demographic modelling, fisheries stock assessments, and 

achieving sustainable fisheries management and global conservation goals (Frisk et al., 2001; 

Cortés, 2002; Barnett et al., 2019). 

Devil rays (Mobula spp., Family Mobulidae) are one of the most threatened chondrichthyan 

families (Dulvy et al., 2021). All devil ray species are listed on CITES (Convention on 

International Trade in Endangered Species of wild fauna and flora) Appendix II and CMS 

(Convention on the conservation of Migratory Species of wild animals) Appendices I and II, 

which regulate international trade and coordinate inter-governmental conservation efforts, 

respectively. Devil rays face high fisheries exploitation as target species and bycatch in both 

industrial and small-scale fisheries (Croll et al., 2016), exacerbated by an international market 

for their gill plates, which are used for food and traditional medicine in East Asia (O’Malley et 

al., 2017; Lawson et al., 2017). The Food and Agriculture Organisation of the United Nations 

(FAO) statistics indicate an annual global catch of over 4000 tonnes, a likely underestimate 

(FAO, 2023; Clarke, McAllister, et al., 2006; Pauly & Zeller, 2016). Devil rays have amongst 

the lowest maximum intrinsic rate of population increase (rmax) and therefore highest intrinsic 

sensitivity to overfishing (Dulvy, Pardo, et al., 2014; Pardo, Kindsvater, Cuevas-Zimbrón, et 

al., 2016; Rambahiniarison et al., 2018b). This sensitivity is in part due to their extremely low 

fecundity (Pardo et al., 2018), with species in this genus known to produce only a single pup 

per litter (rarely twins) every 1-7 years, following a 12-month gestation period (Last et al., 2016; 

Stevens et al., 2018). These life history traits have been observed in only a handful of studies 

and locations for these circumglobal, tropical and warm-temperate species (Marshall & 

Bennett, 2010; Stevens, 2016; Kashiwagi, 2014; Doumbouya, 2011; Notarbartolo di Sciara, 

1988; Broadhurst et al., 2019, 2018; Villavicencio-Garayzar, 1991; Ehemann et al., 2017).  

Despite there being several studies on devil ray life histories, there has only been a single aging 

study to date (Cuevas-Zimbrón et al., 2013). Given the importance of demographic data in 

assessing fisheries sustainability (Musick & Bonfil, 2005) and considering the broad 

distributions of some devil ray species (Couturier et al., 2012), further understanding of species 

and population-specific life history parameters is needed for effective evidence-based 

management (Barnett et al., 2019). Available evidence suggests that coastal and continental 

shelf devil ray species may exhibit genetic population structuring, including M. kuhlii and M. 
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alfredi between the eastern and western Indian Ocean as well as M. mobular and M. alfredi 

between the Indian Ocean and the Pacific (Humble et al., 2023; Hosegood et al., 2020; Venables 

et al., 2020; Lassauce et al., 2022). However, highly migratory and more offshore species 

including M. thurstoni and M. birostris show no evidence of population structuring, potentially 

due to more opportunity for gene flow (Humble et al., 2023; Hosegood et al., 2020). The extent 

of genetic population structuring and connectivity will have implications for the status of devil 

ray species and populations and to inform the most effective conservation actions. 

Countries in the Indian Ocean region are among those reporting the highest devil ray catches 

(Ward-Paige et al., 2013; Couturier et al., 2012; Croll et al., 2016; Lawson et al., 2017). Six of 

the seven devil ray species in the Indian Ocean are listed as Endangered by the IUCN Red List; 

the Vulnerable reef manta ray (M. alfredi) being the only exception (IUCN, 2024). Devil rays 

are commonly caught in small-scale fisheries, primarily in gillnets, that provide important 

sources of protein and income for coastal communities, particularly in low-income countries 

(Temple et al., 2019; Flounders, 2020; Temple, Berggren, et al., 2024). Even where devil rays 

are not targeted in small-scale fisheries, they will often be retained for their meat and gill plates 

due to their high value (White et al., 2006; Moazzam, 2018). Devil rays are also caught in 

industrial tuna fisheries, mainly utilising purse-seine but also in longline and drift gillnet fishing 

gears (Shahid et al., 2018; Flounders, 2020). There is evidence of significant declines in 

sightings and fisheries catch (over 90%) in some loc(Moazzam, 2018; Rohner et al., 2017; 

Lewis et al., 2015; Fernando & Stewart, 2021; Carpenter et al., 2023)t, 2021; Carpenter et al., 

2023). These declines led the Indian Ocean Tuna Commission (IOTC) to adopt a resolution 

(19/03) for the conservation of devil rays, including recommending collection of species-

specific data for fisheries catches (IOTC, 2019). The IOTC resolution prohibits retention of 

devil rays and encourages live release, although this does not apply to subsistence fisheries 

where rays are consumed locally by the fishers. Life history parameters need to be defined to 

inform devil ray species assessments within the Indian Ocean region.  

The aim of this study is to improve the knowledge of devil ray life histories by producing disc 

width-weight relationships, estimating age, growth, and maximum intrinsic rate of population 

increase (rmax) for M. mobular and M. thurstoni caught in small-scale fisheries in Indonesia, 

Kenya, and Pakistan. We further use the disc width-at-age dataset to estimate total mortality, 

fishing mortality, and the exploitation ratio for the two species. 
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4.3 Methods 

4.3.1 Sample collection and species identification 

Spinetail devil ray (Mobula mobular) (n=103) and Bentfin devil ray (M. thurstoni) (n=89) were 

opportunistically sampled from small-scale fisheries landing sites in Cilacap Fishing Port, 

Central Java (n=15) and Palabuhanratu, West Java, Indonesia (n=100) between July 2020 and 

December 2022; Kilifi Central, Kilifi, Kenya (n=43) between February and March 2021; and 

Karachi Fish Harbour, Sindh, Pakistan (n=37) between June 2021 and October 2022 with the 

consent of fishers and/or traders (Figure 4.1). A further three individuals of Sicklefin devil ray 

(M. tarapacana) were sampled in Indonesia. 

 

Figure 4.1 Sampling locations for Mobula mobular, M. thurstoni, and M. tarapacana across the Indian 

Ocean (n=195). 

 

A minimum of two photos were taken showing the entire dorsal and ventral surface of each 

individual to aid species identification based on morphological characteristics (Figure 4.2). 

Devil rays are easily identifiable to genus level by the presence of cephalic lobes (extending 

from each side of their head). Of the seven devil ray species present in the Indian Ocean, M. 

mobular was identifiable by the distinct white tip on the dorsal fin and a caudal spine behind 

the dorsal fin, whilst M. thurstoni also has a distinct white tip on the dorsal fin (becoming faint 

in adults) but no caudal spine and is easily identifiable by the front of the wingtips curving in 
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distinctly (Figure 4.2) (Last et al., 2016; Stevens et al., 2018). M. tarapacana is easily identified 

by its long and strongly falcate (curved like a sickle) pectoral fins and a distinct bony ridge 

along the middle of the dorsal surface. There was therefore strong certainty in morphological 

species identification. 

 

 

Figure 4.2 The two main species sampled in this study: a) Spinetail devil ray (Mobula mobular) and b) 

Bentfin devil ray (M. thurstoni). 

 

The sex, disc width (DW, straight line length measurement between the wing tips) in cm, and 

weight in kg of every individual was recorded. Where possible, vertebrae samples (n=141) 

were taken from the caudal portion of the vertebral column for aging and were stored at -20°C 

(Figure 4.2a) (Cuevas-Zimbrón et al., 2013). Male maturity (immature or mature) was recorded 

based on the calcification of claspers, whereby only male specimens with fully calcified 

claspers were considered mature (Walker, 2005). Where fishers and traders consented (M. 

mobular, n=27; M. thurstoni, n=6), female reproductive tracts were dissected to determine 

maturity, with females considered mature by the presence (mature) or absence (immature) of 

well-developed eggs in the ovaries (Walker, 2005). Species were mainly caught in gillnet 

(bottom-set and drift, n=184) fishing gear but also longline (n=2), handline (n=2), and purse 
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seine (n=4) in Indonesia. Samples were collected under research permits where necessary, 

including from The National Research and Innovation Agency (BRIN) in Indonesia (no. 

28/TU.B5.4/SIP/VI/2021 and 12/SIP.EXT/IV/FR/8/2022). Due diligence was undertaken to 

ensure compliance with the Nagoya Protocol on Access to Genetic Resources. Samples were 

exported to the United Kingdom under the following CITES export 

(00098/SAJI/LN/PRL/IX/202l; 00525/SAJI/LN/PRL/VIII/2022; and P-121/2022) and import 

permits (610843/01;/02;/03;/04;/05;/06; 621633/01;02; and 625390/01;/02) as well as an 

authorisation for importation of animal by-products (ITIMP21.1211). 

4.3.2 Disc width-weight relationship 

Species- and location-specific DW frequency distributions were fit using 5cm size bins for M. 

mobular and M. thurstoni. Bayesian linear models were fit to natural log (ln) transformed DW 

and weight data for M. mobular (n=101) and M. thurstoni (n=76) (Froese et al., 2014). Due to 

small sample sizes, all models were fit for each species across locations and for combined sex. 

Informative priors were constrained for a and b constants based on estimates available on 

FishBase (Froese & Pauly, 2022), which was approximately 0.005 (-5 for log(a)) and 3 for a 

and b, respectively (Table 4.1). We also compared the effect on posteriors with parameter 

estimates using weaker priors with the same mean of the distributions but higher variance 

(Table 4.1). A weakly informative prior is used for the variance σ2 in all models (Table 4.1). 
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Figure 4.3 Preparation of Mobula spp. vertebrae sections for age determination including: a) portion of 

the vertebral column where caudal vertebrae samples were taken; b) embedded vertebrae centra in an 

epoxy resin in silicon moulds; c) longitudinal sectioning of set vertebrae centra using a Buehler IsoMet 

Low-Speed Diamond Blade Saw fit with two 4 inch blades and a 3.5 inch 0.5mm plastic separator; and 

d) imaging of vertebrae sections for age determination using an Optika dissecting microscope with a 

fitted camera, illuminated from above using reflected light and from either side using a double-armed 

fibre optic light source. 

b 

c 

d 

a 
Photo credit: WWF Pakistan 
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Table 4.1 Strong and weaker priors used for each parameter in Bayesian length-weight regression, 

growth models, and length-maturity regression models for Mobula mobular (n=79) and M. thurstoni 

(n=59). 

Species Model Parameter Strong priors Weaker priors 

M. mobular 

and M. 

thurstoni 

DW-weight 

linear 

regression 

b normal(3, 0.5) normal(3, 1) 

log(a) normal(-5, 1) normal(-5, 3) 

σ2 halfCauchy(0, 30000) halfCauchy(0, 30000) 

Age-maturity 

logistic 

regression 

β normal(0,10) normal(0,10) 

a 
normal(logit(0.5) + 

beta * αmat, 10) 

normal(0,10) 

DW-maturity 

logistic 

regression 

β normal(0,10) normal(0,10) 

a 
normal(logit(0.5) + 

beta * DWmat, 10) 

normal(0,10) 

M. mobular 

Growth models 

(von 

Bertalanffy, 

Gompertz, 

Logistic, 

Lester) 

k uniform(0, 2) uniform(0, 2) 

DW0 normal(900, 200) normal(900, 300) 

DW∞ 
normal(3500*kappa, 

100) 

normal(3500*kappa, 

400) 

kappa gamma(1000, 990) gamma(200, 198) 

σ2 halfCauchy(0, 30000) halfCauchy(0, 30000) 

Lester 

(biphasic) 

growth model 

T normal(4, 1) normal(4, 4) 

h normal(500, 1000) normal(500, 1000) 

t1 normal(0, 20) normal(0, 10) 

σ2 halfCauchy(0, 30000) halfCauchy(0, 30000) 

M. thurstoni 

Growth models 

(von 

Bertalanffy, 

Gompertz, 

Logistic, 

Lester) 

k uniform(0, 2) uniform(0, 2) 

DW0 normal(700, 200) normal(700, 300) 

DW∞ 
normal(1970*kappa, 

100) 

normal(1970*kappa, 

400) 

kappa gamma(1000, 980) gamma(200, 196) 

σ2 halfCauchy(0, 30000) halfCauchy(0, 30000) 

Lester 

(biphasic) 

growth model 

T normal(4, 1) normal(4, 4) 

h normal(500, 1000) normal(500, 1000) 

t1 normal(0, 5) normal(0, 10) 

σ2 halfCauchy(0, 30000) halfCauchy(0, 30000) 

 

4.3.3 Age estimation using caudal vertebrae 

In line with Cuevas-Zimbrón et al. (2013), we found no vertebral centra in the thoracic portion 

of the vertebral column and vertebrae size increased in the caudal portion of the vertebral 

column below the origin of the dorsal fin. We therefore sampled caudal vertebrae for age 

estimation (Figure 4.2a). Neural and haemal arches along with excess tissue were removed from 

vertebrae samples using a scalpel. Vertebrae were subsequently placed into 5% diluted bleach 

for a maximum of five minutes depending on vertebrae size to remove any remaining 

connective tissue and then rinsed with distilled water. Cleaned vertebrae centra samples were 

left to air dry overnight. Vertebrae centra were submerged in a mixture of EpoxiCure 2 Resin 
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20-3430128 (4 parts) and EpoxiCure 2 Hardener 20-3432128 (1 part) in silicon moulds and left 

to set for three days (Figure 4.3b). After trialling several vertebral section widths (600, 450, 

300, and 150μm), a Buehler IsoMet Low-Speed Diamond Blade Saw fitted with two 4-inch 

blades and a 3.5 inch 0.5mm plastic separator was used to cut one longitudinal section through 

the centre of each vertebral centra at a thickness of approximately 300-400μm (Figure 4.2c). 

Staining the vertebral sections with 0.01% Crystal Violet solution (Schwartz, 1983) as in 

Cuevas-Zimbrón et al. (2013),  was trialed but did not substantially enhance banding clarity. 

A drop of water was added to the vertebral section, which was placed on black card prior to 

imaging. Each vertebral section was imaged using an Optika dissecting microscope with a fitted 

camera (Optika WF Series 4083.WiFi), illuminated from above using reflected light and from 

either side using a double-armed fibre optic light source (Figure 4.3d). A 1.2X magnification 

was used for consistency. Optika Vision Lite 2.1 software was used to capture the image and 

export as a jpeg file. Each vertebral section was imaged on both sides and the image with the 

clearest view of the growth bands was used for age determination. Images of vertebral sections 

were enhanced in Adobe Photoshop Elements 2021 Photo Editor (Version: 19.0) following 

guidance in Campana (2014) to adjust the greyscale and sharpness to enhance the readability 

of banding patterns (Figure 4.4). 

Age was estimated based on the assumption of annual growth band pair deposition, with one 

translucent and one opaque band equating to one band pair (annulus) indicating one year of age 

(Cailliet et al., 2006, 1983). The birth mark was identified as the first band with a distinct change 

in the angle of the corpus calcareum and was not counted when estimating age ( REF _(Neer 

& Thompson, 2005; Campana, 2014; Cuevas-Zimbrón et al., 2013)14; Cuevas-Zimbrón et al., 

2013). Banding was read along the corpus calcareum near the lateral edge (Campana, 2014). 

Adobe Photoshop Elements (2021 Photo Editor) was used to annotate enhanced images to 

indicate annual growth bands (Figure 4.4). The annuli were counted for each imaged section to 

age individuals to the nearest 0.5 year. A mean was then calculated from the counts of the two 

sections to give an estimated age per individual. Aging was conducted independently by two 

readers without access to contextual information such as animal size. If the mean estimates of 

the two readers differed by less than one year, the mean of these two values was taken as the 

best estimate for that individual (Goldman, 2005). This is a more conservative approach than 

in many other studies due to the limited sample size (Temple et al., 2020; Smith et al., 2012). 

If mean estimates differed by more than one year, then ages were re-estimated with both readers 
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together. If agreement was not reached (n=0), samples would have been removed from further 

analyses (Goldman, 2005).  

The Bland-Altman approach for method comparison was used to quantify agreement, precision, 

and bias in age reads within each reader (comparing the age estimate between two sections per 

specimen) and between the two readers (comparing the mean age estimate for each specimen) 

(Temple et al., 2020; Bland & Altman, 2003, 1999). Linear models of the mean age read for 

each specimen against the difference between reads for each specimen were used to check for 

bias in the relationship between reads (within and between readers). Limits of Agreement using 

the 95% mean confidence interval of the difference between reads was also used to define 

precision in age reads (within and between readers). Standard metrics of agreement used in 

aging studies were also presented for comparison: the average percent error, coefficient of 

variation, percent agreement and percent agreement ±1 year (Beamish & Fournier, 1981; 

Chang, 1982) but note these latter measures are known to be flawed (Cailliet et al., 2006; 

Goldman, 2005). Validation of band pair periodicity (i.e. the assumption of annual growth band 

pair deposition) was not possible using marginal increment analysis or edge analysis due to 

insufficient sample numbers across all months of the year (Table 4.2) and other validation 

methods such as mark-recapture of chemically tagged fish were not possible in this study 

(Campana, 2001; Cailliet et al., 2006).  

 

Table 4.2 Age frequency for sampled Mobula mobular (n=79) and M. thurstoni (n=59) by 

location, sex, and month. 

Species Date Indonesia Pakistan 

Mobula mobular 

January 2 - 

March - 10 

May 1 - 

June - 1 

July 1 - 

September 10 15 

October 31 3 

November 3 2 

Mobula thurstoni 

January 11 - 

September 6 - 

October 40 - 

November 2 - 
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Figure 4.4 Images of a) Mobula mobular and b) M. thurstoni vertebrae sections for age determination 

using an Optika dissecting microscope with a fitted camera, illuminated from above using reflected light 

and from either side using a double-armed fibre optic light source, and enhanced in Adobe Photoshop 

Elements 2021 Photo Editor (Version: 19.0), annotated with birth line and annual growth bands. The 

imaged sections are from a) a male M. mobular aged as 8 years and b) a male M. thurstoni aged as 5 

years caught in a small-scale gillnet fishery in Cilacap, Central Java, Indonesia between September-

October 2020. 

4.3.4 Estimating growth 

A Bayesian, multi-model approach was used to estimate growth using the DW-at-age dataset 

for M. mobular and M. thurstoni, incorporating prior knowledge of maximum size and size-at-

birth to set informative priors (Pardo, Kindsvater, Cuevas-Zimbrón, et al., 2016). The DW-at-

age datasets were missing samples for the largest individuals based on known maximum sizes 

and classical growth models using a frequentist approach are sensitive to missing data points 

(Siegfried & Sansó, 2006). Therefore, a Bayesian approach likely provides growth estimates 

that are more biologically relevant than a classical, frequentist approach (Pardo, Kindsvater, 

Cuevas-Zimbrón, et al., 2016; Smart & Grammer, 2021). Whilst the von Bertalanffy growth 

model is the most commonly used and generally best-fitting growth model for elasmobranchs, 

a multi-model approach is required to ensure the most appropriate model is fitted (Smart et al., 

2016). An information-theoretic approach was used to choose the best fitting model by 

(a) Mobula mobular (b) Mobula thurstoni 
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comparing leave-one-out information criterion (LOOIC) (Vehtari et al., 2017). To account for 

multiplicative error, equations were log-transformed with an error term added. The following 

models were fit and compared:  

the three-parameter von Bertalanffy equation (von Bertalanffy, 1938): 

𝑙𝑜𝑔(𝐷𝑊𝑡) =  𝑙𝑜𝑔(𝐷𝑊∞ − (𝐷𝑊∞ −  𝐷𝑊0)𝑒−𝑘𝑡) + ∈𝑡    (1) 

 

the Lester biphasic growth function (Lester et al., 2004):   

𝑙𝑜𝑔(𝐷𝑊𝑡) = 𝑙𝑜𝑔(ℎ(𝑡 − 𝑡1))  + ∈𝑡 𝑤ℎ𝑒𝑛 𝑡 ≤ 𝑇                         (2a) 

𝑙𝑜𝑔(𝐷𝑊𝑡) = 𝑙𝑜𝑔 (𝐷𝑊∞(1 − 𝑒−𝑘 (𝑡− 𝐷𝑊0))) + ∈𝑡  𝑤ℎ𝑒𝑛 𝑡 > 𝑇                       (2b) 

 

the three-parameter Gompertz growth function (Ricker, 1975), 

𝑙𝑜𝑔(𝐷𝑊𝑡) =  𝑙𝑜𝑔 (𝐷𝑊0𝑒
(log(

𝐷𝑊∞
𝐷𝑊0

)(1−𝑒−𝑘𝑡))
) + ∈𝑡      (3) 

 

and the logistic growth function (Ricker, 1979), 

𝑙𝑜𝑔(𝐷𝑊𝑡) =  𝑙𝑜𝑔 (
𝐷𝑊∞𝐷𝑊0𝑒𝑘𝑡

𝐷𝑊∞ + 𝐷𝑊0(𝑒𝑘𝑡 − 1)
) + ∈𝑡       (4) 

 

where DWt is the disc width at age t, DW∞ is the asymptotic disc width, DW0 is disc width at 

age zero, k is a growth constant, h is the juvenile growth rate (disc width per unit time), t1 is the 

asymptotic hypothetical age at length 0, and T is the last immature age. The Lester biphasic 

growth model did not converge for either species and was therefore not reported in the results. 

Reported maximum sizes are 350cm DW (individual from the Mediterranean) and 197cm DW 

(individual from the Phillipines) for M. mobular and M. thurstoni, respectively, with size-at-

birth reportedly 90-160cm and 70-90cm, respectively (Rambahiniarison et al., 2018b; 

Notarbartolo di Sciara, 1988; Notarbartolo di Sciara et al., 2020). Asymptotic size in fishes can 

be estimated from maximum size using the following equation (Froese & Binohlan, 2000): 

𝐷𝑊∞ = 100.044+0.9841∗(log10(𝐷𝑊𝑚𝑎𝑥))     (5) 
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where DWmax is the maximum size in centimetres. For a DWmax of 350cm for M. mobular and 

197cm for M. thurstoni, this resulted in DW∞=1.01 * DWmax and DW∞=1.02 * DWmax, 

respectively. Hyperpriors were set for this parameter, defined as kappa, and based on a gamma 

distribution with a mean of 1.01 and 1.02, respectively. The probability distribution of kappa 

was set between 0.7 and 1.3 (Froese & Binohlan, 2000; Pardo, Kindsvater, Cuevas-Zimbrón, et 

al., 2016). Priors were also constrained for DW0 around size-at-birth. The same priors were used 

across models for 𝐷𝑊0, 𝐷𝑊∞, and σ for each species as these parameters can be interpreted in 

the same way (Smart & Grammer, 2021; Smart et al., 2016) (Table 4.1). There is prior 

information on k for the von Bertalanffy growth model for M. mobular (Pardo, Kindsvater, 

Cuevas-Zimbrón, et al., 2016) but since k is unique to each growth model tested and therefore 

not comparable across models (Smart et al., 2016), an uninformative prior was used for all 

models (Table 4.1). For the Lester biphasic growth model, T was constrained around the 

minimum age at maturity for M. mobular, which was estimated between five to six years in a 

previous study (Pardo, Kindsvater, Cuevas-Zimbrón, et al., 2016; Cuevas-Zimbrón et al., 2013). 

A prior with a normal distribution and a mean of four years was therefore used to account for a 

lag between the start of reproductive investment and maturity (Wilson et al., 2018). Age-at-

maturity is unknown for M. thurstoni but is inferred from M. mobular. Uninformative priors 

were used for h and t1 parameters.  

As well as setting informative priors, we compare the effect on posteriors with parameter 

estimates using weaker priors with the same mean of the distributions but higher variance 

(Table 4.1). A weakly informative prior is used for the variance σ2 in all growth models. We 

trialled fitting uninformative priors with uniform distributions but the model did not converge 

well because there were insufficient data to fit an asymptotic curve due to the low number of 

larger and older individuals; this means the chosen priors were not truly uninformative (Van 

Dongen, 2006).  

Finally, we used the top model to test for potential regional differences in growth between 

Indian Ocean M. mobular (Indonesia and Pakistan) and M. mobular caught off Mexico 

(Cuevas-Zimbrón et al., 2013). Bayesian models were written in Stan and conducted in RStan 

version 2.21.0 (Stan Development Team, 2023). To allow comparison of length-at-age 

estimates, the top growth function for M. mobular was also fit using a frequentist approach. 

The top growth function for M. thurstoni did not converge when fit using a frequentist approach, 

likely due to the lack of older individuals in the dataset. Self-starter functions from the package 

FSA (Ogle et al., 2022) were first used to generate reasonable starting values for growth model 



84 

 

parameters and nonlinear regression models were fit using the package nlstools (Baty et al., 

2015). The 95% confidence intervals for growth curves and coefficients were calculated using 

bootstrapping with replacement for 10,000 iterations. 

4.3.5 Estimation of maximum intrinsic rate of population increase 

The maximum intrinsic rate of population increase (rmax) was estimated for M. mobular and M. 

thurstoni using a modified Euler-Lotka model that accounts for survival to maturity (Pardo, 

Kindsvater, Reynolds, et al., 2016; Cortés, 2016): 

𝑙𝛼𝑚𝑎𝑡
𝑏 =  𝑒𝑟𝑚𝑎𝑥𝛼𝑚𝑎𝑡 − 𝑒−𝑀(𝑒𝑟𝑚𝑎𝑥)𝛼

𝑚𝑎𝑡−1      (6) 

where 𝑙𝛼𝑚𝑎𝑡  is survival to maturity, b is the annual reproductive output of female offspring, αmat 

is female age-at-maturity, and M is the instantaneous rate of natural mortality. 𝑙𝛼𝑚𝑎𝑡
 is 

calculated as: 

𝑙𝛼𝑚𝑎𝑡
= (𝑒−𝑀)𝛼𝑚𝑎𝑡      (7) 

M is estimated as: 

𝑀 =  (
𝛼𝑚𝑎𝑥+ 𝛼𝑚𝑎𝑡

2
)

−1

      (8) 

where αmax is female maximum age. 

The limited sample size and temporal period of sampling in this study meant the annual 

reproductive output b of M. mobular and M. thurstoni could not be determined. Both species 

are known to produce a single pup, occasionally two pups per litter, over a 12-month gestation 

period and have a reproductive cycle of one to three years with resting periods 

(Rambahiniarison et al., 2018; Doumbouya, 2011). Assuming a 1:1 sex ratio, we estimate a 

plausible range of b using the following equation: 

𝑏 = 0.5 (
𝑙

𝑖
)       (9) 

where l is litter size and i is breeding interval. b was therefore bound between 0.17 (based on a 

single pup and triennial reproductive cycle) and 1 (two pups and annual reproductive cycle).  

αmat and DW at 50% maturity DWmat were estimated using Bayesian logistic regressions for 

both species for combined sex using strong and weaker priors. However, M. thurstoni logistic 

regression models did not fit the DW- and age-maturity data well due to limited observations 

of mature individuals (n=2) and therefore parameter estimates are not presented. Parameter 
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estimates for M. mobular were similar and therefore only presented for stronger priors in the 

results. There are no direct estimates of age at maturity available for M. thurstoni but there is 

an estimate of DWmat of 150cm (Rambahiniarison et al., 2018; Notarbartolo di Sciara, 1988). 

Using age and growth data from this study, αmat for M. thurstoni was therefore assumed to 

mature between 5 and 6 years. Size at maturity for females and males of both species have been 

found to be similar (Rambahiniarison et al., 2018; Stevens et al., 2018). We used the range of 

αmat estimated to set the lower and upper bounds of αmat for each species.  

To estimate M, we need to estimate αmax. We used the theoretical age that each species reached 

95% and 99% DW∞ to bound our αmax estimate, which is calculated as 5ln(2)k-1 and 7ln(2)k-1, 

respectively (Fabens, 1965; Ricker, 1979). The maximum observed age in this study was less 

than the 95% DW∞ and was therefore used as the lower bound. rmax was estimated using the 

nlminb function in R from the package stats (R Core Team, 2021). A Monte Carlo approach 

was used whereby 10,000 random deviates were drawn from a uniform distribution between 

minimum and maximum values of b, αmat, αmax, and M to account for uncertainty within these 

parameters (Dulvy et al., 2014; Temple et al., 2020). 

4.3.6 Estimation of total mortality, fishing mortality, and the exploitation ratio 

The top growth model was used to estimate age to the nearest year for M. mobular (n=103) and 

M. thurstoni (n=89) given DW. Total instantaneous mortality rate Z (±95 % CI), which is a 

combination of fishing mortality F and natural mortality M, was calculated using the Chapman-

Robson catch curve with the package FSA (Smith et al., 2012; Ogle et al., 2022). This assumes 

the individuals in this study are one population with minimal migration and that sampling from 

the fishery is random and non-selective across age and size classes. The ages of M. mobular 

and M. thurstoni fully recruited to the fishery (three and two years, respectively) were assumed 

to be the peak abundance, with Z estimated from four and three years of age, respectively. 

10,000 draws were made from the estimated ranges of natural mortality M and Z, with uniform 

and normal probability distributions assumed, respectively. F was then estimated by subtracting 

the ranges of M from the ranges of Z. Exploitation ratio E was calculated by dividing the ranges 

of fishing mortality F by the ranges of Z. Median F, rmax, and exploitation ratio E estimates 

were compared whereby rmax is equivalent to the fishing mortality that will drive a species to 

extinction (Fextinct) and E is the ratio of F to M where if F = M then E is 0.5, representing an 

optimum value for biological sustainability (Pauly, 1983; Gulland, 1971). Total annual 

mortality rate A was also estimated from Z, where 1 – e(-Z), as an estimate of the proportion of 
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individuals in a closed population (assuming no immigration, recruitment, or emigration) that 

die in one year. 

All data analyses and visualisations were conducted in R version 4.1.2 (R Core Team, 2021). 

4.4 Results 

4.4.1 Disc width-weight relationship 

Mobula mobular sampled in this study ranged between 62 and 260cm DW, whilst M. thurstoni 

ranged between 75 and 190cm DW (Figure 4.5). Juveniles and mature individuals of both sexes 

were sampled for each species as indicated by maturity status assessments as well as known 

offspring size and size at maturity (IUCN, 2022) (Figure 4.5). However, only two mature M. 

thurstoni individuals were recorded (both male). Two individuals of M. mobular were smaller 

(62cm and 87cm DW) than the minimum known offspring size for this species (90cm DW) 

(Figure 4.5). A few individuals close to the known maximum size of M. thurstoni were sampled; 

however, this species possibly reaches 220cm DW (Jabado & Ebert, 2015) and the largest 

possible individuals of M. mobular were likely not sampled as indicated by known maximum 

sizes (IUCN, 2022) (Figure 4.5). 
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Figure 4.5 Disc width (cm) frequency distribution for a) Spinetail devil ray (M. mobular) (n=103) and 

b) Bentfin devil ray (M. thurstoni) (n=89) sampled from Indonesia (n=112), Kenya (n=43), and Pakistan 

(n=37) with known female (orange dashed) and male (green dashed) minimum size at maturity; 

minimum offspring size and maximum size (black dotted lines) for each species indicated (IUCN, 2023). 

 

Table 4.3 Mean estimates (95% Credible Intervals) of Bayesian length-weight regression, growth 

models, and length-maturity regression models using strong and weaker priors for Mobula mobular 

(n=79) and M. thurstoni (n=59). 

Species Model Parameter Strong priors Weaker priors 

Mobula 

mobular 

DW-weight linear 

regression 

β 2.51 (2.30 , 2.71) 2.51 (2.31 , 2.70) 

log(a) -9.26 (-10.28 , -8.19 ) -9.27 (-10.25 , -8.24) 

σ2 0.27 (0.24 , 0.32) 0.27 (0.24 , 0.32) 

von Bertalanffy 

growth model 

k 0.05 (0.04 , 0.06) 0.06 (0.03 , 0.11) 

DW0 1166.53 (1085.5 , 1246.79) 1162.64 (1070.34 , 1249.08) 

DW∞ 3502.95 (3214.2 , 3795.37) 3311.95 (2545.35 , 4184.92) 

σ2 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14) 

Gompertz growth 

model 

k 0.08 (0.06 , 0.09) 0.09 (0.06 , 0.16) 

DW0 1197.67 (1125.27 , 1270.53) 1186.47 (1096.77 , 1269) 

DW∞ 3490.26 (3195.5 , 3789.21) 3146.85 (2439.22 , 4073.06) 

σ2 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14) 

Logistic growth 

model 

k 0.11 (0.08 , 0.13) 0.14 (0.09 , 0.22) 

DW0 1222.28 (1158.27 , 1287.63) 1200.65 (1111.93 , 1284.85) 

DW∞ 3474.85 (3187 , 3773.44) 2994.05 (2340.35 , 3938.02) 

σ2 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14) 

Age-maturity 

logistic regression 

β 0.66 (0.35, 1.04) 0.70 (0.37, 1.09) 

a -5.46 (-8.49 , -3.24) -5.70 (-8.74 , -3.32) 

DW-maturity 

logistic regression 

β 0.07 (0.04 , 0.09) 0.10 (0.06 , 0.16) 

a -13.72 (-19.0 , -8.90) -20.79 (-31.62, -12.71) 

Mobula 

thurstoni 

DW-weight linear 

regression 

β 2.84 (2.60 , 3.06) 2.84 (2.61 , 3.06) 

log(a) -10.74 (-11.77 , -9.61) -10.74 (-11.79 , -9.63) 

 0.23 (0.19 , 0.28) 0.23 (0.19 , 0.28) 

von Bertalanffy 

growth model 

k 0.1 (0.07 , 0.15) 0.11 (0.05 , 0.24) 

DW0 849.86 (789.17 , 906.01) 851.93 (788.04 , 907.96) 

DW∞ 2014.78 (1777.36 , 2245.42) 2113.41 (1481.71 , 2845.3) 

σ2 0.1 (0.08 , 0.12) 0.1 (0.08 , 0.12) 

Gompertz growth 

model 

k 0.14 (0.09 , 0.22) 0.14 (0.08 , 0.26) 

DW0 862.72 (811.98 , 911.67) 864.77 (809.56 , 915.81) 

DW∞ 2047.37 (1664.56 , 2438.92) 2155.38 (1524.94 , 2909.55) 

σ2 0.1 (0.08 , 0.12) 0.1 (0.08 , 0.12) 

Logistic growth 

model 

k 0.19 (0.14 , 0.25) 0.18 (0.12 , 0.31) 

DW0 870.21 (823.47 , 916.42) 873 (821.75 , 920.05) 

DW∞ 2022.11 (1796.58 , 2252.17) 2178.12 (1549.54 , 2929.75) 

σ2 0.1 (0.08 , 0.12) 0.09 (0.08 , 0.11) 
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There was little difference in a and b estimates with strong and weaker priors and therefore the 

Bayesian linear disc width-weight relationship was presented for strong priors only for each 

species (Table 4.3; Figure 4.6).  

 

Figure 4.6 Natural log-transformed disc width (cm) and weight (kg) Bayesian linear relationship (with 

95% credible intervals) for female (orange) and male (green) a) Spinetail devil ray (M. mobular) 

(n=101) and b) Bentfin devil ray (M. thurstoni) (n=76). 
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4.4.2 Age estimation using caudal vertebrae 

Vertebral samples for age estimation in M. mobular (n=79) came from Indonesia (n=48) and 

Pakistan (n=31), with individuals younger than one years old sampled for both sex and 

maximum ages of 17.5 and 12.5 years for females (n=41) and males (n=38), respectively. 

Vertebral samples for age estimation in M. thurstoni (n=59) came from Indonesia, with all 

females (n=29) aged under two years old and males (n=30) ranging from less than one years 

old to six years old. The caudal vertebrae of M. tarapacana (n=3) showed clear banding, 

suggesting this method would be viable for future aging studies with a greater sample size. The 

three individuals sampled were aged at 1.5, 6, and 8 years for specimens with 152 (female), 237 

(male), and 210cm (female) DW, respectively.  

Bland-Altman analyses of M. mobular reads showed no evidence of bias within reader 1 (M. 

mobular, R2=0.0259, F=3.08, p=0.0834; M. thurstoni, R2=0.0170, F=2.00, p=0.163) or reader 

2 (M. mobular, R2=0.00761, F=1.60, p=0.210; M. thurstoni, R2=0.00504, F=1.29, p=0.260) 

(Figure 4.7). There was evidence of significant bias between readers for M. mobular 

(R2=0.0742, F=7.26, p<0.001) but not for M. thurstoni (R2=0.0126, F=1.74, p=0.192) (Figure 

4.7). For all individuals that initially differed by more than one year, consensus was reached 

between readers, likely overcoming this bias. Average percent error, coefficient of variation, 

percent agreement, percent agreement ±1 year are also presented alongside Bland-Altman limits 

of agreement (Table 4.4; Figure 4.7). The variability in age band counts was consistent with 

other shark and ray aging studies (Temple et al., 2020; Jacobsen & Bennett, 2010; Baje et al., 

2018; Gutteridge et al., 2013). Higher variability in M. thurstoni reads is likely due to younger 

age estimates meaning smaller differences in age band counts can cause inflated error estimates 

(Baje et al., 2018). 

 

Table 4.4 Estimates of ageing agreement, precision, and bias in age reads for Mobula mobular (n=79) 

and M. thurstoni (n=59) within and between two readers: Average Percent Error (APE), Coefficient of 

Variation (CV), Percent Agreement (PA), PA ±1 year, and Bland-Altman Limits of Agreement (LOA). 

Species Estimate PA (%) PA ± 1 

year (%) 

CV (%) APE (%) LOA (± 

years) 

Mobula 

mobular 

Within reader 1 64.6 23.3 5.94 4.20 1.63 

Within reader 2 36.7 50.7 15.8 11.2 2.03 

Between readers 1 and 2 41.8 22.7 10.1 7.17 1.44 

Mobula 

thurstoni 

Within reader 1 81.4 5.88 3.86 2.73 0.57 

Within reader 2 89.8 7.02 2.52 1.78 0.54 

Between readers 1 and 2 78.0 0.00 2.44 1.73 0.33 
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Figure 4.7 Bland-Altman analyses of agreement, precision, and bias in age estimates (year ± 0.5) within 

and between readers for 1) Spinetail devil ray (M. mobular) (n=79) and 2) Bentfin devil ray (M. 

thurstoni) (n=59). Plots show the relationship between: vertebrae age band counts for a) reader 1 and c) 

reader 2 and between e) mean vertebrae age band counts from readers 1 and 2. b) Bland–Altman plots 

display bias and precision between vertebrae age band counts for b) reader 1 and d) reader 2 and between 

f) mean vertebrae age band counts from readers 1 and 2. 

 

4.4.3 Estimating growth 

Of the four growth models tested, the three-parameter von Bertalanffy and logistic growth 

models with stronger priors fit best for M. mobular and M. thurstoni DW-at-age data, 

respectively, based on LOOIC (Table 4.5; Figure 4.7). These top models resulted in k and DW∞ 

estimates of 0.05 year-1 and 350cm for M. mobular and 0.19 year-1 and 202cm for M. thurstoni, 

respectively. The mean DW∞ estimates from the top models were in line with maximum 

(1) Spinetail devil ray (2) Bentfin devil ray 
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observed sizes for M. mobular (350cm) and M. thurstoni (197cm), suggesting the Bayesian 

models produced plausible estimates of growth rates. Bayesian models with strong priors 

resulted in lower mean k estimates and higher mean DW∞ estimates for M. mobular compared 

to models with weaker priors (Table 4.3; Figure 4.8). Whereas, models with weaker priors 

resulted in higher or the same mean k and DW∞ estimates for M. thurstoni (Table 4.3; Figure 

4.8). The M. mobular k estimate from the top model was lower than a previous estimate that 

also fitted a von Bertalanffy growth model (0.12 year-1) (Pardo, Kindsvater, Cuevas-Zimbrón, 

et al., 2016) to the only other published length-at-age dataset for this species sampled in Mexico 

(Cuevas-Zimbrón et al., 2013) (Figure 4.11). We used a different offspring and maximum size 

as informative priors (based on currently available literature) to re-estimate k for the Mexico 

(0.086 year-1) dataset as well as for M. mobular sampled in Indonesia (0.056 year-1) and 

Pakistan (0.048 year-1) in this study; this also showed Indian Ocean devil rays had lower growth 

rates (Figure 4.11). Parameter estimates from all growth models are presented (Table 4.3). 

The von Bertalanffy growth parameter estimates from the frequentist model were k=0.10 year-

1 (95% CI 0.03 year-1, 0.19 year-1), DW∞=262.65cm (95% CI 222.98cm, 453.38cm), and DW0= 

112.27cm (95% CI 96.46cm, 124.71cm). The frequentist approach resulted in a higher k and 

lower DW∞ estimate, with higher uncertainty (95% confidence intervals), than the top von 

Bertalanffy Bayesian model (Figure 4.9). The DW∞ estimate was much lower than the known 

maximum size of M. mobular (350cm) suggesting the frequentist approach may have 

underestimated the asymptotic size and therefore overestimated k (due to a more bent curve). 

Table 4.5 ‘Leave One Out’ cross validation Information Criterion (LOOIC) and LOOIC standard error 

(se) for growth model analyses for Mobula mobular and M. thurstoni. The best model with the lowest 

LOOIC and largest weight for each species is shown in bold. 

Species Model Parameter LOOIC LOOIC se Weight 

Mobula 

mobular 

von Bertalanffy Strong -109.11 10.04 1 

von Bertalanffy Weaker -108.89 10.11 3.62E-06 

Gompertz Strong -108.31 10.01 6.39E-07 

Gompertz Weaker -108.96 10.04 3.24E-05 

Logistic Strong -106.97 10.03 7.95E-07 

Logistic Weaker -108.74 10.02 2.42E-05 

Mobula 

thurstoni 

von Bertalanffy Strong -106.06 11.98 2.49E-09 

von Bertalanffy Weaker -105.97 12.11 4.54E-07 

Gompertz Strong -107.28 11.87 1.80E-06 

Gompertz Weaker -107 11.98 3.23E-08 

Logistic Strong -108.19 11.59 1 

Logistic Weaker -108.01 11.83 0.000406 
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Figure 4.8 Bayesian von Bertalanffy (purples), Gompertz (blues), and logistic (reds) growth curves 

describing the disc width and age (nearest year) relationship for a) combined female (n=41) and male 

(n=38) Spinetail devil ray (M. mobular) (n=79) and b) combined female (n=29) and male (n=30) Bentfin 

devil ray (M. thurstoni) (n=59) length-at-age data from individuals sampled in Indonesia (circles) and 

Pakistan (triangles). The top model for each species is shown with a solid line with 95% credible 

intervals shown with solid black lines. Remaining models are shown with dashed lines. Dotted lines 

show the asymptotic size (DW∞) estimate for the top model, the maximum observed size for the species 

(black) and the maximum observed size in this study (brown). 
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Figure 4.9 Comparison between length-at-age estimates determined from Bayesian (purple) and 

frequentist (green) von Bertalanffy growth models, with 95% credible intervals and 95% confidence 

intervals, respectively, for combined female (n=41) and male (n=38) Spinetail devil ray (M. mobular) 

(n=79). 

 

4.4.4 Estimation of maximum intrinsic rate of population increase  

M. mobular had an estimated mean αmat of 8.2 years (95% CI 6.8 years, 10.3 years) and mean 

DWmat of 204cm (95% CI 191cm, 219cm) (Figure 4.12). The smallest observed mature M. 

mobular and M. thurstoni individuals were 193 and 171cm, which equates to 7.9 and 10.4 years, 

respectively (predicted using the top fitting growth model for each species). The former is 

within the calculated range of age at maturity for M. mobular and we therefore assume female 

αmat ranges uniformly between 6.8 and 10.3 years. For M. thurstoni, a DWmat of 150cm from a 

previous study (Rambahiniarison et al., 2018; Notarbartolo di Sciara, 1988) equates to 7 years 

and we therefore assume αmat ranges uniformly between 7 and 10.4 years. 
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Female αmax was calculated based on age at 95% DW∞ (Ricker, 1979) and 99% DW∞ (Fabens, 

1965) giving 69.3 and 97.0 years, respectively, for M. mobular and 18.2 and 25.5 years for M. 

thurstoni. The αmax estimates for M. mobular are likely unrealistically high due to the growth 

curve not reaching an asymptote and therefore an upper bound of 26 years was used for both 

species. The maximum observed age of M. thurstoni was 6 years but this is unlikely to represent 

true maximum age. The observed maximum age of M. mobular in this study was 17.5 years 

and so this was used as the lower bound for αmax for both species. Therefore αmax was assumed 

to uniformly range between 17.5 and 26 years for both species. Using the 10,000 drawn 

estimates of b, αmat, and αmax, median instantaneous natural mortality M was calculated as 0.066 

(95th percentiles 0.057, 0.078) for M. mobular and 0.066 (95th percentiles 0.057, 0.078) for M. 

thurstoni. Resultant median rmax was calculated as 0.094 year-1 (95th percentiles 0.024, 0.147) 

for M. mobular and 0.092 year-1 (95th percentiles 0.024, 0.145) for M. thurstoni, respectively 

(Figure 4.13). 

4.4.5 Estimation of total mortality, fishing mortality, and the exploitation ratio 

Full recruitment to the fishery for M. mobular and M. thurstoni was estimated at three and two 

years, respectively, based on the peak abundance from catch curve analysis (Figure 4.14). Total 

instantaneous mortality Z was similar for both species (M. mobular: 0.215 year-1, 95% CI 0.157, 

0.272; M. thurstoni: 0.232 year-1, 95% CI 0.136, 0.328), which translated to an annual mortality 

rate A of approximately 20% (M. mobular: 19.3%, 95% CI 0.146, 0.238; M. thurstoni: 20.7%, 

95% CI 0.128, 0.280). Median fishing mortality F was estimated as 0.15 year-1 (95th percentiles 

-0.046, 0.340) and 0.17 year-1 (95th percentiles -0.125, 0.462) for M. mobular and M. thurstoni, 

respectively. Estimates of F for both species, although highly uncertain, are higher than our rmax 

estimates (0.094 and 0.092 year-1), suggesting that current fishing mortality will drive the 

species towards extinction and is therefore unsustainable (Myers & Mertz, 1998; Dulvy et al., 

2004; Gedamke et al., 2007), within the assumptions made. Estimated median exploitation ratio 

E (ratio of F to M) was estimated as 0.70 (95th percentiles -0.67, 0.86) for M. mobular and 0.74 

(95th percentiles -1.66, 2.85) for M. thurstoni (Figure 4.13). Approximately 80% of the 

proportion of the estimated distribution of E is greater than the optimal value for biological 

sustainability of E=0.5 for both species, reinforcing that there is a high likelihood that M. 

mobular and M. thurstoni are overfished (Figure 4.11) (Gulland, 1971; Pauly, 1983). 
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Figure 4.10 Posterior (black lines) and prior (red lines) distributions for von Bertalanffy growth 

parameters (k, DW∞, and DW0), the hyperprior kappa, and the error term (σ2) for three Bayesian models 
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(von Bertalanffy, Gompertz, and Logistic) with strong and weaker priors fitted to a) Spinetail devil ray 

(Mobula mobular) and b) Bentfin devil ray (M. thurstoni) disc width-at-age data. Dashed lines show 

mean values and mean k and DW∞, indicated on each plot. 

 

Figure 4.11 Posterior distribution for von Bertalanffy growth parameters a) k and b) DW∞ for Bayesian 

models with strong priors fitted to Indian Ocean M. mobular disc width-at-age data from this study using 

samples from Indonesia (blue) and Pakistan (black) and previous studies using samples from Mexico 

(red) (Cuevas-Zimbrón et al. 2013; Pardo, Kindsvater, Cuevas-Zimbrón, et al., 2016). 

 

4.5 Discussion 

Our results indicate that current fisheries exploitation of devil rays in Indian Ocean small-scale 

fisheries is unsustainable, with fishing mortality higher than rmax estimates and exploitation ratio 

exceeding a threshold for biological sustainability. We found that both M. mobular and M. 

thurstoni had low somatic and population growth rates (low rmax), relative to most other 

chondrichthyans. Indian Ocean M. mobular also had a lower growth rate than found for this 

species in another region. We present the first published age and growth estimates for M. 

thurstoni, the first direct age-at-maturity estimate for any Mobula species, and only the second 

published aging study for M. mobular, including a record of the oldest individual published. 

We caution that neither of these aging studies have been able to validate the assumption of 

annual band deposition used. However, given the data paucity in devil ray life history and 

conservation urgency for these Endangered species, our results provide best first life history 

estimates for these species in the Indian Ocean. We discuss (1) unsustainable fisheries catches 

of Indian Ocean devil rays; (2) how life history estimates compare to these species in other 
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regions; (3) regional and global management implications; and (4) future research directions 

and caveats of the estimated life history estimates. 

 

Figure 4.12 Bayesian logistic regression with strong priors describing the relationship between a) age 

(n=56) and b) disc width (n=73) and maturity status for M. mobular with 95% Credible Intervals. Age 

and disc width at 50% maturity (with 95% Credible Intervals) are shown with dashed lines.  
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Figure 4.13 Distribution of estimated maximum intrinsic population growth rate (rmax) and exploitation 

ratio (E) for M. mobular (a and b, respectively) and M. thurstoni (c and d, respectively). Dashed lines 

show median values. 
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Figure 4.14 Chapman-Robson catch curve for a) Spinetail devil ray (Mobula mobular) (n=103) and b) 

Bentfin devil ray (M. thurstoni) (n=89) from Indian Ocean small-scale fisheries. Age class for full 

recruitment to the fishery was 3 and 2 years, respectively, and catch curve regression lines between ages 

4 to 18 and 3 to 13, respectively. Total mortality Z indicated. 
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The distribution of the exploitation ratio E for both M. mobular and M. thurstoni, alongside the 

disparity between fishing mortality F and rmax, suggests a high likelihood of overfishing. We 

found that M. mobular (rmax=0.094 year-1) and M. thurstoni (rmax=0.092 year-1) had low rmax, 

which aligns with other studies that found devil rays have amongst the lowest rmax of all 

chondrichthyans, alongside deep sea species (Dulvy et al., 2014; Pardo, Kindsvater, Cuevas-

Zimbrón, et al., 2016; Simpfendorfer & Kyne, 2009). This is likely due to very low reproductive 

outputs (Pardo et al., 2018). Although we did not observe any pregnant females in our study, a 

litter size of one, rarely two pups, has been observed in several studies for M. mobular and other 

devil ray species (Rambahiniarison et al., 2018; Broadhurst et al., 2018; Notarbartolo di Sciara, 

1988). Given the low fecundity and large offspring sizes of devil rays, they likely have weaker 

density-dependent regulation and therefore lower potential to withstand and recover from 

fishing exploitation (Kindsvater et al., 2016; Forrest & Walters, 2009). That is not to say that 

high fecundity alone is indicative of greater resilience (Reynolds et al., 2005; Kindsvater et al., 

2016). All M. thurstoni aged from Indonesian small-scale fisheries were less than six years old 

(n=59), with the majority ≤ 2 years (n=49), primarily caught between September and January. 

Gillnets are generally selective for a narrower size range where the smallest individuals can 

swim through the net and the largest avoid become meshed and therefore captured (Harry et al., 

2022); this may be why the largest individuals were not sampled in this study, as well as the 

difficulty landing larger catch. Further, the larger offspring size of many rays and sharks often 

means they are vulnerable to capture, which would be the case for large devil ray offspring 

(Harry et al., 2022; Simpfendorfer, 1999). Understanding gear selectivity is important for 

fisheries management to target specific species or size classes and to implement effective 

bycatch mitigation (Lemke & Simpfendorfer, 2023; Harry et al., 2011; Thorpe & Frierson, 

2009; Braccini et al., 2022). Selection for young M. thurstoni may also be due to temporal size 

segregation, which has been found for M. thurstoni in the Gulf of California (Notarbartolo di 

Sciara, 1988). Limiting catch to sub-adults in a fishery whilst allowing adults to breed can be 

an effective management strategy (Prince, 2002), yet protecting these age classes is also needed 

for future reproductive output of the stock (Kindsvater et al., 2016; Hixon et al., 2013). Our 

findings indicate that full recruitment to the fishery mainly occurs in sub-adults for both species 

before they have reached maturity.  

Growth rate estimates in this study are in line with larger-bodied chondrichthyans typically 

having low somatic growth rates, later maturity, and higher extinction risk (Hutchings et al., 

2012; Jennings et al., 1998). Yet, the study also provides initial evidence for geographic 
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variation in devil ray life history. Our growth estimate for M. mobular was lower than published 

growth estimates for this species sampled off Mexico (Cuevas-Zimbrón et al., 2013; Pardo, 

Kindsvater, Cuevas-Zimbrón, et al., 2016). The Mexico length-at-age dataset had a similar 

length range to ours, with both lacking the largest size classes based on known maximum size 

for this species. M. mobular are reported to exhibit variation in size across their range (Marshall 

et al., 2022), which could result in growth differences. Estimates from both studies are still 

indicative of relatively slow growth for the species, which alongside the large body size of M. 

mobular, is associated with greater intrinsic sensitivity and higher extinction risk (Reynolds et 

al., 2005; Jennings et al., 1998). We present the first direct age-at-maturity estimate of 8 years 

in Indian Ocean M. mobular, which was later than previous estimates, taking 2-3 years longer 

to mature compared to the same species off Mexico (5-6 years) (Pardo, Kindsvater, Cuevas-

Zimbrón, et al., 2016; Cuevas-Zimbrón et al., 2013). This equates to a 15-20% reduction in 

lifetime reproductive output based on a maximum age of 20-26 years. Further, a delay in 

pregnancy from the onset of maturity has also been reported for this species, likely due to the 

large offspring size and long gestation period, where high maternal investment is needed 

(Rambahiniarison et al., 2018). Our estimates match closely with age-at-maturity estimates 

(7.4-9.1 years) reported from a study in the Philippines (Rambahiniarison et al., 2018) that used 

size-at-maturity estimates and the Von Bertalanffy growth model from Cuevas-Zimbrón et al. 

(2013), with alternative model parameters (Cuevas-Zimbrón et al., 2013; Pardo, Kindsvater, 

Cuevas-Zimbrón, et al., 2016). We found a higher, yet still relatively low, k estimate for M. 

thurstoni which is the first published estimate. We also present the first age-at-maturity estimate 

of seven years for M. thurstoni. Overall, this resulted in rmax estimates for both species that were 

comparable with previous estimates for M. mobular (median of 0.077 year-1, 95th percentiles 

0.042, 0.108) (Pardo et al., 2016) and manta rays (single estimate for M. alfredi and M. 

birostris) (median of 0.116 year-1, 95th percentiles 0.089, 0.139) (Dulvy et al., 2014), suggesting 

that Indian Ocean devil rays are at high risk of local depletion from overfishing.  

Understanding the life history of a species can be key in informing the most effective actions 

to manage threats but there is uncertainty in the best sustainable management options for 

preventing species extinction (Kindsvater et al., 2016; Denney et al., 2002; Sadovy, 2005). The 

conservative life history of devil rays makes it unlikely that they can withstand the fishing 

mortality rate found in this study (Dulvy et al., 2008; Dulvy et al., 2014; Stevens et al., 2000). 

Although there is substantial variation in the maximum size of devil rays between species, 

ranging from 110cm for M. munkiana to 700cm DW for M. birostris (Last et al., 2016), their 
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low reproductive output limits their population growth rates. This is likely why consistently 

low rmax estimates have been found for devil rays with different maximum body sizes including 

for M. mobular and M. thurstoni in this study. Estimates of rmax are sensitive to the duration of 

the reproductive cycle (Dulvy et al., 2014), which is something that has only been reported in 

a handful of studies (Marshall & Bennett, 2010; Broadhurst et al., 2019; Rambahiniarison et 

al., 2018). We tried to account for this uncertainty by using a Monte Carlo approach but 

variation in annual reproductive output may lead to substantial variations in population growth 

rate that needs to be accounted for (Dulvy et al., 2014). Therefore, species- and region-specific 

life history estimates are key in informing accurate and localised demographic and 

sustainability assessments for devil rays (Dulvy et al., 2014). 

Whilst devil rays are listed on CITES Appendix II and CMS Appendices I and II, national 

protections within the Indian Ocean are limited and the small-scale fisheries they are caught in 

typically have poor fisheries monitoring, regulation, and enforcement. This includes countries 

reporting some of the largest catch, such as Indonesia where we sampled in this study (Dulvy 

et al., 2014; Croll et al., 2016). Blanket bans on devil ray species as a sole management approach 

in small-scale fisheries would likely prove insufficient as effective management and 

enforcement needs to be tailored to the local context (Temple, Berggren, et al., 2024; Booth et 

al., 2019). Devil ray catches are often high value per individual and can contribute to a high 

proportion of the economic value of small-scale fisheries providing a financial incentive to 

exploit them (Temple, Berggren, et al., 2024). Small-scale fisheries are typically multi-gear and 

multi-species, making a management approach targeted towards a single species challenging 

(Herrón et al., 2019). Most devil ray catches occurred in gillnets and so management should 

prioritise interventions in these fisheries. One management approach could be to encourage safe 

release of live-caught devil rays entangled in gillnets, with many Regional Fisheries 

Management Organisations, including the Indian Ocean Tuna Commission, requiring live 

release and recommending safe handling practices (IOTC, 2019). Although gillnet discard 

mortality can be high (Dapp et al., 2016), there is some indication that mobulid rays be more 

capable of post-release survival due to their spiracle depending on soak time (Broadhurst & 

Cullis, 2020). However, this can be challenging in small-scale fisheries where devil rays and 

other elasmobranchs caught incidentally are often utilised for subsistence and trade. Wider 

understanding of social and economic drivers of catch and fisher behavior is therefore also 

needed for effective implementation of management actions (Booth et al., 2023; Barrowclift et 

al., 2017; Temple, Berggren, et al., 2024).  
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There is still insufficient life history data across the ranges of M. mobular and M. thurstoni to 

fully understand geographic differences as well as a lack of understanding of population 

structure. Gear selectivity may also mean that samples are not representative of the population 

and may truncate the population age structure, which could lead to biased growth estimates 

given the effects of fishing on the population (Thorson & Simpfendorfer, 2009; Walker et al., 

1998). The observed difference in growth for M. mobular between our study and the previous 

study of the same species off Mexico, could be partly due to a more limited number of 

individuals sampled in larger size classes in our dataset (DW>2 m), whereby informative priors 

are still not “bending” the growth curve (a more bent curve results in faster doubling rates 

towards the asymptote and therefore a higher k estimate and concomitantly a lower DW∞ 

estimate). The lack of “bending” of the growth curve can also explain the unreasonably large 

estimates of αmax for M. mobular based on asymptotic size. Whilst we aimed to quantify any 

uncertainty and bias in age reads through human error, with commonly used techniques and the 

Bland-Altman approach, this error could have been carried through to our growth modelling 

(Harry et al., 2022). We also assumed annual deposition of growth bands on vertebral centra 

but this could not be validated here and is not yet validated for any mobulid species, as with 

many elasmobranchs. Indeed, this may not be a valid assumption, with band pair deposition 

potentially being more variable and age likely underestimated, particularly for larger and older 

individuals (Harry, 2018; Natanson et al., 2018; James & Natanson, 2020). This can lead to 

additional uncertainty in age estimates as well as that of reader error that can be carried forward 

to subsequent analyses utilising length-at-age datasets (Harry et al., 2022).  

If the age of larger individuals in this study were underestimated, this could lead to an 

underestimated growth coefficient (less bent curve) given the seemingly missing older 

individuals resulting in a higher asymptotic length estimate (Harry, 2018). However, the DW∞ 

estimates were in line with known maximum lengths for both species suggesting the Bayesian 

growth models had produced plausible estimates of growth rates. A greater maximum age 

would also mean these species live for longer and may have lower natural mortality than 

estimated and consequently lower productivity and resilience to fishing. However, greater 

longevity would also mean a higher lifetime reproductive output implying greater productivity, 

presenting a complex picture. Growth band pairs may also vary along the vertebral column as 

found in five batoid species, potentially due to body growth and shape, more reflective of 

structural needs than an annual cycle, suggesting they do not accurately represent a single age 

estimate (James & Natanson, 2020). For devil rays in this study, banding was only visible in 
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the caudal portion of the vertebrae, which were used to provide best first length-at-age estimates 

of devil rays in the Indian Ocean. However, we acknowledge these limitations and add to 

recommendations that more accurate aging methods are needed to ensure appropriate and 

effective fisheries and population assessments of these species. 

Similar assumptions in catch curve analysis can also lead to potential biases in our total 

mortality estimate where they may not be met. These include an unselective fishery, constant 

recruitment and natural mortality across age classes, a closed population, and sufficient sample 

size to represent the age structure of the population (Smith et al., 2012). Understanding the 

assumptions made and the limitations are important in appropriate use of life history estimates. 

Continued exploration of novel aging techniques are still needed given it is not possible to age 

all elasmobranch species due to vertebral morphology and lack of growth band pair formation 

(Burke et al., 2020) as well as the limitations with current aging methods as discussed above. 

Indeed, with devil rays, we found caudal vertebrae were the most calcified part of the vertebral 

column with clear banding, as was found previously for M. mobular (Cuevas-Zimbrón et al., 

2013). Difficulty in assessing female maturity and reproductive cycle as in this study is a 

common issue given low sample sizes across the year with the seasonality of many fisheries. A 

potential method that has been tested is the use of ultrasound (Froman et al., 2023), which would 

be useful for live and larger individuals as well as being a less destructive sampling method. It 

could also be a potential way to avoid dissection of landed rays, which fishers and traders do 

not always agree to, making it difficult to determine female maturity and reproductive cycle. 

Given data deficiencies for devil rays and many other elasmobranchs, and the difficulty in 

addressing these gaps, data-poor methods need to be utilised with available information to 

ensure sustainable fisheries. Low sample size is a common issue in elasmobranch age and 

growth studies. Bayesian growth modelling can provide a useful alternative to fixing model 

parameters, which has been shown to bias growth estimates (Pardo et al., 2013), particularly 

when the smallest and largest age classes are lacking (Pardo, Kindsvater, Cuevas-Zimbrón, et 

al., 2016; Mukherji et al., 2021; Smart & Grammer, 2021). We found both species had relatively 

slow growth, late age-at-maturity, low rmax, and therefore high intrinsic sensitivity to fisheries 

exploitation (Reynolds et al., 2005; Cortés, 2000, 2002). However, there is inter- and intra-

specific variation in devil ray growth rates that warrants species- and population- estimates to 

inform more accurate species/population/stock assessment models. We demonstrate a suitable 

data-poor approach to generate age, growth, and rmax estimates for Endangered M. mobular and 

M. thurstoni to inform these assessments. Our findings reinforce previous works showing that 
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devil rays can only withstand relatively low catch rates, and we show that these rates are almost 

certainly being outstripped by current targeted and incidental catch rates in small-scale and 

industrial fisheries in the Indian Ocean. Implementation of evidence-based fisheries 

management is critically needed for these species in Indian Ocean small-scale fisheries given 

their conservative life history and socio-economic value. 
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Chapter 5. Thesis conclusions 

5.1 Overview 

Over one-third of the 644 ray species (Class Chondrichthyes, Superorder Batoidea) assessed 

on the IUCN Red List are threatened with extinction due to overfishing (Dulvy et al., 2021). 

An additional 10% are Data Deficient and there are still new species being discovered (Moore 

et al., 2020; Weigmann et al., 2020; Last et al., 2023) that need to be described and assessed 

(Last et al., 2016). Fishing has led to the collapse of several ray species populations (Brander, 

1981; Dulvy & Reynolds, 2002; Dulvy et al., 2016; Sherman, Simpfendorfer, Haque, et al., 

2023; Kyne et al., 2020; Yan et al., 2021) and the first extinction of a marine fish due to 

overfishing - the Java Stingaree (Urolophus javanicus) (Constance et al., 2023). A number of 

fisheries management and trade tools have been established in response to growing concern 

over shark and ray fisheries’ sustainability. These include the implementation of National Plans 

of Action for sharks (NPOA shark) recommended by the United Nations Food and Agriculture 

Organisation (FAO) in 1999, the Convention on International Trade in Endangered Species 

(CITES) with the first shark species listed in 2002 (Vincent et al., 2014), bans on finning and 

carcass discards in many countries (Davidson et al., 2016; Lack & Sant, 2009), non-retention 

bans by Regional Fisheries Management Organisations (RFMOs) (Shiffman et al., 2016; 

Tolotti et al., 2015), and the Convention of Migratory Species Memorandum of Understanding 

for Sharks (CMS MoU sharks) (Fowler, 2012). Yet, rays and sharks still face increasing threat 

of extinction from overfishing and populations continue to decline (Davidson et al., 2016; 

Worm et al., 2024; Dulvy et al., 2021). However, it is possible for populations to recover 

(Moore, 2023) and for future sustainable fishing if well-enforced, science-based management 

is implemented (Simpfendorfer & Dulvy, 2017; Pacoureau et al., 2023). 

In Chapter 1, it was evident that pelagic ray species (Order Myliobatiformes) with a larger 

geographic range and greater exposure to Small-Scale Fisheries (SSF) pressure were at higher 

risk of extinction. This highlights the need for trans-national and -regional management efforts 

where species ranges overlap multiple national jurisdictions to ensure appropriate protection. 

This needs to be throughout a species’ lifetimes where understanding and protection of 

migration routes and critical habitats, such as nursery areas, feeding and mating areas are 

needed (Martins et al., 2018; Boerder et al., 2019; Chin et al., 2023; Pendoley et al., 2014). 

There is now limited species refuge from intense fishing pressure with the increasing expansion 
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of industrial fisheries into the “high seas” since the 1950s (Queiroz et al., 2019; Tickler et al., 

2018) and deeper waters (Finucci et al., 2024). Well-enforced, science-based fisheries 

management measures are therefore crucial to ensure that fishing mortality is sustainable. For 

example, marine protected areas need to be appropriately located (Davidson & Dulvy, 2017) 

and appropriately enforced (Vianna et al., 2016; Di Lorenzo et al., 2022).  SSF pressure was 

found to be a better predictor of extinction risk for pelagic rays than industrial fishing pressure 

(Chapter 1). However, SSF have typically been understudied and further research focus is 

needed to move beyond the well-studied fisheries for high-valued commercial stocks, typically 

in high-income countries (Moore & Grubbs, 2019; Hilborn et al., 2020). This will require 

improved resources, increased local capacity, and political will (Sala et al., 2018; Jacquet et 

al., 2010; Pauly, 2006; Moore & Grubbs, 2019). This is essential given the important role of 

SSF for current and future sustainability of ocean resources and food security (Pauly, 2006; 

Béné et al., 2007), with a significant contribution to global employment (Teh & Sumaila, 2013; 

Béné et al., 2010) and the nutritional value provided from marine fisheries (Hicks et al., 2019; 

Béné et al., 2015).  

Given that a lack of data often limits population and fisheries stock assessments for rays and 

that the rate of decline is outpacing the ability to address empirical data gaps, data-poor 

assessment approaches are needed (Cortés & Brooks, 2018; Cortés et al., 2012). Better 

utilisation of available data to inform status assessments and draw inference through 

phylogenetic, environmental, and life history trait relationships can help guide conservation 

and management actions (Kindsvater et al., 2018; Horswill et al., 2019; Thorson et al., 2017). 

In Chapter 2, an assessment was conducted to investigate if more widely available data on body 

mass, temperature, and depth could explain variation in calculated rmax for 85 ray species, 

providing the foundations to predict rmax for data-poor species. This revealed a paradox 

whereby tropical rays (Orders Torpediniformes, Rhinopristiformes, and Myliobatiformes) 

were found to be more intrinsically sensitive to fishing and other anthropogenic threats (e.g. 

climate change) compared to temperate skates (Rajiformes). This was in contrast to metabolic 

expectations and raised further concern for tropical rays that already face a disproportionate 

threat of extinction (Dulvy et al., 2021). The reason for the paradox is further explored in 

Chapter 3 where it was found that offspring size explained high variation in rmax of rays and 

that a larger offspring size relative to adult size in tropical rays resulted in lower population 
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growth rates. Understanding of intrinsic sensitivity and drivers of extinction risk is therefore 

important in prioritising management and conservation efforts. 

It is crucially important to collect life history data to best inform population and species 

assessments where possible. In Chapter 4, key life history parameters (growth, age at maturity, 

and rmax) for Endangered devil rays (Mobula mobular and M. thurstoni) were calculated. A 

data-poor approach is demonstrated along with the utility of Bayesian statistical approaches 

that allow incorporation of prior knowledge to inform biologically-relevant models. It was 

found that both devil ray species had low somatic and population growth rates relative to other 

chondrichthyans and that current levels of fishing mortality were likely unsustainable in the 

Indian Ocean. The inter- and intra-specific variation in devil ray life history found in the 

research highlights the need for species- and population-specific estimates to inform more 

accurate assessments. Well-enforced, evidence-based fisheries management actions for devil 

rays in the Indian Ocean is critically needed to prevent further species decline and aid 

population recovery. 

5.2 Administrative challenges faced and recommendations for biological sampling 

This PhD project aimed to work with up to ten project collaborators in countries across the 

Indian Ocean to facilitate data and biological sample collection from devil rays (Mobula spp.) 

caught in small-scale fisheries. This required significant administration during the four-year 

PhD to formalise collaborations and to comply with the Nagoya Protocol and CITES (Figure 

5.1). This required navigating collaborating countries’ and the UK’s relevant legislation in 

order to export and import samples for laboratory work to take place at Newcastle University, 

United Kingdom. This included age determination from vertebrae samples and DNA extraction 

from muscle tissue samples for future use in determining the genetic population structure of 

devil rays across the Indian Ocean. This presented a number of challenges (Figure 5.1) and 

below is an overview of recommendations based on the experiences from implementing sample 

collection for devil rays that may be helpful when coordinating international biological 

sampling research. 

• Consider storage and shipment of samples. Ethanol (>95%) is a favoured and effective 

medium for tissue preservation for molecular genetic analyses (Nagy, 2010). However, 

ethanol is not readily available in some countries and can also present issues as it may 

be regarded as “dangerous goods” for shipment. Whilst small quantities can be shipped 
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in individual sample tubes, it is important to consider that ethanol evaporates easily 

(recommend using microcentrifuge tubes with screw caps with o-rings) and will erase 

permanent marker if there is leakage (recommend additional labelling e.g. put 

waterproof paper with sample number written in pencil inside sample tubes). As an 

alternative, 20% salt-saturated Dimethylsulfoxide (DMSO) is a cheap storage medium 

that is effective at room temperature (Oosting et al., 2020; Nagy, 2010), which is 

important to consider given limited freezer storage at remote landing sites. Vertebrae 

samples are best stored frozen in labelled sample bags until ready for preparation 

(Cailliet & Goldman, 2004). Where not possible, tissue can be removed and samples 

dried for shipment (however, samples will need to be rehydrated to cut vertebrae 

centra). Finally, it is important to take duplicate samples of tissue and vertebrae samples 

and store these in-country as back-up and for future shipments for sequencing and age 

determination where necessary. For tissue samples, it is crucial to consider the ratio of 

medium to sample (ideally 5:1 for ethanol and DMSO) in order to preserve good quality 

DNA (i.e. do not put too much tissue in one sample tube as the tissue will continue to 

degrade without enough preservative solution). When sampling from fisheries catch, it 

is important to preserve the DNA as soon as possible, especially in situations where 

there may have been a significant amount of time since capture.  

• Identify in-country permit agencies and contact details for any required paperwork. 

Contact the relevant office at the earliest opportunity as administrative tasks required 

in international biological sampling projects can be a time consuming and bureaucratic 

process (Watanabe, 2017), particularly within the constraints of funding periods. 

Always follow up with reminders of enquires as project priorities may not align with 

those of permitting agencies. Where possible, discuss in-person or via a video / phone 

rather than relying on email correspondence. In-country project collaborators are 

crucial to facilitating all these steps. 

• Contingency planning. Although there are some key steps that can be taken, there will 

always be external factors that may implement project implementation (e.g. COVID 

pandemic / natural disasters) (Figure 5.1). This is especially true when working with 

samples from fisheries catch that can fluctuate due to a range of environmental, social, 

economic, and political factors. 
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Figure 5.1 Timeline (October 2019 – 2023) of administrative tasks and challenges encountered during 

biological sampling (vertebrae and muscle tissue - genetic resources) of Indian Ocean Mobula spp. 

(listed on CITES Appendix II) from fisheries catch through a network of international Project 

Collaborators (PCs) in order to investigate life history and population structure. A conservative estimate 

of 720 emails were sent over the four-year duration, with the estimated number of emails sent for each 

step of the process indicated by envelope icons. From eight initial PCs, biological samples were 

eventually received from four PCs and countries (Indonesia, Kenya, Pakistan, and South Africa). 

Acronyms include MoU (Memorandum of Understanding), MTA (Material Transfer Agreement), PIC 

(Prior Informed Consent), and MAT (Mutually Agreed Terms). 

 

5.3 Future research directions to inform conservation and management 

Unassessed global fish stocks account for approximately half of marine fisheries landings and 

ultimately, more accurate data are needed to understand the status of unassessed fisheries 

(Ovando et al., 2021; Hilborn et al., 2020; Costello et al., 2012). Catch is currently 

underestimated in official FAO fisheries statistics, which is widely used as the only global 

database, particularly for small-scale fisheries catch in developing countries (Pauly & Zeller, 

2016; Garibaldi, 2012; Zeller et al., 2015; Temple et al., 2019, 2018). Underestimated ray and 

shark catches (Clarke, McAllister, et al., 2006; Worm et al., 2013, 2024) are exacerbated by 

misidentification due to morphological similarity and ongoing taxonomic uncertainty (Tillett et 

al., 2012; Last et al., 2023). Further catch statistics are collected by Regional Fisheries 

Management Organisations (RFMOs), with some reporting catch of rays and sharks, however, 

there are also gaps in the taxonomic resolution, reporting by fishing sector (e.g. industrial versus 

small-scale), and of discards (Heidrich et al., 2022). The quality of reported data has 

implications for interpretation of catch trends, ability to conduct accurate stock assessments, 

and may ultimately cause mismanagement of fisheries resources that threatens the future 

sustainability of global fisheries (Watson & Pauly, 2001; Jacquet et al., 2010). Separate 

reporting of SSF and industrial catches as well as discards and retained catches by FAO 

members would be a key step to improve the database (Pauly & Charles, 2015; Mucientes et 

al., 2022). This will likely require on-board monitoring of all catches (target, non-target, and 

discard) by observers or camera deployments, the latter of which have been shown to be more 

cost-effective and representative of catch (van Helmond et al., 2020; Bartholomew et al., 2018). 

Vessel Monitoring Systems (VMS) have allowed better monitoring of fishing effort and catches 

but are currently more widely used for industrial fisheries (Lee et al., 2010; Kindt-Larsen et al., 
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2011; Kroodsma et al., 2018). Although there is an indication that the shark and ray fin and gill 

plate trade is decreasing, better resolution of trade data is needed along with combatting illegal 

trade (Eriksson & Clarke, 2015; Wu, 2016; Prasetyo et al., 2021) in the same way as for fisheries 

catch data (Agnew et al., 2009).  

Whilst many rays and sharks are caught as bycatch (Oliver et al., 2015; Lewison et al., 2004; 

Stevens et al., 2000), mitigation and fisheries management efforts are complicated by their 

commercial and subsistence value. There has been a reduction in discards but this does not 

necessarily mean a reduction is fishing mortality; where sharks and rays may have historically 

been classed as relatively low value, they are now more often retained with the depletion or 

management restrictions of high valued target catch (Kelleher, 2005; Dent & Clarke, 2015; 

Dulvy et al., 2021). Gillnets are the most widely used gear type in SSF as they are relatively 

low cost and effective at capturing many different species (Fernando & Stewart, 2021; 

Berninsone et al., 2020; Anderson et al., 2020). Unfortunately, their lack of selectivity also 

makes them the primary problem for fishing mortality of sharks, rays, and other marine 

megafauna (Lewison et al., 2004; Jabado, 2018; Reeves et al., 2013; Pechham et al., 2007; 

Moore, 2015). The need to move away from gillnets is recognised but often challenging given 

their effectiveness and where other methods might result in lower catch and income (Fernando 

& Stewart, 2021; Rojas-Bracho & Reeves, 2013). Therefore, holistic approaches understanding 

the drivers of fishers’ behaviours as well as accounting for trade-offs between socio-economic 

factors and conservation objectives are needed to aid fisheries management decisions (Booth et 

al., 2020, 2023; Iwane et al., 2021). ‘One size fits all’ is generally not effective at dealing with 

the complexities of ray and shark fisheries; management therefore needs to be adaptable in 

order to be effective to the local context (Dulvy et al., 2017; Booth et al., 2019). 

Whilst there is still a need for the collection of life history data from dead specimens in order 

to inform effective status assessments, future research will likely move towards less destructive 

sampling methods (Heupel & Simpfendorfer, 2010; Salvador et al., 2022). Currently, it is 

difficult to age and determine maturity, fecundity, and reproductive cycles of rays without 

dissection. Although, novel methods such as ultrasound are starting to be used, (Froman et al., 

2023), which could potentially help when sampling catches that fishers do not want to cut before 

selling as well as sampling live individuals. Given uncertainty in age band counts, particularly 

for older individuals (Harry, 2018; Natanson et al., 2018), new technologies are also needed for 

ageing, for example near-infrared spectroscopy that has the potential to be non-lethal (Rigby et 

al., 2018). 
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Fisheries landings provide a good sampling opportunity to collect life history data where 

individuals have already been caught and landed but there will be inherent biases in these data. 

For example, where gears are selective for a particular size class or where species segregate by 

age or sex classes that overlap with fishing grounds. Often ray and shark data come from catch 

records and other fishery-dependent sources but there is a need for fisheries-independent data 

(Oliver et al., 2015; Lyons et al., 2013). Particularly where the knowledge base often comes 

from more well-studied species and regions. Satellite tags, aerial surveys, and Baited Remote 

Underwater Video systems (BRUVs) are becoming increasingly used to independently 

determine species occurrence, relative abundance, and to track ray distributions (Queiroz et al., 

2019; Waldo et al., 2024; Shea et al., 2020; Oleksyn et al., 2021), information necessary for 

conservation and management (Hays et al., 2019). Independent fisheries monitoring approaches 

will be needed as part of a sampling strategy to address current species and geographic data 

gaps (Salvador et al., 2022; Shiffman et al., 2020). 

Genetic approaches will likely be a key component of moving towards non-lethal sampling, 

fisheries-independent data, and addressing issues surrounding monitoring of fisheries catches 

(e.g. morphological similarity, illegal fishing and trade). This includes the use of environmental 

DNA to determine species presence, diversity, relative abundance, and even population 

structure, particularly for elusive and threatened species (Dunn et al., 2023; Dugal et al., 2022; 

Mariani et al., 2021; Leurs et al., 2023). Genetic approaches to identify species composition of 

fisheries catch and trade monitoring to help with the issue of traceability for management and 

enforcement controls will become more widely applicable as cost decreases and rapid 

assessment of multiple species becomes increasingly available (Cardeñosa et al., 2018). DNA 

barcoding is already being used to identify trade of CITES-listed and endangered species, 

particularly where difficult to determine species identity from traded products such as meat, 

shark fin, and gill plates (Shen et al., 2024; Wainwright et al., 2018; Clarke, Magnussen, et al., 

2006). There is also the possibility of molecular aging and determining maximum lifespan 

(Mayne et al., 2019; Budd et al., 2023; Prasetyo et al., 2023), which may help with uncertainties 

from aging using vertebrae. Although currently lacking for rays and sharks (Pearce et al., 2021), 

the increase of genomic resources including reference genomes and species-specific data 

(Naylor et al., 2012; Hara et al., 2018) can also help prioritise conservation efforts for taxa that 

are evolutionary distinctive (Stein, Mull et al., 2018). Conserving taxonomic and genetic 

diversity as part of ray conservation and management of fisheries, and biodiversity conservation 

more broadly, are important to consider (Hoban et al., 2021; Domingues et al., 2018). Whilst 
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this thesis addressed life history gaps for devil ray species, the next research priority should be 

to investigate the genetic population structure, which is lacking for many ray species, yet 

important for effective conservation and fisheries management (Dudgeon et al., 2012). 

Necessary tissue samples to facilitate genetic analyses have been collected during this PhD 

research (Figure 5.1) and will be used during planned post-doctoral research. Molecular 

approaches offer an exciting avenue for future fisheries and species assessments that alongside 

improved fisheries catch data and wider application of novel fisheries-independent monitoring 

can help work towards recovery and prevention of further decline of rays. 

5.4 Conclusion 

The research presented in this thesis has collected new and utilised available life history data 

of rays to infer global patterns in intrinsic sensitivity to fishing and contributed to addressing 

data paucity in the life history parameters for two Endangered devil ray species (Mobula spp.). 

It has further provided methods for data-poor approaches that can be used to inform fisheries 

sustainability assessments, setting fishing limits, and predicting rebound potentials for species 

where data are lacking and are likely to decline before there is time to fully address data paucity. 

The vulnerability of tropical rays is highlighted, many of which are already threatened with 

extinction, facing high exposure to fisheries, and have slow population growth rates. Improved 

fisheries monitoring, implementation and enforcement of science-based fisheries management, 

and wider incorporation of socio-economic factors in research and management are needed to 

conserve rays and ensure sustainable fisheries. The research outputs provide evidence necessary 

for policy and management to prevent ray species extirpation and extinction.
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