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Abstract

Seagrass ecosystems around the UK are in poor condition and continue to decline, in
large part due to anthropogenic activities, such as nutrient pollution, which may also
lead to macroalgae proliferation that is detrimental to seagrass growth. To better
understand declines and support recovery efforts, accurate spatiotemporal monitoring
of seagrass habitat health and macroalgae distributions are required. Remote sensing
offers the potential to map large or inaccessible areas, cost-effectively, providing
coastal managers with promising data for assessment. This PhD thesis evaluates the
potential of using remote sensing technologies to map and monitor a complex intertidal
seagrass-macroalgae environment in Lindisfarne, Northumberland, UK. A multiscale
mapping approach was used to evaluate multiple platforms and sensors, with differing
spatial and spectral resolution. Different classification approaches were tested, the
monitoring and management implications of each considered. A Maximum Likelihood
classifier and multispectral Unoccupied Aerial Vehicle (UAV) imagery successfully
mapped seagrass-macroalgae distribution to species level, with an Overall Accuracy
(OA) ranging between 84% and 91%. A random forest classifier with airborne
hyperspectral imagery and high resolution PlanetScope satellite imagery was able to
produce 6-class large-scale habitat maps with OA of over 90%, for each. This was
repeatable across multiple images and may enable monitoring of seasonal and
interannual changes in seagrass and macroalgae distribution. The benefit of red edge
and near infrared bands was highlighted across multiple platforms. These are offered
by the low-cost multispectral UAV that is then able to discriminate between vegetation
classes, with similar map accuracies to those achieved when reducing hyperspectral
imagery spectral bands (23) to 5-8 bands. Large-scale maps can be used to reveal
distribution patterns of seagrass and macroalgae as snapshots and over time,
elucidating seagrass-macroalgae dynamics, to support coastal managers’ decision-
making and management. Overall, this PhD provides a comprehensive critical
evaluation of optical remote sensing methods for effective monitoring and its

operationalisation for use for seagrass ecosystem conservation.
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Chapter 1: Introduction

1.1. Importance, threats and decline of seagrass

Seagrass habitats are some of the most productive ecosystems on earth (Duarte &
Chiscano, 1999). They are highly valuable, providing a wide range of ecosystem
goods and services to coastal regions, including: (1) coastal protection, through their
root system and above ground biomass, as they stabilise sediment by serving as
natural buffer against wave actions and the protection from coastal erosion (Costanza
et al., 1997); (2) improvement of water quality, through trapping pollutant run offs from
land (Moore, 2004); (3) nursery grounds for commercial fish species as food source,
shelter and refuge from predatory species (Beaumont et al., 2008; Bertelli & Unsworth,
2014); (4) fisheries support, as many commercial fish species rely on seagrass
habitats for food and breeding (Unsworth et al., 2019); (5) and finally, their high
efficiency in carbon sequestration and mitigating climate change (Rohr et al., 2018;
Zou et al., 202; Gao et al., 2022 ). An area of seagrass may be thirty-five times more
efficient at storing CO2than the same area of rainforest (McLeod et al., 2011), due to
rapid conversion of CO: into organic carbon and its storage in plant tissues and
extensive shoot systems expanding into and stabilising the sediment (Duarte et al.,
1998; Fourqurean et al., 2012).

Despite this, seagrass ecosystems are threatened, facing ongoing decline and loss
due to natural and anthropogenic impacts (Orth et al., 2006; Grech et al., 2012), such
as: (1) pollution from agricultural run-off and industrial waste that can cause
proliferation in algal blooms and consequently limiting sunlight and thus suppressing
seagrass growth (Han & Liu, 2014; Kim et al., 2015; Breininger et al., 2017); (2) coastal
development that can lead to the loss or degradation of seagrass habitats due to
modifications of coastal areas and sedimentation (Holon et al., 2015); (3) physical
damage through boat anchoring and propeller damage (Collins et al., 2010); (4)
destructive fishing practices though damaging fishing gears (Orth et al., 2002); (5)
diseases that can lead to decimation in seagrass population (e.g., wasting disease)
(Bull et al., 2012); (6) climate change causing rising sea water levels and increasing
water temperature, which can lead to stress in seagrass and impact their growth (Tang

& Hadibarata, 2022). A combination of these threats has led to an overall global



decline of seagrass habitat by 30% since the late nineteenth century (UNEP-WCMC,
2020).

Around the British Isles, seagrass meadows have not been exempt from these
pressures, and have experienced widespread declines in the past decades. Many
seagrass habitats are in poor condition (Jones & Unsworth, 2016). Green et al. (2021)
highlighted a catastrophic loss and decline of seagrasses around the UK with an
estimated loss of at least 44% since 1936, of which 39% has disappeared since the
1980s. In the early 1930s, a major decimation of Zostera marina (eelgrass) population
was caused by an epidemic, known as the ‘wasting disease’ (Labyrinthula zosterae),
which spread across the North-Atlantic Coasts of Europe and North America and
impacted significantly on seagrass populations in the UK (Butcher, 1933; Den Hartog,
1989; Bull et al., 2012). As in many other parts of the world, seagrass habitats in the
UK then continued to decline due to a variety of anthropogenic threats. One of the
major threats in the UK is related to excessive coastal nutrient input leading to poor
water quality and resultant eutrophication, for example due to agricultural activities

(e.g., fertilisers), sewage and industrial activities (Jones et al., 2018).

Eutrophication has a number of potential impacts. Eutrophication can lead to light
limitation, subsequently suppressing seagrass growth through increased algal blooms
and overshading. Sedimentation, which is often accompanied by nutrient enrichment,
can lead to both turbid waters and smothering of seagrass (den Hartog, 1994;
Burkholder et al., 2007; Han & Liu, 2014). These threats are amplified by climate
change in the UK, posing significant challenges to the survival of seagrass. For
example, elevated sea temperatures can result in more frequent algal blooms (Short
& Neckles, 1999). Additionally, increasingly changing, heavier and more dynamic
precipitation patterns may lead to increased nutrient and sediment runoff from the
land, resulting in higher nutrient concentrations and the subsequent rapid proliferation
of algae (Gilbert et al., 2008; O’Gorman, 2015). To counteract and prevent further
threats, effective seagrass and algal distribution is invaluable to track changes and
implement strategies, for example, to monitor and control algal overgrowth, and
mitigate seagrass decline. These tools are urgently required (Jones & Unsworth, 2016;
Strachan et al., 2022).



1.2. Seagrass biology and distribution

Seagrasses are marine flowering plants (Angiosperms) (Phillips & Menez, 1988). This
group consists of 73 species, which are estimated to cover an area of over 300,000
km? of the world’s seabed (UNEP-WCMC, 2020). Their distribution extends across six
global bioregions, and they are known to occur in 191 countries across tropical and
temperate coastal zones (Short et al., 2007; McKenzie et al., 2020; UNEP-WCMC &
Short, 2021). Due to their photosynthetic characteristics, occurrence in the ocean is
limited to shallow coastal areas where they rely on sunlight availability for growth and
survival (Zimmerman, 2006). While seagrass species are often confused with
seaweeds or algae, as both are aquatic vegetation, they are different types of
organisms belonging to separate taxonomic groups with distinct characteristics.
Seagrasses have a more complex structure consisting of a true roots system that
enables their anchoring and stabilisation in the sediment (below ground biomass) and
ribbon-like leaves that grow above the sediment (above ground biomass) (Hemminga
& Duarte, 2000). Algae are less structurally complex and lacking a true root system,

are often only attached to substrates (Pereira, 2021) (Figure 1.1).

Algae Seagrass

Figure 1.1. Diagram showing morphological differences between algae (left) and seagrass
(right). (Source: https://ocean.si.edu/holding-tank/images-hide/algae-vs-seagrass).

Seagrasses have two main reproductive strategies that are essential to their growth
and propagation. They can reproduce sexually via seed production and vegetatively
through the growth of their vertical shoots, and the production of rhizomes (Figure 1.1).
This enables their expansion into seagrass meadows, which can vary in density,

depending on the seagrass species, stage of proliferation and environmental


https://ocean.si.edu/holding-tank/images-hide/algae-vs-seagrass

conditions that they are exposed to (Akerman, 2006). They can occur both in shallow
subtidal areas covered by water and intertidal areas, exposed at low tide (Short et al.,
2007) (Figure 1.2). While both seagrass and macroalgae are important components
of coastal ecosystems, they are in competition for space, light and nutrients to grow
and expand, which can have detrimental ecological implications for seagrass habitats
(McGlathery, 2001; Han & Liu, 2014; Han et al., 2016). Opportunistic growing
macroalgae respond rapidly to increased nutrients, smothering seagrass and
potentially outcompeting slower growing seagrass (den Hartog, 1994).

Figure 1.2. Variations in density of seagrass habitats at low tide: a) dense Zostera noltii patch;
b) sparse Zostera marina patch.



1.2.1. Temperate seagrass species

In the UK temperate zone, the commonly distributed species are the intertidal
seagrass species Zostera noltii (dwarf eelgrass) and subtidal species Zostera marina
(eelgrass) (Short et al., 2007), note that Z. marina can grow intertidally. These two
species differ particularly in the morphology of their leaf structure. Z. marina has longer
ribbon-like leaf blades, whereas Z. noltii consists of shorter, thinner, and flat leaf

blades, which are generally darker green in comparison to Z. marina (Figure 1.3).

i
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Figure 1.3. Images of the two common temperate intertidal seagrass species: Zostera noltii
and Zostera marina.

1.3. Need for effective management and conservation methods

Regular monitoring and protocols enable coastal managers to assess the overall
health status (condition) of seagrass habitats, which can provide information on the
dynamics of species and populations, and whether these are stable or declining over
time (e.g., Borum et al., 2004; Short et al., 2006). Such information allows coastal



managers to identify and quantify potential threats and stressors (e.g., pollution, algal
blooms, diseases), to track long-term trends and changes in habitats, to allow for

timely preventive measures and intervention to reduce potential threats.

Traditional seagrass monitoring methods involve field-based surveys through in situ
collection of data. Different methods are applied to acquire direct observations and
measurements of seagrass, abundance, biomass, diversity, and their distribution to
evaluate the condition and health of seagrass habitats (Borum et al., 2004). Such
methods include, for example, transect surveys, where seagrass data is recorded
along the transect or quadrat sampling by placing a rectangular frame of known area
on the seafloor to record detailed information on seagrass information (e.g., shoot
density, diversity, seagrass cover) (Bunker & Green, 2019; Doggett & Northen, 2023).
In the UK, such methods are well established within organisations and governmental
bodies that monitor seagrass. The largest national seagrass monitoring programme is
maintained by the Environment Agency (2024) which uses different ground survey
methods, including quadrat sampling to acquire information on seagrass species and
seagrass cover for specific locations where seagrass is present. While other
governmental bodies and organisations are also known to perform seagrass surveys
and monitoring, these are either limited to one or two locations, are short-term or have
only recently been established. Natural England for instance, has monitored seagrass,
using quadrat sampling to record seagrass cover, canopy height, shoot density and
macroalgae cover in some locations in some years (Bunker & Green, 2019; Doggett
& Northen, 2023). The UK-based non-profit organisation, Project Seagrass
(projectseagrass.org/), surveys and monitors seagrass in Porthdinllaen, Wales as part
of their established platform called Seagrass-Watch, Global Seagrass Observing
Network. Finally, short-term projects (e.g., up to 5 years), smaller scale in the effort to
establish seagrass monitoring programmes are in place and are currently being
developed. However, they are limited to specific regions in the UK and only cover small
areas (e.g., EU LIFE Wader, 2024; Stronger Shores, 2024).

In situ methods have been used for decades and continue to be valuable for seagrass
habitat monitoring and management since they can provide detailed information of
seagrass habitats for specific locations (Short et al., 2014), but they are often
expensive, time consuming, pose safety concerns (e.g., being trapped in sediment)

and lack accurate spatiotemporal information for seagrass habitat inventory and



monitoring (Mumby et al., 1999). Spatially, seagrass ecosystems can be patchy over
large areas (which are difficult to monitor using in situ methods), and may consist of
irregular seagrass meadows, species distributions and the presence of macroalgae
(e.g., Leblanc et al., 2021; IvajnSic et al., 2022). Temporally, seagrass ecosystems
can be highly dynamic both annually and seasonally depending, for example, on the
degree of intensity of threats, such as nutrient input and the proliferation of algae (Carr
et al., 2012; Han & Liu, 2014). If only annual monitoring is carried out, spatiotemporal
dynamics will not be adequately captured. Short-term fluctuations arising from events
such as heatwaves, which can happen abruptly, may be overlooked, with rapid
unexpected, severe consequences on seagrass populations and entire ecosystems
(Thomson et al., 2015). Such fluctuations and dynamics can also occur at different
spatial scales. Seagrass habitats can be spatially heterogeneous over both small and
large scales. Sampling a limited number of quadrats may not adequately capture this
variability crucial to understand seagrass and macroalgae dynamics (Lgnborg et al.,
2021).

The lack of accurate spatiotemporal information can make it challenging for managers
to detect early signs of threats and decline of seagrass, potentially leading to delayed
and timely management strategy responses. To address this gap of monitoring in
dynamic seagrass-macroalgae environments, more frequent sampling (e.qg., quarterly,
or monthly) and larger coverage through increased sample size would be required.
However, increasing the frequency and numbers of sampling consequently involves
higher costs related to fieldwork. The trade-off between higher costs and more
frequent sampling may be challenging for organisations and projects due to budget
constraints, limiting their ability to increase sampling frequency and coverage. To
overcome the challenge in costs associated with sampling, and to optimize the trade-
offs between costs and the acquisition of accurate spatiotemporal data, technological
advances such as remote sensing may provide an alternative methodology to monitor

seagrass (Hossain et al., 2015; Veettil et al., 2022).

1.3.1. Habitat maps

Remote sensing techniques have revolutionised the toolbox available to coastal

managers as they permit mapping and monitoring of seagrass habitats cost-



effectively, over large areas, repeatedly, and they allow acquisition of data in
inaccessible areas (UNESCO, 2005; Hossain & Hashim, 2019). With increasing
advancement in technology and accessibility to cost-effective high resolution imagery
data such as UAVs and satellites (e.g., Sentinel-2 (10m), PlanetScope (3m)), the
operationalisation of remote sensing for coastal marine monitoring programmes has

gained increased attention (Ventura et al., 2022; Vitousek et al., 2023).

While remote sensing techniques are also increasingly being considered in seagrass
monitoring programmes in the UK, they are often only presented in form of broad-
scale maps that solely provide the extent and occurrence of seagrass habitats, such
as the national Seagrass layer provided by Natural England and Environment Agency
(Natural England, 2024) (Figure 1.4). Such maps lack, for example, co-occurring
threats to seagrass habitats such as opportunistic macroalgae, and disregard the
patchiness of seagrass habitats, which is critical to accurately capture seagrass cover.
In addition, these maps often represent seagrass distribution at one point in time and
lack the temporal component, critical to detect seagrass habitat changes. Local scale
maps that show distributional patterns of seagrass species, their densities and
macroalgae cover at higher spatiotemporal resolution, may enable managers to more
accurately capture seagrass-macroalgae dynamics, thus assess seagrass habitat
health (condition), their decline and potential and ongoing threats and pressures.
Accurate spatiotemporal habitat maps that show detailed seagrass and algae cover
that can be rapidly produced are needed to aid effective informed decision-making to
mitigate and prevent seagrass decline across the UK (e.g., Vahtmée et al., 2021; Haro
et al., 2022; Carlson et al., 2023).
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Figure 1.4. National Seagrass Layers of current spatial extent of Zostera spp. (dark blue
polygon area) in Lindisfarne and Plymouth Tamar that provide presence/absence data
(Source: Natural England, 2024: Contains public sector information licensed under the Open
Government Licence v3.0.)

1.4. Study site

The research presented here focussed on Lindisfarne National Nature Reserve
(LNNR) in the northeast of England, United Kingdom. The LNNR consists of a variety
of habitats including sand dunes, saltmarsh, intertidal-subtidal reefs, and intertidal
mudflats. Multi-designated, the site is underpinned by a Site of Special Scientific
Interest (SSSI), is also an SPA (Special Area of Protection) and sits within the
Berwickshire and North Northumberland Coast Special Area of Conservation (SAC).
Established as a national nature reserve, the LNNR protects important geology,
habitats and species. The LNNR, for example, is ecologically important for
internationally protected birds such as Light-Bellied Brent Geese (Branta bernicla)
(regularly over 2,000 birds) and wigeon (Mareca penelope) (up to 40,000), that utilise
the tidal mudflats as maintenance areas and foraging grounds by particularly feeding
on seagrass, prevalent across the intertidal mudflat areas during late summer, autumn
and into winter months (SSSI citation, 1989). National Nature Reserves also provide

‘outdoor laboratories’ for research.



The intertidal mudflat area in LNNR is large, covering approx. 2,300 ha, which includes
three main areas of seagrass habitat, namely the Causeway area (Holy Island Sands),
Fenham Flats and Budle Bay (Figure 1.5). Different vegetation types can be found
across the LNNR mudflats and area of interest, including the dominating intertidal
seagrass species Zostera noltii, the subtidal species Zostera marina and a mix of
opportunistic green macroalgae such as Enteromorpha (Ulva intestinalis). (Figure
1.5). Distribution and density of seagrass and opportunistic macroalgae (macroalgae,
hereafter) varies across the different mudflat areas, primarily attributed to increased
nutrients arising from terrestrial and offshore inputs. Of particular concern is the
macroalgae growth in the Causeway and Budle Bay areas, where seagrass can be
often found mixed with macroalgae in the spring to summer months. The field site is
managed by Natural England, a non-departmental public body (NDPB) in the United
Kingdom, responsible for overseeing the management and protection of seagrass in
Lindisfarne. The field site is currently monitored by the Environment Agency as part of
their annual seagrass monitoring programme using quadrat sampling and hovercratft,
but accurate spatiotemporal mapping for monitoring would improve monitoring and

allow better understanding of trends.

The growing recognition of the ecosystem services provided by seagrass meadows,
especially, as ‘blue carbon ecosystems’, that play a crucial role in mitigating climate
change (UNEP-WCMC, 2020; do Amaral Camara Lima et al., 2023) , have gained
increased attention and high priority in national seagrass protection and restoration
efforts. As opposed to homogeneous seagrass habitats, the complexity of the LNNR
field site provides a unique opportunity to evaluate remote sensing applications and to
better understand intertidal seagrass and macroalgae habitat dynamics at large-scale
in the UK.
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Figure 1.5. Map showing field site located in the North East of the UK (bottom left). Extent of
Lindisfarne National Nature Reserve (red boundary) and different regions of studied field sites,
including Causeway area, Fenham Flats and Budle Bay.



1.5. Thesis aim and structure

The overall aim of this thesis is to develop an effective remote sensing strategy for
temperate intertidal seagrass monitoring for management and conservation purposes.
Optical remote sensing imagery are utilised, and methods are developed to evaluate
varied optical remote sensing platforms and their applications for mapping and
monitoring a complex intertidal seagrass-macroalgae environment. To address
knowledge gaps described in Chapter 1 and Chapter 2, the thesis is structured to
reflect the multiscale approach taken by utilising imagery data from different platforms
with varying spatial, spectral and temporal resolution. This permits the assessment of
information that can be acquired from each different platform and sensor. The thesis

is structured as follows:

Chapter 1 discusses the importance, threats and decline of seagrass habitat, their

need for effective management and conservation.

Chapter 2 gives an overview on optical remote sensing technologies and classification
methods and presents a literature review that identifies the knowledge gap of the

application of optical remote sensing in temperate seagrass environments.

Chapter 3 evaluates the utility of an off-the shelf multispectral Unmanned Aerial
Vehicle (UAV) to map an intertidal multi-species seagrass environment. This chapter
investigates the level of accuracy that can be achieved, particularly focussing on
additional bands at the red edge and in the near infrared in comparison to an RGB
camera. This study maps seagrass at species level (Zostera noltii and Zostera marina,
respectively) and aims to discriminate between seagrass species and macroalgae.
Additionally, both the benefits and challenges of using UAV technology to map
intertidal seagrass environments are discussed and recommendations developed to

support operational and management practices.

Chapter 4 examines the utilisation of airborne hyperspectral imagery (Compact
Airborne Spectrographic Imager -CASI), that has a lower spatial resolution (1m) but
higher spectral resolution (23 bands) imagery data, for larger scale mapping of an
intertidal seagrass environment. This chapter investigates the capability of an airborne
hyperspectral imagery to accurately mapping seagrass densities and macroalgae

cover, to identify where hyperspectral imagery data may augment UAV capabilities.



Additionally, benefits and challenges of airborne for large-scale seagrass intertidal

mapping and monitoring for management practices are discussed.

Chapter 5 evaluates satellite multispectral imagery (PlanetScope), that has a lower
spatial resolution (3m) and a lower spectral resolution (8 bands), for large scale
mapping of a seagrass-macroalgae environment. Additionally, this chapter
investigates the potential of satellite imagery to monitor temporal (seasonal and
interannual) change in seagrass and macroalgae cover for effective management

practises.

Chapter 6 discusses how these methods may combine to deliver a multiscale level
mapping approach for monitoring and effective management practises and provides a
synthesis of key findings, limitations, and future research of study to make

recommendations to Natural England.



Chapter 2: Remote Sensing Review

2.1. Optical remote sensing

Remote sensing refers to the "process of detecting and monitoring the physical
characteristics of an area by measuring its reflected and emitted radiation at a
distance” (USGS, 2023). Information can be acquired via different platforms (e.g.,
satellite, plane, and Unoccupied Aerial Vehicle (UAV)), that have specific sensors
attached, through which, detection or the measurement of electromagnetic radiation
(light) reflected, emitted, or scattered by the targeted object of interest is captured
(Richards, 1986). The acquisition of information through the visible to near infrared
portion of the electromagnetic spectrum is referred to as optical remote sensing

(remote sensing, hereafter) (Richards, 1986).

Remote sensing platforms with mounted sensors are most commonly UAV, which are
operated from the ground, space -borne satellites or occupied aeroplanes (Airborne)
(Figure 2.1). The amount of information and imagery data that can be acquired,
depends on: temporal resolution, the revisit time between consecutive image
acquisitions; spatial resolution, the level of detail represented in the image, which is
determined by sensor characteristics and flight height; radiometric resolution, which
represents the ability of a sensor to discriminate small changes in detected energy,
thus between different levels of brightness or intensity in the electromagnetic
spectrum, usually defined by whether it is 8-bit, 12-bit or 16-bit; and spectral
resolution, which refers to the widths and number of spectral bands, which determines
the level of detail in spectral information (Richards, 2013). Combinations of and
compromises between these four sensor specifications ultimately determines the level
of information attained and trade-offs are typically required. For example, an airborne
hyperspectral sensor may capture data in hundreds of narrow spectral bands, which
may enable detailed discrimination between vegetation types (e.g., algae and
seagrass) (Garono et al., 2004; Vahtmae et al., 2021), whereas a multispectral sensor,
which consist of a few spectral bands may offer broader spectral bands with less
detailed information but in turn greater spatial coverage area (Figure 2.1). Sensor and
platform selection can have different implications for ecosystem habitat mapping and

monitoring. These can include but are not limited to: 1) mapping of ecosystems and



habitats at spatially large scale and in inaccessible areas; 2) acquisition of ecosystem
features and complexities through for example higher spatial and spectral resolution
sensors, enabling the characterisation of habitats; and 3) assessment of habitat
dynamics through mapping and monitoring from detailed to broad-scale level mapping
(e.g., Dekker et al., 2006; Hobley et al., 2021; Zoffoli et al., 2021).

R
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Figure 2.1. Varying spatial resolution (from high to low) of an intertidal seagrass environment
taken with different platforms and sensors including an Unoccupied Aerial Vehicle (UAV),
airborne and satellite imagery.

Ecosystem’s constituent habitats can be complex and dynamic in their composition.
These complexities and dynamics can occur from small-scale habitat patches to large-
scale habitats to entire ecosystems (Phinn et al., 2018a). Often, with traditional

methods, such dynamics and detailed information, critical to ecosystem management,



can be difficult to capture. By utilising appropriate platforms and sensors with optimal
spatial, spectral, and temporal resolution, remote sensing derived habitat maps can
provide valuable information to better understand habitat spatial complexities and

dynamics (Hossain et al., 2015).

Once imagery has been collected, distinguishing characteristics in remote sensing
derived data sets, classification or categorization of different features is required.
Distinct classes or categories must be assigned to habitat features (e.g., vegetation,
non-vegetation, water etc.). This process is performed during the analysis stage by
utilising appropriate classification methods, an analytical approach where spectral
data are classified, or grouped, according to similar characteristics that lead to the
production of maps which represent habitats. The accuracy of classified habitat maps
and their representation of the habitats and their attributes being investigated (e.qg.,
complexity, patchiness) depends primarily on the spatial and spectral resolution of
imagery data and the classification method applied to delineate the required
information (Richards, 2022). For example, in complex habitats, where ecologically
different features occur, i.e., seagrass and macroalgae, higher spatial resolution
imagery may permit class identification to species level (Reshitnyk et al., 2014). Such
detailed information can get lost in lower spatial resolution imagery, as increasing pixel
size can lead to mixed pixels that contain multiple classes (Richards, 2013). However,
with less habitat complexity, such as homogeneous seagrass areas, high spatial
resolution imagery may not be required as relevant, unless other habitat factors such

as seagrass patchiness and configuration are important.

2.1.1. Classification methods

Over the years, changes in remote sensing and sensor technologies have led to the
development of new methodologies for generating classified habitat maps, improving
the information on features that can be derived from remotely sensed imagery. During
the early years of image analysis and classification, when spatial resolution of remotely
sensed imagery was low (e.g., Landsat in the 1970s, 30m pixels), hard classification
techniques, where pixels are categorised into distinct, well-defined classes based on
their spectral characteristics, was the prime methodology (e.g., Weismiller et al., 1977,

Ward et al., 1997). The utilisation of such hard classifiers may be effective where



seagrass mapping includes well-defined and distinct classes (Richards, 2022). For
example, they may suffice for mapping homogeneous seagrass environments, where
pixels contain distinct features (O’Neil & Costa, 2013). Although hard classifiers have
been maintained as a traditional approach and are still needed, single pixels that
contain multiple feature classes are harder to analyse, e.g., signals from seagrass,
algae, shells cannot be disaggregated, making it challenging to acquire accurate
information about the presence of the actual features within the pixel. To deal with
such mixed pixels, fuzzy techniques, such as sub-pixel classification methods (e.qg.,
Linear Spectral Unmixing (LSU)), which utilises the spectral information to estimate
the proportion of each class within the pixel, can be applied (Keshava & Mustard, 2002;
Quintano et al., 2012) (Figure 2.2).

Image classification methods and their effectiveness are especially influenced by
spatial resolution. Pixel-based classification, whereby individual pixels are labelled into
a specific class based on their spectral characteristics (e.g., Maximum Likelihood
classifier), are often sensitive to spatial resolution (Richards, 1986; Foody et al., 1992).
For example, higher spatial resolution imagery enables more detailed spectral
information. Pixel-based classifiers were among the early approaches in remote
sensing classification (e.g., Macleod & Congalton, 1998). With increasing higher
spatial resolution imagery available through the 2000s, the concept of image
segmentation and Object-Based Image Analysis (OBIA), whereby geographical
objects are analysed instead of individual pixels, was introduced. For instance, Object-
based image analysis groups pixels into objects or segments by considering their
spectral, spatial, and contextual properties (Blaschke, 2010; Lyons et al., 2012;
Roelfsema, et al., 2013) (Figure 2.2).
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Figure 2.2. Schematic illustration of the evolution of classification methods used for remote
sensing image classification.

Two main computational approaches are used for mapping. Supervised classification
is a machine learning approach whereby a model is trained on labelled data, e.g.,
habitat classes are assigned to pixels, and unsupervised classification, where a model
investigates patterns and creates categories or classes without predefined labels.
Unsupervised classification can be very useful for a quick and less sophisticated, initial
exploration of unknown habitat areas (Richards, 2013, 2022). For example, to
investigate seagrass presence/absence and patches within an unknown area.
However, in habitats with spectral distinct complex vegetation types, such as the
intertidal seagrass-macroalgae environment investigated in this study, this approach
may be challenging. A supervised classification method is more appropriate to account
for varying vegetation features and to distinguish between these, thus enabling more

accurate habitat mapping (Hossain et al., 2015).

Two main types of classifiers that differ in their underlying assumptions in statistical
distribution are commonly used for image analysis. Parametric classifiers, such as
Maximum Likelihood (ML) and Minimum Distance (MD) classifiers, assume a normal
(Gaussian) distribution with no outliers or skewed data, and are also among the first
classifiers applied in the early days of remote sensing analysis (Wacker & Landgrebe,

1972; Richards, 1986). Although parametric classifiers continue to be used and have



especially gained popularity for pixel-based image analysis, their limitations in
handling data that do not conform to the assumptions of normal distribution, led to the
development of non-parametric classifiers, non-parametric classifiers can handle non-
normal or complex distributions (Richards, 2022). For example, in the intertidal
environment in this study the wetness of habitat classes e.g., dry seagrass/ wet
seagrass, could result in bimodal distribution patterns within one ecologically coherent
class. With advancing technology, computing techniques, and increasing availability
of higher spatial and spectral resolution imagery data, non-parametric classifiers
based on machine learning algorithms such as Support Vector Machine (SVM) were
developed (Cortes & Vapnik, 1995; Sheykhmousa et al., 2020). SVM gained increased
prominence due to its effectiveness in handling non-linear data and its application for
pixel-based and object-based classification tasks (Pal, 2005; Mountrakis et al., 2011).
The application of non-parametric methods for remote sensing classification continued
to evolve, with machine learning ensemble methods, such as Random Forest
(Breiman, 2001), gaining popularity due to its versatile applications in handling
complex and high dimensional imagery data (e.g., hyperspectral data) (Pal, 2005;
Belgiu & Dragu, 2016). In parallel, a significant advancement in image classification
analysis was made through the development of Deep Learning techniques (e.g.,
Convolutional Neural Networks; CNNs), which has improved the potential and
capability of automated image classifications in remote sensing (Maggiori et al., 2017;
Hobley et al., 2021; Kattenborn et al., 2021).

While many technigues are available for remote sensing image classification, today,
choosing the appropriate method requires consideration of many factors, including the:
(1) objectives of project, applications and utilisation of end product; (2) required level
of accuracy and spatial extent; (3) platform, sensors and data characteristics (i.e.,
spectral/spatial/temporal resolution; data dimensionality ie.,
multispectral/hyperspectral); (4) availability of training data; (5) complexity of habitat
homogeneous/heterogeneous; (6) distribution assumptions (parametric/non-
parametric); (7) computational resources i.e., processing time; hardware and software
limitations; (8) Budget and resources. As such, different methods have their strengths

and weaknesses depending on the purpose and the application of interest (Table 2.1).



Table 2.1. Overview of classifiers used for image classification in remote sensing including description of each method, strengths, weaknesses,
and fitness for purpose for mapping complex seagrass environments.

Classifier

Description

Strength

Weakness

Fit for purpose

Unsupervised

K-means clustering

Supervised

Maximume-Likelihood
(ML)

Spectral Unmixing (SU)

Spectral Angle Mapper
(SAM)

Pixels are grouped into a class,
based on their spectral values,
whereby the dataset is partitioned
into specified number of clusters
by assigning each data point to the
nearest mean (centroid); is
considered as non-parametric, as
it, instead, uses an interactive
algorithm /approach to group data
points based on similar spectral
features (Hartigan & Wong, 1979).

Parametric classifier that assumes
that the distribution of class is
normally distributed (Gaussian)
and calculates the probability that
a pixel belongs to a given class
based on their spectral variance
and covariance (Foody et al.,
1992; Richards, 1986).

A method used to extract
information of the composition of
mixed spectral signatures pixels,
by estimating the fraction of the
abundance of each endmember
(cover material) within a pixel
(Keshava & Mustard, 2002;
Quintano et al., 2012).

SAM algorithm classifies pixels
based on their spectral signatures.
It identifies spectral similarity of
pixels by calculating the angle

Simplicity and speed to explore and
identify initial spatial patterns;
computationally efficient; no ground data
required.

Performs very well when assumptions of
normal distribution are met; suitable for
multispectral imagery data; simple
implementation; no extensive and
complex parameter tuning required; well
established for the application in remote
sensing classification.

Can aid in identifying various
materials/cover in each pixel thus
enabling the handling of mixed pixels;
can be used in combination with other
remote sensing methods as a
complementary methodology.

Highly effective for hyperspectral data;
no assumption of class distribution
required, non-parametric approach.

Due to lack of training data may lead to
inaccurate results; does not provide class labels,
thus may lead to misinterpretation of identified
patterns if areas and potential classes of
imagery are not known.

Sensitive to outliers and non-normal distributed
data; sensitive to small training sample size;
depends on high quality and accurate training
data that represents the class categories well;
does not handle mixed pixels well and performs
best with pure pixels.

Imagery with high variability in complex mixtures
may lead to challenging identification of
materials within each pixel; some spectral
unmixing algorithms may be computationally
extensive and expensive.

Sensitive to unbalanced and low training sample
size; sensitive to spectral variation due to noise
leading to inaccurate classification results;
sensitive to mixed pixels and works best on pure

Initial exploration of seagrass habitats;
user friendly and low computational
demands, which makes it accessible
to managers for rapid habitat mapping.

Beneficial in homogeneous non-
complex seagrass habitats when using
low spatial resolution imagery data;
Can be useful in complex and
heterogeneous seagrass habitats with
very high spatial resolution imagery
data; user friendly and low
computational demands, which makes
it accessible to managers for rapid
habitat mapping.

Beneficial in low spatial resolution
imagery data where mixed pixels
contain seagrass and macroalgae to
get accurate quantification of each
class.

Beneficial where spatial resolution of
imagery data allows distinct seagrass
and macroalgae pixels with well-
defined spectral characteristics.



Support Vector
Machine

Random Forest (RF)

Deep learning

Convolutional Neural
Network (CNN)

between a reference spectrum
(end member) and the spectra of
the pixel in an image (Richards,
1986; Rossiter et al., 2020).

A binary classifier that identifies a
hyperplane divides the data into
two classes, whereby only those
that lie on defined margins
(support vectors) are used. Its
focus is on finding the optimal
hyperplane while maximising the
margin between classes thus
minimising misclassification
(Mountrakis et al., 2011; Pal,
2005).

Ensemble learning method based
on decision trees whereby
decision trees are combined to
make robust predictive models
using label training data to create
classification maps (Breiman,
2001; Pal, 2005).

A deep learning method trained to
automatically learn and extract
spatial data within imagery for
remote sensing classification
(Kattenborn et al., 2021; Maggiori
et al., 2017).

Non-parametric; Can handle complex
and high dimensional data e.qg.,
hyperspectral imagery data; insensitive
to small sampling data; robust to noise
and outliers due to support vectors.

Non-parametric; can handle complex
and high dimensional data e.g.,
hyperspectral and multispectral imagery
data; provides reliable and robust
predictions due to ensemble
methodology; insensitive to unbalanced
and small sampling data; robust to noise
and outliers; well -suited for change
detection applications.

Automatic approach thus reduced
manual handling; can handle complex
and high dimensional data e.g.,
hyperspectral, and multispectral imagery
data.

pixels that represent distinct spectral signature;
depending on the size of scene and spatial
resolution it may be computationally extensive
when working on large datasets; sensitive to
changes in lightning conditions and variation in
illumination leading to misclassification thus
lower accuracy; not suitable for temporal change
detection.

SVM can be computationally intense; sensitive
to highly imbalanced training samples;
parameter tuning can be time extensive and
might impact results if chosen inappropriately.

While less computationally intensive in
comparison to SVM, depending on the data set it
may still pose challenges with large memory,
especially when dealing with large ensembles or
deep trees; hyperparameter tuning needs to be
performed carefully to achieve optimal
performance and accuracy.

Requires a large amount of labelled data for
effect training; training CNNs can be highly
computationally extensive and time consuming
and requires access to powerful hardware which
may be expensive; does not perform well on
small data sets.

Beneficial for complex intertidal
seagrass-macroalgae habitats, which
can be complex in their spectral
reflectance thus often not conform to
normal distribution.

Beneficial for complex intertidal
seagrass-macroalgae habitats, which
can be complex in their spectral
reflectance thus often not conform to
normal distribution. Suitable for
temporal seagrass mapping and
monitoring.

If well trained and reliable, automated
systems can be highly useful,
practical, and cost-effective for
intertidal seagrass monitoring.




2.2. Applications of optical remote sensing in seagrass habitats

Use of optical remote sensing for seagrass mapping can be traced back to the late
1970s and early 1980s (Ackleson & Klemas, 1987), and has increased gradually with
the advances in remote sensing technology and accessibility, especially in the past
decade (Hossain et al., 2015; Veettil et al., 2020; Rowan & Kalacska, 2021). Remote
sensing has been applied to better understand seagrass ecology at spatial and
temporal scales. Studies have successfully created remote sensing derived seagrass
maps to assess distribution and extent in both species diverse (Kovacs et al., 2018;
Traganos & Reinartz, 2018) and homogeneous seagrass meadows (Topouzelis et al.,
2018). They have measured seagrass densities (Lyons et al., 2011) assess seagrass
health by identifying and assessing disease outbreaks and their distributions (Yang et
al., 2023); measure seagrass biomass and make productivity assessments (Phinn et
al., 2008); describe seagrass growth patterns both seasonally and interannually
(Lyons et al., 2013); evaluate the success of various restoration and rehabilitation
methods via the creation of pre- and post-habitat maps (Ventura et al., 2022); and
finally to assess temporal change of seagrass to evaluate habitat declines or

increases (e.g., Traganos et al., 2018; Zoffoli et al., 2021).

Multiple optical remote sensing technologies and methods for seagrass habitat
mapping have been applied successfully, but these studies have mostly focused on
tropical regions, due to their clear, calm waters (Hossain et al., 2015). Fewer studies
are available that have investigated the application of optical remote sensing methods
in temperate seagrass habitats. This is mainly due to factors challenging to optical
methods, such as water turbidity and cloud cover, which limits the detection of
seagrass habitats (Barillé et al., 2010; Armitage et al., 2013; Dierssen et al., 2019).
Nevertheless, studies have demonstrated the application of optical remote sensing to
assess spatial distribution and spatiotemporal changes in temperate seagrass habitats
(Ward et al., 1997; O’Neill & Costa, 2013; Hogrefe et al., 2014; Wilson et al., 2019).
These applications have particularly increased in the past decade and more so over
the past few years with increasing awareness for the value of seagrass habitats and
need for their protection and need for effective management approaches (Table 2.2).
In parallel, new and improved platforms with higher spatial, spectral and temporal
resolution imagery have been developed using satellite, airborne and UAV techniques,
which offer low-cost and increasingly open access spatiotemporal data, that have led



to a surge in applications to temperate seagrass mapping and monitoring. However,
notably the majority of these studies have been applied to subtidal seagrass
environments, with lower numbers of studies in intertidal seagrass. There is a

significant lack of studies available for the UK (Table 2.2).

2.3. Application of optical remote sensing in temperate seagrass habitats

Investigation of the potential of remote sensing technologies for temperate seagrass
habitat mapping and monitoring began with the utilisation of Landsat imagery in the
1980’s when Ackelson and Klemas (1987) showed that two different Landsat sensors
(Multispectral Sensor (MSS) and Thematic Mapper (TM) where similarly effective in
detecting submerged seagrass habitat in the USA, and some other studies
demonstrated the potential of Landsat (TM ) for monitoring and change detection
(Macleod & Congalton, 1998; Lundén & Gullstrom, 2003). The utilisation of Landsat
satellite imagery has been used especially for baseline and broad scale mapping and
long-term series analysis (Hogrefe et al., 2014; Leblanc et al., 2021; Zoffoli et al.,
2021), mainly due to its low spatial resolution for accurate mapping but its highly
relevant historic data archive since 1972 for long-term change detection. Forinstance,
Leblanc et al. (2021), used Landsat time-series data to evaluate the distribution and
abundance of subtidal Zostera marina from 1984 to 1917 elucidating the dynamics in
Z. marina habitats in north-eastern New Brunswick, Canada. The benefit of Landsat
data lies in its accessibility at no cost which has the potential for cost-effective

seagrass mapping and monitoring.

The launch of Sentinel-2 in 2015, provided easy access to satellite imagery with higher
spatial resolution (10-20m) and increased revisit time (< 5 days) became available at
no cost for download and increased the potential for more accurate seagrass habitat
mapping and monitoring (Kovacs et al., 2018; Wicaksono et al., 2021). The higher
temporal resolution may have advantages for intertidal seagrass, due to the increased
probability of capturing seagrass environments at low tide when exposed. This is
evident in the surge in applications of Sentinel-2 data to intertidal seagrass mapping
(Zoffoli et al., 2021; Haro et al., 2022; Benmokhtar et al., 2023). Other cost-effective
satellite imagery that provides higher spatial resolution includes, for example,

PlanetScope (3m) with a daily revisit time. To date, this has only been applied in



tropical and Mediterranean seagrass habitats (e.g., Traganos & Reinartz, 2018; Astuty
& Wicaksono, 2019; Lee et al., 2023), not in temperate seagrass environments (Table
2.2.). For instance, Wicaksono and Lizuardo (2018) mapped five seagrass species
classes with a 74% overall map accuracy, revealing the potential of PlanetScope for
a multispecies seagrass environment in the tropics. In temperate environments, such
accurate habitat mapping using multispectral satellite imagery, where, seagrass could
be segregated from algae, has mainly applied using commercially available imagery
to date that consist of higher spatial resolution (e.g., WorldView2; 1.8m spatial
resolution) (Wilson et al., 2019).

Although, the ability to discriminate between different vegetative taxa (e.g., Zostera
spp. and macroalgae) has been proven using higher spectral resolution imagery,
studies that have used hyperspectral imagery (satellite and airborne) to map
multispecies environments are limited for temperate seagrass (Levings et al., 1999;
O’Neill et al., 2011) , with only one study available that has used hyperspectral imagery

for intertidal seagrass mapping (Garono et al., 2004).

While spectral resolution can help to successfully discriminate between different
vegetation types, ultra-high spatial resolution (sub-cm level) imagery can also prove
beneficial for accurate and detailed mapping and enable the discrimination at
taxonomic levels. Advances in technology and accessibility of Unoccupied Aerial
Vehicles (UAVs), which provide very high spatial resolutions, for example, have led to
a surge in the use of remote sensing for mapping intertidal seagrass habitats (Table
2.2). UAVs have great potential for intertidal seagrass mapping due to their flexibility
in acquiring imagery data in ideal conditions such as at low tide and under cloud cover.
One of the earliest studies was conducted by Duffy et al. (2018), that evaluated the
application of light weight consumer-grade UAV to map the distribution for a Zostera
noltii environment. While this study and following studies by Nahirnick et al. (2019a,
b) also highlighted limitations of using UAV in temperate seagrass (e.g., limited in large
scale mapping, logistical matters), its applications for mapping and monitoring for
intertidal and subtidal temperate seagrass mapping continued to develop. However,
applications of UAVs for temperate seagrass began with mainly RGB-cameras to map
homogeneous seagrass habitats but transitioned into utilising multispectral camera
UAVs in more complex and heterogeneous seagrass habitats, which started to

emerge only recently in the early 2020s (Table 2.2.).



Overall, the literature indicates a lack of studies of temperate seagrass habitats across
all platforms and sensors. This gap is particularly noted for multispectral satellite and
hyperspectral satellite/airborne remote sensing (Table 2.2). Large-scale habitat
mapping and monitoring studies are scarce and close to non-existent for intertidal
seagrass environments across temperate regions. Moreover, the majority of studies
have been conducted in subtidal seagrass in the USA and in Canada (Table 2.2).
Some studies have also utilised remote sensing including, Satellite, airborne and UAV
imagery in intertidal seagrass environment in southern Europe (e.g., France, Spain,
Portugal) (Sousa et al., 2019; James et al., 2020; Haro et al., 2022) and New Zealand
(Martin et al., 2020; Chand & Bollard, 2021), but only two studies were found for
seagrass habitat around the UK, of which both have used UAV technology (Duffy et
al., 2018; Hobley et al., 2021), with no studies available that have used satellite and
airborne multispectral and hyperspectral technology for large-scale habitat mapping in
UK’s coastal waters. Investigating and understanding the potential and limitations of
remote sensing applications in UK’s intertidal coastal areas is critical, as methods from
other temperate regions may not be suitable and comparable. Mainly, due to
differences in biological, environmental, and physical properties such as, benthic
substrate and species composition, e.g., different vegetation taxa have different
reflectance spectra. Additionally, weather patterns may be different in coastal regions
in the UK, which are commonly prone to high cloud cover and frequent precipitation
throughout the year (Bergsma & Almar, 2020), in comparison to, for example southern
Europe and New Zealand. Although there is a growing recognition in the application
of remote sensing for seagrass management and conservation in the UK (Duffy et al.,
2018; Hobley et al., 2021; Unsworth et al., 2022), robust and effective monitoring
programmes that utilise remote sensing are still lacking significantly, both at local and
national levels (Table 2.2). Efforts to address the potential, challenges, and
improvements of remote sensing application in UKs seagrass habitats may support

and initiate effective management practices and programmes.



Table 2.2. A summary of available studies that have used optical remote sensing applications in temperate seagrass habitats. S=Subtidal, I=Intertidal.

Year | Location | Platform and Application Species Methods Reference
Sensor
1987 | USA Landsat MSS and | Detection of submerged aquatic Z. marina (S) Unsupervised clustering (Ackleson & Klemas,
™ vegetation (SAV) algorithm: CLUSTER (within 1987)
ERDAS)
1998 | USA Landsat TM Temporal mapping Z. marina (S) ISODAT & (Macleod & Congalton,
Maximum Likelihood 1998)
2003 | Sweden Landsat TM Temporal mapping Z. marina (S) Discussed in (Baden et al., 2003) (Lundén & Gullstrém,
2003)
2003 | Sweden Polygon Temporal mapping Z. marina (S) Polygon boundaries using GPS (Baden et al., 2003)
boundaries
C_U 2014 | Canada WorldView2 Mapping the distribution of SAV Z. marina; green algae Maximum Likelihood (Reshitnyk et al., 2014)
et (Ulva spp.); brown algae
g (Fucus spp.) (S)
Q. | 2014 | USA Landsat TM & Spatial extent and distribution Z. marina (S) Maximum Likelihood (Hogrefe et al., 2014)
2 ETM+ mapping; baseline mapping
Jir—
S [2015 | Korea Landsat TM and Temporal mapping Z. marina (S) Mahalanobis Distance (K. Kim et al., 2015)
2 ETM; Aster; Spot
1 4; Kompsat-2
(O]
E 2019 | Canada SPOT 6/7 Spatial extent and distribution Z. marina (S); seaweed (S, | ISOCLUST; (K. L. Wilson et al., 2019)
K mapping ) Maximum Likelihood
e
@®© 2020 | Canada WorldView2 Spatial extent mapping; Z. marina (S) Maximum Likelihood; Random (Forsey et al., 2020)
N presence/absence Forest
2020 | Germany Aerial Spatial density mapping; temporal | Z.noltei (1) Decision trees (Kohlus et al., 2020)
Photography; mapping
Sentinel-2;
Landsat OLI
2020 | France Sentinel-2 Percent cover and biomass Z. noltei (1) - (Zoffoli et al., 2020)
&Spain mapping; temporal mapping
(seasonal)
2021 | Estonia CASI and Percent cover and biomass Z. marina; green algae; Spectral Angle Mapper (Vahtmaée et al., 2021)
Sentinel-2 mapping brown algae (S)




Image Analysis

2021 | France Landsat TM & Temporal mapping Z. noltii (1) NA? (Zoffoli et al., 2021)
TM+; SPOT1-5;
Sentinel-2
2021 | Canada Landsat TM & Temporal mapping Z. marina (S) Automatic Adaptive Signature (Leblanc et al., 2021)
ETM+; 8-OLI Generalization
2022 | Spain Sentinel-2 Temporal biomass mapping; Zostera sp.; Caulerpa sp.; Random Forest (Haro et al., 2022)
green algae (1)
2023 | Morocco Sentinel-2; Temporal mapping Z. noltei; algae (1) OBIA; Random Forest (Benmokhtar et al., 2023)
Orthophotography
mosaics
2023 | Greenland Sentinel-2 Spatial extent and distribution Z. marina; algae NDVI (Carlson et al., 2023)
mapping (Ascophyllum nodosum,
and Fucus spp); Kelp
(Saccharina latissima and
Agarum clathratum) (S)
1999 | Canada CASI Spatial extent and distribution Z. marina; algae (S) Polygon boundaries (Levings et al., 1999)
— mapping
o
D | 2004 | USA CASI Spatial extent and distribution Z. marina; green algae; ISODTA; (Garono et al., 2004)
() mapping brown algae (1) Maximum Likelihood
o
o 2011 | Canada AISA In situ hyperspectral measurement | Z. marina; green algae Maximum Likelihood (O'Neill et al., 2011)
8_ of spectral characteristics; Spatial | (Ulva fenestra and
> extent and distribution mapping Enteromorpha spp.) (S)
I
! 2013 | Canada AISA; IKONOS Spatial extent and distribution Z. marina (S) Maximum Likelihood (O’Neill & Costa, 2013)
Qo mapping
=
O | 2021 | Finland CASI; Spatial extent and distribution Z. marina; brown algae; Minimum Distance; Spectral Angle | (Vahtmée et al., 2021)
g Sentinel-2 mapping green algae (S) Mapper
<
2006 | USA Aerial Digital Spatial extent and distribution Z. marina, Ruppia Image segmentation/object- (Lathrop et al., 2006)
Camera: RGB- mapping maritima; algae (Ulva oriented
NIR lactuca) (S)
2016 | USA Fixed-Wing: RGB | Spatial extent and distribution Z. marina, Halodule Linear Spectral Unmixing (Uhrin & Townsend,
mapping wrightii, Ruppia maritima 2016)
(S)
> 2018 | UK (Wales) UAV: RGB Spatial extent and distribution Z. noltii (1) K-means clustering; Support (Duffy et al., 2018)
< mapping Vector machine; Object-Based




2019 | Canada UAV: RGB Spatial extent and distribution Z. marina (S) Object-Based Image Analysis (Nahirnick et al., 2019b)
mapping
2019 | Canada UAV: RGB Spatial extent and distribution Z. marina (S) Object-Based Image Analysis (Nahirnick, et al., 2019a)
mapping
2019 | Portugal UAV: RGB Spatial extent and distribution Z. noltei (1) Polygons created from mosaics (Sousa et al., 2019)
mapping; temporal mapping and areal extend calculated in
ArcGIS
2020 | New Zealand | UAV: RGB-RE- Temporal mapping (seasonal) Z. mulleri (1) Random Forest (Martin et al., 2020)
NIR
2020 | France UAV: RGB; RGB- | Spatial extent and distribution Z. marina; algae (1) Maximum Likelihood (James et al., 2020)
RE-NIR mapping
2021 | UK, UAV: RGB; RGB- | Spatial extent and distribution Z. noltii, Z. angustifolia; Fully Convolution Neural Network | (Hobley et al., 2021)
Northumberl | RE-NIR mapping algae (1) (FCNN); Object-Based Image
and, Analysis
Lindisfarne
2021 | Canada UAV: RGB-RE- Spatial extent and distribution Z. marina; algae (S) Random Forest (Gallant et al., 2021)
NIR; Sentinel-2 mapping
2021 | New Zealand | UAV: RGB-RE- Spatial extent and distribution Z. mulleri (1) Maximum Likelihood; Object- (Chand & Bollard, 2021)
NIR mapping Based Image Analysis
2021 | Spain UAV: 10 spectral Spatial extent and distribution Z. noltei, Cymodocea Maximum Likelihood; Minimum (Roman et al., 2021)
bands mapping nodosa; algae (Ulva sp.); Distance; Spectral Angle
saltmarsh (Spartina Classifier
maritima) (S, I)
2021 | Japan UAV: RGB Spatial extent and distribution Z. marina, Z. caulescens, Feature Pyramid Network (FPN) (Chen & Sasaki, 2021)
mapping; temporal mapping and Z. japonica (S, 1)
(seasonal)
2022 | Canada UAV RGB-RE- Spatial extent and distribution Z. marina (S) Random Forest (Leblon et al., 2022)
NIR & 10 spectral | mapping
bands)
2022 | Denmark UAV: RGB Spatial extent and distribution Z. marina; algae (F. Object-Based Image Analysis; (Svane et al., 2022)
mapping; temporal mapping vesculosus) (S) Support vector Machine
2023 | USA & UAV: RGB; RGB- | Detection and spatial distribution Z. marina (S) Object oriented image (Yang et al., 2023)
Canada RE-NIR mapping of disease segmentation
2023 | Canada UAV: RGB Spatial extent and distribution Z. marina; macroalgae (S) Random Forest (Prystay et al., 2023)

mapping; temporal mapping
(seasonal)




Chapter 3: Evaluating multispectral UAV imagery for mapping a
multispecies intertidal seagrass environment

3.1. Introduction

In recent years Unoccupied Aerial Vehicles (UAV) have gained increased attention for
application in seagrass habitat mapping and monitoring (e.g., Ventura et al., 2018;
Yang et al., 2020; Price et al., 2022). Their utilisation has been successful in intertidal
(Duffy et al., 2018; Yang et al., 2023) and subtidal (Nahirnick et al., 2019a,b; Prystay
et al., 2023) seagrass environments, since they offer affordable ways of acquiring very
high resolution images and fill important gaps in remote sensing capability in
temporally dynamic and complex environments with a potential to revolutionise the

toolbox of coastal managers (Doukari et al., 2021; Bremner et al., 2023).

Specific benefits of UAVs in comparison to other optical remote sensing technology (
e.g. satellite imagery) for monitoring programmes include: (1) very high spatial
resolution, which increases ability to capture detailed features in imagery permitting
identification of seagrass species and other benthic organisms (Duffy et al., 2018;
James et al., 2020); (2) control of temporal resolution as appropriate weather
conditions for image acquisitions can be chosen; (3) coverage of areas inaccessible
on the ground; (4) relatively small, portable and user-friendly; (5) customised and
repeatable flight planning is possible as flight paths can be saved making data
acquisition reproducible to enable repetitive inventories, relevant to monitoring
programmes (Nahirnick et al., 2019a,b). To effectively map and monitor seagrass
environments that contain multiple vegetation taxa with similar spectral properties (i.e.,
Zostera spp. and green macroalgae), higher spectral resolution sensors are required.
Such sensors may enable discrimination and permit accurate habitat mapping (Davies
et al., 2023).

The vulnerability of different seagrass species to threats, and their response to
environmental changes can be different, such as varying tolerance thresholds to
temperature fluctuations and nutrient levels, impacting survival to varying degrees
(Massa et al., 2009; Grech et al., 2012; La Nafie et al., 2012; Kaldy, 2014). Additionally,
seagrass species may differ in their provision of ecosystem services and functioning
such as, for example, efficiency in carbon storage (Postlethwaite et al., 2018; Sousa
et al., 2019), their suitability as a habitat for many threatened seagrass dependent

29



species and commercially important fish species (Hughes et al.,, 2009; Bertelli &
Unsworth, 2014). The accurate identification of seagrass and spatial distribution at
species level is imperative to coastal managers for informed decision-making in
prioritising areas of protection. It will enable effective consideration of the vulnerability
of seagrass species to threats and decline to achieve species-specific targeted

management and conservation goals (Wilson et al., 2005).

In temperate seagrass meadows, most studies to date have used consumer grade
UAVs with either limited spectral resolutions, for example, simple red-green-blue
(RGB) or 5-band multispectral cameras (RGB, red edge, near infrared). These have
successfully mapped monospecific seagrass habitats, with a focus on
presence/absence and/or density of seagrass cover (Duffy et al., 2018; Matrtin et al.,
2020; Chand & Bollard, 2021; Svane et al., 2022), but few have disaggregated more
complex vegetative habitats (for example, Hobley et al., 2021). Although some studies
have also used multispectral UAV cameras to discriminate between vegetation taxa
(i.e., seagrass and macroalgae) in temperate intertidal areas, these have limitations.
For example, Roméan et al. (2021) used a MicaSense RedEdge-MX dual 10-band
multispectral camera to map the only presence of Zostera noltii in the intertidal area,
and the seagrass species Cymodocea nodosa and green macroalgae in the subtidal
area (submerged), but not to distinguish co-occurring and mixed seagrass species. In
contrast, Hobley et al. (2021), used a MicaSense RedEdge 3 multispectral camera,
and successfully mapped and discriminated algal species in a multispecies intertidal
seagrass environment, but no discrimination was made between seagrass species. In
addition, available studies have used computationally intensive analysis (e.g., Deep
Learning; Hobley et al., 2021), or required a high number of spectral bands (up to 10)
to achieve accurate map outputs (Roman et al., 2021). This requires cameras that
need to be custom mounted on the UAV, increasing operational costs. With improving
UAYV technology, affordable off-the-shelf consumer grade UAVs that are equipped with
multispectral cameras have recently become available, which may simplify logistics
and analysis, and support management actions. However, their application and
efficacy in mapping complex heterogeneous intertidal seagrass environments still

require testing, to develop a foundation and guidelines for coastal managers.

This Chapter aims at using an off-the shelf consumer grade multispectral camera UAV
(Phantom 4 RTK multispectral), to create habitat maps of highly mixed and complex

intertidal multispecies seagrass environment exposed at low tide. Objectives were: (1)
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To use Maximum Likelihood classification method and evaluate the ability of a 5-band
(RGB, red edge, near infrared) multispectral UAV to discriminate between Zostera spp.
(Zostera noltii and Zostera marina, respectively) and macroalgae on three transects
with varying benthic community composition and compare to detailed field surveys; (2)
To compare accuracy of classification using multispectral and RGB-only data, with a
view to assessing the operational need for multispectral imagery for seagrass
mapping; (3) To discuss field logistics and the operational potential of UAV utilisation
for intertidal seagrass habitat monitoring, with a view to moving such methods towards

operational use.

3.2. Methods and Materials
3.2.1. Study site

The study was performed in the Causeway area within the Lindisfarne National Nature
Reserve (LNNR) (Figure 3.1). The field site is an intertidal mudflat and sandflat, which
is exposed during low tide and consists of sparse to dense Zostera spp. habitats. Two
seagrass species, Zostera noltii and Zostera marina were present in the field. Z. noltii
is the dominant species and can form large dense meadows across the site. Other
benthic substrates such as sand, lugwormcasts and a mixed complex of green
opportunistic macroalgae (macroalgae hereafter) were also present.

31



1°53'30"W 1°48'0"W

55°45'0"N
55°45'0"N

/1117 .
Z. noltii Transect -~ :
/1717
Macroalgae Transect

/7

Z. marina Transect

55°39'30"N
55°39'30"N

1°59'0"W 1°53'30"W 1°48'0"W

0 2.5 5

Kilometers

Figure 3.1. a) Map showing LNNR (red boundary outline) indicating the field survey area (white
square) in the Causeway area and b) the flight transects surveyed in this study.

3.2.2. Equipment specifications

A DJI Phantom 4 Multispectral Real-Time Kinematic (RTK) UAV was used to perform
flight missions. The UAV has a camera attached that consists of five in-built 1/1.29”
CMOS monochrome sensors with an image size of 1600 x 1300 pixels (2.02 MP)
including the following bands: blue (B: 450 nm £ 16 nm), green (G: 560 nm = 16 nm),
red (R: 650 nm £ 16 nm), red edge (RE: 730 nm = 16 nm), and near infrared (NIR: 840
nm = 26 nm). The aircraft includes a spectral sunlight sensor to detect the solar
irradiance, which allows reflectance calibration of images. Flight planning was
conducted using the DJI Ground Station Pro app (v. 2.0.16) that enabled pre-

preparation of flight settings. A Labsphere SRT-99-100 Spectralon Diffuse Reflectance
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Target calibration reflectance panel was used for radiometric calibration. The panel
was calibrated, and the data provided by the Natural Environment Research Council
Field Spectroscopy Facility (NERC FSF). Prior to flights, images of the reflectance
panel were taken with the UAV camera. These images were then used in the imagery

pre-processing stage.

3.2.3. UAV and ground-truth survey

Flight missions were conducted around seagrass peak biomass on 24" August 2021,
during exposed low tide, to minimise the effect of surface water. Three 100m x 20m
transects (2.000 m?) were surveyed, with each survey taking approximately 19 minutes
flight time. Images were captured at 10m altitude with a 5.4mm/pixel spatial resolution,
using a 70% side- and fore overlap, at an equal distance interval, within the 2D mode.
An off-nadir angle, with a gimbal pitch of - 80° was used. The Geographic position of
the camera was established using the fitted RTK GNSS corrected against a DJI D-RTK
2 base station service. The location of each transect was selected based on species
coverage and composition to capture widespread heterogeneous vegetated areas.
Transects constituting the three different dominant vegetation types were then
surveyed: Zostera noltii dominated (55°40°39”N 1°51°29”W), Zostera marina
dominated (55°40°34”N 1°51'19”W), and macroalgae dominated (55°40'37”N
1°51°21”W) (Zostera noltii transect, Zostera marina transect and Macroalgae transect,

hereafter).

To train and validate UAV images, photographs of 1m? ground quadrats were taken
immediately on the ground after flight missions. In total, 20 quadrat photographs were
taken at predefined regular intervals every 10 metres across two rows within the flight
transect, resulting in a total number of 60 quadrats across all transects (Figure 3.2a).
The Google Pro app was used to locate approximate location of the pre-defined
guadrats sampling points in the field. To enable geo location of quadrats for the
purpose of georeferencing in the analysis stage, GPS positions of the north and south
corner of each quadrat were taken using a Trimble Catalyst receiver with the Trimble
Network RTK Precision service (+ 0.2 cm accuracy) (Figure 3.2b).
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Zostera noltii

Zostera marina

Figure 3.2. a) Flight transect showing the pre-defined regular points for photo quadrats (n=20)
across a flight transect. b) Image showing the quadrat and a Trimble receiver to record the
northern corner of the quadrat sample. c) Photographs of a Zostera noltii, Zostera marina and
Macroalgae dominated quadrats.

3.2.4. Image pre-processing

Agisoft Metashape (v. 1.7.3) was used to create orthomosaics using TIFF files acquired
by the UAV. Prior to processing, the quality of images was checked. The image quality
assessment is scaled between 0-1 (unitless), whereby the quality assessment value of
1 corresponds to the highest possible image quality. Images were considered based
on an image quality value of > 0.5, to facilitate the removal of blurred imagery (Agisoft,
2021; Over et al., 2021). To calibrate reflectance, panel calibration data provided by
NERC Field Spectroscopy Facility (FSF) was resampled to the sensor spectral bands
by assigning calibrated reflectance to the five band wavelengths of UAV images using
the Calibrate Reflectance tool. Prior to conducting the reflectance calibration,
calibration images were masked so that only the reflectance panel area was marked.
Sun sensor data was also used within the calibration to account for the sun’s position
and irradiance and improve the accuracy of the reflectance calibration process. Photo
alignment and sparse cloud generation were performed using, i) the highest accuracy
setting, ii) a key point limit of 40.000, and iii) a zero-tie point limit. Afterwards low-quality
tie points within the generated sparse cloud point were selected and removed by
filtering by reconstruction uncertainty, projection uncertainty and projection error. Error
was reduced by iteratively selecting and deleting points and re-optimizing the camera
after each removal. This procedure was performed manually until the self-reported

34



standard error of unit weight (SEUW) was close to 1 (Over et al., 2021). Afterwards, a
dense cloud was created, which was followed by the generation of a Digital Elevation
Model (DEM). The DEM was used to create an orthomosaic consisting of reflectance
values for each individual band, whereby pixel values were normalised ranging from
0-1 (Chand and Bollard, 2021).

3.2.5. Training data and image classification

Quadrat photographs were aligned with the orthomosaic, using ArcGIS (v.10.6.1) to
aid in the assignment of habitat classes. Afterwards, based on visual assessment of
photo quadrats, Regions of Interest (ROIs/pixels) were created randomly within each
quadrat area, using ENVI (v.5.6.2). Where certain benthic classes were not found
sufficiently within the quadrat sampling areas, random samples were created outside
of the quadrat. Pixels were assigned to the following benthic classes: Zostera noltii,
Zostera marina, macroalgae, bare ground, lugwormcasts, decomposing vegetation,
anoxic sediment, shadow (i.e., from leaves or part of lugwormcasts), sunglint, and
shells (Figure 3.3). The primary interest of this study was in mapping the vegetation
species. Therefore, benthic substrates other than vegetation (i.e., bare ground,
lugwormcasts, decomposing vegetation, anoxic sediment, shadow, sunglint, and
shells) were compiled into two classes with similar spectral reflectance. Anoxic
sediment, shadow, and dark areas within the decomposing vegetation substrate were
compiled into the class, dark material/shadow, respectively. Sunglint, shells and white
areas within the decomposing vegetation substrate were compiled into the class,
sunglint/shells, respectively (Figure 3.3 e-h). This resulted in a total of six benthic
classes: Zostera noltii, Zostera marina, macroalgae, bare ground, dark
material/shadow, sunglint/shells. The data were then split into two sets of 50% for
each: 50% for training the classification algorithm, and the remaining 50% for validation
of classified map output.
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Figure 3.3. Images of benthic substrates initially identified in quadrat photographs before
aggregation benthic classes in further analysis. a) Zostera noltii, b) Zostera marina, c)
macroalgae, d) bare ground, e) lugwormcasts, f) shells, g) anoxic sediment h) decomposing
vegetation. Arrows highlight examples of categories including dark material/shadow and
sunglint/shells.

The Jeffries-Matusita (J-M) distance measure, a widely used measure for spectral
discrimination of vegetation types (Schmidt & Skidmore, 2003), was applied to assess
the statistical separation between created ground-truth classes (Richards, 2013). The
index value ranges between 0 and 2, whereby a 0 value indicates a complete overlap
of spectral signatures and a value of 2 a complete separation of spectral signatures
between two classes. To evaluate the strength of separation between classes, the
following values were used: poor (0.0 < x < 1.0), moderate (1.0 < x < 1.9), good
separability (1.9 < x < 2.0) (ENVI, 2022).
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The Maximum Likelihood Classifier (MLC), a supervised pixel-based classification
method, whereby spectral information of pixels is used to assign pixels to habitat
classes, was used for benthic habitat classification. The classifier is based on the
assumption that each training class follows a normal distribution. It considers the mean
and covariance of the training class signature when assigning pixels to each class. The
selection of this classifier was based on the dataset meeting normality assumptions
and its proven success and reliability of application in seagrass habitats often
outperforming other classifiers (e.g., Roman et al., 2021). MLC is also widely available
as a classifier in multiple commercial and open source geospatial and image
processing software, increasing its availability for operational applications. To evaluate
the operational need for accurate multi species habitat mapping, a comparison of the
accuracy classification between an RGB and multispectral imagery was made. Here,
the MLCs were trained on three bands (RGB) and five bands (RGB, red edge, near

infrared), for each transect separately.

3.2.6. Accuracy assessment

A confusion matrix was generated to assess the accuracy of the classified habitat
maps. The Overall Accuracy (OA) gives information about the percentage of the total
number of pixels contained within the ground truth area that have been correctly
classified by the classification. User,s(UA) and producer’s accuracy (PA) then permits
the assessment of the accuracy of each individual class. The confusion matrix outputs

will be used to identify the nature of misclassifications between habitat classes.

3.3. Results
3.3.1. Training data separability

While spectral separation between all recorded benthic substrates was least within the
blue band, benthic classes including bare ground, sunglint/shells, and dark matter/
shadow appeared to be separable from vegetation across nearly all bands. However,
the multispectral sensor showed least separability between Zostera noltii, Zostera
marina and macroalgae across the red-green-blue (RGB) bands, and a distinct
separation between these vegetation types within the red edge (RE) and near infrared

(NIR) bands (Figure 3.4). When considering all spectral bands to investigate spectral
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separability of the training data of benthic classes, Jeffries-Matusita’s separability
values indicated the lowest pair separation between the two seagrass species, Zostera
noltii and Zostera marina, among all vegetation species, for all three transects (Table
3.1). Respectively, the Z. noltii and Z. marina transects showed lower separability (J-
M value: 0.9 and 1.0, respectively), compared to the Macroalgae transect (J-M value:
1.3). Where macroalgae was present in the image, i.e., Z. marina transect and
Macroalgae transect, results indicated a moderate pair separation between the two
seagrass species and macroalgae (J-M value: ranging between 1.4 and 1.7). All
pairwise separation values between the vegetation species and the other benthic

categories indicated a moderate to good separability (Table 3.1).

Table 3.1. Results of Jeffries — Matusita index, indicating spectral pair separability of benthic
classes for: Zostera noltii transect, Zostera marina transect, and Macroalgae transect. Where
a class was not present in a transect to conduct pair separability, these were marked with NA
= not available.

Benthic pair classes Z. noltii Z. marina Macroalgae
transect transect transect

Z. noltii - Z.marina 0.9 1 1.3

Z. noltii - macroalgae NA 1.7 1.4

Z. marina - macroalgae NA 16 17

7 noltii - dark material/shadow 1.4 1.7 17
macroalgae - dark material/shadow NA 1.8 1.9
bare ground - dark material/shadow 15 1.9 2

7 marina - dark material/shadow 16 1.9 1.7
bare ground - sunglint/shells 18 2 5

Z. nolti - bare ground 18 2 2

Z. marina - bare ground 1.9 2 2

7 marina - sunglint/shells 1.9 > 5
sunglint/shells - dark material/shadow 1.9 1.9 2

Z. noltii - sunglint/shells > > 5
macroalgae - bare ground NA 2 2
macroalgae - sunglint/shells NA 2 2
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Figure 3.4. Spectral signatures of generated training data including all benthic classes across
the multispectral bands for a) Zostera noltii transect b) Zostera marina transect, and c)
Macroalgae transect. Boxplots show the median value (horizontal line), the interquartile range
representing the dispersion of the data (size of the box), the upper and lower quartiles, and

outliers.
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3.3.2. Maximume-likelihood classification and accuracy assessment

Using the Maximum Likelihood Classifier, detailed benthic maps were produced with
very high Overall Accuracy (OA) when considering all five spectral bands (multispectral
image) in comparison to RGB only bands (Figure 3.5). The lowest accuracy was found
for the Z. noltii transect classified map with an OA of 84% for the multispectral image,
and 57% OA for the RGB image. The Z. marina transect and the Macroalgae transect
maps indicated very high OA for the multispectral image (91% and 89%, respectively)
and lower OA for the RGB image (63% and 72%, respectively) (Table 3.2).
Considering the multispectral images only, class level accuracy for each transect map
indicated a general pattern of lower Producer’s Accuracy (PA) and User’s Accuracy
(UA) for all vegetation classes (Z. noltii, Z. marina and Macroalgae, respectively) in
comparison to non-vegetation classes (bare ground, sunglint/shells, dark
material/shadow, respectively). Vegetation classes indicated PA and UA ranging
between 73% and 99%, and non-vegetation classes indicated PA and UA ranging
between 79% and 100% in all transect maps (Table 3.2), except for distinctly lower UA
values for the macroalgae class (UA 54%) in the Z. marina transect map, which may
be due to small sample size because of its sparse representation in the studied
transect area, and PA for dark material/shadows (64%) in the Z. noltii transect map,

due to small validation sample size.

Similar to J-M results for training data, the post-classification accuracy assessment
results indicated notably higher misclassification among vegetation classes in
comparison to all other benthic classes, across all classified transect maps. The largest
misclassification among habitat classes was found between Z. noltii and Z. marina. In
the Z. noltii transect, 24.7% proportion of sampled pixels of Z. noltii were incorrectly
classified as Z. marina class, and 6.7% of the class Z. marina were incorrectly
classified as Z. noltii. The Z. marina transect indicated a lower misclassification of
sampled pixels of Z. noltii as Z. marina (13% proportion of sampled pixels), and only
2% of Z. marina pixels were incorrectly classified as Z. noltii class. Finally, Macroalgae
transect indicated 14.8% of sampled pixels of Z. noltii as Z. marina and similarly, 14.7%
of Z. marina pixels were incorrectly classified as Z. noltii. Misclassification between
macroalgae and Zostera spp. was notably lower in transects where macroalgae was
present (Z. marina transect and Macroalgae transect, respectively). In both transects,
between 4% to 9% of macroalgae pixels were incorrectly classified as Z. noltii or Z.

marina, whereas up to 10% of Z. noltii pixels and 2% Z. marina pixels were incorrectly
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classified as macroalgae. Other notable misclassification was found between Z. noltii
and dark material/shadow with 28% of Z. noltii pixels incorrectly classed as dark
material/shadow within the Z. noltii transect. All other benthic class combinations
across all transect maps showed low misclassification cover ranging between 0 and
7.5%.

Table 3.2. Post-classification analysis showing the accuracy assessment outputs of the
Maximum-likelihood classification map for a) the multispectral image and b) the RGB image.

a) Zostera noltii Zostera marina Mtacroalgae
ransect
transect transect
Overall Accuracy (OA) 84 % 91 % 89%
Producer’s User's Producer’s User’s Producer’s User’s
Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy

Habitat classes (%) (%) (%) (%) (%) (%)
Zostera noltii 90 80 84 85 76 80
Zostera marina 73 84 82 87 80 73
Macroalgae - - 87 54 99 o1
bare ground 90 92 100 99 100 98
dark material/shadow 64 79 92 99 90 96
sunglint/shells 95 84 99 97 100 93
b) ) .

Zostera noltii Zostera marina Macroalgae

transect transect transect
Overall Accuracy (OA) 57 % 63% 72%
) Producer’s User's Producer’s User’s Producer’s User's

Habitat classes Accuracy  Accuracy  Accuracy Accuracy Accuracy Accuracy

(%) (%) (%) (%) (%) (%)
Zostera noltii 61 68 56 61 40 56
Zostera marina 37 54 57 68 54 65
Macroalgae - - 37 9 59 &
bare ground 86 55 77 72 93 70
dark material/shadow 33 46 68 86 81 6
sunglint/shells 67 39 69 87 94 85
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Figure 3.5. a) Raw UAV orthomosaic are displayed using the red, green, and blue colour
composite, b) classified map and, c) a close-up example for each transect survey (Zostera

noltii, Zostera marina and Macroalgae).
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3.4. Discussion
3.4.1. Habitat classification

This chapter aimed to evaluate a consumer grade UAV multispectral camera for
mapping a multispecies intertidal temperate seagrass environment. The objective was
to discriminate between macroalgae and different Zostera spp., to capture accurate
species-specific distribution patterns. This is essential to coastal managers to
effectively address mitigating strategies for the prevention of seagrass species decline,
and the growth of detrimental macroalgae growth. Findings show that despite the
complex environment and similar spectral properties of Zostera spp. and green
macroalgae, five-band multispectral UAV camera and the MLC method can yield maps
with overall accuracies ranging between 84% and 91%. When considering only the
RGB bands, the OA was reduced by up to 28% across all transects. Likewise,
Producer's and User's -accuracy associated with vegetation classes declined
substantially, highlighting the significant advantage that the red edge and near infrared
bands can provide to effective mapping of an intertidal multispecies environment,
increasing accuracy discriminating particularly between Zostera spp. and macroalgae.
This provides the key to an operationally viable method for monitoring multispecies
intertidal seagrass habitats. The high OA here also aligns with prior studies that used
5-10 band multispectral UAVs to map intertidal seagrass-macroalgae environments.
For example, in less complex intertidal seagrass-macroalgae environments, James et
al., (2020) and Roméan et al., (2021) demonstrated an OA of 98.6% and 90.3%,
respectively, using the MLC method. Hobley et al., (2021), used more sophisticated
analysis, a deep learning method (Convolutional Neural Networks; FCNNSs), in a
similarly complex intertidal seagrass-macroalgae environment in LNNR, and achieved
an average accuracy of 88.4%, although without discriminating separate seagrass

species.

The three vegetation types, Zostera spp. and macroalgae were spectrally distinct
across all investigated transects. This distinction may be attributed to their differences
in leaf pigmentation enabling the discrimination between the different vegetation types
(Fyfe, 2003; Davies et al., 2023). While Zostera noltii and Zostera marina have similar
leaf pigmentation, macroalgae with its brighter pigmentation in green colour indicated

greater separability in comparison to that between Z. noltii and Z. marina. Notably, the
43



peak reflectance of all vegetation types and a maximum separation in the spectral
reflectance between Zostera spp. and macroalgae occurred in the green, red edge and
near infrared wavelength bands. These observations conform with generally observed
spectral reflectance patterns in healthy plants that are known to absorb radiation in the
blue and red wavelengths (around 450nm and 670nm, respectively), and reflect
radiation in the green (around 530nm), red edge and near infrared wavelengths
(around 730nm, 840nm, respectively) (Schmidt and Skidmore, 2003; Chand and
Bollard, 2021; Davies et al.,, 2023). Although this study showed low spectral
separability between Z. noltii and Z. marina, and higher misclassification between
these two species, their separability could still be observed in the red edge and near
infrared bands. These results also align with Fyfe (2003) who showed that seagrass
species could most easily be discriminated between 700 and 900nm and Davies et al.
(2023) that demonstrated a steep reflectance signature from ~680nm onwards for
intertidal seagrass and algae. However, results contradict another study conducted by
Roman et al., (2021), who showed that the peak reflectance of Z. noltii, in an intertidal
coastal area in Cadiz, Spain, was highest between 500 and 700nm and declined from
700nm. Such disparities between studies may be related to differences in spectral
responses of seagrass due to for example, the influence of epiphytes and epibionts
(Fyfe, 2003; Hwang et al., 2019), or sediment background (Bargain et al., 2012).

A further advantage in creating accurate habitat maps from UAVs may be related to
the ultra-high spatial resolution that the camera offers. The high resolution minimises
mixed pixels (i.e., the representation of more than one class within a pixel). This may
not only have aided in discriminating between the vegetation types (beyond the
addition of red edge and near infrared bands alone), but also reduced classification
errors between vegetation types and non-vegetative classes. For example, when Z.
noltii is found in sparse density, their thin leaves lie on the bare ground and could easily
be misclassified with other benthic classes within the pixel when using a lower spatial
resolution imagery, but this issue is avoidable, if a pixel contains Z. noltii features
entirely. Finally, high spatial resolution imagery enables the identification of seagrass
habitats to species level, critical to coastal managers for the monitoring of biodiversity

and species distribution of seagrass.

Overall, results indicate significant potential for mapping an exposed multispecies
intertidal seagrass environment using an off-the shelf multispectral consumer grade

UAV. We show that by using a 5 band and a user-friendly and easily accessible

44



classifier, similar accuracy results can be achieved with a study that has for example,
applied more computationally intensive methods (e.g., Hobley et al., 2021). We
demonstrate the potential of a cost-effective approach in creating accurate
multispecies intertidal seagrass habitat maps, which may be operationally more
accessible to coastal managers. This approach may be used to develop new
monitoring programmes or be integrated into existing monitoring programmes to

support the effective protection and conservation of Zostera spp..

3.4.2. Limitations, challenges, and recommendations

Although this study indicates high potential for using multispectral UAV imagery for
mapping a complex multispecies intertidal seagrass environment, some limitations and
challenges need to be considered from the planning stage and prior to flight missions
of data collection, during field surveys and in the interpretation phases: (1) Despite
successful creation of multispecies seagrass habitat maps, results showed that some
misclassification among vegetation is still likely and may impact the accuracy of
species distribution maps, especially between the two Zostera spp. investigated in this
study. These inaccuracies need to be considered and critically evaluated for
management and conservation planning, when aiming for species-specific targeted
protection and management plans. Moreover, to reduce misclassification errors, an
Object-Based Image Analysis (OBIA) approach, instead of a pixel-based approach,
could improve classification accuracies when using ultra-high imagery data (Blaschke,
2010; Hobley et al., 2021). (2) Unfavourable environmental conditions can pose
numerous challenges during field surveys and hamper logistics: In cases where the
field site of interest cannot be surveyed outside the mudflat areas, such as in this study,
similar to traditional field surveys, UAV surveys can remain challenging in terms of
accessing areas with soft sediments on foot, with potential hazards of getting stuck in
soft bottom areas; (3) Protected site specific restrictions e.g., prohibition of surveys
during the period of nesting and breeding birds, and foraging seasons, need to be
considered to minimise impact on protected features, to minimise and avoid the
potential of collision of UAV with birds; (4) Given the restricted and limited periods of
time during low tide available to conduct the surveys, and that all the necessary
conditions (e.g., wind speed, weather) to fly a UAV must be met within a particular time
slot, a well-planned manageable operation is recommended for maximum efficiency

and safety; (5) It is important to consider that large-scale mapping can be restricted
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due to short battery autonomy and Visual Line Of Sight (VLOS) restrictions, on flight
altitude and distance (Nahirnick et al., 2019a; Walker et al., 2023). In the UK, for
example, the current flight limit is typically restricted to 120 m altitude and within VLOS,
with further qualifications required when flying a UAV beyond these limits. To
overcome this challenge, it is recommended to either have additional batteries on field
site or increase battery capacity by increasing flight altitude at the cost of lower spatial
resolution; and (6) Other technological issues that may be encountered in the field can
be related to GNSS accuracy, which can fail depending on satellite configuration and
result in inaccurate positioning of ground-truth surveys or the UAV, thus may impact

the post-processing and map results and should be considered.

3.4.3. Benefits for management

The proposed methodology could support effective management by overcoming
expensive, time consuming and exhaustive quadrat sampling in challenging mud flat
environments, by simply using a number of UAV-derived classified transects as
samples to assess the condition of seagrass habitats (Figure 3.5). The UAV derived
maps could be utilised as ground-truth for large-scale habitat mapping, using freely
available satellite imagery to create broad scale habitat maps for presence/absence
and density maps (Carpenter et al., 2022). Moreover, multispectral UAV derived
habitat maps could be developed as an integral part for multi-temporal seagrass
habitat monitoring, allowing for greater reproducibility and repeatability of habitat
mapping (Prystay et al., 2023; Ventura et al., 2022). Finally, UAV-derived habitat maps
may provide a foundation to develop effective communication tools used for decision-

and policy.

3.4.4. Conclusion

This Chapter demonstrates the viability of using an off-the shelf multispectral UAV to
accurately map a complex intertidal seagrass environment. The ultra-high image
resolution and additional red edge and near infrared bands enabled discrimination
between vegetation classes at species level and ultimately the creation of fine-scale
habitat maps. The study may provide a foundation to aid coastal managers to develop
effective monitoring programmes by integrating multispectral UAV derived habitat

maps in monitoring programmes. The methodology of this study can be utilised to
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implement targeted management practices to identify areas of concern and potential
threats to effectively manage Zostera spp. decline, and detrimental macroalgae

growth.
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Chapter 4: Mapping intertidal seagrass and macroalgae using
Hyperspectral CASI imagery

4.1. Introduction

While UAV Imagery can be useful for prioritising detailed information on small seagrass
areas, as discussed in previous chapter, a major limitation is its suitability for large-
scale habitat mapping, due to limited flight time and line of sight restrictions as
discussed in Chapter 3 (Carpenter et al., 2022). Accurate large-scale habitat maps are
required to fully investigate seagrass habitat extent, distribution, and spatial patterns
(Hossain et al., 2015; Veettil et al., 2020). Capturing seagrass environments at a
habitat and/or ecosystem scale, is important to coastal managers to gain insights and
overview of seagrass - macroalgae ecology and dynamics relevant for effective holistic
management plans. While satellite derived imagery data (e.g., Sentinel 2, Landsat)
can provide cost-effective and rapid seagrass habitat mapping over large areas and
may benefit regular and long-term monitoring, sensors typically lack high spatial
resolution (e.g., Dekker et al., 2005; Knudby et al., 2010; Kovacs et al., 2018; Zoffoli
et al., 2020; Benmokhtar et al., 2023). This can limit their ability to map small or
fragmented seagrass patches accurately. Although they typically have spectral bands
similar to for example, the multispectral UAV used in Chapter 3, (e.g., Sentinel has 4-
12 bands), this varies by platform, and the wavelengths available may not permit
discrimination between different vegetation types with similar spectral signatures due
to their low spatial resolution. These limitations are reflected in literature, where low
spatial/spectral resolution satellite data have typically been used to map either
relatively homogeneous seagrass habitats, or to derive coarse seagrass habitat

extents (e.g., Wabnitz et al., 2008; Topouzelis et al., 2018).

Other factors that may prove challenging in temperate seagrass regions, are
associated with clouds covering imagery data, and turbidity. Both cloud and turbidity
can physically obscure the habitat features of interest, making it impossible for most
satellite sensors to detect submerged vegetation in temperate regions (Dierssen et al.,
2019; Kuhwald et al., 2022). For example, Armitage et al. (2013) showed that the
Moderate Resolution Imaging Spectroradiometer (MODIS) exhibited an average yearly
probability of cloud-free images of 21.3% for the UK and between 13% and 25% in the
North East of England. To overcome sensor specific spatial and spectral limitations

and platform related environmental challenges, airborne hyperspectral imagery may
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prove beneficial for intertidal temperate seagrass mapping, as the accurate mapping
of different vegetation classes at large-scales may be possible (Dierssen et al., 2019).
Flexibility in data acquisition is possible, as platforms can be flown at different altitudes,
below cloud cover, and at low tide when seagrass is exposed, to avoid potential
turbidity in the water column, consequently enhancing data quality. The inherent
flexibility of airborne remote sensing technology can enable users to develop flight
plans and attach hyperspectral sensors tailored to specific interests, offering

considerable potential for detailed vegetation mapping (Jia et al., 2020).

While studies have used airborne hyperspectral imagery to map seagrass habitats, the
majority of these have been conducted in shallow clear tropical waters. Airborne
hyperspectral sensors have successfully mapped tropical seagrass distribution,
biomass, species composition and extent (e.g., Phinn et al., 2008; Clarke et al., 2021).
Although scarce, as outlined in Chapter 2 (Table 2.2), the few studies available, that
have utilised airborne hyperspectral imagery in temperate seagrass environment, have
demonstrated its potential for mapping seagrass- macroalgae environments. Among
these few studies, most were conducted in submerged seagrass and macroalgae
environments. For example, a study conducted in Finland by Vahtméae et al. (2021),
demonstrated that a temperate benthic habitat of submerged aquatic vegetation (SAV)
which included green macroalgae and seagrass (Zostera marina), could be mapped
with higher accuracy using hyperspectral Compact Airborne Spectrographic Imager
(CASI) sensor (Overall Accuracy 78%), in comparison to Sentinel-2 imagery (Overall
Accuracy 69%). Moreover, O’Neill & Costa (2013) mapped a subtidal Zostera marina
and macroalgae habitat in Canada, comparing high spatial resolution satellite imagery
(IKONOS; 4m) and two-metre airborne hyperspectral imagery (Airborne Imaging
Spectrometer for Applications - AISA). This study showed successful discrimination
between seagrass and green macroalgae with hyperspectral imagery outperforming
the satellite imagery.  However, the mapped habitats in these studies entailed
segregated seagrass and macroalgae areas with less habitat complexity, as can be
found, for example, in the intertidal areas of LNNR. Here, exposed intertidal seagrass-
macroalgae habitats, can be different in their ecological complexity due to intermingled
macroalgae and seagrass and the presence of mudflat which can often blend in
together, consequently increasing the optical complexity, thus spectral signatures of
different components. For example, assessing the habitat maps created in Chapter 3,

benthic classes including seagrass, macroalgae and bare ground can be found at sub-
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cm spatial resolution adjacent to each other, requiring both higher spatial and spectral

resolution.

Studies that have investigated the application of airborne hyperspectral imagery in
complex intertidal seagrass environments are scarce or close to non-existent (Chapter
2, Table 2.2). The only study found, Garono et al.,, 2004, used CASI airborne
hyperspectral imagery to discriminate between intertidal and subtidal eelgrass (Zostera
marina) and green macroalgae cover in the US. While this study also mapped seagrass
and macroalgae densities, denoting some habitat complexity using a spatial resolution
of 1.5m, hyperspectral imagery with higher spatial resolution may be required for more

accurate mapping in LNNR to capture the complexity in more detail.

Despite the potential benefits of using hyperspectral imagery to distinguish between
seagrasses and macroalgae (Garono et al., 2004; O’Neill & Costa, 2013), multispectral
satellite imagery remains the predominant technology for mapping seagrass habitats
(Hossain et al., 2015; Veettil et al., 2020). This is mainly due to high costs of operation
and expensive equipment often associated with the acquisition of airborne
hyperspectral imagery data. However, the regular (annual) acquisition of hyperspectral
CASI imagery in coastal areas including the LNNR by the Environment Agency (EA)
in the UK, which is accessible to managers, provides great potential for coastal
monitoring programmes. Although UK’s coastal areas consist of many intertidal
seagrass areas (Natural England, 2024), no studies were found that have utilised
airborne hyperspectral imagery to map a complex seagrass -macroalgae environment
in the UK. To advance the knowledge and better understand the feasibility of airborne
hyperspectral imagery for an intertidal seagrass-macroalgae environment, and its
potential for monitoring and management to effectively conserve seagrass habitats,

reliable and validated studies are urgently required.

This Chapter investigates the potential of CASI airborne hyperspectral imagery for the
mapping of intertidal seagrass-macroalgae environments in the UK at a large-scale.
Objectives were: (1) To use Random Forest classification method to identify the
optimal benthic class level (7 - class map; 6 - class map and 5 - class map,
respectively) for accurate seagrass-macroalgae habitat mapping; (2) To establish the
extent to which the hyperspectral nature of the imagery contributes to mapping
complex intertidal seagrass-macroalgae environments by reducing the number of
spectral bands to 5-8 bands similar to the multispectral UAV (Chapter 3) and satellite

PlanetScope (Chapter 5) for comparison, and assess impacts on classification
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accuracy; (3) To discuss seagrass-macroalgae distribution patterns in the context of

management and conservation implications.

4.2. Materials and Methods
4.2.1. Ground truth sampling

To validate the hyperspectral image classification, in situ ground surveys were carried
out in August 2021 in the Causeway area due its safer environment and accessibility
in comparison to Fenham Flats and Budle Bay, which are known to consist of softer
sediment thus increasing the likelihood of being trapped (Chapter 1, Figure 1.5). To
achieve large-scale area sampling and ensure even sampling of benthic categories
including seagrass, macroalgae, seagrass and macroalgae mixed and bare ground,
the positions of 31 suitable transects of 100m x 20m were identified in a GIS, based
on apparent seagrass and macroalgae cover. The same method of quadrat sampling
and geo location of quadrats as described in Chapter 3, Section 3.2.3., were
undertaken to obtain detailed information on the benthic cover across the Causeway
Area (Figure 4.1). Same as in Chapter 3, photographs of quadrats and GPS positions
of the north and south corner of each quadrat were taken using a Trimble Catalyst
receiver with the Trimble Network RTK Precision service (x 0.2 cm accuracy). In total,
630 quadrat photographs were taken. To account for bright surface covers
encountered across the field site identified in the UAV imagery, 26 additional quadrat

samples were targeted on known large cockle shell beds.

Figure 4.1. Map showing the ground-truth sampling points where quadrat photographs were
taken in the Causeway area (red boundary).
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4.2.2. Benthic Classes

Percent cover of each benthic class within quadrat photographs were visually
estimated. Classes included, seagrass, macroalgae, seagrass/macroalgae mixed,
bareground (including shells). To capture density of cover, the seagrass class was
further divided into sparse, moderate- and dense- seagrass, according to the following
percent cover ranges similar to Zoffoli et al. (2020): sparse (5-40%); moderate (41-
70%) and dense (71%-100%) (Figure 4.2a). Within the mixed seagrass/macroalgae
guadrats, macroalgae was often found on top of seagrass or intertwined in seagrass
patches. In some cases, only a string of macroalgae was found in the quadrat that was
dominated by seagrass and vice versa. To reduce spectral misclassification between
pure seagrass and pure macroalgae classes, quadrats that indicated less than 15%
difference in percent cover between seagrass and macroalgae were assigned the
seagrass/macroalgae mixed class. This low threshold was set to maintain higher
dominance of either seagrass or macroalgae in order to reduce potential
misclassification between these two classes. Otherwise, the dominating habitat class
(seagrass or macroalgae, respectively) was assigned. Although not observed in the
quadrats, an additional class “water” was produced to account for channels of water
occurring in the imagery (Figure 4.2a). In total, seven benthic classes were identified:
sparse seagrass (sparse SG, hereafter), moderate seagrass (moderate SG), dense
seagrass (dense SG), macroalgae, seagrass and macroalgae mixed (SG/MA mixed),
bare ground, and water (Figure 4.2a). To investigate how much detailed information
can be acquired accurately from the hyperspectral imagery, using 3 scenarios of
benthic class combinations were investigated, producing 7- class, 6- class and a 5-
class benthic habitat maps. Here, the 7-class Scenario entailed all possible seagrass
densities, including sparse SG, moderate SG and dense SG. For the 6-class Scenario,
the moderate and dense SG class were grouped into the class moderate/dense SG
(mod-dense SG). And finally for the Scenario 3, all three seagrass classes were
grouped into one seagrass class. All Scenarios included the benthic classes,
macroalgae, SG/MA mixed, bare ground and water (Figure 4.2b). Notably, the number
of training samples was unbalanced and varied across classes (Figure 4.2b). Training
data were created using a pixel-based approach, where each identified class of

guadrat was assigned to a pixel relative to the location of the quadrat.
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Figure 4.2. a) Quadrat photographs of identified benthic classes. b) Diagram of the three
different investigated Scenarios with differing numbers of benthic classes including the number
of training sample data for each benthic class. Sparse SG = sparse seagrass, moderate SG =
moderate seagrass, dense SG = dense seagrass, SG/MA mixed = seagrass/macroalgae
mixed, bare ground = bare ground, water = water.

4.2.3. CASl information and Image acquisition

Airborne imagery was collected on the 20" September 2021 using the mounted
Compact Airborne Spectrographic Imager (CASI). The CASI sensor is a push-broom
sensor that captures narrow spectral bands in the visible and near infrared (VNIR)
region of the electromagnetic spectrum covering wavelengths between 400-1000nm.
While the sensor offers up 288 bands, the number of spectral bands can be adjusted
according to user interest. The spatial resolution depends on the flight height and

ranges between 0.3 — 1.5m. The imagery used in this study was acquired by the
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Environment Agency as part of their monitoring programme and was flown during
spring low tide across the Lindisfarne National Nature Reserve (LNNR) (Figure 4.3).
The spatial resolution of the data was 1m including a spectral resolution of 33 spectral
bands (Appendix A).

Atmospheric absorption bands are specific wavelength regions, commonly observed
in the VNIR, where a significant amount of incoming radiation is absorbed by the
Earth’s atmosphere, caused by the occurrence of atmospheric constituents (e.g., water
vapour (H20) and carbon dioxide (COz2)). To avoid a steep slope in spectral reflectance
curves, atmospheric absorption features, which were observed around 750nm and
790nm (band 20-29, respectively) were removed. This resulted in a total of 23 spectral
bands for further analysis.

4.2.4. Pre-processing of imagery

CASI data were acquired from the Defra Survey Data Portal (Geomatics Hub, 2024),
and downloaded in GeoTiff formats within compressed .zip files. It had undergone the
following pre-processing stages: (1) Calibration; (2) Radiometric correction, which
performs radiometric and spectral corrections to the image; (3) Dark correction and;
(4) geometric correction for the production of accurate geo-referenced images. In
addition to the pre-processing stages applied by the Environment Agency, this study
performed a Quick Atmospheric Correction (QAC), which is a rapid method to correct
data from atmospheric effects. In comparison to many other atmospheric correction
algorithms such as the FLAASH, the QAC algorithm uses an empirical approach where
no ancillary data other than band wavelengths are required. It can be applied on
multispectral and hyperspectral imagery data spanning across the spectral range of
the visible- near infrared-short wave infrared range (~ 400-2500 nm) (Bernstein et al.,
2012). The final step before analysis and the creation of habitat maps, included the
stitching of tiles into a mosaic to have a seamless single image, prior analysis (Figure
4.3).
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Figure 4.3. The Mosaic of the hyperspectral imagery scene and the investigated intertidal area
in Lindisfarne National Nature Reserve (LNNR) (red boundary) (Source: Geomatics, 2024:
Contains public sector information licensed under the Open Government Licence v3.0.)

4.2.5. Classification method and accuracy assessment

Due to the high dimensionality of spectral data across a wide range of wavelengths,
creating habitat maps of hyperspectral imagery can be challenging. For example, the
high dimensionality of data can result in variability within classes, often requiring a
large amount of training data to capture the high variation present (Ghamisi et al.,
2017). Different classifiers such as the Spectral Angle Mapper (SAM) and Maximum

Likelihood Classifier (MLC) have previously been used for hyperspectral imagery and
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habitat mapping of vegetation (Chan & Paelinckx, 2008; Vahtmé&e et al., 2012), the
machine learning (ML) classifier, Random Forest (RF), has gained in popularity due to
its versatility in handling high dimensional data, it's robustness to noise and reliability

in higher accuracy performance (Breiman 1996, 2001; Dietterich 1999).

Random forest is a supervised non-parametric classifier which uses ensemble learning
method by using decision trees to make predictions through a bootstrapping method
called bagging (Breiman, 1996, 2001). These features help the classifier handle low
and unbalanced training samples, with no separate validation data set required (Pal,
2005; Sheykhmousa et al., 2020). The RF classifier has also been successfully applied
in seagrass habitat mapping and shown to outperform other classifiers such as the
Maximum Likelihood and Support Vector Machine (SVM) classifier (Ha et al., 2021).
To overcome the existence of unbalanced and low training samples in this study, the
RF classifier was used to produce the classified habitat maps. A separate training data
set is not required for cross-validation, making it useful for the low training data
samples in this study. The RF classifier can use an Out-of Bag (OOB) prediction error
method, through a bootstrap sampling approach that provides an estimate of models’
performance. This procedure is applied during the training process and simultaneous
creation of the habitat classification map. The OOB- score provides an internal error
estimation of unseen data. During the creation of bootstrap samples and the building
of each tree in the Random Forest, a random subset of the original dataset is selected
with some samples included multiple times in the training set, but others excluded

entirely (unseen data) (Belgiu & Dragu, 2016).

The model prediction performance can be tuned/improved through adjustment of three
parameters: (1) number of classification trees (ntree; (2) the depth of each tree
(max_depth), and (3) the number of feature classes to be considered at each node
(mtry) (Scornet, 2017). To avoid excessive computation time, the model was
performed systematically by increasing the parameter ntree and adjustment of the
parameters including max_depth and mtry until a stable OOB- error rate was reached.
The model’s performance being validated by observing the OOB-score (Benmokhtar
et al., 2021),

To get more insight into the performance of the classifier, additional metrics including
precision, recall and F1- score, were examined. Precision (User’s Accuracy) measures
the accuracy of positive predictions made by the model i.e., how many of the positive

predictions made are correct; Recall (Producer’s Accuracy), measures the rate of true
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positive predictions i.e., to correctly predict identified by the model to evaluate the
model’s ability to avoid false negatives; F1-score is a weighted average of precision
and recall. Furthermore, an Accuracy score (Overall Accuracy), which describes the
number of correct predictions over all predictions and a confusion matrix that enables
to assess misclassifications between true labels and predicted labels for each class,

are also produced.

To investigate whether increasing the number of spectral bands achieves better map
accuracy results, hyperspectral imagery (23bands) was compared with a reduced
number of spectral bands. The number of spectral bands were reduced (from Scenario
2) to match the PlanetScope satellite used in Chapter 5 and DJI UAV multispectral
sensors used in Chapter 3. The 8-spectral bands closest to the PlanetScope
SuperDove sensor were extracted, as were the 5 spectral bands closest to the DJI
multispectral UAV sensor wavelengths utilised in Chapter 3 (Scenario 2 PS and
Scenario 2 UAV, hereafter) (Table 4.1).

Table 4.1. Reduced number of spectral bands, using the closest bands from the CASI
hyperspectral bands aligned to the PlanetScope SuperDove and multispectral UAV band
centre wavelength + FWHM (Full Width at Half Maximum). HS = Hyperspectral, MS =
Multispectral.

Airborne: CASI-HS Satellite: Airborne: CASI-HS UAV: DJI-MS
PlanetScope
SuperDove-MS

442.246nm = 14.195 nm 442nm + 10nm 442.246nm * 14.195nm 450nm + 16nm
487.186nm + 14.188 nm 490nm + 25nm 554.561nm * 15.362nm 560nm = 16m

513.195nm % 11.821 nm 526.5nm * 13.5nm 643.166nm * 5.905nm 650nm = 16nm
554.561nm % 15.362 nm 565nm + 18nm 727.018nm £ 5.90nm 730nm = 16nm
611.273nm £ 5.907 nm 610nm = 10nm 852.204nm £ 12.993nm 840nm * 26nm

663.244nm + 5.905 nm 665nm + 15nm

712.846nm + 5.905 nm 705nm + 8nm

879.372nm + 11.813 nm 865nm + 20nm
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4.3. Results
4.3.1. Spectral signatures

The spectral signature of training data assessed using Jeffries-Matusita (J-M) distance
measure, from each benthic class varied distinctly between the non- vegetation
classes (i.e., bare ground and water) and the vegetation classes (i.e., seagrass,
macroalgae and SG/MA mixed) (Table 4.2). Spectral separability varied among
investigated vegetation classes both within Scenario 1 and Scenario 2, the benthic
class sparse SG was distinctively separable (1.7 — 1.9 J-M value) from all other benthic
vegetation classes (dense SG, moderate SG, macroalgae and, SG/MA mixed,
respectively). The least spectral separation within Scenario 1 and Scenario 2 was
found between the classes including: moderate SG, SG/MA mixed and macroalgae,
mod-dense SG (1.4 — 1.6 J-M value). Similarly, the Scenario 3 image indicated the
least spectral separation (1.4 — 1.6 J-M value) among all vegetation classes (seagrass,
macroalgae and SG/MA mixed classes, respectively) (Table 4.2). However, when
assessing the spectral curves of individual vegetation classes, the observed
separability between vegetation classes differed across the spectrum (Figure 4.4).
Within Scenario 1 and Scenario 2, the benthic class sparse SG appeared distinctly
separable across all wavelengths compared to all vegetation classes, except its
separation with macroalgae from around 700nm onwards. In contrast, all other
seagrass classes (mod SG, dense SG, mod-dense SG, SG/MA mixed, respectively)
did not show major separability across the entire wavelength spectrum from each
other. However, the class macroalgae showed a distinct separation from all seagrass
classes, except sparse SG, from 700nm onwards. All vegetation classes indicated
peak reflectance between 550nm and 610nm (green wavelength) with a slight decline
until 680nm (red wavelengths) and sharp increase to a peak reflectance at around
720nm (Red Edge wavelengths). From here the peak reflectance plateaued and
followed a typical vegetation spectral response with a slight increase to the highest

reflectance at around 880nm (NIR) (Figure 4.4).
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Table 4.2. Results of Jeffries-Matusita (J-M) index, indicating spectral pair separability of

benthic classes for the: 7-class-, 6-class- and 5-class habitat maps.

Benthic pair separation J-M Benthic pair separation J-M
7-class Habitat 6-class Habitat

moderate SG - SG/MA mixed 14 SG/MA mixed - macroalgae 15
SG/MA mixed - macroalgae 1.4 SG/MA mixed - mod-dense SG 1.6
moderate SG - macroalgae 15 macroalgae - mod-dense SG 1.9
dense SG - Moderate SG 1.7 sparse SG - mod-dense SG 1.9
dense SG - SG/MA mixed 1.8 sparse SG - SG/MA mixed 1.9
moderate SG - Sparse SG 1.8 sparse SG - macroalgae 19
dense SG - macroalgae 1.9 sparse SG - bare ground 2.0
sparse SG - SG/MA mixed 1.9 SG/MA mixed - bare ground 2.0
sparse SG - macroalgae 1.9 bare ground - macroalgae 2.0
sparse SG - bare ground 2.0 bare ground - mod-dense SG 2.0
moderate SG - bare ground 2.0 water - bare ground 2.0
SG/MA mixed - bare ground 2.0 sparse SG - water 2.0
bare ground - macroalgae 2.0 water - mod-dense SG 2.0
dense SG - Sparse SG 2.0 water - macroalgae 2.0
water - bare ground 2.0 SG/MA mixed - water 2.0
sparse SG - water 2.0

sense SG - bare ground 2.0

moderate SG - water 2.0

water - macroalgae 2.0

SG/MA mixed - water 2.0

dense SG -water 2.0

5-class Habitat J-M value

SG/MA mixed - macroalgae 1.4

SG/MA mixed - seagrass 15

macroalgae - seagrass 1.6

bare ground - seagrass 1.9

SG/MA mixed - bare ground 2.0

bare ground - macroalgae 2.0

water - bare ground 2.0

water - seagrass 2.0

water - macroalgae 2.0

SG/MA mixed - water 2.0

59



Scenario 1

2000

Y
o
[=]
<

Reflectance
=
2

500

400 600 800 1000
Wavelength (nm)

Scenario 2

2000

1500

500 ! \_/—\/

—

-
o
[=)
=]

Reflectance

400 600 800 1000
Wavelength (nm)

Scenario 3

2000

-
[4)]
[==]
Q

Reflectance
>
3

500

400 600 800 1000
Wavelength (nm)

Habitat.class

sparse SG

moderate SG
— dense SG

macroalgae
— SG/MA mixed

bare ground
— water

Habitat.class

sparse 3G

— mod-dense SG
macroalgae

— SG/MA mixed
bare ground

— water

Habitat.class

— seagrass
macroalgae
— SG/MA mixed
bare ground

— water

Figure 4.4. Spectral reflectance curves of benthic class training data across all hyperspectral

bands for Scenario 1, Scenario 2, and Scenario 3. The shaded area represents + standard

deviation.

4.3.2. Accuracy assessment

The model’s performance reached the best OOB- score, which ranged between 0.66

and 0.75, at parameters of ntree:150-200; max-depth:5-9; mtyr. 4-6, across all

investigated Image Scenarios (Table 4.3).
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Table 4.3. Summary table of optimal tuned parameters reached for the optimal Random Forest
model to create a classification habitat map for each investigated Scenario.

ntree max_depth mtry OOB-score
Scenario 1 200 5 4 0.66
(7 benthic classes)
Scenario 2 150 8 5 0.73
(6 benthic classes)
Scenario 2 PS 150 8 5 0.75
(6 benthic classes)
Scenario 2 UAV 200 8 5 0.73
(6 benthic classes)
Scenario 3 200 9 5 0.73

(5 benthic classes)

The Random Forest yielded the lowest Overall Accuracy (OA) of 76% for the 7-class
habitat map (Scenario 1) (Table 4.4; Figure 4.6), followed by the 6-class habitat maps
(Scenario 2) 93% OA (Table 4.4; Figure 4.7). The highest OA was found for the 5-class
habitat map (Scenario 3) with an OA of 97% (Table 4.4; Figure 4.8). When investigating
Scenario 2 with a reduced number of spectral bands, both the Scenario 2-PS imagery
and the Scenario 2-UAV revealed similar OA in comparison to the Scenario 2 imagery
(93% and 92%, respectively) (Table 4.4).

Habitat class accuracies varied between image Scenarios (Figure 4.5; Table 4.4). The
highest class accuracy was achieved for the habitat classes bare ground and water
across all images (Precision: 87%-100%; Recall; 93%-97%), whereas the highest
misclassification for these classes was found within image Scenario 1, whereby 6% of
the sampled pixels of bare ground was incorrectly misclassified as sparse SG. While
vegetation classes indicated lower class level accuracies, there was large variation
found between Scenarios. Notably, the lowest vegetation class accuracies were found
for Scenario 1 (Precision: 56%-81%; Recall: 45%-76%) and the highest class
accuracies were found for Scenario 3 (5-class map) (Precision: = 94%; Recall: = 93%).
The Scenarios that entailed seagrass density classes (Scenario 1 and Scenario 2,
respectively) showed very high-class accuracy for the class sparse SG (Scenario 1.
Precision: 81.25%; Recall: 62%; all Scenarios 2: Precision: = 95%; Recall: = 86%)
(Figure 4.5; Table 4.4).
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Table 4.4. Accuracy results of the Random Forest classification maps for each investigated
Scenario.

Precision Recall Fl-score Overall Accuracy

Scenario 1 0.76
sparse SG 0.81 0.62 0.70
moderate SG 0.56 0.70 0.62
dense SG 0.66 0.76 0.71
macroalgae 0.82 0.64 0.72
SG/MA mixed 0.61 0.45 0.52
bare ground 0.87 0.97 0.92
water 1.0 1.0 1.0

Scenario 2 0.93
SG sparse 0.97 0.86 0.91
SG mod-dense 0.85 0.96 0.91
macroalgae 0.97 0.84 0.90
SG/MA mixed 0.91 0.81 0.85
bare ground 0.98 1.0 0.99
water 1.0 1.0 1.0

Scenario 2-UAV 0.92
SG sparse 0.95 0.86 0.90
SG mod-dense 0.84 0.95 0.89
macroalgae 0.95 0.80 0.87
SG/MA mixed 0.82 0.76 0.79
bare ground 0.98 1.0 0.99
water 1.0 1.0 1.0

Scenario 2-PS 0.93
SG sparse 0.97 0.88 0.93
SG mod-dense 0.85 0.96 0.90
macroalgae 0.93 0.85 0.89
SG/MA mixed 0.91 0.76 0.83
bare ground 0.99 1.0 1.0
water 1.0 1.0 1.0

Scenario 3 0.97
SG 0.95 0.98 0.97
macroalgae 0.98 0.89 0.93
SG/MA 0.94 0.93 0.93
bare ground 0.99 1.0 1.0
water 1.0 1.0 1.0
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Within Scenario 1, moderate SG class indicated the lowest class accuracy (Precision:
56.29%; Recall: 70%) (Table 4.4), which was 44.9% incorrectly classified as the other
vegetation classes (sparse SG (12.5%), dense SG (12.4%), macroalgae (7.5 %) and
SG/MA mixed (12.5%), respectively) (Figure 4.5). However, the habitat class, dense
SG, indicated a slightly higher accuracy (Precision: 66.29%; Recall: 76%), but showed
a misclassification of 9.93% with the moderate SG class, and 4.17% with SG/MA mixed
class, but substantially lower misclassification with the macroalgae class (1.25%)
(Table 4.4; Figure 4.5). When grouping mod SG and dense SG into one class in
Scenario 2, class accuracies improved overall across all vegetation classes. The mod-
dense SG habitat class indicated a high accuracy (Precision: 84%-85%; Recall:95%-
96%) across all investigated Scenario 2 (Table 4.4). However, some misclassification
with the other vegetation classes (SG/MA mixed, macroalgae, and sparse SG,
respectively) where still observed, whereby mod-dense SG was incorrectly classified
between 1.16% and 6.67% with these vegetation classes. Here, the Scenario 2-UAV
indicated the lowest misclassification with macroalgae (1.16%) and the highest
misclassification with SG/MA mixed class (6.67%) (Figure 4.5).

The habitat class macroalgae indicated high Precision accuracy ranging between
82.5% and 98.95% but lower Recall accuracies ranging between 64% and 89% across
all Scenarios, with the lowest class accuracies observed for Scenario 1 and highest
accuracy for Scenario 3, respectively (Table 4.4). Here, within all Scenarios, the largest
misclassification was found between macroalgae and SG/MA mixed class. Scenario 1
and Scenario 2-UAV showed the largest amount that was incorrectly classified as
SG/MA mixed (18.06% and 11.1%, respectively) (Figure 4.5). All other Scenarios
showed less misclassification (< 5.7%). The habitat class SG/MA mixed indicated the
lowest class accuracy (Precision: 61.11%; Recall: 45%) within Scenario 1 in
comparison to all other Scenarios (Precision: = 82%; Recall: 76%) and was mostly
incorrectly classified as moderate SG (21.85%), followed by dense SG (10.11%) and
macroalgae (7.5%). Within all Scenario 2 maps, SG/MA mixed class was mostly
incorrectly classified as mod-dense SG (8%-9%) (Table 4.4; Figure 4.5). Scenario 3,
in which seagrass density classes were compiled into one seagrass class, indicated
high vegetation class accuracies (Precision: = 94%; Recall: = 89%) (Table 4.4). Here
the only notable misclassification, however very low, within Scenario 3 was found

between the classes macroalgae and SG/MA mixed (3.13%) and the classes
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macroalgae and seagrass (2.4 %). Unclassified pixels were also present in classified

maps, however consisted of only a very low number of pixels (< 0.07%) (Figure 4.5).
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Figure 4.5. Confusion matrix outputs of the Random Forest classification method showing

misclassification between true labels and predicted labels. Values represent the percent (%)
numbers of misclassified pixels.

64



Scenario 1
a) Causeway & Fenham Flats

Habitat classes

I Unclassified
Bl dense SG
I moderate SG
[__Isparse SG
I SG/MA mixed
B ater

[ Ibare ground
[ Imacroalgae

Figure 4.6. Habitat classified maps showing Scenario 1 for: a) the Causeway area & Fenham
Flats, b) a zoomed area within the Causeway area; c) Budle Bay, and d) a zoomed area within
Budle Bay.
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Scenario 2
a) Causeway & Fenham Flat

Habitat classes

M Unclassified
[_Isparse SG

B SG/MA mixed
N water

[_Ibare ground
[ Imacroalgae
Bl mod-dense SG

Figure 4.7. Habitat classified maps showing Scenario 2 for: a) the Causeway area & Fenham
Flats, b) a zoomed area within the Causeway area; (c) Budle Bay, and (d) a zoomed area
within Budle Bay.
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Scenario 3
a) Causeway & Fenham Flats

Habitat classes

I Unclassified
I SG/MA_mixed
I water

[ Jbare ground
[ Imacroalgae
B seagrass

Figure 4.8. Habitat classified maps showing Scenario 1 for: a) the Causeway area & Fenham
Flats, b) a zoomed area within the Causeway area; c) Budle Bay, and (d) a zoomed area within
Budle Bay.

67



The classified habitat maps showed a large variation in the cover of benthic classes
across the investigated LNNR intertidal area (Figure 4.6 - 4.8; Figure 4.9a). Within all
classified habitat maps, the benthic class water represented the lowest cover (1%)
followed by macroalgae cover (~6%) and SG/MA mixed cover (6-7%). The largest
benthic cover was found for bare ground (~57%), whereas seagrass cover ranged
between 26% and 30% in habitat cover (Scenario 1 = 26%; Scenario 2 = 28%;
Scenario 3 = 30%). However, where benthic classes of seagrass density were
considered (Scenario 1 and 2, respectively), sparse SG showed the lowest cover (2%)
in both the Scenario 1 and Scenario 2 maps. The Scenario 1 map indicated a moderate
seagrass (mod SG) cover of 17% and a dense seagrass (dense SG) cover of 6%,
which combined in Scenario 2 map indicated a similar cover of 25% (Figure 4.9a).
When considering Scenario 2 only to assess and compare the vegetation classes, the
largest mod-dense SG cover was found for the Fenham Flats area (67% cover)
whereas Causeway area and Budle Bay showed similar coverage (48%). The largest
cover in macroalgae was found in the Causeway area (22%), whereas Budle Bay
indicated nearly double cover of SG/MA mixed (28%) in comparison to Fenham Flats
and Causeway area in which both had similar cover (14.3% and 15.9%, respectively)
(Figure 4.9b).
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Figure 4.9. Bar plots showing percent (%) cover found for each benthic class within each
Scenario habitat map across the Lindisfarne National Nature Reserve (LNNR). (b) Stacked bar

of percent cover of vegetation for each investigated area including Causeway, Fenham Flats
and Budle Bay for Scenario 2.
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4.4. Discussion

In situ quadrat sampling and small area UAV derived habitat maps can only provide
limited information on seagrass and macroalgae distribution patterns and their dynamic
interaction. Large-scale maps that present the full extent of seagrass and macroalgae
distributions, are needed for management practitioners to better understand
distribution patterns and dynamics for effective management and conservation
decision making (Lengyel et al., 2008; Neckles et al., 2012). Using an airborne CASI
hyperspectral imagery, this Chapter demonstrated the successful accurate mapping of
a complex seagrass-macroalgae environment at large scale. The Random Forest

classification indicated an Overall Accuracy (OA) ranging between 76% and 97%
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across all investigated Scenarios. While maps could be successfully generated, to
demonstrate distributions and discriminate between seagrass and macroalgae at 1m
resolution, accurate finer class level habitat maps were less consistently generated.
Higher map accuracies were achieved with lower habitat class levels, (i.e., 5-class map
with an OA of 97%), while the finer 7-class map showed substantially lower map
accuracy with misclassification mainly observed among vegetation classes.
Furthermore, this study showed that a 6-class habitat map (Scenario 2) using fewer
spectral bands (5 and 8 bands) may be sufficient to achieve similar OA in comparison
to a 23-band imagery. Similar to Chapter 3, the red edge and near infrared bands
appeared to be most effective in terms of spectral separability between vegetation
classes, implying that lower cost solutions may be as effective, as long as these bands
are present. The ability to capture relevant information including the discrimination
between seagrass and macroalgae classes at lower spectral resolution, may provide
insights for more cost-effective solutions for management purposes, such as the

requirement of less expensive sensors.

4.4.1. Habitat classification

Variation found in OA across map Scenarios can be primarily explained by the number
of benthic habitat classes. Regardless of the habitat complexity, higher number of
habitat classes commonly result in lower map accuracies (Pu et al., 2012). In this study,
the complexity and similar spectral signatures across vegetation classes, especially
within the 7-class habitat map (Scenario 1) can be explained by the observed higher
misclassification found among vegetation classes including, moderate SG, dense SG,
macroalgae, and SG/MA mixed, due to similar spectral reflectance (O’'Neill & Costa,
2013). However, the lower misclassification found between sparse SG and the other
vegetation classes, but higher misclassification found with bare ground, may be due to
its inherent high percentage cover of bare ground (up to 60%) in the sparse SG benthic
classes, consequently leading to spectral signature favourable for bare ground
(Bargain et al., 2012).

The high OA achieved for Scenario 2 and Scenario 3 (OA > 90%) do not conform to
other studies where hyperspectral airborne imagery has been used to map co-
occurring seagrass and macroalgae environments. For example, O’'Neil et al. (2011,

2013), utilised AISA airborne hyperspatial imagery (2m spatial resolution) and reduced
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the spectral resolution from >200-band to 4 key bands (between 530nm and 602nm)
to map eelgrass and green algae habitats along a water depth gradient and achieved
an OA of 83%. Vahtmae et al (2021) used a CASI hyperspectral imagery (1m
resolution) to map higher plants (including Zostera marina) and green macroalgae
yielding an OA of 78%. However, it is important to note that these studies were
conducted on submerged vegetation and the lack of scientific references and studies
for intertidal segrass-macroalgae environment when exposed do not conform the exact
comparison of results. The higher map accuracies achieved in this study may be due
to the lack of water column, the higher spatial resolution of 1m (Haro et al., 2022;
Leblanc et al., 2021), and the additional red edge and near infrared spectral
wavelengths, known to benefit spectral signature of vegetation (Schmidt & Skidmore,
2003; Zeng et al., 2021) and as demonstrated in Chapter 3.

Generally, discriminating seagrass mixed with green macroalgae can be challenging
when using remote sensing, often due to required higher spatial and/or spectral
resolution imagery (Phinn et al., 2018b; Veettil et al., 2020) (Chapter 3). However, the
observed spectral separability between macroalgae and seagrass as found across all
Scenarios, is probably related to their distinct hues of green (Figure 4.2a), that enables
the separation in spectral signature between macroalgae and seagrass pixels thus the
effective discrimination by the hyperspectral sensor. The distinct spectral signature
between green macroalgae and seagrass have also been shown through the creation
of spectral libraries using in field spectrometers and multi-and hyperspectral imagery
(Davies et al., 2023), which are also comparable with spectral curves observed in this

study.

While several studies have mapped algae and seagrass as separate classes (Garono
et al., 2004; Hobley et al., 2021), those investigating mixed seagrass and macroalgae
pixels are scarce (Benmokhtar et al., 2023). However, the utilisation of hard classifiers
can lead to classification errors, particularly when near class boundaries across a
continuum are used, whereby for example, seagrass densities as used in this study,
are put into classes with subtle distinction between the classes. This may also explain
the high misclassification between moderate SG and dense SG habitat classes (up to
12.4% of total pixels) observed in Scenario 1. While this issue could have been
mitigated by using a fuzzy classification method as explained in Chapter 2,

misclassifications were reduced by up to 14% when aggregating these two classes in
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Scenario 2, which substantially improved the OA accuracy of classified habitat map (6-

class habitat map).

As demonstrated in Chapter 3, and in alignment with other studies, red edge and near
infrared bands can be beneficial in discriminating between vegetation types (Casal et
al., 2013; Fyfe, 2003). Such patterns were also observed in this Chapter, where
seagrass and macroalgae indicate large separation between spectral curves along this
spectrum of wavelengths. However, the consistent reflectance in the red edge and
near infrared wavelengths region, may indicate that numerous spectral bands are not
needed in this region. This may be strengthened by the similar OA achieved between
Scenario 2 (23 bands) and Scenario 2-PS (8 bands) and Scenario 2-UAV (5 bands),
which may suggest that potentially no benefit is acquired from a higher spectral
resolution imagery beyond an 5-8 band multispectral imagery, as long as red edge and
near infrared bands are included. These results may provide insights to consider more
cost-effective remote sensing applications, where expensive hyperspectral sensors

may not be required.

4.4.2. Ecology and implications for management

Interactions between seagrass and macroalgae in coastal ecosystems are dynamic
and can be influenced by several factors. Major factors that may influence distribution
and growth are related to competition for space, light and nutrients (Davis &
Fourgurean, 2001). These abiotic factors may consequently determine the spatial
patterns of seagrass and macroalgae proliferation and their cover (Han et al., 2016;
Han & Liu, 2014; Hauxwell et al., 2001). For example, it is well known that Lindisfarne
has reached a high level of pollution (Maier et al., 2009). Excessive nutrient run-off
from agricultural activities surrounding the intertidal mudflats may stimulate algal
growth (Howarth, 2008; Jones et al., 2018). When considering the entire intertidal area,
the classified Scenario 2 habitat map indicated the highest cover in seagrass (mod-
dense SG and sparse SG), and lower cover in macroalgae and SG/MA mixed.
However, at large spatial scales, nutrient levels may vary across the site and could
explain the high variation in macroalgae and SG/MA mixed cover in the different areas.
Findings here would suggest that Budle Bay may be exposed to higher nutrient levels,

due to the observed high cover in SG/MA mixed.
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When further assessing the Scenario 2 habitat map, macroalgae cover was mostly
present around the edges of large seagrass beds, whereas the SG/MA mixed habitat
class cover was mostly found within seagrass beds (Figure 4.7). The competition
between macroalgae and seagrass in coastal areas is well documented (e.g., Stafford
& Bell, 2006; Young et al., 2018). While the presence of macroalgae around the edges
may occupy potential space, hampering seagrass proliferation, macroalgae may also
be distributed across seagrass beds, covering seagrass, indicated by observed SG/MA
mixed class within beds. Such dynamic proliferation of macroalgae from their source
towards seagrass habitats, could be caused through for example, tidal and wave driven
currents by facilitating the transportation of loose macroalgae strings/patches and their
spores to settle towards seagrass habitats (Bell and Hall 1997; Holmquist 1997; Pihl
et al. 1999). Other macroalgae proliferation mechanisms may be caused through
physical disturbance by humans as vectors of spread (Firth et al., 2023). For example,
specific to this field site, the LNNR offers a walk (“pilgrimage walk”), across the
Causeway area to tourists as part of their recreational management plan. These walks
may promote the transportation of macroalgae and their spores through the attachment
to footwear and clothing, consequently dislodging macroalgae from its source to new
locations. Such a potential distributional pattern was also observed within the Scenario
2 classified habitat map, where the walking area indicated a cover of SG/MA mixed
habitat class along this path (Figure 4.10). However, it is important to consider that
these patterns may also be a result of misclassification errors, whereby either seagrass

or macroalgae may have been misclassified as SG/MA mixed.
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Figure 4.10. Classified map showing the potential movement of macroalgae along the
Pilgrimage track (top map) across the Causeway area (bottom map).

Although, in comparison to Chapter 3, habitat mapping was not possible at very fine
scales, the hyperspectral imagery provides the advantage of mapping at larger scale,
enabling assessment of seagrass and macroalgae distribution patterns across the
LNNR. The 1m spatial resolution may be sufficient to identify small seagrass and
macroalgae patches and to assess the heterogeneity of these classes across the field
site. Such information may support the assessment of seagrass and macroalgae
patterns at large-scale to identify threats, and thus may provide a foundation to identify
seagrass-macroalgae distributional patterns and dynamics for management practices
to effectively reduce macroalgae proliferation (lvajnSic et al., 2022). This method could
enable resource managers to prioritise target areas for monitoring and management
of threatened sites by utilising the produced maps as a communication tool (Nagendra

et al., 2013). For example: 1) areas that indicate high cover in macroalgae e.g., Budle
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Bay, could be controlled for nutrient levels by investigating the sources of nutrients in
specific area; 2) in order to reduce the spread of macroalgae, tourism could be
managed by reducing numbers allowed to walk across the field site; 3) maps could

help to find and target macroalgae areas to be removed.

Although the produced maps can provide a useful tool to identify spatial patterns of
seagrass and macroalgae cover, understanding the drivers of macroalgae cover is
essential to effectively managing algal growth. Here, ancillary data including, for
instance, nutrient levels (e.g., phosphorus, nitrogen) and water quality, could be
combined and correlated with the generated maps to identify the root causes of algal
growth. This approach could enable locally targeted management strategies for
effective seagrass habitat protection.

4.4.3. Limitations, challenges, and recommendations

While this study has shown the potential of airborne hyperspectral imagery to
accurately map a complex intertidal seagrass-macroalgae environment has various
advantages for monitoring programmes, it comes with several limitations and
challenges (Myers & Miller, 2005; Nagendra et al., 2013): (1) The limitation of
classification exists within this study. To reduce classification error, a fuzzy
classification such as spectral unmixing where the % cover of seagrass in pixels are
taken into account rather than density classes, may reduce classification errors and
improve accuracy; (2) While the collection of airborne hyperspectral imagery has been
established for Lindisfarne National Nature Reserve (LNNR) monitoring, imagery
acquisition and operation can be cost intensive, which often limits use for seagrass
monitoring, especially for organisations with limited budget; (3) While seagrass at its
peak biomass (August-September), may show less variability in cover, macroalgae
may be more variable due to their fast growth rate and loose attachment to sediment.
Given these dynamic interactions between seagrass and macroalgae cover, a single
point survey during peak seagrass biomass may not be sufficient and representative
to capture the extent of true seagrass cover. Therefore, it is recommended to acquire
multiple images each year to monitor macroalgae cover to be able to capture an
imagery that shows the lowest macroalgae cover, so that the full seagrass cover can
be assessed. However, this in turn, would increase costs; (4) Airborne Hyperspectral

images are suitable for limited coverage at local scale but may not be appropriate for
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regional assessment. Although it would be suitable for monitoring known seagrass
habitat locations and is currently gathered in specific locations across the UK, unknown
seagrass habitats or newly established habitat may be neglected; (5) Increasing
spectral resolution often comes at the expense of spatial resolution, inherently due to
the high data volume and data acquisition time when using airborne hyperspectral
imagery. This trade-off may limit the ability to acquire fine spatial details such as being
able to achieve more accurate cover between seagrass and macroalgae. Without
compromising the number of spectral bands, a higher spatial resolution imagery could
be achieved by flying at lower altitude, but often this comes with other trade-offs: Flying
at lower altitudes would for example, reduce the flight swath requiring more flight lines
and passes and extended data acquisition time consequently associated with
increasing operational costs. Given that this study showed that a 5-8 band
multispectral sensor would achieve similar map accuracy results, an alternative
recommendation would be to increase the spatial resolution at the expense of spectral
resolution, which may provide a more cost-effective option; (6) Hyperspectral sensors
require frequent calibration to ensure consistency to maintain spectral integrity and
reliability. Changes in performance of the sensor may have an impact in comparing
multitemporal imageries, hence making data comparison unreliable for monitoring

purposes.

Despite these challenges, airborne hyperspectral imagery can be an increasingly
valuable tool for conservation and management efforts for mapping and monitoring to
better understand seagrass-macroalgae dynamics. Furthermore, assessing and
evaluating the reliability and possibilities of using hyperspectral imagery in complex
intertidal seagrass environments may become more relevant for future applications as
the advancement and launch of more satellite based hyperspectral remote sensing
may enable increasing accessibility and affordability in the future, such as the German
Spaceborne Imaging Spectrometer Mission EnMAP (Environmental Mapping and
Analysis Program) (EnMAP, 2023; Minghelli et al., 2021; Pandey et al., 2020).

4.4.4. Conclusion

This chapter demonstrated the potential of using airborne hyperspectral imagery to
successfully map a large-scale complex intertidal seagrass-macroalgae environment.

Results showed that using Random Forest classifier, a very high accuracy 6-class map

76



could be produced with the ability to discriminate between different seagrass densities
and macroalgae vegetation classes using 23-spectral bands. When down sampling
these spectral bands to 5- 8 bands, results indicated similar outputs making these
findings highly valuable information for the potential of more cost-effective and
operationally viable seagrass mapping and monitoring approaches when using large-
scale remote sensing applications. While major limitations using airborne imagery
include limited area coverage and associated high costs, the produced maps can be
used to better understand seagrass-macroalgae distributions and dynamics and may
aid coastal practitioners in management decision making to promote effective
protection and conservation of seagrass habitats. Finally, the procedure and methods
applied in this study may provide a foundation for future work using hyperspectral
imagery in intertidal seagrass habitats to improve its operational use for management
practitioners.
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Chapter 5: Using PlanetScope imagery to map and assess
spatiotemporal intertidal seagrass-macroalgae dynamics

5.1. Introduction

Managing seagrass habitats requires accurate and regular monitoring to track changes
and better understand spatial and temporal distribution patterns and dynamics and
associated threats such as those posed by competing macroalgae species due to
eutrophication (Neckles et al., 2012; Li et al., 2019). As demonstrated in Chapter 3,
ultra-high multispectral UAV imagery can provide detailed information on seagrass
habitats at species level. Such information can be highly relevant to the assessment
of the spatial distribution and species dynamics at small scales. However, while UAVs
facilitate regular monitoring due to their user-friendly portability and integral software
and may be highly practical for managing a seagrass-macroalgae environment to
some degree, they cannot practicably cover very large areas, often restricted to up to
250 km? coverage area and still require regular visits to the field site. This knowledge
of spatiotemporal dynamics of seagrass habitats at larger site-scales is required for
effective seagrass management and conservation. As discussed in Chapter 4, airborne
hyperspectral imagery in turn can fill this gap, covering larger areas in comparison to
UAV flights, with local site coverage of up to 2,300 ha (LNNR), but may not be cost-

effective for monitoring programmes.

Satellite imagery has been at the forefront of optical remote sensing technology for
several decades, not least for the cost-effective development of continuous, large-
scale habitat maps for monitoring seagrass ecosystems (Veettil et al., 2020).
Depending on the detail required for mapping seagrass environments, lower spatial
resolution satellite imagery may be suitable and can be acquired free of charge at low-
medium spatial resolution (e.g., Sentinel (20m), Landsat (30m)), whereas higher
spatial resolution imagery is available commercially (e.g., PlanetScope, WorldView 2/3
(1.8 - 3.7m)) (ESA, 2024; Apollo Mapping, 2024). Whilst commercially available
imagery may generate more accurate maps of seagrass environments, previous
studies tend to present only single image analyses; time series are cost-prohibitive, so
outputs cannot credibly be used for monitoring purposes (e.g., Wabnitz et al., 2008;
Pu & Bell, 2017; Wilson et al., 2022). Freely available satellite imagery is clearly more
cost-effective and may be assembled into time series, hence has received more

attention from the scientific community for seagrass monitoring applications (Hossain
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et al., 2015). However, given the lower spatial resolutions involved, these studies are
often confined to assessing seagrass cover at relatively coarse levels, to successfully
map seasonal (Zoffoli et al., 2020; Fauzan et al., 2021), annual and decadal variation
in seagrass cover and extent (Gullstrém et al., 2006; Zoffoli et al., 2021). For example,
Fernandes et al. (2022), used Landsat imagery data to demonstrate large-scale
regional change in seagrass cover over three decades, and found that the seagrass
cover expanded over the mapped area in Adelaide, South Australia. This study utilised
Support Vector Machine (SVM) classifier which yielded an Overall Accuracy (OA)
between 83% and 95% of classified maps. In contrast, Ha et al. (2021), demonstrated
decadal decline in seagrass cover by 50% from 1990-2019 in the Tauranga harbour,
New Zealand, by comparing machine learning models including Random Forest,
Support Vector Machine and CatBoost to evaluate their performance for seagrass
habitat change detection, with all classifiers yielding an OA accuracy > 93%. Although
similar time series analyses for seagrass habitat monitoring have also been tested
using Sentinel-2 imagery (Zoffoli et al., 2020), its timespan is shorter, so decadal
change analyses are not yet possible. However, higher spatial resolutions (10m for
visible and near infrared bands) are shown to be beneficial for more detailed habitat

mapping at taxonomic level (Roelfsema et al., 2014).

Lower spatial resolution imagery can prove challenging when mapping and monitoring
large complex seagrass environments (Roelfsema, et al., 2013), due to for example,
lack of detail in benthic features at taxonomic level, and the differentiation especially
between those with similar spectral reflectance (i.e., seagrass and macroalgae), and
limitations in capturing small-scale changes, which may be relevant for tracking habitat
conditions in dynamic rapidly ecosystem (Kaufman & Bell, 2022). Despite the
successful applications of lower-medium spatial resolution imagery, these have been
mostly applied in homogenous seagrass environments for coarse habitat mapping e.g.,
(Topouzelis et al., 2018; Leblanc et al., 2021). Where studies have utilised Sentinel-2
imagery to map seagrass-macroalgae environments, these have most often been
applied in seagrass habitats that were distinctly segregated from macroalgae cover
(Hogrefe et al., 2014; Traganos et al., 2018).

To accurately map and monitor complex large-scale seagrass-macroalgae
environments, cost-effective higher spatial resolution imagery is required (Légaré et
al.,, 2022). While Unoccupied Aerial Vehicle (UAVs) and airborne hyperspectral
imagery provide significant promise for various applications, the practicality of their
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implementation is constrained by the scale of operations and associated costs, as
demonstrated in Chapter 3 and 4. Until recently, satellites did not provide data with
sufficiently high spatial resolution. The emergence of new generations of satellites with
higher spatial, spectral, and temporal resolutions is changing this landscape, offering
advantages such as lower costs, constellation -based operation and their potential for
cost-effective monitoring programmes (Kopacz et al., 2020). Planet Lab’s PlanetScope
multispectral CubeSats (also smallsats) constellation, is at the forefront of this new
wave of technology for earth observations. PlanetScope offers multispectral (up to 8
spectral bands) imagery data at a spatial resolution of 3m and covers the entire globe
daily (Planet, 2022). Although primarily commercial, the company’s commitment to
open data access makes this available for research and non-commercial purposes at
lower costs and often available at discounted options for non-profit organisations
(Planet Labs, 2024). This makes PlanetScope a viable source for potential seagrass
monitoring programmes (Schill et al., 2021), if robust analytical methods can be
developed. High temporal resolution is likely to benefit temperate intertidal seagrass
mapping, due to the increased probability of acquiring cloud-free images and the
likelihood of capturing exposed seagrass at low tide, avoiding negative effects of water
and turbidity. Furthermore, higher spatial resolution than many other lower-cost
satellites may allow accurate large-scale mapping and monitoring of complex
seagrass-macroalgae environments (Wicaksono & Lazuardi, 2018). Although the
utilisation of PlanetScope data for seagrass mapping is still in its early stages, some
studies have demonstrated its potential for complex seagrass mapping in tropical and
Mediterranean submerged seagrass-macroalgae environments (Traganos & Reinartz,
2018; Wicaksono & Lazuardi, 2018) and intertidal areas (Légaré et al., 2022; Ha et al.,
2023). With ongoing improvements of PlanetScope imagery such as increasing
number of spectral bands and radiometric resolution, it may make mapping and
monitoring of complex intertidal seagrass-macroalgae habitats possible in the near
future. However, this potential is yet to be explored. Assessing the feasibility of reliable
change detection analyses for PlanetScope is an important next step towards proving
its potential for management applications. This Chapter evaluates a time series of
PlanetScope Imagery, developing change detection methods for mapping and

monitoring of complex-intertidal seagrass environments, for the first time.

The overall aim of this Chapter was to develop habitat change detection methods for

PlanetScope SuperDove imagery and evaluate its potential for seagrass monitoring.
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The objectives where: 1) to create an accurate time series of habitat maps at 6-class
level using a Random Forest classifier (the most accurate classification combination
demonstrated in Chapters 4); 2) to assess the potential for ecologically relevant
change detection in the resulting classified habitat maps; 3) to discuss the potential of

PlanetScope for management and monitoring programmes.

5.2. Methods and Materials
5.2.1. Ground-truth data

The study area covered the intertidal flats at Lindisfarne in their entirety (approx. 2,300
ha). Similarly, to Chapter 4, training and validation data was collected for the Causeway
area only, as these were primarily generated using the three UAV classified habitat
maps produced in Chapter 3; 347 random points were created across the three maps.
Six habitat classes as defined in Chapter 4 were considered, including: sparse SG,
mod-dense SG, macroalgae, SG/MA mixed, bare ground/shells (bare ground here
after); and water. First, the UAV maps were aligned to the PlanetScope imagery. To
allow the creation of regions of interest (ROIs/pixels) for generating training data,
3mx3m quadrats created from PlanetScope pixel areas, were generated in ENVI v.5.7.
(Figure 5.1a). These quadrats were then used to estimate the percentage cover of
seagrass, macroalgae and bare ground derived from the classified UAV maps and
following the defined benthic classes in Chapter 4 including, sparse SG, mod-dense
SG, macroalgae, SG/MA mixed, bare ground) were assigned to each PlanetScope
pixel (Figure 5.1b). To account for potential water in the images, the class ‘water’ was
created by assigning pixels to this category where water was available in the imagery
(e.g., water streams). To increase the number of training data points and due to the
limited representativeness of the entire Causeway area, additional samples from
guadrat sampling, used in Chapter 4, were added to the training data. Here, the 1m x
1m quadrat geo locations were aligned onto the PlanetScope pixels, and benthic
categories were assigned to respective PlanetScope pixel. Overall, 791 training pixels
were created, whereby the number of training pixels varied across classes resulting in

unbalanced sampling data (Table 5.1).
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Figure 5.1. a) Random 3m pixel quadrat samples used to create b) UAV derived training data.

Table 5.1. Number of training pixels for created habitat classes.

Habitat classes  #of training pixels

sparse SG 109
mod-dense SG 205
macroalgae 120
SG/MA mixed 172
bare ground 80
water 105
Total 791
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5.2.2. Image data acquisition

PlanetScope is a satellite constellation operated by Planet Labs Inc., a private Earth
imaging company (Planet Labs, 2024). First launched in April 2016, Planet Labs have
continued to deploy additional satellites and improve their constellations. Currently,
Planet offers imagery from three PlanetScope satellite constellations (DoveClassic,
Dove-R, and SuperDove), with differing sensor characteristics. All three sensors are
available at between 3m and 4.2m, spatial resolution, and they differ in spectral
resolution and length of operation (Planet, 2022) (Table 5.2). This study used their
SuperDove imagery, due its higher spectral resolution and the likelihood that

operations will continue, making it potentially viable for future monitoring programmes.

Table 5.2. Available PlanetScope satellite imagery data and the respective spectral
resolution for each sensor.

DoveClassic Dove R SuperDove
Data July 2014 — April 2022  March 2019 — April 2022  March 2020 — present
availability
Spectral Blue: 455-515nm Blue: 464-517nm Coastal Blue: 431-452nm
resolution Green: 500-590nm Green: 547-585nm Blue: 465-515nm
Red: 590-670nm Red: 650-682nm Green I 513-549nm
NIR: 780-860nm NIR: 846-888nm Green: 547-583nm
Yellow: 600-620nm
Red: 650-680nm
RedEdge: 697-713nm
NIR: 845-885nm

The seasonal study used four SuperDove images acquired in the year 2021 in the
months of April, May, August, and October (Figure 5.2). The study of interannual
variability acquired SuperDove images for the years 2020, 2021, 2022 and 2023,
between July and September, as close in time as possible to quadrat and UAV surveys
and seagrass peak biomass (August 2021) (Figure 5.3). All scenes were selected
based on low cloud coverage and low at which the intertidal area was exposed (Table
5.3).

83



Table 5.3. Information acquisition of imagery used in this study including tidal stage and the

approximate hours before or after low tide.

Date Time Tidal stages Approx. hours
before/after
low tide

Annual 17t Sep 2020 11:21:01  Low (09:13) 2.5 hrs
High (15:37)
14t Aug 2021 10:25:42  Low (13:24) 3 hrs
High (19:55)
18t July 2022 10:17:14  Low (13:02) 2.5hrs
High (19:36)
4th Sep 2022 11:00:58 Low (12:24) 1.5 hr
High (18:50)
Seasonal
19 April 2021 10:27:35 Low (13:50) 3.5hrs
High (20:38)
31st May 2021 10:26:26  Low (13:12) 2.5hrs
High (19:55)
14t August 2021 10:25:42  Low (13:24) 3 hrs
High (19:50)
215t Oct 2021 10:39:28  Low (09:45) 1hr
(High 16:10)
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Figure 5.2. PlanetScope’s SuperDove imagery scenes utilised for seasonal time series
analysis in 2021, including the months April, May, August, and October. Imageries are
presented using RGB bands.
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Figure 5.3. PlanetScope’s SuperDove imagery scenes utilised for annual time series
analyses. Imagery dates for the years including 2020, 2021, 2022 and 2023 were chosen
based on availability as close as possible to ground truth surveys and seagrass peak
biomass in August. Imageries are presented using RGB bands.

5.2.3. PlanetScope pre-processing

The SuperDove (PSB.SD) 3B Analytic Ortho Scene Product has an accurate
geolocation with a positional accuracy of less than 10m, cartographic projection (UTM)
with data processed to surface reflectance and is readily available for download from
Planet Explorer platform (Planet Labs, 2023). While the ground sampling distance of
the PSB.SD data is approximately 3.7m - 4.2m, the data is resampled to 3m x 3m and

available in a 16-bit GeoTIFF format.

Prior to distributing the data as surface reflectance products, Planet Labs conduct
multiple pre-processing stages including, radiometric calibration, geometric calibration

and atmospheric correction (Planet, 2022).

86



To ensure comparability between imagery scenes and assess whether haze or other
atmospheric interference was still present in images, the consistency of spectral
reflectance was assessed prior to performing classification analysis. Four areas at
which the least change in spectral reflectance was expected throughout the year and
seasons were chosen for this analysis. These areas included, a white roof top, a main
road, a sandy white beach near the coast to account for higher atmospheric haze and

an area covered in grass near the coast.

5.2.4. Classifier and accuracy assessment

Here, multitemporal change detection involves the identification of differences in
characteristics of remotely sensed imagery data over time. The post-classification
change detection enables the comparison of the classified habitat maps to identify
changes in benthic cover, specifically seagrass, macroalgae and SG/MA mixed in this
study. For reasons explained in Chapter 4, the Random Forest (RF) classifier was also
applied in this Chapter. Furthermore, the RF classifier has been successfully used for
seagrass change detection studies where Overall Accuracies exceeded 80% (Ha et
al., 2020; Benmokhtar et al., 2023).

To avoid the separate training of each image, which would require training data for
each time point, the classification model was trained on one image (14" Aug 2021).
Afterwards, the trained model was applied across all other images to create classified
habitat maps. The PlanetScope imagery taken by SuperDove on 14" August 2021 was
trained using RF and ENVI Modeler (ENV v. 5.7) until a stable OOB-score was reached
in the process, using the out-of-bag approach, the accuracy assessment was
performed, and a confusion matrix was created to assess benthic class
misclassification (see Chapter 4 for detailed explanation).

Classified habitat maps are utilised to calculate and report seasonal and annual areal
change detection through the time series. Differences for the entire areas, including
LNNR, and Causeway, Fenham Flats and Budle Bay separately, for each vegetation
class are calculated to assess cover change. The number of pixels classified for each

class were calculated in percent cover and km?.
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5.3. Results
5.3.1. Spectral reflectance

Analysis of spectral signatures indicated the largest separability between water and all
other benthic classes (J-M: 2.0). Similarly, high separability across the spectrum were
found between bare ground and all the vegetation classes (mod-dense SG, sparse
SG, macroalgae, and SG/MA mixed) (J-M: 1.7-1.9) (Table 5.4). All vegetation classes
indicated a peak spectral reflectance between 447nm and 620nm and a steep increase
from 650nm to 885nm (Figure 5.4). Among the vegetation classes, the largest
separability was found between macroalgae and the SG classes (mod-dense SG and
sparse SG, respectively; J-M: 1.4) (Table 5.4). While this separation was found across
the spectrum between sparse SG and macroalgae, the major separation between
mod-dense SG started at 447nm and was largest at 885nm in the near infrared band
(Figure 5.4). Sparse SG also showed a moderate separation across the spectrum with
mod-dense SG and SG/MA mixed. The least separability was found between SG/MA
mixed and macroalgae (J-M: 0.5) (Table 5.4), with no indication of separation of
spectral curves across the spectrum. Low separation was also found between SG/MA
mixed and mod-dense SG (J-M: 1.1). Here, the greatest separability was from 457nm
to 885nm. (Figure 5.4).

Table 5.4. Results of Jeffries — Matusita (J-M) index, indicating spectral pair separability of
benthic habitat classes.

Benthic pair classes J-M value
SG/MA mixed - macroalgae 0.5
SG/MA mixed - mod-dense SG 1.1
sparse SG - SG/MA mixed 1.2
sparse SG - mod-dense SG 1.3
sparse SG - macroalgae 1.4
macroalgae - mod-dense SG 1.4
bareground - SG/MA mixed 1.7
bare ground - macroalgae 1.8
bare ground - sparse SG 1.8
bare ground - mod-dense SG 1.9
water - SG/MA mixed 20
water - mod-dense SG 2.0
water - sparse SG 2.0
water - macroalgae 2.0
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Figure 5.4. Spectral reflectance curves of benthic class training data. The shaded area
represents + standard deviation.

When assessing spectral reflectance of the roof, road, grass, and sand area to check
seasonal and annual majority of reflectance curves indicated reasonable consistency,
except for the annual roof imageries comparisons (Figure 5.5). Here the year 2023
indicated significant differences in spectral reflectance in comparison to all other years.
This may possibly be due to for example, accumulation of dirt or filamentous
vegetation/algae, or replacement or repainting of roof. Some variability between years
and months in spectral reflectance were also found for the sand images. This variability

may be for example, due to whether the sand area was dry or wet.
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Figure 5.5. Areas chosen to assess the consistency in spectral reflectance across time
series imagery. a) a white roof top; b) main road; ¢) sandy beach area; and d) vegetation
area.

5.3.2. Accuracy assessment and habitat classification

Results of the trained random forest classifier indicated an Overall Accuracy (OA) of
94% with an OOB score of 72% when using parameters of 200 ntree; 9 max_depth of
trees and 3 mtry features (Table 5.5). The highest benthic class accuracy was found
for the classes water and bare ground (Precision: 100%), followed by the benthic class
SG/MA mixed (Precision: 97.3%; Recall: 84%), which showed a very low percentage

of pixel misclassification with mod-dense SG and macroalgae (1.3 %) (Figure 5.6). The
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habitat classes macroalgae and mod-dense SG indicated the same class accuracy
(Precision: 91.3%; Recall: 97% and 98% respectively). Both macroalgae and mod-
dense SG were mostly misclassified as sparse SG (3.1% and 5.2%, respectively) and
SG/MA mixed (3.9% and 2.6%, respectively). Among all vegetation classes, sparse
SG showed the lowest class accuracy (Precision: 85.3%; Recall: 85%), which was
mostly incorrectly classified as SG/MA mixed (Figure 5.6; Table 5.5). Using this trained
model, seasonal and interannual classified habitat maps could be successfully created
(Figure 5.7; Figure 5.9).

sparse SG || 85.3 0.9 0 13.8 0 0

mod-dense SG 582, - 0.9 26 0 0
macroalgae 3.1 1.6 - 3.9 0 0
SG/MA mixed 0 1.3 1.3 - 0 0
bare ground 0 0 0 0 - 0

True labels
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Figure 5.6. Confusion matrix output of the Random Forest (RF) classification method showing
the correctly classified pixels (green diagonal values) and misclassification between true labels
and predicted labels. Values represent the percent (%) numbers of pixels.

Table 5.5. Accuracy results of the Random Forest classification for the train imagery 14th
August 2021.

Habitat class Precision Recall F1l-score
sparse SG 0.85 0.85 0.85
mod-dense SG 0.91 0.98 0.94
macroalgae 0.91 0.97 0.93
SG/MA mixed 0.97 0.84 0.90
bare ground 1.0 1.0 1.0
water 1.0 1.0 1.0

Overall Accuracy = 0.94
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5.3.3. Habitat change detection

When assessing the classified seasonal and interannual habitat maps, results
indicated large variation in the distribution and cover of all vegetation classes across
the time series and between the different areas across the LNNR (Causeway, Fenham
Flats and Budle Bay, respectively) (Figure 5.7; Figure 5.9).

The seasonal change detection assessment revealed an initially low cover 0.01 km? of
seagrass in April, a slight increase change in cover by May (0.05%) and the largest
increase cover change between May and August (15%), with seagrass cover reaching
2.9 km? across the site. This cover then declined by 11% to 0.9 km? by October.
Results appear promising, as they align with expected seasonal trends. In August, the
largest cover of Seagrass was found for Fenham Flats (2.2 km?) with an increase cover
change of 17%, followed by the Causeway area (0.4 km; 23%) and Budle Bay (1.3%)
(Figure 5.8a; Figure 5.11). The habitat classes SG/MA mixed and macroalgae indicate
opposing patterns in the months before and after August. April shows dominant SG/MA
mixed cover (5.2 km?) across all three intertidal areas. While macroalgae was found
to be lower in cover, it was notably distributed around the inner edges of the intertidal
area in April (Figure 5.8b; Figure 5.11). However, cover declined substantially in May
by 14% for SG/MA mixed and 4% for macroalgae, in all three areas, but increased by
up to 5% in August during peak seagrass biomass season, with a cover of 3.2km? and
1.1 km?, respectively (Figure 5.8b, c; Figure 5.11). Notably, here, the Causeway
showed the largest increase in SG/MA mixed by 5% and with a cover of 0.9 km?,
whereas Fenham Flats contained the largest increase in macroalgae cover (by 5%) of
0.6 km? area covered (Figure 5.8b; Figure 5.11). In October, the LNNR was dominated
by macroalgae, and SG/MA mixed across all areas (2.6 km? and 6.6 km?, respectively),
whereas seagrass declined to 1 km? in total cover. Here, Fenham Flats showed the
highest increase in SG/MA mixed cover (19%) with a total cover of 4.1 km?, the
Causeway area showed similar increase cover of macroalgae and SG/MA mixed (8%
and 6%, respectively) and Budle Bay had the lowest cover for both classes (0.2%-
1.2%). In comparison to Causeway area and Fenham Flats, Budle Bay indicated very
low change cover across all benthic classes (< 1.3%). Although benthic classes within
Budle Bay remained stable in cover across the season, notably the vegetation class
SG/MA mixed was found to be more than double in cover, in comparison to all other

benthic classes across all investigated months (Figure 5.8b, c; Figure 5.11). Overall,
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the entire LNNR area experienced an increasing trend in all observed vegetation

classes across the season in the year 2021 (Table 5.6).

Budle Bay : aal Budle Bay

Habitat classes

B vater
D bare ground

October EEEZEEC

[ SG/MA mixed

[ ] macroalgae
B nod-dense SG

Budle Bay

Budle Bay

Figure 5.7. Seasonal time-series classified habitat maps for the intertidal area Lindisfarne
National Nature Reserve (LNNR), using Random Forest classification method.
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Figure 5.8. Classified maps showing seasonal cover for vegetation classes separately,
including seagrass (sparse SG and mod-dense SG), macroalgae and SG/MA mixed
distributions in the intertidal LNNR area.

The 2020 image in the interannual time series was analysed first revealing the largest
cover as SG/MA mixed (6.9 km?) followed by seagrass (mod-dense SG: 1.8 km?;
sparse SG: 0.01km2) and macroalgae (1km?) (Figure 5.10; Table 5.11). The following
year, 2021, the LNNR saw a significant drop in SG/MA mixed cover by 19% with a
decline of areal coverage by (3.2 km?) and an increase of seagrass by 7% (2.9 km?).
Here, the largest decline in SG/MA mixed was found for Fenham Flats (by 19%),
followed by Causeway (8%) and Budle Bay (0.03%) (Figure 5.10; Figure 5.11).

Fenham Flats also appeared to support the largest increase in seagrass cover (2.2
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km?) while the Causeway and Budle Bay experienced slight declines in seagrass cover
(by 2% and 1%, respectively). Opposing results were generated for the year 2022 in
the LNNR area with a notable drop in seagrass cover by 8% with an aerial coverage
of 1.4 km?. The largest decline was seen at Fenham Flats (7.3%), with a smaller
decrease observed in the Causeway and Budle Bay areas (3%) (Figure 5.10a; Figure
5.11). The year 2023 again marked an increase in seagrass cover by 21% and a
decline in SG/MA mixed by 8% in comparison to the year 2022, with Fenham Flats and
Causeway area indicating the largest change (20% and 8% increases in cover,
respectively). Except for 2021, which showed very low macroalgae cover across all
areas, change in macroalgae remained relatively consistent and low, ranging between
1-2% change in cover (Figure 5.10a, c; Figure 5.11) . While sparse SG and macroalgae
cover maintained low and consistent coverage across the time series and the areas,
notably, SG/MA mixed and mod-dense SG showed higher dynamics with opposite
trends in coverage for most investigated years. However, this pattern was not observed
for Budle Bay, which showed consistent cover across the time series for all benthic
classes (Table 5.10; Table 5.6). Here, also, higher cover in SG/MA mixed was found
across all years in comparison to all other vegetation classes. Overall, the LNNR
experienced a significant increase in seagrass, a slight increase in macroalgae and a

significant decline in SG/MA mixed over the observed time series (Table 5.6).
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Figure 5.9. Interannual time-series classified habitat maps of the intertidal area Lindisfarne
National Nature Reserve (LNNR), using Random Forest classification method.
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Figure 5.10. Classified maps showing interannual cover for vegetation classes separately in
seagrass (sparse SG and mod-dense SG), macroalgae and SG/MA mixed distributions in the
intertidal LNNR area.
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Figure 5.11. Seasonal and interannual percent change in habitat class cover for LNNR, as
well as for the different investigated areas (Causeway, Fenham Flats, and Budle Bay,
respectively) separately.
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Table 5.6. Seasonal and interannual total habitat class cover (km?) change for the investigated
LNNR and different areas separately including Causeway, Fenham Flats and Budle Bay.

Seasonal Annual
April May August October 2020 2021 2022 2023
LNNR
water 1.4 0.0001 1.4 0.02 0.04 1.4 0.7 0.1
bare ground 115 16.4 10.3 8.9 9.5 10.3 9.2 7.0
sparse SG 0.004 0.01 0.3 0.02 0.01 0.3 0.1 0.3
Sg/MA mixed 5.2 2.6 3.2 6.6 6.9 3.2 6.3 4.8
macroalgae 0.9 0.1 11 2.6 1.0 1.1 1.3 1.6
mod-dense SG 0.01 0.1 2.9 0.9 1.8 2.9 14 5.3
Causeway
water 0.2 0.0 0.2 0.01 0.003 0.2 0.1 0.03
bare ground 2.8 3.8 2.0 0.7 1.0 2.0 1.3 0.4
sparse SG 0.003 0.001 0.2 0.01 0.004 0.2 0.1 0.1
Sg/MA mixed 0.9 0.2 0.9 1.7 1.8 0.9 1.9 1.7
macroalgae 0.1 0.02 0.4 14 0.4 0.4 0.5 0.7
mod-dense SG 0.0001 0.0003 0.4 0.2 0.7 0.4 0.1 1.1
Fenham
Flats
water 12 0.0001 1.2 0.001 0.03 1.2 0.5 0.03
bare ground 0.9 4.9 0.7 1.0 11 0.7 0.6 0.4
sparse SG 0.0009 0.01 0.1 0.01 0.01 0.1 0.0 0.1
Sg/MA mixed 3.8 1.8 1.8 4.1 4.2 1.8 35 1.7
macroalgae 0.8 0.01 0.6 11 0.5 0.6 0.7 0.6
mod-dense SG 0.001 0.01 2.2 0.5 0.8 2.2 1.3 3.8
Budle Bay
water 0.001 0.0 0.004 0.01 0.000 0.004 0.001 0.004
bare ground 1.6 1.4 1.3 1.2 1.3 1.3 1.3 1.3
sparse SG 0.0001  0.004 0.0 0.002 0.000 0.01 0.003 0.01
Sg/MA mixed 0.5 0.6 0.5 0.7 3.5 0.5 0.7 0.5
macroalgae 0.02 0.1 0.1 0.1 0.04 0.1 0.1 0.1
mod-dense SG 0.01 0.1 0.2 0.2 0.3 0.2 0.1 0.2

5.4. Discussion
5.4.1. Habitat classification

The main objective of this Chapter was to evaluate the potential of PlanetScope
imagery for mapping seasonal and interannual change of a complex intertidal-
seagrass environment. This study showed that 6-class habitat maps could be created
successfully at 94% Overall Accuracy (OA) using Random Forest classifier to map and
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detect seasonal and interannual change across the intertidal mudflat areas. While
these results compare to some previous studies that have utilised high resolution
satellite imagery and Random Forest (RF) classifiers, some differences are apparent.
For instance, Benmokhtar et al. (2021) used a SPOT 7 imagery that consist of a 1.5m
spatial resolution and 4-band spectral resolution to map a Zostera noltei and algae
environment yielding a similar Overall Accuracy to this study of 95%. Another study by
Forsey et al. (2020) conducted in a subtidal homogenous seagrass environment
indicated similar high accuracy results of 97.6% using RF and very high spatial imagery
(0.5m; 9-spectral bands). In contrast, Traganos & Reinartz (2018) that utilised Planet’s
RapidEye (5m; 5-bands) and mapped a submerged multispecies seagrass
environment using RF and achieved an OA between 73.5% and 82% across the time

series.

Accuracies of other studies that used lower spatial resolution imagery such as Sentinel
were varied, most achieving lower OA accuracy than this study, but unexpectedly,
some achieving similar results. For example, Ha et al. (2020) used a Sentinel-2
imagery to map a temperate intertidal sparse and dense seagrass habitat in New
Zealand and achieved an OA of 87%, while Fauzan et al. (2021), that mapped tropical
seagrass cover in Indonesia reported an OA of 93%. However, given the varying
complexity, often less complex than this study, comparisons remain challenging. As
demonstrated in Chapter 4, accuracy levels generally increase with less habitat
complexity or number of habitat classes. A study performed by Benmokhtar et al.
(2023), that mapped a complex Zoster noltei environment, using Sentinel-2 and RF
and Object Based Image Analysis (OBIA) in the coastal region of Morocco, a segarss
environment similar to this study including seagrass, algae, and mixed algae and
seagrass classes, reported OA ranging between 89% and 94%, indicating the potential
of lower spatial resolution imagery to accurately map complex intertidal seagrass

areas.

While some misclassification was observed among vegetation classes, these were
expected due to similar spectral signature especially between vegetation classes as
demonstrated in Chapter 4 with the higher 7-class map. However, considering only
vegetation classes the lowest misclassification and largest separability that was found
between macroalgae, and mod-dense seagrass may indicate the great potential for
mapping and identifying distinct areas for macroalgae cover, highly relevant for

management implications as discussed in Chapter 4.
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Class accuracy errors and misclassifications may also arise from the ground-truth
approach that was used. For example, the UAV classified habitat maps that were used
to generate training data already contain inaccuracies (see Chapter 3), which may be
amplified in subsequent uses. Quadrat samples used as ground-data may also
contribute to misclassification errors, especially due to the mismatch in spatial
resolution between the PlanetScope imagery (3m) and quadrat sizes (1m), as
information within the pixel may not be fully represented in the quadrat. To address
these issues, a ground-truth design that captures all the information within a
PlanetScope pixel i.e., 3m quadrats, which then can also be utilised to validate against

the UAV classified habitat map could have potentially improved accuracies.

Training a transferable model that can be applied to multiple data sets over time should
have significant advantages for management and monitoring. It should prove cost-
effective, as unneeded ground-truth data for each time-step is not required, saving field
costs, time and computational resources. However, although we present promising
results here, the real feasibility of this has not yet been tested. Dynamic and complex
environments such as the intertidal area studied can vary in appearance (hence
spectral signatures) in different months and seasons (Bargain et al., 2013) posing
challenges for transferability. For example, although all UAV images for ground-
truthing were acquired at low tide, residual water may vary according to the stage of
drainage, which could lead to varying spectral characteristics between images of dryer

and wetter areas over different dates.

5.4.2. Change detection, ecology, and implications for management

In ideal environmental conditions, and with absence of external threats such as
macroalgae overgrowth, Zostera spp. typically starts propagating in April/May with a
gradual growth rate during warmer months and maximum growth in August (Azcarate-
Garcia et al., 2022). However, such common and distinct patterns were not observed
in the early months of the season in this study. Instead, the seasonal patterns showed
a high cover of SG/MA mixed class, suggesting the proliferation of macroalgae across
the LNNR region, and in turn making it challenging to detect seagrass and to draw
conclusions about its growth and distribution patterns, as observed especially for the

month of April.
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Seagrass and macroalgae growth patterns can be influenced by numerous
environmental factors such as light availability, temperature (Deng et al., 2012;
Hammer et al., 2018; Moore & Wetzel, 2000; Wong et al., 2020), physical disturbance
(e.g., storms), or nutrient availability (Lee et al., 2003; Bourque et al., 2015). Next to
high nutrient levels, the proliferation of algae can especially be stimulated by increased
temperatures, which are often related to algal blooms (Green-Gavrielidis & Thornber,
2022). For example, in the UK, the end of March 2021 was marked by unusual record
temperatures (Figure 5.12), which may have led to algal proliferation in the area, thus
may explain the observed high cover of SG/MA mixed habitat class in April 2021.
These extreme high temperatures were then followed by unusually low cold
temperatures across the UK during the same months of April (Figure 5.12). This surge
in cold temperatures in turn, may have led to subsequent low growth in seagrass and
potential damage or die-off of SG/MA mixed in the Causeway and Fenham Flats area
in May. However, the observed maintained cover in Budle Bay may be related to micro-
climatic effects which allowed the maintenance of higher temperatures, due to its

location within a bay and less exposure.

Maximum Temperature - Spring 2021 - UK

30
25 -
o
vzo.
o
2
o
& 15
Q
£
(]
= 10
£
=]
£
% 51
©
s
0.
-5 ; . T T T T
© © © © © Q Q Q Q
E =2 = = = T £ ¥ 4 ¥ = = B =z
) 3 N P\ 4 3 o 2 S i S ~ % o
— 1981-2010 —— lowest 5% 10% 90% 95% —— highest —— 2021

Figure 5.12. Time series of average UK daily maximum temperatures for spring 2021. (Source:
Met Office, 2021: Contains public sector information licensed under the Open Government

Licence v3.0.)
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The extensive seagrass cover during peak biomass in August, may suggest that the
observed low cover early in the season may not have had an impact on seagrass
growth and biomass. Another explanation for this distributional pattern may be related
to misclassification error. It is plausible that seagrass may have been very low in cover.
Given the large cover of bare ground within the sparse SG benthic class, this class
may have been misclassified as bare ground. The seagrass die-off in October was
distinctly apparent in the field site with observed sharp decline in seagrass and
simultaneous increase in algae and SG/MA mixed. However, given the high cover of
SG/MA mixed which may mask seagrass cover, it is questionable how much seagrass
may possibly still be present in the area, as often healthy seagrass can be found below
opportunistic algal mats. Thus, while a positive interannual directional trend in
seagrass cover was observed, it is questionable whether the lower covers of seagrass
prior 2023 are actual true values, as healthy seagrass may have been covered by
macroalgae, represented through the benthic class SG/MA mixed. As such, the
variation in seagrass cover could be associated with the varying dates of image
acquisition. For example, it is possible that higher nutrient levels in specific years and
months such as 2020 and 2022, may have led to an algal proliferation. The large
increase in seagrass cover in 2023, especially for Causeway and Fenham Flats, may
indicate a positive trend in the expansion of seagrass. However, when visually
comparing between 2022 and 2023, it appears that the areas may have expanded

earlier, but were covered by algae in the previous year.

Large-scale mapping and monitoring of seasonal and interannual change to
understand the distribution patterns and dynamics between seagrass and macroalgae
cover over time is critical for seagrass inventory. For example, short term stress and
disturbance may influence seasonal growth patterns, productivity structure and stability
of seagrass populations (Soissons et al., 2018). In combination with causative drivers,
e.g., water quality and temperature data sets, time-series maps could be utilised to
track the underlying causes of changes to better understand occurring declines for

example, during peak biomass.

Despite the high variation in seasonal and interannual patterns, the maps can be
utilised to effectively assess dynamics in small to large-scale patterns of seagrass and
macroalgae cover. Here, information and visual assessment of patch sizes and
configurations of seagrass and macroalgae across different areas, seasons and years

can be extracted to support decision-making. Maps of this level of accuracy could
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assist in prioritising areas for conservation and management implications/interventions
and effective operationalisation. For example, where areas of consistent macroalgae
cover over time was observed, e.g., Budle Bay, necessary measures such as routine
removal of algae, particularly early in the season, may potentially improve seagrass
growth over the season. Moreover, the produced maps could support compliance
monitoring as an effective communication tool, to identify necessary measures to be

taken.

To better understand the underlying causes of seasonal and annual changes in
macroalgae and seagrass cover, the integration of produced maps with
comprehensive ancillary data may provide more insights into causative effects. Short-
and long-term changes in cover may for example be better explained utilising: (1)
Water quality data including nutrient levels which can affect seagrass and macroalgal
growth (Moore & Wetzel, 1999; Han et al., 2016); (2) Hydrodynamic data, such as tidal
flows and wave actions that may affect nutrient distribution and macroalgae dispersion
and limit seagrass growth (Sakamaki et al., 2006; La Nafie et al., 2012); (3) Water
temperature can influence algal growth and data of temperature variations therefore
help to understand seasonal and annual variability in growth patterns (Green-
Gavrielidis & Thornber, 2022); (4) Anthropogenic data such as agricultural practices,
locations of agricultural fields and areas of urban development may help identify
sources of pollution that can contribute to pollutant and nutrient loads through runoff;
(5) Finally, precipitation and storm events may increase nutrient flow and thus
macroalgal proliferation (Chang et al., 2023). Integrating these ancillary data in
generated habitat maps using geospatial analysis and modelling approaches may aid
in identifying the sources of drivers of macroalgal growth and seagrass decline. A
secondary benefit of integrating such ancillary data will be to improve decision-making
and management strategies through targeted interventions. For example, where
agricultural runoff is identified as a major driver of macroalgae growth management
action could focus on these sites. Finally, maps that show the sources, causes, and
drivers of algal growth and seagrass decline can improve communication with
stakeholders, policymakers, and the public, delivering more informed, strategic, and

successful management practice.
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5.4.3. Limitations, challenges, and recommendations

Despite the successful use of PlanetScope imagery for mapping and monitoring a
complex intertidal seagrass-macroalgae environment, limitations and challenges exist
and need to be considered if the technology and methods presented here are to be
used in a robust monitoring programme. However, PlanetScope is revolutionising the
realm of miniature satellites, bringing many advantages for monitoring over traditional
satellites. New methods are required to support this. The use of smaller satellites, such
as the PlanetScope CubeSats, can allow more frequent updates and improvements of
sensors over shorter periods and are more cost-effective for rapid development of the
technology and associated applications such as monitoring. However, frequent
updates with improved sensors results in changes in imagery data characteristics (e.g.,
improved radiometric resolution), which can make multi temporal comparisons
challenging, hampering the utilisation of early launched satellites. Data continuity and
consistency is critical for long-term monitoring programmes, as often historic data are
highly valuable to understand and elucidate trends in seagrass and macroalgae cover.
It is possible to resample, for example the spectral resolution of newer sensor imagery
(e.g., SuperDove; 8 spectral bands) to satellite imagery from earlier sensors (e.g.,
Dove Classic: 4 spectral bands) which would enable historic mapping and monitoring
from years earlier than 2020 when using PlanetScope data. However, this approach
requires careful consideration as other disparities in sensor specifications between
satellite constellations exist, such as different band widths and their placements and
ground sampling distance, which can influence data quality thus making mapping

results incomparable (Frazier & Hemingway, 2021).

Collectively, the constellation of many small satellites provides a high frequency of
revisits to specific locations. This higher temporal resolution may especially benefit
monitoring intertidal temperate seagrass environments, where areas prone to cloud
coverage and/or where seagrass habitats are not frequently exposed at low tide to
capture this time span. However, due to the narrow sensor swaths that PlanetScope
satellites offer, larger areas of interest such the LNNR often cannot be captured in one
single path. The stitching of imagery from multiple satellites or passes within the
constellation into one single scene may be required. This can result in varying viewing
angles, differing illumination across merged imagery scenes, and reduced numbers of
usable images, all of which can present problems for analysis, which also restricted

the selection and number of imagery acquisition in this study. This could make the
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utilisation of the platform challenging for monitoring programmes, due to unreliability

and potentially inconsistent data availability (Frazier & Hemingway, 2021).

Developing a classification model on one image then using it to predict on images
taken at different times can be very useful if no ground-truth data is available. However,
in a spectrally complex environment such as the intertidal, spectral reflectance of
benthic classes may vary between images in a time series dependent on tidal stage
and weather condition. To ensure that the classification model accounts for such
temporal changes and variations, it is recommended to have ground-truth data for each

time step to validate the model’s performance and map accuracy most accurately.

Although the methodology used in this study is user-friendly due to the application of
an existing classifier that enables rapid and accurate habitat mapping, often geospatial
analysts may be required to perform the analysis at an increasing expense, and while
image acquisition can be cost-effective, specialist knowledge and associated hardware
and software can also be expensive. While PlanetScope imagery can be accessible
free of charge for research work, the acquisition of data for long-term monitoring may
require more sophisticated agreements and additional payments (Planet Labs, 2024).
However, successful examples exist. PlanetScope was used to good effect for
ecosystem monitoring by the Allen Coral Atlas (allencoralatlas.org/), that aims at
mapping and monitoring coral reefs across the globe and includes proximate seagrass

habitats, restricted to tropical regions.

5.4.4. Conclusion

This chapter presented the first assessment of the potential of PlanetScope imagery
for multitemporal seasonal and interannual change detection in a complex intertidal
seagrass-macroalgae environment. Maps produced enabled the examination of
spatiotemporal distribution and dynamics between seagrass and macroalgae cover.
Insights gained from the analysis of change detection maps provides critical
information between seagrass-and macroalgae dynamics that could be used for
effective management decision-making to combat macroalgae threat in the region. The
user-friendly approach achieved by the transferable single random forest model across
time series shows promise, offering a potentially effective, low input method for rapid
large-scale mapping and monitoring of the intertidal area. Despite some limitations, the
results of this study provide the ground-work and crucial steps in understanding the
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possibilities and limitations of PlanetScope imagery for seagrass large-scale mapping

and monitoring in an intertidal seagrass-macroalgae environment.
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Chapter 6: Thesis overview, limitations, and future directions

This thesis has evaluated the application of optical remote sensing methods to map
and monitor a complex, intertidal seagrass-macroalgae environment. Three platform
and sensor combinations with varying spectral, spatial, and temporal resolutions were
utilised to create habitat maps to inform potential monitoring and management of a
temperate intertidal seagrass environment. This study assesses strengths and
weaknesses across scales, from methods used to produce fine-scale habitat maps at
lower spatial coverage to less detailed maps at larger coverage. This study also
delineates spatial patterns and dynamics of seagrass and macroalgae in a temperate
intertidal area for management and conservation purposes. As the first comprehensive
study utilising multiscale optical remote sensing to map and monitor a complex
temperate intertidal seagrass-macroalgae environment in the UK, this approach
provides novel insights into the implementation of these methods for effective
management and conservation of seagrass habitats. Given the ongoing threats that
seagrass habitats are facing globally (Unsworth et al., 2022), the urgent need for
effective management to protect and reduce their decline (Green et al., 2021; Jones &
Unsworth, 2016), and the rapidly evolving cost-effective optical remote sensing
technologies and their success in mapping seagrass habitats (Hossain et al., 2015;
Veettil et al., 2020), the thesis provides timely and valuable contribution to this field of
research. This final chapter presents an overview of the thesis and key findings;
critically assesses the implications of the results for intertidal seagrass management;
and discusses the wider implications of study, its limitations, and future directions.

6.1. Key findings

In recent years, seagrass habitats have received increasing interest and attention
globally, by researchers, policymakers, and the public. In particular, their significant
role as ‘blue carbon ecosystems’ is increasingly recognised and highlights the need for
their protection to combat climate change (McLeod et al., 2011; UN-WCMC, 2020).
The applications of optical remote sensing technologies for seagrass habitat mapping
have increased in parallel (Pham et al.,, 2019; Hossain et al., 2015). This study
advances this field of research by filling the gap in knowledge of the application of
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optical remote sensing methods in temperate intertidal seagrass environments. Key

technical findings of the thesis are as follows:

Chapter 3 utilised a high-resolution multispectral imagery acquired through
UAV and demonstrated successful fine-scale habitat mapping in a high level
heterogeneous and mixed species intertidal seagrass-macroalgae
environment, including the discrimination between seagrass species (Zostera
noltii and Zostera marina) and opportunistic macroalgae. Using the maximum
likelihood classifier, map accuracies ranged between 84% and 91% across
three discrete areas, including Zostera noltii dominated, Zostera marina
dominated and macroalgae dominated transects. Findings highlight the distinct
benefit of the additional red edge and near infrared bands that significantly
contributed to the separation between vegetation classes. However, this
platform is constrained to small area mapping and cannot elucidate large-scale
patterns or dynamics.

Thus, recognising the need for larger area coverage, methods for the analysis
of airborne CASI hyperspectral imagery were developed in Chapter 4 and
proved effective in mapping the entire intertidal seagrass area of the LNNR.
Maps with varying numbers of habitat classes (5-class, 6-class, 7-class,
respectively) were produced using a Random Forest (RF) classifier. Findings
indicated accuracies ranging between 76% and 97%, OA increasing with lower
numbers of habitat classes. To identify whether benefits identified required
hyperspectral data or could be simplified based on findings in Chapter 3,
hyperspectral bands were reduced from 23 bands to 5 and 8-spectral bands.
Similar accuracy levels were achieved, reemphasising the importance of red
bands and highlighting potential redundancy in the hyperspectral sensor for
intertidal seagrass mapping. While multispectral sensors may be sufficient to
map intertidal seagrass-macroalgae environments, the scale of data collection
offered by the aircraft platform enabled the assessment of ecology and spatial
patterns of seagrass and macroalgae distribution across a large site (approx.
2,300 ha). However, utilisation of airborne platforms for monitoring is
constrained by high associated costs, especially where more frequent imagery
is required to map and monitor competitive dynamics between seagrass and

macroalgae cover over time.
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Aiming for lower costs and acknowledging the need to acquire more frequent
imagery, multispectral satellite data from PlanetScope SuperDove was utilised
to map the intertidal seagrass environment and test the potential for seasonal
and interannual monitoring. Using a Random Forest classifier, a 6-class habitat
map was successfully produced at high accuracy (OA 94%). The model
developed, supported the creation of timeseries habitat maps. This permits the
rapid production of large-scale area habitat maps and could form the basis for
a highly practical method for coastal managers to effectively assess intertidal
seagrass ecosystem changes and trends. Seasonal and interannual habitat
maps could be utilised to reveal complex spatiotemporal seagrass and
macroalgae distribution patterns and their dynamics with significant benefits for

management.
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Table 6.1: Summary of specifications of different platforms and sensors for monitoring an intertidal seagrass environment.

Quadrat sampling

Multispectral UAV

Airborne
Hyperspectral (CASI)

Satellite multispectral
(PlanetScope)

Platform

Photo Camera

UAV

Airborne

Satellite

Sensor
specifications

Spatial: 0.1cm
Spectral: RGB
Temporal: on demand

Spatial: 0.5 cm
Spectral:5-bands
Temporal: on demand

Spatial: 1m
Spectral: 29-bands
Temporal: on demand

Spatial: 3m
Spectral:8-bands
Temporal: daily

Spatial Coverage

Limited, small-scale (1m?)

Limited, small-scale (e.g.,
discrete areas such as
transects)

Limited, local coverage
(e.g., LNNR)

Local, regional, and national
coverage

Application

Limited sampling numbers
(e.g., 30 quadrats each
section in LNNR)

Detailed small-scale habitat
mapping

Large-scale habitat
mapping

Large-scale spatiotemporal habitat
mapping

Classification

Visual assessment of

Maximum-Likelihood

Random Forest

Random Forest

information and key
findings

substrate

seagrass species (Zostera
noltii and Zostera marina) and
macroalgae; benefit of
additional red edge and near
infrared bands for vegetation
separation

of seagrass and
macroalgae; similar
accuracy levels to 23 -
bands acquired with 5-8
bands spectral bands

Method photographs Classifier
Accuracies - Overall Accuracies: 80-90% Overall Accuracies: 76% - | Overall Accuracies: 94%
97%
Acquired Percent cover of benthic Detailed information on Spatial distribution patterns | Seasonal and temporal spatial

distribution patterns of seagrass and
macroalgae; time series maps could
be utilised to reveal dynamics
between seagrass and macroalgae

Limitations

Limited number of samples
across the area; cannot
capture accurate large-scale
patterns

Limited area coverage,;
cannot capture large-scale
patterns

Limited to single imagery
acquisition: cost intensive;
not viable for monitoring
programmes

Restricted by imagery selection due
to cloud cover; spatial resolution
may be insufficient to capture
accurate spatial patterns
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Skills requirements

Data analysis

Operational skills; data
processing and analysis

Operational skills; data
processing and analysis

Data processing and analysis

Costs for LNNR
(~2300 ha)

Quadrat frame, GNSS RTK:

~ £30.00

UAV license, DJI
Multispectral UAV, GNSS
RTK, Software (Pix4D):

~ £ 7,500.00

Flying licence, Platform

(plane), sensor, software:

~ 52,200.00

Single imagery:

~ 70.00
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6.2. Implications for management

The implications of remote sensing for coastal habitat management are significant and
are often promoted as part of a toolbox to help managers to assess the ecological
patterns and change to prevent ecosystem decline. Maps are also often important
communication tools to help managers for decision-making and of conservation areas
(McCarthy et al., 2017; Pettorelli et al., 2014). While the application of optical remote
sensing technologies to seagrass habitats are well covered in the literature (Hossain
et al., 2015) (Chapter 2, Table 2.2), the benefits must be operationalised for the
management of seagrass decline. Methods are often analytically complex, and less
intensive approaches are required by busy management organisations. Barriers to
operationalisation may be due primarily to remote sensing technologies being
challenging to integrate into monitoring programmes, constraints associated with
limited budgets, accessibility of the required data, technical expertise, and data

processing challenges.

To facilitate the utilisation of optical remote sensing for seagrass habitat mapping and
monitoring and ensure cost-effectiveness for management, careful planning is
required, and the analytical complexities must be addressed. The type of optical
remote sensing technology and method to be used will primarily depend on the
management aims and objectives of required information of the seagrass environment.
These may range across different needs and interests, for example whether
information is required at seagrass species level, or for large scale habitat dynamics
and threats such as macroalgae overgrowth — successful approaches to which have
been demonstrated in chapters presented in this thesis. Management objectives will
dictate the required spatial, spectral, and temporal resolution imagery data to map,
monitor and manage seagrass environments, but promising methods have now been

identified across various scales.

6.2.1. Applications of multiscale mapping for management and cost-
effectiveness

As demonstrated, seagrass habitat maps can be produced using imagery from multiple
platforms to acquire habitat information based on differing sensor specifications. Each

platform comes with strengths and weaknesses regarding resolution and spatial
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coverage, and trade-offs are required based on the habitat information required and
associated costs (Table 6.1). For example, while UAV imagery may enable fine-scale
habitat mapping, it lacks the required spatial coverage to assess large-scale habitat
patterns, whereas satellite platforms can provide this at the cost of lower spatial
resolution. To maximise the utilisation of available optical remote sensing data
resources, the leveraging of strengths and weaknesses through combination of data
from different platforms may provide more cost-effective approaches for the
management and conservation of habitats (Carpenter et al. 2022; Bergamo et al.
2023).

UAV imagery will be most appropriate when 1) the fine-scale ecology of seagrass and
macroalgae is required, for example to monitor and assess species composition by
performing several flight transects across the site as demonstrated in Chapter 3; 2)
where detailed information is required in inaccessible areas, for example, dangerous
mudflat areas where sites are inaccessible on foot; 3) to monitor the success of
restoration projects by assessing for example, seagrass plant growth and biomass
(Ridge and Johnston, 2020); 4) to overcome challenging and exhaustive quadrat
sampling across the field site, where UAV derived habitat maps could be utilised as
training data for large-scale habitat mapping such as for PlanetScope imagery (as
methodology used in Chapter 5), which has lower spatial resolution but provides larger
coverage to assess large-scale distributional patterns.

Where information at species level is not required, lower spatial resolution imagery with
larger coverage area will be more appropriate. This is required to inform our
understanding of the ecology of seagrass and macroalgae, elucidating large-scale
patterns and dynamics, as demonstrated in Chapter 4 and Chapter 5 by utilising
Airborne Hyperspectral data and Satellite PlanetScope Satellite data. While the CASI
hyperspectral imagery with its high spatial resolution at 1m was a highly valuable
resource for mapping small-scale patch dynamics of seagrass and macroalgae, it may
not be cost-effective due to costs associated with using an aeroplane platform and the
expensive CASI sensor. However, this study demonstrated that the high number of
spectral bands is not required to achieve similarly accurate maps, so costs could be
reduced somewhat by utilising consumer grade multispectral sensors that retain red
edge and near infrared bands, instead of a hyperspectral sensor. Where such high
spatial resolution may not be required for mapping seagrass and macroalgae, high

resolution multispectral satellite imagery such as PlanetScope (3m) then provides
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more cost-effective options for monitoring programmes. Satellite approaches enable
the more frequent acquisition of imagery to capture temporal dynamics between
seagrass and macroalgae. Furthermore, satellite imagery such as PlanetScope could
be utilised to assess the health of seagrass habitats to identify existing and newly
identified seagrass areas, or areas of significant change. These can then be explored

in more detail by using UAV imagery.

When conducting a multiscale mapping approach combining or fusing imagery data
with differing spatial and spectral resolution, it is essential to consider factors that may
influence the accuracy of mapped seagrass and macroalgae cover (e.g., the loss of

detailed information with decreasing spatial and spectral resolution).

6.3. Wider implications

Although the maps created are specific to the management of intertidal seagrass
habitats in Lindisfarne National Nature Reserve (LNNR), UK, the approaches and
methodologies used in this thesis are applicable to seagrass habitats in other
temperate regions and provide valuable information to inform their management.
Intertidal seagrass habitats occur in other temperate regions such as, USA, New
Zealand and wider Europe (France, Spain, Portugal, Sweden etc). Although some
studies that have used optical remote sensing in these regions are available, this study
fills the gap identified for intertidal seagrass environments (Chapter 2, Table 2.2.). The
majority of methods tested in this study have been applied in a complex intertidal
seagrass-macroalgae environment for the first time. This progresses our
understanding of the applications of optical remote sensing technology and methods
from clear tropical waters to temperate intertidal seagrass habitats and moves beyond
the mapping and monitoring of homogenous seagrass habitats to identification of
species within complex intertidal seagrass-macroalgae habitats, allowing us to address
challenges, such as eutrophication, that seagrass environments are facing across
coastal regions (Burkholder et al., 2007).

This study may provide a framework for the use of optical remote sensing by existing
projects and organisations, supporting efforts in coastal habitat management and

conservation within the UK, of seagrass systems and beyond. For example:

e The EU funded project, EU LIFE Wader (2024), aims to improve the water
quality and ecological conditions of different habitats across the
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Northumberland Coast, UK. Moreover, they aim to improve management to
improve the health (condition) of protected site features in the study area, such
as mudflats and seagrass. The methodologies produced in this thesis could
especially support their ongoing efforts in mitigating macroalgae growth in the
LNNR. For example, methods underpinning maps in Chapter 4 and 5, may
provide a powerful tool to map macroalgae patches and support prioritisation of

macroalgae removal.

Projects funded by diverse stakeholders across the EU and UK such as,
Stronger Shores (2024), Restoration of Seagrass for Ocean Wealth UK
(ReSOWUK, 2024) and Restoring Meadow, Marsh and Reef (ReMeMaRe,
2024) aim to restore seagrass meadows across the UK. Here, the methods used
to produce large-scale maps (Chapter 4 and 5) could be utilised to identify
habitat suitability for potential seagrass restoration areas (e.g., bare ground
areas) (Bertelli et al., 2022; Dalby et al.,, 2023). The multispectral UAV
methodologies developed in Chapter 3 could support high level change
detection and monitoring of seagrass restoration programmes (Ventura et al.,
2022), where they may help quantify success and enable the detection of early

threats, such as algal growth.

The DEFRA (Department for Environment Food and Rural Affairs) programme,
marine National Capital Ecosystem Assessment (MNCEA, 2024) aims to
evaluate the health and functioning of marine ecosystems, including the
assessment of biodiversity, ecosystem services and the overall condition of
marine environment. Tools developed in this thesis could assist in the
assessment of ecosystem services (Andrew et al., 2014; Hossain & Hashim,
2019) and support condition monitoring through: 1) utilising baseline habitat
maps produced in Chapter 4 and 5, to assess the initial state of the seagrass
environment; 2) Change detection to assess habitat condition over time and to

identify trends in seagrass increase or decline (Chapter 5).

To improve the accuracy of seagrass and macroalgae mapping in intertidal
areas and to increase effective management practices, a citizen science project

could be integrated in management planning. For example, as part of Natural
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England’s’ community engagement plan to raise awareness on the natural
environment in the region. Such engagement could involve the collection of
seasonal and annual ground-truth data through quadrat photographs, or the
collection of high-resolution imagery data conducted for example, by UAV flying
hobbyists. Ultimately, data collected could be used for spatiotemporal map
validations. However, it is important that safety measures in such a challenging
environment are considered in designing a ‘citizen science’ project. Moreover,
to minimise the impact on seagrass disturbance, numbers of volunteers allowed

onto the field site must be carefully considered and regulated.

e Finally, habitat maps generated are of fundamental use in applied ecology
(Pettorelli et al., 2014). They can provide information for ecological research,
answering specific seagrass ecology questions. For example, the maps created
in Chapter 4 and 5 could be used: in combination with species distribution
models to better understand seagrass and macroalgae distribution patterns
(Beca-Carretero et al., 2020) and their potential drivers, when combined with
other sources of data ( e.g., nutrients) (Han et al., 2016); or estimate seagrass
properties such as leaf area, or make biomass and carbon storage estimates

crucial for climate change research (Simpson et al., 2022; Sousa et al., 2019).

Overall, remote sensing technologies operating at multiple scales can provide a holistic
overview of ecosystems for management and conservation purposes (McCarthy et al.,
2017; Rose et al., 2015). This study develops a foundation for multi-level remote
sensing in intertidal seagrass habitat mapping, monitoring, and management. It can
provide tools to better understand seagrass declines, which can be related to threats,
as well as monitoring the success of restoration efforts for intertidal seagrass habitats
across the UK and beyond. Funded by NERC and Natural England, the statutory
nature conservation body, this work has always had end-user support, and additional
organisations and projects have shown interest in the outputs to date. Further
collaborative work proposed indicates the value and impact of this study to intertidal
seagrass management and conservation organisations. Applications of the approach

beyond seagrass habitats are also possible.
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6.4. Limitations and future directions

The study was subject to several limitations, primarily associated with the time
constraints of data collection and analysis, as a function of carrying out the research
over the duration of a Ph.D. These may have impacted results in the following ways:
(1) The low number of ground-truth samples resulted in unbalanced training class
samples, which may have impacted accuracies, and potentially challenge the reliability
of map results; (2) The data collection confined to the Causeway area, may limit the
generalisation of findings across the full extent of the field site, particularly undermining
results in areas such as Fenham Flats and Budle Bay; (3) The focus of the study in
one specific intertidal area, with, for example, specific sediment characteristics, may
potentially limit the validity of results in other geographic regions. A study design that
incorporates these constraints may enable a higher degree of transferability to other

intertidal seagrass environments.

The inherent nature of the intertidal area retaining water at low tides, and the
appearance of sun glint may both have impacted spectral responses, potentially
resulting in higher misclassifications and reduced reliability of classified habitat maps.
While this could theoretically be mitigated by increasing the time for water to drain after
low tide, this was often restricted by topography, unfavourable weather conditions
(e.g., UAV sensitive to rain and wind), the need to leave before the incoming tide made
the area unsafe for working, or satellite imagery acquisition occurring at sub-optimal

times shortly before high water.

Given the high complexity of area investigated, with two species of seagrass and
multiple macroalgae co-occurring, varying sediment types, hyperspectral and satellite
resolutions of 1m and 3m, respectively (Chapter 4 and 5), may have been insufficient
to separate similar habitat classes spectrally. The acquisition of satellite imagery with
higher spatial resolution would enable the assessment and validation for improved
accurate habitat mapping. The availability of satellite imagery over intertidal areas is
inherently constrained, e.g., data is collected out with tides, rendering many images
unsuitable for intertidal monitoring. These temporal limitations potentially hamper
detection of fast growing macroalgae; this inability to capture these inter-specific
dynamics inhibits accurate monitoring of seagrass cover. Higher frequency of mapping
may enable the delineation of more accurate seagrass information and the finer

description of dynamic interactions with macroalgae. Furthermore, as discussed in
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Chapter 4 and 5, the integration of environmental, climatic, hydrodynamic, and
anthropogenic data into generated maps should be considered, to analyse and
evaluate spatiotemporal patterns, causes and drivers of macroalgal growth and
seagrass decline. This will help design management interventions to effectively
mitigate macroalgae growth and seagrass decline.

One future direction for this study entails the development of more cost-effective
analysis, specifically the integration of freely available software and programming
languages. The cost of software utilised in this study for data processing and analyses,
including for example, ArcGIS and ENVI, may limit the accessibility for coastal
managers often restricted by limited budgets. To address this limitation, open-source
software such QGIS and programming languages including R and Python may provide
more cost-effective options (Rocchini et al. 2017). To enhance the practicality and
efficiency of data retrieval and analysis, cloud-based platforms such as Google Earth
Engine may provide another option for geospatial analyses, including for optical remote
sensing applications (Traganos et al., 2018; Amani et al., 2020;). Ultimately, the
automation of data processing and image analysis could lead to the creation of an
intertidal seagrass habitat mapping toolbox (Bremner et al., 2023) usable without
expert input, which would contribute to management efforts. Here, the integration of
Deep Learning (DL) methods and Object-Based-Image Analysis (OBIA) could
potentially lead to more accurate and robust classification (e.g., Hobley et al., 2021).
Evaluating and selecting the most appropriate and accurate classification methods, will

consequently minimise error propagation when leveraging multiscale data.

6.5. Concluding remarks

In conclusion, this thesis has demonstrated the potential of cost-effective and relatively
user-friendly production of habitat mapping and monitoring of a complex intertidal
temperate seagrass-macroalgae environment using both consumer grade and cutting-
edge optical remote sensing technology. The utilisation of different platforms, sensors
with high resolution imagery coupled with machine learning classifiers and field-based
validation, enabled the successful extraction of detailed information to better
understand patterns of distribution and the dynamics between seagrass and
macroalgae. Overall, this study has enabled a holistic evaluation of optical remote
sensing technology to advance our understanding of the possibilities, geospatial

intricacies, and limitations for applications in the investigated environment. However,
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it is important to acknowledge the inherent challenges of the field site, including data
limitations, uncertainties in methods applied and the need for improved validation,
methodologies, and collaboration with stakeholders to enhance reliability and

applicability of seagrass habitat mapping and monitoring for conservation efforts.

With rapidly advancing and emerging remote sensing technologies and increasing
threats faced by seagrass habitats, the findings of this study not only contribute to filling
critical research gaps, but also provide a foundation for future research and
development of improved methods to enhance our understanding of applications of
optical remote sensing across multiple scales in temperate intertidal seagrass
environments, their practicality and operational considerations. This is a significant
step towards their integration into effective monitoring programmes, greatly benefiting
management and conservation efforts to prevent observed declines in this important
habitat.
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Appendix A Table including the 33 Channels (spectral bands) and central wavelength +
FWHM (Full Width at Half Maximum) of the CASI hyperspectral sensor.

Channel # Central Wavelength +/- Full Width at Half Maximum (FWHM) /nm
Channel 1 394.918nm +/- 14.203nm
Channel 2 442.246nm +/- 14.195nm
Channel 3 487.186nm +/- 14.188nm
Channel 4 513.195nm +/- 11.821nm
Channel 5 554.561nm +/- 15.362nm
Channel 6 577.012nm +/- 7.089nm
Channel 7 595.915nm +/- 9.451nm
Channel 8 611.273nm +/- 5.907nm
Channel 9 624.267nm +/- 7.087nm
Channel 10 643.166nm +/- 9.449nm
Channel 11 663.244nm +/- 5.905nm
Channel 12 676.236nm +/- 7.086nm
Channel 13 686.865nm +/- 3.543nm
Channel 14 693.951nm +/- 3.543nm
Channel 15 702.218nm +/- 4.724nm
Channel 16 712.846nm +/- 5.905nm
Channel 17 727.018nm +/- 5.905nm
Channel 18 736.465nm +/- 3.543nm
Channel 19 745.913nm +/- 5.905nm
Channel 20 752.998nm +/- 1.181nm
Channel 21 755.360nm +/- 1.181nm
Channel 22 757.722nm +/- 1.181nm
Channel 23 760.084nm +/- 1.181nm
Channel 24 762.446nm +/- 1.181nm
Channel 25 764.807nm +/- 1.181nm
Channel 26 767.169nm +/- 1.181nm
Channel 27 769.531nm +/- 1.181nm
Channel 28 771.893nm +/- 1.181nm
Channel 29 774.255nm +/- 1.181nm
Channel 30 799.055nm +/- 14.172nm
Channel 31 852.204nm +/- 12.993nm
Channel 32 879.372nm +/- 11.813nm
Channel 33 1008.190nm +/- 15.372nm
Channel 33 1008.190nm +/- 15.372nm
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