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Abstract 

Seagrass ecosystems around the UK are in poor condition and continue to decline, in 

large part due to anthropogenic activities, such as nutrient pollution, which may also 

lead to macroalgae proliferation that is detrimental to seagrass growth. To better 

understand declines and support recovery efforts, accurate spatiotemporal monitoring 

of seagrass habitat health and macroalgae distributions are required. Remote sensing 

offers the potential to map large or inaccessible areas, cost-effectively, providing 

coastal managers with promising data for assessment. This PhD thesis evaluates the 

potential of using remote sensing technologies to map and monitor a complex intertidal 

seagrass-macroalgae environment in Lindisfarne, Northumberland, UK. A multiscale 

mapping approach was used to evaluate multiple platforms and sensors, with differing 

spatial and spectral resolution. Different classification approaches were tested, the 

monitoring and management implications of each considered. A Maximum Likelihood 

classifier and multispectral Unoccupied Aerial Vehicle (UAV) imagery successfully 

mapped seagrass-macroalgae distribution to species level, with an Overall Accuracy 

(OA) ranging between 84% and 91%. A random forest classifier with airborne 

hyperspectral imagery and high resolution PlanetScope satellite imagery was able to 

produce 6-class large-scale habitat maps with OA of over 90%, for each. This was 

repeatable across multiple images and may enable monitoring of seasonal and 

interannual changes in seagrass and macroalgae distribution. The benefit of red edge 

and near infrared bands was highlighted across multiple platforms. These are offered 

by the low-cost multispectral UAV that is then able to discriminate between vegetation 

classes, with similar map accuracies to those achieved when reducing hyperspectral 

imagery spectral bands (23) to 5-8 bands. Large-scale maps can be used to reveal 

distribution patterns of seagrass and macroalgae as snapshots and over time, 

elucidating seagrass-macroalgae dynamics, to support coastal managers’ decision-

making and management. Overall, this PhD provides a comprehensive critical 

evaluation of optical remote sensing methods for effective monitoring and its 

operationalisation for use for seagrass ecosystem conservation.  
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1 

Chapter 1:  Introduction 

 

1.1. Importance, threats and decline of seagrass 

Seagrass habitats are some of the most productive ecosystems on earth (Duarte & 

Chiscano, 1999). They are highly valuable, providing a wide range of ecosystem 

goods and services to coastal regions, including: (1) coastal protection, through their 

root system and above ground biomass, as they stabilise sediment by serving as 

natural buffer against wave actions and the protection from coastal erosion (Costanza 

et al., 1997); (2) improvement of water quality, through trapping pollutant run offs from 

land (Moore, 2004); (3) nursery grounds for commercial fish species as food source, 

shelter and refuge from predatory species (Beaumont et al., 2008; Bertelli & Unsworth, 

2014); (4) fisheries support, as many commercial fish species rely on seagrass 

habitats for food and breeding (Unsworth et al., 2019); (5) and finally, their high 

efficiency in carbon sequestration and mitigating climate change (Röhr et al., 2018; 

Zou et al., 202; Gao et al., 2022 ). An area of seagrass may be thirty-five times more 

efficient at storing CO2 than the same area of rainforest (McLeod et al., 2011), due to 

rapid conversion of CO2 into organic carbon and its storage in plant tissues and 

extensive shoot systems expanding into and stabilising the sediment (Duarte et al., 

1998; Fourqurean et al., 2012). 

Despite this, seagrass ecosystems are threatened, facing ongoing decline and loss 

due to natural and anthropogenic impacts (Orth et al., 2006; Grech et al., 2012), such 

as: (1) pollution from agricultural run-off and industrial waste that can cause 

proliferation in algal blooms and consequently limiting sunlight and thus suppressing 

seagrass growth (Han & Liu, 2014; Kim et al., 2015; Breininger et al., 2017); (2) coastal 

development that can lead to the loss or degradation of seagrass habitats due to 

modifications of coastal areas and sedimentation (Holon et al., 2015); (3) physical 

damage through boat anchoring and propeller damage (Collins et al., 2010); (4) 

destructive fishing practices though damaging fishing gears (Orth et al., 2002); (5) 

diseases that can lead to decimation in seagrass population (e.g., wasting disease) 

(Bull et al., 2012); (6) climate change causing rising sea water levels and increasing 

water temperature, which can lead to stress in seagrass and impact their growth (Tang 

& Hadibarata, 2022). A combination of these threats has led to an overall global 



decline of seagrass habitat by 30% since the late nineteenth century (UNEP-WCMC, 

2020). 

Around the British Isles, seagrass meadows have not been exempt from these 

pressures, and have experienced widespread declines in the past decades. Many 

seagrass habitats are in poor condition (Jones & Unsworth, 2016). Green et al. (2021) 

highlighted a catastrophic loss and decline of seagrasses around the UK with an 

estimated loss of at least 44% since 1936, of which 39% has disappeared since the 

1980s. In the early 1930s, a major decimation of Zostera marina (eelgrass) population 

was caused by an epidemic, known as the ‘wasting disease’ (Labyrinthula zosterae), 

which spread across the North-Atlantic Coasts of Europe and North America and 

impacted significantly on seagrass populations in the UK (Butcher, 1933; Den Hartog, 

1989; Bull et al., 2012). As in many other parts of the world, seagrass habitats in the 

UK then continued to decline due to a variety of anthropogenic threats. One of the 

major threats in the UK is related to excessive coastal nutrient input leading to poor 

water quality and resultant eutrophication, for example due to agricultural activities 

(e.g., fertilisers), sewage and industrial activities (Jones et al., 2018).  

Eutrophication has a number of potential impacts. Eutrophication can lead to light 

limitation, subsequently suppressing seagrass growth through increased algal blooms 

and overshading. Sedimentation, which is often accompanied by nutrient enrichment, 

can lead to both turbid waters and smothering of seagrass (den Hartog, 1994; 

Burkholder et al., 2007; Han & Liu, 2014). These threats are amplified by climate 

change in the UK, posing significant challenges to the survival of seagrass. For 

example, elevated sea temperatures can result in more frequent algal blooms (Short 

& Neckles, 1999). Additionally, increasingly changing, heavier and more dynamic 

precipitation patterns may lead to increased nutrient and sediment runoff from the 

land, resulting in higher nutrient concentrations and the subsequent rapid proliferation 

of algae (Gilbert et al., 2008; O’Gorman, 2015). To counteract and prevent further 

threats, effective seagrass and algal distribution is invaluable to track changes and 

implement strategies, for example, to monitor and control algal overgrowth, and 

mitigate seagrass decline. These tools are urgently required (Jones & Unsworth, 2016; 

Strachan et al., 2022). 

 



1.2. Seagrass biology and distribution  

Seagrasses are marine flowering plants (Angiosperms) (Phillips & Menez, 1988). This 

group consists of 73 species, which are estimated to cover an area of over 300,000 

km2 of the world’s seabed (UNEP-WCMC, 2020). Their distribution extends across six 

global bioregions, and they are known to occur in 191 countries across tropical and 

temperate coastal zones (Short et al., 2007; McKenzie et al., 2020; UNEP-WCMC & 

Short, 2021). Due to their photosynthetic characteristics, occurrence in the ocean is 

limited to shallow coastal areas where they rely on sunlight availability for growth and 

survival (Zimmerman, 2006). While seagrass species are often confused with 

seaweeds or algae, as both are aquatic vegetation, they are different types of 

organisms belonging to separate taxonomic groups with distinct characteristics. 

Seagrasses have a more complex structure consisting of a true roots system that 

enables their anchoring and stabilisation in the sediment (below ground biomass) and 

ribbon-like leaves that grow above the sediment (above ground biomass) (Hemminga 

& Duarte, 2000). Algae are less structurally complex and lacking a true root system, 

are often only attached to substrates (Pereira, 2021) (Figure 1.1). 

 

 

Figure 1.1. Diagram showing morphological differences between algae (left) and seagrass 

(right). (Source: https://ocean.si.edu/holding-tank/images-hide/algae-vs-seagrass). 

 

Seagrasses have two main reproductive strategies that are essential to their growth 

and propagation. They can reproduce sexually via seed production and vegetatively 

through the growth of their vertical shoots, and the production of rhizomes (Figure 1.1). 

This enables their expansion into seagrass meadows, which can vary in density, 

depending on the seagrass species, stage of proliferation and environmental 

https://ocean.si.edu/holding-tank/images-hide/algae-vs-seagrass


conditions that they are exposed to (Akerman, 2006). They can occur both in shallow 

subtidal areas covered by water and intertidal areas, exposed at low tide (Short et al., 

2007) (Figure 1.2). While both seagrass and macroalgae are important components 

of coastal ecosystems, they are in competition for space, light and nutrients to grow 

and expand, which can have detrimental ecological implications for seagrass habitats 

(McGlathery, 2001; Han & Liu, 2014; Han et al., 2016). Opportunistic growing 

macroalgae respond rapidly to increased nutrients, smothering seagrass and 

potentially outcompeting slower growing seagrass (den Hartog, 1994). 

 

  

Figure 1.2. Variations in density of seagrass habitats at low tide: a) dense Zostera noltii patch; 

b) sparse Zostera marina patch.  

 



1.2.1. Temperate seagrass species 

In the UK temperate zone, the commonly distributed species are the intertidal 

seagrass species Zostera noltii (dwarf eelgrass) and subtidal species Zostera marina 

(eelgrass) (Short et al., 2007), note that Z. marina can grow intertidally. These two 

species differ particularly in the morphology of their leaf structure. Z. marina has longer 

ribbon-like leaf blades, whereas Z. noltii consists of shorter, thinner, and flat leaf 

blades, which are generally darker green in comparison to Z. marina (Figure 1.3).  

 

 

Figure 1.3. Images of the two common temperate intertidal seagrass species: Zostera noltii 

and Zostera marina. 

 

1.3. Need for effective management and conservation methods 

Regular monitoring and protocols enable coastal managers to assess the overall 

health status (condition) of seagrass habitats, which can provide information on the 

dynamics of species and populations, and whether these are stable or declining over 

time (e.g., Borum et al., 2004; Short et al., 2006). Such information allows coastal 



managers to identify and quantify potential threats and stressors (e.g., pollution, algal 

blooms, diseases), to track long-term trends and changes in habitats, to allow for 

timely preventive measures and intervention to reduce potential threats. 

Traditional seagrass monitoring methods involve field-based surveys through in situ 

collection of data. Different methods are applied to acquire direct observations and 

measurements of seagrass, abundance, biomass, diversity, and their distribution to 

evaluate the condition and health of seagrass habitats (Borum et al., 2004). Such 

methods include, for example, transect surveys, where seagrass data is recorded 

along the transect or quadrat sampling by placing a rectangular frame of known area 

on the seafloor to record detailed information on seagrass information (e.g., shoot 

density, diversity, seagrass cover) (Bunker & Green, 2019; Doggett & Northen, 2023). 

In the UK, such methods are well established within organisations and governmental 

bodies that monitor seagrass. The largest national seagrass monitoring programme is 

maintained by the Environment Agency (2024) which uses different ground survey 

methods, including quadrat sampling to acquire information on seagrass species and 

seagrass cover for specific locations where seagrass is present. While other 

governmental bodies and organisations are also known to perform seagrass surveys 

and monitoring, these are either limited to one or two locations, are short-term or have 

only recently been established. Natural England for instance, has monitored seagrass, 

using quadrat sampling to record seagrass cover, canopy height, shoot density and 

macroalgae cover in some locations in some years (Bunker & Green, 2019; Doggett 

& Northen, 2023). The UK-based non-profit organisation, Project Seagrass 

(projectseagrass.org/), surveys and monitors seagrass in Porthdinllaen, Wales as part 

of their established platform called Seagrass-Watch, Global Seagrass Observing 

Network. Finally, short-term projects (e.g., up to 5 years), smaller scale in the effort to 

establish seagrass monitoring programmes are in place and are currently being 

developed. However, they are limited to specific regions in the UK and only cover small 

areas (e.g., EU LIFE Wader, 2024; Stronger Shores, 2024). 

In situ methods have been used for decades and continue to be valuable for seagrass 

habitat monitoring and management since they can provide detailed information of 

seagrass habitats for specific locations (Short et al., 2014), but they are often 

expensive, time consuming, pose safety concerns (e.g., being trapped in sediment) 

and lack accurate spatiotemporal information for seagrass habitat inventory and 



monitoring (Mumby et al., 1999). Spatially, seagrass ecosystems can be patchy over 

large areas (which are difficult to monitor using in situ methods), and may consist of 

irregular seagrass meadows, species distributions and the presence of macroalgae 

(e.g., Leblanc et al., 2021; Ivajnšic et al., 2022). Temporally, seagrass ecosystems 

can be highly dynamic both annually and seasonally depending, for example, on the 

degree of intensity of threats, such as nutrient input and the proliferation of algae (Carr 

et al., 2012; Han & Liu, 2014). If only annual monitoring is carried out, spatiotemporal 

dynamics will not be adequately captured. Short-term fluctuations arising from events 

such as heatwaves, which can happen abruptly, may be overlooked, with rapid 

unexpected, severe consequences on seagrass populations and entire ecosystems 

(Thomson et al., 2015). Such fluctuations and dynamics can also occur at different 

spatial scales. Seagrass habitats can be spatially heterogeneous over both small and 

large scales. Sampling a limited number of quadrats may not adequately capture this 

variability crucial to understand seagrass and macroalgae dynamics (Lønborg et al., 

2021). 

The lack of accurate spatiotemporal information can make it challenging for managers 

to detect early signs of threats and decline of seagrass, potentially leading to delayed 

and timely management strategy responses. To address this gap of monitoring in 

dynamic seagrass-macroalgae environments, more frequent sampling (e.g., quarterly, 

or monthly) and larger coverage through increased sample size would be required. 

However, increasing the frequency and numbers of sampling consequently involves 

higher costs related to fieldwork. The trade-off between higher costs and more 

frequent sampling may be challenging for organisations and projects due to budget 

constraints, limiting their ability to increase sampling frequency and coverage. To 

overcome the challenge in costs associated with sampling, and to optimize the trade-

offs between costs and the acquisition of accurate spatiotemporal data, technological 

advances such as remote sensing may provide an alternative methodology to monitor 

seagrass (Hossain et al., 2015; Veettil et al., 2022). 

 

1.3.1. Habitat maps 

Remote sensing techniques have revolutionised the toolbox available to coastal 

managers as they permit mapping and monitoring of seagrass habitats cost-



effectively, over large areas, repeatedly, and they allow acquisition of data in 

inaccessible areas (UNESCO, 2005; Hossain & Hashim, 2019). With increasing 

advancement in technology and accessibility to cost-effective high resolution imagery 

data such as UAVs and satellites (e.g., Sentinel-2 (10m), PlanetScope (3m)), the 

operationalisation of remote sensing for coastal marine monitoring programmes has 

gained increased attention (Ventura et al., 2022; Vitousek et al., 2023). 

While remote sensing techniques are also increasingly being considered in seagrass 

monitoring programmes in the UK, they are often only presented in form of broad-

scale maps that solely provide the extent and occurrence of seagrass habitats, such 

as the national Seagrass layer provided by Natural England and Environment Agency 

(Natural England, 2024) (Figure 1.4).  Such maps lack, for example, co-occurring 

threats to seagrass habitats such as opportunistic macroalgae, and disregard the 

patchiness of seagrass habitats, which is critical to accurately capture seagrass cover. 

In addition, these maps often represent seagrass distribution at one point in time and 

lack the temporal component, critical to detect seagrass habitat changes. Local scale 

maps that show distributional patterns of seagrass species, their densities and 

macroalgae cover at higher spatiotemporal resolution, may enable managers to more 

accurately capture seagrass-macroalgae dynamics, thus assess seagrass habitat 

health (condition), their decline and potential and ongoing threats and pressures. 

Accurate spatiotemporal habitat maps that show detailed seagrass and algae cover 

that can be rapidly produced are needed to aid effective informed decision-making to 

mitigate and prevent seagrass decline across the UK (e.g., Vahtmäe et al., 2021; Haro 

et al., 2022; Carlson et al., 2023).  



 

Figure 1.4. National Seagrass Layers of current spatial extent of Zostera spp. (dark blue 

polygon area) in Lindisfarne and Plymouth Tamar that provide presence/absence data 

(Source: Natural England, 2024: Contains public sector information licensed under the Open 

Government Licence v3.0.) 

 

1.4. Study site  

The research presented here focussed on Lindisfarne National Nature Reserve 

(LNNR) in the northeast of England, United Kingdom. The LNNR consists of a variety 

of habitats including sand dunes, saltmarsh, intertidal-subtidal reefs, and intertidal 

mudflats. Multi-designated, the site is underpinned by a Site of Special Scientific 

Interest (SSSI), is also an SPA (Special Area of Protection) and sits within the 

Berwickshire and North Northumberland Coast Special Area of Conservation (SAC). 

Established as a national nature reserve, the LNNR protects important geology, 

habitats and species. The LNNR, for example, is ecologically important for 

internationally protected birds such as Light-Bellied Brent Geese (Branta bernicla) 

(regularly over 2,000 birds) and wigeon (Mareca penelope) (up to 40,000), that utilise 

the tidal mudflats as maintenance areas and foraging grounds by particularly feeding 

on seagrass, prevalent across the intertidal mudflat areas during late summer, autumn 

and into winter months (SSSI citation, 1989).  National Nature Reserves also provide 

‘outdoor laboratories’ for research.  



The intertidal mudflat area in LNNR is large, covering approx. 2,300 ha, which includes 

three main areas of seagrass habitat, namely the Causeway area (Holy Island Sands), 

Fenham Flats and Budle Bay (Figure 1.5). Different vegetation types can be found 

across the LNNR mudflats and area of interest, including the dominating intertidal 

seagrass species Zostera noltii, the subtidal species Zostera marina and a mix of 

opportunistic green macroalgae such as Enteromorpha (Ulva intestinalis). (Figure 

1.5). Distribution and density of seagrass and opportunistic macroalgae (macroalgae, 

hereafter) varies across the different mudflat areas, primarily attributed to increased 

nutrients arising from terrestrial and offshore inputs. Of particular concern is the 

macroalgae growth in the Causeway and Budle Bay areas, where seagrass can be 

often found mixed with macroalgae in the spring to summer months. The field site is 

managed by Natural England, a non-departmental public body (NDPB) in the United 

Kingdom, responsible for overseeing the management and protection of seagrass in 

Lindisfarne. The field site is currently monitored by the Environment Agency as part of 

their annual seagrass monitoring programme using quadrat sampling and hovercraft, 

but accurate spatiotemporal mapping for monitoring would improve monitoring and 

allow better understanding of trends.  

The growing recognition of the ecosystem services provided by seagrass meadows, 

especially, as ‘blue carbon ecosystems’, that play a crucial role in mitigating climate 

change (UNEP-WCMC, 2020; do Amaral Camara Lima et al., 2023) , have gained 

increased attention and high priority in national seagrass protection and restoration 

efforts. As opposed to homogeneous seagrass habitats, the complexity of the LNNR 

field site provides a unique opportunity to evaluate remote sensing applications and to 

better understand intertidal seagrass and macroalgae habitat dynamics at large-scale 

in the UK.  



 

Figure 1.5. Map showing field site located in the North East of the UK (bottom left). Extent of 

Lindisfarne National Nature Reserve (red boundary) and different regions of studied field sites, 

including Causeway area, Fenham Flats and Budle Bay. 

 



1.5. Thesis aim and structure 

The overall aim of this thesis is to develop an effective remote sensing strategy for 

temperate intertidal seagrass monitoring for management and conservation purposes. 

Optical remote sensing imagery are utilised, and methods are developed to evaluate 

varied optical remote sensing platforms and their applications for mapping and 

monitoring a complex intertidal seagrass-macroalgae environment. To address 

knowledge gaps described in Chapter 1 and Chapter 2, the thesis is structured to 

reflect the multiscale approach taken by utilising imagery data from different platforms 

with varying spatial, spectral and temporal resolution. This permits the assessment of 

information that can be acquired from each different platform and sensor. The thesis 

is structured as follows:   

Chapter 1 discusses the importance, threats and decline of seagrass habitat, their 

need for effective management and conservation.   

Chapter 2 gives an overview on optical remote sensing technologies and classification 

methods and presents a literature review that identifies the knowledge gap of the 

application of optical remote sensing in temperate seagrass environments. 

Chapter 3 evaluates the utility of an off-the shelf multispectral Unmanned Aerial 

Vehicle (UAV) to map an intertidal multi-species seagrass environment. This chapter 

investigates the level of accuracy that can be achieved, particularly focussing on 

additional bands at the red edge and in the near infrared in comparison to an RGB 

camera. This study maps seagrass at species level (Zostera noltii and Zostera marina, 

respectively) and aims to discriminate between seagrass species and macroalgae. 

Additionally, both the benefits and challenges of using UAV technology to map 

intertidal seagrass environments are discussed and recommendations developed to 

support operational and management practices.  

Chapter 4 examines the utilisation of airborne hyperspectral imagery (Compact 

Airborne Spectrographic Imager -CASI), that has a lower spatial resolution (1m) but 

higher spectral resolution (23 bands) imagery data, for larger scale mapping of an 

intertidal seagrass environment. This chapter investigates the capability of an airborne 

hyperspectral imagery to accurately mapping seagrass densities and macroalgae 

cover, to identify where hyperspectral imagery data may augment UAV capabilities. 



Additionally, benefits and challenges of airborne for large-scale seagrass intertidal 

mapping and monitoring for management practices are discussed.  

Chapter 5 evaluates satellite multispectral imagery (PlanetScope), that has a lower 

spatial resolution (3m) and a lower spectral resolution (8 bands), for large scale 

mapping of a seagrass-macroalgae environment. Additionally, this chapter 

investigates the potential of satellite imagery to monitor temporal (seasonal and 

interannual) change in seagrass and macroalgae cover for effective management 

practises. 

Chapter 6 discusses how these methods may combine to deliver a multiscale level 

mapping approach for monitoring and effective management practises and provides a 

synthesis of key findings, limitations, and future research of study to make 

recommendations to Natural England. 

  



Chapter 2: Remote Sensing Review 

 

2.1. Optical remote sensing  

Remote sensing refers to the "process of detecting and monitoring the physical 

characteristics of an area by measuring its reflected and emitted radiation at a 

distance” (USGS, 2023). Information can be acquired via different platforms (e.g., 

satellite, plane, and Unoccupied Aerial Vehicle (UAV)), that have specific sensors 

attached, through which, detection or the measurement of electromagnetic radiation 

(light) reflected, emitted, or scattered by the targeted object of interest is captured 

(Richards, 1986). The acquisition of information through the visible to near infrared 

portion of the electromagnetic spectrum is referred to as optical remote sensing 

(remote sensing, hereafter) (Richards, 1986).  

Remote sensing platforms with mounted sensors are most commonly UAV, which are 

operated from the ground, space -borne satellites or occupied aeroplanes (Airborne) 

(Figure 2.1). The amount of information and imagery data that can be acquired, 

depends on: temporal resolution, the revisit time between consecutive image 

acquisitions; spatial resolution, the level of detail represented in the image, which is 

determined by sensor characteristics and flight height; radiometric resolution, which 

represents the ability of a sensor to discriminate small changes in detected energy, 

thus between different levels of brightness or intensity in the electromagnetic 

spectrum, usually defined  by whether it is 8-bit, 12-bit or 16-bit; and spectral 

resolution, which refers to the widths and number of spectral bands, which determines 

the level of detail in spectral information (Richards, 2013). Combinations of and 

compromises between these four sensor specifications ultimately determines the level 

of information attained and trade-offs are typically required. For example, an airborne 

hyperspectral sensor may capture data in hundreds of narrow spectral bands, which 

may enable detailed discrimination between vegetation types (e.g., algae and 

seagrass) (Garono et al., 2004; Vahtmäe et al., 2021), whereas a multispectral sensor, 

which consist of a few spectral bands may offer broader spectral bands with less 

detailed information but in turn greater spatial coverage area (Figure 2.1). Sensor and 

platform selection can have different implications for ecosystem habitat mapping and 

monitoring. These can include but are not limited to: 1) mapping of ecosystems and 



habitats at spatially large scale and in inaccessible areas; 2) acquisition of ecosystem 

features and complexities through for example higher spatial and spectral resolution 

sensors, enabling the characterisation of habitats; and 3) assessment of habitat 

dynamics through mapping and monitoring from detailed to broad-scale level mapping 

(e.g., Dekker et al., 2006; Hobley et al., 2021; Zoffoli et al., 2021). 

 

Figure 2.1. Varying spatial resolution (from high to low) of an intertidal seagrass environment 

taken with different platforms and sensors including an Unoccupied Aerial Vehicle (UAV), 

airborne and satellite imagery. 

 

Ecosystem’s constituent habitats can be complex and dynamic in their composition. 

These complexities and dynamics can occur from small-scale habitat patches to large-

scale habitats to entire ecosystems (Phinn et al., 2018a). Often, with traditional 

methods, such dynamics and detailed information, critical to ecosystem management, 



can be difficult to capture. By utilising appropriate platforms and sensors with optimal 

spatial, spectral, and temporal resolution, remote sensing derived habitat maps can 

provide valuable information to better understand habitat spatial complexities and 

dynamics (Hossain et al., 2015).  

Once imagery has been collected, distinguishing characteristics in remote sensing 

derived data sets, classification or categorization of different features is required. 

Distinct classes or categories must be assigned to habitat features (e.g., vegetation, 

non-vegetation, water etc.). This process is performed during the analysis stage by 

utilising appropriate classification methods, an analytical approach where spectral 

data are classified, or grouped, according to similar characteristics that lead to the 

production of maps which represent habitats. The accuracy of classified habitat maps 

and their representation of the habitats and their attributes being investigated (e.g., 

complexity, patchiness) depends primarily on the spatial and spectral resolution of 

imagery data and the classification method applied to delineate the required 

information (Richards, 2022). For example, in complex habitats, where ecologically 

different features occur, i.e., seagrass and macroalgae, higher spatial resolution 

imagery may permit class identification to species level (Reshitnyk et al., 2014). Such 

detailed information can get lost in lower spatial resolution imagery, as increasing pixel 

size can lead to mixed pixels that contain multiple classes (Richards, 2013). However, 

with less habitat complexity, such as homogeneous seagrass areas, high spatial 

resolution imagery may not be required as relevant, unless other habitat factors such 

as seagrass patchiness and configuration are important.  

 

2.1.1. Classification methods 

Over the years, changes in remote sensing and sensor technologies have led to the 

development of new methodologies for generating classified habitat maps, improving 

the information on features that can be derived from remotely sensed imagery. During 

the early years of image analysis and classification, when spatial resolution of remotely 

sensed imagery was low (e.g., Landsat in the 1970s, 30m pixels), hard classification 

techniques, where pixels are categorised into distinct, well-defined classes based on 

their spectral characteristics, was the prime methodology (e.g., Weismiller et al., 1977; 

Ward et al., 1997). The utilisation of such hard classifiers may be effective where 



seagrass mapping includes well-defined and distinct classes (Richards, 2022). For 

example, they may suffice for mapping homogeneous seagrass environments, where 

pixels contain distinct features (O’Neil & Costa, 2013). Although hard classifiers have 

been maintained as a traditional approach and are still needed, single pixels that 

contain multiple feature classes are harder to analyse, e.g., signals from seagrass, 

algae, shells cannot be disaggregated, making it challenging to acquire accurate 

information about the presence of the actual features within the pixel. To deal with 

such mixed pixels, fuzzy techniques, such as sub-pixel classification methods (e.g., 

Linear Spectral Unmixing (LSU)), which utilises the spectral information to estimate 

the proportion of each class within the pixel, can be applied (Keshava & Mustard, 2002; 

Quintano et al., 2012) (Figure 2.2).  

Image classification methods and their effectiveness are especially influenced by 

spatial resolution. Pixel-based classification, whereby individual pixels are labelled into 

a specific class based on their spectral characteristics (e.g., Maximum Likelihood 

classifier), are often sensitive to spatial resolution (Richards, 1986; Foody et al., 1992). 

For example, higher spatial resolution imagery enables more detailed spectral 

information. Pixel-based classifiers were among the early approaches in remote 

sensing classification (e.g., Macleod & Congalton, 1998). With increasing higher 

spatial resolution imagery available through the 2000s, the concept of image 

segmentation and Object-Based Image Analysis (OBIA), whereby geographical 

objects are analysed instead of individual pixels, was introduced. For instance, Object-

based image analysis groups pixels into objects or segments by considering their 

spectral, spatial, and contextual properties (Blaschke, 2010; Lyons et al., 2012; 

Roelfsema, et al., 2013) (Figure 2.2). 

 

 

 

 

 

 

 



 

 

Figure 2.2. Schematic illustration of the evolution of classification methods used for remote 

sensing image classification. 

 

Two main computational approaches are used for mapping. Supervised classification 

is a machine learning approach whereby a model is trained on labelled data, e.g., 

habitat classes are assigned to pixels, and unsupervised classification, where a model 

investigates patterns and creates categories or classes without predefined labels. 

Unsupervised classification can be very useful for a quick and less sophisticated, initial 

exploration of unknown habitat areas (Richards, 2013, 2022). For example, to 

investigate seagrass presence/absence and patches within an unknown area. 

However, in habitats with spectral distinct complex vegetation types, such as the 

intertidal seagrass-macroalgae environment investigated in this study, this approach 

may be challenging. A supervised classification method is more appropriate to account 

for varying vegetation features and to distinguish between these, thus enabling more 

accurate habitat mapping (Hossain et al., 2015).   

Two main types of classifiers that differ in their underlying assumptions in statistical 

distribution are commonly used for image analysis. Parametric classifiers, such as 

Maximum Likelihood (ML) and Minimum Distance (MD) classifiers, assume a normal 

(Gaussian) distribution with no outliers or skewed data, and are also among the first 

classifiers applied in the early days of remote sensing analysis (Wacker & Landgrebe, 

1972; Richards, 1986). Although parametric classifiers continue to be used and have 



especially gained popularity for pixel-based image analysis, their limitations in 

handling data that do not conform to the assumptions of normal distribution, led to the 

development of non-parametric classifiers, non-parametric classifiers can handle non-

normal or complex distributions (Richards, 2022). For example, in the intertidal 

environment in this study the wetness of habitat classes e.g., dry seagrass/ wet 

seagrass, could result in bimodal distribution patterns within one ecologically coherent 

class.  With advancing technology, computing techniques, and increasing availability 

of higher spatial and spectral resolution imagery data, non-parametric classifiers 

based on machine learning algorithms such as Support Vector Machine (SVM) were 

developed (Cortes & Vapnik, 1995; Sheykhmousa et al., 2020). SVM gained increased 

prominence due to its effectiveness in handling non-linear data and its application for 

pixel-based and object-based classification tasks (Pal, 2005; Mountrakis et al., 2011). 

The application of non-parametric methods for remote sensing classification continued 

to evolve, with machine learning ensemble methods, such as Random Forest 

(Breiman, 2001), gaining popularity due to its versatile applications in handling 

complex and high dimensional imagery data (e.g., hyperspectral data) (Pal, 2005; 

Belgiu & Drăgu, 2016). In parallel, a significant advancement in image classification 

analysis was made through the development of Deep Learning techniques (e.g., 

Convolutional Neural Networks; CNNs), which has improved the potential and 

capability of automated image classifications in remote sensing (Maggiori et al., 2017; 

Hobley et al., 2021; Kattenborn et al., 2021).  

While  many techniques are available for remote sensing image classification, today, 

choosing the appropriate method requires consideration of many factors, including the: 

(1) objectives of project, applications and utilisation of end product; (2) required level 

of accuracy and spatial extent; (3) platform, sensors and data characteristics (i.e., 

spectral/spatial/temporal resolution; data dimensionality i.e., 

multispectral/hyperspectral); (4) availability of training data; (5) complexity of habitat 

homogeneous/heterogeneous; (6) distribution assumptions (parametric/non-

parametric); (7) computational resources i.e., processing time; hardware and software 

limitations; (8) Budget and resources. As such, different methods have their strengths 

and weaknesses depending on the purpose and the application of interest (Table 2.1). 



Table 2.1. Overview of classifiers used for image classification in remote sensing including description of each method, strengths, weaknesses, 

and fitness for purpose for mapping complex seagrass environments. 

Classifier Description Strength Weakness Fit for purpose  
 

Unsupervised  
 

    

 
K-means clustering 

Pixels are grouped into a class, 
based on their spectral values, 
whereby the dataset is partitioned 
into specified number of clusters 
by assigning each data point to the 
nearest mean (centroid); is 
considered as non-parametric, as 
it, instead, uses an interactive 
algorithm /approach to group data 
points based on similar spectral 
features (Hartigan & Wong, 1979). 

Simplicity and speed to explore and 
identify initial spatial patterns; 
computationally efficient; no ground data 
required. 

Due to lack of training data may lead to 
inaccurate results; does not provide class labels, 
thus may lead to misinterpretation of identified 
patterns if areas and potential classes of 
imagery are not known. 

Initial exploration of seagrass habitats; 
user friendly and low computational 
demands, which makes it accessible 
to managers for rapid habitat mapping.  
 

 
Supervised 

    

 
Maximum-Likelihood 
(ML) 

 
Parametric classifier that assumes 
that the distribution of class is 
normally distributed (Gaussian) 
and calculates the probability that 
a pixel belongs to a given class 
based on their spectral variance 
and covariance (Foody et al., 
1992; Richards, 1986). 

 
Performs very well when assumptions of 
normal distribution are met; suitable for 
multispectral imagery data; simple 
implementation; no extensive and 
complex parameter tuning required; well 
established for the application in remote 
sensing classification. 

 
Sensitive to outliers and non-normal distributed 
data; sensitive to small training sample size; 
depends on high quality and accurate training 
data that represents the class categories well; 
does not handle mixed pixels well and performs 
best with pure pixels. 

 
Beneficial in homogeneous non-
complex seagrass habitats when using 
low spatial resolution imagery data; 
Can be useful in complex and 
heterogeneous seagrass habitats with 
very high spatial resolution imagery 
data; user friendly and low 
computational demands, which makes 
it accessible to managers for rapid 
habitat mapping. 
 

Spectral Unmixing (SU) A method used to extract 
information of the composition of 
mixed spectral signatures pixels, 
by estimating the fraction of the 
abundance of each endmember 
(cover material) within a pixel 
(Keshava & Mustard, 2002; 
Quintano et al., 2012).  
 

Can aid in identifying various 
materials/cover in each pixel thus 
enabling the handling of mixed pixels; 
can be used in combination with other 
remote sensing methods as a 
complementary methodology.  

Imagery with high variability in complex mixtures 
may lead to challenging identification of 
materials within each pixel; some spectral 
unmixing algorithms may be computationally 
extensive and expensive. 

Beneficial in low spatial resolution 
imagery data where mixed pixels 
contain seagrass and macroalgae to 
get accurate quantification of each 
class.  

Spectral Angle Mapper 
(SAM) 

SAM algorithm classifies pixels 
based on their spectral signatures.  
It identifies spectral similarity of 
pixels by calculating the angle 

Highly effective for hyperspectral data; 
no assumption of class distribution 
required, non-parametric approach. 

Sensitive to unbalanced and low training sample 
size; sensitive to spectral variation due to noise 
leading to inaccurate classification results; 
sensitive to mixed pixels and works best on pure 

Beneficial where spatial resolution of 
imagery data allows distinct seagrass 
and macroalgae pixels with well-
defined spectral characteristics.   



between a reference spectrum 
(end member) and the spectra of 
the pixel in an image (Richards, 
1986; Rossiter et al., 2020). 

pixels that represent distinct spectral signature; 
depending on the size of scene and spatial 
resolution it may be computationally extensive 
when working on large datasets; sensitive to 
changes in lightning conditions and variation in 
illumination leading to misclassification thus 
lower accuracy; not suitable for temporal change 
detection. 
 
 

 

Support Vector 
Machine 

A binary classifier that identifies a 
hyperplane divides the data into 
two classes, whereby only those 
that lie on defined margins 
(support vectors) are used. Its 
focus is on finding the optimal 
hyperplane while maximising the 
margin between classes thus 
minimising misclassification 
(Mountrakis et al., 2011; Pal, 
2005). 
 
 

Non-parametric; Can handle complex 
and high dimensional data e.g., 
hyperspectral imagery data; insensitive 
to small sampling data; robust to noise 
and outliers due to support vectors. 

SVM can be computationally intense; sensitive 
to highly imbalanced training samples; 
parameter tuning can be time extensive and 
might impact results if chosen inappropriately. 
 

Beneficial for complex intertidal 
seagrass-macroalgae habitats, which 
can be complex in their spectral 
reflectance thus often not conform to 
normal distribution. 

Random Forest (RF) Ensemble learning method based 
on decision trees whereby 
decision trees are combined to 
make robust predictive models 
using label training data to create 
classification maps (Breiman, 
2001; Pal, 2005). 

Non-parametric; can handle complex 
and high dimensional data e.g., 
hyperspectral and multispectral imagery 
data; provides reliable and robust 
predictions due to ensemble 
methodology; insensitive to unbalanced 
and small sampling data; robust to noise 
and outliers; well -suited for change 
detection applications. 

While less computationally intensive in 
comparison to SVM, depending on the data set it 
may still pose challenges with large memory, 
especially when dealing with large ensembles or 
deep trees; hyperparameter tuning needs to be 
performed carefully to achieve optimal 
performance and accuracy. 

Beneficial for complex intertidal 
seagrass-macroalgae habitats, which 
can be complex in their spectral 
reflectance thus often not conform to 
normal distribution. Suitable for 
temporal seagrass mapping and 
monitoring.  

Deep learning  
 

    

Convolutional Neural 
Network (CNN) 

A deep learning method trained to 
automatically learn and extract 
spatial data within imagery for 
remote sensing classification 
(Kattenborn et al., 2021; Maggiori 
et al., 2017). 
 

Automatic approach thus reduced 
manual handling; can handle complex 
and high dimensional data e.g., 
hyperspectral, and multispectral imagery 
data. 

Requires a large amount of labelled data for 
effect training; training CNNs can be highly 
computationally extensive and time consuming 
and requires access to powerful hardware which 
may be expensive; does not perform well on 
small data sets. 

If well trained and reliable, automated 
systems can be highly useful, 
practical, and cost-effective for 
intertidal seagrass monitoring.  



2.2. Applications of optical remote sensing in seagrass habitats 

Use of optical remote sensing for seagrass mapping can be traced back to the late 

1970s and early 1980s (Ackleson & Klemas, 1987), and has increased gradually with 

the advances in remote sensing technology and accessibility, especially in the past 

decade (Hossain et al., 2015; Veettil et al., 2020; Rowan & Kalacska, 2021). Remote 

sensing has been applied to better understand seagrass ecology at spatial and 

temporal scales. Studies have successfully created remote sensing derived seagrass 

maps to assess distribution and extent in both species diverse (Kovacs et al., 2018; 

Traganos & Reinartz, 2018) and homogeneous seagrass meadows (Topouzelis et al., 

2018). They have measured seagrass densities (Lyons et al., 2011) assess seagrass 

health by identifying and assessing disease outbreaks and their distributions (Yang et 

al., 2023); measure seagrass biomass and make productivity assessments (Phinn et 

al., 2008); describe seagrass growth patterns both seasonally and interannually 

(Lyons et al., 2013); evaluate the success of various restoration and rehabilitation 

methods via the creation of  pre- and post-habitat maps (Ventura et al., 2022); and 

finally to assess temporal change of seagrass  to evaluate habitat declines or 

increases (e.g., Traganos et al., 2018; Zoffoli et al., 2021). 

Multiple optical remote sensing technologies and methods for seagrass habitat 

mapping have been applied successfully, but these studies have mostly focused on 

tropical regions, due to their clear, calm waters (Hossain et al., 2015). Fewer studies 

are available that have investigated the application of optical remote sensing methods 

in temperate seagrass habitats. This is mainly due to factors challenging to optical 

methods, such as water turbidity and cloud cover, which limits the detection of 

seagrass habitats (Barillé et al., 2010; Armitage et al., 2013; Dierssen et al., 2019). 

Nevertheless, studies have demonstrated the application of optical remote sensing to 

assess spatial distribution and spatiotemporal changes in temperate seagrass habitats 

(Ward et al., 1997; O’Neill & Costa, 2013; Hogrefe et al., 2014; Wilson et al., 2019). 

These applications have particularly increased in the past decade and more so over 

the past few years with increasing awareness for the value of seagrass habitats and 

need for their protection and need for effective management approaches (Table 2.2). 

In parallel, new and improved platforms with higher spatial, spectral and temporal 

resolution imagery have been developed using satellite, airborne and UAV techniques, 

which offer low-cost and increasingly open access spatiotemporal data, that have led 



to a surge in applications to temperate seagrass mapping and monitoring. However, 

notably the majority of these studies have been applied to subtidal seagrass 

environments, with lower numbers of studies in intertidal seagrass. There is a 

significant lack of studies available for the UK (Table 2.2). 

 

2.3. Application of optical remote sensing in temperate seagrass habitats  

Investigation of the potential of remote sensing technologies for temperate seagrass 

habitat mapping and monitoring began with the utilisation of Landsat imagery in the 

1980’s when Ackelson and Klemas (1987) showed that two different Landsat sensors 

(Multispectral Sensor (MSS) and Thematic Mapper (TM) where similarly effective in 

detecting submerged seagrass habitat in the USA, and some other studies 

demonstrated the potential of Landsat (TM ) for monitoring and change detection 

(Macleod & Congalton, 1998; Lundén & Gullström, 2003). The utilisation of Landsat 

satellite imagery has been used especially for baseline and broad scale mapping and 

long-term series analysis (Hogrefe et al., 2014; Leblanc et al., 2021; Zoffoli et al., 

2021), mainly due to its low spatial resolution for accurate mapping but its highly 

relevant historic data archive since 1972 for long-term change detection.  For instance, 

Leblanc et al. (2021), used Landsat time-series data to evaluate the distribution and 

abundance of subtidal Zostera marina from 1984 to 1917 elucidating the dynamics in 

Z. marina habitats in north-eastern New Brunswick, Canada. The benefit of Landsat 

data lies in its accessibility at no cost which has the potential for cost-effective 

seagrass mapping and monitoring. 

The launch of Sentinel-2 in 2015, provided easy access to satellite imagery with higher 

spatial resolution (10-20m) and increased revisit time (≤ 5 days) became available at 

no cost for download and increased the potential for more accurate seagrass habitat 

mapping and monitoring (Kovacs et al., 2018; Wicaksono et al., 2021). The higher 

temporal resolution may have advantages for intertidal seagrass, due to the increased 

probability of capturing seagrass environments at low tide when exposed. This is 

evident in the surge in applications of Sentinel-2 data to intertidal seagrass mapping 

(Zoffoli et al., 2021; Haro et al., 2022; Benmokhtar et al., 2023). Other cost-effective 

satellite imagery that provides higher spatial resolution includes, for example, 

PlanetScope (3m) with a daily revisit time. To date, this has only been applied in 



tropical and Mediterranean seagrass habitats (e.g., Traganos & Reinartz, 2018; Astuty 

& Wicaksono, 2019; Lee et al., 2023), not in temperate seagrass environments (Table 

2.2.). For instance, Wicaksono and Lizuardo (2018) mapped five seagrass species 

classes with a 74% overall map accuracy, revealing the potential of PlanetScope for 

a multispecies seagrass environment in the tropics.  In temperate environments, such 

accurate habitat mapping using multispectral satellite imagery, where, seagrass could 

be segregated from algae, has mainly applied using commercially available imagery 

to date that consist of higher spatial resolution (e.g., WorldView2; 1.8m spatial 

resolution) (Wilson et al., 2019). 

Although, the ability to discriminate between different vegetative taxa (e.g., Zostera 

spp. and macroalgae) has been proven using higher spectral resolution imagery, 

studies that have used hyperspectral imagery (satellite and airborne) to map 

multispecies environments are limited for temperate seagrass (Levings et al., 1999;  

O’Neill et al., 2011) , with only one study available that has used hyperspectral imagery 

for intertidal seagrass mapping (Garono et al., 2004).  

While spectral resolution can help to successfully discriminate between different 

vegetation types, ultra-high spatial resolution (sub-cm level) imagery can also prove 

beneficial for accurate and detailed mapping and enable the discrimination at 

taxonomic levels. Advances in technology and accessibility of Unoccupied Aerial 

Vehicles (UAVs), which provide very high spatial resolutions, for example, have led to 

a surge in the use of remote sensing for mapping intertidal seagrass habitats (Table 

2.2). UAVs have great potential for intertidal seagrass mapping due to their flexibility 

in acquiring imagery data in ideal conditions such as at low tide and under cloud cover. 

One of the earliest studies was conducted by Duffy et al. (2018), that evaluated the 

application of light weight consumer-grade UAV to map the distribution for a Zostera 

noltii environment. While this study and following studies by Nahirnick et al. (2019a, 

b) also highlighted limitations of using UAV in temperate seagrass (e.g., limited in large 

scale mapping, logistical matters), its applications for mapping and monitoring for 

intertidal and subtidal temperate seagrass mapping continued to develop. However, 

applications of UAVs for temperate seagrass began with mainly RGB-cameras to map 

homogeneous seagrass habitats but transitioned into utilising multispectral camera 

UAVs in more complex and heterogeneous seagrass habitats, which started to 

emerge only recently in the early 2020s (Table 2.2.).  



Overall, the literature indicates a lack of studies of temperate seagrass habitats across 

all platforms and sensors. This gap is particularly noted for multispectral satellite and 

hyperspectral satellite/airborne remote sensing (Table 2.2). Large-scale habitat 

mapping and monitoring studies are scarce and close to non-existent for intertidal 

seagrass environments across temperate regions. Moreover, the majority of studies 

have been conducted in subtidal seagrass in the USA and in Canada (Table 2.2). 

Some studies have also utilised remote sensing including, Satellite, airborne and UAV 

imagery in intertidal seagrass environment in southern Europe (e.g., France, Spain, 

Portugal) (Sousa et al., 2019; James et al., 2020; Haro et al., 2022) and New Zealand 

(Martin et al., 2020; Chand & Bollard, 2021), but only two studies were found for 

seagrass habitat around the UK, of which both have used UAV technology (Duffy et 

al., 2018; Hobley et al., 2021), with no studies available that have used satellite and 

airborne multispectral and hyperspectral technology for large-scale habitat mapping in 

UK’s coastal waters. Investigating and understanding the potential and limitations of 

remote sensing applications in UK’s intertidal coastal areas is critical, as methods from 

other temperate regions may not be suitable and comparable. Mainly, due to 

differences in biological, environmental, and physical properties such as, benthic 

substrate and species composition, e.g., different vegetation taxa have different 

reflectance spectra. Additionally, weather patterns may be different in coastal regions 

in the UK, which are commonly prone to high cloud cover and frequent precipitation 

throughout the year (Bergsma & Almar, 2020), in comparison to, for example southern 

Europe and New Zealand. Although there is a growing recognition in the application 

of remote sensing for seagrass management and conservation in the UK (Duffy et al., 

2018; Hobley et al., 2021; Unsworth et al., 2022), robust and effective monitoring 

programmes that utilise remote sensing are still lacking significantly, both at local and 

national levels (Table 2.2). Efforts to address the potential, challenges, and 

improvements of remote sensing application in UKs seagrass habitats may support 

and initiate effective management practices and programmes. 

 

 



Table 2.2. A summary of available studies that have used optical remote sensing applications in temperate seagrass habitats. S=Subtidal, I=Intertidal. 

  
Year 

 
Location 

 
Platform and 

Sensor 
 

 
Application 

 
Species 

 
Methods 

 
Reference 
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1987 USA Landsat MSS and 
TM  

Detection of submerged aquatic 
vegetation (SAV) 
 

Z. marina (S) Unsupervised clustering 
algorithm: CLUSTER (within 
ERDAS) 
 

(Ackleson & Klemas, 
1987) 

1998 USA Landsat TM 
 

Temporal mapping  Z. marina (S) ISODAT & 
Maximum Likelihood 
 

(Macleod & Congalton, 
1998) 

2003 Sweden Landsat TM 
 

Temporal mapping Z. marina (S) Discussed in (Baden et al., 2003)  (Lundén & Gullström, 
2003) 
 

2003 Sweden Polygon 
boundaries  
 

Temporal mapping  
 

Z. marina (S) Polygon boundaries using GPS  (Baden et al., 2003) 

2014 Canada WorldView2  Mapping the distribution of SAV Z. marina; green algae 
(Ulva spp.); brown algae 
(Fucus spp.) (S) 
 

Maximum Likelihood (Reshitnyk et al., 2014) 

2014 USA Landsat TM & 
ETM+  

Spatial extent and distribution 
mapping; baseline mapping 
 

Z. marina (S) Maximum Likelihood (Hogrefe et al., 2014) 

2015 Korea Landsat TM and 
ETM; Aster; Spot 
4; Kompsat-2 
 

Temporal mapping   Z. marina (S) Mahalanobis Distance  (K. Kim et al., 2015) 

2019 Canada SPOT 6/7  Spatial extent and distribution 
mapping  

Z. marina (S); seaweed (S, 
I) 

ISOCLUST;  
Maximum Likelihood   
 

(K. L. Wilson et al., 2019) 

2020 Canada WorldView2  Spatial extent mapping; 
presence/absence  

Z. marina (S) Maximum Likelihood; Random 
Forest 
 

(Forsey et al., 2020) 

2020 Germany Aerial 
Photography; 
Sentinel-2; 
Landsat OLI 
 

Spatial density mapping; temporal 
mapping  

Z.noltei (I) Decision trees (Kohlus et al., 2020) 

2020 France 
&Spain 

Sentinel-2 Percent cover and biomass 
mapping; temporal mapping 
(seasonal)  
 

Z. noltei (I) - (Zoffoli et al., 2020) 

2021 Estonia CASI and 
Sentinel-2  

Percent cover and biomass 
mapping 
 

Z. marina; green algae; 
brown algae (S) 

Spectral Angle Mapper  (Vahtmäe et al., 2021) 



2021 France Landsat TM & 
TM+; SPOT1-5; 
Sentinel-2 
 

Temporal mapping  Z. noltii (I) NA? (Zoffoli et al., 2021) 

2021 Canada Landsat TM & 
ETM+; 8-OLI 

Temporal mapping Z. marina (S) Automatic Adaptive Signature 
Generalization  

(Leblanc et al., 2021) 

2022 Spain Sentinel-2 Temporal biomass mapping;  Zostera sp.; Caulerpa sp.; 
green algae (I) 
 

Random Forest  (Haro et al., 2022) 

2023 Morocco Sentinel-2; 
Orthophotography 
mosaics  
 

Temporal mapping  Z. noltei; algae (I) OBIA; Random Forest (Benmokhtar et al., 2023) 

2023 Greenland Sentinel-2 Spatial extent and distribution 
mapping 

Z. marina; algae 
(Ascophyllum nodosum, 
and Fucus spp); Kelp 
(Saccharina latissima and 
Agarum clathratum) (S) 
 

NDVI (Carlson et al., 2023) 
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1999 Canada CASI  Spatial extent and distribution 
mapping 
 

Z. marina; algae (S) Polygon boundaries (Levings et al., 1999) 

2004 USA CASI Spatial extent and distribution 
mapping 
 

Z. marina; green algae; 
brown algae (I) 

ISODTA; 
Maximum Likelihood 

(Garono et al., 2004) 

2011 Canada AISA  In situ hyperspectral measurement 
of spectral characteristics; Spatial 
extent and distribution mapping 

Z. marina; green algae 
(Ulva fenestra and 
Enteromorpha spp.) (S) 
  

Maximum Likelihood  (O’Neill et al., 2011) 

2013 Canada AISA; IKONOS  Spatial extent and distribution 
mapping 
 

Z. marina (S) Maximum Likelihood (O’Neill & Costa, 2013) 

2021 Finland CASI; 
Sentinel-2 

Spatial extent and distribution 
mapping 
 

Z. marina; brown algae; 
green algae (S) 

Minimum Distance; Spectral Angle 
Mapper  

(Vahtmäe et al., 2021) 

 2006 USA Aerial Digital 
Camera: RGB-
NIR  
 

Spatial extent and distribution 
mapping  
 

Z. marina, Ruppia 
marítima; algae (Ulva  
lactuca) (S) 

Image segmentation/object-
oriented  

(Lathrop et al., 2006) 
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2016 USA Fixed-Wing: RGB  Spatial extent and distribution 
mapping 
 

Z. marina, Halodule 
wrightii, Ruppia maritima 
(S) 

Linear Spectral Unmixing  (Uhrin & Townsend, 
2016) 

2018  UK (Wales) UAV: RGB  Spatial extent and distribution 
mapping 

Z. noltii (I) K-means clustering; Support 
Vector machine; Object-Based 
Image Analysis  
 

(Duffy et al., 2018) 



2019  Canada UAV: RGB Spatial extent and distribution 
mapping 
 

Z. marina (S)  Object-Based Image Analysis (Nahirnick et al., 2019b) 

2019  Canada UAV: RGB Spatial extent and distribution 
mapping 
 

Z. marina (S) Object-Based Image Analysis (Nahirnick, et al., 2019a) 

2019 Portugal UAV: RGB  
 

Spatial extent and distribution 
mapping; temporal mapping 

Z. noltei (I) Polygons created from mosaics 
and areal extend calculated in 
ArcGIS 
 

(Sousa et al., 2019) 

2020 New Zealand UAV: RGB-RE- 
NIR 
 

Temporal mapping (seasonal)  Z. mulleri (I) Random Forest (Martin et al., 2020) 

2020 France UAV: RGB; RGB-
RE-NIR 

Spatial extent and distribution 
mapping 
 

Z. marina; algae (I) Maximum Likelihood  (James et al., 2020) 

2021 UK, 
Northumberl
and, 
Lindisfarne 

UAV: RGB; RGB-
RE-NIR 

Spatial extent and distribution 
mapping  

Z. noltii, Z. angustifolia; 
algae (I) 

Fully Convolution Neural Network 
(FCNN); Object-Based Image 
Analysis 

(Hobley et al., 2021) 

2021 Canada UAV: RGB-RE-
NIR; Sentinel-2  
 

Spatial extent and distribution 
mapping  

Z. marina; algae (S) Random Forest (Gallant et al., 2021) 

2021 New Zealand UAV: RGB-RE-
NIR 

Spatial extent and distribution 
mapping  

Z. mulleri (I) Maximum Likelihood; Object-
Based Image Analysis  

(Chand & Bollard, 2021) 

2021 Spain UAV: 10 spectral 
bands  

Spatial extent and distribution 
mapping 

Z. noltei, Cymodocea 
nodosa; algae (Ulva sp.); 
saltmarsh (Spartina 
maritima) (S, I) 
 

Maximum Likelihood; Minimum 
Distance; Spectral Angle 
Classifier  

(Román et al., 2021) 

2021 Japan UAV: RGB  Spatial extent and distribution 
mapping; temporal mapping 
(seasonal) 
 

Z. marina, Z. caulescens, 
and Z. japonica (S, I) 

Feature Pyramid Network (FPN) (Chen & Sasaki, 2021) 

2022 Canada UAV RGB-RE-
NIR & 10 spectral 
bands) 
 

Spatial extent and distribution 
mapping 

Z. marina (S) Random Forest  (Leblon et al., 2022) 

2022 Denmark UAV: RGB Spatial extent and distribution 
mapping; temporal mapping  

Z. marina; algae (F. 
vesculosus) (S) 

Object-Based Image Analysis; 
Support vector Machine 
 

(Svane et al., 2022) 

2023 USA & 
Canada 

UAV: RGB; RGB-
RE-NIR 

Detection and spatial distribution 
mapping of disease  

Z. marina (S) Object oriented image 
segmentation 
 

(Yang et al., 2023) 

2023 Canada UAV: RGB Spatial extent and distribution 
mapping; temporal mapping 
(seasonal) 

Z. marina; macroalgae (S) Random Forest (Prystay et al., 2023) 
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Chapter 3: Evaluating multispectral UAV imagery for mapping a 

multispecies intertidal seagrass environment 

 

3.1. Introduction 

In recent years Unoccupied Aerial Vehicles (UAV) have gained increased attention for 

application in seagrass habitat mapping and monitoring (e.g., Ventura et al., 2018; 

Yang et al., 2020; Price et al., 2022). Their utilisation has been successful in intertidal 

(Duffy et al., 2018; Yang et al., 2023) and subtidal (Nahirnick et al., 2019a,b; Prystay 

et al., 2023) seagrass environments, since they offer affordable ways of acquiring very 

high resolution images and fill important gaps in remote sensing capability in 

temporally dynamic and complex environments with a potential to revolutionise the 

toolbox of coastal managers (Doukari et al., 2021; Bremner et al., 2023). 

Specific benefits of UAVs in comparison to other optical remote sensing technology ( 

e.g. satellite imagery) for monitoring programmes include: (1) very high spatial 

resolution, which increases ability to capture detailed features in imagery permitting 

identification of seagrass species and other benthic organisms (Duffy et al., 2018; 

James et al., 2020); (2) control of temporal resolution as appropriate weather 

conditions for image acquisitions can be chosen; (3) coverage of areas inaccessible 

on the ground; (4) relatively small, portable and user-friendly; (5) customised and 

repeatable flight planning is possible as flight paths can be saved making data 

acquisition reproducible to enable repetitive inventories, relevant to monitoring 

programmes (Nahirnick et al., 2019a,b). To effectively map and monitor seagrass 

environments that contain multiple vegetation taxa with similar spectral properties (i.e., 

Zostera spp. and green macroalgae), higher spectral resolution sensors are required. 

Such sensors may enable discrimination and permit accurate habitat mapping (Davies 

et al., 2023). 

The vulnerability of different seagrass species to threats, and their response to 

environmental changes can be different, such as varying tolerance thresholds to 

temperature fluctuations and nutrient levels, impacting survival to varying degrees 

(Massa et al., 2009; Grech et al., 2012; La Nafie et al., 2012; Kaldy, 2014). Additionally, 

seagrass species may differ in their provision of ecosystem services and functioning 

such as, for example, efficiency in carbon storage (Postlethwaite et al., 2018; Sousa 

et al., 2019), their suitability as a habitat for many threatened seagrass dependent 
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species and commercially important fish species (Hughes et al., 2009; Bertelli & 

Unsworth, 2014). The accurate identification of seagrass and spatial distribution at 

species level is imperative to coastal managers for informed decision-making in 

prioritising areas of protection. It will enable effective consideration of the vulnerability 

of seagrass species to threats and decline to achieve species-specific targeted 

management and conservation goals (Wilson et al., 2005). 

In temperate seagrass meadows, most studies to date have used consumer grade 

UAVs with either limited spectral resolutions, for example, simple red-green-blue 

(RGB) or 5-band multispectral cameras (RGB, red edge, near infrared). These have 

successfully mapped monospecific seagrass habitats, with a focus on 

presence/absence and/or density of seagrass cover (Duffy et al., 2018; Martin et al., 

2020; Chand & Bollard, 2021; Svane et al., 2022), but few have disaggregated more 

complex vegetative habitats (for example, Hobley et al., 2021). Although some studies 

have also used multispectral UAV cameras to discriminate between vegetation taxa 

(i.e., seagrass and macroalgae) in temperate intertidal areas, these have limitations. 

For example, Román et al. (2021) used a MicaSense RedEdge-MX dual 10-band 

multispectral camera to map the only presence of Zostera noltii in the intertidal area, 

and the seagrass species Cymodocea nodosa and green macroalgae in the subtidal 

area (submerged), but not to distinguish co-occurring and mixed seagrass species. In 

contrast, Hobley et al. (2021), used a MicaSense RedEdge 3 multispectral camera, 

and successfully mapped and discriminated algal species in a multispecies intertidal 

seagrass environment, but no discrimination was made between seagrass species. In 

addition, available studies have used computationally intensive analysis (e.g., Deep 

Learning; Hobley et al., 2021), or required a high number of spectral bands (up to 10) 

to achieve accurate map outputs (Román et al., 2021). This requires cameras that 

need to be custom mounted on the UAV, increasing operational costs. With improving 

UAV technology, affordable off-the-shelf consumer grade UAVs that are equipped with 

multispectral cameras have recently become available, which may simplify logistics 

and analysis, and support management actions. However, their application and 

efficacy in mapping complex heterogeneous intertidal seagrass environments still 

require testing, to develop a foundation and guidelines for coastal managers. 

This Chapter aims at using an off-the shelf consumer grade multispectral camera UAV 

(Phantom 4 RTK multispectral), to create habitat maps of highly mixed and complex 

intertidal multispecies seagrass environment exposed at low tide. Objectives were: (1) 
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To use Maximum Likelihood classification method and  evaluate the ability of a 5-band 

(RGB, red edge, near infrared) multispectral UAV to discriminate between Zostera spp. 

(Zostera noltii and Zostera marina, respectively) and macroalgae on three transects 

with varying benthic community composition and compare to detailed field surveys; (2) 

To compare accuracy of classification using multispectral and RGB-only data, with a 

view to assessing the operational need for multispectral imagery for seagrass 

mapping; (3) To discuss field logistics and the operational potential of UAV utilisation 

for intertidal seagrass habitat monitoring, with a view to moving such methods towards 

operational use. 

 

3.2. Methods and Materials 

3.2.1. Study site  

The study was performed in the Causeway area within the Lindisfarne National Nature 

Reserve (LNNR) (Figure 3.1). The field site is an intertidal mudflat and sandflat, which 

is exposed during low tide and consists of sparse to dense Zostera spp. habitats. Two 

seagrass species, Zostera noltii and Zostera marina were present in the field.  Z. noltii 

is the dominant species and can form large dense meadows across the site. Other 

benthic substrates such as sand, lugwormcasts and a mixed complex of green 

opportunistic macroalgae (macroalgae hereafter) were also present.  
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Figure 3.1. a) Map showing LNNR (red boundary outline) indicating the field survey area (white 

square) in the Causeway area and b) the flight transects surveyed in this study. 

 

3.2.2. Equipment specifications 

A DJI Phantom 4 Multispectral Real-Time Kinematic (RTK) UAV was used to perform 

flight missions. The UAV has a camera attached that consists of five in-built 1/1.29” 

CMOS monochrome sensors with an image size of 1600 x 1300 pixels (2.02 MP) 

including the following bands: blue (B: 450 nm ± 16 nm), green (G: 560 nm ± 16 nm), 

red (R: 650 nm ± 16 nm), red edge (RE: 730 nm ± 16 nm), and near infrared (NIR: 840 

nm ± 26 nm). The aircraft includes a spectral sunlight sensor to detect the solar 

irradiance, which allows reflectance calibration of images.  Flight planning was 

conducted using the DJI Ground Station Pro app (v. 2.0.16) that enabled pre-

preparation of flight settings. A Labsphere SRT-99-100 Spectralon Diffuse Reflectance 
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Target calibration reflectance panel was used for radiometric calibration. The panel 

was calibrated, and the data provided by the Natural Environment Research Council 

Field Spectroscopy Facility (NERC FSF). Prior to flights, images of the reflectance 

panel were taken with the UAV camera. These images were then used in the imagery 

pre-processing stage. 

 

3.2.3. UAV and ground-truth survey 

Flight missions were conducted around seagrass peak biomass on 24th August 2021, 

during exposed low tide, to minimise the effect of surface water. Three 100m x 20m 

transects (2.000 m2) were surveyed, with each survey taking approximately 19 minutes 

flight time. Images were captured at 10m altitude with a 5.4mm/pixel spatial resolution, 

using a 70% side- and fore overlap, at an equal distance interval, within the 2D mode. 

An off-nadir angle, with a gimbal pitch of - 80° was used. The Geographic position of 

the camera was established using the fitted RTK GNSS corrected against a DJI D-RTK 

2 base station service. The location of each transect was selected based on species 

coverage and composition to capture widespread heterogeneous vegetated areas. 

Transects constituting the three different dominant vegetation types were then 

surveyed: Zostera noltii dominated (55°40’39’’N 1°51’29’’W), Zostera marina 

dominated (55°40’34’’N 1°51’19’’W), and macroalgae dominated (55°40’37’’N 

1°51’21’’W) (Zostera noltii transect, Zostera marina transect and Macroalgae transect, 

hereafter). 

To train and validate UAV images, photographs of 1m2 ground quadrats were taken 

immediately on the ground after flight missions. In total, 20 quadrat photographs were 

taken at predefined regular intervals every 10 metres across two rows within the flight 

transect, resulting in a total number of 60 quadrats across all transects (Figure 3.2a). 

The Google Pro app was used to locate approximate location of the pre-defined 

quadrats sampling points in the field. To enable geo location of quadrats for the 

purpose of georeferencing in the analysis stage, GPS positions of the north and south 

corner of each quadrat were taken using a Trimble Catalyst receiver with the Trimble 

Network RTK Precision service (± 0.2 cm accuracy) (Figure 3.2b).        
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Figure 3.2. a) Flight transect showing the pre-defined regular points for photo quadrats (n=20) 

across a flight transect. b) Image showing the quadrat and a Trimble receiver to record the 

northern corner of the quadrat sample. c) Photographs of a Zostera noltii, Zostera marina and 

Macroalgae dominated quadrats. 

        

3.2.4. Image pre-processing  

Agisoft Metashape (v. 1.7.3) was used to create orthomosaics using TIFF files acquired 

by the UAV. Prior to processing, the quality of images was checked. The image quality 

assessment is scaled between 0-1 (unitless), whereby the quality assessment value of 

1 corresponds to the highest possible image quality. Images were considered based 

on an image quality value of > 0.5, to facilitate the removal of blurred imagery (Agisoft, 

2021; Over et al., 2021). To calibrate reflectance, panel calibration data provided by 

NERC Field Spectroscopy Facility (FSF) was resampled to the sensor spectral bands 

by assigning calibrated reflectance to the five band wavelengths of UAV images using 

the Calibrate Reflectance tool. Prior to conducting the reflectance calibration, 

calibration images were masked so that only the reflectance panel area was marked. 

Sun sensor data was also used within the calibration to account for the sun’s position 

and irradiance and improve the accuracy of the reflectance calibration process. Photo 

alignment and sparse cloud generation were performed using, i) the highest accuracy 

setting, ii) a key point limit of 40.000, and iii) a zero-tie point limit. Afterwards low-quality 

tie points within the generated sparse cloud point were selected and removed by 

filtering by reconstruction uncertainty, projection uncertainty and projection error. Error 

was reduced by iteratively selecting and deleting points and re-optimizing the camera 

after each removal. This procedure was performed manually until the self-reported 
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standard error of unit weight (SEUW) was close to 1 (Over et al., 2021). Afterwards, a 

dense cloud was created, which was followed by the generation of a Digital Elevation 

Model (DEM). The DEM was used to create an orthomosaic consisting of reflectance 

values for each individual band, whereby pixel values were normalised ranging from 

0-1 (Chand and Bollard, 2021).  

 

3.2.5. Training data and image classification 

Quadrat photographs were aligned with the orthomosaic, using ArcGIS (v.10.6.1) to 

aid in the assignment of habitat classes. Afterwards, based on visual assessment of 

photo quadrats, Regions of Interest (ROIs/pixels) were created randomly within each 

quadrat area, using ENVI (v.5.6.2). Where certain benthic classes were not found 

sufficiently within the quadrat sampling areas, random samples were created outside 

of the quadrat. Pixels were assigned to the following benthic classes:  Zostera noltii, 

Zostera marina, macroalgae, bare ground, lugwormcasts, decomposing vegetation, 

anoxic sediment, shadow (i.e., from leaves or part of lugwormcasts), sunglint, and 

shells (Figure 3.3). The primary interest of this study was in mapping the vegetation 

species. Therefore, benthic substrates other than vegetation (i.e., bare ground, 

lugwormcasts, decomposing vegetation, anoxic sediment, shadow, sunglint, and 

shells) were compiled into two classes with similar spectral reflectance. Anoxic 

sediment, shadow, and dark areas within the decomposing vegetation substrate were 

compiled into the class, dark material/shadow, respectively. Sunglint, shells and white 

areas within the decomposing vegetation substrate were compiled into the class, 

sunglint/shells, respectively (Figure 3.3 e-h).  This resulted in a total of six benthic 

classes: Zostera noltii, Zostera marina, macroalgae, bare ground, dark 

material/shadow, sunglint/shells. The data were then split into two sets of 50% for 

each: 50% for training the classification algorithm, and the remaining 50% for validation 

of classified map output.  
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Figure 3.3. Images of benthic substrates initially identified in quadrat photographs before 

aggregation benthic classes in further analysis. a) Zostera noltii, b) Zostera marina, c) 

macroalgae, d) bare ground, e) lugwormcasts, f) shells, g) anoxic sediment h) decomposing 

vegetation. Arrows highlight examples of categories including dark material/shadow and 

sunglint/shells. 

 

The Jeffries-Matusita (J-M) distance measure, a widely used measure for spectral 

discrimination of vegetation types (Schmidt & Skidmore, 2003), was applied to assess 

the statistical separation between created ground-truth classes (Richards, 2013). The 

index value ranges between 0 and 2, whereby a 0 value indicates a complete overlap 

of spectral signatures and a value of 2 a complete separation of spectral signatures 

between two classes. To evaluate the strength of separation between classes, the 

following values were used: poor (0.0 < x < 1.0), moderate (1.0 < x < 1.9), good 

separability (1.9 < x < 2.0) (ENVI, 2022).  
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The Maximum Likelihood Classifier (MLC), a supervised pixel-based classification 

method, whereby spectral information of pixels is used to assign pixels to habitat 

classes, was used for benthic habitat classification. The classifier is based on the 

assumption that each training class follows a normal distribution. It considers the mean 

and covariance of the training class signature when assigning pixels to each class. The 

selection of this classifier was based on the dataset meeting normality assumptions 

and its proven success and reliability of application in seagrass habitats often 

outperforming other classifiers (e.g., Román et al., 2021). MLC is also widely available 

as a classifier in multiple commercial and open source geospatial and image 

processing software, increasing its availability for operational applications. To evaluate 

the operational need for accurate multi species habitat mapping, a comparison of the 

accuracy classification between an RGB and multispectral imagery was made. Here, 

the MLCs were trained on three bands (RGB) and five bands (RGB, red edge, near 

infrared), for each transect separately. 

 

3.2.6. Accuracy assessment   

A confusion matrix was generated to assess the accuracy of the classified habitat 

maps. The Overall Accuracy (OA) gives information about the percentage of the total 

number of pixels contained within the ground truth area that have been correctly 

classified by the classification. User,s(UA) and producer’s accuracy (PA) then permits 

the assessment of the accuracy of each individual class. The confusion matrix outputs 

will be used to identify the nature of misclassifications between habitat classes.  

 

3.3. Results  

3.3.1. Training data separability  

While spectral separation between all recorded benthic substrates was least within the 

blue band, benthic classes including bare ground, sunglint/shells, and dark matter/ 

shadow appeared to be separable from vegetation across nearly all bands. However, 

the multispectral sensor showed least separability between Zostera noltii, Zostera 

marina and macroalgae across the red-green-blue (RGB) bands, and a distinct 

separation between these vegetation types within the red edge (RE) and near infrared 

(NIR) bands (Figure 3.4). When considering all spectral bands to investigate spectral 
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separability of the training data of benthic classes, Jeffries-Matusita’s separability 

values indicated the lowest pair separation between the two seagrass species, Zostera 

noltii and Zostera marina, among all vegetation species, for all three transects (Table 

3.1). Respectively, the Z. noltii and Z. marina transects showed lower separability (J-

M value: 0.9 and 1.0, respectively), compared to the Macroalgae transect (J-M value: 

1.3). Where macroalgae was present in the image, i.e., Z. marina transect and 

Macroalgae transect, results indicated a moderate pair separation between the two 

seagrass species and macroalgae (J-M value: ranging between 1.4 and 1.7).  All 

pairwise separation values between the vegetation species and the other benthic 

categories indicated a moderate to good separability (Table 3.1). 

 

Table 3.1. Results of Jeffries – Matusita index, indicating spectral pair separability of benthic 

classes for:  Zostera noltii transect, Zostera marina transect, and Macroalgae transect. Where 

a class was not present in a transect to conduct pair separability, these were marked with NA 

= not available. 

 
Benthic pair classes 

 
Z. noltii 
transect 

  

 
Z. marina 
transect 

  

 
Macroalgae 

transect 
  

Z. noltii  
 
- 

 
Z. marina 0.9 1 1.3 

Z. noltii  - macroalgae NA 1.7 1.4 

Z. marina  
- macroalgae 

NA 1.6 1.7 

Z. noltii  
- dark material/shadow 

1.4 1.7 1.7 

macroalgae  
- dark material/shadow 

NA 1.8 1.9 

bare ground 
- dark material/shadow 

1.5 1.9 2 

Z. marina  
- dark material/shadow 

1.6 1.9 1.7 

bare ground   
- sunglint/shells 

1.8 2 2 

Z. noltii 
- bare ground 

1.8 2 2 

Z. marina 
- bare ground 

1.9 2 2 

Z. marina 
- sunglint/shells 

1.9 2 2 

sunglint/shells  
- dark material/shadow 

1.9 1.9 2 

Z. noltii 
- sunglint/shells 

2 2 2 

macroalgae  
- bare ground  

NA 2 2 
macroalgae  
  

- sunglint/shells NA 
  

2 
  

2 
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Figure 3.4. Spectral signatures of generated training data including all benthic classes across 

the multispectral bands for a) Zostera noltii transect b) Zostera marina transect, and c) 

Macroalgae transect. Boxplots show the median value (horizontal line), the interquartile range 

representing the dispersion of the data (size of the box), the upper and lower quartiles, and 

outliers. 
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3.3.2. Maximum-likelihood classification and accuracy assessment 

Using the Maximum Likelihood Classifier, detailed benthic maps were produced with 

very high Overall Accuracy (OA) when considering all five spectral bands (multispectral 

image) in comparison to RGB only bands (Figure 3.5). The lowest accuracy was found 

for the Z. noltii transect classified map with an OA of 84% for the multispectral image, 

and 57% OA for the RGB image. The Z. marina transect and the Macroalgae transect 

maps indicated very high OA for the multispectral image (91% and 89%, respectively) 

and lower OA for the RGB image (63% and 72%, respectively) (Table 3.2).  

Considering the multispectral images only, class level accuracy for each transect map 

indicated a general pattern of lower Producer’s Accuracy (PA) and User’s Accuracy 

(UA) for all vegetation classes (Z. noltii, Z. marina and Macroalgae, respectively) in 

comparison to non-vegetation classes (bare ground, sunglint/shells, dark 

material/shadow, respectively). Vegetation classes indicated PA and UA ranging 

between 73% and 99%, and non-vegetation classes indicated PA and UA ranging 

between 79% and 100% in all transect maps (Table 3.2), except for distinctly lower UA 

values for the macroalgae class (UA 54%) in the Z. marina transect map, which may 

be due to small sample size because of its sparse representation in the studied 

transect area, and PA for dark material/shadows (64%) in the Z. noltii transect map, 

due to small validation sample size. 

Similar to J-M results for training data, the post-classification accuracy assessment 

results indicated notably higher misclassification among vegetation classes in 

comparison to all other benthic classes, across all classified transect maps. The largest 

misclassification among habitat classes was found between Z. noltii and Z. marina. In 

the Z. noltii transect, 24.7% proportion of sampled pixels of Z. noltii were incorrectly 

classified as Z. marina class, and 6.7% of the class Z. marina were incorrectly 

classified as Z. noltii. The Z. marina transect indicated a lower misclassification of 

sampled pixels of Z. noltii as Z. marina (13% proportion of sampled pixels), and only 

2% of Z. marina pixels were incorrectly classified as Z. noltii class. Finally, Macroalgae 

transect indicated 14.8% of sampled pixels of Z. noltii as Z. marina and similarly, 14.7% 

of Z. marina pixels were incorrectly classified as Z. noltii. Misclassification between 

macroalgae and Zostera spp. was notably lower in transects where macroalgae was 

present (Z. marina transect and Macroalgae transect, respectively). In both transects, 

between 4% to 9% of macroalgae pixels were incorrectly classified as Z. noltii or Z. 

marina, whereas up to 10% of Z. noltii pixels and 2% Z. marina pixels were incorrectly 
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classified as macroalgae. Other notable misclassification was found between Z. noltii 

and dark material/shadow with 28% of Z. noltii pixels incorrectly classed as dark 

material/shadow within the Z. noltii transect.  All other benthic class combinations 

across all transect maps showed low misclassification cover ranging between 0 and 

7.5%. 

Table 3.2. Post-classification analysis showing the accuracy assessment outputs of the 

Maximum-likelihood classification map for a) the multispectral image and b) the RGB image. 

 

a) 
 
  

 
Zostera noltii  

transect 
  

Zostera marina  
transect 

  

 
Macroalgae 

transect 
 

 
Overall Accuracy (OA) 
  

 
84 %  91 % 

  

 
89% 

 

Habitat classes  

 
Producer’s 
Accuracy 

 (%) 

User’s 
Accuracy 

(%) 

Producer’s 
Accuracy 

(%) 

User’s 
Accuracy 

(%) 

 
Producer’s 
Accuracy 

(%) 

 
User’s 

Accuracy 
(%) 

 
Zostera noltii 90 80 84 85 

 
76 

 
80 

Zostera marina 73 84 82 87 
 

80 
 

73 

Macroalgae - - 87 54 
99 91 

bare ground 90 92 100 99 
100 98 

dark material/shadow  64 79 92 99 
90 96 

 
sunglint/shells 
 
 
  

95 
 
 
  

84 
 
 
  

99 
 
 
  

97 
 
 
  

 
100 

 
93 
 

b) 
 
 

 
Zostera noltii 

transect 
 

Zostera marina  
transect 

 

 
 

Macroalgae 
transect 

 

Overall Accuracy (OA) 
 

57 % 
 

63% 
 

72% 

Habitat classes 

 

 
Producer’s 
Accuracy 

(%) 

User’s 
Accuracy 

(%) 

Producer’s 
Accuracy 

(%) 

User’s 
Accuracy 

(%) 

 
Producer’s 
Accuracy 

(%) 

 
User’s 

Accuracy 

(%) 

 
Zostera noltii 61 68 56 61 
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56 

Zostera marina 37 54 57 68 
 

54 
 

65 

Macroalgae - - 37 9 
59 71 

bare ground 86 55 77 72 
93 70 

dark material/shadow  33 46 68 86 
81 76 

 
sunglint/shells 
 

67 
 

39 
 

69 
 

87 
 

 
94 

 
85 
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Figure 3.5. a) Raw UAV orthomosaic are displayed using the red, green, and blue colour 

composite, b) classified map and, c) a close-up example for each transect survey (Zostera 

noltii, Zostera marina and Macroalgae). 
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3.4. Discussion 

3.4.1. Habitat classification 

This chapter aimed to evaluate a consumer grade UAV multispectral camera for 

mapping a multispecies intertidal temperate seagrass environment. The objective was 

to discriminate between macroalgae and different Zostera spp., to capture accurate 

species-specific distribution patterns. This is essential to coastal managers to 

effectively address mitigating strategies for the prevention of seagrass species decline, 

and the growth of detrimental macroalgae growth. Findings show that despite the 

complex environment and similar spectral properties of Zostera spp. and green 

macroalgae, five-band multispectral UAV camera and the MLC method can yield maps 

with overall accuracies ranging between 84% and 91%. When considering only the 

RGB bands, the OA was reduced by up to 28% across all transects. Likewise, 

Producer’s and User’s -accuracy associated with vegetation classes declined 

substantially, highlighting the significant advantage that the red edge and near infrared 

bands can provide to effective mapping of an intertidal multispecies environment, 

increasing accuracy discriminating particularly between Zostera spp. and macroalgae. 

This provides the key to an operationally viable method for monitoring multispecies 

intertidal seagrass habitats. The high OA here also aligns with prior studies that used 

5-10 band multispectral UAVs to map intertidal seagrass-macroalgae environments. 

For example, in less complex intertidal seagrass-macroalgae environments, James et 

al., (2020) and Román et al., (2021) demonstrated an OA of 98.6% and 90.3%, 

respectively, using the MLC method. Hobley et al., (2021), used more sophisticated 

analysis, a deep learning method (Convolutional Neural Networks; FCNNs), in a 

similarly complex intertidal seagrass-macroalgae environment in LNNR, and achieved 

an average accuracy of 88.4%, although without discriminating separate seagrass 

species. 

The three vegetation types, Zostera spp. and macroalgae were spectrally distinct 

across all investigated transects. This distinction may be attributed to their differences 

in leaf pigmentation enabling the discrimination between the different vegetation types 

(Fyfe, 2003; Davies et al., 2023). While Zostera noltii and Zostera marina have similar 

leaf pigmentation, macroalgae with its brighter pigmentation in green colour indicated 

greater separability in comparison to that between Z. noltii and Z. marina. Notably, the 
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peak reflectance of all vegetation types and a maximum separation in the spectral 

reflectance between Zostera spp. and macroalgae occurred in the green, red edge and 

near infrared wavelength bands. These observations conform with generally observed 

spectral reflectance patterns in healthy plants that are known to absorb radiation in the 

blue and red wavelengths (around 450nm and 670nm, respectively), and reflect 

radiation in the green (around 530nm), red edge and near infrared wavelengths 

(around 730nm, 840nm, respectively) (Schmidt and Skidmore, 2003; Chand and 

Bollard, 2021; Davies et al., 2023). Although this study showed low spectral 

separability between Z. noltii and Z. marina, and higher misclassification between 

these two species, their separability could still be observed in the red edge and near 

infrared bands. These results also align with Fyfe (2003) who showed that seagrass 

species could most easily be discriminated between 700 and 900nm and Davies et al. 

(2023) that demonstrated a steep reflectance signature from ~680nm onwards for 

intertidal seagrass and algae. However, results contradict another study conducted by 

Román et al., (2021), who showed that the peak reflectance of Z. noltii, in an intertidal 

coastal area in Cadiz, Spain, was highest between 500 and 700nm and declined from 

700nm. Such disparities between studies may be related to differences in spectral 

responses of seagrass due to for example, the influence of epiphytes and epibionts 

(Fyfe, 2003; Hwang et al., 2019), or sediment background (Bargain et al., 2012).  

A further advantage in creating accurate habitat maps from UAVs may be related to 

the ultra-high spatial resolution that the camera offers. The high resolution minimises 

mixed pixels (i.e., the representation of more than one class within a pixel). This may 

not only have aided in discriminating between the vegetation types (beyond the 

addition of red edge and near infrared bands alone), but also reduced classification 

errors between vegetation types and non-vegetative classes.  For example, when Z. 

noltii is found in sparse density, their thin leaves lie on the bare ground and could easily 

be misclassified with other benthic classes within the pixel when using a lower spatial 

resolution imagery, but this issue is avoidable, if a pixel contains Z. noltii features 

entirely. Finally, high spatial resolution imagery enables the identification of seagrass 

habitats to species level, critical to coastal managers for the monitoring of biodiversity 

and species distribution of seagrass. 

Overall, results indicate significant potential for mapping an exposed multispecies 

intertidal seagrass environment using an off-the shelf multispectral consumer grade 

UAV. We show that by using a 5 band and a user-friendly and easily accessible 
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classifier, similar accuracy results can be achieved with a study that has for example, 

applied more computationally intensive methods (e.g., Hobley et al., 2021). We 

demonstrate the potential of a cost-effective approach in creating accurate 

multispecies intertidal seagrass habitat maps, which may be operationally more 

accessible to coastal managers. This approach may be used to develop new 

monitoring programmes or be integrated into existing monitoring programmes to 

support the effective protection and conservation of Zostera spp..   

 

3.4.2. Limitations, challenges, and recommendations 

Although this study indicates high potential for using multispectral UAV imagery for 

mapping a complex multispecies intertidal seagrass environment, some limitations and 

challenges need to be considered from the planning stage and prior to flight missions 

of data collection, during field surveys and in the interpretation phases:  (1) Despite 

successful creation of multispecies seagrass habitat maps, results showed that some 

misclassification among vegetation is still likely and may impact the accuracy of 

species distribution maps, especially between the two Zostera spp. investigated in this 

study. These inaccuracies need to be considered and critically evaluated for 

management and conservation planning, when aiming for species-specific targeted 

protection and management plans. Moreover, to reduce misclassification errors, an 

Object-Based Image Analysis (OBIA) approach, instead of a pixel-based approach, 

could improve classification accuracies when using ultra-high imagery data (Blaschke, 

2010; Hobley et al., 2021). (2) Unfavourable environmental conditions can pose 

numerous challenges during field surveys and hamper logistics: In cases where the  

field site of interest cannot be surveyed outside the mudflat areas, such as in this study, 

similar to traditional field surveys, UAV surveys can remain challenging in terms of 

accessing areas with soft sediments on foot, with potential hazards of getting stuck in 

soft bottom areas; (3) Protected site specific restrictions e.g., prohibition of surveys 

during the period of nesting and breeding birds, and foraging seasons, need to be 

considered to minimise impact on protected features, to minimise and avoid the 

potential of collision of UAV with birds; (4) Given the restricted and limited periods of 

time during low tide available to conduct the surveys, and that all the necessary 

conditions (e.g., wind speed, weather) to fly a UAV must be met within a particular time 

slot, a well-planned manageable operation is recommended for maximum efficiency 

and safety; (5) It is important to consider that large-scale mapping can be restricted 
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due to short battery autonomy and Visual Line Of Sight (VLOS) restrictions, on flight 

altitude and distance (Nahirnick et al., 2019a; Walker et al., 2023). In the UK, for 

example, the current flight limit is typically restricted to 120 m altitude and within VLOS, 

with further qualifications required when flying a UAV beyond these limits. To 

overcome this challenge, it is recommended to either have additional batteries on field 

site or increase battery capacity by increasing flight altitude at the cost of lower spatial 

resolution; and (6) Other technological issues that may be encountered in the field can 

be related to GNSS accuracy, which can fail depending on satellite configuration and 

result in inaccurate positioning of ground-truth surveys or the UAV, thus may impact 

the post-processing and map results and should be considered. 

 

3.4.3. Benefits for management  

The proposed methodology could support effective management by overcoming 

expensive, time consuming and exhaustive quadrat sampling in challenging mud flat 

environments, by simply using a number of UAV-derived classified transects as 

samples to assess the condition of seagrass habitats (Figure 3.5). The UAV derived 

maps could be utilised as ground-truth for large-scale habitat mapping, using freely 

available satellite imagery to create broad scale habitat maps for presence/absence 

and density maps (Carpenter et al., 2022). Moreover, multispectral UAV derived 

habitat maps could be developed as an integral part for multi-temporal seagrass 

habitat monitoring, allowing for greater reproducibility and repeatability of habitat 

mapping (Prystay et al., 2023; Ventura et al., 2022). Finally, UAV-derived habitat maps 

may provide a foundation to develop effective communication tools used for decision- 

and policy.   

 

3.4.4. Conclusion  

This Chapter demonstrates the viability of using an off-the shelf multispectral UAV to 

accurately map a complex intertidal seagrass environment. The ultra-high image 

resolution and additional red edge and near infrared bands enabled discrimination 

between vegetation classes at species level and ultimately the creation of fine-scale 

habitat maps. The study may provide a foundation to aid coastal managers to develop 

effective monitoring programmes by integrating multispectral UAV derived habitat 

maps in monitoring programmes. The methodology of this study can be utilised to 
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implement targeted management practices to identify areas of concern and potential 

threats to effectively manage Zostera spp. decline, and detrimental macroalgae 

growth.   
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Chapter 4: Mapping intertidal seagrass and macroalgae using 

Hyperspectral CASI imagery 

 

4.1.  Introduction 

While UAV Imagery can be useful for prioritising detailed information on small seagrass 

areas, as discussed in previous chapter, a major limitation is its suitability for large-

scale habitat mapping, due to limited flight time and line of sight restrictions as 

discussed in Chapter 3 (Carpenter et al., 2022). Accurate large-scale habitat maps are 

required to fully investigate seagrass habitat extent, distribution, and spatial patterns 

(Hossain et al., 2015; Veettil et al., 2020). Capturing seagrass environments at a 

habitat and/or ecosystem scale, is important to coastal managers to gain insights and 

overview of seagrass - macroalgae ecology and dynamics relevant for effective holistic 

management plans.  While satellite derived imagery data (e.g., Sentinel 2, Landsat) 

can provide cost-effective and rapid seagrass habitat mapping over large areas and 

may benefit regular and long-term monitoring, sensors typically lack high spatial 

resolution (e.g., Dekker et al., 2005; Knudby et al., 2010; Kovacs et al., 2018; Zoffoli 

et al., 2020; Benmokhtar et al., 2023). This can limit their ability to map small or 

fragmented seagrass patches accurately. Although they typically have spectral bands 

similar to for example, the multispectral UAV used in Chapter 3, (e.g., Sentinel has 4-

12 bands), this varies by platform, and the wavelengths available may not permit 

discrimination between different vegetation types with similar spectral signatures due 

to their low spatial resolution. These limitations are reflected in literature, where low 

spatial/spectral resolution satellite data have typically been used to map either 

relatively homogeneous seagrass habitats, or to derive coarse seagrass habitat 

extents (e.g., Wabnitz et al., 2008; Topouzelis et al., 2018).  

Other factors that may prove challenging in temperate seagrass regions, are 

associated with clouds covering imagery data, and turbidity. Both cloud and turbidity 

can physically obscure the habitat features of interest, making it impossible for most 

satellite sensors to detect submerged vegetation in temperate regions (Dierssen et al., 

2019; Kuhwald et al., 2022). For example, Armitage et al. (2013) showed that the 

Moderate Resolution Imaging Spectroradiometer (MODIS) exhibited an average yearly 

probability of cloud-free images of 21.3% for the UK and between 13% and 25% in the 

North East of England. To overcome sensor specific spatial and spectral limitations 

and platform related environmental challenges, airborne hyperspectral imagery may 
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prove beneficial for intertidal temperate seagrass mapping, as the accurate mapping 

of different vegetation classes at large-scales may be possible (Dierssen et al., 2019). 

Flexibility in data acquisition is possible, as platforms can be flown at different altitudes, 

below cloud cover, and at low tide when seagrass is exposed, to avoid potential 

turbidity in the water column, consequently enhancing data quality. The inherent 

flexibility of airborne remote sensing technology can enable users to develop flight 

plans and attach hyperspectral sensors tailored to specific interests, offering 

considerable potential for detailed vegetation mapping (Jia et al., 2020). 

While studies have used airborne hyperspectral imagery to map seagrass habitats, the 

majority of these have been conducted in shallow clear tropical waters. Airborne 

hyperspectral sensors have successfully mapped tropical seagrass distribution, 

biomass, species composition and extent (e.g., Phinn et al., 2008; Clarke et al., 2021). 

Although scarce, as outlined in Chapter 2 (Table 2.2), the few studies available, that 

have utilised airborne hyperspectral imagery in temperate seagrass environment, have 

demonstrated its potential for mapping seagrass- macroalgae environments. Among 

these few studies, most were conducted in submerged seagrass and macroalgae 

environments. For example, a study conducted in Finland by Vahtmäe et al. (2021), 

demonstrated that a temperate benthic habitat of submerged aquatic vegetation (SAV) 

which included green macroalgae and seagrass (Zostera marina), could be mapped 

with higher accuracy using hyperspectral Compact Airborne Spectrographic Imager 

(CASI) sensor (Overall Accuracy 78%), in comparison to Sentinel-2 imagery (Overall 

Accuracy 69%). Moreover, O’Neill & Costa (2013) mapped a subtidal Zostera marina 

and macroalgae habitat in Canada, comparing high spatial resolution satellite imagery 

(IKONOS; 4m) and two-metre airborne hyperspectral imagery (Airborne Imaging 

Spectrometer for Applications - AISA). This study showed successful discrimination 

between seagrass and green macroalgae with hyperspectral imagery outperforming 

the satellite imagery.   However, the mapped habitats in these studies entailed 

segregated seagrass and macroalgae areas with less habitat complexity, as can be 

found, for example, in the intertidal areas of LNNR.  Here, exposed intertidal seagrass-

macroalgae habitats, can be different in their ecological complexity due to intermingled 

macroalgae and seagrass and the presence of mudflat which can often blend in 

together, consequently increasing the optical complexity, thus spectral signatures of 

different components.  For example, assessing the habitat maps created in Chapter 3, 

benthic classes including seagrass, macroalgae and bare ground can be found at sub-
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cm spatial resolution adjacent to each other, requiring both higher spatial and spectral 

resolution.  

Studies that have investigated the application of airborne hyperspectral imagery in 

complex intertidal seagrass environments are scarce or close to non-existent (Chapter 

2, Table 2.2). The only study found, Garono et al., 2004, used CASI airborne 

hyperspectral imagery to discriminate between intertidal and subtidal eelgrass (Zostera 

marina) and green macroalgae cover in the US. While this study also mapped seagrass 

and macroalgae densities, denoting some habitat complexity using a spatial resolution 

of 1.5m, hyperspectral imagery with higher spatial resolution may be required for more 

accurate mapping in LNNR to capture the complexity in more detail.    

Despite the potential benefits of using hyperspectral imagery to distinguish between 

seagrasses and macroalgae (Garono et al., 2004; O’Neill & Costa, 2013), multispectral 

satellite imagery remains the predominant technology for mapping seagrass habitats 

(Hossain et al., 2015; Veettil et al., 2020). This is mainly due to high costs of operation 

and expensive equipment often associated with the acquisition of airborne 

hyperspectral imagery data. However, the regular (annual) acquisition of hyperspectral 

CASI imagery in coastal areas including the LNNR by the Environment Agency (EA) 

in the UK, which is accessible to managers, provides great potential for coastal 

monitoring programmes. Although UK’s coastal areas consist of many intertidal 

seagrass areas (Natural England, 2024), no studies were found that have utilised 

airborne hyperspectral imagery to map a complex seagrass -macroalgae environment 

in the UK.  To advance the knowledge and better understand the feasibility of airborne 

hyperspectral imagery for an intertidal seagrass-macroalgae environment, and its 

potential for monitoring and management to effectively conserve seagrass habitats, 

reliable and validated studies are urgently required.  

This Chapter investigates the potential of CASI airborne hyperspectral imagery for the 

mapping of intertidal seagrass-macroalgae environments in the UK at a large-scale. 

Objectives were: (1) To use Random Forest classification method to identify the 

optimal benthic class level (7 - class map; 6 - class map and 5 - class map, 

respectively) for accurate seagrass-macroalgae habitat mapping; (2) To establish the 

extent to which the hyperspectral nature of the imagery contributes to mapping 

complex intertidal seagrass-macroalgae environments by reducing the number of 

spectral bands to 5-8 bands similar to the multispectral UAV (Chapter 3) and satellite 

PlanetScope (Chapter 5) for comparison, and assess impacts on classification 
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accuracy; (3) To discuss seagrass-macroalgae distribution patterns in the context of 

management and conservation implications.  

 

4.2. Materials and Methods 

4.2.1. Ground truth sampling  

To validate the hyperspectral image classification, in situ ground surveys were carried 

out in August 2021 in the Causeway area due its safer environment and accessibility 

in comparison to Fenham Flats and Budle Bay, which are known to consist of softer 

sediment thus increasing the likelihood of being trapped (Chapter 1, Figure 1.5). To 

achieve large-scale area sampling and ensure even sampling of benthic categories 

including seagrass, macroalgae, seagrass and macroalgae mixed and bare ground, 

the positions of 31 suitable transects of 100m x 20m were identified in a GIS, based 

on apparent seagrass and macroalgae cover. The same method of quadrat sampling 

and geo location of quadrats as described in Chapter 3, Section 3.2.3., were 

undertaken to obtain detailed information on the benthic cover across the Causeway 

Area (Figure 4.1). Same as in Chapter 3, photographs of quadrats and GPS positions 

of the north and south corner of each quadrat were taken using a Trimble Catalyst 

receiver with the Trimble Network RTK Precision service (± 0.2 cm accuracy). In total, 

630 quadrat photographs were taken. To account for bright surface covers 

encountered across the field site identified in the UAV imagery, 26 additional quadrat 

samples were targeted on known large cockle shell beds.  

 

Figure 4.1. Map showing the ground-truth sampling points where quadrat photographs were 

taken in the Causeway area (red boundary). 
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4.2.2. Benthic Classes  

Percent cover of each benthic class within quadrat photographs were visually 

estimated. Classes included, seagrass, macroalgae, seagrass/macroalgae mixed, 

bareground (including shells). To capture density of cover, the seagrass class was 

further divided into sparse, moderate- and dense- seagrass, according to the following 

percent cover ranges similar to Zoffoli et al. (2020): sparse (5-40%); moderate (41-

70%) and dense (71%-100%) (Figure 4.2a). Within the mixed seagrass/macroalgae 

quadrats, macroalgae was often found on top of seagrass or intertwined in seagrass 

patches. In some cases, only a string of macroalgae was found in the quadrat that was 

dominated by seagrass and vice versa. To reduce spectral misclassification between 

pure seagrass and pure macroalgae classes, quadrats that indicated less than 15% 

difference in percent cover between seagrass and macroalgae were assigned the 

seagrass/macroalgae mixed class. This low threshold was set to maintain higher 

dominance of either seagrass or macroalgae in order to reduce potential 

misclassification between these two classes.  Otherwise, the dominating habitat class 

(seagrass or macroalgae, respectively) was assigned. Although not observed in the 

quadrats, an additional class “water” was produced to account for channels of water 

occurring in the imagery (Figure 4.2a). In total, seven benthic classes were identified: 

sparse seagrass (sparse SG, hereafter), moderate seagrass (moderate SG), dense 

seagrass (dense SG), macroalgae, seagrass and macroalgae mixed (SG/MA mixed), 

bare ground, and water (Figure 4.2a). To investigate how much detailed information 

can be acquired accurately from the hyperspectral imagery, using 3 scenarios of 

benthic class combinations were investigated, producing 7- class, 6- class and a 5- 

class benthic habitat maps. Here, the 7-class Scenario entailed all possible seagrass 

densities, including sparse SG, moderate SG and dense SG. For the 6-class Scenario, 

the moderate and dense SG class were grouped into the class moderate/dense SG 

(mod-dense SG). And finally for the Scenario 3, all three seagrass classes were 

grouped into one seagrass class.  All Scenarios included the benthic classes, 

macroalgae, SG/MA mixed, bare ground and water (Figure 4.2b). Notably, the number 

of training samples was unbalanced and varied across classes (Figure 4.2b). Training 

data were created using a pixel-based approach, where each identified class of 

quadrat was assigned to a pixel relative to the location of the quadrat.  
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Figure 4.2. a) Quadrat photographs of identified benthic classes. b) Diagram of the three 

different investigated Scenarios with differing numbers of benthic classes including the number 

of training sample data for each benthic class. Sparse SG = sparse seagrass, moderate SG = 

moderate seagrass, dense SG = dense seagrass, SG/MA mixed = seagrass/macroalgae 

mixed, bare ground = bare ground, water = water. 

 

4.2.3. CASI information and Image acquisition  

Airborne imagery was collected on the 20th September 2021 using the mounted 

Compact Airborne Spectrographic Imager (CASI). The CASI sensor is a push-broom 

sensor that captures narrow spectral bands in the visible and near infrared (VNIR) 

region of the electromagnetic spectrum covering wavelengths between 400-1000nm. 

While the sensor offers up 288 bands, the number of spectral bands can be adjusted 

according to user interest. The spatial resolution depends on the flight height and 

ranges between 0.3 – 1.5m. The imagery used in this study was acquired by the 
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Environment Agency as part of their monitoring programme and was flown during 

spring low tide across the Lindisfarne National Nature Reserve (LNNR) (Figure 4.3).  

The spatial resolution of the data was 1m including a spectral resolution of 33 spectral 

bands (Appendix A).  

Atmospheric absorption bands are specific wavelength regions, commonly observed 

in the VNIR, where a significant amount of incoming radiation is absorbed by the 

Earth’s atmosphere, caused by the occurrence of atmospheric constituents (e.g., water 

vapour (H2O) and carbon dioxide (CO2)). To avoid a steep slope in spectral reflectance 

curves, atmospheric absorption features, which were observed around 750nm and 

790nm (band 20-29, respectively) were removed. This resulted in a total of 23 spectral 

bands for further analysis. 

 

4.2.4. Pre-processing of imagery 

CASI data were acquired from the Defra Survey Data Portal (Geomatics Hub, 2024), 

and downloaded in GeoTiff formats within compressed .zip files.  It had undergone the 

following pre-processing stages: (1) Calibration; (2) Radiometric correction, which 

performs radiometric and spectral corrections to the image; (3) Dark correction and; 

(4) geometric correction for the production of accurate geo-referenced images. In 

addition to the pre-processing stages applied by the Environment Agency, this study 

performed a Quick Atmospheric Correction (QAC), which is a rapid method to correct 

data from atmospheric effects. In comparison to many other atmospheric correction 

algorithms such as the FLAASH, the QAC algorithm uses an empirical approach where 

no ancillary data other than band wavelengths are required. It can be applied on 

multispectral and hyperspectral imagery data spanning across the spectral range of 

the visible- near infrared-short wave infrared range (~ 400-2500 nm) (Bernstein et al., 

2012). The final step before analysis and the creation of habitat maps, included the 

stitching of tiles into a mosaic to have a seamless single image, prior analysis (Figure 

4.3).  
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Figure 4.3. The Mosaic of the hyperspectral imagery scene and the investigated intertidal area 

in Lindisfarne National Nature Reserve (LNNR) (red boundary) (Source: Geomatics, 2024: 

Contains public sector information licensed under the Open Government Licence v3.0.) 

 

4.2.5. Classification method and accuracy assessment  

Due to the high dimensionality of spectral data across a wide range of wavelengths, 

creating habitat maps of hyperspectral imagery can be challenging. For example, the 

high dimensionality of data can result in variability within classes, often requiring a 

large amount of training data to capture the high variation present (Ghamisi et al., 

2017). Different classifiers such as the Spectral Angle Mapper (SAM) and Maximum 

Likelihood Classifier (MLC) have previously been used for hyperspectral imagery and 
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habitat mapping of vegetation (Chan & Paelinckx, 2008; Vahtmäe et al., 2012), the 

machine learning (ML) classifier, Random Forest (RF), has gained in popularity due to 

its versatility in handling high dimensional data, it’s robustness to noise and reliability 

in higher accuracy performance (Breiman 1996, 2001; Dietterich 1999). 

Random forest is a supervised non-parametric classifier which uses ensemble learning 

method by using decision trees to make predictions through a bootstrapping method 

called bagging (Breiman, 1996, 2001). These features help the classifier handle low 

and unbalanced training samples, with no separate validation data set required (Pal, 

2005; Sheykhmousa et al., 2020). The RF classifier has also been successfully applied 

in seagrass habitat mapping and shown to outperform other classifiers such as the 

Maximum Likelihood and Support Vector Machine (SVM) classifier (Ha et al., 2021). 

To overcome the existence of unbalanced and low training samples in this study, the 

RF classifier was used to produce the classified habitat maps. A separate training data 

set is not required for cross-validation, making it useful for the low training data 

samples in this study.  The RF classifier can use an Out-of Bag (OOB) prediction error 

method, through a bootstrap sampling approach that provides an estimate of models’ 

performance. This procedure is applied during the training process and simultaneous 

creation of the habitat classification map. The OOB- score provides an internal error 

estimation of unseen data. During the creation of bootstrap samples and the building 

of each tree in the Random Forest, a random subset of the original dataset is selected 

with some samples included multiple times in the training set, but others excluded 

entirely (unseen data) (Belgiu & Drăgu, 2016). 

The model prediction performance can be tuned/improved through adjustment of three 

parameters: (1) number of classification trees (ntree; (2) the depth of each tree 

(max_depth), and (3) the number of feature classes to be considered at each node 

(mtry) (Scornet, 2017). To avoid excessive computation time, the model was 

performed systematically by increasing the parameter ntree and adjustment of the 

parameters including max_depth and mtry until a stable OOB- error rate was reached. 

The model’s performance being validated by observing the OOB-score (Benmokhtar 

et al., 2021), 

To get more insight into the performance of the classifier, additional metrics including 

precision, recall and F1- score, were examined. Precision (User’s Accuracy) measures 

the accuracy of positive predictions made by the model i.e., how many of the positive 

predictions made are correct; Recall (Producer’s Accuracy), measures the rate of true 
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positive predictions i.e., to correctly predict identified by the model to evaluate the 

model’s ability to avoid false negatives; F1-score is a weighted average of precision 

and recall. Furthermore, an Accuracy score (Overall Accuracy), which describes the 

number of correct predictions over all predictions and a confusion matrix that enables 

to assess misclassifications between true labels and predicted labels for each class, 

are also produced. 

To investigate whether increasing the number of spectral bands achieves better map 

accuracy results, hyperspectral imagery (23bands) was compared with a reduced 

number of spectral bands.  The number of spectral bands were reduced (from Scenario 

2) to match the PlanetScope satellite used in Chapter 5 and DJI UAV multispectral 

sensors used in Chapter 3. The 8-spectral bands closest to the PlanetScope 

SuperDove sensor were extracted, as were the 5 spectral bands closest to the DJI 

multispectral UAV sensor wavelengths utilised in Chapter 3 (Scenario 2 PS and 

Scenario 2 UAV, hereafter) (Table 4.1).  

 

Table 4.1. Reduced number of spectral bands, using the closest bands from the CASI 

hyperspectral bands aligned to the PlanetScope SuperDove and multispectral UAV band 

centre wavelength ± FWHM (Full Width at Half Maximum). HS = Hyperspectral, MS = 

Multispectral. 

 
Airborne: CASI-HS 
 

  
Satellite: 
PlanetScope 
SuperDove-MS 
 

 
Airborne: CASI-HS 

 
UAV: DJI-MS 

442.246nm ± 14.195 nm 442nm ± 10nm  442.246nm ± 14.195nm 450nm ± 16nm 
 

487.186nm ± 14.188 nm 
 

490nm ± 25nm 554.561nm ± 15.362nm 560nm ± 16m 
 

513.195nm ± 11.821 nm 526.5nm ± 13.5nm 643.166nm ± 5.905nm 650nm ± 16nm 
 

554.561nm ± 15.362 nm 565nm ± 18nm 727.018nm ± 5.90nm 730nm ± 16nm 
 

611.273nm ± 5.907 nm 
 

610nm ± 10nm 852.204nm ± 12.993nm 840nm ± 26nm 

663.244nm ± 5.905 nm 
 

665nm ± 15nm   

712.846nm ± 5.905 nm 
 

705nm ± 8nm   

879.372nm ± 11.813 nm 
 

865nm ± 20nm   
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4.3. Results 

4.3.1. Spectral signatures  

The spectral signature of training data assessed using Jeffries-Matusita (J-M) distance 

measure, from each benthic class varied distinctly between the non- vegetation 

classes (i.e., bare ground and water) and the vegetation classes (i.e., seagrass, 

macroalgae and SG/MA mixed) (Table 4.2).  Spectral separability varied among 

investigated vegetation classes both within Scenario 1 and Scenario 2, the benthic 

class sparse SG was distinctively separable (1.7 – 1.9 J-M value) from all other benthic 

vegetation classes (dense SG, moderate SG, macroalgae and, SG/MA mixed, 

respectively). The least spectral separation within Scenario 1 and Scenario 2 was 

found between the classes including: moderate SG, SG/MA mixed and macroalgae, 

mod-dense SG (1.4 – 1.6 J-M value). Similarly, the Scenario 3 image indicated the 

least spectral separation (1.4 – 1.6 J-M value) among all vegetation classes (seagrass, 

macroalgae and SG/MA mixed classes, respectively) (Table 4.2). However, when 

assessing the spectral curves of individual vegetation classes, the observed 

separability between vegetation classes differed across the spectrum (Figure 4.4).   

Within Scenario 1 and Scenario 2, the benthic class sparse SG appeared distinctly 

separable across all wavelengths compared to all vegetation classes, except its 

separation with macroalgae from around 700nm onwards. In contrast, all other 

seagrass classes (mod SG, dense SG, mod-dense SG, SG/MA mixed, respectively) 

did not show major separability across the entire wavelength spectrum from each 

other. However, the class macroalgae showed a distinct separation from all seagrass 

classes, except sparse SG, from 700nm onwards. All vegetation classes indicated 

peak reflectance between 550nm and 610nm (green wavelength) with a slight decline 

until 680nm (red wavelengths) and sharp increase to a peak reflectance at around 

720nm (Red Edge wavelengths). From here the peak reflectance plateaued and 

followed a typical vegetation spectral response with a slight increase to the highest 

reflectance at around 880nm (NIR) (Figure 4.4).  
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Table 4.2. Results of Jeffries-Matusita (J-M) index, indicating spectral pair separability of 

benthic classes for the: 7-class-, 6-class- and 5-class habitat maps. 

 
Benthic pair separation 
 

 
J-M  

 
Benthic pair separation 

 
J-M  

 
7-class Habitat 

  
6-class Habitat 

 
 
 

moderate SG - SG/MA mixed 1.4 SG/MA mixed - macroalgae 1.5 
SG/MA mixed - macroalgae 1.4 SG/MA mixed - mod-dense SG 1.6 
moderate SG - macroalgae 1.5 macroalgae - mod-dense SG 1.9 
dense SG - Moderate SG 1.7 sparse SG - mod-dense SG 1.9 
dense SG - SG/MA mixed 1.8 sparse SG - SG/MA mixed 1.9 
moderate SG - Sparse SG 1.8 sparse SG - macroalgae 1.9 
dense SG - macroalgae 1.9 sparse SG - bare ground 2.0 
sparse SG - SG/MA mixed 1.9 SG/MA mixed - bare ground 2.0 
sparse SG - macroalgae 1.9 bare ground - macroalgae 2.0 
sparse SG - bare ground 2.0 bare ground - mod-dense SG 2.0 
moderate SG - bare ground 2.0 water - bare ground 2.0 
SG/MA mixed - bare ground 2.0 sparse SG - water 2.0 
bare ground - macroalgae 2.0 water - mod-dense SG 2.0 
dense SG - Sparse SG 2.0 water - macroalgae 2.0 
water - bare ground 2.0 SG/MA mixed - water 2.0 
sparse SG - water 2.0   
sense SG - bare ground 2.0   
moderate SG - water 2.0   
water - macroalgae 2.0   
SG/MA mixed - water 2.0   
dense SG -water 2.0   
    
 
5-class Habitat 

 
J-M value  

  

    
SG/MA mixed - macroalgae 1.4   
SG/MA mixed - seagrass 1.5   
macroalgae - seagrass 1.6   
bare ground - seagrass 1.9   
SG/MA mixed - bare ground 2.0   
bare ground - macroalgae 2.0   
water - bare ground 2.0   
water - seagrass 2.0   
water - macroalgae 2.0   
SG/MA mixed - water 2.0 
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Figure 4.4. Spectral reflectance curves of benthic class training data across all hyperspectral 

bands for Scenario 1, Scenario 2, and Scenario 3. The shaded area represents ± standard 

deviation. 

 

4.3.2. Accuracy assessment  

The model’s performance reached the best OOB- score, which ranged between 0.66 

and 0.75, at parameters of ntree:150-200; max-depth:5-9; mtyr: 4-6, across all 

investigated Image Scenarios (Table 4.3).  
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Table 4.3. Summary table of optimal tuned parameters reached for the optimal Random Forest 

model to create a classification habitat map for each investigated Scenario. 

  
ntree 

 
max_depth 

 
mtry 
 

 
OOB-score 
 

 
Scenario 1  
(7 benthic classes) 
 

 
200 

 
5 

 
4 

 
0.66 

 
Scenario 2 
(6 benthic classes) 
 

 
150 

 
8 

 
5 

 
0.73 

Scenario 2 PS  
(6 benthic classes) 
 

150 8 5 0.75 

Scenario 2 UAV 
(6 benthic classes) 

200 8 5 0.73 

 
Scenario 3 
(5 benthic classes) 
 

 
200 

 
9 

 
5 

 
0.73 

 

The Random Forest yielded the lowest Overall Accuracy (OA) of 76% for the 7-class 

habitat map (Scenario 1) (Table 4.4; Figure 4.6), followed by the 6-class habitat maps 

(Scenario 2) 93% OA (Table 4.4; Figure 4.7). The highest OA was found for the 5-class 

habitat map (Scenario 3) with an OA of 97% (Table 4.4; Figure 4.8). When investigating 

Scenario 2 with a reduced number of spectral bands, both the Scenario 2-PS imagery 

and the Scenario 2-UAV revealed similar OA in comparison to the Scenario 2 imagery 

(93% and 92%, respectively) (Table 4.4).  

Habitat class accuracies varied between image Scenarios (Figure 4.5; Table 4.4). The 

highest class accuracy was achieved for the habitat classes bare ground and water 

across all images (Precision: 87%-100%; Recall; 93%-97%), whereas the highest 

misclassification for these classes was found within image Scenario 1, whereby 6% of 

the sampled pixels of bare ground was incorrectly misclassified as sparse SG. While 

vegetation classes indicated lower class level accuracies, there was large variation 

found between Scenarios.  Notably, the lowest vegetation class accuracies were found 

for Scenario 1 (Precision: 56%-81%; Recall: 45%-76%) and the highest class 

accuracies were found for Scenario 3 (5-class map) (Precision: ≥ 94%; Recall: ≥ 93%). 

The Scenarios that entailed seagrass density classes (Scenario 1 and Scenario 2, 

respectively) showed very high-class accuracy for the class sparse SG (Scenario 1: 

Precision: 81.25%; Recall: 62%; all Scenarios 2: Precision: ≥ 95%; Recall: ≥ 86%) 

(Figure 4.5; Table 4.4). 
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Table 4.4. Accuracy results of the Random Forest classification maps for each investigated 

Scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Precision 

 
Recall 

 
F1-score 

 
Overall Accuracy 

 

Scenario 1    0.76 

sparse SG 
 

0.81 0.62 0.70  

moderate SG 0.56 0.70 0.62  

dense SG 0.66 0.76 0.71  

macroalgae 0.82 0.64 0.72  

SG/MA mixed 0.61 0.45 0.52  

bare ground 0.87 0.97 0.92  

water 1.0 1.0 1.0  

Scenario 2    0.93 
 

SG sparse 0.97 0.86 0.91  

SG mod-dense 0.85 0.96 0.91  

macroalgae 0.97 0.84 0.90  

SG/MA mixed 0.91 0.81 0.85  

bare ground 0.98 1.0 0.99  

water 1.0 1.0 1.0  

Scenario 2-UAV    0.92 

SG sparse 0.95 0.86 0.90  

SG mod-dense 0.84 0.95 0.89  

macroalgae 0.95 0.80 0.87  

SG/MA mixed 0.82 0.76 0.79  

bare ground 0.98 1.0 0.99  

water 1.0 1.0 1.0  

Scenario 2-PS    0.93 

SG sparse 0.97 0.88 0.93  

SG mod-dense 0.85 0.96 0.90  

macroalgae 0.93 0.85 0.89  

SG/MA mixed 0.91 0.76 0.83  

bare ground 0.99 1.0 1.0  

water 1.0 1.0 1.0  

Scenario 3    0.97 

SG 0.95 0.98 0.97  

macroalgae 0.98 0.89 0.93  

SG/MA 0.94 0.93 0.93  

bare ground 0.99 1.0 1.0  

water 1.0 1.0 1.0  
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Within Scenario 1, moderate SG class indicated the lowest class accuracy (Precision: 

56.29%; Recall: 70%) (Table 4.4), which was 44.9% incorrectly classified as the other 

vegetation classes (sparse SG (12.5%), dense SG (12.4%), macroalgae (7.5 %) and 

SG/MA mixed (12.5%), respectively) (Figure 4.5).  However, the habitat class, dense 

SG, indicated a slightly higher accuracy (Precision: 66.29%; Recall: 76%), but showed 

a misclassification of 9.93% with the moderate SG class, and 4.17% with SG/MA mixed 

class, but substantially lower misclassification with the macroalgae class (1.25%) 

(Table 4.4; Figure 4.5). When grouping mod SG and dense SG into one class in 

Scenario 2, class accuracies improved overall across all vegetation classes. The mod-

dense SG habitat class indicated a high accuracy (Precision: 84%-85%; Recall:95%-

96%) across all investigated Scenario 2 (Table 4.4). However, some misclassification 

with the other vegetation classes (SG/MA mixed, macroalgae, and sparse SG, 

respectively) where still observed, whereby mod-dense SG was incorrectly classified 

between 1.16% and 6.67% with these vegetation classes. Here, the Scenario 2-UAV 

indicated the lowest misclassification with macroalgae (1.16%) and the highest 

misclassification with SG/MA mixed class (6.67%) (Figure 4.5).  

The habitat class macroalgae indicated high Precision accuracy ranging between 

82.5% and 98.95% but lower Recall accuracies ranging between 64% and 89% across 

all Scenarios, with the lowest class accuracies observed for Scenario 1 and highest 

accuracy for Scenario 3, respectively (Table 4.4). Here, within all Scenarios, the largest 

misclassification was found between macroalgae and SG/MA mixed class. Scenario 1 

and Scenario 2-UAV showed the largest amount that was incorrectly classified as 

SG/MA mixed (18.06% and 11.1%, respectively) (Figure 4.5). All other Scenarios 

showed less misclassification (≤ 5.7%). The habitat class SG/MA mixed indicated the 

lowest class accuracy (Precision: 61.11%; Recall: 45%) within Scenario 1 in 

comparison to all other Scenarios (Precision: ≥ 82%; Recall: 76%) and was mostly 

incorrectly classified as moderate SG (21.85%), followed by dense SG (10.11%) and 

macroalgae (7.5%). Within all Scenario 2 maps, SG/MA mixed class was mostly 

incorrectly classified as mod-dense SG (8%-9%) (Table 4.4; Figure 4.5). Scenario 3, 

in which seagrass density classes were compiled into one seagrass class, indicated 

high vegetation class accuracies (Precision: ≥ 94%; Recall: ≥ 89%) (Table 4.4). Here 

the only notable misclassification, however very low, within Scenario 3 was found 

between the classes macroalgae and SG/MA mixed (3.13%) and the classes 
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macroalgae and seagrass (2.4 %). Unclassified pixels were also present in classified 

maps, however consisted of only a very low number of pixels (< 0.07%) (Figure 4.5).  

 

Figure 4.5. Confusion matrix outputs of the Random Forest classification method showing 

misclassification between true labels and predicted labels. Values represent the percent (%) 

numbers of misclassified pixels. 
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Figure 4.6. Habitat classified maps showing Scenario 1 for: a) the Causeway area & Fenham 

Flats, b) a zoomed area within the Causeway area; c) Budle Bay, and d) a zoomed area within 

Budle Bay. 
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Figure 4.7. Habitat classified maps showing Scenario 2 for: a) the Causeway area & Fenham 

Flats, b) a zoomed area within the Causeway area; (c) Budle Bay, and (d) a zoomed area 

within Budle Bay. 
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Figure 4.8. Habitat classified maps showing Scenario 1 for: a) the Causeway area & Fenham 

Flats, b) a zoomed area within the Causeway area; c) Budle Bay, and (d) a zoomed area within 

Budle Bay. 
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The classified habitat maps showed a large variation in the cover of benthic classes 

across the investigated LNNR intertidal area (Figure 4.6 - 4.8; Figure 4.9a). Within all 

classified habitat maps, the benthic class water represented the lowest cover (1%) 

followed by macroalgae cover (~6%) and SG/MA mixed cover (6-7%). The largest 

benthic cover was found for bare ground (~57%), whereas seagrass cover ranged 

between 26% and 30% in habitat cover (Scenario 1 = 26%; Scenario 2 = 28%; 

Scenario 3 = 30%). However, where benthic classes of seagrass density were 

considered (Scenario 1 and 2, respectively), sparse SG showed the lowest cover (2%) 

in both the Scenario 1 and Scenario 2 maps. The Scenario 1 map indicated a moderate 

seagrass (mod SG) cover of 17% and a dense seagrass (dense SG) cover of 6%, 

which combined in Scenario 2 map indicated a similar cover of 25% (Figure 4.9a). 

When considering Scenario 2 only to assess and compare the vegetation classes, the 

largest mod-dense SG cover was found for the Fenham Flats area (67% cover) 

whereas Causeway area and Budle Bay showed similar coverage (48%). The largest 

cover in macroalgae was found in the Causeway area (22%), whereas Budle Bay 

indicated nearly double cover of SG/MA mixed (28%) in comparison to Fenham Flats 

and Causeway area in which both had similar cover (14.3% and 15.9%, respectively) 

(Figure 4.9b).  
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Figure 4.9. Bar plots showing percent (%) cover found for each benthic class within each 

Scenario habitat map across the Lindisfarne National Nature Reserve (LNNR). (b) Stacked bar 

of percent cover of vegetation for each investigated area including Causeway, Fenham Flats 

and Budle Bay for Scenario 2. 

 

4.4. Discussion 

In situ quadrat sampling and small area UAV derived habitat maps can only provide 

limited information on seagrass and macroalgae distribution patterns and their dynamic 

interaction. Large-scale maps that present the full extent of seagrass and macroalgae 

distributions, are needed for management practitioners to better understand 

distribution patterns and dynamics for effective management and conservation 

decision making (Lengyel et al., 2008; Neckles et al., 2012). Using an airborne CASI 

hyperspectral imagery, this Chapter demonstrated the successful accurate mapping of 

a complex seagrass-macroalgae environment at large scale. The Random Forest 

classification indicated an Overall Accuracy (OA) ranging between 76% and 97% 
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across all investigated Scenarios. While maps could be successfully generated, to 

demonstrate distributions and discriminate between seagrass and macroalgae at 1m 

resolution, accurate finer class level habitat maps were less consistently generated. 

Higher map accuracies were achieved with lower habitat class levels, (i.e., 5-class map 

with an OA of 97%), while the finer 7-class map showed substantially lower map 

accuracy with misclassification mainly observed among vegetation classes.  

Furthermore, this study showed that a 6-class habitat map (Scenario 2) using fewer 

spectral bands (5 and 8 bands) may be sufficient to achieve similar OA in comparison 

to a 23-band imagery. Similar to Chapter 3, the red edge and near infrared bands 

appeared to be most effective in terms of spectral separability between vegetation 

classes, implying that lower cost solutions may be as effective, as long as these bands 

are present. The ability to capture relevant information including the discrimination 

between seagrass and macroalgae classes at lower spectral resolution, may provide 

insights for more cost-effective solutions for management purposes, such as the 

requirement of less expensive sensors.   

 

4.4.1. Habitat classification  

Variation found in OA across map Scenarios can be primarily explained by the number 

of benthic habitat classes. Regardless of the habitat complexity, higher number of 

habitat classes commonly result in lower map accuracies (Pu et al., 2012). In this study, 

the complexity and similar spectral signatures across vegetation classes, especially 

within the 7-class habitat map (Scenario 1) can be explained by the observed higher 

misclassification found among vegetation classes including, moderate SG, dense SG, 

macroalgae, and SG/MA mixed, due to similar spectral reflectance (O’Neill & Costa, 

2013). However, the lower misclassification found between sparse SG and the other 

vegetation classes, but higher misclassification found with bare ground, may be due to 

its inherent high percentage cover of bare ground (up to 60%) in the sparse SG benthic 

classes, consequently leading to spectral signature favourable for bare ground 

(Bargain et al., 2012). 

The high OA achieved for Scenario 2 and Scenario 3 (OA > 90%) do not conform to 

other studies where hyperspectral airborne imagery has been used to map co-

occurring seagrass and macroalgae environments. For example, O’Neil et al. (2011, 

2013), utilised AISA airborne hyperspatial imagery (2m spatial resolution) and reduced 
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the spectral resolution from >200-band to 4 key bands (between 530nm and 602nm) 

to map eelgrass and green algae habitats along a water depth gradient and achieved 

an OA of 83%. Vahtmäe et al (2021) used a CASI hyperspectral imagery (1m 

resolution) to map higher plants (including Zostera marina) and green macroalgae 

yielding an OA of 78%. However, it is important to note that these studies were 

conducted on submerged vegetation and the lack of scientific references and studies 

for intertidal segrass-macroalgae environment when exposed do not conform the exact 

comparison of results. The higher map accuracies achieved in this study may be due 

to the lack of water column, the higher spatial resolution of 1m (Haro et al., 2022; 

Leblanc et al., 2021), and the additional red edge and near infrared spectral 

wavelengths, known to benefit spectral signature of vegetation (Schmidt & Skidmore, 

2003; Zeng et al., 2021) and as demonstrated in Chapter 3. 

Generally, discriminating seagrass mixed with green macroalgae can be challenging 

when using remote sensing, often due to required higher spatial and/or spectral 

resolution imagery  (Phinn et al., 2018b; Veettil et al., 2020) (Chapter 3). However, the 

observed spectral separability between macroalgae and seagrass as found across all 

Scenarios, is probably related to their distinct hues of green (Figure 4.2a), that enables 

the separation in spectral signature between macroalgae and seagrass pixels thus the 

effective discrimination by the hyperspectral sensor. The distinct spectral signature 

between green macroalgae and seagrass have also been shown through the creation 

of spectral libraries using in field spectrometers and multi-and hyperspectral imagery 

(Davies et al., 2023), which are also comparable with spectral curves observed in this 

study.  

While several studies have mapped algae and seagrass as separate classes (Garono 

et al., 2004; Hobley et al., 2021), those investigating mixed seagrass and macroalgae 

pixels are scarce (Benmokhtar et al., 2023). However, the utilisation of hard classifiers 

can lead to classification errors, particularly when near class boundaries across a 

continuum are used, whereby for example, seagrass densities as used in this study, 

are put into classes with subtle distinction between the classes. This may also explain 

the high misclassification between moderate SG and dense SG habitat classes (up to 

12.4% of total pixels) observed in Scenario 1. While this issue could have been 

mitigated by using a fuzzy classification method as explained in Chapter 2, 

misclassifications were reduced by up to 14% when aggregating these two classes in 
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Scenario 2, which substantially improved the OA accuracy of classified habitat map (6-

class habitat map).  

As demonstrated in Chapter 3, and in alignment with other studies, red edge and near 

infrared bands can be beneficial in discriminating between vegetation types (Casal et 

al., 2013; Fyfe, 2003). Such patterns were also observed in this Chapter, where 

seagrass and macroalgae indicate large separation between spectral curves along this 

spectrum of wavelengths. However, the consistent reflectance in the red edge and 

near infrared wavelengths region, may indicate that numerous spectral bands are not 

needed in this region. This may be strengthened by the similar OA achieved between 

Scenario 2 (23 bands) and Scenario 2-PS (8 bands) and Scenario 2-UAV (5 bands), 

which may suggest that potentially no benefit is acquired from a higher spectral 

resolution imagery beyond an 5-8 band multispectral imagery, as long as red edge and 

near infrared bands are included. These results may provide insights to consider more 

cost-effective remote sensing applications, where expensive hyperspectral sensors 

may not be required.  

  

4.4.2. Ecology and implications for management  

Interactions between seagrass and macroalgae in coastal ecosystems are dynamic 

and can be influenced by several factors. Major factors that may influence distribution 

and growth are related to competition for space, light and nutrients (Davis & 

Fourqurean, 2001). These abiotic factors may consequently determine the spatial 

patterns of seagrass and macroalgae proliferation and their cover (Han et al., 2016; 

Han & Liu, 2014; Hauxwell et al., 2001). For example, it is well known that Lindisfarne 

has reached a high level of pollution (Maier et al., 2009). Excessive nutrient run-off 

from agricultural activities surrounding the intertidal mudflats may stimulate algal 

growth (Howarth, 2008; Jones et al., 2018). When considering the entire intertidal area, 

the classified Scenario 2 habitat map indicated the highest cover in seagrass (mod-

dense SG and sparse SG), and lower cover in macroalgae and SG/MA mixed. 

However, at large spatial scales, nutrient levels may vary across the site and could 

explain the high variation in macroalgae and SG/MA mixed cover in the different areas. 

Findings here would suggest that Budle Bay may be exposed to higher nutrient levels, 

due to the observed high cover in SG/MA mixed. 
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When further assessing the Scenario 2 habitat map, macroalgae cover was mostly 

present around the edges of large seagrass beds, whereas the SG/MA mixed habitat 

class cover was mostly found within seagrass beds (Figure 4.7). The competition 

between macroalgae and seagrass in coastal areas is well documented (e.g., Stafford 

& Bell, 2006; Young et al., 2018). While the presence of macroalgae around the edges 

may occupy potential space, hampering seagrass proliferation, macroalgae may also 

be distributed across seagrass beds, covering seagrass, indicated by observed SG/MA 

mixed class within beds. Such dynamic proliferation of macroalgae from their source 

towards seagrass habitats, could be caused through for example, tidal and wave driven 

currents by facilitating the transportation of loose macroalgae strings/patches and their 

spores to settle towards seagrass habitats (Bell and Hall 1997; Holmquist 1997; Pihl 

et al. 1999). Other macroalgae proliferation mechanisms may be caused through 

physical disturbance by humans as vectors of spread (Firth et al., 2023). For example, 

specific to this field site, the LNNR offers a walk (“pilgrimage walk”), across the 

Causeway area to tourists as part of their recreational management plan. These walks 

may promote the transportation of macroalgae and their spores through the attachment 

to footwear and clothing, consequently dislodging macroalgae from its source to new 

locations. Such a potential distributional pattern was also observed within the Scenario 

2 classified habitat map, where the walking area indicated a cover of SG/MA mixed 

habitat class along this path (Figure 4.10). However, it is important to consider that 

these patterns may also be a result of misclassification errors, whereby either seagrass 

or macroalgae may have been misclassified as SG/MA mixed. 



74 
 

 

Figure 4.10. Classified map showing the potential movement of macroalgae along the 

Pilgrimage track (top map) across the Causeway area (bottom map). 

 

Although, in comparison to Chapter 3, habitat mapping was not possible at very fine 

scales, the hyperspectral imagery provides the advantage of mapping at larger scale, 

enabling assessment of seagrass and macroalgae distribution patterns across the 

LNNR. The 1m spatial resolution may be sufficient to identify small seagrass and 

macroalgae patches and to assess the heterogeneity of these classes across the field 

site. Such information may support the assessment of seagrass and macroalgae 

patterns at large-scale to identify threats, and thus may provide a foundation to identify 

seagrass-macroalgae distributional patterns and dynamics for management practices 

to effectively reduce macroalgae proliferation (Ivajnšic et al., 2022). This method could 

enable resource managers to prioritise target areas for monitoring and management 

of threatened sites by utilising the produced maps as a communication tool (Nagendra 

et al., 2013). For example: 1) areas that indicate high cover in macroalgae e.g., Budle 



75 
 

Bay, could be controlled for nutrient levels by investigating the sources of nutrients in 

specific area; 2) in order to reduce the spread of macroalgae, tourism could be 

managed by reducing numbers allowed to walk across the field site; 3) maps could 

help to find and target macroalgae areas to be removed.  

Although the produced maps can provide a useful tool to identify spatial patterns of 

seagrass and macroalgae cover, understanding the drivers of macroalgae cover is 

essential to effectively managing algal growth. Here, ancillary data including, for 

instance, nutrient levels (e.g., phosphorus, nitrogen) and water quality, could be 

combined and correlated with the generated maps to identify the root causes of algal 

growth. This approach could enable locally targeted management strategies for 

effective seagrass habitat protection.  

 

4.4.3. Limitations, challenges, and recommendations 

While this study has shown the potential of airborne hyperspectral imagery to 

accurately map a complex intertidal seagrass-macroalgae environment has various 

advantages for monitoring programmes, it comes with several limitations and 

challenges (Myers & Miller, 2005; Nagendra et al., 2013): (1) The limitation of 

classification exists within this study. To reduce classification error, a fuzzy 

classification such as spectral unmixing where the % cover of seagrass in pixels are 

taken into account rather than density classes, may reduce classification errors and 

improve accuracy; (2) While the collection of airborne hyperspectral imagery has been 

established for Lindisfarne National Nature Reserve (LNNR) monitoring, imagery 

acquisition and operation can be cost intensive, which often limits use for seagrass 

monitoring, especially for organisations with limited budget; (3) While seagrass at its 

peak biomass (August-September), may show less variability in cover, macroalgae 

may be more variable due to their fast growth rate and loose attachment to sediment. 

Given these dynamic interactions between seagrass and macroalgae cover, a single 

point survey during peak seagrass biomass may not be sufficient and representative 

to capture the extent of true seagrass cover. Therefore, it is recommended to acquire 

multiple images each year to monitor macroalgae cover to be able to capture an 

imagery that shows the lowest macroalgae cover, so that the full seagrass cover can 

be assessed. However, this in turn, would increase costs; (4) Airborne Hyperspectral 

images are suitable for limited coverage at local scale but may not be appropriate for 
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regional assessment. Although it would be suitable for monitoring known seagrass 

habitat locations and is currently gathered in specific locations across the UK, unknown 

seagrass habitats or newly established habitat may be neglected; (5) Increasing 

spectral resolution often comes at the expense of spatial resolution, inherently due to 

the high data volume and data acquisition time when using airborne hyperspectral 

imagery. This trade-off may limit the ability to acquire fine spatial details such as being 

able to achieve more accurate cover between seagrass and macroalgae. Without 

compromising the number of spectral bands, a higher spatial resolution imagery could 

be achieved by flying at lower altitude, but often this comes with other trade-offs:  Flying 

at lower altitudes would for example, reduce the flight swath requiring more flight lines 

and passes and extended data acquisition time consequently associated with 

increasing operational costs. Given that this study showed that a 5-8 band 

multispectral sensor would achieve similar map accuracy results, an alternative 

recommendation would be to increase the spatial resolution at the expense of spectral 

resolution, which may provide a more cost-effective option; (6) Hyperspectral sensors 

require frequent calibration to ensure consistency to maintain spectral integrity and 

reliability. Changes in performance of the sensor may have an impact in comparing 

multitemporal imageries, hence making data comparison unreliable for monitoring 

purposes.  

Despite these challenges, airborne hyperspectral imagery can be an increasingly 

valuable tool for conservation and management efforts for mapping and monitoring to 

better understand seagrass-macroalgae dynamics. Furthermore, assessing and 

evaluating the reliability and possibilities of using hyperspectral imagery in complex 

intertidal seagrass environments may become more relevant for future applications as 

the advancement and launch of more satellite based hyperspectral remote sensing 

may enable increasing accessibility and affordability in the future, such as the German 

Spaceborne Imaging Spectrometer Mission EnMAP (Environmental Mapping and 

Analysis Program)  (EnMAP, 2023; Minghelli et al., 2021; Pandey et al., 2020).  

 

4.4.4. Conclusion  

This chapter demonstrated the potential of using airborne hyperspectral imagery to 

successfully map a large-scale complex intertidal seagrass-macroalgae environment. 

Results showed that using Random Forest classifier, a very high accuracy 6-class map 
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could be produced with the ability to discriminate between different seagrass densities 

and macroalgae vegetation classes using 23-spectral bands. When down sampling 

these spectral bands to 5- 8 bands, results indicated similar outputs making these 

findings highly valuable information for the potential of more cost-effective and 

operationally viable seagrass mapping and monitoring approaches when using large-

scale remote sensing applications. While major limitations using airborne imagery 

include limited area coverage and associated high costs, the produced maps can be 

used to better understand seagrass-macroalgae distributions and dynamics and may 

aid coastal practitioners in management decision making to promote effective 

protection and conservation of seagrass habitats.  Finally, the procedure and methods 

applied in this study may provide a foundation for future work using hyperspectral 

imagery in intertidal seagrass habitats to improve its operational use for management 

practitioners.   
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Chapter 5: Using PlanetScope imagery to map and assess 

spatiotemporal intertidal seagrass-macroalgae dynamics 

 

5.1. Introduction  

Managing seagrass habitats requires accurate and regular monitoring to track changes 

and better understand spatial and temporal distribution patterns and dynamics and 

associated threats such as those posed by competing macroalgae species due to 

eutrophication (Neckles et al., 2012; Li et al., 2019). As demonstrated in Chapter 3, 

ultra-high multispectral UAV imagery can provide detailed information on seagrass 

habitats at species level. Such information can be highly relevant to the assessment 

of the spatial distribution and species dynamics at small scales. However, while UAVs 

facilitate regular monitoring due to their user-friendly portability and integral software 

and may be highly practical for managing a seagrass-macroalgae environment to 

some degree, they cannot practicably cover very large areas, often restricted to up to 

250 km2 coverage area and still require regular visits to the field site. This knowledge 

of spatiotemporal dynamics of seagrass habitats at larger site-scales is required for 

effective seagrass management and conservation. As discussed in Chapter 4, airborne 

hyperspectral imagery in turn can fill this gap, covering larger areas in comparison to 

UAV flights, with local site coverage of up to 2,300 ha (LNNR), but may not be cost-

effective for monitoring programmes. 

Satellite imagery has been at the forefront of optical remote sensing technology for 

several decades, not least for the cost-effective development of continuous, large-

scale habitat maps for monitoring seagrass ecosystems (Veettil et al., 2020). 

Depending on the detail required for mapping seagrass environments, lower spatial 

resolution satellite imagery may be suitable and can be acquired free of charge at low-

medium spatial resolution (e.g., Sentinel (20m), Landsat (30m)), whereas higher 

spatial resolution imagery is available commercially (e.g., PlanetScope, WorldView 2/3 

(1.8 - 3.7m))  (ESA, 2024; Apollo Mapping, 2024). Whilst commercially available 

imagery may generate more accurate maps of seagrass environments, previous 

studies tend to present only single image analyses; time series are cost-prohibitive, so 

outputs cannot credibly be used for monitoring purposes (e.g., Wabnitz et al., 2008; 

Pu & Bell, 2017; Wilson et al., 2022). Freely available satellite imagery is clearly more 

cost-effective and may be assembled into time series, hence has received more 

attention from the scientific community for seagrass monitoring applications (Hossain 
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et al., 2015). However, given the lower spatial resolutions involved, these studies are 

often confined to assessing seagrass cover at relatively coarse levels, to successfully 

map seasonal (Zoffoli et al., 2020; Fauzan et al., 2021), annual and decadal variation 

in seagrass cover and extent (Gullström et al., 2006; Zoffoli et al., 2021). For example, 

Fernandes et al. (2022), used Landsat imagery data to demonstrate large-scale 

regional change in seagrass cover over three decades, and found that the seagrass 

cover expanded over the mapped area in Adelaide, South Australia. This study utilised 

Support Vector Machine (SVM) classifier which yielded an Overall Accuracy (OA) 

between 83% and 95% of classified maps. In contrast, Ha et al. (2021), demonstrated 

decadal decline in seagrass cover by 50% from 1990-2019 in the Tauranga harbour, 

New Zealand, by comparing machine learning models including Random Forest, 

Support Vector Machine and CatBoost to evaluate their performance for seagrass 

habitat change detection, with all classifiers yielding an OA accuracy > 93%. Although 

similar time series analyses for seagrass habitat monitoring have also been tested 

using Sentinel-2 imagery (Zoffoli et al., 2020), its timespan is shorter, so decadal 

change analyses are not yet possible. However, higher spatial resolutions (10m for 

visible and near infrared bands) are shown to be beneficial for more detailed habitat 

mapping at taxonomic level (Roelfsema et al., 2014). 

Lower spatial resolution imagery can prove challenging when mapping and monitoring 

large complex seagrass environments (Roelfsema, et al., 2013), due to for example, 

lack of detail in benthic features at taxonomic level, and the differentiation especially 

between those with similar spectral reflectance (i.e., seagrass and macroalgae), and 

limitations in capturing small-scale changes, which may be relevant for tracking habitat 

conditions in dynamic rapidly ecosystem (Kaufman & Bell, 2022). Despite the 

successful applications of lower-medium spatial resolution imagery, these have been 

mostly applied in homogenous seagrass environments for coarse habitat mapping e.g.,  

(Topouzelis et al., 2018; Leblanc et al., 2021). Where studies have utilised Sentinel-2 

imagery to map seagrass-macroalgae environments, these have most often been 

applied in seagrass habitats that were distinctly segregated from macroalgae cover 

(Hogrefe et al., 2014; Traganos et al., 2018). 

To accurately map and monitor complex large-scale seagrass-macroalgae 

environments, cost-effective higher spatial resolution imagery is required (Légaré et 

al., 2022). While Unoccupied Aerial Vehicle (UAVs) and airborne hyperspectral 

imagery provide significant promise for various applications, the practicality of their 
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implementation is constrained by the scale of operations and associated costs, as 

demonstrated in Chapter 3 and 4. Until recently, satellites did not provide data with 

sufficiently high spatial resolution. The emergence of new generations of satellites with 

higher spatial, spectral, and temporal resolutions is changing this landscape, offering 

advantages such as lower costs, constellation -based operation and their potential for 

cost-effective monitoring programmes (Kopacz et al., 2020). Planet Lab’s PlanetScope 

multispectral CubeSats (also smallsats) constellation, is at the forefront of this new 

wave of technology for earth observations. PlanetScope offers multispectral (up to 8 

spectral bands) imagery data at a spatial resolution of 3m and covers the entire globe 

daily (Planet, 2022). Although primarily commercial, the company’s commitment to 

open data access makes this available for research and non-commercial purposes at 

lower costs and often available at discounted options for non-profit organisations 

(Planet Labs, 2024). This makes PlanetScope a viable source for potential seagrass 

monitoring programmes (Schill et al., 2021), if robust analytical methods can be 

developed. High temporal resolution is likely to benefit temperate intertidal seagrass 

mapping, due to the increased probability of acquiring cloud-free images and the 

likelihood of capturing exposed seagrass at low tide, avoiding negative effects of water 

and turbidity. Furthermore, higher spatial resolution than many other lower-cost 

satellites may allow accurate large-scale mapping and monitoring of complex 

seagrass-macroalgae environments (Wicaksono & Lazuardi, 2018). Although the 

utilisation of PlanetScope data for seagrass mapping is still in its early stages, some 

studies have demonstrated its potential for complex seagrass mapping in tropical and 

Mediterranean submerged seagrass-macroalgae environments (Traganos & Reinartz, 

2018; Wicaksono & Lazuardi, 2018) and intertidal areas (Légaré et al., 2022; Ha et al., 

2023). With ongoing improvements of PlanetScope imagery such as increasing 

number of spectral bands and radiometric resolution, it may make mapping and 

monitoring of complex intertidal seagrass-macroalgae habitats possible in the near 

future. However, this potential is yet to be explored. Assessing the feasibility of reliable 

change detection analyses for PlanetScope is an important next step towards proving 

its potential for management applications. This Chapter evaluates a time series of 

PlanetScope Imagery, developing change detection methods for mapping and 

monitoring of complex-intertidal seagrass environments, for the first time.  

The overall aim of this Chapter was to develop habitat change detection methods for 

PlanetScope SuperDove imagery and evaluate its potential for seagrass monitoring. 
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The objectives where: 1) to create an accurate time series of habitat maps at 6-class 

level using a Random Forest classifier (the most accurate classification combination 

demonstrated in Chapters 4); 2) to assess the potential for ecologically relevant 

change detection in the resulting classified habitat maps; 3) to discuss the potential of 

PlanetScope for management and monitoring programmes. 

 

5.2.  Methods and Materials  

5.2.1. Ground-truth data  

The study area covered the intertidal flats at Lindisfarne in their entirety (approx. 2,300 

ha). Similarly, to Chapter 4, training and validation data was collected for the Causeway 

area only, as these were primarily generated using the three UAV classified habitat 

maps produced in Chapter 3; 347 random points were created across the three maps. 

Six habitat classes as defined in Chapter 4 were considered, including: sparse SG, 

mod-dense SG, macroalgae, SG/MA mixed, bare ground/shells (bare ground here 

after); and water. First, the UAV maps were aligned to the PlanetScope imagery. To 

allow the creation of regions of interest (ROIs/pixels) for generating training data, 

3mx3m quadrats created from PlanetScope pixel areas, were generated in ENVI v.5.7. 

(Figure 5.1a). These quadrats were then used to estimate the percentage cover of 

seagrass, macroalgae and bare ground derived from the classified UAV maps and 

following the defined benthic classes in Chapter 4 including, sparse SG, mod-dense 

SG, macroalgae, SG/MA mixed, bare ground) were assigned to each PlanetScope 

pixel (Figure 5.1b). To account for potential water in the images, the class ‘water’ was 

created by assigning pixels to this category where water was available in the imagery 

(e.g., water streams). To increase the number of training data points and due to the 

limited representativeness of the entire Causeway area, additional samples from 

quadrat sampling, used in Chapter 4, were added to the training data.  Here, the 1m x 

1m quadrat geo locations were aligned onto the PlanetScope pixels, and benthic 

categories were assigned to respective PlanetScope pixel. Overall, 791 training pixels 

were created, whereby the number of training pixels varied across classes resulting in 

unbalanced sampling data (Table 5.1).   
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Figure 5.1. a) Random 3m pixel quadrat samples used to create b) UAV derived training data. 

 

Table 5.1. Number of training pixels for created habitat classes. 

 
Habitat classes 
 

 
#of training pixels 

sparse SG 109 
mod-dense SG 205 

macroalgae 120 
SG/MA mixed 172 
bare ground 80 

water 105 
 

Total 791 
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5.2.2. Image data acquisition  

PlanetScope is a satellite constellation operated by Planet Labs Inc., a private Earth 

imaging company (Planet Labs, 2024). First launched in April 2016, Planet Labs have 

continued to deploy additional satellites and improve their constellations.  Currently, 

Planet offers imagery from three PlanetScope satellite constellations (DoveClassic, 

Dove-R, and SuperDove), with differing sensor characteristics. All three sensors are 

available at between 3m and 4.2m, spatial resolution, and they differ in spectral 

resolution and length of operation (Planet, 2022) (Table 5.2). This study used their 

SuperDove imagery, due its higher spectral resolution and the likelihood that 

operations will continue, making it potentially viable for future monitoring programmes. 

 

Table 5.2. Available PlanetScope satellite imagery data and the respective spectral 

resolution for each sensor. 

  
DoveClassic 

 

 
Dove R 

 

 
SuperDove 

 
Data 
availability    

 
July 2014 – April 2022 

 
March 2019 – April 2022 

 
March 2020 – present 
 

 
Spectral 
resolution 

 
Blue:    455-515nm 
Green: 500-590nm 
Red:    590-670nm 
NIR:    780-860nm 

 
Blue:     464-517nm 
Green:  547-585nm 
Red:      650-682nm 
NIR:      846-888nm 

 
Coastal Blue:  431-452nm 
Blue:               465-515nm 
Green I:          513-549nm 
Green:            547-583nm 
Yellow:            600-620nm 
Red:                650-680nm 
RedEdge:        697-713nm 
NIR:                 845-885nm 
 

 

The seasonal study used four SuperDove images acquired in the year 2021 in the 

months of April, May, August, and October (Figure 5.2). The study of interannual 

variability acquired SuperDove images for the years 2020, 2021, 2022 and 2023, 

between July and September, as close in time as possible to quadrat and UAV surveys 

and seagrass peak biomass (August 2021) (Figure 5.3). All scenes were selected 

based on low cloud coverage and low at which the intertidal area was exposed (Table 

5.3).  
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Table 5.3. Information acquisition of imagery used in this study including tidal stage and the 

approximate hours before or after low tide. 

 Date Time  Tidal stages  Approx. hours 
before/after 
low tide  

 
Annual  

 
17th Sep 2020 

 
11:21:01 

 
Low (09:13) 
High (15:37) 

 
2.5 hrs 

  
14th Aug 2021 

 
10:25:42 

 
Low (13:24) 
High (19:55) 

 
3 hrs 

  
18th July 2022 

 
10:17:14 

 
Low (13:02) 
High (19:36) 

 
2.5 hrs 

  
4th Sep 2022 

 
11:00:58 

 
Low (12:24) 
High (18:50) 

 
1.5 hr 

 
Seasonal  

    

 19 April 2021 10:27:35 Low (13:50) 
High (20:38) 
 

3.5 hrs 

 31st May 2021 10:26:26 Low (13:12) 
High (19:55) 
 

2.5 hrs 

 14th August 2021 10:25:42 Low (13:24) 
High (19:50) 
 

3 hrs 

 21st Oct 2021 10:39:28 Low (09:45) 
(High 16:10) 

1 hr 
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Figure 5.2. PlanetScope’s SuperDove imagery scenes utilised for seasonal time series 

analysis in 2021, including the months April, May, August, and October. Imageries are 

presented using RGB bands. 
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Figure 5.3. PlanetScope’s SuperDove imagery scenes utilised for annual time series 

analyses. Imagery dates for the years including 2020, 2021, 2022 and 2023 were chosen 

based on availability as close as possible to ground truth surveys and seagrass peak 

biomass in August. Imageries are presented using RGB bands. 

 

5.2.3. PlanetScope pre-processing 

The SuperDove (PSB.SD) 3B Analytic Ortho Scene Product has an accurate 

geolocation with a positional accuracy of less than 10m, cartographic projection (UTM) 

with data processed to surface reflectance and is readily available for download from 

Planet Explorer platform (Planet Labs, 2023). While the ground sampling distance of 

the PSB.SD data is approximately 3.7m - 4.2m, the data is resampled to 3m x 3m and 

available in a 16-bit GeoTIFF format.  

Prior to distributing the data as surface reflectance products, Planet Labs conduct 

multiple pre-processing stages including, radiometric calibration, geometric calibration 

and atmospheric correction (Planet, 2022).  



87 
 

To ensure comparability between imagery scenes and assess whether haze or other 

atmospheric interference was still present in images, the consistency of spectral 

reflectance was assessed prior to performing classification analysis. Four areas at 

which the least change in spectral reflectance was expected throughout the year and 

seasons were chosen for this analysis. These areas included, a white roof top, a main 

road, a sandy white beach near the coast to account for higher atmospheric haze and 

an area covered in grass near the coast.  

 

5.2.4. Classifier and accuracy assessment  

Here, multitemporal change detection involves the identification of differences in 

characteristics of remotely sensed imagery data over time. The post-classification 

change detection enables the comparison of the classified habitat maps to identify 

changes in benthic cover, specifically seagrass, macroalgae and SG/MA mixed in this 

study. For reasons explained in Chapter 4, the Random Forest (RF) classifier was also 

applied in this Chapter. Furthermore, the RF classifier has been successfully used for 

seagrass change detection studies where Overall Accuracies exceeded 80% (Ha et 

al., 2020; Benmokhtar et al., 2023).  

To avoid the separate training of each image, which would require training data for 

each time point, the classification model was trained on one image (14th Aug 2021). 

Afterwards, the trained model was applied across all other images to create classified 

habitat maps. The PlanetScope imagery taken by SuperDove on 14th August 2021 was 

trained using RF and ENVI Modeler (ENV v. 5.7) until a stable OOB-score was reached 

in the process, using the out-of-bag approach, the accuracy assessment was 

performed, and a confusion matrix was created to assess benthic class 

misclassification (see Chapter 4 for detailed explanation).  

Classified habitat maps are utilised to calculate and report seasonal and annual areal 

change detection through the time series. Differences for the entire areas, including 

LNNR, and Causeway, Fenham Flats and Budle Bay separately, for each vegetation 

class are calculated to assess cover change. The number of pixels classified for each 

class were calculated in percent cover and km2.   
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5.3. Results  

5.3.1. Spectral reflectance  

Analysis of spectral signatures indicated the largest separability between water and all 

other benthic classes (J-M: 2.0). Similarly, high separability across the spectrum were 

found between bare ground and all the vegetation classes (mod-dense SG, sparse 

SG, macroalgae, and SG/MA mixed) (J-M: 1.7-1.9) (Table 5.4).  All vegetation classes 

indicated a peak spectral reflectance between 447nm and 620nm and a steep increase 

from 650nm to 885nm (Figure 5.4).  Among the vegetation classes, the largest 

separability was found between macroalgae and the SG classes (mod-dense SG and 

sparse SG, respectively; J-M: 1.4) (Table 5.4). While this separation was found across 

the spectrum between sparse SG and macroalgae, the major separation between 

mod-dense SG started at 447nm and was largest at 885nm in the near infrared band 

(Figure 5.4).  Sparse SG also showed a moderate separation across the spectrum with 

mod-dense SG and SG/MA mixed. The least separability was found between SG/MA 

mixed and macroalgae (J-M: 0.5) (Table 5.4), with no indication of separation of 

spectral curves across the spectrum. Low separation was also found between SG/MA 

mixed and mod-dense SG (J-M: 1.1). Here, the greatest separability was from 457nm 

to 885nm. (Figure 5.4). 

 

Table 5.4. Results of Jeffries – Matusita (J-M) index, indicating spectral pair separability of 

benthic habitat classes.  

Benthic pair classes J-M value 

SG/MA mixed - macroalgae 0.5 
SG/MA mixed  - mod-dense SG 1.1 

sparse SG  - SG/MA mixed          1.2 

sparse SG - mod-dense SG          1.3 

sparse SG - macroalgae 1.4 

macroalgae - mod-dense SG 1.4 

bare ground   - SG/MA mixed 1.7 

bare ground   - macroalgae 1.8 

bare ground   - sparse SG 1.8 

bare ground   - mod-dense SG 1.9 

water - SG/MA mixed 2.0 

water - mod-dense SG 2.0 

water - sparse SG 2.0 

water - macroalgae 2.0 
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Figure 5.4. Spectral reflectance curves of benthic class training data. The shaded area 

represents ± standard deviation. 

 

When assessing spectral reflectance of the roof, road, grass, and sand area to check 

seasonal and annual majority of reflectance curves indicated reasonable consistency, 

except for the annual roof imageries comparisons (Figure 5.5). Here the year 2023 

indicated significant differences in spectral reflectance in comparison to all other years. 

This may possibly be due to for example, accumulation of dirt or filamentous 

vegetation/algae, or replacement or repainting of roof. Some variability between years 

and months in spectral reflectance were also found for the sand images. This variability 

may be for example, due to whether the sand area was dry or wet.  
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Figure 5.5. Areas chosen to assess the consistency in spectral reflectance across time 

series imagery. a) a white roof top; b) main road; c) sandy beach area; and d) vegetation 

area. 

 

5.3.2. Accuracy assessment and habitat classification  

Results of the trained random forest classifier indicated an Overall Accuracy (OA) of 

94% with an OOB score of 72% when using parameters of 200 ntree; 9 max_depth of 

trees and 3 mtry features (Table 5.5). The highest benthic class accuracy was found 

for the classes water and bare ground (Precision: 100%), followed by the benthic class 

SG/MA mixed (Precision: 97.3%; Recall: 84%), which showed a very low percentage 

of pixel misclassification with mod-dense SG and macroalgae (1.3 %) (Figure 5.6). The 



91 
 

habitat classes macroalgae and mod-dense SG indicated the same class accuracy 

(Precision: 91.3%; Recall: 97% and 98% respectively). Both macroalgae and mod-

dense SG were mostly misclassified as sparse SG (3.1% and 5.2%, respectively) and 

SG/MA mixed (3.9% and 2.6%, respectively). Among all vegetation classes, sparse 

SG showed the lowest class accuracy (Precision: 85.3%; Recall: 85%), which was 

mostly incorrectly classified as SG/MA mixed (Figure 5.6; Table 5.5). Using this trained 

model, seasonal and interannual classified habitat maps could be successfully created 

(Figure 5.7; Figure 5.9). 

 

Figure 5.6. Confusion matrix output of the Random Forest (RF) classification method showing 

the correctly classified pixels (green diagonal values) and misclassification between true labels 

and predicted labels. Values represent the percent (%) numbers of pixels. 

 

Table 5.5. Accuracy results of the Random Forest classification for the train imagery 14th 

August 2021. 

 
Habitat class 
 

 
Precision  

 
Recall 

 
F1-score 

 
sparse SG 

 
0.85 

 
0.85 

 
0.85 

mod-dense SG 0.91 0.98 0.94 
macroalgae 0.91 0.97 0.93 
SG/MA mixed 0.97 0.84 0.90 
bare ground 1.0 1.0 1.0 
water 1.0 1.0 1.0 
 
Overall Accuracy =  0.94 
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5.3.3. Habitat change detection  

When assessing the classified seasonal and interannual habitat maps, results 

indicated large variation in the distribution and cover of all vegetation classes across 

the time series and between the different areas across the LNNR (Causeway, Fenham 

Flats and Budle Bay, respectively) (Figure 5.7; Figure 5.9).  

The seasonal change detection assessment revealed an initially low cover 0.01 km2 of 

seagrass in April, a slight increase change in cover by May (0.05%) and the largest 

increase cover change between May and August (15%), with seagrass cover reaching 

2.9 km2 across the site. This cover then declined by 11% to 0.9 km2 by October. 

Results appear promising, as they align with expected seasonal trends. In August, the 

largest cover of Seagrass was found for Fenham Flats (2.2 km2) with an increase cover 

change of 17%, followed by the Causeway area (0.4 km; 23%) and Budle Bay (1.3%) 

(Figure 5.8a; Figure 5.11). The habitat classes SG/MA mixed and macroalgae indicate 

opposing patterns in the months before and after August. April shows dominant SG/MA 

mixed cover (5.2 km2) across all three intertidal areas.  While macroalgae was found 

to be lower in cover, it was notably distributed around the inner edges of the intertidal 

area in April (Figure 5.8b; Figure 5.11). However, cover declined substantially in May 

by 14% for SG/MA mixed and 4% for macroalgae, in all three areas, but increased by 

up to 5% in August during peak seagrass biomass season, with a cover of 3.2km2 and 

1.1 km2, respectively (Figure 5.8b, c; Figure 5.11).  Notably, here, the Causeway 

showed the largest increase in SG/MA mixed by 5% and with a cover of 0.9 km2, 

whereas Fenham Flats contained the largest increase in macroalgae cover (by 5%) of 

0.6 km2 area covered (Figure 5.8b; Figure 5.11).   In October, the LNNR was dominated 

by macroalgae, and SG/MA mixed across all areas (2.6 km2 and 6.6 km2, respectively), 

whereas seagrass declined to 1 km2 in total cover. Here, Fenham Flats showed the 

highest increase in SG/MA mixed cover (19%) with a total cover of 4.1 km2, the 

Causeway area showed similar increase cover of macroalgae and SG/MA mixed (8% 

and 6%, respectively) and Budle Bay had the lowest cover for both classes (0.2%-

1.2%). In comparison to Causeway area and Fenham Flats, Budle Bay indicated very 

low change cover across all benthic classes (< 1.3%).  Although benthic classes within 

Budle Bay remained stable in cover across the season, notably the vegetation class 

SG/MA mixed was found to be more than double in cover, in comparison to all other 

benthic classes across all investigated months (Figure 5.8b, c; Figure 5.11). Overall, 
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the entire LNNR area experienced an increasing trend in all observed vegetation 

classes across the season in the year 2021 (Table 5.6).  

 

 

Figure 5.7. Seasonal time-series classified habitat maps for the intertidal area Lindisfarne 

National Nature Reserve (LNNR), using Random Forest classification method. 



94 
 

 

Figure 5.8. Classified maps showing seasonal cover for vegetation classes separately, 

including seagrass (sparse SG and mod-dense SG), macroalgae and SG/MA mixed 

distributions in the intertidal LNNR area. 

 

The 2020 image in the interannual time series was analysed first revealing the largest 

cover as SG/MA mixed (6.9 km2) followed by seagrass (mod-dense SG: 1.8 km2; 

sparse SG: 0.01km2) and macroalgae (1km2) (Figure 5.10; Table 5.11). The following 

year, 2021, the LNNR saw a significant drop in SG/MA mixed cover by 19% with a 

decline of areal coverage by (3.2 km2) and an increase of seagrass by 7% (2.9 km2). 

Here, the largest decline in SG/MA mixed was found for Fenham Flats (by 19%), 

followed by Causeway (8%) and Budle Bay (0.03%) (Figure 5.10; Figure 5.11). 

Fenham Flats also appeared to support the largest increase in seagrass cover (2.2 
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km2) while the Causeway and Budle Bay experienced slight declines in seagrass cover 

(by 2% and 1%, respectively). Opposing results were generated for the year 2022 in 

the LNNR area with a notable drop in seagrass cover by 8% with an aerial coverage 

of 1.4 km2. The largest decline was seen at Fenham Flats (7.3%), with a smaller 

decrease observed in the Causeway and Budle Bay areas (3%) (Figure 5.10a; Figure 

5.11).  The year 2023 again marked an increase in seagrass cover by 21% and a 

decline in SG/MA mixed by 8% in comparison to the year 2022, with Fenham Flats and 

Causeway area indicating the largest change (20% and 8% increases in cover, 

respectively). Except for 2021, which showed very low macroalgae cover across all 

areas, change in macroalgae remained relatively consistent and low, ranging between 

1-2% change in cover (Figure 5.10a, c; Figure 5.11) . While sparse SG and macroalgae 

cover maintained low and consistent coverage across the time series and the areas, 

notably, SG/MA mixed and mod-dense SG showed higher dynamics with opposite 

trends in coverage for most investigated years. However, this pattern was not observed 

for Budle Bay, which showed consistent cover across the time series for all benthic 

classes (Table 5.10; Table 5.6). Here, also, higher cover in SG/MA mixed was found 

across all years in comparison to all other vegetation classes. Overall, the LNNR 

experienced a significant increase in seagrass, a slight increase in macroalgae and a 

significant decline in SG/MA mixed over the observed time series (Table 5.6). 
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Figure 5.9. Interannual time-series classified habitat maps of the intertidal area Lindisfarne 

National Nature Reserve (LNNR), using Random Forest classification method. 
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Figure 5.10. Classified maps showing interannual cover for vegetation classes separately in 

seagrass (sparse SG and mod-dense SG), macroalgae and SG/MA mixed distributions in the 

intertidal LNNR area. 
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Figure 5.11. Seasonal and interannual percent change in habitat class cover for LNNR, as 

well as for the different investigated areas (Causeway, Fenham Flats, and Budle Bay, 

respectively) separately. 
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Table 5.6. Seasonal and interannual total habitat class cover (km2) change for the investigated 

LNNR and different areas separately including Causeway, Fenham Flats and Budle Bay. 

  
Seasonal 

  

 
Annual 

  April May August October  2020 2021 2022 2023 

 
LNNR 

          

 
water 1.4  0.0001 1.4 0.02 

 
0.04 1.4 0.7 0.1 

 
bare ground 11.5 16.4 10.3 8.9 

 
9.5 10.3 9.2 7.0 

 
sparse SG 0.004 0.01 0.3 0.02 

 
0.01 0.3 0.1 0.3 

 
Sg/MA mixed 5.2 2.6 3.2 6.6 

 
6.9 3.2 6.3 4.8 

 
macroalgae 0.9 0.1 1.1 2.6 

 
1.0 1.1 1.3 1.6 

 
mod-dense SG 0.01 0.1 2.9 0.9 

 
1.8 2.9 1.4 5.3 

 
Causeway 

          

 
water 0.2 0.0 0.2 0.01 

 
0.003 0.2 0.1 0.03 

 
bare ground 2.8 3.8 2.0 0.7 

 
1.0 2.0 1.3 0.4 

 
sparse SG 0.003 0.001 0.2 0.01 

 
0.004 0.2 0.1 0.1 

 
Sg/MA mixed 0.9 0.2 0.9 1.7 

 
1.8 0.9 1.9 1.7 

 
macroalgae 0.1 0.02 0.4 1.4 

 
0.4 0.4 0.5 0.7 

 
mod-dense SG 0.0001 0.0003 0.4 0.2 

 
0.7 0.4 0.1 1.1 

 
Fenham 
Flats 

          

 
water 1.2 0.0001 1.2 0.001 

 
0.03 1.2 0.5 0.03 

 
bare ground 0.9 4.9 0.7 1.0 

 
1.1 0.7 0.6 0.4 

 
sparse SG 0.0009 0.01 0.1 0.01 

 
0.01 0.1 0.0 0.1 

 
Sg/MA mixed 3.8 1.8 1.8 4.1 

 
4.2 1.8 3.5 1.7 

 
macroalgae 0.8 0.01 0.6 1.1 

 
0.5 0.6 0.7 0.6 

 
mod-dense SG 0.001 0.01 2.2 0.5 

 
0.8 2.2 1.3 3.8 

 
Budle Bay 

          

 
water 0.001 0.0 0.004 0.01 

 
0.000
1 

0.004 0.001 0.004 

 
bare ground 1.6 1.4 1.3 1.2 

 
1.3 1.3 1.3 1.3 

 
sparse SG 0.0001 0.004 0.0 0.002 

 
0.000
1 

0.01 0.003 0.01 

 
Sg/MA mixed 0.5 0.6 0.5 0.7 

 
0.5 0.5 0.7 0.5 

 
macroalgae 0.02 0.1 0.1 0.1 

 
0.04 0.1 0.1 0.1 

 
mod-dense SG 0.01 0.1 0.2 0.2 

 
0.3 0.2 0.1 0.2 

 

 

5.4. Discussion  

5.4.1. Habitat classification 

The main objective of this Chapter was to evaluate the potential of PlanetScope 

imagery for mapping seasonal and interannual change of a complex intertidal-

seagrass environment.  This study showed that 6-class habitat maps could be created 

successfully at 94% Overall Accuracy (OA) using Random Forest classifier to map and 
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detect seasonal and interannual change across the intertidal mudflat areas. While 

these results compare to some previous studies that have utilised high resolution 

satellite imagery and Random Forest (RF) classifiers, some differences are apparent. 

For instance, Benmokhtar et al. (2021) used a SPOT 7 imagery that consist of a 1.5m 

spatial resolution and 4-band spectral resolution to map a Zostera noltei and algae 

environment yielding a similar Overall Accuracy to this study of 95%. Another study by 

Forsey et al. (2020) conducted in a subtidal homogenous seagrass environment 

indicated similar high accuracy results of 97.6% using RF and very high spatial imagery 

(0.5m; 9-spectral bands). In contrast, Traganos & Reinartz (2018) that utilised Planet’s 

RapidEye (5m; 5-bands) and mapped a submerged multispecies seagrass 

environment using RF and achieved an OA between 73.5% and 82% across the time 

series.  

Accuracies of other studies that used lower spatial resolution imagery such as Sentinel 

were varied, most achieving lower OA accuracy than this study, but unexpectedly, 

some achieving similar results. For example, Ha et al. (2020) used a Sentinel-2 

imagery to map a temperate intertidal sparse and dense seagrass habitat in New 

Zealand and achieved an OA of 87%, while Fauzan et al. (2021), that mapped tropical 

seagrass cover in Indonesia reported an OA of 93%. However, given the varying 

complexity, often less complex than this study, comparisons remain challenging. As 

demonstrated in Chapter 4, accuracy levels generally increase with less habitat 

complexity or number of habitat classes.  A study performed by Benmokhtar et al. 

(2023), that mapped a complex Zoster noltei environment, using Sentinel-2 and RF 

and Object Based Image Analysis (OBIA) in the coastal region of Morocco, a segarss 

environment similar to this study including seagrass, algae, and mixed algae and 

seagrass classes, reported OA ranging between 89% and 94%, indicating the potential 

of lower spatial resolution imagery to accurately map complex intertidal seagrass 

areas.    

While some misclassification was observed among vegetation classes, these were 

expected due to similar spectral signature especially between vegetation classes as 

demonstrated in Chapter 4 with the higher 7-class map. However, considering only 

vegetation classes the lowest misclassification and largest separability that was found 

between macroalgae, and mod-dense seagrass may indicate the great potential for 

mapping and identifying distinct areas for macroalgae cover, highly relevant for 

management implications as discussed in Chapter 4.  
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Class accuracy errors and misclassifications may also arise from the ground-truth 

approach that was used.  For example, the UAV classified habitat maps that were used 

to generate training data already contain inaccuracies (see Chapter 3), which may be 

amplified in subsequent uses. Quadrat samples used as ground-data may also 

contribute to misclassification errors, especially due to the mismatch in spatial 

resolution between the PlanetScope imagery (3m) and quadrat sizes (1m), as 

information within the pixel may not be fully represented in the quadrat. To address 

these issues, a ground-truth design that captures all the information within a 

PlanetScope pixel i.e., 3m quadrats, which then can also be utilised to validate against 

the UAV classified habitat map could have potentially improved accuracies.  

Training a transferable model that can be applied to multiple data sets over time should 

have significant advantages for management and monitoring. It should prove cost-

effective, as unneeded ground-truth data for each time-step is not required, saving field 

costs, time and computational resources. However, although we present promising 

results here, the real feasibility of this has not yet been tested. Dynamic and complex 

environments such as the intertidal area studied can vary in appearance (hence 

spectral signatures) in different months and seasons (Bargain et al., 2013) posing 

challenges for transferability. For example, although all UAV images for ground-

truthing were acquired at low tide, residual water may vary according to the stage of 

drainage, which could lead to varying spectral characteristics between images of dryer 

and wetter areas over different dates.  

 

5.4.2. Change detection, ecology, and implications for management 

In ideal environmental conditions, and with absence of external threats such as 

macroalgae overgrowth, Zostera spp. typically starts propagating in April/May with a 

gradual growth rate during warmer months and maximum growth in August (Azcárate-

García et al., 2022). However, such common and distinct patterns were not observed 

in the early months of the season in this study. Instead, the seasonal patterns showed 

a high cover of SG/MA mixed class, suggesting the proliferation of macroalgae across 

the LNNR region, and in turn making it challenging to detect seagrass and to draw 

conclusions about its growth and distribution patterns, as observed especially for the 

month of April.  
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Seagrass and macroalgae growth patterns can be influenced by numerous 

environmental factors such as light availability, temperature (Deng et al., 2012; 

Hammer et al., 2018; Moore & Wetzel, 2000; Wong et al., 2020), physical disturbance 

(e.g., storms), or nutrient availability (Lee et al., 2003; Bourque et al., 2015). Next to 

high nutrient levels, the proliferation of algae can especially be stimulated by increased 

temperatures, which are often related to algal blooms (Green-Gavrielidis & Thornber, 

2022). For example, in the UK, the end of March 2021 was marked by unusual record 

temperatures (Figure 5.12), which may have led to algal proliferation in the area, thus 

may explain the observed high cover of SG/MA mixed habitat class in April 2021. 

These extreme high temperatures were then followed by unusually low cold 

temperatures across the UK during the same months of April (Figure 5.12). This surge 

in cold temperatures in turn, may have led to subsequent low growth in seagrass and 

potential damage or die-off of SG/MA mixed in the Causeway and Fenham Flats area 

in May. However, the observed maintained cover in Budle Bay may be related to micro-

climatic effects which allowed the maintenance of higher temperatures, due to its 

location within a bay and less exposure. 

 

Figure 5.12. Time series of average UK daily maximum temperatures for spring 2021. (Source: 

Met Office, 2021: Contains public sector information licensed under the Open Government 

Licence v3.0.) 
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The extensive seagrass cover during peak biomass in August, may suggest that the 

observed low cover early in the season may not have had an impact on seagrass 

growth and biomass.  Another explanation for this distributional pattern may be related 

to misclassification error. It is plausible that seagrass may have been very low in cover. 

Given the large cover of bare ground within the sparse SG benthic class, this class 

may have been misclassified as bare ground. The seagrass die-off in October was 

distinctly apparent in the field site with observed sharp decline in seagrass and 

simultaneous increase in algae and SG/MA mixed. However, given the high cover of 

SG/MA mixed which may mask seagrass cover, it is questionable how much seagrass 

may possibly still be present in the area, as often healthy seagrass can be found below 

opportunistic algal mats. Thus, while a positive interannual directional trend in 

seagrass cover was observed, it is questionable whether the lower covers of seagrass 

prior 2023 are actual true values, as healthy seagrass may have been covered by 

macroalgae, represented through the benthic class SG/MA mixed. As such, the 

variation in seagrass cover could be associated with the varying dates of image 

acquisition. For example, it is possible that higher nutrient levels in specific years and 

months such as 2020 and 2022, may have led to an algal proliferation. The large 

increase in seagrass cover in 2023, especially for Causeway and Fenham Flats, may 

indicate a positive trend in the expansion of seagrass. However, when visually 

comparing between 2022 and 2023, it appears that the areas may have expanded 

earlier, but were covered by algae in the previous year. 

Large-scale mapping and monitoring of seasonal and interannual change to 

understand the distribution patterns and dynamics between seagrass and macroalgae 

cover over time is critical for seagrass inventory. For example, short term stress and 

disturbance may influence seasonal growth patterns, productivity structure and stability 

of seagrass populations (Soissons et al., 2018). In combination with causative drivers, 

e.g., water quality and temperature data sets, time-series maps could be utilised to 

track the underlying causes of changes to better understand occurring declines for 

example, during peak biomass.  

Despite the high variation in seasonal and interannual patterns, the maps can be 

utilised to effectively assess dynamics in small to large-scale patterns of seagrass and 

macroalgae cover. Here, information and visual assessment of patch sizes and 

configurations of seagrass and macroalgae across different areas, seasons and years 

can be extracted to support decision-making. Maps of this level of accuracy could 
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assist in prioritising areas for conservation and management implications/interventions 

and effective operationalisation.  For example, where areas of consistent macroalgae 

cover over time was observed, e.g., Budle Bay, necessary measures such as routine 

removal of algae, particularly early in the season, may potentially improve seagrass 

growth over the season. Moreover, the produced maps could support compliance 

monitoring as an effective communication tool, to identify necessary measures to be 

taken.  

To better understand the underlying causes of seasonal and annual changes in 

macroalgae and seagrass cover, the integration of produced maps with 

comprehensive ancillary data may provide more insights into causative effects. Short- 

and long-term changes in cover may for example be better explained utilising: (1) 

Water quality data including nutrient levels which can affect seagrass and macroalgal 

growth (Moore & Wetzel, 1999; Han et al., 2016); (2) Hydrodynamic data, such as tidal 

flows and wave actions that may affect nutrient distribution and macroalgae dispersion 

and limit seagrass growth (Sakamaki et al., 2006; La Nafie et al., 2012); (3) Water 

temperature can influence algal growth and data of temperature variations therefore 

help to understand seasonal and annual variability in growth patterns (Green-

Gavrielidis & Thornber, 2022); (4) Anthropogenic data such as agricultural practices, 

locations of agricultural fields and areas of urban development may help identify 

sources of pollution that can contribute to pollutant and nutrient loads through runoff; 

(5) Finally, precipitation and storm events may increase nutrient flow and thus 

macroalgal proliferation (Chang et al., 2023). Integrating these ancillary data in 

generated habitat maps using geospatial analysis and modelling approaches may aid 

in identifying the sources of drivers of macroalgal growth and seagrass decline. A 

secondary benefit of integrating such ancillary data will be to improve decision-making 

and management strategies through targeted interventions. For example, where 

agricultural runoff is identified as a major driver of macroalgae growth management 

action could focus on these sites. Finally, maps that show the sources, causes, and 

drivers of algal growth and seagrass decline can improve communication with 

stakeholders, policymakers, and the public, delivering more informed, strategic, and 

successful management practice. 
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5.4.3. Limitations, challenges, and recommendations 

Despite the successful use of PlanetScope imagery for mapping and monitoring a 

complex intertidal seagrass-macroalgae environment, limitations and challenges exist 

and need to be considered if the technology and methods presented here are to be 

used in a robust monitoring programme. However, PlanetScope is revolutionising the 

realm of miniature satellites, bringing many advantages for monitoring over traditional 

satellites. New methods are required to support this. The use of smaller satellites, such 

as the PlanetScope CubeSats, can allow more frequent updates and improvements of 

sensors over shorter periods and are more cost-effective for rapid development of the 

technology and associated applications such as monitoring. However, frequent 

updates with improved sensors results in changes in imagery data characteristics (e.g., 

improved radiometric resolution), which can make multi temporal comparisons 

challenging, hampering the utilisation of early launched satellites.  Data continuity and 

consistency is critical for long-term monitoring programmes, as often historic data are 

highly valuable to understand and elucidate trends in seagrass and macroalgae cover.   

It is possible to resample, for example the spectral resolution of newer sensor imagery 

(e.g., SuperDove; 8 spectral bands) to satellite imagery from earlier sensors (e.g., 

Dove Classic: 4 spectral bands) which would enable historic mapping and monitoring 

from years earlier than 2020 when using PlanetScope data. However, this approach 

requires careful consideration as other disparities in sensor specifications between 

satellite constellations exist, such as different band widths and their placements and 

ground sampling distance, which can influence data quality thus making mapping 

results incomparable (Frazier & Hemingway, 2021).  

Collectively, the constellation of many small satellites provides a high frequency of 

revisits to specific locations. This higher temporal resolution may especially benefit 

monitoring intertidal temperate seagrass environments, where areas prone to cloud 

coverage and/or where seagrass habitats are not frequently exposed at low tide to 

capture this time span. However, due to the narrow sensor swaths that PlanetScope 

satellites offer, larger areas of interest such the LNNR often cannot be captured in one 

single path. The stitching of imagery from multiple satellites or passes within the 

constellation into one single scene may be required. This can result in varying viewing 

angles, differing illumination across merged imagery scenes, and reduced numbers of 

usable images, all of which can present problems for analysis, which also restricted 

the selection and number of imagery acquisition in this study. This could make the 



106 
 

utilisation of the platform challenging for monitoring programmes, due to unreliability 

and potentially inconsistent data availability (Frazier & Hemingway, 2021). 

Developing a classification model on one image then using it to predict on images 

taken at different times can be very useful if no ground-truth data is available. However, 

in a spectrally complex environment such as the intertidal, spectral reflectance of 

benthic classes may vary between images in a time series dependent on tidal stage 

and weather condition. To ensure that the classification model accounts for such 

temporal changes and variations, it is recommended to have ground-truth data for each 

time step to validate the model’s performance and map accuracy most accurately. 

Although the methodology used in this study is user-friendly due to the application of 

an existing classifier that enables rapid and accurate habitat mapping, often geospatial 

analysts may be required to perform the analysis at an increasing expense, and while 

image acquisition can be cost-effective, specialist knowledge and associated hardware 

and software can also be expensive. While PlanetScope imagery can be accessible 

free of charge for research work, the acquisition of data for long-term monitoring may 

require more sophisticated agreements and additional payments (Planet Labs, 2024). 

However, successful examples exist. PlanetScope was used to good effect for 

ecosystem monitoring by the Allen Coral Atlas (allencoralatlas.org/), that aims at 

mapping and monitoring coral reefs across the globe and includes proximate seagrass 

habitats, restricted to tropical regions. 

 

5.4.4. Conclusion 

This chapter presented the first assessment of the potential of PlanetScope imagery 

for multitemporal seasonal and interannual change detection in a complex intertidal 

seagrass-macroalgae environment. Maps produced enabled the examination of 

spatiotemporal distribution and dynamics between seagrass and macroalgae cover. 

Insights gained from the analysis of change detection maps provides critical 

information between seagrass-and macroalgae dynamics that could be used for 

effective management decision-making to combat macroalgae threat in the region. The 

user-friendly approach achieved by the transferable single random forest model across 

time series shows promise, offering a potentially effective, low input method for rapid 

large-scale mapping and monitoring of the intertidal area. Despite some limitations, the 

results of this study provide the ground-work and crucial steps in understanding the 
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possibilities and limitations of PlanetScope imagery for seagrass large-scale mapping 

and monitoring in an intertidal seagrass-macroalgae environment.  
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Chapter 6: Thesis overview, limitations, and future directions 

 

This thesis has evaluated the application of optical remote sensing methods to map 

and monitor a complex, intertidal seagrass-macroalgae environment. Three platform 

and sensor combinations with varying spectral, spatial, and temporal resolutions were 

utilised to create habitat maps to inform potential monitoring and management of a 

temperate intertidal seagrass environment. This study assesses strengths and 

weaknesses across scales, from methods used to produce fine-scale habitat maps at 

lower spatial coverage to less detailed maps at larger coverage. This study also 

delineates spatial patterns and dynamics of seagrass and macroalgae in a temperate 

intertidal area for management and conservation purposes. As the first comprehensive 

study utilising multiscale optical remote sensing to map and monitor a complex 

temperate intertidal seagrass-macroalgae environment in the UK, this approach 

provides novel insights into the implementation of these methods for effective 

management and conservation of seagrass habitats. Given the ongoing threats that 

seagrass habitats are facing globally (Unsworth et al., 2022), the urgent need for 

effective management to protect and reduce their decline (Green et al., 2021; Jones & 

Unsworth, 2016), and the rapidly evolving cost-effective optical remote sensing 

technologies and their success in mapping seagrass habitats (Hossain et al., 2015; 

Veettil et al., 2020), the thesis provides timely and valuable contribution to this field of 

research. This final chapter presents an overview of the thesis and key findings; 

critically assesses the implications of the results for intertidal seagrass management; 

and discusses the wider implications of study, its limitations, and future directions.  

 

6.1. Key findings  

In recent years, seagrass habitats have received increasing interest and attention 

globally, by researchers, policymakers, and the public. In particular, their significant 

role as ‘blue carbon ecosystems’ is increasingly recognised and highlights the need for 

their protection to combat climate change (McLeod et al., 2011; UN-WCMC, 2020). 

The applications of optical remote sensing technologies for seagrass habitat mapping 

have increased in parallel (Pham et al., 2019; Hossain et al., 2015). This study 

advances this field of research by filling the gap in knowledge of the application of 
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optical remote sensing methods in temperate intertidal seagrass environments. Key 

technical findings of the thesis are as follows: 

 

• Chapter 3 utilised a high-resolution multispectral imagery acquired through 

UAV and demonstrated successful fine-scale habitat mapping in a high level 

heterogeneous and mixed species intertidal seagrass-macroalgae 

environment, including the discrimination between seagrass species (Zostera 

noltii and Zostera marina) and opportunistic macroalgae. Using the maximum 

likelihood classifier, map accuracies ranged between 84% and 91% across 

three discrete areas, including Zostera noltii dominated, Zostera marina 

dominated and macroalgae dominated transects. Findings highlight the distinct 

benefit of the additional red edge and near infrared bands that significantly 

contributed to the separation between vegetation classes. However, this 

platform is constrained to small area mapping and cannot elucidate large-scale 

patterns or dynamics.  

 

• Thus, recognising the need for larger area coverage, methods for the analysis 

of airborne CASI hyperspectral imagery were developed in Chapter 4 and 

proved effective in mapping the entire intertidal seagrass area of the LNNR. 

Maps with varying numbers of habitat classes (5-class, 6-class, 7-class, 

respectively) were produced using a Random Forest (RF) classifier. Findings 

indicated accuracies ranging between 76% and 97%, OA increasing with lower 

numbers of habitat classes. To identify whether benefits identified required 

hyperspectral data or could be simplified based on findings in Chapter 3, 

hyperspectral bands were reduced from 23 bands to 5 and 8-spectral bands. 

Similar accuracy levels were achieved, reemphasising the importance of red 

bands and highlighting potential redundancy in the hyperspectral sensor for 

intertidal seagrass mapping. While multispectral sensors may be sufficient to 

map intertidal seagrass-macroalgae environments, the scale of data collection 

offered by the aircraft platform enabled the assessment of ecology and spatial 

patterns of seagrass and macroalgae distribution across a large site (approx. 

2,300 ha). However, utilisation of airborne platforms for monitoring is 

constrained by high associated costs, especially where more frequent imagery 

is required to map and monitor competitive dynamics between seagrass and 

macroalgae cover over time.      
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• Aiming for lower costs and acknowledging the need to acquire more frequent 

imagery, multispectral satellite data from PlanetScope SuperDove was utilised 

to map the intertidal seagrass environment and test the potential for seasonal 

and interannual monitoring. Using a Random Forest classifier, a 6-class habitat 

map was successfully produced at high accuracy (OA 94%). The model 

developed, supported the creation of timeseries habitat maps. This permits the 

rapid production of large-scale area habitat maps and could form the basis for 

a highly practical method for coastal managers to effectively assess intertidal 

seagrass ecosystem changes and trends.  Seasonal and interannual habitat 

maps could be utilised to reveal complex spatiotemporal seagrass and 

macroalgae distribution patterns and their dynamics with significant benefits for 

management. 
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Table 6.1: Summary of specifications of different platforms and sensors for monitoring an intertidal seagrass environment. 

 Quadrat sampling Multispectral UAV  Airborne 
Hyperspectral (CASI) 
 

Satellite multispectral 
(PlanetScope) 

 
Platform 

 
Photo Camera  

 
UAV 

 
Airborne 

 
Satellite 
 

 
Sensor 
specifications 

 
Spatial: 0.1cm 
Spectral: RGB 
Temporal: on demand 
 

 
Spatial: 0.5 cm 
Spectral:5-bands  
Temporal: on demand  
 

 
Spatial: 1m 
Spectral: 29-bands 
Temporal: on demand  

 
Spatial: 3m 
Spectral:8-bands 
Temporal: daily 

Spatial Coverage  Limited, small-scale (1m2)  Limited, small-scale (e.g., 
discrete areas such as 
transects) 
 

Limited, local coverage 
(e.g., LNNR) 

Local, regional, and national 
coverage  
 

Application   Limited sampling numbers 
(e.g., 30 quadrats each 
section in LNNR)  
 

Detailed small-scale habitat 
mapping 

Large-scale habitat 
mapping  
  

Large-scale spatiotemporal habitat 
mapping 
 

Classification 
Method  

Visual assessment of 
photographs 
 

Maximum-Likelihood 
Classifier 

Random Forest Random Forest 

Accuracies  - Overall Accuracies: 80-90%  
 

Overall Accuracies: 76% - 
97% 
 

Overall Accuracies: 94% 

Acquired 
information and key 
findings  

Percent cover of benthic 
substrate 

Detailed information on 
seagrass species (Zostera 
noltii and Zostera marina) and 
macroalgae; benefit of 
additional red edge and near 
infrared bands for vegetation 
separation  
 

Spatial distribution patterns 
of seagrass and 
macroalgae; similar 
accuracy levels to 23 -
bands acquired with 5-8 
bands spectral bands 
  

Seasonal and temporal spatial 
distribution patterns of seagrass and 
macroalgae; time series maps could 
be utilised to reveal dynamics 
between seagrass and macroalgae  
 

Limitations  Limited number of samples 
across the area; cannot 
capture accurate large-scale 
patterns 
 

Limited area coverage; 
cannot capture large-scale 
patterns  

Limited to single imagery 
acquisition: cost intensive; 
not viable for monitoring 
programmes 

Restricted by imagery selection due 
to cloud cover; spatial resolution 
may be insufficient to capture 
accurate spatial patterns 
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Skills requirements  Data analysis  Operational skills; data 
processing and analysis  

Operational skills; data 
processing and analysis  
 

Data processing and analysis 

 
Costs for LNNR 
(~2300 ha) 
  

Quadrat frame, GNSS RTK: 
 
 
~ £ 30.00  

UAV license, DJI 
Multispectral UAV, GNSS 
RTK, Software (Pix4D): 
~ £ 7,500.00 

Flying licence, Platform 
(plane), sensor, software:  
 
~ 52,200.00 
 

Single imagery: 
 
  
~ 70.00 
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6.2. Implications for management  

The implications of remote sensing for coastal habitat management are significant and 

are often promoted as part of a toolbox to help managers to assess the ecological 

patterns and change to prevent ecosystem decline. Maps are also often important 

communication tools to help managers for decision-making and of conservation areas 

(McCarthy et al., 2017; Pettorelli et al., 2014). While the application of optical remote 

sensing technologies to seagrass habitats are well covered in the literature (Hossain 

et al., 2015) (Chapter 2, Table 2.2), the benefits must be operationalised for the 

management of seagrass decline. Methods are often analytically complex, and less 

intensive approaches are required by busy management organisations. Barriers to 

operationalisation may be due primarily to remote sensing technologies being 

challenging to integrate into monitoring programmes, constraints associated with 

limited budgets, accessibility of the required data, technical expertise, and data 

processing challenges.  

 

To facilitate the utilisation of optical remote sensing for seagrass habitat mapping and 

monitoring and ensure cost-effectiveness for management, careful planning is 

required, and the analytical complexities must be addressed. The type of optical 

remote sensing technology and method to be used will primarily depend on the 

management aims and objectives of required information of the seagrass environment. 

These may range across different needs and interests, for example whether 

information is required at seagrass species level, or for large scale habitat dynamics 

and threats such as macroalgae overgrowth — successful approaches to which have 

been demonstrated in chapters presented in this thesis. Management objectives will 

dictate the required spatial, spectral, and temporal resolution imagery data to map, 

monitor and manage seagrass environments, but promising methods have now been 

identified across various scales.  

  

6.2.1. Applications of multiscale mapping for management and cost-

effectiveness 

As demonstrated, seagrass habitat maps can be produced using imagery from multiple 

platforms to acquire habitat information based on differing sensor specifications.  Each 

platform comes with strengths and weaknesses regarding resolution and spatial 
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coverage, and trade-offs are required based on the habitat information required and 

associated costs (Table 6.1). For example, while UAV imagery may enable fine-scale 

habitat mapping, it lacks the required spatial coverage to assess large-scale habitat 

patterns, whereas satellite platforms can provide this at the cost of lower spatial 

resolution. To maximise the utilisation of available optical remote sensing data 

resources, the leveraging of strengths and weaknesses through combination of data 

from different platforms may provide more cost-effective approaches for the 

management and conservation of habitats (Carpenter et al. 2022; Bergamo et al. 

2023). 

UAV imagery will be most appropriate when 1) the fine-scale ecology of seagrass and 

macroalgae is required, for example to monitor and assess species composition by 

performing several flight transects across the site as demonstrated in Chapter 3; 2) 

where detailed information is required in inaccessible areas, for example, dangerous 

mudflat areas where sites are inaccessible on foot; 3) to monitor the success of 

restoration projects by assessing for example, seagrass plant growth and biomass 

(Ridge and Johnston, 2020); 4) to overcome challenging and exhaustive quadrat 

sampling across the field site, where UAV derived habitat maps could be utilised as 

training data for large-scale habitat mapping such as for PlanetScope imagery (as 

methodology used in Chapter 5), which has lower spatial resolution but provides larger 

coverage to assess large-scale distributional patterns. 

Where information at species level is not required, lower spatial resolution imagery with 

larger coverage area will be more appropriate. This is required to inform our 

understanding of the ecology of seagrass and macroalgae, elucidating large-scale 

patterns and dynamics, as demonstrated in Chapter 4 and Chapter 5 by utilising 

Airborne Hyperspectral data and Satellite PlanetScope Satellite data. While the CASI 

hyperspectral imagery with its high spatial resolution at 1m was a highly valuable 

resource for mapping small-scale patch dynamics of seagrass and macroalgae, it may 

not be cost-effective due to costs associated with using an aeroplane platform and the 

expensive CASI sensor. However, this study demonstrated that the high number of 

spectral bands is not required to achieve similarly accurate maps, so costs could be 

reduced somewhat by utilising consumer grade multispectral sensors that retain red 

edge and near infrared bands, instead of a hyperspectral sensor. Where such high 

spatial resolution may not be required for mapping seagrass and macroalgae, high 

resolution multispectral satellite imagery such as PlanetScope (3m) then provides 
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more cost-effective options for monitoring programmes. Satellite approaches enable 

the more frequent acquisition of imagery to capture temporal dynamics between 

seagrass and macroalgae. Furthermore, satellite imagery such as PlanetScope could 

be utilised to assess the health of seagrass habitats to identify existing and newly 

identified seagrass areas, or areas of significant change. These can then be explored 

in more detail by using UAV imagery. 

When conducting a multiscale mapping approach combining or fusing imagery data 

with differing spatial and spectral resolution, it is essential to consider factors that may 

influence the accuracy of mapped seagrass and macroalgae cover (e.g., the loss of 

detailed information with decreasing spatial and spectral resolution). 

 

6.3. Wider implications  

Although the maps created are specific to the management of intertidal seagrass 

habitats in Lindisfarne National Nature Reserve (LNNR), UK, the approaches and 

methodologies used in this thesis are applicable to seagrass habitats in other 

temperate regions and provide valuable information to inform their management.  

Intertidal seagrass habitats occur in other temperate regions such as, USA, New 

Zealand and wider Europe (France, Spain, Portugal, Sweden etc). Although some 

studies that have used optical remote sensing in these regions are available, this study 

fills the gap identified for intertidal seagrass environments (Chapter 2, Table 2.2.). The 

majority of methods tested in this study have been applied in a complex intertidal 

seagrass-macroalgae environment for the first time. This progresses our 

understanding of the applications of optical remote sensing technology and methods 

from clear tropical waters to temperate intertidal seagrass habitats and moves beyond 

the mapping and monitoring of homogenous seagrass habitats to identification of 

species within complex intertidal seagrass-macroalgae habitats, allowing us to address 

challenges, such as eutrophication, that seagrass environments are facing across 

coastal regions (Burkholder et al., 2007). 

This study may provide a framework for the use of optical remote sensing by existing 

projects and organisations, supporting efforts in coastal habitat management and 

conservation within the UK, of seagrass systems and beyond. For example:  

• The EU funded project, EU LIFE Wader (2024), aims to improve the water 

quality and ecological conditions of different habitats across the 
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Northumberland Coast, UK. Moreover, they aim to improve management to 

improve the health (condition) of protected site features in the study area, such 

as mudflats and seagrass. The methodologies produced in this thesis could 

especially support their ongoing efforts in mitigating macroalgae growth in the 

LNNR. For example, methods underpinning maps in Chapter 4 and 5, may 

provide a powerful tool to map macroalgae patches and support prioritisation of 

macroalgae removal. 

 

• Projects funded by diverse stakeholders across the EU and UK such as, 

Stronger Shores (2024), Restoration of Seagrass for Ocean Wealth UK 

(ReSOWUK, 2024) and Restoring Meadow, Marsh and Reef (ReMeMaRe, 

2024) aim to restore seagrass meadows across the UK. Here, the methods used 

to produce large-scale maps (Chapter 4 and 5) could be utilised to identify 

habitat suitability for potential seagrass restoration areas (e.g., bare ground 

areas) (Bertelli et al., 2022; Dalby et al., 2023). The multispectral UAV 

methodologies developed in Chapter 3 could support high level change 

detection and monitoring of seagrass restoration programmes (Ventura et al., 

2022), where they may help quantify success and enable the detection of early 

threats, such as algal growth. 

 

• The DEFRA (Department for Environment Food and Rural Affairs) programme, 

marine National Capital Ecosystem Assessment (mNCEA, 2024) aims to 

evaluate the health and functioning of marine ecosystems, including the 

assessment of biodiversity, ecosystem services and the overall condition of 

marine environment. Tools developed in this  thesis could assist in the 

assessment of ecosystem services (Andrew et al., 2014; Hossain & Hashim, 

2019) and support condition monitoring through: 1) utilising baseline habitat 

maps produced in Chapter 4 and 5, to assess the initial state of the seagrass 

environment; 2)  Change detection to assess habitat condition over time and to 

identify trends in seagrass increase or decline (Chapter 5). 

 

• To improve the accuracy of seagrass and macroalgae mapping in intertidal 

areas and to increase effective management practices, a citizen science project 

could be integrated in management planning. For example, as part of Natural 
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England’s’ community engagement plan to raise awareness on the natural 

environment in the region. Such engagement could involve the collection of 

seasonal and annual ground-truth data through quadrat photographs, or the 

collection of high-resolution imagery data conducted for example, by UAV flying 

hobbyists. Ultimately, data collected could be used for spatiotemporal map 

validations. However, it is important that safety measures in such a challenging 

environment are considered in designing a ‘citizen science’ project. Moreover, 

to minimise the impact on seagrass disturbance, numbers of volunteers allowed 

onto the field site must be carefully considered and regulated. 

 

• Finally, habitat maps generated are of fundamental use in applied ecology 

(Pettorelli et al., 2014). They can provide information for ecological research, 

answering specific seagrass ecology questions. For example, the maps created 

in Chapter 4 and 5 could be used: in combination with species distribution 

models to better understand seagrass and macroalgae distribution patterns 

(Beca-Carretero et al., 2020) and their potential drivers, when combined with 

other sources of data ( e.g., nutrients) (Han et al., 2016); or estimate seagrass 

properties such as leaf area, or make biomass and carbon storage estimates 

crucial for climate change research (Simpson et al., 2022; Sousa et al., 2019). 

 

Overall, remote sensing technologies operating at multiple scales can provide a holistic 

overview of ecosystems for management and conservation purposes (McCarthy et al., 

2017; Rose et al., 2015). This study develops a foundation for multi-level remote 

sensing in intertidal seagrass habitat mapping, monitoring, and management. It can 

provide tools to better understand seagrass declines, which can be related to threats, 

as well as monitoring the success of restoration efforts for intertidal seagrass habitats 

across the UK and beyond. Funded by NERC and Natural England, the statutory 

nature conservation body, this work has always had end-user support, and additional 

organisations and projects have shown interest in the outputs to date. Further 

collaborative work proposed indicates the value and impact of this study to intertidal 

seagrass management and conservation organisations. Applications of the approach 

beyond seagrass habitats are also possible. 
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6.4. Limitations and future directions  

The study was subject to several limitations, primarily associated with the time 

constraints of data collection and analysis, as a function of carrying out the research 

over the duration of a Ph.D. These may have impacted results in the following ways: 

(1) The low number of ground-truth samples resulted in unbalanced training class 

samples, which may have impacted accuracies, and potentially challenge the reliability 

of map results; (2) The data collection confined to the Causeway area, may limit the 

generalisation of findings across the full extent of the field site, particularly undermining 

results in areas such as Fenham Flats and Budle Bay; (3) The focus of the study in 

one specific intertidal area, with, for example, specific sediment characteristics, may 

potentially limit the validity of results in other geographic regions. A study design that 

incorporates these constraints may enable a higher degree of transferability to other 

intertidal seagrass environments.  

 

The inherent nature of the intertidal area retaining water at low tides, and the 

appearance of sun glint may both have impacted spectral responses, potentially 

resulting in higher misclassifications and reduced reliability of classified habitat maps. 

While this could theoretically be mitigated by increasing the time for water to drain after 

low tide, this was often restricted by topography, unfavourable weather conditions 

(e.g., UAV sensitive to rain and wind), the need to leave before the incoming tide made 

the area unsafe for working, or satellite imagery acquisition occurring at sub-optimal 

times shortly before high water. 

Given the high complexity of area investigated, with two species of seagrass and 

multiple macroalgae co-occurring, varying sediment types, hyperspectral and satellite 

resolutions of 1m and 3m, respectively (Chapter 4 and 5), may have been insufficient 

to separate similar habitat classes spectrally. The acquisition of satellite imagery with 

higher spatial resolution would enable the assessment and validation for improved 

accurate habitat mapping. The availability of satellite imagery over intertidal areas is 

inherently constrained, e.g., data is collected out with tides, rendering many images 

unsuitable for intertidal monitoring.  These temporal limitations potentially hamper 

detection of fast growing macroalgae; this inability to capture these inter-specific 

dynamics inhibits accurate monitoring of seagrass cover. Higher frequency of mapping 

may enable the delineation of more accurate seagrass information and the finer 

description of dynamic interactions with macroalgae. Furthermore, as discussed in 
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Chapter 4 and 5, the integration of environmental, climatic, hydrodynamic, and 

anthropogenic data into generated maps should be considered, to analyse and 

evaluate spatiotemporal patterns, causes and drivers of macroalgal growth and 

seagrass decline. This will help design management interventions to effectively 

mitigate macroalgae growth and seagrass decline.   

One future direction for this study entails the development of more cost-effective 

analysis, specifically the integration of freely available software and programming 

languages. The cost of software utilised in this study for data processing and analyses, 

including for example, ArcGIS and ENVI, may limit the accessibility for coastal 

managers often restricted by limited budgets. To address this limitation, open-source 

software such QGIS and programming languages including R and Python may provide 

more cost-effective options (Rocchini et al. 2017). To enhance the practicality and 

efficiency of data retrieval and analysis, cloud-based platforms such as Google Earth 

Engine may provide another option for geospatial analyses, including for optical remote 

sensing applications (Traganos et al., 2018; Amani et al., 2020;). Ultimately, the 

automation of data processing and image analysis could lead to the creation of an 

intertidal seagrass habitat mapping toolbox (Bremner et al., 2023) usable without 

expert input, which would contribute to management efforts. Here, the integration of 

Deep Learning (DL) methods and Object-Based-Image Analysis (OBIA) could 

potentially lead to more accurate and robust classification (e.g., Hobley et al., 2021). 

Evaluating and selecting the most appropriate and accurate classification methods, will 

consequently minimise error propagation when leveraging multiscale data.  

 

6.5. Concluding remarks 

In conclusion, this thesis has demonstrated the potential of cost-effective and relatively 

user-friendly production of habitat mapping and monitoring of a complex intertidal 

temperate seagrass-macroalgae environment using both consumer grade and cutting-

edge optical remote sensing technology.  The utilisation of different platforms, sensors 

with high resolution imagery coupled with machine learning classifiers and field-based 

validation, enabled the successful extraction of detailed information to better 

understand patterns of distribution and the dynamics between seagrass and 

macroalgae. Overall, this study has enabled a holistic evaluation of optical remote 

sensing technology to advance our understanding of the possibilities, geospatial 

intricacies, and limitations for applications in the investigated environment. However, 
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it is important to acknowledge the inherent challenges of the field site, including data 

limitations, uncertainties in methods applied and the need for improved validation, 

methodologies, and collaboration with stakeholders to enhance reliability and 

applicability of seagrass habitat mapping and monitoring for conservation efforts.  

 

With rapidly advancing and emerging remote sensing technologies and increasing 

threats faced by seagrass habitats, the findings of this study not only contribute to filling 

critical research gaps, but also provide a foundation for future research and 

development of improved methods to enhance our understanding of applications of 

optical remote sensing across multiple scales in temperate intertidal seagrass 

environments, their practicality and operational considerations. This is a significant 

step towards their integration into effective monitoring programmes, greatly benefiting 

management and conservation efforts to prevent observed declines in this important 

habitat.  
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Appendix A: Table including the 33 Channels (spectral bands) and central wavelength ± 

FWHM (Full Width at Half Maximum) of the CASI hyperspectral sensor. 
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