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Abstract

Extracting value from streams of data generated by sensors and software is key to the
success for many important problem domains including the Internet of Things (IoT).

However there are many non-functional challenges to be overcome in achieving
this, including very high data rates, a deployment environment featuring nodes with
differing capabilities and limitations, energy and bandwidth constraints, performance
requirements, and security guarantees.

Most modern stream-processing systems leave addressing these challenges for the
application programmer to solve by making manual adjustments to their program.
This entanglement of the functional and non-functional aspects of stream processing
increases the risk of mistakes and the potential cost of future maintenance.

We describe an alternative approach — a declarative architecture (”StrloT”) based
on purely-functional programming. The application programmer provides a pro-
gram encoding the functional requirements, a separate description of the operating
environment, and the applicable non-functional requirements. StrloT then derives
functionally-equivalent program variants, generates corresponding deployment plans
and automatically deploys the best-cost plan.

In order to explore the viability of purely-functional programming for this problem
domain, we designed and built a proof-of-concept, end-to-end implementation of
this architecture using the purely-functional language Haskell, Linux containers and
orchestration technology.

This thesis focusses on two key components: the Optimiser and Evaluator.

The Optimiser leverages purely-functional semantics to apply term rewriting and
derive functionally-equivalent variants of the user’s Haskell program.

The Evaluator filters and selects deployments plans using modelling techniques
including queueing theory, in order to select the plan which will perform best for two
non-functional requirements: bandwidth and cost.

To evaluate these components and approaches we implemented several solutions to
real-world stream-processing problems. In some cases, StrloT can generate programs
which meet applicable non-functional requirements even when the user-supplied

program does not.
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Chapter 1. Introduction

1.1 Motivation

Distributed stream-processing is applied to modern problems from a wide range of
domains, including healthcare[58], environmental monitoring, manufacturing, social
media[47], and particle physics. These problems require real-time responses to both
large volumes of data, as well as data arriving at high velocity: the ALICE detector
at the Large Hadron Collider in CERN generates more than 3.5TB of data every
second|2].

Designing and deploying such systems is complex and requires expertise across a
heterogeneous range of technologies, including embedded programming, the ”"Internet
of Things” (IoT), sensors and actuators, low-power signalling, data science, mesh
networking and cloud computing. It can be very difficult to hire or train programmers
to the required level of expertise across the full breadth of these technologies.

Calibrating such systems to meet non-functional requirements (such as energy, net-
working, security or performance) largely remains the responsibility of the application
programmer, by adjusting and conflating the data-processing logic of their program
with deployment considerations such as operator placement. This can obscure clarity,

increase the risk of programming mistakes and incur a higher maintenance cost.

1.1.1 Declarative Stream-Processing

Michalak et al proposed a declarative model for application development [57]. A
high-level visualisation of this architecture is provided in Figure 1.1.

To address the difficulty of managing the disparate technologies required for
current stream-processing solutions, the model exposes a single, unified programming
environment for the application developer to gain familiarity. Alongside the program
describing the application logic, the developer supplies the system with a separate
specification of the relevant non-functional requirements: for example, cost, energy, or
the non-functional requirements independently from the application logic, the clarity
of the logic need not be compromised, reducing the risk of programming mistakes
and the cost of future maintenance.

The system then automatically optimises the program and tailors a deployment

plan to maximise performance against the specified non-functional requirements.

1
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Figure 1.1: An overview of the declarative stream-processing architecture

1.2 Functional Programming

Functional Programming is a methodology where the principal abstraction is the
function. Functions can be passed as arguments to other functions and returned as
values. Programs are built declaratively from expressions, which are produced by
applying and composing functions together.

tions which produce no result beyond the return value. Pure functions always evaluate
to the same value for the same inputs. This means program evaluation can proceed
with many different evaluation strategies, including lazy evaluation, where a term is
only evaluated when its value is required. Pure functions are referentially transparent:
any pure expression can be substituted for another which is semantically equivalent,

i.e., evaluates to the same value for the same inputs.

1.3 Functional Stream-Processing

Stream-processing systems originated in the relational community and began as
extensions to batch-processing. The adoption of functional concepts by MapRe-
duce [19] served as an inflection point in their evolution, enabling the separation
of data-processing logic from deployment considerations and horizontal scaling across
distributed, commodity hardware. Functional programming has been successfully
used to build large, complex systems [16].

The declarative model was initially explored via a relational implementation [58].

An initial prototype of a functional implementation (described in Section 2.5) was

2
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1.4 Research Questions and Objectives

By designing and implementing the missing components from the functional prototype
and producing a functionally complete end-to-end implementation, we aim to address

the following research questions:

1. Is the declarative model viable? By building a second, independent implementa-
tion of the model, we will provide further evidence as to its viability.

2. Can purely-functional programming be used to build an end-to-end system this

complex?

3. By comparison with the earlier relational implementation: Does purely-functional
programming offer any specific advantages or disadvantages in the design or
implementation of specific components from the declarative model?

1.5 Thesis Structure

In Chapter 2, we survey the background and key concepts in stream-processing and
functional programming that inform this research. We describe in detail the proof-of-
concept functional prototype that forms the foundation of the work of this thesis.
used for partitioning and the choice of data-types for representing stream-processing
programs.

categorising transformations according to established categories of stream-processing
optimisation, considerations of program semantics and transformation correctness,
ing rewrite rules.

In Chapter 5 we explore approaches for modelling cost in a stream-processing
deployment in order to evaluate and rank rewritten programs, our chosen approach

In Chapter 6 we evaluate the performance of our system by re-implementing
solutions to real-world stream-processing problems with StrloT and comparing the

Chapter 7 discusses the results of this doctoral research and looks at further areas
for study.

We have published the system we built to support this work — StrloT — as open-
source software. We include excerpts of the source code when doing so improves
clarity, but we do not reproduce the full text within this thesis. We reference specific
lines from files in the StrloT source code, such as lines 13 from the README, as follows:
[79, README#13] .

Information on obtaining the full source code is provided in Section A.1.






Chapter 2. Background and Related Work

2.1 Stream Processing

Stream processing originally emerged from the database community as an alternative
approach for reasoning over data-sets which were either too large to be practically
stored in traditional database systems, or not available all at once. Stream processing
has been applied to problems in domains including environmental monitoring, civil
engineering, sensors networks, meteorology and healthcare [20], [58].

In the Big Data era, Stream processing has evolved from its relational origins,
influenced by developments in Cloud and Edge Computing, to address increasing
demands for low-latency responses to both large volumes of data as well as data
arriving at high velocity [14].

We now provide an overview of the history of streams and distributed stream-
processing. For a more thorough analysis, we recommend [28].

2.1.1 Stream definition

exist, may be too large to be practically stored or retrieved, or may be infinite. Sub-sets
of data may arrive at the processing system at varying times or rates, and potentially
out-of-order [30].

Since the full data-set is never available, strategies to tackle problems involving
streamed data must use incremental methods. Information from past data that is
required for future calculations must be retained until those calculations are complete.

Consider the mean-average of a set of numbers, normally calculated by dividing
their sum by the size of the set. In a streaming scenario, the set size could be unknown
(in the case of finite streams) or infinite. It would be impractical to store every number
received in the stream. If the stream is finite, it may be valuable to output an inter-
mediate answer, calculated on the available data, prior to the ultimate answer. In the
infinite case there will be no ultimate answer.

An incremental approach to this problem would be to continually emit the average
of the data received to-date. The system would need to calculate and store a pair of
numbers: the sum and count of numbers received. The storage requirement for the
pair is constant. These values should be continually updated as new data is received.

The running average can be quickly and continually calculated from the current pair

5



Chapter 2. Background and Related Work

in constant time.

2.1.2 Origins of Stream-Processing

Stream processing originated as an extension of techniques from the database com-
munity. Relational systems were extended to support the notion of operating on
sub-sets, or “windows”, of data. The user typically composed their queries using
domain-specific languages (such as dialects of Structured Query Language) and in
terms of pre-defined operations, e.g. selects and joins. Data was organised according
to a defined schema [28].

Scaling the performance or capacity of these systems was usually achieved “verti-
cally”, with faster processors, larger capacity storage and memory, and faster network
equipment. Fault tolerance was achieved via a “Highly Available” approach, using
state replication, hot spares and failover. Systems typically prioritised service availabil-
ity over strict accuracy, using techniques such as load shedding: temporarily dropping
some input or skipping some processing to to manage temporary overload situations
at the cost of result accuracy [28].

2.1.3 MapReduce

An inflection point occured in the evolution of stream-processing systems in 2004 with
MapReduce [19], a batch-processing system inspired by concepts from Functional
Programming. MapReduce abstracts away the complexity of both load scaling and
fault tolerance from the application programmer, providing a simplified interface of
only two parameters: what transformation to apply to each input datum (map) and
how to collate the results (reduce).

By partitioning data and the work to perform and distributing them to multiple in-
dependent machines, MapReduce could be scaled up horizontally across conventional,
commodity hardware, as opposed to vertically on expensive, specialised equipment.

MapReduce itself wasn’t made available outside Google, but it inspired the design
of subsequent open batch systems including Hadoop [17] and Spark [82], as well as
the design of subsequent stream-processing systems [7], [49], [61], [73].

2.1.4 Second Generation Stream-Processing

Modern stream-processing systems have been heavily influenced by MapReduce and
cloud computing. In contrast to the first generation’s “data first, then query” approach,
the second generation of stream-processing systems prioritise the data transformation,
taking a “data-in-motion” perspective [37].

The user first describes the data transformation to take place in terms of a “dataflow”
graph of operators. High-level operations with a user-defined payload (e.g. map,
filter, reduce) are prevalent, rather than the traditional relational-inspired operators

(select, join, etc.)



2.1. Stream Processing

In contrast to the schema-led approach inherited from their roots in relational
databases, with second-generation systems data is frequently either unstructured or
the responsibility for applying and interpreting structure is left to the programmer, for
example, to manually serialise and de-serialise structure from strings, and manually

handle any format errors.

Rather than relying on acquiring more powerful processors, larger storage, or faster
network equipment, scaling is achieved horizontally, utilising commodity hardware or
cloud computing resources. This approach to scaling allows systems to be designed to
adjust the quantity of deployed resources both up and down in response to workload

demand.

On-demand resource provision has also influenced a move away from active
replication and hot spares for fault tolerance, as in the first generation, towards passive
replication and allocating additional resources (e.g. cloud instances) in response to

failure events during operation.

Second-generation systems generally place a greater importance on correctness than
the first generation and this is reflected in the techniques used for load management,
such as back-pressure, where operators upstream of a load hotspot temporarily slow
down their emission rate, as opposed to load shedding.

2.1.5 Hybrid architectures

The batch-oriented nature of both the traditional relational systems as well as the
newer systems inspired by MapReduce mean they suffer from latency: no answer can
be calculated until sufficient data has been received to fill the current batch. Some
systems, such as Spark Streaming [81], attempt to address this by reducing the batch
size. This reduces the latency but fundamentally cannot eliminate it. For problems
which require more prompt answers to high-velocity data, a different architectural
approach was needed [14].

However, the aforementioned batch-processing systems are well established and
understood. In contrast, the newly emerging distributed stream-processing systems
were complex and fragile. A hybrid approach was popularised in 2011 [54] whereby
batch and stream-processing systems were both run in parallel, with the streaming
system limited to processing data that had arrived in the interval since the last batch
was collected. This aimed to bound the risk associated with deploying the stream-
processing system, and leverage the well-understood performance and operation of
the batch-processing system [76].

A drawback of this hybrid approach was the need for end-users to implement their
data-processing logic twice. Kreps [46] proposed instead improving stream-processing
systems to address the reliability and complexity concerns and leveraging them for

both stream and batch workloads.
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2.2 Purely-Functional Programming

cipal building blocks of programs are functions (as oppose to e.g. abstract objects
in Object-Oriented Programming) and programs are composed declaratively using
expressions, rather than sequences of statements.

advantages for the design and implementation of large and complex software sys-
tems [16].

catch and prevent a large class of programming errors at compile time . Strong, ex-
pressive type systems can aid with the legibility of code, with function type signatures
serving as a form of documentation as to the behaviour of the function .

pure functions cannot perform side-effects, or, actions that cause a change of state. To
illustrate, consider a function with signature foo :: Integer. Once evaluated, a pure
function of this type will have a value of type Integer and evaluating the function will
have no other effect. An “impure” function however could produce other effects: it
could scan over your email, delete files from your computer, or send source code to
your printer.

Pure functions can be easier to reason about than impure functions, both for humans
and machines such as compilers. In the expression £ g h, where the functions g and
h are passed as arguments to the function £, the order of evaluation of g and h does
not impact their value. These properties give a compiler flexibility to re-order many
expressions for optimisation without altering the semantic behaviour of the program.

Pure functions are referentially transparent: an instance of an expression in a pro-
gram can be safely substituted for any other which is semantically equivalent, i.e.
evaluates to the same value for the same inputs. Referential transparency enables

pressions are only evaluated at the point at which their value is required (such as when
a value is to be printed) [36]. Conversely an expression is not evaluated if the value is
not required: this permits programs to manipulate expressions that might be infinite,

such as the set of natural numbers.

2.2.1 Haskell

committee with an initial release in 1990 [40].

The Haskell language is formally specified in a series of reports, each of which

8
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supersedes the older versions. The latest report [53] was published in 2010. In practice,
many programs (including the work of this thesis) rely upon language extensions
which are not formally described in the reports.

There have been many compilers and interpreters for Haskell over its lifetime.
Today, the Glasgow Haskell Compiler (GHC) [31] (originally from 1989 [40]) is pre-
dominant. The vast majority of language extensions are developed for, and ultimately
supported within, GHC.

There are a great many books and online resources for learning Haskell. For an
especially clear work, focussed on problem solving with pure functions, the author
recommends [5]. For a more pragmatic look at applying Haskell to modern case
studies, see [62]. We provide a short summary of the Haskell syntax used in this thesis
in Chapter B.

2.2.2 Functional Streams

The natural functional data-type for representing a sequence of items for processing is
the recursive list, defined as either the empty list, or a “head” element pre-pended to
another list (the “tail”). Originating in LISP [39], the recursive list is a core data-type
in the majority of subsequent functional languages, including Haskell.

Listing 2.1 illustrates the outline of a data-processing pipeline using lists. A gener-
ator produces a long list of data which is consumed by a series of processing steps

before being displayed or otherwise processed at the end.

[0..1_000_000_000] & map (*5) & map (-2) & mapM_ print

Listing 2.1: An example of a list-based data-processing pipeline

on lists is very inefficient in both space and time. Both the list structure and the data
within are fully evaluated at each step in processing. [1]

Functional Streams were introduced to address this [51]. A functional stream is
defined as either empty, or a head element pre-pended to a promise, which, when
evaluated, yields the tail of the stream. The evaluation of the promise is delayed
until the value is required, or avoided entirely when the value is not required. Using
functional streams, it becomes possible to work with infinite sequences.

This type is analogous to but distinct from list, requiring an independent set
of functions to manipulate them (head, tail, length, cons, etc.). This prevents the
programmer from re-using existing libraries of routines that are specialised for lists.
structures) such that there is no longer a need for a distinct stream type.

Even with lazy evaluation, there remains a cost associated with deconstructing and
reconstructing lists at each stage in processing. Approaches to solve this include algo-

rithms to re-write programs to remove intermediate lists [33], [75]. These techniques

9



Chapter 2. Background and Related Work

A related performance issue remains: sometimes, deconstructing the entirety of
a list is unavoidable. Consider the final step in Listing 2.1: the full list and all data
within must be evaluated. This process involves allocating temporary objects which
will eventually be removed by garbage collection. However, in the short term, they
consume resource, and in some circumstances this can be significant. Attempting to
execute the example in Listing 2.1 results in an Out Of Memory error on the author’s

contemporary workstation.

Haskell Stream-Processing

There are a number of stream-processing systems within the Haskell community. Those
surveyed for this work are Conduit [71], Pipes [34], io-streams [13], Streaming [72]
and Streamly [50].

In order to avoid the performance problems described above, they all provide new
data-types for modelling streams, distinct from lists, as well as a library of functions to
manipulate them, in most cases closely following established functions and patterns
from the Haskell Prelude.

Listing 2.2 is a re-implementation of the example in Listing 2.1 using functions
from Streaming. The revised routine requires a constant amount of memory to exe-
cute and, in contrast to the original example, completes successfully on the author’s

contemporary machine.

S.each [0..1_000_000_000] & S.map (*5) & S.map (-2) & S.print

Listing 2.2: Example from Listing 2.1 re-implemented with Streaming [72]

These systems all provide support for effectful streams: the ability to interleave
side-effects within a stream-processing computation.

They are generally written from the perspective of operation on a single computer.
None are designed for distributed operation: although two provide rudimentary
support for connecting streams over TCP networks (Conduit and Pipes), they offer
limited support for serialising data structures over the connection, and the programmer
is burdened with determining which streaming operations should be executed on
what nodes.

2.3 Containers

An OCI container image is an application together with all its software dependencies,
packaged in a standardised format, such that a container runtime can start the applica-
tion without requiring further software. A running container will typically be isolated
from the host system, with a private filesystem, process table, virtual network devices

and user metadata.
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Devised and popularised by dotCloud, inc (later Docker, Inc) in 2013 [41], Linux
Containers were subsequently standardised by the Open Container Initiative (OCI) in
2017 [64].

OCI containers are a very popular method for building and distributing software.
In contrast to Virtual Machines, they are more lightweight, running as a regular (albeit
isolated) process on top of a conventional operating system, not requiring software-

virtualised hardware or individual operating system kernel.

By bundling the run-time dependencies of an application and isolating the running
application from the host machine, containers enable developers to simplify deploy-
ment operations by eliminating unintended discrepancies between the development
and production environments. This facet also greatly improves the reproducibility of
scientific workflows [67].

The runtime isolation of containers from both the host system and other containers
has benefits for security, in particular for multi-tenant environments: A compromised

application is prevented from accessing the data belonging to other applications.

Prior to the popularisation of containers, Virtual Machines were a popular choice for
isolating application workloads from each other. In comparison to Virtual Machines,
the runtime overhead of containers is very low. This greatly improves the utilisation
of host systems.

2.3.1 Orchestration

Modern applications can require multiple independent containers, for example sep-
arate back-end storage and front-end business logic, or applications de-composed
into separate micro-services. Container orchestration is responsible for managing and

coordinating the separate constituent containers for an application deployment.

Docker Compose [21] is an example of a lightweight container orchestrator. Con-
tigured with a single file, Docker Compose allows the user to describe the containers
for a deployment alongside any shared resources, such as persistent data volumes,
private virtual networks or environment variable definitions. The Compose tooling
will then ensure the resources and containers are started and stopped in the correct
order.

Docker Compose is typically used for deploying upon a single host and is not

recommended for production deployments across multiple hosts.

Kubernetes [48] is an open-source, enterprise-scale container orchestration system

which manages deploying containers across a distributed environment.

Cattermole subsequently extended the deployment element of StrloT with support
for Kubernetes [8].
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2.4 Declarative Stream-Processing

The design of modern data-processing applications often conforms to a three-tier
model: sensors and low-powered devices at the Edge; elastically-scaleable computa-
tional resources in private or public clouds and “gateway” devices serving to connect

and bridge the two.

Developing applications in this model can be very challenging due to the wide
range of different technologies, each of which often require specific tools and skills to
operate. it can be very hard to hire or train application programmers to a high level of
expertise across the full heterogeneous suite of technologies that may be required.

To address these problems, a declarative architectural model for application de-
velopment was proposed in [57]. A high-level visualisation of this architecture is
provided in Figure 1.1, Chapter 1.

The model exposes a single programming environment for an application developer
to gain familiarity.

Alongside the program describing the application logic, the developer supplies the
system with a specification of the non-functional requirements the deployment should
be optimised for: for example, cost, energy, or performance, and a catalogue, describing

the deployment environment.

The system then automatically optimises the program and tailors a deployment
plan to maximise performance against the specified non-functional requirements.

In order to measure the performance of the deployment and respond to changing en-

vironmental conditions, the model includes a Monitor to collect run-time information.

2.4.1 Relational Implementation

This design was first explored by Michaldk et al [56], [57], [58] who designed and

(EPL) , a domain-specific relational language for interacting with stream data.

Michaldk demonstrated the validity of the declarative architectural model with
two example programs, greatly improved by the system’s Optimiser: one program
in terms of power consumption and another in terms of bandwidth. Michaldk noted
some limitations of the approach [56]. in particular as EPL is a domain-specific, rather
than general-purpose programming language, it was not expressive enough for some
of the required computations, which had to be addressed using user-defined functions
(UDFs). The Optimiser was unable to reason about the performance of UDFs which

placed limits on what it could achieve.
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2.5 Functional Prototype

In contrast to the relational approach, Watson and Woodman began to explore a
functional design in 2017 producing an initial prototype dubbed StrloT — Stream
processing for the Internet of Things (IoT) [78].

The prototype implemented the description of the computation, physical optimisation

describes the design as of the 2017 prototype. StrloT has subsequently been extended
by Cattermole [8], [9] and the work described in this thesis.

2.5.1 Stream and Event types

We model a stream in Haskell as a (possibly infinite) list of events:

data Event a = Event { time :: Maybe Timestamp
, value :: Maybe a }
type Stream a = [Event al]

Event has been designed to be as general as possible: it can hold data of any type
(e.g. integers, strings, tuples, lists, trees, graphs and even functions). In addition to
the data-type, an Event can also optionally hold a timestamp. ’

From the perspective of the application programmer, the Stream type is opaque:
the user writes their program in terms of functions which operate on the stream’s

payload and are not burdened with manipulating the stream type itself.

2.5.2 StrloT Operators

Based on an analysis of the literature on both stream-processing and Complex Event
Processing [18] and by experimenting with the implementation of a range of ap-
stream-processing operators to compose their applications. The operators are listed in
Table 2.1.

The approach to designing the operators was to provide a balance between defin-
ing a small core set with the simple, clear semantics needed for analysis by a future
ment for the application writer (by directly supporting the main operations found in
stream-processing applications).

We are confident that any stream-processing problem that can be described in a

conventional, non-pure stream-processing system can also be implemented in StrloT. A

'The Event type presented here was modified from the 2017 prototype by Lukyanov, Watson and
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Category | Function
streamMa
Map P
streamScan
streamFilter
Filter
streamFilterAcc
streamWindow
Aggregate
streamExpand
streamMerge
Combine &
streamJoin

Table 2.1: StrloT Stream operators

range of example programs are provided within the StrloT source repository, including
a solution [79, examples/taxi] to the DEBS 2015 Grand Challenge [43].

We now give an overview of the stream-processing operators, and demonstrate
their use in an example program which we build up, one operator at a time. This
example is based on a real-world medical problem originally addressed with the
relational system described in Section 2.4.1.

The program converts a stream of sensor data from a smart watch being worn by a
patient into an estimate as to the patient’s relative activity level. The relational system
went on to feed this forward into a statistical model running in the cloud to predict
the risk of hyperglycaemia and alert the patient accordingly.

A detailed explanation of the wearable example is in [58]. We describe a more
thorough re-implementation in Section 6.2.2.

We will connect the operators in our example with the Haskell function &: the order
of the stream can be read top-to-bottom. (See Chapter B for a summary of relevant
Haskell syntax).

We begin with a source function which produces the data to be streamed:

getWearableData

Filtering

Basic stateless filtering is achieved with streamFilter. The user provides a predicate
which operates independently on values from the input stream and returns a boolean
to signal whether the event should be emitted on the output stream.

streamFilter :: (a -> Bool) -> Stream a -> Stream a

For example, if a wearable device provided a set of sensor readings, we could
tilter the events to only those where a desired property held with a predicate function

vibrationModuleActive provided by the user:

14
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getWearableData

& streamFilter vibrationModuleActive

Mapping

The function streamMap is used to transform the values in a stream. The programmer

supplies a transformation function which is applied to each event in the input stream.

streamMap :: (a -> b) -> Stream a -> Stream b

Continuing the previous example. Consider that the sensor readings include
movement data from motion sensors and the user wishes to calculate the magnitude

of the vector of movement by applying a Euclidean function:

getWearableData
& streamFilter vibrationModuleActive

& streamMap euclideanDistance

streamMap is stateless: the user-supplied function operates on a single event at a
time and does not have access to the values of earlier events in the stream. Where
it is necessary to take into account previous events, for example to build stateful

aggregations, we provide streamScan:

streamScan :: (b -> a -> b) -> b -> Stream a -> Stream b

Here, the user-supplied function takes a second parameter, the accumulator. When
the function is invoked, the value returned by the previous invocation of streamScan is
provided.

In addition to the user-supplied function, the user also provides an initial value for

the accumulator.

Filtering with state

streamFilter is stateless. For situations where knowledge of prior filtering decisions
is required, Watson and Woodman designed streamFilterAcc.

Much like streamScan, streamFilterAcc and the predicate function are extended to
operate with an accumulator. Unlike streamScan, the accumulator value is not emitted
on the output stream. The accumulator could, for example, be a list of previously seen
values. In addition to the filter predicate, streamFilterAcc requires an accumulator

update function to be supplied.
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streamFilterAcc :: (b -> a -> b) -- accumulator update function
-> b -- initial accumulator
-> (a -> b -> Bool) -- predicate function

-> Stream a

-> Stream a

Continuing the running example. Suppose the user wishes to filter out events

which describe a movement which is below a threshold relative to the previous event.

getWearableData
& streamFilter vibrationModuleActive
& streamMap euclideanDistance

& streamFilterAcc (\old new -> new) O thresholdCheck

In the above example, the accumulator update function simply returns the most

recently seen value and the accumulator is initialised to 0.

Aggregation

streamWindow collects together incoming events and batches the data from them into

which implements the criteria for which events to group together.

type WindowMaker a = Stream a -> [Stream a]
streamWindow :: WindowMaker a -> Stream a -> Stream [a]

The user can write their own window-maker or use one of a set of common ones
provided by StrloT. These are: sliding, for overlapping windows of fixed length; chop,
for fixed-length, non-overlapping windows; and two variants which operate based on
time intervals: slidingTime and chopTime.

In our running example, the user’s final goal is to collect together batches of events

function chopTime:

getWearableData
& streamFilter vibrationModuleActive
& streamMap euclideanDistance
& streamFilterAcc (\old new -> new) O thresholdCheck
& streamWindow (chopTime 120)

streamExpand, the dual of streamWindow, receives events which contain lists of some

type and unpacks the list, emitting each individual item as separate Events.

streamExpand :: Stream [a] -> Stream a
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We illustrate streamExpand with a new example. Consider a function that takes in a
stream of short text messages from a social media site and generates a stream of the
hashtags (specially delimited words) found within those messages.

getHashtags :: String -> [String]
This function could be applied to a stream of type Stream String by passing it as
the parameter to streamMap, resulting in a stream of type Stream [String]l (a stream

of lists of strings). Applying streamExpand then expands the list from each Event and

emits the individual hashtags in new events:

streamExpand . streamMap getHashtags

The resulting type is Stream String.

Combining Streams

Many stream-processing programs receive input from multiple sources and there is
often a requirement to combine them together. streamMerge takes a list of stream inputs

(of the same type) and interleaves their events into a single output stream.
streamMerge :: [Stream a] -> Stream a
Consider the problem of combining readings from multiple temperature sensors

deployed in the field. If there are three such sensors, then we could combine them as

follows:

streamMerge [ temperatureSensorl
, temperatureSensor?2

, temperatureSensor3 ]

The final operator, streamJoin, is used for combining exactly two inputs of possibly
different types. streamJoin pairs events from each input stream together and emits

them as tuples.

streamJoin :: Stream a -> Stream b -> Stream (a,b)

Consider the case that we wish to capture the readings from a temperature sensor

and pair them with readings from a nearby humidity sensor:

streamJoin temperatureSensorl humiditySensoril

2.5.3 Deployment and Runtime

code generation and its shortcomings.
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Runtime

number of fixed topologies.

For example, the function nodeSink (type signature in Listing 2.3) enables a node to
operate at the end of a stream-processing program. nodeSink decodes incoming TCP/IP
data to the type Stream a and applies it to the first argument, a pure stream-processing
function, to yield a type Stream b. It then applies this to to the second argument to
yield an I/O action.

nodeSink :: (Stream a -> Stream b) -> (Stream b -> I0 ()) -> I0 ()

Listing 2.3: nodeSink type signature

Similar functions are provided for nodes operating at the start of a stream and in
the middle of processing (nodeSource, nodeLink).

These functions expected to operate on a single incoming (or outgoing) stream.
Basic multivalent topologies were supported by nodeLink2 and nodeSink2, which in-
stead accepted two incoming streams. Rather than attempt to de-multiplex stream
data from separate sources, each incoming stream was required to connect to a distinct
TCP/IP port. There was no support for receiving more than two incoming streams.

Example Programs

The prototype included configuration to build an OCI container image consisting of
provided example programs.

Each example consisted of a stream-processing program that had been pre-partitioned
image.

Each example also included a configuration file for Docker compose (See Sec-
tion 2.3.1) describing how the separate containers should be inter-connected and
allowing for the examples to be run quickly and easily.

Code Generation

The prototype included some initial work on code generation. A set of types were de-
fined to describe stream-processing programs, entirely distinct from the user-oriented
functions described above in Section 2.5.2. These types were designed to make the

manipulation of a stream-processing program as data more straightforward.
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A series of functions were provided to divide instances of these data-types into sub-
from each other. The generated code used the stream-processing functions, Event
and Stream types described in Section 2.5.1, as well as the runtime routines described
in Section 2.5.3.

Runtime constraints

The prototype had limitations which restrict the topologies that can be used for com-
posing stream-processing programs.

The set of runtime routines that are used as sub-program entry-points (described
above) was limited to three classes of deployment node:

1. “sources”, which do not receive incoming streams, perform IO to generate stream

events and emit exactly one outgoing stream.

2. “sinks”, which receive one or two incoming streams, perform IO to output the

result of stream processing and emit no further events.

3. “links” which receive one or two incoming streams, emit exactly one outgoing

stream and cannot perform any IO.

Any topology that does not match these classes, for example a node receiving more
than two incoming streams, was not supported.

The code generator does not generate correct code for the streamMerge operator: it
incorrectly applies two stream arguments, where streamMerge expects to receive one
argument (a list of streams).

However, the code generator detects topologies where a streamMerge operator
occurs as the first operator within a deployment node. In this scenario, the work of
events arriving over TCP/IP. The code generator replaces the superfluous streamMerge
operator with a no-op (streamFilter true). As a result, the bug in code generation for

streamMerge is not triggered and these deployment plans are supported.

2.5.4 Missing Elements

tion of the architecture to be fully functional. The initial focus of the work described

in this thesis was therefore to design and implement these missing components. The

dently explored by Cattermole [8], [9].
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2.6 Summary

Whilst second-generation stream-processing systems have adopted some concepts
from functional programming (most notably the pure, higher-order functions map
and reduce, via MapReduce) and mostly support a general-purpose programming
interface for end-users, these tend to be conventional imperative languages such as
Java. Second-generation systems also tend to lack support for data-types in streams,
leaving the responsibility of serialisation, de-serialisation and error checking to the
end-user.

The difficulty of supporting a wide range of heterogeneous technologies in de-
veloping modern streaming applications led to the declarative streaming model. An
initial implementation of this model used a relational approach. One drawback of
this system was an inability to reason about user-defined functions, which limited the
capabilities of the Optimiser.

Applications of Purely-functional programming have demonstrated that strong
type systems and pure semantics are valuable tools for developing and maintaining
software. Pure semantics in particular may permit an Optimiser to reason about
user-defined functions.

Existing Haskell stream-processing systems have mostly focussed on efficient
and predictable memory management and do not provide facilities for distributed
stream-processing.

We will build a new implementation of the declarative stream-processing model,
using purely-functional programming for both the implementation and exposing a
purely-functional interface to the application programmer. We will leverage pure
semantics in the design of our optimiser and provide a programming interface sup-

porting strong-typing for streaming data.

20



Chapter 3. Partitioning and Deployment

In this chapter we discuss the design and implementation of two components from
Completing these components allow a StrloT user to write, deploy and execute stream-
processing programs.

deploy the program in a distributed environment.

3.1 Physical Optimiser

The functional prototype (Section 2.5) considered the available nodes upon which the
program should be deployed to be homogeneous: it represented them with simple
integers that could be distinguished from each other, but did not model any of their
individual properties. We have not developed this aspect of the prototype in our work

and so we have inherited the simple homogeneous representation.

partition maps for a given stream-processing program. Our implementation is in [79,
src/Striot/Partition.hs]. We now describe the algorithm, followed by a worked
example.

3.1.1 Constraints

An operator can be assigned to no more than one deployment node. The upper limit on
the number of deployment nodes for a given stream-processing program is therefore
the number of operators within the program: one node per operator.

(described in Section 2.5.3): sources and sinks cannot co-exist on a node, and streamMerge

operators must be placed as the first operator in a node.
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3.1.2 Partitioning Algorithm

Recognising that a stream-processing program is a tree rooted at the sink operator,
our partitioning algorithm is built around a traversal of the graph from the root node
backwards.

tors we have visited. The list is initially empty. For each operator:

1. Extend all partial maps with the current operator assigned to a new deployment
node. For the special case of the sink operator, we add a new partial map,

assigning the sink operator to a new node.

2. Unless the previously-visited operator was streamMerge, or both the current and
previously-visited operator are source or sink nodes, we also extend all partial
maps by assigning the current operator to the last-used node. This ensures the

algorithm encodes the constraints specified in Section 3.1.1.

When we reach a branch, we apply the above algorithm to each sub-tree and then

concatenate the resulting partial maps.

3.1.3 Worked Example

streamSource streamSource

s N

streamMerge

4

streamSink

Figure 3.1: A simple example of a stream-processing program

We illustrate the algorithm using the simple stream-processing program in Fig-
ure 3.1.

so we also generate [[3,4]].

Next we consider the streamSource operator (ID 2). Assigning to a new node
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cannot add the streamSource operator to the existing nodes as doing so would violate
all of our constraints.

Similarly, the last streamSource (ID 1) cannot be added to the existing node. We

3.2 Data-Types for Representing Stream-Processing Programs

StrloT’s stream-processing operators (Section 2.5.2) were designed to be simple and
easy to use. They are defined as standard Haskell functions with the intent that the
end-user describes the stream-processing to take place in terms of these functions in a
regular Haskell program.

within the deployment environment.
Two approaches that we could haven taken to manipulate program source code as

structured data were to build a Haskell parser, or to define independent data-types.

3.2.1 Parsing

We could have incorporated a Haskell parser into StrloT in order to read the user’s
stream-processing program as source code and build an equivalent data structure for
processing.

This would be a significant undertaking. Haskell is a mature language with a

could introduce errors or unexpected behaviours into the stream-processing program.

We judged to be too much of a diversion from the main focus of our research.

3.2.2 Independent Data-Types

The approach taken by the StrloT prototype (Section 2.5) was to define a set of data-

wholly independent from the stream-processing operators provided to the end-user.
This design, including a bespoke graph implementation, is described in Section 2.5.3.
The main advantage of this approach is the design and implementation of the
sponsibilities and not be concerned with issues of parsing source code.
Rather than develop, test and maintain our own graph implementation, we wished
to leverage work to encode and manipulate graphs, so we explored the available graph

libraries within the Haskell ecosystem.
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3.2.3 Graph Libraries

Most graph libraries encode graphs as a pairing of a list of vertices [V'] and a list of
edges, each of which is defined as a pair of vertices that the edge connects: (v1,v2).

Traditional graph algorithms are typically imperative and adapting them to a
purely-functional context can result in poor performance. The traditional representa-
tion also permits invalid graphs, such as a graph containing edges between vertices
that do not occur in the list of vertices for the graph.

The f¢l [26] library attempted to address the performance issue by defining graphs
as inductive types. It provides a set of purely-functional graph algorithms. However,
takes such as attempting to add an edge connecting a non-existing vertex (a malformed
graph) are not caught at compile time, and result in a runtime error.

An alternative library Algebra.Graph [60] uses a novel approach: an algebraic
prevents the construction of malformed graphs by making them unrepresentable.

Other features of Algebra.Graph library which were attractive for our purposes in-
clude the ability to pattern-match on graph constructors and its support for generating
graphical depictions of graphs, via the GraphViz software [35].

For these reasons we opted to use Algebra.Graph as the basis of our stream-processing
program data-type.

3.2.4 Vertex and StreamGraph types

Algebra.Graph provides the higher-kinded type Graph a, where a represents the type
of vertices. The user must define and provide an appropriate vertex type.

For the vertices we defined a StreamVertex type to fully describe an instance of a
stream-processing operator. The full type is provided in Listing 3.1'. Observe that none
of the graph connectivity is encoded in the vertex type: that is entirely represented by
the enclosing Graph.

For convenience, we also define a type alias StreamGraph.

data StreamVertex = StreamVertex
{ vertexId :: Int
, operator :: StreamOperator
, parameters :: [ExpQ]
, intype :: String
, outtype :: String
}

type StreamGraph = Graph StreamVertex

Listing 3.1: The StreamVertex and StreamGraph types.

These types were further modified during the development of cost models. See Section 5.7.1.
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We now detail the constituent members of StreamVertex.

operator

We encode the operator type as an instance of a separate sum type, StreamOperator
(Listing 3.2). We re-use the StreamOperator sum type from the StrloT prototype. This
consists of one value per stream-processing operator, as well as special values to
represent sources and sinks.

data StreamOperator = Map
Filter
Expand

Window

|

|

|

|

Merge |
Join |
Scan |
FilterAcc |
|

Source
Sink
deriving (Eq)

Listing 3.2: The StreamOperator data-type

input and output types

The input and output types for an operator are encoded as separate Strings. It would
have been possible to only encode the output type and to infer the input type by
traversing the enclosing Graph to find the incoming edges, but we chose simplicity

over conciseness.

parameters

The StrloT prototype encoded operator parameters as Strings. A significant drawback
of this approach is it prevents us from taking advantage of the Haskell compiler for
syntax or type checking, and introduces the risk of program errors being missed
at compile time. Manipulating code-in-strings, such as building larger expressions,
without any further insight into the structure of the expressions, can be difficult and
error prone.

We have already discussed and dismissed the idea of implementing our own
Haskell parser (Section 3.2.1).

Another approach is to leverage an existing Haskell parser. Template Haskell [69]
(TH) is a meta-programming tool integrated into GHC [31]. With TH, a user can

surround an expression in their source code with oxford brackets which replace the
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expression by the result of parsing — an expression tree — which can be inspected

and manipulated by the main program. Consider the following expression:

[l \x -> x + 1 |]

Listing 3.3: Lambda expression surrounded by Oxford brackets

From the perspective of a surrounding program, this segment of code corresponds
to the expression in Listing 3.4:

LamE [VarP x_11]
(InfixE (Just (VarE x_1))
(VarE GHC.Num.+)
(Just (LitE (IntegerL 1))))

Listing 3.4: TH Exp instance corresponding to Listing 3.3

Such instances can be straightforwardly constructed, traversed, and deconstructed
(via pattern matching) by normal Haskell code.

TH provide a second pair of brackets that perform the reverse operation: take an
instance of an expression structure, in terms of the TH expression types, and splices it
into code within the surrounding program, to be compiled as normal. For example,
The expression 1 + $( 1itE (IntegerL 2)) is evaluated at compile-time to 1 + 2.

By encoding the stream operator parameters with Template Haskell types, the user
can write real Haskell expressions which are syntax-checked by the Haskell compiler

We identified several other opportunities to apply Template Haskell in order to
simplify or otherwise improve our stream-program encoding. We discuss these in
Section 7.3.5.

vertexId

Algebra.Graph requires vertices to be distinguishable from each other via equality, i.e.,
distinct vertices should not be considered equal through the Eq type class. Consider
the program in Figure 3.2, consisting of two streamFilter operators connected to a
streamMerge. The filters have identical properties: they apply the same predicate and

produce output of the same type.

streamFilter streamPFilter

(<100) (<100)

th /nt

streamMerge

Figure 3.2: Two filters with identical properties.
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Let’s now consider a vertex type representing these operators. Listing 3.5 contains
an encoding of the above example using an alternative vertex type which lacks the
vertexId field of StreamVertex. Notice that the two filter operators, labelled £1 and £2,

are indistinguishable.

let f1 = Vertex (AltVertex Filter [[| (<100) |]1] "Int" "Int")
f2 = Vertex (AltVertex Filter [[| (<100) |]] "Int" "Int")
m = Vertex (AltVertex Merge [] "Int" "[Intl")

in Overlay (Connect f1 m) (Connect f2 m)
Listing 3.5: Example Graph with indistinguishable vertices

Algebra.Graph considers these two filter operators to be the same vertex. Figure 3.3
illustrates the actual graph encoded by the code in Listing 3.5. Observe that it contains
only one filter.

streamPFilter
(< 100)

Int

streamMerge

Figure 3.3: Demonstration of the interpretation of Listing 3.5.

In order to differentiate vertices representing these operators, we need to add a

unique identifier to the type. For this we define the integer vertexId.

3.3 Deployment

a full example of a deployable stream-processing program (Listing 3.6), taken from
the StrloT source distribution [79, examples/pipeline/generate.hs] . This simple
program serves as a demonstration of some of StrloT’s operators.

The program consists of a single source which emits a text string every second.
There follows a series of transformations: first, the text string is appended to itself;
then the result is reversed; finally the prefix “Incoming :” is pre-pended.

The stream is then aggregated into lists consisting of two events per list via the

Figure 3.4 contains a graphical depiction of the program.
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import Striot.CompileIoT

import Striot.CompileIoT.Compose
import Striot.StreamGraph

import Algebra.Graph

source = [| threadDelay 1000000 >> return "Hello,from, Client!" |]

graph = path

[ StreamVertex 1 (Source 1) [sourcel] "I0L(O)" "String" O
, StreamVertex 2 Map [[] \st->st++st |]] "String" "String" 1
, StreamVertex 3 Map [[| reverse |]] "String" "String" 1
, StreamVertex 4 Map ([l ("Incoming:,"++) |]] "String" "String" 1
, StreamVertex 5 Window [[| chop 2 []1] "String" "[Stringl" 1
, StreamVertex 6 Sink [[| mapM_ print |]] "[Stringl" "I0O,O" O
]

pmap = [[1,2],[3],[4,5,6]]

main = do

partitionGraph graph pmap defaultOpts
writeFile "compose.yml" (generateDockerCompose

(createPartitions graph pmap))

Listing 3.6: StrloT pipeline example

3.3.1 Representing Deployment Nodes

We define the type PartitionMap (Listing 3.7) as a list of required deployment nodes,

each element of which is a list of operators assigned to that node.

type Partition = Int
type PartitionMap = [[Int]]

Listing 3.7: The PartitionMap type.

Since StreamVertex, our representation of operator instances, includes an unique
integer ID, we represent operators within the partitioning plan as integers. The
PartitionMap instance within Listing 3.6, line 17, assigns two operators to the first
node (IDs 1,2), a single operator to the second (ID 3), and the remaining operators to a
third node (IDs 4,5,6).

We discuss deriving possible partition maps from a given StreamGraph in Section 3.1.
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streamSource
(threadDelay 1000000 >> return "Hello from Client!")

String

streamMap
(\st -> st ++ st)

String

y

streamMap
(reverse)

String

streamMap
(("Incoming: " ++))

String

streamWindow
(chop 2)

[String]

streamSink
(mapM_ print)

Figure 3.4: Graphical depiction of StreamGraph from Listing 3.6

3.3.2 partitionGraph

partitionGraph :: StreamGraph
-> PartitionMap
-> GenerateOpts
-> I0 Q)

Listing 3.8: Type signature for partitionGraph

The program in Listing 3.6 calls partitionGraph, [79, src/Striot/CompileIoT.hs#409]
a high-level function designed to be the entry-point into the deployment code. The
type signature is provided in Listing 3.8.

partitionGraph is responsible for converting the stream-processing program into
a partitioned representation (described in Section 3.3.3) and generating source code

corresponding to the sub-programs within (Section 3.3.4).

3.3.3 Creating PartitionedGraphs

of the inter-node connections between them in a deployment. We were able to re-use
the StreamGraph data-type for both purposes.

The inter-node connections are encoded as a StreamGraph consisting of only the
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IDs 2-3 and 3-4. Figure 3.5 containers a graphical depiction of the StreamGraph repre-

senting these inter-node connections.

streamMap
(\st -> st ++ st)

String

streamMap
(reverse)

String

'
streamMap
(("Incoming: " ++))

Figure 3.5: Graphical depiction of PartitionedGraph inter-node connections

The resulting type PartitionedGraph is listed in Listing 3.9.

type PartitionedGraph = ([StreamGraph], StreamGraph)
Listing 3.9: PartitionedGraph type.

Tobuild a PartitionedGraph instance which can be used in the later stages, we define
createPartitions [79, src/Striot/CompileloT.hs#67], with the type signature listed
in Listing 3.10.

createPartitions :: StreamGraph -> PartitionMap -> PartitionedGraph
Listing 3.10: Type signature for createPartitions

createPartitions recursively traverses the PartitionMap list, building up the con-
stituent parts of PartitionedGraph for each element.

To provide assurance that createPartitions was correct, we wrote the dual function
unPartition to perform the reverse operation: collapse a PartitionedGraph back into a
single StreamGraph. Using unPartition we were able to write tests which checked to
ensure the result of partitioning and subsequently un-partitioning a StreamGraph was
equal to the original StreamGraph.

The implementation of unPartition is provided in Listing 3.11.

unPartition :: PartitionedGraph -> Graph StreamVertex

unPartition (a,b) = overlays (b:a)

Listing 3.11: unPartition to convert PartitionedGraph back to StreamGraph.

3.3.4 Code Generation

The code generator routines are responsible for producing the source code for each of

sub-program derived from Listing 3.6 is provided in Listing 3.12.
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-- node3

import Striot.FunctionalIoTtypes
import Striot.FunctionalProcessing
import Striot.Nodes

import Control.Concurrent

import Control.Category ((>>>))

sinkl :: Show a => Stream a -> I0 ()

sinkl = mapM_ print

streamGraphFn :: Stream String -> Stream [String]
streamGraphFn nl1 = let
n2 = (\s -> streamMap (("Incoming:_ " ++)) s) nl
n3 = (\s -> streamWindow (chop 2) s) n2

in n3

main :: I0 ()
main = nodeSink (defaultSink "9001") streamGraphFn sinkl

Listing 3.12: One of three sub-programs generated by Listing 3.6

Generated programs all begin with a comment indicating which node they are (line
1: the third node this example). Then follows a list of Haskell import statements (lines
2-6), which import the StrloT routines into the program, as well as other supporting
libraries.

Nodes containing sources or sinks require a function of return type 10 () which is
responsible for either producing data in the case of sources (for example by reading
from sensors, or a file on disk) or consuming the data at the end of the stream-processing
program. In Listing 3.12 a sink function is generated (lines 8-9), corresponding to the
final StreamGraph operator in the source program Listing 3.6.

The code generator produces a function streamGraphFn (lines 11-15) for all node
types. This encodes the portion of the original stream-processing program assigned
to the given node. In the running example, two operators (besides the final sink) are
assigned to the node: streamMap and streamWindow.

Each operator is converted from the StreamVertex representation into an invoca-
tion of the basic operator functions described in Section 2.5.2. To support operator
parameters referencing the source stream, we wrap each invocation in an anonymous
function, using the identifier s for the incoming stream.

The operator parameters themselves are converted from the Template Haskell
representation into strings of Haskell source code via the splice operator (See Sec-
tion 3.2.4).

The sequence of operators are chained together with a series of 1et-bindings. This
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clearly separates out the individual operators and their parameters in the generated

function and aided with debugging during the development of the code generator.
Finally, we generate the main entry-point for the program (lines 17-18). This calls

nodeSource (for source nodes), nodeSink (for sink nodes, as in this example) or nodeLink

for other nodes.

3.3.5 Generation Options

We defined the GenerateOpts data-type (Listing 3.13) to specify options to the code
generator in addition to the stream-processing program. These include specifying
a function that should be run at the beginning of operation for a source node, for
example to set up file descriptors for the source function to read from; and to specify
additional libraries, required by the user’s code, that need to be added to the import
list.

data GenerateOpts = GenerateOpts

{ imports :: [String]

, packages :: [String]

, preSource :: Maybe String

, rules :: [LabelledRewriteRule]
, maxNodeUtil :: Double

, maxBandwidth :: Double

}

Listing 3.13: GenerateOpts data-type

3.3.6 Containers and Orchestration

(Section 2.3) for deployment and Docker Compose (Section 2.3.1) for orchestration,
which are described in Section 2.5.3.

We generate the Dockerfile necessary for building the container to be deployed.
Listing 3.14 is an example of a generated Dockerfile for a deployment node produced

by the stream-processing program in Listing 3.6.

FROM ghcr.io/striot/striot:main
WORKDIR /opt/node
COPY . /opt/node

RUN ghc node.hs
EXPOSE 9001
CMD /opt/node/node

Listing 3.14: An example generated Dockerfile for a deployment node
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We also generate the Docker Compose configuration, describing the interlinking
of nodes from the PartitionedGraph. Listing 3.15 contains the compose.yml generated
by generateDockerCompose on line 20 of Listing 3.6.

services:

nodel:
build: nodel
tty: true
depends_on:
- node2

node2:
build: node2
tty: true
depends_on:
- node3

node3:
build: node3
tty: true

Listing 3.15: An example generated configuration for Docker Compose

3.3.7 Parallel Execution

described in Section 2.5.3) are all serially executed: they do not support executing
different parts of the stream-processing program in parallel.

For example, consider the simple program from Figure 3.1: It is not possible to
deploy and run a StrloT program with the two source operators 1 and 2 allocated to
the same deployment node.
which allocates the two source operators to the same deployment node.

StrloT addresses parallel execution by requiring parallel operations to be allocated

to separate deployment nodes.

Horizontal scaling

The pure semantics of the stream-processing operators permit horizontal scaling: dis-
tributing the workload of a single logical operator to more than one physical machine.
The focus of this thesis is on logical optimisation and we did not explore horizontal
scaling as part of this work.

Cattermole separately implemented support for horizontal scaling of the stateless
StrloT operators by extending the Event type (Section 2.5.1) iwith a unique sequence
number and using it as the input for a key-based sharding algorithm [8].
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3.4 Chapter Summary

(Section 2.5). We have focussed on the issue of designing appropriate data-types
for representing a program to be deployed, and the trade-offs of the approaches we
explored, including our chosen solution. There is a discussion of potential future work
on representation in Section 7.3.5.

Noting that our representation of deployment nodes is unchanged from the ba-
sic homogeneous representation from the prototype, we described the design and

we call partitioning. Our representation of deployment nodes is unchanged from the
basic homogeneous representation from the original prototype. This limitation, as
well as design limitations in the runtime, constrain the deployment plans that are
supported. We discuss supporting heterogeneous ndoes as future work in Section 7.3.2.
The completion of these components from the declarative model (Figure 1.1) allow
us to write, deploy and execute sample stream-processing programs.
This work provides an end-to-end framework upon which we can design and

from the architecture.
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component from the declarative architecture (Figure 1.1) responsible for generating
modified versions of the user’s stream-processing program. This is a key component
Chapter 5).

The stream-processing operators defined in StrloT (Section 2.5.2) are pure functions.

semantically-preserving rewrite rules suitable for stream-processing programs using
a manual, systematic analysis of each possible pairing of stream-processing operators.
Where possible we categorise these rules according to established categories of stream-
processing optimisations.

We initially approach rewriting as being semantically-preserving before discov-
ering that some semantics — such as stream ordering — are not important for the
program’s correct operation and changing them can improve performance.

We investigate tools to gain assurance that rewrite rules are semantically-preserving.
Finally we describe an initial exploration into machine-assisted derivation of rewrite

rules.

4.1 Term Rewriting

a technique for transforming functions through a process of substitution by applying
laws, or rules [5].

A rewrite rule consists of an equation, with an expression (the pattern) on the
left-hand side and a functionally-equivalent expression on the right-hand side [3]. We
delimit the left and right-hand sides with ”—". Listing 4.1 is an example of two basic

rewrite rules for arithmetic expressions.
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a+0—a
ax1l—a

Listing 4.1: examples of simple arithmetic rewrite rules.

To apply a rule to a candidate expression, we must first determine that the left-
hand pattern matches the expression. If so, the candidate can be substituted with the
right-hand side of the rule.

The left-hand pattern may contain variables which serve as placeholders for arbi-
trary sub-expressions. For example, in the rule a x2 — a+a, the left-hand side features
the variable a. When matching this rule to the expression 4 x 2, the sub-expression 4
is bound to the variable a.

The right-hand side may contain references to the same variables. When applying
the rule, those references are substituted for the bound values. In the running example,
each occurrence of the variable a in the expression a + a is substituted for the value 4,
resulting in 4 + 4.

Equational reasoning is an attractive technique for use in the design of a Logical
Optimiser, as valid program transformations can be concisely represented as rewrite
rules. Rewrite rules have been successfully deployed as a compiler optimisation tool
within the Glasgow Haskell Compiler (GHC) [66]. We were also inspired by the use of
term rewriting to build a simple equational calculator as an exercise in [4].

We began the work described in this chapter with the view that rewrite rules must be
semantically-preserving: a rewrite rule that changed the meaning of a program could
introduce errors. We discovered later that preserving certain semantic behaviours was
unimportant for our particular application, and that, in some cases, it was beneficial

to change them. This is discussed in Section 4.4.3.

4.2 Semantic Analysis of the Operators

StrloT’s operators are described in Chapter 2, Section 2.5.2. In this section we explore
and compare the semantics of the operators and their parameters.

When analysing the semantics of the stream-operators, we assume that we have
no insight into their parameters (e.g. the user-supplied transformation function for
streamMap) beyond what can be determined by their type.

For example, streamMap may change the type of a stream. Even though many
common mapping operations do not, e.g. streamMap (+1) (Which receives and emits
numbers), in the general case we cannot assume that the type will be unchanged.

This impacts the kind of rewrites we can design: we could not, for example, re-
order streamFilter p . streamMap f withoutaccounting for the change in stream type.

(This particular pairing is explored in Rule 11, below.)
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4.2.1 Higher-Order Functions

streamMap, streamFilter, streamScan and streamFilterAcc are higher-order functions
that accept parameters which operate only on the payload of a stream, and not on the
Stream or Event types themselves. The parameters therefore cannot influence metadata
such as the time-stamp of Events in the stream.

The implementation of streamMap and streamScan ensure that the value returned
by their parameter functions replace the original value: they cannot introduce newly-
synthesised Events into the stream, nor prevent them from being emitted.

The implementation of streamFilter and streamFilterAcc ensures that Events are

either rejected or emitted unaltered.

4.2.2 Operators with Memory

streamMap and streamFilter are memoryless: they operate solely on the value of the
Event under consideration. By contrast, streamScan and streamFilterAcc have memory:
past events can influence the evaluation for future ones. When designing rewrite reles
involving operators with memory, we have to be concious that altering which events

arrive at the operator, or the event ordering, could alter its behaviour.

4.2.3 streamMerge

streamMerge interleaves events from multiple incoming streams. It doesn’t modify the

data or Events wrappers that it receives.

Arity

streamMerge takes a single argument, the list of incoming streams, which has a type of
[Stream a]. This type can be satisfied by an empty list. This corresponds to a merge
with no incoming streams. This cannot occur in a useful stream-processing program,
since without data, no processing can take place. For this reason we disregard the
case of streamMerge with an empty list in the following analysis.

It is also possible to satisfy the type with a list consisting of a single element, corre-
sponding to a single incoming stream. In this scenario, streamMerge is not performing
any useful work and could be eliminated. (See Rule 8).

For the remaining analysis of streamMerge, we assume that there are at least two

incoming streams.

Pairings

When considering pairings of some operator connected to a streamMerge operator, we
need to determine the placement of the first operator within the list of inputs to the

streamMerge.
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For example, consider the pairing of streamFilter followed by a streamMerge. In-
stances of the filter could be present on all incoming streams, or a sub-set, such as one,

depicted in Figure 4.1.

streamPFilter p

Figure 4.1: A pairing of streamFilter and streamMerge with further unknown
streams

In the case of a sub-set, it would be very difficult to design rewrite rules that
preserved the semantic behaviour without more information about the other inputs.
Therefore in designing rewrite rules, we only considered the case where instances of

the first operator (e.g. streamFilter) occur on all incoming streams (Figure 4.2).

streamFilter p streamFilter p streamFilter p

streamMerge

Figure 4.2: Pairing of streamFilter and streamMerge with the filter present on
all inputs

4.2.4 Event Ordering

Rewriting has the potential to alter the order of events within a stream.

For a pair of connected streamMerge operators, the order of emitted events is de-
termined by the presence or absence of time-stamps on incoming events and the
placement of the first streamMerge operator within the list of incoming streams to the
second: i.e. does it occur at the beginning, middle, or end of the list of incoming
streams.

We have designed a set of rewrite rules that can cause stream re-ordering but may
be useful in situations where the stream order does not matter. We have collected
these separately to the main rule set, in Section 4.5.6.

In a real distributed environment with events arriving over a potentially unreliable
or unpredictable network such as the Internet, packets (and therefore Events) could be
lost, re-transmitted, or delayed, and in the general case their arrival order is therefore
unpredictable [28].

It’s likely that the exact ordering of events may be unimportant to the stream-

processing program. For example, a program responsible for calculating a running
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average of sensors readings received from a set of temperature sensors will be unaf-
fected by the arrival order of the readings.

StrloT does not provide any automated means for managing stream ordering. If
stream order is important, the user must perform the necessary re-ordering manually
within the stream-processing program. This could be achieved through the use of
streamWindow, to collect a batch of sufficient size for the required re-ordering, followed
by a streamMap to re-order the batched events and streamExpand to transform them back
into a top-level stream for further processing.

The practitioner must determine whether stream order is important by understand-
ing the specifics of their program logic. We have not explored automation or assistance
for this process.

4.2.5 streamWindow

In contrast to the parameters for the higher-order functions (Section 4.2.1), the parame-

operates on the full stream rather than being limited to reasoning solely about the
data within.

which produces lists of copies of each incoming value, where the length of each list
is determined by the value of the incoming data. For the input [1,2,3], this example

wnInspect [] = []

wmInspect ((Event _ Nothing):s)
(Just 1i)):s)

wmInspect s

wmInspect (e@(Event

take i (repeat e) : wmInspect s

Listing 4.2: A window-maker which inspects Stream data

discard the rest; or mutate the data or metadata in some way; or even emit lists of

streams with no correlation to the input.

This versatility makes analysis of the streamWindow operator using an arbitrary

not depend upon the values of the data in the incoming stream.
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4.2.6 streamExpand

streamExpand receives lists of data and emits a new Event for each item in each list.
Empty lists are ignored. The emitted Events derive their time-stamp from the incoming
Event within which they originated.

4.2.7 streamJoin

streamJoin receives two input streams and creates an output stream consisting of
pairings of data from the inputs. It will only emit an event once it has received an
event containing data (not Nothing) on both inputs. Events received without data are
ignored.

When analysing a pairing of streamJoin preceded by another operator, the operator
could be connected to either of the inputs, and we know nothing about the other input.
To simplify analysis (and later, implementation), we only consider the case where the
preceding operator is the second input to streamJoin, as depicted in Figure 4.3.

Figure 4.3: Example of streamMap connected to the second input of streamJoin

This is an arbitrary choice. The related rules we have designed (Rule 14, Rule 15)
can be straightforwardly adjusted to operate in the reverse scenario, with the preceding

operator under consideraetion instead attached as the first input to streamJoin.

4.3 Categories of Stream-Processing Optimisations

Hirzel et al [38] identify ten categories of stream-processing optimisations, five of
which are logical optimisations: Operator reordering, Redundancy elimination, Operator
separation, Fusion and Fission.

Whilst designing rewrite rules, we examined each rule to determine whether it
belonged to one of these categories. We present the rules first grouped by category,
followed by those that did not correspond to the existing categories.

We did not discount any rules that we could not categorise: the utility of a rule
in isolation may not be immediately obvious but it may create further optimisation
opportunities by moving two operators adjacent to each other, such that a previously-
inapplicable rule becomes suitable for applying subsequently.

As described in Section 4.2, we have no insight into the arguments to stream

operators (such as the user-supplied predicate for streamFilter) and so did not reason
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about them as part of the process. If we did explore the semantics of operator
parameters, we could potentially have written rules implementing Operator separation
— separating an operator into distinct sub-operators — but would require us to reason

about the structure of Haskell expressions, which we judged out of scope for this work.

4.4 Creating Rewrite Rules

To build an initial catalogue of rewrite rules, we performed a systematic analysis of
each of 64 pairs of StrloT’s eight operators.

4.4.1 Method

For each pairing, we considered that they were adjacent operators in a larger stream-
processing program and looked for transformations we could make which would not
alter the program semantics. We determined whether the operators could be swapped;
fused into a single operator; or if one or both could be removed altogether.

This was a manual exercise. Our goal was to produce a useful list of rules, but
not to be exhaustive, so after analysing a given pairing for a reasonable interval we
stopped and moved onto the next pairing.

4.4.2 Validating rewrite rules

This systematic — but manual — process introduces the risk that if we made a mistake,
an incorrect rewrite rule could change the semantics of a stream-processing program
such that it produced incorrect results.

To gain assurance that the rules were correct, we used the property-testing tool
QuickCheck[12] and wrote an accompanying set of invariant properties for each rule.
This is described in Section 4.6.

4.4.3 Rules That Alter Semantics But May Still Be Useful

During this process, it became clear that there were several potentially useful rules
that, upon inspection, were not semantically-preserving. Rather than reject them, we

catalogue them separately below in Sections 4.5.6 and 4.5.7.

4.5 Rewrite Rules

Table 4.1 summarizes the rules designed during this process. The rules are described
individually in the remainder of this section.

Each rule is presented as a pair of Haskell expressions separated by an arrow
(—). The expressions consist of stream operators connected by standard symbolic
Haskell operators such as function composition (.), which reads right-to-left. Operator

parameters are presented as single characters, representing free variables.

41



Chapter 4. Logical Optimisation

filter | map | filterAcc | scan | window | expand | join | merge
filter | 1,10 | - 2 - W1 - - R1
map | 11 5 12 6 21 - 14 16
filterAcc | 3 - 4 - W2 - - -
scan - - - - 22 - 15 -
window - - . - . = - -
expand | 9 17 13 18 - 20 - R2
join | - - - - - - - -
merge | R3 19 - - - R4 - 7,8, R5
Table 4.1:

Operator pairs that yielded rewrite rules. The row indicates the first operator in
a pairing and the column the second.

Arabic numbers correspond to semantically-preserving rules.

R-prefix correspond to re-ordering rules from Section 4.5.6.

W-prefix correspond to window reshaping rules from Section 4.5.7.

”-” means no rule was discovered.

4.5.1 Operator Fusion

All four combinations of streamFilter and streamFilterAcc can be replaced by a single

tiltering operator, i.e., fused together.

1.
streamFilter q . streamFilter p
— streamFilter (\e -> p e && q e)
2.
streamFilterAcc f a p . streamFilter q
— streamFilterAcc
(\a' v -> if q v then f a' v else a)
a
(\x a' -> g x & p x a')
3.
streamFilter q . streamFilterAcc f a p
— streamFilterAcc f a (\x a' -> p x a' && q x)
4.

streamFilterAcc g b g . streamFilterAcc f a p
— streamFilterAcc
(\ (x,y) v -=> (f x v, if p v x then g y v else y))
(a, Db)
(\x (y,2) > pxy & qx z)

streamMap f . streamMap g — streamMap (f . g)
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streamScan g a . streamMap £

— streamScan (flip (flip g . f)) a
streamMerge (sl ++ [streamMerge s2]) — streamMerge (sl ++ s2)

For a pairing of streamMerges with this right-handed topology, fusing the opera-
tors preserves the ordering of events. For other topologies, see Rule R5.

4.5.2 Operator Elimination

streamMerge [s] — s

For the case where there is exactly one incoming Stream to streamMerge, the

operator can be eliminated.

4.5.3 Operator Re-Ordering

Rules which move filtering closer to source can result in a reduction of the volume
of data flowing through the stream-processing program. This can have a positive
impact on non-functional requirements such as minimizing the data transmitted over

a network link.

9.

streamFilter p . streamExpand

— streamExpand . streamMap (filter p)

10.

streamFilter p . streamFilter q

— streamFilter q . streamFilter p

A pair of adjacent streamFilters are commutative.

A mapping-type operator preceding a filtering-type operator can be swapped by
composing the mapping operation f with the filter predicate p. (The reverse is not
true, see Section 4.5.8).

The size of the lists received by streamExpand is reduced by the preceding streamMap.

11.

streamFilter p . streamMap £

— streamMap f . streamFilter (p . f)

12.

streamFilterAcc g a p . streamMap f

— streamMap f . streamFilterAcc g a (p . f)
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13.

streamFilterAcc f a p . streamExpand
— streamExpand
streamMap (reverse.fst)

streamScan (\(_,b) a' -> filterAcc f b p a') ([], a)

This rewrite moves stateful filtering inside a window.

streamFilterAcc, which operates on a potentially infinite stream, is replaced by
filterAcc, an implementation for finite lists. The implementation of filterAcc
is provided by StrloT [79, src/Striot/FunctionalProcessing.hs#219] .

The accumulator value needs to be carried over between invocations of filterAcc.
This is achieved with streamScan. Finally we discard the accumulator (and
reverse the output lists to reflect their proper ordering) as a final clean-up, via

streamMap.

The next two rules involve streamJoin as the second operator.

Moving a streamMap or streamScan downstream of streamJoin means handling wrap-

ping and unwrapping the original parameters to operate on one side of the tuple. The

other side of the tuple is passed through unmodified.

14.

15.

16.

17.

18.

streamJoin s . streamMap £
— streamMap (\(x,y) -> (x, f y)) . streamJoin s
streamJoin s . streamScan f a
— streamScan (\c (x,y) -> (x, f (snd c¢) y)) (undefined, a)
streamJoin s

streamMerge [(streamMap f s),(streamMap f t)]

— streamMap f $ streamMerge [s,t]

streamMap f . streamExpand

— streamExpand . streamMap (map f)

streamScan f a . streamExpand
— streamExpand
streamScan (\b a' -> tail $ scanl f (last b) a') [a]
streamFilter (/=[1)

This rule follows the basic pattern of Rule 17: lifting a stream-mapping function
that operates on a potentially infinite stream into an analogous function operating

on finite lists. In this case, the list function analogous to streamScan is scanl,

44



4.5. Rewrite Rules

which behaves slightly differently: it returns the accumulator seed value as the
tirst value, without applying the accumulator function to it. We account for this
by applying the accumulator function to the seed value that we supply to scanl.

streamExpand silently ignores empty lists. For the rewritten rule, this is achieved

with a streamFilter inserted before the re-ordered pair.
19.

streamMap f $§ streamMerge [s, t]

— streamMerge [streamMap f s, streamMap f t]

The dual of Rule 16.

4.5.4 Other Semantically-Preserving Rules

The following rule does not belong to the established categories of stream-processing

optimisations.
20.
streamExpand . streamExpand
— streamExpand . streamMap concat

4.5.5 Type-Constrained Rules

If the first operator in a pair is a mapping-type operator which receives a stream of
type a and emits a Stream of type b, and the second is streamWindow, the pair can be
swapped if the streamWindow’s type permits receiving Events of type a as well as b. This
is possible in two circumstances:

¢ If a and b are the same concrete type: i.e., the mapping-type operator does not
change the type of the stream. For example streamMap (+1) receives and emits
the same type.

¢ If the streamWindow has a polymorphic type, which is true for the four window-
makers provided by StrloT. For example, streamWindow (chop 3) accepts streams
of any type.

in the stream (See Section 4.2.5), the following two rules only apply when this is not
the case.

21.

streamWindow w . streamMap £

— streamMap (map f) . streamWindow w
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22.

streamWindow w . streamScan f a
—— streamScan (\b a' -> tail $ scanl f (last b) a') [a]

streamWindow w

4.5.6 Stream Re-Ordering Rules

Five promising-looking rules discovered during the process, all involving the streamMerge
operator, are not semantically-preserving, as they cause the ordering of events to

change. However, as discussed in Section 4.2.4, in real-world scenarios precise order-
ing may be non-deterministic or unimportant to the stream processing.

Rather than reject such rules, we instead collected them separately to the main rule
set.

For some of these rules, it may be possible to design additional operators to re-order
the stream back to match the behaviour prior to applying the rewrite. This is discussed

in more detail in Section 7.3.1.

R1

streamMerge [streamFilter p t, streamFilter p s]

— streamFilter p (streamMerge [t, s])

R2

streamMerge [streamExpand s, streamExpand t]

— streamExpand (streamMerge [s, t])

R3

streamFilter p $ streamMerge [s, t]

— streamMerge [streamFilter p s, streamFilter p t]

R4

streamExpand $§ streamMerge [s, t]

— streamMerge [streamExpand s, streamExpand t]

R5

streamMerge (a ++ streamMerge b : c)

— streamMerge (concat [a, b, cl)

Rule 7, applicable to a pair of merges arranged in a right-handed topology, is
order-preserving. As described in Section 4.2.3, merging pairs of streamMerge
for other topologies will alter the order of events. This rule represents those
topologies. The variables a, b and c represent lists of incoming streams, which

could be empty.

4.5.7 Rules That Reshape Windows

As described in Section 4.2.5, the behaviour of streamiWindow might depend upon the

values of events, making them very versatile but also hard to reason about in the
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general case. When it can be determined that a particular streamWindow does not
depend upon the values within the stream, there are some opportunities to apply

rewrite rules.

provided with StrloT (Section 2.5.2). Similar to the streamMerge rules described earlier,
these rules are not strictly semantically-preserving: although they preserve all of the
stream data, the exact composition of the windows is changed.

W1

streamWindow w . streamFilter p

— streamMap (filter p) . streamWindow w

Consider when the streamFilter predicate is odd, selecting only odd values, and

[0..11] would result in an output of [[1,3,5], [7,9,11]].

Moving the filtering after the windowing means that the lists emitted by the
streamWindow operator will include elements that are later rejected. The rejection
will cause the output lists to vary in length. For example, the input [0..11] would
result in initial windows of [0,1,2], [3,4,5]1, [6,7,8], [9,10,11], before being
transformed by streamMap into [1], [3,5], [7], [9,11]. Notice that in both
cases the values within the lists are the same, but the shape of the enclosing lists

are different.
W2

streamWindow w . streamFilterAcc f a p
— streamMap (reverse.fst)
streamScan (\ (_,b) a' -> filterAcc f b p a') ([]1, a)

streamWindow w

This is a variation of Rule W1 with the same caveats. The translation of streamFilterAcc

into filterAcc uses the same approach as described in Rule 13.

4.5.8 Combinations That Do Not Yield Rules

Whilst we considered all 64 combinations of pairs of operators during this exercise, we
were not attempting to exhaustively determine every possible transformation: if, after
a reasonable interval, we could not devise a rule, we moved onto the next pairing.
However, during analysis, we were able to determine that for certain pairings, no
transformation was possible. In many of these cases, we were able to establish this

due to Haskell’s strong type-system.
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Filter-Type Operators Followed By Mapping-Type Operators

Consider a stream of Integers, a filter which selects numbers, and an incrementing
mapping function:

streamMap (+1) . streamFilter even

An input stream of [1, 2, 3,4, 5] applied to this pairing would result in an output of
3,5].

If we swapped the operators, the stream would be first transformed to (2,3, 4, 5, 6]
before being filtered down to [2, 4, 6], which differs from the original behaviour.

In Rule 11, we achieved the opposite re-ordering by composing the filter predicate
and the map parameter. In this case, we need a function which performs the reverse
of the map operation, such as streamMap (-1) for the previous example. In the general

case, we cannot construct a reverse operation for an arbitrary map parameter.

Pairs Beginning With streamJoin

streamJoin receives two streams, of types a and b, and emits a stream of tuples (a, b).
The second operator in all eight pairings beginning with streamJoin therefore receives
a tuple type.

This is not the same type as required by streamExpand (a list), and so streamExpand
cannot occur after streamJoin. Similarly, a pairing ending in streamMerge must emit
a list: since streamJoin doesn’t emit a list, a pairing of streamMerge and streamJoin
cannot be re-ordered.

Filter predicates, mapping-type operator parameters, and user-supplied window-
makers may be defined in terms of either or both sides of the tuple. To re-order these
operators prior to streamJoin, the operator would need to be placed on one of its two
incoming streams. The operator would then not have access to the data from the other
incoming stream, and so we cannot reason about its behaviour.

Mapping Before streamExpand

Since the input type to streamExpand must be a list, we know that a preceding streamMap
or streamScan operator must produce a list. However, the input and output types of
mapping operators are not necessarily the same (type a -> b) so we cannot infer that
type ais also a list. We therefore cannot re-order the operators such that streamExpand
consumes type a.

For example, streamMap (x-> take x (repeat x)) hasinputtype Stream Int, which

is not an appropriate input for streamExpand.
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Operators With Memory

streamScan carries state between invocations, so past Events can influence the value
of streamScan for future Events. Changing the order of events (including by filtering
some out) may alter the results. We cannot therefore move a mapping or filtering

operation from after a streamScan to before it.

This is in contrast to streamFilterAcc, where in many cases (Rules 2 to 4) we were
able to re-order and fuse filters because we could compose new filter accumulator
update functions independently of the output value of the function. With streamScan,

the accumulator is the output of the function, so we cannot take the same approach.

For the same reason, we cannot move or duplicate a streamScan or streamFilterAcc
up or downstream of a streamMerge: the exact events and their order could be impor-
tant.

rameter means the exact order of incoming Events may affect the output it produces.
We therefore cannot move streamWindow downstream from a streamMerge, as this would

result in a different event ordering.

Operators Downstream Of Windows

An operation downstream of streamWindow could depend upon properties of the lists
it generates. For example, the output of streamMap length depends upon the length
of lists received as input. These properties are only apparent after the streamWindow
has taken place, so we could not generally move downstream operators to before the
window is created.

If we were to consider only the data within a Stream, then streamWindow followed
by streamExpand looks like a candidate for operator elimination. However, streamExpand
does not simply reverse the effect of a prior streamWindow: the metadata of the Events
arriving at the streamWindow is discarded prior to the streamExpand, and so cannot be re-

duplicated or omitted incoming data.

streamFilter, streamExpand; streamFilterAcc, streamExpand

In these combinations, since streamExpand requires a list, we can infer that the input
stream to the filter-type operator must be a list. We do not have any further information
about the data-type. In order to move the streanFilter after streamExpand, the data-
type within the list must itself also be a list, but we do not know whether that is the

case.
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streamFilter, streamJoin; streamFilterAcc, streamJoin

Moving the filtering operator would potentially result in events that would have been
rejected instead reaching the join operator. The tuples emitted would thus differ from
the original pairing.

4.6 Tools and Assurance

As discussed in Section 4.4.2, an incorrect rewrite rule could have serious consequences
for the correct operation of a stream-processing program. We wanted to have assurance
that the rules were correct. One approach would have been to write out full formal
correctness proofs for each rule, which would have been a very time consuming
process and still subject to human error. Instead, we leveraged the Haskell tool
QuickCheck [12] to provide assurance for each rule.

The QuickCheck user defines properties that should hold about expressions in their
program. A QuickCheck property is a parameterised boolean expression that should
evaluate to true. QuickCheck generates a large volume of appropriately-typed test
data, and calls the expression for each datum, before reporting whether the expression
was true for all inputs, or for which inputs it failed.

To provide assurance that our rewrite rules were correct, we translated them into
QuickCheck properties. To give an example, consider Rule 1, streanFilter fusion.
The corresponding QuickCheck property (provided in Listing 4.3) is a function which
accepts an arbitrary stream (supplied by QuickCheck during operation). We compare
expressions corresponding to the left and right-hand sides of the rewrite rule using
boolean equivalence (==).

prop_filterFilter s = (streamFilter q . streamFilter p) s
== (streamFilter (\x -> p x && q x)) s

Listing 4.3: QuickCheck property for rewrite Rule 1

The full set of properties corresponding to the rewrite rules we designed pass when
applied to QuickCheck. They are provided in Chapter C.

4.6.1 Variables

Variables are frequently used in our rewrite rules to represent the parameters to
stream-operators, such as filter predicates, which would be written by the end-user in
a stream-processing program. In Rule 1, p and q are such variables.

When we translate rules into QuickCheck properties, we need to replace variables
with concrete expressions so the property can be evaluated. Most of the stream-
operator parameters are functions. Although QuickCheck can be used to synthesise
functions [11], this is more complicated than synthesising data, and has a number of

drawbacks.
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Instead, we have written a set of stand-in utility functions that can be used as
the parameters to stream operators. Listing 4.4 illustrates examples of predicates for
streamFilter. The full set of utility functions is provided in Chapter C.
p= (= 'a")

q = (k= '2")

Listing 4.4: Example stand-in parameters for QuickCheck properties

4.6.2 Additional Rules

For rules involving streamScan or streamFilterAcc, we implemented some additional
QuickCheck properties. The extra rules used alternate utility functions as parameters
to the stream-processing functions, to provide additional assurance that the rewrite

rule was being exercised in as many situations as practical.

4.7 Machine-Assisted Rule Derivation

QuickSpec [70] is a tool for machine-assisted rule discovery within a formal system.
We were interested in whether QuickSpec could synthesise rewrite rules that we had
not discovered. As an initial goal, we experimented to see if QuickSpec could discover
the same rules as we designed in Section 4.5.

4.7.1 Initial operator encoding

QuickSpec requires the user to specify all the functions that it should consider for
rule discovery. In our case that means at least the eight functional operators. By
describing just the 8 stream-processing operators to QuickSpec, it discovered the two
rules depicted in Listing 4.5.

The first rule is a syntactic variation of Rule 10, expressing the commutativity of
streamFilter. The second is a form of filter elimination that we had not discovered:

two filters with the same predicate can be simplified down to one.

streamFilter p (streamFilter q xs)

= streamFilter q (streamFilter p xs)

streamFilter p (streamFilter p xs) = streamFilter p xs

Listing 4.5: QuickSpec-discovered filter properties

4.7.2 Anonymous functions

Many of the rewrites rules we designed relied upon anonymous functions on the
right-hand side (e.g. Rule 1). QuickSpec cannot synthesise anonymous functions, so it

is not capable of discovering rules of this form.
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As an experiment we defined a labelled function equivalent to the anonymous
function from the right-hand side of Rule 1 (both p q e = p e && q e) and provided it
to QuickSpec. This was all that was needed for QuickSpec to discover the same rule
(Listing 4.6).

streamFilter (both p q) xs = streamFilter p (streamFilter q)

Listing 4.6: A variation of Rule 1

4.7.3 Composition

Observe that in Listing 4.5, the two operators in each rule are connected together
by function application. By contrast, in the rest of this chapter we have used function
composition (.).

QuickSpec would not discover rules that use or depend upon composition without
being explicitly provided with a definition of composition. Similarly, it will not
consider other common combinators, such as && (used by Rule 1), constructs such as
if/then/else (Rule 2), or common functions such as map (Rule 17), filter (Rule 9) or
flip (Rule 6).

To have any hope of QuickSpec discovering the same rules as we did, or new rules
of a similar complexity, we need to add definitions of all such common functions to
QuickSpec’s set of functions under consideration.

In our early experiments, expanding QuickCheck’s universe with a single addi-
tional function — composition — greatly increased its computational demands, rapidly
outstripping my local resources.

If we supply composition along with only one or two stream-processing operators,
QuickCheck discovers rules such as map fusion (Rule 5) and its dual (Listing 4.7).

Limiting the functions described to QuickCheck reduces the chance of finding
rules involving several operators or of greater complexity than we have designed with

manual pair-wise comparison.

streamMap (f (.) g) xs = streamMap f (streamMap g xs)

streamMap f (.) streamMap g = streamMap (f (.) g)

Listing 4.7: Map rules discovered in isolation from other operators

4.8 Implementation

tirst consider the type of functions implementing rewrite rules.
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4.8.1 Rewrite Rule Encoding

Both Stream-processing programs and subsets of them are encoded as StreamGraphs, as
described in Section 3.2.4. A rewrite-rule function requires the sub-program to which
it is being applied, thus they will require StreamGraph as an input argument.

For a given rewrite rule and a candidate sub-program, we need to determine that
the rule is applicable. For example, filter fusion (Rule 1) is applicable only to a pair
of streanFilter operators. We opted to make this the responsibility of rewrite-rule
functions. We signal whether a rule was applicable using Haskell’s Maybe type, where
Nothing indicates that the rule was not applicable.

In the event that a rewrite rule is applicable, the function needs to enact the trans-
formation on the stream-processing program. The rewrite-rule’s argument is a sub-set
of the full program, but the transformation may require changes to other portions of
the program due to the nature of the Graph type (see Section 3.2.4). Our rewrite-rules
produce a transformation function that can be applied to the full program by the
calling code.

The final type for our rewrite-rule functions is presented in Listing 4.8
[79, src/Striot/LogicalOptimiser/RewriteRule.hs#16] .

type RewriteRule = StreamGraph -> Maybe (StreamGraph -> StreamGraph)
Listing 4.8: Type definition for rewrite-rule functions

For debugging purposes, it is useful to be able to identify instances of rewrite rules.
Functions are not easy to inspect: they cannot, for example, provide an instance of Show.
We define the type LabelledRewriteRule (Listing 4.9) which pairs a RewriteRule with a
string for this purpose. [79, src/Striot/LogicalOptimiser/RewriteRule.hs#19]

data LabelledRewriteRule = LabelledRewriteRule
{ rulelLabel :: String

, rule :: RewriteRule }

Listing 4.9: Type definition for labelled rewrite-rules

Implementation

We use Haskell pattern-matching to encode the left-hand side of the rewrite rules. The
pattern is written in terms of the relevant constructors of the Graph type (Connect,Vertex)
and our own Vertex type (StreamVertex).

The function definition for the matching case describes the graph operations that
are required to perform the rewrite (e.g. removeEdge, mergeVertices, replaceVertex).

For the scenario when the rule does not match, we use the catch-all pattern _ and
the value Nothing.

Our implementation of filter fusion [79, src/Striot/LogicalOptimiser.hs#166]

is illustrated in Listing 4.10.

53



Chapter 4. Logical Optimisation

filterFuse :: RewriteRule

filterFuse (Connect

(Vertex a@(StreamVertex i (Filter sell) (p:_) _ _ sl1))
(Vertex b@(StreamVertex _ (Filter sel2) (q:_) _ _ s2))) =
let ¢ = a { operator = Filter (sell * sel2)
, parameters = [[| (\p g x -> p x && q x) (p)(q) [1]
, serviceRate = sumRates sl1 sell s2
}
in Just (removeEdge ¢ ¢ . mergeVertices (“elem” [a,b]) c)
filterFuse _ = Nothing

Listing 4.10: StrloT implementation of filter fusion

4.8.2 Applying Rewrite Rules

The first step in applying rewrite rules to a candidate program is to traverse the
program to find a point at which a given rule is applicable. Our function firstMatch
[79, src/Striot/LogicalOptimiser.hs#87] is provided in Listing 4.11.

It’s possible that the rule is not applicable to any point of the program, which we
again indicate with the Maybe type.

firstMatch :: StreamGraph -> RewriteRule
-> Maybe (StreamGraph -> StreamGraph)
firstMatch g r = case r g of
Just £ -> Just f£
_ -> case g of
Empty -> Nothing
Vertex _ -> Nothing
Overlay a b -> tryLeftThenRight a b r
Connect a b -> trylLeftThenRight a b r
where
tryLeftThenRight a b r = case firstMatch a r of
Just £ -> Just f

Nothing -> firstMatch b r
Listing 4.11: Implementation of firstMatch

During development, it proved useful to be able to determine the provenance of a
rewritten program: what rules were applied in order to derive it? To capture this in-
formation, we define a data-type Variant [79, src/Striot/LogicalOptimiser.hs#67]
which collects together a rewritten program with its parent program and the last rule

which was applied. This type is provided in Listing 4.12.
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data Variant = Variant { variantGraph :: StreamGraph
, variantRule :: String
, variantParent :: Variant
}
| Original { variantGraph :: StreamGraph }

deriving (Show, Eq)
Listing 4.12: The Variant data-type

We now combined all the pieces to write the principal routine. Given a list of
rewrite rules and a stream-processing program, we attempt to apply every rule to the
program individually to build a list of matching rewrite rules, which we in turn apply
to get a list of variant programs. We then recursively apply the function again to each
of those variants.

A set of rewrite rules may produce a variant program that is equivalent to one of
its ancestors. We need to ensure that the recursive application eventually terminates.
We opted to apply a depth limit to recursion: each invocation tests the supplied limit
and terminates if the value is less than one. We decrement the limit for subsequent
recursive calls.

Our implementation [79, src/Striot/LogicalOptimiser.hs#106] isin Listing 4.13.
applyRules :: [LabelledRewriteRule] -> Int -> Variant -> [Variant]
applyRules lrules n v =

if n < 1 then [v]
else let
sg = variantGraph v
vs = map (\(1,f) -> Variant (f sg) 1 v)
$ mapMaybe (\(LabelledRewriteRule 1 r) ->
fmap ((,) 1) (firstMatch sg r))
lrules

in v : vs ++ (concatMap (applyRules lrules (n-1)) vs)

Listing 4.13: applyRules function to apply rewrite rules

The list of variant programs may include duplicates, derived by a different set of
rules, or differing order of application. These can be identified and removed with
standard Haskell functions, e.g. nubBy (on (==) variantGraph). See Chapter B for a
description of these functions.

4.9 Chapter Summary

There are 64 pairings of the eight stream-processing operators. By performing a
systematic analysis of these pairings, we created 22 rewrite rules that could be used in

a term-rewriting system for transforming programs without altering their semantics.
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The process also produced a series of rules which do alter the semantics of programs
but might nonetheless be interesting or useful: 5 which caused re-ordering of the
stream events and 2 which caused reshaping of aggregate windows (collections of
data) within events.

Table 4.2 summarizes the total number of rules we designed, grouped by their

category of stream-processing optimisation [38].

Optimisation Category | Number of Rules

fusion | 7

elimination | 1
operator re-ordering | 11
other semantically preserving | 1
type-constrained | 2

total semantically-preserving | 22

stream re-ordering | 5

window re-shaping | 2

grand total | 29

Table 4.2: Summary of rewrite rules, grouped by optimisation category

We considered all 64 combinations of pairs of operators during this exercise. How-
ever our intention was not to exhaustively determine every possible transformation.
There may exist further semantically-preserving transformations for pairs of operators.

We did not attempt to devise rules that applied to larger expressions involving
more than two operators. However, the rules we have created could be repeatedly
applied to a larger stream-processing program. For example, a program featuring a
series of streamFilter operators could be reduced down to one by repeatedly applying
Rule 1.

We performed an initial exploration of tools to automatically derive rewrite rules
(Section 4.7). We were able to derive several of the rules we had created manually in
our initial experiments as well as one new rule. Whilst promising, this work was not
on the critical path for our research and so we did not pursue it further.

By leveraging purely-functional semantics, we have demonstrated a unique ad-
vantage of purely-functional programming for the design and implementation of this
aspect of the declarative architecture.
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for calculating a score for each of a list of possible deployment plans, with refer-
ence to relevant non-functional requirements, and choosing the best-scoring plan for
deployment.

In this chapter we first explore some of the non-functional requirements which are

relevant to stream-processing systems and summarize some of the approaches that

stream-processing systems and calculate estimates for properties to be used in costing.

5.1 Non-Functional Requirements

A distributed stream-processing program may be subject to several non-functional
requirements at once: the overall financial cost of operating the system; real-time
constraints on the time taken to produce results; limitations on the quantity or com-
plexity of computation that can take place on particular deployment nodes; limitations
on the bandwidth available for transmitting data through the system. Some of these
constraints may interact with each other: for example the quantity and specification
of rented Cloud nodes impacting both the speed and complexity of processing that
can take place, as well as the operational cost.

In designing StrloT we wished to support the use of multiple criteria for evaluating
deployment plans. For the initial implementation, and in order to narrow the scope to

make evaluation practical, we opted to start with two: utilisation and bandwidth.

5.1.1 Energy usage

Michalédk et al modelled energy use with their cost model [58]. As part of their work
they carefully measured the energy consumption of different functions of a specific
”smart watch” device. The shelf-life of modern smart appliances can be very short.
Their chosen device was discontinued shortly after their research.

The work of this thesis was completed part-time. This extended time span meant an
increased exposure to the risk of given devices becoming discontinued or unavailable.
We opted to avoid depending upon a non-functional requirement that exposed us to
this risk.
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5.1.2 Performance

We could model performance of a stream-processing program, such as operator
to a classic source code compiler, replacing algorithms with functionally-equivalent

but better-performing alternatives, e.g. by reducing the number of operators.

Performance is a popular metric for stream-processing systems and industrial-
strength stream-processing systems have received a lot of attention and optimisation
to improve performance. We therefore felt it would be very difficult to demonstrate a
performance advantage with a research prototype and it would be better to focus on

other metrics.

5.1.3 Utilisation

We define utilisation as the ratio of the arrival rate of events to a system over the rate
at which the system can service events: p = ﬁ When the arrival rate is larger than
the service rate, a queue of events to be processed will grow. If the arrival rate is
consistently larger, the system will never complete processing and is unviable.

It is very hard to assess, ahead of time, the exact load requirements of a distributed
stream-processing system. Since the consequence of under-provisioning is an unviable

system, practitioners tend to over-provision to avoid this risk [68].

There is a relationship between the service time of a system and cost: a more
capable and consequently expensive system may be able to process a higher rate of
incoming events. To manage cost, it is therefore desirable to not over-provision a

deployment.

in order to choose plans which best avoided both under and over-provisioning.

There are drawbacks to optimising in terms of utilisation. It is a one-dimensional
metric, whereas — for some problems — there can be several relevant and inter-acting

parameters.

For example, a system which is under-provisioned in terms of memory (RAM) may
result in the operating system swapping memory pages to and from disk, resulting in
an increase in CPU and IO utilisation. The most effective change could be to increase
the available memory, but an overall utilisation metric does not directly point towards

that solution.

Similarly, poorly-written code, such as an unnecessarily busy loop, can result in
high CPU utilisation. Increasing the specification of the available CPU will not resolve

the root problem: a busy loop will keep a high specification CPU just as busy.
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5.1.4 Bandwidth

In a distributed stream-processing system, data must be transmitted from its source
(e.g. sensors) through the deployment nodes which perform data processing (including
field gateways, smart phones, and cloud computing instances).

There may be different costs for the transmission of data through this heterogeneous
system.

Different aspects of data transmission may involve costs which the user may wish
to minimise.

A field gateway device may connect onwards to the public Internet using a mobile
broadband technology (4G, 5G) etc. This would require a modem and a contract with
a mobile broadband provider. Consumer mobile broadband contracts are typically
metered, with either a capped data allowance within a period (e.g monthly) or a
metered data rate. Depending on the availability of mobile broadband connectivity,
there will be physical limits on the total available bandwidth.

Inter-cloud data transfers can be at cost. Cloud providers may charge different
rates for data ingress or egress to their systems from the public Internet, between
components within their Cloud (such as between Regions or Services).

The approach to serialising data for transmission can have an impact on cost.
Establishing a TCP/IP connection requires some overhead. Maintaining and re-using
an established connection results in lower overheads, but other constraints (such as
power/energy/battery life) may prevent this.

Noisy or lossy links may result in lost or corrupt data packets, which may require

re-transmission.

5.2 Initial Approach

In the early stages of this work, we implemented a simple place-holder cost model
transformations that reduced the number of operators in a program, such as fusion
(Section 4.5.1).

McSherry et al [55] observed that the overheads of inter-node communication
introduced by parallel architectures are often overlooked when assessing systems.
will tend towards fewer nodes, with a corresponding lower overhead for inter-node
communication.

With functional programming it is common to pass lists of data between func-
tions which operate on the items within the list (such as filtering with filter and
transforming with map). As discussed in Section 2.2.2, the repeated de-construction
and re-construction of enclosing list structures can be very inefficient. Reducing

the number of operators also reduces instances where intermediate lists would be
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de-constructed and re-constructed.
We discuss operator fusion within a distributed environment further in Section 6.3.1.

5.3 Queueing Theory

In order to cost plans on other non-functional requirements, we explored modelling
feature a series of jobs which are serviced by one or more servers, such that jobs may
have to wait in a queue before being processed [59]. Queueing theory has been studied
extensively since the 1950s and queueing models have proven useful for predicting
the behaviour of distributed systems, including stream-processing systems [29].

5.3.1 Queueing Systems

A queueing system is a model consisting of jobs (possibly of different types) that arrive,
are processed by one or more servers, and leave the system.

Queueing systems are often categorised according to a short-hand scheme which
summarizes some of their key properties as a triplet [45]: a categorisation of the
arrival rate, followed by the service time, both described as one of M (Markovian), D
(deterministic) or G (generalised); followed by the number of parallel servers (e.g. 1).

For example the designation M/M/1 denotes a queueing system with a memoryless
arrival process (Poisson), a memoryless service time (exponential), and a single server
processing jobs.

A useful law applying to queueing systems is the utilisation law, which states “the
average number of servers busy with jobs of type i is equal to the offered load of type i”

For the simplified case of 1 server and a single job type, “the average busyness of the
server is equal to the total average demand for service per unit time.”

The Utilisation Law p = % allows us to determine the utilisation of a server from
the ratio of job arrivals and the average rate at which jobs are serviced. The derivation
of the Utilisation Law relies upon Little’s theorem [52], the full details of which we
elide here.

Little’s Theorem holds when the system is in steady-state: informally, when the
probability of observing any particular state of the system is no longer a function of

time.
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This implies the following properties:

1. the arrival rate into the system is the same as the departure rate

2. the average number of jobs in the system (either being served or waiting to be)

is static

3. the average interval between arrival and departure is static

5.3.2 Queueing Networks

A queueing network can be open, where jobs arrive enter and leave the system, or
closed, where jobs solely circulate internal to the network.

Open queueing networks are often referred to as Jackson Networks, due to a
popular theorem [42].

A queueing network is formally described by the average arrival rate of jobs into
the system and a routing matrix which describes the probabilities of jobs moving from
one server to another upon completion (or leaving the network).

Jackson’s theorem states that there is a closed-form solution to the traffic equations
describing the mean arrival rate of jobs (both internal and external) at each server.
From this result, many useful properties of the network, such as average sojourn time
or queue length, can be determined.

Jackson’s theorem depends upon some properties of the network holding: external
arrival rates must have a Poisson distribution and the distribution of service rates for
all servers must be exponential. For many real systems, these requirements may not

be met, or it may be impractical to determine whether or not they hold [14].

5.4 Alternative Approaches

Queueing theory models are relatively simple to construct and cheap to evaluate.
However, as mentioned above, the models are only valid if their preconditions (listed
in Sections 5.3.1 and 5.3.2) are met, and this may be difficult or impossible to establish.

Another approach is to evaluate and measure simulations of the final deployment.
These could involve executing the real stream-processing program, with real inputs
substituted for synthetic alternatives, and the deployment environment approximated
or simulated, for example running all the nodes on the user’s workstation rather than
distributed across the Cloud.

An advantage of such an approach would be the ability to measure the true per-
formance of running operators, which has been shown to be valuable for managing
run-time performance [44]. A drawback is this is much more complicated. The model

must approximate the real-world deployment sufficiently for the properties being
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measured to be accurate. The properties of concern differ for each application. For
example synthetic input data may need to match the arrival rate or distribution of the
true inputs, depending on exactly how it is processed.

For the work in this thesis, we have chosen to explore queueing theory and its
suitability for this purpose.

5.5 Mapping Queueing Theory to StrloT

does not hold in the following sections.
For the majority of operators, there is exactly one incoming stream of events.

Figure 5.1 illustrates these properties.

Ha

Figure 5.1: Queueing network representation of a stream operator.

This representation is sufficient to model streamMap and streamScan. In the following
sections we describe additions and variations to this representation required for the

remaining operators.

5.5.1 streamMerge

streamMerge reads from multiple incoming streams in turn and emits the events it
receives. Its output rate is simply the sum of the arrival rates of its inputs. This is
illustrated in Figure 5.2.

In queueing theory terms, there is nothing unusual about streamMerge: it can be

modelled as an ordinary server.

5.5.2 streamFilter, streamFilterAcc

StrloT’s filtering operators reject a proportion of incoming events. To calculate the
emission rate we need to know the average filter selectivity, which we denote f, and
assign a probability value in the range 0 — 1 that an event is accepted. The emission rate
is then determined by the product f-\;,. These properties are depicted in Figure 5.3.
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Hmerge

Figure 5.2: Queueing network representation of streamMerge

Hfilter

ffilter : >\m

ffilter

Figure 5.3: Queueing network representation of streamFilter and
streamFilterAcc.
The dotted line represents rejected events leaving the system.

5.5.3 streamWindow

The exact behaviour of the streamWindow operator depends upon the semantics of the

described in Section 2.5.2. We now analyse their behaviour from a queueing theory

perspective.

5.5.4 window-maker chop

output rate from this operator is therefore a fixed function of the input rate: If the
operator is configured to collect together lists of 5 events, and one event arrives every
second, then the operator will emit a list of 5 events every 5 seconds.

Hehop n
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5.5.5 window-maker sliding

list size of 2, the input events 1, 2, 3, 4, 5 would result in the output lists [1, 2], [2, 3], [3, 4], [4, 5].
The initial list emission would be delayed until sufficient input events had been
received. However, once the system reaches steady-state, each arriving event would

trigger a corresponding output event, thus, A;;, = A,. This is depicted in Figure 5.5.

Msliding n

Figure 5.5: Queueing network representation of streamWindow sliding.
Events are emitted at the same rate they are received.

5.5.6 window-maker chopTime

events. For the analysis which follows, we assume all events under consideration
have timestamps.
timestamps fall within a fixed interval.

When the first event arrives at the operator, chopTime calculates the upper-bound
timestamp for events to include in the current batch. When an event arrives featuring
a timestamp later than the current upper-bound, chopTime emits the current batch,
starts a new batch containing the latest event, and calculates the next upper-bound
from that event’s timestamp.

If no subsequent Event arrives beyond the upper-bound, chopTime won’t emit further
Events. In practise, the programmer can prevent this outcome from occurring by
defining a stream source which produces a steady stream of timed events and merging
this source into the main stream.

The output rate is % (Figure 5.6).

5.5.7 window-maker slidingTime

slidingTime emits overlapping lists of events within a fixed time interval. slidingTime
is depicted in Figure 5.7.

Similar to chopTime, slidingTime filters out received events without a time-stamp.
For the analysis which follows, we assume all events under consideration have times-

tamps.
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HechopTime

Figure 5.6: Queueing network representation of streamWindow chopTime.
The dotted line represents Events lacking a timestamp rejected by chopTime.

Consider a series of events arriving at intervals after a common starting time. Here
we represent the events solely as their arrival interval: 0,1,2,3,4,5,6. slidingTime
configured with a size of 2 emits [0, 1], [1, 2], [2, 3], [3, 4], [4, 5].

Each output list is emitted once the current time interval being collected closes.
This is determined when the first event arrives after the interval.

In the above example, the event [2, 3] cannot be emitted until the event 4 arrives,
indicating that no further events in the interval 2 — 4 will occur. Without any further
inputs, the event [5, 6] will never be emitted.

Unlike sliding (described above), under steady-state operation, slidingTime is not
guaranteed to emit an event for each arrival.

HslidingTime A

)\—> Il slidingTime

Figure 5.7: Queueing network representation of streamWindow slidingTime.
The dotted line represents rejecting arriving Events lacking a timestamp.

5.5.8 streamExpand

streamExpand receives Events consisting of lists and emits an Event for each item in
the list. If the received Event list is empty, streamExpand doesn’t emit anything. The
average output rate of streamExpand is the product of the average arrival rate and the
average length of lists within the arriving Events. This is depicted in Figure 5.8.

5.5.9 streamJoin

streamJoin reads events from two input streams in turn and emits them as pairs. Since
streamJoin must wait for an event on both input streams before it can emit the pair, its
output rate matches that of its slowest input.
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Mexpand

Figure 5.8: Queueing theory representation of streamExpand.
n is the average length of lists in the arriving Events.

However, if the input rates are not the same, the queue of unprocessed events
arriving from the faster stream will grow indefinitely. In practice this would not be
viable, thus streamJoin could only be used in scenarios where the average arrival rates

for the input streams were balanced (Figure 5.9).

,ujoin

madil

-

Figure 5.9: Queueing network representation of streamJoin

5.6 The Impact of Rewrite Rules on the Model

The rewrite rules introduced in Chapter 4 have implications for the queueing theory
model of the stream-processing program. In this section we collect some observations

about certain rules and groups of rules and how they affect the modelling.

5.6.1 Filtering and Mapping Fusion

The 7 rules which fuse together pairs of filtering and mapping operators replace
the two original operators with one new operator. The rule needs to determine the
queueing theory properties of the new operator.

In Section 5.2 above, we noted the potential performance impact of reducing the
number of stream-processing operators by reducing the corresponding amount of
"book-keeping” work required to marshal data between them.

A reduction in the work required could be reflected in a reduction in the average
time required to service events. However, in our model we have defined the service
time for operators to be the internal time required by the operator, i.e, the work
performed by the user-supplied parameters to the operator. In contrast, the list
construction and de-construction work is external, and so not reflected in the service

time values for operators.
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Since fusing operators has no obvious effect on the total internal service time, we
define the service time of the new operator to be the sum of the service times of the
original operators.

Consequently, fusion rules do not reduce the overall time required to service events
in the system, nor the overall system utilisation.

In the case of fusion rules which operate on filtering operators, the rule also needs
to specify the selectivity of the new operator. We chose to define this as the product of
the original two selectivities.

For example, if two adjacent filter operators had selectivities of ;5 and 1 respectively,

45

filter fusion would result in a new filter operator with a selectivity of ;.

5.6.2 Swapping Operators

The rules 11 and 12 reverse the order of adjacent map and filtering operators. For each
event, the predicate of the newly-positioned filtering operator performs the work of
the original predicate and streamMap’s higher-order function. Therefore, we defined
the service time of the newly-positioned filter operator to be the sum of the original
two operators.

These rules result in the sum of service times across the operators increasing.

5.6.3 Moving Filters Upstream

The four rules 9, 13, W1 and W2 each move a filtering operation upstream, such that it
operates on a list of Events. To achieve this, it is replaced with a streamMap, lifting the
tilter predicate to operate across lists.

Since we have encoded filter selectivity as a property of the Filter constructor
of the StreamOperator type (described in Section 5.7.1 below), by replacing it with
streamMap, we lose the ability to encode the selectivity.

For filtering operators, selectivity influences the departure rate for events. For
the new mapping operator, the departure rate matches the arrival rate, as per the
discussion in Section 5.5: for every arriving list, a list will be emitted, even if all the
enclosed events are rejected by the predicate.

The missing selectivity information would pose a problem if the lists are later
unpacked by another operator such as streamExpand. As noted in Section 5.5.8, the
average output rate of streamExpand is dependent on the average length of arriving
lists.

5.6.4 Lifted Operators and Service Times

Several rewrite rules (those in the previous section, as well as Rule 21, Rule 18 and
Rule 17) result in the “lifting” of work performed per-item into lists of items.
Choosing a service time for the new operator is difficult. The service time for the

original operator is defined as per arriving event. The aggregate operator will perform
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this work for each item within the arriving lists. For steady-state, we could define it
as the product of the cost per item and the average length of arriving lists. However,

the rewrite rule does not have this information.

5.6.5 Creating New Filters

Several rules create new filter operators, for which we need to determine appropriate
selectivities.

Rule 18 introduces a new filter to remove empty lists prior to streamScan. This is
necessary to preserve the semantics of the operators before and after rewriting: before,
the streamExpand performed this work.

In the general case, with real-world stream-processing programs, we believe it is rel-
atively unlikely for streamExpand to receive empty lists. It's unlikely for an application
programmer to wish to generate empty lists with windowing operations. However
will emit a series of empty lists corresponding to windowed time intervals if the
interval between received events exceeds its window size. For the rewrite rule, we
have initially opted to pick an arbitrary selectivity of 50%.

For the service time, we opted to pick a value of 0, since it is replicating the
previously external work of the streamExpand operator, and we have defined the service
time to reflect the internal work performed by operators.

Rule R3 removes a streamFilter operator originally downstream from a streamMerge
and creates copies of it for each incoming stream. For the rewrite rule implementation,
we opted to choose the same service time and selectivity values for the new filters as
the original.

The dual rule Rule R1 removes a set of streamFilter operators on the incoming
streams to a streamMerge and inserts a new filter immediately afterwards. We opted
to define this rule such that it would only match if the original filters had identical
predicates and selectivities. The new filter was created with the same values.

If we had permitted the rule to match filters with varying selectivities, we would
need to pick an appropriate selectivity for the new operator. One choice would be an

average of the original selectivities.

5.7 Implementation

We now describe the approach taken to implement the two cost models within StrloT.

5.7.1 Utilisation

To support building a queueing theory model for evaluation, we needed to extend
StrloT with the properties required by the model (described in Section 5.5).
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We considered extending the GenerateOpts data-type (See Section 3.3.5) which is
already used to describe properties of the program not captured by the StreamGraph
However, in order to match the queueing theory properties back to operators in the
stream-processing program, we would need to encode them with a form of reference,
such as to the StreamOperator vertexId value. We felt that this would be unwieldy
and risk introducing errors: if the stream-processing program was altered, care would
be needed to ensure the references were updated accordingly.

To remove this risk, we opted to extend the definition of the StreamGraph data-types
(described in Section 3.2.4) with the required data-types directly. Listing 5.1 illustrates
the parameter added to StreamVertex and Listing 5.2 to StreamOperator, respectively.

data StreamVertex = StreamVertex
{ vertexId :: Int
, operator :: StreamOperator
, parameters :: [ExpQl]
, intype :: String
, outtype :: String
{+, serviceRate :: Double+}
}

Listing 5.1: StreamVertex type extended with serviceRate property

data StreamOperator = Map
Filter {+Double+}
Expand
Window

Merge

Scan
FilterAcc {+Double+}
Source {+Double+}

I
I
I
I
| Join
I
I
I
| Sink

deriving (Show,0rd,Eq)

Listing 5.2: StreamOperator type extended with filter selectivities and source

arrival rates

Aggregate utilisation

Modelling utilisation solely at the level of operators does not allow the user to model
deployment nodes being overwhelmed by having a large set of operators assigned to
them in a deployment plan. The individual operators may not be over-utilised, but
the aggregate load of a set could be beyond what a particular deployment node could
support.
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To address this, In addition to filtering operators which are determined to be over-
utilised, we also implemented support for a user-specified aggregate utilisation limit,
to be applied for each node in a deployment.

This does not take into account any specific properties of a given deployment node.
For example we cannot differentiate between a low powered Edge device in the field,
and a well-specified cloud instance. As discussed in Section 3.1.1, our model of nodes
is homogeneous.
on the sum of operator utilisations that can be accepted. To choose a sensible value for
this limit, the user should consider the least-capable node in their deployment, for
example an edge device, and either estimate or perform some measurements of the
performance of that node with an appropriate workload.
individual nodes in a deployment and determine reasonable threshold values. This is
discussed further in Section 7.3.3.

5.7.2 Bandwidth

Bandwidth is a measure of data over time, typically measured in bits (or kilobits,
megabits, etc.) per second.

The queueing theory model provides us with the rate of events arriving at each
operator within the stream-processing program. In order to estimate the bandwidth
between operators, we need to combine this with an estimate of the size of individual
Events.

Our implementation of the StrloT runtime includes routines for serialising and
de-serialising Event streams for transmission over a TCP/IP network (Described in [8,
Section 3.3.2]).
to serialize an instance of a given Event type (e.g. Event _ Int) and then count the
number of bytes used in the representation.

In order to account for the cost of the overhead of TCP/IP transmission, our band-
width model also applies a per-event weighting to the calculated bandwidth. This is a
per-event overhead to represent the size of typical TCP and IP packet headers.
culated estimated bandwidth at the link between the first and second nodes in a
deployment plan. In an Edge-to-Cloud configuration, this link would correspond to

the uplink connecting Edge devices to a gateway device.

5.7.3 Applying Cost Models
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The function planCost [79, src/Striot/Orchestration.hs#120] is responsible for

We construct a Queueing Theory model corresponding to the stream-processing
program, via calcAllSg. This model is used for the utilisation-based checks that follow.
individual operator is determined to be over-utilised (Section 5.5). This is performed
by isOverUtilised. The second test calculates the sum of operator utilisations for nodes
utilisations exceeding a user-supplied threshold. (See Section 5.7.1 for advice on
choosing an appropriate threshold). The third test, performed by overBandwidthLimit,

calculates the weighted bandwidth required between the first and second nodes in the

threshold.

planCost :: GenerateOpts -> Plan -> Cost
planCost opts plan@(Plan sg pm) = let

oi calcAllSg sg
in if isOverUtilised oi
|| any (> maxNodeUtil opts) (totalNodeUtilisations oi pm)
|| overBandwidthLimit plan (maxBandwidth opts)
then Nothing

else Just (length pm)

Listing 5.3: Implementation of planCost

5.7.4 Advice for Practitioners

The queueing theory model predicts the behaviour of the program under steady state
operation. The model’s parameters — rate of arrival into the system; service time per
event; filter selectivities — are expressed as averages. During operation, the actual
arrival rate may exceed the model’s average for intervals, so long the average rate
remains accurate. If the model’s parameters do not reflect reality, then we cannot
extrapolate meaningfully from the model.

Since the consequences of over-utilisation — an unviable deployment, with queues
of events building up and never being processed — are more serious than those of
under-utilisation (wasted resources), the practitioner is advised to provide conservative
estimates for the model parameters: over-estimating arrival rates and under-estimating

service rates.
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5.8 Limitations

Our approach to cost modelling and our translation of those models into StrloT suffer

from a number of limitations.

5.8.1 Utilisation

The theory underpinning our queueing theory model relies upon preconditions about
the distribution of arrival rates and service times (Section 5.3) that might not hold [14].
information for the model, such as when a streamFilter is transformed into a streamMap
(Section 5.6.3).

component of the distributed stream-processing architecture. Run-time measurements
of arrival rates, filter selectivities and operator service times could be used to adjust
model parameters.

As noted in Section 5.5.3, the flexible semantics of streamWindow make modelling
it in the general case very difficult. We have provided analysis of its behaviour with
data (presence or absence of time-stamps). There are open questions to resolve about
the impact of aggregation on the distribution of emitted events.

We derive the model from the description of the stream-processing program and
not from the combined program and mapping of program’s operators to deployment
utilised, but not the situation where a deployment node is over-utilised by having too

much work assigned to it.

5.8.2 Bandwidth

The approach used to estimate bandwidth (Section 5.7.2) has a number of technical
limitations.

We do not have enough information to know whether the arriving Events include
timestamps, which can have a significant influence on their size. For example the size of
an Event consisting of a data payload of an Integer (Int) is 26 bytes without a timestamp,
and 44 bytes (69% larger) when a timestamp is present. For our implementation we
assume that all Events include timestamps.

In general we are unable to estimate the size of Events containing variable length
data, such as lists. We do not have enough information to measure or estimate the aver-
age length of the arriving lists. We have implemented one exception: for streamWindow
average output list length by considering the supplied window size and the average

arrival rate.
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There are a number of future enhancements which could help to address this
to estimate list lengths based on past data; adjusting the data types (similar to adding
queueing theory properties in Section 5.7.1) to allow for the user to provide Event size
estimates for some or all operators, and for list-length estimate information of other
operators to be derived from known values earlier in the stream.

Our initial implementation makes the assumption that the link between the first
and second nodes, corresponding to the interface between Edge and Gateway devices,
is the most bandwidth-constrained and where we should apply the bandwidth model.
Future work could enhance the bandwidth element of our cost model to consider
other links, and to apply different bandwidth thresholds to separate links. This could

model.

5.9 Chapter Summary

In this chapter we have explored some of the non-functional requirements which are of
key concern in modern problem domains, in particular node utilisation and bandwidth
which we have chosen as the focus of our initial implementation.
queueing theory in more detail and explained why we have chosen this approach for
cost modelling.

We have discussed how we map queueing theory concepts on the architecture of
StrloT and performed an analysis of how some of the design choices for our system,
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In this chapter we explore the design and performance of StrloT.
We began this thesis with a proposal for a declarative stream-processing archi-

tecture, outlined in Section 2.4, from which we have focussed on three components:

In the second part of this chapter we explore these specific components in more detail.

6.1 Methodology and Goals

Recapping our original research aims from Section 1.4: to provide further evidence as
to the viability of the declarative stream-processing architectural model (RQ1) and

identify advantages and disadvantages of purely-functional programming for this
domain (RQ3).

evaluate these specific components.

6.1.1 Methodological approach

Our methodological approach is to first encode existing, real-world stream-processing
programs from the literature as stream-processing programs in StrloT. These are
discussed in Section 6.2.1 and Section 6.2.2, below.

Achieving this will provide evidence to support RQ1 and RQ2. For RQ3, we must

6.2 Functional Stream-Processing

Michalédk et al demonstrated the viability of the declarative stream-processing model

(Section 2.4) by implementing solutions to several real-world problems [56], [57], [58].
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Their approach used the relational algebra as the method of declaratively describing
the computation.

In contrast, we have implemented a declarative-stream processing system, StrloT,
where stream-processing is described using purely-functional programming. With
functions provided by StrloT, which itself is written with Haskell.

By completing StrloT and using it to implement several solutions to real-world
stream-processing problems, we have further demonstrated the viability of the declar-
purpose.

We have published the source code to StrloT, including these example programs,
as open-source (See Section A.1) We now explore two of those example programs in
detail.

6.2.1 DEBS 2015 Grand Challenge

Since 2010, the annual ACM International Conference on Distributed and Event-based
Systems (DEBS) has featured a “Grand Challenge”: a practical problem for which
participants can submit solutions. The winners of the challenge are announced during
the conference.

The Grand Challenge for 2015 was based on a scenario of trip information for Taxi
journeys in New York City [43]. The challenge posed two problems, the first of which
was to identify the 10 most frequently-repeated routes completed within the last 30
minutes of data. A solution should continually update the top 10 as more data is
received.

We implemented a solution for this challenge using StrloT [79, examples/taxi],
illustrated in flowchart-format in Figure 6.1. Each operator in the flowchart is labelled
with a number. We now describe this solution step-by-step, referencing each operator
by label.

Stream Source and Event Times

In a real-world scenario, individual taxis submit live trip data at or near to the time of
the corresponding events. In our implementation, a single stream source (operator 1)
simulates the fleet of 10,867 taxis by reading aggregated trip data from an on-disk file.
Details of the format of the data-set and how to obtain it are provided in Section A.2.

The implementation of the source function is simple: we read saved records of
historic events sequentially and emit a corresponding Trip data structure (described
in Table 6.1). This simplicity enables a straightforward implementation that is easy to
reason about and can be executed on a single host. Unfortunately this simplification
introduces a discrepancy from the real-world. The nodeSource function provided by the

run-time (described in Section 2.5.3) emits events with a timestamp field corresponding
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streamSource
(getLine >>= (return . stringsToTrip . splitOn ","))

Trip

streamWindow
tripTimes

[Trip]
3 Y

streamExpand

Trip

streamMap
tripToJourney

Journey

streamFilter
(inRangeQ1 . start)

Journey
6 Y

streamFilter
(inRangeQ1 .end)

Journey

7 Y

streamWindow
(slidingTime 1800000)

[Journey]

8 Y
streamMap
(\w -> (let ]j = last w
in (pickupTime 1j, dropoffTime 1j),
topk 10 w))

((UTCTime,UTCTime),[(Journey,Int)])

9 Y
streamFilterAcc
(\_h-> Just h)
(Nothing)
(\h wacc -> case wacc of
Nothing -> True
Just acc -> snd h /= snd acc)

((UTCTime, UTCTime),[(Journey,Int)])
10 v
streamSink
(mapM_ (print . show . fromJust . value))

Figure 6.1: A StrloT solution to the DEBS "15 Grand Challenge:
profitable Taxi routes
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to the generation time, rather than the time of the trip that the data represents. Events
are emitted as soon as they are read from disk, so the rate of emission and distribution
do not correspond to that of the trip data.

For example, the sample dataset we used during development describes Taxi
journeys that took place in January 2013, including separate journeys taking place at
the same time. Running the simulation in 2025 would result in Event timestamp fields
of 2025, in a strictly sequential, ascending order.

We address this with operator 2, using the tripTimes [79, examples/taxi/Taxi.hs#400]
instances of Event, and so can generate Events with timestamp values taken from the
data-set.

We do not attempt to adjust the streaming rate or distribution to match the source
data, and are careful in our following analysis not to derive conclusions from mea-
surements of these properties in the simulation.

Operators 2-3 result in an adjusted stream of Events with the timestamp field cor-

rected to match the start time of the journey they represent.

Data Filtering and Reduction

The following three operators (4-6) are used to reduce the stream down to only the
data required for this specific scenario.

The first (operator 4) applies tripToJourney, converting the Trip data type to the
smaller, more specific Journey type detailed in Table 6.2.

The following two operators (5-6) filter the data to remove journeys that start or
end outside of the geographic area of concern, as specified in the problem description.

Top-k and Stateful Operations

to collect together Events that take place within 30 minute intervals and emit them as
a single aggregate Event that holds a list of the Journeys in that interval.

The eighth operator applies a top-k algorithm to determine the 10 most frequently
occurring journeys from the events in each window.

The ninth operator is a stateful filter that compares the output of the previous
operator against the previously emitted value. When a new batch of events arrive,
and the top 10 results are unchanged from the previous batch, this operator ensures
the program does not repeat the previous result.

This operation illustrates that stateful operations are not incompatible with purely-

functional programming. We achieve this using streamFilterAcc, described in Sec-
tion 2.5.2.

78



6.2. Functional Stream-Processing

Trip

Journey

medallion
hacklicense
pickupdatetime
dropoffdatetime
tripTimelInSecs
tripDistance
pickup

dropoff
PaymentType
fareAmount
surcharge
mtaTax
tipAmount
tollsAmount
total Amount

start
end

pickupTime

dropoffTime

Medallion
MD5Sum
UTCTime
UTCTime

Int

Float
Location
Location
PaymentType
Dollars
Dollars
Dollars
Dollars
Dollars
Dollars

Table 6.1: Trip data-type definitions

Cell
Cell
UTCTime
UTCTime
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, lat = Degrees
Location
long :: Degrees
d
PaymentType cat
cash
Medallion MD5Sum
Degrees it Float
MD5Sum String
Cell clat w Int
clong : Int

Table 6.2: Journey data-type definitions
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6.2.2 Path2IOT

For our second example problem, we re-implemented the “Wearable” solution from
PATH2iot [58] using StrloT and provide it as an example program within the StrloT
source [79, examples/wearable].

This program simulates a user wearing a smart device featuring an accelerometer.
Readings of the accelerometer measurements are periodically taken from the device
and used to calculate an estimate of the user’s step count. These counts are aggregated
into windows of a fixed time interval. The lengths of these windows are calculated
and forwarded to the cloud for further processing.

A flowchart illustration of our implementation is in Figure 6.2. As before, the
operators in the flowchart are numbered and we describe the solution in detail below,

referencing each operator by number.

Source

The streamSource (operator 1) simulates the arrival of data from a wearable sensor.
The data format reflects the fields that are emitted by a Pebble smart watch , and are
listed in Table 6.3.

PebbleMode60 = (Accelerometer, Vibe)

Accelerometer = (AccelVal, AccelVal, AccelVal)
AccelVal = Int
Vibe = Int

Table 6.3: PebbleMode60 data-type definitions

Filtering

Operator 2 filters out smart watch events where the vibration sensor was active. These

values are not necessary for our data processing.

Processing

Operators 3-5 implement a step-counting algorithm [83].

Operators 3 and 4 calculate the Euclidean distance from the vector expressed in
cartesian coordinates within the data packet.

In the original PATHZiot, the Euclidean distance operation was decomposed into
separate multiplication and square-root calculations. This allowed for deployment
plans which placed the multiplication calculations on an Edge device and the more
complex and energy-intensive square-root operation in the Cloud. We have preserved

this decomposition in our re-implementation.
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streamSource
sessionlInput

2681 bytes/
2 Y

streamPFilter
((==0) . snd)

2681 bytes/

PebbleMode60

PebbleMode60

streamMap
MEx v 2), )->x*x,y*y,z2*2)

2514 bytes/

(Int,Int,Int)

streamMap
(\x, y, z) -> intSqrt (x + y + z))

2178 bytes/ .

5 Y

streamFilterAcc
(\ n->n)

(0)
(\new last -> (last > thr) && (new <= thr))

44 byies/qe
6 ‘

streamWindow
(chopTime 120)

519 bytes/ .
7

Int

a

[Int]

streamMap
length

867 bytes/ .
8

Int

streamSink
(mapM _ print)

Figure 6.2: A StrloT implementation of the wearable program from PATHZ2iot
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The result of this processing is a stream of integers representing the magnitude
of a physical movement detected by the sensor. The next operator (5) completes the
step-counting algorithm by performing a stateful filtering, comparing the current
and prior values against a fixed threshold value. We use the stateful streamFilterAcc
operator, described in Section 2.5.2.

The final processing that took place in the original PATHZ?iot calculated the number
of qualifying measurements that took place within a given time interval. The final two
operators in our implementation calculate this by first using a time-based window

(operator 6) and then measuring the length of each window (operator 7).

6.2.3 Summary

By successfully implementing solutions to two real-world problems: the DEBS 2015
Grand Challenge (Section 6.2.1) and the Path2IOT’s Wearable (Section 6.2.2); we have
stream-processing system supporting real-world applications.

Both the Taxi [79, examples/taxi] and Wearable [79, examples/wearable| exam-
ples are included in the StrloT source distribution as full problem solutions that can
tool Docker Compose [21] (or an equivalent). The deployment features of StrloT are
tully described in Section 3.3.

6.3 Logical Optimiser

We now explore those aspects of the declarative stream-processing architecture which

In Chapter 4 we presented a set of 29 semantically-preserving rewrite rules as well
as two sets of rules which altered the precise order of stream events, but we argued
were nonetheless useful: 5 rules which caused re-ordering of incoming Events and 2
which reshaped windows.

In Section 4.3 we identified many of these rules as belonging to one of five estab-
lished categories of stream-processing optimisations [38]. In this section we revisit
those categories and discuss them in the context of a distributed stream-processing

system.

6.3.1 Operator Fusion

7 rules enact operator fusion: replacing a pair of operators with a single, combined
operator performing the work of the original pair. Operator fusion can be a useful
transformation as it reduces the complexity of the stream-processing program. It can
also reduce the computation required for executing the program, in particular, by

removing the need for intermediate list data-structures to be constructed and traversed
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at the ingress/egress of each operator [33], [75]. This problem is explored in more
detail in Section 2.2.2.

As described in Chapter 3, When a stream-processing program is deployed, the
Haskell source code describing the sub-programs for each deployment node are gen-
erated and compiled in isolation from one another as stand-alone computer programs.
When such a program features a pair of candidate operators for fusion, this could be
identified and achieved using established technologies such as GHC rewrite rules [66]
and other compile-time optimisations.

We have therefore determined that there is little value-add in StrloT performing
this work prior to code generation. It could even have a negative effect: by combining
two operators, the result can only be assigned to one deployment node, ruling out
potential deployment plans where one of the operators is assigned to a deployment

node earlier in the stream than the other, potentially reducing the size or rate of data.

6.3.2 Operator Re-Ordering

11 rules implemented operator re-ordering: swapping the order of the pair of operators
(and in some cases, also changing the type of one or both operators).

Operator re-ordering is interesting in the context of a distributed stream-processing
system because it can involve moving an operator between different nodes in a de-
ployment plan. This enables at least three types of optimisation:

1. by moving a pair of operators to be newly adjacent, the pair may end up assigned
to the same deployment node, opening up the potential for the compiler operating
on that node to perform optimisations such as operator fusion (described above).

2. moving operators towards the source of the stream-processing program can
enable the assignment of more work to earlier nodes in a deployment plan,
corresponding to Edge devices. This can increase the utilisation of Edge devices,
and reduce the total number of nodes required in a deployment plan. We provide
an example of this in Section 6.5, below.

3. moving mapping operators which reduce the Event payload size or filtering
operators which reduce the rate of Events cause a reduction in the required
bandwidth downstream from those operators. This is another advantage to
moving operations towards the Edge. We explore bandwidth in more detail in
Section 6.6.

6.4 Rejecting Over-Utilised Operators

To demonstrate, we have implemented two within the proof-of-concept: utilisation
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and bandwidth. Their design and implementation are discussed in Chapter 5.

and mapping of its operators to nodes in a deployment. However, the queueing
theory model (described in Chapter 5) is derived solely from the stream-processing
program, without the mapping of operators to nodes. This limitation is discussed
in Section 5.8.1.

suitable for deployment. The queueing theory model is used to reject plans where an
individual operator is determined to be over-utilised: events arrive at the operator at
a higher rate than it is capable of processing them.

We demonstrate this outcome with the example user-supplied program illustrated
in Figure 6.3. The operators have been annotated with the user-supplied event arrival
rates (\), filter selectivities (f) and service rates (1:); as well as their utilisation (p) as

The supplied program has been determined unviable for deployment: the filter
operator (shaded in red) is over-utilised (p > 1). Attempting to deploy this stream-
processing program would result in an ever-growing queue of Events waiting to be
processed at the filter operator.
ure 6.3. Illustrations of all 4 programs are provided in Chapter D.

One variant, depicted in Figure 6.4, has been rewritten by applying Rule R3. The
streamFilter, originally downstream from the streamMerge, has been removed and

new streamFilter operators inserted on each incoming stream to streamMerge.

deployment.

The rewritten program features more operators than the original program. A sim-
pler cost model, such as one that minimised the total number of operators (described
in Section 5.2) would not prefer the rewritten program and would select an option

that was worse in practice.

6.5 Node Utilisation Threshold

to limit the amount of work that can be assigned to any node within a deployment
plan. This is described in detail in Section 5.1.3.

Figure 6.5 depicts an example program consisting of a set of temperature sensors,
combined with streamMerge, followed by a series of highly-utilised streamMap opera-

tions. For numerical convenience, the event arrival rates and operator service times
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streamSource streamSource streamSource
tempSensor tempSensor tempSensor
A=1AaA=1 A=
p=3p=1 L
streamMerge
A=3
pn=1p=3f=1, Y
streamFilter overl100
A= 3/2
n=30H,p=1 v

streamMap f

A=3/y

— streamSink ——

Figure 6.3: Example program with over-utilised operators shaded red

streamSource streamSource streamSource
tempSensor tempSensor tempSensor
A=1 A=1 A=1
n=1lp=17Ff=1 v

streamFilter over100

streamFilter over100 streamFilter over100

\fllz )\=‘1/2/= /5

streamMerge

n=3p=1

A =3/

pn=34,p=1 A
streamMap f

A =3/,

—stroamSink

Figure 6.4: Rewritten program from Figure 6.3 with no over-utilised operators
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have been chosen such that the streamMap operators are maximally utilised (p = 1).

is specified as 300%, meaning a maximum of three fully-utilised operators could be
assigned to any given node.

Parameter Value

maxNodeUtil  300%
maxBandwidth unspecified

rules defaultRewriteRules

Table 6.4: User-supplied parameters for the Utilisation example

We now explore the performance of StrloT on the user-provided program followed

detailed in (Section 2.5.3): source and sink operators cannot share a node; streamMerge
can only be the first operator in a node. Operating under only these constraints, for

The lowest-possible number of nodes is now 4.
Figure 6.5 depicts one of the best-scoring deployment plans under this constraint,
requiring 4 nodes.

6.5.2 Logical Optimiser Performance

In an edge-to-cloud configuration, a deployment typically consists of a fixed number
of Edge devices, connected (via gateways) to a variable amount of Cloud computing
resource. Traditionally the majority of processing would take place on cloud nodes,
with Edge devices limited to gathering and forwarding data such as sensor data.
Where it is possible to perform some computation on Edge devices, the quantity
of cloud resource required to complete the computation is reduced, resulting in cost
savings.
scoring is depicted in Figure 6.6. By applying Rule 19 (See Section 4.5.4), some of
the stream processing has been moved upstream, next to the sources, prior to the

streamMerge. This has increased the utilisation of the nodes at the Edge. The remaining

86



6.5. Node Utilisation Threshold

streamSource

tempSensor

streamSource
tempSensor

Node 1, ' Node 2 ,

A=1/

streamMerge

A=1

streamMap
expensiveOp

A=1

streamMap
expensiveOp

Node 3
A=

streamMap
expensiveOp

A=1

streamMap
expensiveOp

A=1

streamSink
(mapM _ print)

Node 4

Figure 6.5:

A deployment plan for a stream-processing program with 4 consecutive highly-
utilised operators (each p = 1). maximum node utilisation is specified as 300%.
Consequently no more than three of these operators can be assigned to a single
deployment node. The chosen plan requires 4 nodes.
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streamSource |,

streamSource

(mapM_ print)

‘ . l
| tempSensor |'/| tempSensor |
| = 1/3, A=1/y
p=1p=172 : ;
| streamMap | ! /| streamMap | |
|| expensiveOp : expensiveOp n=1p=1/
1 l?&=1/21 A=1/p
p=1p=1/7 : L |
| streamMap : streamMap ;
: expensiveOp | /| expensiveOp | n=1,p = 1/5
i streamMerge 1
! A=1
n=1p=1 Y }
, | streamMap | |
: expensiveOp |
: A=1
n=1p= 1: Y 1
1| streamMap |
. | expensiveOp | |
| A=1
! Y |
| streamSink ||

Node 3 )

Figure 6.6: A deployment plan featuring a variant of the program in Figure 6.5,

than Figure 6.5.
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operators can be assigned to a single node, resulting in a deployment plan of only 3
nodes: an improvement over the 4 required by the original program.

we are able to derive a program variant which moves some computation earlier in the

stream, increasing the utilisation of edges nodes in an edge-to-cloud scenario, and

6.6 Utilisation and Bandwidth

We now explore the performance of both the Utilisation and Bandwidth aspects of the

in Section 6.2.2.

6.6.1 Estimating Model Parameters

also require the user to supply information describing the mean average arrival rate of
data into the system; the mean average service times for each operator and the average
selectivity for each filtering operator (See Section 5.7.1).

To determine reasonable values for these parameters, we wrote short stream-
processing programs [79, examples/wearable/WearableStreams.hs] to process a sam-
ple data-set provided by the PATHZ2iot authors and measure the required properties.
This sample-data was recorded from a “Pebble” smart-watch. A description of the
data-set and how to obtain it is provided in Section A.3. These measurements are
summarized in Table 6.5. The programs used to measure each parameter are described
below.

Parameter Measurement

data arrival rate 20.947 Hz
vibeFilter selectivity 9.9998 x 10~*
stepEvent threshold 1,250
stepEvent selectivity 2.0272 x 1072

Table 6.5: Data arrival rate and filter selectivities for the Wearable program from
Figure 6.2.

Arrival Rate

The arrival rate of data into the system is straightforwardly calculated directly from the
sample data using a rolling average [79, examples/wearable/WearableStreams.hs#97]
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o T

streamSource
session1Input

) PebbleMode60
Y

streamFilter
(== 0) . snd)

PebbleMode60

streamMap
Mx, v 2), )->xE*x,y*y, z*2z))

(Int,Int,Int)

streamWindow
(chopTime 120)

e« T

1757 bytes/ ool Node 1.
[(Int,Int,Int)]

streamMap
(map (\(x, v, z) -> intSqrt (x + v + z)))

[Int]

streamScan
(\(_, acc) a ->filterAcc (\_n -> n) acc (\new last -> (last > thr) && (new <= thr)) a)

(11, 0)

([Int], Int)
9 Y
streamMap
(reverse . fst)

[Int]

streamMap
(length)

Int

streamSink
(mapM print)

Figure 6.7: The rewritten Wearable program from Figure 6.2.
The chosen deployment plan is indicated with dashed lines.
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arrivalRate s S

& streamWindow (chopTime 1000)
& streamMap length
& streamScan (\(count,sum, , ) n -> let
count' = count+1l
sum' = sum+n
avg' = (fromIntegral sum') / (fromIntegral count')
in (count',sum',n,avg')) (0,0,0,0.0::Double)
& streamMap (\(_,_,_,x) = x)

Listing 6.1: Code to calculate the average arrival rate of pebble-watch data

vibeFilter Selectivity

The first filter in the program removes events where the vibration field is set. We
estimate average selectivity by calculating the actual selectivity over our data-set using

vibeSelectivity [79, examples/wearable/WearableStreams.hs#161]:

vibeSelectivity file = let
total = (fromIntegral . length . lines) file
accept = (fromIntegral . vibeCount) file

in accept / total

vibeCount =

length . unStream . edEvent . streamMap snd . pebbleStream'

Listing 6.2: Code to calculate the selectivity of vibeFilter

stepEvent Selectivity

We use a similar technique to measure the actual selectivity of the streamFilterAcc
operator which completes the step-count algorithm. The threshold value of 1250
is taken directly from [58]. We calculate the selectivity with stepSelectivity [79,
examples/wearable/WearableStreams.hs#134] :

stepSelectivity file = let

edEvents

edEvLen

file & pebbleStream' & streamMap snd & edEvent

edEvents & length & fromIntegral
stepEvLen = edEvents & stepEvent 1250 & length & fromIntegral
in stepEvlLen / edEvlLen

Listing 6.3: Code to calculate the selectivity of stepEvent
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6.6.2 Operator Service Times

To determine average service times for each operator, we performed a benchmarking
experiment using the Criterion package [63].

Criterion is designed to support the user writing “micro-benchmarks”: individual
benchmarks of specific functions. Criterion repeatedly evaluates the provided func-
tions and records the time taken to evaluate them. It estimates the time taken for a
single iteration using a ordinary least-squares regression (OLS) model. This provides
a more accurate estimate than a simple mean average, as it accounts for measurement
overhead.

Criterion provides an R? goodness-of-fit to measure how accurately the OLS model
fits the observations. The Criterion authors describe R? values of between 0.99 and 1
as an “excellent fit”. All of our measurements have R? values within this range.

Our benchmarking code is provided with StrloT [79, examples/wearable/Criterion.hs].

Hardware Selection

To control for the impact of hardware performance on our benchmarks, we performed
the experiments on a single, dedicated machine. It was not practical to attempt to exe-
cute StrloT on an edge device of a similar calibre to the Pebble Watch used in PATH2iot:
at the time of our experiments, the device was no longer in production. It would
also have been a significant undertaking to build a cross-compilation environment in
order to target the architecture of the Pebble Watch CPU (STM32, 32-bit ARMv7-M
architecture).

Instead, we selected a single-board computer designed for IoT deployments which
used the same CPU architecture as conventional desktop computers (amd64). This
simplified the development of the test suite, as we could iteratively develop the suite
on regular, high-performance machines, whilst executing them in the lower-power,
controlled environment, without needing to build a cross-compiler.

The specific configuration of our test machine was a 4 core Intel Atom X5-z8350
CPU at 1.92GHz and 4GB RAM. The data-sheet is available at [74].

Benchmark implementation

The general pattern for each micro-benchmark is to call the code for each operator via
Criterion’s bench and whnf functions. These ensure that the function is evaluated to
weak-head normal form (whnf) prior to supplying the final datum for each run of the
benchmark. By wrapping the function to be measure in whnf, Criterion ensures that it
has not been optimised away to a constant value by GHC.

To ensure we measure both fast and slow code-paths, we benchmark each operator
with a selection of input values. For example, Listing 6.4 lists two measurements for

vibeFilter, one for each possible value for the vibe field (0 and 1).
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bench "vibeFilterYes" $ nf vibeFilter ((0,0,0),0)
bench "vibeFilterNo" $ nf vibeFilter ((0,0,0),1)

Listing 6.4: Example Criterion benchmark code for vibeFilter

Benchmarking Results

The average measured service times are summarized in Table 6.6. The full report

generated by Criterion is provided in Chapter E.

ID Operator Average Service Time (s)

2 vibeFilter 7.73 x 1077
3 squares 9.19 x 1077
4  intsqrt 3.4x107
5 filterAcc 1.6 x 1076
6  chopTime 1.24 x 107°
7  length 1.5 x 1077

Table 6.6: Measured average service times for the operators in the program from
Figure 6.2.

User-supplied parameters

Parameter Value

maxNodeUtil  1.1102 x 1072
maxBandwidth 1760 bytes/s
rules defaultRewriteRules ++ reshapingRules

Table 6.7: User-supplied parameters for the Wearable example

In addition to the program description itself, the user supplies StrloT with configu-

the set of rewrite rules to apply by adding reshaping rules (See Section 4.5.7) to the
default set. The parameters supplied in this example are shown in Table 6.7.

formance between the equipment used for benchmarking the operators (Section 6.6.2)
and the Pebble Watch used in the original PATH?2iot research.

6.6.3 Original Program Performance

the user.
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remaining plans.

No viable plans remain for deployment. In other words, the original program
has been determined to be impossible to deploy and operate under the constraints
specified by the user.
operating constraints to proceed: for example, purchase or rent larger, more expensive

cloud computing resources.

6.6.4 Logical Optimiser Performance

We now consider the situation where we first apply the Logical Optimiser to generate
a set of new but functionally equivalent versions of the program submitted by the
user.

66 variants are derived from the original program. Once paired with all possible

distribution of costs calculated for these plans is illustrated in Figure 6.8.

|13

19
2

0O 10 20 30 40 50 60 70 80 90
number of plans

|63

| 95

cost ‘ 63

~No o~ wiN

Figure 6.8: Distribution of costs calculated for deployment plans

Of the 13 lowest-scoring (best) plans, the variant depicted in Figure 6.7 is chosen

window reshaping Rule W2 (See Section 4.5.7) which moved the streamWindow one
position earlier in the program, followed by applying Rule 21 (Section 4.5.4) twice in
succession: each time moving the streamWindow another position earlier.

between the first and second deployment nodes. In the original program (for plans
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boundary at the rate of the source node, and the calculated bandwidth was determined
to be too high for all plans (between 2,178 £ and (2,681 2).

In the rewritten program, the events flowing over the first node boundary are
the result of applying streamWindow, and are flowing at the rate specified by the

original program provided by the user.

6.7 Chapter Summary

In this chapter we have evaluated the design of StrloT, our reference implementation
of a purely-functional distributed stream processing system, by first addressing the re-
search questions posed earlier in this thesis, before exploring in further detail the facets

We have implemented several solutions to real-world stream-processing prob-
lems using StrloT, adding evidence to support the viability of the declarative stream-
proach for such systems.

We have discussed where we have shown particular advantages or disadvantages
of our design, as a consequence of purely-functional program, in contrast to existing
stream-processing systems.

We have demonstrated the value of generating program variants as well as the use
of a cost model to filter and rank deployment plans, by finding viable deployment
plans when the original user-supplied program is unviable.

6.7.1 Key Insights

We note in Section 6.3 that some of the rewrite rules we designed can be directly clas-
sified in terms of established categories of stream-processing optimisations. However,
we observe in Section 6.3.1 that some optimisations, including operator fusion, when
performed at this level of abstraction can actually thwart more efficient transforma-
tions, by removing opportunities for more effective transformations such as operator
placement.

can generate a large number of program variants: in our examples, the number of
variants is too great feasibly assessed and ranked by a human. For the wearable

example (Section 6.6), 6,989 plans were generated. Allowing 15 minutes to evaluate a
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This clearly shows that machine assistance for filtering and ranking program variants
is essential.

The result achieved in Section 6.6.4 relied upon the selection of rewrite rules that
modified the program’s semantics: specifically rules which permitted the “reshaping”
of windows (detailed in Section 4.5.7). This result demonstrates that there is value in
developing and applying rewrite rules which modify a program’s semantics, so long
as those semantics are not relevant to the ultimate results calculated by the program.
We discuss this further in Section 7.3.1.
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7.1 Contributions

I have demonstrated, via an end-to-end proof of concept implementation, that the
architectural vision for declarative stream-processing (described in Section 2.4) is
viable. I successfully implemented several solutions to real-world stream processing
problems, including re-implementing an example from an earlier relational system
(Section 2.4.1).

A drawback of the earlier relational system was reliance upon user-defined func-
tions (UDFs), which prevented the Optimiser from reasoning about their semantics [58].
In contrast, StrloT restricts users to a small set of operators with well-understood
semantics. Our example programs show that this restriction does not prevent solving

real-world stream-processing problems. I were able to design program transformations

stream-processing systems, we believe StrloT to be the first such system to adopt it
end-to-end.

to build a system of this complexity, but that its properties — namely pure functions
and lazy evaluation — combined with the restricted operators — enable the use of
powerful reasoning methods (equational reasoning, term rewriting) in the design of

Program optimisations are traditionally semantically-preserving. I have discovered
that it can be advantageous to alter some aspects of their behaviour in well-defined
ways, such as re-ordering streaming data. I believe there is value in controlling which
aspects of the semantics of a program are important, and which can be altered. (See
Section 7.3.1 for further discussion).

could be applied to other domains utilising dataflow models, including e-Science

workflows, large language models (LLMs) and graphical rendering pipelines.
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7.1.1 Open Science and reproducibility

This work has been produced under the principles of open and reproducible science.
Full-text pre-prints are available for the associated publications [9], [24]. We have
developed StrloT, the research software underpinning this work, as open source
software [79]. To support reproducible science, the data sets used for the experiments
in Chapter 6 have been archived in the Newcastle University Research Repository,
alongside a copy of the StrloT source code. Full details of the precise version of the
source code used for the experiments and a description of the data-sets and their

formats are provided in Section A.1.

7.2 Thesis Summary

The motivation for this research was set out in in Chapter 1: designing and operating
modern stream-processing systems is complex, due to the demands of high velocity
data and the range of different technologies and expertise required for them. A
declarative architecture was proposed [57] to address these problems. Michaldk
explored the architecture using a relational approach [56], whilst Watson and Woodman
produced an initial prototype using a functional approach [78].

Chapter 2 provided a summary of the relevant foundational concepts and research
in both stream-processing and functional programming. I then thoroughly explored the
proof-of-concept functional prototype that we build upon with our work, including its

data-types (Section 2.5.1), stream-processing operators (Section 2.5.2), containers and

generate mappings of program operators to deployment nodes. I describe the data-
types and algorithms that I designed and implemented for these components.

designed a library of rewriting rules and categorised them according to established
categories of stream-processing optimisations. I initially approached program rewrit-
ing as strictly semantically preserving before realising the opportunities of rewrite

rules which alter some aspects of program behaviour. I detail the implementation of

the utilisation of stream-processing operators, and bandwidth constraints for data
propagating through the distributed system, followed by a description of their imple-

In Chapter 6 I evaluate the performance of the completed StrloT by re-implementing
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outcomes.

7.3 Future Work

Throughout this thesis I have identified several opportunities for future work, de-
scribed below.

7.3.1 Semantic-Modifying Program Transformations

In Chapter 4, I designed a set of rewrite rules for stream-processing programs which
were semantically-preserving: the functional behaviour of the rewritten program is
equivalent to that of the original. Preserving semantics is a fundamental axiom of
term rewriting, the formal method upon which rewrite rules are based.

During the course of this work I discovered that there are some aspects of the
semantics of a stream-processing program that were unimportant in some contexts: for
example, preserving the ordering of stream data might not impact the work performed
by the program. I developed two sets of rewrite rules which were not semantically
preserving: one set which re-ordered streams (Section 4.5.6) and another which re-
shaped windows (Section 4.5.7). These rules are provided as a separate collection
within StrloT, allowing users to opt-into using them.

In Section 6.6, in a scenario where the user-supplied program was not deployable
under the operating constraints, I determined that window reshaping rules enabled the
rules which alter some aspects of the semantics of a stream-processing program.

Future work could categorise the different facets of program semantics and explore
ways in which each could be specified as important (or otherwise) by the end-user.

Regarding stream order: In StrloT the Stream type is modelled as a list, which is an
inherently ordered data-type. Alternative representations could include unordered
types such as sets. For situations where order is important for some portion of stream-
processing and not others, an exploration could be made of more complex schemes,
such as dependent types [6], to represent both circumstances in the same program.

Rather than require the end-user to identify and specify where different semantics
are important, further research could explore to what extent this could be automatically
determined by program analysis or modelling.

Stream Re-Ordering

Further analysis could be performed to explore the re-ordering rules described in
Section 4.5.6, in particular to establish whether the original stream order could be

preserved or recovered after the transformations. For some of the rules, the extent of
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stream re-ordering is externally determined, such as Rule R1, where it is determined by
the user-supplied filter predicate. For others, the re-ordering is determined by internal
factors, such as the number of incoming streams and the size of windows for Rule R2.
In some circumstances, there may be enough information to design re-ordering rules
which can restore the stream order to match that prior to the rewrite.

For example, Listing 7.1 is a variation of Rule R3 which preserves ordering:

streamFilter p $ streamMerge [s, t]
— streamMap fromJust
$ streamFilter isJust
$ streamMerge [ streamMap (filterMaybe p) s
, streamMap (filterMaybe p) t ]

Listing 7.1: an order-preserving variant of Rule R3

In this variation, instead of rejecting filtered events with streamFilter, streamMap
is used to replace accepted events with Just x, and rejected events with Nothing. This
preserves stream ordering, yet reduces its data-size, if Nothing serialises to a smaller
representation than the original data-type, which is likely.

Once the streams have been merged, two new operators are used to remove the
events consisting of Nothing and unwrap the original data-type from Just. It may be
possible to design order-preserving equivalents of the other rules in Section 4.5.6 using
similar techniques.

Alternatively, altering the stream operators themselves could be explored. Recall
that the Event type (Section 2.5.1) already wraps the payload in Maybe. The definition
of streamFilter could be adjusted such that, when rejecting an Event, it emitted a
corresponding Event consisting of Nothing as the payload. Such a change would
require a full analysis of the new semantics and likely alterations to the definition of

the other operators.

7.3.2 Catalogue

scribe the available devices (sensors, gateways, cloud instances) available within the
deployment environment and their properties, such as availability, capability and cost
(Section 2.4). We did not implement a catalogue during this research.

alternative for modelling the actual limits of deployment nodes. The bandwidth
model assumes that the connection of interest, to which the limit should be applied, is
between the first and second nodes in the deployment, which would correspond to
the interface between the Edge and Gateway in an Edge-to-Cloud topology. These

assumptions could be replaced with a richer description of the operating environment.
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modelled them as a simple list. We did not consider different types of deployment
nodes, such as varying costs or capabilities.

Interesting characteristics of the deployment environment that could be consid-
ered in both cost models and deployment plans include the relative capabilities of
nodes (e.g. number of CPU cores, core clock speed, available memory and storage);
the availability of particular features (GPUs, support for floating point operations);
operating constraints such as estimated battery life, for edge devices; and rental cost,

in the case of cloud computing instances.

7.3.3 Run-time

erties of their program and its environment: the average data arrival rate, average
service times for each operator and average selectiveness of each filter (Section 5.7.1).
performance of the system. Together with further work to support re-deployment,
this could allow for replacing a deployed stream-processing program with a new

properties.

7.3.4 Machine-assisted Rewrite Rule Generation

My initial experiments with QuickSpec (Section 4.7) demonstrated that tool-assisted
rule discovery has the potential to discover laws about the stream-processing operators
which can be converted into rewrite rules.

I quickly discovered that the computer memory requirements to explore a set of
operators grew rapidly as the number of operators and supporting functions in scope
for analysis was increased. I was unable to run QuickSpec against the full set of
operators and a reasonable set of supporting functions on conventional machines.

Further work could explore executing QuickSpec in the cloud, on virtual machine
instances provisioned with very large available memory, to see whether it can discover
further rules or rules of a complexity beyond those I designed via pairwise comparison.

7.3.5 Representation

StrloT’s stream-processing operators (Section 2.5.2) were designed to be simple and
easy to use. They are defined as standard Haskell functions with the intent that the
end-user describes the stream-processing to take place in terms of these functions in a

regular Haskell program.
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to manipulate the stream-processing program as structured data. To ease the design
and implementation of these components, we defined a distinct set of data-types
tailored to their requirements, described in Section 3.2.4. In comparison to the pure
functional operators, writing stream-processing applications in terms of these data-

types is awkward and unnatural.

I opted to build upon an algebraic Graph type Algebra.Graph [60] for this alternative
representation. This allowed us to leverage an existing library of functional graph
algorithms. For the implementation of rewrite rules (Section 4.8), I was able to use
pattern-matching in the function definitions. This aided in their translation from the
initial abstract representation, which also used pattern-matching. There were some

drawbacks of this choice.

Topology. The topology of the program was entirely encoded at the level of the Graph
type provided by the library, and was not represented at the level of our vertex type
(StreamVertex). In order to ensure that two otherwise-indistinguishable vertices were
not incorrectly unified by the library, I needed to add a unique ID field to StreamVertex
(Section 3.2.4).

Locality. A given vertex may occur repeatedly within an instance of a graph data-
structure. This meant graph transformations could not be performed on subsets of a
stream-processing program (such as the subset that matches a rewrite rule pattern)
as they might miss an instance in the wider program. Rewrite rules therefore had
to return another function to perform the necessary transformation, which had to be
collected and applied by the code which called the rewrite rules. This complicated the

implementation.

Algebra.Graph provided an interface consisting of total functions that prevents
the construction of invalid graphs. However, the structure of our stream-processing
programs is actually the more restricted type tree. It is possible to construct instances
of StreamGraph which are valid graphs, but not trees, such as an operator connecting

onwards to more than one downstream operator.

Several promising extensions to the Haskell language could help to define an
alternative, unified data-type addressing these problems: Template Haskell; typed
Templated Haskell and Generalised Algebraic Data Types.

Template Haskell (TH) is a meta-programming framework that permits the user to
write Haskell code which is evaluated at compile-time. This code can itself generate
Haskell which is combined with regular code. I used TH in Section 3.2.4 to improve
the encoding of operator parameters in the StreamVertex type. This ensured that the
provided parameters were valid Haskell expressions, preventing one class of possible

programming errors.

By default, TH is untyped, so nothing prevents the user from accidentally providing
a Haskell expression with an invalid type. Listing 7.2 is an example of an instance
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of StreamVertex which is expected to receive and emit a stream of type String, but
features a parameter describing a numerical operation which cannot be applied to it.
This does not generate a type error when the program is compiled, and instead will
provoke a run-time error when the resulting program is deployed.

StreamVertex 3 Map [[| (+1) []] "String" "String" 1
Listing 7.2: An example of a type error in an instance of StreamVertex

Adopting Typed Template Haskell [32] could potentially catch these errors. If
the parameters field of StreamVertex was typed, then we could potentially remove the
intype and outtype fields. This would improve the legibility of the representation and
further close the gap between these data-types and the original stream-processing

functions.

snippet in Listing 7.3 consisting of two operators:

streamFilter even . streamMap (+1)

Listing 7.3: Simple example of two StrloT operators

resembles the snippet in Listing 7.3, and so constructing programs using this type
should not be more onerous for the end-user, and the resulting data-type can be
evaluated, traversed, inspected and de-constructed by a higher-level program such as

StreamFilter [|| even ||] . StreamMap [|| (+1) [I]

Listing 7.4: The example from Listing 7.3 formulated using the GADT type in
Figure 7.1
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type StrExp a = Code Q a -- typed Template Haskell expression

data StreamProgram o where
StreamSource :: StrExp o
-> StreamProgram (Stream o)

StreamSink :: StrExp (i -> o)
-> StreamProgram (Stream i)
-> StreamProgram o

StreamMap :: StrExp (i -> o)
-> StreamProgram (Stream i)
-> StreamProgram (Stream o)

StreamScan :: StrExp (o -> a -> o)
-> StrExp o
-> StreamProgram (Stream a)
-> StreamProgram (Stream o)

StreamFilter :: StrExp (i -> Bool)
-> StreamProgram (Stream i)
-> StreamProgram (Stream i)

StreamWindow :: StrExp (Stream o -> [Stream o])
-> StreamProgram (Stream o)
-> StreamProgram (Stream [o])

StreamExpand :: StreamProgram (Stream [o])
-> StreamProgram (Stream o)

StreamMerge :: [StreamProgram (Stream o)]
-> StreamProgram (Stream o)

StreamJoin :: StreamProgram (Stream a)
-> StreamProgram (Stream b)
-> StreamProgram (Stream (a,b))

StreamFilterAcc :: StrExp (b -> i -> D)
-> StrExp b
-> StrExp (i -> b -> Bool)
-> StreamProgram (Stream i)
-> StreamProgram (Stream i)
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A.1 StrIoT Source Code

StrloT has been developed and is distributed as open-source software. The canonical
location for the StrloT source-code is GitHub [79].

The version of the software at the time of this thesis was 0.2.1.0.

A copy of the software as of 0.2.1.0 has been deposited as an artefact in the Newcastle
University Research Repository [25].

A.2 NYC Taxi Data

[22] is an anonymised excerpt of New York City Taxi trip data for the month of January
2013, in CSV format. This data is used for the example stream-processing program in
Section 6.2.1. The fields are described in Table A.1.

This data-set is an anonymised derivation of one produced by the DEBS 2013
Grand Challenge authors [43] which is no longer available. It, in turn, was an excerpt
(1,999,999 records) from a larger data-set obtained by Chris Whong via Freedom Of
Information Law (FOIL) [80]. The NYC Taxi and Limousine Commission now publish
this data themselves [10].

A.3 Pebble Watch accelerometer data

[23] is 918,150 samples of accelerometer data recorded from a Pebble Smart Watch.
The data is in CSV format. This data was used for our re-implementation of the
stream-processing example from PATH?iot [58], described in Section 6.2.2.

The first field of each line is a time-stamp in UNIX epoch format with millisecond
resolution. There then follows ten readings, each consisting of four fields: the X, Y and
Z axis values, and the vibration sensor value (0 for for off, 1 for on). The ten readings
are followed by 11 fields consisting only of zeroes.

The unit for the accelerometer values is thousandths of the gravitational constant
G, with minimum/maximum values of -4000/4000 (range -4G to 4G).

The data was captured by Peter Michalak for his own PhD work and was graciously
shared with me for mine. Peter has given permission for the data to be distributed
under the terms of the Creative Commons Zero license [15].
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Field Description Type Notes

1 medallion ID MD?5 hash 32 zeroes for all records
2 license ID MD?5 hash 32 zeroes for all records
3 pick-up time timestamp Format %Y-)-m-%-d %H:%M: %S
4 drop-off time timestamp Format %Y-%-m-%-d %H:%M:%S
5 trip time integer Seconds
6 trip distance fixed Miles
7 pickup latitude float Degrees
8 pickup longitude  float Degrees
9 drop-off latitude  float Degrees

10 drop-off longitude float Degrees

11 payment type text CRD for card

12 fare amount fixed US dollars

13 surcharge fixed US dollars

14 MTA Tax fixed US dollars

15 Tip amount fixed US dollars

16 Tolls amount fixed US dollars

17 Total amount fixed US dollars

Table A.1: Description of the fields in the anonymised NYC Taxi trip data-set [22]
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Here we provide a brief description of the Haskell language, focussing on the aspects
that are presented in this thesis. For more thorough treatments, we recommend [5],
[62].

B.1 Functions

Functions are defined by declaring their name, any arguments, and an equals sign,
followed by their definition. A function’s type may be optionally declared with a type
signature, prefixed by the function’s name and : :. The argument types are separated
by -> and terminated by the function’s return type. Listing B.2 illustrates the definition

and type signature for a simple 2-argument function.

f :: a ->b -> c

fxy=x+y

Listing B.1: A 2-argument function definition and type signature

The application of argument x to function f is written as £ x. Function application
reads right-to-left. Brackets can be used to adjust precedence, e.g. in f (x y), y is
applied to %, and the result to £.

Functions can be partially applied: Applying a single argument to a function of type
a -> b -> cresults in a new function of typeb -> c.

Functions are composed with the . operator. A function f of type a -> b, composed
with a function g of type b > ¢, results in a function of type a -> c. It is common for
several functions to be composed in sequence, e.g. h . g . f. The resulting order of
evaluation reads right-to-left, i.e., f is applied first, followed by g, followed by h.

& is used as an application operator. It takes a left-hand value and applies it to the
right-hand function. A sequence of applications reads left-to-right. E.g.,v & £ & g & h
first calls £ with the value of v, and then passes the result to g, followed by h.

A function with an arity of 2 can be written infix by surrounding it with back-quotes,
e.g. x "f yisequivalentto f x y.

An anonymous function is defined beginning with a backslash (chosen as the
closest ASCII approximation to a lambda), followed by its arguments, the separator ->

and then the function body. E.g. \x y -> x + y.
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B.2 Expressions

The expression if x then y else z evaluates x, of type Bool, and if the result is true,
evaluates y, otherwise, z.

Expressions can be bound to a local name with let, e.g. let two = 2 * x in (two,
two).

A case expression is used to return different expressions based on a pattern. Pat-

terns can match number literals. The catch-all pattern _ matches anything:

case v of
1 -> "one"
2 _> lltwoll

-> "something ,else"

Listing B.2: A 2-argument function definition and type signature

B.3 Types

B.3.1 Basic Types

Basic Haskell types include Int (Integer); Float and Double (floating point numbers of
different precisions); Char for text characters (denoted by single quotes, e.g. 'a') and
String, a list of Chars, denoted by double-quotes, e.g. "hello".

The special name undefined has type a, which means it can occur anywhere, but
attempting to evaluate it results in a runtime error. For example, map undefined []
returns the value [1, but attempting to apply map undefined to a non-empty list will

provoke a runtime error.

B.3.2 Polymorphic Types

A polymorphic type is parameterized in terms of one or more other types.

The Maybe a type has two constructors: Nothing; Just a. It is used to represent
computations that might fail.

Tuples, of which the most common variant is pairs, consist of two or more ele-
ments of different types. The expression (1,'c', [1) represents a three-element tuple

consisting of a number, a character and a list.

B.3.3 Lists

Haskell’s lists are singly-linked lists. The empty list is denoted [1 and a symbolic
constructor : is used to inductively define a list featuring a head element and a tail
list (which may be the empty list).

List literals may be defined using shorter comma-based syntax: [1,2,3] is equiva-
lentto1 : 2 : 3 : [].
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Common List Functions

head returns the first element of a list and tail everything except the first element. last
returns the last element, and init all but the last. All four throw a runtime exception
if they are called with the empty list.

map f applied to a list evaluates to a new list with the same number of elements,
each element of which is the result of applying f (of type a -> b) to the corresponding
element in the source list.

filter p, where p is of type a -> Bool, is applied to a list and evaluates to a new
list of possibly-differing length, consisting of only those elements from the source list
for which the predicate evalutes to True.

Folds such as foldl reduce a list (or other traversible data structure) to produce an
output value.

++joins two lists together. concat joins a list of lists together. E.g. concat ["hello
", "world"] returns "helloworld".

sort returns a sorted list. nub returns a list with no duplicate items. The variants

sortBy and nubBy require a higher-order function to use as the comparator.

B.3.4 Defining Types

An alias to an existing type is created with the type keyword,
E.g. type Stream a = [Event a]l.

More complex types are introduced with the data keyword that has two forms:
Sum-type syntax:

data StreamOperator = Map | Filter | Expand -- ..
Listing B.3: Sum type syntax

Record syntax:

data StreamVertex = StreamVertex
{ vertexId :: Int

, operator :: StreamOperator

, parameters :: [ExpQ]

} —— etc.

Listing B.4: Record type syntax

In both cases the term on the left of equals defines a type constructor whilst the
terms on the right define data constructors. The data constructors defined in the above
examples are Map, Filter, Expand and StreamVertex. Type and data constructors all
begin with capital letters.

For record syntax, the constituent fields define accessor functions which are used
to retrieve the value from an instance of the parent type. For example, the above

definition defines an accessor function vertexId with the type StreamVertex -> Int.
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B.4 Pattern-Matching

Pattern matching is used to deconstruct instances of a data-type, to write function
definitions that are specific to inputs matching a given pattern, and to bind portions
of a data-type to variables that can be referenced in a function definition.

For example, consider the definition of a function safeHead:

safeHead :: [a]l -> Maybe a
safeHead (x:_) = Just x

safeHead [] = Nothing
Listing B.5: Demonstration of pattern-matching

Here we have defined the function twice. The first definition is scoped to a pattern
(x:_), defined over the constructor for lists (:). This definition will be used when
an input is supplied which matches the pattern, in other words, only for non-empty
lists. The pattern binds the variable x to one of the constructor’s arguments, and that
variable is referenced in the function definition on the right-hand side of the equals.

The second function definition is scoped to the pattern [], the other list constructor.
This will only match inputs which are the empty list.

As-patterns are used to label sub-components within patterns with variables. For
example, the pattern in wnInspect (e@(Event _ (Just i)):s) labels the Event type with
the variable e, which the right-hand side could reference in the same way as x in the

previous example.
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This chapter collects together implementations of QuickCheck properties (See Sec-
tion 4.6) to gain assurance that the rewrite rules designed in Section 4.5 are sound.

C.1 Preamble Code

{-# OPTIONS_GHC -F -pgmF htfpp #-}
module Main where

import Data.List (sort)

import Data.Char (isAscii)

import Test.Framework

import Striot.FunctionalIoTtypes

import Striot.FunctionalProcessing

import Striot.Simple

import Data.Maybe

import Data.Function ((&))

import Data.Time (UTCTime (..), secondsToDiffTime, Day (..))

main = htfMain htf_thisModulesTests

Most of the QuickCheck predicates receive an incoming stream as a parameter and
compare the result of applying it to two expressions using the equivalence operator

(==). We provide the following convenience operator ==== to encapsulate the common
behaviour.

(====) Eq b => Show b => (a -> b) -> (a -> b) -> a -> Property
(====) gs=1=fs ===g s

C.2 Sample operator parameters and input streams

Definitions of stream operator parameters, sample input streams, etc., used to support
the QuickCheck implementations.
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C.2.1 filter predicates

sample arguments for streamFilterAcc

-- increasing values only
accfnl _ v = v

accl = '\NUL'

predl = (>=)

-- alternating values only
accfn2 _ v = v

acc2 = '\NUL'

pred2 = (/=)

-- even indices only

accfn3 acc _ = acc + 1
acc3 =0
pred3 _ acc = even acc

-- pred/succ with wrapping

next :: (Eq a, Bounded a, Enum a) => a -> a
next a = if a == maxBound then minBound else succ a
prev :: (Eq a, Bounded a, Enum a) => a -> a
prev a = if a == minBound then maxBound else pred a

C.2.2 mapping parameters
f Char -> Char
f = next

examples of a streamScan arguments

counter = \c v -> c+1

scanfn = counter

scanInit = 0 -- :: Int

scanfn?2 b a = if a > b then 1 else if b == a then 0 else -1
scanAcc2 = 0 :: Int
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C.2.3 sample window makers

wm = chop 3

C.2.4 test streams of characters

sA = [Event Nothing (Just i)|i<-['a'..]]
sB = [Event Nothing (Just i)[|i<-['0"'..]]
sC = [Event Nothing (Just i)|i<-['A'..]]
sI = [Event Nothing (Just i)|i<-[0..]]
sW = streamWindow (chop 2) sB

sWW= streamWindow (chop 3) sW

swl = streamWindow wm sA

C.2.5 Utility functions

-- utility functions for mapFilterAcc

accfn acc _ = acc+l

accpred dat acc even acc

filterMaybe p v = if PV

then Just v
else Nothing

C.3 QuickCheck properties
C.3.1 Operator fusion

prop_filterFilter = streamFilter q . streamFilter p
== streamFilter (\x -> p x && q x)

filterFilterAccPre streamFilterAcc accfnl accl predl
streamFilter q

filterFilterAccPost streamFilterAcc

(\a v -> if q v then accfnl a v else a)
accl

(\x a -> q x && predl x a)

prop_filterFilterAcc filterFilterAccPre

==== filterFilterAccPost

filterAccFilterPre = streamFilter q . streamFilterAcc accfnl accl

predil
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filterAccFilterPost = streamFilterAcc accfnl accl
(\x a -> predl x a && q x)
prop_filterAccFilter = filterAccFilterPre
==== filterAccFilterPost

filterAccFilterAccPre streamFilterAcc accfn2 acc2 pred2

streamFilterAcc accfnl accl predl

filterAccFilterAccPost streamFilterAcc
(\(x,y) v -> (accfnl x v, if predl v x then accfn2 y v else y))
(accl, acc?2)

(\x (y,z) -> predl x y && pred2 x z)

prop_filterAccFilterAcc filterAccFilterAccPre

==== filterAccFilterAccPost

-— XXX would prefer two different mapping functions here

mapMapPre = streamMap f streamMap £

mapMapPost = streamMap (f . f)

prop_mapMap = mapMapPre ==== mapMapPost

mapScanPre = streamScan scanfn scanInit . streamMap £
mapScanPost = streamScan (flip (flip scanfn . f)) scanlnit
prop_mapScan = mapScanPre ==== mapScanPost

-—- right-balanced pairs of merges can be fused
prop_mergeMerge :: [Stream Char] -> [Stream Char] -> Bool
prop_mergeMerge ssl ss2 = streamMerge (ssl ++ [streamMerge ss2]) ==

streamMerge (ssl ++ ss2)
C.3.2 Operator elimination
prop_mergeElim :: Stream Char -> Bool

prop_mergeElim s = s == streamMerge [s]

C.3.3 Other semantically-preserving rules

expandFilterPre = streamFilter p . streamExpand
expandFilterPost = streamExpand . streamMap (filter p)
prop_expandFilter = expandFilterPre ==== expandFilterPost
filterFilterPre' = streamFilter q . streamFilter p
filterFilterPost' = streamFilter p . streamFilter q
prop_filterFilter' = filterFilterPre' ==== filterFilterPost'
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mapFilterPre = streamFilter p . streamMap f
mapFilterPost = streamMap f . streamFilter (p . f)
prop_mapFilter = mapFilterPre ==== mapFilterPost
mapFilterAccPre = streamFilterAcc accfn O accpred . streamMap f
mapFilterAccPost = streamMap f

streamFilterAcc accfn O (accpred . f)
prop_mapFilterAcc = mapFilterAccPre ==== mapFilterAccPost

expandFilterAccPre accfn acc pred =

streamFilterAcc accfn acc pred . streamExpand

expandFilterAccPost accfn acc pred
= streamExpand
streamMap (reverse.fst)

streamScan (\(_,acc') a -> filterAcc accfn acc' pred a) ([],acc)

prop_expandFilterAccl :: Stream [Char] -> Property

prop_expandFilterAccl expandFilterAccPre accfnl accl predl

=== expandFilterAccPost accfnl accl predl
prop_expandFilterAcc2 :: Stream [Char] -> Property
prop_expandFilterAcc2 = expandFilterAccPre accfn2 acc2 pred2

==== expandFilterAccPost accfn2 acc2 pred2

prop_expandFilterAcc3 :: Stream [Char] -> Property

prop_expandFilterAcc3 expandFilterAccPre accfn3d acc3 pred3

==== expandFilterAccPost accfn3 acc3 pred3

mapJoinPre = streamJoin sA . streamMap f
mapJoinPost = streamMap (\(x,y) -> (x, f y)) . streamJoin sA
prop_mapJoin = mapJoinPre ==== mapJoinPost
scanJoinPre = streamJoin sA . streamScan scanfn scanlnit
scanJoinPost = streamScan
(\c¢ (x,y) -> (x, scanfn (snd c) y))
(undefined, scanlInit)
streamJoin sA
prop_scanJoin :: Stream Char -> Property
prop_scanJoin = scanJoinPre ==== scanJoinPost
prop_mapMerge sl s2 = streamMerge [streamMap f sl, streamMap f s2]
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== streamMap f (streamMerge [s1,s2])

expandMapPre = streamMap f . streamExpand
expandMapPost = streamExpand . streamMap (map f)
prop_expandMap = expandMapPre ==== expandMapPost

expandScanPre scanfn scanlnit
= streamScan scanfn scanlnit . streamExpand
expandScanPost scanfn scanInit
= streamExpand
streamScan (\b a -> tail $ scanl scanfn (last b) a) [scanInit]
streamFilter (/=[1)
prop_expandScan :: Stream [Char] -> Property

prop_expandScan = expandScanPre scanfn scanInit

==== expandScanPost scanfn scanlnit

prop_expandScan2 :: Stream [Int] -> Property
prop_expandScan2 = expandScanPre scanfn2 scanAcc?2

==== expandScanPost scanfn2 scanAcc2

expandExpandPre = streamExpand . streamExpand
expandExpandPost = streamExpand . streamMap concat
prop_expandExpand :: Stream [[Char]] -> Property
prop_expandExpand = expandExpandPre ==== expandExpandPost

prop_mergeMap sl s2 = streamMap f (streamMerge [s1l, s2])

== streamMerge [streamMap f sl1, streamMap f s2]

scanWindowPre = streamWindow wm . streamScan scanfn scanlInit
scanWindowPost = streamScan
(\b a -> tail $ scanl scanfn (last b) a)
[scanInit]
streamWindow wm
prop_scanWindow :: Stream Char -> Property
prop_scanWindow = scanWindowPre ==== scanWindowPost

C.3.4 Rules for specific types

mapWindowPre :: Stream Char -> Stream [Charl]
mapWindowPre = streamWindow (chop 2) . streamMap f
mapWindowPost = streamMap (map f) . streamWindow (chop 2)

prop_mapWindow = mapWindowPre ==== mapWindowPost
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C.3.5 Re-ordering rules

filterMergePre sl s2 streamMerge [ streamFilter p sl

, sStreamFilter p s2 ]

filterMergePost sl1 s2 streamFilter p $§ streamMerge [s1, s2]

prop_filterMerge sl s2 sort (filterMergePre sl s2)

== sort (filterMergePost sl s2)

expandMergePre s1 s2 streamMerge [ streamExpand sl

, streamExpand s2 ]

expandMergePost sl s2 streamExpand (streamMerge [s1l, s2])

prop_expandMerge :: Stream [Char] -> Stream [Char] -> Bool

prop_expandMerge sl s2 sort (expandMergePre sl s2)

== sort (expandMergePost sl s2)

mergeFilterPre sl s2 streamFilter p $ streamMerge [s1l, s2]
mergeFilterPost sl s2 = streamMerge [ streamFilter p sl

, StreamFilter p s2 ]
prop_mergeFilter :: Stream Char -> Stream Char -> Bool
prop_mergeFilter sl s2 = sort (mergeFilterPre sl1 s2)

== sort (mergeFilterPost sl s2)

mergeFilterPost2 sl s2 streamMap fromJust

streamFilter isJust

©“ &+

streamMerge [
streamMap (filterMaybe p) si,
streamMap (filterMaybe p) s2
]
prop_mergeFilter2 sl s2 = mergeFilterPre sl s2
== mergeFilterPost2 sl s2

prop_mergeExpand :: Stream [Char] -> Stream [Char] -> Bool
prop_mergeExpand sl s2 = sort (streamExpand (streamMerge [s1,s2]))
== sort (streamMerge [ streamExpand sl

, sStreamExpand s2 ])

Right-balanced streamMerges are order-preserving and tested by prop_mergeMerge.
The following tests the other combinations: >0 streams prior to the inner merge, and

>0 after the inner merge.

mergeMergePre' a b c = streamMerge (a ++ streamMerge b : c)
mergeMergePost' a b ¢ = streamMerge (concat [a, b, c])
prop_mergeMerge' :: [Stream Char]
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Appendix C. Supporting Code

-> [Stream Char]
-> [Stream Char]
-> Bool
prop_mergeMerge' a b ¢ = sort (mergeMergePre' a b c)

== sort (mergeMergePost' a b c)

C.3.6 Rules that reshape windows

In order to check properties of rules that reshape windows, we must ignore the differ-
ence in windows sizes. We expand the windows using streamExpand and extract the
data from the Event wrappers using unStream in order to ignore timestamp differences
caused by the reshaping. This limits our testing to ensuring the data and ordering of
data within the windows is unchanged.

filterWindowPre = streamWindow wm . streamFilter p
filterWindowPost = streamMap (filter p) . streamWindow wm
prop_filterWindow = unStream . streamExpand . filterWindowPre

==== unStream . streamExpand . filterWindowPost
filterAccWindowPre = streamWindow wm

streamFilterAcc accfn3 acc3 pred3
filterAccWindowPost = streamMap (reverse . fst)

streamScan

(\ (_,acc) a -> filterAcc accfn3 acc pred3 a)

([1,acc3)

streamWindow wm

prop_filterAccWindow :: Stream Int -> Property
prop_filterAccWindow =

unStream . streamExpand . filterAccWindowPre ====
unStream . streamExpand . filterAccWindowPost
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Appendix D. Utilisation Example Program Variants

as applied to the Utilisation example program provided in Section 6.4.

streamSource streamSource streamSource
(tempSensor) (tempSensor) (tempSensor)
LStr’ing String lStr’ing
streamFilter streamFilter streamFilter
(over100) (over100) (over100)
Int |Int Int
streamMerge
Int
streamMap
(£)
String
streamSink

(mapM _ print)

Figure D.1: utilVariants/1

streamSource streamSource streamSource
(tempSensor) (tempSensor) (tempSensor)
lStr‘ing String 1Str'ing
streamFilter streamFilter streamFilter
(over100) (over100) (over100)
Xlnt Int llnt
streamMap streamMap streamMap
(0 () (0
Int |Int Int
streamMerge
String
streamSink

(mapM _ print)

Figure D.2: utilVariants/2
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Appendix D. Utilisation Example Program Variants

streamSource
(tempSensor)

streamSource
(tempSensor)

streamSource
(tempSensor)

Nﬁng

StnMring

streamMerge

String

streamFilter
(over100)

Int

streamMap

®

String

streamSink
(mapM _ print)

Figure D.3: utilVariants/3

streamSource streamSource streamSource
(tempSensor) (tempSensor) (tempSensor)
lStn'ng String lStn'ng
streamFilter streamFilter streamFilter
(over100) (over100) (over100)
Int Int Int
streamMerge
Int
streamMap
()
String
streamSink

(mapM_ print)

Figure D.4: utilVariants/4
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Appendix E. Criterion Report

This is the report produced by Criterion [63] whilst benchmarking the operators within
the wearable example (see Section 6.6.2).

criterion performance measurements

overview
vibe / vibeFilterYes i
vibe / vibeFilterNo ]
squares / squaresi !
squares / squares4 (=

length / length25
length / length24

Os 500 ns 1ps 2pus 2ps 3 s 3ps 4 ps

vibe / vibeFilterYes

vibe / vibeFilterYes — time densities vibe / vibeFilterYes — time per iteration
250 ms

200 ms

150 ms

100 ms

50 ms

Os

(\g 3 (\g M \
760ns 765ns  770ns  775ns  780ns N \Q°+’\ \69*\ rLQQ+\ 16“*\

lower bound estimate upper bound

OLS regression 771 ns 773ns  775ns
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 771 ns 772ns  774ns
Standard deviation 4.48 ns 533ns 6.46ns

Outlying measurements have no (0.461%) effect on estimated standard deviation.

121



Appendix E. Criterion Report

vibe / vibeFilterNo

vibe / vibeFilterNo — time densities vibe / vibeFilterNo — time per iteration
250 ms
200 ms
150 ms
100 ms
50 ms
Os

A AT AT AT A
770ns  780ns 790ns 800ns 810ns O 0t 0 ,LQQ* ,250*

lower bound estimate upper bound

OLS regression 776 ns 778ns 780 ns
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 777 ns 779ns  782ns
Standard deviation 4.01 ns 7.04ns 13.1ns

Outlying measurements have a slight (6.11%) effect on estimated standard deviation.

squares / squares

squares / squares1 — time densities squares / squares1 — time per iteration

250 ms

200 ms

150 ms

100 ms

50 ms

Os

915 ns 920 ns 925 ns 50x10® 100x10% 150x103 200x103

lower bound estimate upper bound

OLS regression 918 ns 919ns  920ns
R? goodness-of-fit  1.00 1.00 1.00

Mean execution time 917 ns 918ns  919ns
Standard deviation 2.26 ns 272ns 3.59ns

Outlying measurements have no (0.469%) effect on estimated standard deviation.
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squares / squares4

squares / squares4 — time densities squares / squares4 — time per iteration

ot

& & o © ©
o T AR T T P 50x10°  100x102 150x10° 200x10°

lower bound estimate upper bound

OLS regression 916 ns 917ns  919ns
R? goodness-of-fit ~ 0.998 0.999 1.00

Mean execution time 917 ns 929ns 975ns
Standard deviation 3.12ns 75.4ns 160 ns

Outlying measurements have a severe (84.1%) effect on estimated standard deviation.

intsqrt / intsqrt0

intsqrt / intsqrt0 — time densities intsqrt / intsqrt0 — time per iteration
250 ms

200 ms ‘

150 ms ‘

100 ms ‘
50 ms
Os

2.96 ps 2.97 ps 2.98 ps 2.99 ps 20x10° 40x103 60x103

lower bound estimate upper bound

OLS regression 2.97 ps 297 pus 297 ps
R? goodness-of-fit  1.00 1.00 1.00

Mean execution time 2.97 ps 297 pus 297 ps
Standard deviation 6.86 ns 825ns 10.3ns

Outlying measurements have no (0.529%) effect on estimated standard deviation.

123




Appendix E. Criterion Report

intsqrt / intsqrt1

intsqrt / intsqrt1 — time densities intsqrt / intsqrt1 — time per iteration
250 ms
200 ms
150 ms
100 ms
50 ms

Os
S 3 S 3 3 3
SN NS S A G 20x10? 40x108 60x108

lower bound estimate upper bound

OLS regression 3.40 ps 3.40 s 3.40ps
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 3.40 ps 3.40pps 341 ps
Standard deviation 9.30 ns 11.3ns 14.7ns

Outlying measurements have no (0.535%) effect on estimated standard deviation.

intsqrt / intsqrt8

intsqrt / intsqrt8 — time densities intsqrt / intsqrt8 — time per iteration

250 ms
200 ms
150 ms
100 ms
50 ms

Os

34 ps 35ps 3.6 us 3.7 us 20x10% 40x103 60x103

lower bound estimate upper bound

OLS regression 3.40 ps 3.43pus 348 ps
R? goodness-of-fit  0.998 0.999 1.00

Mean execution time 3.41 ps 3.42pus  3.45ps
Standard deviation 11.1 ns 549ns 114ns

Outlying measurements have a moderate (14.9%) effect on estimated standard deviation.
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filterAcc / filterAcc1

filterAcc / filterAcc1 — time densities filterAcc / filterAcc1 — time per iteration

1.05 us 1.06 ps 1.07 ps 1.08 ps 1.09 ps 50x10° 100x10%  150x10%  200x1(

lower bound estimate upper bound

OLS regression 1.07 ps 1.07ps  1.08 ps
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 1.07 ps 1.07ps  1.08 ps
Standard deviation 7.52 ns 9.20ns 11.4ns

Outlying measurements have no (0.476%) effect on estimated standard deviation.

filterAcc / filterAcc2

filterAcc / filterAcc2 — time densities filterAcc / filterAcc2 — time per iteration
250 ms
200 ms ‘
150 ms ‘
100 ms ‘
50 ms
Os
1.6 ps 1.65 ps 1.7 ps 1.75 ps 50x10° 100x103

lower bound estimate upper bound

OLS regression 1.59 ps 1.60ps 1.61ps
R? goodness-of-fit ~ 0.999 1.00 1.00

Mean execution time 1.59 ps 1.60ps  1.62ps
Standard deviation 7.39 ns 27.5ns 56.9ns

Outlying measurements have a moderate (18.0%) effect on estimated standard deviation.
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Appendix E. Criterion Report

filterAcc / filterAcc3

filterAcc / filterAcc3 — time densities filterAcc / filterAcc3 — time per iteration

250 ms
200 ms
150 ms
100 ms
50 ms

Os

1.58 ps 1.59 ps 1.6 ps 1.61 ps 50x103 100x103

lower bound estimate upper bound

OLS regression 1.59 ps 1.59ps 1.60ps
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 1.59 ps 1.60ps  1.60 ps
Standard deviation 7.28 ns 837ns 992ns

Outlying measurements have no (0.495%) effect on estimated standard deviation.

chopTime / chopTimeln

chopTime / chopTimeln — time densities chopTime / chopTimeln — time per iteration

250 ms
200 ms
150 ms
100 ms
50 ms
Os

1.25 ps 1.3 ps 1.35 ps 1.4 ps 50x10° 100x103 150x103

lower bound estimate upper bound

OLS regression 1.24 ps 1.24ps  1.25ps
R? goodness-of-fit ~ 0.999 1.00 1.00

Mean execution time 1.24 us 1.25ps  1.26 ps
Standard deviation 5.84 ns 336ns 57.8ns

Outlying measurements have a moderate (35.5%) effect on estimated standard deviation.
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chopTime / chopTimeOut

chopTime / chopTimeOut — time densities chopTime / chopTimeOut — time per iteration
250 ms
200 ms
150 ms
100 ms
50 ms
Os

Ww W W W W w
RN DA AN 50x10°  100x10° 150109

lower bound estimate upper bound

OLS regression 1.24 ps 1.24ps  1.25ps
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 1.24 us 1.25ps  1.25ps
Standard deviation 5.78 ns 6.92ns 8.43ns

Outlying measurements have no (0.483%) effect on estimated standard deviation.

length / length25

length / length25 — time densities length / length25 — time per iteration
250 ms
200 ms
150 ms
100 ms
50 ms

Os T T
oS oS oS S oS
NG \o? NCE AR A0 5005103 1x108

lower bound estimate upper bound

OLS regression 150 ns 150ns 150 ns
R? goodness-of-fit  1.00 1.00 1.00

Mean execution time 150 ns 150ns  150ns
Standard deviation 52.9 ps 74.4ps 120 ps

Outlying measurements have no (0.400%) effect on estimated standard deviation.
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length / length24

length / length24 — time densities length / length24 — time per iteration

250 ms
200 ms
150 ms
100 ms
50 ms

Os

145ns 146 ns 147 ns 148 ns 500x108 1x108 2x1C

lower bound estimate upper bound

OLS regression 145 ns 145ns  146ns
R? goodness-of-fit ~ 1.00 1.00 1.00

Mean execution time 145 ns 145ns  145ns
Standard deviation  88.0 ps 540ps 1.13ns

Outlying measurements have no (0.398%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own.

e The chart on the left is a kernel density estimate (also known as a KDE) of time measurements.
This graphs the probability of any given time measurement occurring. A spike indicates that a
measurement of a particular time occurred; its height indicates how often that measurement
was repeated.

The chart on the right is the raw data from which the kernel density estimate is built. The x-axis
indicates the number of loop iterations, while the y-axis shows measured execution time for the
given number of loop iterations. The line behind the values is the linear regression estimate of
execution time for a given number of iterations. Ideally, all measurements will be on (or very
near) this line. The transparent area behind it shows the confidence interval for the execution
time estimate.

Under the charts is a small table. The first two rows are the results of a linear regression run on the
measurements displayed in the right-hand chart.

» OLS regression indicates the time estimated for a single loop iteration using an ordinary least-
squares regression model. This number is more accurate than the mean estimate below it, as it
more effectively eliminates measurement overhead and other constant factors.

« R2; goodness-of-fit is a measure of how accurately the linear regression model fits the observed

measurements. If the measurements are not too noisy, R?; should lie between 0.99 and 1,
indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of
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the linear model.

o Mean execution time and standard deviation are statistics calculated from execution time divided
by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates.

The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe
those estimates to be.

A noisy benchmarking environment can cause some or many measurements to fall far from the mean.
These outlying measurements can have a significant inflationary effect on the estimate of the
standard deviation. We calculate and display an estimate of the extent to which the standard deviation
has been inflated by outliers.

colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.
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Glossary Of Terms

bandwidth

the size of the data-type and rate of emission between the first and second node

within a deployment plan.
catalogue

The component of the declarative architecture (Section 2.4) describing the de-

ployment environment and its properties.
container

A Linux application together with all of its software dependencies, packaged
in a standarised format, such that a container runtime can start the application
without requiring further software. Standardised by the Open Container Initia-
tive (OCI) [64].

cost model

A mathematical model of a distributed stream-processing system, used by the
Deployer
The component of the declarative architecture (Section 2.4) responsible for de-

eager
eager evaluation

Also known as applicative-order evaluation: all arguments to procedures are

evaluated when the procedure is applied [1].
equational reasoning

A technique for transforming functions through a process of substitution by

applying laws or rules which express the equivalence of two expressions [5].

Evaluator
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Glossary Of Terms

Event-Processing Language

Event-Processing Language (EPL) is an extended version of Structured-Query
Language (SQL) where tables are replaced by streams [27].

functional programming

A declarative programming paradigm whereby the primary abstraction is that of

the function, and programs are assembled by applying and composing functions.

GADT

permitting a data-type’s individual constructors to have distinct types from each
other.

GHC

The Glasgow Haskell Compiler (GHC) is the de-facto standard compiler for
Haskell.

Haskell
Alazily-evaluated, purely-functional programming language. See Section 2.2.1.

lazy

lazy evaluation

An evaluation strategy where expressions are only evaluated at the point at
which their value is required, such as when the value is to be printed to the
screen [36]. Expressions which do not need to be evaluated during the execution

of the program will not be: this allows the programmer to work with infinite
Logical Optimiser

The component of the declarative stream-processing architecture (Section 2.4)

responsible for optimising the stream-processing program. In StrloT, the Logical

maximum node utilisation

A threshold for the total aggregated utilisation of all logical operators assigned

node

In the context of StrloT, a node is the term used to denote a computer instance,
be that a physical or virtual machine, or an isolated container running within a

container platform.
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Glossary Of Terms

open-source

A model of software development whereby the source code to an application is
available to consumers of the software. The source code to open-source is often
freely available and open development is encouraged. The widely-accepted
formal definition of open-source is the OSI Open-Source Definition [65].

partial functions

A function for which only a sub-set of the possible inputs (the range) are mapped
to outputs (the domain). The behaviour of a partial function with an unmapped
input is undefined. In practice, this may provoke a run-time error (e.g., when

applying head, the function to return the first element of a list, to an empty list).
partition map

In the context of StrloT, a mapping of operators from a stream-processing pro-

gram to nodes within a deployment environment.
Partitioner

The component of StrloT responsible for deriving the possible deployment plans

from the original declarative stream-procesing model (Section 2.4).
Physical Optimiser

The component of the declarative stream-processing model (Section 2.4) respon-

sible for producing the mapping of logical operators in a stream-processing

plan

In the context of StrloT, a plan is a combination of a stream-processing program
and a mapping of its constituent operators onto nodes for deployment (see

Prelude
A set of standard Haskell function and type definitions.
pure
Pure functions cannot perform side-effects, or, actions that cause a change of state.

purely-functional programming
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Glossary Of Terms

Queueing Theory

the study of systems which feature a series of jobs which are serviced by one

cessed [59].
rewrite rule

An equation asserting the equivalence of an expression on the left-hand side
to that on the right. The left-hand term may be a pattern containing variables
which serve as placeholders for arbitrary sub-expressions. The right-hand may
contain references to the same variables. When applying the rewrite rule, those
referernces are substituted for the bound values.

run-time

A packaging or collection of StrloT’s functions and data-types included within

Run-time Monitor

The component of the declarative stream-processing architecture responsible for
collecting run-time information.

selectivity

The selectivity of a filter is a measure of the average proportion of accepted
inputs.

server

vides a service.

service time

in the system is independent of the time.
Stream

A data-set which is possibly infinite and is never available all at once.
strongly typed

With a strongly-typed type system, every expression has a type and the compiler
can reject invalid combinations of expressions based on incompatible types at

compile time.
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Glossary Of Terms

sub-program

A sub-program is a subset of a stream-processing program. A sub-program
is defined when its constituent operators are assigned to the same node in a
deployment.

term rewriting

Term rewriting is a technique for modifying a term by the successive application

of rewrite rules.

total functions

A total function has a defined output for every possible input. Contrast with

type system

A system of rules that assigns a property (type) to every term within a program.
A type-checker can then ensure that the rules governing types hold. This can
be used to catch programming mistakes, such as attempting to use a function
defined for one type (such as addition for numerical types) on an term of a
different type (such as a list).

window-maker

the parameter to streamWindow which describes the logic for producing each
window.
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