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Abstract

Psoriasis is an incurable chronic inflammatory skin disease characterised by immune cytokine-

stimulated epidermal hyperproliferation. This results in the skin becoming red with scaly

plaques that can appear anywhere on the body, decreasing the quality of life for patients.

Previous modelling studies of psoriatic skin have been limited to 2D models and lacked cell-

cell interactions. I have developed a 3D agent-based model of epidermal cell dynamics to gain

insights into how immune cytokine stimuli induces hyperproliferation in psoriasis to better un-

derstand disease formation and structural changes.

The model takes into account the main cell types - stem, transit-amplifying (TA), differen-

tiated and T cells with the growth and division of stem and TA cells governed by extracellular

calcium, endogenous growth factors and immune cytokines in line with known experimental

data. Each cell has a set of attributes (growth rate, division probability, position, etc) whose

values are governed by processes such as monod-based cellular growth model, probability-based

division based on calcium and cytokine concentration and various forces to form the epidermal

layers. Different scenarios can be simulated including delineating how psoriasis developed in

response to immune stimuli concentration and duration and changing the rate of division of

proliferative cells to capture how it changes from normal to diseased state.

The model has 2 steady states, healthy (non-lesional) and psoriatic (lesional) skin. Transi-

tion from healthy to psoriatic state is triggered by a temporary cytokine stimulus which causes

hyperproliferation to occur, a hallmark of psoriasis. This results in the deepening of rete ridges

and thickening of the epidermal structure. The model has been validated against population

ratios of stem, TA, differentiated, and T cells, cell cycle and turnover times in vivo. The

model simulates the structural properties of epidermis, including layer stratification, formation

of wave-like rete ridges, change in epidermal height and length of rete ridges from normal to

psoriatic.

The model has helped gain some insights on the complex spatio-temporal changes when

transitioning between the 2 steady states and how a shot of temporary cytokine stimulus can

induce different severity of psoriasis and how proliferation is altered between healthy and pso-

riatic skin in line with known literature. This provides the basis to study different cytokine

simulation variations of psoriasis development and tracking of cell proliferation in the lab. In



addition, it provides a base to model the effects of psoriasis treatments such as UVB or biologics

and predict potential treatment outcomes for patients.

2



Contents

List of Tables iv

List of Figures v

1 Introduction 1

1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background & Related Work 6

2.1 The Epidermis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Types of cells in epidermis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Transition to Psoriasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Narrow-band UVB treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Computational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Current computational models of epidermis and psoriasis formation . . . 14

2.4.2 Agent-based Modelling Software & Tools . . . . . . . . . . . . . . . . . . 16

2.5 Predicting treatment outcomes using machine Learning . . . . . . . . . . . . . . 16

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 2D Computational Model 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 2D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Predicting simulation outcomes using a clustering algorithm . . . . . . . . 24

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 2D Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



3.2.2 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Apoptosis vs Cell cycle arrest . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Modelling different treatment frequencies . . . . . . . . . . . . . . . . . . 34

3.3.3 Model simulation clusters using 1 MED doses . . . . . . . . . . . . . . . . 35

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 3D Model and Normal Epidermal Formation 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Biological Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Chemical processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Rete Peg Formation and Stem Cell initialisation . . . . . . . . . . . . . . 57

4.3.2 Number of stem cells to initialise . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Cell division probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Cell population density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.5 Cell cycle and Turnover times . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Psoriatic Epidermal Formation 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Biological Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Physical processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3 Chemical processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 Deepening of rete ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.5 Cell population density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.6 Cell cycle and turnover times . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.7 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ii



5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Altered proliferative cell division in the psoriatic state 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Normal epidermis division probabilties . . . . . . . . . . . . . . . . . . . . 86

6.3.2 Proliferative cell division probabilities scan . . . . . . . . . . . . . . . . . 87

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Conclusions 94

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Evaluation of Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

A Appendix 113

A.1 2D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1.1 Netlogo code with automation . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2.2 Random seeds used in 3D model . . . . . . . . . . . . . . . . . . . . . . . 113

iii



List of Tables

2.1 Summary describing the various machine learning techniques used in [1]. . . . . . 18

3.1 Parameters in the 2D model’s user interface. . . . . . . . . . . . . . . . . . . . . . 23

3.2 Changes to cells undergoing apoptosis when reducing MED concentration. . . . . 29

3.3 The nine scenarios modelled in Netlogo. . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Summary of random seeds used in Netlogo. . . . . . . . . . . . . . . . . . . . . . 33

4.1 Summary of forces between cell types and basement membrane . . . . . . . . . . 53

4.2 Average cell population for stem cells initialised from 100 to 300. . . . . . . . . . 58

4.3 Parameter estimation values for stem cell division probabilities. . . . . . . . . . . 64

4.4 Model parameters and initial conditions for the normal epidermis formation. . . 65

5.1 Model parameters and conditions in psoriatic epidermis. . . . . . . . . . . . . . . 78

6.1 Approximate targeted cell population numbers in psoriasis. . . . . . . . . . . . . 87

6.2 Stem cell division probabilities used for parameter scan. . . . . . . . . . . . . . . 89

6.3 TA cell division probabilities used for parameter scan. . . . . . . . . . . . . . . . 89

A.1 Summary of stem cell population based on 10 random seeds. . . . . . . . . . . . 114

A.2 Summary of TA cell population based on 10 random seeds. . . . . . . . . . . . . 114

A.3 Summary of differentiated cell population based on 10 random seeds. . . . . . . . 114

iv



List of Figures

2.1 Epidermal layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Schematic of epidermal renewal pathway and types of cell division. . . . . . . . . 8

2.3 Figure on TPRC channel immunostaining of psoriatic epidermis. . . . . . . . . . 11

2.4 Schematic of normal and psoriatic epidermis. . . . . . . . . . . . . . . . . . . . . 12

3.1 Snapshot of psoriasis development and remission in Netlogo and interactions

modelled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Screenshot of the original user interface in Netlogo previously developed. . . . . . 22

3.3 Example code of automating simulation run in Netlogo. . . . . . . . . . . . . . . 27

3.4 Example code of how cell cycle arrest has been modelling in Netlogo. . . . . . . . 28

3.5 Proportion of apoptotic cells when undergoing 3MED NB-UVB irradiation. . . . 30

3.6 Screenshot of the newly updated and modified user interface in Netlogo. . . . . . 30

3.7 Plot showing the dip in total cell numbers during remission which could be a sign

of burning of the skin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Example code of how the percentage of cycling stem cells are modified based on

the number of TA cells proliferating at a given time. . . . . . . . . . . . . . . . . 31

3.9 Original plot results of apoptosis versus cell cycle arrest as the main mechanism

of action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Plot results of apoptosis versus cell cycle arrest as the main mechanism of action

in modified model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 Average plot results for the three different NB-UVB treatment frequencies mod-

elled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.12 Mean trajectories and final PASI classes of patient data. . . . . . . . . . . . . . . 37

3.13 Mean trajectories and PASI classes for the three different NB-UVB treatment

frequencies versus patient data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



4.1 Flow chart of how the normal epidermis is simulated . . . . . . . . . . . . . . . . 44

4.2 Flow diagram of simulation processes . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Schematics of the epidermal cell pathway and types of division modelled. . . . . 48

4.4 Description of the LAMMPS command used for wave-like basement membrane. . 50

4.5 Difference in cell division behaviour on flat versus wave-like basement membrane. 54

4.6 Schematic of spatial regulation implemented for stem cells. . . . . . . . . . . . . 55

4.7 Screenshot visualisation of stem cell initialisation on wave-like basement membrane. 57

4.8 Average cell population results based on the number of stem cells initialised. . . 60

4.9 Visualisation output of normal epidermal formation. . . . . . . . . . . . . . . . . 61

4.10 Average cell population based on the parameter estimation for P0. . . . . . . . . 62

4.11 Plot results of each cell type, cell cycle and turnover times. . . . . . . . . . . . . 63

5.1 Double immunofluorescence of psoriatic skin showing the changes in epidermal

structure and proliferative cell densities. . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Flow chart of how psoriasis is simulated . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Example of regions “frozen” to ensure basement membrane maintains a wave-like

structure in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Immunostaining tracing cell division direction. TO ADD MORE . . . . . . . . . 76

5.5 Visualisation of psoriasis development following an immune cytokine stimulus. . . 77

5.6 Average cell population numbers in psoriasis. . . . . . . . . . . . . . . . . . . . . 79

5.7 Plot results of each cell type, cell cycle and turnover times in psoriasis. . . . . . . 80

6.1 Different stages of cell division probabilities traced during wound healing in a

clinical study by [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Average number of cells produced when using the same division probabilities in

normal epidermis development when transitioning to psoriasis. . . . . . . . . . . 88

6.3 Average cell population based on the parameter estimation for P0. . . . . . . . . 91

6.4 Average cell population based on the parameter estimation for P1. . . . . . . . . 92

vi



Chapter 1

Introduction

Psoriasis is a chronic and disabling inflammatory skin disease that affects about 25 million people

in North America and Europe [3], and approximately 2-3% of the UK population, affecting

both genders equally. The disease can occur at any age and reduces the quality of life both

physically and mentally [4]. Patients may experience a lower self-esteem and feeling shame and

embarrassment for having such a disease. In addition, there may be pain and itching associated

depending which area of the body is affected by psoriasis. Other impact to patients’ quality of

life could also be due to the fact that they may have to be absent from work for treatment which

could lead to financial burdens if they are unable to work if the patient undergoes phototherapy

treatments [5, 6]. There is no cure for psoriasis, however, it is a treatable condition with various

types of treatment options available depending on the severity of the disease - ranging from

topical treatment, such as topical corticosteroids to systemic therapies, such as methotrexate, to

phototherapy treatments, such as Narrow-band Ultraviolet B (NB-UVB)[4], [7]. The mechanism

of action for each type of treatment varies, and one of the most commonly used treatment is

phototherapy, NB-UVB, in particular for moderate to severe psoriasis [7, 8, 9, 10]. NB-UVB

works by various mechanisms of actions such as altering the cytokine profile, apoptosis of

keratinocytes for clearance, promotion of immunosuppression and other mechanisms like cell-

cycle arrest [8].

There are various ways for measuring the severity of psoriasis. One of the commonly used

scoring guide is the Psoriasis Area Severity Index (PASI). It measures the average redness,

thickness and scaliness of lesions, weighted by the area of involvement and calculated by visual

inspection by clinicians. The grading scores range from 0 to 4 and the final result ranges from

0 to 72 [11]. In most clinical studies, a reduction of ≥75% from baseline PASI (PASI 75) is

1



considered the benchmark endpoint in assessing how well the therapy is going.

Phototherapy treatments usually follow a generalised form of NB-UVB which is given to

all patients under a dosing regime that partially depends on the skin’s reaction to NB-UVB

light. An assessment is made to determine what the Minimal Erythema Dose (MED), the

amount of UV that will produce minimal erythema (i.e. redness) following long exposure to UV

[8, 12], before the therapy is given. This may not benefit all patients the same way. NB-UVB

treatments also require patients to come into the hospital for outpatient treatment. Depending

on their regime, patients may have to come in either 2-, 3- or 5-times weekly until the therapy

induces a period of remission, which could approximately take 7-13 weeks [13, 14]. This may

cause the patient distress if after going through weeks of therapy, the treatment has little effect.

Personalising treatments is one way of helping patients. If medical practitioners are able

to find out that the treatment has minimal effect ahead of time, this gives them the ability to

decide on changing the type of treatment without the patient having to go through the entire

treatment course. On top of that, it will also reduce cost and stress on the patients, healthcare

providers [10, 15, 16] and the NHS. In 2008, the estimated annual UVB treatment cost per

patient that the NHS pays are as follows [10] :

• Treatment succeeds: £694

• Relapse at 6 months: £2,045

• Treatment fails 1: £3,394

Computational models may provide an attractive solution to this challenge. They can pro-

vide better ways for scientists and medical practitioners in understanding the structure and

dynamics of the processes and be able to formulate better predictions [17] in managing pa-

tients, for example. My research seeks to explore how computational models, in particular,

stochastic agent-based modelling techniques, can be introduced as a platform in managing pso-

riasis through NB-UVB treatments and develop a framework to simulate normal epidermal and

psoriasis formation in 3D. The 3D model looks to explore how psoriasis is activated and devel-

oped by cytokine immune stimulus and how the transition from normal to psoriatic epidermis

changes certain mechanisms, such as how stem and transit-amplifying (TA) cells divide.

1Treatment fails if the patient is unable to reach remission (i.e. PASI 75, where there is a reduction of plaques
by 75% from baseline) [13, 14].
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1.1 Aims and Objectives

The overall aim of my research project is to develop a 3D computational model of epidermal

homeostasis in psoriasis based on various immune interactions to explore disease development

and treatment. For this aim to be achieved, the research questions to explore are as follows:

1. What are the necessary considerations to take into account when modelling epidermal

formation and homeostasis and the key differences when transitioning to psoriatic state?

2. How cytokine immune stimulus activates psoriasis and how psoriasis affects the prolifera-

tive cells, stem and TA cells?

3. How do the different mechanisms of action caused by NB-UVB treatment affect epidermal

remodelling?

4. How can spatial models and the personalisation of NB-UVB treatments benefit researchers

and medical practitioners in better understanding the disease?

The project looks into how a new computational model can be developed that is able to

simulate the normal epidermis and how it transitions to psoriasis. The approach is to first

understand and replicate the results of a previously developed 2D model which was developed

by our partners [18] which will be explained in detail in Chapter 3. The original model [18] was

developed to simulate how psoriasis occurs and how clearance occurs with a high dose of NB-

UVB. However, in reality, such high doses are not given to patients as they will cause burning

of the skin. Hence, modifications to the model were done to simulate NB-UVB doses that

were given to patients in clinic. I also looked into exploring the different mechanisms of action

that NB-UVB induces to better understand what is necessary in remodelling the epidermis. In

addition, I looked into exploring how computational model outputs can be used to simulate real

patients and their accuracy to personalise treatment by clustering the model outputs using a

clustering algorithm developed by [19].

Initial work on the 2D model informed me a better grasp of some of the basic concepts of

how psoriasis develops and the mechanisms behind NB-UVB. However, the software the model

was developed on was not ideal in adding complexity and stochasticity to it. Some of the

limitations to support the development of a new 3D model includes improving the simulation

time, removal of some fixed parameters to allow the behaviours of cells to be more stochastic

rather than deterministic and adding signalling chemicals such as immune cytokines to trigger

psoriasis rather than artificially altering the cell cycle time of proliferating cells. Chapter 4
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describes the new model developed and which new features have been added as compared to

the 2D model to solve some of these limitations and methods used to develop the model in 3D

to answer the above research questions.

1.2 Thesis Outline

This section briefly describes the chapters in this thesis.

• Chapter 1 introduces the research topic and what are the aims and objectives of my

project.

• Chapter 2 describes the background and related work done in the related field.

• Chapter 3 introduces a 2D model which was previously developed and extended to model

a lower NB-UVB treatment dose, different treatment frequencies and fed into a clustering

algorithm to validate the simulation outputs against patient data.

• Chapter 4 describes the 3D model developed and introduces the modelling software, me-

chanical, biological and chemical processes involved as an overview and a steady state

model of how the normal epidermis is developed and formed and validation done against

literature and clinical studies.

• Chapter 5 describes how the normal epidermis transitions to a diseased state with the

onset of psoriasis and the changes made to the biological and physical processes. The

simulation results are then validated with known literature and clinical studies similar to

the normal epidermis.

• Chapter 6 introduces how psoriasis alters the way proliferative cells, stem and TA cell,

divide from the normal state. The simulation results show how some mechanisms in the

epidermis may cause changes and can be proposed for future experimental studies.

• Chapter 7 gives an overview of the conclusions drawn and final remarks for future work

to be done.

1.3 Publications

• ESDR 2022, Poster Presentation: D. Paramalingam, B. Li, N. J. Reynolds, and P. Zuliani,

“089 3D Computational Modelling of Immune Interaction and Epidermal Homeostasis in
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Psoriasis,” J Invest Dermatol, vol. 142, p. S195, Dec. 2022.

• ISID 2023, Poster Presentation: D. Paramalingam, B. Li, N. J. Reynolds, and P. Zuliani,

“730 3D Modelling altered cell proliferation and differentiation in psoriasis,” J Invest

Dermatol, vol. 143, p. S126, May 2022.

• Manuscript in progress: D. Paramalingam, B. Li, N. J. Reynolds, and P. Zuliani, Compu-

tational Modelling of Immune Interaction and Epidermal Homeostasis in Psoriasis,” Feb.

2023.
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Chapter 2

Background & Related Work

2.1 The Epidermis

The skin is the largest organ in the body and is structurally made of 2 components, the epidermis

and the dermis. The epidermis is the upper layer of the skin and is typically made up of 4 to 5

layers of epithelial cells while the dermis is the lower layer of the skin as seen in Figure 2.1. The

epidermis consists mostly of keratinocytes (at approximately 80%) and are either proliferative

or non-proliferative (Figure 2.2) [20, 21]. Proliferative keratinocytes consists of cells that are

able to divide such as stem (SC) and transit-amplifying (TA) cells while the non-proliferative

keratinocytes are terminally differentiated cells. Other cells that reside in the epidermis include

melanocytes, T cells, Langerhans’ cell and monocytes. The epidermal structure can be further

divided into four main layers as follows:

• Stratum basale (SB) is the bottom most layer of the epidermis closest to the dermis where

stem cells mostly reside and has the strongest attachment to the basement membrane and

this layer.

• Stratum spinosum (SS) is the layer above the SB which holds mostly proliferative cells

that will terminally differentiate. The cells that reside here are mostly TA cells.

• Stratum granulosum (SG) is the layer above the SS layer which comprises mostly of

differentiated cells. It is here that the morphology of the cells changes and where calcium

is secreted out and cells start to flatten from their spherical shape. This is also the layer

where the calcium concentration is at its highest [23, 24].

• Stratum corneum (SC) is the top most layer which comprises of differentiated cells which
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Figure 2.1: Figure adapted from [22]. Schematics of the different epidermal layers and types
of cells that reside. On the left, the label shows 5 different layers of the epidermis, from the
bottom, stratum basale, stratum spinosum, stratum granulosum, stratum lucidum, stratum
corneum. The top three layers consists of differentiated cells and the stratum lucidum layer is
not always prominent in all areas of the skin. The bottom layers, stratum basale and stratum
spinosum, consists of mostly proliferative keratinocytes, stem and TA cells. The figure also
shows addition cells melanocyte and merkel cells which are not considered in the model.
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are due to be desquamated out of the system. The differentiated cells here are of a flat

shape.

Figure 2.2: (Top) Schematic of the epidermal renewal pathway. There are two main functional
compartments found in the epidermis - proliferative and differentiated. The proliferative com-
partment consists of stem and TA cells which can divide in three different ways. Only TA cells
will terminally differentiate and migrate up the epidermis. (Bottom) Stem and TA cells can
divide to produce daughter cells of the same type or of a different type. Self proliferation occurs
when both daughter cells are of the same kind. Asymmetric division is the type of division that
occurs mostly and occurs when one daughter cell is of the same type and the other being a
different type while symmetric division occurs when both daughter cells are of a different type
from the parent cell.

2.1.1 Types of cells in epidermis

The main type of cell in the epidermis are keratinocytes, which can be further subdivided in

stem, TA and differentiated cells [20, 25] and this subdivision of cells can help in identifying

and creating layer stratification. Each cell type plays a different role in proliferation and/or

differentiation and are described below.
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Stem cells

Stem cells are the located on the basement membrane which is right on top of the dermis and

are located throughout the basement membrane [26]. Epidermal stem cell location on the rete

pegs (or dermal papillae) has been largely debated. The rete pegs are the downward thickenings

of the epidermis between the dermal layer which give the epidermis its unique wave-like shape

[27].

The location of stem cells can be on the top or bottom edges of the rete pegs and there is

still very little data that can be found clinically [8, 20, 25]. Epidermal cells have the potential

to divide in three different ways, self proliferation, symmetrically or asymmetrically (Figure

2.2). Self proliferation occurs when a cell divides to two daughter cells of the same type as

the parent, while in symmetric division, two daughter cells different from the parent type are

produced. In asymmetric division, the cell divides to one daughter cell of the same type and

one daughter cell of a different type. For example, a stem cell will produce two daughter stem

cells when it self-proliferates. If it divides symmetrically, it produces two TA daughter cells

while asymmetric division will produce one stem and one TA daughter cell. Proliferation is

driven by various factors such as calcium or keratinocyte growth factors, which are diffused

from the dermis or produced by stem and TA cells. The proportion of cycling proliferative

cell is estimated to be around 43-66% [28, 26] with stem cells accounting for 3-12% of cycling

epidermal cells. Stem cells are thought to have a slower cycling rate as compared to TA cells.

It is estimated that stem cells have a cycling time of 100-200 hours [29] and can be as slow as

400 hours [30]. The proportion of stem cells in the epidermis depends on the part of the body

[26].

TA cells

TA cells are located in the basal or suprabasal (the layer right above the basal layer) layer

and have limited proliferative ability, which has been estimated to be around three to five

times [25, 31] before migrating upwards and terminally differentiating. Proliferating TA cells

are mostly located close to the basement membrane due to a stronger adhesion and higher

concentration of nutrients that are diffused from the basement membrane and the dermis.

Division in TA cells is in a similar fashion as stem cells where a cell can divide in three different

ways to produce TA or differentiating cells. The rate of TA cells cycling is much faster than

stem cells at around 60 hours, ranging from 50-65 hours [21].
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Differentiated cells

The epidermis comprises of approximately 40-66% of differentiated cells [31, 28], which continue

to migrate upward to the upper layers of the epidermis. As they reach the SG layer, calcium

gets secreted and the cells start to flatten, changing their morphology. They continue to migrate

to the SC layer and eventually shed off by desquamating out of the epidermis.

Stem and TA cells require certain signalling chemicals to grow, divide and differentiate.

Calcium is one of the most commonly studied chemical signals found in the epidermis and plays

an important role in the growth and differentiation of keratinocytes [32, 24]. Calcium exists

in the lower and upper layers of the epidermis with the highest concentration levels in the SG

layer, where differentiated cells mostly reside. Calcium is secreted by differentiated cells as

their shape change from a sphere to flat cells, losing most of their contents. In addition, the

calcium gradient plays a crucial role in allowing the dynamic changes of calcium to generate

a signalling system. This signalling system regulates the epidermis formation and functions

[33, 23]. Previous studies have shown that a disruption to the skin barrier or the onset of a

disease such as psoriasis causes the calcium gradient to be lost [23, 34]. Figure 2.3 shows an

immunostaining of four types of epidermis - normal, non-lesional, lesional and isotype control

and the disruption of the calcicum gradient, Transient Receptor Potential Canonical-1 (TRPC-

1), between normal, non-lesional and lesional epidermis. The TRPC channel consists of a group

of receptor-operator which are calcium-permeable cation channels of the TRP family [35, 36].

Therefore, immunostaining of TRPC channels can show how the calcium gradient looks like in

the epidermis both normal and psoriasis.

2.2 Transition to Psoriasis

Psoriasis occurs due to an abnormal immune response that causes T cells to secrete cytokines

to drive hyperproliferation in the epidermis. This causes keratinocytes to undergo a higher level

of proliferation as compared to normal keratinocytes [18]. Therefore, the population of stem

and TA cells is proportionally higher in psoriatic epidermis. This not only causes a thicker

epidermis but gives rise to deeper rete ridges and an absent granular layer [37, 38].

There are various cytokines secreted by T cells such as Interleukin (IL) 17, IL-22, Tumour

Necrosis Factor α (TNF-α) which induce the proliferative cells to grow faster and divide more

quickly causing a significantly shorter turnover time. In response to this, proliferative cells
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Figure 2.3: Figure adapted from [34]. Transient Receptor Potential Canonical (TRPC) channel
immunostaining of psoriatic epidermis. The study by [34] studied on four different skin types to
make a comparison on how the TRPC channel is affected during psoriasis onset. In relation to
my study, the focus is on TRPC1 non-lesional and lesional skin. This compares and measures
the calcicum gradient in the epidermis and shows the calcicum gradient is lost during psoriasis.
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Figure 2.4: Schematic of normal (left) and psoriatic (right) epidermis. The epidermis is made
up of two main compartments - proliferative and differentiated. The proliferative compartment
is made up of stem and TA cells while the differentiated compartment is made up of terminally
differentiated cells. In the normal epidermis, the rete pegs are more shallow and the overall
epidermal height is shorter than in the psoriatic state. The nutrients involved in its development
can vary. For example, in this case, calcium from the dermis aids proliferation and endogenous
growth factors are produced by the stem and TA cells which also regulate their growth. In the
psoriatic epidermis, an immune stimulus triggers T cells to produce cytokines such as IL-22 and
TNFα, which are diffused into the epidermis and drive stem and TA cells into hyperproliferation.
As a result, more cells are produced causing the rete pegs to deepen and the overall epidermis
height to increase.
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increase their production of growth factors, which in turn results in a positive feedback loop

that maintains the psoriatic state (Figure 2.4).

The main differences between normal and psoriatic epidermis are as follows:

• The cell cycle and turnover time from normal to psoriatic epidermis is 3-5 times faster

[39, 40, 41].

• The number of proliferating cells can increase by six times although this does not affect

the cell cycle time [42].

• Thicker epidermis and deeper rete ridges with an absence of the SG layer [37, 38].

• Disruption of the calcium gradient in psoriasis. Due to the absence of SG layer, the

highest concentration of calcium is no longer in the SG layer but scattered throughout

the epidermis [43].

2.3 Narrow-band UVB treatment

There are various treatment options for psorasis ranging from topical to systemic to UV radia-

tion therapies. UV radiation therapies range from different UV wavelength used such as UVA

(320-400nm), UVB (290-320nm) and UVC (200-290nm). The common UV spectrum used is

either UVA or UVB. UVA is able to penetrate deeper into the skin but is not enough to cause

clearance alone and is usually used with psoralen (PUVA), a substance commonly used for UVA

treatments. However, as UVA uses a longer wavelength and penetrates deeper into the skin, it

may affect the dermis and increases the risk of burning and skin cancer, which are disadvantages

of this treatment option. UVB uses a shorter wavelength spectrum and does not penetrate as

deep into the skin structure and can be used safely [8, 44, 45].

In this project, clearance using NB-UVB therapy is explored. A previous clinical study

by our partners has shown that the main mechanism of action for clearance was keratinocyte

apoptosis [18]. The study showed that seven 3 MEDs was required for psoriasis to clear using

NB-UVB. The treatment was given 3 times a week (i.e. every 56 hours) and the data was then

fed into their computational model which showed how psoriasis at its maximum state will lead

to remission of the disease after treatment.

However, in any type of therapeutic treatment given to a patient, the therapy outcome may

result because of more than one action apart from the apoptosis of keratinocytes. Therefore,
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the following can be considered as mechanisms of action and how they relate to apoptosis with

respect to the clearance of psoriasis:

• Reduced proliferation of keratinocyte due to a blocking of external cytokine such as IL-23

[8].

• Growth arrest of keratinocytes via cytokines [8].

The question as to what proportions these mechanisms are effective, remains unclear and

requires thorough testing in the model to ensure that the results are similar to clinical findings

in terms of how long it takes for clearance to occur and how many keratinocytes remain in the

epidermis.

2.4 Computational Models

Current computational models found in literature mainly focus on the development of psoriasis

based on experimental studies or literature [12, 46, 47, 48, 49, 50] or finding the key mechanisms

of psoriasis clearance by certain treatments such as UVB phototherapy [18]. There has not been

any study to fully develop a model that aids medical practitioners in determining the effects of

the treatment before the end of any treatment course.

2.4.1 Current computational models of epidermis and psoriasis formation

The use of agent-based modelling techniques in skin research has mostly been on normal epider-

mal development and homeostasis, keratinocyte formation or other diseases or conditions such

as wound healing [48], [51, 52, 53, 54, 55, 49]. These are crucial in developing and fully under-

standing how normal epidermal layers are formed and maintain homeostasis before modelling a

disease or condition.

The epidermal structure is marked with a unique wave-like shape at the bottom, right

above the basement membrane. Figures 2.3 shows this wave-like shape of the epidermis from

the immunostaining of the skin in vivo and is especially prominent in lesional (psoriatic) skin. In

order to mimic this structural behaviour of the epidermis, an early study by [56, 40] developed

an epidermal model based on geometry. The geometric model made use of cylinders to model

dermal papillaes which causes this wave-like shape. Each cylinder is of the same size and shape

and are arranged hexagonally. During the transition from normal to psoriasis, the cylinders

increase in height by three to four times and the model has also been used to investigate psoriasis
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with and without a granular layer [40]. Model outputs were validated against literature based

on the turnover times obtained by the model.

A multi-scale model of how epidermal layers form was developed by [54] using an agent-

based modelling framework and a lattice-free cell-center method to produce both 2D and 3D

simulations on epidermal homeostasis. The study looked into how Ovol transcription factors,

which regulates cell conversion from DNA to RNA, are important in epidermal proliferation

and differentiation. Upregulating or downregulating certain Ovol transcriptions controlled the

cell population density and cell population ratio. Epidermal layer stratification was obtained

by experimenting with different cell division types and cell adhesion. The difference between

symmetric and asymmetric division was tested and found that asymmetric division was essential

in ensuring that a well defined basal-suprabasal layer was obtained. In addition, their submodel

for selective cell adhesion between different cell types was critical in ensuring that the formation

of the different epidermal layers.

In relation to psoriasis, an agent-based model was developed to represent the dynamic de-

velopment of psoriasis and its therapeutic interventions by NB-UVB phototherapy treatment in

2D using a modelling software, Netlogo [18]. The study previously identified that the key mech-

anism of action in psoriasis clearance via NB-UVB phototherapy is apoptosis of keratinocytes.

Phototherapy was modelled based on this mechanism, apoptosis, with a high dose of NB-UVB

of 3 MED based on an in vivo study the authors had done. The model was able to obtain

remission over a total of seven treatments and extended to individual variation in response to

treatment based on the regulating susceptibility of psoriatic epidermis to apoptosis.

A hybrid model using stochastic/ deterministic and agent-based modelling approach was

developed for epidermal homeostasis and psoriasis pathogenesis [50]. The model consists of two

types - 1. A stochastic/ deterministic kinetics model, which tracked the temporal evolution of

keratinocytes at several differentiation stages. For example, how a stem cell grows and divides

to produce a TA cell and how a TA cell eventually terminally differentiates. 2. An agent-based

migration model, which describes the motion of individual cells generating a stratified structure

of the epidermis. The kinetics model can be used as a standalone model to obtain cell population

density or used in combination with the agent-based model to produce a visualisation output

of how stratification occurs. The deterministic simulation produces trajectories of cell density

distribution over all the cell types while the stochastic simulation generates the probability

of cellular events occurring using Gillespie’s algorithm, which produces statistically correct
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trajectories for stochastic systems [57]. The time series events generated are then fed into the

agent-based cell migration model to simulate and visualise the spatio-temporal organisation of

keratinocytes. Clearance was based on how UVB phototherapy affects the apoptosis rate of

keratinocytes to revert them back to normalcy.

2.4.2 Agent-based Modelling Software & Tools

One of the most commonly used modelling technique in systems biology is the use of ordinary

differential equations (ODEs) in biochemical reaction networks or gene regulatory networks

[58]. While ODEs have been long used in modelling biological systems [59], agent-based models

(ABMs) has gained some popularity with more software platforms being developed for this

purpose such as NUFEB [60], BioDynaMo [61] and CompuCell3D [62].

The agent-based modelling software chosen to develop the 3D epidermal model uses a com-

bination of the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) frame-

work and Newcastle University Frontiers in Engineering Biology (NUFEB). LAMMPS is a well

developed software which has been used as a tool for material modelling down to the molecular

level with various physical interactions already modelled [63] such as Hooke’s law [64], a law

to calculate spring force, which can be used to solve overlapping cell issues during cell divi-

sion, for example. NUFEB, on the other hand, is a software that has been built on top of

LAMMPS which focuses on the modelling of mircobes in waste water treatment [60], for ex-

ample, and has several biological and chemical processes already implemented to use or modify

such as cell division and chemical diffusion. In addition to both software being well developed,

NUFEB is developed within Newcastle University which makes it easy to source for help when

implementing my own package.

2.5 Predicting treatment outcomes using machine Learning

Predictive computational models of psoriasis are relatively new despite an increase in clinical

studies to better understand the disease and clearance. The majority of the studies explored

biological treatments instead of UVB phototherapy and were purely based on patient data

such as their PASI scores or images of their condition [65, 66, 67, 68, 69]. The studies looked

to identify outcomes such as the biological treatment length, effectiveness of treatment and

to discontinue treatment [67, 68]. The machine learning techniques used from these papers
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varies from using Generalised Linear Model, Logistic Regression, Deep Learning, Decision Tree,

Random Forest, to Gradient Boosted Trees, which are mainly used for classifying and their

performance compared to identify which algorithm is best to use.

In relation to psoriasis and NB-UVB treatments, a study in predicting patient response to

UVB phototherapy treatments used data mining techniques such as Random Forest, Artificial

Neural Network (ANN), Decision Tree, K Nearest Neighbour classifier (k-NN), and Support

Vector Machines (kSVM) [1]. The differences between the various algorithms are summarised

in Table 2.1. The authors carried out had done four experiments to find out which classifier

model had the best fit and used a data set of 9083 patients. First was to evaluate the predictive

performance of the classifiers used with the default settings without any hyper-parameterisation.

Secondly, to evaluate the predictive performance with hyper-parameterisation. Thirdly, evalua-

tion of the predictive performance of stacked classifiers of size three made of base classifiers with

the default settings. Last was a combination of stacked classifiers and hyper-parameterisation.

The study found that the best performance was obtained by random forest, kSVM and ANN

combination of stacked classifiers in experiment 4. while the worst was ANN in experiment 1.

The predictive models mentioned are useful in identifying certain outcomes such as the po-

tential treatment length and effectiveness of treatment given a patient with a set of features.

Although it is great in aiding clinicians when prescribing psoriasis treatments, it has its limita-

tions as well. In most papers relating to personalising treatment, the type of machine learning

used was supervised learning [73, 74]. This meant that there is available training data for the

algorithm to learn how to classify patients, for example. However, data may not be fully avail-

able or useful in some cases such as predicting how patients will react to a particular treatment

before finishing the treatment course. It also lacks the ability to explore different types of treat-

ments further. For example, how certain immune cytokines trigger psoriasis and how we can

target the specific cytokines for treatment.

Computational models offer a solution to this and can be used alongside real patient data

to classify patients’ response to treatment. An ODE computational model [19] explored the

onset, flare and NB-UVB phototherapy clearance in psoriasis. The model incorporated the

three main types of keratinocytes (stem, TA and differentiated cells), dendritic cells and T

cells. Dendritic and T cell species are involved in regulating the immune cytokines (IL-23,

IL-17 and TNF-α) involved in triggering psoriasis. The model also presents two steady states

- non-lesional (healthy) and lesional (psoriatic) skin and enables the switching between states
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Algorithm Description

Random Forest Random forest algorithm is an ensemble algorithm, unlike a
decision tree, this uses multiple decisions trees to train. It
takes in three main hyperparameters - node size, number of
trees and number of features sampled. It can be used for
both classification or regression problems [70, 71].

Artificial Neural Net-
work (ANN)

Inspired by neuron learning in the brain. A neuron receives
weighted inputs from other neurons through dendrites and
processes them until a threshold is reaches and an output
is delivered via the axon. ANN consists of different layers -
an input, hidden and output layer. The input layer passes
information to one or more hidden layers where the data is
processed through a system of different weighted connections.
Once processed in the hidden layer, which is connected to the
output layer, the output node gives a prediction or classifica-
tion of that particular input [72, 73].

Decision Tree A basic classification and regression method that is able to
generate results similar to a structure of a tree where a tree
node represents a test on an attribute and a branch represents
the output. Each leaf node presents the class and the topmost
node is the root node. [73, 74]

K Nearest Neighbour
classifier (k-NN)

A classification and regression method which uses the prox-
imity to make predictions about the grouping of each data
point. It assumes that similar points can be found near each
other [75, 76].

Support Vector Ma-
chines (kSVM)

This type of algorithm is usually applied to two-class clas-
sification and represents a data-driven approach which does
not require any assumption about the data distribution. It is
used to identify a separation boundary called hyperplane for
classfication purposes [73, 74].

Table 2.1: Summary of machine learning algorithms used in predicting NB-UVB phototherapy
treatment in psoriasis by [1]. These are the five algorithms used in identifying the performance
of NB-UVB phototherapy treatments in psoriasis patients.
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when NB-UVB phototherapy is applied by introducing apoptosis as the mechanism of action

for clearance. The ODE model outputs were converted to PASI trajectories to identify and

emulate real patients. The PASI trajectories, along with 96 real patient data, were fed into a

machine learning algorithm using a latent class method [77] to cluster and predict classes of

patients who may or may not enter remission. The optimal number of classes identified was

three and was able to determine by week 3, if the patient will enter remission if they continued

their NB-UVB phototherapy treatment.

2.6 Conclusion

The epidermis consists of various cell types which make up the four main layers of the epidermis

[22]. In this study, the focus is on keratinocytes and the three main types, stem, TA and

differentiated cells. Among the three cell types, stem and TA cells have the ability to proliferate

and produce a daughter of a different type [20, 25]. Eventually, a TA cell terminally differentiates

to a differentiated cell and migrates upwards in the epidermis and eventually sheds off [25, 31].

Psoriasis occurs as a result of an abnormal immune response causing T cells to secrete

cytokines causing hyperproliferation to occur and the epidermis to increase in thickness [18, 40].

The treatment options for psoriasis are dependent on the severity of the disease and in most

moderate to severe cases, NB-UVB and systemtic treatments are given [8, 18].

Clinical studies on psoriasis and its treatment options can be time consuming and costly.

Computational modelling provides an attractive solution into better understanding the disease

and how it can be treated prior to clinical trials. This can eliminate and create new hypothesis

to test in clinical trials. Previous computational models looked at disease formation based on a

general trigger to induce psoriasis and lacked cell-cell interactions [12, 46, 47, 48, 49, 50].

This study looks to better understand the development of psoriasis and to develop a 3D

model which introduces the complexity of various cell-cell interactions and chemical signalling

such as how immune cytokines. The research starts off with reproducing the results from a

2D model developed by our partners [18] and exploring the different mechanisms of action for

clearance via NB-UVB. This provides a better understanding of how psoriasis occurs and crucial

parameters required to validate the model which are described in detail in Chapter 3. This also

includes identifying and implementing new features to replicate as closely as possible how the

epidermis behaves in reality which will be further discussed in Chapter 4.
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Chapter 3

2D Computational Model

3.1 Introduction

The starting point to understanding how to model psoriasis was a 2D model developed by

our partners [18] using Netlogo (version 4.1), an agent-based modelling environment which can

simulate the behaviour of cells and their environment in 2D [78]. The model (Figure 3.1a) is a

simplification of how the epidermis and psoriasis develops and modelled just the 3 main types of

keratinocytes (stem, TA and differentiated cells) as “turtles” or agents. Immune cells and other

cell types were not modelled for the simplicity of the model and psoriasis was triggered based on

a artificial diffusion of unspecific immune cytokines. The original model implemented apoptosis

was the main mechanism of action for Narrowband-Ultraviolet B (NB-UVB) phototherapy based

on known literature and clinical studies (Figure 3.1b). However, other studies have found that

apoptosis may not be the only mechanism of action in NB-UVB treatments and it may also cause

cell cycle arrest, where the cell stops cycling due to the treatment exposure. This difference in

mechanism of action was explored in this 2D model and compared against the original results

where apoptosis was the mechanism of action for NB-UVB clearance.

Figure 3.1b describes the cell types and the interactions modelled. NB-UVB doses are given

in units of Minimal Erythema Dose (MED) defined as the minimum amount of UV exposure to

cause minimal sunburn or redness to the treated area [12]. The usual dose given to a patient

is around 0.75 to 1 MED. In an in vivo study by our partners [21], it was found that seven

3 MEDs, 3-times weekly (i.e., 56 hours apart), was able to cause remission. The 2D model

implements this high dose of NB-UVB to replicate the clinical results and revert the model

back to normalcy (i.e. non-lesional skin). However, giving 3 MED to patients is not ideal in
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reality as a guideline on how patients may react to treatment as it may cause burning to the

skin instead. Therefore, the current model is not a good representation as to how a patient

reacts and requires some modification to emulate how a patient may react. The model has

been modified and extended to simulate a lower NB-UVB dose of 1 MED and to match the

actual frequency of treatment that patients will receive instead of using an average of 56 hours.

The model results are then validated with patient data obtained by our partners by using a

clustering algorithm [19] to identify how the model outputs closely relate to patient data and

how it is able predict remission of psoriasis by emulating different classes of patients response

to NB-UVB therapy.

(a) (b)

Figure 3.1: (a) Snapshot of a Netlogo simulation. Stem cells (in blue) are placed at the bottom
of the rete pegs, TA cells (in pink) and differentiated cells (in green). The basement membrane
(in yellow) changes from its transition from the normal epidermis to psoriatic state. i) Simulates
how the normal epidermis forms. ii) An activation in cytokine stimulus causes a transition to
psoriatic epidermis. iii) NB-UVB treatment is given and the epidermis reverts back to normalcy.
(b) Interactions between the different cell types in the model where SC, TA, D, A and ∅
represents stem cell, transit amplifying cell, differentiated cell, apoptotic cell and degradation
respectively. The activated cytokine stimulus causes an increase in SC and TA cell division (i.e.
hyperproliferation) developing into psoriasis. NB-UVB treatment affects these by killing these
cells.

3.1.1 2D Model

Netlogo was written in Java and is able to run from a graphical user interface. The concept

used in Netlogo introduces a “world” that appears as a grid to create a modelling space [78], in
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this case, a 2D cross-section of the epidermis. Within each grid, consists patches with x- and

y-axes where turtles act as agents (i.e. a cell) which can be manipulated to move and change its

type based on a set of rules or criteria. Each turtle is unique and has its own identity number

which can be used to track individual progress of turtle manipulation. In this case, it allows

the user to track individual cells to trace how it grows and divide and eventually terminally

differentiate. All commands are directed by the user using the user interface as seen in Figure

3.2 which shows the original user interface of the model with various parameters able to change

such as stem and TA cell cycle time. This allows the user to test various combinations of cell

cycle time for stem and TA cells and what percentage of stem cells are cycling. The number

of treatments and irradiation frequency can also be controlled by the user via the scroll bar in

the graphical interface. For example, if the user wanted to test a different percentage of cycling

stem cells, they could move the scroll bar “percent-stem” located on the left.

Figure 3.2: A screenshot of the original user interface for the NetLogo code previously developed
[18]. The user is able to simulate various scenarios by changing the sliders and buttons. For
example, modifying the cell cycle time for stem (stemcell-divide) or TA (TA-divide) cells in
hours. Users are also able to control the irradiation frequency (irradiation-frequency) in hours
and total number of treatments to give (Number-of-treatments).

The model follows a series of procedures. To setup and start the simulation, the user has to

click on the “setup” button, which initialises the basement membrane and stem cells positions,

and once the parameters have been set by moving the scrolls, the user will then click on the

“go” button and the simulation will start. The user can choose to change various parameters
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to identify which parameter mimics how the epidermis and psoriasis form in reality and how it

affects other factors such as the turnover time. For example, what is the ideal cell cycle length

of stem cells in the model? What happens if we increase or reduce the cell cycle time? The

known cell cycle length in literature is found to be between 100 to 200 hours [29, 79]. It was

found that increasing the cell cycle time from 100 to 175 hours in stem cells caused an overall

increase in turnover time by 16 days, while reducing the cell cycle time to 60 hours caused the

model to mild psoriasis [18]. The parameters used in the model of the normal epidermis are

summarised in Table 3.1

Parameter Value
used in
model

Evidence

Percentage of stem cells cycling (percent-stem) 80 [18]

Stem cell cycling time (stemcell-divide) 150 hours [29, 79]

TA cell cycling time (TA-divide) 60 hours [80]

Frequency of UVB treatment (irradiation-frequency) 56 hours [18]

The total number of UVB treatment given (Number-of-treatments) 7 [18, 21]

To start the simulation in the psoriatic state (psoriasis) On/ Off
switch

-

Initialising a cytokine stimulus, triggering hyperproliferation of stem and
TA cells to develop psoriasis (Cytokine-stimulus)

On/ Off
switch

-

Table 3.1: Parameters in the model’s user interface which can be controlled by the user. Users
can modify these values and the parameter values used in the model to model the normal
epidermis are mentioned. The last two parameters has no evidence as they are on/ off switch
to start the model simulation and to introduce psoriasis, respectively.

The information on the right-hand side of the interface as seen in Figure 3.2 displays the

following:

• The current number of TA cells in the domain (TA cells).

• The current number of differentiated cells in the domain (Diff cells).

• Total number of cells (Total number of cells) of which the maximum number of cells in

the domain was 1500.

• Number of NB-UVB treatments given, labelled UVB (UVB).

• Position of the basement membrane (position), where position 1 is the normal epidermis

and 7 being the thickest psoriatic state (position).
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Some assumptions have been made in the model to simply the processes and development of

the epidermis and psoriasis and are listed as follows:

• The stratum corneum layer is not modelled as it consists of dead cells and cannot undergo

apoptosis. As this model does not attempt to deal with NB-UVB penetration, this layer

has been omitted [18].

• In the normal epidermis, stem cells only divide asymmetrically as the focus of this model

is not on the development of the normal epidermis which starts off with just stem cells

[18, 79].

• TA cells divide 4 times in the normal epidermis and 5 times in psoriasis before migrating

and terminally differentiating as described in previous literature [18, 25, 20].

• An unspecified gradient diffuses from the basement membrane to aid cell proliferation and

differentiation [56, 81].

• Stem cells always remain at the same position and do not move [18, 79].

• The changes to the basement membrane are based on the number of TA cells dividing. If

there are too many TA cells dividing, the basement membrane will elongate to accommo-

date the cells. If there are fewer TA cells dividing, the model automatically switches to a

basement membrane with a shorter rete peg.

• The difference in the total cell density in psoriatic state is assumed to be twice the normal

density [31, 41, 82].

3.1.2 Predicting simulation outcomes using a clustering algorithm

Patients taking part in a clinical study by our partners underwent NB-UVB treatment 3-times

weekly and had their data collected consisting of PASI trajectories and other data such as

gender, age, and ethnicity collected over a period of 10 weeks. With the data collected, we

are able to use machine learning techniques to better understand how the NB-UVB treatment

affects each patient and if remission occurs during the course of their treatment, enabling us to

cluster and make predictions on how a patient is doing. The clustering algorithm developed by

a colleague was in R [19] to cluster the patient data and make predictions on whether a patient

will clear by a certain week. This enables clinicians to decide if the patient should continue
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or change treatment frequency and/or type such as moving onto biological treatments instead.

The model uses a latent class classifier package called lcmm. The lcmm package allows us to

make estimations of extended mixed models such as latent class mixed models using a maximum

likelihood estimation method [77].

The original model featured NB-UVB treatments based on the number of hours apart from

each treatment. For example, a 3-time weekly treatment would be 56 hours apart. However,

in reality, clinics are not open over the weekends therefore, this model does not depict how

treatment is given in reality. The model has been modified to depict how NB-UVB treatment

is given only on weekdays (i.e. follows a day schedule as compared to hours). A 3-time weekly

treatment will, therefore, be given on Monday, Wednesday and Friday, excluding weekends. A

comparison will then be made to simulate the effects of a more personalised treatment where

weekends are taken into account to determine if a patient will benefit from this and perhaps,

change the way clinics operate. Two other treatment frequencies were tested in this model:

5-times weekly and a mixture of 3-times and 5-times weekly. In addition, the mechanism of

action for NB-UVB treatment was also explored where growth arrest alone was modelled and

a mixture of growth arrest and apoptosis was modelled. Once simulation data was collected

for the above scenarios, it was fed into the clustering algorithm to compare the results against

patient data.

3.2 Methods

3.2.1 2D Modelling

The original model was first tested to ensure that the results obtained were similar to the

published results. As the runtime for the code to reach a steady state for the normal epidermis

and psoriasis could take almost a day, I have adapted the code to automatically switch from the

normal state to psoriasis and start the NB-UVB treatment based on the set treatment frequency

and total number of treatments. This way, every simulation result is consistent, especially when

analysing the effects of various NB-UVB doses and frequencies. Figure 3.3 shows a snapshot of

the code modified in the “to go” function, where the model starts running. Once the original

model was reproduced, modifications were made to test for the following:

• Comparison for clearance between the two mechanisms of action apoptosis and cell cycle

arrest as a main mechanism of action. This is to test if cell cycle arrest could potentially
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play a bigger role in clearance and cause remission the same way as apoptosis.

• The time between each treatment where instead of using an average of 56 hours between

each treatment to represent 3-times weekly using the days in a week to exclude weekends.

• Modify and compare the different frequencies of NB-UVB doses given (i.e. 3-times vs

5-times weekly).

• Validate model results against real patient data using the clustering algorithm.

Apoptosis vs Cell cycle arrest

Inducing cell cycle arrest as the main mechanism of action of clearance was based on inactivating

stem cells and stopping proliferation from occurring in both stem and TA cells. In doing so,

it should stop hyperproliferation in stem and TA cells and in turn, it slows down growth and

division allowing the system to move out of a psoriatic steady state and move towards remission.

The modification to NB-UVB phototherapy treatment from apoptosis to cell cycle arrest was

implemented in the “to uv” function using the command “set arrest? true” as seen in Figure

3.4. As described earlier, the original model parameters were used to test this. Hence, the NB-

UVB dose emulated was 3MED and was compared against apoptosis, the original mechanism

of action for clearance.

Modification of irradiation frequency from hours to days in a week

As treatment doses are not given over the weekends, the time between each dose is slightly

different and should not be averaged out based on the number of doses given per week to mimic

how it is actually treated in clinic. Therefore, the treatment time was modified to automatically

change after three doses are given per week under the assumption that treatment always starts

on a Monday. This is to reduce complexity of the model in calculating the next dosing. This

results in the treatment given 48 hours apart between the first and second (i.e. Monday and

Wednesday) and second and third (i.e. Wednesday and Friday) doses and 72 hours for the next

dose (i.e. the following Monday) to be administered per week. It was predicted that there may

be a slight difference in clearance when taking into account the additional time taken from the

last dose of the week (i.e. Friday) to the next dose (i.e. the following Monday).
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Figure 3.3: Screenshot example of the model’s “to go” function. In this example, the first half
shows the implementation of UVB treatment frequencies. In this case, a mixed frequency UVB
treatment. The second half of the code shows the implementation to automate the model based
on the number of ticks (i.e. timesteps in hours). At ticks = 1200, psoriasis development begins.
At ticks = 2300, UVB treatment begins after the model reaches a steady state in psoriasis. The
example starts off with 3-times weekly UVB treatment for 3 weeks, then switches to 5-times
weekly. The total number of treatments are kept at 24.
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Figure 3.4: Snapshot example of the model’s “to uv” function. In this example, only cell cycle
arrest has been implemented as the mechanism of action for NB-UVB phototherapy treatments.
This is done by using the command “set arrest? true” (highlighted in yellow).
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Modification of NB-UVB dose

The next modification was made to reduce the dose of NB-UVB given each time in the model.

Apoptosis was modelled based on a random kill rate for each cell type found in a clinical study

[18]. The original 3MED dose resulted in a random kill rate of 13%, 20% and 8% for stem,

TA and differentiated cells respectively (Figure 3.5). Reducing the dose to 0.75 MED and 1

MED resulted in a random kill rate of 2%, 2% and 1% and 2%, 3% and 1% respectively. The

calculations for modifying the MED concentration were based on [18] where the mean number

of apoptotic cells per 1000 epidermal cells were as follows:

0.75 MED = 1.3, 1 MED = 2.1, 2 MED = 9.1, 3 MED = 14.3

As the dose has been reduced, this will require the number of treatments to also increase

and in clinical practice, patients usually have a total of approximately 24-25 doses given. Table

3.2 summarises the number of apoptotic cells for each cell type based on the MED and the

number of treatments required.

MED Apoptotic cells (%) Number of treatments

0.75 SC = 2, TA = 2, D = 1 24
1 SC = 2, TA = 3, D = 1 24
2 SC = 8, TA = 13, D = 5 7

Table 3.2: Summary of MED concentration tested and the percentage of cells undergoing apop-
tosis. The number of treatments for 0.7 5MED and 1 MED are based on the treatment frequen-
cies given by our partners while the number of treatments for 2MED is estimated to be around
7.

3- vs 5-times vs Mixed frequency NB-UVB irradiation

In addition to modifying the treatment frequency and NB-UVB dose, additional tests were done

to test for 5-times weekly and a mixture of frequencies where 3-times weekly was given for the

first 3 weeks and 5-times weekly thereafter. In the case of 5-time weekly, NB-UVB phototherapy

treatment was given every 24 hours for 5 times a week and a break of 72 hours for the next

dose, simulating the weekend. The mixed frequencies were modelled the same way for 3-times

weekly for the first three weeks and switches to 5-times weekly until the end of treatment. The

user interface has also been modified to accommodate some of these changes as seen in Figure

3.6.
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Figure 3.5: Figure adapted from [21]. Proportion of apoptotic cells when undergoing 3MED
NB-UVB irradiation. Each cell type has a similar susceptibility to apoptosis following NB-UVB
irradiation ex vivo. The increase in the actual number of apoptotic cells by each cell type was
compared following a 3MED single dose (311nm) and sham-irradiated controls (n=3). Mean
and standard error of the mean are shown. No significant difference between the three cell types
were found (p=0.51).

Figure 3.6: A screenshot of the new user interface for the NetLogo model. The user interface
now displays the number of treatments given (tx-count) and has been set to automatically run
the various scenarios and treatment frequencies. Therefore, the user will not need to manually
change the slider and wait for correct timing.
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Modelling different treatment recovery & Adding randomness

Nine scenarios were developed based on the rate of cycling stem cells based on the number of

TA cells cycling at a given time to control sudden drop in cell population (see Figure 3.7) in

the original code after a few courses of NB-UVB phototherapy treatment (see Figure 3.8). This

sudden, rapid drop is not realistic as it goes below the normal epidermal cell count which would

represent a side effect of the treatment such as burning. Hence, to eliminate this behaviour,

nine different scenarios were created to control the rate of stem cells cycling to ensure a more

gradual clearance and to mimic real patient data. Table 3.3 describes the changes made to

cycling stem cells based on the number of TA cells cycling.

Figure 3.7: Figure adapted from [21]. Plot of the total number of cells during remission after
7 3MED doses of NB-UVB. The red arrow points at the point where normalcy is reached,
however, the number of cells drops below normal which could potentially be a sign of burning
of the skin before it makes a full recovery.

Figure 3.8: Screenshot of the 2D model code where the percentage of cycling stem cells are
modified based on the number of TA cells proliferating at a given time implemented in the
function ”to uv”. Note that the pink turtles mentioned in the code represents the TA cells that
are actively cycling.

In addition to these 9 scenarios, 20 random seeds were chosen to run in each scenario. These

20 random seeds each represent a simulated “patient”, producing a total of 180 simulation
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Scenario Number of TA cells cycling Stem cells cycling (%)

1 ≤200 70
≤150, <200 60
≤100, <150 50
≤75, <100 40

<75 20

2 ≤200 65
≤150, <200 55
≤100, <150 45
≤75, <100 35

<75 20

3 ≤200 65
≤150, < 200 60
≤100, < 150 50
≤75, <100 40

<75 20

4 ≤200 70
≤150, < 200 65
≤100, < 150 55
≤75, < 100 40

< 75 20

5 ≤200 60
≤150, <200 50
≤100, <150 40
≤75, <100 30

<75 20

6 ≤200 55
≤150, <200 40
≤100, <150 30
≤75, <100 25

<75 20

7 ≤200 50
≤150, <200 40
≤100, <150 30
≤75, <100 25

<75 20

8 ≤700 75
≤600, <650 72
≤500, <550 68
≤400, <450 65
≤300, <350 62
≤200, <250 45

<100 20

9 ≤730 75
≤500, <600 70
≤400, <500 68
≤330, <400 62
≤200, <250 45

<100 20

Table 3.3: The nine scenarios with the different rate of cycling stem cells based on the number
of TA cells cycling at a given time. 8 and 9 attempts to define more rules to reduce the dip
(Figure 3.7) that occurs during remission. 32



trajectories which can be added to the real patient data for clustering. The random seeds were

generated using a random seed generator between the numbers 0 to 99999. Table 3.4 summarises

the random seeds used for the 20 simulated “patients”.

Case Random Seed

1 11111
2 12306
3 12357
4 12651
5 17254
6 23564
7 25621
8 33333
9 36154
10 45631

Case Random Seed

11 46156
12 52366
13 63958
14 64564
15 72162
16 76953
17 83695
18 84564
19 91226
20 95555

Table 3.4: Summary of the 20 random seeds used for each scenario in the 2D Netlogo model.
Each random seed was randomly generated using a random seed generator.

3.2.2 Clustering algorithm

The data used to train the clustering algorithm used was based on the data collected by our

partners and consisted of 96 real patients [19]. The type of data collected were PASI trajectories

for up to 10 weeks, age, gender, skin type, and BMI, for example.

The results obtained from the model simulations differed from the input data used in the

algorithm. As mentioned earlier, the input data used was based on PASI trajectories while the

simulation output was the total cell densities. A conversion was done based on the assumption

made in the model where the maximum psoriatic state would have a total cell density of 1500

which would be the maximum PASI score.

3.3 Results

3.3.1 Apoptosis vs Cell cycle arrest

The original model parameters were used to test the differences and validate the results against

previously published results [18]. In the previous study, it was shown that if cell cycle arrest

was the main mechanism of action for NB-UVB clearance, it had a lag time of approximately

14 days from the start of treatment (Figure 3.9). This resulted in visible clearance seen only
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after the entire treatment course has been completed, something that does not occur in reality.

Replication of this scenario in the new model with a lower MED showed a lag time of

approximately 12-13 days after the first dose was given. This is similar to the results obtained

in the case of 3 MED NB-UVB treatments. In Figure 3.10, the red line represents the main

mechanism of action for clearance is just cell cycle arrest, while the blue line represents just

apoptosis as the mechanism of action for clearance. Therefore, it is unlikely that cell cycle arrest

is the main mechanism of action for clearance to occur.

Figure 3.9: Figure adapted from [21]. Comparison between apoptosis and cell cycle arrest as
main mechanism of action clearance following a course of 3 MED NB-UVB phototherapy. In
this model, 13% of stem and 20% of TA cells undergo either apoptosis (in red) or cell cycle
arrest (in blue). The first irradiation was given at T = 500 hours (green arrow) and last at T
= 836 hours (red arrow). If cell cycle arrest was the main mechanism of action for clearance,
no change in epidermal thickness will be visible until the completion of treatment. This results
in a lag time of approximately 14 days post treatment for clearance to occur which is unlikely
to occur in reality. Hence, it is unlikely that cell cycle arrest is the main mechanism of action
for NB-UVB clearance.

3.3.2 Modelling different treatment frequencies

The treatment frequencies that were modelled were 3-, 5-times weekly and a mixed frequency

of 3-times weekly for the first three weeks and 5-times weekly thereafter. For each treatment

regime, simulations were ran under the nine scenarios with the averages of each scenarios plotted

(Figure 3.11).

A comparison was made between the different treatment frequencies based on the start of

visible clearance (i.e. cell numbers start to drop) for each scenario. The results showed no

significant difference between the treatment frequencies for each scenario (p-value = 0.561007,

34



Figure 3.10: Comparison between cell cycle arrest and apoptosis. In apoptosis, clearance begins
after the first dose of NB-UVB was given (i.e. no visible lag phase). In cell cycle arrest, on the
other hand, a lag time of approximately 12-13 days was seen for clearance to start after the first
dose of NB-UVB given. The lag time was calculated based on the time taken for a reduction
total cell count from the first drop seen in apoptosis.

one-way ANOVA test) (Figure 3.11d). This shows that there is no significant difference when

taking weekends into account (i.e. 72 hours between the last treatment of the week on Friday

to the next treatment on the following Monday) and that assuming an average of 56 hours for

3-times weekly produces results that are reliable.

3.3.3 Model simulation clusters using 1 MED doses

The simulation data were fed into the machine learning clustering algorithm developed in [19]

to identify latent classes. The original clustering algorithm explored several trends such as

identifying patients who would obtain remission and those who would not. It was shown that

based on the PASI scores, after three weeks of UVB treatment, the model was able to predict

which classes of patients would obtain remission with an accuracy of 87%. Clearance was defined

as obtaining a PASI score of 90 (i.e. PASI 90), which meant that the skin would revert back

as closely to normal skin. Based on this, the algorithm showed that three to four classes were

optimal in determining the types of patients. Figure 3.12 shows the results obtained when

clustering the 96 patient data into three classes and a comparison on the PASI scores at the

end of the treatment course.

The number of classes chosen was three and simulation data set chosen to compare between

patients’ were 3-, 5- times and mixed frequency. The reason why three classes were chosen

was based on the original analysis [19]. This allowed some consistency for comparison when

clustering the simulation data and real patient data. Although the patient data was based on
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(a) (b)

(c) (d)

Figure 3.11: The average results for the three different NB-UVB treatment frequencies modelled
in 9 different scenarios and its average results plotted. (a) 3-times weekly NB-UVB treatment;
(b) 5-times weekly UVB treatment. (c) Mixed frequency NB-UVB treatment, where the model is
given 3-times weekly NB-UVB treatment and 5-times weekly thereafter; (d) Box-plot comparing
the results from 3-, 5-times and mixed frequency treatment. One way ANOVA test showed no
signficant differences (p-value = 0.561007) between the treatment types.
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(a) (b)

Figure 3.12: (a) Mean trajectories of patient data for three classes. Solid lines represent the
mean trajectories and the dotted lines represent the lower and upper bounds. (b) Comparison
based on the end PASI data with patient data.

3-times weekly treatment, the additional clustering with 5-times weekly and mixed frequencies

was done to check for differences in clearance between patients and simulation data (Figure

3.13).

The mixed frequency plot (Figure 3.13e) follows a similar trend to the real patient data

(Figure 3.12a) where class 3, patients who do not obtain remission (i.e. PASI 90), shows visible

clearance at the later time, in week 4, rather than classes 1 or 2 where visible clearance can be

seen in weeks 1 or 2 following the start of NB-UVB treatment.

3.4 Discussion

The simulation results comparing the two mechanisms of action show how quickly clearance

occurs (Figure 3.10). The lag time found in cell cycle arrest is 12-13 days which is similar

to what was reported previously by [18]. However, if cell cycle arrest was the mechanism of

clearance following NB-UVB phototherapy treatment, the model shows a delay before visible

clearance is seen which is only after the completion of the treatment. In the clinical data

obtained previously, further clearance of psoriasis was not observed after the completion of

NB-UVB phototherapy treatment. Therefore, it is unlikely that cell cycle arrest is the only

cause of clearance for psoriasis after NB-UVB phototherapy treatment but rather apoptosis of
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: (a) Mean trajectories of 3-times weekly simulation (solid lines) vs real patient
data (dotted lines). 3-times weekly comparison between real patient data in the same clusters.
(b, d, f) Comparison based on the end PASI data with both the simulation and patient data.
(c) Mean trajectories of 5-times weekly simulation (solid lines) vs real patient data (dotted
lines). Clearance for class 1 and 2 starts around the same time, however, there is a difference
in end PASI between the simulation output and patient data. (e) Mean trajectories of mixed
frequencies simulation (solid lines) vs real patient data (dotted lines). Clearance times in this
case looks much closer to the patient data as compared to 3-times weekly.
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keratinocytes [18, 83, 84].

Since it is unlikely that NB-UVB phototherapy only causes apoptosis but cell cycle arrest

[85, 86] as well, it will be interesting to look into how the two mechanisms of action interplay

and cause clearance of psoriatic plaques in depth. This includes identifying the proportion of

apoptosis and cell cycle arrest in computational models which can aid in vivo experiments in

the future.

The modified treatment doses in the model were compared with varying treatment frequen-

cies, 3-, 5-times weekly and a mixed frequency regime where the first three weeks follow a 3-time

weekly treatment and 5-times weekly thereafter. The results showed no significant differences

between the three treatment frequencies and therefore suggest that there may not be any benefit

in changing the frequency of treatment from 3-times weekly to 5-times weekly or even starting

with 5-times weekly [12]. However, as this model is just a simplification of the disease, further

studies are required to justify this finding.

Replication of real patient data with the 2D model was obtained by controlling the number

of proliferating stem cell to simulate nine different scenarios with 20 random seeds to simulate

patients (see Figure 3.8) and Table 3.3. A total of 180 outputs were obtained. In addition to the

96 real patient data, a total of 276 PASI trajectory scores were available to cluster. Although the

clustering algorithm was able to cluster which simulations could represent a possible treatment

outcome, there is significant difference in the rate of clearance. As seen in Figure 3.13a, the

solid lines which represent the simulation data clears at a slightly faster rate as compared to

real patients (dotted lines). This is partly due to the way the model has been programmed,

where there are fixed positions for the basement membrane based on the number of actively

dividing TA cells. However, the trends from the model and real patient data are similar. The

accuracy in clustering model patients into class 3 (i.e. poor responders), were 96.9%, 99.7%

and 98.8% in 3-, 5-times weekly and mixed frequencies, respectively. Hence, although there

are some limitations to using this model for measuring and personsalising psoriasis clearance

to emulate real patients, it is able to predict poor responders with an accuracy of over 96%,

depending on the treatment frequencies given.

3.4.1 Limitations

The current 2D model of psoriasis provides an insight of how psoriasis develops based on an

unspecified trigger and clearance is controlled by the number of TA cells cycling. The model
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has been replicated and validated based on the cell cycle and turnover time known in literature

[29, 80, 25] before proceeding to experiment on how different mechanism of action affects NB-

UVB clearance and the treatment frequency. However, there are limitations to using Netlogo

to model complex biological systems. Some of the limitations of this model is that it is in 2D

which is not a good representation of how the skin structure is like as it is not a uniform flat

surface and there is no specific gradient used in the model to promote proliferation of stem

and TA cells. In reality, there are many different signalling chemicals and immune cytokines

involved in normal and psoriatic epidermis. Some of the parameters have also been fixed in this

2D model such as the maximum cell population density of 1500 cells and stem cell do not move

from their starting position. The model also takes a significant amount of time to run that can

be as long as 24 hours for a single simulation. As seen in the clustering results, the simulations

clear faster than in the patient data and this may be due to the fixed positions set in the model.

Therefore, development of a newer model is required to add these complexities of how the

epidermis behaves and how psoriasis develops when triggered by immune cytokines. Netlogo

allows for modelling simple biological models, however, it lacks the ability to produce emergent

behaviours of large models since it requires too much time to run a single simulation. Hence,

development of a newer model and in 3D to solve some of these challenges.
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Chapter 4

3D Model and Normal Epidermal

Formation

4.1 Introduction

The previous chapter, Chapter 3, used a 2D model to obtain insights of how psoriasis develops

and how NB-UVB treatments can cause remission of psoriasis. However, there are several

limitations to the model that does not represent the spatial aspects of the skin and its cellular

structure in reality. For example, in the 2D model, some of the model parameters are fixed and

do not change (i.e. lacks randomness) such as how the stem cells initialised are always in that

fixed position and do not migrate or move. The total number of cells in the epidermis is also

fixed and therefore, the model always produces the same results. The 2D model also lacked the

capability to introduce different chemicals to induce psoriasis. In addition, the time to complete

a single simulation run could take almost 24 hours. Therefore, instead of modifying or working

from the 2D model, it was best to develop an entirely new framework to model the epidermis

and psoriasis which can reproduce similar results to that of the 2D model and from literature.

The new 3D model also aims to solve some of the limitations mentioned in Chapter 3.

This chapter introduces the methods used to develop the normal epidermis structure from

2D to 3D. Similar to how the 2D model has been developed in Chapter 3, the 3D model

development starts off with the development of the normal epidermis before transitioning to

psoriasis. The model takes into account several factors and concepts from the 2D model and

literature which will be described in this chapter. The model outputs are then qualitatively and

quantitatively validated against literature before transitioning to psoriasis.
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The normal epidermis formation is based on its interaction with two types of chemicals,

endogenous growth factors (GF) and calcium as seen in Figure 2.4. It as been known in literature

that calcium from the dermis diffuses in an upward gradient that aids proliferation in stem

and TA cells. Upon terminally differentiating, differentiated cells will migrate upwards into

the upper layers of the epidermis and before desquamating (i.e. shedding), cells change their

morphology from spherical to flat shape and secrete their contents such as calcium in the stratum

granulosum (SG) layer. This results in a high concentration of calcium towards the upper layers

and in this model, calcium is used to control proliferating to maintain a steady state [24, 32].

The following assumptions have been made:

• Cells are of a spherical shape [18]. Differentiated cells morphology remain a sphere instead

of flattening towards the upper layers of the epidermis for simplicity.

• A continuous flow of calcium is secreted from the bottom of the domain, emulating the

dermis [33, 23].

• The growth factor involved in proliferation is only from stem and TA cells [19]. Growth

factors that originate from the dermis are not considered in this case.

• All types of differentiating cells are labelled as “differentiated cells” for simplicity [18].

The 3D model was developed using the Newcastle University Frontiers in Engineering Biol-

ogy (NUFEB) software which runs under the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) framework. LAMMPS is an open-source software that makes use of

Message Passing Interface (MPI). It was developed as a tool for material modelling down to

the molecular level, allowing the modeller to model particles in different states as liquid, solid

or gas [63]. NUFEB was developed as an extension to LAMMPS which allows the simulation

of microbial communities in 3D [60]. It uses an individual based modelling technique, where

microbes are represented as discrete units and the changes of their behaviours over time due to

a number of processes that occurs such as cell division[60, 87].

NUFEB has the capability of modelling microbes as mentioned, however, epidermal cells

behave slightly differently and require different nutrients to grow and proliferate. A new package,

USER-PSORIASIS, was added to my version of the repository to model the additional functions

required for the development of the epidermis and its transition to psoriasis. For example,

cellular behaviours and their interactions with endogenous GF and calcium described in Chapter
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1 (Figure 2.4) in the epidermis. The additional functions added were approximately 5000 lines

of code.

The following behaviours have been added to the NUFEB framework based on behaviours

from Chapter 3 and known literature:

1. Cellular growth for each cell type [60, 19].

2. Cellular division for proliferative cells, stem and TA cells [18, 50].

3. Maximum division counter for TA cells as they are known to divide 3-5 times before

terminally differentiating [18].

4. Wave-like structure to depict the irregular surface of the basement membrane [18, 38, 50].

5. Diffusion of chemicals and cytokines for cellular growth [19].

6. Mechanical interactions between cells to solve overlapping and adhesion between the var-

ious cell types to aid stratification of the epidermis [60].

7. Potential for mechanical changes to basement membrane during the transition from normal

to psoriatic state [18].

Figure 4.1 summarises how the normal epidermis will be simulated based on the type of cell

it is. To begin, extracellular calcium is diffused into the system which signals to the proliferative

cells to grow. As the model starts off with just stem cells, stem cells would grow and eventually

divide to either a stem or TA daughter cell. When TA cells are produced, they would divide

a fixed number of times as described earlier (i.e. maximum TA division count). If it is not

reached, the TA cell would remain a TA cell until it is ready to terminally differentiate. Once

terminally differentiated, the differentiated cell will migrate upwards as the epidermis grows

and eventually reach the stage of cell desquamation and end of the cell’s lifespan.

4.2 Methods

The model was split into three main sub-processes - biological, physical and chemical processes.

The biological processes focus on how the different cell types grow and divide, while the physical

processes focus on the spatial aspects such as rete peg formation, mechanical relaxation and

spatial regulation for cell division on the wave-like basement membrane. Finally, the chemical
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Figure 4.1: Flow chart summarising how the normal epidermis is simulated based on the what
cell type it is. It describes how stem cells grow and divide and transitions to a TA cell and
eventually terminally differentiating. Once it has terminally differentiated, it will migrate up-
wards and end its lifespan after it has been desquamated.
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processes focus on how the chemicals, growth factors and calcium are regulated in the model.

Figure 4.2 summarises the processes that occur during the simulation. It starts off with the

initialisation of the model where the stem cells are initialised based on the user input and runs

ith time. Diffusion of chemicals starts and proliferative cell growth occurs and once a threshold

is reached, cell division starts and eventually cell differentiation occurs. In as the chemical and

biological processes occur, physical processes are introduced to ensure that during cell division

and differentiation, overlapping of cells do not occur and leads to the stratification of layers in

the epidermis.

4.2.1 Biological Processes

The biological processes consists of cell growth and division which are based on the chemicals

and cytokines involved and consist of two states, normal and psoriatic. The growth model for

both is based on various chemicals and cytokines that have been found in literature and in

clinical studies [18, 19, 88]. Cell division of stem cells and TA cells are based on having two

interconvertible modes as mentioned in [2] where proliferative cells change their division type

based on an expanding or balanced state. Figure 4.5 describes the epidermal cell pathway and

the types of division the cell undergoes (self-proliferation, asymmetric and symmetric). The

difference between the expanding and balanced state is in the probability rate when a stem

or TA cell produces a daughter cell of a different type. This will be further explained in this

section.

Epidermal Cell Growth

Cell growth in the normal epidermis is determined by the concentration of growth factors

produced by the proliferative cells, and calcium. As each cell grows, its mass increases by

consuming the chemicals in its environment. The growth process is described by the following

equation already implemented in the NUFEB framework [60]:

dmi

dt
= µimi, (4.1)

where µi is the specified growth rate and mi is the biomass of the ith cell. The growth rate µi

is determined by
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Figure 4.2: Flow diagram describing the processes of the simulation. Simulation starts off
by initialising the number of stem cells input and run ith number of timesteps. The various
biological, chemical and physical processes occurs to model cell proliferation and differentiation
to develop the epidermis.
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• Monod-based kinetics where cell growth is driven by the chemicals, growth factor and

calcium, in the voxel of the diffusion gradient where the cell resides.

• Haldane inhibition model based on the calcium concentration in each voxel governs the cell

growth and structural development. When the calcium concentration is high as a result of

differentiated cells migrating and secreting calcium before desquamating, proliferating cells

will “sense” this high concentration to slow down their growth, which in turn, maintains

a steady state.

Equation 4.2 describes the growth model used, which is based on a Monod style equation

and Halden’s inhibition [89, 90].

dSC

dt
= (µmax

Sgf

Ksgf + Sgf

Ksca
Sca +Ksca

)SC

dTA

dt
= (µmax

Sgf

Ksgf + Sgf

Ksca
Sca +Ksca

)TA

(4.2)

where µmax is the maximum growth rate specified, Sgf , Sca are the current concentration of

growth factor and calcium within the voxel respectively, and Ksgf , Ksca are the half-velocity

constants for growth factor and calcium. SC and TA are the number of cells in the system.

Cell division and desquamation

Cell division occurs as a result of cell biomass growth and desquamation occurs to emulate

the shedding of differentiated cells at the top of the epidermis. Division occurs if the diameter

of a cell reaches the specified threshold value and the cell splits into two daughter cells. The

mass of one daughter cell is a randomly assigned value between 40-60% of the parent’s total

mass and the other daughter cell receives the rest. In addition, one daughter cell will take the

position of the parent’s while the other daughter is placed randomly in either a horizontal or

vertical direction from the parent cell depending on its type. Stem cells are known to be only

found along the basement membrane and so, if the daughter cell is a stem cell, it will be placed

adjacent to its parent while a TA cell can be placed in either direction [91, 26].

Figure 4.5 described the epidermal cell pathway and the three different types of division, self-

proliferation, asymmetric and symmetric, that can occur with different probabilities. Calcium

is used to control the division probabilities in the system. The cell division probabilities are

determined by the state the model is in. In the expanding stage, where the simulation starts
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Figure 4.3: (Left) Description of the epidermal cell pathway from a stem cell (in dark blue).
Stem and TA cells growth and divide to either one of the three division methods mentioned
in Figure 2.2 where their probabilities to have a daughter cell of a different type (i.e. TA or
differentiated cell, respectively) is P0 and P1 while having a daughter of the same type is 1 -
P0. Stem and TA cells produce growth factors that drive their growth and proliferation and
differentiated cells secrete calcium which inhibits stem and TA cells growth in order to maintain
a steady state. (Right) Stem and TA cell division can be divided further to the three different
ways and are based on the probabilities Pa, Pb for stem cells and Pc, Pd for TA cells. The
probabilities derived for stem cell were based on an estimate during a parameter scan with TA
cell division probabilities based on a previous paper [2], which traced epidermal cell proliferation
lineage. As the paper traced the lineage of proliferative cells differentiation, it is assumed that
the rates are for TA cells in the model.
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with just stem cells, self proliferation occurs at the faster rate and once the model reaches a

steady state, the model switches to a balanced stage to maintain the cell density at a steady

state. Equation 4.3 describes the division equations used for stem (Pa and Pb) and TA (Pc

and Pd) cells.

Pa = Pae + Pab
Sca

Ksca + Sca

Pb = Pbe + Pbb
Sca

Ksca + Sca

Pc = Pce + Pcb
Sca

Ksca + Sca

Pd = Pde + Pdb
Sca

Ksca + Sca

(4.3)

where Pa and Pc represent symmetric division and Pb and Pd represent asymmetric division

while the remainder is self proliferation. The first variable (i.e. Pae, Pbe, Pce, Pde) in the

equation is the probability used during the expanding state to get the model to a steady state

and switches to a balanced state with a different set of probabilities (i.e. Pab, Pbb, Pcb, Pdb)

governed by a Hill function based on the calcium concentration in the system.

TA cells are known to divide a finite number of times (4-5 times) before terminally differ-

entiating [18, 20, 25]. An additional rule has been added to TA division, where the maximum

number of times a TA cell can divide is 4, based on a previous model developed [18].

Endogenous Growth Factors and Calcium production

The Monod-based kinetics allows stem and TA cells to produce growth factors and differentiated

cells to secrete calcium into the environment. The concept of growth factors production by

stem and TA cells is based on an ODE model developed on [19] while calcium is stored in the

proliferative cells as they grow, divide and terminally differentiate and gets secreted when a

differentiated cell reaches the SG layer.

4.2.2 Physical Processes

The model consists of various physical processes to solve issues related to overlapping cells

during growth and division, development of the rete pegs and the transition from normal to

psoriatic state where there is morphological change to the shape and height of the rete pegs. In

addition, different cell types have different cortical and adhesive forces [92, 93].
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Formation of rete pegs and Stem cell initialisation

The structure of the basement membrane is known to be of a wave-like structure instead of a

flat surface. To emulate this morphology, the formation of the rete pegs is assumed to be of

a sine wave structure and made out of spherical agents holding the structure. The LAMMPS

command “create atoms” allows us to specify the x-,y-, and z-axis for atoms to be created based

on region blocks and the wave was created using the following command as seen in Figure 4.4.

Figure 4.4: Description of the LAMMPS command used for wave-like basement membrane.

Figure 4.4 describes how the wave-like basement membrane is developed, where the variable

v stores the formula to create the waves. The first part of the command, 0.12∗v z ∗zlat, affects

the depth of the wave while cos(v xx/xlat ∗ 1.9 ∗ π ∗ π/v x) affects the width of the wave on

the x-axis. The second part, cos(v yy/ylat ∗ 0.64 ∗π ∗π/v y), controls width of the wave on the

y-axis. Lastly, 0.9 ∗ v z ∗ zlat− v zz, affects the top peaks of the waves. Having a larger value

(i.e. more than 0.9), results in a flatter top.

As the basement membrane surface was no longer flat, stem cell initialisation had to be

modified and a new fix was implemented to ensure that the stem cells were able to initialise

on top of the basement membrane rather than having some cells initialised in the top peaks.

A “fix” is a type of operation command in LAMMPS that can have multiple functions such as

applying constraints to atoms, creating boundaries and so on and so forth. The fix is written

in C++ and is part of the software’s source code. This makes it cleaner and easier for the user

to specify parameters in the input script rather than in the source code itself. The new fix I

have implemented, fix pso atoms, consists of two additional functions added to the original

source code to add atoms. The first function was to gather all the free locations on top of the

basement membrane and the second function adds the stem cells specified on the free locations

available.

The pseudocode is shown in Algorithms 1 and 2:

50



Algorithm 1: Get list of free locations for stem cell to initialise

Result: List of x-, y-, and z-coordinates of free location

// Array to hold the free locations available

1 free location[];

// Array to store x-, y-, and z-coordinates of the available space

2 coord[3];

3 for i = 0; i < n; i++ do

// If the top is empty (i.e. z-axis), then add x-, y- and

z-coordinates

4 if z[i] == 0 then

5 coord[1] = x[i];

6 coord[2] = y[i];

7 coord[3] = z[i];

8 add.free location[coord];

9 end

10 end

The algorithm first looks to identify the free locations on top (i.e. z-height) of the basement

membrane cells. If the top of the particular basement membrane cell, z[i], is free, its coordinates,

coord, are added to the list of free locations (free location[]). The function then returns a list

of all the free locations that are available for a stem cell to be placed on top.
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Algorithm 2: Initialising stem cell

Result: Add stem cell, where n is the total number of basement membrane cells, z[i] is

the z-height of the current basement membrane.

// Shuffle the list of free locations to create randomness

1 free location[].shuffle;

// Create a list based on the number of stem cells to initialise

2 stem location[] = (free location[0], free location[0] + nstem);

// Loop through all the available stem cell location list

3 for j = 0; j < stem location; j++ do

// If the location is available, create a stem cell based on its

diameter and place it on the z-axis (i.e. on top of the basement

membrane)

4 if stem location[j] is available then

5 z[j] = z[j] + diameter;

6 add.stem[stem location[j]];

7 end

8 end

Once the list of free locations is obtained, the list is shuffled and a new list is created of the

same size of the number of stem cells (nstem) to initialise ensuring that stem cells are randomly

placed along the basement membrane surface. It then loops through the new list and places a

stem cell right on top of the current basement membrane cell in the list.

Mechanical relaxation

During cell division, two cells are formed and may overlap each other and form two nicely

separated and distinct cells. Hence, mechanical relaxation is required to update the cell’s

position to prevent this. Mechanical relaxation is done by using a discrete element method and

the Newtonian equations of motion which can be found as part of the LAMMPS framework as

a command. The following equation describes how the movement of cell is modelled [60]:

mi
d−→vi
dt

= Fc,i + Fa,i + ... (4.4)

where mi is the mass and −→vi is the velocity. As a cell divides, two types of forces act on each

cell which are based on the contact and adhesive force.
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The contact force Fc,i is a pairwise force exerted on cells to resolve the overlapping issues

and to ensure that cells do not enter the basement membrane. This is based on Hooke’s law as

follows [94]:

Fc,i =

Ni∑
j=1

(Knδni,j −mi,jγnvi,j) (4.5)

where Ni is the total number of neighbouring particles of i, Kn is the elastic constant for normal

contact, δni,j are the overlapping distance between the center of particle, i, and neighbouring

particle, j, mi,j is the effective mass of particles i and j, γn is the viscoelastic damping constant

for normal contact, and vi,j is the relative velocity of the two particles.

The adhesive force between basal cells, stem and TA cells, Fa,i is the pairwise interaction

modelled based on van der Waals force as follows [95] :

Fa,i =

Ni∑
j=1

Hari,j
12h2min,i,j

ni,j (4.6)

where Ha is the Hamaker coefficient, ri,j is the effective outer-radius of particles i and j, and

hmin,i,j is the minimum separation distance of the two particles, and ni,j is the unit vector from

particle i to j.

Table 4.1 summarises the mechanical interactions based on what type of cell it is interacting

with.

Cell Type Repulsive force Adhesive force

Same cell type + ++
SC-TA + +
TA-D + +
SC-D ++++ +
SC-BM + +++++
TA-BM ++ +++
D-BM +++++ +

Table 4.1: Summary of forces between each cell type and between the basement membrane in the
model where the strongest force is 5+ and the weakest force with just 1+. It has been noted in
previous literature [96, 51] that stem cells have the strongest bond to the basement membrane.
As it proliferates and differentiates, the attraction between the cell and the basement membrane
weakens, allowing layer stratification to occur. The parameters for the model physical forces
are input into a script where it makes use of the LAMMPS framework. The repulsive force is
modelled based on Hooke’s law [94] while adhesion is modelled based on van der Waals force
[95].
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Spatial regulation for cell division

Stem and TA cells are known to have different division directions such as horizontal or vertical.

As stem cells reside only on top of the basement membrane, the division direction for daughter

cells that are self cells will be horizontal from the parent cell’s position, while the daughter TA

cell would be placed vertically (Figure 4.5a). In TA cells, the division direction will mainly be

vertical to ensure that differentiated cells are on top. However, this concept requires additional

spatial regulation as the surface of the basement membrane is not flat but a wave. Figure 4.5b

shows how division would occur on the wave surface according to the horizontal and vertical

rules. The stem cell on top first self proliferates and produces two stem daughter cells. However,

in the next division, one of the stem cells divides asymmetrically and produces a daughter TA

cell which takes the parent’s position while the daughter stem cell divides on top, thereby

allowing stem cells to leave the SB layer.

(a)

(b)

Figure 4.5: (a) Division direction for stem cells. If the stem cell undergoes self proliferation,
it will divide horizontally while in asymmetric division, the TA daughter cell will be placed on
top (i.e. vertically). This is straightforward if the basement membrane was a flat surface. (b)
In the wave surface, a stem cell divides asymmetrically, a TA cell could be positioned on top of
the basement membrane. However, there will be an issue if another stem cell around it divides
to produce a daughter stem cell. The daughter stem cell, will end up positioned on top of the
TA cell instead.

A solution to this is to include a check for stem and TA cells to be aware of their location,

whether it is on top of the basement membrane or away from it. Figure 4.6 describes how

different proliferative cell will divide.
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Figure 4.6: Schematic of spatial regulation implemented for stem cells. Self proliferation has
been assumed to divide horizontally and TA daughter cells are assumed to be positioned verti-
cally [97, 25, 98]. The concept of spatial regulation is based on these as follows: (Top) Stem cell
self proliferation daughter cells are positioned side-by-side in the middle of the cell it is on top
of. (Middle) Symmetric division behaves in a similar fashion when the division occurs on the
top of the rete peg. If the cell was at the bottom of the rete peg, its position is calculated from
the middle of the surrounding cells. (Bottom) Asymmetric division occurs in a similar fashion
as symmetric, however, the daughter TA cell will always be on top of the daughter stem cell
based on the assumption that TA cell will divide vertically.
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4.2.3 Chemical processes

Immune cytokine and calcium transport is described by using the diffusion-advection-reaction

equation. In this section, we will briefly discuss the main concepts behind the chemical processes

involved such as singalling chemical and immune cytokine consumption and mass balance.

Chemical consumption

The rate of chemical consumption is based on the function available in NUFEB where chemical

consumption of growth factors and calcium are based on their concentration within each voxel

where the cell resides. The reaction rates are based on the Monod-based kinetics implemented

in NUFEB [60] for microbial growth with a slight difference where the rate of growth is based

on chemicals for epidermal growth and can be defined as follows:

Ri = µi(
1

Yi
(R1 +R2))X (4.7)

where Yi is the yield coefficient, R1 is the growth during the normal epidermal state and R2 is

the growth during psoriasis and X is the biomass density.

Chemical mass balance

Chemical distribution within the simulation domain is calculated by solving a diffusion-advection-

reaction equation (transport equation) implemented in NUFEB [60] for the signalling chemicals

as follows:

∂S

∂t
+
−→
U .∇S = ∇.(De∇S) +R (4.8)

where the chemical update, R, is calculated in the growth model, S is the chemical involved.

In this case, it is either calcium, growth factors or immune cytokines.

The equation above is discretised on a Marker-And-Cell (MAC) uniform grid where the

scalar S, is defined at the centre of voxel and velocity components U for x-, y- and z-axes are

defined at the centre of the 6 faces of the voxel. The time derivative and spatial derivative are

discretised by the Forward Euler and Central Finite Differences respectively.
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4.3 Results

4.3.1 Rete Peg Formation and Stem Cell initialisation

The rete peg formation was based on the sine wave formation specified in Section 4.2.2. A new

fix command was implemented based on Algorithms 1 and 2 to ensure that stem cells were

only initialised on top of the basement membrane. The new fix command stores a list of the

available locations on top of the basement membrane and randomly adds the stem cells on top

of it by shuffling the free locations list and having a new list with the available locations the

same size as the number of stem cells initialised. Figure 4.7 shows the basement membrane (in

orange) and stem cells (in dark blue) at the start of the simulation. The rete pegs in the normal

epidermis will remain in place as cell population increases as seen in Figure 4.9a.

(a) (b)

Figure 4.7: Screenshot of the wave formation use in the model. The basement membrane (in
orange) is formed by creating atoms using the LAMMPS command “create atoms and the
structure is fixed to ensure that no movement occurs during epidermal growth. Stem cells (in
dark blue) are initialised on top of the basement membrane based on the free locations available
with small amounts of T cells (in red) initialised in the basement membrane.

4.3.2 Number of stem cells to initialise

The number of stem cells initialised in the system has been tested from a range of 100 to 317

cells at intervals of +10 cells initially and further refined to +5 cells step. The maximum number

of stem cells that can be initialised to cover the entire surface of the basement membrane is

317. If more than 317 stem cells are initialised, they are “removed” from the system as there is

insufficient space for them to be placed on top of the basement membrane. The results showed
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that for the ideal cell densities to populate the epidermis, the number of stem cells required for

initialisation is found to be between 260 to 317 cells. If less than 260 stem cells are initialised, the

model fails to reach the ideal cell densities and proportions reported in previous studies where

the estimates cell population ratio was 4.7%, 26.4% and 40-66% for stem, TA and differentiated

cells respectively [80, 18]. Table 4.2 summarises the average results for stem cell initialised from

100 to 300 (in steps of 50).

Stem cells initialised Stem cells (%) TA cells (%) Differentiated cells (%)

100 306 (3.2) 1,500 (15.8) 7,526 (79.4)

150 365 (3.7) 1,678 (16.8) 7,803 (78.1)

200 482 (4.1) 2,369 (20.4) 8,618 (74.2)

250 594 (4.5) 3,033 (22.8) 9,544 (71.6)

300 729 (4.6) 4,053 (25.4) 11,039 (69.1)

Table 4.2: Average cell population where the number of stem cells initialised are from 100 to
300, in steps of 50. The average cell population were calculated based on ten simulation runs. If
the number of stem cells initialised was too low, it does not reach the known ideal cell population
ratio of approximately 4-, 24-, 65% for stem, TA and differentiated cells, respectively.

In addition, stem cells were randomly initialised on the basement membrane surface and no

specific location is set. Previous studies on stem cell location report conflicting results which

show stem cells either residing at the bottom or top of the rete pegs. In this work, the location

of stem cells was randomly initialised due to two main reasons. Firstly, the model starts off with

the basement membrane shaped as a wave structure, which means that the stem cell growth

and division did not form this irregular shape as compared to embryonic studies which looked

at how the epidermis was formed from the beginning of time. Secondly, as mentioned earlier,

this model does not study how the epidermis forms from an embryo. Therefore, the number of

stem cells has to start at a larger number to obtain a well and ideally proportioned epidermis

with all three types of cells as stem cell growth is slower than TA cells. It has also been

noted in the model output that although the stem cells are initialized at random throughout

the basement membrane, the steady state model shows that majority of the stem cells resides

at the bottom of the rete pegs. This behaviour observed could explain previously published

studies [99, 100, 101] where they have found stem cells mostly residing in the bulge of hair

follicles. Previous studies [99, 100, 101] suggested that the bulge in hair follicles represents a

major repository of keratinocyte stem cells as it does not only give rise to the hair follicle but

the epidermal structure. Hence, the model’s output can be supported by this observation in

previous studies on why stem cells mostly reside at the bottom of the rete ridges rather than
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the top as hair follicles would be found beneath the epidermis.

4.3.3 Cell division probabilities

Chapter 1 and 3 describe the rate of actively dividing stem and TA cells and how it differs

slightly when stem cells divide at a slower pace as compared to TA cells. In our model, we

adapt this concept based on [2] where they have labelled and measured the types of division

that occur. They have also identified how proliferative keratinocytes have two convertible

proliferative states - balanced and expanding states. During the development of epidermis, the

skin enters an expanding state where proliferation occurs at a higher rate and eventually enters

a steady state and converts to the balanced state. Both states have different probabilities for

each type of division. Here, we adapt this concept and base the division probabilities found in

this study for TA cells. The reason for doing so is due to the fact that in the study [2], there

is no differentiation between the types of proliferative cells (i.e. stem and TA cell types). The

cell is either a proliferative or differentiated cell. The proliferative cell eventually terminally

differentiates, a similar behaviour to TA cells, after a set number of divisions. Therefore, the

parameter is not a good representative of how stem cells divide. In addition, other clinical

studies have shown that only about 5% of stem cells are actively cycling at any time. Hence,

parameter estimation is required for stem cell division probabilities, P0, Pa and Pb (see Figure

4.5 and Equation 4.3), where P0 in balanced state is assumed to be 0.5 as there will be an equal

rate of stem and TA cell produced.

Based on the above assumption where P0 is 0.5 in the balanced state, the values for P0

in expanding state tested are from 0.1 to 0.4, in 0.05 steps. The value for Pa and Pb are

based on previous studies on proliferative cell division probabilities, where self and symmetric

proliferation are equal and are approximately 10% with asymmetric division at 80% [20, 98, 97].

Parameter estimation for Pb was done in steps of 0.1, while Pa was 0.05 in both the expanding

and balanced state (see Table 4.3).

The results can be seen in Figure 4.10, where the parameters found to maintain a steady

state and obtain the ideal cell population ratio that was within the normal range are Pae =

0.05, Pab = 0.05, Pbe = 0.1, and Pbb = 0.7.
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(a)

(b)

(c)

Figure 4.8: Average cell population based on the number of stem cells initialised where the best
range was found to be between 260 to 317 stem cells initialised. (a) Stem cell population in
steady state. (b) TA cell population in steady state. (c) Differentiated cell population in steady
state. The average out of all simulations are represented by the horizontal line in the plots,
where the average numbers are 695, 3,709, and 10,080 for stem, TA and differentiated cells
respectively. The results obtained were measured based on an average run of 10 simulations for
each test case. Table 4.4 summarises the parameters used. Legend: Average (SC, TA, D) refers
to the average number of cells out of 10 simulation runs. Mean refers to the average number of
cells based on the number of stem cells initialised.
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(a)

(b)

Figure 4.9: Visualisation output from the model. (a) Snapshot of the model at three different
time points (Day 0, 6 and 30). (b) Snapshot of diffusion gradient in the model. In this case,
growth factor, with the highest concentration being around the stratum basale layer where stem
and most TA cells reside. Cells represented: stem cells (in dark blue), TA cells (in light blue),
differentiated cells (in white), T cells (in red) and basement membrane (in orange). The heat
map on the top represents the concentration of growth factors while the heat map on the bottom
represents the colors used for each cell types. For example, stem cells are represented in dark
blue.
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(a)

(b)

(c)

Figure 4.10: Average cell population based on the parameter estimation for P0. The best
range was found to be 0.1, which produced the highest number of cell population. (a) Stem
cell population in steady state. (b) TA cell population in steady state. (c) Differentiated cell
population in steady state. The average out of each test case is represented by the horizontal
line in the plots each cell type. The results obtained were measured based on an average run of
5 simulations (R1-R5) for each test case. Table 4.4 summarises the parameters used.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Cell numbers plot of stem cells (a), TA cells (b) and differentiated cells (c). The
average ratio of stem, TA and differentiated cells are 4.49% (693), 24.3% (3,751) and 67.98% (10,
494), respectively. (d-e) Cell cycle for stem (d) and TA cells (e). The average cell cycle times
predicted are 157.2 and 65.5 hours, respectively. (f) Total turnover times for both proliferative
and differentiated compartment. The average turnover time in the model is 20.5 days in the
steady state. The simulations were ran 10 times under different random seed (R1-10) with the
average plotted in purple dotted line. Each simulation ran under the same initial conditions such
as the extracellular calcium diffused, growth rates, and diffusion rates. Table 4.4 summarises
the parameters used.
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Pae Pab Pbe Pbb P0e

0.05 0.05 0.1 0.7 0.1

0.05 0.05 0.2 0.6 0.15

0.05 0.05 0.3 0.5 0.2

0.05 0.05 0.4 0.4 0.25

0.05 0.05 0.5 0.3 0.3

0.05 0.05 0.6 0.2 0.35

0.05 0.05 0.7 0.1 0.4

Table 4.3: Values tested for parameter estimation of stem cell division probabilities P0, Pa and
Pb in both expanding and balanced state, where P0 in balanced state is assumed to be 0.5 once
the model reaches a steady state.

4.3.4 Cell population density

The cell population density reported in previous studies was of 73,952±19,426 cells/mm2 (SD)

[80] with each cell population ratio estimated at 4.7%, 26.4% and 40-66% of them being stem,

TA and differentiated cells respectively with keratinocytes comprising of 96% of all epidermal

cells [18]. As the model only takes keratinocytes into account, the model has a cell population

ratio of 4.49% stem cells, 24.3% TA cells and 67.98% differentiated cells, which translates to

the cell population ratio of keratinocytes being 4.3%, 23.33% and 65.2%.

4.3.5 Cell cycle and Turnover times

The reported cell cycle times in clinical studies were found to be between 100-200 hours [29, 18]

and 50-65 [80, 18] hours in stem and TA cells respectively. The measured cell cycle time range

in the model was between 152.9 to 162.0 hours for stem cells and 65.0 to 66.0 hours for TA cells

with an average of 157.2 and 65 hours, respectively.

The turnover time is calculated based on [56, 40] and [30] where the total epidermal turnover

time is the sum of the proliferative and differentiated compartment. Each compartment’s

turnover time is based on Equation 4.9. Hence, giving us Equation 4.10.

Total number of cells in compartment

Newly entering cells in compartment
(4.9)

SC + TA

selfsc + asymsc + 2symsc + selfta
+

D

asymta + 2symta
(4.10)

where the first term is for the proliferative compartment, stem and TA cells, and the second term

is for the differentiated compartment, differentiated cells. Variables selfx, asymx and 2symx
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represent the three types of division modelled, self-proliferation, asymmetric and symmetric

division while x represents the cell undergoing division, which could either be a stem (SC) or

TA (TA) cell. It is also important to note that symmetric division produces two daughter cells

of a different type from the mother cell, hence, producing two cells for that compartment. For

example, 2symsc will produce two TA cells from a stem cell, in the proliferative compartment.

In this work, the stratum corneum is not modelled and therefore, the model only takes into

account the proliferative and differentiated compartments. Therefore, the model predicts the

total turnover times to be between 19.6 and 21.3 days with an average of 20.5 days, slightly

lower than the measured 23-25 days in [31].

4.3.6 Parameters

Normal epidermis

Parameter description Parameter Value Units Reference

Stem cells initialised SCinit 290 Cells Assumed
SC maximum growth rate SC µmax 1.28e-06 s−1 Modified from [18]
TA maximum growth rate TA µmax 3.21e-06 s−1 Modified from [18]
Ks value for growth factor Ksgf 2.5e-7 kgm3 Assumed
Ks value for calcium Ksca 2.5e-3 kgm3 Assumed
SC symmetric division in expanding stage Pae 0.05 - Assumed
SC symmetric division in balanced stage Pab 0.05 - Assumed
SC asymmetric division in expanding stage Pbe 0.1 - Assumed
SC asymmetric division in balanced stage Pbb 0.7 - Assumed
TA symmetric division in expanding stage Pce 0.02 - [2]
TA symmetric division in balanced stage Pcb 0.32 - [2]
TA asymmetric division in expanding stage Pde 0.1 - [2]
TA asymmetric division in balanced stage Pdb 0.18 - [2]
Maximum TA division maxTA 4 - [18]
Diffusion coefficient Ks 1.0e-9 m2s−1 [102]
Extracellular Calcium initialised eCa2+ 1.0e-7 kgm3 [54]

Table 4.4: Model parameters and initial conditions for the normal epidermis formation.

The parameters used in the normal epidermis formation can be found in Table 4.4. The

assumed parameters are described as follows:

• The number of stem cells initialised and division probabilities for stem cells were based

on the parameter scans as described earlier in this chapter. The parameters were chosen

based on known results such as the cell population ratio, cell cycle and turnover times.

• The maximum growth rate, µmax, for stem and TA cell was based on the conversion
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from the cell cycle times known in literature [18, 29] and 2D model in Chapter 3. The

conversion was done using the following equation from [103]:

µmax =
ln 2

td
(4.11)

where td is the doubling time.

• The stem cell division probabilities were calculated based on a parameter scan described

earlier in this chapter. The parameters were chosen based on the known results such as

the cell cycle and turnover times while being able to produce the ideal cell population

ratio.

• The maximum number of times TA cell can divide has been set to 4, similar to the 2D

model implementation in Chapter 3.

4.4 Conclusion

The development of a 3D normal epidermal model aimed to address some of the disadvantages

and limitations of the 2D model as described in Chapter 3. A limitation as mentioned was

how the 2D model was that the number of cells in both normal and psoriatic state was always

fixed and reached the maximum of 724 and 1500. Another main disadvantage which led to the

development of a new framework is the time taken to run a simulation where it could take up

to 24 hours.

The new 3D model framework is built using LAMMPS and NUFEB where implementation

of physical and some biological processes has already been built in. The new model takes

into account the physical, chemical and biological processes known in literature and the spatial

aspects of cellular behaviours. The model also takes into account how the basement membrane

is not a flat surface but rather an irregular, wave-like surface as seen in Figure 4.5b. An

additional feature for the spatial regulation of stem cell division has been implemented to

model the horizontal division that occurs for stem cells as seen in Figure 4.6.

Previous studies [18, 19] have shown that the cell population ratio of keratinocytes are

approximately 4-,24-, and 65-% for stem, TA and differentiated cells, respectively. When iden-

tifying the number of stem cells required to be initialised, this proportion was used as a gauge.

It was found that the number of stem cells required to be initialised had to be more than 260
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for this proportion to be reached. This could be due to the fact that the model does not start

from an embryonic state but rather from an adult epidermis and requires a much higher amount

of stem cells to be initialised.

The model has been able to predict an average cell cycle time of 157.2 and 65.5 hours for

stem and TA cells, respectively, in line with clinical data [29, 80, 18]. The turnover times are

within the lower bounds known in literature with an average of 20.5 days in the steady state.

This could be due to the way the model has been presented where the compartments we are

mainly concerned are the proliferative and differentiated compartment and does not represent

all layers in the epidermis such as the stratum corneum.
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Chapter 5

Psoriatic Epidermal Formation

5.1 Introduction

The previous Chapter 4, describes how the normal 3D epidermis model was implemented and

developed in NUFEB and how it solves some of the challenges faced by the 2D model. The

3D model took into account some of the additional aspects of how the skin develops in reality.

This includes having a wave-like structure to depict the basement membrane and having specific

nutrients for the proliferative cells, stem and TA, to grow and divide. This chapter follows the

next step of the model where the normal epidermis transitions to psoriasis.

In the model, psoriasis occurs with the introduction of an abnormal immune response in the

epidermis. This causes the T cells, located in the basement membrane and dermis, to activate

when an immune response is triggered. The T cells secrete immune cytokines into the epidermis,

altering the proliferative state of keratinocytes, stem and TA cells, to hyperproliferate (i.e. to

divide at an abnormally higher rate). T cells can be categorised into different types and each

type produces a particular type of immune cytokine which reacts to different triggers. For

example, in the case of psoriasis, some of the known cytokines produced are IL-17, IL-22 [104],

and TNF-α [19, 105].

The immune cytokine chosen is a general label based on a previous mathematical study,

where IL-22 and TNFα were modelled as they have been known to influence hyperproliferation

in epidermal stem and TA cells [19]. In that study, the amount of both immune cytokines,

IL-22 and TNF-α, were almost identical in concentration. Therefore, the immune cytokine

stimulus have been simplified to just a single stimulus in this model. Figure 2.4 in Chapter 1,

describes the schematics of how psoriasis develops when an immune stimulus is introduced from
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the basement membrane and regulated by T cells to produce cytokines. These cytokines cause

stem and TA cells to hyperproliferate causing psoriasis.

In addition, hyperproliferation not only causes an increase in cell density in the epidermis

but a change in its structure, as well [104]. Figure 5.1 shows the immunofluorescence of pro-

liferative cells in the epidermis in psoriasis. Immunofluorescing CD44 and p63 represent stem

cells while K10 represents TA cells and shows the difference between control (i.e. healthy skin)

and psoriasis. The number of cells highlighted has not only increased but the structure has

changed significantly, producing a thicker epidermis and rete ridges which are thicker with a

slightly flatter base as well. This is due to the fact that more cells are produced during this

process, the forces between the cells start pushing downwards, resulting in deeper rete ridges

and thickening of the skin. The model mimics this behaviour and structure as described earlier

in Figure 2.4.

In order to simulate hyperproliferation from the normal epidermis, the immune cytokine

stimulus needs to revert the division model, as mentioned in Chapter 4, back to its expanding

state.

The following behaviours and assumptions have been added to mimic the way psoriasis

develops:

• Increase amount of T cells introduced in the system [19].

• Flexible basement membrane and dermis to increase epidermal height and deeper rete

ridges [18, 38, 104].

• Introduction of immune cytokine stimulus to trigger hyperproliferation in stem and TA

cells [19, 104, 106].

• Cytokines are introduced once the normal epidermis reaches a steady state by using a

separate script and are maintained by the introduction of T cells [18, 19].

• Cell growth rate parameters remain the same as normal epidermis [18, 19, 50].

• Cell division probabilities differ from the normal epidermis [2, 107, 108] due a change in

starting state (i.e. normal epidermis formation starts from just stem cells). Chapter 6

describes this in detail.

• To push the model back into an expanding state, the cytokines concentration initialised is
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of a higher dose as compared to what is found in literature. This ensures hyperproliferation

occurs in the model [18, 19, 106].

Figure 5.1: Figure adapted from [104]. Double immunofluorescence of psoriatic skin showing
the co-localisation of (a) CD44 (in green) and (b) p63 (in green) and K10 (in red) in control
and psoriatic skin, where CD44 and p64 represent stem cells and K10 represents cells in the
suprabasal layer (i.e. TA and differentiated cells). The column on the right shows the merged
stainings. Images represent three experiments.

Similar to how the normal epidermis is developed, Figure 5.2 summarises how the normal

epidermis transitions to psoriasis based on the type of cell it is. Unlike in the normal epidermis,

there is an additional signalling chemical added to the system, immune cytokine stimulus. The

cytokine stimulus is diffused into the system which signals to the proliferative cells to grow,

divide and eventually terminally differentiate. Once terminally differentiated, the differenti-
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ated cell will migrate upwards as the epidermis grows and eventually reach the stage of cell

desquamation and end of the cell’s lifespan.

Figure 5.2: Flow chart summarising how the epidermis transitions to psoriasis based on what
cell type it is. It describes how proliferative cells hyperproliferate due to the diffusion of immune
cytokines and eventually terminally differentiating. Once it has terminally differentiated, it will
migrate upwards and end its lifespan after it has been desquamated, similar to the normal
epidermis.
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5.2 Methods

The simulation flow is similar to the normal epidermis as summarised in Figure 4.2 where the

simulation starts and chemical diffusion occurs, cells start to grow and proliferate and eventually

terminally differentiating. Physical processes solves some of the issues that can occur during

cell division such as overlapping of cells and ensuring layer stratification. The biological and

chemical processes are similar to the normal epidermal model with some additions that will be

further discussed in this section. The physical processes have been altered to take into account

how the rete ridges deepen while hyperproliferation occurs. This is done to ensure that the

wave-like shape is maintained as much as possible and to prevent the rete ridges from flattening

out.

5.2.1 Biological Processes

Psoriasis is modelled by activating an immune cytokine stimulus such as IL-22 and TNFα into

the model, which causes an onset between 7 days to 14 weeks and a time lag between the time

the patient gets an immunological response (such as from a streptococcal sore throat) to the

appearance of the disease itself [18, 109, 110]. In this model, the immune cytokine stimuli is

induced for a total of 7 days following the previously developed ODE model [19].

The growth rate of proliferative keratinocytes and differentiation in the psoriatic state in-

creases by approximately three times in stem and TA in the model, which is similar to previous

experimental data. In vivo experiments showed that the number of proliferating keratinocytes

increases by 2-3 times to 6-8 times in psoriasis [28, 42]. This results in a 2-5 times increase in cell

population [31, 82]. In this model, the increase in cell population, cell cycle and turnover times

are predicted to be approximately 3-times than normal and are controlled by an “activator”

switch that alters both the growth and division model from Chapter 4 as follows:

dSC

dt
= (3 ∗ µmax

Sgf

Ksgf + Sgf

Ksca
Sca +Ksca

+ (
Sstim

Ksstim + Sstim
)2)SC,

dTA

dt
= (3 ∗ µmax

Sgf

Ksgf + Sgf

Ksca
Sca +Ksca

+ (
Sstim

Ksstim + Sstim
)2)TA

(5.1)

where the addition of cytokines stimulus, stim, into the growth equation, Equation 4.2, for stem

and TA cell growth.
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Pa = Pae + Pab(
Sca

Ksca + Sca
− Sstim

Ksstim + Sstim
),

P b = Pbe + Pbb(
Sca

Ksca + Sca
− Sstim

Ksstim + Sstim
),

P c = Pce + Pcb(
Sca

Ksca + Sca
− Sstim

Ksstim + Sstim
),

Pd = Pde + Pdb(
Sca

Ksca + Sca
− Sstim

Ksstim + Sstim
),

(5.2)

The division model from Equation 4.3, on the other hand, immune stimulus, stim, causes the

model to go back into an expanding state resulting in hyperproliferation (see Figure 2.4).

5.2.2 Physical processes

The transition from normal and psoriatic epidermis results in a change to the epidermal structure

causing the structure to be thicker and having deeper rete ridges.

Although there have been studies on identifying how the rete ridges form in the epidermis,

the main cause it still unknown. In a study [111] on rete ridges in the oral cavity, the results

showed that rete ridges form due to the sucking action in the mouth as a baby. This sucking

action along with a higher density of stem cells causes a change in the oral cavity and forms

the rete ridges. The depth of rete ridges is determined by the density of stem cells. Hence, the

higher the stem cell density, the deeper the rete ridges. A similar mechanism of action can be

assumed in the case of the skin, where physical forces come to play, causing rete ridges to form

in the epidermis.

The model assumes a similar mechanism where mechanical forces are used to mimick this

“sucking” action causing the deepening of rete ridges during psoriasis. To model these changes,

the following changes have been made when switching states:

• Unfreeze the basement membrane to allow the deepening of rete ridges.

• Additional forces applied to stem and TA cells to ensure that these cells remains in the

lower epidermal layers as the rete ridges start to deepen (Figure 5.3).

• An increase in height of the domain box to simulate a thicker epidermis.

In addition, to ensure that the wave shape is maintained in the model, the basement mem-

brane has been sub-divided into different regions where the peaks and toughs of the waves are
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sub-divided into columns. The column regions with the peaks are “frozen” in place to ensure

that only the toughs are deepened, hence, producing deeper rete ridges.

(a)

(b)

Figure 5.3: Regions highlighted in the white boxes where basement membrane (in orange) are
“frozen” to ensure that wave shape is maintained when transitioning to psoriasis. (a) Peak
columns are frozen to ensure that only the toughs of the wave moves. Hence, producing the
deepening of rete pegs as more cells are produced in the epidermis. (b) The top and bottom of
the rete pegs are “frozen” to ensure the wave shape is maintained. The top of the rete peg also
has an additional adhesive force between stem and TA cells during the transitional state. This
ensure that stem cells remain on top of the basement membrane and for TA cells to remain in
the lower layers of the epidermis.
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Alterations to TA cell division

The transition from normal and psoriasis development differs slightly as the model does not

start off with a clean slate of just stem cells but rather a domain filled with the various cell

types. In addition to the difference in starting state, TA cells may also reside in the stratum

basale layer which lies in the rete ridges. Hence, additional rules applied to TA cells are required

to ensure that 1. TA cells do not push sideways causing the epidermal structure to lose that

wave-like shape during the transition to psoriasis, 2. epidermal layer stratification is maintained.

The changes made to the direction of how TA cells divide ensured that they divide vertically

[50, 48], or oblique [112] manner as seen in previous models and clinical studies. Figure 5.4 shows

a time-lapse immunofluorescence images tracking the direction of proliferative cell division in

mice [112]. The study investigated in different parts of hairless mice such as the dorsal, ear,

hindpaw and tail skin. It was revealed that most division along the basement membrane in the

dorsal and ear epidermis were parallel, whereas in the hindpaw and tail epidermis, cell division

occurs in parallel and oblique in direction. Although, the area investigated differs slightly from

how the human epidermal structure is, this provides some insights on how TA cell division may

differ slightly when the epidermis has been fully developed. In this model, I have adapted this

concept and applied it to TA cell division in the development of psoriasis.

5.2.3 Chemical processes

The chemical processes used in psoriasis are similar to how the normal epidermis model has

been developed. The processes involved are chemical consumption and mass balance which have

been described in Chapter 4.

In addition to the two nutrients, calcium and growth factors, involved in the growth and

proliferation of stem and TA cells, a single immune cytokines stimulus is initialised in the model

to induce psoriasis. The immune cytokines stimulus initialised is maintained by introducing T

cells into the system, where they reside in the basement membrane and the dermis region. The

function of T cells has been simplified where they do not grow and migrate out of the basement

membrane. The introduction of T cells is there to mainly regulate the amount of stimulus in

the system, to activate and maintain psoriasis. The chemical consumption and production are

based on the same reaction rates in Equation 4.7.
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Figure 5.4: Figure adapted from [112]. A four-dimensional imaging of cell division in the hind
paw epidermis in a living mouse. The images trace how proliferative cells divide, in particular,
which direction - oblique or horizontal. (A) A reconstruction 3D image of oblique division to the
basement membrane. Images are take every 6 minutes. (B) Time-lapse x- and y-axis images
of mitotic cells in (A) at different depths. (C) Reconstructed 3D images of parallel division
along the basement membrane. Images are take every 6 minutes. (D) Time-lapse x- and y-axis
images of mitotic cells in (C) at depth of 32µm from the skin surface. White arrows represents
the cell dividing. Scale bar = 5µm.
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5.2.4 Deepening of rete ridges

The deepening of rete ridges was obtained by allowing movement of cells at the bottom of the

waves. This allows the forces during cell division to push downwards, hence, developing the

deeper rete ridges. Figure 5.5 shows the visualisation output from the simulation at days 0, 7

and 30, with day 0 the start of the immune cytokine stimulus initialised in the system. The

cytokine stimulus was initialised for 7 days and allowed to stabilise and reach a steady state.

The height of the rete ridges increased by approximately 3.5-times than in the normal epidermis,

similar to literature where the thickness increases 2- to 3-times [50, 80, 113].

Figure 5.5: Visualisation output from the model. Snapshot of the model at three different time
points (Day 0, 7 and 30). Cells represented: stem cells (in dark blue), TA cells (in light blue),
differentiated cells (in white), T cells (in red) and basement membrane (in orange).

5.2.5 Cell population density

A previous computational study [19] showed that the cell population ratio remained the same

in both normal and psoriasis. In addition, the overall number of epidermal cells is known to

increase by up to two to five times as compared to the normal epidermis [31, 41]. The model

predicted similar cell populations with the ratio being 4.7% (2,203) , 25.6% (11,976) and 68.6%

(32,088) for stem, TA and differentiated cells, respectively. As only keratinocytes are taken into

account, this translates to a cell population ratio of 4.5%, 24.6% and 66.0% for stem, TA and

differentiated cells. This is similar to the cell population ratio in the normal epidermis with

4.3%, 23.33% and 65.2% being stem, TA and differentiated, respectively. The overall number
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of epidermal cells has also increased by approximately three times as seen in Figure 5.6 showing

the model outputs and average for 10 simulation runs under different random seeds.

5.2.6 Cell cycle and turnover times

In psoriasis, it is known that the cell cycle and the turnover times are three to five times faster

than in normal epidermis [31, 40, 41]. The cell cycle and turnover times were calculated using

Equations (4.9) and (4.10) found in Chapter 4. Using the equations, the predicted cell cycle

and turnover times in psoriasis are approximately 4-times shorter than in the normal epidermis.

The average cell cycle times are 47 and 20 hours for stem and TA cells, respectively, while the

total turnover time was 5-times faster at approximately 4 days.

5.2.7 Parameters

Psoriatic epidermis

Parameter description Parameter Value Units Reference

SC maximum growth rate SC µmax 1.28e-06 s−1 Modified from [18]
TA maximum growth rate TA µmax 3.21e-06 s−1 Modified from [18]
Ks value for growth factor Ksgf 2.5e-7 kgm3 Assumed
Ks value for calcium Ksca 2.5e-3 kgm3 Assumed
SC symmetric division in expanding stage Pae 0.05 - Assumed
SC symmetric division in balanced stage Pab 0.05 - Assumed
SC asymmetric division in expanding stage Pbe 0.4 - Assumed
SC asymmetric division in balanced stage Pbb 0.4 - Assumed
TA symmetric division in expanding stage Pce 0.25 - Assumed
TA symmetric division in balanced stage Pcb 0.1 - Assumed
TA asymmetric division in expanding stage Pde 0.25 - Assumed
TA asymmetric division in balanced stage Pdb 0.05 - Assumed
Maximum TA division maxTA 5 - [18]
Diffusion coefficient Ks 1.0e-9 m2s−1 [102]
Immune cytokine stimulus initialised Stim 5.0e-4 kgm3 Assumed

Table 5.1: Model parameters and conditions in psoriatic epidermis. The growth rates for stem
and TA cells remain the same as the normal epidermis while the division probabilities for both
stem and TA cells are altered. A new parameter scan was done to obtain the estimated results
which will be further described in the next chapter. The maximum number of time a TA cell
can divide now increases from 4 to 5 based on [18].

The parameters used in the psoriatic model are described in Table 5.1. The assumed pa-

rameters are described as follows:

• The maximum growth rate, µmax, for stem and TA cell are kept the same as in Chapter

4 and were calculated based on Equation 4.11 using the cell cycle times. The maximum
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(a)

(b)

(c)

Figure 5.6: Average cell population numbers in the psoriatic steady state. (a) Stem cell popu-
lation in steady state. (b) TA cell population in steady state. (c) Differentiated cell population
in steady state. The average out of all simulations are represented by the horizontal line in the
plots, where the average numbers are 2,203, 11, 976, and 32, 088 for stem, TA and differentiated
cells respectively. The overall number of epidermal cells has increased by 3-times as compared
to the normal epidermis. The results obtained were measured based on an average run of 10
simulations for each test case. Table 5.1 summarises the parameters used.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: (a-c)Cell numbers plot of stem cells (a), TA cells (b) and differentiated cells (c). The
average ratio of stem, TA and differentiated cells are 4.7% (2203), 25.6% (11,976) and 68.6%
(32,088), respectively. (d-e) Cell cycle for stem (d) and TA cells (e). The average cell cycle times
predicted are 42 and 19.7 hours, respectively. (f) Total turnover times for both proliferative
and differentiated compartment. The average turnover time in the model is approximately 4
days in the steady state. Overall, the model is able to simulate psoriasis with the cell cycle and
turnover times approximately 3.5- and 4-times faster, respectively. The simulations were ran
10 times under different random seed (R1-10) with the average plotted in purple dotted line.
Each simulation ran under the same initial conditions such as the immune cytokine stimulus
initialised, growth rates, and diffusion rates. Table 5.1 summarises the parameters used.
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TA cell division has increased from 4 to 5 in psoriasis, similar to the implementation in

Chapter 3.

• The Ks values for both growth factor and calcium were kept the same as in the normal

epidermis as hyperproliferation is driven by a change in division.

• It has been noted in previous clinical studies that a change of state such as recovering

from a wound or disease, division in the proliferative compartment is altered [114, 107].

A new parameter scan was done for stem and TA cell division to obtain the new division

probabilities which will be further described in the next chapter, Chapter 6.

5.3 Conclusion

This chapter described how the epidermis transitions into psoriasis in the model, taking into

account the changes in the physical, chemical and biological processes. This includes the spatial

features of how the epidermal structure changes with the deepening of rete ridges and increase

in epidermal height as seen in Figure 5.3. A single immune cytokine stimulus has also been

modelled to trigger hyperproliferation in stem and TA cells, mimicking how the inflammatory

process occurs in reality.

The model predicted an average cell cycle time of approximately 3.5- and 4-times faster

than normal with average times of 47 and 19.7 hours in stem and TA cells. The average total

turnover time was approximately 5 times faster at 4 days in the steady state. Both results are

in line with clinical literature [18, 31, 41] where these timings are around three to five times

faster than in the normal epidermis. The total turnover time is in the higher range at 5-times

faster, however, this could be the way the model has been presented with the lack of the stratum

corneum layer.

Overall, the model has been able to mimic how psoriasis develops using a single immune

cytokine stimulus with changes to the epidermal structure such as the deepening of the rete

ridges and increase in epidermal height. The model outputs were validated against literature

and produced similar results. Although the model is a simplified version of the complex skin

structure, the model has potential to be further implemented or modified to test different

immune cytokines stimuli to trigger psoriasis. The referenced cytokines used were based on a

previous ODE model [19], IL-17 and TNF-α. In that study, the concentration of both cytokines

were similar, hence, in this model, it was clustered as a single immune cytokine. The model
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serves as a baseline model for future developments in understanding psoriasis and its treatments.

Future studies can include changing the type or including more than one immune cytokine to

identify how different cytokines trigger psoriasis and its severity. In addition, this could also

serve as a guide on how various treatments work, not only for NB-UVB treatments but how the

different types of biological treatments, which target different immune cells, can cause clearance

in psoriasis.
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Chapter 6

Altered proliferative cell division in

the psoriatic state

6.1 Introduction

Psoriasis is a chronic inflammatory disease characterised by hyperproliferation of stem and TA

cells and abnormal differentiation in the epidermis. Hyperproliferating stem and TA cells are

activated by several immune cytokines from T cells, for example. In a hyperproliferative state,

the epidermis breaks from the steady state and eventually reaches a new steady state with a

higher ratio of each cell type as compared to the normal epidermis.

During the process of hyperproliferation, the T cell immune response not only causes an

increase in cell proliferation but also alters how these cells divide. It is not understood how this

occurs, however, previous studies found that asymmetric division is the main type of division

that occurs to ensure that psoriasis is maintained [114]. In one of their experiments, it was found

that both symmetric and asymmetric cell division increased in psoriasis based on a significant

reduction of keratin-15 (K15), a keratin marker of stem cells, immunostaining in basal cells.

In addition, it was noted that approximately 13% of cells expressing K15 were undergoing

asymmetric division while approximately 32% of cells expressing K15 underwent symmetric

division. Hence, it was hypothesised that an increase in both symmetric and asymmetric division

in stem cells may provide a mechanism on how the epidermis maintains its plaques in psoriasis.

Another previous study also described how cell division changes in psoriasis through a

systematic review of studies from 1962 to 2009 [107]. The authors had used a general equation

to analyse the evolution of differentiated epidermis and determined what were the necessary
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conditions for psoriasis to develop. The results showed that an increase in cell division and/or

decrease in physiological apoptosis of germinative cells were required to generate psoriasis.

Alterations of epidermal cell division is widely studied in skin wound healing, as well. In

wound healing, there are three main stages - inflammation stage, regenerative stage and remod-

elling stage [108, 2]. The wound healing process starts off with the inflammatory stage where

the skin immediately starts forming blood clots and recruit inflammatory cells to start covering

the wound. Next, the regenerative stage where new epithelial cells are produced and form the

granulation tissue. Lastly, the remodelling of epidermis, dermis and extra-cellular matrix occur.

The last stage could take up to months for the skin to fully heal. The three stages can be seen

in Figure 6.1[2], where actively proliferating cells and terminally differentiated cells were traced.

In this study, the three stages were labelled migrating front, proliferating zone and post-closure

(see Figure 6.1) instead, however, they perform the same actions. In addition, the type of divi-

sion that occurs is mainly asymmetric or symmetric division - similar to how psoriasis develops

[108]. Hence, wound healing experiments are one of the closer references that can be used in

determining the changes that occur in psoriasis development.

In this chapter, I look into exploring how proliferative cell division probabilities are altered

during the development of psoriasis. Some assumptions have been made as the model represents

a simplification of how the epidermis develops. This includes how instead of three stages as in

wound healing, I have assumed two different stages similar to how the normal epidermis develops

in Chapter 4, expanding and balanced stage. The first stage is governed by the immune stimulus

activated mimicking this migrating front. Once the disease is developed, it then moves into the

next stage where the model reaches stability in psoriasis. The cell division probabilities are

obtained by doing a parameter scan on each division type, self-, asymmetric and symmetric

division, to see how the model reaches the targeted cell population densities and ratios.

6.2 Methods

The model assumes two stages when transitioning to psoriasis and adopts the same method of

division in the normal epidermis - expanding and balanced stage. Specifically, Figure 4.5 in

Chapter 3 described the epidermal cell pathway where division to a daughter cell of a different

type is determined by the probabilities, P0 and P1, where P0 determines the rate of which

stem cells produce TA daughter cells, and P1 determines the rate of which TA cells produce
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Figure 6.1: Figure adapted from [2]. Three division stages in wound healing example. (a-f)
Images from experiments. (g-i) Lineage trees of proliferating cells 9 days after the scratch. (j-l)
Summary of cell division on each of the three stages. Green cells and magenta cells represent
proliferating cells and differentiating, non-dividing cells, respectively.
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differentiated daughter cells. The previous rates in the normal epidermis are P0 = 0.1 and P1

= 0.07 during the expanding state.

However, unlike in the normal epidermis model, there are three more unknowns to identify

the changes to TA division probabilities in psoriasis. Hence, two groups of parameter searches

were performed. Using the previous study where cell proliferation was tracked [2], the following

assumptions have been made based on the normal epidermis division probabilities where:

• Stem cell division is kept at 10-80-10 for self-, asymmetric, and symmetric division, re-

spectively1 [20, 97, 98].

• TA cell division is kept to a similar balanced ratio of 35-30-35 for self-, asymmetric, and

symmetric division, respectively1 [2].

• P0 and P1 values should equal 0.5 in the balanced state (i.e. steady state) while varying

in the expanding state [2].

The first group of parameter scan was performed on the stem cell division to obtain values

Pa, Pb and P0 rate in expanding stage that produce the ideal number of stem cells in psoriasis.

The P0 values tested were ranged from 0.1 to 0.4, in steps of 0.05. Once the ideal number of

stem cells were obtained, the scan moved to the next group to identify the values for Pc, Pd

and P1 in the expanding stage. The P1 values tested ranged from 0.075 to 0.425, in steps of

0.025. Tables 6.2 and 6.3 summarise the values tested and average results out of five simulations

obtained.

6.3 Results

6.3.1 Normal epidermis division probabilties

The normal epidermis division probabilities were first tested to understand what cell population

numbers and ratio can be obtained. The values used for stem cell division are Pae = 0.05, Pab

= 0.05, Pbe = 0.1 and Pbb = 0.7 while TA cell division probabilities are Pce = 0.02, Pcb = 0.32,

Pde = 0.1 and Pdb = 0.18.

1In Chapter 4, it was showed that despite having different proportions of self-proliferation, asymmetric and
symmetric division, the number of cells do not differ greatly as long as the P0 and P1 are identical. Hence, here I
assumed that stem cells will retain its 10-80-10 division for self-proliferation, asymmetric and symmetric division
respectively. For TA cell, a balanced rate of division 35-30-35 is maintained.
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Figure 6.2 shows the results of each cell type over five runs with the average of stem, TA and

differentiated cells being 4,355, 161,951, and 37,917, respectively. A high TA cell population

is produced using this set of parameters which is much higher than expected as compared to

literature. It is known that when psoriasis develops, the cell ratios are maintained with cell

population numbers increasing between 3-5 times more than normal epidermis. In this case,

the ratio of TA cells are 79.1% instead of approximately 26.7% as in normal epidermis. Thus,

this shows that the division probabilities are different between normal and psoriasis and that

our computational model can be used to identify estimates of how they differ.

6.3.2 Proliferative cell division probabilities scan

The approximate cell population numbers referenced were based on the results in Figure 4.8

where stem, TA and differentiated cell population had an average of 695, 3,709 and 10,080,

respectively. Table 6.1 summarises the average cell population obtained and an approximation

of what the expected increase in cell numbers are between three to five times in psoriasis [18, 19].

Stem cell TA cell Differentiated cell

Normal Epidermis 695 3,709 10,080
Psoriasis (3x) 2,085 11,127 30,240
Psoriasis (4x) 2,780 14,836 40,320
Psoriasis (5x) 3,475 18,545 50,400

Table 6.1: Approximate cell population based on the average cell numbers obtained from Chap-
ter 4 where the cell population is expected to increase by three to five times more than in the
normal epidermis.

Based on the assumptions mentioned, model simulations were run for the various Pa, Pb,Pc

and Pd parameters. Tables 6.2 and 6.3 show an example of what Pa, Pb, Pc and Pd values

were used in the expanding stage and what P0 and P1 values were tested. The parameter scan

for each set was performed five times using different random seeds and their average used to

determine which parameters to be used in the model. The model outputs were then validated

against literature of the cell population increment as compared to normal epidermis.

Figures 6.2 and 6.4 describe the model outputs based on the P0 and P1 values in the

expanding stage. In each test case, the model was run on an average of five runs over five different

random seeds that were used in the normal epidermis. The stem cell division probability scan

used the 10-80-10 division type which had no duplicates in P0 values. However, in the case

of the TA cell probability scan, the division type used was 35-30-35 which resulted in some
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(a)

(b)

(c)

Figure 6.2: Average number of cells produced when using the normal epidermis division prob-
abilities when transitioning form normal to psoriatic state. (a) Stem cell population with the
average of 4,355. (b) TA cell population averaging at 161,951 cells which is over 10 times more
than in normal. (c) Differentiated cell population averaging at 37,917 cells. The average out
of each test case is represented by the blue shadow in the plots each cell type. The results
obtained were measured based on an average run of 5 simulations for each test case.
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Pae Pbe P0e Stem cell (Avg.)

0.05 0.1 0.1 5,682
0.05 0.2 0.15 4,750
0.05 0.3 0.2 3,692
0.05 0.4 0.25 3,023
0.05 0.5 0.3 2,080
0.05 0.6 0.35 1,822
0.05 0.7 0.4 1,276

Table 6.2: Stem cell division probability used for parameter scan and the average number of
stem cells obtained. The scan was done under the assumption that stem cell division remained
in the 10-80-10 ratio for self-, asymmetric and symmetric division, respectively.

Pce Pde P1e Stem Cell (Avg.) TA cell (Avg.) Differentiated cell (Avg.)

0.05 0.05 0.075 2,878 176,006 56,629
0.05 0.1 0.1 2,871 206,644 64,916
0.05 0.15 0.125 2,937 173,367 103,067
0.05 0.2 0.15 2,957 125,045 70,123
0.05 0.25 0.175 2,935 104,055 66,270
0.1 0.2 0.2 2,937 80,101 63,148
0.1 0.25 0.225 2,945 60,632 59,231
0.15 0.2 0.25 2,958 45,697 54,700
0.15 0.25 0.275 2,953 33,375 51,013
0.2 0.2 0.3 2,949 26,726 46,956
0.2 0.25 0.325 3,017 20,503 43,226
0.25 0.2 0.35 2,944 15,804 39,670
0.25 0.25 0.375 2,965 11,970 36,412
0.3 0.2 0.4 2,957 9,110 34,131
0.3 0.25 0.425 2,948 6,929 31,222

Table 6.3: TA cell division probability used for parameter scan and the average number of cells
obtained. The scan was done under the assumption that stem cell division remained closer to
a balanced ratio for self-, asymmetric and symmetric division at 35-30-35, respectively. The
P1 value in the balanced state is 0.5 to ensure that when the model reaches a steady state, it
will ideally have equal production of TA and differentiated cells maintained. Note: P1 values
ranging from 0.125 to 0.375 has more than one combination of Pc and Pd. The above table is
just a example of some of the values. It is also important to note that similar to the parameter
scan of stem call division in Chapter 4, combinations of the same P1 values produce similar
results.
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duplicates and therefore the results obtained were averaged out based on the P1 values. Despite

the duplicates, the results between the different Pc and Pd values did not produce results that

differed largely. This is similar to the results obtained in Chapter 4 during the stem cell division

probability scan. The model predicted for psoriasis to occur within the expected increase in

cell numbers of three- to five-times, the expanding cell probabilities are 0.25 to 0.3 and 0.375

for stem and TA cells, respectively. This will produce an average cell numbers of stem, TA

and differentiated cells of 2,965, 11,970 and 36,412, approximately 4-times more, during this

transition from normal to psoriastic state.
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(a)

(b)

(c)

Figure 6.3: Average cell population based on the parameter estimation for P0. The best range
was found to be between 0.25 and 0.3, which produced an average stem cell population of 3,032
and 2,080. (a) Stem cell population. (b) TA cell population. (c) Differentiated cell population.
The average out of each test case is represented by the horizontal line in the plots each cell
type. The results obtained were measured based on an average run of 5 simulations for each
test case.
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(a)

(b)

(c)

Figure 6.4: Average cell population based on the parameter estimation for P1. The best value
found was 0.375, which produced an average of 11,970 TA cells. (a) Stem cell population.
(b) TA cell population. (c) Differentiated cell population. The average out of each test case
is represented by the horizontal line in the plots each cell type. The results obtained were
measured based on an average run of 5 simulations for each test case.
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6.4 Conclusion

This chapter looked into exploring how computational modelling can provide an insight to the

changes in proliferative cell division when psoriasis occurs due to an immune cytokine stimulus.

Using the same division probabilities in both normal and disease state, the model predicted an

unusually high TA cell population which does not reflect how psoriasis occurs and breaks the

balance of the different cell type ratio of 4.7%, 26.4% and 40-66% for stem, TA and differentiated

cells, respectively [80]. This supports the hypothesis that in a disease state, hyperproliferation

breaks this balance of division state and changes how each cell type responds and alters its

division probabilities to reach a new steady state while ensuring that each cell ratio remains.

In this investigation, I have applied a similar concept to how wound healing occurs at

different stages with different sets of division probabilities for each stage when the wound is

first inflicted and how it will then switch division probabilities to obtain a new steady state

[2]. In the model, a new set of division probabilities were obtained by parameter scans for both

stem and TA cells. The results obtained showed how the division probabilities differed from

the normal epidermal state to psoriasis. In stem cells, the P0 changed from 0.1 to 0.25 while P1

changed from 0.07 to 0.375 in the expanding stage. In both cases, the rate of producing at least

one daughter cell of a different type has changed significantly and requires a much higher rate of

producing a daughter cell that is of a different type (i.e. stem to TA cell and TA to differentiated

cell). Similar results can be seen during wound healing where in the proliferating zone, the rate

of producing a differentiated daughter cell went up to 0.695 from 0.07 [2], for example. Hence,

supporting how a different set of division probabilities are required when modelling any changes

that occur to the epidermis such as psoriasis or other inflammatory diseases. This finding could

also provide a guide of how psoriasis occurs and how we can trace the lineage of proliferative

cells in vivo.
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Chapter 7

Conclusions

7.1 Summary

Psoriasis is a chronic inflammatory skin disease which affects the patient’s quality of life and

currently has no cure. There are various treatment options available for patients such as topical

corticosteroids to systemic therapies to phototherapies such as NB-UVB [4, 7]. However, with

each type of therapy, a generalised form is given to all patients under a largely predefined

dosing regime. This may not be ideal for every single patient and may cause them distress

if the therapy has little effects after a period of treatment. One way of helping patients is

to provide personalised treatment and to use computational models to do so. Computational

models provide not only scientists but medical practitioners a better understanding of the

disease formation, with the aim of providing specific treatment options. A previously developed

2D model of psoriasis and NB-UVB clearance looked into solving some of these issues when

understanding NB-UVB phototherapy treatments. However, the model has some limitations

such as the lack of cell-cell interactions, spatial considerations, and high NB-UVB dose given for

each treatment. These do not depict how the epidermis develops and behaves and the treatment

dose given in reality. This thesis focused on solving some of these limitations with the aim to

develop a 3D computational model of immune cytokine interaction and epidermal homeostasis

in psoriasis.
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7.2 Evaluation of Research Aims

In this thesis, agent-based computational models were developed to explore how psoriasis devel-

ops. The 2D model in Chapter 3 described how computational models can be used to understand

NB-UVB phototherapy treatments in psoriasis and how different simulations can represent in-

dividual patients. The 3D model developed aimed to eliminate some of the limitations the 2D

model had such as the lack of spatial considerations, cell-cell interactions and the use of nutri-

ents to aid cellular growth and proliferation. Here, I summarise the key contributions done in

this research.

Chapter 3 explored how a previously developed 2D computational model of psoriasis [18]

could be used to provide a better understanding on NB-UVB treatments in clinical setting. The

model was originally developed for NB-UVB treatment dose of 3 MED, which are much higher

than what is given in the clinics about 1 MED. Hence, the dose was reduced to 1 MED in the

model and the frequency of treatment increased to what is given clinically. The next investiga-

tion was looking into the different mechanisms of action that occurs in NB-UVB phototherapy

treatments, cell cycle arrest and apoptosis, including comparing how a combination of the two

mechanisms differs from just using one mechanism. In addition, to mimic how patients get

their treatments in reality, different frequencies were tested to take into account the weekends

where the clinics are closed. The model was able to show how using just cell cycle arrest was

insufficient in causing clearance and that apoptosis is the main mechanism of action for clear-

ance. However, both mechanisms can be used together to mimic how clearance occurs in reality.

Simulations ran over different random seeds to simulate individual “patients”. The results ob-

tained were fed into a clustering algorithm to identify and validate model outputs against real

patient data. The results showed how the model outputs were able to simulate real patients

and how they can be clustered into different groups to identify and observe treatment progress.

This shows how computational models may be useful in simulating different types of patients

and predict their treatment outcomes. The model can be used to aid clinicians in determining

treatment plans for individual patients such as to continue with NB-UVB phototherapy or to

switch to other types of treatments like biologics.

Chapter 4 presents a 3D model of how the normal epidermis develops and aims to solve

some of the limitations of the 2D model mentioned in Chapter 3. The 3D model was developed

in NUFEB and LAMMPS and took into account the cell dynamics and cell-cell interactions.
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The model consists of three main processes, physical, biological and chemical, and features a

wave-like basement membrane depicting how the epidermis is in reality. Physical processes

solved issues such as overlapping of cells during division and to obtain layer stratification by

modelling repulsive and cohesive forces. The biological processes modelled cellular growth and

division based on two nutrients, extracellular calcium and endogenous growth factors. Lastly,

the chemical process involves the diffusion of these nutrients and production of growth factors

by stem and TA cells in the system. The model outputs, cell population ratio, cell cycle and

turnover times, were validated against literature.

Chapter 5, explored how psoriasis develops based on a single immune cytokine stimulus.

Psoriasis is marked by hyperproliferation and thickening of the epidermis. This thickening

not only occurs at the top of the epidermis but affects the rete ridges at the bottom as well

with a deepening and flat-like shape as seen in Figure 5.1. The psoriasis 3D model consists of

the same processes as the normal epidermis with additional rules applied to trigger psoriasis.

The biological processes were modified to include the single immune cytokine stimulus to both

growth and division. In the division model, the immune cytokine stimulus pushes the model

back into a proliferative state to cause hyperproliferation in psoriasis. Lastly, the chemical

process includes the new nutrient, the immune cytokine stimulus, initialised and diffused from

the basement membrane. The model was able to predict cell cycle and turnover times within

the known range of 3-4 times shorter, while the cell population ratio maintained with the cell

numbers increasing by approximately 3 times.

Psoriasis is not only known to cause changes to the biological and physical structure of the

skin: it can alter the proliferative state of stem and TA cells [114, 107]. Chapter 6, explored how

proliferation rates are altered during psoriasis. If the division probabilities in the model were

kept the same as in the normal epidermis, psoriasis did not occur and results in a very high TA

cell population. Hence, an investigation was carried out on the alterations to proliferation in

psoriasis. Two sets of parameter scans were performed - one on stem cell and the other on TA

cell, under the assumption that the target cell numbers are based on getting the model to reach

within 3-5 times more than in the normal epidermis [18, 19]. Secondly, it was assumed that for

the model to obtain a steady state, both P0 and P1 rates in the balanced state were 0.5, where

there is an equal chance of a cell to divide to the same type as the parent and of a different type.

The model used a concept similar to how wound healing occurs in the skin, with the difference

that the immune cytokine stimulus pushes the model back to a proliferative (expanding) state.
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The results showed that in the expanding state, both P0 and P1 values increased significantly

as compared to the normal epidermis. This not only supports how a different set of division

probabilities are required when modelling psoriasis and other inflammatory diseases, but also

gives an insight on how we can trace proliferation in keratinocytes in clinical experiments.

7.3 Limitations

The 3D model is a simplification of how the epidermis develops in reality. The model takes into

account the three main types of keratinocytes involved in the epidermis and their interactions

with a single immune cytokine stimulus to progress to psoriasis. However, in reality, there are

more than the three types of cells mentioned such as granular cells and corneocytes [115, 116, 50]

and different, multiple immune cyotkine stimulus and T cell species [106, 117, 105] that may be

involved in the development of psoriasis. The limitations are listed as follows:

• The model starts as an embryonic state which may have a different initial rate of growth

and transition to psoriasis.

• The model has been simplified to include only the main three types of keratinocytes -

stem, TA and differentiated cells. However, in reality, differentiated cells can be further

subdivided and labelled according to where it is located in the epidermis. For example,

TA cells will differentiate to growth arrest cells which will differentiate to a spinous cell

in the stratum spinosum layer. The cell will go on to differentiate further into a granular

cell in the stratum granulosum and corneocyte stratum corneum layer [115, 116, 50].

• Corneocytes are differentiated cell found in the upper most layer of the epidermis, the

stratum corneum. Corneocytes are not spherical in shape but a flat cells which has

excreted out its contents in preparation to be desquamated out of the epidermis. In this

model, corneocytes have not been taken into account and the action of differentiated cells

flattening is not modelled. Therefore, the turnover time in the model is slightly shorter

than what is found in literature as shedding does not occur.

• The model does not include other cells that are present in the epidermis such as hair

follicles and melanocytes. Hair follicles produce the hair on our skin [91], and melanocytes

produce melanin (the pigment responsible for our skin colour) [118, 119, 120, 121].
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• A single immune cytokine and T cell species are modelled. However, in reality, there are

many different types of T cell and cytokine species which are known to cause psoriasis

such as IL-22, IL-23, IL-17, TNFα and so on [3]. Each cytokine is known to affect a

different inflammatory response that can cause different severity of the disease. Hence,

they are important in biological treatment as they target specific cytokines [3, 105].

7.4 Future Work

The 3D computational model simulates how the normal epidermis forms and how it transi-

tions to psoriasis using a single immune cytokine stimulus. This model provides the first step

as a baseline model to dive further into how we can use the model to better understand the

disease and to model various treatment options such as NB-UVB phototherapy or biological

treatments. Some directions for future studies include modelling NB-UVB phototherapy treat-

ments, exploring different doses and frequencies of NB-UVB treatments and using single or

combination mechanisms of action for clearance, similar to the 2D model in Chapter 3. The

3D model outputs can also be fed into the same machine learning algorithm [19] used to make

predictions of how each simulation can be clustered to emulate real life patients.

The 3D model can also be modified to investigate specific immune cytokine stimuli and

T cell species or a combination of them to better understand how each cytokine affects the

skin to cause different variations of psoriasis. This would allow us to explore how different

biological treatments aid clearance of psoriasis by targeting specific cytokines or may be used

in combination therapies.

Apart from modelling psoriasis treatments, some possible future work include tackling some

of the limitations mentioned in the current 3D model. This includes modelling the upper

epidermal layers where differentiated cells flatten out and eventually shed off to develop a

model where all layers of the epidermis are included which can be used to explore other skin

diseases apart from psoriasis. Next, the inclusion of other cell types such as melanocytes as

they are known to affect UVB phototherapy treatments [118, 119, 122, 123, 120]. Melanocytes

are a type of dendritic cells that produce melanin, the pigment responsible for skin colour,

located in the stratum basale layer. Melanin is known to absorb UV, preventing DNA damage

to keratinocytes. The amount of melanin in the body correlates to how much UV protection

the skin gets, hence, patients of colour has a lower susceptibility of UV damage as it offers
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more protection [124]. It has been suggested that phototherapy is effective in patients of colour

and may require a higher dose [125, 126]. A disadvantage of phototherapy is the risk of post-

inflammatory hyperpigmentation (i.e. darkening of the skin), which occurs due to exposure to

NB-UVB phototherapy treatments, and may not be acceptable to all patients [127]. It will be

interesting to investigate how different NB-UVB doses affect patients of colour and how we may

use computational modelling to predict the minimal dose required.

In conclusion, the 3D computational model present insights on how the epidermis forms and

how immune cytokines trigger psoriasis, altering not only the structure of the epidermis but also

alters how proliferative cells, stem and TA, divide. Directions for future work include modelling

psoriasis NB-UVB and biological treatments but also tackling some of the limitations in the

current model so that it can be used hand-in-hand or as a predictive tool for future clinical

studies as well.
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Appendix A

Appendix

A.1 2D Model

A.1.1 Netlogo code with automation

The code can be found on my GitHub repository, https://github.com/dinikap/netlogo.git,

with the original base code from [18] and my modified version of the code.

A.2 3D Model

A.2.1 Code

The code can be found on my GitHub repository, https://github.com/dinikap/NUFEB.git,

under the branch “psoriasis-remote”. The source code for the psoriasis package can be found

in “src/USER-PSORIASIS”. The working examples can be found in “examples/epidermis-

test” and “examples/psoriasis-test” for the normal and psoriatic epidermis, respectively. In

“examples/epidermis-test/epidermis-1”, runs the normal epidermal formation and in “examples/psoriasis-

test/psoriasis-1” runs the transitional state to psoriasis using random seed 10. For the steady

state model for the same random seed, run “examples/psoriasis-test-psoriasis-10”.

A.2.2 Random seeds used in 3D model

Ten different random seeds were used in validating the model. These were generated using a

random generator between a numbers 0 to 99999. Tables A.1, A.2, A.3 presents the random

seeds used and the cell population numbers for stem, TA and differentiated cells, respectively.
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Stem cell

Case Random Seed Normal Epidermis Transition Psoriasis

1 14564 715 3,046 2,104
2 56783 679 3,061 2,296
3 34670 676 2,965 2,087
4 79936 646 2,910 2,059
5 6831 673 3,051 2,266
6 48085 726 3,041 2,137
7 80294 699 2,888 2,968
8 9288 706 2,860 1,954
9 3715 667 3,089 2,108
10 53511 680 2,821 2,053

Table A.1: Summary of the stem cell population numbers in each state based on the 10 random
seeds used in both normal and psoriatic epidermis development in the 3D model. Each random
seed was randomly generated using a random seed generator.

TA cell

Case Random Seed Normal Epidermis Transition Psoriasis

1 14564 3,799 11,786 11,825
2 56783 3,659 13,402 13,752
3 34670 3,546 12,494 11,828
4 79936 3,649 10,984 11,334
5 6831 3,664 11,491 12,993
6 48085 3,832 13,088 12,243
7 80294 3,780 10,739 11,033
8 9288 3,871 11,868 11,130
9 3715 3,623 12,614 11,997
10 53511 3,746 11,181 11,447

Table A.2: Summary of the TA cell population numbers in each state based on the 10 random
seeds used in both normal and psoriatic epidermis development in the 3D model. Each random
seed was randomly generated using a random seed generator.

Differentiated cell

Case Random Seed Normal Epidermis Transition Psoriasis

1 14564 10,289 36,714 31,191
2 56783 10,009 39,888 38,091
3 34670 9,807 37,734 32,066
4 79936 9,782 34,442 31,047
5 6831 9,895 35,458 34,085
6 48085 10,448 38,392 31,545
7 80294 10,148 33,166 29,330
8 9288 10,064 35,654 29,449
9 3715 9,964 37,951 32,047
10 53511 10,090 35,025 32,031

Table A.3: Summary of the differentiated cell population numbers in each state based on the
10 random seeds used in both normal and psoriatic epidermis development in the 3D model.
Each random seed was randomly generated using a random seed generator.
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