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Abstract

Expensive black-box functions such as physical experiments and computer simulators are

challenging to optimise as they cannot be solved analytically, and only small numbers of

function evaluations are available for optimisation. This prevents use of conventional meth-

ods that rely on gradient information or larger numbers of function evaluations, requiring a

specialised optimisation strategy. Bayesian optimisation is a sample-efficient strategy that

represents the objective function through a surrogate model and guides the exploration

of the input space with heuristics—so-called acquisition criteria—to select promising can-

didate points sequentially. Expensive black-box functions are a common occurrence in

fluid dynamics where the underlying systems, for example the Navier-Stokes equations,

can be too complex to solve explicitly and can be viewed as a black box. In addition, the

expensive nature of the associated experiments and simulations makes Bayesian optimi-

sation a prime candidate. However, the Bayesian optimisation literature is mainly geared

towards statisticians and computer scientists and is potentially challenging to scrutinise

and apply for non-experts. Thus, the main motivation of this thesis is to make Bayesian

optimisation more accessible and answer some fundamental questions overlooked in the

literature, while also developing techniques for specific challenges encountered in but not

limited to fluid dynamics. This thesis studies three topics for applying Bayesian opti-

misation to experiments and simulators. Firstly, it investigates key choices in Bayesian

optimisation empirically, such as the choice of the acquisition criterion and the number

of data points used for initialisation, and applies the findings to two computer simulators

with the objective of controlling air flow to maximise the skin-friction drag reduction over

a flat plate—mimicking the surface of a moving vehicle such as the wing of an aeroplane.

Secondly, NUBO—an open-source Python package for optimising expensive experiments

and simulators aimed at practitioners of Bayesian optimisation—is presented, and its func-

tionalities are discussed. This transparent package allows users to tailor the optimisation

loop to their specific problems and supports sequential single-point, parallel multi-point

and asynchronous optimisation for bounded, constrained and mixed (discrete and con-

tinuous) input parameter spaces. Lastly, problems affected by external environmental

variables that cannot be controlled are investigated, and ENVBO—a novel algorithm—is

introduced. ENVBO fits a global surrogate model over all controllable and environmen-

tal variables but optimises the acquisition criterion only with regard to the controllable

variables while keeping the environmental variables fixed at a current measurement. Im-

portant properties of ENVBO, such as the robustness to noisy objective functions and

the number of environmental variables, are studied. ENVBO is applied to a wind farm

simulator to maximise energy production by (a) finding optimal positions for four wind



turbines within a complex terrain with changing wind directions and (b) setting optimal

derating factors of a row of five wind turbines subject to changing wind speeds.
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Chapter 1

Introduction

This chapter introduces the problem which is of central interest to this thesis, that of

optimising expensive physical experiments and simulators, by defining key characteristics

of expensive black-box functions and explaining why conventional optimisation methods

all have limitations with regards to solving this problem. It then briefly outlines Bayesian

optimisation and its advantages in this context. Following this, the overarching research

aim and the specific objectives are described before a thesis outline, including key contri-

butions, is given. The chapter ends by detailing all publications that resulted from this

research.

1.1 Expensive physical experiments and computer

simulators

Expensive physical experiments and computer simulators fall into the category of expensive-

to-evaluate black-box functions [20, 53, 58]. By expensive we mean that each evaluation

of input parameters generates high costs. These can be operational costs, such as energy,

computing resources and manual labour, or equipment costs, as many experiments and

simulators are expensive to set up initially. Moreover, typically the only way to gather

information about the problem in question is to select sets of input values and observe

their output. The inner workings between providing inputs and observing their results

are unknown or too complex to determine exactly. Thus, problems are treated as black

boxes, which even specialists with expert knowledge cannot predict precisely. Expensive

black-box functions are discussed further in Section 2.1.

To illustrate this further, we introduce the following example from the field of fluid dy-

namics [123, 41, 145, 124]. Consider a wind tunnel with a flat plate parallel to the floor.

When air flows over the flat plate, a layer of turbulence is created close to its surface, cre-

ating skin friction drag. This mimics the real-life situation where air flows over the wing

1
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of an aircraft. The turbulence close to the wing—or generally to the aircraft’s surface—is

responsible for over half of its fuel consumption [22]. Thus, interest lies in reducing this

turbulence and the resulting drag. Low-amplitude blowing actuators provide a solution

[89, 106] as they allow the airflow to be actively controlled by imposing a specific blowing

strategy, or profile, that reduces the turbulence. In an experiment, actuators create a

uniform blowing region that blows air upwards, perpendicular to the flat plate. This ma-

nipulates the airflow over the flat plate from the blowing region onwards. The challenge

is to find the optimal strategies that maximise the global drag reduction—i.e., the drag

reduction over the whole flat plate. Investigations of this problem could range from sim-

ple one-dimensional setups where one blowing amplitude is uniformly imposed through to

complicated designs with many parameters such as a travelling wave that is defined by a

blowing amplitude, frequency and wavelength. While the setup of such experiments is rel-

atively simple, data collection is complex as measuring skin-friction drag in experiments is

difficult even for experts, and measuring the global drag reduction requires a large number

of measurements over the whole flat plate. An alternative to performing experiments in a

wind tunnel is to perform simulations of the behaviour of the flat plate instead. However,

these simulations are costly and can take up to 12 hours on thousands of CPU cores, as

discussed in Section 3.3. Furthermore, while there are governing equations for turbulence

development, they are far too complex to predict the effects of different blowing strategies

accurately. The problem is essentially a black box where the primary method to obtain

an understanding of the relationship between blowing and skin friction drag is observing

the output for the provided inputs.

If it were possible to find an optimal blowing strategy for this example experiment and

transfer the results to aircraft, it could reduce the skin-friction drag, saving money, pre-

venting emissions and protecting public health. Indeed, Bushnell and Hefner [22] estimate

that a skin-friction drag reduction of just 3% would save £1 million in fuel costs annually

per aircraft. This highlights the importance of optimising expensive black-box problems

that can be extended to physical experiments and computer simulators in many different

areas, including chemistry, physics, biology, engineering and computer science [58].

1.2 Bayesian optimisation

Typically, optimisation methods make strong assumptions, such as convexity and the

availability of gradient information, about the objective function—i.e., the function at the

centre of the optimisation problem representing the system that we seek to optimise—that

will not always hold for expensive physical experiments and computer simulators. Indeed,

most assumptions cannot be verified as the given problem is a black box that prohibits such

verification. Other commonly used methods require large numbers of function evaluations
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to be successful and assume implicitly that observations are cheap. This contradicts the

nature of expensive black-box problems.

Suitable strategies in this context typically use a three-step process to select data points

sequentially and explore the input space efficiently. First, the objective function is rep-

resented by a surrogate model fitted to the available data. Second, the next point is

selected by maximising a heuristic (a.k.a. acquisition functions) that guides the optimisa-

tion. Third, this point is observed from the objective function, and the process is repeated

with the new input-output pair. Typically, the first point used to initialise the three-step

process is chosen at random but it can also be determined by expert knowledge. Bayesian

optimisation is a surrogate model-based optimisation strategy and thus suitable to op-

timise expensive, derivative-free, black-box functions [20, 53, 58]. Section 2.2 discusses

Bayesian optimisation in relation to other approaches in more depth.

Although developed in the 1960s for applications in engineering [111, 110], Bayesian opti-

misation has had a renaissance since the late 1990s [171, 94] mainly due to the improved

computational capabilities of modern CPUs. Bayesian optimisation has been developed

steadily and expanded over the following decades to address problems with noise, con-

straints, high-dimensional inputs, and multiple objectives, tasks and fidelities. It has been

applied to problems in many different scientific fields in the area of science, technology,

engineering and mathematics (STEM) [58]. Despite these efforts, more work is required

to understand Bayesian optimisation better and extend it to unique applications. For

example, there has been limited attention given to physical experiments in environments

where not all influential variables can be controlled and the aim is to find optimal values

for the controllable variables conditional on these uncontrollable variables. Furthermore,

there is a gap between the state-of-the-art in Bayesian optimisation research and what is

available to scientists from other disciplines looking to apply it to their experiments and

simulators. Typically, software can be overly complex and challenging to comprehend in

detail. Thus, simpler implementations allowing users to fully understand and verify each

algorithm are required.

1.3 Research aim and objectives

This thesis’ overarching aim is to further the understanding, methodology and

application of Bayesian optimisation for expensive physical experiments and

computer simulators. The following objectives have been set to achieve this aim:

1. Investigate the properties of key choices to be made in Bayesian optimisation to

make general recommendations for specific problems (simulation study).

2. Transfer findings from the simulation study to expensive experiments and simulators
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(application).

3. Develop software that implements methods transparently and enables scientists and

practitioners to optimise expensive experiments and simulators (software develop-

ment).

4. Develop an approach to optimise expensive experiments with randomly changing

environmental variables that cannot be controlled (methodology development).

5. Apply Bayesian optimisation to experiments and simulators in flow control to max-

imise turbulent drag reduction (application).

1.4 Thesis outline and contributions

Chapter 2 provides the background material necessary to understand this thesis. It

includes a mathematical formulation of expensive black-box problems that are the focus

of this work. Further, Bayesian optimisation is introduced, its advantages over other

methods are discussed, and a brief account of its history is given. This chapter focuses

on Gaussian processes used for surrogate modelling and the acquisition functions used to

guide the optimisation over the input parameter space. Methods for special cases, such

as noisy, constrained and high-dimensional optimisation, are reviewed and sign-posted for

further reading.

Chapter 3 investigates the influence of fundamental choices and different strategies on

the performance of a Bayesian optimisation algorithm. Notably, various acquisition func-

tions with different numbers of data points used to initialise the algorithms are investi-

gated. Cheap test functions with different shapes and properties are used to find robust

Bayesian optimisation strategies. This investigation will show that acquisition functions

based on confidence bounds are superior to other methods for our test functions and that

the number of initial data points is not a significant driver of performance. Furthermore,

acquisition functions approximated by Monte Carlo sampling prove competitive with the

exact acquisition functions and have the advantage of enabling parallel evaluations via

multiple concurrent simulations. These findings will then be applied to two simulators in

computational fluid dynamics (CFD), aiming to find optimal blowing strategies of active

blowing actuators that maximise global drag reduction and net energy savings. While so-

lutions with significant global drag reduction (over 22%) are found, the net energy savings

are modest (below 1%), indicating the need for cheaper actuators. This work addresses

research objectives 1 and 2 and has been published in Diessner et al. [41].

Chapter 4 presents the Python package NUBO (Newcastle University Bayesian Optimi-

sation) developed to enable researchers and practitioners to use Bayesian optimisation to

optimise their expensive black-box problems. NUBO focuses on providing a transparent,
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user-friendly and flexible implementation of Bayesian optimisation. It supports sequential

single-point, parallel multi-point and asynchronous optimisation of bounded, constrained

and mixed parameter input spaces. This chapter contains code snippets that show how

NUBO can be used in practice. Comparisons to other Bayesian optimisation packages

show that the focus on simplicity does not come at the cost of performance. This chapter

addresses research objective 3 and has been published in Diessner, Wilson, and Whalley

[42].

Chapter 5 considers an extension of Bayesian optimisation where some variables are un-

controllable. Specifically, the work herein assumes that some variables are given externally

by the environment and change randomly. The algorithm ENVBO is developed, extend-

ing Bayesian optimisation to leverage the correlation of the objective function realisations

with small changes in the environmental variables. The aim is to find the controllable

inputs that maximise the objective function conditional on the environmental variables.

ENVBO is applied to a wind farm simulator and benchmarked against standard Bayesian

optimisation, the Nelder-Mead algorithm [143] and the sequential least squares program-

ming optimiser (SLSQP) [107]. The comparison shows that ENVBO finds better or at

least comparable solutions to the benchmarks while requiring fewer function evaluations.

Thus, ENVBO presents a sample-efficient algorithm for optimising expensive black-box

problems with randomly changing variables. This chapter addresses research objective 4

and has been published in Diessner, Wilson, and Whalley [43] and Diessner et al. [40].

Lastly, the Conclusion summarises the contributions in this thesis and provides research

directions for future works.

1.5 Related publications

All research chapters of this thesis (Chapters 3–5) have been published (or are in the

process of being published) as first-author papers in journals or conference proceedings.

Additionally, the following list of publications features two second-author papers where

Bayesian optimisation was applied to experiments and simulators in active flow control.

The work in the following articles is entirely my own if not otherwise stated below the

articles.

Journal articles

[41] M. Diessner, J. O’Connor, A. Wynn, S. Laizet, Y. Guan, K. Wilson, and R. D.

Whalley. “Investigating Bayesian Optimization for Expensive-to-Evaluate Black

Box Functions: Application in Fluid Dynamics”. In: Frontiers in Applied Mathe-

matics and Statistics 8 (2022), p. 1076296
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The simulations for the applications in Section 4 of this article were run by Joseph

O’Connor who also provided information about their specific implementation in Xcom-

pact3D [8]. This study is included as Chapter 3 in this thesis.

[145]J. O’Connor, M. Diessner, K. Wilson, R. D. Whalley, A. Wynn, and S. Laizet. “Op-

timisation and Analysis of Streamwise-Varying Wall-Normal Blowing in a Turbulent

Boundary Layer”. In: Flow, Turbulence and Combustion 110.4 (2023), pp. 993–

1021

My contribution to this work is co-planning the setup of the simulations, writing Section 3.2

of this article on Bayesian optimisation (including generating the figures), and preparing

the Python code for the Bayesian optimisation algorithm. This work is not included in

this thesis.

[42] M. Diessner, K. Wilson, and R. D. Whalley. “NUBO: A Transparent Python

Package for Bayesian Optimisation”. In: arXiv preprint arXiv:2305.06709 (2023).

Accepted by Journal of Statistical Software

This journal article is included as Chapter 4 in this thesis.

[43] M. Diessner, K. J. Wilson, and R. D. Whalley. “On the Development of a Practical

Bayesian Optimization Algorithm for Expensive Experiments and Simulations With

Changing Environmental Conditions”. In: Data-Centic Engineering 5 (2024), e45

This study is included as Chapter 5 in this thesis.

Conference articles

[40] M. Diessner, X. Chen, K. J. Wilson, and R. D. Whalley. “Optimising Active

Flow Control Strategies for Random and Controlled Wind Speeds via Bayesian

Optimisation”. In: Symposium on Turbulence and Shear Flow Phenomena (TSFP).

TSFP. 2024

The application published in this article is included in Section 5.6.

[27] X. Chen, M. Diessner, K. J. Wilson, and R. D. Whalley. “Optimizing Wall Blowing

for Global Skin-Friction Drag Reduction Using a Bayesian Optimization Frame-

work”. In: Symposium on Turbulence and Shear Flow Phenomena (TSFP). TSFP.

2024

My contribution to this work is co-planning the setup of the simulations and preparing

the Python code for the Bayesian optimisation algorithm. This conference article is not

included in this thesis.
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Chapter 2

Background

This chapter lays the methodological foundation for the investigation of specific aspects of

Bayesian optimisation in the subsequent chapters. Section 2.1 defines expensive black-box

problems whose optimisation is central to this research. Section 2.2 introduces Bayesian

optimisation and explains why it is favoured in the literature over other algorithms to

optimise expensive black-box functions. Section 2.3 describes Gaussian processes used as

a surrogate model to represent an objective function and presents alternative surrogate

models from the literature. Section 2.4 discusses how different acquisition functions guide

the optimisation. Section 2.5 provides an overview of special cases of Bayesian optimisa-

tion that can potentially be important for optimising physical experiments and computer

simulators, such as noisy and parallel observations.

2.1 Expensive black-box problems and notation

This thesis considers problems where the overarching aim is discovering a global maximiser

x∗—a d-dimensional input vector in Rd—that maximises a continuous objective function

f such that

x∗ = argmax
x

f (x) , (2.1)

where x is a vector of inputs and f (·) is the objective function, defined below. This

optimisation is challenging as the objective function is assumed to be a black box that

is expensive-to-evaluate and derivative-free [20, 53, 58]. Thus, mathematical properties

such as convexity or concavity are unknown and cannot be used within the optimisation,

observing the result of an arbitrary input point generates high costs—such as in resources,

time and manual labour—and gradient information about the objective function cannot be

used to aid and speed-up the optimisation. The only way of gathering information about

the objective function is to provide it with an input point x and observe the corresponding
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Chapter 2. Background

output y such that

y = f (x) : X 7→ R, (2.2)

where x ∈ Rd is a d-dimensional input vector and y is a scalar output. The input space

X is typically a hyper-rectangle restricted by a lower and an upper bound for each input

dimension such that X ∈ [a, b]d where ak ≤ xk ≤ bk for all k = 1, . . . , d [53, 20]. The

problem described above considers a deterministic objective function. Alternatively, the

objective function can also be stochastic such that

y = f (x) + ϵ : X 7→ R, (2.3)

where ϵ is a noise term, which is typically considered to be sampled from a Gaussian dis-

tribution with zero mean and variance σ2 such that ϵ ∼ N
(
0, σ2

)
. Section 2.5.1 discusses

the optimisation of noisy objective functions.

In this thesis, we denote the input vector xi containing individual input values xki for all

k = 1, . . . , d such that

xi =
[
x1i x2i . . . xdi

]
, (2.4)

and a set of multiple data points xi for all i = 1, . . . , n as the input matrix X such that

X =


x1

x2

...

xn

 . (2.5)

We further denote the outputs corresponding to multiple data points X as the output

vector y such that

y =


y1

y2
...

yn

 =


f (x1)

f (x2)
...

f (xn)

 = f (X) , (2.6)

and data D as a set of input-output pairs such that

D = (X,y) . (2.7)

Within the Bayesian optimisation loop we use indices for the data D, the inputs X and

the outputs y to indicate the number of included elements. The data used to initialise an

algorithm is indexed with 0, i.e., D0, X0 and y0, while data of a specific optimisation step

n is indexed with n, i.e., Dn, Xn and yn. For example, data for the 20th optimisation

step is referred to as D20 and includes the initial data D0 and input-output pairs (xn, yn)
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for all n = 1, 2, . . . , 20.

2.2 Bayesian optimisation

Many methods for optimising black-box functions have been previously proposed in the lit-

erature ranging from heuristical methods such as evolutionary algorithms [220], simulated

annealing [105] and tabu search [65] over reinforcement learning [189] to derivative-free

methods [31, 113] such as directional direct search algorithms [4], simplicial direct search

algorithms [143] and trust-region methods [31]. However, these methods assume that the

objective function can be evaluated cheaply and require large numbers of function eval-

uations to be successful. Thus, they are unsuitable for optimising expensive black-box

functions, e.g., physical experiments and computer simulators that generate high costs

with each observation [202].

Suitable methods for optimising expensive black-box functions typically employ a three-

step process where data points are selected sequentially, and the input space is explored

sample-efficiently:

1. The objective function is represented by fitting a surrogate model to the available

data.

2. A heuristic based on the surrogate model is used to select the next data point to

evaluate.

3. The objective function is evaluated at the selected input, and the process is repeated.

Due to the importance of the surrogate model, these methods are called surrogate-based

methods [202]. Within this group, different surrogate models are used, such as polynomi-

als [61], radial basis functions [74, 163, 164, 165] and support vector machines [33, 35].

In contrast to these typically frequentist methods, Bayesian optimisation uses Bayesian

models—typically a Gaussian process—as their surrogate model of choice [20, 175, 53, 58].

Bayesian models have the advantage of including prior beliefs about the objective func-

tion, such as smoothness, and can require fewer function evaluations to achieve a good

fit. They are thus more sample-efficient than frequentist models that can require much

greater numbers of evaluations [131, 94, 169, 20]. Booker [15] introduced the Surrogate

management framework based on kriging [128] with Gaussian processes in the area of

design and analysis of computer experiments (DACE) [167], which also uses a Bayesian

model and is very similar to Bayesian optimisation.

2.2.1 A brief history and applications

This section gives a brief account of the history of Bayesian optimisation, as Bayesian

optimisation has a rich body of literature that would exceed this thesis’ limit. Garnett
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[58] provides a comprehensive history that goes back further than this section.

The origin of Bayesian optimisation can be traced back to the early 1960s, where Kushner

[111, 110] introduced an optimisation algorithm on a one-dimensional noisy function using

a Gaussian process as a surrogate model and sampling heuristics that later evolved into

upper confidence bound (Section 2.4.2) and probability of improvement (Section 2.4.1).

Research from 1971 onwards linked Bayesian optimisation to the optimisation of expen-

sive multi-modal functions and introduced new heuristics—notably expected improvement

[168] (Section 2.4.1) and knowledge gradient [133, 134] (Section 2.4.3). Limitations in com-

putational capabilities at the time resulted in the use of cheaper models, such as Wiener

processes and Ornstein-Uhlenbeck processes, for which both heuristics collapse onto each

other [58]. The evolution of technologies allowed computationally expensive models such

as Gaussian processes to be used in the late 1990s, which incentivised reevaluation of the

methods proposed two decades earlier. Schonlau [171] and Jones, Schonlau, and Welch

[94] introduced their efficient global optimisation (EGO) algorithm and studied expected

improvement in a deterministic setting. Auer [5] and Srinivas et al. [184] reexamined the

upper confidence bound and studied its theoretical regret, while Frazier and Powell [51]

and Scott, Frazier, and Powell [173] studied the knowledge gradient for discrete and con-

tinuous input spaces, respectively. Villemonteix, Vazquez, and Walter [200] introduced

an information-based strategy (Section 2.4.3) into the Bayesian optimisation framework

that was later studied and further developed into entropy search [78], predictive entropy

search [80] and max-value entropy search [204]. Closely related to Bayesian optimisation

is the work on multi-armed bandits that investigates a similar problem but in a discrete

parameter space [58, 12, 114].

Bayesian optimisation has been applied to many scientific fields, predominantly in the

science, technology, engineering and mathematics (STEM) area. Applications include ma-

terial science [54, 147] and drug discovery [142] in chemistry, physics [44] and biology [117].

In engineering it has been used for civil engineering [59, 70], electrical engineering [122],

mechanical engineering [186] and robotics [23, 127]. Furthermore, Bayesian optimisation is

often used in machine learning and artificial intelligence, e.g., to configure algorithms [87]

and to tune hyperparameters [178]. Garnett [58] provides a thorough list of applications.

2.2.2 Introduction of method

Bayesian optimisation [134, 94, 20, 53, 58] is a sample-efficient global optimisation al-

gorithm designed for the optimisation of expensive black-box functions introduced in

Section 2.1. The strategy sequentially selects points, observes them by evaluating the

objective function—i.e., by conducting an experiment or running a simulator—and uses

the new data point to perform subsequent selections of points. During this selection pro-

cess, the aim is to extract as much information as possible from each data point and keep
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the overall number of function evaluations as small as possible. This ensures that the

global optimum is found in a minimum number of function evaluations, keeping costs low

and making optimisation feasible.

Algorithm 1 illustrates the Bayesian optimisation algorithm. The algorithm runs in an

optimisation loop where each optimisation step consists of three substeps. First, a surro-

gate model M is fitted to the training data. The training data is the set of all observed

data points from all previous optimisation steps. While a Gaussian process (introduced in

Section 2.3) is typically chosen as the surrogate model, other models are possible. How-

ever, the model must be capable of returning a prediction and its associated uncertainty

for the entire input space. Second, an acquisition criterion α—a heuristic that guides the

sequential optimisation process as explained in more detail in Section 2.4—is computed.

This criterion bases its computation on the prediction from the surrogate model and cor-

responding uncertainty and, when maximised, suggests the next candidate point to be

observed from the objective function in step three.

Algorithm 1 Standard Bayesian optimisation algorithm

Require: Evaluation budget N , number of initial points n0, surrogate model M, acqui-
sition function α.
Sample n0 initial data points X0 via a space-filling design and gather observations y0.
Set n = 0.
while n < N − n0 do

Fit surrogate model M to training data Dn = (Xn,yn).
Find xn+1 that maximises an acquisition criterion α based on model M, i.e., solve

argmaxx α (x).
Evaluate xn+1, observing yn+1

Increment n.
end while
return Input vector x∗ with the highest corresponding observation y∗.

Before performing the first step of the Bayesian optimisation algorithm, a small number

of observed input-output pairs (X0,y0) are required to initialise the algorithm. These

initial data points ensure that the surrogate model can model the objective function from

the first iteration, and the acquisition criterion can guide the selection process effectively.

The initial data points can be found by randomly sampling from a uniform distribution or

using a space-filling design such as Latin hypercube sampling [129, 86]. Consider a two-

dimensional input space. Latin hypercube sampling divides the space into n0 columns

and rows with equal size. It then randomly allocates n0 data points so that each row

and column contains exactly one single point. From the n0 × n0 squares that the hyper-

cube created, only n0 are populated with a data point at which to observe the objective

function. Within the squares, the points are positioned randomly. Various methods exist

for finding Latin hypercube samples that fill the space effectively. For example, maximin
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Latin hypercubes try to select points by maximising the minimal distance between all

points. Section 4.2.3 discusses a simple implementation of Latin hypercube sampling.

A few strategies for stopping the Bayesian optimisation algorithm are used. The sim-

plest and typically used strategy is running Bayesian optimisation until a predetermined

evaluation budget is exhausted [58]. This is displayed in Algorithm 1 where Bayesian

optimisation is run until the objective function is evaluated N times. As the focus lies

on expensive objective functions, such as physical experiments and computer simulators,

the budget is typically set to a total number of function evaluations in the low hundreds

or less. Other strategies are stopping the algorithm once a specified target value of the

output is achieved or terminating Bayesian optimisation if the algorithm is not able to

find a candidate that improves upon the current best for a certain number of optimisation

steps [1]. The final stopping rule links termination to values of the acquisition function.

For example, improvement-based policies (discussed in Section 2.4.1) quantify how likely a

given point is to improve upon the best candidate point to date. Thus, a natural stopping

criterion is to terminate once the likelihood of improving falls below a predefined threshold

[94, 171].

Algorithm 1 is illustrated in Figure 2.1 by showing an optimisation loop consisting of

eight optimisation steps, or iterations, on a one-dimensional function with one local and

one global maximum. Three data points are selected randomly and are evaluated by the

objective function to form the initial training data for iteration one. A Gaussian process

is fitted to the three observations, resulting in a prediction and uncertainty quantification

for the entire input range. These are then used in the computation of the expected

improvement acquisition criterion. Maximisation of the criterion guides the selection of

the next candidate point. The new data point is then observed from the objective function

and added to the training data for the second optimisation step, which now consists of four

training points. While Bayesian optimisation first exploits its knowledge about the highest

prediction given current knowledge and focuses on the local maximum in iterations one to

four, it explores the remaining input space, driven by the high uncertainty, from iteration

five onwards and discovers the global maximum. This exploitation-exploration trade-off

is a fundamental property of the acquisition criterion. The trade-off specifies that there

has to be a balance between searching in areas with high predictions (exploitation) and in

areas with high uncertainty (exploration) to search the input space effectively [58, 53, 96].

Bayes’ theorem allows incorporating and updating prior beliefs into the Bayesian opti-

misation algorithm [20]. Particularly, a prior—a distribution encoding our belief about

the objective function—is assumed and updated each time new evidence is collected. The

current state of knowledge about the objective function is incorporated via the surrogate

model. Depending on the selection of the model and the incorporated prior beliefs, certain

objective functions are excluded from the set of possible objective functions. For example,
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Figure 2.1: Bayesian optimisation applied to a 1-dimensional function with one local and one global
maximum. Expected improvement is used as the acquisition function. The input space is bounded
by [0, 10].
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if a model is chosen that only allows a smooth representation of the objective function,

then erratic functions are not possible under that model and are thus disregarded.

While some methods aim to extend Bayesian optimisation into high-dimensional input

spaces (Section 2.5.4), the standard Bayesian optimisation algorithm introduced in this sec-

tion best suits problems with low to moderate dimensionality. Frazier [53] limits Bayesian

optimisation to less than 20 input dimensions. Furthermore, the focus of Bayesian optimi-

sation lies in the optimisation of continuous objective functions, as outlined in Section 2.1.

However, this does not mean optimisation with discrete or categorical inputs is impossi-

ble. For example, Garrido-Merchán and Hernández-Lobato [60] and Daulton et al. [36]

present possible solutions and Section 4.2.2 discusses a mixed optimisation strategy for

small numbers of discrete variables.

2.3 Surrogate modelling with Gaussian processes

Surrogate modelling is an essential part of Bayesian optimisation and enables sample-

efficient optimisation, which is at the heart of expensive black-box optimisation. A sur-

rogate model is a statistical model that uses available data to represent the objective

function and informs the sequential selection of candidate points. Based on the avail-

able data, the surrogate model’s prediction can be understood as the best estimate of the

objective function’s shape.

Bayesian optimisation focuses on using Bayesian models that allow the incorporation of

prior knowledge about the objective function into the model, restricting the possible set

of represented functions from all possible functions to a smaller subset of functions that

share properties such as smoothness [20, 53]. Another property of models used in Bayesian

optimisation is that they return a prediction for the entire input space along with cor-

responding uncertainty quantification. This uncertainty quantifies the variance around a

certain prediction. For deterministic objective functions, there is expected to be almost

zero variance close to observed data points. At the same time, there will be larger variance

for areas where no nearby point has been observed to date [58, 69].

Different surrogate models were proposed and studied in the literature for Bayesian optimi-

sation. Hutter, Hoos, and Leyton-Brown [87] investigate the use of random forests [18, 34]

and offer an implementation within the SMAC Python package [118]. Additionally, den-

sity ratio estimation [11, 177, 196] and neural networks [179, 183, 125] were considered.

However, the limited number of available data points in expensive black-box optimisa-

tion restricts the complexity of the latter and prevents deep neural networks [58]. While

these examples show that different surrogate models are viable for Bayesian optimisation,

Gaussian process regression [162] has seen the widest adaption and has been researched

extensively since the 1970s [20]. It is a flexible modelling strategy that is capable of rep-
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Figure 2.2: Samples from A) the prior distribution and B) the posterior predictive distribution of
a Gaussian process with a zero mean function and a Matérn 5/2 covariance kernel.

resenting a wide range of possible objective functions and offers a straightforward way of

incorporating prior beliefs about the objective function [20, 53, 69]. Therefore, this section

and this thesis focus on using Bayesian optimisation based on Gaussian process regres-

sion. Alternative surrogate models are left for future work. Rasmussen and Williams [162]

provide a comprehensive overview of Gaussian process regression and its implementation.

2.3.1 Gaussian process regression

A Gaussian process GP [162, 58] is a flexible non-parametric regression model that is based

on the Gaussian distribution. By non-parametric we do not mean that Gaussian processes

have no parameters but that the objective function has no explicit parametric form. Each

point of the input space is represented by a (multivariate) Gaussian distribution of the

objective function output—that is, infinitely many Gaussian distributions are arranged

one after another. Thus, a Gaussian process can be considered as a distribution over all

possible realisations of the objective function. Figure 2.2 shows the prior and the posterior

distribution of a Gaussian process, which the remainder of this section discusses. It also

gives four realisations, or samples, from the Gaussian process, illustrating the different

forms the objective function can take. For each input value, the corresponding Gaussian
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distribution N
(
µ, σ2

)
is represented by the prediction and the 95% prediction interval,

calculated as µ± 1.96×σ2. Samples of the prior distribution are primarily random, while

the three observations taken into account in the posterior predictive distribution give the

realisations a clear structure. In this deterministic case, all realisations interpolate between

the observations and change randomly between them according to the specific Gaussian

distributions. Additionally, Figure 2.2 shows that the resulting realisations of a Gaussian

process are smooth as values along the input axis are not independent of each other.

Prior distribution

Mathematically, a Gaussian process is a finite collection of random variables with a joint

Gaussian distribution and is defined by specifying a prior mean function µ0 (·) and a

positive semidefinite covariance kernel Σ0 (·, ·) [162, 58]

GP (µ0 (·) , Σ0 (·, ·)) . (2.8)

The mean function takes an input vector—or data point—x from the input space X and

returns the mean as a scalar output such that µ0 (x) : X 7→ R, while the covariance kernel
takes two input vectors x and x′ and returns the covariance as a scalar output such that

Σ0 (x,x
′) : X ×X 7→ R. This results in a prior distribution where function values f (Xn)

are modelled by a multivariate Gaussian distribution

f (Xn) ∼ N (m (Xn) ,K (Xn,Xn)) (2.9)

with mean vector

m (Xn) =


µ0 (x1)

µ0 (x2)

. . .

µ0 (xn)

 (2.10)

and covariance matrix

K
(
X,X ′) =


Σ0 (x1,x

′
1) Σ0 (x1,x

′
2) . . . Σ0 (x1,x

′
n)

Σ0 (x2,x
′
1) Σ0 (x2,x

′
2) . . . Σ0 (x2,x

′
n)

...
...

. . . . . .

Σ0 (xn,x
′
1) Σ0 (xn,x

′
2) . . . Σ0 (xn,x

′
n)

 . (2.11)

Prior mean function

The choice of the specific prior mean function, and particularly the prior covariance kernel,

allows the incorporation of prior beliefs about the objective function [20, 58]. Popular prior
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Figure 2.3: Comparison of Gaussian processes with zero mean function and constant mean func-
tion (c = 5). Predictions are similar when interpolating and default to the mean function when
extrapolating.

mean functions are the zero mean function

µzero (x) = 0 (2.12)

and the constant mean function

µconstant (x) = c. (2.13)

These simple prior mean functions are favoured in Bayesian optimisation, and the focus lies

on the selection of prior covariance kernels because they affect the shape of the Gaussian

process more significantly [58]. Indeed, subsequent sections show that the mean function

only affects the model’s prediction, while the covariance function affects the prediction

and its uncertainty. However, the choice of mean function is essential when only a few

data points are available. Figure 2.3 shows two Gaussian processes that only differ in

terms of the mean function. One Gaussian process uses a zero mean function (red), and

the other uses a constant mean function with c = 5 (blue). While the models are similar

in areas between two data points, they differ significantly towards the outer bounds. In
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Figure 2.4: Comparison of the RBF and the Matérn 5/2 covariance kernel in Gaussian process
regression. A) The larger the distance between two data points, the smaller the covariance. B)
Gaussian processes with zero mean function fitted to three data points.

these areas, there are too few data points for the covariance kernel to affect the prediction,

and the model defaults to the prior mean function. Thus, the choice of mean function is

less crucial when interpolating than when extrapolating. Despite the popularity of simple

prior mean functions, more complex functions, such as low-order polynomials [53], radial

basis functions [19] and concave quadratic functions [58], are also used.

Prior covariance kernel

The prior covariance kernel specifies the correlation between any pair of data points, which

controls the properties of the Gaussian process, such as its smoothness. In general, points

that lie closer together will be correlated more strongly than points that are far apart [131,

20]. The radial basis function (RBF) or squared exponential kernel

ΣRBF

(
x,x′) = σ2

f exp

(
− r2

2l2

)
, (2.14)

where r = |x − x′| is the distance between the two points, l is the characteristic length

scale and σ2
f is the signal variance or output scale, is a popular covariance kernel used
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in the literature. The length scale indicates the persistence of correlations of the output

along the input axes, with larger length scales indicating a longer-lasting correlation. The

output scale is a scalar that can adjust the magnitude of the variance, with larger values

resulting in a larger deviation from the mean [162, 20, 69]. While the RBF kernel is

popular, there is criticism that it is a naive choice [20] and unrealistically smooth [178] for

Bayesian optimisation. Often, the Matérn kernel with parameter ν = 5
2

ΣMatérn

(
x,x′) = σ2

f

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√
5r

l

)
(2.15)

is preferred as it is twice differentiable but not as smooth as the RBF kernel [162, 178] and

thus a practical choice for Bayesian optimisation. However, the difference between kernels

can be relatively small, as Figure 2.4 shows. In A), the correlations of the RBF and the

Matérn 5/2 kernel for different distances between points are compared. A length scale

l = 1 is assumed for both kernels. The correlation for the Matérn kernel is lower than that

of the RBF kernel for points with a distance of less than 2. After that, the correlation

is slightly larger. A small difference in prediction and uncertainty is noticeable after two

zero-mean Gaussian processes using the RBF and the Matérn 5/2 kernel are fitted to three

observations (B)). While these are perhaps the most frequently used covariance kernels,

Rasmussen and Williams [162] and Garnett [58] discuss many other choices.

Covariance functions can be extended to include one characteristic length scale ld for each

input dimension d. In this case, outputs are correlated for longer distances along input

dimensions with large length scales and, thus, less relevant for changes in the prediction

as varying their values affects the prediction little. Along input dimensions with small

length scales outputs are correlated for shorter distances, and even small changes in the

input values can affect the prediction significantly. Gaussian processes with covariance

functions that include multiple length scales are characterised by automatic relevance

determination (ARD) of the input dimensions [141]. Here, the inverse of the length scales

can be interpreted as the relevance of the corresponding dimensions [162]. The Gaussian

process will estimate large length scales for irrelevant dimensions, automatically assigning

them less importance.

The RBF and the Matérn kernel—and many of the kernels from Rasmussen and Williams

[162]—are stationary kernels. Thus, the correlation fully depends on the distance r be-

tween two data points. Some real-world objective functions, however, are possibly non-

stationary, requiring more observations to achieve accurate predictions. As data points

are expensive to observe, using a non-stationary kernel can be beneficial [180, 162, 175].
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Figure 2.5: Influence of the nugget in Gaussian process regression. A) Without the nugget, the
posterior variance of the Gaussian process is zero at all observations, and the posterior mean
interpolates through all observations. B) With the nugget, the posterior variance of the Gaussian
process is no longer zero at the observations, and the posterior mean does not necessarily interpolate
through the observations.

Posterior predictive distribution

After observing some data points, the prior distribution can be updated with Bayes’ rule

[162] to ascertain the conditional Gaussian distribution of the surrogate model given the

data Dn and test points X∗.

f (X∗) | Dn,X∗ ∼ N
(
µn (X∗) , σ

2
n (X∗)

)
. (2.16)

This conditional distribution is called the posterior predictive distribution. It can be

computed in closed form with posterior mean

µn (X∗) = K (X∗,Xn)
[
K (Xn,Xn) + σ2

kI
]−1

(y −m (Xn)) +m (X∗) (2.17)

and posterior variance

σ2
n (X∗) = K (X∗,X∗)−K (X∗,Xn)

[
K (Xn,Xn) + σ2

kI
]−1

K (Xn,X∗) , (2.18)
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where σ2
k is a nugget term or noise variance reflecting, for example, the stochastic noise

added to the objective function ϵ in Equation 2.3. Figure 2.5 shows that the posterior

mean of the Gaussian process no longer interpolates between observations and is more

flexible. Gramacy and Lee [72] make a comprehensive case for adding a nugget. In their

work, nuggets improve the algorithm’s computational stability and performance, such as

the coverage and goodness-of-fit. They can also yield improved results in situations where

statistical assumptions—such as stationarity of the process—are violated. Furthermore,

Gramacy and Lee [72] reason why nuggets should be added to deterministic problems

besides these technical advantages. For example, while there might not be a measurement

error in a deterministic simulation, the simulation itself only approximates reality. Using

models that take these biases into account can improve performance in these cases.

As discussed in the previous sections, Equations 2.17 and 2.18 show that the covariance

kernel affects the posterior mean and the posterior variance, while the mean function only

affects the posterior mean. In regions where data points are too far apart to be considered

correlated by the covariance kernel, the prediction defaults towards the mean function [58].

This can be seen in Figure 2.3 and Figure 2.5 where the prediction converges towards the

zero mean function in the interval [0, 3] for the input. This stresses the potential dangers

of extrapolating with Gaussian processes.

Model selection

Model selection describes the process of deciding which specific model to choose for the

given data. Even when the prior mean function and prior covariance kernel are specified,

a wide range of models—and thus representations of objective functions—is possible de-

pending on the values assigned to the Gaussian process parameters [58]. The number of

parameters of a Gaussian process varies according to the specified prior mean function and

prior covariance kernel. Typically, they consist of at least one length scale l, the output

scale σ2
f , the nugget σ2

k and possibly some parameter in the mean function, such as the

constant mean value c. Hence, the aim is to find parameter values that specify a model

that fits well to the observed data.

In Bayesian analysis, prior distributions (probability density functions) are chosen for the

parameters θ that represent beliefs about the parameter values before observing any data.

After observing data Dn, a Gaussian process model is selected, and parameters θ are

estimated. One way to achieve this is maximising the model’s posterior density function

such that

θ̂ = argmax
θ

p (θ | Dn) ∝ p (θ) p (yn | Xn,θ) , (2.19)

where p (yn | Xn,θ) is the marginal likelihood of the data (also referred to as the evidence)

and p (θ) is the prior distribution of the parameters. While arbitrary distributions can
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be chosen to reflect knowledge about θ, the evidence p (yn | Xn,θ) can conveniently be

expressed as the multivariate Gaussian distribution modelling the function evaluations

N (m (Xn) ,K (Xn,Xn)) given in Equation 2.9. Typically, the logarithm of the posterior

log (p (θ)) + log (p (yn | Xn,θ)) is maximised as the values of the posterior can be close

to zero and challenging to optimise. This estimation strategy is known as maximum a

posteriori (MAP) estimation [58].

If no knowledge about the shape of the objective function is known a priori—and thus

the model selection process cannot be aided by declaring an informative prior distribution

for p (θ)—, a uniform distribution can be chosen as an uninformative prior. This is

convenient as the marginal likelihood can be expressed in closed form and maximised with

gradient methods. In practice, uniformative priors are often assumed implicitly and the

log marginal likelihood

log p (yn | Xn) = −1

2
(yn −m (Xn))

T [K (Xn,Xn) + σ2
kI
]−1

(yn −m (Xn))

− 1

2
log|K (Xn,Xn) + σ2

kI| −
n

2
log 2π (2.20)

is maximised. Values that maximise this likelihood are then assigned to the parameters of

the Gaussian process. This model selection strategy is also known as maximum likelihood

estimation (MLE) [162] and is a special case of MAP estimation in this context [58].

2.4 Guiding optimisation with acquisition functions

Acquisition functions are heuristics computed to guide the optimisation over the param-

eter space. In the sequential optimisation process, they determine what point (or points)

should be evaluated and observed next from the objective function. The exploitation-

exploration trade-off, mentioned in Section 2.2, is an essential property of acquisition

functions for Bayesian optimisation [96]. This property ensures a sample-efficient optimi-

sation procedure by taking into account the prediction and the uncertainty of the posterior

predictive distribution of the Gaussian process model. Thus, Bayesian optimisation ex-

plores areas with high uncertainty but also exploits areas with high predicted means [53,

58]. Maximisation of acquisition functions can present a challenging problem itself, par-

ticularly in higher dimensions. In the literature, multi-start gradient-based optimisers

such as L-BFGS-B [119, 222, 69] or global optimisers such as the DIRECT optimisation

algorithm [93, 92, 20] achieve good results. This section presents a selection of acquisition

functions that have received the most attention in the literature. The focus lies mainly on

acquisition functions used in subsequent chapters of this thesis. Garnett [58] provides an

in-depth derivation of these acquisition functions.
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2.4.1 Improvement-based acquisition functions

Improvement-based approaches are perhaps the best-studied acquisition functions avail-

able from the literature. They select points with the most significant potential to improve

on a certain specified target. In Bayesian optimisation, this target is usually the best

output ybest of all available data points to date. The probability of improvement (PI) was

introduced in the 1960s by Kushner [111, 110]. It is defined by

αPI (X∗) = Φ

(
µn (X∗)− ybest

σn (X∗)

)
, (2.21)

where µn (·) and σn (·) are the mean and the variance of the Gaussian process posterior

predictive distribution and Φ (·) is the cumulative distribution function of the standard

Gaussian distribution N (0, 1).

While PI has a tendency to be overly greedy [91, 175, 20], that is it focuses too much

on exploitation at the cost of exploration, expected improvement (EI) strikes a better

balance. EI [168, 94, 171] is defined as

αEI (X∗) =
(
µn (X∗)− ybest

)
Φ (z) + σn (X∗)ϕ (z) , (2.22)

where z = µn(X∗)−ybest

σn(X∗)
and ϕ (·) is the probability density function of the standard Gaus-

sian distribution N (0, 1).

Jones, Schonlau, and Welch [94] and Jones [91] list the lack of a hyperparameter that

requires tuning and the possibility of a natural stopping rule for algorithms using EI—

that is stopping once the expected improvement falls below a threshold—as the strengths of

EI. However, they criticise the fact that EI (as well as PI) takes the estimated uncertainty

of the Gaussian process as true, which might lead to over-exploration. Bull [21] studies

the convergence rate of EI and show that it can converge near-optimally.

Snoek, Larochelle, and Adams [178] investigate EI empirically and compare different

flavours of EI, such as (i) using Gaussian processes for which parameters were estimated

via maximum likelihood or a fully Bayesian treatment, (ii) parallel EI (see Section 2.5.3)

and (iii) EI per second. The latter is a version of EI that aims to maximise the objective

function and minimise the wall clock time of the optimisation simultaneously. Further-

more, they compare EI against UCB on a test function, showing better performance of

EI.

Sometimes, a parameter ξ is added to PI and EI to control the trade-off between exploita-

tion and exploration, where higher values result in more exploration. Here, ξ is subtracted

from the numerator of z and multipe strategies for setting the parameter have been pro-

posed, such as a variable approach over the iterations [110, 121] or keeping ξ constant

[91].
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Although expected improvement can never be non-positive mathematically, it can become

zero numerically when computed due to the floating point precision of the programming

language. This results in flat areas where the expected improvement is zero and cannot be

optimised correctly. To prevent numerically vanishing values, log expected improvement

(LogEI) was proposed by Ament et al. [2] as

αLogEI (X∗) =

logh

(
µn(X∗)−ybest

σn(X∗)

)
+ log (σn (X∗)) if σn (X∗) > 0

0 if σn (X∗) = 0
, (2.23)

where

logh (z) =


log (ϕ (z) + zΦ (z)) if z > −1

−z2/2− c1 + log1mexp
(
log
(
erfcx

(
−z/

√
2
)
|z|
)
+ c2

)
if − 1/

√
ϵ < z ≤ −1

−z2/2− c1 − 2 log (|z|) if z ≤ −1/
√
ϵ

,

(2.24)

where c1 = log (2π) /2, c2 = log (π/2) /2, ϵ is the numerical precision, and log1mexp and

erfcx are stable implementations of log (1− exp (z)) and exp
(
z2
)
erfc (z) respectively,

where erfc is the complementary error function.

2.4.2 Confidence bound-based acquisition functions

Another popular acquisition function is the upper confidence bound (UCB) [5, 184], which

traces back to the work of Lai and Robbins [112]. It is also referred to as an optimistic

strategy as it assumes a predefined level of the posterior variance of the Gaussian process

to be true [175]. It is defined as

αUCB (X∗) = µn (X∗) +
√
βσn (X∗) , (2.25)

where β is the trade-off parameter that balances exploration and exploitation. Common

strategies for determining a value for β are fixing it to a single value or varying the

value as in the GP-UCB algorithm [185]. Chapter 3 studies this parameter empirically.

Furthermore, Srinivas et al. [185] and De Freitas, Smola, and Zoghi [37] theoretically

investigate the regret and convergence rate of upper confidence bound for the stochastic

(Equation 2.3) and the deterministic problem (Equation 2.1), respectively. The latter

presents a branch and bound approach that sequentially restricts the input space once

a certain coverage of data points is achieved. This approach speeds up optimisation

for deterministic problems significantly, however, the authors acknowledge limitations in

extending it to the noisy problem.
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2.4.3 Information-based acquisition functions

A large group of information-based policies consider the entropy of the posterior predictive

distribution p (x | Dn) and aim to find a candidate point x that maximises its reduction.

While entropy search (ES) [200, 78] and predictive entropy search (PES) [79] are compu-

tationally expensive, max-value entropy search (MES) [204] uses information about simple

to compute maximal output values p (y∗ | Dn) instead of costly to compute entropies. In

detail, the aim is to maximise the mutual information gain between the maximum out-

put y∗ and the next candidate point. This gain can be approximated with Monte Carlo

estimation such that

αMES (X∗) ≈
1

K

∑
y∗∈Y∗

[
γy∗ (X∗)ϕ (γy∗ (X∗))

2Φ (γy∗ (X∗))
− log (Φ (γy∗ (X∗)))

]
, (2.26)

where γy∗ (x) = y∗−µn(x)
σn(x)

and K is the number of Monte Carlo samples. Wang and

Jegelka [204] give two strategies to approximate y∗—an approximation using a Gumbel

distribution and sampling from the Gaussian process posterior. The performance of MES

is studied empirically in Chapter 3. Other information-based strategies include Thompson

sampling [195, 176] and knowledge gradient [52, 53].

2.4.4 Portfolios

Portfolios consider multiple acquisition functions at each step and choose the best-performing

one. Prominent portfolios include the GP-Hedge algorithm [83] based on the work of Auer

et al. [6] and the entropy search portfolio [176] combining information-based acquisition

functions. The Hedge portfolio algorithm is presented in Algorithm 2 and is investigated

in Chapter 3. It requires the computation and optimisation of all acquisition functions

α ∈ A in the portfolio at each Bayesian optimisation iteration. At each optimisation step,

the next candidate point xn+1 to evaluate from the objective function is selected randomly

according to probabilities pn+1 (α) calculated from the performance of the corresponding

acquisition function α. The Hedge portfolio uses rewards rα and gains gα of the acquisition

functions to compute these probabilities. Rewards are defined as the surrogate model’s

prediction of the candidate point, i.e., rαn = µn (x
α
n), and gains are the sum of all rewards

to date gαn =
∑n

i=0 r
α
n . The probability that candidate point xα

n is selected to be evaluated

from the objective function is given as the ratio of the exponential gains multiplied by η

and the sum of all acquisition functions’ exponential gains multiplied by η. The hedge pa-

rameter η is also called the learning rate of the algorithm. For larger values, the gains will

be exponentially larger and the differences in probabilities across the acquisition function

will be more than proportionally larger. Thus, high-performing acquisition functions will

be more than proportionally favoured. If η is smaller, the probabilities of the acquisition
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functions will be more similar and they will have a more equal chance of being chosen.

The probabilities associated with the acquisition functions influence the selection of which

acquisition function is used at each iteration, and can be viewed as a meta-acquisition

function, where the hedge parameter η is a trade-off parameter that balances exploitation

(large values) and exploration (small values). Similar to Srinivas et al. [185] who propose

a variable trade-off parameter for upper confidence bound, Hoffman, Brochu, De Freitas,

et al. [83] propose setting η =
√

8 ln k/t, where k is the number of acquisition functions in

the portfolio and t is the number of the current iteration. This will favour exploitation in

the early iterations and shift increasingly towards exploration. At the first optimisation

step, all gains are zero and the selection of the candidate point xα
1 is completely random.

Optimising all acquisition functions at every optimisation step means that portfolios are

computationally costly compared to single acquisition functions. However, the perfor-

mance of different acquisition functions varies for each iteration. While one acquisition

function could be optimal in one iteration, another acquisition function could be preferred

in a different iteration. The Hedge algorithm aims to select the best acquisition function

at each iteration to deliver a better solution than when just considering one individual

acquisition function.

Algorithm 2 Hedge portfolio algorithm

Require: Evaluation budget N , number of initial points n0, surrogate model M, acqui-
sition functions A, hedge parameter η.
Sample n0 initial training data points X0 via a space-filling design and gather observa-
tions y0.
Set n = 0.
Initialise gains gα0 = 0 for all α in A.
Fit surrogate model M to training data Dn = (Xn,yn).
while n < N − n0 do

Find xα
n+1 = argmaxx α (x) for all α in A.

Select point xn+1 = xα
n+1 with probability pn+1 (α) = exp (ηgαn) /

∑k
i=1 exp

(
ηgin
)
.

Evaluate xn+1, observing yn+1.
Fit surrogate model M to training data Dn+1 =

(
Xn+1,yn+1

)
.

Get rewards rαn+1 = µn+1

(
xα
n+1

)
.

Get gains gαn+1 = gαn + rαn+1.
Increment n.

end while

2.4.5 Monte Carlo acquisition functions

Some of the aforementioned analytical acquisition functions—such as expected improve-

ment and upper confidence bound—can also be approximated by Monte Carlo sampling.

This has the benefit of not requiring the explicit computations, which can become com-
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putationally challenging, particularly when considering parallel multi-point approaches,

as discussed in Section 2.5.3. The analytical acquisition functions can be reparameterised

such that they are dependent on samples from a Gaussian distribution [212, 211]. For

example, Equations 2.21, 2.22 and 2.25 become

αMC
PI (X∗) = max

(
σ

(
µn (X∗) +Lz − ybest

τ

))
(2.27)

αMC
EI (X∗) = max

(
ReLU

(
µn (X∗) +Lz − ybest

))
(2.28)

αMC
UCB (X∗) = max

(
µn (X∗) +

√
βπ

2
|Lz|

)
(2.29)

where z are base samples from a standard multivariate Gaussian distribution such that

z ∼ N (0, I), where 0 is a vector of zeros and I an identity matrix of suitable size.

Additionally, L is the lower triangular matrix of the Cholesky decomposition such that

LL⊺ = K (Xn,Xn), σ (·) is the sigmoid nonlinearity, and ReLU (·) is the rectified linear

unit function. These Monte Carlo acquisition functions are computed many times and

then averaged to give an approximation of the analytical acquisition functions. Chapter 3

empirically studies these Monte Carlo acquisition functions.

2.5 Special cases

This section presents variants of Bayesian optimisation for specific problems such as noisy

objective functions, parallel evaluations and high-dimensional optimisation. The aim is

to give an overview of the different directions of research associated with Bayesian opti-

misation and to signpost important articles that will be considered further in the thesis

beyond this background chapter.

2.5.1 Noise

Many objective functions—particularly physical experiments—are stochastic due to errors

when measuring individual observations. The corresponding results or measurements will

differ when observing the same data point multiple times. Section 2.1 showed how this

can be represented as a maximisation problem by adding noise term ϵ sampled from a

Gaussian distribution with zero mean and a small variance to the objective function f (·).
As a first step, a nugget σ2

k is usually added to the Gaussian process to guarantee the

model’s flexibility and avoid interpolating through all observations, as discussed in Sec-

tion 2.3. This nugget can either be homoskedastic and take the same single value over the

full input domain or heteroskedastic and vary over the domain—for example, by modelling

the noise through a second Gaussian process [66]. While adding a nugget suffices for many
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Bayesian optimisation algorithms, such as ones using Thompson sampling, upper confi-

dence bound, entropy search and knowledge gradient [53], others, such as improvement-

based methods, are the focus of a considerable amount of research to enable the optimi-

sation of stochastic objective functions [69, 155, 205, 9, 85, 88]. These are predominantly

concerned with determining a good substitute or estimate of ybest used in Equation 2.22 as

the target on which the algorithm aims to improve. With stochastic objective functions,

this target is no longer deterministic and various methods have been proposed, such as

the plug-in method that uses the maximum of the posterior mean of the Gaussian process

as the target [155]. Gramacy [69] make a case for such a simple strategy by pointing out

that the Bayesian optimisation literature seems to over-emphasise potential differences

between deterministic and stochastic objective functions, while it is not greatly debated

within the surrogate modelling literature.

2.5.2 Constraints

Constrained optimisation [3, 169] is another well-researched topic in Bayesian optimisation,

where one or multiple constraints gi (·) restrict the feasible input space X such that

x∗ = argmax
x∈X

f (x) (2.30)

subject to gi (x) ≥ 0, i = 1, . . . , I. (2.31)

While these problems can be solved by using an optimiser allowing input constraints such

as the SLSQP algorithm [107] when constraint functions gi (·) can be cheaply evaluated,

they are much more challenging to manage when evaluations of gi (·) are expensive. Ex-

pected improvement can be generalised to be used in the latter case by declaring the

improvement to be zero if the inputs are not feasible [172, 57, 53]. In instances where the

constraints are unknown, expected improvement can be extended to allow optimisation

[71, 181, 62, 70]. Predictive entropy search has also been studied for unknown constraints

[79].

2.5.3 Parallel and asynchronous evaluations

For problems where more than one candidate point can be evaluated simultaneously—

particularly for simulators that can be run in parallel on different cores or computers—

determining multiple candidate points at each optimisation step can speed up optimisation

significantly. While the focus has been on single-step optimal acquisition functions in this

case, it shifts to multi-step lookahead functions that account for the batch size of the

simultaneous evaluations and select points accordingly for this specific problem.

Methods adapted to use the single-step acquisition functions for batched optimisation

28



Chapter 2. Background

include local penalisation [67] and sequential simulation [58], where points are selected

in a loop until the batch is full. Different methods exist for upper confidence bound [38,

32, 109, 102], and expected improvement, such as the kriging believer and constant liar

approaches [64], where previously selected points of a batch are added to the training data

with outputs imputed as the minimum, mean or maximum of all outputs y. The batch

points are evaluated once the batch is full and imputed outputs are replaced with their

actual observations.

While there are attempts to develop true multi-step lookahead acquisition functions for

expected improvement [64, 29, 126], knowledge gradient [215], predictive entropy search

[174] and Thompson sampling [81, 99], many suffer from challenging explicit computations.

However, Monte Carlo versions of many single-step acquisition functions can be extended

naturally to multi-point lookahead optimisation and avoid challenging mathematics [211].

Section 2.4.5 discussed Monte Carlo acquisition functions.

Due to the randomness in the Monte Carlo samples, these acquisition functions can only be

optimised by stochastic optimisers, such as Adam [104]. However, there is some empirical

evidence that fixing the base samples for individual Bayesian optimisation loops does not

affect the performance negatively [7]. This method would allow deterministic optimisers,

such as L-BFGS-B [222] and SLSQP [107], to be used but could potentially introduce bias

due to sampling randomness.

Two optimisation strategies for multi-point batches are proposed in the literature [211]:

The first is a joint optimisation approach, where the acquisition functions are optimised

over all points of the batch simultaneously. The second option is a greedy sequential

approach where one point after another is selected, holding all previous points fixed until

the batch is full. Empirical evidence shows that both methods approximate the acquisition

successfully. However, the greedy approach seems to have a slight edge over the joint

strategy for some examples [211]. It is also faster to compute for larger batches.

Closely linked to parallel evaluations are asynchronous evaluations. Here, the problem

consists of continuing optimisation, while some points have not yet been evaluated and

are still pending. Conveniently, many of the methods mentioned above can also be used

for asynchronous optimisation, such as sequential simulation and Monte Carlo acquisition

functions [64, 178, 58].

2.5.4 High-dimensional optimisation

A major focus of Bayesian optimisation research is the extension into high-dimensional

parameter space. Standard Bayesian optimisation is only reliable with a low to medium

number of parameters. Frazier [53] defines the input space for problems that can be solved

by Bayesian optimisation as no more than 19 dimensions. The main challenge with high-

dimensional optimisation is the curse of dimensionality, which says that the parameter
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space to explore grows exponentially with the number of parameters [158, 58]. There are

roughly four approaches to extending Bayesian optimisation to high-dimensional space.

First, many methods assume a low effective dimensionality, which is considered a require-

ment for success in many areas [116]. While there are many inputs, only a small fraction

actually influence the output. Determining the effective inputs is the main challenge of

this approach, and many methods rely on random embeddings [207, 206, 13, 140, 115,

135, 39]. Raponi et al. [161] use principal component analysis to find a low-dimensional

structure.

Second, other methods assume that the objective function can be decomposed into many

simpler functions that together combine to form the overall objective function. This addi-

tive structure is leveraged—for example with additive Gaussian processes—in Kandasamy,

Schneider, and Póczos [100], Gardner et al. [55], Rolland et al. [166], Mutny and Krause

[138] and Hoang et al. [82].

The third approach aims to improve the Gaussian process model to handle the problem of

high dimensionality. Oh, Gavves, and Welling [146] use a cylindrical covariance kernel to

transform the input space and to speed up finding the optimum. Moreover, Eriksson and

Jankowiak [47] and Liu et al. [120] try to locate sparse subspaces with a fully Bayesian

approach that places priors on the parameters of the Gaussian process.

The final approach aims to restrict the search space by placing a trust region—essentially a

hyperrectangle—around the best observation and performing Bayesian optimisation only

within this trust region [48]. Depending on the results, the trust region is scaled to be

smaller or larger, and multiple trust regions can be used simultaneously to ensure the

global optimum is located.

2.5.5 Multiple objectives, fidelities and tasks

The maximisation problem introduced in Section 2.1 can be extended to multi-objective,

multi-fidelity and multi-task optimisation.

In multi-objective optimisation, the aim is no longer to optimise one single objective func-

tion f (·) but rather multiple objective functions fi (·) simultaneously. A global optimum

for all objective functions is only possible if it happens to occur at the same inputs for all

functions. The main goal is to find the best trade-off between the objective functions [58,

53]. Acquisition functions such as expected improvement [46, 157, 219, 218], predictive

entropy search [79] and max-value entropy search [10, 49] have been extended to allow

multi-objective optimisation. Furthermore, Paria, Kandasamy, and Póczos [150] propose

the use of random scalarisations.

Multi-fidelity optimisation assumes that the objective function f (·) can be evaluated with

different fidelities s such that f (x, s), where higher s yield lower fidelities and the orig-

inal objective function from Equation 2.1 can be written as f (x, 0) [53]. It is often
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assumed that higher fidelities yield more accurate results, making this a complex problem

for which Bayesian optimisation has to determine the next candidate to observe and at

what fidelity. While Forrester, Sóbester, and Keane [50] focus on updating the surrogate

model to account for multiple fidelities, many authors focus on the acquisition functions

such as expected improvement [182, 84, 155], upper confidence bound [97, 98], predictive

entropy search [221, 130] and max-value entropy search [191].

Multi-task optimisation assumes that the objective function f (·) is dependent on different

tasks or variables that are correlated [53, 58]. In an experiment, for example, the obser-

vation could be dependent and influenced by external environmental conditions that may

or may not be controlled. The aim is to leverage the correlation between tasks and find

one solution that performs well for all tasks [24] or multiple solutions, with each being

optimal for a certain task [108]. Chapter 5 discusses this case further and introduces an

optimisation strategy for changing environmental conditions. In the literature, the focus

lies on applying multi-task Gaussian processes to Bayesian optimisation [190] and extend-

ing acquisition functions to account for different tasks—such as expected improvement

[209, 73], entropy search [190] and knowledge gradient [216, 198].

2.6 Summary

This chapter provided essential background information on the optimisation of physical

experiments and computer simulators for the subsequent chapters by introducing expen-

sive black-box problems and presenting Bayesian optimisation as a promising solution for

their optimisation. Compared to other optimisation strategies, Bayesian optimisation (i)

uses Bayesian models to incorporate prior beliefs about the objective function and (ii)

selects potential candidate points sequentially guided by heuristics, resulting in a sample-

efficient approach. We focused mainly on surrogate modelling with Gaussian processes and

the selection of candidate points with acquisition functions before giving an overview of

exceptional cases of expensive black-box optimisation, such as parallel, high-dimensional

and multi-fidelity problems.

Subsequent chapters build upon this background knowledge and empirically investigate

the performance of different acquisition functions and other fundamental properties of

Bayesian optimisation (Chapter 3), present an open-source Python package for the op-

timisation of expensive physical experiments and computer simulators (Chapter 4), and

develop a method for optimising problems with randomly changing environmental condi-

tions (Chapter 5).

31



Chapter 3

An empirical investigation of

Bayesian optimisation

Summary

Bayesian optimisation provides an effective method to optimise expensive-to-evaluate

black-box functions. It has been widely applied to problems in many fields, notably

in computer science, e.g., machine learning, to optimise hyperparameters of neural

networks, and in engineering, e.g., fluid dynamics, to optimise control strategies

that maximise drag reduction. This chapter empirically studies and compares the

performance and the robustness of standard Bayesian optimisation algorithms on

a range of synthetic test functions to provide general guidance on the design of

Bayesian optimisation algorithms for specific problems. It investigates the choice of

acquisition function, the effect of different numbers of training samples, the exact

and Monte Carlo-based calculation of acquisition functions, and both single-point

and multi-point optimisation. The test functions considered cover a wide range of

challenges and, therefore, serve as a suitable test bed to understand the performance

of Bayesian optimisation to specific challenges and in general. To illustrate how

these findings can be used to inform a Bayesian optimisation setup tailored to a

specific problem, two simulations in the area of computational fluid dynamics are

optimised, giving evidence that suitable solutions can be found in a relatively small

number of evaluations of the objective function for complex, real problems. The

results of our investigation can be applied to other areas, such as machine learning

and physical experiments, where objective functions are expensive to evaluate and

their mathematical expressions are unknown.
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3.1 Introduction

Apart from the applications discussed in Chapter 2, Bayesian optimisation has recently

been used successfully in the data-intensive field of computational fluid dynamics (CFD).

Examples include Talnikar et al. [192] who developed a Bayesian optimisation framework

for the parallel optimisation of large eddy simulations. They used this framework (i) on a

one-dimensional problem, i.e., a problem with one input variable, to determine the wave

speed of a traveling wave that maximises the skin-friction drag reduction in a turbulent

channel flow and (ii) on a four-dimensional problem to find an efficient design for the

trailing edge of a turbine blade that minimises the turbulent heat transfer and pressure

loss. For the former, Bayesian optimisation was able to locate a wave speed to generate

a skin-friction drag reduction of 60%, while for the latter within 35 objective function

evaluations a design was found that reduced the heat transfer by 17% and the pressure

loss by 21%. Mahfoze et al. [123] utilised Bayesian optimisation on two three-dimensional

problems to locate optimal low-amplitude wall-normal blowing strategies to reduce the

skin-friction drag of a turbulent boundary layer and maximise net power savings. The two

problems use different methods to estimate the net power savings and achieve 5% savings

with 8.3% global drag reduction within 18 function evaluations, and 0.7% savings with

5.6% global drag reduction within 11 function evaluations, respectively. Lastly, Nabae

and Fukagata [139] maximised the skin-friction drag reduction in a turbulent channel flow

by optimising the velocity amplitude and the phase speed of a travelling wave-like wall

deformation. They achieved a maximum drag reduction of 60.5%.

While these examples, and the adaptation of Bayesian optimisation in general, show that

Bayesian optimisation performs well on various problems, such as computer simulators and

hyperparameter tuning of machine learning models, there needs to be a more extensive

study on the many different types of Bayesian optimisation algorithms in the literature. In

particular, there is a research gap regarding the performance and robustness of Bayesian

optimisation when applied to distinct challenges. This chapter aims to address this gap by

considering a wide range of algorithms and problems with increasing levels of complexity

that are, consequently, increasingly difficult to solve. The comparison and the thorough

analysis of these algorithms can inform the design of Bayesian optimisation algorithms and

allow them to be tailored to the unique problem. Two novel simulations in computational

fluid dynamics are optimised to show how the findings can guide the setup of Bayesian

optimisation, demonstrating that Bayesian optimisation can find suitable solutions to

complex problems in a relatively small number of function evaluations. The results of these

applications show that Bayesian optimisation can find promising solutions for expensive-

to-evaluate black-box functions. In these specific cases, solutions were found that (a)

maximise the drag reduction over a flat plate and (b) achieve drag reduction and net energy
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savings simultaneously. For these experiments, the NUBO framework [42] is utilised.

NUBO is introduced formally and discussed in Chapter 4.

The chapter is structured as follows. Section 3.2 discusses the synthetic benchmark func-

tions and their advantages over other common benchmarking methods. In Section 3.2.1,

four different sets of simulations are presented. These experiments study multiple analyti-

cal single-point acquisition functions, varying numbers of initial training points, acquisition

functions utilising Monte Carlo sampling and various multi-point acquisition functions. Fi-

nally, Section 3.2.2 discusses the main findings and relates them to the problems presented

in the introduction and more generally. These findings inform the algorithm used to op-

timise the setup of two computational fluid dynamics experiments in Section 3.3. Lastly,

a brief conclusion is drawn in Section 3.4.

3.2 Synthetic test functions

While there are various methods of benchmarking the performance of optimisation al-

gorithms, such as sampling objective functions from Gaussian processes or using hyper-

parameter optimisation of machine learning models as the objective function [178, 20,

204], this chapter focuses on using synthetic test functions [188]. Synthetic test functions

have the main advantage that their global optima and their underlying shape are known.

Thus, the difference between the results and the true optimum can be evaluated when

comparing the acquisition functions outlined in Section 2.4 on these functions. For other

benchmarking methods, this might not be possible as, for example, in the case of opti-

mising the hyperparameters of a model, the true optimum, i.e., the solution optimising

the model’s performance, is rarely known. Hence, results can only be discussed relative to

other methods, irrespective of how close any method is to the true optimum. Furthermore,

knowing the shape of the test function is advantageous as it provides information on how

challenging the test function is to optimise. For example, knowing that a test function is

particularly smooth and has a single optimum indicates that it is less complex and thus

less challenging to optimise than a test function that possesses multiple local optima, in

each of which the algorithm could potentially get stuck.

This chapter assesses the Bayesian optimisation algorithms on eight different synthetic

test functions spanning various challenges. Table 3.1 presents the test functions and

gives details on the number of input dimensions, the shape and the number of optima

to give an idea about the complexity of the individual functions. Figure 3.1 shows some

of the functions (those that can be presented in three-dimensional space) and indicates

the increasing complexity of the functions. Detailed mathematical definitions for all test

functions can be found in Appendix A.1. The number of input dimensions for the test

functions was chosen to be equal to or slightly greater than the number in the articles
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A) B)

C) D)

Figure 3.1: Different challenges and levels of complexity represented by the shapes of four test
functions whereA) is the Dixon-Price function, B) is the Griewank function, C) is the Michalewicz
function and D) is the modified Ackley function.

on optimising simulations recently published in the fluid dynamics community, which

is typically three to eight [123, 136, 192, 139]. The 10D Sphere and 10D Dixon-Price

functions are less challenging problems with a high degree of smoothness and only one

optimum. They are, therefore, considered for a higher number of input dimensions. The

8D Griewank function adds a layer of complexity by introducing oscillatory properties.

The 6D Hartmann function increases the level of difficulty further through its multi-

modality. It has six optima with only one global optimum. This function is also considered

in two noisy variants to simulate typical measurement uncertainty encountered during

experiments in fluid dynamics. For these noisy variants, the standard deviation of the

added Gaussian noise is chosen so that it represents the measurement errors of state-of-

the-art Micro-Electro-Mechanical-Systems (MEMS) sensors which directly measure time-

resolved skin-friction drag in turbulent air flows (e.g., the flow over an aircraft); that is,
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Table 3.1: Overview of the seven synthetic test functions.

Test function Number of input dimensions D Shape Number of optima

Sphere 10 Bowl-shaped 1

Dixon-Price 10 Valley-shaped 1

Griewank 8 Oscillatory 1

Hartmann 6 Multi-modal 6

Noisy Hartmann 6 Noisy 6

Michalewicz 5 Steep edges 120

Ackley 6 Mostly flat 1

1.4 to 2.4% in an experimental setting [45]. Based on the 6D Hartmann function’s range,

the corresponding standard deviations for the Gaussian noise, taken as the limits of a 99%

confidence interval, are, therefore, 0.0155 and 0.0266, respectively. The most complex test

functions are the 5D Michalewicz and the 6D Ackley functions (this chapter considers a

modified Ackley function with a = 20.0, b = 0.5 and c = 0.0). While the former has 120

optima and steep ridges, the latter is mostly flat, with a single global minimum in the

centre of the space. The high gradient of the function close to the optimum, and the large

flat areas represent a great level of difficulty, as illustrated in the bottom row of Figure 3.1.

3.2.1 Results

This section focuses on the results for four of the eight test functions considered in this

chapter. The results for the other four test functions and more extensive tables can

be found in Appendices A.3 and A.4, respectively. The 8D Griewank function, the 6D

Hartmann function in variations without noise and with the high noise level and the 6D

Ackley function are examined here, as they represent increasing levels of complexity and

come with unique challenges as illustrated in Section 3.2 above. The following budgets

were imposed on the test functions to mirror real-world applications with small evaluation

budgets: 200 evaluations for the Griewank and Hartmann functions and 500 for the more

complex Ackley function. If not otherwise stated, the number of initial training points is

equivalent to five points per input dimension of the given test function, i.e., 40 training

points for the Griewank function and 30 training points for the Hartmann and Ackley

functions. For each method in the following sections, 50 different optimisation runs were

run to investigate how robust and sensitive the methods are to varying initial training

points. Each run was initialised with a different set of initial training points sampled from

a maximin Latin hypercube design [129, 86]. However, the points were identical for all

methods for a specific test function. All experiments were run on container instances on
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the cloud with the same specifications (two CPU cores and 8GB of memory) to make runs

comparable.

Overall, four different sets of experiments are considered. Firstly, analytical single-point

acquisition functions are compared. Secondly, the effects of varying the number of initial

training points are investigated. Thirdly, analytical methods are compared with Monte

Carlo methods, and lastly, multi-point or batched methods are compared to the single-

point results. Space-filling designs exhausting the full evaluation budgets were sampled

from a maximin Latin hypercube as a performance baseline.

Analytical single-point acquisition functions

Section 2.4 describes five different groups of acquisition functions: improvement-based,

confidence bound-based, information-based, portfolios and Monte Carlo. This section

tests representative functions from the improvement-based, confidence bound-based and

portfolio acquisition functions on the synthetic test functions outlined above. The focus lies

on analytical single-point acquisition functions, which are widely used and thus present

a natural starting point. Information-based and Monte Carlo acquisition functions are

typically not analytical and are investigated in following sections. Overall, seven different

methods are considered: PI, EI, UCB with a variable and fixed β (5.0 and 1.0) and a

Hedge portfolio that combines the PI, EI and variable UCB acquisition functions. For a

detailed discussion of these functions, see Section 2.4.

Figure 3.2 presents the best solutions, defined by the output value closest to the global

optimum, found so far at each evaluation for each acquisition function. The outputs are

normalised to the unit range, where 1.00 represents the global optimum. Most methods

perform very well on the Griewank function, all reaching 1.00, and both variations of the

Hartmann function with and without added noise (all reaching 1.00 and >0.97, respec-

tively). All acquisition functions find the optimum or a solution reasonably close to the

optimum within the allocated evaluation budget. However, PI and variable UCB typically

require more evaluations to find a solution close to the optimum. All acquisition functions

perform noticeably better than the Latin hypercube benchmark and exhibit much less

variation over the 50 runs, as indicated by the 95% confidence intervals calculated at each

evaluation as µ±1.96×σ, where µ is the average output over the 50 runs and σ is the stan-

dard deviation of the outputs. There is little difference between the Hartmann function

with and without added noise; indeed, the results are almost identical. The Ackley func-

tion, on the other hand, is more challenging. While the UCB methods still perform very

well (all >0.96), the performance of the portfolio and PI decrease slightly (0.91 and 0.88,

respectively), and EI performs considerably worse (0.63) with more variability between

runs.

Similar conclusions can be drawn from Table 3.2, which presents each method’s area under
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Figure 3.2: Performance plots for analytical single-point acquisition functions with five initial
starting points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.

the receiver operating characteristic (ROC) curve (AUC) [75, 17]. The AUC indicates

how quickly the individual methods find solutions near the optimum. A perfect score

(1.0) would indicate that the algorithm finds the optimum perfectly at the first iteration.

The lower the score (a) the further the algorithm is away from the optimum and (b) the

more evaluations are required for the algorithm to find promising solutions. While all

methods score at least 0.98 for the Griewank function with a standard error of at most

0.01, the scores worsen slightly for the Hartmann function and significantly for the Ackley

function. In particular, the AUC of EI for the Ackley function is poor (0.59) and exhibits

high variability between the 50 runs (standard error: 0.15). At the opposite end of the

performance spectrum lie the optimistic methods, i.e., the UCB with variable and fixed β,

that perform very well on all test functions with low standard errors. These results suggest

that while the choice of acquisition function is less relevant for simple and moderately
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Table 3.2: Averaged AUC with standard error for analytical single-point acquisition functions with
five initial training points per input dimension.

Method Griewank Hartmann Noisy Hartmann Ackley

PI
0.99

(± 0.00)
0.91

(± 0.04)
0.95

(± 0.02)
0.76

(± 0.08)

EI
1.00

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.02)
0.59

(± 0.15)

UCB (variable)
0.98

(± 0.01)
0.94

(± 0.03)
0.95

(± 0.03)
0.85

(± 0.01)

UCB (β=5)
1.00

(± 0.00)
0.97

(± 0.02)
0.98

(± 0.02)
0.90

(± 0.02)

UCB (β=1)
1.00

(± 0.00)
0.95

(± 0.04)
0.97

(± 0.02)
0.88

(± 0.05)

Hedge
1.00

(± 0.00)
0.95

(± 0.03)
0.97

(± 0.02)
0.77

(± 0.11)

complex objective functions such as the Griewank or Hartmann functions, it is important

when solving challenging problems such as the Ackley function, especially if large flat areas

characterise them. Here, the optimistic acquisition functions are advantageous and should

be preferred over the Hedge portfolio and improvement-based approaches. It should be

noted that this may only be true for the specific portfolio defined previously. Implementing

a different collection of acquisition functions could yield different results.

Varying number of initial training points

The training points initialising the Bayesian optimisation algorithm directly affect the

surrogate model (Gaussian process), representing the objective function. A larger number

of training points yields a Gaussian process that will typically represent the objective

function better as it incorporates more data and, thus, more information. However, the

more evaluations of the total budget allocated for these initial training points, the fewer

points can be evaluated as part of the Bayesian optimisation algorithm. This trade-off

indicates that the number of training points (and, by extension, their selection) is a crucial

choice in Bayesian optimisation and should be considered thoroughly. This section explores

this trade-off by taking the same experimental setup as the previous section but varying

the number of initial training points. Overall, setups with one, five and ten initial points

per input dimension of the objective function are considered.

Figures 3.3 and 3.4 depict the performance plots for the case with one and ten training
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Figure 3.3: Performance plots for analytical single-point acquisition functions with one initial
starting point per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.

points per dimension, respectively. If the number of points is reduced to one point per

dimension, the individual methods find solutions virtually identical to the results with

five training points per dimension. EI still performs much worse than other methods for

the Ackley function. Furthermore, most methods find their best solution in a comparable

or slightly higher number of evaluations than before, as the AUC values in Table 3.3

show. This is expected, as using fewer initial training points means that the Bayesian

optimisation algorithm has less information at the earlier iterations than when using more

initial training points. However, the difference in mean AUC is small, and the results

suggest that Bayesian optimisation quickly makes up for this lack of information. PI and

the Hedge portfolio have the highest decrease in performance on average for the Hartmann

function, with the mean AUC decreasing by 0.09 and 0.06, respectively. The variability

between runs of the Hedge algorithm also rises, as indicated by an AUC standard error
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Table 3.3: Averaged AUC with standard error for analytical single-point acquisition functions with
one initial training point per input dimension.

Method Griewank Hartmann Noisy Hartmann Ackley

PI
0.97

(± 0.01)
0.82

(± 0.09)
0.90

(± 0.06)
0.73

(± 0.11)

EI
0.99

(± 0.00)
0.95

(± 0.03)
0.95

(± 0.03)
0.58

(± 0.13)

UCB (variable)
0.97

(± 0.01)
0.91

(± 0.04)
0.91

(± 0.03)
0.82

(± 0.01)

UCB (β=5)
0.98

(± 0.00)
0.94

(± 0.03)
0.95

(± 0.03)
0.87

(± 0.02)

UCB (β=1)
0.99

(± 0.00)
0.93

(± 0.08)
0.93

(± 0.09)
0.85

(± 0.06)

Hedge
0.98

(± 0.01)
0.89

(± 0.11)
0.92

(± 0.05)
0.76

(± 0.09)

0.08 higher. PI and the portfolio also perform worse for the Noisy Hartmann function,

where the mean AUC decreased by 0.05 for both methods. Intuitively, this makes sense

as the surrogate model at the start of the Bayesian optimisation algorithm includes less

information than before. Thus, it takes more evaluations to find a good solution. In early

iterations, the individual methods deviate from one another more than when five training

points per dimension are used.

If the number of starting points is increased to ten points per dimension, there is essentially

no change to the case with just five starting points per dimension for the Griewank and

the two Hartmann functions. For the Ackley function, however, the performance of both

the best solution found and the AUC worsen (Table 3.4) for EI and, most significantly, PI.

The average best solution for the latter decreases by 0.37 to only 0.51, while EI decreases

by 0.10 to 0.53. Both policies struggle with the large area of the test function that gives

identical response value and is hence flat (see Section 3.2). The optimistic policies and the

portfolio perform much better, and no real change is noticeable from the results discussed

in Section 3.2.1.

These results suggest that choosing more training points to initialise the Bayesian opti-

misation algorithm cannot necessarily be equated with better performance and solutions.

This is particularly true considering there was no improved performance when increasing

from five to ten points per input dimension. On the other hand, reducing the number

of training points did not yield noticeably worse results. Overall, a similar picture as in

the previous section emerges: while all methods perform well on more straightforward
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Figure 3.4: Performance plots for analytical single-point acquisition functions with ten initial
starting points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.

problems, optimistic policies achieve the best results on the more challenging problems

independent of the number of starting points. Five training points per dimension appeared

sufficient for the test functions we considered. There was no discernible improvement when

moving to ten training points and a small performance loss when reducing to one training

point per dimension.

Monte Carlo single-point acquisition functions

The previous experiments considered analytical acquisition functions. This section fur-

ther assesses the Monte Carlo approach outlined in Section 2.4.5. As not all acquisition

functions can be rewritten to suit such an approach, the experiments are restricted to PI,

EI and UCB with variable and fixed β. Max-value entropy search (MES) is also used as

a new method, as introduced in Section 2.4.3.
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Table 3.4: Averaged AUC with standard error for analytical single-point acquisition functions with
ten initial training points per input dimension.

Method Griewank Hartmann Noisy Hartmann Ackley

PI
1.00

(± 0.00)
0.93

(± 0.05)
0.96

(± 0.02)
0.43

(± 0.25)

EI
1.00

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.02)
0.41

(± 0.07)

UCB (variable)
1.00

(± 0.00)
0.95

(± 0.03)
0.96

(± 0.03)
0.87

(± 0.01)

UCB (β=5)
1.00

(± 0.00)
0.97

(± 0.02)
0.98

(± 0.02)
0.91

(± 0.03)

UCB (β=1)
1.00

(± 0.00)
0.96

(± 0.03)
0.98

(± 0.03)
0.86

(± 0.08)

Hedge
1.00

(± 0.00)
0.96

(± 0.03)
0.97

(± 0.02)
0.78

(± 0.13)

Table 3.5: Averaged AUC with standard error for Monte Carlo single-point acquisition functions
with five initial training points per input dimension.

Method Griewank Hartmann Noisy Hartmann Ackley

MC PI
0.99

(± 0.00)
0.92

(± 0.06)
0.95

(± 0.04)
0.17

(± 0.12)

MC EI
1.00

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.04)
0.05

(± 0.03)

MC UCB (variable)
0.98

(± 0.01)
0.95

(± 0.02)
0.95

(± 0.04)
0.86

(± 0.01)

MC UCB (β=5)
1.00

(± 0.00)
0.97

(± 0.02)
0.98

(± 0.03)
0.91

(± 0.01)

MC UCB (β=1)
1.00

(± 0.00)
0.96

(± 0.07)
0.97

(± 0.07)
0.89

(± 0.03)

MES
0.99

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.03)
0.49

(± 0.12)
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Figure 3.5: Performance plots for Monte Carlo single-point acquisition functions with five initial
starting points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded areas represent the 95% confidence intervals.

For the Griewank and both Hartmann functions, all results are almost identical to the

analytical case except for the variability between runs, which increased slightly for some

methods. However, Figure 3.5 clearly shows that the performance for PI and EI on the

Ackley function decreased significantly. The average best solutions decreased by 0.68 and

0.56, and the average AUC (Table 3.5) decreased by 0.59 and 0.54, respectively. Table 3.5

shows that MES performs well on the Griewank and Hartmann functions, reaching an

AUC above 0.97 with low standard errors. However, MES performs much worse when it

comes to the more complex Ackley function. With a mean AUC of 0.49, its performance

ranks below the optimistic acquisition functions but above the improvement-based meth-

ods. Earlier sections showed that improvement-based policies (particularly EI) perform

poorly on the Ackley function when using analytical acquisition functions. However, the

results from this comparison show that their performance suffers even more severely when
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using the Monte Carlo approach. One reason could be that the Monte Carlo variants essen-

tially approximate the analytical acquisition functions and are less accurate as discussed

in Section 2.4.5. Another well-established problem of improvement-based acquisition is

that their acquisition values are numerically zero in many areas and thus challenging to

maximise. This resulted in inconsistent performance in the past [2]. However, there seems

to be little to no change when using optimistic policies. This suggests that, similar to

previous sections, optimistic policies should be preferred when optimising complex and

challenging objective functions with large flat areas using Monte Carlo acquisition func-

tions.

Multi-point acquisition functions

The previous sections focused on single-point approaches, where each iteration of the

Bayesian optimisation algorithm yields one new point sampled from the objective function

before the next iteration of the optimisation loop. While this makes sense for objective

functions that can be evaluated quickly or that do not allow parallel evaluations, it might

slow down the optimisation process needlessly when objective functions take a long time

to evaluate and allow parallel evaluations. Thus, this section implements multi-point

acquisition functions that propose a batch of points at each iteration, which are evaluated

simultaneously before the next iteration.

Section 2.4.5 outlined how Monte Carlo approaches using the reparameterisation trick

can be extended to compute batches naturally. MES does not use reparameterisation

and is thus not naturally extendable to the multi-point setting. Hence, we consider the

same acquisition functions as in the previous section, but this time for a batch size of five

points. Each acquisition function is optimised with two different methods—sequentially

and jointly. The latter computes all batch points in a single step, while the former selects

one batch point after the other, as discussed in Section 2.4.5. For example, for a batch

of five points, the sequential strategy repeats the selection process five times [7]. This

approach, also known as greedy optimisation, might be preferable and yield better results

[211]. While analytical functions cannot be extended to the multi-point case as easily as

the Monte Carlo evaluations, some frameworks allow the computation of batches. This

section considers the constant liar approach with a lie equivalent to the minimal (CL min)

and maximal (CL max) value so far [64] and the GP-BUCB algorithm, an extension of

the UCB function [38]. For more details, see Section 2.5.3.

Figure 3.6 shows the results for a selection of multi-point acquisition functions. They es-

sentially find identical solutions, on average, to the single-point approach for the Griewank

function and Hartmann function with and without noise. Only selected methods are shown

in the plot. Specifically, two variations of the UCB approach are not included as they are

almost identical to the UCB with β=1 (see Appendices A.3 and A.4). While there are no

45



Chapter 3. An empirical investigation of Bayesian optimisation

50 100 150 200
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

pu
t

A) 8D Griewank

LHS
MC seq. PI
MC seq. EI
MC seq. UCB ( = 1)
MC joint PI
MC joint EI
MC joint UCB ( = 1)
CL min
CL max
BUCB ( = 1)
Training

50 100 150 200
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

pu
t

B) 6D Hartmann

100 200 300 400 500
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

pu
t

C) 6D Ackley

50 100 150 200
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0
O

ut
pu

t

D) 6D Hartmann with high noise

Figure 3.6: Performance plots for multi-point acquisition functions with five initial training points
per input dimension. Solid lines represent the mean over the 50 runs while shaded areas represent
the 95% confidence intervals. PI in blue, EI in orange, UCB in red.

changes to the AUC for the Griewank function, some differences for the Hartmann func-

tions suggest that methods require a different number of evaluations to find the best value,

as Table 3.6 shows. Although the joint Monte Carlo approach has a lower mean AUC for

PI and UCB (variable and β=5), the decrease is less severe than for the GP-BUCB meth-

ods, which all decrease by 0.08 to 0.10. The other methods perform comparably to the

single-point case, and the variability between the sequential and joint Monte Carlo UCB

runs with β = 1 even decreases. The results of the noisy Hartmann test function are very

similar to those of the Hartmann function without noise. In general, over all experiments,

no discernible drop in performance can be declared as a result of adding noise up to 2.4%

of the overall objective function range.

Most methods find similar best solutions to the Ackley test function as their single-point

counterparts. However, there are some changes in the improvement-based policies: the
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Table 3.6: Averaged AUC with standard errors for multi-point acquisition functions with five initial
training points per input dimension.

Type Method Griewank Hartmann Noisy Hartmann Ackley
S
eq
u
en
ti
al

M
on

te
C
ar
lo

PI
0.99

(± 0.00)
0.92

(± 0.03)
0.94

(± 0.02)
0.22

(± 0.08)

EI
1.00

(± 0.00)
0.95

(± 0.03)
0.97

(± 0.02)
0.37

(± 0.22)

UCB
(variable)

0.98
(± 0.01)

0.94
(± 0.03)

0.94
(± 0.03)

0.84
(± 0.01)

UCB
(β=5)

0.99
(± 0.00)

0.95
(± 0.02)

0.96
(± 0.02)

0.88
(± 0.02)

UCB
(β=1)

1.00
(± 0.00)

0.96
(± 0.02)

0.97
(± 0.02)

0.86
(± 0.02)

J
oi
n
t
M
on

te
C
ar
lo

PI
0.99

(± 0.00)
0.86

(± 0.05)
0.89

(± 0.04)
0.09

(± 0.06)

EI
1.00

(± 0.00)
0.95

(± 0.03)
0.96

(± 0.02)
0.06

(± 0.03)

UCB
(variable)

0.97
(± 0.02)

0.89
(± 0.04)

0.90
(± 0.04)

0.81
(± 0.02)

UCB
(β=5)

0.99
(± 0.00)

0.94
(± 0.03)

0.95
(± 0.03)

0.87
(± 0.02)

UCB
(β=1)

1.00
(± 0.00)

0.96
(± 0.02)

0.97
(± 0.02)

0.78
(± 0.06)

A
n
al
y
ti
ca
l

CL min
0.99

(± 0.00)
0.94

(± 0.02)
0.95

(± 0.02)
0.40

(± 0.08)

CL max
1.00

(± 0.00)
0.95

(± 0.03)
0.96

(± 0.03)
0.67

(± 0.09)

BUCB
(variable)

0.98
(± 0.02)

0.85
(± 0.05)

0.85
(± 0.05)

0.65
(± 0.03)

BUCB
(β=5)

0.98
(± 0.00)

0.88
(± 0.05)

0.90
(± 0.05)

0.66
(± 0.05)

BUCB
(β=1)

0.99
(± 0.00)

0.88
(± 0.06)

0.90
(± 0.06)

0.65
(± 0.05)
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sequential Monte Carlo EI and PI, and CL max, find better solutions than before (by

0.33, 0.04 and 0.11, respectively). Conversely, CL min and joint Monte Carlo PI provide

inferior solutions in the batched case (0.13 and 0.08, respectively). Looking at how quickly

the individual methods find good values on average, i.e., the AUC, it is clear that the an-

alytical multi-point and joint Monte Carlo methods perform worse than the single-point

implementations for the Ackley function: the AUC of all analytical multi-point meth-

ods worsened by 0.19 to 0.24, except for CL max that improved by 0.08. Similarly, all

joint methods perform more poorly than in the sequential single-point optimisation where

UCB with β = 1 sees the most significant drop of 0.11. EI is the exception and stays

approximately the same. The sequential Monte Carlo EI provides the most significant

improvement with an increase of 0.32. However, this improvement is mainly caused by

the very poor performance of the single-point Monte Carlo EI acquisition function. Fur-

thermore, this approach comes with a higher variability, as the standard error of the AUC

rises by 0.19.

Regarding the best solutions found, multi-point methods present a good alternative to

single-point acquisition functions. They generally find better solutions comparable to

the single-point approach but for a slightly larger number of objective function evalua-

tions. However, while it requires more evaluations, the multi-point approach would still be

faster when computing batches in parallel. Multi-point acquisition functions will be most

beneficial for expensive-to-evaluate objective functions that can be evaluated in parallel.

With some exceptions, this benefit requires more evaluations until solutions comparable

to single-point methods are found. Overall, combined with sequential optimisation, the

optimistic methods appear favourable over the rest, as the red lines in Figure 3.6 clearly

show.

3.2.2 Discussion

Six main conclusions can be drawn from the simulation results presented in detail above.

This section discusses these findings and relates them to the applied problems that moti-

vated this work, i.e., optimising experiments in engineering, particularly fluid dynamics,

and tuning hyperparameters of neural networks and other statistical models.

The first findings concern the choice of acquisition functions related to the complexity of

the problem. The results show that this choice is less critical when optimising simpler

objective functions. Improvement-based, confidence bound-based, and information-based

acquisition functions, as well as portfolios, performed well on a wide range of synthetic test

functions with up to ten input dimensions (see Appendices A.3 and A.4 for more examples

to reinforce this result). However, for more complex functions, such as the Ackley func-

tion, the optimistic methods performed significantly better than the rest and thus should

be favoured. For the Bayesian optimisation algorithm, all acquisition functions considered
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in this chapter can yield good results. However, the choice of acquisition function must

be considered more carefully with increasing complexity of the objective function. This

indicates the importance of expert knowledge when applying Bayesian optimisation to a

specific problem, such as a drag reduction problem in fluid dynamics. Basing the choice of

acquisition function on specific knowledge about the expected complexity of the objective

function could significantly increase the Bayesian optimisation algorithm’s performance.

In cases where no expert knowledge or other information about the objective function is

accessible, results suggest that the optimistic methods are a good starting point. This

result is reinforced by the statistical analysis in Appendix A.2 that shows that methods

indeed perform significantly differently from each other and that confidence bound-based

acquisition functions find the best solutions with the least variation between the 50 repli-

cations.

Secondly, the results suggest that the number of initial training points is not critical in

achieving good performance from the algorithm. There is little difference when increasing

the number of starting points from one point per input dimension to ten points per di-

mension. While the performance of the acquisition functions differs initially for the former

case, they still find comparable results to the cases of five or ten points per input dimension

over all iterations. This means that Bayesian optimisation efficiently explores the space

even when provided with only a few training points. Deciding on the number of starting

points is an important decision in problems where evaluating a point is expensive. For

example, when evaluating a set of hyperparameters for a complex model such as a deep

neural network, the model must be retrained for each set of hyperparameters, racking

up time and computing resource costs. In most cases, the problem involves dividing a

predefined budget into two parts: evaluations to initialise the algorithm and evaluations

for points proposed by the Bayesian optimisation algorithm. The decision of how many

points to allocate for the training budget is important. Using too many could mean that

the Bayesian optimisation algorithm does not have sufficient evaluations available to find

a suitable solution, i.e., the budget is exhausted before a promising solution is found. The

simulations in this chapter suggest that this decision might not be as complex as it initially

seems, as only a few training points are necessary for the algorithm to achieve good results.

Using only a small number of evaluations for training points saves more evaluations for

the optimisation itself, thus increasing the chances of finding a good solution.

The third finding regards the information-based acquisition functions. PI and EI failed to

find good results for the Ackley function across the different simulations. The reason for

this is the large area of the parameter space where all response values are identical; thus,

the response surface is flat. As discussed in Section 2.4.1, improvement-based acquisition

functions propose a point most likely to improve upon the previous best point. With a

flat function like the Ackley function, all initial starting points likely fall into the flat area
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(especially in higher dimensions where the flat area grows exponentially with the number of

input dimensions). The posterior mean of the Gaussian process will then be very flat and

will, in turn, predict that the underlying objective function is flat as well. This leads to a

very flat acquisition function, as most input points will have a small likelihood of improving

upon the previous best points. Gramacy [69] mentions problems when optimising with a

flat EI acquisition function that results in the evaluation of points that are not optimal,

which is especially problematic when the shape of the objective function is not known and

flat regions cannot be ruled out a priori. If such properties are possible in a particular

applied problem, the results suggest that using a different acquisition function, such as an

optimistic policy, achieves better results. This again highlights the importance of expert

knowledge for applications to specific problems.

Fourthly, the simulations show that Monte Carlo acquisition functions yield comparable

results to analytical functions. These functions use Monte Carlo sampling to compute the

acquisition functions instead of analytically solving them. Utilising sampling to compute

a function that can be solved analytically might not appear useful at first glance, as it is

essentially just an approximation of the analytical results. However, this approach makes

it straightforward to compute batches of candidate points (as outlined in Section 2.5.3),

which presents the foundation for the following finding.

The fifth finding suggests that multi-point acquisition functions perform comparably to

single-point approaches. As discussed previously, all methods found solutions close to the

optimum across the range of considered problems, except improvement-based methods for

the Ackley function. Multi-point approaches are particularly beneficial for cases where

the objective function is expensive-to-evaluate and allows parallel evaluations (e.g., in

high-fidelity turbulence resolving simulations [123]). For these problems, the total time

required to conclude the whole experiment can be reduced as multiple points are evaluated

in parallel each time. However, more evaluations might be required to achieve results

comparable to the single-point approach. This method is particularly advantageous for

applications involving simulations that can be evaluated in parallel, e.g., the computational

fluid dynamics simulations mentioned in the introduction.

Lastly, the results showed no decrease in performance when adding noise to the objective

function, in this case the 6D Hartmann function. When optimising the function with low

and high noise (corresponding to the measurement error range of MEMS sensors to mirror

the circumstances of an applied example in fluid dynamics), the same solutions were found

in a comparable number of evaluations as for the deterministic case. This result can be

attributed to the nugget that is added to the deterministic and noisy cases, as discussed

in Section 2.3. These results are promising, as they show that Bayesian optimisation

can handle noisy objective functions just as efficiently as deterministic functions. This

enables the use of Bayesian optimisation for physical experiments where measurements
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cannot be taken without error and simulations where noise can be introduced unknowingly.

Consider, for example, a physical experiment in which the drag created by air blowing

over a surface can be reduced by blowing air upwards orthogonally to the same surface

using multiple actuators (for further details, refer to Section 3.3). As each actuator has a

large, if not infinite, number of settings, finding the optimal overall blowing strategy is a

complex problem that is a prime candidate for Bayesian optimisation. However, the drag

cannot be measured without noise, as the measurement errors associated with the MEMS

sensors introduced in Section 3.2 show. As it is impossible to collect noise-free data in

such circumstances, and taking the same measurement twice would yield slightly different

results, Bayesian optimisation must perform equally well on these problems.

While these findings show that using Bayesian optimisation to optimise expensive black-

box functions is promising, some limitations should be noted. Firstly, the acquisition

functions considered in this chapter represent only a subset of those available in the litera-

ture. The general results inferred from this selection might only extend to some acquisition

functions. Secondly, the dimensionality of the test functions was selected to be no greater

than ten. While Bayesian optimisation is generally considered to work best in this range,

and even up to 20 input parameters [53], it would appear unlikely that these results would

hold in a much higher-dimensional space [135]. While this is an ongoing area of research,

multiple algorithms attempt to make Bayesian optimisation viable for higher dimensions,

as discussed in Section 2.5.4. Thirdly, the conclusions drawn in this chapter are based

on the synthetic test functions chosen and their underlying behaviour. When encounter-

ing objective functions with shapes and challenges different from those considered in this

chapter, the findings might not hold. Lastly, the noise added to the Hartmann function

could be too low to represent the full space of realistic experiments. It is possible that the

measurement error, or other sources of noise, from an experiment or simulation, are too

large for Bayesian optimisation to work effectively. More investigation is needed to find

the maximal noise levels that Bayesian optimisation can tolerate while performing well.

3.3 Application

While most of the work in this section is my own, Joseph O’Connor from the Turbu-

lence Simulation Group at Imperial College London set up and ran the computational

fluid dynamics simulations and wrote the second paragraph describing the details of

this simulation work as published in Diessner et al. [41].

In this section, we apply the findings from the investigation on synthetic test functions

in Section 3.2 to the selection and design of Bayesian optimisation algorithms to specific

applications, in this case, simulation models in the area of computational fluid dynamics
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(CFD). Consider high-fidelity simulations involving the turbulent flow over a flat plate,

as illustrated in Figure 3.7. Initially, the flow within the boundary layer is laminar.

However, after a critical streamwise length, the flow transitions into a turbulent regime,

characterised by increased turbulence activity and increased skin-friction drag. This setup

mimics the flow encountered on many vehicles, e.g., the flow over an aircraft wing, a high-

speed train or a ship’s hull, as outlined in Section 1.1. These simulations aim to minimise

the turbulent skin-friction drag by utilising active control via actuators, which are seen as

a key upstream technology approach for the aerospace sector that allows us to either blow

fluid away from the plate or suck fluid towards the plate. These actuators are located

towards the beginning of the plate but after the transition region, where the flow is fully

turbulent. An averaged skin-friction drag coefficient is then measured along the plate

from the blowing region. Within the blowing region, a very large number of blowing

setups are possible. For example, a simple setup could be a 1D problem where fluid

is blown away from the plate uniformly over the entire blowing region with a constant

amplitude. In this case, the only parameter to optimise would be the amplitude of the

blowing. However, many more complex setups are possible (e.g., see Mahfoze et al. [123]).

These numerical simulations are a prime candidate for Bayesian optimisation as they

fulfil the characteristics of an expensive black-box function: the underlying mathematical

expression is too complex to solve analytically, and each objective function evaluation is

expensive. Indeed, one evaluation (a high-fidelity simulation with converged statistics)

can take up to 12 hours on thousands of CPU cores and requires the use of specialist

software since the total turbulence activity covering the flat plate must be simulated in

order to correctly resolve the quantity of interest (i.e., skin-friction drag). To perform these

numerical simulations, the open-source flow solver Xcompact3D [8] is utilised on the UK

supercomputing facility ARCHER2. The simulations were performed by the Turbulence

Simulation Group at Imperial College London. This section optimises two blowing profiles

that follow this setup: a travelling wave with four degrees of freedom and a gap problem

with three degrees of freedom, where a gap separates two blowing areas with individual

amplitudes.

The computational setup consists of a laminar Blasius solution at the inlet, a convective

condition at the outlet, a homogenous Neumann condition in the far-field, and periodic

conditions in the spanwise direction. The domain dimensions are Lx ×Ly ×Lz = 750δ0 ×
80δ0 × 30δ0, where δ0 is the boundary layer thickness at the inlet. The Reynolds number

at the inlet is Reδ0 = 1250, based on the boundary layer thickness (i.e., the thin layer of

fluid above the plate where the flow velocity is reduced due to the presence of the plate)

and free-stream velocity (u∞., i.e., the speed of the moving vehicle) at the inlet of the

simulation domain. This corresponds to a momentum Reynolds number of Reθ0 ≈ 169 to

2025, from the inlet to the outlet for the canonical case (no control). The mesh size is
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Figure 3.7: CFD simulations: A) illustrates the flow over a flat plate. Initially, the boundary layer
is laminar. However, at a critical streamwise length from the leading edge, the flow transitions to
a turbulent boundary layer, characterised by increased turbulent activity and skin-friction drag.
The blue-shaded region illustrates the location of the blowing control region in the present study.
B) shows the travelling wave blowing profile specified by an amplitude, a wavelength, a travelling
frequency and a shift parameter. C) shows the gap blowing profile specified by two blowing areas
with individual amplitudes separated by a gap.

chosen to be nx × ny × nz = 1537 × 257 × 128, with uniform spacing in the streamwise

(x-axis in Figure 3.7 A)) and spanwise (z-axis) directions and non-uniform spacing in the

wall-normal direction (y-axis) to properly resolve the near-wall effects. This results in

a mesh resolution of ∆x+ = 31, 0.54 ≤ ∆y+ ≤ 705, and ∆z+ = 15 in viscous (inner)

units, where the inner scaling is concerning the friction velocity (i.e., scaled by the wall-

shear stress generated by the skin-friction drag force) at the start of the control region for

the canonical case. The control region extends from x = 68δ0 to 145δ0 in the streamwise

direction, corresponding to a Reynolds number range of Reθ ≈ 479 to 703, for the canonical

case. To accelerate the transition to turbulence, a random volume forcing approach [170],

located at x = 3.5δ0, is used to trip the boundary layer [41].
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Table 3.7: Results for travelling wave experiment. Horizontal line separates initial training points
and points proposed by Bayesian optimisation. Points with global drag reduction over 22% in
bold.

Evaluation Amplitude Shift Wavenumber Frequency GDR [in %]

1 0.50 -0.74 0.02 -0.22 -25.71

2 0.96 0.50 0.00 0.20 12.26

3 0.85 0.67 0.01 0.23 15.91

4 0.09 -0.48 0.02 -0.07 -15.63

5 0.42 -0.16 0.01 -0.02 -4.67

6 0.62 0.89 0.00 -0.05 19.69

7 0.44 -0.50 0.00 -0.22 -16.73

8 0.19 0.31 0.01 -0.19 8.33

9 0.02 -0.34 0.00 0.17 -10.94

10 0.68 -0.98 0.01 -0.12 -34.70

11 0.31 0.62 0.01 0.12 14.86

12 0.73 0.85 0.01 -0.15 19.52

13 0.34 0.16 0.02 0.08 4.28

14 0.81 0.06 0.02 0.04 1.94

15 0.90 -0.02 0.01 0.01 -1.22

16 0.24 -0.77 0.01 0.15 -26.98

17 0.84 1.00 0.01 0.04 21.43

18 0.39 1.00 0.01 -0.00 22.07

19 1.00 1.00 0.00 -0.25 21.77

20 1.00 1.00 0.02 0.00 21.83

21 0.48 1.00 0.02 0.13 21.90

22 0.01 1.00 0.02 -0.25 22.06

23 0.01 1.00 0.00 -0.25 21.88

24 0.01 1.00 0.02 0.25 22.19

25 1.00 1.00 0.02 -0.25 22.03

26 0.01 1.00 0.00 0.25 21.95

27 0.01 1.00 0.02 0.01 22.00

28 0.42 1.00 0.01 -0.25 22.07

29 0.01 1.00 0.01 0.25 22.04

30 0.01 1.00 0.01 0.01 22.17

31 0.43 0.79 0.00 -0.22 18.45

32 1.00 1.00 0.00 0.25 21.88

33 0.01 1.00 0.01 -0.25 21.93

34 0.47 1.00 0.02 -0.25 21.75

35 1.00 1.00 0.02 0.25 21.83

36 0.83 0.94 0.02 -0.02 21.02
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Figure 3.8: Results of CFD simulations: A) gives the travelling wave blowing profiles for iterations
18, 24 and 25 where the arrows in B) illustrate the direction and strength of travel. C) presents
the gap blowing profiles for iterations 15, 17 and 27.

Figure 3.7 depicts the two blowing profiles in question and defines the parameters for the

optimisation. The travelling wave with four degrees of freedom, given in Subfigure 3.7

B), is a wave defined by an amplitude in the range 0.01 to 1.00% of the overall free-

stream velocity and a wavelength between 0.00 and 0.02 (inner scaling). The angular

frequency, restricted to values between -0.25 and 0.25 (inner scaling), allows the wave to

travel up and downstream. Lastly, a shift parameter displaces the wave vertically up and

down. This parameter is restricted to values between -1.00 and 1.00% of the free-stream

velocity. The blowing turns into suction for cases where the blowing profile is negative.

The gap configuration with three degrees of freedom, illustrated in Subfigure 3.7 C),

includes two blowing regions with individual amplitudes in the range 0.01 to 1.00% of the

overall free-stream velocity and a gap restricted to between 5 δ0 and 355 δ0. While the

aim for both problems is the maximisation of the global drag reduction (GDR), defined

as the globally averaged skin-friction drag reduction with respect to the canonical case,

the gap problem with three degrees of freedom also considers the energy consumption
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Table 3.8: Results for gap experiment. Horizontal line separates initial training points and points
proposed by Bayesian optimisation. Points with net energy savings in bold.

Evaluation Amplitude 1 Amplitude 2 Gap GDR [in %] NES [in %]

1 0.97 0.55 110.35 32.86 -4.31

2 0.28 0.12 191.95 10.19 -1.31

3 0.87 0.89 225.60 34.75 -7.41

4 0.40 0.41 289.40 17.75 -3.36

5 0.13 0.69 241.42 16.14 -4.34

6 0.71 0.25 133.84 22.47 -1.66

7 0.66 0.80 352.52 26.74 -7.97

8 0.53 0.64 179.61 25.28 -3.18

9 0.83 0.03 318.82 19.83 -0.97

10 0.19 0.96 51.96 25.34 -3.53

11 0.04 0.30 92.16 8.72 -0.96

12 0.49 0.45 31.67 22.86 -0.87

13 0.27 0.01 5.00 7.72 -0.28

14 1.00 0.01 5.00 22.04 -2.84

15 0.01 0.01 5.00 0.91 0.25

16 0.15 0.38 5.00 13.91 -0.77

17 0.01 0.01 45.54 0.98 0.32

18 0.01 0.01 355.00 0.72 0.06

19 0.01 0.10 5.00 3.01 -0.44

20 0.47 0.01 355.00 11.84 -0.39

21 0.01 0.01 131.32 0.77 0.11

22 0.01 0.01 237.00 0.62 -0.04

23 0.01 0.63 5.00 15.33 -0.15

24 0.01 0.01 77.50 0.80 0.13

25 0.01 0.01 5.00 0.91 0.25

26 0.28 0.63 5.00 21.72 -1.24

27 0.60 0.01 184.71 14.83 -0.01

28 0.38 0.67 5.00 24.86 -1.31

of the actuators and tries to find profiles that reduce the drag while also achieving net

energy savings (NES). NES is achieved when the energy used by the blowing device is

smaller than the energy saved by the drag reduction (much of the energy expenditure in

aerodynamics/hydrodynamics applications is used to overcome the skin-friction drag). In

this work, NES is calculated following the approach of Mahfoze et al. [123], where the

input power for the blowing device is estimated from real-world experimental data and a
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relationship between input power and blowing velocity is derived (see Mahfoze et al. [123]

for more details).

The results of the synthetic test functions from Section 3.2.1 inform the Bayesian opti-

misation algorithm used for both problems. For the surrogate model, a Gaussian process

with a zero mean function and a Matérn kernel with ν = 5/2 was defined, and its hyper-

parameters were estimated from the training data using maximum likelihood estimation,

as discussed in Section 2.3. While CFD simulations are expensive, they allow for parallel

evaluations. This is done by concurrently running multiple simulations and combining

the results once all simulations are completed. Therefore, these setups are well suited for

the multi-point approach presented in Section 3.2 that, as our investigations showed, has

no clear disadvantage compared to the single-point approach. Based on previous work,

for example Mahfoze et al. [123], the possibility that the underlying objective function is

characterised by large flat areas similar to the 6D Ackley function cannot be ruled out.

Thus, an acquisition function should be implemented that allows the selection of batches

and performs well even when encountering flat areas. The sequential Monte Carlo upper

confidence bound acquisition function with the trade-off hyperparameter β=1 yielded very

good results for the Ackley function and all other test functions and is thus chosen with a

batch size of four to optimise the CFD problems in this section. Section 3.2.1 showed that

Bayesian optimisation can find reasonable solutions even with a relatively small number

of initial training data points. Hence, for both problems, four points per input dimension

were randomly selected from a maximin Latin hypercube [129, 86].

Table 3.7 presents the results of the 16 training points plus 20 points (or five batches of four

points) selected using Bayesian optimisation by maximising the GDR for the travelling

wave problem. While the highest GDR of the initial training data was 19.69%, Bayesian

optimisation improves upon this value with each evaluated batch, finding multiple strate-

gies that achieve a GDR above 22%, with the best strategy from batch 2, giving a GDR

of 22.19%. Three blowing profiles, including the overall best solution found, are depicted

in Figure 3.8 A) and B). Overall, the shift parameter seems to be the main driver behind

the drag reduction, as almost all strategies selected by Bayesian optimisation implement

the upper limit of this parameter, independent of the other parameter values.

While blowing at a high amplitude yields increased skin-friction drag reduction, it also

consumes more energy. The second experiment addresses this point and accounts for the

energy consumption, following Mahfoze et al. [123], when optimising the blowing profile.

Table 3.8 provides the results for 12 initial training points and four batches, proposed via

Bayesian optimisation, by maximising the NES. The initial strategies selected by the Latin

Hypercube did not find a solution that achieved both GDR and NES. Bayesian optimisa-

tion found multiple strategies that achieved both, in which the NES and the GDR were

relatively small (0.11 to 0.32% and 0.77 to 0.98%, respectively). However, the algorithm
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also found one strategy with NES of -0.01% and a GDR of 14.83%. While this strategy

did not achieve NES, it did not increase overall energy use, and a small increase in the

efficiency of the actuators could yield NES with a considerable GDR. Compared to the

high-intensity blowing for the travelling wave, the amplitudes are clustered towards the

lower end of the parameter space in this experiment. This results from the objective of

optimising NES, which penalises high-velocity blowing due to its increased power require-

ments. Figure 3.8 C) illustrates this by providing the blowing profiles of three solutions:

the two solutions with the most significant net energy savings and the solution with a high

GDR, as previously described.

3.4 Conclusion

In this chapter, Bayesian optimisation algorithms, implemented with different types of

acquisition functions, were benchmarked regarding their performance and their robustness

on synthetic test functions inspired by applications in engineering and machine learning.

Synthetic test functions have the advantage that their shape and their global optima are

known. This allows the algorithms to be evaluated on (a) how close their best solutions

are to the global optimum and (b) how well they perform on specific challenges, such

as oscillating functions or functions with steep edges. This evaluation can indicate the

advantages and shortcomings of the individual acquisition functions and inform researchers

of the best approach for their specific problem.

This chapter conducted four sets of comparisons. First, analytical single-point acquisition

functions were compared to each other. Second, the effect of varying the number of initial

training data points was investigated. Third, the analytical approach was contrasted with

acquisition functions based on Monte Carlo sampling. Fourth, the single-point approach

was compared to the multi-point or batched approach.

Six main conclusions could be drawn from these experiments: (i) While all acquisition

functions performed well on simple test functions, optimistic policies, such as the up-

per confidence bound, dealt best with challenging problems. (ii) Varying the number of

initial training data points did not significantly affect the performance of the individual

methods. (iii) Improvement-based acquisition functions struggled with flat test functions.

(iv) Monte Carlo and multi-point acquisition functions present a good alternative to the

widely used analytical single-point methods. (v) The multi-point approach is particularly

advantageous when the objective function takes a long time to evaluate and allows parallel

evaluations. (vi) Bayesian optimisation performs equally well on noisy objective functions

up to the moderate levels of noise investigated.

Finally, two experiments in computational fluid dynamics were taken as illustrative ex-

amples of how the findings of this chapter can be used to guide the design of a Bayesian
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optimisation algorithm and tailor it to unique problems. In detail, a multi-point approach

was employed that used the Monte Carlo upper confidence bound acquisition function,

allowing multiple points to be evaluated in parallel with concurrent simulations. For both

experiments, Bayesian optimisation improved upon the training points immediately and

found solutions that result in global drag reduction for the travelling wave and global

drag reduction as well as net energy savings for the experiment in which a gap separated

two blowing areas. However, the effects of the second experiment remained relatively

small. These optimisation studies are promising in designing a robust and efficient control

strategy to reduce drag around moving vehicles.
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Chapter 4

NUBO: A transparent software

package for Bayesian optimisation

Summary

NUBO, short for Newcastle University Bayesian Optimisation, is a Bayesian opti-

misation framework for optimising expensive-to-evaluate black-box functions, such

as physical experiments and computer simulators. Bayesian optimisation is a cost-

efficient optimisation strategy that uses surrogate modelling via Gaussian processes

to represent an objective function and acquisition functions to guide the selection

of candidate points to approximate the global optimum of the objective function.

NUBO focuses on transparency and user experience to make Bayesian optimisation

accessible to researchers from all disciplines. Clean and understandable code, precise

references, and thorough documentation ensure transparency, while a modular and

flexible design, easy-to-write syntax, and careful selection of Bayesian optimisation

algorithms ensure a good user experience. NUBO allows users to tailor Bayesian op-

timisation to their specific problem by writing a custom optimisation loop using the

provided building blocks. It supports sequential single-point, parallel multi-point, and

asynchronous optimisation of bounded, constrained, and mixed (discrete and con-

tinuous) parameter input spaces. Only algorithms and methods that are extensively

tested and validated to perform well—in the literature and in Section 3—are included

in NUBO. This ensures that the package remains compact and does not overwhelm

the user with an unnecessarily large number of options. The package is written in

Python but does not require expert knowledge of Python to optimise simulators and

experiments. NUBO is distributed as open-source software under the BSD 3-Clause

licence.
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4.1 Introduction

Bayesian optimisation can be used to optimise expensive black-box functions, such as

physical experiments and computer simulators, in many different fields, as discussed in

Chapters 1 and 2 of this thesis. The setup of such problems is typically unique and

requires a software implementation that is easily adjusted and tailored to the specific

problem. However, most available software implementations either lack the necessary

functionality to optimise non-standard problems or are overly complex and challenging to

use—particularly for scientists who are not confident in coding. With NUBO, we have

developed an open-source implementation of Bayesian optimisation aimed at researchers

with expertise in disciplines other than statistics and computer science. To ensure that our

target audience can understand and use Bayesian optimisation to its full potential, NUBO

focuses particularly on (a) transparency through clean and understandable code, precise

references, and thorough documentation and (b) user experience through a modular and

flexible design, easy syntax, and a careful selection of implemented algorithms.

The remainder of this chapter is structured as follows. In Section 4.2 we discuss the

implementation of Bayesian optimisation in NUBO. Section 4.3 illustrates how NUBO

can be used to optimise expensive black-box functions through a non-trivial case study.

Section 4.4 compares NUBO and its performance to other implementations of Bayesian

optimisation. Finally, we conclude and give an outlook on future work in Section 4.5.

4.2 NUBO

NUBO is a Bayesian optimisation package written in Python that focuses on transparency

and user experience to make Bayesian optimisation accessible to researchers from a wide

range of disciplines whose expertise is not necessarily statistics or computer science. With

this overall goal in mind, NUBO ensures transparency by implementing clean and com-

prehensible code, precise references and thorough documentation within Diessner, Wilson,

and Whalley [42] and on our website at www.nubopy.com. The latter includes instructions

for installing NUBO, a primer on Bayesian optimisation in general, all source code, off-the-

shelf algorithms, examples of boilerplate code, guidance on creating custom optimisation

loops, and documentation for all functions and classes included in NUBO. The former is

our reference paper on which this chapter is based. We avoid implementing overly com-

plex and convoluted functions and objects that require the retracing of individual elements

through multiple files to be fully understood. We prioritise user experience defined by a

modular and flexible design that can be intuitively tailored to unique problems, easy-

to-read and -write syntax, and a careful selection of Bayesian optimisation algorithms.

The latter is essential as we try not to overwhelm the user with a larger number of op-
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tions, but instead focus on what is essential to optimise computer simulators and physical

experiments successfully.

To create a powerful package with good longevity, starting with a strong foundation is

important. NUBO is built upon the Torch1 ecosystem [151] that provides a strong scien-

tific computation framework for working with tensors, a selection of powerful optimisation

algorithms, such as torch.Adam [104], automatic differentiation capabilities to compute

gradients of acquisition functions via torch.autograd, and GPU acceleration. Further-

more, GPyTorch2 [56], the package we use to implement Gaussian processes for our surro-

gate modelling, is also based on Torch and combines seamlessly with NUBO. We borrow

the L-BFGS-B [222] and SLSQP [107] optimisation algorithms from SciPy3 [201] for the

deterministic optimisation of the acquisition functions and use NumPy4 [76] to make data

suitable for these optimisers.

NUBO and all its required dependencies can be installed from the Python Package Index

(PyPI) [159] with the package installer pip [194] via the terminal:

pip install nubopy

4.2.1 Gaussian processes

NUBO uses the GPyTorch [56] package to implement Gaussian processes for surrogate

modelling. While GPyTorch allows the definition of many different Gaussian processes

through its various mean functions, covariance kernels, and methods for hyper-parameter

estimation, we provide a predefined Gaussian process in the nubo.models module that fol-

lows the work of Snoek, Larochelle, and Adams [178]. The GaussianProcess is specified

by a constant mean function, and the Matérn 5/2 ARD kernel that, due to its flexibility,

is well suited for practical optimisation as it can represent a wide variety of real-world ob-

jective functions [178, 141]. The code below implements a Gaussian process and estimates

its hyper-parameters from some training inputs x_train and training outputs y_train by

maximising the log-marginal likelihood in Equation 2.20 with the fit_gp function. The

hyper-parameters include the constant in the mean function, the output scale and length

scales in the covariance kernel, and the noise in the Gaussian likelihood. The training

inputs and training outputs are specified as a torch.Tensor of size n × d and length n,

respectively, where n is the number of points, and d is the number of input dimensions.

1See https://pytorch.org/ for documentation and https://pypi.org/project/torch/ for package
information on PyPI.

2See https://gpytorch.ai/ for documentation and https://pypi.org/project/gpytorch/ for pack-
age information on PyPI.

3See https://scipy.org/ for documentation and https://pypi.org/project/scipy/ for package in-
formation on PyPI.

4See https://numpy.org/ for documentation and https://pypi.org/project/numpy/ for package in-
formation on PyPI.
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Calling the function fit_gp results in a trained Gaussian process that can subsequently

be used for Bayesian optimisation.

>>> from nubo.models import GaussianProcess, fit_gp

>>> from gpytorch.likelihoods import GaussianLikelihood

>>>

>>>

>>> likelihood = GaussianLikelihood()

>>> gp = GaussianProcess(x_train, y_train, likelihood=likelihood)

>>> fit_gp(x_train, y_train, gp=gp, likelihood=likelihood)

While Gaussian processes can estimate noise, for example observational noise occurring

when taking measurements, we might prefer to specify the noise explicitly if it is known.

We can exchange the GaussianLikelihood for the FixedNoiseGaussianLikelihood and

specify the noise for each training point. The FixedNoiseGaussianLikelihood allows us

to decide if any additional noise should be estimated by setting the learn_additional_noise

attribute to True or False. The snippet below fixes the variance of the observational noise

of each training point at 0.025 and estimates any additional noise.

>>> from nubo.models import GaussianProcess, fit_gp

>>> from gpytorch.likelihoods import FixedNoiseGaussianLikelihood

>>>

>>>

>>> noise = torch.ones(x_train.size(0)) * 0.025

>>> likelihood = FixedNoiseGaussianLikelihood(noise=noise,

... learn_additional_noise=True)

>>> gp = GaussianProcess(x_train, y_train, likelihood=likelihood)

>>> fit_gp(x_train, y_train, gp=gp, likelihood=likelihood)

4.2.2 Bayesian optimisation

Before describing the individual optimisation options in detail, we want to illustrate

NUBO’s user experience—its easy-to-read and -write syntax, flexibility, and modularity—

for a simple Bayesian optimisation step that can be further divided into four substeps.

First, we define the input space. Here, we want to optimise a six-dimensional objec-

tive function that is bounded by the hyper-rectangle [0, 1]6 specified as bounds, a 2 × 6

torch.Tensor, where the first row provides the lower bounds and the second row the up-

per bounds for all six input dimensions. Second, we load the training inputs x_train and

the training outputs y_train. This training data can be manually selected or generated

using a space-filling design, such as Latin hypercube sampling introduced in Section 4.2.3.

Third, we define and train the Gaussian process implemented in NUBO as discussed in
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Section 4.2.1, or set up a custom Gaussian process with GPyTorch. Fourth, we specify an

acquisition function that takes the fitted Gaussian process as an argument and chooses

an optimisation method. In this case, we use the upper confidence bound introduced

in Equation 2.25 and optimise it with the L-BFGS-B algorithm [222] using the single

function.

>>> import torch

>>> from nubo.acquisition import UpperConfidenceBound

>>> from nubo.models import GaussianProcess, fit_gp

>>> from nubo.optimisation import single

>>> from gpytorch.likelihoods import GaussianLikelihood

>>>

>>>

>>> bounds = torch.tensor([[0., 0., 0., 0., 0., 0.],

... [1., 1., 1., 1., 1., 1.]])

>>>

>>> x_train = # load inputs as torch.Tensor

>>> y_train = # load outputs as torch.Tensor

>>>

>>> likelihood = GaussianLikelihood()

>>> gp = GaussianProcess(x_train, y_train, likelihood=likelihood)

>>> fit_gp(x_train, y_train, gp=gp, likelihood=likelihood)

>>>

>>> acq = UpperConfidenceBound(gp=gp, beta=4)

>>> x_new, _ = single(func=acq, method="L-BFGS-B", bounds=bounds)

NUBO is very flexible and allows users to swap out individual elements for other options.

For example, we can substitute the UpperConfidenceBound acquisition function or the

single optimisation strategy without changing any of the other lines of code. This makes

it easy and fast to tailor Bayesian optimisation to specific problems.

The remainder of this section introduces NUBO’s optimisation strategies. Figure 4.1 shows

a flowchart that helps users decide on the correct acquisition function and optimiser for

their specific problem.

Sequential single-point optimisation

In NUBO, we differentiate between two optimisation strategies: single-point and multi-

point optimisation. When using the single-point strategy via the single function, NUBO

uses the analytical acquisition functions discussed in Section 2.4 to find the next point to

be evaluated by the objective function. The corresponding observation must be added to
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Figure 4.1: NUBO flowchart. Overview of the recommended algorithms for specific problems.
Start in yellow, decisions in blue, and recommended algorithm in green.

the dataset before the next iteration of the optimisation loop can begin.

The code below shows how the analytical expected improvement (EI) and the analytical

upper confidence bound (UCB) can be specified within NUBO. The former takes the best

training output to date as the argument y_best, while the latter accepts the trade-off

hyper-parameter β as the beta argument. For bounded optimisation problems with an-

alytical acquisition functions, the optimisation method of the single function should be

set to method="L-BFGS-B" and the arguments num_starts (default 10) and num_samples
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(default 100) can be set to enable multi-start optimisation, where the selected optimisation

algorithm is run multiple times. Each start is initialised at the best points from a large

number of points sampled from a Latin hypercube. This reduces the risk of the optimiser

getting stuck in a local optimum. Section 4.2.3 introduces Latin hypercube sampling in

more detail. The single function returns the best start and its acquisition value. Sequen-

tial single-point optimisation can be paired with constrained and mixed optimisation, as

detailed later in this section.

>>> from nubo.acquisition import ExpectedImprovement, UpperConfidenceBound

>>> from nubo.optimisation import single

>>>

>>>

>>> acq = ExpectedImprovement(gp=gp, y_best=torch.max(y_train))

>>> acq = UpperConfidenceBound(gp=gp, beta=4)

>>> x_new, _ = single(func=acq, method="L-BFGS-B", bounds=bounds,

... num_starts=5, num_samples=50)

Parallel multi-point optimisation

The second optimisation strategy available in NUBO is multi-point optimisation. This

strategy uses the Monte Carlo acquisition functions outlined in Section 2.4.5 to find mul-

tiple points, also called batches, in each iteration of the Bayesian optimisation loop. This

strategy is particularly beneficial for objective functions supporting parallel evaluations,

as points can be queried simultaneously, speeding up optimisation.

NUBO uses the Monte Carlo versions of expected improvement MCExpectedImprovement

and upper confidence bound MCUpperConfidenceBound in conjunction with either the

multi_joint or multi_sequential function to compute batches. The two different op-

tions for the multi-point optimisation strategy are discussed in Section 2.4.5. In short, in

addition to the arguments of the analytical acquisition functions, both Monte Carlo acqui-

sition functions accept the number of Monte Carlo samples to be used to approximate the

acquisition function as the samples argument (default 512). For the optimisation func-

tions, the number of points to be computed can be passed to the batch_size argument,

while the method should be set to "Adam" to enable stochastic optimisation via the Adam

algorithm [104]. The Adam algorithm can be fine-tuned by setting the learning rate lr

(default 0.1) and the number of optimisation steps steps (default 100). Parallel multi-

point optimisation can be paired with asynchronous, constrained, and mixed optimisation,

as detailed later in this section.

>>> from nubo.acquisition import MCExpectedImprovement,

... MCUpperConfidenceBound
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>>> from nubo.optimisation import multi_joint, multi_sequential

>>>

>>>

>>> acq = MCExpectedImprovement(gp=gp, y_best=torch.max(y_train),

... samples=256)

>>> acq = MCUpperConfidenceBound(gp=gp, beta=4, samples=256)

>>> x_new, _ = multi_joint(func=acq, method="Adam", lr=0.1,

... steps=100, batch_size=4, bounds=bounds)

>>> x_new, _ = multi_sequential(func=acq, method="Adam", lr=0.1,

... steps=100, batch_size=4, bounds=bounds)

To enable the use of deterministic optimisers, such as L-BFGS-B [222] and SLSQP [107],

the base samples from a standard normal distribution N (0, 1) used to compute the Monte

Carlo samples as described in Section 2.4.5 can be fixed by setting fix_base_samples=True

(default False).

>>> from nubo.acquisition import MCUpperConfidenceBound

>>> from nubo.optimisation import multi_joint, multi_sequential

>>>

>>>

>>> acq = MCUpperConfidenceBound(gp=gp, beta=4, fix_base_samples=True)

>>> x_new, _ = multi_joint(func=acq, method="L-BFGS-B",

... batch_size=4, bounds=bounds)

>>>

>>> acq = MCUpperConfidenceBound(gp=gp, beta=4, fix_base_samples=True)

>>> x_new, _ = multi_sequential(func=acq, method="L-BFGS-B",

... batch_size=4, bounds=bounds)

Asynchronous optimisation

NUBO supports asynchronous optimisation, that is, the continuation of the optimisation

loop, while some points are being evaluated by the objective function. In this case, the

Monte Carlo acquisition functions MCExpectedImprovement or MCUpperConfidenceBound

are used. Similar to the sequential multi-point approach, pending points are added to the

test points, and Monte Carlo samples are taken from their joint multivariate Gaussian dis-

tribution [178]. The code snippet below assumes that the two points x_pend are currently

being evaluated. To continue the optimisation, these points can be fed into the acquisition

function by setting x_pending=x_pend, and NUBO will take them into account for the

subsequent iteration.
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>>> import torch

>>> from nubo.acquisition import MCUpperConfidenceBound

>>> from nubo.optimisation import multi_joint, multi_sequential

>>>

>>>

>>> x_pend = torch.tensor([[0.2, 0.9, 0.8, 0.4, 0.4, 0.1],

... [0.1, 0.3, 0.7, 0.2, 0.1, 0.2]])

>>> acq = MCUpperConfidenceBound(gp=gp, beta=4, x_pending=x_pend)

>>> x_new, _ = multi_joint(func=acq, method="Adam",

... batch_size=4, bounds=bounds)

>>> x_new, _ = multi_sequential(func=acq, method="Adam",

... batch_size=4, bounds=bounds)

While Monte Carlo acquisition functions are approximations of the analytical functions,

they are used for computing multiple points, where analytical functions are generally

intractable. The Monte Carlo approach can also be used for single-point asynchronous

optimisation by setting batch_size=1.

Constrained optimisation

The simplest case of the maximisation problem in Equation 2.1 can be extended by in-

cluding one or more input constraints

x∗ = argmax
x∈X

f (x) ,

subject to gi (x) = 0 ∀i = 1, . . . , I [Equality constraint]

hj (x) ≥ 0 ∀j = 1, . . . , J [Inequality constraint].

(4.1)

In these instances, NUBO allows constrained Bayesian optimisation by using the SLSQP

algorithm to optimise the acquisition function. Implementing this method requires the

additional step of specifying the constraints cons as a dictionary—an ordered collection

of key-value pairs within curly brackets—for one constraint or a list of dictionaries for

multiple constraints. Each constraint requires two entries. The first is "type" and can

either be set to "ineq" for inequality constraints or "eq" for equality constraints. The

second is "fun", which takes a function representing the constraint. The optimiser selects

points for which the constraint functions are greater than or equal to zero for inequality

constraints and exactly zero for equality constraints. The code snippet below specifies

two constraints: the first is an inequality constraint that requires the sum of the first two

input dimensions to be smaller than or equal to 0.5. The second is an equality constraint

that requires dimensions four, five, and six to sum to 1.2442.
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>>> import torch

>>>

>>>

>>> bounds = torch.tensor([[0., 0., 0., 0., 0., 0.],

... [1., 1., 1., 1., 1., 1.]])

>>> cons = [{"type": "ineq", "fun": lambda x: 0.5 - x[0] - x[1]},

... {"type": "eq", "fun": lambda x: 1.2442 - x[3] - x[4] - x[5]}]

After setting up the input space using the bounds and constraints, the Bayesian optimi-

sation loop is similar to before. We need to set the method argument of the optimisation

function to "SLSQP" and provide the function with the constraints cons.

>>> from nubo.acquisition import UpperConfidenceBound

>>> from nubo.optimisation import single

>>>

>>>

>>> acq = UpperConfidenceBound(gp=gp, beta=4)

>>> x_new, _ = single(func=acq, method="SLSQP",

... bounds=bounds, constraints=cons)

Constrained Bayesian optimisation can be used with analytical and Monte Carlo acquisi-

tion functions, as well as single-point, multi-point, asynchronous, and mixed optimisation.

Mixed optimisation

Bayesian optimisation predominantly focuses on problems with continuous input param-

eters since Gaussian processes model all input dimensions as continuous variables. How-

ever, NUBO supports optimising mixed input parameter spaces via a workaround. To do

this, NUBO first computes all possible combinations of the discrete parameters. Then, it

maximises the acquisition function for all continuous parameters while holding one com-

bination of the discrete parameters fixed. Once the acquisition function is maximised for

each possible combination of discrete parameters, the best overall solution is returned.

This can be very time-consuming for many discrete dimensions or discrete values. In the

case of a discrete variable with a very large number of possible values, an alternative is to

treat it as a continuous variable and round proposed values to the nearest discrete value.

To implement mixed optimisation in NUBO, bounds are specified as before, but the dis-

crete dimensions are additionally defined in a dictionary where the keys are the dimensions

(starting from zero), and the values are a list of all possible values for the discrete inputs.

The code below specifies dimensions one and five as disc.

>>> import torch

>>>
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>>>

>>> bounds = torch.tensor([[0., 0., 0., 0., 0., 0.],

... [1., 1., 1., 1., 1., 1.]])

>>> disc = {0: [0.2, 0.4, 0.6, 0.8],

... 4: [0.3, 0.6, 0.9]}

After setting up the input space specified by the bounds and discrete values, the Bayesian

optimisation loop is similar to before. We only need to provide the function with the

dictionary specifying the discrete dimensions discrete=disc.

>>> from nubo.acquisition import UpperConfidenceBound

>>> from nubo.optimisation import single

>>>

>>>

>>> acq = UpperConfidenceBound(gp=gp, beta=4)

>>> x_new, _ = single(func=acq, method="L-BFGS-B",

... bounds=bounds, discrete=disc)

Mixed Bayesian optimisation can be used in conjunction with analytical and Monte Carlo

acquisition functions as well as single-point, multi-point, asynchronous, and constrained

optimisation.

4.2.3 Test functions and utilities

NUBO provides a selection of test functions and utilities—functions automising frequently

repeating tasks—to make implementing and testing Bayesian optimisation algorithms

more convenient. The ten test functions were selected from the virtual library of Sur-

janovic and Bingham [188] and represent a variety of challenges, such as bowl-shaped,

plate-shaped, valley-shaped, uni-modal, and multi-modal functions. The functions can be

imported from the nubo.test_functions module and instantiated by providing the num-

ber of dimensions (except for the Hartmann function that comes in 3D and 6D versions),

the standard deviation of any noise that should be added, and whether the function should

be minimised or maximised. These functions are equipped with the following attributes:

the number of dimensions dims, the bounds bounds, and the inputs and outputs of the

global optimum optimum.

>>> from nubo.test_functions import Ackley, Hartmann6D

>>>

>>>

>>> func = Ackley(dims=5, noise_std=0.1, minimise=False)

>>> func = Hartmann6D(minimise=False)
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>>> dims = func.dims

>>> bounds = func.bounds

The gen_inputs function from the nubo.utils module allows efficient generation of input

data that covers the input space by sampling a larger number of random Latin hypercube

designs [129, 86] and returning the design with the largest minimal distance between

all points. Figure 4.2 compares Latin hypercube sampling to random sampling for two

input dimensions. While many random points are near each other, points from the Latin

hypercube design effectively cover the whole input space by placing only one point in each

row and column. The exact position of the point within the selected square is random.

Latin hypercubes were discussed in more detail in Section 2.2.2. The code snippet below

generates five points for each input dimension of the Hartmann function initiated above

and uses func to compute the corresponding outputs.

>>> from nubo.utils import gen_inputs

>>>

>>>

>>> x_train = gen_inputs(num_points=dims * 5,

... num_dims=dims,

... bounds=bounds)

>>> y_train = func(x_train)

Finally, we discuss three convenience functions that can be used for data transformation.

normalise and unnormalise can be used to scale input data to the unit cube [0, 1]d and

back to its original domain by providing the bounds of the input space. Furthermore, the

outputs can be centred at zero with a standard deviation of one with the standardise

function.

>>> from nubo.utils import standardise, normalise, unnormalise

>>>

>>>

>>> x_norm = normalise(x_train, bounds=bounds)

>>> x_train = unnormalise(x_norm, bounds=bounds)

>>> y_stand = standardise(y_train)

4.3 Case study

We present the general workflow for optimising an expensive-to-evaluate black-box func-

tion with NUBO by providing a detailed case study in which a test function with six

input dimensions is optimised. This case study demonstrates how the user can specify
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Figure 4.2: Latin hypercube sampling compared to random sampling.

the parameter input space, generate initial training data, and define and run the Bayesian

optimisation loop.

To ensure reproducibility of the case study, we set the seed for the pseudo-number gener-

ator within Torch to 123. We set some format options for the print function such that

values are rounded to the fourth decimal place and are not formatted in scientific notation

to increase readability.

>>> import torch

>>>

>>>

>>> torch.manual_seed(123)

>>> torch.set_printoptions(precision=4, sci_mode=False)

A typical objective function optimised with Bayesian optimisation is expensive to evaluate

and thus not feasible in a case study that aims to illustrate how NUBO can be applied.

Hence, we will use one of the synthetic test functions provided by NUBO as a surrogate

expensive-to-evaluate black-box function. We use the six-dimensional Hartmann function

that possesses multiple local and one global minimum. Its input space is bounded by the

hyper-rectangle [0, 1]6. Observational noise, such as measurement error, is represented
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by adding a small amount of random Gaussian noise to the function output by setting

noise_std=0.1. minimise is set to False to transform the minimisation problem into a

maximisation problem as required for Bayesian optimisation with NUBO.

>>> from nubo.test_functions import Hartmann6D

>>>

>>>

>>> black_box = Hartmann6D(noise_std=0.1, minimise=False)

With our objective function specified, we can focus on defining the input space. Our

objective function has six inputs, all bounded by [0, 1]. As introduced in Section 4.2.2, the

bounds are defined as a 2×d torch.tensor, where the first row specifies the lower bounds

and the second row specifies the upper bounds. This case study also highlights the mixed

parameter optimisation capabilities of NUBO (see Section 4.2.2) by assuming that the

first input is a discrete parameter restricted to 0.2, 0.4, 0.6, and 0.8. We can implement

this by specifying a dictionary, where the key is the input dimension and the value is a

list of all possible values the input can take, that is {0: [0.0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0]}. Note that indexing starts at zero in Python.

>>> dims = 6

>>> bounds = torch.tensor([[0., 0., 0., 0., 0., 0.],

... [1., 1., 1., 1., 1., 1.]])

>>> discrete = {0: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5,

... 0.6, 0.7, 0.8, 0.9, 1.0]}

The Bayesian optimisation loop requires initial training data. This is important to train

the Gaussian process that emulates the objective function. This case study uses the

gen_inputs function introduced in Section 4.2.3 to generate 30 initial data points from

a Latin hypercube design. We round the first input dimension to fit the discrete values

specified above as Latin hypercube designs return continuous values. These points are

evaluated by the objective function to produce our training data pairs consisting of input

parameters x_train and observations y_train.

>>> from nubo.utils import gen_inputs

>>>

>>>

>>> x_train = gen_inputs(num_points=dims * 5,

... num_dims=dims,

... bounds=bounds)

>>> x_train[:, 0] = torch.round(x_train[:, 0], decimals=1)

>>> y_train = black_box(x_train)
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Next, we specify the Bayesian optimisation algorithm we plan to use in our optimisation

loop. We define the bo function, that takes our training pairs (x_train, y_train) and

returns the next candidate point x_new which is evaluated by the objective function, in

four steps. First, we set up our surrogate model as the Gaussian process provided by

NUBO with a Gaussian likelihood as discussed in Section 4.2.1. Second, we train the

Gaussian process gp with our training data by maximising the likelihood with the Adam

algorithm [104] via the fit_gp function. Here, we set a custom learning rate lr and

the number of optimisation steps steps. Third, we define an acquisition function that

will guide our optimisation. Assuming that our objective function allows parallel function

evaluations, we compute multi-point batches at each iteration and choose a Monte Carlo

acquisition function, in this case MCUpperConfidenceBound. The acquisition function acq

is instantiated by providing it with the fitted Gaussian process gp, a value for the trade-off

hyper-parameter beta, and the number of Monte Carlo samples used to approximate the

acquisition function. For further details on Monte Carlo acquisition functions, refer to

Section 2.4.5. The exact choice of these parameters depends on the objective function in

question, however, general guidance can be found in Chapter 3 and Diessner et al. [41],

where we investigate fundamental properties of Bayesian optimisation, including parame-

ter choices. Fourth, we maximise the acquisition function acq with the multi_sequential

function that uses the sequential strategy for computing multiple candidate points. We

compute four candidate points at each iteration by setting batch_size=4 and providing

the previously specified bounds and discrete values. The Adam optimiser is used as Monte

Carlo acquisition functions require a stochastic optimiser due to their inherent random-

ness introduced by drawing the Monte Carlo samples. The optimiser is initialised at two

different initial points chosen as the two points with the highest acquisition value out of

100 potential points sampled from a Latin hypercube design. We chose two initialisations

to keep the computational overhead within the replication script low. In practice, a higher

number of initialisations might be beneficial.

>>> from nubo.acquisition import MCUpperConfidenceBound

>>> from nubo.models import GaussianProcess, fit_gp

>>> from nubo.optimisation import multi_sequentia

>>> from gpytorch.likelihoods import GaussianLikelihood

>>>

>>>

>>> def bo(x_train, y_train):

>>>

>>> likelihood = GaussianLikelihood()

>>> gp = GaussianProcess(x_train, y_train, likelihood=likelihood)

>>>
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>>> fit_gp(x_train, y_train, gp=gp, likelihood=likelihood,

... lr=0.1, steps=200)

>>>

>>> acq = MCUpperConfidenceBound(gp=gp, beta=4, samples=128)

>>>

>>> x_new, _ = multi_sequential(func=acq,

... method="Adam",

... batch_size=4,

... bounds=bounds,

... discrete=discrete,

... lr=0.1,

... steps=200,

... num_starts=2,

... num_samples=100)

>>>

>>> return x_new

Finally, we specify the entire optimisation loop, that is, a simple for-loop that computes

the next batch of candidate points using the defined Bayesian optimisation algorithm bo,

evaluates the candidate points using the objective function black_box, and adds the new

data pairs (x_new, y_new) to the training data. We let the optimisation loop run for ten

iterations (of batches of four points) and print all evaluations, where the first six columns

are the inputs and the final column is the output from the objective function. The first

30 rows give the initial training data generated by the Latin hypercube design, while the

last 40 rows were chosen by the Bayesian optimisation algorithm. The results show that

NUBO improves upon the initial space-filling design and produces points consistent with

the bounds and discrete values that specify the parameter input space.

>>> iters = 10

>>>

>>> for iter in range(iters):

>>>

>>> x_new = bo(x_train, y_train)

>>>

>>> y_new = black_box(x_new)

>>>

>>> x_train = torch.vstack((x_train, x_new))

>>> y_train = torch.hstack((y_train, y_new))

>>>

>>> print(torch.hstack([x_train, y_train.reshape(-1, 1)]))
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tensor([[0.2000, 0.6523, 0.1574, 0.7822, 0.3039, 0.8603, 0.1251],

[0.5000, 0.9127, 0.8746, 0.4787, 0.6523, 0.1249, 2.2907],

[0.4000, 0.5638, 0.0459, 0.6200, 0.7056, 0.2929, 0.6744],

[0.2000, 0.3003, 0.2290, 0.8110, 0.9529, 0.2384, 0.0442],

[0.1000, 0.7809, 0.5374, 0.1381, 0.5655, 0.5679, 0.6123],

[0.7000, 0.3454, 0.9352, 0.0283, 0.7969, 0.7874, 0.0732],

[0.9000, 0.0395, 0.4250, 0.2010, 0.8243, 0.9836, -0.0281],

[0.1000, 0.2542, 0.8055, 0.0806, 0.0381, 0.1833, 0.0791],

[0.2000, 0.8412, 0.2388, 0.0388, 0.8542, 0.4247, 0.1126],

[0.8000, 0.7370, 0.3922, 0.5172, 0.3952, 0.6280, 0.2454],

[0.6000, 0.1313, 0.5940, 0.6993, 0.2744, 0.0337, -0.0489],

[0.9000, 0.8016, 0.2760, 0.9357, 0.4104, 0.7371, 0.0214],

[0.6000, 0.6316, 0.9115, 0.3722, 0.0273, 0.0787, 0.5736],

[0.7000, 0.8821, 0.1944, 0.1973, 0.6821, 0.2330, 0.0460],

[0.4000, 0.6779, 0.8546, 0.8716, 0.7558, 0.6497, 0.0783],

[1.0000, 0.5682, 0.1289, 0.4361, 0.1452, 0.4574, 0.0586],

[0.3000, 0.2194, 0.6718, 0.2631, 0.4686, 0.3043, 0.6239],

[1.0000, 0.3801, 0.7743, 0.7396, 0.8837, 0.8693, -0.0627],

[0.4000, 0.9939, 0.6117, 0.2750, 0.9850, 0.8189, 0.0045],

[0.6000, 0.4286, 0.9720, 0.3607, 0.5942, 0.4977, 0.2505],

[0.9000, 0.1827, 0.6516, 0.1159, 0.9271, 0.3751, 0.0581],

[0.5000, 0.7077, 0.4601, 0.9771, 0.2619, 0.5356, -0.0289],

[0.0000, 0.4767, 0.3555, 0.6558, 0.1989, 0.0162, 0.1569],

[0.3000, 0.4371, 0.7413, 0.9112, 0.0723, 0.9252, 0.9560],

[0.5000, 0.5276, 0.0843, 0.7266, 0.2118, 0.5302, 0.2011],

[0.7000, 0.1468, 0.3188, 0.3087, 0.3526, 0.3344, 0.5923],

[0.0000, 0.9432, 0.5099, 0.5586, 0.6024, 0.6905, -0.0087],

[0.1000, 0.0802, 0.0017, 0.4008, 0.5019, 0.1411, 0.2529],

[0.8000, 0.0221, 0.7221, 0.8440, 0.1240, 0.9540, 0.2324],

[0.5000, 0.2958, 0.4872, 0.5731, 0.4418, 0.7037, 0.7130],

[0.2000, 0.9085, 0.8757, 0.4770, 0.6390, 0.1237, 1.1281],

[0.7000, 0.0000, 0.3683, 0.0712, 0.0515, 0.4062, 0.1484],

[0.3000, 0.7281, 0.9619, 0.0431, 0.0000, 0.1199, 0.0894],

[0.8000, 1.0000, 0.8457, 1.0000, 1.0000, 0.0000, -0.0373],

[0.8000, 0.9280, 0.8906, 0.4856, 0.6641, 0.1195, 0.1296],

[0.8000, 1.0000, 1.0000, 0.5266, 0.6308, 0.0358, 0.3261],

[1.0000, 0.5787, 0.4309, 0.1291, 0.4129, 0.5590, 0.2360],

[0.3000, 0.0000, 1.0000, 0.5009, 0.6804, 0.1289, 0.0289],
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[0.4000, 0.9628, 0.9097, 0.4806, 0.4525, 0.0000, 2.6153],

[0.5000, 0.0000, 1.0000, 1.0000, 1.0000, 1.0000, -0.0507],

[1.0000, 1.0000, 0.0000, 1.0000, 0.0000, 1.0000, -0.1304],

[0.3000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000, 0.1087],

[0.4000, 1.0000, 1.0000, 0.5046, 1.0000, 0.0000, 2.5231],

[0.4000, 1.0000, 1.0000, 0.4928, 0.0000, 1.0000, 0.0980],

[0.4000, 1.0000, 1.0000, 0.4467, 1.0000, 1.0000, -0.0251],

[0.5000, 1.0000, 0.0000, 0.5280, 0.0000, 0.0000, 2.2291],

[0.4000, 0.9658, 0.0000, 0.4804, 0.0000, 0.0898, 2.5967],

[0.4000, 0.8883, 1.0000, 0.5189, 0.0000, 0.0000, 3.1767],

[0.4000, 1.0000, 0.0000, 0.3745, 1.0000, 0.0000, 1.6312],

[0.7000, 0.0000, 1.0000, 0.5100, 1.0000, 1.0000, -0.0249],

[0.4000, 0.8786, 0.0161, 0.5639, 0.0581, 0.0000, 3.1551],

[0.5000, 0.8284, 1.0000, 0.6011, 0.0000, 0.0000, 2.5988],

[0.4000, 0.9136, 1.0000, 0.5669, 0.0000, 0.0802, 3.2133],

[0.6000, 1.0000, 0.0000, 0.7980, 1.0000, 1.0000, -0.0130],

[0.4000, 0.8908, 1.0000, 0.5868, 0.0000, 0.0000, 3.0625],

[0.4000, 0.8291, 1.0000, 0.5621, 0.0000, 0.0862, 2.8820],

[0.0000, 1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0447],

[0.3000, 0.8511, 1.0000, 0.7110, 0.0000, 0.0000, 2.1879],

[0.4000, 0.8976, 0.4139, 0.5711, 1.0000, 0.0425, 2.9899],

[0.5000, 0.9286, 0.0000, 0.6761, 0.0000, 0.1140, 2.2584],

[0.4000, 0.9195, 0.0000, 0.6349, 0.0000, 0.1203, 2.5906],

[0.1000, 0.2126, 1.0000, 0.5955, 0.0000, 1.0000, 0.4850],

[0.4000, 0.8943, 1.0000, 0.5565, 0.0000, 0.0097, 2.9492],

[0.2000, 0.4618, 0.0000, 0.1665, 1.0000, 1.0000, 0.1278],

[0.2000, 1.0000, 1.0000, 0.9451, 0.0000, 0.0000, 0.4609],

[0.5000, 1.0000, 1.0000, 0.5839, 0.0000, 0.3425, 0.7659],

[0.4000, 0.8899, 1.0000, 0.5622, 0.0000, 0.0421, 3.1330],

[0.4000, 0.8026, 0.0000, 0.5356, 0.0000, 0.0000, 2.7828],

[0.2000, 0.0556, 1.0000, 1.0000, 0.0000, 0.6695, 0.1134],

[0.4000, 0.7124, 1.0000, 0.6842, 0.0000, 0.0000, 2.3028]],

dtype=torch.float64)

NUBO efficiently explores the parameter space by switching between exploring areas with

high uncertainty and high predicted values. This means the algorithm does not monoton-

ically converge to a single solution as conventional optimisation algorithms would. Thus,

the approximate solution to an objective function is the best value found during the opti-

misation. In this case study, the approximate solution, i.e., the solution with the highest
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output (the final column in the Python output above), was found at iteration 53, and the

inputs and outputs are printed below.

>>> best_iter = int(torch.argmax(y_train))

>>>

>>> print("Approximate solution")

>>> print("--------------------")

>>> print(f"Evaluation: {best_iter + 1}")

>>> print(f"Inputs: {x_train[best_iter]}")

>>> print(f"Output: {y_train[best_iter]:.4f}")

Approximate solution

--------------------

Evaluation: 53

Inputs: tensor([0.4000, 0.9136, 1.0000, 0.5669, 0.0000, 0.0802],

dtype=torch.float64)

Output: 3.2133

We compare the results provided by NUBO with those from random sampling and using

a space-filling design, in this case, Latin hypercube sampling (LHS). The code below

generates results for the total budget of 70 evaluations for both sampling methods and

plots the results, with the number of evaluations on the x-axis and the cumulative best

output for each method on the y-axis. Figure 4.3 shows that NUBO (green line) provides

a better solution than either alternative approach and is very close to the true maximum

of 3.32237. NUBO succeeds in accurately approximating the true optimum.

>>> import matplotlib.pyplot as plt

>>> import numpy as np >>>

>>>

>>> torch.manual_seed(123)

>>> random = black_box(torch.rand((70, dims)))

>>> lhs = black_box(gen_inputs(num_points=70, num_dims=dims, bounds=bounds))

>>>

>>> plt.plot(range(1, 71), np.maximum.accumulate(random), label="Random")

>>> plt.plot(range(1, 71), np.maximum.accumulate(lhs), label="LHS")

>>> plt.plot(range(1, 71), np.maximum.accumulate(y_train), label="NUBO")

>>> plt.hlines(3.32237, 0, 71, colors="red", linestyles="dashed",

... label="Maximum")

>>> plt.title("Comparison against random designs")

>>> plt.xlabel("Evaluations") >>> plt.ylabel("Output")
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Figure 4.3: Results of the Bayesian optimisation algorithm implemented with NUBO, as defined
in this case study, compared to random sampling and Latin hypercube sampling.

>>> plt.legend(loc=’lower center’, ncol=4, bbox_to_anchor=(0.5, -0.275))

>>> plt.xlim(0, 71) >>> plt.tight_layout()

4.4 Comparison to other packages

Various Python packages for Bayesian optimisation exist, as listed in Table 4.1. Most

of them only support sequential single-point optimisation, i.e., every point the algorithm

proposes must be evaluated by the objective function before moving on to the next iter-

ation. However, parallelism can be exploited in many cases to speed up the optimisation

process. For example, consider a simulator that can be run in parallel. Evaluating all

points in parallel would save time as it would only take as long as evaluating a single

point sequentially. pyGPGO [90], bayes opt5 [144], Spearmint [77], and SMAC3 [118]

do not allow parallel multi-point optimisation. Furthermore, Spearmint is not modular,

resulting in relatively inflexible implementations and giving the user little control when

tailoring Bayesian optimisation to unique research problems. The closest available pack-

age to NUBO is BoTorch [7] as it also supports parallel and asynchronous optimisation

5The package is also known under the name bayesian-optimization.
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Type Modular Sequential Parallel Asynchronous Lines of code Version

NUBO Yes Yes Yes Yes 1,322 1.0.3
BoTorch Yes Yes Yes Yes 38,419 0.8.4
bayes opt Yes Yes No No 1,241 1.4.3
SMAC3 Yes Yes No No 11,217 2.0.0
pyGPGO Yes Yes No No 2,029 0.5.0
GPyOpt Yes Yes Yes No 4,605 1.2.6
Spearmint No Yes No No 3,662 0.1

Table 4.1: Overview of available Bayesian optimisation packages in Python. We compare whether
individual packages have a modular design and support sequential single-point, parallel multi-
point, and asynchronous optimisation. We also list the number of lines of code of the core package
(without comments, examples, tests, etc.) and the version number.

through Monte Carlo approximations of the acquisition functions. However, compared to

the lightweight implementation of NUBO, BoTorch uses a very large code base that makes

code comprehension difficult, as it often requires retracing various functions and objects

through many files. This can be quantified by the huge codebase represented in Table 4.1

as the total number of lines of code6: NUBO implements Bayesian optimisation in only

1,322 lines of code over 20 files, while BoTorch uses 38,419 lines of code—roughly 29 times

more than NUBO—and spreads them between 160 files. It also provides a large number of

functions and methods that enforce decisions non-expert users do not have the knowledge

and experience to make. NUBO lightens this burden on the user by limiting itself to the

most fundamental and well-established methods. Table 4.1 also includes GPyOpt [193];

however, it is no longer maintained and has recently been archived.

The number of code lines refers to the underlying code bases of the packages and not the

lines of code a user must write to apply Bayesian optimisation. When talking about a

transparent implementation, the former is a better proxy as it reflects the complexity of

the whole package, that is, all functions and algorithms in the package. If a package has

many thousands of lines—such as BoTorch— it is intuitive that it is more complex and

thus more challenging to comprehend fully than a package with only a few hundred lines

of code—such as NUBO. The number of code lines it takes to apply Bayesian optimisation

is less informative as it can easily be distorted. Consider, for example, a very complex

algorithm with many lines of code. It would be possible to wrap this algorithm into

one function that can be called with one line of code. While this reduces the lines of

code, it does not change the algorithm’s complexity. Thus, the comparison in this chapter

focuses on the number of lines of the underlying code bases to give an idea of the size and

complexity of the packages.

Although it is difficult to provide an exhaustive comparison of the relative efficiency of each

6The total number of lines of code does not include comments, blank lines and files that are irrelevant
to the actual algorithms, such as examples, tests and test functions.
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of the packages, we have undertaken a limited comparison7 of the following form. We com-

pare NUBO to four of the packages mentioned above—BoTorch, bayes opt, SMAC3 and

pyGPGO—representing a reasonably wide range of complexity. All methods use Gaus-

sian processes (introduced in Section 2.3) as the surrogate model and upper confidence

bound (introduced in Section 2.4.2) as the acquisition function. Please see the replication

materials published alongside Diessner, Wilson, and Whalley [42] for further details on

the algorithms and the benchmarking. Two synthetic test functions from Surjanovic and

Bingham [188] were selected to benchmark the five packages. The first row of plots in

Figure 4.4 compares the performance of sequential single-point optimisation on A) the

two-dimensional Levy function

f (x) = sin2 (πw1) + (w1 − 1)2
[
1 + 10 sin2 (πw1 + 1)

]
+ (w2 − 1)2

[
1 + sin2 (2πw2)

]
,

where wi = 1+ xi−1
4 , for i = 1, 2, and B) the six-dimensional Hartmann function (already

introduced in Section 4.3 and further discussed in Section 5.4.2). The second row of plots

compares the performance of parallel multi-point optimisation with batches of four points

on C) the two-dimensional Levy function and D) the six-dimensional Hartmann function.

As a reminder, of the compared packages, only NUBO and BoTorch offer funcitonality for

multi-point optimisation (C) and D)). All functions are negated to transform them from

their initial minimisation problem into a maximisation problem in line with the convention

of Bayesian optimisation. The plots provide the best observation (i.e., maximum value)

at the current evaluation, averaging over ten replication runs. The results show that all

packages converge towards the global optimum of 0.00 for the Levy function and 3.32

for the Hartmann function. While NUBO requires more evaluations to find the global

optimum for the Hartmann function (B) and D)) than more complex packages such

as BoTorch, it gets closest to the true optimum in all cases after all evaluations and

shows low variance in these results (Table 4.2). These results show that the simplicity of

NUBO’s implementation does not come at a cost in performance. NUBO can outperform

packages with a similar level of complexity, such as pyGPGO and bayes opt, and compares

well against more complex packages, such as BoTorch and SMAC3. This is not to say

that NUBO is the superior package for any problem, but rather that NUBO performs

competitively while focusing on a transparent and simple design. This makes NUBO

a good candidate for optimising expensive black-box functions in the sciences—such as

physical experiments and computer simulators—where transparency is vital.

However, the time NUBO requires to complete one iteration, with a maximum of 2.20s for

D), is, on average, higher than for the other packages (Table 4.3). While this might be

important for some areas of optimisation, it will typically be negligible when optimising

7All comparisons were run on an Apple Mac mini with an M2 chip and 16 GB memory.
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Figure 4.4: Comparison of different Python packages for Bayesian optimisation. A) Sequential
single-point optimisation on the 2D Levy function; B) Sequential single-point optimisation on the
6D Hartmann function; C) Parallel multi-point optimisation with a batch size of four on the 2D
Levy function; D) Parallel multi-point optimisation with a batch size of four on the 6D Hartmann
function.

Sequential Parallel
2D Levy 6D Hartmann 2D Levy 6D Hartmann

NUBO -0.04 (0.06) 3.28 (0.06) -0.04 (0.04) 3.27 (0.06)
BoTorch -0.21 (0.20) 3.27 (0.07) -0.27 (0.21) 3.26 (0.06)
SMAC3 -0.71 (0.58) 2.70 (0.38) - -
bayes opt -0.64 (0.74) 3.20 (0.13) - -
pyGPGO -0.28 (0.31) 2.64 (1.05) - -

Table 4.2: Comparison of different Python packages for Bayesian optimisation. The best observa-
tions averaged across the ten runs with corresponding standard errors are given for each package.

expensive black-box functions, as these functions are much more resource-intensive to

evaluate. Thus, the small number of additional seconds that NUBO requires per iteration
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Sequential Parallel
2D Levy 6D Hartmann 2D Levy 6D Hartmann

NUBO 0.60s 1.88s 0.07s 2.20s
BoTorch 0.09s 0.22s 0.00s 0.19s
SMAC3 0.08s 0.25s - -
bayes opt 0.14s 0.24s - -
pyGPGO 0.23s 0.65s - -

Table 4.3: Comparison of different Python packages for Bayesian optimisation. The elapsed time
per iteration averaged across the ten runs is given for each package.

is insignificant compared to the resources required to conduct an experiment or run a

simulation.

Besides implementations in Python, there are some implementations in other programming

languages. For example, rBayesianOptimization [217] and ParBayesianOptimization [213]

implement basic Bayesian optimisation algorithms for hyper-parameter tuning similar to

bayes opt and pyGPGO in R. ParBayesianOptimization provides additional support for

parallel optimisation and follows Snoek, Larochelle, and Adams [178]. Future work could

compare NUBO to these packages, although they are beyond the scope of this thesis.

4.5 Conclusion

This chapter introduced NUBO, a Python package for Bayesian optimisation for expensive-

to-evaluate black-box functions, such as computer simulators and physical experiments.

NUBO’s main objective is to make Bayesian optimisation accessible to researchers from

all disciplines by providing a transparent and user-friendly implementation.

NUBO includes five sub-modules that implement Gaussian processes, acquisition func-

tions, optimisers, test functions, and utilities. These modules provide all necessary func-

tionalitiy for sequential single-point, parallel multi-point, and asynchronous optimisation

of expensive-to-evaluate black-box functions for bounded, constrained, and mixed (discrete

and continuous) input parameter spaces. We have introduced and explained these func-

tionalities with individual code snippets and illustrated NUBO’s general workflow using a

detailed case study that takes a hypothetical six-dimensional expensive-to-evaluate black-

box function and approximates its global optimum with a parallel multi-point Bayesian

optimisation algorithm.

A brief comparison with other Python packages for Bayesian optimisation showed that

NUBO performs competitively while providing a transparent and simple implementation.

This makes NUBO a good candidate for optimising expensive black-box functions when

transparency is vital.

In the future, we plan to extend NUBO to include optimisation strategies for multi-fidelity,
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multi-objective, and high-dimensional problems.
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Chapter 5

Optimisation under randomly

changing environmental conditions

Summary

Experiments in engineering and other scientific disciplines are typically conducted

in controlled environments where parameters can be set to any desired value. The

assumption that is often made is that the same applies in a real-world setting, which

can be incorrect as many real-world systems are influenced by uncontrollable environ-

mental conditions such as temperature, humidity and wind speed. When optimising

such experiments, the focus should be finding optimal values conditionally on these

uncontrollable variables. This chapter extends Bayesian optimisation to the optimi-

sation of systems in changing environments that include controllable and uncontrol-

lable parameters. The extension fits a global surrogate model over all controllable and

environmental variables but optimises only the controllable parameters conditional

on measurements of the uncontrollable variables. The method is validated on two

synthetic test functions, and the effects of the noise level, the number of environ-

mental parameters, the parameter fluctuation, the variability of the uncontrollable

parameters, and the effective domain size are investigated. ENVBO, an extension

of Bayesian optimisation implemented in NUBO, is applied to two problems con-

sidering a wind farm simulator. ENVBO finds solutions for the entire domain of

the environmental variable that outperform, or are competetive with, results from

optimisation algorithms that focus on fixed environmental values. ENVBO uses a

fraction of the evaluation budgets of the benchmarks and can predict solutions for the

entire range of the environmental variable. This makes the proposed approach very

sample-efficient and cost-effective. An off-the-shelf open-source version of ENVBO

is available via the NUBO Python package.
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5.1 Introduction

In its original form, Bayesian optimisation is a global optimisation algorithm that aims to

find a global optimum of a function in a minimum number of function evaluations, also

called observations. For standard Bayesian optimisation to be effective, all parameters

must be controllable, and all environmental factors influencing the output must remain

constant. However, this assumption is only true in completely isolated and controlled envi-

ronments. Considering more realistic scenarios where some variables cannot be controlled,

this assumption will not hold in general. Environments in the real world are generally more

complex, and environmental conditions, such as humidity, temperature and wind speed,

are typically governed by uncontrollable external factors.

Many applications of Bayesian optimisation—implicitly or explicitly—assume a simplistic

world where all environmental conditions are fixed. In active flow control, for example,

where the goal is to control blowing actuators to maximise the reduction of the skin-

friction drag over a flat plate, the ambient wind speed is assumed to be fixed [123, 41,

145, 124]. However, the optimal parameters found from these simulations and experiments

give optima for specific wind speeds and cannot necessarily be generalised to other wind

speeds. This approach to experimentation requires repeating the experiment for each

wind speed to find multiple optima. Because wind speeds are assumed to be fixed, it

is impossible to share observations and, thus, information between experiments. While

observations from different wind speeds will likely not result in the same drag reduction,

they will be correlated and contain some information that can be transferred to problems

with similar wind speeds. Sharing information between different environmental conditions

could decrease the number of observations required and make Bayesian optimisation more

sample-efficient and cost-effective—both essential properties and important objectives of

Bayesian optimisation.

This chapter presents a practical strategy for optimising expensive black-box functions

such as physical experiments and computer simulations with influential environmental

conditions that are governed externally and cannot be controlled during the optimisation.

The strategy extends Bayesian optimisation by (a) fitting a global surrogate model over

all controllable and uncontrollable variables, (b) solving the acquisition function condi-

tionally on measurements taken for the uncontrollable variables, and (c) restricting the

initial training data that typically consists of many observations generated via a space-

filling design to only one observation. It is shown that ENVBO, the proposed algorithm,

generalises to situations with noisy observations, multiple uncontrollable variables, and

uncontrollable variables with different levels of fluctuation and variability.

To illustrate the value of this approach, two problems within a wind farm simulator are

considered. The first problem aims to maximise annual power generation by finding op-
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timal positions for four wind turbines. The wind direction affects the power generation

significantly and is assumed to vary randomly in the simulations. Thus, the wind direction

represents an influential environmental condition. The second problem aims to maximise

energy production by setting the derating strategy for a row of five wind turbines with

changing wind speeds. Results for the first problem show that ENVBO outperforms two

other optimisation algorithms (standard Bayesian optimisation and the SLSQP algorithm

[107]) used as benchmarks in all but one case. For the second problem, ENVBO performs

comparably to standard Bayesian optimisation and outperforms the Nelder-Mead algo-

rithm [143]. ENVBO has the additional benefits of using fewer function evaluations than

the benchmarks and can propose wind turbine positions for any possible wind direction

within the range investigated. Similar results from the benchmarks could only be achieved

by repeating simulation campaigns many times for different wind speeds—an expensive,

if not infeasible, task given that wind speed is a continuous variable. Thus, the algorithm

is sample-efficient and cost-effective and effectively addresses the main problem of expen-

sive black-box function optimisation. An off-the-shelf open-source version of ENVBO is

available via the NUBO Python package [42] at www.nubopy.com.

This chapter is structured as follows. Section 5.2 gives an overview of related litera-

ture and highlights differences to the work in this chapter. Section 5.3 extends Bayesian

optimisation introduced in Section 2.2 to allow optimisation with changing environmen-

tal conditions. Section 5.4 validates the approach on two synthetic test functions—the

two-dimensional Levy function and the six-dimensional Hartmann function—and intro-

duces a way to simulate randomly changing environmental conditions via random walks.

Section 5.5 investigates five properties of the proposed method: noise, number of uncon-

trollable variables, parameter fluctuation, parameter variability and effective domain size

(i.e., the actual searched space for the environmental conditions). Section 5.6 considers

nine-dimensional and six-dimensional wind farm simulators with one uncontrollable vari-

able and eight and five controllable variables, respectively. Section 5.7 discusses the results

of the empirical investigation and the application to the wind farm simulator and high-

lights limitations and implications. Lastly, Section 5.8 summarises this chapter and draws

conclusions.

5.2 Related work

This chapter focuses on a particular scenario in Bayesian optimisation [53] that is referred

to as random environmental conditions [24], multi-task optimisation [190] and contextual

optimisation [108]. Methods differ by the type of input parameters (discrete or continu-

ous), the number of allowed environmental conditions or contexts (finite or infinite), and

the overall goal of the optimisation (one optimal solution for all contexts or one optimal
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solution for each context). When the number of contexts is infinite, finding one optimal

solution for each context corresponds to finding a function that returns optimal inputs

based on the context. This is the main objective of this chapter. Gaussian process-based

methods aiming to optimise problems with different contexts—that is, with controllable

and environmental variables—considered previously can be classified primarily into two

types based on their optimisation goal.

The first aims to find one solution that yields the best result for all tasks/contexts. It is

assumed that environmental variables take values according to a probability distribution.

For example, if the environment is defined by its temperature, the current temperature

will follow a distribution. Optimisation aims to find the optimiser that maximises the

objective function, taking into account the likelihood of the different environments. Dif-

ferent approaches assume the distribution of the environmental variables to be discrete

[209, 190], continuous [73, 216] or both [198]. These methods assume that parameters

and contexts can be selected during optimisation, and many use a sequential approach,

where parameters for the next candidate are selected before the context is chosen. Only

Toscano-Palmerin and Frazier [198] present an approach that chooses parameters and

contexts jointly and can optimise problems where contexts are uncontrollable and given

randomly. Chang et al. [25] and Chang et al. [24] use this type of approach to design a

femoral component for hip replacements conditional on joint force orientation and cancel-

lous bone properties. The aim is to find one optimal design for a wide demographic with

varying characteristics.

The second type aims to find one solution for each context. Thus, interest lies not in

finding one global optimum but multiple optima, one for each combination of environmen-

tal conditions. Pearce and Branke [153], Char et al. [26] and Chung et al. [30] consider

multiple discrete tasks, while Ginsbourger et al. [63] and Pearce and Branke [152] consider

continuous environmental variables or both. These methods are closely related to the

objective of this chapter. However, they have one important distinction. While the envi-

ronmental values are given externally in real-world applications, it is assumed that they

can be set to any desired values in the experiments and simulations above. This deviates

from our problem formulation, where we explicitly regard problems with uncontrollable

environmental variables—in experiments, simulations and the real world.

The research in this chapter is closely related to that of Krause and Ong [108], who

modified upper confidence bound [184] to be suited to optimisation with externally given

environmental conditions and derived theoretical bounds for its contextual regret. In

contrast to Krause and Ong [108], this chapter considers improvement-based acquisi-

tion functions, i.e., expected improvement [94] and log expected improvement [2], gives

a detailed description of the practical implementation of Bayesian optimisation with en-

vironmental conditions and provides all code at https://github.com/mikediessner/
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environmental-conditions-BO. In addition, the approach in this chapter makes fewer

assumptions than Krause and Ong [108], who focus on a linear and additive covariance

structure for the environmental variables. In Bayesian optimisation, the optimisation

problems are by definition black-box problems. This means that no knowledge about

the influence of the environmental variables on the output is available. Hence, it might

be challenging to determine if the environmental variable possesses a linear, additive or

completely different structure. ENVBO avoids this issue by making as few assumptions

as possible and estimating the structure from the data using a flexible Matérn kernel.

Furthermore, using expected improvement rather than upper confidence bound as the ac-

quisition function has the advantage of not requiring the selection of a hyperparameter.

While there are some strategies for determining the tuning parameter in UCB (see Sec-

tion 2.4.2), it remains a challenge to find the optimal value in practice and there currently

exists no guidance in the context of environmental conditions. Expected improvement can

thus be more easily applied to different problems. This yields a widely applicable strategy

that generalises well to real-world problems.

The area of multi-task optimisation is also related to multi-objective optimisation. In

multi-objective optimisation, the aim is no longer to optimise one single objective function

but rather multiple objective functions simultaneously. A global optimum for all objective

functions is only possible if it happens to be at the same values for all inputs for all

functions. Thus, the main goal is to find the best trade-off between the objective functions

[58, 53]. This is related to the first problem above, which aims to find a trade-off between

all contexts. However, objective functions in multi-objective optimisation are generally

assumed not to be correlated, while correlations are leveraged for contexts. Acquisition

functions such as expected improvement [46, 157, 219, 218], predictive entropy search

[79] and max-value entropy search [10, 49] have been extended to allow multi-objective

optimisation, as discussed in Section 2.5.5.

5.3 Changing environmental conditions

The standard Bayesian optimisation algorithm, given in Algorithm 1, assumes that all

parameters influencing the output can be controlled. However, in many cases, when opti-

mising physical experiments, variables will be present that influence the output but cannot

be controlled. This chapter refers to these uncontrollable variables as environmental vari-

ables as they are given by the environment and are uncontrollable. Examples of such

uncontrollable variables are temperature, humidity and wind speed. This section presents

an extension to Algorithm 1 that allows the inclusion of uncontrollable environmental

variables in the optimisation process. The extension can be broken down into three parts

as highlighted in Algorithm 3.
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The main modification to Algorithm 1 concerns the surrogate modelling. The standard

Bayesian optimisation algorithm fits a surrogate model over all controllable variables. En-

vironmental variables are not included and are assumed to be fixed over the full optimisa-

tion process or are irrelevant to the output. Algorithm 3 does not make this assumption

and includes all controllable parameters xC and environmental variables xE in its sur-

rogate model. The inputs Xn of the training data Dn = (Xn,yn) are extended from

Xn = (Xn,C) to Xn = (Xn,E ,Xn,C), where Xn,C and Xn,E are the controllable and the

environmental variables in the training data, respectively. Furthermore, the controllable

and environmental variables of individual candidate points are written as xn,C and xn,E ,

respectively.

The second extension regards the computation of the next candidate point, specifically,

the maximisation of the acquisition function. While in Algorithm 1 all parameters are

assumed to be controllable and the acquisition function can be maximised over all param-

eters maxxC α (xC), Algorithm 3 must differentiate between the controllable parameters

xC and environmental variables xE . The uncontrollable variables are given by the en-

vironment and can only be measured, not manipulated. Hence, the maximisation of the

acquisition function is broken down into two steps. First, the environmental variables are

measured. This gives values for the uncontrollable inputs for the next candidate point

xn+1,E . Second, the acquisition function is maximised conditional on these values for the

environmental inputs maxxC |xE
α (xC) resulting in the controllable inputs for the next can-

didate point xn+1,C . Conditional maximisation essentially means that the environmental

variables xE are treated as fixed for the maximisation of the acquisition function for one

iteration. This assumes that the environmental variables do not change significantly from

the time of measuring until the evaluation of the new candidate point xn+1. This assump-

tion should be realistic for most experiments, as one iteration of the Bayesian optimisation

loop—i.e., measuring the environmental variables, fitting a Gaussian process and optimis-

ing the acquisition function conditional on the measurements—takes only a few seconds

(see Section 4.4 for runtimes of different Bayesian optimisation packages). However, is-

sues could arise when working with environmental variables that change rapidly. Thus,

Section 5.5 investigates the influence of different fluctuation rates. The new candidate

point xn+1 is then defined as a combination of the measurements for the environmental

variables xn+1,E and the results of the maximisation of the acquisition function xn+1,C .

The last adjustment to Algorithm 1 focuses on generating the training data. Usually,

training data is produced using a space-filling design, such as a Latin hypercube [129,

86]. Under the assumption that all parameters can be controlled, the experiment can be

conducted for each training point to observe its output. However, the modified Bayesian

optimisation algorithm includes uncontrollable variables in its computation. Thus, it is

impossible to evaluate any arbitrary combination of inputs as it is limited by the cur-
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rent measurement of the environmental variables. To resolve this issue, Algorithm 3 uses

one training point x0 instead of multiple points generated from a space-filling design.

The initial training data is restricted to a single point, while the second data point on-

wards is computed via Bayesian optimisation. The first data point is generated by taking

measurements for the environmental variables x0,E and randomly selecting values for the

controllable parameter x0,C . These inputs are then evaluated, resulting in a complete

training input-output pair D0 = (x0, y0), followed by the first Bayesian optimisation loop.

Algorithm 3 Modified Bayesian optimisation algorithm with environmental conditions

Require: Evaluation budget N , surrogate model M, acquisition function α.
Sample an initial training data point x0 = (x0,E ,x0,C) where environmental parameters
x0,E are measured and controllable parameters x0,C are randomly sampled and obtain
observation y0.
Set n = 0.
while n ≤ N − n0 do

Fit surrogate model M to training data Dn = (Xn,yn), where Xn = (Xn,E ,Xn,C).
Measure environmental variables xn+1,E .
Find values for the controllable parameters xn+1,C that maximise the ac-

quisition function α conditionally on the measurements xn+1,E such that
xn+1 = (xn+1,E ,xn+1,C), i.e., solve argmaxxC |xE

α (xC).
Evaluate xn+1 by observing yn+1

Increment n.
end while
return Point x∗ with highest observation y∗.

In contrast to Krause and Ong [108], the proposed approach does not assume different

covariance structures for controllable and environmental variables. When working with

experiments and simulators, the underlying objective function is generally unknown or too

complex to compute directly [53]. Even with expert knowledge, there might be insufficient

information about these black boxes to confidently assume a linear or additive structure for

the environmental variable. Hence, providing the surrogate model with enough flexibility

to estimate the covariance structure is essential. This can be achieved using the Matérn

kernel for controllable and environmental variables—or the radial basis function kernel for

objective functions expected to be very smooth.

Figure 5.1 illustrates the conditional optimisation on a two-dimensional problem with

one uncontrollable variable x1 and one controllable parameter x2. Plot A) shows the true

output of the objective function, where yellow areas indicate high function values and blue

areas indicate low function values. The goal is to find the optimal value for the controllable

parameter (y-axis) that maximises the output for any uncontrollable variable (x-axis)

value. Plot B) shows the predictive mean of a Gaussian process fitted to 20 training

data points (black crosses). Following Algorithm 3, a measurement (red dashed line) of
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the uncontrollable variable results in x1 = −0.5. The next iteration of the optimisation

loop is performed conditional on this measurement. Plot C) shows the predictive mean

and corresponding uncertainty of the Gaussian process for x1 = −0.5. The conditional

optimisation takes a slice from the full surrogate model. It reduces the two-dimensional

optimisation problem to a one-dimensional problem for each optimisation step, where only

the controllable parameters are considered. However, the information gained from the

observed data is shared between each iteration. Notice that no training points lie on the

measurement line, but the model uses the available training points to inform its prediction.

If Algorithm 1 were used, the uncontrollable input would be assumed to be fixed for the

entire optimisation loop, and the optimisation process would need repeating for each value

of x1. Plot D) extends plot C) by adding the acquisition function. The optimal value

of the controllable input x2 is found by maximising the acquisition function, and the new

candidate point is a combination of the controllable input value at this maximum and the

measurement taken for the uncontrollable variable x1. The candidate point is observed

and added to the training data to be used in the next iteration of the optimisation loop.

5.4 Simulations

This section uses two previously discussed synthetic test functions1—the Levy function

and the Hartmann function—and applies the Bayesian optimisation algorithm with envi-

ronmental conditions presented in Section 5.3. Simulations for both problems are run for

100 evaluations and are repeated 30 times2 to validate the robustness of Algorithm 3. This

decreases the risk that results are influenced by the method’s inherent randomness, e.g.,

the randomly sampled training points that initialise the algorithm. For both test functions

we assume one uncontrollable variable whose value is provided by a random walk at each

iteration. In the simulations, each step of the random walk adds a sample from a uniform

distribution U to the previous value of the uncontrollable variable, such that

xn,E = xn−1,E + U[−a,a], (5.1)

where a is a vector of small predefined constants that provide the minimal and maximal

change of the environmental variables from one iteration to the next. This uniform as-

sumption represents the natural fluctuation of the uncontrollable variables encountered in

a real-world application, e.g., changes in temperature, humidity and wind speed. It fur-

ther allows the investigation of uncontrollable variables with different fluctuation levels by

increasing or decreasing the constants in a as discussed in Section 5.5. Assuming another

1See https://www.sfu.ca/~ssurjano/optimization.html for further details on the synthetic test func-
tions.

2Runs, replications, and repeats are used interchangeably in this chapter.
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Figure 5.1: Maximisation of a two-dimensional problem with one environmental variable x1 and
one controllable variable x2. Yellow areas indicate high outputs, and dark blue areas indicate low
outputs. A) True objective function. B) Prediction of a Gaussian process with a measurement
taken for the following conditional optimisation step. C) Gaussian process predictive posterior for
optimisation conditional on the measurement. D) Bayesian optimisation step conditional on the
measurement.

distribution for the constants in a, such as a Normal distribution, is an alternative to this

approach.

Subsequent sections analyse the performance of Algorithm 3 by comparing predictions

from the Gaussian process models via the mean function µn(x) to the actual optimal

values of the objective function. In both cases, results are obtained by maximising the

predictive mean of the Gaussian process and the true objective function conditional on

identical test values x′
E for the uncontrollable variable. To ensure that test values cover

the domain of the environmental variables evenly for a fair comparison, test values are

sampled from a maximin Latin hypercube design [129, 86] within the observed domain

of the uncontrollable variable [min (xN,E) ,max (xN,E)] considered by the algorithm. A
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step-by-step algorithm showing how performance is assessed can be found in Algorithm 4.

We also call this observed domain the effective domain. This ensures a fair comparison by

avoiding predictions outside the effective domain, requiring extrapolation. Extrapolation

with Gaussian processes generally means that predictions default to the prior mean func-

tion (see Section 2.3 for further details). As ENVBO uses a constant mean function, the

resulting prediction when extrapolating would tend to the constant mean estimated for

the full parameter space. Any other trends and information learned from the data would

not be taken into account, and the resulting prediction would very likely not reflect the

truth. In cases where extrapolation cannot be avoided, making the prior mean function as

informative as possible—for example, by going beyond zero and constant mean functions

with polynomial and trigonometric mean functions—can improve results significantly, as

trends learned from the data would not naively be discarded [156].

To assess the performance of the algorithm, the mean absolute percentage error between

the maximum predictions m∗ and the true optimal values of the objective function f∗ are

computed conditional on all k test values of the environmental variable. In this case, the

mean absolute percentage error is defined as

MAPE (m∗,f∗) =
1

k

k∑
i=1

∣∣∣∣m∗
i − f∗

i

f∗
i

∣∣∣∣ .
The acquisition criterion conditional on values of the uncontrollable variables xn,E is

maximised with the SLSQP algorithm [107] using multiple starts. For this strategy, 100

points are sampled from a maximin Latin hypercube design [129, 86] and evaluated by the

acquisition criterion. The best 20 points are then used to initialise the SLSQP algorithm,

and only the best result is used as the solution for the optimisation problem. The multiple

starts aim to reduce the risk of converging towards a local optimum instead of the desired

global optimum of the acquisition function.

5.4.1 The two-dimensional Levy function

The Levy function

f (x) = sin2 (πw1) + (w1 − 1)2
[
1 + 10 sin2 (πw1 + 1)

]
+ (w2 − 1)2

[
1 + sin2 (2πw2)

]
,

where wi = 1+ xi−1
4 , for i = 1, 2, is a two-dimensional function with two input parameters

x1 and x2. Although often set up as a minimisation problem to find the global minimum

f (x∗) = 0 at x∗ = (1, 1) for the input space [−10, 10]2, we choose the bounds of the

parameters as [−7.5, 7.5] and [−10, 10] respectively to create a maximisation problem that

is better suited for testing Algorithm 3. The controllable parameter is restricted from its

usual range of [−10, 10] to [−7.5, 7.5] to avoid the steep ridges of the Levy function at
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Figure 5.2: Two-dimensional negated Levy function with one controllable parameter x1 bounded
by [−7.5, 7.5] and one uncontrollable variable x2 bounded by [−10, 10].

x1 = −10 and x1 = 10 that push the optima towards the outer bounds of the parameter

space. The function given in Figure 5.2 shows a clear ridge at values of x2 = −6 for the

controllable parameter x2 for all values of the uncontrollable variable x1. The simulations

use a = 1.5 as the uniform distribution constant of the random walk for the uncontrollable

variable x2. For this relatively simple two-dimensional function, the constant a was chosen

to change by no more than 7.5% of the uncontrollable parameter’s range in either direction

per iteration. This assumes that the environmental conditions do not change too much

between iterations. The effect of setting a to different values is investigated and discussed

in Section 5.5.

Plot A) in Figure 5.3 shows the performance of Algorithm 3 as the mean absolute per-

centage error between the maximum of the Gaussian process prediction and the maximum

of the true objective function conditional on 25 test values of the uncontrollable variable.

Three alternatives for the acquisition function—expected improvement (EI), log expected

improvement (LogEI) and upper confidence bound (UCB) as introduced in Section 2.4—

are compared to a benchmark where values for the controllable variable were selected

randomly. Three different values (4, 8, 16) for the trade-off parameter β of upper con-

fidence bound are considered in Figure 5.4. While results for all parameter values are
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Algorithm 4 Benchmarking the performance of ENVBO

Get the effective domain (minimal and maximal values) of the environmental variables.

if nE = 1 then
Sample 25 test values for the environmental variables from a Latin hypercube design

within their effective domain.
else if nE = 2 then

Sample 50 test values for the environmental variables from a Latin hypercube design
within their effective domain.
else if nE = 3 then

Sample 75 test values for the environmental variables from a Latin hypercube design
within their effective domain.
end if

for every ten evaluations do
Fit a Gaussian process to the data observed to the current evaluation.
Find the maximum posterior predictive mean conditional on each test value for the

environmental variables.
end for

Find the optimal values of the objective function conditional on each test value for the
environmental variables.
Assess performance by computing the mean absolute percentage error between the max-
imum posterior predictive mean and the optimal values of the objective function.

return Mean absolute percentage error for every ten evaluations.

comparable, upper confidence bound with trade-off parameter β = 8 performs slightly

better in terms of mean performance and variance between runs. Thus, comparisons with

expected improvement and log expected improvement use β = 8. The solid lines indicate

the mean performance, while the shaded areas indicate the 95% confidence interval over

the 30 replications. Each replication’s mean absolute percentage error is computed for

every ten evaluations for the same 25 test points X ′
E of the environmental variable. The

test values are sampled from a Latin hypercube bounded by the minimal and maximal

value of the uncontrollable variable after 100 function evaluations. For further details

on how performance is assessed see Algorithm 4. The mean absolute percentage error

starts just below 0.8 for all alternatives. While the improvement-based algorithms (EI

and LogEI) performed better than the random benchmark, the algorithm using upper

confidence bound performs worse. After 100 function evaluations, expected improvement

and log expected improvement have a mean absolute percentage error of 0.08 and 0.06

respectively and improve upon the random benchmark (0.17). Upper confidence bound

only achieves a mean absolute percentage error of 0.24. Moreover, the optimistic strategy
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shows large confidence intervals, indicating that the method is not robust. Altering the

trade-off parameter β did not improve this result, as illustrated in plot A) in Figure 5.4.

Plot C) presents the difference between the mean absolute percentage error of the random

benchmark and the three alternative acquisition functions after 100 evaluations. This dif-

ference is computed for each of the 30 replications, and distributions of the differences are

plotted for the three different acquisition functions. Negative values indicate replications

where the benchmark resulted in superior solutions, while positive values indicate that the

given version of Algorithm 3 performed better than the benchmark. Although no alterna-

tive is better than the benchmark for every replication, there is a clear difference between

the improvement-based and the optimistic acquisition functions. Indeed, the mean of up-

per confidence bound (displayed by the horizontal line towards the centre of each violin

plot) is worse than zero. This means that the random benchmark outperforms upper con-

fidence bound on average. Additionally, the plot mirrors the lack of robustness discovered

earlier by the large spread in differences. While upper confidence bound performs better

for some replications than the random benchmark, it performs much worse for others. A

Mann-Whitney U test was performed to determine which alternatives perform differently

from the random benchmark using a 1% significance level. The test returned a p-value of

<0.001 for the improvement-based algorithms and 0.371 for the upper confidence bound.

This provides evidence against the supposition that improvement-based methods perform

equally well compared to the random benchmark, reinforcing the results from the visual

analysis that expected improvement and log expected improvement perform significantly

better than the random benchmark. This cannot be said for the optimistic method—the

test cannot reject the null hypothesis, indicating that upper confidence bound does not

perform significantly differently from a random approach.

5.4.2 The six-dimensional Hartmann function

The negated Hartmann function

f (x) =
4∑

i=1

αi exp

−
6∑

j=1

Aij (xj − P ij)
2

 ,
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where

α =(1.0, 1.2, 3.0, 3.2)T ,

A =


10.00 3.00 17.00 3.50 1.70 8.00

0.05 10.00 17.00 0.10 8.00 14.00

3.00 3.50 1.70 10.00 17.00 8.00

17.00 8.00 0.05 10.00 0.10 14.00

 , and

P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 ,

is a six-dimensional function with six input parameters x1, x2, x3, x4, x5 and x6 that are

defined on the hypercube (0, 1)6. It has six local maxima and one global maximum with

f (x∗) = 3.32 at x∗ = (0.20, 0.15, 0.48, 0.28, 0.31, 0.66). The simulations use a = 0.05 as

the uniform distribution constant of the random walk for the environmental variable x6.

As this six-dimensional function is more complex than the Levy function, the constant a

was chosen to change by a maximum of 5% of the range of the uncontrollable parameter

in either direction, i.e., the environmental conditions do not change too much between

iterations. Section 5.5 sets a to 10%, 25%, 50% and 100% and investigates the effect.

Plot B) in Figure 5.3 shows the performance of Algorithm 3 over the 30 repeats for the

same three acquisition function as for the Levy function and compares it to the random

benchmark. The mean absolute percentage error starts between 0.85 and 0.90 for all four

algorithms. After 100 function evaluations, the mean absolute percentage error between

the prediction from the Gaussian process and the true optimal value, using Algorithm 3

with expected improvement and upper confidence bound taking β = 8, are 0.07 and 0.06

respectively—much better than the random benchmark with 0.24. However, the algorithm

using log expected improvement, with a mean absolute percentage error of 0.18 after 100

evaluations, performs only slightly better than the benchmark and significantly worse than

the other versions of Algorithm 3. The wide 95% confidence intervals for log expected

improvement indicate that Algorithm 3 with log expected improvement is not robust in

this case, making it less reliable than expected improvement and upper confidence bound.

The violin plots of the difference between the mean absolute percentage error of the bench-

mark and the three variations of Algorithm 3 for all 30 replications, given in plot D) in

Figure 5.3 indicate that expected improvement performs the best with almost all replica-

tions better than the random benchmark. Log expected improvement, on the other hand,

performs comparably to the benchmark on average but has a large spread, with some repli-

cation performing much worse. Upper confidence bound performs similarly to expected
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Figure 5.3: Upper row: Means (lines) and 95% confidence intervals (shaded areas) of the mean
absolute percentage error between Gaussian process prediction and truth over 30 replications.
Lower row: Violin plots of differences between algorithms and random benchmark after 100 function
evaluations for each of the 30 replications. Two-dimensional Levy function with one uncontrollable
parameter on the left and six-dimensional Hartmann function with one uncontrollable parameter
on the right.

improvement but has an outlier that performs much worse than the random benchmark.

Overall, expected improvement is the most robust method and is not prone to outliers.

Despite these differences between algorithms, results after 100 evaluations for all three

algorithms are significantly different from the random benchmark at a 1% significance

level: the p-values from Mann-Whitney U tests are <0.001 for the expected improvement

and the upper confidence bound version of Algorithm 3 and 0.007 log expected improve-

ment. While this shows that the results of all methods are significantly different from the

benchmark, only expected improvement and upper confidence bound perform better than

the benchmark, indicated by the better average mean absolute percentage error.

Figure 5.4 shows results for different values of the trade-off parameter β. While the
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Figure 5.4: Comparison of different trade-off parameters β for the upper confidence bound ac-
quisition function. Means (lines) and 95% confidence intervals (shaded areas) of the mean ab-
solute percentage error between Gaussian process prediction and truth over 30 replications. A)
shows the two-dimensional Levy function with one uncontrollable parameter and B) shows the
six-dimensional Hartmann function with one uncontrollable parameter.

average performance is very similar after 100 evaluations, there is a difference in the 95%

confidence intervals for the Hartmann function. β = 8 performs better than β = 4 and

β = 16, indicating no clear trend with increasing or decreasing β.

5.5 Empirical analysis of properties

Based on the investigations of Section 5.4, we define ENVBO as a version of Algorithm 3

that uses the expected improvement acquisition function. This section explores the effect

of changes to five aspects of the underlying objective function or environmental conditions

on ENVBO using the negated Hartmann function. The effect of adding different levels of

random Gaussian noise to the function’s output, the influence of more than one uncontrol-

lable variable, the effect of the fluctuation level (i.e. the step size a of the random walk),

the impact of the variability in the uncontrollable variable, and the relationship between

the algorithm performance and the effective domain size of the uncontrollable variables are

investigated. An off-the-shelf version of ENVBO is available via the open-source Python

package NUBO [42].

To make the comparison fair, the 30 replications of maximising the Levy and the Hartmann

function with the different acquisition function used the same 30 initial starting points and

random walks. For the random walks, this is achieved by sampling changes in percentages

and scaling them by the maximal step size a, rather than sampling absolute values directly.

Most physical experiments in engineering can only be conducted by introducing some noise,

such as measurement uncertainty, that cannot be eliminated entirely. This section repli-

100



Chapter 5. Optimisation under randomly changing environmental conditions

0 20 40 60 80 100
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r

A)
= 0.000
= 0.025
= 0.050
= 0.100

0 20 40 60 80 100
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r

B)
nE = 1
nE = 2
nE = 3

0 20 40 60 80 100
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r

C)
a = 0.05
a = 0.10
a = 0.25
a = 0.50
a = 1.00

0 20 40 60 80 100
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r

D)
Low
Medium
High

Figure 5.5: Means (lines) and 95% confidence intervals (shaded areas) of the mean absolute per-
centage error between the predictive mean of the Gaussian process and the truth over 30 replica-
tions for the six-dimensional Hartmann function. A) Comparison of randomly added noise levels,
N
(
0, σ2

)
. B) Comparison of different numbers of uncontrollable parameters nE . C) Comparison

of five different step sizes a for the random walk U[−a,a] added to the previous uncontrollable value.
D) Comparison of uncontrollable variables with different parameter variability.

cates this situation by adding randomly generated noise ϵ to the Hartmann function. The

noisy function can be defined as g (x) = f (x)+ϵ, where f (x) is the deterministic negated

Hartmann function from Equation (5.4.2). The noise is sampled from a Normal distri-

bution centred around zero with a small standard deviation σ, such that ϵ ∼ N
(
0, σ2

)
.

The simulations explore noise levels with σ = 0.00, σ = 0.025, σ = 0.050, and σ = 0.100.

Considering the range of the Hartmann function, this corresponds to standard deviations

of 0.75%, 1.50% and 3.00% of the full output range, respectively. This means that for

any of these three cases, 68.3% of the added noise values will fall between ±1σ, 95.5% fall

between ±2σ and 99.7% fall between ±3σ. For σ = 0.100, this translates into noise values

that decrease or increase the output by up to 3.0% of the output range 68.3% of the time,
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by 6.0% of the output range 95.5% of the time, and by 9.0% of the output range 99.7%

of the time. Plot A) in Figure 5.5 shows the performance of ENVBO for each of these

four noise levels. The results indicate no clear difference in the average performance or

the 95% confidence intervals between the four cases. Overall, the proposed method is not

sensitive to adding modest noise levels.

For some experiments, there might be more than one influential uncontrollable variable.

Plot B) of Figure 5.5 provides results with one, two and three uncontrollable variables.

In each case, the overall dimensionality of the problem stays the same at n = 6. For nE =

1, input six of the Hartmann function from Equation (5.4.2) is assumed uncontrollable,

while input one is added to the uncontrollable variables for nE = 2, and inputs one and

four are added for nE = 3. The inputs used as environmental variable were chosen at

random. The number of test points used to evaluate the final Gaussian process model is

increased from 25 to 50 for nE = 2 and 75 for nE = 3. The results show that the mean

absolute percentage error increases with increasing numbers of environmental variables.

Particularly, the 95% confidence intervals widen significantly. This result is expected as

the input space of the environmental variables grows exponentially with nE and requires

exponentially more training points to cover the input space equally well as for lower nE .

Thus, more evaluations are required to achieve similar results.

Uncontrollable variables will fluctuate to different extents from one evaluation to the next,

for example, when measured in physical experiments. Higher fluctuations cause big jumps

in the uncontrollable variable values, while uncontrollable variables will be more stable for

lower fluctuations. Plot C) of Figure 5.5 shows results for five different fluctuation levels

implemented by varying parameter a of the uniform distribution in Equation (5.1)—the

higher a, the higher the fluctuation of the uncontrollable variable. The results show that

Algorithm 3 performs better for lower a, and the performance of the final Gaussian process

models decreases with increasing fluctuation.

Parameter variability is closely linked to fluctuation and indicates how quickly the pa-

rameter value changes when moving along the axis. Uncontrollable variables with a low

variability will only change slightly, while variables with a high variability will change

considerably. Value changes of two variables could differ considerably for the same fluc-

tuation level when they have different levels of parameter variability. As a proxy for the

parameter variability, the length scales of a well-fitting Gaussian process over the full do-

main are considered. The length scale of a parameter quantifies the distance over which

outputs are correlated when moving along the parameter’s axis [69]. Consider, for exam-

ple, a parameter with a large length scale. When this parameter value is changed by a

certain amount, a relatively small change is expected in the output—provided everything

else stays the same. The change in the output is expected to be larger for a parameter

with a small length scale. For the analysis, a Gaussian process is fitted to 2000 data points
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sampled from a Latin hypercube [129, 86] to achieve a well-fitting model. The resulting

length scales for all six parameters in order are 1.30, 1.90, 4.81, 1.48, 1.51, and 1.47. The

first input has the lowest length scale, suggesting that outputs are only correlated for a

short distance when moving along its axis. This means that the parameter variability of

the first input is high. In contrast, the third input has the highest length scale, indicating

a low parameter variability. Moving along its axis, less change in the output is expected

for the third input than for the first input. Plot D) of Figure 5.5 compares the first

(high), third (low) and sixth input (medium) when chosen as the uncontrollable variable.

Differences in the results for the low and medium parameter variability cases are minimal.

At the same time, there is some difference compared to the results for the parameter with

a high variability: the confidence interval is noticeably wider, and the average of the mean

absolute percentage error is slightly worse, especially for evaluations 30 to 80.

Lastly, the relationship between the size of the effective domain, that is, the actual searched

input space of the environmental variables, and the performance of the Gaussian process

is investigated. Figure 5.6 uses the same data as Figure 5.5 but plots the effective pa-

rameter domain against the mean absolute percentage error, which provides a proxy for

the performance of the Gaussian process. Each point reflects one individual replication of

the 30 performed replications. The trend lines in each plot show a positive relationship

between the effective domain and the mean absolute percentage error. Small effective do-

mains generally correspond to small mean absolute percentage errors, while large effective

domains generally correspond to large mean absolute percentage errors. Only plot B) that

provides the effective domain for different numbers of uncontrollable parameters against

the mean absolute percentage error shows almost no relationship.

5.6 Application to a wind farm simulator

The power generation of wind farms is highly dependent on the wind speed, the wind

direction and the placement of the individual wind turbines within a particular site [68,

160]. Typically, interest lies in finding a strategy, such as the optimal wind turbine po-

sitions, that maximises the energy production conditional on either constant or variable

wind speeds and directions [137, 28, 149]. Optimisation algorithms such as TOPFARM3

can be used when function evaluations are cheap, while methods mentioned previously

[209, 190, 198] present a cost-effective alternative when function evaluations are expen-

sive. However, these methods cannot find multiple solutions for different environmental

conditions within one optimisation run, which is the objective of this section. Specifi-

cally, this application aims to find (a) the optimal wind turbine positions conditional on

3See https://topfarm.pages.windenergy.dtu.dk/TopFarm2/index.html for further details on TOP-
FARM.
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Figure 5.6: Relationships between the actual effective domain of the uncontrollable variables and
the mean absolute percentage error of an individual run for the six-dimensional Hartmann function.
A) Comparison of randomly added noise levels, N

(
0, σ2

)
. B) Comparison of different numbers of

uncontrollable parameters nE . C) Comparison of five different step sizes a for the random walk
U[−a,a] added to the previous uncontrollable value. D) Comparison of uncontrollable variables
with different parameter variability.

randomly changing wind directions and (b) the optimal derating strategy—i.e., running

individual wind turbines below their maximum capacity for a given wind speed—for a

row of five wind turbines conditional on randomly changing wind speeds, resulting in one

solution for each possible wind direction and speed, respectively. While the wind speed

and direction are assumed to be fixed for investigations (a) and (b), respectively, they

could also be randomly changing. The result would be solutions for all combinations of

wind direction and wind speed.

The top row of plots of Figure 5.7 shows the effect of the wind direction on the local

wind speed for a complex underlying terrain while the global wind speed is fixed at 6

m/s. The locations of high local wind speeds—necessary for high energy production—
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Figure 5.7: Wind farm simulator. Upper row: Local wind speed over the complex terrain for a
wind direction of 0 and 120 degrees. Lower row: Wake of four wind turbines for a wind direction
of 0 and 120 degrees. Wind speed is fixed at 6 m/s.

shift significantly between a wind direction of 0 and 120 degrees. While there is a band

of high local wind speeds down the centre of the X location for the latter, it rotates

roughly 90 degrees for the former. The plots show that ideal wind turbine positions will

likely differ for the two wind directions. Another critical factor for maximising energy

production is the wake of the wind turbines (lower row of Figure 5.7). While the wakes of

the wind turbines located upstream do not affect wind turbines located downstream for a

wind direction of 120 degrees, the wake of wind turbine 3 for a wind direction of 0 degrees

heavily affects wind turbine 1. This shows that although a wind farm topology can be

ideal for one wind speed, it can be suboptimal for another.
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5.6.1 Wind turbine placement

In this section, a synthetic site is considered with complex terrain as shown in Figure 5.7,

on which four wind turbines are to be placed to maximise the annual energy production

(AEP). The wind direction is an environmental variable that varies according to a random

walk as defined in Equation (5.1) where 90 and 135 degrees are the lower and upper bounds,

respectively, and wind direction can change by ±5 degrees from one iteration to the next.

The global wind speed is fixed at 6 m/s. This results in a nine-dimensional problem

with eight controllable parameters—one X and one Y location for each of the four wind

turbines—and the wind direction as the only environmental variable. Additionally, the

positioning of the wind turbines is constrained such that wind turbines have to be at least

160 metres apart to prevent the blades from colliding. Simulations are performed with

PyWake [154] and use Vestas V80 wind turbines that can produce 2 MW of energy and have

a blade diameter of 80 metres. Simulating the power generation of wind farms is a complex

task which requires an expensive simulator that accounts for many different parameters.

However, the main objective of this example is to illustrate the performance of ENVBO

and enable other researchers to replicate and validate this work. Thus, a relatively simple

simulator was chosen to make the results easily reproducible, so that ENVBO can be used

with confidence on more expensive physical experiments and computer simulators.

ENVBO is run for a function evaluation budget of 200 and benchmarked against regular

Bayesian optimisation (Algorithm 1) and the SLSQP optimisation algorithm [107]. Reg-

ular Bayesian optimisation, referred to as BO in the following paragraphs, uses expected

improvement as its acquisition function to make comparisons fair. While ENVBO can re-

turn one solution for each wind direction after one optimisation run, BO and the SLSQP

algorithm must be run for each possible wind direction. To compare the algorithms, four

wind directions are chosen—90, 105, 120 and 135 degrees—and BO is restricted to 50

function evaluations each to reach the same function evaluation budget as ENVBO. The

function evaluations of the SLSQP algorithm cannot be restricted, and the algorithm is

therefore run until convergence. BO and SLSQP are run for fixed wind directions, so they

do not use the random walk, in contrast to ENVBO. This makes converging towards a

solution easier, as the algorithms can control all influential variables. ENVBO and BO

were implemented via the open-source package NUBO [42], and an off-the-shelf version

of ENVBO is available at www.nubopy.com. The SLSQP algorithm was implemented via

the SciPy package [201]. All code for optimising the wind farm simulator is available at

https://github.com/mikediessner/environmental-conditions-BO.

Figure 5.8 shows the results for all three algorithms and all four wind directions. The

dashed circles around the wind turbine positions indicated with crosses represent the

placement constraint—no wind turbine of one colour can be placed within the dashed

circle of another wind turbine with the same colour. For a wind direction of 90 degrees,
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ENVBO performs best with an annual power production of 4.20 GWh, followed by BO

and SLSQP with 3.51 and 2.42 GWh, respectively. This is a 20% improvement over BO

and a 74% improvement over SLSQP. SLSQP performs much worse than ENVBO and

places at least one turbine in a suboptimal area with low local wind speeds, possibly due

to converging towards a local maximum. While BO places three turbines in areas with

high local wind speeds, it places one within a suboptimal area. For a wind direction of 105

degrees, ENVBO with 4.70 GWh performs substantially better than BO and SLSQP, with

them achieving 0.91 and 1.86 GWh less power generation, respectively—a 24% and 65%

improvement. A similar result is achieved for a wind direction of 120 degrees. ENVBO

outperforms BO and SLSQP by 0.81 and 2.4 GWh or 19% and 88%, respectively. The

results of the three strategies are closest for a wind direction of 135 degrees. This is the

only instance where a benchmark beats ENVBO—in this case BO with an AEP of 2.88

GWh. ENVBO achieves 0.29 GWh (10%) less AEP but still outperforms SLSQP by 0.13

GWh (5%). However, the differences are much smaller than for any of the first three wind

directions. Considering Figure 5.8, ENVBO is the only strategy that consistently places

all four wind turbines in the band of high local wind speeds located down the centre of

the X location. At least one turbine is placed off to one side of this band for all other

methods.

While the results in Figure 5.8 show that ENVBO outperforms BO and SLSQP in almost

all instances, they do not consider the different numbers of function evaluations required

by each algorithm. Figure 5.9 plots the annual energy production and the number of

function evaluations against the wind direction. The lower plot shows that SLSQP uses

the most function evaluations by far, with 323, 294, 324 and 301 evaluations for the four

wind directions—a total budget of 1,152 function evaluations. In contrast, ENVBO and

BO both use 200 function evaluations in total. BO divides this budget equally over the four

wind directions, allocating 50 evaluations per wind direction, while they are distributed

via a random walk for ENVBO. Each of ENVBO’s bins in the lower plot contains two

to 24 function evaluations. Compared to SLSQP, both Bayesian optimisation algorithms

are much more sample-efficient and use less than 20% of its evaluation budget. ENVBO

uses less than half the evaluation for the four wind directions compared to BO, but it

outperforms BO for three of the four wind directions, as shown in the upper plot. This

shows the advantage of a global surrogate model that is fitted to all controllable and

environmental variables. The Gaussian process uses all available information and can

model the effect of the environmental conditions.

Although the improved performance of ENVBO compared to BO and SLSQP is already

valuable, the main advantage lies in ENVBO’s capability to produce a solution for each

possible wind direction. This is illustrated by the 51 solutions given for ENVBO in the

upper plot of Figure 5.9. SLSQP and BO can only give solutions for the specific wind
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Figure 5.8: Annual energy production and placement of four wind turbines with spacing
constraints—for each colour the wind turbine positions indicated by the crosses cannot fall into
the dashed circles of another wind turbine. ENVBO (Algorithm 3) is benchmarked against SLSQP
and BO (Algorithm 1).

direction for which they were run. To achieve similar results, SLSQP and BO need to

be rerun for each wind direction, which would multiply the required function evaluations

many times. ENVBO uses the available function evaluation budget much more effectively

and is a more sample-efficient and cost-effective approach.

The annual energy production of a wind turbine for constant wind speeds is highly de-

pendent on the wind direction as the wind direction affects the optimal placement within

the terrain and relative to other wind turbines due to their wakes (Figure 5.7). Thus,

different optimal wind turbine positions are expected for different wind directions, and

optimal positions for one wind direction cannot be directly transferred to other wind di-

rections. This is reflected in the results in Figure 5.8 where four wind turbines are placed

in different positions for four wind directions. Adjusting for different wind directions is
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Figure 5.9: Results of ENVBO against two benchmarks—the SLSQP algorithm and standard
Bayesian optimisation (Algorithm 1). A) Annual energy production in GWh for different wind
directions. Only ENVBO can predict solutions over the full wind direction range. B) Number of
evaluations per wind direction.

not a trivial problem and an advanced optimisation strategy, such as ENVBO, is required

as shown in Figure 5.9. Overall, ENVBO finds solutions over the whole range of the en-

vironmental variables, while in most cases performing better than algorithms that focus

on one fixed environmental variable at a time. This is even true for ranges of the en-

vironmental variable that are only explored briefly, as the algorithm learns the effect of

the environmental variable from adjacent areas. Furthermore, ENVBO uses only a small

fraction of the evaluation budget of the two benchmarks, making it particularly beneficial

for optimising computer simulators and physical experiments that can be very expensive

to run in engineering.
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5.6.2 Wind turbine derating

This section illustrates the performance of ENVBO by considering a 5-dimensional wind

turbine simulator implemented in PyWake [154]. The use case assumes a row of five

wind turbines with the wind blowing directly towards the turbines so that previous wind

turbines’ wakes affect subsequent wind turbines’ energy production. The objective is to

maximise the mean energy production (MEP) over the five wind turbines by derating one

or multiple wind turbines. The derating reduces the wake of the turbine and increases the

potential energy generation of wind turbines affected by the wake downstream. Derating

can also extend the lifetime of the wind turbine components [14, 95, 199]. Figure 5.10

shows three different strategies and their resulting mean energy production for a fixed

wind speed of 18 m/s. Strategy A) runs all five wind turbines at full capacity without

derating and produces 32.08 MW. Strategy B) only runs the first wind turbine at full

capacity and turns the four other wind turbines off. The wake of wind turbine 0 would

affect the energy production potential of wind turbines 1 and 2, as the lower local wind

speeds show. This strategy produces 16.63 MW. Strategy C) derates wind turbines 1 and

3 by 60% and runs the other three wind turbines at full capacity. This produces 35.28 MW

of energy and is superior to Strategy A), showing that naively running all wind turbines

at full capacity is not necessarily the best approach.

This application uses an imagined wind turbine with a height and diameter of 100 metres

for which the effect of derating is computed using 1-dimensional momentum theory as

outlined in the documentation of PyWake [154]. The maximum energy generation of a

wind turbine is reached at 20 m/s. The five derating levels are controllable variables

bounded between 0–100% while the wind direction is fixed at 270 degrees, and the wind

speed is an environmental variable that changes according to a random walk [148]. The

random walk uses the wind speed of the previous run and adds to it a small value sampled

from a uniform distribution U [−5, 5]. The maximum change from one iteration to the

next is ±5 m/s, and the wind speed is bounded between 6 and 50 m/s.

ENVBO is benchmarked against two optimisation algorithms—the well-established Nelder-

Mead algorithm [143] and standard Bayesian optimisation with expected improvement, as

outlined in this chapter. While ENVBO can predict optimal derating combinations for

the entire range of wind speeds, Nelder-Mead and standard Bayesian optimisation can not

and must be run for each wind speed, keeping it fixed for the entire optimisation run. Five

different wind speeds—6, 17, 28, 39 and 50 m/s—are taken as samples to compare ENVBO

to the benchmarks. That is, ENVBO is run over the entire wind speed range between 6–50

m/s, but Nelder-Mead and standard Bayesian optimisation can run separately for these

five fixed wind speeds. The results of this comparison are given in Table 5.1. ENVBO

outperforms Nelder-Mead by 17.8%, 2.2%, 21.9%, 60.0% and 21.8% for each wind speed,

respectively. Compared to standard Bayesian optimisation, ENVBO performs better for
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Figure 5.10: Mean energy production in MW for three different derating strategies with a wind
speed of 18 m/s. A) All five wind turbines are run at maximum capacity (no derating). B) Wind
turbine 0 is run at full capacity, and wind turbines 1–4 are turned off completely. C) Wind turbines
0, 2 and 4 are run at maximum capacity and wind turbines 1 and 3 are reduced to 60% capacity.

wind speeds of 28 and 39 m/s and slightly worse but comparably for wind speeds of 6,

17 and 50 m/s. ENVBO also finds the highest overall mean energy production at 105.99

MW for a wind speed of 39 m/s.

Figure 5.11 illustrates these results through two plots. Plot A) gives the mean energy

production in MW for ENVBO, Nelder-Mead (NM) and standard Bayesian optimisation

(BO). This shows that ENVBO and standard Bayesian optimisation come to very sim-

ilar results, but Nelder-Mead is clearly worse—particularly for wind speeds 28, 39 and

50 m/s. It also presents the difference in the types of solution between ENVBO and

the benchmarks. ENVBO can produce solutions for any wind speed—here depicted by

a line—while the benchmarks only give results for the five specific wind speeds they are

trained on. Plot B) connects this performance with the number of function evaluations
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Figure 5.11: Results of ENVBO against two benchmarks—the Nelder-Mead algorithm and stan-
dard Bayesian optimisation (Algorithm 1). A) Mean energy production in MW for different wind
speeds. Only ENVBO can predict solutions over the full wind speed range. B) Number of evalu-
ations per wind speed.

necessary to get the results. ENVBO was limited to a budget of 200 evaluations, and

the individual runs of Nelder-Mead and standard Bayesian optimisation were restricted

to 40 function evaluations to achieve the same evaluation budget as ENVBO. Plot B)

shows that the benchmarks have more evaluations available for the five fixed wind speeds.

ENVBO’s largest number of evaluations falls between wind speeds 41.2–43.4 m/s with 22

evaluations. For the other bins of the histogram, the number of function evaluations is

as low as 4 for wind speeds of 8.2–10.4 m/s. Despite having fewer data points available

per (bin of) fixed wind speed, ENVBO still finds solutions that outperform or are at least

comparable to the benchmarks. For specific wind speeds, ENVBO leverages the correla-

tion in the objective function values over the environmental variable and draws from the

information of the surrounding wind speeds, requiring fewer data points to give a solu-
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Table 5.1: Mean energy production of wind turbines optimised with ENVBO, the Nealder-Mead
algorithm and standard Bayesian optimisation for the five considered wind speeds.

Wind speed
[in m/s]

ENVBO
[in MW]

Nelder-Mead
[in MW]

BO
[in MW]

6 1.19 1.01 1.37
17 30.75 30.10 32.69
28 98.91 81.17 95.90
39 105.99 66.23 101.89
50 98.37 80.78 102.36

tion. This also explains why ENVBO performs more poorly for a wind speed of 50 m/s

than standard Bayesian optimisation in this example. ENVBO has very few data points

available for that wind speed, and, as 50 m/s is the upper bound of the wind speed, it can

only draw from information from lower wind speeds. While ENVBO performs comparably

to the best benchmark overall, it should be a point of caution that ENVBO might be less

accurate towards the boundaries of the environmental variables, and extrapolation should

be particularly avoided. Overall, ENVBO presents as a sample-efficient and cost-effective

optimisation strategy for experiments and simulations with changing environmental vari-

ables that performs well compared to well-established benchmarks.

5.7 Discussion

This section discusses the empirical results of Section 5.5 and the results of the application

to the wind farm simulator in Section 5.6, interpreting the results, considering limitations

and implications, and highlighting the use for the scientific community.

The effective optimisation of noisy objective functions in engineering applications has been

considered from the earliest studies in Bayesian optimisation by Kushner [110] and later

by Jones, Schonlau, and Welch [94] through their efficient global optimisation (EGO) algo-

rithm, emphasising the importance of optimising noisy objective functions in engineering.

Indeed, most experiments cannot be conducted without noise, and many simulators are

stochastic. Gramacy and Lee [72] argue that even deterministic simulators can be seen

as noisy as they are an approximation of the real world. Noise can be understood as the

discrepancy between computer code and reality. This makes investigating the robustness

of a proposed approach to noise essential. The empirical investigation in this chapter

showed that no difference is observable between the average performance of ENVBO for

deterministic and stochastic objective functions. The results show that ENVBO can opti-

mise noisy objective functions, making it applicable to many experiments and simulators

prevalent in engineering. However, the noise added to the six-dimensional Hartmann func-
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tion remained mainly below 9% of the output variable range (see Section 5.5) and was

assumed to be homoskedastic. Thus, one should be cautious when applying ENVBO to

experiments with very high or heteroskedastic noise. A solution for the latter case could

be to use a heteroskedastic Gaussian process for the surrogate modelling, which uses a

second Gaussian process to model the noise [66].

The results regarding the number of uncontrollable parameters in Section 5.5 show that

the performance decreases with an increasing number of uncontrollable parameters. This

decrease in performance is reflected in higher mean absolute percentage errors and higher

variability between replications. For example, the mean absolute percentage error after

100 evaluations is 12.2% and 19.6% higher for nd = 2 and nd = 3, respectively, than

for nd = 1. These results are not surprising since the uncontrollable input space grows

exponentially with the number of environmental variables, making it more challenging to

achieve even coverage over the uncontrollable space due to the randomness of the envi-

ronmental variables. Furthermore, the problem of extrapolation with Gaussian processes

increases with the growing number of dimensions of the uncontrollable input space. The

test points used to evaluate the final prediction model given by ENVBO are generated

with a Latin hypercube that uses the minimal and maximal values of all environmental

variables as upper and lower bounds. With increasing numbers of the environmental vari-

ables nE , it is very likely that while measurements for individual environmental variables

fall within these bounds, the combination of these measurements for different evnironmen-

tal variables falls in areas not explored by the optimisation algorithm. The final Gaussian

process model will extrapolate to predict outputs at these test points. As Section 2.3

discusses, extrapolation with Gaussian processes generally means that predictions default

to the prior mean function. Gaussian processes with a more complex prior mean function

can be explored [156] to counteract this issue. Moreover, the empirical investigation in

this chapter assumes a single fluctuation level a for each environmental input. However,

in a real-world application, different combinations of fluctuation levels are more realistic,

which might require more function evaluations. In any case, the resulting prediction model

must be carefully scrutinised to ensure a good fit and minimal extrapolation.

This work assumes that the environmental variables cannot be controlled and are ran-

domly selected according to the uniform random walk in Equation 5.1. Thus, it is vital

to scrutinise the performance of ENVBO based on this assumption and to consider differ-

ent levels of fluctuation and parameter variability. Environmental variables are likely to

fluctuate to different degrees. For example, temperature is likely to change more slowly

than wind speed. Section 5.5 studies this by considering different levels of fluctuation and

parameter variability, which are closely connected and might be challenging to distinguish

in practice. Fluctuation, in our case, is defined as the size of a, the constant of the uni-

form random walk. Parameter variability is defined as the effect on the output for a given
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change of the environmental variable. For higher fluctuations, there is more potential for

larger effective domains of the uncontrollable variable, i.e., the range for which the en-

vironmental variables are explored. This can be explained by considering the parameter

a. For a = 1.00, any domain value can be randomly selected at each optimisation step,

and the whole domain will likely be searched. For a = 0.05, only values that differ by

0.05 from the previous evaluation can be randomly selected, making it less likely that

the whole domain will be searched before the evaluation budget is exhausted. Suppose a

Gaussian process is fitted to domains with different sizes, but the number of evaluations

remains the same. In that case, predictions will typically be better for smaller domains.

For example, it is plausible that a Gaussian process fitted to ten data points within the

domain [0, 0.1] will reflect the truth in this domain better than a Gaussian process fitted

to ten data points within the much larger domain [0, 1] assuming that everything else stays

comparable. Similarly, a parameter with a small length scale and for which small changes

affect the output significantly will be more challenging to model than a parameter with a

long length scale. This is intuitive as a longer correlation length makes understanding the

effect of changing the parameter easier. The results in Figure 5.5 show that the average

performance and the variability in performance worsen with increasing fluctuation and pa-

rameter variability levels. Thus, the prediction reliability depends on these levels; higher

levels require more function evaluations to perform similarly for environmental variables

with less fluctuation. While these results seem intuitive, some limitations and caveats

should be considered. First, the assumption that environmental variables change accord-

ing to a uniform distribution will not generally be true. The uniform assumption can

thus only be viewed as a proxy for the underlying distributions associated with arbitrary

environmental variables. Second, as the environmental variables are selected randomly,

the distribution of observed points could be uneven such that some regions will contain

more observations than others. The final model will potentially be less accurate in regions

with fewer observations. Hence, it makes sense to consider not only the prediction but

also the associated uncertainty. If the uncertainty is considerable, we might not trust

the prediction to the same extent. Lastly, the randomness in the environmental variables

means there could be cases where the environmental variable is almost constant in the

observed sample, and we cannot explore most of its range. One must be cautious not to

extrapolate in these instances. A non-stationary environmental variable is an example of

a case where this could be an issue.

The results of Figure 5.6 suggest an inverse relationship between the performance of EN-

VBO and the size of the effective domain—that is, the explored space of the environmental

variables—where ENVBO performs better for smaller effective domains. Intuitively, this

result makes sense as a Gaussian process should have a better fit for a smaller space than

a larger space when the number of training points and the function in question stay the
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same. The results depicted in plot C) of Figure 5.6 reinforce the reasoning that the larger

the fluctuation parameter of the uniform distribution a, the more potential there is for a

larger parameter space to be explored. Thus, it is plausible that ENVBO performs better

with smaller values of a as the results of plot C) of Figure 5.5 suggest. Generally, the size

of the environmental variable space grows exponentially with the number of environmen-

tal variables. Exponentially more evaluations are required to achieve the same coverage

for nE = 3 as for nE = 1. However, in this section, the evaluation budget is fixed to

100 evaluations regardless of the number of environmental variables. Considering this, an

inverse effect of the number of environmental variables and the effective domain would be

expected. However, searched spaces are generally larger for nE = 1 than for nE = 3 but

smaller than for nE = 2. A possible reason for this is that the first environmental variable

uses a fluctuation parameter a = 0.05 while the second and third environmental variables

use a = 0.1. A change from a = 0.05 to a = 0.1 can significantly affect the domain size, as

shown in plot C) of Figure 5.6, and might be responsible for the unusual order of effective

domain sizes. In this investigation, results suggest that the size of the effective domain can

inform the number of function evaluations required, and larger effective domains indicate

that more function evaluations are necessary.

While these results are from the six-dimensional Hartmann function and might not be

generalisable to all objective functions, the application of ENVBO to a simple wind farm

simulator presented in Section 5.6 highlights the approach in an illustrative example.

ENVBO outperforms the SLSQP algorithm in all cases and the standard Bayesian opti-

misation algorithm in three out of four cases for a nine-dimensional problem. For a second

six-dimensional case study, ENVBO performs comparably to standard Bayesian optimi-

sation and outperforms the Nelder-Mead algorithm [143]. However, the main advantages

of ENVBO are that it uses fewer function evaluations per wind speed and direction than

SLSQP, Nelder-Mead and standard Bayesian optimisation and makes predictions for the

full range of wind speeds and directions, compared to the benchmarks that only make

predictions for four wind speeds and five wind directions, respectively. These results sug-

gest that ENVBO successfully leverages the correlation in objective function values over

the environmental variable, resulting in a superior and more sample-efficient algorithm.

The reason standard Bayesian optimisation can perform slightly better than ENVBO for

a single wind speed and a single wind direction is likely that these values are at the upper

limit of the environmental variable range, and ENVBO can only leverage information for

lower wind speeds. Figures 5.9 and 5.11 show that very few function evaluations were

observed for this upper limit with ENVBO, which was insufficient to yield a good model

fit. As discussed previously, a more complex prior mean function could improve this re-

sult. Although this wind farm simulator is a simple representation of a complex real-world

problem, it has characteristics of many engineering problems.
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Together with the potential to optimise noisy objective functions, multiple environmental

variables and different levels of parameter fluctuation and variability, ENVBO is a valuable

tool for the broader scientific community. It does not require information about the

correlation structure that is leveraged by other methods [108] and is available as an off-

the-shelf algorithm as part of the Python package NUBO [42] that can conveniently be

run on cloud services such as Google Colaboratory without requiring a Python installation

on a local machine.

5.8 Conclusion

When optimising physical experiments, it is often the case that only some variables can

be fully controlled, or interest lies in finding not one global optimum but one optimum for

each value of a particular variable—essentially a function that maps environmental variable

values to optimal values for the controllable parameters. To date, Bayesian optimisation

has been used predominantly to find global optima. This chapter extends the Bayesian

optimisation algorithm to situations with changing environmental conditions and makes

the following contributions:

1. Development of ENVBO, an algorithm for optimising expensive black-box functions

with randomly changing environmental conditions, that does not require any knowl-

edge about the objective function or the environmental conditions.

2. Analysis of ENVBO and its sensitivity to noisy objective functions, the number of

environmental variables and different levels of fluctuation and parameter variability.

3. Implementation of ENVBO as part of the Python package NUBO.

4. Illustration of ENVBO on two simple wind farm simulators and comparison to stan-

dard Bayesian optimisation, the SLSQP algorithm, and the Nelder-Meads algorithm.

Compared to related research in this area and particularly the closest related work of

Krause and Ong [108], this chapter investigates and gives firm proposals and justifica-

tion for the implementation of the algorithm and offers an easy-to-use implementation in

Python. Furthermore, while Krause and Ong [108] show how known (linear or additive)

structures can be exploited via composite kernels, ENVBO can also be used where no

information on the behaviour of the objective function and the environmental variables is

available. Lastly, ENVBO uses expected improvement as its acquisition function to guide

the selection of candidate points. Compared to upper confidence bound as used in Krause

and Ong [108], expected improvement performed far better in our simulations. It also

has the advantage of not requiring the specification of a trade-off parameter to balance
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exploitation and exploration that has the potential to negatively influence the effectiveness

of the algorithm.

The proposed method fits a global surrogate model over all controllable and environmental

variables and uses measurements of the environmental variables to optimise the acquisition

function with regard to the controllable parameters. This conditional optimisation enables

finding a model with a posterior predictive mean that provides close to optimal values of

the controllable parameters for any values of the uncontrollable variables. The standard

Bayesian optimisation algorithm assumes that the uncontrollable variables are fixed or

disregards them entirely. Thus, ENVBO uses all available information about the objective

function in one optimisation run and is more sample-efficient.

For the proposed optimisation strategy presented in Algorithm 3, three different acquisi-

tion functions—expected improvement, log expected improvement and upper confidence

bound with different trade-off parameters β—were considered, and their performance com-

pared on two synthetic test functions—the two-dimensional Levy function and the six-

dimensional Hartmann function. Expected improvement performed best across the two

test functions and was thus chosen as the acquisition function for the ENVBO algorithm

for the case study. Furthermore, this chapter empirically investigated the properties of

ENVBO, showing that the algorithm is effective in the scenarios of added noise and un-

controllable variables with high and low variability. When solving problems with more

than one environmental variable, it is desirable that the final Gaussian process model is

not used for extrapolation, as this can result in biased solutions. Additionally, it was

found that uncontrollable variables with large fluctuations require more function evalua-

tions than uncontrollable variables that fluctuate less. Higher fluctuation generally results

in a larger effective parameter domain than lower fluctuation. When modelling, it is in-

tuitive that larger areas require more observations—and thus information—than smaller

areas to achieve identical results, assuming that all other properties are comparable.

ENVBO—an implementation of the proposed algorithm within the Python package NUBO

[42]—was applied to two problems concerned with a wind farm simulator. The first prob-

lem aimed to place four wind turbines within an area with complex underlying terrain to

find positions that maximise the annual power generation for different wind directions.

The results were compared to two benchmarks—regular Bayesian optimisation via NUBO

and the SLSQP algorithm via the SciPy package [201]—showing up to 88% better perfor-

mance in all but one case across the whole range of possible wind directions, while keeping

function evaluations, and thus costs, low. The second problem aimed to maximise the

mean energy production by setting the derating strategy for a row of five wind turbines

with changing wind speeds. ENVBO outperformed the Nelder-Mead algorithm by up to

60% and gave comparable performance to the standard Bayesian optimisation algorithm.

However, ENVBO uses fewer function evaluations per value of the environmental vari-
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able and produces solutions for its full range. Thus, ENVBO is a sample-efficient and

cost-effective approach for optimising expensive experiments and simulators with uncon-

trollable environmental conditions.

In the future, we plan to apply ENVBO to more complex simulators and experiments

and investigate how more complex mean functions can be used in the prior distribution

of the Gaussian process to better represent areas of the input space where only a small

number of observed points are available—and also to give a better representation for ar-

eas towards the edges of the ranges of the environmental variables. Section 5.7 discussed

another possible extension of ENVBO to allow optimisation with heteroskedastic noise

through implementing heteroskedastic Gaussian processes [66]. Furthermore, an interest-

ing research direction is finding a method to evaluate if ENVBO should observe a point

from the objective function for a given environmental variable value. There could be

situations where enough data points have already been observed for an environmental

condition, and we should refrain from observing another data point as it would only add

very limited additional information. It might be more sample-efficient to wait for an en-

vironmental condition that has not been explored. Finally, we implicitly assume that the

best observation of all previous training data points is a good target for the expected im-

provement function in Section 2.4.1. However, improving upon the best-observed output

for any given environmental condition might not be possible. Consider the case where

the single global optimum has been found, but we are still looking for local optima for

different environmental conditions. No improvement would be possible in this case, and

the acquisition function would suggest non-optimal candidates. A possible solution is to

use the maximum posterior prediction for the given environmental condition as the target.

This is similar to what Picheny et al. [155] and Gramacy [69] propose in the presence of

noise.
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Conclusion

This thesis investigated Bayesian optimisation for expensive physical experiments and

computer simulators with the overarching aim of furthering understanding, methodology

and adoption.

6.1 Summary of contributions

Chapter 1 highlighted the importance of optimising these expensive black boxes and

showed the potential benefits by introducing the example of reducing the turbulent skin

friction drag close to an aircraft’s surface, which would result in significant monetary,

environmental and public health benefits. The chapter illustrated how optimising an ex-

pensive experiment mimicking the airflow over a flat plate could help find optimal drag

reduction strategies. As conventional optimisation methods are not suitable for expensive

derivative-free black-box optimisation, the introduction introduced methods based on sur-

rogate modelling and, particularly, Bayesian optimisation. Chapter 2 formalised the prob-

lems and methods highlighted in the introduction mathematically and gave an overview

of the related Bayesian optimisation literature. The following three chapters focused on

the understanding (Chapter 3), adoption (Chapter 4) and methodology (Chapter 5) of

Bayesian optimisation by addressing the objectives given in the introduction.

Chapter 3 conducted an empirical simulation study investigating key characteristics of

Bayesian optimisation for expensive experiments and simulators on eight different test

functions. Cheap test functions facilitated a thorough investigation and provided robust

results, allowing 50 replications for each Bayesian optimisation algorithm. While results

showed only a slight difference when varying the number of initial training data points—1,

5 and 10 data points per input dimension were considered—optimistic or confidence-bound

acquisition functions performed best across all test functions. Furthermore, approximating

the exact analytical acquisition function with Monte Carlo sampling showed comparable
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results to the analytical case for single-point optimisation. For multi-point optimisation,

Monte Carlo sampling enabled a natural way of computing batches of candidate points

that performed better than heuristical strategies of the analytical multi-point acquisition

functions.

Chapter 4 addressed the need for easily understandable and user-friendly software, allow-

ing a broader adoption of Bayesian optimisation by non-experts. This is crucial because

expensive black-box functions are prominent in many scientific fields, such as biology,

chemistry, engineering and physics. However, researchers typically lack the knowledge of

strategies for successful optimisation. Available packages were either overly complex or

did not include all the building blocks necessary for optimisation in the sciences. Thus,

NUBO was developed to close the gap between experts and users by providing a simple

implementation of Bayesian optimisation with source code that can be easily verified with

the provided references. Benchmarking showed that this simplicity does not come at the

cost of performance, as NUBO achieved competitive, and even superior, performance com-

pared to other popular Python packages. NUBO is published as an open-source software

package and available from the Python Package Index (PyPI).

Chapter 5 developed a strategy for a challenge unique to physical experiments. In the

investigated scenarios, environmental conditions can influence the output of an experi-

ment while being uncontrollable. The chapter introduces ENVBO, a novel algorithm that

allows the optimisation of problems with controllable and environmental variables. EN-

VBO’s properties are investigated by optimising cheap test functions and benchmarking

on a wind farm simulator against standard Bayesian optimisation, Nelder-Mead [143] and

SLSQP [107]. For the simulator, the aim was to maximise the energy production for dif-

ferent wind speeds and wind directions. ENVBO was shown to be at least comparable

to standard Bayesian optimisation, Nelder-Mead and SLSQP for selected environmental

conditions while using fewer function evaluations per condition, i.e., per wind speed and

wind direction. Furthermore, ENVBO can predict solutions for the entire range of the

environmental variables.

In addition to these contributions, Bayesian optimisation and ENVBO were applied to

computer simulators and physical experiments in active flow control to maximise the

turbulent skin friction drag reduction. Chapter 3 found a significant drag reduction of over

22% for a four-dimensional travelling wave problem and very modest net energy savings

of below 1% for a three-dimensional problem where a gap separates two blowing regions.

Both problems suggest that uniform-blowing strategies were favoured. Furthermore, the

modest net energy savings indicated a need for actuators with cheaper power consumption.

Further experiments and simulations were conducted, and their results were published in

O’Connor et al. [145] and Chen et al. [27].
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6.2 Limitations and future work

The limited time available to research and write this thesis means that some research

avenues were not (sufficiently) explored, and present a good starting point for future

work.

Firstly, this work considered simple Gaussian processes with zero and constant mean

functions. Results from Chapter 5 showed that these prior mean functions have the dis-

advantage of performing poorly when extrapolating as they default to their prior mean.

More sophisticated prior mean functions, such as low-order polynomials [53], radial basis

function [19], concave quadratic function [58] and trigonometric functions, could improve

predictions.

Secondly, NUBO does not yet include all algorithms and methods available in the literature

that are effective for optimising expensive physical experiments and computer simulators.

More functionalities should be added in the future. At the same time, these additions

should be carefully selected to ensure NUBO does not lose its compact and simple nature.

Besides the more complex prior mean functions, methods to enable multi-objective, multi-

fidelity and high-dimensional optimisation are potentially beneficial.

Thirdly, ENVBO was only applied to a wind farm simulator, where the environmental

variables were artificially created using a random walk. It would be beneficial to apply

it to expensive experiments and simulators that include actual environmental variables to

validate the method further. This could give further insights into the ENVBO’s perfor-

mance as well as its shortcomings and strengths.

Fourthly, the growing adoption of physics-informed machine learning [101], including

physics-informed Gaussian processes, presents a promising research direction. In the con-

text of Bayesian optimisation, physics-informed models assume that while the objective

function is a black box, some laws of physics apply that can be integrated into the sur-

rogate model. In the particular case of Gaussian processes, prior knowledge of these laws

can be implemented within the covariance kernel. Physics-informed models have the ben-

efit of making modelling more robust and could improve optimisation. Indeed, initial

investigations into physics-informed Bayesian optimisation report promising results [103].

Finally, high-dimensional optimisation with many input parameters is a highly researched

and challenging area of Bayesian optimisation. In the literature, dimension reduction

techniques such as linear embeddings proved to achieve good results (see Section 2.5.4)

and should be investigated in the future.
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Appendix of empirical

investigation

A.1 Mathematical definition of test functions

6D Ackley

Function: f (x) = −a exp

(
−b
√

1
6

∑6
i=1 x

2
i

)
− exp

(
1
6

∑6
i=1 cos (cxi)

)
+ a+ exp (1)

with a = 20.0, b = 0.5 and c = 0.0

Bounds: xi ∈ [−32.768, 32.768] ∀ i = 1, 2, ..., 6

Global Minimum: f (x∗) = 0 at x∗ = (0, 0, 0, 0, 0, 0)

10D Dixon-Price

Function: f (x) = (x1 − 1)2 +
∑10

i=2 i
(
2x2i − xi−1

)2
Bounds: xi ∈ [−10, 10] ∀ i = 1, 2, ..., 10

Global Minimum: f (x∗) = 0 at x∗i = 2−
2i−2

2i ∀ i = 1, ..., 10

8D Griewank

Function: f (x) =
∑8

i=1
x2
i

4000 −
∏8

i=1 cos
(

xi√
i

)
+ 1

Bounds: xi ∈ [−600, 600] ∀i = 1, 2, ..., 8

Global Minimum: f (x∗) = 0 at x∗ = (0, 0, 0, 0, 0, 0, 0, 0)

6D Hartmann

Function: f (x) = −
∑4

i=1 αi exp
(
−
∑6

j=1Aij (xj − P ij)
2
)

where α = (1.0, 1.2, 3.0, 3.2)T
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and A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14



and P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


Bounds: xi ∈ (0, 1) ∀i = 1, 2, ..., 6

Global Minimum: f (x∗) = −3.32237

at x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)

5D Michalewicz

Function: f (x) = −
∑5

i=1 sin (xi) sin
20
(
ix2

i
π

)
Bounds: xi ∈ [0, π] ∀i = 1, 2, ..., 5

Global Minimum: f (x∗) = −4.687658

10D Sphere

Function: f (x) =
∑10

i=1 x
2
i

Bounds: xi ∈ [−5.12, 5.12] ∀i = 1, 2, ..., 10

Global Minimum: f (x∗) = 0 at x∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

A.2 Supplementary statistical analysis

In this appendix, we provide a formal statistical comparison of the algorithms of the

analytical single-point acquisition functions and the multi-point acquisition functions, both

with five initial starting points per input dimension—we see these as the two most essential

comparisons in Chapter 3. The other investigations in Section 3.2.1 either represent a

similar setup (analytical single-point comparison with different numbers of initial training

points) or are used to facilitate the comparison of the multi-point Monte Carlo acquisition

functions.

To investigate if there are statistically significant differences between the methods, the

non-parametric Friedman test is performed on the best output value found for every repli-

cation for each algorithm. This conducts a hypothesis test to see if there is a difference

in performance between the algorithms. First, we focus on the analytical single-point

algorithms of Section 3.2.1. The tests reported in Table A.1 provide p-values, which are

all well below the 0.1% significance level, indicating that we have very strong evidence
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of a difference in the performance of the different methods. We can investigate these

differences using the box plots in Figure A.1, which show where the differences between

the algorithms lie. We see substantial differences in the Ackley function. The results are

similar to the multi-point approaches of Section 3.2.1. We again see significant differences

between the optimal output found by the different methods (at the 0.1% level) using the

Friedman tests reported in Table A.1, and the box plots in Figure A.2 reinforce these

results.
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Figure A.1: Box plots of best values found for analytical single-point acquisition functions with
five initial starting points per input dimension. The orange line indicates the median, the box
extends from the lower to the upper quartile range and the whiskers indicate the range of the best
values without the outliers shown as circles.
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Figure A.2: Box plots of best values found for multi-point acquisition functions with five initial
starting points per input dimension. The orange line indicates the median, the box extends from
the lower to the upper quartile range and the whiskers indicate the range of the best values without
the outliers shown as circles.

Table A.1: Friedman test for analytical single-point and multi-point acquisition function with five
initial starting points per input dimension.

Test function
Single-point Multi-point

Test statistic p-value Test statistic p-value

Griewank 169.10 1.14e-34 254.97 1.53e-50
Hartmann 81.86 3.42e-16 159.59 1.94e-30
Noisy Hartmann 78.80 1.50e-15 137.30 8.64e-26
Ackley 199.10 4.43e-41 362.75 1.72e-73
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A.3 Supplementary figures
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Figure A.3: Performance plots for analytical single-point acquisition functions with five initial
starting points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.
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Figure A.4: Performance plots for analytical single-point acquisition functions with one initial
starting point per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.
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Figure A.5: Performance plots for analytical single-point acquisition functions with ten initial
starting points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.
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Figure A.6: Performance plots for Monte Carlo single-point acquisition functions with five initial
starting points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded areas represent the 95% confidence intervals.
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Figure A.7: Performance plots for optimistic multi-point acquisition functions with five initial
training points per input dimension. Solid lines represent the mean over the 50 runs while the
shaded area represents the 95% confidence intervals.
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Figure A.8: Performance plots for improvement-based multi-point acquisition functions with five
initial training points per input dimension. Solid lines represent the mean over the 50 runs while
the shaded area represents the 95% confidence intervals.
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A.4 Supplementary tables

Table A.2: Best solutions found for analytical single-point acquisition functions with five initial
training points per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

PI 1.00 1.00 1.00 0.97 0.99 1.00 0.78 0.88

EI 1.00 1.00 1.00 0.99 0.99 1.00 0.71 0.63

UCB
(variable)

0.98 1.00 1.00 0.98 0.99 1.00 0.80 0.96

UCB
(β=5)

1.00 1.00 1.00 0.99 1.00 1.00 0.85 0.99

UCB
(β=1)

1.00 1.00 1.00 0.97 1.00 1.00 0.89 0.97

Hedge 1.00 1.00 1.00 0.98 0.99 1.00 0.85 0.91

Table A.3: Averaged AUC with standard error for analytical single-point acquisition functions
with five initial training points per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

PI
0.99

(± 0.00)
1.00

(± 0.00)
0.99

(± 0.00)
0.91

(± 0.04)
0.94

(± 0.02)
0.95

(± 0.02)
0.73

(± 0.10)
0.76

(± 0.08)

EI
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.02)
0.97

(± 0.02)
0.68

(± 0.08)
0.59

(± 0.15)

UCB
(variable)

0.98
(± 0.01)

1.00
(± 0.00)

0.98
(± 0.01)

0.94
(± 0.03)

0.95
(± 0.02)

0.95
(± 0.03)

0.69
(± 0.06)

0.85
(± 0.01)

UCB
(β=5)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.97
(± 0.02)

0.97
(± 0.02)

0.98
(± 0.02)

0.77
(± 0.08)

0.90
(± 0.02)

UCB
(β=1)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.95
(± 0.04)

0.97
(± 0.03)

0.97
(± 0.02)

0.80
(± 0.08)

0.88
(± 0.05)

Hedge
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.95

(± 0.03)
0.96

(± 0.03)
0.97

(± 0.02)
0.76

(± 0.08)
0.77

(± 0.11)
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Table A.4: Best solutions found for analytical single-point acquisition functions with one initial
training point per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

PI 1.00 1.00 1.00 0.98 0.99 1.00 0.78 0.88

EI 1.00 1.00 1.00 0.99 0.99 0.99 0.66 0.63

UCB
(variable)

0.98 1.00 1.00 0.99 1.00 1.00 0.79 0.96

UCB
(β=5)

1.00 1.00 1.00 0.99 1.00 1.00 0.81 0.99

UCB
(β=1)

1.00 1.00 1.00 0.97 0.98 0.99 0.89 0.96

Hedge 1.00 1.00 1.00 0.96 1.00 0.99 0.84 0.94

Table A.5: Averaged AUC with standard error for analytical single-point acquisition functions
with one initial training point per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

PI
0.97

(± 0.01)
0.99

(± 0.00)
0.97

(± 0.01)
0.82

(± 0.09)
0.87

(± 0.07)
0.90

(± 0.06)
0.68

(± 0.07)
0.73

(± 0.11)

EI
0.99

(± 0.00)
1.00

(± 0.00)
0.99

(± 0.00)
0.95

(± 0.03)
0.94

(± 0.04)
0.95

(± 0.03)
0.62

(± 0.09)
0.58

(± 0.13)

UCB
(variable)

0.96
(± 0.01)

1.00
(± 0.00)

0.97
(± 0.01)

0.91
(± 0.04)

0.90
(± 0.05)

0.91
(± 0.03)

0.66
(± 0.06)

0.82
(± 0.01)

UCB
(β=5)

0.98
(± 0.00)

1.00
(± 0.00)

0.98
(± 0.00)

0.94
(± 0.03)

0.94
(± 0.04)

0.95
(± 0.03)

0.72
(± 0.05)

0.87
(± 0.02)

UCB
(β=1)

0.99
(± 0.00)

1.00
(± 0.00)

0.99
(± 0.00)

0.93
(± 0.08)

0.92
(± 0.10)

0.93
(± 0.09)

0.77
(± 0.07)

0.85
(± 0.06)

Hedge
0.98

(± 0.01)
0.99

(± 0.00)
0.98

(± 0.01)
0.89

(± 0.11)
0.91

(± 0.05)
0.92

(± 0.05)
0.73

(± 0.08)
0.76

(± 0.09)
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Table A.6: Best solutions found for analytical single-point acquisition functions with ten initial
training points per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

PI 1.00 1.00 1.00 0.97 0.99 0.99 0.73 0.51

EI 1.00 1.00 1.00 0.98 0.99 0.99 0.68 0.53

UCB
(variable)

0.99 1.00 1.00 0.98 0.98 0.99 0.77 0.96

UCB
(β=5)

1.00 1.00 1.00 0.98 0.99 1.00 0.81 0.98

UCB
(β=1)

1.00 1.00 1.00 0.98 0.99 1.00 0.88 0.95

Hedge 1.00 1.00 1.00 0.98 0.99 1.00 0.79 0.87

Table A.7: Averaged AUC with standard error for analytical single-point acquisition functions
with ten initial training points per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

PI
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.93

(± 0.05)
0.96

(± 0.02)
0.96

(± 0.02)
0.69

(± 0.10)
0.43

(± 0.25)

EI
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.02)
0.97

(± 0.02)
0.64

(± 0.09)
0.41

(± 0.07)

UCB
(variable)

0.99
(± 0.01)

1.00
(± 0.00)

1.00
(± 0.00)

0.95
(± 0.03)

0.96
(± 0.03)

0.96
(± 0.03)

0.66
(± 0.07)

0.87
(± 0.01)

UCB
(β=5)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.97
(± 0.02)

0.98
(± 0.02)

0.98
(± 0.02)

0.74
(± 0.06)

0.91
(± 0.03)

UCB
(β=1)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.96
(± 0.03)

0.97
(± 0.02)

0.98
(± 0.03)

0.77
(± 0.07)

0.86
(± 0.08)

Hedge
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.96

(± 0.03)
0.97

(± 0.02)
0.97

(± 0.02)
0.71

(± 0.09)
0.78

(± 0.13)
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Table A.8: Best solutions found for Monte Carlo single-point acquisition functions with five initial
training points per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

MC PI 1.00 1.00 1.00 0.98 0.99 0.99 0.81 0.20

MC EI 1.00 1.00 1.00 0.99 0.99 0.99 0.68 0.07

MC UCB
(variable)

0.98 1.00 1.00 0.98 0.99 0.99 0.77 0.96

MC UCB
(β=5)

1.00 1.00 1.00 0.99 1.00 1.00 0.84 0.99

MC UCB
(β=1)

1.00 1.00 1.00 0.97 1.00 1.00 0.86 0.97

MES 1.00 1.00 1.00 0.99 0.99 1.00 0.83 0.55

Table A.9: Averaged AUC with standard error for Monte Carlo single-point acquisition functions
with five initial training points per input dimension.

Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

MC PI
0.99

(± 0.00)
1.00

(± 0.00)
0.99

(± 0.00)
0.92

(± 0.06)
0.94

(± 0.02)
0.95

(± 0.04)
0.73

(± 0.09)
0.17

(± 0.12)

MC EI
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.02)
0.97

(± 0.04)
0.64

(± 0.08)
0.05

(± 0.03)

MC UCB
(variable)

0.98
(± 0.01)

1.00
(± 0.00)

0.98
(± 0.01)

0.95
(± 0.02)

0.95
(± 0.02)

0.95
(± 0.04)

0.67
(± 0.06)

0.86
(± 0.01)

MC UCB
(β=5)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.97
(± 0.02)

0.98
(± 0.02)

0.98
(± 0.03)

0.75
(± 0.06)

0.91
(± 0.01)

MC UCB
(β=1)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.96
(± 0.07)

0.97
(± 0.03)

0.97
(± 0.07)

0.77
(± 0.08)

0.89
(± 0.03)

MES
0.99

(± 0.00)
0.99

(± 0.00)
0.99

(± 0.00)
0.97

(± 0.02)
0.97

(± 0.02)
0.97

(± 0.03)
0.74

(± 0.05)
0.49

(± 0.12)
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Table A.10: Best solutions found for multi-point acquisition functions with five initial training
points per input dimension.

Type Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

S
e
q
u
e
n
ti
a
l
M

o
n
te

C
a
rl
o

PI 1.00 1.00 1.00 0.98 0.98 0.99 0.74 0.24

EI 1.00 1.00 1.00 0.98 0.99 0.99 0.69 0.41

UCB
(variable)

0.98 1.00 0.99 0.98 0.98 0.99 0.74 0.97

UCB
(β=5)

1.00 1.00 1.00 0.98 0.99 1.00 0.83 0.98

UCB
(β=1)

1.00 1.00 1.00 0.98 0.99 1.00 0.87 0.97

J
o
in
t
M

o
n
te

C
a
rl
o

PI 1.00 1.00 1.00 0.97 0.98 0.98 0.73 0.12

EI 1.00 1.00 1.00 0.98 0.98 0.99 0.67 0.08

UCB
(variable)

0.96 0.99 0.99 0.97 0.97 0.98 0.65 0.95

UCB
(β=5)

1.00 1.00 1.00 0.98 0.99 1.00 0.84 0.98

UCB
(β=1)

1.00 1.00 1.00 0.99 0.99 1.00 0.83 0.97

A
n
a
ly
ti
c
a
l

CL min 1.00 1.00 1.00 0.98 0.99 0.99 0.66 0.50

CL max 1.00 1.00 1.00 0.98 0.99 0.99 0.82 0.74

BUCB
(variable)

0.98 1.00 0.98 0.97 0.97 0.97 0.69 0.91

BUCB
(β=5)

0.99 1.00 0.99 0.98 0.99 1.00 0.85 0.98

BUCB
(β=1)

1.00 1.00 1.00 0.97 0.98 0.99 0.91 0.99
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Table A.11: Averaged AUC with standard error for multi-point acquisition functions with five
initial training points per input dimension.

Type Method Sphere Dixon-Price Griewank Hartmann
Hartmann
low noise

Hartmann
high noise

Michalewicz Ackley

S
e
q
u
e
n
ti
a
l
M

o
n
te

C
a
rl
o

PI
0.99

(± 0.01)
1.00

(± 0.00)
0.99

(± 0.00)
0.92

(± 0.03)
0.93

(± 0.02)
0.94

(± 0.02)
0.69

(± 0.06)
0.22

(± 0.08)

EI
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.95

(± 0.03)
0.96

(± 0.02)
0.97

(± 0.02)
0.64

(± 0.08)
0.37

(± 0.22)

UCB
(variable)

0.98
(± 0.01)

1.00
(± 0.00)

0.98
(± 0.01)

0.94
(± 0.03)

0.94
(± 0.02)

0.94
(± 0.03)

0.64
(± 0.08)

0.84
(± 0.01)

UCB
(β=5)

0.99
(± 0.00)

1.00
(± 0.00)

0.99
(± 0.00)

0.95
(± 0.02)

0.96
(± 0.02)

0.96
(± 0.02)

0.72
(± 0.06)

0.88
(± 0.02)

UCB
(β=1)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.96
(± 0.02)

0.97
(± 0.02)

0.97
(± 0.02)

0.77
(± 0.07)

0.86
(± 0.02)

J
o
in
t
M

o
n
te

C
a
rl
o

PI
0.98

(± 0.01)
1.00

(± 0.00)
0.99

(± 0.00)
0.86

(± 0.05)
0.89

(± 0.03)
0.89

(± 0.04)
0.65

(± 0.06)
0.09

(± 0.06)

EI
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.95

(± 0.03)
0.95

(± 0.02)
0.96

(± 0.02)
0.63

(± 0.08)
0.06

(± 0.03)

UCB
(variable)

0.96
(± 0.02)

0.99
(± 0.01)

0.97
(± 0.02)

0.89
(± 0.04)

0.90
(± 0.05)

0.90
(± 0.04)

0.56
(± 0.07)

0.81
(± 0.02)

UCB
(β=5)

0.99
(± 0.00)

1.00
(± 0.00)

0.99
(± 0.00)

0.94
(± 0.03)

0.96
(± 0.02)

0.95
(± 0.03)

0.72
(± 0.05)

0.87
(± 0.02)

UCB
(β=1)

1.00
(± 0.00)

1.00
(± 0.00)

1.00
(± 0.00)

0.96
(± 0.02)

0.97
(± 0.02)

0.97
(± 0.02)

0.75
(± 0.07)

0.78
(± 0.06)

A
n
a
ly
ti
c
a
l

CL min
0.99

(± 0.00)
1.00

(± 0.00)
0.99

(± 0.00)
0.94

(± 0.02)
0.95

(± 0.02)
0.95

(± 0.02)
0.62

(± 0.08)
0.40

(± 0.08)

CL max
1.00

(± 0.00)
1.00

(± 0.00)
1.00

(± 0.00)
0.95

(± 0.03)
0.96

(± 0.02)
0.96

(± 0.03)
0.74

(± 0.10)
0.67

(± 0.09)

BUCB
(variable)

0.98
(± 0.01)

1.00
(± 0.00)

0.98
(± 0.02)

0.85
(± 0.05)

0.84
(± 0.06)

0.85
(± 0.05)

0.61
(± 0.05)

0.65
(± 0.03)

BUCB
(β=5)

0.98
(± 0.01)

1.00
(± 0.00)

0.98
(± 0.00)

0.88
(± 0.05)

0.89
(± 0.04)

0.90
(± 0.05)

0.69
(± 0.05)

0.66
(± 0.05)

BUCB
(β=1)

0.99
(± 0.01)

1.00
(± 0.00)

0.99
(± 0.00)

0.88
(± 0.06)

0.89
(± 0.04)

0.90
(± 0.06)

0.74
(± 0.08)

0.65
(± 0.05)

138



Bibliography

[1] L. Acerbi and W. J. Ma. “Practical Bayesian Optimization for Model Fitting With

Bayesian Adaptive Direct Search”. In: Advances in Neural Information Processing

Systems (NeurIPS). Vol. 30. NeurIPS Foundation. 2017.

[2] S. Ament, S. Daulton, D. Eriksson, M. Balandat, and E. Bakshy. “Unexpected Im-

provements to Expected Improvement for Bayesian Optimization”. In: Advances in

Neural Information Processing Systems (NeurIPS). Vol. 36. NeurIPS Foundation.

2023.

[3] C. Audet, J. Denni, D. Moore, A. Booker, and P. Frank. “A Surrogate-Model-

Based Method for Constrained Optimization”. In: Multidisciplinary Analysis and

Optimization Conference (MA&O). AIAA. 2000, p. 4891.

[4] C. Audet and J. E. Dennis Jr. “Mesh Adaptive Direct Search Algorithms for Con-

strained Optimization”. In: SIAM Journal on Optimization 17.1 (2006), pp. 188–

217.

[5] P. Auer. “Using Confidence Bounds for Exploitation-Exploration Trade-Offs”. In:

Journal of Machine Learning Research 3.Nov (2002), pp. 397–422.

[6] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. “Gambling in a Rigged

Casino: The Adversarial Multi-Armed Bandit Problem”. In: Symposium on Foun-

dations of Computer Science (FOCS). IEEE. 1995, pp. 322–331.

[7] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wilson, and

E. Bakshy. “BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimiza-

tion”. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 33.

NeurIPS Foundation. 2020, pp. 21524–21538.

[8] P. Bartholomew, G. Deskos, R. A. Frantz, F. N. Schuch, E. Lamballais, and S.

Laizet. “Xcompact3D: An Open-Source Framework for Solving Turbulence Prob-

lems on a Cartesian Mesh”. In: SoftwareX 12 (2020), p. 100550.

[9] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß. “Sequential Parameter Opti-

mization”. In: Congress on Evolutionary Computation (CEC). Vol. 1. IEEE. 2005,

pp. 773–780.

139



Bibliography

[10] S. Belakaria, A. Deshwal, and J. R. Doppa. “Max-Value Entropy Search for Multi-

Objective Bayesian Optimization”. In: Advances in Neural Information Processing

Systems (NeurIPS). Vol. 32. NeurIPS Foundation. 2019.

[11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for Hyper-Parameter

Optimization”. In: Advances in Neural Information Processing Systems (NeurIPS).

Vol. 24. NeurIPS Foundation. 2011.

[12] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments.

Monographs on Statistics and Applied Probability. Springer, 1985.

[13] M. Binois, D. Ginsbourger, and O. Roustant. “On the Choice of the Low-Dimensional

Domain for Global Optimization via Random Embeddings”. In: Journal of Global

Optimization 76.1 (2020), pp. 69–90.

[14] S. Boersma, B. M. Doekemeijer, P. M. Gebraad, P. A. Fleming, J. Annoni, A. K.

Scholbrock, J. A. Frederik, and J.-W. van Wingerden. “A Tutorial on Control-

Oriented Modeling and Control of Wind Farms”. In: American Control Conference

(ACC). IEEE. 2017, pp. 1–18.

[15] A. Booker. “Design and Analysis of Computer Experiments”. In: Multidisciplinary

Analysis and Optimization Conference (MA&O). AIAA. 1998, p. 4757.

[16] P. Boyle. “Gaussian Processes for Regression and Optimisation”. PhD thesis. Vic-

toria University of Wellington, 2007.

[17] A. P. Bradley. “The Use of the Area Under the ROC Curve in the Evaluation of

Machine Learning Algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–1159.

[18] L. Breiman. “Random Forests”. In: Machine Learning 45 (2001), pp. 5–32.

[19] E. Brochu, T. Brochu, and N. De Freitas. “A Bayesian Interactive Optimization Ap-

proach to Procedural Animation Design”. In: Symposium on Computer Animation

(SCA). ACM. 2010, pp. 103–112.

[20] E. Brochu, V. M. Cora, and N. De Freitas. “A Tutorial on Bayesian Optimiza-

tion of Expensive Cost Functions, With Application to Active User Modeling and

Hierarchical Reinforcement Learning”. In: arXiv preprint arXiv:1012.2599 (2010).

[21] A. D. Bull. “Convergence Rates of Efficient Global Optimization Algorithms”. In:

Journal of Machine Learning Research 12.10 (2011).

[22] D. M. Bushnell and J. N. Hefner. Viscous Drag Reduction in Boundary Layers.

Progress in Astronautics and Aeronautics. AIAA, 1990.

140



Bibliography

[23] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth. “Bayesian Optimization

for Learning Gaits Under Uncertainty: An Experimental Comparison on a Dynamic

Bipedal Walker”. In: Annals of Mathematics and Artificial Intelligence 76 (2016),

pp. 5–23.

[24] P. B. Chang, B. J. Williams, K. S. B. Bhalla, T. W. Belknap, T. J. Santner, W. I.

Notz, and D. L. Bartel. “Design and Analysis of Robust Total Joint Replacements:

Finite Element Model Experiments With Environmental Variables”. In: Journal of

Biomechanical Engineering 123.3 (2001), pp. 239–246.

[25] P. B. Chang, B. J. Williams, T. J. Santner, W. I. Notz, and D. L. Bartel. “Robust

Optimization of Total Joint Replacements Incorporating Environmental Variables”.

In: Journal of Biomechanical Engineering 121.3 (1999), pp. 304–310.

[26] I. Char, Y. Chung, W. Neiswanger, K. Kandasamy, A. O. Nelson, M. Boyer, E.

Kolemen, and J. Schneider. “Offline Contextual Bayesian Optimization”. In: Ad-

vances in Neural Information Processing Systems (NeurIPS). Vol. 32. NeurIPS

Foundation. 2019.

[27] X. Chen, M. Diessner, K. J. Wilson, and R. D. Whalley. “Optimizing Wall Blowing

for Global Skin-Friction Drag Reduction Using a Bayesian Optimization Frame-

work”. In: Symposium on Turbulence and Shear Flow Phenomena (TSFP). TSFP.

2024.

[28] Y. Chen, H. Li, K. Jin, and Q. Song. “Wind Farm Layout Optimization Using Ge-

netic AlgorithmWith Different Hub Height Wind Turbines”. In: Energy Conversion

and Management 70 (2013), pp. 56–65.

[29] C. Chevalier and D. Ginsbourger. “Fast Computation of the Multi-points Expected

Improvement With Applications in Batch Selection”. In: International Conference

on Learning and Intelligent Optimization (LION). Springer. 2013, pp. 59–69.

[30] Y. Chung, I. Char, W. Neiswanger, K. Kandasamy, A. O. Nelson, M. D. Boyer, E.

Kolemen, and J. Schneider. “Offline Contextual Bayesian Optimization for Nuclear

Fusion”. In: Workshop on Machine Learning and the Physical Sciences (NeurIPS).

Vol. 32. NeurIPS Foundation. 2019.

[31] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free

Optimization. MOS-SIAM Series on Optimization. SIAM, 2009.

[32] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis. “Parallel Gaussian Process

Optimization With Upper Confidence Bound and Pure Exploration”. In: Joint

European Conference on Machine Learning and Knowledge Discovery in Databases

(ECML PKDD). Springer. 2013, pp. 225–240.

141



Bibliography

[33] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Machine Learning 20

(1995), pp. 273–297.

[34] A. Criminisi, J. Shotton, E. Konukoglu, et al. “Decision Forests: A Unified Frame-

work for Classification, Regression, Density Estimation, Manifold Learning and

Semi-supervised Learning”. In: Foundations and Trends in Computer Graphics and

Vision 7.2–3 (2012), pp. 81–227.

[35] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

[36] S. Daulton, X. Wan, D. Eriksson, M. Balandat, M. A. Osborne, and E. Bakshy.

“Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparam-

eterization”. In: Advances in Neural Information Processing Systems (NeurIPS).

Vol. 35. NeurIPS Foundation. 2022.

[37] N. De Freitas, A. Smola, and M. Zoghi. “Exponential Regret Bounds for Gaussian

Process Bandits With Deterministic Observations”. In: International Conference

on Machine Learning (ICML). PLMR. 2012, pp. 1743–1750.

[38] T. Desautels, A. Krause, and J. W. Burdick. “Parallelizing Exploration-Exploitation

Tradeoffs in Gaussian Process Bandit Optimization”. In: Jorunal of Machine Learn-

ing Research 15.1 (2014), pp. 3873–3923.

[39] A. Deshwal, S. Ament, M. Balandat, E. Bakshy, J. R. Doppa, and D. Eriksson.

“Bayesian Optimization over High-Dimensional Combinatorial Spaces via Dictionary-

Based Embeddings”. In: International Conference on Artificial Intelligence and

Statistics (AISTATS). PMLR. 2023, pp. 7021–7039.

[40] M. Diessner, X. Chen, K. J. Wilson, and R. D. Whalley. “Optimising Active Flow

Control Strategies for Random and Controlled Wind Speeds via Bayesian Optimi-

sation”. In: Symposium on Turbulence and Shear Flow Phenomena (TSFP). TSFP.

2024.

[41] M. Diessner, J. O’Connor, A. Wynn, S. Laizet, Y. Guan, K. Wilson, and R. D.

Whalley. “Investigating Bayesian Optimization for Expensive-to-Evaluate Black

Box Functions: Application in Fluid Dynamics”. In: Frontiers in Applied Mathe-

matics and Statistics 8 (2022), p. 1076296.

[42] M. Diessner, K. Wilson, and R. D. Whalley. “NUBO: A Transparent Python Pack-

age for Bayesian Optimisation”. In: arXiv preprint arXiv:2305.06709 (2023). Ac-

cepted by Journal of Statistical Software.

142



Bibliography

[43] M. Diessner, K. J. Wilson, and R. D. Whalley. “On the Development of a Practi-

cal Bayesian Optimization Algorithm for Expensive Experiments and Simulations

With Changing Environmental Conditions”. In: Data-Centic Engineering 5 (2024),

e45.

[44] J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A. Edelen, P. Baxevanis, A.

Egger, T. Cope, M. McIntire, S. Ermon, et al. “Bayesian Optimization of a Free-

Electron Laser”. In: Physical Review Letters 124.12 (2020), p. 124801.

[45] N. Ebrahimzade, J. Portoles, M. Wilkes, P. Cumpson, and R. D. Whalley. “Optical

MEMS Sensors for Instantaneous Wall-Shear Stress Measurements in Turbulent

Boundary-Layer Flows”. In: Symposium on Turbulence and Shear Flow Phenomena

(TSFP). TSFP. 2022, pp. 1–6.

[46] M. T. Emmerich, K. C. Giannakoglou, and B. Naujoks. “Single- and Multiobjective

Evolutionary Optimization Assisted by Gaussian Random Field Metamodels”. In:

IEEE Transactions on Evolutionary Computation 10.4 (2006), pp. 421–439.

[47] D. Eriksson and M. Jankowiak. “High-Dimensional Bayesian Optimization With

Sparse Axis-Aligned Subspaces”. In: Conference on Uncertainty in Artificial Intel-

ligence (UAI). PMLR. 2021, pp. 493–503.

[48] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. “Scalable

Global Optimization via Local Bayesian Optimization”. In: Advances in Neural

Information Processing Systems (NeurIPS). Vol. 32. NeurIPS Foundation. 2019.

[49] D. Fernández-Sánchez, E. C. Garrido-Merchán, and D. Hernández-Lobato. “Im-

proved Max-Value Entropy Search for Multi-objective Bayesian Optimization With

Constraints”. In: Neurocomputing 546 (2023), p. 126290.
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